Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Tools
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
3pia
CMS Analyses
Tools
Commits
3b6be777
Commit
3b6be777
authored
4 years ago
by
Dennis Noll
Browse files
Options
Downloads
Patches
Plain Diff
[keras] custom layers: now uses build function everywhere
parent
5de2bb08
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
keras.py
+29
-22
29 additions, 22 deletions
keras.py
with
29 additions
and
22 deletions
keras.py
+
29
−
22
View file @
3b6be777
...
...
@@ -579,7 +579,7 @@ class CheckpointModel(tf.keras.callbacks.Callback):
return
f
"
{
self
.
savedir
}
/
{
self
.
identifier
}
-
{
self
.
get_index
(
epoch
)
}
"
def
on_epoch_end
(
self
,
epoch
,
logs
=
None
):
if
epoch
!=
0
and
epoch
%
self
.
frequency
==
0
:
if
epoch
%
self
.
frequency
==
0
:
self
.
model
.
save
(
self
.
checkpoint_dir
(
epoch
))
...
...
@@ -906,21 +906,22 @@ class DenseLayer(tf.keras.layers.Layer):
self
.
l2
=
l2
self
.
batch_norm
=
batch_norm
def
build
(
self
,
input_shape
):
parts
=
[]
l2
=
tf
.
keras
.
regularizers
.
l2
(
l2
if
l2
else
0.0
)
weights
=
tf
.
keras
.
layers
.
Dense
(
nodes
,
kernel_regularizer
=
l2
)
l2
=
tf
.
keras
.
regularizers
.
l2
(
self
.
l2
)
weights
=
tf
.
keras
.
layers
.
Dense
(
self
.
nodes
,
kernel_regularizer
=
l2
)
parts
.
append
(
weights
)
if
batch_norm
:
if
self
.
batch_norm
:
dropout
=
0.0
bn
=
tf
.
keras
.
layers
.
BatchNormalization
()
parts
.
append
(
bn
)
act
=
tf
.
keras
.
layers
.
Activation
(
activation
)
act
=
tf
.
keras
.
layers
.
Activation
(
self
.
activation
)
parts
.
append
(
act
)
if
activation
==
"
selu
"
:
if
self
.
activation
==
"
selu
"
:
dropout
=
tf
.
keras
.
layers
.
AlphaDropout
(
dropout
)
else
:
dropout
=
tf
.
keras
.
layers
.
Dropout
(
dropout
)
...
...
@@ -987,29 +988,32 @@ class FullyConnected(tf.keras.layers.Layer):
Parameters
----------
number_
layers : int
layers : int
The number of layers.
kwargs :
Arguments for DenseLayer.
"""
def
__init__
(
self
,
number_
layers
=
0
,
**
kwargs
):
def
__init__
(
self
,
layers
=
0
,
**
kwargs
):
super
().
__init__
(
name
=
"
FullyConnected
"
)
self
.
number_layers
=
number_layers
layers
=
[]
for
layer
in
range
(
self
.
number_layers
):
layers
.
append
(
DenseLayer
(
**
kwargs
))
self
.
layers
=
layers
self
.
kwargs
=
kwargs
def
build
(
self
,
input_shape
):
_layers
=
[]
for
layer
in
range
(
self
.
layers
):
_layers
.
append
(
DenseLayer
(
**
self
.
kwargs
))
self
.
_layers
=
_layers
def
call
(
self
,
input_tensor
,
training
=
False
):
x
=
input_tensor
for
layer
in
self
.
layers
:
for
layer
in
self
.
_
layers
:
x
=
layer
(
x
,
training
=
training
)
return
x
def
get_config
(
self
):
return
{
"
number_
layers
"
:
self
.
number_
layers
}
return
{
"
layers
"
:
self
.
layers
}
class
ResNet
(
tf
.
keras
.
layers
.
Layer
):
...
...
@@ -1018,29 +1022,32 @@ class ResNet(tf.keras.layers.Layer):
Parameters
----------
number_
layers : int
layers : int
The number of residual blocks.
kwargs :
Arguments for ResNetBlock.
"""
def
__init__
(
self
,
number_
layers
=
1
,
**
kwargs
):
def
__init__
(
self
,
layers
=
1
,
**
kwargs
):
super
().
__init__
(
name
=
"
ResNet
"
)
self
.
number_layers
=
number_layers
layers
=
[]
for
i
in
range
(
self
.
number_layers
):
layers
.
append
(
ResNetBlock
(
**
kwargs
))
self
.
layers
=
layers
self
.
kwargs
=
kwargs
def
build
(
self
,
input_shape
):
_layers
=
[]
for
i
in
range
(
self
.
layers
):
_layers
.
append
(
ResNetBlock
(
**
self
.
kwargs
))
self
.
_layers
=
_layers
def
call
(
self
,
input_tensor
,
training
=
False
):
x
=
input_tensor
for
layer
in
self
.
layers
:
for
layer
in
self
.
_
layers
:
x
=
layer
(
x
,
training
=
training
)
return
x
def
get_config
(
self
):
return
{
"
number_
layers
"
:
self
.
number_
layers
}
return
{
"
layers
"
:
self
.
layers
}
class
RemoveLayer
(
tf
.
keras
.
layers
.
Layer
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment