Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lecture-tutorials
Manage
Activity
Members
Plan
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Terraform modules
Analyze
Contributor analytics
Repository analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ACS
Public
Teaching materials
Systemtheorie 2
lecture-tutorials
Commits
f1d5e15b
Commit
f1d5e15b
authored
8 months ago
by
Sebastian Schwarz
Browse files
Options
Downloads
Patches
Plain Diff
add notebook V01.2.ipynb
parent
cd4f8eb8
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
sys2-jupyter-notebooks/exam_examples/V01.2.ipynb
+289
-0
289 additions, 0 deletions
sys2-jupyter-notebooks/exam_examples/V01.2.ipynb
with
289 additions
and
0 deletions
sys2-jupyter-notebooks/exam_examples/V01.2.ipynb
0 → 100644
+
289
−
0
View file @
f1d5e15b
{
"cells": [
{
"cell_type": "markdown",
"id": "04105e65-6705-4c92-a009-48c54bd38ad4",
"metadata": {},
"source": [
"# <span style='color:OrangeRed'>V1 DIE GEWICHTFOLGE </span>"
]
},
{
"cell_type": "markdown",
"id": "ffe7d73f-7986-44b6-a9fd-a678b9aaa182",
"metadata": {},
"source": [
"<div style=\"font-family: 'times'; font-size: 13pt; text-align: justify\">\n",
"\n",
"In dieser Aufgabe wird die Gewichtsfunktion g(t) linearer, zeitkontinuierlicher Systeme bzw. die Gewichtsfolge g(k)\n",
"linearer, zeitdiskreter Systeme thematisiert. g(k) ergibt sich aus g(t) durch eine Abtastung mit der Abtastzeit Ts:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "b7d82b1f-1a44-44a1-a235-e5556d641592",
"metadata": {},
"outputs": [],
"source": [
"clear all"
]
},
{
"cell_type": "markdown",
"id": "53866cc1-a0ea-4d77-8d9c-c8345704d874",
"metadata": {},
"source": [
"<div style=\"font-family: 'times'; font-size: 13pt; text-align: justify\">\n",
"Das folgende Eingangssignal ist gegeben:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "a0b9d775-f176-483e-aaca-43da284aa2e4",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"u =\n",
"\n",
" 4 2 -3 3 1\n",
"\n"
]
}
],
"source": [
"u = [4 2 -3 3 1]"
]
},
{
"cell_type": "markdown",
"id": "1cb98bc6-138b-45bc-9178-74f8493d4171",
"metadata": {},
"source": [
"<div style=\"font-family: 'times'; font-size: 13pt; text-align: justify\">\n",
"\n",
"Die Gewichtsfolge lautet:"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "03459a21-1072-416b-a04b-5de7b9a30813",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"g =\n",
"\n",
" 1 0 2 -1 0\n",
"\n"
]
}
],
"source": [
"g = [1 0 2 -1 0]"
]
},
{
"cell_type": "markdown",
"id": "071800da-0e16-4189-bb65-5746c0415165",
"metadata": {},
"source": [
"<div style=\"font-family: 'times'; font-size: 13pt; text-align: justify\">\n",
"\n",
"Der erste Wert des Ausgangssignals wird so berechnet:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "5adb101b-4286-428a-a4bd-eeb57e860e9c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"y = 4\n"
]
}
],
"source": [
"y(1) = g(1)*u(1)"
]
},
{
"cell_type": "markdown",
"id": "eae75561-2795-400d-802d-f649281ff316",
"metadata": {},
"source": [
"<div style=\"font-family: 'times'; font-size: 13pt; text-align: justify\">\n",
"Der zweite Wert wird sein:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "acf57137-23eb-4be3-87ef-eb9d08076f07",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"y =\n",
"\n",
" 4 2\n",
"\n"
]
}
],
"source": [
"y(2) = g(1)*u(2)+g(2)*u(1)"
]
},
{
"cell_type": "markdown",
"id": "ab36a55a-6239-4214-9d36-85f4d111c61e",
"metadata": {},
"source": [
"<div style=\"font-family: 'times'; font-size: 13pt; text-align: justify\">\n",
"Und der dritte Wert:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c4c1fce4-7677-40d3-813e-5a5e4758f00f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"y =\n",
"\n",
" 4 2 5\n",
"\n"
]
}
],
"source": [
"y(3) = g(1)*u(3)+g(2)*u(2)+g(3)*u(1)"
]
},
{
"cell_type": "markdown",
"id": "c5fb33ea-47d7-49bf-a8ce-f1d81917a1d0",
"metadata": {},
"source": [
"<div style=\"font-family: 'times'; font-size: 13pt; text-align: justify\">\n",
"Und schließlich der vierte Wert (und so weiter...):"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "14c39a24-fc50-4924-8075-84125990776f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"y =\n",
"\n",
" 4 2 5 3\n",
"\n"
]
}
],
"source": [
"y(4) = g(1)*u(4)+g(2)*u(3)+g(3)*u(2)+g(4)*u(1)"
]
},
{
"cell_type": "markdown",
"id": "25ea2215-45ca-4980-a862-372d0eccf237",
"metadata": {},
"source": [
"<div style=\"font-family: 'times'; font-size: 13pt; text-align: justify\">\n",
"Wir können unsere Berechnungen auch mit der Faltungssumme-Funktion überprüfen, die direkt in Octave verfügbar ist:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "5d66f64a-7857-470c-a708-2645a70a9e3f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"y2 =\n",
"\n",
" 4 2 5 3 -7 9 -1 -1 0\n",
"\n"
]
}
],
"source": [
"y2 = conv(g,u)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9e1a668f-07ac-442a-bb62-950dacd49832",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "f68f7a0c-84ff-4c18-9d68-3dc540fc8f07",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Octave",
"language": "octave",
"name": "octave"
},
"language_info": {
"file_extension": ".m",
"help_links": [
{
"text": "GNU Octave",
"url": "https://www.gnu.org/software/octave/support.html"
},
{
"text": "Octave Kernel",
"url": "https://github.com/Calysto/octave_kernel"
},
{
"text": "MetaKernel Magics",
"url": "https://metakernel.readthedocs.io/en/latest/source/README.html"
}
],
"mimetype": "text/x-octave",
"name": "octave",
"version": "5.2.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
%% Cell type:markdown id:04105e65-6705-4c92-a009-48c54bd38ad4 tags:
# <span style='color:OrangeRed'>V1 DIE GEWICHTFOLGE </span>
%% Cell type:markdown id:ffe7d73f-7986-44b6-a9fd-a678b9aaa182 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
In dieser Aufgabe wird die Gewichtsfunktion g(t) linearer, zeitkontinuierlicher Systeme bzw. die Gewichtsfolge g(k)
linearer, zeitdiskreter Systeme thematisiert. g(k) ergibt sich aus g(t) durch eine Abtastung mit der Abtastzeit Ts:
%% Cell type:code id:b7d82b1f-1a44-44a1-a235-e5556d641592 tags:
```
octave
clear all
```
%% Cell type:markdown id:53866cc1-a0ea-4d77-8d9c-c8345704d874 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Das folgende Eingangssignal ist gegeben:
%% Cell type:code id:a0b9d775-f176-483e-aaca-43da284aa2e4 tags:
```
octave
u = [4 2 -3 3 1]
```
%% Output
u =
4 2 -3 3 1
%% Cell type:markdown id:1cb98bc6-138b-45bc-9178-74f8493d4171 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Die Gewichtsfolge lautet:
%% Cell type:code id:03459a21-1072-416b-a04b-5de7b9a30813 tags:
```
octave
g = [1 0 2 -1 0]
```
%% Output
g =
1 0 2 -1 0
%% Cell type:markdown id:071800da-0e16-4189-bb65-5746c0415165 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Der erste Wert des Ausgangssignals wird so berechnet:
%% Cell type:code id:5adb101b-4286-428a-a4bd-eeb57e860e9c tags:
```
octave
y(1) = g(1)*u(1)
```
%% Output
y = 4
%% Cell type:markdown id:eae75561-2795-400d-802d-f649281ff316 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Der zweite Wert wird sein:
%% Cell type:code id:acf57137-23eb-4be3-87ef-eb9d08076f07 tags:
```
octave
y(2) = g(1)*u(2)+g(2)*u(1)
```
%% Output
y =
4 2
%% Cell type:markdown id:ab36a55a-6239-4214-9d36-85f4d111c61e tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Und der dritte Wert:
%% Cell type:code id:c4c1fce4-7677-40d3-813e-5a5e4758f00f tags:
```
octave
y(3) = g(1)*u(3)+g(2)*u(2)+g(3)*u(1)
```
%% Output
y =
4 2 5
%% Cell type:markdown id:c5fb33ea-47d7-49bf-a8ce-f1d81917a1d0 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Und schließlich der vierte Wert (und so weiter...):
%% Cell type:code id:14c39a24-fc50-4924-8075-84125990776f tags:
```
octave
y(4) = g(1)*u(4)+g(2)*u(3)+g(3)*u(2)+g(4)*u(1)
```
%% Output
y =
4 2 5 3
%% Cell type:markdown id:25ea2215-45ca-4980-a862-372d0eccf237 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Wir können unsere Berechnungen auch mit der Faltungssumme-Funktion überprüfen, die direkt in Octave verfügbar ist:
%% Cell type:code id:5d66f64a-7857-470c-a708-2645a70a9e3f tags:
```
octave
y2 = conv(g,u)
```
%% Output
y2 =
4 2 5 3 -7 9 -1 -1 0
%% Cell type:code id:9e1a668f-07ac-442a-bb62-950dacd49832 tags:
```
octave
```
%% Cell type:code id:f68f7a0c-84ff-4c18-9d68-3dc540fc8f07 tags:
```
octave
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment