Skip to content
Snippets Groups Projects
Commit c5ba8877 authored by Maximilian Vitz's avatar Maximilian Vitz
Browse files

Added Solution2!

parent dfd9db9d
Branches
No related tags found
No related merge requests found
%% Cell type:markdown id: tags:
### 1 Exspectation Value and Variance of a Sample
%% Cell type:markdown id: tags:
1)
%% Cell type:markdown id: tags:
See lecture slide 46.
%% Cell type:markdown id: tags:
2)
%% Cell type:markdown id: tags:
$\left< V(x) \right> = \left< \frac{1}{N} \sum_{i} (x_{i}-\mu_{x})^{2} \right> = \frac{1}{N} \left< \sum_{i} x_{i}^{2} - 2 x_{i} \mu_{x} + \mu_{x}^{2} \right> = \frac{1}{N} \left( \sum_{i} \left< x_{i}^{2} \right> - 2 \left< x_{i} \right> \mu_{x} \right) + \mu_{x}^{2} = \left< x^{2} \right> - 2 \mu_{x}^{2} + \mu_{x}^{2} = \left< x^{2} \right> - \left< x \right>^{2} = \sigma_{x}^{2}$
%% Cell type:markdown id: tags:
By fixing a parameter for the measured mean like it was done in 1) one has to apply a correction factor. If the true mean is known this is not neccessary any more.
%% Cell type:markdown id: tags:
### 2 Poisson Distribution
%% Cell type:markdown id: tags:
$P_{k} (T) = \frac{1}{k!} e^{- \lambda T} (\lambda T)^{k}$
%% Cell type:markdown id: tags:
(lhs) $\dot{P}_{k}(T) = \frac{1}{k!} e^{- \lambda T} (- \lambda (\lambda T)^{k} + k \lambda^{k} T^{k-1} )$
%% Cell type:markdown id: tags:
(rhs) $\lambda [P_{k-1}(T) - P_{k}(T)] = \lambda \left[ \frac{e^{-\lambda T}}{(k-1)!} (\lambda T)^{k-1} - \frac{e^{-\lambda T}}{k!} (\lambda T)^{k} \right] = \frac{1}{k!} e^{- \lambda T} (- \lambda (\lambda T)^{k} + k \lambda^{k} T^{k-1} )$
%% Cell type:markdown id: tags:
$\Rightarrow \dot{P}_{k}(T) = \lambda [P_{k-1}(T) - P_{k}(T)]$
%% Cell type:markdown id: tags:
Differential Equation was derived by comparing small time intervall with a Taylor expansion, see lecture slide 62.
%% Cell type:markdown id: tags:
### 3 Bionomial- and Poisson Distribution
%% Cell type:markdown id: tags:
1)
%% Cell type:markdown id: tags:
Bionomial Distribtion for probobility for success with N trials!
%% Cell type:markdown id: tags:
$B(k; N, p) = \left(\begin{array}{c}
N \\ k
\end{array}\right) \cdot p^{k} \cdot (1-p)^{N-k}$
%% Cell type:markdown id: tags:
N = 60
%% Cell type:markdown id: tags:
p = 0.01
%% Cell type:markdown id: tags:
k = 0
%% Cell type:markdown id: tags:
$\Rightarrow B(0; 60, 0.01) = \left(\begin{array}{c}
60 \\ 0
\end{array}\right) \cdot 0.01^{0} \cdot (1-0.01)^{60-0} = 1 \cdot 1 \cdot (0.99)^{60} = 54.7 \%$
%% Cell type:markdown id: tags:
2)
%% Cell type:markdown id: tags:
Poisson Distribution for event which occur with an average event rate $\lambda$.
%% Cell type:markdown id: tags:
$P(k, \lambda) = \frac{\lambda^{k}}{k!} e^{- \lambda}$
%% Cell type:markdown id: tags:
$\lambda$ = $0.01 \cdot 60 = 0.6$
%% Cell type:markdown id: tags:
k = 0
%% Cell type:markdown id: tags:
$P(0,0.6) = \frac{0.6^{0}}{0!} e^{- 0.6} = 1 \cdot e^{-0.6} = 54.9 \%$
%% Cell type:markdown id: tags:
### 4 Poisson Distribution, Search for free Quarks
%% Cell type:markdown id: tags:
1)
%% Cell type:markdown id: tags:
$\sum_{i=1}^{110} P(i;229) = \sum_{i=1}^{110} \frac{229^{i}}{i!} e^{-229}= 1.6 \cdot 10^{-18} = p_{se}$
%% Cell type:markdown id: tags:
Very low propability, very unlikely to happen!
%% Cell type:markdown id: tags:
2)
%% Cell type:markdown id: tags:
N = 55000
%% Cell type:markdown id: tags:
$p_{me} = N \cdot p_{se} = 8.9 \cdot 10^{-14}$
%% Cell type:markdown id: tags:
3)
%% Cell type:markdown id: tags:
$\sum_{i=1}^{28} P(i;57) = \sum_{i=1}^{28} \frac{57^{i}}{i!} e^{-57}= 6.7 \cdot 10^{-6}$
%% Cell type:markdown id: tags:
Much more likely to happend!
%% Cell type:markdown id: tags:
4)
%% Cell type:markdown id: tags:
Combine both Poisson Distributions to achieve the new probability:
%% Cell type:markdown id: tags:
$\mu = 4$
%% Cell type:markdown id: tags:
$\mu \lambda = 229$
%% Cell type:markdown id: tags:
$\sum_{i=1}^{110} \sum_{N=0}^{\infty} P(i;N\mu) \cdot P(N;\lambda) = \sum_{i=1}^{110} \sum_{N=0}^{\infty} \frac{N \mu^{i}}{i!} e^{-N \mu} \cdot \frac{\lambda^{N}}{N!} e^{-\lambda} = 4.2 \cdot 10^{-5}$
%% Cell type:markdown id: tags:
Even more likely to happen.
%% Cell type:markdown id: tags:
### 5 Why are soccer results more random than handball results?
%% Cell type:markdown id: tags:
1)
%% Cell type:markdown id: tags:
$\lambda_{1} = 1$
%% Cell type:markdown id: tags:
$\lambda_{2} = 2$
%% Cell type:markdown id: tags:
$\sum_{i=1}^{\infty} \sum_{l=0}^{k-1} P(k;\lambda_{1}) \cdot P(l;\lambda_{2})= \sum_{i=1}^{\infty} \sum_{l=0}^{k-1} \frac{\lambda_{2}^{k}}{k!} e^{-\lambda_{1}} \cdot \frac{\lambda_{2}^{l}}{l!} e^{-\lambda_{2}} = 18.3 \%$
%% Cell type:markdown id: tags:
2)
%% Cell type:markdown id: tags:
$\lambda_{1} = 10$
%% Cell type:markdown id: tags:
$\lambda_{2} = 20$
%% Cell type:markdown id: tags:
$\sum_{i=1}^{\infty} \sum_{l=0}^{k-1} P(k;\lambda_{1}) \cdot P(l;\lambda_{2})= 2.6 \%$
%% Cell type:markdown id: tags:
Summing up over all possible combinations, i=1 as at least one goal is needed to win a game.
%% Cell type:markdown id: tags:
### 5 Python Script (thanks to Joep Geuskens)
%% Cell type:code id: tags:
``` python
from scipy.stats import poisson
import numpy as np
```
%% Cell type:code id: tags:
``` python
def func(l=1):
arr = np.array([poisson.cdf(k-1, 2*l)*poisson.pmf(k,l) for k in range(1,l*10)])
p = np.sum(arr)
diff = arr[-1]/p # relative size of the last term compared to the total probability
print(f"P(B>A)={p:.4f}")
print(f"Diff={diff:.2g}") # should be sufficiently small
```
%% Cell type:code id: tags:
``` python
print("1)")
func(1)
print("\n2)")
func(10)
```
%% Output
1)
P(B>A)=0.1826
Diff=5.6e-06
2)
P(B>A)=0.0258
Diff=1.9e-60
%% Cell type:markdown id: tags:
### 6 Multidimensional Gaussian
%% Cell type:markdown id: tags:
$B =
\frac{1}{\sigma_{1}^{2}\sigma_{2}^{2}- \rho^{2}\sigma_{1}^{2}\sigma_{2}^{2}}
\left(\begin{array}{cc}
\sigma_{2}^{2} & -c\\
-c & \sigma_{1}^{2}
\end{array}\right) =
\frac{1}{\sigma_{1}^{2}\sigma_{2}^{2} \cdot (1- \rho^{2})}
\left(\begin{array}{cc}
\sigma_{2}^{2} & -c\\
-c & \sigma_{1}^{2}
\end{array}\right)$
%% Cell type:markdown id: tags:
$c = \rho x_{1} x_{2}$
%% Cell type:markdown id: tags:
$det B = \frac{1}{\sigma_{1}^{2}\sigma_{2}^{2} \cdot (1- \rho^{2})}$
%% Cell type:markdown id: tags:
$k =\sqrt{\frac{det B}{(2\pi)^{n}}} = \frac{1}{2 \pi \cdot \sigma_{1}\sigma_{2} \cdot \sqrt{(1- \rho^{2})}}$
%% Cell type:markdown id: tags:
$$
\left(\begin{array}{c}
x_{1} \\ x_{2}
\end{array}\right)
\left(\begin{array}{cc}
\sigma_{2}^{2} & -c\\
-c & \sigma_{1}^{2}
\end{array}\right)
\left(\begin{array}{cc}
x_{1} & x_{2}\\
\end{array}\right) = x_{1}^{2}\sigma_{2}^{2} - 2 x_{1} x_{2} c + x_{2}^{2}\sigma_{1}^{2} =
\sigma_{1}^{2} \sigma_{2}^{2} \left( \frac{x_{1}^2}{\sigma_{1}^{2}} + \frac{x_{2}^2}{\sigma_{2}^{2}} - 2 \rho \frac{x_{1}x_{2}}{\sigma_{1}\sigma_{2}} \right)
$$
%% Cell type:markdown id: tags:
$\Phi (x_{1}, x_{2}) = \frac{1}{2 \pi \cdot \sigma_{1}\sigma_{2} \cdot \sqrt{(1- \rho^{2})}} \exp \left( -\frac{1}{2 \cdot (1- \rho^{2})} \left( \frac{x_{1}^2}{\sigma_{1}^{2}} + \frac{x_{2}^2}{\sigma_{2}^{2}} - 2 \rho \frac{x_{1}x_{2}}{\sigma_{1}\sigma_{2}} \right) \right)$
%% Cell type:markdown id: tags:
Substitue $x_{i}$ with $x_{i}- a_{i}$ to achieve the exspected form.
%% Cell type:code id: tags:
``` python
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment