Skip to content
Snippets Groups Projects
Commit 5ddbad81 authored by Steinmann's avatar Steinmann
Browse files

rewritten flow into parameter not variable!!

parent 0528b858
Branches
No related tags found
No related merge requests found
%% Cell type:markdown id: tags:
Formulieren der Optimierungsgleichung in pymoo
%% Cell type:markdown id: tags:
Es gilt die Kontinuitätsgleichung:
$ \Sigma \dot{V}_k(t) = O$
und die aus der Topologie resultierende Inzidenzmatrix $A_i$
sowie die aus dem Pumpenkennfeld folgende Beziehung:
$\Delta p=\alpha_1 Q^2+\alpha_2 Q n+\alpha_3 n^2 : n \in \{0\} \cup [n_{\mathrm{min}},n_{\mathrm{max}}] $
$P=\beta_1 Q^3+\beta_2 Q^2 n+\beta_3 Q n^2+\beta_4n^3+\beta_5$
und die beziehung für den Druckverlust an den Ventilen:
$\Delta p_{\mathrm{loss}} = - \frac{1}{2} \varrho \zeta \left(\frac{Q}{A}\right)^2 = -l Q^2 :l\in [l_{\mathrm{min}}:\infty )$
nun soll für einen Gegebenen Volumenstrom $Q$ eine Optimale Drehzahl bestimmt werden, welche die Pumpenlesitung minimiert.
$$
\begin{align*}
\mathrm{min} \sum_{p \in \mathcal{P}} Po_{p} \\
Q_{p,i} \geq \sum_{strang} Q_v + \sum_{strang} Q_p \\
Q_p , n\epsilon [n_{min},n_{max}] \\
\overrightarrow{n} = (1,n,n^2,n^3)^T \\
min P = A \overrightarrow{n} \\
-n\leq n_{min} \\
n\leq n_{max}
\end{align*}
$$
Förderhöhe als constraint continuität fomulieren pro strang
%% Cell type:code id: tags:
``` python
!pip install pyomo
```
%% Output
Defaulting to user installation because normal site-packages is not writeable
Collecting pyomo
Downloading Pyomo-6.8.2-py3-none-any.whl.metadata (8.0 kB)
Collecting ply (from pyomo)
Downloading ply-3.11-py2.py3-none-any.whl.metadata (844 bytes)
Downloading Pyomo-6.8.2-py3-none-any.whl (3.7 MB)
---------------------------------------- 0.0/3.7 MB ? eta -:--:--
---------------------------- ----------- 2.6/3.7 MB 12.6 MB/s eta 0:00:01
---------------------------------------- 3.7/3.7 MB 11.6 MB/s eta 0:00:00
Downloading ply-3.11-py2.py3-none-any.whl (49 kB)
Installing collected packages: ply, pyomo
Successfully installed ply-3.11 pyomo-6.8.2
[notice] A new release of pip is available: 24.3.1 -> 25.0
[notice] To update, run: C:\Users\Victor\AppData\Local\Microsoft\WindowsApps\PythonSoftwareFoundation.Python.3.12_qbz5n2kfra8p0\python.exe -m pip install --upgrade pip
%% Cell type:code id: tags:
``` python
#Pump-Powercurve and Pump-Hightcurve
import regression_own
(LR_H,LR_P)=regression_own.regress_pump()
```
%% Output
R^20.9998289611292903
R^20.9994449560888792
%% Cell type:code id: tags:
``` python
#Graph constroctor
#Alle Ventile sind direkt mit der Quelle/Senke Verbunden
import multiDiGraph as gr
nodes =['source','pump1','pump2','valveA','valveB','valveC']
graph = gr.construct_graph('source',('source','pump1',0.),('pump1','pump2',0.),('pump2','valveA',0.),('pump2','valveB',0.),
('pump1','valveC',0.),('valveA','source',4.),('valveB','source',4.),('valveC','source',4.))
#ist das notwendig?!?
for node in graph.nodes:
#definieren der Drehzahl für jede Pumpe im graphen
#inizieren des Durchflusses für jedes Ventil im Graphen
if 'pump' in node:
graph.nodes[node]['n']=750/3600
else:
graph.nodes[node]['n']=None
graph.nodes[node]['flow']=0.
if 'valve' in node:
graph.nodes[node]['flow']= graph[node]['source'][0]['weight']
for node in graph.nodes:
#Berechnen des Durchflusses im Knoten
if 'valve' in node:
continue
for inF in graph.predecessors(node):
graph.nodes[node]['flow'] += graph[inF][node][0]['weight']
#Berechnen des Durchflusses der abgehenden Kanten
tempF=graph.nodes[node]['flow']
SC=0
for outF in graph.successors(node):
if 'valve' in outF:
graph[node][outF][0]['weight']=graph.nodes[outF]['flow']
tempF=tempF - graph.nodes[outF]['flow']
else:
SC+=1
for outF in graph.successors(node):
if SC!=0. and not'valve' in outF:
graph[node][outF][0]['weight']=tempF/SC
else:continue
```
%% Output
%% Cell type:code id: tags:
``` python
import networkx as nx
Mtrx= nx.incidence_matrix(graph,nodes,oriented=True)
```
%% Cell type:code id: tags:
``` python
import networkx as nx
def create_dict(GR:nx.multidigraph):
data={None:{'nodes':{},
'pumps':{},
'valves':{},
}
}
for node in GR.nodes:
data[None]['nodes'][node]=None
data[None]['Q'][node]=GR.nodes[node]['flow']
if 'pump' in node:
data[None]['pumps'][node]=None
data[None]['n'][node]=0.
if 'valve' in node:
data[None]['valves'][node]=None
return data
```
%% Cell type:markdown id: tags:
Durchfluss aus Incidenzmatrix beerechnen
$-l Q^2 = \alpha_1 Q^2+\alpha_2 Q n+\alpha_3 n^2$
%% Cell type:code id: tags:
``` python
#defining abstract modell for given Network
import pyomo.environ as pyo
from pyomo.dataportal import DataPortal
import numpy as np
from sklearn.linear_model import LinearRegression
modell = pyo.AbstractModel()
#notwendige Mengen zur Berechnung der Constraints
modell.nodes = pyo.Set()
modell.pumps = pyo.Set()
modell.valves = pyo.Set()
modell.Q_valve=pyo.Param(modell.valves)
modell.Q = pyo.Param(modell.nodes)
#Optimierungsvariable
modell.n = pyo.Var(modell.pumps,bounds=(750/3600,1))
modell.Q = pyo.Var(modell.nodes,bounds=(0.,10.))
#expressions for constraints:
def PumpFlow(modell,pump):
return pyo.summation(np.array([modell.Q[pump]**2, modell.n[pump]*modell.Q[pump], modell.n[pump]**2]),LR_H.coef_,index=[0,1,2])
def Pump_delivery_req(modell,pump):
return PumpFlow(modell,pump) ==pyo.summation(modell.Q,index=graph.successors(pump))
return PumpFlow(modell,pump) ==modell.Q[pump]
def valve_req_rule(modell,valve):
return modell.Q[valve]>=modell.Q_valve[valve]
def continuity_inflow(modell,node):
return modell.Q[node]==pyo.summation(modell.Q, index=graph.successors(node))
def continuity_outflow(modell,node):
return modell.Q[node]==pyo.summation(modell.Q,index=graph.predecessors(node))
#Objective
def PumpPower(modell):
return sum(np.dot(
np.array(
[modell.Q[i]**3,(modell.Q[i]**2)*modell.n[i],modell.Q[i]*modell.n[i]**2,modell.n[i]**3]
),LR_P.coef_
) for i in modell.pumps)
modell.Power_Objective = pyo.Objective(rule=PumpPower,sense=pyo.minimize)
def PumpPower(modell,pump):
return pyo.summation(
np.array([modell.Q[pump]**3, (modell.Q[pump]**2)*modell.n[pump], modell.Q[pump]*modell.n[pump]**2, modell.n[pump]**3, 1.]),
LR_P.coef_, index=[0,1,2,3,4])
modell.Power_Objective = pyo.Objective(modell.pumps,rule=PumpPower,sense=pyo.minimize)
```
%% Cell type:markdown id: tags:
Frage: gibt es nur eine Lösung für Drehzahl?
Bsp. Optimierung nach Dezentraler Pumpe um modell zu prüfen
%% Cell type:code id: tags:
``` python
from pyomo.opt import SolverFactory
TestData={
None:{
'nodes':[key for key in graph.nodes.keys()],
'pumps':[key for key in graph.nodes.keys() if 'pump' in key],
'valves':[key for key in graph.nodes.keys() if 'valve' in key],
'Q_valve':{'valveA':1.,'valveB':1.,'valveC':1.},
'Q':[graph.nodes[key]['flow']for key in graph.nodes.keys()]
}
}
print(TestData)
opt = pyo.SolverFactory('scipampl', executable=r'C:\Program Files\SCIPOptSuite 9.2.1\bin\scip.exe')
instance = modell.create_instance(TestData)
instance.Flow_constraint=pyo.Constraint(instance.valves,rule=valve_req_rule)
#instance.Flow_constraint=pyo.Constraint(instance.valves,rule=valve_req_rule)
instance.pump_Flow_constraint=pyo.Constraint(instance.pumps,rule=Pump_delivery_req)
#instance.flow_constraint=pyo.Constraint(instance.nodes,rule=continuity_inflow)
#instance.flow_constraint=pyo.Constraint(instance.nodes,rule=continuity_outflow)
result=opt.solve(instance, tee=True)
print(result)
instance.n.pprint()
instance.Q.pprint()
```
%% Output
SCIP version 9.2.1 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: Soplex 7.1.3] [GitHash: 0d2d3c7c2d]
Copyright (c) 2002-2025 Zuse Institute Berlin (ZIB)
External libraries:
Soplex 7.1.3 Linear Programming Solver developed at Zuse Institute Berlin (soplex.zib.de) [GitHash: 60fd96f2]
CppAD 20180000.0 Algorithmic Differentiation of C++ algorithms developed by B. Bell (github.com/coin-or/CppAD)
TinyCThread 1.2 small portable implementation of the C11 threads API (tinycthread.github.io)
MPIR 3.0.0 Multiple Precision Integers and Rationals Library developed by W. Hart (mpir.org)
ZIMPL 3.6.2 Zuse Institute Mathematical Programming Language developed by T. Koch (zimpl.zib.de)
AMPL/MP 690e9e7 AMPL .nl file reader library (github.com/ampl/mp)
PaPILO 2.4.1 parallel presolve for integer and linear optimization (github.com/scipopt/papilo) (built with TBB) [GitHash: 11974394]
Nauty 2.8.8 Computing Graph Automorphism Groups by Brendan D. McKay (users.cecs.anu.edu.au/~bdm/nauty)
sassy 1.1 Symmetry preprocessor by Markus Anders (github.com/markusa4/sassy)
Ipopt 3.14.16 Interior Point Optimizer developed by A. Waechter et.al. (github.com/coin-or/Ipopt)
user parameter file <scip.set> not found - using default parameters
read problem <C:\Users\Victor\AppData\Local\Temp\tmpfcunk5gi.pyomo.nl>
============
original problem has 8 variables (0 bin, 0 int, 0 impl, 8 cont) and 6 constraints
solve problem
=============
presolving:
(round 1, fast) 0 del vars, 3 del conss, 0 add conss, 11 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 0 clqs
(0.0s) symmetry computation started: requiring (bin +, int +, cont +), (fixed: bin -, int -, cont -)
(0.0s) symmetry computation finished: 1 generators found (max: 1500, log10 of symmetry group size: 0.0) (symcode time: 0.00)
dynamic symmetry handling statistics:
orbitopal reduction: no components
orbital reduction: no components
lexicographic reduction: no permutations
handled 1 out of 1 symmetry components
(round 2, exhaustive) 0 del vars, 3 del conss, 1 add conss, 11 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 0 impls, 0 clqs
presolving (3 rounds: 3 fast, 2 medium, 2 exhaustive):
0 deleted vars, 3 deleted constraints, 0 added constraints, 11 tightened bounds, 0 added holes, 0 changed sides, 0 changed coefficients
0 implications, 0 cliques
presolved problem has 8 variables (0 bin, 0 int, 0 impl, 8 cont) and 4 constraints
1 constraints of type <linear>
3 constraints of type <nonlinear>
Presolving Time: 0.00
time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
0.0s| 1 | 0 | 22 | - | 914k | 0 | 25 | 4 | 36 | 0 | 0 | 0 | 0 |-3.474607e+01 | -- | Inf | unknown
L 0.0s| 1 | 0 | 22 | - | subnlp| 0 | 25 | 4 | 36 | 0 | 0 | 0 | 0 |-3.474607e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 22 | - | 914k | 0 | 25 | 4 | 36 | 0 | 0 | 0 | 0 |-3.474607e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 22 | - | 914k | 0 | 25 | 4 | 36 | 0 | 0 | 0 | 0 |-3.474607e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 26 | - | 920k | 0 | 25 | 4 | 39 | 3 | 1 | 0 | 0 |-1.963132e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 26 | - | 920k | 0 | 25 | 4 | 39 | 3 | 1 | 0 | 0 |-1.963132e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 30 | - | 935k | 0 | 25 | 4 | 42 | 6 | 2 | 0 | 0 |-1.885311e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 33 | - | 939k | 0 | 25 | 4 | 45 | 9 | 3 | 0 | 0 |-1.766937e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 33 | - | 939k | 0 | 25 | 4 | 45 | 9 | 3 | 0 | 0 |-1.766937e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 36 | - | 939k | 0 | 25 | 4 | 47 | 11 | 4 | 0 | 0 |-1.728948e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 37 | - | 941k | 0 | 25 | 4 | 48 | 12 | 5 | 0 | 0 |-1.712829e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 38 | - | 941k | 0 | 25 | 4 | 49 | 13 | 6 | 0 | 0 |-1.701866e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 39 | - | 943k | 0 | 25 | 4 | 50 | 14 | 7 | 0 | 0 |-1.701746e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 41 | - | 951k | 0 | 25 | 4 | 52 | 16 | 8 | 0 | 0 |-1.695801e+01 | 1.151406e+01 | Inf | unknown
0.0s| 1 | 0 | 332 | - | 957k | 0 | 25 | 4 | 52 | 16 | 9 | 0 | 0 | 1.150982e+01 | 1.151406e+01 | 0.04%| unknown
time | node | left |LP iter|LP it/n|mem/heur|mdpt |vars |cons |rows |cuts |sepa|confs|strbr| dualbound | primalbound | gap | compl.
0.0s| 1 | 0 | 334 | - | 957k | 0 | 25 | 4 | 54 | 18 | 10 | 0 | 0 | 1.150982e+01 | 1.151406e+01 | 0.04%| unknown
0.0s| 1 | 0 | 346 | - | 957k | 0 | 25 | 4 | 37 | 20 | 11 | 0 | 0 | 1.151405e+01 | 1.151406e+01 | 0.00%| unknown
0.0s| 1 | 0 | 346 | - | 957k | 0 | 25 | 4 | 20 | 20 | 11 | 0 | 0 | 1.151405e+01 | 1.151406e+01 | 0.00%| unknown
0.0s| 1 | 0 | 347 | - | 957k | 0 | 25 | 4 | 21 | 21 | 12 | 0 | 0 | 1.151406e+01 | 1.151406e+01 | 0.00%| unknown
L 0.0s| 1 | 0 | 347 | - | subnlp| 0 | 25 | 4 | 21 | 21 | 13 | 0 | 0 | 1.151406e+01 | 1.151406e+01 | 0.00%| unknown
0.0s| 1 | 0 | 347 | - | 958k | 0 | 25 | 4 | 21 | 21 | 13 | 0 | 0 | 1.151406e+01 | 1.151406e+01 | 0.00%| unknown
* 0.0s| 1 | 0 | 347 | - | LP | 0 | 25 | 4 | 21 | 21 | 14 | 0 | 0 | 1.151406e+01 | 1.151406e+01 | 0.00%| unknown
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.00
Solving Nodes : 1
Primal Bound : +1.15140564709997e+01 (3 solutions)
Dual Bound : +1.15140564709997e+01
Gap : 0.00 %
Problem:
- Lower bound: -inf
Upper bound: inf
Number of objectives: 1
Number of constraints: 0
Number of variables: 7
Sense: unknown
Solver:
- Status: ok
Message: optimal solution found
Termination condition: optimal
Id: 0
Error rc: 0
Time: 0.3383963108062744
Solution:
- number of solutions: 0
number of solutions displayed: 0
n : Size=2, Index=pumps
Key : Lower : Value : Upper : Fixed : Stale : Domain
pump1 : 0.20833333333333334 : 0.34519801810114614 : 1 : False : False : Reals
pump2 : 0.20833333333333334 : 0.4881837415314729 : 1 : False : False : Reals
Q : Size=6, Index=nodes
Key : Lower : Value : Upper : Fixed : Stale : Domain
pump1 : 0.0 : 0.0 : 10.0 : False : False : Reals
pump2 : 0.0 : 0.0 : 10.0 : False : False : Reals
source : 0.0 : None : 10.0 : False : True : Reals
valveA : 0.0 : 1.0 : 10.0 : False : False : Reals
valveB : 0.0 : 1.0 : 10.0 : False : False : Reals
valveC : 0.0 : 1.0 : 10.0 : False : False : Reals
{None: {'nodes': ['source', 'pump1', 'pump2', 'valveA', 'valveB', 'valveC'], 'pumps': ['pump1', 'pump2'], 'valves': ['valveA', 'valveB', 'valveC'], 'Q': [12.0, 12.0, 8.0, 4.0, 4.0, 4.0]}}
WARNING: Failed to create solver with name 'scipampl': Failed to set
executable for solver asl. File with name=C:\Program Files\SCIPOptSuite
9.2.1\bin\scip.exe either does not exist or it is not executable. To skip this
validation, call set_executable with validate=False.
Traceback (most recent call last):
File "C:\Users\Steinmann\AppData\Roaming\Python\Python312\site-packages\pyomo\opt\base\solvers.py", line 162, in __call__
opt = self._cls[_implicit_solvers[mode]](**kwds)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Steinmann\AppData\Roaming\Python\Python312\site-packages\pyomo\solvers\plugins\solvers\ASL.py", line 46, in __init__
SystemCallSolver.__init__(self, **kwds)
File "C:\Users\Steinmann\AppData\Roaming\Python\Python312\site-packages\pyomo\opt\solver\shellcmd.py", line 66, in __init__
self.set_executable(name=executable, validate=validate)
File "C:\Users\Steinmann\AppData\Roaming\Python\Python312\site-packages\pyomo\opt\solver\shellcmd.py", line 115, in set_executable
raise ValueError(
ValueError: Failed to set executable for solver asl. File with name=C:\Program Files\SCIPOptSuite 9.2.1\bin\scip.exe either does not exist or it is not executable. To skip this validation, call set_executable with validate=False.
ERROR: Rule failed when initializing variable for Var Q with index None:
AssertionError:
ERROR: Constructing component 'Q' from data=[12.0, 12.0, 8.0, 4.0, 4.0, 4.0]
failed:
AssertionError:
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[21], line 14
12 print(TestData)
13 opt = pyo.SolverFactory('scipampl', executable=r'C:\Program Files\SCIPOptSuite 9.2.1\bin\scip.exe')
---> 14 instance = modell.create_instance(TestData)
15 instance.Flow_constraint=pyo.Constraint(instance.valves,rule=valve_req_rule)
16 instance.pump_Flow_constraint=pyo.Constraint(instance.pumps,rule=Pump_delivery_req)
File ~\AppData\Roaming\Python\Python312\site-packages\pyomo\core\base\PyomoModel.py:734, in Model.create_instance(self, filename, data, name, namespace, namespaces, profile_memory, report_timing, **kwds)
731 if None not in _namespaces:
732 _namespaces.append(None)
--> 734 instance.load(data, namespaces=_namespaces, profile_memory=profile_memory)
736 #
737 # Indicate that the model is concrete/constructed
738 #
739 instance._constructed = True
File ~\AppData\Roaming\Python\Python312\site-packages\pyomo\core\base\PyomoModel.py:771, in Model.load(self, arg, namespaces, profile_memory)
769 msg = "Cannot load model model data from with object of type '%s'"
770 raise ValueError(msg % str(type(arg)))
--> 771 self._load_model_data(dp, namespaces, profile_memory=profile_memory)
File ~\AppData\Roaming\Python\Python312\site-packages\pyomo\core\base\PyomoModel.py:823, in Model._load_model_data(self, modeldata, namespaces, **kwds)
820 if component.ctype is Model:
821 continue
--> 823 self._initialize_component(
824 modeldata, namespaces, component_name, profile_memory
825 )
827 # Note: As is, connectors are expanded when using command-line pyomo but not calling model.create(...) in a Python script.
828 # John says this has to do with extension points which are called from commandline but not when writing scripts.
829 # Uncommenting the next two lines switches this (command-line fails because it tries to expand connectors twice)
830 # connector_expander = ConnectorExpander()
831 # connector_expander.apply(instance=self)
833 if profile_memory >= 2 and pympler_available:
File ~\AppData\Roaming\Python\Python312\site-packages\pyomo\core\base\PyomoModel.py:871, in Model._initialize_component(self, modeldata, namespaces, component_name, profile_memory)
863 logger.debug(
864 "Constructing %s '%s' on %s from data=%s",
865 declaration.__class__.__name__,
(...)
868 str(data),
869 )
870 try:
--> 871 declaration.construct(data)
872 except:
873 err = sys.exc_info()[1]
File ~\AppData\Roaming\Python\Python312\site-packages\pyomo\core\base\var.py:735, in Var.construct(self, data)
732 index = None
733 try:
734 # We do not (currently) accept data for constructing Variables
--> 735 assert data is None
737 if not self.index_set().isfinite() and self._dense:
738 # Note: if the index is not finite, then we cannot
739 # iterate over it. This used to be fatal; now we
740 # just warn
741 logger.warning(
742 "Var '%s' indexed by a non-finite set, but declared "
743 "with 'dense=True'. Reverting to 'dense=False' as "
(...)
746 "'dense=False'" % (self.name,)
747 )
AssertionError:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment