Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
import pickle
import os
import netCDF4 as nc
from LatLon23 import LatLon, Latitude, Longitude
from scipy.interpolate import interp2d, interp1d
from utilities.import_raw_dataset import import_raw_dataset
from utilities.import_format import import_tif, import_nc
from utilities.ncfile_generation import generate_basic_ncfile
class cut_and_interpolate:
"""
This class imports a dataset, cuts it to the desired extent and
interpolates it to the desired resolution.
The settings are taken from the user input through the gui.
"""
def __init__(self, key=None, path=None, no_data_value=None,
categorical=None, several=None, several_same=None,
first=None, bb=None, cluster=False, for_prediction=False,
prop_settings=None, prop=None, path_properties=None):
"""
Input:
key: key belonging to the dataset (data_summary.csv)
path: path where the dataset is stored (data_summary.csv)
no_data_value: value representing no data (data_summary.csv)
categorical: boolean if dataset contains categorical
information (data_summary.csv)
several: boolean if class is called several times
e.g. in a for loop over several datasets
several_same: boolean if all datasets have the same
spatial extent and resolution
first: boolean,
only important if several or several_same is True
bb: list of bounding boxes, format list ymax, ymin, xmin, xmax
cluster: boolean, determines whether several sections of the
dataset are interpolated in a loop
for_pediction: boolean,
results used for creating the prediction dataset
prop_settings: dictionary containing general settings
prop: dictionary containing necessary
information for cutting and interpolation
path_properties: path to separate file storing information
on applied cutting extent and
interpolation vectors
"""
# Import cutting and interpolation information if this is not the
# first dataset of several to be cut and interpolated
if several and not first:
with open(path_properties, 'rb') as handle:
self.properties = pickle.load(handle)
self.path = path
self.key = key
self.cluster = cluster
self.for_prediction = for_prediction
self.prop = prop
self.prop_settings = prop_settings
# Define bounding box
if cluster:
self.bb_ges = bb
self.to_cluster = True
elif self.for_prediction:
self.to_cluster = False
self.bb = [self.prop['north'], self.prop['south'],
self.prop['west'], self.prop['east']]
if several and not first:
self.bb = [self.properties['interp_vectors']['y'][0],
self.properties['interp_vectors']['y'][-1],
self.properties['interp_vectors']['x'][0],
self.properties['interp_vectors']['x'][-1]]
else:
self.to_cluster = False
if several and not first:
self.bb = [self.properties['interp_vectors']['y'][0],
self.properties['interp_vectors']['y'][-1],
self.properties['interp_vectors']['x'][0],
self.properties['interp_vectors']['x'][-1]]
else:
self.bb = bb
self.path_properties = path_properties
if no_data_value != 'None':
self.no_data = no_data_value.split(',')
self.no_data = [float(val) for val in self.no_data]
else:
self.no_data = no_data_value
self.categorical = categorical
self.several = several
self.several_same = several_same
self.first = first
# Define limits to determine interpolation approach for dataset
self.limit_org = 50000000
self.limit_interp = 7500000
self.size = 200
self.overlap = 100
self.data, self.x_org, self.y_org = import_raw_dataset(self.path, self.no_data, prop_settings['no_value']) # Import raw datasets
# If training locations are clustered
if self.to_cluster:
self.x_raw = self.x_org
self.y_raw = self.y_org
self.data_raw = self.data
def parallized_interpolation(num):
# Interpolate the cut dataset
a = self.interpolate_dataset(
self.subsets[num],
self.y_orgs[num],
self.x_orgs[num],
self.ds['Longitude' + str(num)][:].data,
self.ds['Latitude' + str(num)][:].data)
# Save the interpolated dataset in the nc file/Update the cut
# and interpolated dataset for the 2nd and following datasets
if self.first_dataset:
result = self.ds.createVariable(
'Result' + str(num),
'f4',
('lat' + str(num), 'lon' + str(num)))
result[:, :] = a
else:
self.ds['Result' + str(num)][:, :] = a
self.subsets = []
self.x_orgs = []
self.y_orgs = []
self.cuttables = []
self.first_dataset = False
# Iterate over all bounding boxes of
# the clustered training locations
for count, self.bb in enumerate(self.bb_ges):
self.x_org = self.x_raw
self.y_org = self.y_raw
self.data = self.data_raw
# Check that all bounding boxes are
# covered by the extent of the dataset
self.compare_extends()
self.cuttables.append(self.cuttable)
# Cut the original dataset to the
# currently considered bounding box
self.cut_to_boundingbox()
# Store cut properties to be used in the interpolation
self.subsets.append(self.data)
self.x_orgs.append(self.x_org)
self.y_orgs.append(self.y_org)
if not os.path.isfile('tmp.nc') or self.first_dataset:
if count == 0:
# Open temporarty file to store the
# interpolated subsets of the dataset
self.ds = generate_basic_ncfile('tmp.nc')
self.first_dataset = True
# Determine the x and y vectors for interpolation
self.determine_reference_vectors()
# Saving the interpolation vectors to the temporary file
self.ds.createDimension('lat' + str(count), len(self.y))
self.ds.createDimension('lon' + str(count), len(self.x))
longitude = self.ds.createVariable(
'Longitude' + str(count),
'f4',
'lon' + str(count))
latitude = self.ds.createVariable(
'Latitude' + str(count),
'f4',
'lat' + str(count))
longitude[:] = self.x
latitude[:] = self.y
elif (os.path.isfile('tmp.nc')
and not self.first_dataset and count == 0):
# If it's not the first dataset to be cut, open the nc file
self.ds = nc.Dataset('tmp.nc', mode='a')
self.one_go, self.as_chunks, self.as_cols = True, False, False
# Final decision whether cutting and interpolation is possible
if False in self.cuttables:
self.cuttable = False
else:
self.cuttable = True
# Interpolate all subsets in parallel
#Parallel(n_jobs=5, backend='threading', timeout=999999)
#(delayed(parallized_interpolation)(num)
# for num in range(len(self.bb_ges)))
for num in range(len(self.bb_ges)):
parallized_interpolation(num)
self.ds.close()
elif self.for_prediction:
def test_parallel_interpolation(i):
ref = self.interpolate_dataset(
np.array(chunks_old[i]),
np.array(np.linspace(
self.y_org[pixels_old[i][0]],
self.y_org[pixels_old[i][1]],
abs(pixels_old[i][1]-pixels_old[i][0]))),
np.array(np.linspace(
self.x_org[pixels_old[i][2]],
self.x_org[pixels_old[i][3]],
abs(pixels_old[i][3]-pixels_old[i][2]))),
self.x_final[i],
self.y_final[i])
return ref
self.compare_extends()
# If bounding box is within limits of dataset
if self.cuttable:
self.cut_to_boundingbox() # Cut to the bounding box
# Determine interpolation vectors
self.determine_reference_vectors()
# Depending on dataset size determine interpolation approach
self.determine_interpolation_approach()
if self.one_go:
# Interpolate dataset
self.array = self.interpolate_dataset(
self.data,
self.y_org,
self.x_org,
self.x,
self.y)
# If original dataset has to be split into chunks
elif self.as_chunks:
# Split the dataset into chunks
chunks_old, pixels_old = self.split_into_chunks()
# Determine interpolation vectors for each chunk
self.determine_new_vector()
#ref_tmp = Parallel(n_jobs=5,
# backend='threading',
# timeout=999999)
#(delayed(test_parallel_interpolation)(num)
# for num in range(len(self.x_final)))
ref_tmp = []
for num in range(len(self.x_final)):
ref_tmp.append(test_parallel_interpolation(num))
# Combine the individual interpolated
# chunks into one dataset
self.array = self.reshape_chunks(ref_tmp)
elif self.as_cols:
self.split_into_chunks() # Split the dataset into chunks
ref_tmp = []
# Go through all chunks and interpolate them individually
for i in range(len(self.x_final)):
ref = self.interpolate_dataset(self.data,
self.y_org,
self.x_org,
self.x_final[i],
self.y_final[i])
ref_tmp.append(list(ref))
# Combine the individual interpolated
# chunks into one dataset
self.array = self.reshape_chunks(ref_tmp)
# If a path is provided, the cutting and interpolation
# information is saved in a pickle file
if self.path_properties is not None:
with open(self.path_properties, 'wb') as handle:
pickle.dump(self.properties, handle)
else:
# Check if bounding box is covered by limits of dataset
self.compare_extends()
# If bounding box is within limits of dataset
if self.cuttable:
self.cut_to_boundingbox() # Cut to the bounding box
# Determine interpolation vectors
self.determine_reference_vectors()
# Depending on dataset size determine interpolation approach
self.determine_interpolation_approach()
# If interpolation can be done in one go
if self.one_go:
# Interpolate dataset
self.array = self.interpolate_dataset(self.data,
self.y_org,
self.x_org,
self.x,
self.y)
# If original dataset has to be split into chunks
elif self.as_chunks:
# Split the dataset into chunks
chunks_old, pixels_old = self.split_into_chunks()
# Determine interpolation vectors for each chunk
self.determine_new_vector()
ref_tmp = []
# Go through all chunks and interpolate them individually
for i in range(len(chunks_old)):
ref = self.interpolate_dataset(
np.array(chunks_old[i]),
np.array(np.linspace(
self.y_org[pixels_old[i][0]],
self.y_org[pixels_old[i][1]],
abs(pixels_old[i][1]-pixels_old[i][0]))),
np.array(np.linspace(
self.x_org[pixels_old[i][2]],
self.x_org[pixels_old[i][3]],
abs(pixels_old[i][3]-pixels_old[i][2]))),
self.x_final[i],
self.y_final[i])
ref_tmp.append(list(ref))
# Combine the individual interpolated
# chunks into one dataset
self.array = self.reshape_chunks(ref_tmp)
elif self.as_cols:
self.split_into_chunks() # Split the dataset into chunks
ref_tmp = []
# Go through all chunks and interpolate them individually
for i in range(len(self.x_final)):
ref = self.interpolate_dataset(self.data,
self.y_org,
self.x_org,
self.x_final[i],
self.y_final[i])
ref_tmp.append(list(ref))
# Combine the individual interpolated
# chunks into one dataset
self.array = self.reshape_chunks(ref_tmp)
# If a path is provided, the cutting and interpolation
# information is saved in a pickle file
if self.path_properties is not None:
with open(self.path_properties, 'wb') as handle:
pickle.dump(self.properties, handle)
def compare_extends(self):
"""
Determine if the bounding box to which the dataset shall be cut is
completely covered by the dataset.
If not, the execution of the script will be aborted.
"""
self.cuttable = True
self.left_too_short = False
self.right_too_short = False
self.bottom_too_short = False
self.top_too_short = False
y, x = [], []
for coord in [self.y_org[0], self.y_org[-1], self.bb[0], self.bb[1]]:
if coord >= 0:
y.append(90 + coord)
if coord < 0:
y.append(90 - abs(coord))
for coord in [self.x_org[0], self.x_org[-1], self.bb[2], self.bb[3]]:
if coord >= 0:
x.append(180 + coord)
if coord < 0:
x.append(180 - abs(coord))
if y[2] > y[0]:
self.top_too_short = True
if y[3] < y[1]:
self.bottom_too_short = True
if x[2] < x[0]:
self.left_too_short = True
if x[3] > x[1]:
self.right_too_short = True
if (self.bottom_too_short or self.top_too_short
or self.left_too_short or self.right_too_short):
self.cuttable = False
self.array = None
self.x = None
self.y = None
return self.cuttable
def cut_to_boundingbox(self):
"""
Cut the dataset to the bounding box
"""
if self.several_same and not self.first:
# Load the indices of the bounding box from the properties file
self.top = self.properties['boundaries']['top']
self.bottom = self.properties['boundaries']['bottom']
self.left = self.properties['boundaries']['left']
self.right = self.properties['boundaries']['right']
else:
# If several datasets shall be interpolated after another and the
# current run is the first dataset
if (self.several and self.first) or (self.several_same and self.first):
# Open empty dictionary to store the cutting and
# interpolation information in
self.properties = {}
# Determine if the coordinate vectors
# contain both pos and neg values
if (all(val >= 0 for val in self.x_org)
or all(val <= 0 for val in self.x_org)):
# Determine pixel index of left and right edge of bounding box
self.left = int((np.abs(self.x_org - self.bb[2])).argmin())
self.right = int((np.abs(self.x_org - self.bb[3])).argmin())
else:
if self.bb[2] <= 0:
tmp = [x for x in self.x_org if x <= 0]
else:
tmp = [x for x in self.x_org if x >= 0]
self.left = list(self.x_org).index(
tmp[int((np.abs(np.array(tmp) - self.bb[2])).argmin())])
if self.bb[3] <= 0:
tmp = [x for x in self.x_org if x <= 0]
else:
tmp = [x for x in self.x_org if x >= 0]
self.right = list(self.x_org).index(
tmp[int((np.abs(np.array(tmp) - self.bb[3])).argmin())])
if (all(val >= 0 for val in self.y_org)
or all(val <= 0 for val in self.y_org)):
# Determine pixel index of top and bottom edge of bounding box
self.top = int((np.abs(self.y_org - self.bb[0])).argmin())
self.bottom = int((np.abs(self.y_org - self.bb[1])).argmin())
else:
if self.bb[0] <= 0:
tmp = [y for y in self.y_org if y <= 0]
else:
tmp = [y for y in self.y_org if y >= 0]
self.top = list(self.y_org).index(
tmp[int((np.abs(np.array(tmp) - self.bb[0])).argmin())])
if self.bb[1] <= 0:
tmp = [y for y in self.y_org if y <= 0]
else:
tmp = [y for y in self.y_org if y >= 0]
self.bottom = list(self.y_org).index(
tmp[int((np.abs(np.array(tmp) - self.bb[1])).argmin())])
# Add pixel in all directions to account for rounding issues
if not self.for_prediction:
if self.left-100 >= 0:
self.left = self.left - 100
if self.top-100 >= 0:
self.top = self.top - 100
if self.bottom+100 <= np.shape(self.data)[0]:
self.bottom = self.bottom + 100
if self.right+100 <= np.shape(self.data)[1]:
self.right = self.right + 100
if self.several_same and self.first:
# Store the indices to be used again with the next dataset
self.properties['boundaries'] = {}
self.properties['boundaries']['top'] = self.top
self.properties['boundaries']['bottom'] = self.bottom
self.properties['boundaries']['left'] = self.left
self.properties['boundaries']['right'] = self.right
# Cut the dataset and x, y vectors to the determined extent
self.data = self.data[self.top:self.bottom, self.left:self.right]
self.x_org = self.x_org[self.left:self.right]
self.y_org = self.y_org[self.top:self.bottom]
def determine_reference_vectors(self):
"""
Determine interpolation vectors x and y.
"""
# If several datasets shall be interpolated after another and the
# current run is the first dataset
if self.several and self.first:
# Determine distance in meters in x and y
# direction between bounds of dataset
point1_x = LatLon(Latitude(self.y_org[0]),
Longitude(self.x_org[0]))
point2_x = LatLon(Latitude(self.y_org[0]),
Longitude(self.x_org[-1]))
distance_x = point1_x.distance(point2_x)*1000
point1_y = LatLon(Latitude(self.y_org[0]),
Longitude(self.x_org[0]))
point2_y = LatLon(Latitude(self.y_org[-1]),
Longitude(self.x_org[0]))
distance_y = point1_y.distance(point2_y)*1000
# Determine interpolation vector with desired resolution
self.x = np.linspace(
self.x_org[0],
self.x_org[-1],
int(distance_x/self.prop_settings['resolution']))
self.y = np.linspace(
self.y_org[0],
self.y_org[-1],
int(distance_y/self.prop_settings['resolution']))
# Store interpolation vector in properties file
self.properties['interp_vectors'] = {}
self.properties['interp_vectors']['x'] = self.x
self.properties['interp_vectors']['y'] = self.y
# If only one dataset shall be interpolated
elif not self.several:
# Determine distance in meters in x and y
# direction between bounds of dataset
point1_x = LatLon(Latitude(self.y_org[0]),
Longitude(self.x_org[0]))
point2_x = LatLon(Latitude(self.y_org[0]),
Longitude(self.x_org[-1]))
distance_x = point1_x.distance(point2_x)*1000
point1_y = LatLon(Latitude(self.y_org[0]),
Longitude(self.x_org[0]))
point2_y = LatLon(Latitude(self.y_org[-1]),
Longitude(self.x_org[0]))
distance_y = point1_y.distance(point2_y)*1000
# Determine interpolation vector with desired resolution
self.x = np.linspace(
self.x_org[0],
self.x_org[-1],
int(distance_x/self.prop_settings['resolution']))
self.y = np.linspace(
self.y_org[0],
self.y_org[-1],
int(distance_y/self.prop_settings['resolution']))
# If several datasets shall be interpolated after another and the
# current run is not the first dataset
elif self.several and not self.first:
self.x = np.array(self.properties['interp_vectors']['x'])
self.y = np.array(self.properties['interp_vectors']['y'])
def determine_new_vector(self):
"""
Determine interpolation vectors for the chunks.
"""
# For each chunk determine the original x and y vectors
x_ref = [[self.x_org[self.x_limits[i][0]],
self.x_org[self.x_limits[i][1]]]
for i in range(len(self.x_limits))]
y_ref = [[self.y_org[self.y_limits[i][0]],
self.y_org[self.y_limits[i][1]]]
for i in range(len(self.y_limits))]
self.x_final = []
self.y_final = []
for j in range(np.shape(x_ref)[0]):
ind_min_x = int((np.abs(self.x - x_ref[j][0])).argmin())
ind_max_x = int((np.abs(self.x - x_ref[j][1])).argmin())
self.x_final.append(self.x[ind_min_x:ind_max_x])
for j in range(np.shape(y_ref)[0]):
ind_min_y = int((np.abs(self.y - y_ref[j][0])).argmin())
ind_max_y = int((np.abs(self.y - y_ref[j][1])).argmin())
self.y_final.append(self.y[ind_min_y:ind_max_y])
def split_into_chunks(self):
"""
Split the dataset into chunks for interpolation
"""
# If the dataset needs to be split into chunks
if self.as_chunks:
y_len, x_len = np.shape(self.data)[0], np.shape(self.data)[1]
# Split in equal sized chunks and treat the bottom and right
# differently that have different shape than the equal sized chunks
plus_y = self.data.shape[0] % self.size
plus_x = self.data.shape[1] % self.size
# Number of equal sized chunks in x and y direction
num_y = int(self.data.shape[0] / self.size)
num_x = int(self.data.shape[1] / self.size)
# If final columns and row too small to be called individual
# chunks, combine with second to last row and column
if plus_y < 2/3*self.size:
num_y = num_y - 1
if plus_x < 2/3*self.size:
num_x = num_x - 1
self.num_y = num_y
self.num_x = num_x
chunks = [] # Store the chunks
pixels = [] # Store the pixel limits to acces original coordinates
count = 0
# Store the coord limits to acces original coordinates
self.x_limits = []
self.y_limits = []
# Save the chunks in a list
count_ges = 0
tmpy = 0
for i in range(num_y):
tmpx = 0
for j in range(num_x):
if ((i+1)*self.size-1+self.overlap <= self.data.shape[0]) and ((j+1)*self.size-1+self.overlap <= self.data.shape[1]):
chunks.append(
list(self.data[i*self.size:(i+1)*self.size-1+self.overlap,
j*self.size:(j+1)*self.size-1+self.overlap]))
pixels.append(
[i*self.size, (i+1)*self.size-1+self.overlap,
j*self.size, (j+1)*self.size-1+self.overlap])
self.x_limits.append([j*self.size, (j+1)*self.size-1+self.overlap])
self.y_limits.append([i*self.size, (i+1)*self.size-1+self.overlap])
elif ((i+1)*self.size-1+self.overlap > self.data.shape[0]) and ((j+1)*self.size-1+self.overlap <= self.data.shape[1]):
chunks.append(
list(self.data[i*self.size:,
j*self.size:(j+1)*self.size-1+self.overlap]))
pixels.append(
[i*self.size, np.shape(self.data)[0]-1,
j*self.size, (j+1)*self.size-1+self.overlap])
elif ((j+1)*self.size-1+self.overlap > self.data.shape[1]) and ((i+1)*self.size-1+self.overlap <= self.data.shape[0]):
chunks.append(
list(self.data[i*self.size:(i+1)*self.size-1+self.overlap,
j*self.size:]))
pixels.append(
[i*self.size, (i+1)*self.size-1+self.overlap,
j*self.size, np.shape(self.data)[1]-1])
elif ((j+1)*self.size-1+self.overlap > self.data.shape[1]) and ((i+1)*self.size-1+self.overlap > self.data.shape[0]):
chunks.append(
list(self.data[i*self.size:,
j*self.size:]))
pixels.append(
[i*self.size, np.shape(self.data)[0]-1,
j*self.size, np.shape(self.data)[1]-1])
tmpy = tmpy + 1
# Chunks most bottom column
tmpx = 0
for j in range(num_x):
if ((j+1)*self.size-1+self.overlap <= self.data.shape[1]):
chunks.append(
list(self.data[(num_y)*self.size:-1,
j*self.size:(j+1)*self.size-1+self.overlap]))
pixels.append(
[(num_y)*self.size, np.shape(self.data)[0]-1,
j*self.size, (j+1)*self.size-1+self.overlap])
self.x_limits.append([j*self.size, (j+1)*self.size-1+self.overlap])
self.y_limits.append([(num_y)*self.size, np.shape(self.data)[0]-1])
else:
chunks.append(
list(self.data[(num_y)*self.size:-1,
j*self.size:]))
pixels.append(
[(num_y)*self.size, np.shape(self.data)[0]-1,
j*self.size, np.shape(self.data)[1]-1])
self.x_limits.append([j*self.size, (j+1)*self.size-1])
# Chunks most right column
tmpy = 0
for j in range(num_y):
if ((j+1)*self.size-1+self.overlap <= self.data.shape[0]):
chunks.append(
list(self.data[j*self.size:(j+1)*self.size-1+self.overlap,
(num_x)*self.size:-1]))
pixels.append(
[j*self.size, (j+1)*self.size-1+self.overlap,
(num_x)*self.size, x_len-1])
self.y_limits.append([j*self.size, (j+1)*self.size-1+self.overlap])
self.x_limits.append([(num_x)*self.size, x_len-1])
else:
chunks.append(
list(self.data[j*self.size:-1,
(num_x)*self.size:-1]))
pixels.append(
[j*self.size, np.shape(self.data)[0]-1,
(num_x)*self.size, x_len-1])
self.y_limits.append([j*self.size, (j+1)*self.size-1])
# Chunk bottom right
chunks.append(
list(self.data[num_y*self.size:-1,
num_x*self.size:-1]))
pixels.append(
[num_y*self.size, y_len-1,
num_x*self.size, x_len-1])
# Save corner indices for the chunks
self.x_limits.append([num_x*self.size, x_len-1])
self.y_limits.append([num_y*self.size, y_len-1])
return chunks, pixels
# If dataset is interpolated columns-wise
elif self.as_cols:
chunks, pixels = None, None
self.x_limits = [[], [], [], [], [], [], [], []]
# Determine columns to be interpolated in each chunk
i = 0
while i <= len(self.x):
for j in range(len(self.x_limits)):
if i+j <= len(self.x)-1:
self.x_limits[j].append(i + j)
i = i + j + 1
# Determine the coordinates in the interpolation vector
self.x_final = [[], [], [], [], [], [], [], []]
self.y_final = []
for i in range(len(self.x_limits)):
for j in self.x_limits[i]:
self.x_final[i].append(self.x[j])
self.y_final.append(list(self.y))
def determine_interpolation_approach(self):
"""
Depending on the siz of the original dataset and the size of the
dataset after the interpolation, the computational
power might be exceeded and the dataset needs to be
split up to be interpolated.
Different cases are covered in this function and depending
on the sizes, the approach is determined.
Approaches:
one_go: dataset before and after interpolation small
enough to be interpolated in one go
as_chunks: dataset before interpolation already so large that
it needs to be split into chunks which then
area interpolated independently
as_cols: dataset after interpolation so large,
that interpolation is done columnwise
"""
# If several datasets shall be interpolated after another and the
# current run is the first dataset
if (self.several and self.first) or not self.several:
if len(self.x_org) < 2*self.size and len(self.y_org) < 2*self.size:
self.one_go, self.as_chunks, self.as_cols = True, False, False
else:
# Assessment of the size of the dataset before and after
# interpolation and comparison with manually defined limit
# to decide for interpolation approach
if ((len(self.x) * len(self.y) < self.limit_interp)
and (len(self.x_org) * len(self.y_org) < self.limit_org)):
self.one_go, self.as_chunks, self.as_cols = True, False, False
elif len(self.x_org) * len(self.y_org) >= self.limit_org:
self.one_go, self.as_chunks, self.as_cols = False, True, False
elif (len(self.x) * len(self.y) > self.limit_interp):
self.one_go, self.as_chunks, self.as_cols = False, False, True
if self.several and self.first:
# Store the interpolation approach in the properties file
self.properties['interp_approach'] = {}
self.properties['interp_approach']['one_go'] = self.one_go
self.properties['interp_approach']['as_chunks'] = self.as_chunks
self.properties['interp_approach']['as_cols'] = self.as_cols
# If several datasets shall be interpolated after another and the
# current run is not the first dataset
elif self.several and not self.first:
# Load the interpolation approach from the properties file
self.one_go = self.properties['interp_approach']['one_go']
self.as_chunks = self.properties['interp_approach']['as_chunks']
self.as_cols = self.properties['interp_approach']['as_cols']
def interpolate_dataset(self, data, y, x, x_new, y_new):
"""
Interpolate dataset. Categorical data is interpolated using
nearest neighbor first into x direction then into y direction
Input:
data: data to interpolate, depending on the interpolation
appraoch the whole dataset or a chunk
y: original y vector
x: original x vector
x_new: interpolation vector x
y_new: interpolation vector y
Return:
data_interp: interpolated data
"""
# Interpolation vectors
x_new = np.array(x_new)
y_new = np.array(y_new)
# Make sure that no data values do not corrupt the interpolation
data = data.astype(float)
data[data == self.prop_settings['no_value']] = np.nan
if self.categorical==False:
data = np.flipud(data)
if self.prop_settings['no_value'] != None:
nan_map = np.zeros_like(data)
nan_map[np.isnan(data)] = 1
filled_z = data.copy()
filled_z[np.isnan(data)] = 0
# Interpolation
f = interp2d(x, np.flip(y), filled_z, kind='linear')
data_interp = f(x_new, y_new)
if self.prop_settings['no_value'] != None:
f_nan = interp2d(x, np.flip(y), nan_map, kind='linear')
nan_new = f_nan(x_new, y_new)
# Set all by nan values affected pixels to no data value
data_interp[nan_new > 0] = self.prop_settings['no_value']
return np.flipud(data_interp)
# If data is categorical
elif self.categorical==True:
# Define empty arrays to be filled
if self.prop_settings['no_value'] != None:
nan_map = np.zeros_like(data)
nan_map[np.isnan(data)] = 1
filled_z = data.copy()
filled_z[np.isnan(data)] = 0
data_interp_x = np.zeros((len(y), len(x_new)))
nan_interp_x = np.zeros((len(y), len(x_new)))
# Interpolate first in x direction
for i in range(len(y)):
tmp = filled_z[i, :]
f = interp1d(x, tmp, kind='nearest', fill_value="extrapolate")
data_interp_x[i, :] = f(x_new)
if self.prop_settings['no_value'] != None:
tmp = nan_map[i, :]
f = interp1d(x, tmp, kind='nearest', fill_value="extrapolate")
nan_interp_x[i, :] = f(x_new)
nan_interp = np.zeros((len(y_new), len(x_new)))
# Define empty arrays to be filled
data_interp = np.zeros((len(y_new), len(x_new)))
# Then interpolate in y direction
for i in range(len(x_new)):
tmp = data_interp_x[:, i]
f = interp1d(y, tmp, kind='nearest', fill_value="extrapolate")
data_interp[:, i] = f(y_new)
if self.prop_settings['no_value'] != None:
tmp = nan_interp_x[:, i]
f = interp1d(y, tmp, kind='nearest', fill_value="extrapolate")
nan_interp[:, i] = f(y_new)
# Set all by nan values affected pixels to no data value
data_interp[nan_interp > 0] = self.prop_settings['no_value']
return data_interp
def reshape_chunks(self, chunks):
"""
Interpolated chunks are attached to form the interpolated dataset.
The chunks overlap and for categorical features, only one version
is used. For continuous features, the overlapping parts are averaged.
Input:
chunks: interpolated chunks, list of lists
"""
if self.as_chunks:
array = np.zeros((len(self.y), len(self.x)))
aa = np.zeros((len(self.y), len(self.x)))
test = np.zeros((len(self.y), len(self.x)))
shape_x, shape_y = [], []
for chunk in chunks:
shape_x.append(np.shape(np.array(chunk))[1])
shape_y.append(np.shape(np.array(chunk))[0])
count = 0
for count, chunk in enumerate(chunks):
xt = int((np.abs(self.x - self.x_final[count][0])).argmin())
yt = int((np.abs(self.y - self.y_final[count][0])).argmin())
tmp = np.array(chunks[count])
tmp1 = array[yt:yt+shape_y[count], xt:xt+shape_x[count]]
aa[yt:yt+shape_y[count], xt:xt+shape_x[count]] = tmp
mask = (tmp1 == 0) | (tmp1 == -999) | (tmp == -999)
if not self.categorical:
# Calculate the element-wise average only where mask is False
average_array = np.zeros_like(tmp, dtype=float) # Initialize array for the result
average_array[~mask] = (tmp[~mask] + tmp1[~mask]) / 2
# Assign elements from arr2 where arr1 is equal to zero
average_array[mask] = tmp[mask]
array[yt:yt+shape_y[count], xt:xt+shape_x[count]] = average_array
tmp = np.ones_like(tmp, dtype=float)*count + 1
tmp1 = test[yt:yt+shape_y[count], xt:xt+shape_x[count]]
mask = (tmp1 == 0)
# Calculate the element-wise average only where mask is False
average_array = np.zeros_like(tmp, dtype=float) # Initialize array for the result
average_array[~mask] = (tmp[~mask] + tmp1[~mask]) / 2
# Assign elements from arr2 where arr1 is equal to zero
average_array[mask] = tmp[mask]
test[yt:yt+shape_y[count], xt:xt+shape_x[count]] = average_array
elif self.categorical:
average_array = np.zeros_like(tmp, dtype=float) # Initialize array for the result
average_array[~mask] = (tmp[~mask] + tmp1[~mask]) / 2
# Assign elements from arr2 where arr1 is equal to zero
average_array[mask] = tmp[mask]
array[yt:yt+shape_y[count], xt:xt+shape_x[count]] = tmp
test[yt:yt+shape_y[count], xt:xt+shape_x[count]] = average_array
self.test = test.copy()
elif self.as_cols:
# Final array to be filled
array = np.zeros((len(self.y), len(self.x)))
# Insert the columns of the individual
# chunks into the final dataset
for i in range(len(chunks)):
array[:, self.x_limits[i]] = np.array(chunks[i])
return array