Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Triangular Rashba
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jacob Beyer
Triangular Rashba
Commits
a961026e
Commit
a961026e
authored
1 year ago
by
Jacob Beyer
Browse files
Options
Downloads
Patches
Plain Diff
Finished the second table
parent
10a3646c
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+20
-24
20 additions, 24 deletions
main.tex
with
20 additions
and
24 deletions
main.tex
+
20
−
24
View file @
a961026e
...
@@ -16,7 +16,6 @@ superscriptaddress, floatfix, longbibliography, booktabs]{revtex4-2}
...
@@ -16,7 +16,6 @@ superscriptaddress, floatfix, longbibliography, booktabs]{revtex4-2}
\usepackage
{
csquotes
}
\usepackage
{
csquotes
}
\usepackage
{
diagbox
}
\usepackage
{
diagbox
}
\usepackage
{
colortbl
}
\usepackage
{
bbold
}
\usepackage
{
bbold
}
...
@@ -309,8 +308,8 @@ presented in the following.
...
@@ -309,8 +308,8 @@ presented in the following.
{$
\gamma
$}
&
Spatial Pairing
&
Spin Pair
\\
\hline
{$
\gamma
$}
&
Spatial Pairing
&
Spin Pair
\\
\hline
\sym
A 1
&
\numberedHexagon
{$
\Delta
_
s
$}{
1
}{
1
}{
1
}{
1
}{
1
}{
1
}
\sym
A 1
&
\numberedHexagon
{$
\Delta
_
s
$}{
1
}{
1
}{
1
}{
1
}{
1
}{
1
}
&
$
\Psi
$
\\
&
$
\Psi
$
\\
\sym
A 2
&
---
&
$
d
_
z
$
\\
\sym
A 2
&
\textbf
{
---
}
&
$
d
_
z
$
\\
\sym
B 1
&
\numberedHexagon
{$
\Delta
_
f
$}{
-1
}{
1
}{
-1
}{
1
}{
-1
}{
1
}
&
---
\\
\sym
B 1
&
\numberedHexagon
{$
\Delta
_
f
$}{
-1
}{
1
}{
-1
}{
1
}{
-1
}{
1
}
&
\textbf
{
---
}
\\
\sym
E 1
&
\sym
E 1
&
\hspace
{
0.2cm
}
% Fix spacing in the table
\hspace
{
0.2cm
}
% Fix spacing in the table
$
\begin
{
bmatrix
}
$
\begin
{
bmatrix
}
...
@@ -326,14 +325,14 @@ presented in the following.
...
@@ -326,14 +325,14 @@ presented in the following.
\sym
E 2
&
\sym
E 2
&
$
\begin
{
bmatrix
}
$
\begin
{
bmatrix
}
\hspace
{
0
.
03
cm
}
\hspace
{
0
.
03
cm
}
\numberedHexagon
{$
\Delta
_{
d
_{
x
^
2-y
^
2
}}$}{
-
1
}{
-
1
}{
2
}{
-
1
}{
-
1
}{
2
}
\numberedHexagon
{$
\Delta
_{
d
_{
x
^
2-y
^
2
}}$}{
-
1
}{
-
1
}{
2
{
\phantom
-
}
}{
-
1
}{
-
1
}{
2
}
\hspace
{
0
.
03
cm
}
\hspace
{
0
.
03
cm
}
&
&
\hspace
{
0
.
03
cm
}
\hspace
{
0
.
03
cm
}
\numberedHexagon
{$
\Delta
_{
d
_{
xy
}}$}{
1
}{
-
1
}{
0
}{
1
}{
-
1
}{
0
}
\numberedHexagon
{$
\Delta
_{
d
_{
xy
}}$}{
1
}{
-
1
}{
0
}{
1
}{
-
1
}{
0
}
\hspace
{
0
.
03
cm
}
\hspace
{
0
.
03
cm
}
\end
{
bmatrix
}$
\end
{
bmatrix
}$
&
---
\\
[3em]
\hline
&
\textbf
{
---
}
\\
[3em]
\hline
\end{tabular}
\end{tabular}
\caption
{
\caption
{
\captiontitle
{
Basis functions of irreducible representations
}
\captiontitle
{
Basis functions of irreducible representations
}
...
@@ -346,26 +345,25 @@ presented in the following.
...
@@ -346,26 +345,25 @@ presented in the following.
\end{table}
\end{table}
\begin{table}
\begin{table}
\definecolor
{
cell
}{
gray
}{
0.8
}
\centering
\centering
\begin{tabular}
{
cccc
}
\toprule
\begin{tabular}
{
cccc
}
\toprule
\diagbox
{$
\Delta
$}{$
\sigma
$}
\diagbox
{$
\Delta
$}{$
\sigma
$}
&
\sym
A 1
&
\sym
A 2
&
\sym
E 1
\\
\hline
&
\sym
A 1
&
\sym
A 2
&
\sym
E 1
\\
\hline
\\
\sym
A 1
\sym
A 1
&
\sym
A 1 :
$
\Delta
_
s
\Psi
$
&
\sym
A 1 :
$
\Delta
_
s
\Psi
$
&
\
cellcolor
{
cell
}
&
\
textbf
{
---
}
&
\
cellcolor
{
cell
}
\\
&
\
textbf
{
---
}
\\
[1em]
\sym
E 2
\sym
E 2
&
\sym
E 2 :
$
\begin
{
bmatrix
}
\Delta
_{
d
_{
xy
}}
\\
&
\sym
E 2 :
$
\begin
{
bmatrix
}
\Delta
_{
d
_{
xy
}}
\\
\Delta
_{
d
_{
x
^
2
-
y
^
2
}}
\end
{
bmatrix
}
\Psi
$
\Delta
_{
d
_{
x
^
2
-
y
^
2
}}
\end
{
bmatrix
}
\Psi
$
&
\
cellcolor
{
cell
}
&
\
textbf
{
---
}
&
\
cellcolor
{
cell
}
\\
\hline
&
\
textbf
{
---
}
\\
[1em]
\hline
\\
\sym
B 1
\sym
B 1
&
\
cellcolor
{
cell
}
&
\
textbf
{
---
}
&
\sym
B 2 :
$
\Delta
_
f d
_
z
$
&
\sym
B 2 :
$
\Delta
_
f d
_
z
$
&
\sym
E 2 :
$
\Delta
_
f
\begin
{
bmatrix
}
d
_
x
\\
d
_
y
\end
{
bmatrix
}$
\\
&
\sym
E 2 :
$
\Delta
_
f
\begin
{
bmatrix
}
d
_
x
\\
d
_
y
\end
{
bmatrix
}$
\\
[2.5em]
\sym
E 1
\sym
E 1
&
\
cellcolor
{
cell
}
&
\
textbf
{
---
}
&
\sym
E 1 :
$
\begin
{
bmatrix
}
\Delta
_{
p
_
x
}
\\
\Delta
_{
p
_
y
}
\end
{
bmatrix
}
d
_
z
$
&
\sym
E 1 :
$
\begin
{
bmatrix
}
\Delta
_{
p
_
x
}
\\
\Delta
_{
p
_
y
}
\end
{
bmatrix
}
d
_
z
$
&
$
\begin
{
gathered
}
\sym
A
1
\oplus
\sym
B
2
\oplus
\sym
E
2
:
\\
&
$
\begin
{
gathered
}
\sym
A
1
\oplus
\sym
B
2
\oplus
\sym
E
2
:
\\
\Delta
_{
p
_
x
}
d
_
x
-
\Delta
_{
p
_
y
}
d
_
y
\\
\Delta
_{
p
_
x
}
d
_
x
-
\Delta
_{
p
_
y
}
d
_
y
\\
...
@@ -376,17 +374,14 @@ presented in the following.
...
@@ -376,17 +374,14 @@ presented in the following.
\Delta
_{
p
_
y
}
d
_
x
-
\Delta
_{
p
_
x
}
d
_
y
\\
\Delta
_{
p
_
y
}
d
_
x
-
\Delta
_{
p
_
x
}
d
_
y
\\
\Delta
_{
p
_
x
}
d
_
x
+
\Delta
_{
p
_
y
}
d
_
y
\end
{
bmatrix
}
\Delta
_{
p
_
x
}
d
_
x
+
\Delta
_{
p
_
y
}
d
_
y
\end
{
bmatrix
}
\end
{
gathered
}$
\end
{
gathered
}$
\\
\hline
\\
[5em]
\hline
\end{tabular}
\end{tabular}
\caption
{
\caption
{
\captiontitle
{
Basis functions of irreducible representations
}
\captiontitle
{
Allowed combinations of irreps
}
The first column lists the irreducible representation (irrep)
$
\gamma
$
.
We show the allowed combinations of spin (
$
\sigma
$
) and spatial
The second column is the basis function in real space, for example, as
(
$
\Delta
$
) irreps, giving the resulting total irrep as well as the
the bond pairing on nearest neighbour bonds. The third column is the
corresponding basis function.
}
two-spin basis function, in terms of the typical superconducting psuedo-
vector formulation
$
(
\Psi
,
\bvec
d
)
$
. The fourth column is the total
spatial and two-spin basis function, calculated as decribed in the text.
}
\label
{
tab:irrep
_
combinations
}
\label
{
tab:irrep
_
combinations
}
\end{table}
\end{table}
...
@@ -414,7 +409,7 @@ spin-pair and spatial pairing irreps.
...
@@ -414,7 +409,7 @@ spin-pair and spatial pairing irreps.
We retain only the products that yield physical states,
\textit
{
i.e.
}
those
We retain only the products that yield physical states,
\textit
{
i.e.
}
those
which are antisymmetric under exchange of all quantum indices (
\sym
E 2
$
\otimes
$
which are antisymmetric under exchange of all quantum indices (
\sym
E 2
$
\otimes
$
\sym
E 1 would yield spatially even spin-triplet pairing and is discarded).
\sym
E 1 would yield spatially even spin-triplet pairing and is discarded).
Except for the case
$
\sym
E
1
\otimes
\sym
E
1
$
, either the spa
c
ial or the
Except for the case
$
\sym
E
1
\otimes
\sym
E
1
$
, either the spa
t
ial or the
spin-pair space is one-dimensional.
spin-pair space is one-dimensional.
In those cases, multiplication of the irreps' group characters yields the
In those cases, multiplication of the irreps' group characters yields the
total state's characters, and thus the total irrep.
total state's characters, and thus the total irrep.
...
@@ -643,8 +638,9 @@ constructed from the two generators, which are one of the $C_6$ rotations:
...
@@ -643,8 +638,9 @@ constructed from the two generators, which are one of the $C_6$ rotations:
\begin{pmatrix}
\begin{pmatrix}
\sqrt
{
3
}
- i
&
0
\\
\sqrt
{
3
}
- i
&
0
\\
0
&
\sqrt
{
3
}
+ i
0
&
\sqrt
{
3
}
+ i
\end{pmatrix}
,
\end{pmatrix}
\,
,
\end{equation}
\end{equation}
where
$
\hat\sigma
_
z
$
is the third Pauli matrix, as well as a reflection
$
m
_
y
$
,
where
$
\hat\sigma
_
z
$
is the third Pauli matrix, as well as a reflection
$
m
_
y
$
,
which we will take to be the mirror w.r.t. the
$
y
$
-axis:
which we will take to be the mirror w.r.t. the
$
y
$
-axis:
\begin{equation}
\begin{equation}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment