Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
battery degradation trajectory prediction
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ISEA
battery degradation trajectory prediction
Commits
931d7b54
Commit
931d7b54
authored
3 years ago
by
Weihan Li
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
6d2bed43
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Modeling Codes/STL_Cap.py
+152
-0
152 additions, 0 deletions
Modeling Codes/STL_Cap.py
with
152 additions
and
0 deletions
Modeling Codes/STL_Cap.py
0 → 100644
+
152
−
0
View file @
931d7b54
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.keras.layers
import
*
from
tensorflow.keras.models
import
Model
from
tensorflow.keras.regularizers
import
*
from
tensorflow.keras
import
Input
from
tensorflow.keras.optimizers
import
Adadelta
,
Adam
from
tensorflow.keras
import
regularizers
import
tensorflow.keras
as
keras
import
tensorflow.keras.backend
as
kb
import
pickle
#define model parameters
tf
.
keras
.
backend
.
set_epsilon
(
1e-9
)
cIntInputSeqLen
=
384
cIntOutputSeqLen
=
128
cIntProcFeatures
=
1
cIntHiddenNode
=
64
cIntBatchSize
=
384
cIntEpoch
=
450
lr
=
1e-4
cIntMaskValue
=
0
#define custom loss function
class
CustomLoss
:
@staticmethod
def
RMSE
(
y_true
,
y_pred
):
return
kb
.
sqrt
(
tf
.
keras
.
losses
.
mean_squared_error
(
y_true
,
y_pred
))
@staticmethod
def
MaskedRMSE
(
y_true
,
y_pred
):
isMask
=
kb
.
equal
(
y_true
,
0
)
isMask
=
kb
.
all
(
isMask
,
axis
=-
1
)
isMask
=
kb
.
cast
(
isMask
,
dtype
=
kb
.
floatx
())
isMask
=
1
-
isMask
isMask
=
kb
.
reshape
(
isMask
,
tf
.
shape
(
y_true
))
masked_squared_error
=
kb
.
square
(
isMask
*
(
y_true
-
y_pred
))
masked_mse
=
kb
.
sum
(
masked_squared_error
,
axis
=-
1
)
/
(
kb
.
sum
(
isMask
,
axis
=-
1
)
+
kb
.
epsilon
())
return
kb
.
sqrt
(
masked_mse
)
@staticmethod
def
MaskedMSE
(
y_true
,
y_pred
):
isMask
=
kb
.
equal
(
y_true
,
0
)
isMask
=
kb
.
all
(
isMask
,
axis
=-
1
)
isMask
=
kb
.
cast
(
isMask
,
dtype
=
kb
.
floatx
())
isMask
=
1
-
isMask
isMask
=
kb
.
reshape
(
isMask
,
tf
.
shape
(
y_true
))
masked_squared_error
=
kb
.
square
(
isMask
*
(
y_true
-
y_pred
))
masked_mse
=
kb
.
sum
(
masked_squared_error
,
axis
=-
1
)
/
(
kb
.
sum
(
isMask
,
axis
=-
1
)
+
kb
.
epsilon
())
return
masked_mse
@staticmethod
def
MaskedMAE
(
y_true
,
y_pred
):
isMask
=
kb
.
equal
(
y_true
,
0
)
isMask
=
kb
.
all
(
isMask
,
axis
=-
1
)
isMask
=
kb
.
cast
(
isMask
,
dtype
=
kb
.
floatx
())
isMask
=
1
-
isMask
isMask
=
kb
.
reshape
(
isMask
,
tf
.
shape
(
y_true
))
masked_AE
=
kb
.
abs
(
isMask
*
(
y_true
-
y_pred
))
masked_mae
=
kb
.
sum
(
masked_AE
,
axis
=-
1
)
/
(
kb
.
sum
(
isMask
,
axis
=-
1
)
+
kb
.
epsilon
())
return
masked_mae
#numpy function wrapper
@staticmethod
@tf.function
def
MaskedMAPE
(
y_true
,
y_pred
):
return
tf
.
py_function
(
CustomLoss
.
numpyMaskedMAPE
,(
y_true
,
y_pred
),
tf
.
double
)
@staticmethod
def
numpyMaskedMAPE
(
y_true
,
y_pred
):
MapeLst
=
list
()
for
elm_t
,
elm_p
in
zip
(
y_true
,
y_pred
):
y_t
=
elm_t
[
0
:
np
.
count_nonzero
(
elm_t
),:]
y_p
=
elm_p
[
0
:
np
.
count_nonzero
(
elm_t
),:]
MapeLst
.
append
(
np
.
mean
(((
np
.
abs
(
y_t
-
y_p
)
+
1e-10
)
/
y_t
))
*
100
)
return
np
.
array
(
MapeLst
,
dtype
=
np
.
float
)
#define sequential model for capacity
model
=
keras
.
Sequential
()
model
.
add
(
tf
.
keras
.
layers
.
Masking
(
mask_value
=
cIntMaskValue
))
model
.
add
(
tf
.
keras
.
layers
.
Bidirectional
(
tf
.
keras
.
layers
.
LSTM
(
cIntHiddenNode
,
return_sequences
=
True
)))
model
.
add
(
tf
.
keras
.
layers
.
Bidirectional
(
tf
.
keras
.
layers
.
LSTM
(
cIntHiddenNode
,
return_sequences
=
True
)))
model
.
add
(
tf
.
keras
.
layers
.
Bidirectional
(
tf
.
keras
.
layers
.
LSTM
(
cIntHiddenNode
,
return_sequences
=
True
)))
model
.
add
(
tf
.
keras
.
layers
.
Bidirectional
(
tf
.
keras
.
layers
.
LSTM
(
cIntHiddenNode
,
return_sequences
=
False
)))
model
.
add
(
tf
.
keras
.
layers
.
RepeatVector
(
cIntOutputSeqLen
))
model
.
add
(
tf
.
keras
.
layers
.
Bidirectional
(
tf
.
keras
.
layers
.
LSTM
(
cIntHiddenNode
,
return_sequences
=
True
)))
model
.
add
(
tf
.
keras
.
layers
.
Bidirectional
(
tf
.
keras
.
layers
.
LSTM
(
cIntHiddenNode
,
return_sequences
=
True
)))
model
.
add
(
tf
.
keras
.
layers
.
Bidirectional
(
tf
.
keras
.
layers
.
LSTM
(
cIntHiddenNode
,
return_sequences
=
True
)))
model
.
add
(
tf
.
keras
.
layers
.
Bidirectional
(
tf
.
keras
.
layers
.
LSTM
(
cIntHiddenNode
,
return_sequences
=
True
)))
model
.
add
(
tf
.
keras
.
layers
.
TimeDistributed
(
tf
.
keras
.
layers
.
Dense
(
cIntHiddenNode
*
2
,
activation
=
"
relu
"
)))
model
.
add
(
tf
.
keras
.
layers
.
TimeDistributed
(
tf
.
keras
.
layers
.
Dense
(
cIntHiddenNode
/
4
,
activation
=
"
relu
"
)))
model
.
add
(
tf
.
keras
.
layers
.
TimeDistributed
(
tf
.
keras
.
layers
.
Dense
(
cIntProcFeatures
,
activation
=
"
linear
"
)))
#load training data
trCap
=
pickle
.
load
(
open
(
'
trCap.p
'
,
"
rb
"
))
trIR
=
pickle
.
load
(
open
(
'
trIR.p
'
,
"
rb
"
))
teCap
=
pickle
.
load
(
open
(
'
teCap.p
'
,
"
rb
"
))
teIR
=
pickle
.
load
(
open
(
'
teIR.p
'
,
"
rb
"
))
#function to build training data
def
BuildSeqs
(
Cap
,
IR
):
#declare list for input capacity and input IR as ls1 and ls2
#declare list for output capacity and output IR as ls3 and ls4
ls1
,
ls2
,
ls3
,
ls4
=
list
(),
list
(),
list
(),
list
()
for
SelectCap
,
SelectIR
in
zip
(
Cap
,
IR
):
if
(
len
(
SelectIR
)
<
len
(
SelectCap
)):
SelectCap
=
SelectCap
[
0
:
len
(
SelectIR
)]
elif
(
len
(
SelectCap
)
<
len
(
SelectIR
)):
SelectIR
=
SelectIR
[
0
:
len
(
SelectCap
)]
SelectIR
=
SelectIR
/
0.04
*
100
SelectCap
=
SelectCap
/
1.85
*
100
x_lst
=
[]
x_lst2
=
[]
y_lst
=
[]
y_lst2
=
[]
for
i
in
range
(
20
,
len
(
SelectIR
)
-
20
,
1
):
splitPos
=
i
inputSeq
=
SelectCap
[
0
:
splitPos
]
x_lst
.
append
(
inputSeq
.
reshape
(
-
1
,
1
))
inputSeq2
=
SelectIR
[
0
:
splitPos
]
x_lst2
.
append
(
inputSeq2
.
reshape
(
-
1
,
1
))
OutputSeq
=
SelectCap
[
splitPos
-
1
::
4
].
tolist
()
y_lst
.
append
(
OutputSeq
)
OutputSeq2
=
SelectIR
[
splitPos
-
1
::
4
].
tolist
()
y_lst2
.
append
(
OutputSeq2
)
#zero padding
Proc_X
=
tf
.
keras
.
preprocessing
.
sequence
.
pad_sequences
(
x_lst
,
maxlen
=
cIntInputSeqLen
,
dtype
=
'
float64
'
,
padding
=
'
pre
'
,
value
=
0
)
Proc_X2
=
tf
.
keras
.
preprocessing
.
sequence
.
pad_sequences
(
x_lst2
,
maxlen
=
cIntInputSeqLen
,
dtype
=
'
float64
'
,
padding
=
'
pre
'
,
value
=
0
)
Proc_Y1
=
tf
.
keras
.
preprocessing
.
sequence
.
pad_sequences
(
y_lst
,
maxlen
=
cIntOutputSeqLen
,
dtype
=
'
float64
'
,
padding
=
'
post
'
,
value
=
0
)
Proc_Y2
=
tf
.
keras
.
preprocessing
.
sequence
.
pad_sequences
(
y_lst2
,
maxlen
=
cIntOutputSeqLen
,
dtype
=
'
float64
'
,
padding
=
'
post
'
,
value
=
0
)
Proc_X
=
Proc_X
.
reshape
(
-
1
,
cIntInputSeqLen
,
cIntProcFeatures
)
Proc_X2
=
Proc_X2
.
reshape
(
-
1
,
cIntInputSeqLen
,
cIntProcFeatures
)
Proc_Y1
=
Proc_Y1
.
reshape
(
-
1
,
cIntOutputSeqLen
,
cIntProcFeatures
)
Proc_Y2
=
Proc_Y2
.
reshape
(
-
1
,
cIntOutputSeqLen
,
cIntProcFeatures
)
for
a
,
b
,
c
,
d
in
zip
(
Proc_X
,
Proc_X2
,
Proc_Y1
,
Proc_Y2
):
ls1
.
append
(
a
)
ls2
.
append
(
b
)
ls3
.
append
(
c
)
ls4
.
append
(
d
)
return
(
np
.
array
(
ls1
,
dtype
=
np
.
float
),
np
.
array
(
ls2
,
dtype
=
np
.
float
)),(
np
.
array
(
ls3
,
dtype
=
np
.
float
),
np
.
array
(
ls4
,
dtype
=
np
.
float
))
#generate training data
#only use capacity data
(
x0
,
_
),(
y0
,
_
)
=
BuildSeqs
(
trCap
,
trIR
)
(
x1
,
_
),(
y1
,
_
)
=
BuildSeqs
(
teCap
,
teIR
)
#set checkpoint path
checkpoint_path
=
"
caponly/weight_{epoch:04d}-{val_loss:.2f}.hdf5
"
#define checkpoint and early stopping callback
callback2
=
tf
.
keras
.
callbacks
.
EarlyStopping
(
monitor
=
'
val_loss
'
,
patience
=
32
,
restore_best_weights
=
True
)
cp_callback
=
tf
.
keras
.
callbacks
.
ModelCheckpoint
(
filepath
=
checkpoint_path
,
save_weights_only
=
True
,
verbose
=
2
,
save_freq
=
'
epoch
'
)
#start training
model
.
compile
(
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
lr
=
lr
),
loss
=
CustomLoss
.
MaskedMAE
,
metrics
=
[
CustomLoss
.
MaskedMAPE
,
CustomLoss
.
MaskedRMSE
])
#verbose should be 1 if you want to see the training progress
model
.
fit
(
x0
,
y0
,
batch_size
=
cIntBatchSize
,
epochs
=
cIntEpoch
,
verbose
=
2
,
validation_data
=
(
x1
,
y1
),
shuffle
=
True
,
callbacks
=
[
cp_callback
,
callback2
])
#save model
model
.
save
(
"
CapOnly.h5
"
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment