Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
V
VILLASdataprocessing
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Contributor analytics
CI/CD analytics
Repository analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ACS
Public
VILLASframework
VILLASdataprocessing
Commits
20ab9a9b
Commit
20ab9a9b
authored
7 years ago
by
Markus Mirz
Browse files
Options
Downloads
Patches
Plain Diff
improved processing of complex data and moved calc functions to Timeseries
parent
3ffe6cb4
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
dataprocessing/calc.py
+0
-60
0 additions, 60 deletions
dataprocessing/calc.py
dataprocessing/readtools.py
+78
-11
78 additions, 11 deletions
dataprocessing/readtools.py
dataprocessing/timeseries.py
+91
-1
91 additions, 1 deletion
dataprocessing/timeseries.py
with
169 additions
and
72 deletions
dataprocessing/calc.py
deleted
100644 → 0
+
0
−
60
View file @
3ffe6cb4
import
matplotlib.pyplot
as
plt
import
numpy
as
np
from
.timeseries
import
*
def
diff
(
name
,
ts1
,
ts2
):
"""
Calculate difference.
Assumes the same time steps for both timeseries.
"""
ts_diff
=
TimeSeries
(
name
,
ts1
.
time
,
(
ts1
.
values
-
ts2
.
values
))
return
ts_diff
def
scale_ts
(
name
,
ts
,
factor
):
"""
Scale timeseries.
Assumes the same time steps for both timeseries.
"""
ts_scaled
=
TimeSeries
(
name
,
ts
.
time
,
ts
.
values
*
factor
)
return
ts_scaled
def
complex_abs
(
name
,
real
,
imag
):
"""
Calculate absolute value of complex variable.
Assumes the same time steps for both timeseries.
"""
ts_abs
=
TimeSeries
(
name
,
real
.
time
,
np
.
sqrt
(
real
.
values
**
2
+
imag
.
values
**
2
))
return
ts_abs
def
dyn_phasor_shift_to_emt
(
name
,
real
,
imag
,
freq
):
"""
Shift dynamic phasor values to EMT by frequency freq.
Assumes the same time steps for both timeseries.
"""
ts_shift
=
TimeSeries
(
name
,
real
.
time
,
real
.
values
*
np
.
cos
(
2
*
np
.
pi
*
freq
*
real
.
time
)
-
imag
.
values
*
np
.
sin
(
2
*
np
.
pi
*
freq
*
real
.
time
))
return
ts_shift
def
check_node_number_comp
(
ts_comp
,
node
):
"""
Check if node number is available in complex time series.
:param ts_comp: complex time series
:param node: node number to be checked
:return: true if node number is available, false if out of range
"""
ts_comp_length
=
len
(
ts_comp
)
im_offset
=
int
(
ts_comp_length
/
2
)
if
im_offset
<=
node
or
node
<
0
:
print
(
'
Complex node not available
'
)
return
false
else
:
return
true
def
check_node_number
(
ts
,
node
):
"""
Check if node number is available in time series.
:param ts: time series
:param node: node number to be checked
:return: true if node number is available, false if out of range
"""
ts_length
=
len
(
ts
)
if
ts_length
<=
node
or
node
<
0
:
print
(
'
Node not available
'
)
return
false
else
:
return
true
This diff is collapsed.
Click to expand it.
dataprocessing/readtools.py
+
78
−
11
View file @
20ab9a9b
...
...
@@ -31,16 +31,38 @@ def read_timeseries_PLECS(filename, timeseries_names=None):
timeseries_list
.
append
(
TimeSeries
(
name
,
pd_df
[
'
Time
'
].
values
,
pd_df
[
name
].
values
))
return
timeseries_list
def
read_timeseries_DPsim
(
filename
,
timeseries_names
=
None
):
pd_df
=
pd
.
read_csv
(
filename
)
def
read_timeseries_dpsim_real
(
filename
,
header
=
None
,
timeseries_names
=
None
):
"""
Reads real time series data from DPsim log file which may have a header.
Timeseries names are assigned according to the header names if available.
:param filename: name of the csv file that has the data
:param header: specifies if the log file has a header
:param timeseries_names: column names which should be read
:return: list of Timeseries objects
"""
timeseries_list
=
[]
if
header
is
True
:
pd_df
=
pd
.
read_csv
(
filename
)
else
:
pd_df
=
pd
.
read_csv
(
filename
,
header
=
None
)
if
timeseries_names
is
None
:
# No trajectory names specified, thus read in all
timeseries_names
=
list
(
pd_df
.
columns
.
values
)
timeseries_names
.
remove
(
'
Time
'
)
for
name
in
timeseries_names
:
timeseries_list
.
append
(
TimeSeries
(
name
,
pd_df
[
'
Time
'
].
values
,
pd_df
[
name
].
values
))
column_names
=
list
(
pd_df
.
columns
.
values
)
# Remove timestamps column name and store separately
column_names
.
remove
(
0
)
timestamps
=
pd_df
.
iloc
[:,
0
]
if
header
is
True
:
for
name
in
column_names
:
timeseries_list
.
append
(
TimeSeries
(
name
,
timestamps
,
pd_df
[
name
].
values
))
else
:
node_number
=
int
(
len
(
column_names
))
node_index
=
1
for
column
in
column_names
:
ts_name
=
'
node
'
+
str
(
node_index
)
timeseries_list
.
append
(
TimeSeries
(
ts_name
,
timestamps
,
pd_df
.
iloc
[:,
column
]))
node_index
=
node_index
+
1
else
:
# Read in specified time series
print
(
'
no column names specified yet
'
)
...
...
@@ -51,23 +73,68 @@ def read_timeseries_DPsim(filename, timeseries_names=None):
print
(
result
.
name
)
return
timeseries_list
def
read_timeseries_DPsim_node_values
(
filename
,
timeseries_names
=
None
):
def
read_timeseries_dpsim_cmpl
(
filename
,
timeseries_names
=
None
):
"""
Reads complex time series data from DPsim log file. Real and
imaginary part are stored in one complex variable.
:param filename: name of the csv file that has the data
:param timeseries_names: column name which should be read
:return: list of Timeseries objects
"""
pd_df
=
pd
.
read_csv
(
filename
,
header
=
None
)
timeseries_list
=
[]
if
timeseries_names
is
None
:
# No trajectory names specified, thus read in all
column_names
=
list
(
pd_df
.
columns
.
values
)
# Remove timestamps column name and store separately
column_names
.
remove
(
0
)
timestamps
=
pd_df
.
iloc
[:,
0
]
# Calculate number of network nodes since array is [real, imag]
node_number
=
int
(
len
(
column_names
)
/
2
)
node_index
=
1
for
column
in
column_names
:
if
node_index
<=
node_number
:
ts_name
=
'
node
'
+
str
(
node_index
)
timeseries_list
.
append
(
TimeSeries
(
ts_name
,
timestamps
,
np
.
vectorize
(
complex
)(
pd_df
.
iloc
[:,
column
],
pd_df
.
iloc
[:,
column
+
node_number
])))
else
:
break
node_index
=
node_index
+
1
else
:
# Read in specified time series
print
(
'
cannot read specified columns yet
'
)
print
(
'
DPsim results file length:
'
)
print
(
len
(
timeseries_list
))
for
result
in
timeseries_list
:
print
(
result
.
name
)
return
timeseries_list
def
read_timeseries_dpsim_cmpl_separate
(
filename
,
timeseries_names
=
None
):
"""
Deprecated - Reads complex time series data from DPsim log file. Real and
imaginary part are stored separately.
:param filename: name of the csv file that has the data
:param timeseries_names: column name which should be read
:return: list of Timeseries objects
"""
pd_df
=
pd
.
read_csv
(
filename
,
header
=
None
)
timeseries_list
=
[]
if
timeseries_names
is
None
:
# No trajectory names specified, thus read in all
column_names
=
list
(
pd_df
.
columns
.
values
)
# Remove timestamps column name and store separately
column_names
.
remove
(
0
)
timestamps
=
pd_df
.
iloc
[:,
0
]
# Calculate number of network nodes since array is [real, imag]
node_number
=
int
(
len
(
column_names
)
/
2
)
node_index
=
1
for
column
in
column_names
:
if
node_index
<=
node_number
:
node_name
=
node_index
timeseries_list
.
append
(
TimeSeries
(
'
node
'
+
str
(
node_name
)
+
'
Re
'
,
pd_df
.
iloc
[:,
0
]
,
pd_df
.
iloc
[:,
column
]))
node_name
=
'
node
'
+
str
(
node_index
)
+
'
Re
'
timeseries_list
.
append
(
TimeSeries
(
node_name
,
timestamps
,
pd_df
.
iloc
[:,
column
]))
else
:
node_name
=
node_index
-
node_number
timeseries_list
.
append
(
TimeSeries
(
'
node
'
+
str
(
node_name
)
+
'
Im
'
,
pd_df
.
iloc
[:,
0
]
,
pd_df
.
iloc
[:,
column
]))
node_name
=
'
node
'
+
str
(
node_index
-
node_number
)
+
'
Im
'
timeseries_list
.
append
(
TimeSeries
(
node_name
,
timestamps
,
pd_df
.
iloc
[:,
column
]))
node_index
=
node_index
+
1
else
:
...
...
This diff is collapsed.
Click to expand it.
dataprocessing/timeseries.py
+
91
−
1
View file @
20ab9a9b
import
numpy
as
np
class
TimeSeries
:
"""
Stores data from different simulation sources.
A TimeSeries object always consists of timestamps and datapoints.
"""
def
__init__
(
self
,
name
,
time
,
values
,
label
=
""
):
self
.
time
=
np
.
array
(
time
)
self
.
values
=
np
.
array
(
values
)
self
.
name
=
name
self
.
label
=
name
\ No newline at end of file
self
.
label
=
name
@staticmethod
def
diff
(
name
,
ts1
,
ts2
):
"""
Returns difference between values of two Timeseries objects.
Assumes the same time steps for both timeseries.
"""
ts_diff
=
TimeSeries
(
name
,
ts1
.
time
,
(
ts1
.
values
-
ts2
.
values
))
return
ts_diff
def
scale_ts
(
self
,
name
,
factor
):
"""
Returns scaled timeseries.
Assumes the same time steps for both timeseries.
"""
ts_scaled
=
TimeSeries
(
name
,
self
.
time
,
self
.
values
*
factor
)
return
ts_scaled
@staticmethod
def
complex_abs_dep
(
name
,
ts_real
,
ts_imag
):
"""
Calculate absolute value of complex variable.
Assumes the same time steps for both timeseries.
"""
ts_abs
=
TimeSeries
(
name
,
ts_real
.
time
,
np
.
sqrt
(
ts_real
.
values
**
2
+
ts_imag
.
values
**
2
))
return
ts_abs
@staticmethod
def
complex_abs
(
name
,
ts_real
,
ts_imag
):
"""
Calculate absolute value of complex variable.
Assumes the same time steps for both timeseries.
"""
ts_complex
=
np
.
vectorize
(
complex
)(
ts_real
.
values
,
ts_imag
.
values
)
ts_abs
=
TimeSeries
(
name
,
ts_real
.
time
,
ts_complex
.
abs
())
return
ts_abs
def
abs
(
self
,
name
):
"""
Calculate absolute value of complex variable.
Assumes the same time steps for both timeseries.
"""
ts_abs
=
TimeSeries
(
name
,
self
.
time
,
self
.
values
.
abs
())
return
ts_abs
def
complex_phase
(
name
,
ts_real
,
ts_imag
):
"""
Calculate absolute value of complex variable.
Assumes the same time steps for both timeseries.
"""
ts_complex
=
np
.
vectorize
(
complex
)(
ts_real
.
values
,
ts_imag
.
values
)
ts_abs
=
TimeSeries
(
name
,
ts_real
.
time
,
ts_complex
.
phase
())
return
ts_abs
@staticmethod
def
dyn_phasor_shift_to_emt
(
name
,
real
,
imag
,
freq
):
"""
Shift dynamic phasor values to EMT by frequency freq.
Assumes the same time steps for both timeseries.
"""
ts_shift
=
TimeSeries
(
name
,
real
.
time
,
real
.
values
*
np
.
cos
(
2
*
np
.
pi
*
freq
*
real
.
time
)
-
imag
.
values
*
np
.
sin
(
2
*
np
.
pi
*
freq
*
real
.
time
))
return
ts_shift
@staticmethod
def
check_node_number_comp
(
ts_comp
,
node
):
"""
Check if node number is available in complex time series.
:param ts_comp: complex time series
:param node: node number to be checked
:return: true if node number is available, false if out of range
"""
ts_comp_length
=
len
(
ts_comp
)
im_offset
=
int
(
ts_comp_length
/
2
)
if
im_offset
<=
node
or
node
<
0
:
print
(
'
Complex node not available
'
)
return
false
else
:
return
true
@staticmethod
def
check_node_number
(
ts
,
node
):
"""
Check if node number is available in time series.
:param ts: time series
:param node: node number to be checked
:return: true if node number is available, false if out of range
"""
ts_length
=
len
(
ts
)
if
ts_length
<=
node
or
node
<
0
:
print
(
'
Node not available
'
)
return
false
else
:
return
true
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment