Skip to content
Snippets Groups Projects
Commit e9afa106 authored by Svenja Noichl's avatar Svenja Noichl
Browse files

New Module 1230525

parent 5c05711e
No related branches found
No related tags found
No related merge requests found
## Advanced Topics in Machine Learning for Human Language Technology (1230525)
### 1. Allgemeine Moduldaten
*[Erläuterungen zu Abschnitt 1](../Anleitungen_Hilfen/1_Allgemeine_Moduldaten.md)*
| Moduleigenschaft | Inhalt |
|-----------------------------|--------------------------------------------------------|
| (!) Modultitel (DE) | Advanced Topics in Machine Learning for Human Language Technology |
| (!) Modultitel (EN) | Advanced Topics in Machine Learning for Human Language Technology |
| (!) ECTS | 4 |
| (!) Gültig ab | SoSe 2024 |
| Gültig bis | |
| (!) ModulanbieterIn | Prof. Dr.-Ing. Hermann Ney |
| (!) Sprache | Englisch |
| (!) Turnus | Unregelmäßig |
| (!) Moduldauer | einsemestrig |
| (!) Modulniveau | Master |
| (!) Fachsemester | 1 |
### 2. Modulveranstaltungen
*[Erläuterungen zu Abschnitt 2](../Anleitungen_Hilfen/2_Modulveranstaltungen.md)*
| (!) Modulveranstaltungen (DE) | (!) Modulveranstaltungen (EN) | (!) ECTS | (!) Präsenzzeit (SWS) |
|-------------------------------|-------------------------------|----------|-----------------------|
| Vorlesung Advanced Topics in Machine Learning for Human Language Technology | Lecture Advanced Topics in Machine Learning for Human Language Technology | 0 | 2 |
| Übung Advanced Topics in Machine Learning for Human Language Technology | Excercise Advanced Topics in Machine Learning for Human Language Technology | 0 | 1 |
| Prüfung Advanced Topics in Machine Learning for Human Language Technology | Exam Advanced Topics in Machine Learning for Human Language Technology | 4 | 0 |
### 3. Studien- und Prüfungsleistungen
*[Erläuterungen zu Abschnitt 3](../Anleitungen_Hilfen/3_Leistungen.md)*
**(!) Teilnahmevoraussetzungen (DE)**
Keine.
**(!) Teilnahmevoraussetzungen (EN)**
None.
**(!) Prüfungsbedingungen (DE)**
Klausur (100 %). Voraussetzung für die Zulassung zur Prüfung ist das Bestehen von Hausaufgaben.
**(!) Prüfungsbedingungen (EN)**
Written Exam (100 %). Students must pass written homework to be admitted to the examination.
### 4. Informationen für das Modulhandbuch
*[Erläuterungen zu Abschnitt 4](../Anleitungen_Hilfen/4_Infos_Modulhandbuch.md)*
**(!) Empfohlene Voraussetzungen (DE)**
Fundamentals of automatic speech recognition and machine learning, Statistical Classification and Machine Learning or further lectures on Machine Learning and/or Human Language Technology....
**(!) Empfohlene Voraussetzungen (EN)**
Fundamentals of automatic speech recognition and machine learning, Statistical Classification and Machine Learning or further lectures on Machine Learning and/or Human Language Technology.
**(!) Lernziele (DE)**
Knowledge:
Today data-driven methods like machine learning and artificial neural networks (ANN) are widely used for speech and language processing, e.g. for automatic speech recognition (ASR) and machine translation. We will re-visit the evolution of these methods over the last 50 years
and will present a unifying view of their principles from a probabilistic perspective.
On successful completion of this module, students should be able to:
• describe the components and formalisms of machine learning problems in human language technology from a principled probabilistic perspective;
• state and interpret the optimization problems of machine learning for human language technology and its relation to performance evaluation.
Skills:
They should be able to:
• apply state-of-the-art machine learning models to human language technology components;
• solve the optimization problems underlying decoding in sequence classification based on state-of-the-art machine learning components and underlying models;
• should have acquired soft skills like acquiring, reproducing and discussing knowledge about current state-of-the-art machine learning models for human language technology in a cooperative environment.
Competences:
• understand the probabilistic interpretation of artificial neural network outputs;
• describe the relation between the task performance (e.g. word error rate in ASR) and the decision rule for generating the output sequence (e.g. Bayes decision rule);
• relate training criteria (like cross-entropy) to task performance;
• be able to model the dependencies between input and output sequences in sequence-to-sequence processing;
• know the synchronization mechanisms between input and output sequences (e.g. hidden Markov models, finite-state transducers, cross-attention);
• understand the role language modeling plays in the context of end-to-end models.
**(!) Lernziele (EN)**
Knowledge:
Today data-driven methods like machine learning and artificial neural networks (ANN) are widely used for speech and language processing, e.g. for automatic speech recognition (ASR) and machine translation. We will re-visit the evolution of these methods over the last 50 years
and will present a unifying view of their principles from a probabilistic perspective.
On successful completion of this module, students should be able to:
• describe the components and formalisms of machine learning problems in human language technology from a principled probabilistic perspective;
• state and interpret the optimization problems of machine learning for human language technology and its relation to performance evaluation.
Skills:
They should be able to:
• apply state-of-the-art machine learning models to human language technology components;
• solve the optimization problems underlying decoding in sequence classification based on state-of-the-art machine learning components and underlying models;
• should have acquired soft skills like acquiring, reproducing and discussing knowledge about current state-of-the-art machine learning models for human language technology in a cooperative environment.
Competences:
• understand the probabilistic interpretation of artificial neural network outputs;
• describe the relation between the task performance (e.g. word error rate in ASR) and the decision rule for generating the output sequence (e.g. Bayes decision rule);
• relate training criteria (like cross-entropy) to task performance;
• be able to model the dependencies between input and output sequences in sequence-to-sequence processing;
• know the synchronization mechanisms between input and output sequences (e.g. hidden Markov models, finite-state transducers, cross-attention);
• understand the role language modeling plays in the context of end-to-end models.
**(!) Inhalt (DE)**
• Part 1: Probabilistic foundations, Bayes decision theory, probabilistic interpretation of neural networks, training criteria.
• Part 2: Sequence processing and specific ANN structures (hidden markov models, finite-state transducers, cross-attention).
• Part 3: Deep Learning and HLT tasks (automatic speech recognition, language modelling, machine translation).
**(!) Inhalt (EN)**
• Part 1: Probabilistic foundations, Bayes decision theory, probabilistic interpretation of neural networks, training criteria.
• Part 2: Sequence processing and specific ANN structures (hidden markov models, finite-state transducers, cross-attention).
• Part 3: Deep Learning and HLT tasks (automatic speech recognition, language modelling, machine translation).
**(!) Literatur**
### 5a. SPOen, in denen das Modul verankert werden soll
*[Erläuterungen zu Abschnitt 5a/5b](../Anleitungen_Hilfen/5_Studiengänge.md)*
| (!) Studiengangskürzel | (!) SPO-Version | (!) Modulbereich |
|------------------------|-----------------|------------------------------------|
| MSInf | 2009 | Wahlpflichtbereiche > Angewandte Informatik |
| MSInf | 2023 | Wahlpflichtbereiche > KI & Daten > Module aus dem Bereich KI & Daten |
| MSDaSci | 2018 | Vertiefungsbereich > Computer Science > Wahlpflichtmodule aus Modulkatalog Computer Science |
| MSDaSci | 2018 | Vertiefungsbereich > Computer Science and Mathematics > Computer Science |
| MSSSE | 2011 | Wahlpflicht > Applied Computer Science |
| MSMI | 2019 | Multimedia-Technologie |
| BSInf | 2018 | Mastervorzug |
| BSInf | 2022 | Mastervorzug |
### 5b. SPOen mit abweichenden Verwendungsspezifika
Studiengangskürzel/SPO-Version/Modulbereich:
Abweichende(s) Verwendungsspezifikum/-a:
### Interne Kommentare (gehören NICHT zur Moduldefinition)
Dieses Modul ersetzt das bisherige Modul Advanced Statistical Classification, Modul-Kennung 1212684.
Bitte entsprechende Anschlüsse Modellieren.
AK => GHK 184469
PKs:
* Übung: GHK 184470
* Prüfung: GHK 184471
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment