Skip to content
Snippets Groups Projects
Commit e2ed786c authored by Fernandes Costa, Diogo's avatar Fernandes Costa, Diogo
Browse files

Schreiben der Codes für die Berechnungsvorschriften für die Ausarbeitung....

Schreiben der Codes für die Berechnungsvorschriften für die Ausarbeitung. Schreiben des Codes zum Plotten und Berechnung der Wärmekapazitäten.
parent a54e69b7
No related branches found
No related tags found
No related merge requests found
Source diff could not be displayed: it is too large. Options to address this: view the blob.
from typing import List, Tuple
from typing import Dict, List, Tuple
import h5py as h5
import matplotlib.pyplot as plt
......@@ -37,10 +38,8 @@ def plot_temp_over_time(
for i in range(len(data)):
# TODO: draw a plot using the ax.errorbar(...) function
# Document: https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.errorbar.html
raise NotImplementedError(
"Delete these 3 lines if you have finished the code or want to test it.".upper()
)
#
ax.errorbar(time[i], data[i][0,:], data[i][1,:])
# DONE #
......@@ -50,9 +49,11 @@ def plot_temp_over_time(
# TODO: set legend, x- and y- axis label.
raise NotImplementedError(
"Delete these 3 lines if you have finished the code or want to test it.".upper()
)
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.legend(legend)
# DONE #
......@@ -61,7 +62,7 @@ def plot_temp_over_time(
def get_plot_data_from_dataset(
data_path: str, group_path: str
) -> dict[str, np.ndarray]:
) -> Dict[str, np.ndarray]:
"""Get the necessary data from the dataset to plot.
This function returns the data in a HDF5 file in all subgroups of a group in 'group_path'
......@@ -119,28 +120,45 @@ def get_plot_data_from_dataset(
continue
# TODO: Find the start time point of the measurement.
if start_time is None:
start_time = dataset_start_time
elif dataset_start_time < start_time:
start_time = dataset_start_time
temperature = np.empty(shape=[len(subgroups), min_len])
time = np.empty(shape=[len(subgroups), min_len])
for i,subgroup in enumerate(subgroups):
raise NotImplementedError(
"Delete these 3 lines if you have finished the code or want to test it.".upper()
)
# DONE #
for subgroup in subgroups:
# TODO: Save data in to the lists temperature, time and name.
# Data for each sensor must have the same length because of np.ndarray will be use in the output.
raise NotImplementedError(
"Delete these 3 lines if you have finished the code or want to test it.".upper()
)
time[i] = group[subgroup]["timestamp"][:min_len]
temperature[i] = group[subgroup]["temperature"][:min_len]
name.append( group[subgroup].attrs["name"])
# DONE #
# TODO: return the output dict.
raise NotImplementedError(
"Delete these 3 lines if you have finished the code or want to test it.".upper()
)
return {"temperature": temperature, "timestamp": time, "name": name}
# DONE #
......@@ -159,9 +177,7 @@ def cal_mean_and_standard_deviation(data: np.ndarray) -> np.ndarray:
# TODO: Calculate the mean and standard deviation of the first dimension and return the result as a
# two-dimensional (2, n)-shaped ndarray.
raise NotImplementedError(
"Delete these 3 lines if you have finished the code or want to test it.".upper()
)
return np.array([np.mean(data, axis=0), np.std(data, axis=0, dtype=np.float32)])
# DONE #
......@@ -189,8 +205,15 @@ def get_start_end_temperature(
# an idea that you can refer to. The goal of this function is to obtain from the data the high and
# low temperatures necessary to calculate the heat capacity.
raise NotImplementedError(
"Delete these 3 lines if you have finished the code or want to test it.".upper()
)
abs_maximum = np.nanmax(temperature_data)
max = np.mean([i for i in np.nditer(temperature_data) if (abs_maximum-i) < threshold])
abs_minimum = np.nanmin(temperature_data)
min = np.mean([i for i in np.nditer(temperature_data) if (i-abs_minimum) < threshold])
return (max, min)
# DONE #
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment