diff --git a/dataprocessing/calc.py b/dataprocessing/calc.py deleted file mode 100644 index 582b3cb526aec7dfd64a9afe13c60f99a83b8c5d..0000000000000000000000000000000000000000 --- a/dataprocessing/calc.py +++ /dev/null @@ -1,60 +0,0 @@ -import matplotlib.pyplot as plt -import numpy as np -from .timeseries import * - -def diff(name, ts1, ts2): - """ Calculate difference. - Assumes the same time steps for both timeseries. - """ - ts_diff = TimeSeries(name, ts1.time, (ts1.values - ts2.values)) - return ts_diff - -def scale_ts(name, ts, factor): - """ Scale timeseries. - Assumes the same time steps for both timeseries. - """ - ts_scaled = TimeSeries(name, ts.time, ts.values * factor) - return ts_scaled - -def complex_abs(name, real, imag): - """ Calculate absolute value of complex variable. - Assumes the same time steps for both timeseries. - """ - ts_abs = TimeSeries(name, real.time, np.sqrt(real.values ** 2 + imag.values ** 2)) - return ts_abs - -def dyn_phasor_shift_to_emt(name, real, imag, freq): - """ Shift dynamic phasor values to EMT by frequency freq. - Assumes the same time steps for both timeseries. - """ - ts_shift = TimeSeries(name, real.time, real.values*np.cos(2*np.pi*freq*real.time) - imag.values*np.sin(2*np.pi*freq*real.time)) - return ts_shift - -def check_node_number_comp(ts_comp, node): - """ - Check if node number is available in complex time series. - :param ts_comp: complex time series - :param node: node number to be checked - :return: true if node number is available, false if out of range - """ - ts_comp_length = len(ts_comp) - im_offset = int(ts_comp_length / 2) - if im_offset <= node or node < 0: - print('Complex node not available') - return false - else: - return true - -def check_node_number(ts, node): - """ - Check if node number is available in time series. - :param ts: time series - :param node: node number to be checked - :return: true if node number is available, false if out of range - """ - ts_length = len(ts) - if ts_length <= node or node < 0: - print('Node not available') - return false - else: - return true diff --git a/dataprocessing/readtools.py b/dataprocessing/readtools.py index 6bd5a055f9970ff7f524794967e59892bc88ef25..50816497c6e6a21885d2205c08d45658ddfe0960 100644 --- a/dataprocessing/readtools.py +++ b/dataprocessing/readtools.py @@ -31,16 +31,38 @@ def read_timeseries_PLECS(filename, timeseries_names=None): timeseries_list.append(TimeSeries(name, pd_df['Time'].values, pd_df[name].values)) return timeseries_list -def read_timeseries_DPsim(filename, timeseries_names=None): - pd_df = pd.read_csv(filename) +def read_timeseries_dpsim_real(filename, header=None, timeseries_names=None): + """Reads real time series data from DPsim log file which may have a header. + Timeseries names are assigned according to the header names if available. + :param filename: name of the csv file that has the data + :param header: specifies if the log file has a header + :param timeseries_names: column names which should be read + :return: list of Timeseries objects + """ timeseries_list = [] + if header is True: + pd_df = pd.read_csv(filename) + else: + pd_df = pd.read_csv(filename, header=None) + if timeseries_names is None: # No trajectory names specified, thus read in all - timeseries_names = list(pd_df.columns.values) - timeseries_names.remove('Time') - for name in timeseries_names: - timeseries_list.append(TimeSeries(name, pd_df['Time'].values, pd_df[name].values)) + column_names = list(pd_df.columns.values) + # Remove timestamps column name and store separately + column_names.remove(0) + timestamps = pd_df.iloc[:,0] + + if header is True: + for name in column_names: + timeseries_list.append(TimeSeries(name, timestamps, pd_df[name].values)) + else: + node_number = int(len(column_names)) + node_index = 1 + for column in column_names: + ts_name = 'node ' + str(node_index) + timeseries_list.append(TimeSeries(ts_name, timestamps, pd_df.iloc[:, column])) + node_index = node_index + 1 else: # Read in specified time series print('no column names specified yet') @@ -51,23 +73,68 @@ def read_timeseries_DPsim(filename, timeseries_names=None): print(result.name) return timeseries_list -def read_timeseries_DPsim_node_values(filename, timeseries_names=None): +def read_timeseries_dpsim_cmpl(filename, timeseries_names=None): + """Reads complex time series data from DPsim log file. Real and + imaginary part are stored in one complex variable. + :param filename: name of the csv file that has the data + :param timeseries_names: column name which should be read + :return: list of Timeseries objects + """ pd_df = pd.read_csv(filename, header=None) timeseries_list = [] if timeseries_names is None: # No trajectory names specified, thus read in all column_names = list(pd_df.columns.values) + # Remove timestamps column name and store separately column_names.remove(0) + timestamps = pd_df.iloc[:,0] + # Calculate number of network nodes since array is [real, imag] + node_number = int(len(column_names) / 2) node_index = 1 + for column in column_names: + if node_index <= node_number: + ts_name = 'node '+ str(node_index) + timeseries_list.append(TimeSeries(ts_name, timestamps, np.vectorize(complex)(pd_df.iloc[:,column],pd_df.iloc[:,column + node_number]))) + else: + break + node_index = node_index + 1 + else: + # Read in specified time series + print('cannot read specified columns yet') + + print('DPsim results file length:') + print(len(timeseries_list)) + for result in timeseries_list: + print(result.name) + return timeseries_list + +def read_timeseries_dpsim_cmpl_separate(filename, timeseries_names=None): + """Deprecated - Reads complex time series data from DPsim log file. Real and + imaginary part are stored separately. + :param filename: name of the csv file that has the data + :param timeseries_names: column name which should be read + :return: list of Timeseries objects + """ + pd_df = pd.read_csv(filename, header=None) + timeseries_list = [] + + if timeseries_names is None: + # No trajectory names specified, thus read in all + column_names = list(pd_df.columns.values) + # Remove timestamps column name and store separately + column_names.remove(0) + timestamps = pd_df.iloc[:, 0] + # Calculate number of network nodes since array is [real, imag] node_number = int(len(column_names) / 2) + node_index = 1 for column in column_names: if node_index <= node_number: - node_name = node_index - timeseries_list.append(TimeSeries('node '+ str(node_name) +' Re', pd_df.iloc[:,0], pd_df.iloc[:,column])) + node_name = 'node '+ str(node_index) +' Re' + timeseries_list.append(TimeSeries(node_name, timestamps, pd_df.iloc[:,column])) else: - node_name = node_index - node_number - timeseries_list.append(TimeSeries('node '+ str(node_name) +' Im', pd_df.iloc[:,0], pd_df.iloc[:,column])) + node_name = 'node '+ str(node_index - node_number) +' Im' + timeseries_list.append(TimeSeries(node_name, timestamps, pd_df.iloc[:,column])) node_index = node_index + 1 else: diff --git a/dataprocessing/timeseries.py b/dataprocessing/timeseries.py index 0bdea8a7d417b3b98d521e65d2e9a51780d6d9b6..358c4390b56cab05afc7770592bca64ba85f458f 100644 --- a/dataprocessing/timeseries.py +++ b/dataprocessing/timeseries.py @@ -1,8 +1,98 @@ import numpy as np class TimeSeries: + """Stores data from different simulation sources. + A TimeSeries object always consists of timestamps and datapoints. + """ def __init__(self, name, time, values, label=""): self.time = np.array(time) self.values = np.array(values) self.name = name - self.label = name \ No newline at end of file + self.label = name + + @staticmethod + def diff(name, ts1, ts2): + """Returns difference between values of two Timeseries objects. + Assumes the same time steps for both timeseries. + """ + ts_diff = TimeSeries(name, ts1.time, (ts1.values - ts2.values)) + return ts_diff + + + def scale_ts(self, name, factor): + """Returns scaled timeseries. + Assumes the same time steps for both timeseries. + """ + ts_scaled = TimeSeries(name, self.time, self.values * factor) + return ts_scaled + + @staticmethod + def complex_abs_dep(name, ts_real, ts_imag): + """ Calculate absolute value of complex variable. + Assumes the same time steps for both timeseries. + """ + ts_abs = TimeSeries(name, ts_real.time, np.sqrt(ts_real.values ** 2 + ts_imag.values ** 2)) + return ts_abs + + @staticmethod + def complex_abs(name, ts_real, ts_imag): + """ Calculate absolute value of complex variable. + Assumes the same time steps for both timeseries. + """ + ts_complex = np.vectorize(complex)(ts_real.values, ts_imag.values) + ts_abs = TimeSeries(name, ts_real.time, ts_complex.abs()) + return ts_abs + + def abs(self, name): + """ Calculate absolute value of complex variable. + Assumes the same time steps for both timeseries. + """ + ts_abs = TimeSeries(name, self.time, self.values.abs()) + return ts_abs + + def complex_phase(name, ts_real, ts_imag): + """ Calculate absolute value of complex variable. + Assumes the same time steps for both timeseries. + """ + ts_complex = np.vectorize(complex)(ts_real.values, ts_imag.values) + ts_abs = TimeSeries(name, ts_real.time, ts_complex.phase()) + return ts_abs + + @staticmethod + def dyn_phasor_shift_to_emt(name, real, imag, freq): + """ Shift dynamic phasor values to EMT by frequency freq. + Assumes the same time steps for both timeseries. + """ + ts_shift = TimeSeries(name, real.time, real.values*np.cos(2*np.pi*freq*real.time) - imag.values*np.sin(2*np.pi*freq*real.time)) + return ts_shift + + @staticmethod + def check_node_number_comp(ts_comp, node): + """ + Check if node number is available in complex time series. + :param ts_comp: complex time series + :param node: node number to be checked + :return: true if node number is available, false if out of range + """ + ts_comp_length = len(ts_comp) + im_offset = int(ts_comp_length / 2) + if im_offset <= node or node < 0: + print('Complex node not available') + return false + else: + return true + + @staticmethod + def check_node_number(ts, node): + """ + Check if node number is available in time series. + :param ts: time series + :param node: node number to be checked + :return: true if node number is available, false if out of range + """ + ts_length = len(ts) + if ts_length <= node or node < 0: + print('Node not available') + return false + else: + return true \ No newline at end of file