Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
ProcessPal
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jamal Rnjbal
ProcessPal
Merge requests
!11
Resolve "Frequency and average time Calculator"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Resolve "Frequency and average time Calculator"
14-frequency-and-average-time-calculator
into
main
Overview
0
Commits
5
Pipelines
0
Changes
2
Merged
Jamal Rnjbal
requested to merge
14-frequency-and-average-time-calculator
into
main
1 year ago
Overview
0
Commits
5
Pipelines
0
Changes
2
Expand
Closes
#14 (closed)
0
0
Merge request reports
Compare
main
version 2
91ac8c9d
1 year ago
version 1
3f053f0d
1 year ago
main (base)
and
latest version
latest version
60d88f98
5 commits,
1 year ago
version 2
91ac8c9d
3 commits,
1 year ago
version 1
3f053f0d
2 commits,
1 year ago
2 files
+
122
−
8
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
2
Search (e.g. *.vue) (Ctrl+P)
src/kg_maker.py
+
39
−
4
Options
import
pandas
as
pd
from
loguru
import
logger
from
collections
import
defaultdict
class
KgMaker
:
def
__init__
(
self
,
df
:
pd
.
DataFrame
,
main_columns_dict
:
dict
)
->
None
:
self
.
df
=
df
self
.
main_columns_dict
=
main_columns_dict
def
calculate_metrics
(
self
):
timestamp
=
self
.
main_columns_dict
[
"
timestamp
"
]
activity
=
self
.
main_columns_dict
[
"
activity
"
]
case_id
=
self
.
main_columns_dict
[
"
case_id
"
]
self
.
df
=
self
.
df
.
sort_values
(
by
=
[
case_id
,
timestamp
])
transitions
=
defaultdict
(
int
)
times
=
defaultdict
(
list
)
grouped
=
self
.
df
.
groupby
(
case_id
)
for
case_id
,
group
in
grouped
:
activities
=
list
(
group
[
activity
])
timestamps
=
list
(
group
[
timestamp
])
for
i
in
range
(
len
(
activities
)
-
1
):
transition
=
(
activities
[
i
],
activities
[
i
+
1
])
transitions
[
transition
]
+=
1
time_diff
=
(
timestamps
[
i
+
1
]
-
timestamps
[
i
]).
total_seconds
()
/
3600
# Convert to hours
times
[
transition
].
append
(
time_diff
)
average_times
=
{
transition
:
sum
(
times_list
)
/
len
(
times_list
)
for
transition
,
times_list
in
times
.
items
()}
transitions_df
=
pd
.
DataFrame
(
transitions
.
items
(),
columns
=
[
'
Transition
'
,
'
Frequency
'
])
average_times_df
=
pd
.
DataFrame
(
average_times
.
items
(),
columns
=
[
'
Transition
'
,
'
Average Time
'
])
transitions_df
[[
'
Source
'
,
'
Target
'
]]
=
pd
.
DataFrame
(
transitions_df
[
'
Transition
'
].
tolist
(),
index
=
transitions_df
.
index
)
average_times_df
[[
'
Source
'
,
'
Target
'
]]
=
pd
.
DataFrame
(
average_times_df
[
'
Transition
'
].
tolist
(),
index
=
average_times_df
.
index
)
average_times_df
=
average_times_df
.
drop
(
columns
=
[
'
Transition
'
])
transitions_df
=
transitions_df
.
drop
(
columns
=
[
'
Transition
'
])
transitions_df
=
transitions_df
.
merge
(
average_times_df
,
on
=
[
'
Source
'
,
'
Target
'
],
how
=
'
left
'
)
return
transitions_df
def
group_meta_data
(
self
)
->
pd
.
DataFrame
:
columns_all
=
self
.
df
.
columns
meta_data
=
[]
@@ -15,8 +52,6 @@ class KgMaker:
columns_all
=
[
"
activity
"
]
+
meta_data
df_new
=
self
.
df
[
columns_all
].
copy
()
aggregated_df_first
=
df_new
.
groupby
(
"
activity
"
).
first
().
reset_index
()
return
aggregated_df_first
\ No newline at end of file
Loading