Skip to content
Snippets Groups Projects
Commit 48fb3d6f authored by Richter, Manuela's avatar Richter, Manuela
Browse files

clean directory for new concept

parent 5e4a61e5
No related branches found
No related tags found
No related merge requests found
File deleted
{
"Pumps":[
{"Name": "Pump_1",
"Manufacturer": "Company A",
"Unit": "Percentage",
"Efficiency": 43},
{"Name": "Pump_2",
"Manufacturer": "Company B",
"Unit": "Percentage",
"Efficiency": 56
}
],
"Motors":[
{"Name": "Motor_1",
"Manufacturer": "Company A",
"Unit": "Percentage",
"Efficiency": 90},
{"Name": "Motor_2",
"Manufacturer": "Company B",
"Unit": "Percentage",
"Efficiency": 85
}
]
}
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on Thu May 5 17:27:38 2022 .
@author: Richter
testfile for operating with json-files
"""
# %% import moduls
import json
# import numpy as np
import pandas as pd
# import h5py as h5
# %% define functions
def findkeys(node, kv):
"""
https://stackoverflow.com/questions/9807634/find-all-occurrences-of-a-key-in-nested-dictionaries-and-lists.
Parameters
----------
node : TYPE
DESCRIPTION.
kv : TYPE
DESCRIPTION.
Yields
------
TYPE
DESCRIPTION.
"""
if isinstance(node, list):
for i in node:
for x in findkeys(i, kv):
yield x
elif isinstance(node, dict):
if kv in node:
yield node[kv]
for j in node.values():
for x in findkeys(j, kv):
yield x
def find_attribut(data, attribut):
"""
Find attribute of .
----------
data : TYPE
DESCRIPTION.
attribut : TYPE
DESCRIPTION.
Returns
-------
name_pump : TYPE
DESCRIPTION.
efficiency_pump : TYPE
DESCRIPTION.
"""
name_pump = list(findkeys(data, "Name"))
efficiency_pump = list(findkeys(data, attribut))
# print("Die Pumpe", name_pump[0], "besitzt den Wirkungsgrad",
# efficiency_pump[0])
return name_pump, efficiency_pump
def calculate_efficiency(eta_1, eta_2):
"""
Parameters.
----------
eta_1 : TYPE
DESCRIPTION.
eta_2 : TYPE
DESCRIPTION.
Returns
-------
eta : TYPE
DESCRIPTION.
"""
eta = eta_1 * eta_2
return eta
# %% main script
with open("test_data.json", "r+") as file:
data = json.load(file)
a = data.keys()
# print(a)
# read out key - value - pairs
for i in a:
key = data[i]
for j in range(0, len(key)):
# print(j)
dic = key[j]
attrs = list(dic.keys())
for x in attrs:
name = list(findkeys(dic, x))
# print("Maschinenart", i, "Das Attribut",x, "hat den Wert", name)
# find specific data
machine = "Motors"
attribut = "Efficiency"
data_pumps = data["Pumps"]
data_motors = data["Motors"]
dataset = pd.DataFrame()
# pump_1 = data_pumps[0]
# Iteration über Attribute einfügen
for i in range(0, len(data_pumps)):
attr_name = list(findkeys(data_pumps[i], "Name"))
attr_value = list(findkeys(data_pumps[i], attribut))
# attr_name, attr_value = find_attribut(data_pumps[i], attribut)
# efficiency_pump)
print("Die", machine, attr_name[0], "besitzt das Attribut",
attribut, "mit dem Wert", attr_value[0])
# multiplicate the pump efficiency with the motor efficiency
eta_motor_1 = list(findkeys(data["Motors"][0], "Efficiency"))[0]
eta_motor_2 = list(findkeys(data["Motors"][1], "Efficiency"))[0]
eta_pumpe_1 = list(findkeys(data["Pumps"][0], "Efficiency"))[0]
eta_pumpe_2 = list(findkeys(data["Pumps"][1], "Efficiency"))[0]
print(eta_motor_1, eta_motor_2)
count = 0
# iteration over all pumps and motors
for p in range(0, len(data_pumps)):
for m in range(0, len(data_motors)):
eta_pumpe = list(findkeys(data_pumps[p], attribut))[0]/100
eta_motor = list(findkeys(data_motors[m], attribut))[0]/100
eta_ges = calculate_efficiency(eta_pumpe, eta_motor)
scenario = "Szenario_" + str(count)
dataset[scenario] = [eta_pumpe, eta_motor, eta_ges]
dataset.index = ["eta_pumpe", "eta_motor", "eta_ges"]
count += 1
print(p, m, eta_ges)
# %% store dataframe in hdf5-file
filename = "example_kpi.h5"
with pd.HDFStore(filename, "a") as hdf:
try:
dataset.to_hdf(hdf, "Berechnung")
hdf.get_storer("Berechnung").attrs.Link = ("https://git.rwth-aachen.de/"
"fst-tuda/projects/lehre/praktikum_digitalisierung/quality-kpi.git")
except ValueError:
print("Gruppe existiert bereits.")
File deleted
{
"Pumps":[
{"Name": "Pump_1",
"Manufacturer": "Company A",
"Unit": "Percentage",
"Efficiency": 43},
{"Name": "Pump_2",
"Manufacturer": "Company B",
"Unit": "Percentage",
"Efficiency": 56
}
],
"Motors":[
{"Name": "Motor_1",
"Manufacturer": "Company A",
"Unit": "Percentage",
"Efficiency": 90},
{"Name": "Motor_2",
"Manufacturer": "Company B",
"Unit": "Percentage",
"Efficiency": 85
}
]
}
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on Thu May 5 17:27:38 2022 .
@author: Richter
testfile for operating with json-files
"""
# %% import moduls
import json
# import numpy as np
import pandas as pd
# import h5py as h5
# %% define functions
def findkeys(node, kv):
"""
https://stackoverflow.com/questions/9807634/find-all-occurrences-of-a-key-in-nested-dictionaries-and-lists.
Parameters
----------
node : TYPE
DESCRIPTION.
kv : TYPE
DESCRIPTION.
Yields
------
TYPE
DESCRIPTION.
"""
if isinstance(node, list):
for i in node:
for x in findkeys(i, kv):
yield x
elif isinstance(node, dict):
if kv in node:
yield node[kv]
for j in node.values():
for x in findkeys(j, kv):
yield x
def find_attribut(data, attribut):
"""
Find attribute of .
----------
data : TYPE
DESCRIPTION.
attribut : TYPE
DESCRIPTION.
Returns
-------
name_pump : TYPE
DESCRIPTION.
efficiency_pump : TYPE
DESCRIPTION.
"""
name_pump = list(findkeys(data, "Name"))
efficiency_pump = list(findkeys(data, attribut))
# print("Die Pumpe", name_pump[0], "besitzt den Wirkungsgrad",
# efficiency_pump[0])
return name_pump, efficiency_pump
def calculate_efficiency(eta_1, eta_2):
"""
Parameters.
----------
eta_1 : TYPE
DESCRIPTION.
eta_2 : TYPE
DESCRIPTION.
Returns
-------
eta : TYPE
DESCRIPTION.
"""
eta = eta_1 * eta_2
return eta
# %% main script
with open("test_data.json", "r+") as file:
data = json.load(file)
a = data.keys()
# print(a)
# read out key - value - pairs
for i in a:
key = data[i]
for j in range(0, len(key)):
# print(j)
dic = key[j]
attrs = list(dic.keys())
for x in attrs:
name = list(findkeys(dic, x))
# print("Maschinenart", i, "Das Attribut",x, "hat den Wert", name)
# find specific data
machine = "Motors"
attribut = "Efficiency"
data_pumps = data["Pumps"]
data_motors = data["Motors"]
dataset = pd.DataFrame()
# pump_1 = data_pumps[0]
# Iteration über Attribute einfügen
for i in range(0, len(data_pumps)):
attr_name = list(findkeys(data_pumps[i], "Name"))
attr_value = list(findkeys(data_pumps[i], attribut))
# attr_name, attr_value = find_attribut(data_pumps[i], attribut)
# efficiency_pump)
print("Die", machine, attr_name[0], "besitzt das Attribut",
attribut, "mit dem Wert", attr_value[0])
# multiplicate the pump efficiency with the motor efficiency
eta_motor_1 = list(findkeys(data["Motors"][0], "Efficiency"))[0]
eta_motor_2 = list(findkeys(data["Motors"][1], "Efficiency"))[0]
eta_pumpe_1 = list(findkeys(data["Pumps"][0], "Efficiency"))[0]
eta_pumpe_2 = list(findkeys(data["Pumps"][1], "Efficiency"))[0]
print(eta_motor_1, eta_motor_2)
count = 0
# iteration over all pumps and motors
for p in range(0, len(data_pumps)):
for m in range(0, len(data_motors)):
eta_pumpe = list(findkeys(data_pumps[p], attribut))[0]/100
eta_motor = list(findkeys(data_motors[m], attribut))[0]/100
eta_ges = calculate_efficiency(eta_pumpe, eta_motor)
scenario = "Szenario_" + str(count)
dataset[scenario] = [eta_pumpe, eta_motor, eta_ges]
dataset.index = ["eta_pumpe", "eta_motor", "eta_ges"]
count += 1
print(p, m, eta_ges)
# %% store dataframe in hdf5-file
filename = "example_kpi.h5"
with pd.HDFStore(filename, "a") as hdf:
try:
dataset.to_hdf(hdf, "Berechnung")
hdf.get_storer("Berechnung").attrs.Link = ("https://git.rwth-aachen.de/"
"fst-tuda/projects/lehre/praktikum_digitalisierung/quality-kpi.git")
except ValueError:
print("Gruppe existiert bereits.")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment