Newer
Older
from contextlib import contextmanager
import numpy as np
import tensorflow as tf
from time import time
from analysis.util import atq
from io import BytesIO
import h5py
from tensorflow.python.keras.engine.saving import (
save_weights_to_hdf5_group,
load_weights_from_hdf5_group,
)
from evil import pin, ccall
from tensorflow.python.util import deprecation
deprecation._PRINT_DEPRECATION_WARNINGS = False
def last_map(func, obj, order=1):
return tf.concat(
[
obj[..., :-1],
tf.expand_dims(
last_map(func=func, obj=obj[..., -1], order=order - 1)
if 1 < order
else func(obj[..., -1]),
axis=-1,
),
],
axis=-1,
)
def tf_meanstd(val, **kwargs):
mean = tf.reduce_mean(val, **kwargs)
std = tf.reduce_mean(tf.square(val), **kwargs) - tf.square(mean)
return mean, std
# this is mostly unused ...
class FD(dict):
def add(self, data, dtype=None, shape=None, **kwargs):
if shape is True:
shape = data.shape
elif shape is None:
shape = (None,) + data.shape[1:]
if dtype is None:
dtype = data.dtype
ph = tf.placeholder(dtype, shape=shape, **kwargs)
self[ph] = data
return ph
class Chain(object):
def __init__(
self,
__name__,
loss,
sumnbs=(),
step=None,
opt=None,
train=None,
ema=(1, 2, 3, 4, 5),
**kwargs
):
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
if step is None:
step = tf.Variable(0, trainable=False, name="%s_step" % __name__)
if opt is None:
opt = tf.train.AdamOptimizer()
if train is None:
train = opt.minimize(loss, global_step=step)
reset_opt = tf.variables_initializer(opt.variables())
summaries = []
_ema_val = {}
_ema_out = SKDict()
kwargs["loss"] = loss
with tf.name_scope(__name__):
for key, val in kwargs.items():
if not isinstance(val, tf.Tensor):
continue
nd = val.shape.ndims
if nd > 1 and sumnbs is not True and val not in sumnbs:
continue
if val.dtype == tf.bool:
val = tf.reduce_mean(tf.cast(val, tf.float32))
if nd:
# summaries.append(tf.summary.histogram(key, val))
mean, std = tf_meanstd(val)
summaries.append(tf.summary.scalar(key + "_mean", mean))
summaries.append(tf.summary.scalar(key + "_std", std))
_ema_val[key + "_mean"] = mean
_ema_val[key + "_std"] = std
else:
summaries.append(tf.summary.scalar(key, val))
_ema_val[key] = val
if ema:
_ema_ops = []
reset_ema_to = tf.constant(0, tf.int32)
ema_step = tf.Variable(reset_ema_to, trainable=False, name="%s_ema_step" % __name__)
reset_ema = ema_step.initializer
for i in ema:
with tf.name_scope("%s_%d" % (__name__, i)):
ema = tf.train.ExponentialMovingAverage(
decay=1.0
- tf.maximum(
0.1 ** i,
tf.exp((np.log(0.1 ** i) / 10.0) * tf.cast(ema_step, tf.float32)),
)
)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
_ema_ops.append(ema.apply(_ema_val.values()))
for key, val in _ema_val.items():
val = ema.average(val)
_ema_out[key, i] = val
summaries.append(tf.summary.scalar("%s" % key, val))
with tf.control_dependencies([train]):
with tf.control_dependencies(_ema_ops):
train = ema_step.assign_add(1)
ema = _ema_out
summaries = tf.summary.merge(summaries)
self.__dict__.update(kwargs)
pin(locals(), True, kwargs)
Chain.cc = ccall(Chain, True)
class Runner(object):
def __init__(self, sess, writer):
self.step = 0
pin(locals())
def __call__(self, *args, **kwargs):
return self.sess.run(*args, **kwargs)
def train(self, chain, extra=None, step=1, sumiv=10, sumskip=0, **kwargs):
if extra is None:
extra = chain.loss
for i in count():
for j in xrange(step):
self(chain.train, **kwargs)
sum = sumiv and not (i < sumskip or i % sumiv)
get = (chain.train, extra)
if sum:
get += (chain.summaries, chain.step)
out = self(get, **kwargs)
if sum:
self.writer.add_summary(*out[2:])
yield out[1]
def conf(self, *args, **kwargs):
return Confirmer(self.train(*args, **kwargs).next)
@classmethod
@contextmanager
def make(cls, path, gpuOpts={}, flush_secs=20):
with cls.make_session(gpuOpts=gpuOpts) as sess:
with tf.summary.FileWriter(
path, session=sess, flush_secs=flush_secs, graph=sess.graph
) as writer:
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
yield cls(sess, writer)
@classmethod
def make_session(cls, gpuOpts={}):
return tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(**gpuOpts)))
class Confirmer(object):
last = np.inf
task = None
tdelay = 60
tbestbump = 10
def __init__(self, func):
self.reset.func = func
def __call__(self, target, its=np.inf, pre=0, **kwargs):
if not kwargs.setdefault("disable", not kwargs):
kwargs.setdefault("auto", self._prog)
assert 0 < target
tnext = 0
with atq(xrange(its), **kwargs) as tq:
for i in tq:
if self.task is not None:
if self.task.check_stop():
break
if tnext < time():
tnext = time() + self.tdelay
self.task.set_status_message(
"total=%.1f%% conf=%.1f%% best=%.2e"
% (pTotal, 100.0 * self.conf / target, self.best)
)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
if not (self.conf < target):
break
self.step += 1
self.last = self.func()
if self.step < pre:
continue
elif self.best < self.last:
self.conf += 1
else:
self.on_best()
self.conf = 0
self.best = self.last
tnext -= self.tbestbump
return not (self.conf < target)
def on_best(self):
pass
@property
def reset(self):
self.last = self.best = np.inf
self.step = self.conf = 0
return self
@property
def rdlb(self):
# Relative Delta Last to Best
return np.float_(self.last - self.best) / self.best
def _prog(self, i, prefix=""):
return {
prefix + k: v
for k, v in dict(
step=self.step if self.step != i else None,
last=self.last if self.rdlb else None,
rdlb=self.rdlb or None,
conf=self.conf or None,
best=self.best,
).items()
if v is not None
}
def __repr__(self):
return "Confirmer(step=%d, best=%.3e, conf=%d)" % (self.step, self.best, self.conf)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
class Bestie(object):
def __init__(self, model, path):
pin(locals())
def save(self):
self.model.save_weights(self.path)
def load(self):
self.model.load_weights(self.path)
def finish(self):
self.load()
self.model.save(self.path)
class BestieMemory(Bestie):
def __init__(self, *args, **kwargs):
super(BestieMemory, self).__init__(*args, **kwargs)
def save(self):
self.h5 = h5py.File(BytesIO())
save_weights_to_hdf5_group(self.h5, self.model.layers)
def load(self):
load_weights_from_hdf5_group(self.h5, self.model.layers)