Skip to content
Snippets Groups Projects
Commit 33f04293 authored by ssibirtsev's avatar ssibirtsev
Browse files

Upload New File

parent 1df7b158
No related branches found
No related tags found
Loading
#!/usr/bin/zsh
##############################################
##### Batch script for the MRCNN training ####
##############################################
#### CREATE SBATCH ENTRIES ####
#### Paths and parameters must be adapted accordingly.
#### job name
#SBATCH --job-name=<JobName>
#### Path and name of the output file of the job execution
#SBATCH --output=/home/<UserID>/.../<JobOutputFolderName>/%x_%J_output.txt
#### Job runtime determined by testing jobs on the GPU node (see manual).
#### Multiply the computing time per epoch resulting from the test by the number of epochs to be trained.
#### Add a safety factor, e.g. multiply with 1.2
#SBATCH --time=0-00:00:00
#### Memory requirement per GPU determined by testing jobs on the GPU node (see manual).
#### Add a safety factor, e.g. multiply with 1.2.
#### For example: resulting value is 5GB --> --mem-per-gpu=5G
#SBATCH --mem-per-gpu=5G
#### E-mail address
#SBATCH --mail-user=<EmailAdress>
#### E-mails to be received
#SBATCH --mail-type=ALL
#### Number of tasks to be performed
#SBATCH --ntasks=1
#### Number of GPUs required per node
#SBATCH --gres=gpu:1
#### Definition of the job array starting at 0. ###
#### This parameter is only required if you want to perform several jobs in parallel
#### from one job script, e.g. 5-fold cross-validation.
#### In this example we perform a 5-fold cross-validation.
#### Thus, we will run 5 jobs in parallel from one job script --> array=0-4
#SBATCH --array=0-4
#### CREATE TERMINAL ENTRIES ####
#### Paths and parameters must be adapted accordingly
#### Definition of the job parameter, which is varied
#### if several jobs are executed in parallel from one job script.
#### This job parameter is only required if you have specified the #SBATCH parameter --array above.
#### In this example, we perform a 5-fold cross-validation.
#### Thus, we will run 5 jobs in parallel from one job script:
#### the parameter kfoldval corresponds to the validation fold number of the current training,
#### which is varied for each job.
kfoldval="$SLURM_ARRAY_TASK_ID"
#### Loading the Cuda module
module load cuda/10.0
#### Export path in which Anaconda is located
export PATH=$PATH:/home/<UserID>/anaconda3/bin
#### Activate environment
source activate env_mrcnn_gpu
#### Navigate to the path where the droplet.py script is located
cd /home/<UserID>/.../samples/droplet/
#### Run the droplet.py script.
#### These are the required training parameters to be specified
#### with additional parameters required for the execution of parallel jobs from one job script.
#### In this example, we perform a 5-fold cross-validation.
#### Thus, 5 jobs are executed in parallel (#SBATCH --array=0-4).
#### In each job the job parameter kfoldval is varied, starting with 0 and ending with 4.
#### First, we need to assign the job parameter kfoldval to the training parameter k_fold_val (--k_fold_val=$kfoldval).
#### Moreover, we need 5 output weights folders defined by the training parameter -new_weights_path.
#### Optional training parameters can be found below.
#### Description/default settings of all training parameters see manual.
python train_droplet.py --dataset_path=<InputFolderName> --new_weights_path=<WeightsFolderName>_"$kfoldval" --file_format=<FileFormat> --image_max=<Integer> --images_gpu=<Integer> --device=True --cross_validation=True --k_fold=5 --k_fold_val=$kfoldval
#### Optional training parameters:
#### --name_result_file
#### --base_weights
#### --train_all_layers
#### --masks
#### --dataset_quantity
#### --epochs
#### --early_stopping
#### --early_loss
#### --use_wandb
#### --wandb_entity
#### --wandb_project
#### --wandb_group
#### --wandb_run
#### --backbone_type
#### --learning
#### --momentum
#### --w_decay
#### --augmentation
#### --flip
#### --cropandpad
#### --rotate
#### --noise
#### --gamma
#### --contrast
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment