Skip to content
Snippets Groups Projects
Commit 2375a537 authored by ssibirtsev's avatar ssibirtsev
Browse files

Upload New File

parent 76508678
No related branches found
No related tags found
No related merge requests found
#!/usr/bin/zsh
##############################################
##### Batch script for the MRCNN processing ####
##############################################
#### CREATE SBATCH ENTRIES ####
#### Paths and parameters must be adapted accordingly.
#### job name
#SBATCH --job-name=<JobName>
#### Path and name of the output file of the job execution
#SBATCH --output=/home/<UserID>/.../<JobOutputFolderName>/%x_%J_output.txt
#### Job runtime
#SBATCH --time=0-00:00:00
#### Memory requirement per GPU .
#### For example: if value is 5GB --> --mem-per-gpu=5G
#SBATCH --mem-per-gpu=5G
#### E-mail address
#SBATCH --mail-user=<EmailAdress>
#### E-mails to be received
#SBATCH --mail-type=ALL
#### Number of tasks to be performed
#SBATCH --ntasks=1
#### Number of GPUs required per node
#SBATCH --gres=gpu:1
#### Definition of the job array starting at 0. ###
#### This parameter is only required if you want to perform several jobs in parallel
#### from one job script, e.g. processing one testing image set with several MRCNN models (epochs)
#### In this example we process one testing image set with 10 MRCNN models (= 10 epochs).
#### Thus, we will run 10 jobs in parallel from one job script --> array=0-9
#SBATCH --array=0-9
#### CREATE TERMINAL ENTRIES ####
#### Paths and parameters must be adapted accordingly
#### Definition of the job parameter, which is varied
#### if several jobs are executed in parallel from one job script.
#### This job parameter is only required if you have specified the #SBATCH parameter --array above.
#### In this example, we process one testing image set with 10 MRCNN models.
#### Thus, we will run 10 jobs in parallel from one job script:
#### the parameter model corresponds to the model of the current processing,
#### which is varied for each job.
model="$SLURM_ARRAY_TASK_ID"
#### Loading the Cuda module
module load cuda/10.0
#### Export path in which Anaconda is located
export PATH=$PATH:/home/<UserID>/anaconda3/bin
#### Activate environment
source activate env_mrcnn_gpu
#### Navigate to the path where the droplet.py script is located
cd /home/<UserID>/.../samples/droplet/
#### Run the process_automated_droplet.py script.
#### These are the required processing parameters to be specified
#### with additional parameters required for the execution of parallel jobs from one job script.
#### In this example, we process one testing image set with 10 MRCNN models.
#### Thus, 10 jobs are executed in parallel (#SBATCH --array=0-9).
#### In each job the job parameter model is varied, starting with 0 and ending with 9.
#### The model names are model_00 to model_09.
#### First, we specify the processing parameter weights_name (--weights_name=model_0"$model").
#### Moreover, we specify output folder and Excel output file names
#### defined by the processing parameters save_path and name_result_file, since we need 10 of them.
#### Optional processing parameters can be found below.
#### Description/default settings of all processing parameters see manual.
python process_automated_droplet.py --dataset_path=<InputFolderName> --save_path=<OutputFolderName>_0"$model" --name_result_file=<ExcelFileName>_0"$model" --weights_path=<WeightsFolderName> --weights_name=model_0"$model" --file_format=<FileFormat> --device=<Boolean> --pixelsize=<Double> --image_max=<Integer>
#### Optional processing parameters:
#### --masks
#### --save_nth_image
#### --image_crop
#### --images_gpu
#### --confidence
#### --detect_reflections
#### --detect_oval_droplets
#### --min_aspect_ratio
#### --detect_adhesive_droplets
#### --save_coordinates
#### --min_velocity
#### --min_size_diff
#### --n_images_compared
#### --n_adhesive_high
#### --n_adhesive_low
#### --low_distance_threshold
#### --edge_tolerance
#### --contrast
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment