Explore projects
-
RWTH MediaLab / 19squared
MIT License19squared is a web application for creating and experiencing interactive 360° tours in extended reality environments.
Updated -
In this example, you can investigate how a neural network can fit an arbitrary function during the training iterations.
Updated -
Codebeispiele zur Vorlesung Einführung in die Programmierung I Wintesemester 2021/22 TU Darmstadt
Updated -
M. Scholkemper and M. T. Schaub, "Local, Global And Scale-Dependent Node Roles," 2021 IEEE International Conference on Autonomous Systems (ICAS), Montreal, QC, Canada, 2021, pp. 1-5, doi: 10.1109/ICAS49788.2021.9551110.
Updated -
Computational Network Science / 2021 - Outlier Detection for Trajectories via Flow-embeddings
MIT LicenseF. Frantzen, J.-B. Seby and M. T. Schaub, "Outlier Detection for Trajectories via Flow-embeddings," 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2021, pp. 1568-1572, doi: 10.1109/IEEECONF53345.2021.9723128.
Updated -
M. Scholkemper and M. T. Schaub, "Blind Extraction of Equitable Partitions from Graph Signals," ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022, pp. 5832-5836, doi: 10.1109/ICASSP43922.2022.9746676.
Updated -
"Improving the visibility of minorities through network growth interventions", Communication Physics 6, 108 (2023), doi:10.1038/s42005-023-01218-9
Updated -
Computational Network Science / 2023 - An Optimization-based Approach To Node Role Discovery in Networks
MIT License"An Optimization-based Approach To Node Role Discovery in Networks: Approximating Equitable Partitions", Michael Scholkemper and Michael T. Schaub, (2023), NeurIPS23.
Updated -
-
Stamm FI, Scholkemper M, Strohmaier M, Schaub MT. Neighborhood structure configuration models. InProceedings of the ACM Web Conference 2023 2023 Apr 30 (pp. 210-220).
Updated -
"Non-isotropic Persistent Homology: Leveraging the Metric Dependency of PH", Vincent P. Grande and Michael T. Schaub, Proceedings of the 2nd Annual Learning on Graphs Conference.
Updated -
Computational Network Science / 2023 - Representing Edge Flows on Graphs via Sparse Cell Complexes
MIT License"Representing Edge Flows on Graphs via Sparse Cell Complexes", Learning on Graphs (LoG) 2023; see also https://github.com/josefhoppe/edge-flow-cell-complexes
Updated -
Disentangling the Spectral Properties of the Hodge Laplacian: Not All Small Eigenvalues Are Equal, Vincent P. Grande and Michael T. Schaub, International Conference on Acoustics, Speech, and Signal Processing 2024. https://arxiv.org/abs/2311.14427
Updated -
"Learning From Simplicial Data Based on Random Walks and 1D Convolutions", Florian Frantzen and Michael T. Schaub, The Twelfth International Conference on Learning Representations, 2024
Updated -
Accompanying Repository for 'Random Abstract Cell Complexes' Paper.
Updated -
"A Wasserstein Graph Distance Based on Distributions of Probabilistic Node Embeddings", Scholkemper, M., Kühn, D., Nabbefeld, G., Musall, S., Kampa, B., & Schaub, M. T. (2024)
Updated -
-
Institute of Aerodynamics and Chair of Fluid Mechanics / 2D-MEMD
GNU General Public License v3.0 onlyUpdated