Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Q
quality-kpi
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Cao, Martin
quality-kpi
Commits
7e1e0c58
Commit
7e1e0c58
authored
2 years ago
by
Richter, Manuela
Browse files
Options
Downloads
Patches
Plain Diff
added pandas dataframe, start labelling dataset
parent
062c1e70
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
trial_json.py
+38
-11
38 additions, 11 deletions
trial_json.py
with
38 additions
and
11 deletions
trial_json.py
+
38
−
11
View file @
7e1e0c58
...
...
@@ -9,6 +9,8 @@ testfile for operating with json-files
"""
#%% import moduls
import
json
import
numpy
as
np
import
pandas
as
pd
#%% define functions
def
findkeys
(
node
,
kv
):
...
...
@@ -40,13 +42,16 @@ def findkeys(node, kv):
yield
x
def
find_attribut
(
data
,
machine
,
attribut
):
for
c
in
range
(
0
,
len
(
data
)):
name_pump
=
list
(
findkeys
(
data
[
c
],
"
Name
"
))
efficiency_pump
=
list
(
findkeys
(
data
[
c
],
attribut
))
def
find_attribut
(
data
,
attribut
):
name_pump
=
list
(
findkeys
(
data
,
"
Name
"
))
efficiency_pump
=
list
(
findkeys
(
data
,
attribut
))
#print("Die Pumpe",name_pump[0],"besitzt den Wirkungsgrad", efficiency_pump[0])
return
name_pump
,
efficiency_pump
return
name_pump
,
efficiency_pump
def
calculate_efficiency
(
eta_1
,
eta_2
):
eta
=
eta_1
*
eta_2
return
eta
#%% main script
with
open
(
"
test_data.json
"
,
"
r+
"
)
as
file
:
data
=
json
.
load
(
file
)
...
...
@@ -66,15 +71,37 @@ for i in a:
#print("Maschinenart", i, "Das Attribut",x, "hat den Wert", name)
# find specific data
machine
=
"
Pump
s
"
machine
=
"
Motor
s
"
attribut
=
"
Efficiency
"
data_pumps
=
data
[
machine
]
data_pumps
=
data
[
"
Pumps
"
]
data_motors
=
data
[
"
Motors
"
]
dataset
=
pd
.
DataFrame
()
#pump_1 = data_pumps[0]
# Iteration über Attribute einfügen
name_pump
,
efficiency_pump
=
find_attribut
(
data_pumps
,
machine
,
attribut
)
print
(
"
Die Pumpe
"
,
name_pump
[
0
],
"
besitzt den Wirkungsgrad
"
,
efficiency_pump
[
0
])
for
i
in
range
(
0
,
len
(
data_pumps
)):
attr_name
=
list
(
findkeys
(
data_pumps
[
i
],
"
Name
"
))
attr_value
=
list
(
findkeys
(
data_pumps
[
i
],
attribut
))
#attr_name, attr_value = find_attribut(data_pumps[i], attribut)
#efficiency_pump)
print
(
"
Die
"
,
machine
,
attr_name
[
0
],
"
besitzt das Attribut
"
,
attribut
,
"
mit dem Wert
"
,
attr_value
[
0
])
# multiplicate the pump efficiency with the motor efficiency
eta_motor_1
=
list
(
findkeys
(
data
[
"
Motors
"
][
0
],
"
Efficiency
"
))[
0
]
eta_motor_2
=
list
(
findkeys
(
data
[
"
Motors
"
][
1
],
"
Efficiency
"
))[
0
]
eta_pumpe_1
=
list
(
findkeys
(
data
[
"
Pumps
"
][
0
],
"
Efficiency
"
))[
0
]
eta_pumpe_2
=
list
(
findkeys
(
data
[
"
Pumps
"
][
1
],
"
Efficiency
"
))[
0
]
count
=
0
#iteration over all pumps and motors
for
p
in
range
(
0
,
len
(
data_pumps
)):
for
m
in
range
(
0
,
len
(
data_motors
)):
eta_pumpe
=
list
(
findkeys
(
data_pumps
[
p
],
attribut
))[
0
]
/
100
eta_motor
=
list
(
findkeys
(
data_motors
[
m
],
attribut
))[
0
]
/
100
eta_ges
=
calculate_efficiency
(
eta_pumpe
,
eta_motor
)
dataset
[
count
]
=
[
eta_pumpe
,
eta_motor
,
eta_ges
]
count
+=
1
print
(
p
,
m
,
eta_ges
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment