Skip to content
Snippets Groups Projects
Commit ace66c78 authored by Lambert Theisen's avatar Lambert Theisen
Browse files

Add more documention to assemble

- Derive the used identities
parent 337b7790
Branches
Tags
3 merge requests!5Update to version 1.1,!3Feat/symmetrization,!2Feat/symmetrization
...@@ -277,6 +277,165 @@ class Solver: ...@@ -277,6 +277,165 @@ class Solver:
.. [5] M. Torrilhon, N. Sarna (2017). Hierarchical Boltzmann .. [5] M. Torrilhon, N. Sarna (2017). Hierarchical Boltzmann
Simulations and Model Error Estimation Simulations and Model Error Estimation
Identities:
- :math:`\boldsymbol{x}_1 \in \mathbb{R}^3`,
:math:`\boldsymbol{x}_2 \in \mathbb{R}^{3 \times 3}`,
...
- Test function :math:`\boldsymbol{\psi}` is assumed to be
symmetric and trace-less:
.. math::
\boldsymbol{\psi} : \boldsymbol{I} = 0 \\
(\boldsymbol{\psi})_{\text{sym}} = \boldsymbol{\psi}
- Trace of vector gradient is divergence of vector:
.. math::
\langle
\boldsymbol{I},\boldsymbol\nabla \boldsymbol{x}_1
\rangle
=
\boldsymbol{I} : \boldsymbol\nabla \boldsymbol{x}_1
=
\text{div}(\boldsymbol{x}_1)
- Inner product has orthogonality property with respect to the
additive symmetric/skewsymmetric tensor decomposition:
.. math::
\begin{align}
\langle
(\boldsymbol{x}_2)_{\text{sym}}
,
\boldsymbol{y}_2
\rangle
&=
\langle
(\boldsymbol{x}_2)_{\text{sym}}
,
(\boldsymbol{y}_2)_{\text{sym}}
+
(\boldsymbol{y}_2)_{\text{skew}}
\rangle
\\
&=
\langle
(\boldsymbol{x}_2)_{\text{sym}}
,
(\boldsymbol{y}_2)_{\text{sym}}
\rangle
+
\langle
(\boldsymbol{x}_2)_{\text{sym}}
,
(\boldsymbol{y}_2)_{\text{skew}}
\rangle
\\
&=
\langle
(\boldsymbol{x}_2)_{\text{sym}}
,
(\boldsymbol{y}_2)_{\text{sym}}
\rangle
\end{align}
Tricks of the trade:
.. math::
\begin{align}
\langle
{(\boldsymbol\nabla \boldsymbol{s})}_{\text{STF}}
,
\boldsymbol\nabla \boldsymbol{r}
\rangle
&=
\langle
{(\boldsymbol\nabla \boldsymbol{s})}_{\text{sym}}
-
\frac13\text{tr}(\boldsymbol\nabla \boldsymbol{s})\boldsymbol{I}
,
\boldsymbol\nabla \boldsymbol{r}
\rangle
\\
&=
\langle
{(\boldsymbol\nabla \boldsymbol{s})}_{\text{sym}}
,
\boldsymbol\nabla \boldsymbol{r}
\rangle
-\frac13\text{tr}(\boldsymbol\nabla \boldsymbol{s})
\langle
\boldsymbol{I},(\boldsymbol\nabla \boldsymbol{r})
\rangle
\\
&=
\langle
{(\boldsymbol\nabla \boldsymbol{s})}_{\text{sym}}
,
{(\boldsymbol\nabla \boldsymbol{r})}_{\text{sym}}
\rangle
-\frac13\text{tr}(\boldsymbol\nabla \boldsymbol{s})
\text{tr}(\boldsymbol\nabla \boldsymbol{r})
\\
&=
\langle
{(\boldsymbol\nabla \boldsymbol{s})}_{\text{sym}}
,
{(\boldsymbol\nabla \boldsymbol{r})}_{\text{sym}}
\rangle
-\frac13\text{div}(\boldsymbol{s})
\text{div}(\boldsymbol{r})
\end{align}
.. math::
\begin{align}
\langle
{(\boldsymbol\nabla \boldsymbol{s})}_{\text{STF}}
,
\boldsymbol{\psi}
\rangle
&=
\langle
{(\boldsymbol\nabla \boldsymbol{s})}_{\text{sym}}
-
\frac13\text{tr}(\boldsymbol\nabla \boldsymbol{s})\boldsymbol{I}
,
\boldsymbol{\psi}
\rangle
\\
&=
\langle
{(\boldsymbol\nabla \boldsymbol{s})}_{\text{sym}}
,
\boldsymbol{\psi}
\rangle
-\frac13\text{tr}(\boldsymbol\nabla \boldsymbol{s})
\langle
\boldsymbol{I},\boldsymbol{\psi}
\rangle
\\
&=
\langle
{\boldsymbol\nabla \boldsymbol{s}}
,
{\boldsymbol{\psi}}
\rangle
-\frac13\text{div}(\boldsymbol{s})
\text{tr}(\boldsymbol{\psi})
\\
&=
\langle
{\boldsymbol\nabla \boldsymbol{s}}
,
{\boldsymbol{\psi}}
\rangle
\end{align}
""" """
# Check if all mesh boundaries have bcs presibed frm input # Check if all mesh boundaries have bcs presibed frm input
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment