diff --git a/archiv/example_kpi.h5 b/archiv/example_kpi.h5
deleted file mode 100644
index 0d2f9cee7b7e3eae62fc1ab9621b9155b2f023f6..0000000000000000000000000000000000000000
Binary files a/archiv/example_kpi.h5 and /dev/null differ
diff --git a/archiv/test_data.json b/archiv/test_data.json
deleted file mode 100644
index 26f8580ad7b7e58bb260b059f9b854140630bcc0..0000000000000000000000000000000000000000
--- a/archiv/test_data.json
+++ /dev/null
@@ -1,24 +0,0 @@
-{
-    "Pumps":[
-    {"Name": "Pump_1",
-    "Manufacturer": "Company A",
-    "Unit": "Percentage",
-    "Efficiency": 43},
-    {"Name": "Pump_2",
-    "Manufacturer": "Company B",
-    "Unit": "Percentage",
-    "Efficiency": 56
-    }
-    ],
-    "Motors":[
-        {"Name": "Motor_1",
-        "Manufacturer": "Company A",
-        "Unit": "Percentage",
-        "Efficiency": 90},
-        {"Name": "Motor_2",
-        "Manufacturer": "Company B",
-        "Unit": "Percentage",
-        "Efficiency": 85
-        }
-    ]
-}
\ No newline at end of file
diff --git a/archiv/trial_json.py b/archiv/trial_json.py
deleted file mode 100644
index 7950d4a50120169d3897521b956682448c33dd7d..0000000000000000000000000000000000000000
--- a/archiv/trial_json.py
+++ /dev/null
@@ -1,165 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Thu May  5 17:27:38 2022 .
-
-@author: Richter
-
-testfile for operating with json-files
-
-"""
-# %% import moduls
-import json
-# import numpy as np
-import pandas as pd
-# import h5py as h5
-
-# %% define functions
-
-
-def findkeys(node, kv):
-    """
-    https://stackoverflow.com/questions/9807634/find-all-occurrences-of-a-key-in-nested-dictionaries-and-lists.
-
-    Parameters
-    ----------
-    node : TYPE
-        DESCRIPTION.
-    kv : TYPE
-        DESCRIPTION.
-
-    Yields
-    ------
-    TYPE
-        DESCRIPTION.
-
-    """
-    if isinstance(node, list):
-        for i in node:
-            for x in findkeys(i, kv):
-                yield x
-    elif isinstance(node, dict):
-        if kv in node:
-            yield node[kv]
-        for j in node.values():
-            for x in findkeys(j, kv):
-                yield x
-
-
-def find_attribut(data, attribut):
-    """
-    Find attribute of .
-
-    ----------
-    data : TYPE
-        DESCRIPTION.
-    attribut : TYPE
-        DESCRIPTION.
-
-    Returns
-    -------
-    name_pump : TYPE
-        DESCRIPTION.
-    efficiency_pump : TYPE
-        DESCRIPTION.
-
-    """
-    name_pump = list(findkeys(data, "Name"))
-    efficiency_pump = list(findkeys(data, attribut))
-    # print("Die Pumpe", name_pump[0], "besitzt den Wirkungsgrad",
-    #       efficiency_pump[0])
-    return name_pump, efficiency_pump
-
-
-def calculate_efficiency(eta_1, eta_2):
-    """
-
-    Parameters.
-
-    ----------
-    eta_1 : TYPE
-        DESCRIPTION.
-    eta_2 : TYPE
-        DESCRIPTION.
-
-    Returns
-
-    -------
-    eta : TYPE
-        DESCRIPTION.
-
-    """
-    eta = eta_1 * eta_2
-    return eta
-
-# %% main script
-
-
-with open("test_data.json", "r+") as file:
-    data = json.load(file)
-
-
-a = data.keys()
-# print(a)
-
-# read out key - value - pairs
-for i in a:
-    key = data[i]
-    for j in range(0, len(key)):
-        # print(j)
-        dic = key[j]
-        attrs = list(dic.keys())
-        for x in attrs:
-            name = list(findkeys(dic, x))
-            # print("Maschinenart", i, "Das Attribut",x, "hat den Wert", name)
-
-# find specific data
-machine = "Motors"
-attribut = "Efficiency"
-data_pumps = data["Pumps"]
-data_motors = data["Motors"]
-dataset = pd.DataFrame()
-# pump_1 = data_pumps[0]
-# Iteration über Attribute einfügen
-
-for i in range(0, len(data_pumps)):
-    attr_name = list(findkeys(data_pumps[i], "Name"))
-    attr_value = list(findkeys(data_pumps[i], attribut))
-    # attr_name, attr_value = find_attribut(data_pumps[i], attribut)
-    # efficiency_pump)
-    print("Die", machine, attr_name[0], "besitzt das Attribut",
-          attribut, "mit dem Wert", attr_value[0])
-
-
-# multiplicate the pump efficiency with the motor efficiency
-
-eta_motor_1 = list(findkeys(data["Motors"][0], "Efficiency"))[0]
-eta_motor_2 = list(findkeys(data["Motors"][1], "Efficiency"))[0]
-eta_pumpe_1 = list(findkeys(data["Pumps"][0], "Efficiency"))[0]
-eta_pumpe_2 = list(findkeys(data["Pumps"][1], "Efficiency"))[0]
-
-print(eta_motor_1, eta_motor_2)
-
-
-count = 0
-# iteration over all pumps and motors
-for p in range(0, len(data_pumps)):
-    for m in range(0, len(data_motors)):
-        eta_pumpe = list(findkeys(data_pumps[p], attribut))[0]/100
-        eta_motor = list(findkeys(data_motors[m], attribut))[0]/100
-        eta_ges = calculate_efficiency(eta_pumpe, eta_motor)
-        scenario = "Szenario_" + str(count)
-        dataset[scenario] = [eta_pumpe, eta_motor, eta_ges]
-        dataset.index = ["eta_pumpe", "eta_motor", "eta_ges"]
-        count += 1
-        print(p, m, eta_ges)
-
-
-# %% store dataframe in hdf5-file
-filename = "example_kpi.h5"
-with pd.HDFStore(filename, "a") as hdf:
-    try:
-        dataset.to_hdf(hdf, "Berechnung")
-        hdf.get_storer("Berechnung").attrs.Link = ("https://git.rwth-aachen.de/"
-                                                   "fst-tuda/projects/lehre/praktikum_digitalisierung/quality-kpi.git")
-    except ValueError:
-        print("Gruppe existiert bereits.")
diff --git a/example_kpi.h5 b/example_kpi.h5
deleted file mode 100644
index b89acd4d4a1b2b91706c3b3135a7a47d363c985c..0000000000000000000000000000000000000000
Binary files a/example_kpi.h5 and /dev/null differ
diff --git a/test_data.json b/test_data.json
deleted file mode 100644
index 26f8580ad7b7e58bb260b059f9b854140630bcc0..0000000000000000000000000000000000000000
--- a/test_data.json
+++ /dev/null
@@ -1,24 +0,0 @@
-{
-    "Pumps":[
-    {"Name": "Pump_1",
-    "Manufacturer": "Company A",
-    "Unit": "Percentage",
-    "Efficiency": 43},
-    {"Name": "Pump_2",
-    "Manufacturer": "Company B",
-    "Unit": "Percentage",
-    "Efficiency": 56
-    }
-    ],
-    "Motors":[
-        {"Name": "Motor_1",
-        "Manufacturer": "Company A",
-        "Unit": "Percentage",
-        "Efficiency": 90},
-        {"Name": "Motor_2",
-        "Manufacturer": "Company B",
-        "Unit": "Percentage",
-        "Efficiency": 85
-        }
-    ]
-}
\ No newline at end of file
diff --git a/trial_json.py b/trial_json.py
deleted file mode 100644
index 7950d4a50120169d3897521b956682448c33dd7d..0000000000000000000000000000000000000000
--- a/trial_json.py
+++ /dev/null
@@ -1,165 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Thu May  5 17:27:38 2022 .
-
-@author: Richter
-
-testfile for operating with json-files
-
-"""
-# %% import moduls
-import json
-# import numpy as np
-import pandas as pd
-# import h5py as h5
-
-# %% define functions
-
-
-def findkeys(node, kv):
-    """
-    https://stackoverflow.com/questions/9807634/find-all-occurrences-of-a-key-in-nested-dictionaries-and-lists.
-
-    Parameters
-    ----------
-    node : TYPE
-        DESCRIPTION.
-    kv : TYPE
-        DESCRIPTION.
-
-    Yields
-    ------
-    TYPE
-        DESCRIPTION.
-
-    """
-    if isinstance(node, list):
-        for i in node:
-            for x in findkeys(i, kv):
-                yield x
-    elif isinstance(node, dict):
-        if kv in node:
-            yield node[kv]
-        for j in node.values():
-            for x in findkeys(j, kv):
-                yield x
-
-
-def find_attribut(data, attribut):
-    """
-    Find attribute of .
-
-    ----------
-    data : TYPE
-        DESCRIPTION.
-    attribut : TYPE
-        DESCRIPTION.
-
-    Returns
-    -------
-    name_pump : TYPE
-        DESCRIPTION.
-    efficiency_pump : TYPE
-        DESCRIPTION.
-
-    """
-    name_pump = list(findkeys(data, "Name"))
-    efficiency_pump = list(findkeys(data, attribut))
-    # print("Die Pumpe", name_pump[0], "besitzt den Wirkungsgrad",
-    #       efficiency_pump[0])
-    return name_pump, efficiency_pump
-
-
-def calculate_efficiency(eta_1, eta_2):
-    """
-
-    Parameters.
-
-    ----------
-    eta_1 : TYPE
-        DESCRIPTION.
-    eta_2 : TYPE
-        DESCRIPTION.
-
-    Returns
-
-    -------
-    eta : TYPE
-        DESCRIPTION.
-
-    """
-    eta = eta_1 * eta_2
-    return eta
-
-# %% main script
-
-
-with open("test_data.json", "r+") as file:
-    data = json.load(file)
-
-
-a = data.keys()
-# print(a)
-
-# read out key - value - pairs
-for i in a:
-    key = data[i]
-    for j in range(0, len(key)):
-        # print(j)
-        dic = key[j]
-        attrs = list(dic.keys())
-        for x in attrs:
-            name = list(findkeys(dic, x))
-            # print("Maschinenart", i, "Das Attribut",x, "hat den Wert", name)
-
-# find specific data
-machine = "Motors"
-attribut = "Efficiency"
-data_pumps = data["Pumps"]
-data_motors = data["Motors"]
-dataset = pd.DataFrame()
-# pump_1 = data_pumps[0]
-# Iteration über Attribute einfügen
-
-for i in range(0, len(data_pumps)):
-    attr_name = list(findkeys(data_pumps[i], "Name"))
-    attr_value = list(findkeys(data_pumps[i], attribut))
-    # attr_name, attr_value = find_attribut(data_pumps[i], attribut)
-    # efficiency_pump)
-    print("Die", machine, attr_name[0], "besitzt das Attribut",
-          attribut, "mit dem Wert", attr_value[0])
-
-
-# multiplicate the pump efficiency with the motor efficiency
-
-eta_motor_1 = list(findkeys(data["Motors"][0], "Efficiency"))[0]
-eta_motor_2 = list(findkeys(data["Motors"][1], "Efficiency"))[0]
-eta_pumpe_1 = list(findkeys(data["Pumps"][0], "Efficiency"))[0]
-eta_pumpe_2 = list(findkeys(data["Pumps"][1], "Efficiency"))[0]
-
-print(eta_motor_1, eta_motor_2)
-
-
-count = 0
-# iteration over all pumps and motors
-for p in range(0, len(data_pumps)):
-    for m in range(0, len(data_motors)):
-        eta_pumpe = list(findkeys(data_pumps[p], attribut))[0]/100
-        eta_motor = list(findkeys(data_motors[m], attribut))[0]/100
-        eta_ges = calculate_efficiency(eta_pumpe, eta_motor)
-        scenario = "Szenario_" + str(count)
-        dataset[scenario] = [eta_pumpe, eta_motor, eta_ges]
-        dataset.index = ["eta_pumpe", "eta_motor", "eta_ges"]
-        count += 1
-        print(p, m, eta_ges)
-
-
-# %% store dataframe in hdf5-file
-filename = "example_kpi.h5"
-with pd.HDFStore(filename, "a") as hdf:
-    try:
-        dataset.to_hdf(hdf, "Berechnung")
-        hdf.get_storer("Berechnung").attrs.Link = ("https://git.rwth-aachen.de/"
-                                                   "fst-tuda/projects/lehre/praktikum_digitalisierung/quality-kpi.git")
-    except ValueError:
-        print("Gruppe existiert bereits.")