Skip to content
Snippets Groups Projects
Commit f98d8b44 authored by JGlombitza's avatar JGlombitza
Browse files

change Model API of generator

parent 65484081
No related branches found
No related tags found
No related merge requests found
...@@ -29,24 +29,25 @@ utils.plot_multiple_signalmaps(shower_maps[:,:,:,0], log_dir=log_dir, title='Foo ...@@ -29,24 +29,25 @@ utils.plot_multiple_signalmaps(shower_maps[:,:,:,0], log_dir=log_dir, title='Foo
# build generator # build generator
# Feel free to modify the critic model
def build_generator(latent_size): def build_generator(latent_size):
inputs = Input(shape=(latent_size,)) generator = Sequential(name='generator')
x = Dense(latent_size, activation='relu')(inputs) generator.add(Dense(latent_size, activation='relu', input_shape=(latent_size,)))
x = Reshape((1,1,latent_size))(x) generator.add(Reshape((1,1,latent_size)))
x = UpSampling2D(size=(3,3))(x) generator.add(UpSampling2D(size=(3,3)))
x = Conv2D(64, (2, 2), padding='same', kernel_initializer='he_normal', activation='relu')(x) generator.add(BatchNormalization())
x = BatchNormalization()(x) generator.add(UpSampling2D(size=(3,3)))
x = UpSampling2D(size=(3,3))(x) generator.add(Conv2D(128, (3, 3), padding='same', kernel_initializer='he_normal', activation='relu'))
x = Conv2D(128, (3, 3), padding='same', kernel_initializer='he_normal', activation='relu')(x) generator.add(BatchNormalization())
x = BatchNormalization()(x) generator.add(Conv2D(128, (3, 3), padding='same', kernel_initializer='he_normal', activation='relu'))
x = Conv2D(128, (3, 3), padding='same', kernel_initializer='he_normal', activation='relu')(x) generator.add(BatchNormalization())
x = BatchNormalization()(x) generator.add(Conv2D(256, (3, 3), padding='same', kernel_initializer='he_normal', activation='relu'))
x = Conv2D(256, (3, 3), padding='same', kernel_initializer='he_normal', activation='relu')(x) generator.add(BatchNormalization())
x = BatchNormalization()(x) generator.add(Conv2D(1, (3, 3), padding='same', kernel_initializer='he_normal', activation='relu'))
outputs = Conv2D(1, (3, 3), padding='same', kernel_initializer='he_normal', activation='relu')(x) return generator
return Model(inputs=inputs, outputs=outputs, name='generator')
# build critic # build critic
# Feel free to modify the critic model
def build_critic(): def build_critic():
critic = Sequential(name='critic') critic = Sequential(name='critic')
critic.add(Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal', input_shape=(9,9,1))) critic.add(Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal', input_shape=(9,9,1)))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment