Skip to content
Snippets Groups Projects
Commit cbcb09da authored by moritz.buchhorn's avatar moritz.buchhorn
Browse files

Small changes and blacked

parent 2c0c2e87
No related branches found
No related tags found
No related merge requests found
import numpy as np
import plotly.graph_objects as go
import atom_properties as atomp
from itertools import accumulate
import qc_parser as qcp
import subprocess as sub
import os
if "orca" not in os.environ["PATH"]:
os.environ["PATH"] += ":/home/jovyan/orca"
def circle_coordinates(point: np.ndarray, v: np.ndarray, radius: float, num_points: int) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Generate cartesian coordinates of a circle in 3D space.
Args:
point (np.ndarray): A point on the circle.
v (np.ndarray): A vector perpendicular to the circle.
radius (float): The radius of the circle.
num_points (int): The number of points to generate on the circle.
Returns:
np.ndarray: A 2D array of shape (num_points, 3) containing the cartesian coordinates of the circle.
"""
# Normalize the vector v
v = v / np.linalg.norm(v)
# Create a vector u that is perpendicular to v
u = np.cross(v, [1, 0, 0]) if np.linalg.norm(np.cross(v, [1, 0, 0])) > 1e-6 else np.cross(v, [0, 1, 0])
u = u / np.linalg.norm(u)
# Create a vector w that is perpendicular to both u and v
w = np.cross(u, v)
# Generate the cartesian coordinates of the circle
theta = np.linspace(0, 2 * np.pi, num_points)
circle_coords = point + radius * (u * np.cos(theta)[:, np.newaxis] + w * np.sin(theta)[:, np.newaxis])
x, y, z = circle_coords[:, 0], circle_coords[:, 1], circle_coords[:, 2]
return x, y, z
def make_arrow_mesh(at: np.ndarray, dir: np.ndarray, resolution: int = 16, radius: float = 0.05) -> go.Mesh3d:
tip = at + dir
bottom = at - dir
v = bottom - tip
x1, y1, z1 = circle_coordinates(bottom, v, radius=radius, num_points=resolution//4)
x2, y2, z2 = circle_coordinates(tip, v, radius=radius, num_points=resolution//4)
x, y, z = np.concatenate((x1, x2)), np.concatenate((y1, y2)), np.concatenate((z1, z2))
arrow_mesh = go.Mesh3d(
x=x,
y=y,
z=z,
color="#888888",
opacity=0.5,
alphahull=0,
# name=f'{self.elements[i]}-{self.elements[j]}',
hoverinfo='none', # No hover info at all
)
return arrow_mesh
def make_fibonacci_sphere(center: np.ndarray, radius: float = 0.1, resolution: int = 32) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Return cartesian coordinates of points evenly distributed on the surface of a sphere.
Args:
center (np.ndarray): The coordinates of the center of the sphere.
radius (float, optional): The radius of the sphere. Defaults to 0.1.
resolution (int, optional): The number of points to be generated. Defaults to 32.
Returns:
tuple[np.ndarray, np.ndarray, np.ndarray]: The cartesian coordinates of the points
on the surface of the sphere. The three arrays are the x, y and z coordinates
of the points.
"""
num_points = resolution
indices = np.arange(0, num_points, dtype=float) + 0.5
phi = np.arccos(1 - 2*indices/num_points)
theta = np.pi * (1 + 5**0.5) * indices
x = radius * np.sin(phi) * np.cos(theta) + center[0]
y = radius * np.sin(phi) * np.sin(theta) + center[1]
z = radius * np.cos(phi) + center[2]
return x, y, z
class XYZ:
"""
A class for representing a molecular structure in cartesian coordinates.
The molecule is represented by a list of atoms and corresponding coordinates.
Attributes:
xyz (ndarray): A 2D numpy array of shape (num_atoms, 3) containing the
coordinates of the atoms in the molecule.
elements (list): A list of strings representing the elements of the atoms in
the molecule.
"""
sphere_mode = "ball"
def __init__(self, coords: list[dict[str, str|float]]):
self.xyz = np.array([[coord["x"], coord["y"], coord["z"]] for coord in coords])
self.elements = [coord["element"] for coord in coords]
@classmethod
def from_xyz_file(cls, file: str):
"""
Reads in files with the structure 'element x y z' and returns
a numpy array with the stored coordinates.
@param file: String. Path to the file to be read in.
@return: 2D numpy array. Contains the coordinates from the file at the
corresponding indices.
"""
with open(file) as f:
lines = f.readlines()
if len(lines[0].split()) == 1:
lines = lines[2:]
return cls([{"element": line.split()[0],
"x": float(line.split()[1]),
"y": float(line.split()[2]),
"z": float(line.split()[3])} for line in lines])
@classmethod
def from_list(cls, lines: list[list[str|float]]):
return cls([{"element": line[0],
"x": float(line[1]),
"y": float(line[2]),
"z": float(line[3])} for line in lines])
def get_bond_length(self, i: int, j: int) -> float:
"""
Returns the bond length between atoms i and j.
Args:
i (int): Index of the first atom.
j (int): Index of the second atom.
Returns:
float: The bond length between the two atoms.
"""
return float(np.linalg.norm(self.xyz[i] - self.xyz[j]))
def make_cylinder(self, center_i: int, center_j: int, resolution: int = 32, radius: float = 0.1) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Return cartesian coordinates of points on the edges of a cylinder.
The cylinder is defined by the line between atoms i and j, and the radius is the given value. The number of points is determined by the resolution.
Args:
center_i (int): Index of the first atom that defines the cylinder.
center_j (int): Index of the second atom that defines the cylinder.
resolution (int, optional): The number of points to be generated. Defaults to 32.
radius (float, optional): The radius of the cylinder. Defaults to 0.1.
Returns:
tuple[np.ndarray, np.ndarray, np.ndarray]: The cartesian coordinates of the points on the edges of the cylinder. The three arrays are the x, y and z coordinates of the points.
"""
v = self.xyz[center_j] - self.xyz[center_i]
x1, y1, z1 = circle_coordinates(self.xyz[center_i], v, radius=radius, num_points=resolution//4)
x2, y2, z2 = circle_coordinates(self.xyz[center_j], v, radius=radius, num_points=resolution//4)
return np.concatenate((x1, x2)), np.concatenate((y1, y2)), np.concatenate((z1, z2))
def make_atom_mesh(self, i: int, resolution: int = 32) -> go.Mesh3d:
"""
Return a Mesh3d object that represents the atom at index i.
The atom is represented as a sphere with a radius depending on its van der Waals radius.
Args:
i (int): Index of the atom to be represented.
resolution (int, optional): The number of points to be generated. Defaults to 32.
Returns:
go.Mesh3d: A Mesh3d object that represents the atom.
"""
if self.sphere_mode == "vdw":
radius = atomp.vdw_radii_dict[self.elements[i]]
elif self.sphere_mode == "ball":
radius = atomp.vdw_radii_dict[self.elements[i]] * 0.2
x, y, z = make_fibonacci_sphere(self.xyz[i], radius=radius, resolution=resolution)
atom_mesh = go.Mesh3d(
x=x,
y=y,
z=z,
color=atomp.atom_colors_dict[self.elements[i]],
opacity=1,
alphahull=0,
name=f'{self.elements[i]}{i}', # label is too short to also show coordinates
hoverinfo='name', # Only show the name on hover
)
return atom_mesh
def make_bond_mesh(self, i: int, j: int, resolution: int = 32, radius: float = 0.1) -> go.Mesh3d:
"""
Return a Mesh3d object that represents a bond between atoms i and j.
The bond is represented as a cylinder with a radius depending on the given radius.
Args:
i (int): Index of the first atom in the bond.
j (int): Index of the second atom in the bond.
resolution (int, optional): The number of points to be generated. Defaults to 32.
radius (float, optional): The radius of the cylinder. Defaults to 0.1.
Returns:
go.Mesh3d: A Mesh3d object that represents the bond.
"""
x, y, z = self.make_cylinder(i, j, resolution=resolution, radius=radius)
bond_mesh = go.Mesh3d(
x=x,
y=y,
z=z,
color="#444444",
opacity=1,
alphahull=0,
# name=f'{self.elements[i]}-{self.elements[j]}',
hoverinfo='none', # No hover info at all
)
return bond_mesh
def get_molecular_mesh(self, resolution: int = 64, rel_cutoff: float = 0.5) -> go.Figure:
"""
Returns a list of Mesh3d objects that represent the molecular structure.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A list of Mesh3d objects that represent the molecular structure.
"""
mesh_list = []
# Add the bonds
for i in range(len(self.elements)):
for j in range(i+1, len(self.elements)):
bond_length = self.get_bond_length(i, j)
max_bond_length = rel_cutoff * (atomp.vdw_radii_dict[self.elements[i]] + atomp.vdw_radii_dict[self.elements[j]])
if bond_length < max_bond_length:
mesh_list.append(self.make_bond_mesh(i, j, resolution=resolution, radius=0.1))
# Add the atoms
for i in range(len(self.elements)):
mesh_list.append(self.make_atom_mesh(i, resolution=resolution))
return mesh_list
def get_molecular_viewer(self, resolution: int = 64, rel_cutoff: float = 0.5) -> go.Figure:
"""
Returns a plotly figure with the molecular structure.
The molecular structure is represented as a collection of spheres at the atomic positions,
with the bonds represented as cylinders between the atoms.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A plotly figure with the molecular structure.
"""
fig = go.Figure()
for mesh in self.get_molecular_mesh(resolution=resolution, rel_cutoff=rel_cutoff):
fig.add_trace(mesh)
# Fix aspect ratio such that the molecule is displayed undistorted
fig.update_layout(scene_aspectmode='data')
# Remove axes and labels
# fig.update_scenes(
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
# zaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
# )
return fig
class Trajectory:
"""
A class to represent a molecular trajectory in terms of XYZ objects.
Attributes:
coordinates (list[XYZ]): A list of XYZ objects representing the atomic coordinates for each frame in the trajectory.
vibration_vectors (list[list[float]] or None): A list of vibration vectors associated with the trajectory, if any.
"""
def __init__(self, coordinates: list[XYZ]):
self.coordinates = coordinates
self.vibration_vectors = None
@classmethod
def from_opt_output(cls, output_file: str):
"""
Creates a Trajectory object from an ORCA output file.
Args:
output_file (str): The path to the ORCA output file.
Returns:
Trajectory: A Trajectory object.
"""
parsed = qcp.read_qc_file(output_file)
return cls([XYZ(frame) for frame in parsed["coordinates"]])
@classmethod
def from_trajectory_file(cls, trajectory_file: str):
"""
Creates a Trajectory object from a trajectory file.
Args:
trajectory_file (str): The path to the trajectory file.
Returns:
Trajectory: A Trajectory object.
"""
return cls([frame for frame in Trajectory.xyz_generator(trajectory_file)])
@classmethod
def from_vibration_output(cls, output_file: str, mode: int):
"""
Creates a Trajectory object from an ORCA output file
containing a frequency calculation at the given mode.
Args:
output_file (str): The path to the ORCA output file.
mode (int): The mode number.
Returns:
Trajectory: A Trajectory object.
"""
proc = sub.run(f"orca_pltvib {output_file} {mode}", shell=True, text=True, capture_output=True)
trajectory_file = f"{output_file}.v{mode:03d}.xyz"
xyz = Trajectory.from_trajectory_file(trajectory_file)
xyz.vibration_vectors = Trajectory.get_vibration_vectors(trajectory_file)
os.remove(trajectory_file)
return xyz
@staticmethod
def xyz_generator(trajectory_file: str):
"""
Generator that yields XYZ objects from a trajectory file.
Args:
trajectory_file (str): The path to the trajectory file.
Yields:
XYZ: An XYZ object.
"""
with open(trajectory_file) as f:
lines = f.readlines()
block_size = int(lines[0].strip()) + 2
for i in range(0, len(lines), block_size):
yield XYZ.from_list([line.split() for line in lines[i+2:i+block_size]])
@staticmethod
def get_vibration_vectors(trajectory_file: str):
"""
Returns the vibration vectors from a trajectory file. Must be generated
by orca_pltvib, so it contains the vectors in the last three columns.
Args:
trajectory_file (str): The path to the trajectory file.
Returns:
list[list[float]]: A list of vibration vectors.
"""
with open(trajectory_file) as f:
lines = f.readlines()
block_size = int(lines[0].strip())
lines = lines[2:]
vibration_vectors = [[float(element) for element in line.split()[-3:]] for line in lines[:block_size]]
return vibration_vectors
def get_vibration_vectors_mesh(self) -> list[go.Mesh3d]:
"""
Returns a list of meshes that represent the vibration vectors.
"""
assert self.vibration_vectors is not None, "Vibration vectors must be generated first"
meshes = []
first_frame_coords = self.coordinates[0].xyz
for i,vector in enumerate(self.vibration_vectors):
meshes.append(make_arrow_mesh(at=first_frame_coords[i], dir=vector))
return meshes
def get_molecular_viewer_animated(self, resolution: int = 64, rel_cutoff: float = 0.5, arrows: bool = False) -> go.Figure:
"""
Returns a plotly figure with the molecular structure of the trajectory. The figure comes with an animation.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A plotly figure with the molecular structure.
"""
fig = go.Figure()
# Get and add all the meshes
mesh_elements = [0]
frames = []
for xyz in self.coordinates:
data = []
meshes = xyz.get_molecular_mesh(resolution=resolution, rel_cutoff=rel_cutoff)
mesh_elements.append(len(meshes))
for mesh in meshes:
data.append(mesh) # was in double parenthesis
if arrows and self.vibration_vectors is not None:
data += self.get_vibration_vectors_mesh()
frames.append(go.Frame(data=data))
fig = go.Figure(
data=data, # initial frame before animation
frames=frames
)
fig.update_layout(
updatemenus=[{
"type": "buttons",
"buttons": [{
"label": "Play",
"method": "animate",
"args": [None, {
"frame": {"duration": 200}
}]
}],
}],
scene_aspectmode='data'
)
return fig
def get_molecular_viewer_slider(self, resolution: int = 64, rel_cutoff: float = 0.5, arrows: bool = False) -> go.Figure:
"""
Returns a plotly figure with the molecular structure of the trajectory. The figure comes with a slider that allows to switch between frames.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A plotly figure with the molecular structure.
"""
# Get and add all the meshes
mesh_elements = [0]
fig = go.Figure()
for xyz in self.coordinates:
meshes = xyz.get_molecular_mesh(resolution=resolution, rel_cutoff=rel_cutoff)
if arrows and self.vibration_vectors is not None:
meshes += self.get_vibration_vectors_mesh()
mesh_elements.append(len(meshes))
for mesh in meshes:
fig.add_trace(mesh)
mesh_elements_cumulative = list(accumulate(mesh_elements))
# Make the visibility list
slider_steps: list[dict] = []
for i in range(len(self.coordinates)):
step = {
"method": "restyle",
"args": [{"visible": [False] * mesh_elements_cumulative[-1]}]
}
step["args"][0]["visible"][mesh_elements_cumulative[i]:mesh_elements_cumulative[i+1]] = [True] * mesh_elements[i+1]
slider_steps.append(step)
# Make the slider
slider = {
"active": 0,
"currentvalue": {"prefix": "Frame: "},
"steps": slider_steps
}
fig.update_layout(
sliders=[slider]
)
fig.update_layout(scene_aspectmode='data')
return fig
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment