diff --git a/Module_Modulangebot_FGI/1230525.md b/Module_Modulangebot_FGI/1230525.md
new file mode 100644
index 0000000000000000000000000000000000000000..528560a635b143e5102eac71b08cedfecaecc880
--- /dev/null
+++ b/Module_Modulangebot_FGI/1230525.md
@@ -0,0 +1,155 @@
+## Advanced Topics in Machine Learning for Human Language Technology (1230525)
+
+
+### 1. Allgemeine Moduldaten
+*[Erläuterungen zu Abschnitt 1](../Anleitungen_Hilfen/1_Allgemeine_Moduldaten.md)*
+
+| Moduleigenschaft            | Inhalt                                                 |
+|-----------------------------|--------------------------------------------------------|
+| (!) Modultitel (DE)         |  Advanced Topics in Machine Learning for Human Language Technology                                                       |
+| (!) Modultitel (EN)         |  Advanced Topics in Machine Learning for Human Language Technology                                                       | 
+| (!) ECTS                    |  4                                                      |
+| (!) Gültig ab               |  SoSe 2024                              |
+| Gültig bis                  |                                               |
+| (!) ModulanbieterIn         | Prof. Dr.-Ing. Hermann Ney                                                        |
+| (!) Sprache                 | Englisch         |
+| (!) Turnus                  | Unregelmäßig     |
+| (!) Moduldauer              | einsemestrig  |
+| (!) Modulniveau             | Master           |
+| (!) Fachsemester            | 1                                                      |
+
+
+
+### 2. Modulveranstaltungen
+*[Erläuterungen zu Abschnitt 2](../Anleitungen_Hilfen/2_Modulveranstaltungen.md)*
+
+| (!) Modulveranstaltungen (DE) | (!) Modulveranstaltungen (EN) | (!) ECTS | (!) Präsenzzeit (SWS) | 
+|-------------------------------|-------------------------------|----------|-----------------------|
+| Vorlesung Advanced Topics in Machine Learning for Human Language Technology  | Lecture Advanced Topics in Machine Learning for Human Language Technology                               |    0      |              2         |
+| Übung Advanced Topics in Machine Learning for Human Language Technology                              |   Excercise Advanced Topics in Machine Learning for Human Language Technology                             |     0     |        1               |
+| Prüfung Advanced Topics in Machine Learning for Human Language Technology                               | Exam Advanced Topics in Machine Learning for Human Language Technology                               |    4      |          0             |
+
+
+
+
+### 3. Studien- und Prüfungsleistungen
+*[Erläuterungen zu Abschnitt 3](../Anleitungen_Hilfen/3_Leistungen.md)*
+
+**(!) Teilnahmevoraussetzungen (DE)**  
+Keine.
+
+**(!) Teilnahmevoraussetzungen (EN)**  
+None.
+
+**(!) Prüfungsbedingungen (DE)**  
+Klausur (100 %). Voraussetzung für die Zulassung zur Prüfung ist das Bestehen von Hausaufgaben.
+
+**(!) Prüfungsbedingungen (EN)**  
+Written Exam (100 %). Students must pass written homework to be admitted to the examination.
+
+
+
+### 4. Informationen für das Modulhandbuch
+*[Erläuterungen zu Abschnitt 4](../Anleitungen_Hilfen/4_Infos_Modulhandbuch.md)*
+
+
+**(!) Empfohlene Voraussetzungen (DE)**  
+Fundamentals of automatic speech recognition and machine learning, Statistical Classification and Machine Learning or further lectures on Machine Learning and/or Human Language Technology....
+
+**(!) Empfohlene Voraussetzungen (EN)**  
+Fundamentals of automatic speech recognition and machine learning, Statistical Classification and Machine Learning or further lectures on Machine Learning and/or Human Language Technology.
+
+**(!) Lernziele (DE)**  
+Knowledge: 
+Today data-driven methods like machine learning and artificial  neural networks (ANN) are widely used for speech and language processing, e.g. for automatic speech recognition (ASR) and machine translation. We will re-visit the evolution of these methods over the last 50 years 
+and will present a unifying view of their principles from a probabilistic perspective. 
+On successful completion of this module, students should be able to: 
+•	describe the components and formalisms of machine learning problems in human language technology from a principled probabilistic perspective; 
+•	state and interpret the optimization problems of machine learning for human language technology and its relation to performance evaluation. 
+
+Skills: 
+They should be able to: 
+•	apply state-of-the-art machine learning models to human language technology components;
+•	solve the optimization problems underlying decoding in sequence classification based on state-of-the-art machine learning components and underlying models;
+•	should have acquired soft skills like acquiring, reproducing and discussing knowledge about current state-of-the-art machine learning models for human language technology in a cooperative environment. 
+
+Competences: 
+•	understand the probabilistic interpretation of artificial neural network outputs; 
+•	describe the relation between the task performance (e.g. word error rate in ASR) and the decision rule for generating the output sequence (e.g. Bayes decision rule);
+•	relate training criteria (like cross-entropy) to task performance;
+•	be able to model the dependencies between input and output sequences in sequence-to-sequence processing;
+•	know the synchronization mechanisms between input and output sequences (e.g. hidden Markov models, finite-state transducers, cross-attention);
+•	understand the role language modeling plays in the context of end-to-end models. 
+
+
+**(!) Lernziele (EN)**  
+Knowledge: 
+Today data-driven methods like machine learning and artificial  neural networks (ANN) are widely used for speech and language processing, e.g. for automatic speech recognition (ASR) and machine translation. We will re-visit the evolution of these methods over the last 50 years 
+and will present a unifying view of their principles from a probabilistic perspective. 
+On successful completion of this module, students should be able to: 
+•	describe the components and formalisms of machine learning problems in human language technology from a principled probabilistic perspective; 
+•	state and interpret the optimization problems of machine learning for human language technology and its relation to performance evaluation. 
+
+Skills: 
+They should be able to: 
+•	apply state-of-the-art machine learning models to human language technology components;
+•	solve the optimization problems underlying decoding in sequence classification based on state-of-the-art machine learning components and underlying models;
+•	should have acquired soft skills like acquiring, reproducing and discussing knowledge about current state-of-the-art machine learning models for human language technology in a cooperative environment. 
+
+Competences: 
+•	understand the probabilistic interpretation of artificial neural network outputs; 
+•	describe the relation between the task performance (e.g. word error rate in ASR) and the decision rule for generating the output sequence (e.g. Bayes decision rule);
+•	relate training criteria (like cross-entropy) to task performance;
+•	be able to model the dependencies between input and output sequences in sequence-to-sequence processing;
+•	know the synchronization mechanisms between input and output sequences (e.g. hidden Markov models, finite-state transducers, cross-attention);
+•	understand the role language modeling plays in the context of end-to-end models. 
+
+**(!) Inhalt (DE)**  
+•	Part 1: Probabilistic foundations, Bayes decision theory, probabilistic interpretation of neural networks, training criteria. 
+•	Part 2: Sequence processing and specific ANN structures (hidden markov models, finite-state transducers, cross-attention). 
+•	Part 3: Deep Learning and HLT tasks (automatic speech recognition, language modelling, machine translation).
+
+**(!) Inhalt (EN)**  
+•	Part 1: Probabilistic foundations, Bayes decision theory, probabilistic interpretation of neural networks, training criteria. 
+•	Part 2: Sequence processing and specific ANN structures (hidden markov models, finite-state transducers, cross-attention). 
+•	Part 3: Deep Learning and HLT tasks (automatic speech recognition, language modelling, machine translation).
+
+**(!) Literatur**  
+
+
+
+
+### 5a. SPOen, in denen das Modul verankert werden soll
+
+*[Erläuterungen zu Abschnitt 5a/5b](../Anleitungen_Hilfen/5_Studiengänge.md)*
+
+| (!) Studiengangskürzel | (!) SPO-Version | (!) Modulbereich                   |
+|------------------------|-----------------|------------------------------------|
+| MSInf                  | 2009            |  Wahlpflichtbereiche > Angewandte Informatik                                  |
+| MSInf                  | 2023            |  Wahlpflichtbereiche > KI & Daten > Module aus dem Bereich KI & Daten                                  |
+| MSDaSci                | 2018            |  Vertiefungsbereich >  Computer Science > Wahlpflichtmodule aus Modulkatalog Computer Science                                  |
+| MSDaSci                | 2018            |  Vertiefungsbereich > Computer Science and Mathematics > Computer Science                                  |
+| MSSSE                  | 2011            |  Wahlpflicht > Applied Computer Science                                  |
+| MSMI                   | 2019            |  Multimedia-Technologie                                  |
+| BSInf                  | 2018            |  Mastervorzug                                  |
+| BSInf                  | 2022            |  Mastervorzug                                 |
+
+
+### 5b. SPOen mit abweichenden Verwendungsspezifika
+
+
+Studiengangskürzel/SPO-Version/Modulbereich:  
+
+
+Abweichende(s) Verwendungsspezifikum/-a:  
+
+
+
+
+### Interne Kommentare (gehören NICHT zur Moduldefinition)
+Dieses Modul ersetzt das bisherige Modul Advanced Statistical Classification, Modul-Kennung 1212684.
+Bitte entsprechende Anschlüsse Modellieren.
+AK => GHK 184469
+PKs: 
+* Übung: GHK 184470
+* Prüfung: GHK 184471