Skip to content
Snippets Groups Projects
Commit 8f76e473 authored by Matthew Bunney's avatar Matthew Bunney
Browse files

Fixing the table

parent bf275035
No related branches found
No related tags found
No related merge requests found
...@@ -78,13 +78,13 @@ superscriptaddress, floatfix, longbibliography]{revtex4-2} ...@@ -78,13 +78,13 @@ superscriptaddress, floatfix, longbibliography]{revtex4-2}
(A) at (0,0) {$\phantom{\Delta_{x^2-y^2}}$}; (A) at (0,0) {$\phantom{\Delta_{x^2-y^2}}$};
\node[regular polygon, inner sep = -2pt, regular polygon sides=6] \node[regular polygon, inner sep = -2pt, regular polygon sides=6]
(B) at (A) {$\phantom{\Delta_{x^2-y^2}}$}; (B) at (A) {$\phantom{\Delta_{x^2-y^2}}$};
\node[draw=none, fill=white, opacity=0.6, text opacity=1, inner sep=0] at (A) {#1}; \node[draw=none, fill=white, opacity=1, text opacity=1, inner sep=0] at (A) {#1};
\node[] at (B.corner 1) {#2}; \node[] at (B.corner 1) {$#2$};
\node[] at (B.corner 2) {#3}; \node[] at (B.corner 2) {$#3$};
\node[] at (B.corner 3) {#4}; \node[] at (B.corner 3) {$#4$};
\node[] at (B.corner 4) {#5}; \node[] at (B.corner 4) {$#5$};
\node[] at (B.corner 5) {#6}; \node[] at (B.corner 5) {$#6$};
\node[] at (B.corner 6) {#7}; \node[] at (B.corner 6) {$#7$};
\end{tikzpicture} \end{tikzpicture}
} }
} }
...@@ -295,20 +295,49 @@ The allowed combinations can be obtained by a careful symmetry analysis. ...@@ -295,20 +295,49 @@ The allowed combinations can be obtained by a careful symmetry analysis.
\begin{table} \begin{table}
\centering \centering
\begin{tabular}{ccc} \toprule \begin{tabular}{cccc} \toprule
{$\mu$} & Spatial & Spin \\ \hline {$\mu$} & Spatial & Spin & Total \\ \hline
\sym A 1 & \numberedHexagon{$\Delta_s$}{1}{1}{1}{1}{1}{1} & $\hat{\mathbf{d}}_0$ \\ \sym A 1 & \numberedHexagon{$\Delta_s$}{1}{1}{1}{1}{1}{1}
\sym A 2 & - & $\hat{\mathbf{d}}_z$ \\ & $\hat{\mathbf{d}}_0$
\sym B 1 & \numberedHexagon{$\Delta_f$}{-1}{1}{-1}{1}{-1}{1} & \\ \hline \\ & $\begin{gathered}
\Delta_{s} \hat{\mathbf{d}}_0 \\
\Delta_{p_x} \hat{\mathbf{d}}_x - \Delta_{p_y} \hat{\mathbf{d}}_y
\end{gathered}$ \\
\sym A 2 & - & $\hat{\mathbf{d}}_z$
& $\Delta_{p_y} \hat{\mathbf{d}}_x + \Delta_{p_x} \hat{\mathbf{d}}_y$\\
\sym B 1 & \numberedHexagon{$\Delta_f$}{-1}{1}{-1}{1}{-1}{1} & - & - \\
\sym B 2 & - & - & $\Delta_{f} \hat{\mathbf{d}}_z$ \\ \hline \\
\sym E 1 & \sym E 1 &
$\left[\numberedHexagon{$\Delta_{p_x}$}{1}{-1}{-2}{-1}{1}{2} $\begin{bmatrix}
\numberedHexagon{$\Delta_{p_y}$}{1}{1}{0}{-1}{-1}{0} \right] $ \numberedHexagon{$\Delta_{p_x}$}{1}{-1}{-2}{-1}{1}{2} \\
& $[\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y]$ \\[3em] \numberedHexagon{$\Delta_{p_y}$}{1}{1}{0}{-1}{-1}{0}
\end{bmatrix} $
& $\begin{bmatrix}
\hat{\mathbf{d}}_x \\
\hat{\mathbf{d}}_y
\end{bmatrix}$
& $\begin{bmatrix}
\Delta_{p_x} \\
\Delta_{p_y}
\end{bmatrix}$ \\[3em]
\sym E 2 & \sym E 2 &
$\left[\numberedHexagon{$\Delta_{d_{x^2-y^2}}$}{-1}{-1}{2}{-1}{-1}{2} $\left[
\begin{aligned}
\numberedHexagon{$\Delta_{d_{x^2-y^2}}$}{-1}{-1}{2}{-1}{-1}{2} \\
\numberedHexagon{$\Delta_{d_{xy}}$}{1}{-1}{0}{1}{-1}{0} \numberedHexagon{$\Delta_{d_{xy}}$}{1}{-1}{0}{1}{-1}{0}
\end{aligned}
\right] $ \right] $
& \\[3em] \hline & -
& $\begin{gathered}
[\Delta_{d_{xy}},\Delta_{d_{x^-y^2}}] \hat{\mathbf{d}}_0 \\
\Delta_f [\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y] \\
\begin{aligned}
[\Delta_{p_y} \hat{\mathbf{d}}_x
- \Delta_{p_x} \hat{\mathbf{d}}_y, \\
\Delta_{p_x} \hat{\mathbf{d}}_x
+ \Delta_{p_y} \hat{\mathbf{d}}_y] \end{aligned}
\end{gathered}$
\\[3em] \hline
\end{tabular} \end{tabular}
\caption{ \caption{
\captiontitle{Basis functions of irreducible representations} \captiontitle{Basis functions of irreducible representations}
...@@ -318,6 +347,33 @@ The allowed combinations can be obtained by a careful symmetry analysis. ...@@ -318,6 +347,33 @@ The allowed combinations can be obtained by a careful symmetry analysis.
\label{tab:mom-irreps} \label{tab:mom-irreps}
\end{table} \end{table}
\begin{table}
\centering
\begin{tabular}{cccc} \toprule
{$\mu$} & \multicolumn{3}{c}{Basis functions} \\ \hline
\sym A 1 & $\Delta_{s} \hat{\mathbf{d}}_0$
& $\Delta_{p_x} \hat{\mathbf{d}}_x - \Delta_{p_y} \hat{\mathbf{d}}_y$ & \\
\sym A 2 & & $\Delta_{p_y} \hat{\mathbf{d}}_x + \Delta_{p_x} \hat{\mathbf{d}}_y$ & \\
\sym B 1 & & & \\
\sym B 2 & $\Delta_{f} \hat{\mathbf{d}}_z$ & & \\ \hline
\sym E 1 & $[\Delta_{p_x},\Delta_{p_y}] \hat{\mathbf{d}}_z$ & & \\
\sym E 2 & $[\Delta_{d_{xy}},\Delta_{d_{x^-y^2}}] \hat{\mathbf{d}}_0$
& $\Delta_f [\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y]$
& $\begin{aligned}
[\Delta_{p_y} \hat{\mathbf{d}}_x
- \Delta_{p_x} \hat{\mathbf{d}}_y, \\
\Delta_{p_x} \hat{\mathbf{d}}_x
+ \Delta_{p_y} \hat{\mathbf{d}}_y] \end{aligned}$
\\ \hline
\end{tabular}
\caption{
\captiontitle{Basis functions of irreducible representation}
We show the possible basis functions for two spins that are
antisymmetric under exchange of quantum indices.}
\label{tab:total-irreps}
\end{table}
% \begin{table} % \begin{table}
% \centering % \centering
% \begin{tabular}{ccc} \toprule % \begin{tabular}{ccc} \toprule
...@@ -399,31 +455,6 @@ The results is the following decomponsition: ...@@ -399,31 +455,6 @@ The results is the following decomponsition:
All of the basis functions of the combined spin-momentum system are given in Table All of the basis functions of the combined spin-momentum system are given in Table
\ref{tab:total-irreps}. \ref{tab:total-irreps}.
\begin{table}
\centering
\begin{tabular}{cccc} \toprule
{$\mu$} & \multicolumn{3}{c}{Basis functions} \\ \hline
\sym A 1 & $\Delta_{s} \hat{\mathbf{d}}_0$
& $\Delta_{p_x} \hat{\mathbf{d}}_x - \Delta_{p_y} \hat{\mathbf{d}}_y$ & \\
\sym A 2 & & $\Delta_{p_y} \hat{\mathbf{d}}_x + \Delta_{p_x} \hat{\mathbf{d}}_y$ & \\
\sym B 1 & & & \\
\sym B 2 & $\Delta_{f} \hat{\mathbf{d}}_z$ & & \\ \hline
\sym E 1 & $[\Delta_{p_x},\Delta_{p_y}] \hat{\mathbf{d}}_z$ & & \\
\sym E 2 & $[\Delta_{d_{xy}},\Delta_{d_{x^-y^2}}] \hat{\mathbf{d}}_0$
& $\Delta_f [\hat{\mathbf{d}}_x, \hat{\mathbf{d}}_y]$
& $\begin{aligned}
[\Delta_{p_y} \hat{\mathbf{d}}_x
- \Delta_{p_x} \hat{\mathbf{d}}_y, \\
\Delta_{p_x} \hat{\mathbf{d}}_x
+ \Delta_{p_y} \hat{\mathbf{d}}_y] \end{aligned}$
\\ \hline
\end{tabular}
\caption{
\captiontitle{Basis functions of irreducible representation}
We show the possible basis functions for two spins that are
antisymmetric under exchange of quantum indices.}
\label{tab:total-irreps}
\end{table}
\section{Results for the nearest-neighbor model} \section{Results for the nearest-neighbor model}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment