Skip to content
Snippets Groups Projects
Commit 07669ccb authored by Lukas Geiger's avatar Lukas Geiger
Browse files

Fix Python 3 compatibility

parent 9fca1db0
No related branches found
No related tags found
No related merge requests found
......@@ -72,14 +72,14 @@ y[ntrain:, 0] = 1 # class 0 for generated images
discriminator.fit(X, y, epochs=1, batch_size=128)
# - Create a dataset of 5000 real test images and 5000 fake images.
no = np.random.choice(10000, size=ntrain/2, replace='False')
no = np.random.choice(10000, size=ntrain//2, replace='False')
real_test = X_test[no, :, :, :] # sample real images from test set
noise_gen = np.random.uniform(0, 1, size=[ntrain/2, latent_dim])
noise_gen = np.random.uniform(0, 1, size=[ntrain//2, latent_dim])
generated_images = generator.predict(noise_gen) # generate fake images with untrained generator
Xt = np.concatenate((real_test, generated_images))
yt = np.zeros([ntrain, 2]) # class vector: one-hot encoding
yt[:ntrain/2, 1] = 1 # class 1 for real images
yt[ntrain/2:, 0] = 1 # class 0 for generated images
yt[:ntrain//2, 1] = 1 # class 1 for real images
yt[ntrain//2:, 0] = 1 # class 0 for generated images
# - Evaluate the test accuracy of your network.
pretrain_loss, pretrain_acc = discriminator.evaluate(Xt, yt, verbose=0, batch_size=128)
......@@ -99,7 +99,7 @@ def train_for_n(epochs=1, batch_size=32):
generated_images = generator.predict(noise)
plot_images(generated_images, fname=log_dir + '/generated_images_' + str(epoch))
iterations_per_epoch = 60000/batch_size # number of training steps per epoch
iterations_per_epoch = 60000//batch_size # number of training steps per epoch
perm = np.random.choice(60000, size=60000, replace='False')
for i in range(iterations_per_epoch):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment