Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lecture-tutorials
Manage
Activity
Members
Plan
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Terraform modules
Analyze
Contributor analytics
Repository analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ACS
Public
Teaching materials
Systemtheorie 2
lecture-tutorials
Commits
cd4f8eb8
Commit
cd4f8eb8
authored
10 months ago
by
Sebastian Schwarz
Browse files
Options
Downloads
Patches
Plain Diff
improved notebook V01.1.ipynb
parent
569fa7d0
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
sys2-jupyter-notebooks/exam_examples/V01.1.ipynb
+1
-1
1 addition, 1 deletion
sys2-jupyter-notebooks/exam_examples/V01.1.ipynb
with
1 addition
and
1 deletion
sys2-jupyter-notebooks/exam_examples/V01.1.ipynb
+
1
−
1
View file @
cd4f8eb8
...
...
@@ -136,7 +136,7 @@
}
],
"source": [
"tau = -1/real(p)"
"tau = -1
.
/real(p)"
]
},
{
...
...
%% Cell type:markdown id:04105e65-6705-4c92-a009-48c54bd38ad4 tags:
# <span style='color:OrangeRed'>V1 DAS ABTASTTHEOREM </span>
%% Cell type:markdown id:ffe7d73f-7986-44b6-a9fd-a678b9aaa182 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Hier wird analysiert, wie man die geeignete Abtastfrequenz für ein bestimmtes System auswählt. Am Ende überprüfen wir das Ergebnis mit einer einfachen Simulation.
%% Cell type:code id:3a336fb9-2f73-44ce-ab67-91b96ccfc1c1 tags:
```
octave
% Necessary to use control toolbox
pkg load control
clear all
% Set the Octsim Engine to run the simulation
addpath('../Octsim');
```
%% Cell type:markdown id:53866cc1-a0ea-4d77-8d9c-c8345704d874 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Es ist das folgende System in Form einer Übertragungsfunktion gegeben:
%% Cell type:code id:a0b9d775-f176-483e-aaca-43da284aa2e4 tags:
```
octave
num = [100]
den = [1 10 100]
G = tf(num,den)
```
%% Output
num = 100
den =
1 10 100
Transfer function 'G' from input 'u1' to output ...
100
y1: ----------------
s^2 + 10 s + 100
Continuous-time model.
%% Cell type:markdown id:1cb98bc6-138b-45bc-9178-74f8493d4171 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Berechnet man die Nullstellen des Nenners, erhält man die Pole des Systems:
%% Cell type:code id:03459a21-1072-416b-a04b-5de7b9a30813 tags:
```
octave
p = roots(den)
```
%% Output
p =
-5.0000 + 8.6603i
-5.0000 - 8.6603i
%% Cell type:markdown id:071800da-0e16-4189-bb65-5746c0415165 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Aus den Polen berechnen wir die Zeitkonstanten:
%% Cell type:code id:5adb101b-4286-428a-a4bd-eeb57e860e9c tags:
```
octave
tau = -1/real(p)
tau = -1
.
/real(p)
```
%% Output
tau =
0.100000 0.100000
%% Cell type:markdown id:eae75561-2795-400d-802d-f649281ff316 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
und aus den Zeitkonstanten die Eigenfrequenzen:
%% Cell type:code id:acf57137-23eb-4be3-87ef-eb9d08076f07 tags:
```
octave
om = 2*pi./tau
```
%% Output
om =
62.832 62.832
%% Cell type:markdown id:ab36a55a-6239-4214-9d36-85f4d111c61e tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Die minimale Abtastfrequenz ist durch das Zweifache der maximalen Eigenfrequenz des Systems gegeben.
%% Cell type:code id:c4c1fce4-7677-40d3-813e-5a5e4758f00f tags:
```
octave
minomt = 2*max(om)
```
%% Output
minomt = 125.66
%% Cell type:markdown id:c5fb33ea-47d7-49bf-a8ce-f1d81917a1d0 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Wir wählen dann einen Wert, der größer ist als das Minimum durch den Koeffizienten K.
%% Cell type:code id:14c39a24-fc50-4924-8075-84125990776f tags:
```
octave
K = 2
omt = K*minomt
```
%% Output
K = 2
omt = 251.33
%% Cell type:markdown id:25ea2215-45ca-4980-a862-372d0eccf237 tags:
<div
style=
"font-family: 'times'; font-size: 13pt; text-align: justify"
>
Schließlich testen wir die Wahl der Abtastzeit, indem wir die Sprungantwort simulieren und den Ausgang abtasten.
%% Cell type:code id:578daff8-f4fd-4001-bb09-aea89d809eec tags:
```
octave
addpath("../Octsim");
tini = 0 # Start time
tfinal = 3 # End time
dt = 0.001 # Time Step
nflows = 3 #Number of data flows in the schematic, Zahlenwert entspricht nicht dem in Matlab (hier um 1 größer)
Ts = 2*pi/omt # Sampling time for discrete time
c1{1} = StepSource(1,0,1,0.1); #StepSource(self,out,startv,endv,ts)
c1{2} = TransferFunction(1,2,num,den); #TransferFunction(self,inp,out,num,den)
c1{3} = DTTransferFunction(2,3,1,1,Ts); #DTTransferFunction(self,inp,out,num,den,Ts)
% Instance of the simulation schematic
sc1 = Schema(tini,tfinal,dt,nflows);
sc1.AddListComponents(c1);
% Run the schematic and plot
out1 = sc1.Run([1 2 3]);
plot(out1(1,:),out1(2,:),out1(1,:),out1(3,:),out1(1,:),out1(4,:));
```
%% Output
tini = 0
tfinal = 3
dt = 0.0010000
nflows = 3
Ts = 0.025000
%% Cell type:code id:9e1a668f-07ac-442a-bb62-950dacd49832 tags:
```
octave
```
%% Cell type:code id:65f46b62-e607-456a-80b6-42f452d0abfc tags:
```
octave
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment