-
Niclas Eich authoredNiclas Eich authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
tf.py 8.19 KiB
from contextlib import contextmanager
import numpy as np
import tensorflow as tf
from time import time
from analysis.util import atq
from io import BytesIO
import h5py
from tensorflow.python.keras.engine.saving import (
save_weights_to_hdf5_group,
load_weights_from_hdf5_group,
)
from evil import pin, ccall
from tensorflow.python.util import deprecation
deprecation._PRINT_DEPRECATION_WARNINGS = False
def last_map(func, obj, order=1):
return tf.concat(
[
obj[..., :-1],
tf.expand_dims(
last_map(func=func, obj=obj[..., -1], order=order - 1)
if 1 < order
else func(obj[..., -1]),
axis=-1,
),
],
axis=-1,
)
def tf_meanstd(val, **kwargs):
mean = tf.reduce_mean(val, **kwargs)
std = tf.reduce_mean(tf.square(val), **kwargs) - tf.square(mean)
return mean, std
# this is mostly unused ...
class FD(dict):
def add(self, data, dtype=None, shape=None, **kwargs):
if shape is True:
shape = data.shape
elif shape is None:
shape = (None,) + data.shape[1:]
if dtype is None:
dtype = data.dtype
ph = tf.placeholder(dtype, shape=shape, **kwargs)
self[ph] = data
return ph
class Chain(object):
def __init__(
self,
__name__,
loss,
sumnbs=(),
step=None,
opt=None,
train=None,
ema=(1, 2, 3, 4, 5),
**kwargs
):
if step is None:
step = tf.Variable(0, trainable=False, name="%s_step" % __name__)
if opt is None:
opt = tf.train.AdamOptimizer()
if train is None:
train = opt.minimize(loss, global_step=step)
reset_opt = tf.variables_initializer(opt.variables())
summaries = []
_ema_val = {}
_ema_out = SKDict()
kwargs["loss"] = loss
with tf.name_scope(__name__):
for key, val in kwargs.items():
if not isinstance(val, tf.Tensor):
continue
nd = val.shape.ndims
if nd > 1 and sumnbs is not True and val not in sumnbs:
continue
if val.dtype == tf.bool:
val = tf.reduce_mean(tf.cast(val, tf.float32))
if nd:
# summaries.append(tf.summary.histogram(key, val))
mean, std = tf_meanstd(val)
summaries.append(tf.summary.scalar(key + "_mean", mean))
summaries.append(tf.summary.scalar(key + "_std", std))
_ema_val[key + "_mean"] = mean
_ema_val[key + "_std"] = std
else:
summaries.append(tf.summary.scalar(key, val))
_ema_val[key] = val
if ema:
_ema_ops = []
reset_ema_to = tf.constant(0, tf.int32)
ema_step = tf.Variable(reset_ema_to, trainable=False, name="%s_ema_step" % __name__)
reset_ema = ema_step.initializer
for i in ema:
with tf.name_scope("%s_%d" % (__name__, i)):
ema = tf.train.ExponentialMovingAverage(
decay=1.0
- tf.maximum(
0.1 ** i,
tf.exp((np.log(0.1 ** i) / 10.0) * tf.cast(ema_step, tf.float32)),
)
)
_ema_ops.append(ema.apply(_ema_val.values()))
for key, val in _ema_val.items():
val = ema.average(val)
_ema_out[key, i] = val
summaries.append(tf.summary.scalar("%s" % key, val))
with tf.control_dependencies([train]):
with tf.control_dependencies(_ema_ops):
train = ema_step.assign_add(1)
ema = _ema_out
summaries = tf.summary.merge(summaries)
self.__dict__.update(kwargs)
pin(locals(), True, kwargs)
Chain.cc = ccall(Chain, True)
class Runner(object):
def __init__(self, sess, writer):
self.step = 0
pin(locals())
def __call__(self, *args, **kwargs):
return self.sess.run(*args, **kwargs)
def train(self, chain, extra=None, step=1, sumiv=10, sumskip=0, **kwargs):
if extra is None:
extra = chain.loss
for i in count():
for j in xrange(step):
self(chain.train, **kwargs)
sum = sumiv and not (i < sumskip or i % sumiv)
get = (chain.train, extra)
if sum:
get += (chain.summaries, chain.step)
out = self(get, **kwargs)
if sum:
self.writer.add_summary(*out[2:])
yield out[1]
def conf(self, *args, **kwargs):
return Confirmer(self.train(*args, **kwargs).next)
@classmethod
@contextmanager
def make(cls, path, gpuOpts={}, flush_secs=20):
with cls.make_session(gpuOpts=gpuOpts) as sess:
with tf.summary.FileWriter(
path, session=sess, flush_secs=flush_secs, graph=sess.graph
) as writer:
yield cls(sess, writer)
@classmethod
def make_session(cls, gpuOpts={}):
return tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(**gpuOpts)))
class Confirmer(object):
last = np.inf
task = None
tdelay = 60
tbestbump = 10
def __init__(self, func):
self.reset.func = func
def __call__(self, target, its=np.inf, pre=0, **kwargs):
if not kwargs.setdefault("disable", not kwargs):
kwargs.setdefault("auto", self._prog)
assert 0 < target
tnext = 0
with atq(xrange(its), **kwargs) as tq:
for i in tq:
if self.task is not None:
if self.task.check_stop():
break
if tnext < time():
tnext = time() + self.tdelay
pTotal = 100.0 * i / its
self.task.set_progress_percentage(pTotal)
self.task.set_status_message(
"total=%.1f%% conf=%.1f%% best=%.2e"
% (pTotal, 100.0 * self.conf / target, self.best)
)
if not (self.conf < target):
break
self.step += 1
self.last = self.func()
if self.step < pre:
continue
elif self.best < self.last:
self.conf += 1
else:
self.on_best()
self.conf = 0
self.best = self.last
tnext -= self.tbestbump
return not (self.conf < target)
def on_best(self):
pass
@property
def reset(self):
self.last = self.best = np.inf
self.step = self.conf = 0
return self
@property
def rdlb(self):
# Relative Delta Last to Best
return np.float_(self.last - self.best) / self.best
def _prog(self, i, prefix=""):
return {
prefix + k: v
for k, v in dict(
step=self.step if self.step != i else None,
last=self.last if self.rdlb else None,
rdlb=self.rdlb or None,
conf=self.conf or None,
best=self.best,
).items()
if v is not None
}
def __repr__(self):
return "Confirmer(step=%d, best=%.3e, conf=%d)" % (self.step, self.best, self.conf)
class Bestie(object):
def __init__(self, model, path):
pin(locals())
def save(self):
self.model.save_weights(self.path)
def load(self):
self.model.load_weights(self.path)
def finish(self):
self.load()
self.model.save(self.path)
class BestieMemory(Bestie):
def __init__(self, *args, **kwargs):
super(BestieMemory, self).__init__(*args, **kwargs)
def save(self):
self.h5 = h5py.File(BytesIO())
save_weights_to_hdf5_group(self.h5, self.model.layers)
def load(self):
load_weights_from_hdf5_group(self.h5, self.model.layers)