Skip to content
Snippets Groups Projects
Commit 3d7f452e authored by Jannik Hellenkamp's avatar Jannik Hellenkamp
Browse files

updated v0.0.2

parent 04bff393
No related branches found
No related tags found
No related merge requests found
Showing
with 1471 additions and 466 deletions
File deleted
File deleted
Sitemap: https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/sitemap.xml
This diff is collapsed.
File deleted
_book/shor.png

4.66 KiB

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="341.859" height="99.528" viewBox="0 0 256.394 74.646"><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="m31.546 30.525 4.536-6.803"/><symbol id="a"><path d="M.075.073a.378.378 0 0 1-.01-.041C.065.01.083 0 .099 0a.05.05 0 0 1 .039.022.408.408 0 0 1 .018.062l.022.09.017.067c.011.041.013.049.042.09.028.04.075.092.15.092.058 0 .059-.051.059-.07C.446.293.403.182.387.14.376.112.372.103.372.086.372.033.416 0 .467 0c.1 0 .144.138.144.153 0 .013-.013.013-.016.013C.581.166.58.16.576.149.553.069.51.028.47.028.449.028.445.042.445.063c0 .023.005.036.023.081a.733.733 0 0 1 .053.193c0 .097-.077.114-.13.114A.213.213 0 0 1 .222.36C.215.429.156.451.115.451.072.451.049.42.036.397A.355.355 0 0 1 0 .298C0 .285.014.285.017.285c.014 0 .015.003.022.03.015.059.034.108.073.108.026 0 .033-.022.033-.049A.442.442 0 0 0 .129.291a3.78 3.78 0 0 1-.022-.09L.075.073z"/></symbol><use xlink:href="#a" transform="matrix(6.9738 0 0 -6.9738 36.809 23.393)"/><path stroke-width=".797" stroke-linecap="round" stroke-miterlimit="10" fill="none" stroke="#000" d="M40.9 27.123H26.727M55.074 27.123H40.9M97.958 27.123H83.785M142.032 27.123h-24.136M166.168 27.123h-24.136M218.976 27.123h-14.173M253.075 27.123h-14.173"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="m31.546 62.326 4.536-6.803"/><symbol id="b"><path d="M.387.091C.382.071.373.037.373.032.373.01.391 0 .407 0a.05.05 0 0 1 .039.022.408.408 0 0 1 .018.062l.022.09.017.067c.011.043.011.045.031.076.032.049.082.106.16.106.056 0 .059-.046.059-.07C.753.293.71.182.694.14.683.112.679.103.679.086.679.033.723 0 .774 0c.1 0 .144.138.144.153 0 .013-.013.013-.016.013C.888.166.887.16.883.149.86.069.817.028.777.028.756.028.752.042.752.063c0 .023.005.036.023.081a.733.733 0 0 1 .053.193c0 .016 0 .058-.037.087a.148.148 0 0 1-.093.027C.608.451.553.392.521.35.513.435.442.451.391.451A.213.213 0 0 1 .222.36C.215.429.156.451.115.451.072.451.049.42.036.397A.355.355 0 0 1 0 .298C0 .285.014.285.017.285c.014 0 .015.003.022.03.015.059.034.108.073.108.026 0 .033-.022.033-.049A.442.442 0 0 0 .129.291a3.78 3.78 0 0 1-.022-.09L.075.073a.378.378 0 0 1-.01-.041C.065.01.083 0 .099 0a.05.05 0 0 1 .039.022.408.408 0 0 1 .018.062l.022.09.017.067c.011.041.013.049.042.09.028.04.075.092.15.092.058 0 .059-.051.059-.07A.345.345 0 0 0 .429.259L.387.091z"/></symbol><use xlink:href="#b" transform="matrix(6.9738 0 0 -6.9738 36.809 55.195)"/><path stroke-width=".797" stroke-linecap="round" stroke-miterlimit="10" fill="none" stroke="#000" d="M40.9 58.925H26.727M69.43 58.925H40.9M97.958 58.925H69.43M132.069 58.925h-14.173M185.485 58.925h-33.49M228.939 58.925h-43.454M253.075 58.925h-24.136"/><symbol id="c"><path d="M.04.964C.04.982.04 1 .02 1S0 .982 0 .964V.036C0 .018 0 0 .02 0s.02.018.02.036v.928z"/></symbol><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 6.65 32.105)"/><symbol id="d"><path d="M.421.342c0 .08-.005.16-.04.234A.185.185 0 0 1 .037.569.535.535 0 0 1 0 .342C0 .267.004.177.045.101A.183.183 0 0 1 .21 0c.054 0 .13.021.174.116a.533.533 0 0 1 .037.226M.21.022C.171.022.112.047.094.143.083.203.083.295.083.354c0 .064 0 .13.008.184C.11.657.185.666.21.666.243.666.309.648.328.549c.01-.056.01-.132.01-.195 0-.075 0-.143-.011-.207C.312.052.255.022.21.022z"/></symbol><use xlink:href="#d" transform="matrix(9.9626 0 0 -9.9626 8.622 29.833)"/><use xlink:href="#a" transform="matrix(6.9738 0 0 -6.9738 13.542 26.069)"/><symbol id="e"><path d="M.218.483C.223.495.223.497.223.5c0 .003 0 .005-.005.017l-.175.46C.037.994.031 1 .02 1A.02.02 0 0 1 0 .98C0 .977 0 .975.005.964L.182.5.005.038C0 .027 0 .025 0 .02A.02.02 0 0 1 .02 0c.013 0 .017.01.021.02l.177.463z"/></symbol><use xlink:href="#e" transform="matrix(9.9626 0 0 -9.9626 19.185 32.105)"/><path d="M55.074 35.074h28.71V19.172h-28.71z" fill="#fff"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M55.074 35.074h28.71V19.172h-28.71z"/><symbol id="f"><path d="M.724.606c.009.036.011.046.084.046.026 0 .034 0 .034.02 0 .011-.011.011-.014.011L.7.68.571.683c-.008 0-.019 0-.019-.02C.552.652.561.652.58.652c.002 0 .021 0 .038-.002C.636.648.645.647.645.634L.641.615.581.371H.276l.059.235c.009.036.012.046.084.046.026 0 .034 0 .034.02 0 .011-.011.011-.014.011L.311.68.182.683c-.008 0-.019 0-.019-.02 0-.011.009-.011.028-.011.002 0 .021 0 .038-.002C.247.648.256.647.256.634L.252.615.118.078C.108.039.106.031.027.031.009.031 0 .031 0 .011 0 0 .012 0 .014 0l.127.003.064-.001L.27 0c.008 0 .02 0 .02.02C.29.031.281.031.262.031c-.037 0-.065 0-.065.018C.197.055.199.06.2.066L.268.34h.305L.504.064C.494.032.475.031.413.031c-.015 0-.024 0-.024-.02C.389 0 .401 0 .403 0L.53.003.594.002.659 0c.008 0 .02 0 .02.02C.679.031.67.031.651.031c-.037 0-.065 0-.065.018 0 .006.002.011.003.017l.135.54z"/></symbol><use xlink:href="#f" transform="matrix(9.9626 0 0 -9.9626 59.449 31.089)"/><symbol id="g"><path d="M.738.368a.37.37 0 1 1-.739 0 .37.37 0 0 1 .739 0M.145.617a.336.336 0 0 0 .448 0L.369.393.145.617M.121.145a.328.328 0 0 0 0 .447L.345.369.121.145m.496.447a.328.328 0 0 0 0-.447L.393.368l.224.224M.593.12a.336.336 0 0 0-.448 0l.224.224L.593.12z"/></symbol><use xlink:href="#g" transform="matrix(6.9738 0 0 -6.9738 68.688 28.297)"/><use xlink:href="#a" transform="matrix(6.9738 0 0 -6.9738 74.706 27.544)"/><path d="M97.958 67.74h19.938V18.308H97.958z" fill="#fff"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M97.958 67.74h19.938V18.308H97.958z"/><symbol id="h"><path d="M.568.6c.01.041.028.071.108.074.005 0 .017.001.017.02 0 .001 0 .011-.013.011L.578.702.474.705c-.006 0-.018 0-.018-.02 0-.011.01-.011.018-.011C.531.673.542.652.542.63A.152.152 0 0 0 .539.609L.449.252C.415.118.3.031.2.031c-.068 0-.122.044-.122.13 0 .002 0 .034.011.078l.097.389C.195.664.197.674.27.674c.026 0 .034 0 .034.02C.304.705.293.705.29.705L.162.702.033.705c-.008 0-.019 0-.019-.02 0-.011.009-.011.028-.011.002 0 .021 0 .038-.002C.098.67.107.669.107.656.107.65.096.608.09.585L.068.497.007.25C0 .222 0 .207 0 .192 0 .07.091 0 .196 0c.126 0 .25.113.283.245L.568.6z"/></symbol><use xlink:href="#h" transform="matrix(9.9626 0 0 -9.9626 102.611 45.222)"/><symbol id="i"><path d="M.334.599h.098c.02 0 .033 0 .033.022 0 .014-.013.014-.031.014H.341C.364.762.372.808.38.837.385.859.407.88.431.88.432.88.459.88.478.868A.06.06 0 0 1 .434.813c0-.022.017-.037.04-.037a.06.06 0 0 1 .057.061c0 .046-.049.071-.1.071a.139.139 0 0 1-.12-.075C.291.796.283.751.262.635H.183C.163.635.15.635.15.613.15.599.163.599.181.599h.074A18.16 18.16 0 0 0 .167.126C.162.104.145.028.097.028c-.001 0-.025 0-.044.012a.06.06 0 0 1 .044.055c0 .022-.017.037-.04.037A.06.06 0 0 1 0 .071C0 .026.047 0 .097 0c.064 0 .108.066.12.088A.85.85 0 0 1 .278.29l.056.309z"/></symbol><use xlink:href="#i" transform="matrix(6.9738 0 0 -6.9738 109.255 47.92)"/><path d="M166.168 35.26h38.635V18.986h-38.635z" fill="#fff"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M166.168 35.26h38.635V18.986h-38.635z"/><symbol id="j"><path d="M0 .683V.652h.024C.101.652.103.641.103.605V.078C.103.042.101.031.024.031H0V0h.366c.168 0 .306.148.306.336 0 .19-.135.347-.306.347H0M.238.031c-.047 0-.049.007-.049.04v.541c0 .033.002.04.049.04h.1A.216.216 0 0 0 .52.559C.563.5.572.414.572.336.572.225.553.165.517.116A.22.22 0 0 0 .339.031H.238z"/></symbol><symbol id="k"><path d="M.549.68H0V.649h.024C.101.649.103.638.103.602V.078C.103.042.101.031.024.031H0V0c.035.003.113.003.152.003C.193.003.284.003.32 0v.031H.287C.192.031.192.044.192.079v.246h.086C.374.325.384.293.384.208h.025v.265H.384C.384.389.374.356.278.356H.192v.253c0 .033.002.04.049.04h.12c.15 0 .175-.056.191-.194h.025L.549.68z"/></symbol><symbol id="l"><path d="M.63.677H.019L0 .452h.025c.014.161.029.194.18.194.018 0 .044 0 .054-.002C.28.64.28.629.28.606V.079C.28.045.28.031.175.031h-.04V0c.041.003.143.003.189.003.046 0 .149 0 .19-.003v.031h-.04C.369.031.369.045.369.079v.527c0 .02 0 .034.018.038a.471.471 0 0 0 .057.002C.595.646.61.613.624.452h.025L.63.677z"/></symbol><use xlink:href="#j" transform="matrix(9.9626 0 0 -9.9626 170.502 29.78)"/><use xlink:href="#k" transform="matrix(9.9626 0 0 -9.9626 178.093 29.78)"/><use xlink:href="#l" transform="matrix(9.9626 0 0 -9.9626 184.629 29.78)"/><symbol id="m"><path d="M.442.182H.408C.405.16.395.101.382.091.374.085.297.085.283.085H.099a3.5 3.5 0 0 0 .2.168c.074.059.143.121.143.216C.442.59.336.664.208.664.084.664 0 .577 0 .485 0 .434.043.429.053.429c.024 0 .053.017.053.053C.106.5.099.535.047.535a.157.157 0 0 0 .146.093c.1 0 .152-.078.152-.159C.345.382.283.313.251.277L.01.039C0 .03 0 .028 0 0h.412l.03.182z"/></symbol><use xlink:href="#m" transform="matrix(6.9738 0 0 -6.9738 191.901 31.274)"/><symbol id="n"><path d="M.104.109C.098.084.087.04.087.035.087.013.105 0 .124 0c.015 0 .037.008.048.033l.019.078.036.141C.24.279.312.419.434.419c.049 0 .07-.027.07-.072C.504.29.462.187.439.13a.104.104 0 0 1-.01-.042C.429.036.479 0 .538 0 .645 0 .7.13.7.155.7.169.683.169.679.169.662.169.661.165.655.146.636.086.59.034.542.034c-.023 0-.03.016-.03.038 0 .021.004.031.013.053.017.04.063.154.063.209C.588.408.535.453.44.453A.244.244 0 0 1 .251.354C.246.436.166.453.129.453.029.453 0 .3 0 .298 0 .284.016.284.021.284.038.284.04.29.044.303c.015.058.038.116.08.116.034 0 .041-.032.041-.053C.165.352.155.314.149.288a3.78 3.78 0 0 1-.022-.09L.104.109z"/></symbol><use xlink:href="#n" transform="matrix(4.9813 0 0 -4.9813 195.886 29.337)"/><path d="M218.976 34.595h19.926V19.651h-19.926z" fill="#fff"/><clipPath id="o"><path transform="matrix(1 0 0 -1 139.901 43.024)" d="M79.075 8.429h19.926v14.944H79.075z"/></clipPath><g clip-path="url(#o)"><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M221.81 28.824c3.574-4.259 10.683-4.259 14.257 0M228.939 29.958l4.847-5.783"/><path d="M235.022 22.7c-.2.142-1.135.713-1.844.966l1.215 1.018c.125-.742.524-1.763.629-1.984z"/><path stroke-width=".78896844" stroke-miterlimit="10" fill="none" stroke="#000" d="M235.022 22.7c-.2.142-1.135.713-1.844.966l1.215 1.018c.125-.742.524-1.763.629-1.984z"/></g><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M218.976 34.595h19.926V19.651h-19.926z"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 4.507 63.906)"/><use xlink:href="#d" transform="matrix(9.9626 0 0 -9.9626 6.477 61.634)"/><use xlink:href="#b" transform="matrix(6.9738 0 0 -6.9738 11.397 57.87)"/><use xlink:href="#e" transform="matrix(9.9626 0 0 -9.9626 19.185 63.906)"/><path d="M132.069 66.397h19.926V51.453h-19.926z" fill="#fff"/><clipPath id="p"><path transform="matrix(1 0 0 -1 139.901 43.024)" d="M-7.832-23.373h19.926v14.944H-7.832z"/></clipPath><g clip-path="url(#p)"><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M134.904 60.626c3.573-4.259 10.682-4.259 14.256 0M142.032 61.76l4.847-5.783"/><path d="M148.115 54.502c-.2.142-1.135.713-1.844.966l1.215 1.018c.125-.742.524-1.763.629-1.984z"/><path stroke-width=".78896844" stroke-miterlimit="10" fill="none" stroke="#000" d="M148.115 54.502c-.2.142-1.135.713-1.844.966l1.215 1.018c.125-.742.524-1.763.629-1.984z"/></g><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M132.069 66.397h19.926V51.453h-19.926z"/><path stroke-width=".797" stroke-dasharray="4.98138,2.98883" stroke-miterlimit="10" fill="none" stroke="red" d="M47.987 14.789v59.459"/><symbol id="q"><path d="M.205.64c0 .024 0 .026-.023.026C.12.602.032.602 0 .602V.571a.3.3 0 0 1 .131.026V.079C.131.043.128.031.038.031H.006V0c.035.003.122.003.162.003.04 0 .127 0 .162-.003v.031H.298c-.09 0-.093.011-.093.048V.64z"/></symbol><use xlink:href="#q" transform="matrix(9.9626 0 0 -9.9626 46.385 10.406)"/><path stroke-width=".797" stroke-dasharray="4.98138,2.98883" stroke-miterlimit="10" fill="none" stroke="red" d="M90.872 14.789v59.459"/><symbol id="r"><path d="M.077.077.183.18c.156.138.216.192.216.292 0 .114-.09.194-.212.194A.185.185 0 0 1 0 .485C0 .429.05.429.053.429c.017 0 .052.012.052.053a.05.05 0 0 1-.053.052L.039.533a.144.144 0 0 0 .135.102C.265.635.308.554.308.472c0-.08-.05-.159-.105-.221L.011.037C0 .026 0 .024 0 0h.371l.028.174H.374C.369.144.362.1.352.085.345.077.279.077.257.077h-.18z"/></symbol><use xlink:href="#r" transform="matrix(9.9626 0 0 -9.9626 88.88 10.406)"/><path stroke-width=".797" stroke-dasharray="4.98138,2.98883" stroke-miterlimit="10" fill="none" stroke="red" d="M124.982 14.789v59.459"/><symbol id="s"><path d="M.248.374c.082.027.14.097.14.176C.388.632.3.688.204.688.103.688.027.628.027.552.027.519.049.5.078.5.109.5.129.522.129.551c0 .05-.047.05-.062.05C.098.65.164.663.2.663.241.663.296.641.296.551A.25.25 0 0 0 .268.437C.238.389.204.386.179.385A.554.554 0 0 0 .14.382C.132.381.125.38.125.37c0-.011.007-.011.024-.011h.044C.275.359.312.291.312.193.312.057.243.028.199.028.156.028.081.045.046.104.081.099.112.121.112.159a.054.054 0 0 1-.056.056C.032.215 0 .201 0 .157 0 .066.093 0 .202 0c.122 0 .213.091.213.193 0 .082-.063.16-.167.181z"/></symbol><use xlink:href="#s" transform="matrix(9.9626 0 0 -9.9626 122.91 10.625)"/><path stroke-width=".797" stroke-dasharray="4.98138,2.98883" stroke-miterlimit="10" fill="none" stroke="red" d="M159.081 14.789v59.459"/><symbol id="t"><path d="M.266.165V.078C.266.042.264.031.19.031H.169V0C.21.003.262.003.304.003.346.003.399.003.44 0v.031H.419C.345.031.343.042.343.078v.087h.1v.031h-.1v.455c0 .02 0 .026-.016.026-.009 0-.012 0-.02-.012L0 .196V.165h.266m.006.031H.028l.244.373V.196z"/></symbol><use xlink:href="#t" transform="matrix(9.9626 0 0 -9.9626 156.869 10.406)"/><path stroke-width=".797" stroke-dasharray="4.98138,2.98883" stroke-miterlimit="10" fill="none" stroke="red" d="M211.89 14.789v59.459"/><symbol id="u"><path d="M.399.223c0 .119-.082.219-.19.219A.176.176 0 0 1 .082.391v.195A.317.317 0 0 1 .167.573C.29.573.36.664.36.677.36.683.357.688.35.688c-.001 0-.003 0-.008-.003A.33.33 0 0 0 .073.684L.061.687c-.01 0-.01-.008-.01-.024V.367c0-.018 0-.026.014-.026.007 0 .009.003.013.009.011.016.048.07.129.07C.259.42.284.374.292.356A.308.308 0 0 0 .31.23C.31.195.31.135.286.093A.125.125 0 0 0 .179.028.156.156 0 0 0 .032.14C.035.139.038.138.049.138c.033 0 .05.025.05.049a.048.048 0 0 1-.05.049C.035.236 0 .229 0 .183 0 .097.069 0 .181 0a.22.22 0 0 1 .218.223z"/></symbol><use xlink:href="#u" transform="matrix(9.9626 0 0 -9.9626 209.896 10.625)"/><path stroke-width=".797" stroke-dasharray="4.98138,2.98883" stroke-miterlimit="10" fill="none" stroke="red" d="M245.988 14.789v59.459"/><symbol id="v"><path d="M.09.35v.024c0 .253.124.289.175.289.024 0 .066-.006.088-.04-.015 0-.055 0-.055-.045 0-.031.024-.046.046-.046C.36.532.39.541.39.58.39.64.346.688.263.688.135.688 0 .559 0 .338 0 .071.116 0 .209 0 .32 0 .415.094.415.226c0 .127-.089.223-.2.223C.147.449.11.398.09.35M.209.028C.146.028.116.088.11.103.092.15.092.23.092.248c0 .078.032.178.122.178.016 0 .062 0 .093-.062C.325.327.325.276.325.227c0-.048 0-.098-.017-.134C.278.033.232.028.209.028z"/></symbol><use xlink:href="#v" transform="matrix(9.9626 0 0 -9.9626 243.914 10.625)"/></svg>
\ No newline at end of file
_book/shorsAlgorithm_files/figure-html/fig-polar-output-1.png

3.27 KiB

_book/shorsAlgorithm_files/figure-html/fig-shor-output-1.png

3.27 KiB

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/index.html</loc>
<lastmod>2024-05-28T15:02:51.331Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/quantumBasics.html</loc>
<lastmod>2024-05-06T10:45:40.810Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/introduction.html</loc>
<lastmod>2024-05-16T20:35:45.192Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/probabilisticSystems.html</loc>
<lastmod>2024-05-28T14:06:17.846Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/quantumSystems.html</loc>
<lastmod>2024-05-23T16:33:21.524Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/observingSystems.html</loc>
<lastmod>2024-05-31T11:30:53.391Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/partialObserving.html</loc>
<lastmod>2024-05-28T15:34:11.850Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/compositeSystems.html</loc>
<lastmod>2024-05-28T15:40:53.028Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/quantumCircutsKetNotation.html</loc>
<lastmod>2024-05-28T15:41:23.573Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/quantumAlgorithms.html</loc>
<lastmod>2024-05-28T15:28:23.655Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/bernsteinVazirani.html</loc>
<lastmod>2024-05-28T15:32:36.617Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/shorsAlgorithm.html</loc>
<lastmod>2024-05-31T13:08:52.770Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/Introduction-to-Quantum-Computing.pdf</loc>
<lastmod>2024-05-28T15:45:27.879Z</lastmod>
</url>
<url>
<loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/Introduction-to-Quantum-Computing.epub</loc>
<lastmod>2024-05-28T15:45:28.828Z</lastmod>
</url>
</urlset>
......@@ -42,7 +42,7 @@ format:
pdf:
documentclass: scrreprt
papersize: letter # Necessary for scrreprt!
default-image-extension: svg
default-image-extension: pdf
include-in-header:
text: |
\usepackage{physics}
......
File moved
File moved
......@@ -8,7 +8,7 @@
<meta name="author" content="Jannik Hellenkamp">
<meta name="author" content="Dominique Unruh">
<meta name="dcterms.date" content="2024-05-28">
<meta name="dcterms.date" content="2024-05-31">
<title>Introduction to Quantum Computing</title>
<style>
......@@ -251,7 +251,7 @@ ul.task-list li input[type="checkbox"] {
<div>
<div class="quarto-title-meta-heading">Published</div>
<div class="quarto-title-meta-contents">
<p class="date">May 28, 2024</p>
<p class="date">May 31, 2024</p>
</div>
</div>
......@@ -271,11 +271,11 @@ ul.task-list li input[type="checkbox"] {
<p>These lecture notes are released under the CC BY-NC 4.0 license, which can be found <a href="https://creativecommons.org/licenses/by-nc/4.0/">here</a>.</p>
<section id="changelog" class="level2 unnumbered">
<h2 class="unnumbered anchored" data-anchor-id="changelog">Changelog</h2>
<section id="version-0.1.2-xx.05.2024" class="level4">
<h4 class="anchored" data-anchor-id="version-0.1.2-xx.05.2024">Version 0.1.2 (XX.05.2024)</h4>
<section id="version-0.1.2-31.05.2024" class="level4">
<h4 class="anchored" data-anchor-id="version-0.1.2-31.05.2024">Version 0.1.2 (31.05.2024)</h4>
<ul>
<li>minor changes to chapter 2</li>
<li>added chapter 3 and 4</li>
<li>added chapter 9</li>
</ul>
</section>
<section id="version-0.1.1-16.05.2024" class="level4">
......
index.log 0 → 100644
This diff is collapsed.
index.tex 0 → 100644
This diff is collapsed.
File moved
......@@ -69,35 +69,6 @@ ul.task-list li input[type="checkbox"] {
}
}</script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
<script type="text/javascript">
const typesetMath = (el) => {
if (window.MathJax) {
// MathJax Typeset
window.MathJax.typeset([el]);
} else if (window.katex) {
// KaTeX Render
var mathElements = el.getElementsByClassName("math");
var macros = [];
for (var i = 0; i < mathElements.length; i++) {
var texText = mathElements[i].firstChild;
if (mathElements[i].tagName == "SPAN") {
window.katex.render(texText.data, mathElements[i], {
displayMode: mathElements[i].classList.contains('display'),
throwOnError: false,
macros: macros,
fleqn: false
});
}
}
}
}
window.Quarto = {
typesetMath
};
</script>
</head>
......@@ -243,15 +214,7 @@ window.Quarto = {
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#observing-a-probabilistic-system" id="toc-observing-a-probabilistic-system" class="nav-link active" data-scroll-target="#observing-a-probabilistic-system"><span class="header-section-number">4.1</span> Observing a probabilistic system</a></li>
<li><a href="#measuring-a-quantum-system" id="toc-measuring-a-quantum-system" class="nav-link" data-scroll-target="#measuring-a-quantum-system"><span class="header-section-number">4.2</span> Measuring a quantum system</a></li>
<li><a href="#elitzurvaidman-bomb-tester" id="toc-elitzurvaidman-bomb-tester" class="nav-link" data-scroll-target="#elitzurvaidman-bomb-tester"><span class="header-section-number">4.3</span> Elitzur–Vaidman bomb tester</a></li>
</ul>
</nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
......@@ -275,95 +238,92 @@ window.Quarto = {
</header>
<p>So far we only talked about the description of a probabilistic and a quantum system. We now look into observing/measuring those systems.</p>
<section id="observing-a-probabilistic-system" class="level2" data-number="4.1">
<h2 data-number="4.1" class="anchored" data-anchor-id="observing-a-probabilistic-system"><span class="header-section-number">4.1</span> Observing a probabilistic system</h2>
<p>Observing a probabilistic system is the process of obtaining an outcome from a probability distribution.</p>
<div class="callout callout-style-simple callout-note no-icon">
<div class="callout-body d-flex">
<div class="callout-icon-container">
<i class="callout-icon no-icon"></i>
</div>
<div class="callout-body-container">
<div id="def-observing-probabilistic" class="definition theorem">
<p><span class="theorem-title"><strong>Definition 4.1 (Observing a probabilistic system)</strong></span> Given a probability distribution <span class="math inline">\(d \in \mathbb{R}^n\)</span>, we will get the outcome <span class="math inline">\(i\)</span> with a probability <span class="math inline">\(d_i\)</span>. The new distribution is then <span class="math display">\[
<!--
So far we only talked about the description of a probabilistic and a quantum system. We now look into observing/measuring those systems.
## Observing a probabilistic system
Observing a probabilistic system is the process of obtaining an outcome from a probability distribution.
::: {.callout-note appearance="minimal" icon=false}
::: {.definition #def-observing-probabilistic}
## Observing a probabilistic system
Given a probability distribution $d \in \mathbb{R}^n$, we will get the outcome $i$ with a probability $d_i$. The new distribution is then
$$
e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow \text{1 at the $i$-th position}
\]</span></p>
</div>
</div>
</div>
</div>
<p>When observing a probabilistic system, the observation is just a passive process with no impact on the system. This means, that there is no difference to the end result, if we observe during the process. We take a look at an example to further understand this.</p>
<div class="callout callout-style-simple callout-tip no-icon callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon no-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Example: Random 1-bit number
</div>
</div>
<div class="callout-body-container callout-body">
<p>We usa a the random 1-bit number example to the random 2-bit example from <a href="probabilisticSystems.html" class="quarto-xref"><span>Chapter 2</span></a>. We have a distribution <span class="math inline">\(d_{\text{1-bit}} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}\)</span> which represents the probability distribution of generating a 1-bit number with equal probability. We also have a process <span class="math inline">\(A_{\text{flip}} = \begin{pmatrix} \frac{2}{3} &amp; \frac{1}{3} \\ \frac{1}{3} &amp; \frac{2}{3} \end{pmatrix}\)</span> which flips the bit with a probability of <span class="math inline">\(\frac{1}{3}\)</span>.</p>
<p>We look at two different cases: For the first case, we observe only the final distribution and for the second case we observe after the generation of the 1-bit number and we also observe the final distribution.</p>
<section id="observing-the-final-distribution" class="level5 unnumbered">
<h5 class="unnumbered anchored" data-anchor-id="observing-the-final-distribution">Observing the final distribution</h5>
<p>From <a href="probabilisticSystems.html#sec-prob-apply" class="quarto-xref"><span>Section 2.3</span></a> we know that the final distribution <span class="math inline">\(d\)</span> is <span class="math display">\[
d = A_{\text{flip}} \cdot d_{\text{1-bit}} = \begin{pmatrix} \frac{2}{3} &amp; \frac{1}{3} \\ \frac{1}{3} &amp; \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}
\]</span> We observe this distribution and will get outcome <span class="math inline">\(0\)</span> and the new distribution <span class="math inline">\(d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\)</span> with a probability of <span class="math inline">\(d_0 = \frac{1}{2}\)</span> and the outcome <span class="math inline">\(1\)</span> and the new distribution <span class="math inline">\(d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\)</span> with a probability of <span class="math inline">\(d_1 = \frac{1}{2}\)</span>.</p>
</section>
<section id="observing-after-generation" class="level5 unnumbered">
<h5 class="unnumbered anchored" data-anchor-id="observing-after-generation">Observing after generation</h5>
<p>We now observe the system after the generation of the 1-bit number and also observe the final distribution</p>
</section>
</div>
</div>
</section>
<section id="measuring-a-quantum-system" class="level2" data-number="4.2">
<h2 data-number="4.2" class="anchored" data-anchor-id="measuring-a-quantum-system"><span class="header-section-number">4.2</span> Measuring a quantum system</h2>
<p>Unlike in the probabilistic system, the “observation” of a quantum system is called <em>measuring</em>. The definition is similar to the observation of a probabilistic system, except that we need to take the absolute square of the amplitude to get the probability and that the state after measuring is called <em>post measurement state</em> (p.m.s.).</p>
<div class="callout callout-style-simple callout-note no-icon">
<div class="callout-body d-flex">
<div class="callout-icon-container">
<i class="callout-icon no-icon"></i>
</div>
<div class="callout-body-container">
<div id="def-observing-probabilistic" class="definition theorem">
<p><span class="theorem-title"><strong>Definition 4.2 (Measuring a quantum system)</strong></span> Given a quantum State <span class="math inline">\(\psi \in \mathbb{C}^n\)</span>, we will get the outcome <span class="math inline">\(i\)</span> with a probability <span class="math inline">\(|\psi_i|^2\)</span>. The post measurement state (p.m.s.) is then <span class="math display">\[
$$
:::
:::
When observing a probabilistic system, the observation is just a passive process with no impact on the system. This means, that there is no difference to the end result, if we observe during the process. We take a look at an example to further understand this.
::: {.callout-tip icon=false}
## Example: Random 1-bit number
We usa a the random 1-bit number example to the random 2-bit example from @sec-prob.
We have a distribution $d_{\text{1-bit}} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ which represents the probability distribution of generating a 1-bit number with equal probability. We also have a process $A_{\text{flip}} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ which flips the bit with a probability of $\frac{1}{3}$.
We look at two different cases: For the first case, we observe only the final distribution and for the second case we observe after the generation of the 1-bit number and we also observe the final distribution.
##### Observing the final distribution {.unnumbered}
From @sec-prob-apply we know that the final distribution $d$ is
$$
d = A_{\text{flip}} \cdot d_{\text{1-bit}} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}
$$
We observe this distribution and will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $d_1 = \frac{1}{2}$.
##### Observing after generation {.unnumbered}
We now observe the system after the generation of the 1-bit number and also observe the final distribution
:::
## Measuring a quantum system
Unlike in the probabilistic system, the "observation" of a quantum system is called *measuring*. The definition is similar to the observation of a probabilistic system, except that we need to take the absolute square of the amplitude to get the probability and that the state after measuring is called *post measurement state* (p.m.s.).
::: {.callout-note appearance="minimal" icon=false}
::: {.definition #def-observing-probabilistic}
## Measuring a quantum system
Given a quantum State $\psi \in \mathbb{C}^n$, we will get the outcome $i$ with a probability $|\psi_i|^2$. The post measurement state (p.m.s.) is then
$$
e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow \text{1 at the $i$-th position}
\]</span></p>
</div>
</div>
</div>
</div>
<p>With this similarity in to the probabilistic observation in the definition, one might assume, that measuring a quantum state has also no impact on the system. <strong>This is not the case, measuring a quantum state changes the system!</strong> We can see this effect with an example:</p>
<div class="callout callout-style-simple callout-tip no-icon callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon no-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Example: Measuring a quantum system
</div>
</div>
<div class="callout-body-container callout-body">
<p>Let <span class="math inline">\(\psi = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}\)</span> be a quantum state and <span class="math inline">\(H=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 &amp; 1 \\ 1 &amp; -1 \end{pmatrix}\)</span> be a unitary transformation. We look at two different cases: First we apply <span class="math inline">\(H\)</span> immediately and then measure the system. As a second case, we do a measurement before the application of the <span class="math inline">\(H\)</span> unitary and then a measurement after applying it.</p>
<section id="measure-the-final-state" class="level5 unnumbered">
<h5 class="unnumbered anchored" data-anchor-id="measure-the-final-state">Measure the final state</h5>
<p>We first calculate the state after applying <span class="math inline">\(H\)</span>: <span class="math display">\[
H\psi = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 &amp; 1 \\ 1 &amp; -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]</span></p>
<p>Measuring this state will get the outcome <span class="math inline">\(0\)</span> with probability <span class="math inline">\(|\psi_0|^2 = 1\)</span> and have the post measurement state <span class="math inline">\(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\)</span>.</p>
</section>
</div>
</div>
</section>
<section id="elitzurvaidman-bomb-tester" class="level2" data-number="4.3">
<h2 data-number="4.3" class="anchored" data-anchor-id="elitzurvaidman-bomb-tester"><span class="header-section-number">4.3</span> Elitzur–Vaidman bomb tester</h2>
<p>This section will be updated later on.</p>
$$
:::
:::
With this similarity in to the probabilistic observation in the definition, one might assume, that measuring a quantum state has also no impact on the system. **This is not the case, measuring a quantum state changes the system!** We can see this effect with an example:
::: {.callout-tip icon=false}
## Example: Measuring a quantum system
Let $\psi = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ be a quantum state and $H=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ be a unitary transformation. We look at two different cases: First we apply $H$ immediately and then measure the system. As a second case, we do a measurement before the application of the $H$ unitary and then a measurement after applying it.
##### Measure the final state {.unnumbered}
We first calculate the state after applying $H$:
$$
H\psi = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
$$
Measuring this state will get the outcome $0$ with probability $|\psi_0|^2 = 1$ and have the post measurement state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
:::
## Elitzur–Vaidman bomb tester
This section will be updated later on.
-->
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
......
# Observing probabilistic and measuring quantum systems
<!--
So far we only talked about the description of a probabilistic and a quantum system. We now look into observing/measuring those systems.
## Observing a probabilistic system
......@@ -80,4 +81,6 @@ Measuring this state will get the outcome $0$ with probability $|\psi_0|^2 = 1$
## Elitzur–Vaidman bomb tester
This section will be updated later on.
\ No newline at end of file
This section will be updated later on.
-->
\ No newline at end of file
File moved
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment