Newer
Older
from collections import OrderedDict, defaultdict
import fnmatch
import numpy as np
import tensorflow as tf
from tqdm import tqdm
from inspect import getargspec
from warnings import warn
import re
from tensorflow.python.keras.callbacks import make_logs
from tensorflow.python.keras.backend import track_variable
from tensorflow.python.keras.utils.mode_keys import ModeKeys
from lbn import LBNLayer as OriginalLBNLayer
from .evil import pin
from .data import SKDict, DSS
from .plotting import (
figure_to_image,
figure_confusion_matrix,
figure_activations,
figure_node_activations,
figure_roc_curve,
figure_y,
figure_weights,
figure_inputs,
# various helper functions
def kVar(*args, **kwargs):
""" produce a keras-tracked tf.Variable from all given parameters """
var = tf.Variable(*args, **kwargs)
track_variable(var)
return var
def kOpt(opt, **kwargs):
""" instanciate a keras Optimizer with all applicable **kwargs """
if not callable(opt):
opt = getattr(tf.keras.optimizers, opt)
assert issubclass(opt, tf.keras.optimizers.Optimizer)
args = getargspec(opt.__init__).args - {"self"}
return opt(**{k: v for k, v in kwargs.items() if k in args})
def kInput(ref, **kwargs):
""" produce a keras.Input with shape & dtype according to ref """
kwargs.setdefault("shape", ref.shape[1:])
kwargs.setdefault("dtype", ref.dtype)
return tf.keras.Input(**kwargs)
def keras_register_custom_object(obj):
""" decorator for globally registering a custom object with keras """
tf.keras.utils.get_custom_objects()[obj.__name__] = obj
return obj
class KFeed(object):
def __init__(self, x, y, w=None, train="train", valid="valid", balance=lambda x: x):
pin(locals())
@property
return tuple(v if isinstance(v, tuple) else (v,) for v in (self.x, self.y, self.w))
def get(self, src):
return tuple(itemgetter(*v)(src) for v in self.xyw)
def balance(self, src):
return src
def balance_weights(self, weights):
if isinstance(weights, SKDict):
sums = weights.map(np.sum)
ref = np.mean(list(sums.values()))
weights = weights.__class__({k: weights[k] * (ref / s) for k, s in sums.items()})
return weights
def kfeed(self, src, **kwargs):
src = src.only(*self.all)
bal = self.balance(src)
return dict(
zip(["x", "y", "sample_weight"], self.get(bal[self.train])),
validation_data=self.get(bal[self.valid]),
def gfeed(self, src, batch_size, rng=np.random, auto_steps=np.max, **kwargs):
"""
Creates a generator for tf.keras' model.fit().
Requires, that mean weights per process are equal:
dss["weight"] = dss["weight"].map(lambda x: x / np.mean(x))
"""
src = src.only(*self.all)
val = src[self.valid]
assert not isinstance(self.w, tuple)
val[self.w] = self.balance_weights(val[self.w])
val = val.fuse(*val[self.w].keys())
val.blen
dict(
zip(
("x", "steps_per_epoch"),
self.gensteps(src[self.train], batch_size, rng=rng, auto_steps=auto_steps),
)
),
validation_data=self.get(val),
workers=0,
)
def gensteps(self, src, batch_size, rng=np.random, auto_steps=np.max):
keys = src.mkeys(self.all)
gen = (
(
self.get(DSS.zip(*parts).map(np.concatenate))
for parts in zip(
*[
src[k].batch_generator(
batch_size // len(keys),
rng=np.random.RandomState(rng.randint(1 << 31, size=20)),
)
for k in keys
]
)
if len(keys) > 1
else src[keys[0]].batch_generator(batch_size, rng=rng)
)
gs = float(batch_size // len(keys))
steps = int(auto_steps([src[k].blen / gs for k in keys])) or None
return gen, steps
def generator(self, *args, **kwargs):
assert "auto_steps" not in kwargs
return self.gensteps(*args, **kwargs)[0]
return tuple(tuple(src[k].shape for k in g) for g in self.xyw)
def getShapesK(self, src):
strip_first_dim = lambda x: x[1:] if x[0] is None else x
shapes = self.getShapes(src)
return tuple(tuple(strip_first_dim(a) for a in b) for b in shapes)
def mkInputs(self, src, **kwargs):
return tuple(
tf.keras.Input(shape=ref.shape[1:], dtype=ref.dtype, **kwargs)
for ref in (src[x] for x in self.xyw[0])
def Normal(ref, indices=None, name=None, **kwargs):
"""
Normalizing layer according to ref.
If given, only the variables corresponding to indices will be normalized.
"""
mean = ref.mean(**kwargs)
std = ref.std(**kwargs)
replace = np.isin(np.arange(len(mean)), indices, invert=True)
mean[replace] = 0
std[replace] = 1
return tf.keras.layers.Lambda((lambda x: (x * mul) + add), name=name)
def Onehot(index, n, name=None):
"""
One hot encodes a variable referred to by index.
n is the number of different variables.
"""
# Concat zeros to eye for indices in x equal to n (larger than those encoded by one)
eye = tf.concat((tf.eye(n), tf.zeros((1, n))), axis=0)
return tf.concat(
(
x[..., :index],
tf.gather(eye, tf.cast(x[..., index], tf.int64)),
x[..., (index + 1) :],
),
axis=-1,
)
return tf.keras.layers.Lambda(to_onehot, name=name)
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
class Moment(tf.keras.metrics.Mean):
def __init__(self, order, label=False, **kwargs):
""" Metric calculating the order-th moment """
assert order == int(order)
assert label == bool(label)
kwargs.setdefault("name", "%smom%d" % ("l" if label else "", order))
super(Moment, self).__init__(**kwargs)
self.order = order
self.label = label
def update_state(self, y_true, y_pred, sample_weight=None):
y = y_true if self.label else y_pred
y = tf.keras.backend.cast(y, self._dtype)
if self.order == 0:
y = tf.keras.backend.ones_like(y)
elif self.order == 1:
pass
elif self.order == 2:
y = tf.keras.backend.square(y)
else:
y = tf.keras.backend.pow(y, self.order)
return super(Moment, self).update_state(y, sample_weight=sample_weight)
def get_config(self):
return dict(super(Moment, self).get_config(), order=self.order, label=self.label)
# lots of call backs
def _patfilter(pattern, items):
if isinstance(pattern, (list, tuple)):
pattern = "|".join(map(fnmatch.translate, pattern))
return filter(re.compile(pattern).search, items)
class Moment2Std(tf.keras.callbacks.Callback):
def __init__(self, mom1="mom1", mom2="mom2", std="std"):
assert mom1 and mom2 and std
pin(locals())
def on_x_end(self, x, logs=None):
if logs is None:
return
for key1, mom1 in list(logs.items()):
if not key1.endswith(self.mom1):
continue
prefix = key1[: -len(self.mom1)]
mom2 = logs.get(prefix + self.mom2, None)
if mom2 is not None:
logs[prefix + self.std] = (mom2 - mom1 ** 2) ** 0.5
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
on_batch_end = on_x_end
on_epoch_end = on_x_end
class LogRewrite(tf.keras.callbacks.Callback):
def __init__(self, *rewrites, **kwargs):
self.collapse_weighted = kwargs.pop("collapse_weighted", False)
assert not kwargs
self.rewrites = list(rewrites)
if self.collapse_weighted:
self.rewrites.append(lambda s: s.replace("weighted_", ""))
def on_x_end(self, x, logs=None):
if logs is None:
return
shadow = []
for key, val in logs.items():
short = key
for rewrite in self.rewrites:
short = rewrite(short)
if short == key:
continue
if short in logs:
shadow.append(short)
logs[short] = val
del logs[key]
if shadow:
warn("%r: shadows the following keys: %s" % (",".join(shadow)))
on_batch_end = on_x_end
on_epoch_end = on_x_end
class LogTransforms(tf.keras.callbacks.Callback):
_prefixesRe = re.compile("^(val_|)(.+)")
def __init__(self, *funcs, **kwargs):
self.transforms = []
for func in funcs:
self.add_transform(func)
for name, func in kwargs.items():
self.add_transform(func, name)
def add_transform(self, func, name=None):
if name is None:
name = func.__name__
assert re.match(r"[a-zA-Z]\w*$", name)
argspec = getargspec(func)
assert argspec.keywords or argspec.args
self.transforms.append((name, func, True if argspec.keywords else set(argspec.args)))
def on_x_end(self, x, logs=None):
if logs is None:
return
plogs = {}
for key, value in logs.items():
prefix, suffix = self._prefixesRe.match(key).groups()
plogs.setdefault(prefix, {})[suffix] = value
for name, func, args in self.transforms:
for prefix, log in plogs.items():
if args is True:
val = func(**log)
else:
missing = args.difference(log.keys())
if missing:
msg = "%r: %s=%r needs unavailable log values: %s" % (
self,
name,
func,
", ".join(missing),
)
if prefix:
warn(msg)
continue
else:
raise RuntimeError(msg)
val = func(**{key: val for key, val in log.items() if key in args})
logs[prefix + name] = log[name] = val
on_batch_end = on_x_end
on_epoch_end = on_x_end
class LogEMA(tf.keras.callbacks.Callback):
def __init__(self, keys=[], pattern=[], pairs={}, ema=0, ricu=0, ema_fmt="%s_ema"):
assert ema < 1 and ricu < 1 and "%s" in ema_fmt
if ema < 0:
keys = {k: None for k in keys}
keys.update(pairs)
pin(locals(), pairs)
self.reset()
def reset(self):
self.ema_val = {}
self.run_num = defaultdict(int)
def on_epoch_end(self, x, logs=None):
assert logs
keys = {key: None for key in _patfilter(self.pattern, logs.keys())}
keys.update(self.keys)
for key, out in keys.items():
if not out:
out = self.ema_fmt % key
assert key in logs
assert out not in keys
assert out not in logs
val = logs[key]
if key in self.ema_val:
delta = self.ema_val[key] - val
dsign = int(np.sign(delta))
self.run_num[key] += dsign
if dsign * np.sign(self.run_num[key]) < -self.ricu < 0:
self.run_num[key] *= self.ricu ** 0.5
val += delta * self.ema ** (1 + (self.ricu * self.run_num[key]) ** 4)
logs[out] = self.ema_val[key] = val
class CustomValidation(tf.keras.callbacks.Callback):
def __init__(self, **kwargs):
self.kwargs = kwargs
def on_epoch_end(self, x, logs=None):
if logs is None:
return
res = self.model.evaluate(**self.kwargs)
if not isinstance(res, list):
res = [res]
logs.update(make_logs(self.model, logs, res, mode=ModeKeys.TEST, prefix="val_"))
class TFSummaryCallback(tf.keras.callbacks.Callback):
def __init__(self, logdir=None, **kwargs):
self.writer = tf.summary.create_file_writer(logdir)
class PlotMulticlass(TFSummaryCallback):
def __init__(
self,
x,
y,
sample_weight=None,
class_names=["signal", "background"],
to_file=False,
columns=None,
plot_inputs=False,
signalvsbkg=False,
**kwargs,
):
super().__init__(**kwargs)
self.x = x
self.truth = y
self.sample_weight = sample_weight
self.class_names = class_names
self.columns = columns
self.to_file = to_file
self.signalvsbkg = signalvsbkg
def on_test_begin(self, logs=None):
self.on_train_begin(logs=logs)
def on_train_begin(self, logs=None):
if self.plot_inputs:
imgs = {}
if self.columns:
inps = self.x
if not isinstance(inps, (list, tuple)):
inps = [inps]
for part, inp in zip(self.columns.keys(), inps):
imgs[f"inp_xmerged_{part}"] = figure_to_image(
figure_multihist(inp, columns=self.columns[part])
)
if self.sample_weight is not None:
for part, inp in zip(self.columns.keys(), inps):
imgs[f"inp_x_{part}"] = figure_to_image(
figure_inputs(
inp,
self.truth,
sample_weight=self.sample_weight,
columns=self.columns[part],
class_names=self.class_names,
signalvsbkg=self.signalvsbkg,
imgs["inp_weights"] = figure_to_image(
figure_weights(self.sample_weight, self.truth, class_names=self.class_names)
imgs["inp_y"] = figure_to_image(figure_y(self.truth, class_names=self.class_names))
imgs["inp_yrelative"] = figure_to_image(
figure_y(self.truth, class_names=self.class_names, relative=True)
)
for name, img in imgs.items():
with self.writer.as_default():
tf.summary.image(f"{name}{self.tag}", img, step=0)
def on_test_end(self, logs=None):
self.on_epoch_end(epoch=0, logs=logs)
def on_epoch_end(self, epoch, logs=None):
super().on_epoch_end(epoch, logs)
self.make_plots(epoch, logs)
def make_plots(self, epoch, logs):
prediction = self.model.predict(self.x)
truth = self.truth
imgs = {}
imgs["roc_curve"] = figure_to_image(
figure_roc_curve(
truth, prediction, class_names=self.class_names, sample_weight=self.sample_weight
)
)
imgs["roc_curve_log"] = figure_to_image(
figure_roc_curve(
truth,
prediction,
class_names=self.class_names,
sample_weight=self.sample_weight,
scale="log",
)
)
imgs["confusion_matrix_true"] = figure_to_image(
figure_confusion_matrix(
truth,
prediction,
class_names=self.class_names,
sample_weight=self.sample_weight,
normalize="true",
)
)
imgs["confusion_matrix_pred"] = figure_to_image(
figure_confusion_matrix(
truth,
prediction,
class_names=self.class_names,
sample_weight=self.sample_weight,
normalize="pred",
)
)
imgs["activation"] = figure_to_image(
figure_activations(prediction, class_names=self.class_names)
)
imgs["node_activation_unweighted"] = figure_to_image(
figure_node_activations(prediction, truth, class_names=self.class_names)
)
imgs["node_activation"] = figure_to_image(
figure_node_activations(
prediction, truth, class_names=self.class_names, sample_weight=self.sample_weight
)
)
imgs["node_activation_disjoint_unweighted"] = figure_to_image(
figure_node_activations(prediction, truth, class_names=self.class_names, disjoint=True)
)
imgs["node_activation_disjoint"] = figure_to_image(
figure_node_activations(
prediction,
truth,
class_names=self.class_names,
disjoint=True,
sample_weight=self.sample_weight,
)
)
for name, img in imgs.items():
tf.summary.image(f"{name}{self.tag}", img, step=epoch)
class ModelLH(tf.keras.Model):
self.loss_hook = kwargs.pop("loss_hook", None)
super(ModelLH, self).__init__(*args, **kwargs)
def _update_sample_weight_modes(self, sample_weights=None):
if not self._is_compiled:
return
if sample_weights and any([s is not None for s in sample_weights]):
pass
# don't default sample_weight_mode to "samplewise", it prevents proper function caching
# for endpoint in self._training_endpoints:
# endpoint.sample_weight_mode = (
# endpoint.sample_weight_mode or 'samplewise')
else:
for endpoint in self._training_endpoints:
endpoint.sample_weight_mode = None
def _prepare_total_loss(self, *args, **kwargs):
orig = [
(ep, ep.__dict__.copy(), ep.training_target.__dict__.copy())
for ep in self._training_endpoints
]
self.loss_hook(self._training_endpoints.copy())
ret = super(ModelLH, self)._prepare_total_loss(*args, **kwargs)
for ep, ed, td in orig:
ep.__dict__.update(ed)
ep.training_target.__dict__.update(td)
return ret
class TensorBoard(tf.keras.callbacks.TensorBoard):
def __init__(self, *args, **kwargs):
self.writer = kwargs.pop("writer")
super(TensorBoard, self).__init__(*args, **kwargs)
def _init_writer(self, model=None):
pass
def on_train_end(self, logs=None):
pass
class CheckpointModel(tf.keras.callbacks.Callback):
def __init__(self, savedir="tmp", frequency=1, identifier="cp"):
pin(locals())
def get_index(self, epoch):
return epoch
def checkpoint_dir(self, epoch):
return f"{self.savedir}/{self.identifier}-{self.get_index(epoch)}"
def on_epoch_end(self, epoch, logs=None):
if epoch % self.frequency == 0:
self.model.save(self.checkpoint_dir(epoch))
class BestTracker(tf.keras.callbacks.Callback):
def __init__(
self, monitor="val_loss", mode="auto", min_delta=0, min_delta_rel=0, baseline=None
):
pin(locals())
self.reset()
@property
def mode_multiplier(self):
assert self.mode in ("auto", "min", "max")
if self.mode == "max" or (self.mode == "auto" and "acc" in self.monitor):
return -1
else:
return 1
def reset(self):
if self.baseline is not None:
self.best = self.baseline
else:
self.best = self.mode_multiplier * np.inf
def update_best(self, logs):
current = self.get_monitor_value(logs)
relative = delta = (current - self.best) * self.mode_multiplier
if np.isfinite(self.best):
relative /= abs(self.best) or 1.0
update = delta < -self.min_delta and relative < -self.min_delta_rel
if update:
self.best = current
return update
def get_monitor_value(self, logs):
assert logs
assert self.monitor in logs
return logs[self.monitor]
class PatientTracker(BestTracker):
def __init__(
self,
patience=10,
cooldown=0,
cooldown0=0,
override=None,
jank=np.nan,
jank_last=-np.inf,
if override is None:
del override
cooldown_counter = cooldown if cooldown0 is True else cooldown0
pin(locals(), kwargs)
super(PatientTracker, self).__init__(**kwargs)
def reset(self):
super(PatientTracker, self).reset()
self.wait = 0
def override(self, logs):
return None
def patient_step(self, epoch, logs):
# update jank
logs["jank"] = min(logs.get("jank", np.inf), epoch - self.jank_last)
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
# test override
override = self.override(logs)
if override is not None:
return override
# check jank
if logs["jank"] <= self.jank:
return
if 0 < self.cooldown_counter:
self.cooldown_counter -= 1
if self.update_best(logs):
self.wait = 0
return "best"
elif self.cooldown_counter <= 0:
self.wait += 1
if self.patience <= self.wait:
self.cooldown_counter = self.cooldown
return "good"
class ScaleOnPlateau(PatientTracker):
def __init__(self, target, factor, min=None, max=None, verbose=0, log_key=None, **kwargs):
pin(locals(), kwargs)
super(ScaleOnPlateau, self).__init__(**kwargs)
def on_train_begin(self, logs=None):
self.reset()
@property
def value(self):
return tf.keras.backend.get_value(self.target)
@value.setter
def value(self, new):
return tf.keras.backend.set_value(self.target, new)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
cur = self.value
if self.log_key is not None:
logs.setdefault(self.log_key, cur)
if self.patient_step(epoch, logs) == "good":
new = cur * self.factor
if self.min is not None:
new = max(new, self.min)
if self.max is not None:
new = min(new, self.max)
if cur != new:
self.value = new
self.reset()
if np.isfinite(self.jank):
self.jank_last = epoch
if self.verbose > 0:
print(
"\nEpoch %05d: %s scaling %s to %s."
% (epoch + 1, self.__class__.__name__, self.log_key or self.target, new)
)
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
class ReduceLROnPlateau(ScaleOnPlateau):
def __init__(self, min_lr=0, **kwargs):
super(ReduceLROnPlateau, self).__init__(min=min_lr, target=None, log_key="lr", **kwargs)
@property
def target(self):
return self.model.optimizer.lr
@target.setter
def target(self, target):
assert target is None
class EarlyStopping(PatientTracker):
def __init__(self, restore_best_weights=False, verbose=0, do_stop=None, **kwargs):
pin(locals(), kwargs)
super(EarlyStopping, self).__init__(**kwargs)
def reset(self):
super(EarlyStopping, self).reset()
self.best_weights = None
self.best_epoch = None
def on_train_begin(self, logs=None):
self.reset()
def on_epoch_end(self, epoch, logs=None):
action = self.patient_step(epoch, logs)
if action == "best":
if self.restore_best_weights:
self.best_weights = self.model.get_weights()
self.best_epoch = epoch
elif action == "good":
self.stopped_epoch = epoch
self.model.stop_training = True
if self.restore_best_weights and self.best_weights is not None:
self.model.set_weights(self.best_weights)
if self.verbose > 0:
print("Restoring model weights from the end of the best epoch.")
def on_train_end(self, logs=None):
hist = self.model.history
if self.restore_best_weights and self.best_epoch in hist.epoch:
idx = hist.epoch.index(self.best_epoch)
else:
idx = -1
hist.final_logs = {k: v[idx] for k, v in hist.history.items()}
class TQES(EarlyStopping):
def __init__(self, log_pattern=None, prog_batch="steps", **kwargs):
assert prog_batch in (None, "steps", "samples")
pin(locals(), kwargs)
super(TQES, self).__init__(**kwargs)
@property
def use_steps(self):
return self.prog_batch == "steps"
def on_train_begin(self, logs=None):
super(TQES, self).on_train_begin(logs)
self.tqE = tqdm(desc=getattr(self.model, "name", None), total=self.params["epochs"])
def on_epoch_begin(self, epoch, logs=None):
if self.prog_batch:
self.tqB = tqdm(
unit=("batch" if self.use_steps else "sample"),
total=self.params["steps" if self.use_steps else "samples"],
)
def on_batch_end(self, batch, logs=None):
if self.tqB:
logs = logs or {}
self.tqB.set_postfix(self.make_postfix(logs), refresh=False)
self.tqB.update(
logs.get("num_steps", 1) * (1 if self.use_steps else logs.get("size", 0))
)
def on_epoch_end(self, epoch, logs=None):
super(TQES, self).on_epoch_end(epoch, logs)
last = self.get_monitor_value(logs)
if self.tqB:
self.tqB.close()
self.tqB = None
self.tqE.set_postfix(
self.make_postfix(
logs,
[
("best", self.best),
("conf", self.wait),
("rdlb", ((last or 0.0) - self.best) / self.best),
],
),
refresh=False,
)
self.tqE.update(epoch - self.tqE.n)
def make_postfix(self, logs, extra=[]):
if self.log_pattern is None:
keys = self.params["metrics"]
else:
keys = _patfilter(self.log_pattern, logs.keys())
return OrderedDict(
[(key, logs[key]) for key in sorted(keys) if key in logs] + list(filter(None, extra))
)
def on_train_end(self, logs=None):
super(TQES, self).on_train_end(logs)
self.tqE.close()
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
class AUCOneVsAll(tf.keras.metrics.AUC):
def __init__(self, one=0, *args, **kwargs):
self.one = one
super().__init__(*args, **kwargs)
def update_state(self, y_true, y_pred, sample_weight=None):
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras.utils import metrics_utils
from tensorflow.python.ops import check_ops
deps = []
if not self._built:
self._build(tensor_shape.TensorShape(y_pred.shape))
if self.multi_label or (self.label_weights is not None):
# y_true should have shape (number of examples, number of labels).
shapes = [(y_true, ("N", "L"))]
if self.multi_label:
# TP, TN, FP, and FN should all have shape
# (number of thresholds, number of labels).
shapes.extend(
[
(self.true_positives, ("T", "L")),
(self.true_negatives, ("T", "L")),
(self.false_positives, ("T", "L")),
(self.false_negatives, ("T", "L")),
]
)
if self.label_weights is not None:
# label_weights should be of length equal to the number of labels.
shapes.append((self.label_weights, ("L",)))
deps = [check_ops.assert_shapes(shapes, message="Number of labels is not consistent.")]
# Only forward label_weights to update_confusion_matrix_variables when
# multi_label is False. Otherwise the averaging of individual label AUCs is
# handled in AUC.result
label_weights = None if self.multi_label else self.label_weights
with ops.control_dependencies(deps):
return metrics_utils.update_confusion_matrix_variables(
{
metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives,
metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives,
metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives,
metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives,
},
y_true[:, self.one],
y_pred[:, self.one],
self.thresholds,
sample_weight=sample_weight,
multi_label=self.multi_label,
label_weights=label_weights,
)
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
class DenseLayer(tf.keras.layers.Layer):
"""
The DenseLayer object is an extended implementation of the tf.keras.layers.Dense.
It features:
* l2 regu
* the weights (the real layer)
* batch norm
* activation function
* dynamically chosen dropout
Parameters
----------
nodes : int
The number of nodes.
activation : str or one of tf.keras.activations
The used activation function.
dropout : float
The used dropout ration.
If "selu" is used as activation function, dropout becomes AlphaDropout.
l2 : float
The used factor of l2 regu.
batch_norm : bool
Wether to use dropout or not.
If batch_norm is used, dropout is forced off.
"""
def __init__(self, nodes=0, activation=None, dropout=0.0, l2=0, batch_norm=False):
self.nodes = nodes
self.activation = activation
self.dropout = dropout
self.l2 = l2
self.batch_norm = batch_norm
def build(self, input_shape):
parts = []
l2 = tf.keras.regularizers.l2(self.l2)
weights = tf.keras.layers.Dense(self.nodes, kernel_regularizer=l2)
parts.append(weights)
if self.batch_norm:
bn = tf.keras.layers.BatchNormalization()
parts.append(bn)
act = tf.keras.layers.Activation(self.activation)
parts.append(act)
if self.activation == "selu":
dropout = tf.keras.layers.AlphaDropout(self.dropout)
dropout = tf.keras.layers.Dropout(self.dropout)
parts.append(dropout)
self.parts = parts
def call(self, input_tensor, training=False):
x = input_tensor
for part in self.parts:
x = part(x, training=training)
return x
def get_config(self):
return {
"nodes": self.nodes,
"activation": self.activation,
"dropout": self.dropout,
"l2": self.l2,
"batch_norm": self.batch_norm,
}
class ResNetBlock(tf.keras.layers.Layer):
"""
The ResNetBlock object is an implementation of one residual DNN block.
Parameters
----------
jump : int
The number layers to bypass.
kwargs :
Arguments for DenseLayer.
"""
def __init__(self, config, jump=2, **kwargs):
super().__init__(name="ResNetBlock")
layers = []
for i in range(self.jump - 1):
layers.append(DenseLayer(**kwargs))
activation = kwargs.pop("activation")
layers.append(DenseLayer(**kwargs))
self.layers = layers
self.out_activation = tf.keras.layers.Activation(activation)
def call(self, input_tensor, training=False):
x = input_tensor
for layer in self.layers:
x = layer(x, training=training)
x += input_tensor
x = self.out_activation(x)
return x
def get_config(self):
return {"jump": self.jump}
class FullyConnected(tf.keras.layers.Layer):
"""
The FullyConnected object is an implementation of a fully connected DNN.
Parameters
----------
The number of layers.
kwargs :
Arguments for DenseLayer.
"""
def __init__(self, layers=0, sub_kwargs=None, **kwargs):