Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DataScienceIntro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
PythonDataScienceMatSci
DataScienceIntro
Commits
6ab1632a
Commit
6ab1632a
authored
1 year ago
by
Ulrich Kerzel
Browse files
Options
Downloads
Patches
Plain Diff
notebook for powerintegral tranform
parent
d3c33f7e
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
datascienceintro/PowerIntegralTransform.ipynb
+146
-0
146 additions, 0 deletions
datascienceintro/PowerIntegralTransform.ipynb
with
146 additions
and
0 deletions
datascienceintro/PowerIntegralTransform.ipynb
0 → 100644
+
146
−
0
View file @
6ab1632a
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BqnzjCT5dRaQ"
},
"outputs": [],
"source": [
"import scipy.stats as stats\n",
"import numpy as np\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns"
]
},
{
"cell_type": "code",
"source": [
"n_samples = 100000\n",
"\n",
"x_space = np.linspace(-4,4, 500)\n",
"mu = 0\n",
"sigma = 1\n",
"gauss_dist = stats.norm(mu, sigma)\n",
"samples = gauss_dist.rvs(size=n_samples)\n",
"y = gauss_dist.pdf(x_space)"
],
"metadata": {
"id": "fFo1WyaNexa2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"x_space = np.linspace(0, 30, 500)\n",
"\n",
"moyal_dist = stats.moyal(loc=6.0, scale = 1.5)\n",
"moyal_dist2 = stats.moyal(loc=6.3, scale = 1.5)\n",
"samples = moyal_dist.rvs(size=n_samples)\n",
"y = moyal_dist.pdf(x_space)"
],
"metadata": {
"id": "JMcm2Px3pB3C"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)\n",
"\n",
"\n",
"\n",
"sns.histplot(samples, ax=ax[0], bins = 50, stat='density', cumulative=False, label='Simulation')\n",
"ax[0].fill_between(x_space, y, color='red', alpha=0.2, label='True Distrib.')\n",
"ax[0].set_title('Probability Distribution')\n",
"\n",
"sns.histplot(samples, ax=ax[1], bins = 50, stat='density', cumulative=True)\n",
"ax[1].set_title('Cumulative Distribution')\n",
"\n",
"lines_labels = [ax.get_legend_handles_labels() for ax in fig.axes]\n",
"lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]\n",
"fig.legend(lines, labels)\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 480
},
"id": "VsaOZPYUeZva",
"outputId": "98c66a25-1278-4800-b42b-2e2509928b71"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHPCAYAAAAvcsxUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABq9UlEQVR4nO3deVyU1f4H8M8zM8wMOyg7ouCSaS4UBpKaG4VWLmml1Q20tG7pLSMrsQSXClskrExvlmuapjft/tJMxK3FciG1Tc2FJR0WF3aYgZnz+4OY68gi4AwzDJ/36/W8LnPmPOd8Zx66fD3nOeeRhBACRERERGRXZNYOgIiIiIjMj0keERERkR1ikkdERERkh5jkEREREdkhhbUDICIiosbT6/WorKy0dhhkZQ4ODpDL5Q3WYZJHRETUCgghkJOTg4KCAmuHQjbCw8MDfn5+kCSpzveZ5BEREbUCNQmej48PnJyc6v3DTvZPCIGysjLk5eUBAPz9/eusxySPiIjIxun1emOC1759e2uHQzbA0dERAJCXlwcfH586p2658IKIiMjG1dyD5+TkZOVIyJbU/D7Ud48mkzwiIqJWglO0dLXr/T4wySMiIiKyQ7wnj4iIqDXT6YCqqpbpS6EAlMqW6YtuGJM8IiKi1kqnAw4eBEpKWqY/FxcgPNyuE72MjAyEhITg559/RmhoqFnbDg4OxowZMzBjxgwA1dOtW7ZswdixY83aTw1O1xIREbVWVVXVCZ5SCbi6WvZQKqv7asKooSRJDR5z58613HdzjSFDhhj7ValUCAwMxKhRo/DFF1+Y1AsKCoJGo0GvXr2u22ZGRgYkScLRo0cbFcOhQ4fw5JNPNif8ZuFIHhERUWunUgFqteX70emaVF2j0Rh/3rhxIxISEnDy5EljmYuLi/FnIQT0ej0UCsulJlOnTsX8+fNRVVWFv/76C1u2bMHEiRMxadIkfPTRRwAAuVwOPz8/s/ar0+mgVCrh7e1t1navhyN5REREZBF+fn7Gw93dHZIkGV+fOHECrq6u+PrrrxEWFgaVSoXvvvsOkyZNqjV9OWPGDAwZMsT42mAwICkpCSEhIXB0dETfvn2xefPm68bj5OQEPz8/dOjQAf3798ebb76Jf//731i+fDl27doFoPbo3JUrV/Doo4/C29sbjo6O6NatG1auXAkACAkJAQDceuutkCTJGGPNZ3j99dcREBCA7t27A6ierk1JSTGJSaPRYOTIkXB0dETnzp0b9Tkai0keERERWc2sWbOwcOFC/PHHH+jTp0+jzklKSsKaNWuwbNky/Pbbb3j++efxj3/8A/v27Wty/7GxsfD09Kw1bVtjzpw5+P333/H111/jjz/+wNKlS+Hl5QUAOHjwIABg165d0Gg0Jm2kpaXh5MmTSE1NxVdffVVv/3PmzMH48eNx7NgxPProo5g4cSL++OOPJn+OunC6loiIiKxm/vz5uOuuuxpdX6vV4o033sCuXbsQGRkJAOjcuTO+++47/Pvf/8bgwYOb1L9MJsNNN92EjIyMOt/PysrCrbfein79+gGoHo2rUTP92r59+1pTvM7Ozvj444+hvM4ilQcffBBTpkwBACxYsACpqal4//338eGHHzbpc9SFSR4RERFZTU3y1FinT59GWVlZrcRQp9Ph1ltvbVYMQoh6NxZ++umnMX78eKSnp+Puu+/G2LFjcccdd1y3zd69e183wQNgTFSvft3YhRzXwySPiIiIrMbZ2dnktUwmgxDCpOzqx3aV/L1dzLZt2xAYGGhST6VSNbl/vV6PP//8E7fffnud748cORKZmZnYvn07UlNTMXz4cEybNg3vvPNOg+1e+7msgffkERERkc3w9vY2WZULwGRkq2fPnlCpVMjKykLXrl1NjqCgoCb3t3r1aly5cgXjx49vMKbY2Fh8+umnSElJMa7ErRmp0+v1Te63xo8//ljrdY8ePZrd3tU4kkdERNTaabX20QeAYcOG4e2338aaNWsQGRmJTz/9FL/++qtxKtbV1RUzZ87E888/D4PBgIEDB6KwsBDff/893NzcEBsbW2/bZWVlyMnJMdlC5d1338XTTz+NoUOH1nlOQkICwsLCcMstt0Cr1eKrr74yJmE+Pj5wdHTEjh070KFDB6jVari7uzfp827atAn9+vXDwIEDsW7dOhw8eBCffPKJ8f3hw4fj/vvvx/Tp05vULsAkj4iIqPVSKKqfQlFS0uQ97JrFxaW6TwuKjo7GnDlz8NJLL6GiogKPP/44YmJi8MsvvxjrLFiwAN7e3khKSsLZs2fh4eGB2267DbNnz26w7eXLl2P58uVQKpVo3749wsLCsHHjRtx///31nqNUKhEfH4+MjAw4Ojpi0KBB2LBhAwBAoVDgvffew/z585GQkIBBgwZh7969Tfq88+bNw4YNG/DMM8/A398fn332GXr27Gl8/8yZM7h48WKT2qwhiWsnvomIiMimVFRU4Ny5cwgJCYH62k2P+ezaNqvB3wtwJI+IiKh1UyqZeFGduPCCiIiIyA4xySMiIiKyQ0zyiIiIiOwQkzwiIiIiO8Qkj4iIiMgOMckjIiIiskNM8oiIiIjsEJM8IiIishpJkrB161aL9xMcHIyUlBSbaaclcDNkIiKiVuyWPqHQaDQt0pe/vz9+O360Sefk5+cjISEB27ZtQ25uLjw9PdG3b18kJCRgwIAB0Gg08PT0tEzAN2DVqlWYMWMGCgoKTMoPHToEZ2dn6wTVREzyiIiIWjGNRoO7X9/aIn3tfGVsk88ZP348dDodVq9ejc6dOyM3NxdpaWm4dOkSAMDPz8/MUVqWt7e3tUNoNE7XEhERkUUUFBTg22+/xZtvvomhQ4eiU6dOCA8PR3x8PEaPHg3AdLo2IyMDkiTh888/x6BBg+Do6Ijbb78dp06dwqFDh9CvXz+4uLhg5MiRyM/PN/YzZMgQzJgxw6TvsWPHYtKkSfXGlpycjN69e8PZ2RlBQUF45plnUFJSAgDYu3cvJk+ejMLCQkiSBEmSMHfuXAC1p2uzsrIwZswYuLi4wM3NDQ899BByc3ON78+dOxehoaFYu3YtgoOD4e7ujokTJ6K4uLj5X2wjMckjIiIii3BxcYGLiwu2bt0KrVbb6PMSExPx6quvIj09HQqFAo888gheeuklLF68GN9++y1Onz6NhISEG4pNJpPhvffew2+//YbVq1dj9+7deOmllwAAd9xxB1JSUuDm5gaNRgONRoOZM2fWasNgMGDMmDG4fPky9u3bh9TUVJw9exYTJkwwqXfmzBls3boVX331Fb766ivs27cPCxcuvKH4G/UZLd4DEdkESZIwffp0s7W3atUqSJKEw4cPX7fukCFDMGTIEOPrmn+tr1q1ylg2d+5cSJJktvjMqeazZmRkWLyvSZMmITg42Pi65rt65513LN43YNvXgVofhUKBVatWYfXq1fDw8MCAAQMwe/ZsHD9+vMHzZs6ciejoaPTo0QPPPfccjhw5gjlz5mDAgAG49dZb8cQTT2DPnj03FNuMGTMwdOhQBAcHY9iwYXjttdfw+eefAwCUSiXc3d0hSRL8/Pzg5+cHFxeXWm2kpaXhl19+wfr16xEWFoaIiAisWbMG+/btw6FDh4z1DAYDVq1ahV69emHQoEF47LHHkJaWdkPxNwaTPCIrqkkeag61Wo2bbroJ06dPNxnub6veeOMNs6+627t3r8l3rlKp4OvriyFDhuCNN94wmQK6EWVlZZg7dy727t1rlvbMyZZjI/szfvx4XLhwAf/9738xYsQI7N27F7fddpvJP/Ku1adPH+PPvr6+AIDevXublOXl5d1QXLt27cLw4cMRGBgIV1dXPPbYY7h06RLKysoa3cYff/yBoKAgBAUFGct69uwJDw8P/PHHH8ay4OBguLq6Gl/7+/vfcPyNwSSPyAbMnz8fa9euxQcffIA77rgDS5cuRWRkZJP+z8aW7dy5Ezt37mywzquvvory8nKTMkskeTWeffZZrF27Fh999BFefPFFtGvXDomJiejRowd2795tUvexxx5DeXk5OnXq1Oj2y8rKMG/evCYnUsuXL8fJkyebdE5TNRRbXdeB6Eap1WrcddddmDNnDn744QdMmjQJiYmJ9dZ3cHAw/lwzsnxtmcFgML6WyWQQQpi0UVlZWW/7GRkZuO+++9CnTx/85z//wZEjR7BkyRIAgE6na9qHa4SrYwdqx28pXF1LZANGjhyJfv36AQCmTJmC9u3bIzk5GV9++SUefvjhOs8pLS1tNcv4lUrldesoFAooFC33f0mDBg3CAw88YFJ27Ngx3H333Rg/fjx+//13+Pv7AwDkcjnkcrlF46m5ntf+MWhpLX0dqG3q2bOnWf8B5+3tbbKNjF6vx6+//oqhQ4fWWf/IkSMwGAxYtGgRZLLq8a6aqdoaSqUSer2+wX579OiB7OxsZGdnG0fzfv/9dxQUFKBnz5438pHMgiN5RDZo2LBhAIBz584BqL5Py8XFBWfOnME999wDV1dXPProowCqk4MXXngBQUFBUKlU6N69O955551a/6qtsW7dOnTv3h1qtRphYWHYv3+/yfuZmZl45pln0L17dzg6OqJ9+/Z48MEH670fraysDE899RTat28PNzc3xMTE4MqVKyZ1rr0nry7X3gsmSRJKS0uxevVq49TqpEmTsGfPHkiShC1bttRqY/369ZAkCQcOHGiwr/r07dsXKSkpKCgowAcffGAsr+uevMOHDyM6OhpeXl5wdHRESEgIHn/8cQDVowQ12yzMmzev1uq8hq7ntffkXe3dd99Fp06d4OjoiMGDB+PXX381eb++7/nqNq8XW1335FVVVWHBggXo0qULVCoVgoODMXv27Fo30gcHB+O+++7Dd999h/DwcKjVanTu3Blr1qyp+wsnu3fp0iUMGzYMn376KY4fP45z585h06ZNeOuttzBmzBiz9TNs2DBs27YN27Ztw4kTJ/D000/X2t/ual27dkVlZSXef/99nD17FmvXrsWyZctM6gQHB6OkpARpaWm4ePFinTMrUVFR6N27Nx599FGkp6fj4MGDiImJweDBg43/cLcm/nONyAadOXMGANC+fXtjWVVVFaKjozFw4EC88847cHJyghACo0ePxp49e/DEE08gNDQU33zzDV588UWcP38e7777rkm7+/btw8aNG/Hss89CpVLhww8/xIgRI3Dw4EH06tULQPVGnz/88AMmTpyIDh06ICMjA0uXLsWQIUPw+++/w8nJyaTN6dOnw8PDA3PnzsXJkyexdOlSZGZmGu99a661a9diypQpCA8Px5NPPgkA6NKlC/r374+goCCsW7cO999/v8k569atQ5cuXRAZGdnsfh944AE88cQT2LlzJ15//fU66+Tl5eHuu++Gt7c3Zs2aBQ8PD2RkZOCLL74AUD2qsHTpUjz99NO4//77MW7cOACm9xnVdT0bsmbNGhQXF2PatGmoqKjA4sWLMWzYMPzyyy/Ge5YaozGxXWvKlClYvXo1HnjgAbzwwgv46aefkJSUhD/++KNWsn369GnjdxgbG4sVK1Zg0qRJCAsLwy233NLoOKnx/P39m7V/XXP7agoXFxdERETg3XffxZkzZ1BZWYmgoCBMnToVs2fPNltcjz/+OI4dO4aYmBgoFAo8//zz9Y7iAdX/oEtOTsabb76J+Ph43HnnnUhKSkJMTIyxzh133IF//vOfmDBhAi5duoTExETjP4ZqSJKEL7/8Ev/6179w5513QiaTYcSIEXj//ffN9tluiCAiq1m5cqUAIHbt2iXy8/NFdna22LBhg2jfvr1wdHQUf/31lxBCiNjYWAFAzJo1y+T8rVu3CgDitddeMyl/4IEHhCRJ4vTp08YyAAKAOHz4sLEsMzNTqNVqcf/99xvLysrKasV54MABAUCsWbOmVuxhYWFCp9MZy9966y0BQHz55ZfGssGDB4vBgwcbX587d04AECtXrjSWJSYmimv/L8nZ2VnExsbWiic+Pl6oVCpRUFBgLMvLyxMKhUIkJibWqn+1PXv2CABi06ZN9dbp27ev8PT0rPVZz507J4QQYsuWLQKAOHToUL1t5OfnCwB1xlPf9ax5r1OnTsbXNd/V1b8PQgjx008/CQDi+eefN5Zd+z3X12ZDsV17HY4ePSoAiClTppjUmzlzpgAgdu/ebSzr1KmTACD2799vLMvLyxMqlUq88MILtfqixisvLxe///67KC8vt3YoZEOu93vB6VoiGxAVFQVvb28EBQVh4sSJcHFxwZYtWxAYGGhS7+mnnzZ5vX37dsjlcjz77LMm5S+88AKEEPj6669NyiMjIxEWFmZ83bFjR4wZMwbffPON8d4TR0dH4/uVlZW4dOkSunbtCg8PD6Snp9eK/cknnzS5j+zpp5+GQqHA9u3bm/gtNF5MTAy0Wi02b95sLNu4cSOqqqrwj3/844bbd3FxaXCjUg8PDwDAV1991eDN3ddz7fVsyNixY01+H8LDwxEREWHR7xmAsf24uDiT8hdeeAEAsG3bNpPynj17YtCgQcbX3t7e6N69O86ePWvROImoNiZ5RDZgyZIlSE1NxZ49e/D777/j7NmziI6ONqmjUCjQoUMHk7LMzEwEBASYLM0Hqm8Grnn/at26davV90033YSysjLj1iHl5eVISEgw3uPn5eUFb29vFBQUoLCwsNb517bp4uICf39/i+4pd/PNN+P222/HunXrjGXr1q1D//790bVr1xtuv6SkpNZ3erXBgwdj/PjxmDdvHry8vDBmzBisXLmySZu91nU9G1LftbP03n2ZmZmQyWS1vlc/Pz94eHjU+h3r2LFjrTY8PT1r3adJRJbHe/KIbEB4ePh1b9JVqVTGVWCW9K9//QsrV67EjBkzEBkZadwQdOLEiS2y5L+xYmJi8Nxzz+Gvv/6CVqvFjz/+aLJYorkqKytx6tQp4z2KdZEkCZs3b8aPP/6I//u//8M333yDxx9/HIsWLcKPP/5Y56ap17LE9ZQkqc4FN9dbIdjYthujvlXIdcVFRJbFkTyiVqxTp064cOFCranFEydOGN+/2p9//lmrjVOnTsHJycm44nLz5s2IjY3FokWL8MADD+Cuu+7CwIED612pdm2bJSUl0Gg09a4QbYqGEouJEydCLpfjs88+w7p16+Dg4FDrUULNsXnzZpSXl9caSa1L//798frrr+Pw4cNYt24dfvvtN2zYsOG6sTdHfdfu6u/Z09Ozzut07WhbU2Lr1KkTDAZDrf5zc3NRUFDQpL0DiahlMckjasXuuece6PX6WiNY7777LiRJwsiRI03KDxw4YHJfXXZ2Nr788kvcfffdxhEYuVxea9Tl/fffr3c06KOPPjK5L23p0qWoqqqq1XdzODs715tcenl5YeTIkfj000+xbt06jBgxAl5eXjfU37FjxzBjxgx4enpi2rRp9da7cuVKre8oNDQUAIxTtjWrZRvaxqEptm7divPnzxtfHzx4ED/99JPJ99ylSxecOHHC5Kkdx44dw/fff2/SVlNiu+eeewDA5IHsQPXD3QHg3nvvbdLnoBvDEVG62vV+HzhdS9SKjRo1CkOHDsUrr7yCjIwM9O3bFzt37sSXX36JGTNmoEuXLib1e/XqhejoaJMtVIDq/dJq3HfffVi7di3c3d3Rs2dPHDhwALt27TLZzuVqOp0Ow4cPx0MPPYSTJ0/iww8/xMCBAzF69Ogb/nxhYWHYtWsXkpOTERAQgJCQEERERBjfj4mJMW5ovGDBgia1/e2336KiogJ6vR6XLl3C999/j//+979wd3fHli1b4OfnV++5q1evxocffoj7778fXbp0QXFxMZYvXw43NzdjUuTo6IiePXti48aNuOmmm9CuXTv06tWrwWnghnTt2hUDBw7E008/Da1Wi5SUFLRv3974QHWgehuJ5ORkREdH44knnkBeXh6WLVuGW265BUVFRcZ6TYmtb9++iI2NxUcffYSCggIMHjwYBw8exOrVqzF27NgGt6kg86lZ3FRWVmayOIratpq9++rbRJ1JHlErJpPJ8N///hcJCQnYuHEjVq5cieDgYLz99tvG1Y9XGzx4MCIjIzFv3jxkZWWhZ8+eWLVqlckeaYsXL4ZcLse6detQUVGBAQMGYNeuXfVOX37wwQdYt24dEhISUFlZiYcffhjvvfeeWaYrk5OT8eSTTxoftRUbG2uS5I0aNQqenp4wGAxNTirfe+89ANX/5+jh4YEePXpg3rx5mDp1qnHquj41ic6GDRuQm5sLd3d3hIeHY926dQgJCTHW+/jjj/Gvf/0Lzz//PHQ6HRITE5ud5MXExEAmkyElJQV5eXkIDw/HBx98YLJvWY8ePbBmzRokJCQgLi4OPXv2xNq1a7F+/fpajzBrSmwff/wxOnfujFWrVhkT4Pj4+AYfS0XmJZfL4eHhYXzeqZOTk9lvCaDWQwiBsrIy5OXlwcPDo957YSXBsV8iaqWqqqoQEBCAUaNG4ZNPPrF2OEQWJYRATk6O2W4BoNbPw8MDfn5+9Sb8HMkjolZr69atyM/PN9mlnsheSZIEf39/+Pj43ND+jGQfHBwcrvtMbY7kEVGr89NPP+H48eNYsGABvLy86tykmYiorePqWiJqdWqeverj44M1a9ZYOxwiIpvEkTwiIiIiO8SRPCIiIiI7xCSPiIiIyA5xdW0dDAYDLly4AFdXV+5DRERE1EoIIVBcXIyAgIAWeda3rWOSV4cLFy4gKCjI2mEQERFRM2RnZ6NDhw7WDsPqmOTVwdXVFUD1L4mbm5uVoyEiIqLGKCoqQlBQkPHveFvHJK8ONVO0bm5uTPKIiIhaGd5qVY0T1kRERER2iEkeERERkR1ikkdERERkh5jkEREREdkhLrwgyyouBkpKALkc8PAAlEprR0RERNQmMMkjy9DrgTNngHPngPJyQJIAd3fgppuAgABrR0dERGT3mOSR+RkMwIkTwMmTiJ35IrKuXIEkBDyFgIMATsjlyJLLqxM/AP7+/vjt+FHrxkxERGRnmOSR+Z0/D5w+Dfj4IOvKFfR/ZpHxLXV5KW7TluNcx+644ukNANj5ylgrBUpERGS/uPCCzKusDDh1CnB0rD6uUeHojEqFAwI15+BYXmKFAImIiNoGJnlkXtnZQGEh0K5dvVVKXNyh0pXDPzcLkkHfgsERERG1HZyuJfMpLQUyMwFPT+P9dvUpdGuPdgX5KHRr30LBERERtS0cySPzycmp3i6lEc/71csV0Dqo4ZP/F1RCtEBwREREbYvVk7wlS5YgODgYarUaEREROHjwYL11f/vtN4wfPx7BwcGQJAkpKSm16sydOxeSJJkcN998swU/AQEAKiuBv/4CXF0bfUqJsxucS4vhr+eULRERkblZdbp248aNiIuLw7JlyxAREYGUlBRER0fj5MmT8PHxqVW/rKwMnTt3xoMPPojnn3++3nZvueUW7Nq1y/haoeCstKXc0icUGo0G3gYD+lXqkCOTwXDVVG1paVn9J0sSyh1d0NFgqF6w4eTUAhETERG1DVbNfpKTkzF16lRMnjwZALBs2TJs27YNK1aswKxZs2rVv/3223H77bcDQJ3v11AoFPDz87NM0GRCo9Hg7te3osNfp+FzSYOOHt4m7+96658Nnl/m6AwXYQAuXAC6drVkqERERG2K1aZrdTodjhw5gqioqP8FI5MhKioKBw4cuKG2//zzTwQEBKBz58549NFHkZWV1WB9rVaLoqIik4MaT1Gpg3vxZZSrmjESJ0kolqTqBRsVFeYPjoiIqI2yWpJ38eJF6PV6+Pr6mpT7+voiJyen2e1GRERg1apV2LFjB5YuXYpz585h0KBBKC4urvecpKQkuLu7G4+goKBm998WOZcVw1FbDq269r54jVEkSdXbruTmmjkyIiKitsvqCy/MbeTIkXjwwQfRp08fREdHY/v27SgoKMDnn39e7znx8fEoLCw0HtnZ2S0YcevnUloIgySDkJr56yRJgLMzkJEBVFWZNTYiIqK2ymr35Hl5eUEulyP3mtGb3Nxcs95P5+HhgZtuugmnT5+ut45KpYJKpTJbn22JXAi4F12BVqm+sYY8PACNBsjPB/z9zRIbERFRW2a1kTylUomwsDCkpaUZywwGA9LS0hAZGWm2fkpKSnDmzBn4M3GwCFchoNaWo0LVvKlaI4Wi+vjrL4D75hEREd0wq66ujYuLQ2xsLPr164fw8HCkpKSgtLTUuNo2JiYGgYGBSEpKAlC9WOP33383/nz+/HkcPXoULi4u6Pr3ysyZM2di1KhR6NSpEy5cuIDExETI5XI8/PDD1vmQds5VCMgMehjkzf9VKi0tx9Cou6AUAh4GgYMODiiUmf77w9/fH78dP3qD0RIREbUdVk3yJkyYgPz8fCQkJCAnJwehoaHYsWOHcTFGVlYWZFf9sb9w4QJuvfVW4+t33nkH77zzDgYPHoy9e/cCAP766y88/PDDuHTpEry9vTFw4ED8+OOP8PY23dqDzMPLYEClwuGG2hDCgP7PLAIAtLuSiwDfTtD4B5vU2fnK2Bvqg4iIqK2x+i7B06dPx/Tp0+t8ryZxqxEcHAxxnam8DRs2mCs0uh6tFm5C3Pj9eFepUDmjXUE+8r0CUOWgNFu7REREbY3dra6lFlRcDEdhgM6MSV65oxMcK0rhWlJotjaJiIjaIiZ51HzFxZABEDLz/RoJSYYqhRKeBflcgEFERHQDmORR8126BO1Vz6k1lzJHZ7iVFMCpvMTsbRMREbUVTPKoeXQ6oLAQ5RZoutJBBUVVJVxLCizQOhERUdvAJI+ap7QUKCtDhQVG8gCgQuUIzyv5kOn5BAwiIqLmYJJHzVNaClRVQW+hJK/c0RnOFSVwKS2ySPtERET2jkkeNU9RESCXW6x5g0wOAQluRZct1gcREZE9Y5JHTScEcOkSoDbf1il1KVc7w6PoMhx0Wov2Q0REZI+Y5FHTlZcDZWWA4w0+r/Y6KlSOUGvLOGVLRETUDEzyqOnKyoCKCouP5EGSUCV3gEfhRcv2Q0REZIeY5FHTlZVVT9macRPk+pT/vWeei8Fg8b6IiIjsCZM8ajoLL7q4mk6phoNOCw8+/YKIiKhJmORR0wgBXLli+anaq1QqVfAzGPiYMyIioiZgkkdNU1FRPV2rUrVYl2WOLvA0GIDCwhbrk4iIqLVjkkdNU14OaLUtOpJXpXCAEn9v20JERESNwiSPmqasDDAYWuyevBqlkgRcuADo9S3aLxERUWvFJI+aprQUsNCjzBpSLElAQUH1QURERNfFJI+a5sqVFr0fr0aVJAFVVcBF7plHRETUGEzyqPEqK6tH8qyQ5AEAXF0BjaY62SMiIqIGMcmjxisvr15da80kr7CwejSRiIiIGsQkjxqvoqJ6FE2ptE7/CkX1Xnn5+dbpn4iIqBVhkkeNV15enWRZYeGFUc2UrU5nvRiIiIhaASZ51HjFxS2+dUotrq7VcXDKloiIqEFM8qjxCgqsN1VbQy6vHknMy7NuHERERDZOYe0AqJXQ6arvyWvBJ11crbS0HEOj7gIAuBgMkEPCTw4O0P49dezv74/fjh+1SmxERES2iEkeNU7N48ycna3SvRAG9H9mEQBAEgZ4XsmHX+dbUODuBQDY+cpYq8RFRERkq5jkUb1u6RMKjUYDAPA2GNCvUocL19yTV1pa1uJxCUkGg0wOt8LLxiSPiIiITDHJo3ppNBrc/fpWAIDXJQ2Cs06hYztfkzq73vqnFSIDyh2d4V5SAKWuAjqldaaQiYiIbBkXXlCjKLUVMMhs59dFq1RDpS2HS2mRtUMhIiKySbbzV5tsmnNZMaoUDtYO438kCVVyBdwLL1k7EiIiIpvEJI+uS6avgrJSi0qFlbdPuUa5ozPcSgqgqmj5+wKJiIhsHZM8ui6HSh0UVZW2NZIHQKdUw0GnhUsZp2yJiIiuxSSPrktZpYNCX4Uque2t06lUquBZcLH6cWtERERkxCSPrsuhUgdJGKz7zNp6lKmd4VJaBFcmeURERCaY5NF1Oei0AGwvwQOAKgclFFWV8DQYrB0KERGRTWlWknf27Flzx0E2zKmiFJU2dj/e1bRKNQIMBkCvt3YoRERENqNZSV7Xrl0xdOhQfPrpp6ioqDB3TGRLhIC6oszmFl1crdzRGW5CAAUF1g6FiIjIZjQryUtPT0efPn0QFxcHPz8/PPXUUzh48KC5YyMbYKsra6+mlyuggAAuXrR2KERERDajWUleaGgoFi9ejAsXLmDFihXQaDQYOHAgevXqheTkZOTn55s7TrIShyodFHrbTvIAoFiSgPPngcpKa4dCRERkE25o4YVCocC4ceOwadMmvPnmmzh9+jRmzpyJoKAgxMTEGB9u35AlS5YgODgYarUaERERDY4I/vbbbxg/fjyCg4MhSRJSUlJuuE1qmEOlDjK9HgaZ3NqhNKhEkoDiYuDyZWuHQkREZBNuKMk7fPgwnnnmGfj7+yM5ORkzZ87EmTNnkJqaigsXLmDMmDENnr9x40bExcUhMTER6enp6Nu3L6Kjo5GXl1dn/bKyMnTu3BkLFy6En5+fWdqkhikrddYOoVEMNdu78DoTEREBaGaSl5ycjN69e+OOO+7AhQsXsGbNGmRmZuK1115DSEgIBg0ahFWrViE9Pf267UydOhWTJ09Gz549sWzZMjg5OWHFihV11r/99tvx9ttvY+LEiVCpVGZpEwC0Wi2KiopMDqrmoKuAkLWSnXbc3YGcHKC83NqREBERWV2z/novXboUjzzyCDIzM7F161bcd999kF2TCPj4+OCTTz6ptw2dTocjR44gKirqf8HIZIiKisKBAweaE1az20xKSoK7u7vxCAoKalb/9sipotTm78czcnEBSko4ZUtERIRmJnmpqal4+eWX4e/vb1IuhEBWVhYAQKlUIjY2tt42Ll68CL1eD19fX5NyX19f5OTkNCesZrcZHx+PwsJC45Gdnd2s/u2NTAgodVqbfJxZnSQJUCqrF2DwCRhERNTGNeuvd5cuXaDRaODj42NSfvnyZYSEhEDfyjalValU9U7/tmVqVK+uLVc7WTuUxnN3By5dql6E4eZm7WiIiIisplkjeaKeUZKSkhKo1epGteHl5QW5XI7c3FyT8tzc3HoXVVijzbZMKQTk+ipUyVvJdC0AODpW35PHPfOIiKiNa9JIXlxcHABAkiQkJCTAyel/Izx6vR4//fQTQkNDG9WWUqlEWFgY0tLSMHbsWACAwWBAWloapk+f3pSwLNpmW6YWApJBtJ6FFzWcnaunbDt1AuS2vfULERGRpTQpyfv5558BVI/k/fLLL1Aqlcb3lEol+vbti5kzZza6vbi4OMTGxqJfv34IDw9HSkoKSktLMXnyZABATEwMAgMDkZSUBKB6YcXvv/9u/Pn8+fM4evQoXFxc0LVr10a1SY2nBACpFd7b5uFRvcr2yhXAy8va0RAREVlFk5K8PXv2AAAmT56MxYsXw+0G73maMGEC8vPzkZCQgJycHISGhmLHjh3GhRNZWVkmq3YvXLiAW2+91fj6nXfewTvvvIPBgwdj7969jWqTGs9RGGCQWsdIWGlpOYZG3WV8HaDX44xcjlNXrQz29/fHb8ePWiE6IiKilteshRcrV640WwDTp0+vdyq1JnGrERwcXO/9gI1tkxrPTYhWs32KEAb0f2aR8bW6vBQ3Cz26de2LSofqRTU7XxlrpeiIiIhaXqOTvHHjxmHVqlVwc3PDuHHjGqz7xRdf3HBgZGVVVVALtJ7tU65RoXZC+yt5cC0pxGVPn+ufQEREZGca/Rfc3d0d0t+PjnJ3d7dYQGQjtFoohYBe0TqTPEgSqhQO8LySj8se3tV76BEREbUhjf4LfvUUrTmna8lGVVTAAWg107V1KXV0gWtpIZzKS1Dm5GrtcIiIiFpUs/bGKC8vR1lZmfF1ZmYmUlJSsHPnTrMFRlam1UIGASG1su1TrlLloISiSge3oivWDoWIiKjFNesv+JgxY7BmzRoAQEFBAcLDw7Fo0SKMGTMGS5cuNWuAZCVaLVrh5im1lKud0a4gH/KqSmuHQkRE1KKaleSlp6dj0KBBAIDNmzfDz88PmZmZWLNmDd577z2zBkhWUloKvR3cxlbu6Ayn8mK4lRRYOxQiIqIW1awkr6ysDK6u1fc47dy5E+PGjYNMJkP//v2RmZlp1gDJSoqKoEPrz/KEJEOV3AGeBflAI7bfISIishfNSvK6du2KrVu3Ijs7G9988w3uvvtuAEBeXt4Nb5BMNqCqCigvh71McJY5ucCtuABuTPKIiKgNaVaSl5CQgJkzZyI4OBgRERGIjIwEUD2qd/UTKaiV0mqBykpU2sm2I5UOKiiqdPA26K0dChERUYtp1iZoDzzwAAYOHAiNRoO+ffsay4cPH47777/fbMGRlWi1gE5nNyN5AFCudkGAQVR/NpXK2uEQERFZXLN3uvXz84Ofn59JWXh4+A0HRDZAqwX0ehjsZCQPAModneBqMAD5+UCHDtYOh4iIyOKaleSVlpZi4cKFSEtLQ15eHgwGg8n7Z8+eNUtwZCVard09IUJIMmhlEpCdDQQEALLWu/8fERFRYzQryZsyZQr27duHxx57DP7+/sbHnZGdKCkB5HJrR2F2hZIEXLwIXL4MeHlZOxwiIiKLalaS9/XXX2Pbtm0YMGCAueMhW1BSAiiV1o7C7ColCTAYgPPnmeQREZHda9aclaenJ9q1a2fuWMgW6PVAWRng0HqfWdsgDw8gJwcoLrZ2JERERBbVrCRvwYIFSEhIMHl+LdmJv7dPsdsVqC4uQGkpkJtr7UiIiIgsqlnTtYsWLcKZM2fg6+uL4OBgOFwz6pOenm6W4MgKtNrqw9PT2pFYjrs7kJUFBAXZbzJLRERtXrOSvLFjx5o5DLIZFRXV963Z4cILIzc34K+/gLy86kSPiIjIDjUryUtMTDR3HGQrtFprR2B5Mhng6AhkZlZvp2LPCS0REbVZzd4MuaCgAJs3b8aZM2fw4osvol27dkhPT4evry8CAwPNGSO1pLIyu91DrrS0HEOj7gIAyIWAr8GAIw4OyJP9L8nz9/fHb8ePWilCIiIi82lWknf8+HFERUXB3d0dGRkZmDp1Ktq1a4cvvvgCWVlZWLNmjbnjpJZSXGy396kJYUD/ZxYZX3sUXkQn13Y4G9zDuPnzzlfGWik6IiIi82rWkE1cXBwmTZqEP//8E2q12lh+zz33YP/+/WYLjlqYXl+98tRet0+5RomzOzyKLsO1tNDaoRAREZlds5K8Q4cO4amnnqpVHhgYiJycnBsOiqykZvsUO9wIuS5VCgcAAu0u5wJCWDscIiIis2pWkqdSqVBUVFSr/NSpU/D29r7hoMhKtFpAp2szI3kAUOLsBs/CS3Au4+bIRERkX5qV5I0ePRrz589HZWUlAECSJGRlZeHll1/G+PHjzRogtSCttnrKVtHs9TitTqWDCnJ9JdpfybN2KERERGbVrCRv0aJFKCkpgbe3N8rLyzF48GB07doVrq6ueP31180dI7WUigprR2AVJc7u8LySDyeO5hERkR1p1pCNu7s7UlNT8f333+PYsWMoKSnBbbfdhqioKHPHRy3JjrdPaYhOqYZrSUH1vXlERER2oslJnsFgwKpVq/DFF18gIyMDkiQhJCQEfn5+EEJA+nsrCmqFiovbzKKLaxU7u6P9lXy4GQzWDoWIiMgsmjRsI4TA6NGjMWXKFJw/fx69e/fGLbfcgszMTEyaNAn333+/peIkS6vZPqWNJnk6lSMcqnQI0OutHQoREZFZNGkkb9WqVdi/fz/S0tIwdOhQk/d2796NsWPHYs2aNYiJiTFrkNQCarZPcXa2diRWU+zijg4GA3DlCuDpae1wiIiIbkiTRvI+++wzzJ49u1aCBwDDhg3DrFmzsG7dOrMFRy1Iq60+2tD2KdfSKdVQQFQ/05b75hERUSvXpCTv+PHjGDFiRL3vjxw5EseOHbvhoMgKKioAg6FNbZ9Sl8syGXD+PHD5srVDISIiuiFNSvIuX74MX1/fet/39fXFlStXbjgosgKtlqNXALSSVH1/YkZGddJLRETUSjVp2Eav10PRwEiPXC5HVVXVDQdFlndLn1BoNBrj6+5Vleik1yNXLjeWlZaWWSM06/Pyqh7N69ABaOAfNURERLasSUmeEAKTJk2CSqWq832tVmuWoMjyNBoN7n59q/F117O/wqm8BMUuHsayXW/9s+UDswUqFSCXA2fPAu3bt/kpbCIiap2a9NcrNjb2unW4srb1kemroNJWoFLedhdd1OLlBWg01UdQkLWjISIiarImJXkrV660VBxkRQ6VOiiqKlHm2Ha3T6lRWlqOoVF3AQA8DQboIOGIg0P1vXoA/P398dvxo1aMkIiIqHE4D0VwqKqEQl8JPaclIYQB/Z9ZVPMC7a/kopt/CDR+nQAAO18Za73giIiImqDtPaiUanGo1AFCQEj8dTAhSSh1coPPxQtwKiu2djRERERNYhN/1ZcsWYLg4GCo1WpERETg4MGDDdbftGkTbr75ZqjVavTu3Rvbt283eX/SpEmQJMnkaGh/v7ZOWVkB8JHDdapQO0FRVQmfvPOQuKUKERG1IlZP8jZu3Ii4uDgkJiYiPT0dffv2RXR0NPLy8uqs/8MPP+Dhhx/GE088gZ9//hljx47F2LFj8euvv5rUGzFiBDQajfH47LPPWuLjtErqijLoueiiXoWunmhfkAePwkvWDoWIiKjRrJ7kJScnY+rUqZg8eTJ69uyJZcuWwcnJCStWrKiz/uLFizFixAi8+OKL6NGjBxYsWIDbbrsNH3zwgUk9lUoFPz8/4+HZwLNItVotioqKTI42Qwg4VpShSs778eqjVzig0kEJv7wsqLlhNBERtRJWTfJ0Oh2OHDmCqKgoY5lMJkNUVBQOHDhQ5zkHDhwwqQ8A0dHRterv3bsXPj4+6N69O55++mlculT/KExSUhLc3d2NR1Ab2jJDUVUJRVUlqhQcyWtIsbM7XEqL0VHPzb6JiKh1sGqSd/HiRej1+lqPSvP19UVOTk6d5+Tk5Fy3/ogRI7BmzRqkpaXhzTffxL59+zBy5Ejo9fo624yPj0dhYaHxyM7OvsFP1no4VOmg0DPJuy5JQpGrBzrpDUA9txIQERHZEruco5s4caLx5969e6NPnz7o0qUL9u7di+HDh9eqr1Kp6n2Kh71T/r1Hnp7TtdelU6qrF6icOgW4u1c/GYOIiMhGWXUkz8vLC3K5HLm5uSblubm58PPzq/McPz+/JtUHgM6dO8PLywunT5++8aDtjEOlFlxa23gXJal6JO/cOWuHQkRE1CCrJnlKpRJhYWFIS0szlhkMBqSlpSEyMrLOcyIjI03qA0Bqamq99QHgr7/+wqVLl+Dv72+ewO2ISlsOg8zq629aDYMkVT/y7MwZTtsSEZFNs/pf97i4OCxfvhyrV6/GH3/8gaeffhqlpaWYPHkygOpn4cbHxxvrP/fcc9ixYwcWLVqEEydOYO7cuTh8+DCmT58OACgpKcGLL76IH3/8ERkZGUhLS8OYMWPQtWtXREdHW+Uz2jKnshJUKpTWDqN1cf778W9//AGUl1s3FiIionpY/UasCRMmID8/HwkJCcjJyUFoaCh27NhhXFyRlZUF2VUjTXfccQfWr1+PV199FbNnz0a3bt2wdetW9OrVCwAgl8tx/PhxrF69GgUFBQgICMDdd9+NBQsWtNn77uoj11dBWanloovm8PEBsrOBP/8EevUCOBpKREQ2xupJHgBMnz7dOBJ3rb1799Yqe/DBB/Hggw/WWd/R0RHffPONOcOzWw6VWiiqKlHmpLZ2KK2PTAb4+lbfm+fhAXTsaO2IiIiITHD4oQ1T6rRwqKrkRsjNpVZXT92eOAFcuWLtaIiIiEzwr3sbpqzUVv8gcXVtY5WWlmNo1F0mZX56PS7LZDimcIBOkuDv74/fjh+1ToBERER/Y5LXhim1FVxZ20RCGND/mUUmZZLBgH5X8tDXpwOyAzrjmznjrBQdERHR/zDJa8Ocy4q5stYMhEyGAvf28Mn/CxVK3t9IRES2gcM4bZSDEFBWVqCSK2vNokrhgFInNwTkZsLXUPfj84iIiFoSk7w2Si1E9aILB47kmUuF2gkGmRw3V+mBy5etHQ4REbVxTPLaKEcIyKuq+MxaMyt28YBaGIBffgFKSqwdDhERtWFM8tootQAfWWshOTJZ9ZYqv/zCJ2IQEZHVMMlro1wNBuhlHMWzCEkCAgIAjQb49VdAp7N2RERE1AYxyWuLDAa4CcHHmVmSXA4EBlY/+uy334DKSmtHREREbQyHctqiigqoIaBz4LN8LeHqDZMdhICvwYAMmRwnFQpU/b3xNDdMJiIiS2OS1xaVlUElBKocOJJnCddumKyoqkRo0SXkegXifEAI9HIFdr4y1noBEhFRm8Akry0qK4MECULibH1LqFI4oMCtPXzz/4IkDPgroLO1QyIiojaASV5bVFQEPYS1o2hTqhQOuOLuBZ+LGkgGAZXg909ERJbFoZy2Rgjg0iVoJe6f0tL0Cgdc9vCC1+Uc9Kqq4j56RERkUUzy2prycqCiAhVM8qzCIFfgsqdP9aPPjhyp3k+PiIjIApjktTWlpUBFBbTWjqMNEzIZzstkQGEhcPgwcOGCtUMiIiI7xCSvrSktBQwGCI7kWZckVe+jZzAA6enA6dOAXm/tqIiIyI5w4UVbc/kyoFRaO4o27+q99JyFgIfegGy5HKcVCpRzLz0iIjIDJnltSVVV9T1gjo7WjqTNu3YvPXlVJUKLLqPE2Q0X/DqhyK0d99IjIqIbwunatqSkpHrhhZOTtSOha+gVDrjs6Q21thydM0/ALycLCm6zQkREN4BJXltSUlL9DFU+6cImCUmGQrd2qFCqEaQ5i9CqKuDSJWuHRURErRSTvLbk8mVAwRl6W6dVO+GyhzfaGfTAwYPAyZOAluuhiYioaZjktRVVVcDFi5yqbSUMMjly5fLq6/Xbb9XJnkZTvRqXiIioETis01YUFwNlZYCXl7UjoUYqLS3H0LH3QxIC7YWAgxC4IJMjSy5HgUzG1bdERNQgJnltRVER78drZepcgVtSAL1MjkuePti0JM6K0RERka1jkmeHbukTCo1GY1LWt7IS3sKAfFn1DH1paZk1QqMboFc44IqHN5S6Cvjl/4V+VZXA778DHToAbm7WDo+IiGwMkzw7pNFocPfrW42vlboKdP/zGCodlNCqqvfI2/XWP60UHd0onVKNS+38oJWk6kUZWVnViV5gIODhUf00DSIiavOY5LUBzmXFUOoqUOLM0R57kldWgaGPPwEnIeBhMKAKEnJlMmjkclySJBgkifftERG1YUzy2gDXkkIImYwjPHbm2nv2HCq1CCstggSBEid3XPb0wdbkp6wYIRERWRO3ULFzDjot3Isuo0ztbO1QyMIqHVS44uGNAtd2UOoq0CnrJMIrK4GjR6u3X+Fee0REbQpH8uyca2khVNpylHj6WDsUaiEGuQIlLu4ocXFHhSRV37OXkQG4ugK+voC3N+DpCSiV1g6ViIgsiEmePRMCnlfyUaVw4FRtG5VfVoGhsZMgCQGXvw8JQIkkwyVJwmWZDE4B/jj8y3H+jhAR2RkmeXbMpbQIbiVXUOLsbu1QyEquvW8PACSDASptORy1ZZAZ9Diw/k3gp5+qR/jc3atH/FQqK0VMRETmwiTPXgmBdlfyIDMYqkfyiP4mZDJUODqjwtEZEAIXyyrwQPQIqIWAAFAmyVD09yhfqSTB1d8fR345xpE+IqJWhkmenXIuK0a7gnwUcxSPGiJJKINAt+nvVr80GKDUVUClq4BDlQ5CkuHHdUnAd99V38fn7l79PF1Hx+qDiR8Rkc1ikmeHZELAN/8vyAx6VCo57UaNJ2QyaNVO0KqdAACSMOBiWQXG3TcKKiEgB2CABK0EVEBCkSShWCaDu68v9v3wHaBWVx9M/oiIrI5Jnh0K1OvheSUfhe7trR0KtXJCkqEMAnf8PdIHVI/2OVTp4FCpg6KqEnJDFQ4sT8TETiGolAAtJJRJEooloEKSGcva+/vh8M/pfH4yEVELsYkkb8mSJXj77beRk5ODvn374v3330d4eHi99Tdt2oQ5c+YgIyMD3bp1w5tvvol77rnH+L4QAomJiVi+fDkKCgowYMAALF26FN26dWuJj2Ndubm4Sa9HuaMz9HKbuLxkZ4RMBp1SDZ1SbSzLBnD3tHegqKqsPvRVUFRVQvr7Pj8hk2PvR69ijJcPqgCUShIq/k4CqwBUShLa+/rih58OAApFdSIol3NEkIjoBlg9C9i4cSPi4uKwbNkyREREICUlBdHR0Th58iR8fGrv7fbDDz/g4YcfRlJSEu677z6sX78eY8eORXp6Onr16gUAeOutt/Dee+9h9erVCAkJwZw5cxAdHY3ff/8darW6Vpt2QQjgwgXg118hJKDc0cXaEVEbY5DJoVPKTZK/GjKDHkVC4K4pr0Gur6o+DHrIDAbg7zzuu+WJmBAYhCoJqIIEPQDd36OAWgmohIR2vr5ITf2mOhGUy+s/ZLLqg4ioDbN6kpecnIypU6di8uTJAIBly5Zh27ZtWLFiBWbNmlWr/uLFizFixAi8+OKLAIAFCxYgNTUVH3zwAZYtWwYhBFJSUvDqq69izJgxAIA1a9bA19cXW7duxcSJE1vuw1nILX1CodFoAAByIeAuBPz1enQwGKCVgL/KK9AGxiypFTHI5NBKEir+vtevLheEwN1Pv2VM/mTX/K/coMcPHyfiH7dU/2NOABB/J4MCgF6qfl2m08JBqYIBQJUE6CGhEoD+79ee3j74+utt/0sEax75d+3PV//vtT/X9fraAzD9mYiohVk1ydPpdDhy5Aji4+ONZTKZDFFRUThw4ECd5xw4cABxcXEmZdHR0di6dSsA4Ny5c8jJyUFUVJTxfXd3d0RERODAgQN1JnlarRbaqx75VFhYCAAoKipq9merV1lZ9dMHbuARU+2yMhH9xGtQ6CuhqKyEWlcOdUU5dEoVdA5KFC9PhMMlTYNteBgMLVKH/bT+WFqqH3chICu8WJ2w/X1cq9hgQK9HXja+loSATBggGQyQCQFJGHB4dRIiHnoekjBAEqge5b5K+oZkTO4bCgMAA6oTQ/H3zwBgkACtTgelUlnrPRjPASp0OqhU/6tTc+Cqn7U6HRyuebKIuCrnK9fqoFYpYRqhaVs1dXBV2dX1AKBCWx3L/74Y08Syfft2WLNiBW6YWg107sx9FMlm1fzdFuLa/1raKGFF58+fFwDEDz/8YFL+4osvivDw8DrPcXBwEOvXrzcpW7JkifDx8RFCCPH9998LAOLChQsmdR588EHx0EMP1dlmYmLi1f8fzYMHDx48ePBoxUd2dnZzUxO7YvXpWlsQHx9vMjpoMBhw+fJltG/fHpKZp1qKiooQFBSE7OxsuLm5mbVtah5eE9vDa2J7eE1sD69JbUIIFBcXIyAgwNqh2ASrJnleXl6Qy+XIzc01Kc/NzYWfn1+d5/j5+TVYv+Z/c3Nz4e/vb1InNDS0zjZVKhVU10w/eHh4NOWjNJmbmxv/o7QxvCa2h9fE9vCa2B5eE1Pu7u7WDsFmWHX5mVKpRFhYGNLS0oxlBoMBaWlpiIyMrPOcyMhIk/oAkJqaaqwfEhICPz8/kzpFRUX46aef6m2TiIiIyN5Yfbo2Li4OsbGx6NevH8LDw5GSkoLS0lLjatuYmBgEBgYiKSkJAPDcc89h8ODBWLRoEe69915s2LABhw8fxkcffQQAkCQJM2bMwGuvvYZu3boZt1AJCAjA2LFjrfUxiYiIiFqU1ZO8CRMmID8/HwkJCcjJyUFoaCh27NgBX19fAEBWVhZkV+13dccdd2D9+vV49dVXMXv2bHTr1g1bt2417pEHAC+99BJKS0vx5JNPoqCgAAMHDsSOHTtsYo88lUqFxMTEWtPDZD28JraH18T28JrYHl4Tuh5JCK4zJiIiIrI33BKeiIiIyA4xySMiIiKyQ0zyiIiIiOwQkzwiIiIiO8Qkj4iIiMgOMckjoiabNGkSgoODzdrmqlWrIEkSMjIyzNquJcydO9fsjzysz5AhQzBkyBDj671790KSJGzevLlF+rfEtSailsEkj8hKzpw5g6eeegqdO3eGWq2Gm5sbBgwYgMWLF6O8vNza4VnMG2+8ga1bt1o7DKOa5LLmUKvVCAgIQHR0NN577z0UFxebpZ8LFy5g7ty5OHr0qFnaMydbjo2Imo9JHpEVbNu2Db1798bnn3+OUaNG4f3330dSUhI6duyIF198Ec8995y1Q7SY+pK8xx57DOXl5ejUqVPLBwVg/vz5WLt2LZYuXYp//etfAIAZM2agd+/eOH78uEndV199tcmJ+IULFzBv3rwmJ1I7d+7Ezp07m3ROUzUU2/Lly3Hy5EmL9k9ElmH1J14QtTXnzp3DxIkT0alTJ+zevRv+/v7G96ZNm4bTp09j27ZtVozQOuRyOeRyudX6HzlyJPr162d8HR8fj927d+O+++7D6NGj8ccff8DR0REAoFAooFBY9v8+y8rK4OTkBKVSadF+rsfBwcGq/RNR83Ekj6iFvfXWWygpKcEnn3xikuDV6Nq1q3EkLyMjA5IkYdWqVbXqSZKEuXPnGl/X3Cd26tQp/OMf/4C7uzu8vb0xZ84cCCGQnZ2NMWPGwM3NDX5+fli0aJFJe/XdE1dzD9jevXsb/FzvvPMO7rjjDrRv3x6Ojo4ICwurdd+YJEkoLS3F6tWrjdOjkyZNqrP/++67D507d66zr8jISJOEDAA+/fRThIWFwdHREe3atcPEiRORnZ3dYMzXM2zYMMyZMweZmZn49NNPjeV13ZOXmpqKgQMHwsPDAy4uLujevTtmz54NoPo7vP322wEAkydPNn72mus6ZMgQ9OrVC0eOHMGdd94JJycn47nX3pNXQ6/XY/bs2fDz84OzszNGjx5d6/MGBwcbv9+rXd3m9WKr65680tJSvPDCCwgKCoJKpUL37t3xzjvv4NoHKEmShOnTpxsfPalSqXDLLbdgx44ddX/hRGRWTPKIWtj//d//oXPnzrjjjjss0v6ECRNgMBiwcOFCRERE4LXXXkNKSgruuusuBAYG4s0330TXrl0xc+ZM7N+/32z9Ll68GLfeeivmz5+PN954AwqFAg8++KDJqOTatWuhUqkwaNAgrF27FmvXrsVTTz1V7+c4d+4cDh06ZFKemZmJH3/8ERMnTjSWvf7664iJiUG3bt2QnJyMGTNmIC0tDXfeeScKCgpu6HM99thjANDglOlvv/2G++67D1qtFvPnz8eiRYswevRofP/99wCAHj16YP78+QCAJ5980vjZ77zzTmMbly5dwsiRIxEaGoqUlBQMHTq0wbhef/11bNu2DS+//DKeffZZpKamIioqqsnTyI2J7WpCCIwePRrvvvsuRowYgeTkZHTv3h0vvvgi4uLiatX/7rvv8Mwzz2DixIl46623UFFRgfHjx+PSpUtNipOImkEQUYspLCwUAMSYMWMaVf/cuXMCgFi5cmWt9wCIxMRE4+vExEQBQDz55JPGsqqqKtGhQwchSZJYuHChsfzKlSvC0dFRxMbGGstWrlwpAIhz586Z9LNnzx4BQOzZs8dYFhsbKzp16mRSr6yszOS1TqcTvXr1EsOGDTMpd3Z2Num3vv4LCwuFSqUSL7zwgkm9t956S0iSJDIzM4UQQmRkZAi5XC5ef/11k3q//PKLUCgUtcrr6/fQoUP11nF3dxe33nqr8XXNd13j3XffFQBEfn5+vW0cOnSo3ms5ePBgAUAsW7aszvcGDx5sfF1zPQIDA0VRUZGx/PPPPxcAxOLFi41lnTp1qvO7vrbNhmK79lpv3bpVABCvvfaaSb0HHnhASJIkTp8+bSwDIJRKpUnZsWPHBADx/vvv1+qLiMyLI3lELaioqAgA4OrqarE+pkyZYvxZLpejX79+EELgiSeeMJZ7eHige/fuOHv2rNn6rblfDQCuXLmCwsJCDBo0COnp6c1qz83NDSNHjsTnn39uMg24ceNG9O/fHx07dgQAfPHFFzAYDHjooYdw8eJF4+Hn54du3bphz549N/bBALi4uDS4ytbDwwMA8OWXX8JgMDSrD5VKhcmTJze6fkxMjMnv0QMPPAB/f39s3769Wf031vbt2yGXy/Hss8+alL/wwgsQQuDrr782KY+KikKXLl2Mr/v06QM3Nzez/u4RUd2Y5BG1IDc3NwAw27YcdalJfmq4u7tDrVbDy8urVvmVK1fM1u9XX32F/v37Q61Wo127dvD29sbSpUtRWFjY7DYnTJiA7OxsHDhwAED1tjNHjhzBhAkTjHX+/PNPCCHQrVs3eHt7mxx//PEH8vLybvizlZSUNJiYT5gwAQMGDMCUKVPg6+uLiRMn4vPPP29SwhcYGNikRRbdunUzeS1JErp27WrxfQYzMzMREBBQ6/vo0aOH8f2rXfv7CACenp5m/d0jorpxdS1RC3Jzc0NAQAB+/fXXRtWvb8NdvV5f7zl1rVCtb9Xq1SNkzemrxrfffovRo0fjzjvvxIcffgh/f384ODhg5cqVWL9+/XXPr8+oUaPg5OSEzz//HHfccQc+//xzyGQyPPjgg8Y6BoMBkiTh66+/rvNzuri4NLt/APjrr79QWFiIrl271lvH0dER+/fvx549e7Bt2zbs2LEDGzduxLBhw7Bz585GrRq+eiTUXBq6pi21krkxv3tEZBlM8oha2H333YePPvoIBw4cQGRkZIN1PT09AaDW4oFrR0vM4Ub6+s9//gO1Wo1vvvkGKpXKWL5y5cpadZvypAhnZ2fcd9992LRpE5KTk7Fx40YMGjQIAQEBxjpdunSBEAIhISG46aabGt12Y61duxYAEB0d3WA9mUyG4cOHY/jw4UhOTsYbb7yBV155BXv27EFUVJTZn5Dx559/mrwWQuD06dPo06ePsczT07POhSeZmZkmK5ebElunTp2wa9cuFBcXm4zmnThxwvg+EdkGTtcStbCXXnoJzs7OmDJlCnJzc2u9f+bMGSxevBhA9cifl5dXrVWwH374odnjqrlv6uq+9Ho9Pvroo+ueK5fLIUmSyahfRkZGnZseOzs7N2nF64QJE3DhwgV8/PHHOHbsmMlULQCMGzcOcrkc8+bNqzU6JIS4oVWcu3fvxoIFCxASEoJHH3203nqXL1+uVRYaGgoA0Gq1AKo/N1A7iW6uNWvWmEz7b968GRqNBiNHjjSWdenSBT/++CN0Op2x7Kuvvqq11UpTYrvnnnug1+vxwQcfmJS/++67kCTJpH8isi6O5BG1sC5dumD9+vWYMGECevTogZiYGPTq1Qs6nQ4//PADNm3aZLK32ZQpU7Bw4UJMmTIF/fr1w/79+3Hq1Cmzx3XLLbegf//+iI+Px+XLl9GuXTts2LABVVVV1z333nvvRXJyMkaMGIFHHnkEeXl5WLJkCbp27VrraRFhYWHYtWsXkpOTERAQgJCQEERERNTb9j333ANXV1fMnDkTcrkc48ePN3m/S5cueO211xAfH4+MjAyMHTsWrq6uOHfuHLZs2YInn3wSM2fOvO5n+Prrr3HixAlUVVUhNzcXu3fvRmpqKjp16oT//ve/UKvV9Z47f/587N+/H/feey86deqEvLw8fPjhh+jQoQMGDhxojNPDwwPLli2Dq6srnJ2dERERgZCQkOvGVpd27dph4MCBmDx5MnJzc5GSkoKuXbti6tSpxjpTpkzB5s2bMWLECDz00EM4c+YMPv30U5OFEE2NbdSoURg6dCheeeUVZGRkoG/fvti5cye+/PJLzJgxo1bbRGRF1lrWS9TWnTp1SkydOlUEBwcLpVIpXF1dxYABA8T7778vKioqjPXKysrEE088Idzd3YWrq6t46KGHRF5eXr1bqFy7jUdsbKxwdnau1f/gwYPFLbfcYlJ25swZERUVJVQqlfD19RWzZ88WqampjdpC5ZNPPhHdunUTKpVK3HzzzWLlypW1thoRQogTJ06IO++8Uzg6OgoAxi0+6tvCRQghHn30UQFAREVF1ft9/uc//xEDBw4Uzs7OwtnZWdx8881i2rRp4uTJk/Wec3W/NYdSqRR+fn7irrvuEosXLzbZpqTGtZ8rLS1NjBkzRgQEBAilUikCAgLEww8/LE6dOmVy3pdffil69uwpFAqFyZYldV2LGvVtofLZZ5+J+Ph44ePjIxwdHcW9995r3FbmaosWLRKBgYFCpVKJAQMGiMOHD9dqs6HY6rrWxcXF4vnnnxcBAQHCwcFBdOvWTbz99tvCYDCY1AMgpk2bVium+rZ2ISLzkoTg3a9ERERE9ob35BERERHZISZ5RERERHaISR4RERGRHWKSR0RERGSHmOQRERER2SHuk1cHg8GACxcuwNXV1ey71BMREZFlCCFQXFyMgIAAyGQcx2KSV4cLFy4gKCjI2mEQERFRM2RnZ6NDhw7WDsPqmOTVoeZ5jNnZ2XBzc7NyNERERNQYRUVFCAoKMnmuclvGJK8ONVO0bm5uTPKIiIhaGd5qVY0T1kRERER2iEkeERERkR2y+SRv//79GDVqFAICAiBJErZu3Xrdc/bu3YvbbrsNKpUKXbt2xapVqyweJxEREZEtsfkkr7S0FH379sWSJUsaVf/cuXO49957MXToUBw9ehQzZszAlClT8M0331g4UiIiIiLbYfMLL0aOHImRI0c2uv6yZcsQEhKCRYsWAQB69OiB7777Du+++y6io6PrPEer1UKr1RpfFxUV3VjQRERERFZm80leUx04cABRUVEmZdHR0ZgxY0a95yQlJWHevHkWjoyI2prQfhHQaDT1vl9cUgJXF5cG2zBHHfbT+mOxt378/f1x9PBPDbZBN87ukrycnBz4+vqalPn6+qKoqAjl5eVwdHSsdU58fDzi4uKMr2v22SGilnO9hAhoXX/EAOBKQQHGvVv/rSKbn70LQ9/e2GAb5qjDflp/LPbWz555Exo8n8zD7pK85lCpVFCpVNYOg6jVMkeCdr2ECGhdf8Rq6hARWYvdJXl+fn7Izc01KcvNzYWbm1udo3hEbZ05phTNkaAxISIiMi+7S/IiIyOxfft2k7LU1FRERkZaKSIi26bRaDA08cZHvoiIyLbYfJJXUlKC06dPG1+fO3cOR48eRbt27dCxY0fEx8fj/PnzWLNmDQDgn//8Jz744AO89NJLePzxx7F79258/vnn2LZtm7U+ApHVNGYa9UpBQcsEQ0RELcrmk7zDhw9j6NChxtc1CyRiY2OxatUqaDQaZGVlGd8PCQnBtm3b8Pzzz2Px4sXo0KEDPv7443q3TyFqrRqbwDVmGpWIiOyPzSd5Q4YMgRCi3vfreprFkCFD8PPPP1swKiLru940K8AEjoioLbP5JI+orbreSB2nWYmIqCFM8ohsVGMWRBAREdWHSR6RFXBBBBERWRqTPCIr4P10RERkaTJrB0BERERE5seRPCIz41QsERHZAiZ5RGbGqVgiIrIFnK4lIiIiskNM8oiIiIjsEJM8IiIiIjvEe/KImoCLKoiIqLVgkkfUBFxUQURErQWna4mIiIjsEJM8IiIiIjvEJI+IiIjIDjHJIyIiIrJDXHhBdJXrrZ7lylkiImotmOQRXeV6q2e5cpaIiFoLTtcSERER2SEmeURERER2iEkeERERkR1qFUnekiVLEBwcDLVajYiICBw8eLDB+ikpKejevTscHR0RFBSE559/HhUVFS0ULREREZH12XySt3HjRsTFxSExMRHp6eno27cvoqOjkZeXV2f99evXY9asWUhMTMQff/yBTz75BBs3bsTs2bNbOHIiIiIi67H51bXJycmYOnUqJk+eDABYtmwZtm3bhhUrVmDWrFm16v/www8YMGAAHnnkEQBAcHAwHn74Yfz000/19qHVaqHVao2vi4qKzPwpyBZcb3sUgFukEBGR/bDpJE+n0+HIkSOIj483lslkMkRFReHAgQN1nnPHHXfg008/xcGDBxEeHo6zZ89i+/bteOyxx+rtJykpCfPmzTN7/GRbrrc9CsAtUoiIyH7YdJJ38eJF6PV6+Pr6mpT7+vrixIkTdZ7zyCOP4OLFixg4cCCEEKiqqsI///nPBqdr4+PjERcXZ3xdVFSEoKAg83wIIiIiIiuw+Xvymmrv3r1444038OGHHyI9PR1ffPEFtm3bhgULFtR7jkqlgpubm8lBRERE1JrZ9Eiel5cX5HI5cnNzTcpzc3Ph5+dX5zlz5szBY489hilTpgAAevfujdLSUjz55JN45ZVXIJPZXV5LREREVItNZzxKpRJhYWFIS0szlhkMBqSlpSEyMrLOc8rKymolcnK5HAAghLBcsEREREQ2xKZH8gAgLi4OsbGx6NevH8LDw5GSkoLS0lLjatuYmBgEBgYiKSkJADBq1CgkJyfj1ltvRUREBE6fPo05c+Zg1KhRxmSPiIiIyN7ZfJI3YcIE5OfnIyEhATk5OQgNDcWOHTuMizGysrJMRu5effVVSJKEV199FefPn4e3tzdGjRqF119/3VofgYiIiKjF2XySBwDTp0/H9OnT63xv7969Jq8VCgUSExORmJjYApERERER2SabviePiIiIiJqnVYzkEV0Pn2ZBRERkikke2QU+zYKIiMgUp2uJiIiI7BCTPCIiIiI7xCSPiIiIyA4xySMiIiKyQ0zyiIiIiOwQkzwiIiIiO8Qkj4iIiMgOMckjIiIiskNM8oiIiIjsEJM8IiIiIjvEJI+IiIjIDlns2bVnz55F586dLdU8tTGh/SKg0Wjqff9KQUHLBUNERNQKWCzJ69q1KwYPHownnngCDzzwANRqtaW6ojZAo9FgaOLGet/f/OxdLRgNERGR7bPYdG16ejr69OmDuLg4+Pn54amnnsLBgwct1R0RERERXcViSV5oaCgWL16MCxcuYMWKFdBoNBg4cCB69eqF5ORk5OfnW6prIiIiojbP4gsvFAoFxo0bh02bNuHNN9/E6dOnMXPmTAQFBSEmJqbB+6yIiIiIqHksnuQdPnwYzzzzDPz9/ZGcnIyZM2fizJkzSE1NxYULFzBmzBhLh0BERETU5lhs4UVycjJWrlyJkydP4p577sGaNWtwzz33QCarzitDQkKwatUqBAcHWyoEIiIiojbLYiN5S5cuxSOPPILMzExs3boV9913nzHBq+Hj44NPPvnkum0tWbIEwcHBUKvViIiIuO4CjoKCAkybNg3+/v5QqVS46aabsH379hv6PERERESticVG8lJTU9GxY8daiZ0QAtnZ2ejYsSOUSiViY2MbbGfjxo2Ii4vDsmXLEBERgZSUFERHR+PkyZPw8fGpVV+n0+Guu+6Cj48PNm/ejMDAQGRmZsLDw8OcH4+IiIjIplksyevSpQs0Gk2tROzy5csICQmBXq9vVDvJycmYOnUqJk+eDABYtmwZtm3bhhUrVmDWrFm16q9YsQKXL1/GDz/8AAcHBwC47pSwVquFVqs1vi4qKmpUbERERES2ymLTtUKIOstLSkoavTGyTqfDkSNHEBUVZSyTyWSIiorCgQMH6jznv//9LyIjIzFt2jT4+vqiV69eeOONNxpMKpOSkuDu7m48goKCGhUfERERka0y+0heXFwcAECSJCQkJMDJycn4nl6vx08//YTQ0NBGtXXx4kXo9Xr4+vqalPv6+uLEiRN1nnP27Fns3r0bjz76KLZv347Tp0/jmWeeQWVlJRITE+s8Jz4+3hg3UD2Sx0SPiIiIWjOzJ3k///wzgOqRvF9++QVKpdL4nlKpRN++fTFz5kxzd2tkMBjg4+ODjz76CHK5HGFhYTh//jzefvvtepM8lUoFlUplsZiIiIiIWprZk7w9e/YAACZPnozFixfDzc2t2W15eXlBLpcjNzfXpDw3Nxd+fn51nuPv7w8HBwfI5XJjWY8ePZCTkwOdTmeSdBIRERHZK4vdk7dy5cobSvCA6pG/sLAwpKWlGcsMBgPS0tIQGRlZ5zkDBgzA6dOnYTAYjGWnTp2Cv78/EzwiIiJqM8w6kjdu3DisWrUKbm5uGDduXIN1v/jii0a1GRcXh9jYWPTr1w/h4eFISUlBaWmpcbVtTEwMAgMDkZSUBAB4+umn8cEHH+C5557Dv/71L/z5559444038Oyzz97YhyMiIiJqRcya5Lm7u0OSJOPP5jBhwgTk5+cjISEBOTk5CA0NxY4dO4yLMbKyskz24gsKCsI333yD559/Hn369EFgYCCee+45vPzyy2aJh4iIiKg1MGuSt3Llyjp/vlHTp0/H9OnT63xv7969tcoiIyPx448/mq1/sqzQfhHQaDQN1rlSUNAywRAREdkJi22GXF5eDiGEcQuVzMxMbNmyBT179sTdd99tqW6pFdJoNBiauLHBOpufvauFoiEiIrIPFlt4MWbMGKxZswZA9bNkw8PDsWjRIowZMwZLly61VLdEREREBAsmeenp6Rg0aBAAYPPmzfDz80NmZibWrFmD9957z1LdEhEREREsmOSVlZXB1dUVALBz506MGzcOMpkM/fv3R2ZmpqW6JSIiIiJYMMnr2rUrtm7diuzsbHzzzTfG+/Dy8vJueP88IiIiImqYxZK8hIQEzJw5E8HBwYiIiDBuXrxz507ceuutluqWiIiIiGDB1bUPPPAABg4cCI1Gg759+xrLhw8fjvvvv99S3RIRERERLJjkAYCfn1+tZ8yGh4dbsksiIiIiggWTvNLSUixcuBBpaWnIy8szeZYsAJw9e9ZSXRMRERG1eRZL8qZMmYJ9+/bhscceg7+/v/FxZ0RERERkeRZL8r7++mts27YNAwYMsFQXRERERFQPi62u9fT0RLt27SzVPBERERE1wGJJ3oIFC5CQkICysjJLdUFERERE9bDYdO2iRYtw5swZ+Pr6Ijg4GA4ODibvp6enW6prIiIiojbPYkne2LFjLdU0EREREV2HxZK8xMRESzVNRERERNdhsXvyAKCgoAAff/wx4uPjcfnyZQDV07Tnz5+3ZLdEREREbZ7FRvKOHz+OqKgouLu7IyMjA1OnTkW7du3wxRdfICsrC2vWrLFU10RERERtnsVG8uLi4jBp0iT8+eefUKvVxvJ77rkH+/fvt1S3RERERAQLjuQdOnQI//73v2uVBwYGIicnx1Ldko0J7RcBjUbTYJ0rBQUtEwwREVEbYrEkT6VSoaioqFb5qVOn4O3tbaluycZoNBoMTdzYYJ3Nz97VQtEQERG1HRabrh09ejTmz5+PyspKAIAkScjKysLLL7+M8ePHN6mtJUuWIDg4GGq1GhERETh48GCjztuwYQMkSeJ2LkRERNTmWCzJW7RoEUpKSuDt7Y3y8nIMHjwYXbt2haurK15//fVGt7Nx40bExcUhMTER6enp6Nu3L6Kjo5GXl9fgeRkZGZg5cyYGDRp0ox+FiIiIqNWx2HStu7s7UlNT8f333+PYsWMoKSnBbbfdhqioqCa1k5ycjKlTp2Ly5MkAgGXLlmHbtm1YsWIFZs2aVec5er0ejz76KObNm4dvv/0WBde550ur1UKr1Rpf1zXNTERERNSaWCTJMxgMWLVqFb744gtkZGRAkiSEhITAz88PQghIktSodnQ6HY4cOYL4+HhjmUwmQ1RUFA4cOFDvefPnz4ePjw+eeOIJfPvtt9ftJykpCfPmzWtUTEREREStgdmna4UQGD16NKZMmYLz58+jd+/euOWWW5CZmYlJkybh/vvvb3RbFy9ehF6vh6+vr0m5r69vvSt0v/vuO3zyySdYvnx5o/uJj49HYWGh8cjOzm70uURERES2yOwjeatWrcL+/fuRlpaGoUOHmry3e/dujB07FmvWrEFMTIy5u0ZxcTEee+wxLF++HF5eXo0+T6VSQaVSmT0eIiIiImsxe5L32WefYfbs2bUSPAAYNmwYZs2ahXXr1jUqyfPy8oJcLkdubq5JeW5uLvz8/GrVP3PmDDIyMjBq1ChjmcFgAAAoFAqcPHkSXbp0aepHIiIiImp1zD5de/z4cYwYMaLe90eOHIljx441qi2lUomwsDCkpaUZywwGA9LS0hAZGVmr/s0334xffvkFR48eNR6jR4/G0KFDcfToUQQFBTX9AxERERG1QmYfybt8+XKte+iu5uvriytXrjS6vbi4OMTGxqJfv34IDw9HSkoKSktLjattY2JiEBgYiKSkJKjVavTq1cvkfA8PDwCoVU5ERERkz8ye5On1eigU9Tcrl8tRVVXV6PYmTJiA/Px8JCQkICcnB6GhodixY4cxkczKyoJMZrHt/oiIiIhaJbMneUIITJo0qd6FDFfvR9dY06dPx/Tp0+t8b+/evQ2eu2rVqib3R0RERNTamT3Ji42NvW4dS6ysJSIiIqL/MXuSt3LlSnM3SURERERNxJvZiIiIiOwQkzwiIiIiO8Qkj4iIiMgOMckjIiIiskNM8oiIiIjsEJM8IiIiIjvEJI+IiIjIDpl9nzxqW0L7RUCj0dT7/pWCgpYLhoiIiIyY5NEN0Wg0GJq4sd73Nz97VwtGQ0RERDU4XUtERERkh5jkEREREdkhJnlEREREdohJHhEREZEdYpJHREREZIeY5BERERHZISZ5RERERHaISR4RERGRHWKSR0RERGSHmOQRERER2aFWkeQtWbIEwcHBUKvViIiIwMGDB+utu3z5cgwaNAienp7w9PREVFRUg/WJiIiI7JHNJ3kbN25EXFwcEhMTkZ6ejr59+yI6Ohp5eXl11t+7dy8efvhh7NmzBwcOHEBQUBDuvvtunD9/voUjJyIiIrIem0/ykpOTMXXqVEyePBk9e/bEsmXL4OTkhBUrVtRZf926dXjmmWcQGhqKm2++GR9//DEMBgPS0tLq7UOr1aKoqMjkICIiImrNbDrJ0+l0OHLkCKKiooxlMpkMUVFROHDgQKPaKCsrQ2VlJdq1a1dvnaSkJLi7uxuPoKCgG46diIiIyJpsOsm7ePEi9Ho9fH19Tcp9fX2Rk5PTqDZefvllBAQEmCSK14qPj0dhYaHxyM7OvqG4iYiIiKxNYe0ALGnhwoXYsGED9u7dC7VaXW89lUoFlUrVgpERERERWZZNJ3leXl6Qy+XIzc01Kc/NzYWfn1+D577zzjtYuHAhdu3ahT59+lgyTCIiIiKbY9PTtUqlEmFhYSaLJmoWUURGRtZ73ltvvYUFCxZgx44d6NevX0uESkRERGRTbHokDwDi4uIQGxuLfv36ITw8HCkpKSgtLcXkyZMBADExMQgMDERSUhIA4M0330RCQgLWr1+P4OBg4717Li4ucHFxsdrnICIiImpJNp/kTZgwAfn5+UhISEBOTg5CQ0OxY8cO42KMrKwsyGT/G5BcunQpdDodHnjgAZN2EhMTMXfu3JYMvdUL7RcBjUbTYJ0rBQUtEwwRERE1ic0neQAwffp0TJ8+vc739u7da/I6IyPD8gG1ERqNBkMTNzZYZ/Ozd7VQNERERNQUNn1PHhERERE1D5M8IiIiIjvEJI+IiIjIDjHJIyIiIrJDTPKIiIiI7BCTPCIiIiI7xCSPiIiIyA4xySMiIiKyQ0zyiIiIiOwQkzwiIiIiO8Qkj4iIiMgOMckjIiIiskNM8oiIiIjsEJM8IiIiIjuksHYAZB2h/SKg0WgarHOloKBlgiEiIiKzY5LXRmk0GgxN3Nhgnc3P3tVC0RAREZG5cbqWiIiIyA4xySMiIiKyQ0zyiIiIiOwQkzwiIiIiO8Qkj4iIiMgOtYokb8mSJQgODoZarUZERAQOHjzYYP1Nmzbh5ptvhlqtRu/evbF9+/YWipSIiIjINth8krdx40bExcUhMTER6enp6Nu3L6Kjo5GXl1dn/R9++AEPP/wwnnjiCfz8888YO3Ysxo4di19//bWFI7ee0H4R8A3s2ODBPfCIiIjsm83vk5ecnIypU6di8uTJAIBly5Zh27ZtWLFiBWbNmlWr/uLFizFixAi8+OKLAIAFCxYgNTUVH3zwAZYtW1ZnH1qtFlqt1vi6sLAQAFBUVGTuj9Mizp8/jztnrWqwztaXxqCyvLTBOkKIG65jjjbaYj+2FAv7af2xsJ/WH4u99WMwGCzyN7amTSGE2dtulYQN02q1Qi6Xiy1btpiUx8TEiNGjR9d5TlBQkHj33XdNyhISEkSfPn3q7ScxMVEA4MGDBw8ePHjYwZGdnX2jKYhdsOmRvIsXL0Kv18PX19ek3NfXFydOnKjznJycnDrr5+Tk1NtPfHw84uLijK8NBgMuX76M9u3bQ5KkG/gEtRUVFSEoKAjZ2dlwc3Mza9vUPLwmtofXxPbwmtgeXpPahBAoLi5GQECAtUOxCTad5LUUlUoFlUplUubh4WHRPt3c3PgfpY3hNbE9vCa2h9fE9vCamHJ3d7d2CDbDphdeeHl5QS6XIzc316Q8NzcXfn5+dZ7j5+fXpPpERERE9simkzylUomwsDCkpaUZywwGA9LS0hAZGVnnOZGRkSb1ASA1NbXe+kRERET2yOana+Pi4hAbG4t+/fohPDwcKSkpKC0tNa62jYmJQWBgIJKSkgAAzz33HAYPHoxFixbh3nvvxYYNG3D48GF89NFH1vwYRiqVComJibWmh8l6eE1sD6+J7eE1sT28JnQ9khC2v874gw8+wNtvv42cnByEhobivffeQ0REBABgyJAhCA4OxqpVq4z1N23ahFdffRUZGRno1q0b3nrrLdxzzz1Wip6IiIio5bWKJI+IiIiImsam78kjIiIiouZhkkdERERkh5jkEREREdkhJnlEREREdohJXgtasmQJgoODoVarERERgYMHD1o7pDZl//79GDVqFAICAiBJErZu3WryvhACCQkJ8Pf3h6OjI6KiovDnn39aJ9g2ICkpCbfffjtcXV3h4+ODsWPH4uTJkyZ1KioqMG3aNLRv3x4uLi4YP358rc3OybyWLl2KPn36GJ+iEBkZia+//tr4Pq+JdS1cuBCSJGHGjBnGMl4Tqg+TvBayceNGxMXFITExEenp6ejbty+io6ORl5dn7dDajNLSUvTt2xdLliyp8/233noL7733HpYtW4affvoJzs7OiI6ORkVFRQtH2jbs27cP06ZNw48//ojU1FRUVlbi7rvvRmlpqbHO888/j//7v//Dpk2bsG/fPly4cAHjxo2zYtT2r0OHDli4cCGOHDmCw4cPY9iwYRgzZgx+++03ALwm1nTo0CH8+9//Rp8+fUzKeU2oXoJaRHh4uJg2bZrxtV6vFwEBASIpKcmKUbVdAMSWLVuMrw0Gg/Dz8xNvv/22saygoECoVCrx2WefWSHCticvL08AEPv27RNCVH//Dg4OYtOmTcY6f/zxhwAgDhw4YK0w2yRPT0/x8ccf85pYUXFxsejWrZtITU0VgwcPFs8995wQgv+dUMM4ktcCdDodjhw5gqioKGOZTCZDVFQUDhw4YMXIqMa5c+eQk5Njco3c3d0RERHBa9RCCgsLAQDt2rUDABw5cgSVlZUm1+Tmm29Gx44deU1aiF6vx4YNG1BaWorIyEheEyuaNm0a7r33XpPvHuB/J9Qwm3+smT24ePEi9Ho9fH19Tcp9fX1x4sQJK0VFV8vJyQGAOq9RzXtkOQaDATNmzMCAAQPQq1cvANXXRKlUwsPDw6Qur4nl/fLLL4iMjERFRQVcXFywZcsW9OzZE0ePHuU1sYINGzYgPT0dhw4dqvUe/zuhhjDJIyKrmzZtGn799Vd899131g6FAHTv3h1Hjx5FYWEhNm/ejNjYWOzbt8/aYbVJ2dnZeO6555Camgq1Wm3tcKiV4XRtC/Dy8oJcLq+12ik3Nxd+fn5WioquVnMdeI1a3vTp0/HVV19hz5496NChg7Hcz88POp0OBQUFJvV5TSxPqVSia9euCAsLQ1JSEvr27YvFixfzmljBkSNHkJeXh9tuuw0KhQIKhQL79u3De++9B4VCAV9fX14TqheTvBagVCoRFhaGtLQ0Y5nBYEBaWhoiIyOtGBnVCAkJgZ+fn8k1Kioqwk8//cRrZCFCCEyfPh1btmzB7t27ERISYvJ+WFgYHBwcTK7JyZMnkZWVxWvSwgwGA7RaLa+JFQwfPhy//PILjh49ajz69euHRx991PgzrwnVh9O1LSQuLg6xsbHo168fwsPDkZKSgtLSUkyePNnaobUZJSUlOH36tPH1uXPncPToUbRr1w4dO3bEjBkz8Nprr6Fbt24ICQnBnDlzEBAQgLFjx1ovaDs2bdo0rF+/Hl9++SVcXV2N9w+5u7vD0dER7u7ueOKJJxAXF4d27drBzc0N//rXvxAZGYn+/ftbOXr7FR8fj5EjR6Jjx44oLi7G+vXrsXfvXnzzzTe8Jlbg6upqvE+1hrOzM9q3b28s5zWhell7eW9b8v7774uOHTsKpVIpwsPDxY8//mjtkNqUPXv2CAC1jtjYWCFE9TYqc+bMEb6+vkKlUonhw4eLkydPWjdoO1bXtQAgVq5caaxTXl4unnnmGeHp6SmcnJzE/fffLzQajfWCbgMef/xx0alTJ6FUKoW3t7cYPny42Llzp/F9XhPru3oLFSF4Tah+khBCWCm/JCIiIiIL4T15RERERHaISR4RERGRHWKSR0RERGSHmOQRERER2SEmeURERER2iEkeERERkR1ikkdERERkh5jkEREREdkhJnlEREREdohJHhEREZEdYpJHREREZIf+HyK5HfwgZ+wUAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"transformed_gaussian = moyal_dist2.cdf(samples)\n",
"\n",
"uniform_dist = stats.uniform()\n",
"x_space = np.linspace(0,1,500)\n",
"y = uniform_dist.pdf(x_space)\n",
"\n",
"fig, ax = plt.subplots(nrows=1, ncols=1)\n",
"\n",
"sns.histplot(transformed_gaussian,bins = 50, stat='density', cumulative=False)\n",
"ax.plot(x_space, y, color='black')\n",
"\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 430
},
"id": "HCC5Rxhvh8B5",
"outputId": "f8f8bd10-c65f-4423-ed8d-3b280de7b90d"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGdCAYAAAD60sxaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtnUlEQVR4nO3df1RVdb7/8dcB46AtQUn51VCilqYJlC4YTJdaJFLLNG9l1lWktJ+ub3VuVvQDmqy0plCb4catJPTeSrPMuffqoEaRy6K8ikzN1DShKP7g4I9SBBMS9vePVmfmDD8EPJzD4fN8rPVZd87e7/05771vDa/ZP862WZZlCQAAwCABvm4AAADA2whAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADj9PJ1A91RU1OTDh06pL59+8pms/m6HQAA0A6WZenkyZOKjo5WQEDb53gIQC04dOiQYmJifN0GAADohP379+tXv/pVmzUEoBb07dtX0s8HMCQkxMfdAACA9qipqVFMTIzr73hbCEAt+OWyV0hICAEIAAA/057bV7gJGgAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4Pg1AW7du1dSpUxUdHS2bzab169e3WT937lzZbLZmY+TIka6ap59+utn64cOHd/GedMzIuASFDYxoc4yMS/B1mwAA9Fi9fPnldXV1io+P1x133KEZM2actX758uVasmSJ6/OZM2cUHx+vm2++2a1u5MiR+vDDD12fe/Xy6W42U1VVpcnPrW+zZvMT073SCwAAJvJpMkhLS1NaWlq760NDQxUaGur6vH79ev3www/KyMhwq+vVq5ciIyM91icAAOhZ/PoeoBUrViglJUUXX3yx2/LvvvtO0dHRGjx4sG6//XZVVla2OU99fb1qamrcBgAA6Ln8NgAdOnRIf/zjHzVv3jy35UlJSSooKFBhYaFeffVVVVRUaPz48Tp58mSrcy1evNh1dik0NFQxMTFd3T4AAPAhvw1AK1euVL9+/TR9+nS35Wlpabr55psVFxen1NRUbdy4UcePH9e7777b6lyZmZk6ceKEa+zfv7+LuwcAAL7Uve4ObifLspSfn6/Zs2crKCiozdp+/frp0ksvVXl5eas1drtddrvd020CAIBuyi/PAH3yyScqLy/XnXfeedba2tpa7d69W1FRUV7oDAAA+AOfBqDa2lqVlZWprKxMklRRUaGysjLXTcuZmZmaM2dOs+1WrFihpKQkXX755c3WPfzww/rkk0+0d+9effbZZ7rxxhsVGBioWbNmdem+AAAA/+HTS2A7duzQpEmTXJ8dDockKT09XQUFBaqqqmr2BNeJEyf0/vvva/ny5S3OeeDAAc2aNUvHjh3TwIEDNW7cOH3++ecaOHBg1+0IAADwKz4NQBMnTpRlWa2uLygoaLYsNDRUp06danWb1atXe6I1AADQg/nlPUAAAADnggAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYByfBqCtW7dq6tSpio6Ols1m0/r169usLy4uls1mazacTqdbXW5urgYNGqTg4GAlJSVp+/btXbgXAADA3/g0ANXV1Sk+Pl65ubkd2u7bb79VVVWVa4SHh7vWrVmzRg6HQ9nZ2SotLVV8fLxSU1N1+PBhT7cPAAD8VC9ffnlaWprS0tI6vF14eLj69evX4rqcnBzNnz9fGRkZkqS8vDxt2LBB+fn5euyxx86lXQAA0EP45T1ACQkJioqK0rXXXqtPP/3UtbyhoUE7d+5USkqKa1lAQIBSUlJUUlLS6nz19fWqqalxGwAAoOfyqwAUFRWlvLw8vf/++3r//fcVExOjiRMnqrS0VJJ09OhRNTY2KiIiwm27iIiIZvcJ/aPFixcrNDTUNWJiYrp0PwAAgG/59BJYRw0bNkzDhg1zfR47dqx2796tpUuX6j//8z87PW9mZqYcDofrc01NDSEIAIAezK8CUEsSExO1bds2SdKAAQMUGBio6upqt5rq6mpFRka2Oofdbpfdbu/SPgEAQPfhV5fAWlJWVqaoqChJUlBQkEaPHq2ioiLX+qamJhUVFSk5OdlXLQIAgG7Gp2eAamtrVV5e7vpcUVGhsrIyhYWF6aKLLlJmZqYOHjyoVatWSZKWLVum2NhYjRw5UqdPn9Ybb7yhjz76SJs3b3bN4XA4lJ6erjFjxigxMVHLli1TXV2d66kwAAAAnwagHTt2aNKkSa7Pv9yHk56eroKCAlVVVamystK1vqGhQf/2b/+mgwcPqk+fPoqLi9OHH37oNsfMmTN15MgRZWVlyel0KiEhQYWFhc1ujAYAAOayWZZl+bqJ7qampkahoaE6ceKEQkJCPD5/2MAITX5ufZs1m5+Yru+PVLdZAwAA/q4jf7/9/h4gAACAjiIAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAME4vXzeAltWcrFXYwIg2a6KiovSXL8u80xAAAD0IAaibspqaNPm59W3WbH5iuld6AQCgp+ESGAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4Pg1AW7du1dSpUxUdHS2bzab169e3Wb9u3Tpde+21GjhwoEJCQpScnKxNmza51Tz99NOy2WxuY/jw4V24FwAAwN/4NADV1dUpPj5eubm57arfunWrrr32Wm3cuFE7d+7UpEmTNHXqVO3atcutbuTIkaqqqnKNbdu2dUX7AADAT/Xy5ZenpaUpLS2t3fXLli1z+/z888/rD3/4g/7nf/5HV1xxhWt5r169FBkZ6ak2AQBAD+PX9wA1NTXp5MmTCgsLc1v+3XffKTo6WoMHD9btt9+uysrKNuepr69XTU2N2wAAAD2XXwegl156SbW1tbrllltcy5KSklRQUKDCwkK9+uqrqqio0Pjx43Xy5MlW51m8eLFCQ0NdIyYmxhvtAwAAH/HbAPT222/rN7/5jd59912Fh4e7lqelpenmm29WXFycUlNTtXHjRh0/flzvvvtuq3NlZmbqxIkTrrF//35v7AIAAPARn94D1FmrV6/WvHnztHbtWqWkpLRZ269fP1166aUqLy9vtcZut8tut3u6TQAA0E353Rmgd955RxkZGXrnnXd0/fXXn7W+trZWu3fvVlRUlBe6AwAA/sCnZ4Bqa2vdzsxUVFSorKxMYWFhuuiii5SZmamDBw9q1apVkn6+7JWenq7ly5crKSlJTqdTktS7d2+FhoZKkh5++GFNnTpVF198sQ4dOqTs7GwFBgZq1qxZ3t9BAADQLfn0DNCOHTt0xRVXuB5hdzgcuuKKK5SVlSVJqqqqcnuC67XXXtOZM2d0//33KyoqyjUeeOABV82BAwc0a9YsDRs2TLfccosuuOACff755xo4cKB3dw4AAHRbPj0DNHHiRFmW1er6goICt8/FxcVnnXP16tXn2BUAAOjp/PImaPys5mStwgZGtFkTFRWlv3xZ5p2GAADwEwQgP2Y1NWnyc+vbrNn8xHSv9AIAgD/xu6fAAAAAzhVngHq49lwmO/XjafXpHdxmDZfSAAA9CQGoh2vPZbK1C67W5JzCNmu4lAYA6Em4BAYAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4/AuMLRLe16qygtTAQD+ggCEdmnPS1V5YSoAwF8QgOAxnCUCAPgLAhA8hrNEAAB/wU3QAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4/BI0up2RcQmqqqpqs4ZXagAAzgUBCF7VnveF1Zw8qZteKWqzhldqAADOBQEIXtWe94WtXXC1d5ppJ85IAUDPQwACzqKqqoqXvAJAD9OpALRnzx4NHjzY070A7daeS2mclQEAtKZTAWjo0KGaMGGC7rzzTt10000KDg72dF9Am9pzKY2zMgCA1nTqMfjS0lLFxcXJ4XAoMjJSd999t7Zv3+7p3gAAALpEpwJQQkKCli9frkOHDik/P19VVVUaN26cLr/8cuXk5OjIkSOe7hMAAMBjzumHEHv16qUZM2Zo7dq1euGFF1ReXq6HH35YMTExmjNnzlmfnAG60i/3CbU1RsYl+LpNAIAPnFMA2rFjh+677z5FRUUpJydHDz/8sHbv3q0tW7bo0KFDmjZtWpvbb926VVOnTlV0dLRsNpvWr19/1u8sLi7WlVdeKbvdrqFDh6qgoKBZTW5urgYNGqTg4GAlJSVxec5Qv9wn1NYgpAOAmToVgHJycjRq1CiNHTtWhw4d0qpVq7Rv3z49++yzio2N1fjx41VQUKDS0tI256mrq1N8fLxyc3Pb9b0VFRW6/vrrNWnSJJWVlenBBx/UvHnztGnTJlfNmjVr5HA4lJ2drdLSUsXHxys1NVWHDx/uzK4CAIAeqFNPgb366qu64447NHfuXEVFRbVYEx4erhUrVrQ5T1pamtLS0tr9vXl5eYqNjdXLL78sSbrsssu0bds2LV26VKmpqZJ+Dmfz589XRkaGa5sNGzYoPz9fjz32WLu/qytYlqVTp07Jsiydqf/xrLXUeKemrq7OK/N405ikX8vprG6zJjIyQju++NxLHQGAuz59+shms/muAasTKioqrMbGxmbLm5qarH379nVmSkuS9cEHH7RZM378eOuBBx5wW5afn2+FhIRYlmVZ9fX1VmBgYLN55syZY91www2tznv69GnrxIkTrrF//35LknXixInO7EqramtrLUkMBoPBYBg/amtrPfo31rIs68SJE5bUvr/fnboENmTIEB09erTZ8u+//16xsbGdmbJdnE6nIiLcf/wuIiJCNTU1+vHHH3X06FE1Nja2WON0Oludd/HixQoNDXWNmJiYLukfAAB0D526BGZZVovLa2tr/fJHETMzM+VwOFyfa2pquiQE9enTR7W1tfrVxbG6Jnt1m7XrHNdpRs5GanpQTdFvbtWBfRVt1rTn0tWpH0+rT++2/z2rOXlSN7604Zz7AYCu0qdPH59+f4cC0C8hwWazKSsry635xsZGffHFF0pISPBog/8oMjJS1dXufxyqq6sVEhKi3r17KzAwUIGBgS3WREZGtjqv3W6X3W7vkp7/kc1m0/nnny+bzaZe9t5nraWm59Wcf/75bdZUVx9W6vN/aLNm7YKrlbp001lrPNFPe/CyWAD+qEMBaNeuXZJ+PgP01VdfKSgoyLUuKChI8fHxevjhhz3b4T9ITk7Wxo3u/yt7y5YtSk5OdvUwevRoFRUVafr06ZKkpqYmFRUVacGCBV3WF2AyXhYLwB91KAB9/PHHkqSMjAwtX75cISEh5/TltbW1Ki8vd32uqKhQWVmZwsLCdNFFFykzM1MHDx7UqlWrJEn33HOPfv/73+uRRx7RHXfcoY8++kjvvvuuNmz4+6l+h8Oh9PR0jRkzRomJiVq2bJnq6upcT4UBvtKeF7jWnDzppW7apz1nd9rTs6deXtueftpziZAzUgA6dQ/Qm2++6ZEv37FjhyZNmuT6/MsltvT0dBUUFKiqqkqVlZWu9bGxsdqwYYMeeughLV++XL/61a/0xhtvuB6Bl6SZM2fqyJEjysrKktPpVEJCggoLC5vdGA14W3te4Lp2wdXeaUbtD2Q3vVLUZk17evbUy2vbc7Zp7YKrNTmn8Jy/y1O4RAh0T+0OQDNmzFBBQYFCQkI0Y8aMNmvXrVvXrjknTpzY6g3Vklr8leeJEye6LsW1ZsGCBVzyAs6iuwWynopLhED31O4AFBoa6vrBotDQ0C5rCAAAoKu1OwD942UvT10CAwAA8IVO3QP0448/yrIs12Pw+/bt0wcffKARI0Zo8uTJHm0QgBn88SZxAP6rUwFo2rRpmjFjhu655x4dP35ciYmJCgoK0tGjR5WTk6N7773X030C6OG4J+ncccM10H6dCkClpaVaunSpJOm9995TZGSkdu3apffff19ZWVkEIADwAW64BtqvUwHo1KlT6tu3ryRp8+bNmjFjhgICAvTrX/9a+/bt82iDAOBp7bncxu8JAT1bpwLQ0KFDtX79et14443atGmTHnroIUnS4cOHz/nHEQGgq7X3clt3+j0heAeXEc3RqQCUlZWl2267TQ899JCuueYa16soNm/erCuuuMKjDQIAeq7uFjjacxnxvf+X4pFfNodvdSoA3XTTTRo3bpyqqqoUHx/vWn7NNdfoxhtv9FhzAAD/1d5XqZzt18a725k2T/2yOXyrUwFI+vnN7P/8hvXExMRzbggA/IU3H93vbu9la4/2vroE8IVOBaC6ujotWbJERUVFOnz4sJqamtzW79mzxyPNAUB35qlH9/3xvWyeCmSAr3QqAM2bN0+ffPKJZs+eraioKNcrMgAAHeePv4HE2R3v6G73SPUknQpAf/zjH7VhwwZdddVVnu4HAOBj3e1Xub152a676W6/7dSTAlmnAlD//v0VFhbm6V4AAN1Adzsj1Z5+eDLr3PXUm9Zb06kAtGjRImVlZWnlypWu94EBAOArJj+Z5akzZKZd1uxUAHr55Ze1e/duRUREaNCgQTrvvPPc1peWlnqkOQAA0DZPnSEz7ab1TgWg6dOne7gNAAC6ljfvbepu9y11t8ua3UGnAlB2dran+wAAoEt5MwSYfFamu4W/1nT6hxCPHz+u9957T7t379bChQsVFham0tJSRURE6MILL/RkjwAA9Dg99ayMv9yP1akA9OWXXyolJUWhoaHau3ev5s+fr7CwMK1bt06VlZVatWqVp/sEAADwmIDObORwODR37lx99913Cg4Odi2/7rrrtHXrVo81BwAA0BU6FYD+7//+T3fffXez5RdeeKGcTuc5NwUAANCVOhWA7Ha7ampqmi3/29/+poEDB55zUwAAAF2pUwHohhtu0DPPPKOffvpJkmSz2VRZWalHH31U//Iv/+LRBgEAADytUwHo5ZdfVm1trQYOHKgff/xREyZM0NChQ9W3b18999xznu4RAADAozr1FFhoaKi2bNmiTz/9VH/6059UW1urK6+8UikpKZ7uDwAAwOM6HICamppUUFCgdevWae/evbLZbIqNjVVkZKQsy5LNZuuKPgEAADymQ5fALMvSDTfcoHnz5ungwYMaNWqURo4cqX379mnu3Lm68cYbu6pPAAAAj+nQGaCCggJt3bpVRUVFmjRpktu6jz76SNOnT9eqVas0Z84cjzYJAADgSR06A/TOO+/o8ccfbxZ+JOnqq6/WY489prfeestjzQEAAHSFDgWgL7/8UlOmTGl1fVpamv70pz+dc1MAAABdqUMB6Pvvv1dEROtveI2IiNAPP/xwzk0BAAB0pQ4FoMbGRvXq1fptQ4GBgTpz5sw5NwUAANCVOnQTtGVZmjt3rux2e4vr6+vrPdIUAABAV+pQAEpPTz9rDU+AAQCA7q5DAejNN9/sqj4AAAC8plPvAgMAAPBnBCAAAGAcAhAAADBOtwhAubm5GjRokIKDg5WUlKTt27e3Wjtx4kTZbLZm4/rrr3fVzJ07t9n6tn7AEQAAmKXDb4P3tDVr1sjhcCgvL09JSUlatmyZUlNT9e233yo8PLxZ/bp169TQ0OD6fOzYMcXHx+vmm292q5syZYrbTdutPboPAADM4/MzQDk5OZo/f74yMjI0YsQI5eXlqU+fPsrPz2+xPiwsTJGRka6xZcsW9enTp1kAstvtbnX9+/f3xu4AAAA/4NMA1NDQoJ07dyolJcW1LCAgQCkpKSopKWnXHCtWrNCtt96q888/3215cXGxwsPDNWzYMN177706duxYq3PU19erpqbGbQAAgJ7LpwHo6NGjamxsbPZ+sYiICDmdzrNuv337dv35z3/WvHnz3JZPmTJFq1atUlFRkV544QV98sknSktLU2NjY4vzLF68WKGhoa4RExPT+Z0CAADdns/vAToXK1as0KhRo5SYmOi2/NZbb3X951GjRikuLk5DhgxRcXGxrrnmmmbzZGZmyuFwuD7X1NQQggAA6MF8egZowIABCgwMVHV1tdvy6upqRUZGtrltXV2dVq9erTvvvPOs3zN48GANGDBA5eXlLa632+0KCQlxGwAAoOfyaQAKCgrS6NGjVVRU5FrW1NSkoqIiJScnt7nt2rVrVV9fr3/913896/ccOHBAx44dU1RU1Dn3DAAA/J/PnwJzOBx6/fXXtXLlSn3zzTe69957VVdXp4yMDEk/v1w1MzOz2XYrVqzQ9OnTdcEFF7gtr62t1cKFC/X5559r7969Kioq0rRp0zR06FClpqZ6ZZ8AAED35vN7gGbOnKkjR44oKytLTqdTCQkJKiwsdN0YXVlZqYAA95z27bffatu2bdq8eXOz+QIDA/Xll19q5cqVOn78uKKjozV58mQtWrSI3wICAACSukEAkqQFCxZowYIFLa4rLi5utmzYsGGyLKvF+t69e2vTpk2ebA8AAPQwPr8EBgAA4G0EIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjdIsAlJubq0GDBik4OFhJSUnavn17q7UFBQWy2WxuIzg42K3GsixlZWUpKipKvXv3VkpKir777ruu3g0AAOAnfB6A1qxZI4fDoezsbJWWlio+Pl6pqak6fPhwq9uEhISoqqrKNfbt2+e2/sUXX9Qrr7yivLw8ffHFFzr//POVmpqq06dPd/XuAAAAP+DzAJSTk6P58+crIyNDI0aMUF5envr06aP8/PxWt7HZbIqMjHSNiIgI1zrLsrRs2TI9+eSTmjZtmuLi4rRq1SodOnRI69ev98IeAQCA7s6nAaihoUE7d+5USkqKa1lAQIBSUlJUUlLS6na1tbW6+OKLFRMTo2nTpukvf/mLa11FRYWcTqfbnKGhoUpKSmp1zvr6etXU1LgNAADQc/k0AB09elSNjY1uZ3AkKSIiQk6ns8Vthg0bpvz8fP3hD3/Qf/3Xf6mpqUljx47VgQMHJMm1XUfmXLx4sUJDQ10jJibmXHcNAAB0Yz6/BNZRycnJmjNnjhISEjRhwgStW7dOAwcO1H/8x390es7MzEydOHHCNfbv3+/BjgEAQHfj0wA0YMAABQYGqrq62m15dXW1IiMj2zXHeeedpyuuuELl5eWS5NquI3Pa7XaFhIS4DQAA0HP5NAAFBQVp9OjRKioqci1rampSUVGRkpOT2zVHY2OjvvrqK0VFRUmSYmNjFRkZ6TZnTU2Nvvjii3bPCQAAerZevm7A4XAoPT1dY8aMUWJiopYtW6a6ujplZGRIkubMmaMLL7xQixcvliQ988wz+vWvf62hQ4fq+PHj+u1vf6t9+/Zp3rx5kn5+QuzBBx/Us88+q0suuUSxsbF66qmnFB0drenTp/tqNwEAQDfi8wA0c+ZMHTlyRFlZWXI6nUpISFBhYaHrJubKykoFBPz9RNUPP/yg+fPny+l0qn///ho9erQ+++wzjRgxwlXzyCOPqK6uTnfddZeOHz+ucePGqbCwsNkPJgIAADP5PABJ0oIFC7RgwYIW1xUXF7t9Xrp0qZYuXdrmfDabTc8884yeeeYZT7UIAAB6EL97CgwAAOBcEYAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGKdbBKDc3FwNGjRIwcHBSkpK0vbt21utff311zV+/Hj1799f/fv3V0pKSrP6uXPnymazuY0pU6Z09W4AAAA/4fMAtGbNGjkcDmVnZ6u0tFTx8fFKTU3V4cOHW6wvLi7WrFmz9PHHH6ukpEQxMTGaPHmyDh486FY3ZcoUVVVVucY777zjjd0BAAB+wOcBKCcnR/Pnz1dGRoZGjBihvLw89enTR/n5+S3Wv/XWW7rvvvuUkJCg4cOH64033lBTU5OKiorc6ux2uyIjI12jf//+3tgdAADgB3wagBoaGrRz506lpKS4lgUEBCglJUUlJSXtmuPUqVP66aefFBYW5ra8uLhY4eHhGjZsmO69914dO3bMo70DAAD/1cuXX3706FE1NjYqIiLCbXlERIT++te/tmuORx99VNHR0W4hasqUKZoxY4ZiY2O1e/duPf7440pLS1NJSYkCAwObzVFfX6/6+nrX55qamk7uEQAA8Ac+DUDnasmSJVq9erWKi4sVHBzsWn7rrbe6/vOoUaMUFxenIUOGqLi4WNdcc02zeRYvXqzf/OY3XukZAAD4nk8vgQ0YMECBgYGqrq52W15dXa3IyMg2t33ppZe0ZMkSbd68WXFxcW3WDh48WAMGDFB5eXmL6zMzM3XixAnX2L9/f8d2BAAA+BWfBqCgoCCNHj3a7QbmX25oTk5ObnW7F198UYsWLVJhYaHGjBlz1u85cOCAjh07pqioqBbX2+12hYSEuA0AANBz+fwpMIfDoddff10rV67UN998o3vvvVd1dXXKyMiQJM2ZM0eZmZmu+hdeeEFPPfWU8vPzNWjQIDmdTjmdTtXW1kqSamtrtXDhQn3++efau3evioqKNG3aNA0dOlSpqak+2UcAANC9+PweoJkzZ+rIkSPKysqS0+lUQkKCCgsLXTdGV1ZWKiDg7znt1VdfVUNDg2666Sa3ebKzs/X0008rMDBQX375pVauXKnjx48rOjpakydP1qJFi2S32726bwAAoHvyeQCSpAULFmjBggUtrisuLnb7vHfv3jbn6t27tzZt2uShzgAAQE/k80tgAAAA3kYAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADBOtwhAubm5GjRokIKDg5WUlKTt27e3Wb927VoNHz5cwcHBGjVqlDZu3Oi23rIsZWVlKSoqSr1791ZKSoq+++67rtwFAADgR3wegNasWSOHw6Hs7GyVlpYqPj5eqampOnz4cIv1n332mWbNmqU777xTu3bt0vTp0zV9+nT9+c9/dtW8+OKLeuWVV5SXl6cvvvhC559/vlJTU3X69Glv7RYAAOjGfB6AcnJyNH/+fGVkZGjEiBHKy8tTnz59lJ+f32L98uXLNWXKFC1cuFCXXXaZFi1apCuvvFK///3vJf189mfZsmV68sknNW3aNMXFxWnVqlU6dOiQ1q9f78U9AwAA3VUvX355Q0ODdu7cqczMTNeygIAApaSkqKSkpMVtSkpK5HA43Jalpqa6wk1FRYWcTqdSUlJc60NDQ5WUlKSSkhLdeuutzeasr69XfX296/OJEyckSTU1NZ3et7ZYTU366ce6tmssixpqqKGGGmp6Zk1TU5f8jf1lTsuyzl5s+dDBgwctSdZnn33mtnzhwoVWYmJii9ucd9551ttvv+22LDc31woPD7csy7I+/fRTS5J16NAht5qbb77ZuuWWW1qcMzs725LEYDAYDAajB4z9+/efNYP49AxQd5GZmel2VqmpqUnff/+9LrjgAtlsNo9+V01NjWJiYrR//36FhIR4dG78HcfZOzjO3sFx9g6Os3d05XG2LEsnT55UdHT0WWt9GoAGDBigwMBAVVdXuy2vrq5WZGRki9tERka2Wf/L/62urlZUVJRbTUJCQotz2u122e12t2X9+vXryK50WEhICP+CeQHH2Ts4zt7BcfYOjrN3dNVxDg0NbVedT2+CDgoK0ujRo1VUVORa1tTUpKKiIiUnJ7e4TXJyslu9JG3ZssVVHxsbq8jISLeampoaffHFF63OCQAAzOLzS2AOh0Pp6ekaM2aMEhMTtWzZMtXV1SkjI0OSNGfOHF144YVavHixJOmBBx7QhAkT9PLLL+v666/X6tWrtWPHDr322muSJJvNpgcffFDPPvusLrnkEsXGxuqpp55SdHS0pk+f7qvdBAAA3YjPA9DMmTN15MgRZWVlyel0KiEhQYWFhYqIiJAkVVZWKiDg7yeqxo4dq7fffltPPvmkHn/8cV1yySVav369Lr/8clfNI488orq6Ot111106fvy4xo0bp8LCQgUHB3t9//6Z3W5XdnZ2s0tu8CyOs3dwnL2D4+wdHGfv6C7H2WZZ7XlWDAAAoOfw+Q8hAgAAeBsBCAAAGIcABAAAjEMAAgAAxiEAdYHc3FwNGjRIwcHBSkpK0vbt29usX7t2rYYPH67g4GCNGjVKGzdu9FKn/q0jx/n111/X+PHj1b9/f/Xv318pKSln/f8LftbRf55/sXr1atlsNn5+op06epyPHz+u+++/X1FRUbLb7br00kv574526OhxXrZsmYYNG6bevXsrJiZGDz30kE6fPu2lbv3T1q1bNXXqVEVHR8tms7XrReTFxcW68sorZbfbNXToUBUUFHR5nz59F1hPtHr1aisoKMjKz8+3/vKXv1jz58+3+vXrZ1VXV7dY/+mnn1qBgYHWiy++aH399dfWk08+aZ133nnWV1995eXO/UtHj/Ntt91m5ebmWrt27bK++eYba+7cuVZoaKh14MABL3fuXzp6nH9RUVFhXXjhhdb48eOtadOmeadZP9bR41xfX2+NGTPGuu6666xt27ZZFRUVVnFxsVVWVublzv1LR4/zW2+9Zdntduutt96yKioqrE2bNllRUVHWQw895OXO/cvGjRutJ554wlq3bp0lyfrggw/arN+zZ4/Vp08fy+FwWF9//bX1u9/9zgoMDLQKCwu7tE8CkIclJiZa999/v+tzY2OjFR0dbS1evLjF+ltuucW6/vrr3ZYlJSVZd999d5f26e86epz/2ZkzZ6y+fftaK1eu7KoWe4TOHOczZ85YY8eOtd544w0rPT2dANQOHT3Or776qjV48GCroaHBWy32CB09zvfff7919dVXuy1zOBzWVVdd1aV99iTtCUCPPPKINXLkSLdlM2fOtFJTU7uwM8viEpgHNTQ0aOfOnUpJSXEtCwgIUEpKikpKSlrcpqSkxK1eklJTU1utR+eO8z87deqUfvrpJ4WFhXVVm36vs8f5mWeeUXh4uO68805vtOn3OnOc//u//1vJycm6//77FRERocsvv1zPP/+8GhsbvdW23+nMcR47dqx27tzpuky2Z88ebdy4Udddd51XejaFr/4O+vyXoHuSo0ePqrGx0fUr1r+IiIjQX//61xa3cTqdLdY7nc4u69PfdeY4/7NHH31U0dHRzf6lw9915jhv27ZNK1asUFlZmRc67Bk6c5z37Nmjjz76SLfffrs2btyo8vJy3Xffffrpp5+UnZ3tjbb9TmeO82233aajR49q3LhxsixLZ86c0T333KPHH3/cGy0bo7W/gzU1Nfrxxx/Vu3fvLvlezgDBOEuWLNHq1av1wQcfdIvXo/QUJ0+e1OzZs/X6669rwIABvm6nR2tqalJ4eLhee+01jR49WjNnztQTTzyhvLw8X7fWoxQXF+v555/Xv//7v6u0tFTr1q3Thg0btGjRIl+3Bg/gDJAHDRgwQIGBgaqurnZbXl1drcjIyBa3iYyM7FA9Onecf/HSSy9pyZIl+vDDDxUXF9eVbfq9jh7n3bt3a+/evZo6daprWVNTkySpV69e+vbbbzVkyJCubdoPdeaf56ioKJ133nkKDAx0LbvsssvkdDrV0NCgoKCgLu3ZH3XmOD/11FOaPXu25s2bJ0kaNWqU6z2TTzzxhNt7KtF5rf0dDAkJ6bKzPxJngDwqKChIo0ePVlFRkWtZU1OTioqKlJyc3OI2ycnJbvWStGXLllbr0bnjLEkvvviiFi1apMLCQo0ZM8Ybrfq1jh7n4cOH66uvvlJZWZlr3HDDDZo0aZLKysoUExPjzfb9Rmf+eb7qqqtUXl7uCpiS9Le//U1RUVGEn1Z05jifOnWqWcj5JXRavEbTY3z2d7BLb7E20OrVqy273W4VFBRYX3/9tXXXXXdZ/fr1s5xOp2VZljV79mzrsccec9V/+umnVq9evayXXnrJ+uabb6zs7Gweg2+Hjh7nJUuWWEFBQdZ7771nVVVVucbJkyd9tQt+oaPH+Z/xFFj7dPQ4V1ZWWn379rUWLFhgffvtt9b//u//WuHh4dazzz7rq13wCx09ztnZ2Vbfvn2td955x9qzZ4+1efNma8iQIdYtt9ziq13wCydPnrR27dpl7dq1y5Jk5eTkWLt27bL27dtnWZZlPfbYY9bs2bNd9b88Br9w4ULrm2++sXJzc3kM3l/97ne/sy666CIrKCjISkxMtD7//HPXugkTJljp6elu9e+++6516aWXWkFBQdbIkSOtDRs2eLlj/9SR43zxxRdbkpqN7Oxs7zfuZzr6z/M/IgC1X0eP82effWYlJSVZdrvdGjx4sPXcc89ZZ86c8XLX/qcjx/mnn36ynn76aWvIkCFWcHCwFRMTY913333WDz/84P3G/cjHH3/c4n/f/nJs09PTrQkTJjTbJiEhwQoKCrIGDx5svfnmm13ep82yOI8HAADMwj1AAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABjn/wMbOVlGd+SPBAAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
}
]
}
\ No newline at end of file
%% Cell type:code id: tags:
```
import scipy.stats as stats
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```
%% Cell type:code id: tags:
```
n_samples = 100000
x_space = np.linspace(-4,4, 500)
mu = 0
sigma = 1
gauss_dist = stats.norm(mu, sigma)
samples = gauss_dist.rvs(size=n_samples)
y = gauss_dist.pdf(x_space)
```
%% Cell type:code id: tags:
```
x_space = np.linspace(0, 30, 500)
moyal_dist = stats.moyal(loc=6.0, scale = 1.5)
moyal_dist2 = stats.moyal(loc=6.3, scale = 1.5)
samples = moyal_dist.rvs(size=n_samples)
y = moyal_dist.pdf(x_space)
```
%% Cell type:code id: tags:
```
fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True)
sns.histplot(samples, ax=ax[0], bins = 50, stat='density', cumulative=False, label='Simulation')
ax[0].fill_between(x_space, y, color='red', alpha=0.2, label='True Distrib.')
ax[0].set_title('Probability Distribution')
sns.histplot(samples, ax=ax[1], bins = 50, stat='density', cumulative=True)
ax[1].set_title('Cumulative Distribution')
lines_labels = [ax.get_legend_handles_labels() for ax in fig.axes]
lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
fig.legend(lines, labels)
plt.show()
```
%% Output
%% Cell type:code id: tags:
```
transformed_gaussian = moyal_dist2.cdf(samples)
uniform_dist = stats.uniform()
x_space = np.linspace(0,1,500)
y = uniform_dist.pdf(x_space)
fig, ax = plt.subplots(nrows=1, ncols=1)
sns.histplot(transformed_gaussian,bins = 50, stat='density', cumulative=False)
ax.plot(x_space, y, color='black')
plt.show()
```
%% Output
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment