"In diesem Notebook werden wir einen auf das Nötigste reduzierten SCF-Code verwenden, um einen Einblick in die einzelnen Iterationen zu gewinnen."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import scf\n",
"import numpy as np\n",
"from pyscf import gto\n",
"import plotly.graph_objects as go"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# To build such a molecule object, specific information is required, which is defined in the following code line. (In this oversimplified case, only the molecular coordinates and the basis set are used.) With this information, PySCF can now calculate the individual system-dependent parameters.\n",
"[print((\"{:6.2f}\"*len(line)).format(*line)) for line in finished_scf[\"coefficients\"][-1].T]\n",
"# finished_scf[\"coefficients\"][70].T"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
%% Cell type:markdown id: tags:
# B.CTC: SCF
In diesem Notebook werden wir einen auf das Nötigste reduzierten SCF-Code verwenden, um einen Einblick in die einzelnen Iterationen zu gewinnen.
%% Cell type:code id: tags:
``` python
importscf
importnumpyasnp
frompyscfimportgto
importplotly.graph_objectsasgo
```
%% Cell type:code id: tags:
``` python
# To build such a molecule object, specific information is required, which is defined in the following code line. (In this oversimplified case, only the molecular coordinates and the basis set are used.) With this information, PySCF can now calculate the individual system-dependent parameters.