Skip to content
Snippets Groups Projects
Commit 33f04293 authored by ssibirtsev's avatar ssibirtsev
Browse files

Upload New File

parent 1df7b158
No related branches found
No related tags found
No related merge requests found
#!/usr/bin/zsh
##############################################
##### Batch script for the MRCNN training ####
##############################################
#### CREATE SBATCH ENTRIES ####
#### Paths and parameters must be adapted accordingly.
#### job name
#SBATCH --job-name=<JobName>
#### Path and name of the output file of the job execution
#SBATCH --output=/home/<UserID>/.../<JobOutputFolderName>/%x_%J_output.txt
#### Job runtime determined by testing jobs on the GPU node (see manual).
#### Multiply the computing time per epoch resulting from the test by the number of epochs to be trained.
#### Add a safety factor, e.g. multiply with 1.2
#SBATCH --time=0-00:00:00
#### Memory requirement per GPU determined by testing jobs on the GPU node (see manual).
#### Add a safety factor, e.g. multiply with 1.2.
#### For example: resulting value is 5GB --> --mem-per-gpu=5G
#SBATCH --mem-per-gpu=5G
#### E-mail address
#SBATCH --mail-user=<EmailAdress>
#### E-mails to be received
#SBATCH --mail-type=ALL
#### Number of tasks to be performed
#SBATCH --ntasks=1
#### Number of GPUs required per node
#SBATCH --gres=gpu:1
#### Definition of the job array starting at 0. ###
#### This parameter is only required if you want to perform several jobs in parallel
#### from one job script, e.g. 5-fold cross-validation.
#### In this example we perform a 5-fold cross-validation.
#### Thus, we will run 5 jobs in parallel from one job script --> array=0-4
#SBATCH --array=0-4
#### CREATE TERMINAL ENTRIES ####
#### Paths and parameters must be adapted accordingly
#### Definition of the job parameter, which is varied
#### if several jobs are executed in parallel from one job script.
#### This job parameter is only required if you have specified the #SBATCH parameter --array above.
#### In this example, we perform a 5-fold cross-validation.
#### Thus, we will run 5 jobs in parallel from one job script:
#### the parameter kfoldval corresponds to the validation fold number of the current training,
#### which is varied for each job.
kfoldval="$SLURM_ARRAY_TASK_ID"
#### Loading the Cuda module
module load cuda/10.0
#### Export path in which Anaconda is located
export PATH=$PATH:/home/<UserID>/anaconda3/bin
#### Activate environment
source activate env_mrcnn_gpu
#### Navigate to the path where the droplet.py script is located
cd /home/<UserID>/.../samples/droplet/
#### Run the droplet.py script.
#### These are the required training parameters to be specified
#### with additional parameters required for the execution of parallel jobs from one job script.
#### In this example, we perform a 5-fold cross-validation.
#### Thus, 5 jobs are executed in parallel (#SBATCH --array=0-4).
#### In each job the job parameter kfoldval is varied, starting with 0 and ending with 4.
#### First, we need to assign the job parameter kfoldval to the training parameter k_fold_val (--k_fold_val=$kfoldval).
#### Moreover, we need 5 output weights folders defined by the training parameter -new_weights_path.
#### Optional training parameters can be found below.
#### Description/default settings of all training parameters see manual.
python train_droplet.py --dataset_path=<InputFolderName> --new_weights_path=<WeightsFolderName>_"$kfoldval" --file_format=<FileFormat> --image_max=<Integer> --images_gpu=<Integer> --device=True --cross_validation=True --k_fold=5 --k_fold_val=$kfoldval
#### Optional training parameters:
#### --name_result_file
#### --base_weights
#### --train_all_layers
#### --masks
#### --dataset_quantity
#### --epochs
#### --early_stopping
#### --early_loss
#### --use_wandb
#### --wandb_entity
#### --wandb_project
#### --wandb_group
#### --wandb_run
#### --backbone_type
#### --learning
#### --momentum
#### --w_decay
#### --augmentation
#### --flip
#### --cropandpad
#### --rotate
#### --noise
#### --gamma
#### --contrast
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment