prediction_dataset=False# Boolean, if prediction dataset shall be created
pred_from_scratch=True
pred_delete=None
map_generation=True# Boolean, if mapping shall be performed
# General
crs='wgs84'# Coordinate reference system, string
no_value=-999# No data value, integer, suggestion -999
random_seed=42# Random seed, integer
resolution=25# Resolution in m of the final map, integer, all datasets will be interpolated to this resolution
path_ml='/Volumes/LaCie/2nd_Paper/entire_swiss_for_paper/maps/'# Path to where shire framework related parameters/files will be stored
data_summary_path=None# Path to the data summary file, string, relevant only for training/prediction dataset generation
key_to_include_path=None# Path to kets_to_include file, string, relevant only for training/prediction dataset generation
# Training dataset generation
size=None# Size of the validation dataset, float number between 0 and 1
path_train='/Volumes/LaCie/2nd_Paper/entire_swiss_for_paper/training_datasets/{days}/training_statistical_{days}d.csv'# Path to directory where the training dataset is/shall be stored
ohe=None# One-hot encoding, bool
path_landslide_database=None# Path to where the landslide database is stored, string
ID='ID'# Name of the column containing landslide ID, string
landslide_database_x='xcoord'# Name of the column containing longitude values, string
landslide_database_y='ycoord'# Name of the column containing latitude values, string
path_nonls_locations=None# Path to where the non-landslide database is stored, string
num_nonls=None# Number of non-landslide locations to include in the training dataset, integer
nonls_database_x=None# Name of the column containing longitude values, string
nonls_database_y=None# Name of the column containing longitude values, string
#cluster = False # Use clustering for training dataset generation, bool
#interpolation = False # Use interpolation for training dataset generation, bool
# Prediction dataset generation
bounding_box=None# Coordinates of the edges of the bounding box of the area of interest, list, [<ymax>, <ymin>, <xmin>, <xmax>]
path_pred=None# Path to directory where the prediction dataset is/shall be stored
# Map generation
RF_training=True# Train the RF, bool
RF_prediction=True# Make a prediction using the RF, bool
not_included_pred_data=['xcoord','ycoord']# List of features in the training dataset not to be considered in prediction
not_included_train_data=[]# List of features in the training dataset not to be considered in model training
num_trees=100# Number of trees in the Random Forest, integer
criterion='gini'# Criterion for the Random Forest, string
depth=20# Number of nodes of the RF, integer
model_to_save='/Volumes/LaCie/2nd_Paper/entire_swiss_for_paper/maps/{approach}/RF_{days}'# Folder name for storage of the RF results, string
model_to_load='/Volumes/LaCie/2nd_Paper/entire_swiss_for_paper/maps/{approach}/RF_{days}'# Folder where RF model is stored, string, identical to model_to_save if training and prediction is done at the same time
model_database_dir=path_ml# Directory where models should be stored
parallel=True# Boolean, true if prediction data shall be split to predict in parallel
keep_cat_features=False#bool, true if categorical features shall be kept even if some instances in prediction dataset have classes not covered by the prediction dataset
remove_instances=True# bool, true of instances in prediction dataset shall be removed if they have different classes than the instances in the training dataset