Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
Comparing the query complexity of active learning algorithms for deterministic finite automata
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Muhammad Raufu Miah
Comparing the query complexity of active learning algorithms for deterministic finite automata
Commits
42bc5a27
Commit
42bc5a27
authored
1 year ago
by
Muhammad Raufu Miah
Browse files
Options
Downloads
Patches
Plain Diff
Update ExperimentsScaleAlphabet
parent
b944be90
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
ExperimentsScaleAlphabet.java
+36
-7
36 additions, 7 deletions
ExperimentsScaleAlphabet.java
with
36 additions
and
7 deletions
ExperimentsScaleAlphabet
→
ExperimentsScaleAlphabet
.java
+
36
−
7
View file @
42bc5a27
import de.learnlib.acex.AcexAnalyzer;
import
de.learnlib.algorithm.kv.dfa.KearnsVaziraniDFA
;
import
de.learnlib.algorithm.kv.dfa.KearnsVaziraniDFABuilder
;
import
de.learnlib.algorithm.lstar.dfa.ClassicLStarDFABuilder
;
import
de.learnlib.algorithm.observationpack.dfa.OPLearnerDFA
;
import
de.learnlib.algorithm.observationpack.dfa.OPLearnerDFABuilder
;
import
de.learnlib.algorithm.rivestschapire.RivestSchapireDFA
;
import de.learnlib.algorithm.ttt.base.AbstractTTTLearner;
import
de.learnlib.algorithm.ttt.dfa.TTTLearnerDFA
;
import
de.learnlib.algorithm.ttt.dfa.TTTLearnerDFABuilder
;
import
de.learnlib.filter.statistic.oracle.DFACounterOracle
;
import
de.learnlib.oracle.EquivalenceOracle
;
import
de.learnlib.oracle.MembershipOracle
;
import
de.learnlib.oracle.equivalence.DFASimulatorEQOracle
;
import de.learnlib.oracle.equivalence.WMethodEQOracle;
import
de.learnlib.oracle.membership.DFASimulatorOracle
;
import
de.learnlib.query.DefaultQuery
;
import
net.automatalib.alphabet.Alphabet
;
...
...
@@ -20,14 +17,14 @@ import net.automatalib.alphabet.Alphabets;
import
net.automatalib.automaton.fsa.DFA
;
import
de.learnlib.algorithm.lstar.dfa.ClassicLStarDFA
;
import
de.learnlib.algorithm.rivestschapire.RivestSchapireDFABuilder
;
import net.automatalib.word.Word;
import
org.knowm.xchart.QuickChart
;
import
org.knowm.xchart.SwingWrapper
;
import
org.knowm.xchart.XYChart
;
import
org.knowm.xchart.XYSeries
;
import java.util.ArrayList;
import
java.util.List
;
import
java.util.Random
;
import
java.util.stream.Collectors
;
public
class
ExperimentsScaleAlphabet
{
...
...
@@ -35,7 +32,7 @@ public class ExperimentsScaleAlphabet {
// Define configurations
double
[]
yValues
=
{
0.01
};
int
[]
zValues
=
{
100
};
int[] xValues = {10
,20,30,40,50,60,70,80,90,1
00};
int
[]
xValues
=
{
10
0
,
200
,
3
00
};
// Declare arrays to store the average membership queries and average equivalence queries
double
[]
avgMemQueriesLstar
=
new
double
[
xValues
.
length
];
...
...
@@ -198,6 +195,10 @@ public class ExperimentsScaleAlphabet {
// Create the second XY chart (equivalence queries) with extended series
XYChart
chart2
=
QuickChart
.
getChart
(
"Average Equivalence Queries, n=100, Acceptence Ratio = 0.01"
,
"Alphabet Length"
,
"Queries"
,
extendedSeriesNames2
,
xValuesDouble
,
new
double
[][]{
avgEqQueriesLstar
,
avgEqQueriesRS
,
avgEqQueriesKV
,
avgEqQueriesOP
,
avgEqQueriesTTT
,
upperboundeqValues
});
new
SwingWrapper
(
chart2
).
displayChart
();
printXYChartPairs
(
chart1
);
printXYChartPairs
(
chart2
);
printXYChartPairs
(
chartExcludingLS
);
}
...
...
@@ -302,4 +303,32 @@ public class ExperimentsScaleAlphabet {
return
n
;
}
public
static
void
printXYChartPairs
(
XYChart
chart
)
{
System
.
out
.
println
(
"Chart: "
+
chart
.
getTitle
());
// Get all series in the chart
List
<
XYSeries
>
seriesList
=
chart
.
getSeriesMap
().
values
().
stream
().
collect
(
Collectors
.
toList
());
// Iterate over each series
for
(
XYSeries
series
:
seriesList
)
{
System
.
out
.
println
(
"Series: "
+
series
.
getName
());
// Get x and y data
double
[]
xData
=
series
.
getXData
();
double
[]
yData
=
series
.
getYData
();
// Ensure x and y data are of the same size
if
(
xData
.
length
!=
yData
.
length
)
{
System
.
out
.
println
(
"Mismatch in data size for series: "
+
series
.
getName
());
continue
;
}
// Print (x, y) pairs
for
(
int
i
=
0
;
i
<
xData
.
length
;
i
++)
{
System
.
out
.
println
(
"("
+
xData
[
i
]
+
", "
+
yData
[
i
]
+
")"
);
}
}
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment