Skip to content
Snippets Groups Projects
Commit a961026e authored by Jacob Beyer's avatar Jacob Beyer
Browse files

Finished the second table

parent 10a3646c
No related branches found
No related tags found
No related merge requests found
...@@ -16,7 +16,6 @@ superscriptaddress, floatfix, longbibliography, booktabs]{revtex4-2} ...@@ -16,7 +16,6 @@ superscriptaddress, floatfix, longbibliography, booktabs]{revtex4-2}
\usepackage{csquotes} \usepackage{csquotes}
\usepackage{diagbox} \usepackage{diagbox}
\usepackage{colortbl}
\usepackage{bbold} \usepackage{bbold}
...@@ -309,8 +308,8 @@ presented in the following. ...@@ -309,8 +308,8 @@ presented in the following.
{$\gamma$} & Spatial Pairing & Spin Pair \\ \hline {$\gamma$} & Spatial Pairing & Spin Pair \\ \hline
\sym A 1 & \numberedHexagon{$\Delta_s$}{1}{1}{1}{1}{1}{1} \sym A 1 & \numberedHexagon{$\Delta_s$}{1}{1}{1}{1}{1}{1}
& $\Psi$ \\ & $\Psi$ \\
\sym A 2 & --- & $d_z$ \\ \sym A 2 & \textbf{---} & $d_z$ \\
\sym B 1 & \numberedHexagon{$\Delta_f$}{-1}{1}{-1}{1}{-1}{1} & --- \\ \sym B 1 & \numberedHexagon{$\Delta_f$}{-1}{1}{-1}{1}{-1}{1} & \textbf{---} \\
\sym E 1 & \sym E 1 &
\hspace{0.2cm} % Fix spacing in the table \hspace{0.2cm} % Fix spacing in the table
$\begin{bmatrix} $\begin{bmatrix}
...@@ -326,14 +325,14 @@ presented in the following. ...@@ -326,14 +325,14 @@ presented in the following.
\sym E 2 & \sym E 2 &
$\begin{bmatrix} $\begin{bmatrix}
\hspace{0.03cm} \hspace{0.03cm}
\numberedHexagon{$\Delta_{d_{x^2-y^2}}$}{-1}{-1}{2}{-1}{-1}{2} \numberedHexagon{$\Delta_{d_{x^2-y^2}}$}{-1}{-1}{2{\phantom -}}{-1}{-1}{2}
\hspace{0.03cm} \hspace{0.03cm}
& &
\hspace{0.03cm} \hspace{0.03cm}
\numberedHexagon{$\Delta_{d_{xy}}$}{1}{-1}{0}{1}{-1}{0} \numberedHexagon{$\Delta_{d_{xy}}$}{1}{-1}{0}{1}{-1}{0}
\hspace{0.03cm} \hspace{0.03cm}
\end{bmatrix}$ \end{bmatrix}$
& --- \\[3em] \hline & \textbf{---} \\[3em] \hline
\end{tabular} \end{tabular}
\caption{ \caption{
\captiontitle{Basis functions of irreducible representations} \captiontitle{Basis functions of irreducible representations}
...@@ -346,26 +345,25 @@ presented in the following. ...@@ -346,26 +345,25 @@ presented in the following.
\end{table} \end{table}
\begin{table} \begin{table}
\definecolor{cell}{gray}{0.8}
\centering \centering
\begin{tabular}{cccc} \toprule \begin{tabular}{cccc} \toprule
\diagbox{$\Delta$}{$\sigma$} \diagbox{$\Delta$}{$\sigma$}
& \sym A 1 & \sym A 2 & \sym E 1 \\ \hline & \sym A 1 & \sym A 2 & \sym E 1 \\ \hline \\
\sym A 1 \sym A 1
& \sym A 1 : $\Delta_s \Psi$ & \sym A 1 : $\Delta_s \Psi$
& \cellcolor{cell} & \textbf{---}
& \cellcolor{cell} \\ & \textbf{---} \\[1em]
\sym E 2 \sym E 2
& \sym E 2 : $\begin{bmatrix} \Delta_{d_{xy}} \\ & \sym E 2 : $\begin{bmatrix} \Delta_{d_{xy}} \\
\Delta_{d_{x^2-y^2}}\end{bmatrix} \Psi$ \Delta_{d_{x^2-y^2}}\end{bmatrix} \Psi$
& \cellcolor{cell} & \textbf{---}
& \cellcolor{cell} \\ \hline & \textbf{---} \\[1em] \hline \\
\sym B 1 \sym B 1
& \cellcolor{cell} & \textbf{---}
& \sym B 2 : $\Delta_f d_z $ & \sym B 2 : $\Delta_f d_z $
& \sym E 2 : $\Delta_f \begin{bmatrix} d_x \\ d_y \end{bmatrix}$ \\ & \sym E 2 : $\Delta_f \begin{bmatrix} d_x \\ d_y \end{bmatrix}$ \\[2.5em]
\sym E 1 \sym E 1
& \cellcolor{cell} & \textbf{---}
& \sym E 1 : $\begin{bmatrix} \Delta_{p_x} \\ \Delta_{p_y} \end{bmatrix}d_z$ & \sym E 1 : $\begin{bmatrix} \Delta_{p_x} \\ \Delta_{p_y} \end{bmatrix}d_z$
& $\begin{gathered} \sym A 1 \oplus \sym B 2 \oplus \sym E 2 : \\ & $\begin{gathered} \sym A 1 \oplus \sym B 2 \oplus \sym E 2 : \\
\Delta_{p_x}d_x - \Delta_{p_y}d_y \\ \Delta_{p_x}d_x - \Delta_{p_y}d_y \\
...@@ -376,17 +374,14 @@ presented in the following. ...@@ -376,17 +374,14 @@ presented in the following.
\Delta_{p_y}d_x - \Delta_{p_x}d_y \\ \Delta_{p_y}d_x - \Delta_{p_x}d_y \\
\Delta_{p_x}d_x + \Delta_{p_y}d_y \end{bmatrix} \Delta_{p_x}d_x + \Delta_{p_y}d_y \end{bmatrix}
\end{gathered}$ \end{gathered}$
\\ \hline \\[5em] \hline
\end{tabular} \end{tabular}
\caption{ \caption{
\captiontitle{Basis functions of irreducible representations} \captiontitle{Allowed combinations of irreps}
The first column lists the irreducible representation (irrep) $\gamma$. We show the allowed combinations of spin ($\sigma$) and spatial
The second column is the basis function in real space, for example, as ($\Delta$) irreps, giving the resulting total irrep as well as the
the bond pairing on nearest neighbour bonds. The third column is the corresponding basis function.}
two-spin basis function, in terms of the typical superconducting psuedo-
vector formulation $(\Psi, \bvec d)$. The fourth column is the total
spatial and two-spin basis function, calculated as decribed in the text.}
\label{tab:irrep_combinations} \label{tab:irrep_combinations}
\end{table} \end{table}
...@@ -414,7 +409,7 @@ spin-pair and spatial pairing irreps. ...@@ -414,7 +409,7 @@ spin-pair and spatial pairing irreps.
We retain only the products that yield physical states, \textit{i.e.} those We retain only the products that yield physical states, \textit{i.e.} those
which are antisymmetric under exchange of all quantum indices (\sym E 2 $\otimes$ which are antisymmetric under exchange of all quantum indices (\sym E 2 $\otimes$
\sym E 1 would yield spatially even spin-triplet pairing and is discarded). \sym E 1 would yield spatially even spin-triplet pairing and is discarded).
Except for the case $\sym E 1 \otimes \sym E 1$, either the spacial or the Except for the case $\sym E 1 \otimes \sym E 1$, either the spatial or the
spin-pair space is one-dimensional. spin-pair space is one-dimensional.
In those cases, multiplication of the irreps' group characters yields the In those cases, multiplication of the irreps' group characters yields the
total state's characters, and thus the total irrep. total state's characters, and thus the total irrep.
...@@ -643,8 +638,9 @@ constructed from the two generators, which are one of the $C_6$ rotations: ...@@ -643,8 +638,9 @@ constructed from the two generators, which are one of the $C_6$ rotations:
\begin{pmatrix} \begin{pmatrix}
\sqrt{3} - i & 0 \\ \sqrt{3} - i & 0 \\
0 & \sqrt{3} + i 0 & \sqrt{3} + i
\end{pmatrix} , \end{pmatrix}\, ,
\end{equation} \end{equation}
where $\hat\sigma_z$ is the third Pauli matrix, as well as a reflection $m_y$, where $\hat\sigma_z$ is the third Pauli matrix, as well as a reflection $m_y$,
which we will take to be the mirror w.r.t. the $y$-axis: which we will take to be the mirror w.r.t. the $y$-axis:
\begin{equation} \begin{equation}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment