Newer
Older
import numpy as np
import plotly.graph_objects as go
import atom_properties as atomp
from itertools import accumulate
import qc_parser as qcp
import subprocess as sub
import os
from typing import Iterable, Sequence
import pyvista as pv
import sklearn.cluster as skc
if "orca" not in os.environ["PATH"]:
os.environ["PATH"] += ":/home/jovyan/orca"
def circle_coordinates(
point: np.ndarray, v: np.ndarray, radius: float, num_points: int
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Generate cartesian coordinates of a circle in 3D space.
Args:
point (np.ndarray): A point on the circle.
v (np.ndarray): A vector perpendicular to the circle.
radius (float): The radius of the circle.
num_points (int): The number of points to generate on the circle.
Returns:
np.ndarray: A 2D array of shape (num_points, 3) containing the cartesian coordinates of the circle.
"""
# Normalize the vector v
v = v / np.linalg.norm(v)
# Create a vector u that is perpendicular to v
u = (
np.cross(v, [1, 0, 0])
if np.linalg.norm(np.cross(v, [1, 0, 0])) > 1e-6
else np.cross(v, [0, 1, 0])
)
u = u / np.linalg.norm(u)
# Create a vector w that is perpendicular to both u and v
w = np.cross(u, v)
# Generate the cartesian coordinates of the circle
theta = np.linspace(0, 2 * np.pi, num_points)
circle_coords = point + radius * (
u * np.cos(theta)[:, np.newaxis] + w * np.sin(theta)[:, np.newaxis]
)
x, y, z = circle_coords[:, 0], circle_coords[:, 1], circle_coords[:, 2]
return x, y, z
def make_arrow_mesh(
at: np.ndarray, dir: np.ndarray, resolution: int = 16, radius: float = 0.05
) -> go.Mesh3d:
tip = at + dir
bottom = at - dir
v = bottom - tip
x1, y1, z1 = circle_coordinates(
bottom, v, radius=radius, num_points=resolution // 4
)
x2, y2, z2 = circle_coordinates(tip, v, radius=radius, num_points=resolution // 4)
x, y, z = (
np.concatenate((x1, x2)),
np.concatenate((y1, y2)),
np.concatenate((z1, z2)),
)
x=x,
y=y,
z=z,
color="#888888",
opacity=0.5,
alphahull=0,
# name=f'{self.elements[i]}-{self.elements[j]}',
hoverinfo="none", # No hover info at all
)
def make_fibonacci_sphere(
center: np.ndarray, radius: float = 0.1, resolution: int = 32
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Return cartesian coordinates of points evenly distributed on the surface of a sphere.
Args:
center (np.ndarray): The coordinates of the center of the sphere.
radius (float, optional): The radius of the sphere. Defaults to 0.1.
resolution (int, optional): The number of points to be generated. Defaults to 32.
Returns:
tuple[np.ndarray, np.ndarray, np.ndarray]: The cartesian coordinates of the points
on the surface of the sphere. The three arrays are the x, y and z coordinates
of the points.
"""
num_points = resolution
indices = np.arange(0, num_points, dtype=float) + 0.5
theta = np.pi * (1 + 5**0.5) * indices
x = radius * np.sin(phi) * np.cos(theta) + center[0]
y = radius * np.sin(phi) * np.sin(theta) + center[1]
z = radius * np.cos(phi) + center[2]
return x, y, z
def __init__(
self,
origin: Sequence[float],
res_vec1: int,
res_vec2: int,
res_vec3: int,
vec1: Sequence[float],
vec2: Sequence[float],
vec3: Sequence[float],
volumetrics: Sequence[float],
) -> None:
self.origin = np.array(origin)
self.res_vec1 = res_vec1
self.res_vec2 = res_vec2
self.res_vec3 = res_vec3
self.vec1 = np.array(vec1)
self.vec2 = np.array(vec2)
self.vec3 = np.array(vec3)
self.volumetrics = volumetrics
return
@classmethod
def from_cube_file(cls, file: str):
with open(file, "r") as f:
next(f)
next(f)
natoms_raw, x0_raw, y0_raw, z0_raw = f.readline().split()
res_vec1_raw, x1_raw, y1_raw, z1_raw = f.readline().split()
res_vec2_raw, x2_raw, y2_raw, z2_raw = f.readline().split()
res_vec3_raw, x3_raw, y3_raw, z3_raw = f.readline().split()
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
bohr_factor = 1.0
if int(natoms_raw) != 0: # should be different, but whatever works
bohr_factor = 0.52917721092
natoms, x0, y0, z0 = (
abs(int(natoms_raw)),
float(x0_raw) * bohr_factor,
float(y0_raw) * bohr_factor,
float(z0_raw) * bohr_factor,
)
res_vec1, x1, y1, z1 = (
int(res_vec1_raw),
float(x1_raw) * bohr_factor,
float(y1_raw) * bohr_factor,
float(z1_raw) * bohr_factor,
)
res_vec2, x2, y2, z2 = (
int(res_vec2_raw),
float(x2_raw) * bohr_factor,
float(y2_raw) * bohr_factor,
float(z2_raw) * bohr_factor,
)
res_vec3, x3, y3, z3 = (
int(res_vec3_raw),
float(x3_raw) * bohr_factor,
float(y3_raw) * bohr_factor,
float(z3_raw) * bohr_factor,
)
# skip all the atom coordinates
for i in range(natoms):
next(f)
if ".mo" in file:
next(f)
volumetrics_raw = f.readlines()
volumetrics = [float(i) for line in volumetrics_raw for i in line.split()]
return cls(
(x0, y0, z0),
(x1, y1, z1),
(x2, y2, z2),
(x3, y3, z3),
@classmethod
def from_gbw_file(cls, file: str, index: int, mode: str):
assert mode in ("mo", "diffdens")
if mode == "mo":
input_string = f"5\n7\n4\n100\n2\n{index}\n10\n11\n"
if mode == "diffdens":
input_string = f"5\n7\n4\n100\n6\ny\n{index}\n11\n"
sub.run(
f"orca_plot {file} -i",
shell=True,
text=True,
capture_output=True,
input=input_string,
)
basename = file.replace(".gbw", "")
if mode == "mo":
cubefile = f"{basename}.mo{index}a.cube"
if mode == "diffdens":
cubefile = f"{basename}.cisdp{index}.cube"
out = Volumetric.from_cube_file(cubefile)
os.remove(cubefile)
def voxel_generator(self, threshold: float):
sign = 1
if threshold < 0:
sign = -1
threshold *= -1
for x in range(self.res_vec1):
for y in range(self.res_vec2):
for z in range(self.res_vec3):
voxel = (
self.volumetrics[
z + y * self.res_vec3 + x * (self.res_vec3 * self.res_vec2)
]
* sign
)
coord = (x * self.vec1) + y * self.vec2 + z * self.vec3
yield voxel, *(coord + self.origin)
def get_mesh(
self,
threshold: float,
color: str = "#888888",
verbose: bool = False,
dynamic_threshold: bool = False,
) -> go.Mesh3d:
voxels_lst = []
voxels_lst = [voxel for voxel in self.voxel_generator(threshold)]
if len(voxels_lst) == 0:
if dynamic_threshold:
print(f"Threshold too high, finding new threshold ...")
while len(voxels_lst) == 0:
threshold *= 0.9
voxels_lst = [voxel for voxel in self.voxel_generator(threshold)]
print(f"Threshold found: {threshold:.2e}")
threshold *= 0.1
voxels_lst = [voxel for voxel in self.voxel_generator(threshold)]
print(f"Threshold used: {threshold:.2e}")
else:
print(f"No voxels found for given threshold {threshold:.2e}")
return go.Mesh3d()
voxels = np.array(voxels_lst)
if verbose:
print("Clustering ...")
cluster = skc.DBSCAN(eps=0.5).fit(voxels[:, 1:4])
if verbose:
print(" done.")
xyz: np.ndarray = np.ndarray((0, 3))
ijk: np.ndarray = np.ndarray((0, 3))
n_clusters = cluster.labels_.max()
for i in range(n_clusters + 1):
if verbose:
print(f"Creating mesh {i}/{n_clusters} ...", end="")
cloud = pv.PolyData(voxels[cluster.labels_ == i][:, 1:4])
surf = cloud.delaunay_3d(alpha=0.4, tol=0.001, offset=2.5)
surf = surf.extract_geometry()
surf = surf.triangulate()
surf = surf.decimate(0.9)
ijk = np.concatenate((ijk, surf.faces.reshape(-1, 4)[:, 1:] + len(xyz)))
xyz = np.concatenate((xyz, surf.points))
x=xyz[:, 0],
y=xyz[:, 1],
z=xyz[:, 2],
i=ijk[:, 0],
j=ijk[:, 1],
k=ijk[:, 2],
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# THIS IS AN ALTERNATIVE VERSION OF THE GET_MESH METHOD
# IT DOES NOT USE CLUSTERING
# BUT SOMETIMES THE ORBITALS LOOK LESS GOOD THEN
# def get_mesh(self, threshold: float, color: str = "#888888", verbose: bool = True) -> go.Mesh3d:
# voxels_lst = [voxel for voxel in self.voxel_generator(threshold)]
# voxels = np.array(voxels_lst)
# if verbose: print("Clustering complete")
# xyz: np.ndarray = np.ndarray((0, 3))
# ijk: np.ndarray = np.ndarray((0, 3))
# cloud = pv.PolyData(voxels[:,1:4])
# surf = cloud.delaunay_3d(alpha=0.4, tol=0.001, offset=2.5)
# surf = surf.extract_geometry()
# surf = surf.triangulate()
# surf = surf.decimate(0.9)
# ijk = surf.faces.reshape(-1, 4)[:, 1:]
# xyz = surf.points
# return go.Mesh3d(
# x=xyz[:,0],
# y=xyz[:,1],
# z=xyz[:,2],
# i=ijk[:,0],
# j=ijk[:,1],
# k=ijk[:,2],
# opacity=0.5,
# )
class XYZ:
"""
A class for representing a molecular structure in cartesian coordinates.
The molecule is represented by a list of atoms and corresponding coordinates.
Attributes:
xyz (ndarray): A 2D numpy array of shape (num_atoms, 3) containing the
coordinates of the atoms in the molecule.
elements (list): A list of strings representing the elements of the atoms in
the molecule.
"""
def __init__(self, coords: list[dict[str, str | float]]):
self.xyz = np.array([[coord["x"], coord["y"], coord["z"]] for coord in coords])
self.elements = [coord["element"] for coord in coords]
self.meshes: list[go.Mesh3d] = []
self.viewer: go.Figure = go.Figure()
@classmethod
def from_xyz_file(cls, file: str):
"""
Reads in files with the structure 'element x y z' and returns
a numpy array with the stored coordinates.
@param file: String. Path to the file to be read in.
@return: 2D numpy array. Contains the coordinates from the file at the
corresponding indices.
"""
with open(file) as f:
lines = f.readlines()
if len(lines[0].split()) == 1:
lines = lines[2:]
return cls(
[
{
"element": line.split()[0],
"x": float(line.split()[1]),
"y": float(line.split()[2]),
"z": float(line.split()[3]),
}
for line in lines
]
)
def from_list(cls, lines: list[list[str | float]]):
return cls(
[
{
"element": line[0],
"x": float(line[1]),
"y": float(line[2]),
"z": float(line[3]),
}
for line in lines
]
)
def get_bond_length(self, i: int, j: int) -> float:
"""
Returns the bond length between atoms i and j.
Args:
i (int): Index of the first atom.
j (int): Index of the second atom.
Returns:
float: The bond length between the two atoms.
"""
return float(np.linalg.norm(self.xyz[i] - self.xyz[j]))
def make_cylinder(
self, center_i: int, center_j: int, resolution: int = 32, radius: float = 0.1
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Return cartesian coordinates of points on the edges of a cylinder.
The cylinder is defined by the line between atoms i and j, and the radius is the given value. The number of points is determined by the resolution.
Args:
center_i (int): Index of the first atom that defines the cylinder.
center_j (int): Index of the second atom that defines the cylinder.
resolution (int, optional): The number of points to be generated. Defaults to 32.
radius (float, optional): The radius of the cylinder. Defaults to 0.1.
Returns:
tuple[np.ndarray, np.ndarray, np.ndarray]: The cartesian coordinates of the points on the edges of the cylinder. The three arrays are the x, y and z coordinates of the points.
"""
v = self.xyz[center_j] - self.xyz[center_i]
x1, y1, z1 = circle_coordinates(
self.xyz[center_i], v, radius=radius, num_points=resolution // 4
)
x2, y2, z2 = circle_coordinates(
self.xyz[center_j], v, radius=radius, num_points=resolution // 4
)
return (
np.concatenate((x1, x2)),
np.concatenate((y1, y2)),
np.concatenate((z1, z2)),
)
def make_atom_mesh(self, i: int, resolution: int = 32) -> go.Mesh3d:
"""
Return a Mesh3d object that represents the atom at index i.
The atom is represented as a sphere with a radius depending on its van der Waals radius.
Args:
i (int): Index of the atom to be represented.
resolution (int, optional): The number of points to be generated. Defaults to 32.
Returns:
go.Mesh3d: A Mesh3d object that represents the atom.
"""
if self.sphere_mode == "vdw":
radius = atomp.vdw_radii_dict[self.elements[i]]
elif self.sphere_mode == "ball":
radius = atomp.vdw_radii_dict[self.elements[i]] * 0.2
x, y, z = make_fibonacci_sphere(
self.xyz[i], radius=radius, resolution=resolution
)
x=x,
y=y,
z=z,
color=atomp.atom_colors_dict[self.elements[i]],
opacity=1,
name=f"{self.elements[i]}{i}", # label is too short to also show coordinates
hoverinfo="name", # Only show the name on hover
)
def make_bond_mesh(
self, i: int, j: int, resolution: int = 32, radius: float = 0.1
) -> go.Mesh3d:
"""
Return a Mesh3d object that represents a bond between atoms i and j.
The bond is represented as a cylinder with a radius depending on the given radius.
Args:
i (int): Index of the first atom in the bond.
j (int): Index of the second atom in the bond.
resolution (int, optional): The number of points to be generated. Defaults to 32.
radius (float, optional): The radius of the cylinder. Defaults to 0.1.
Returns:
go.Mesh3d: A Mesh3d object that represents the bond.
"""
x, y, z = self.make_cylinder(i, j, resolution=resolution, radius=radius)
bond_mesh = go.Mesh3d(
x=x,
y=y,
z=z,
color="#444444",
opacity=1,
alphahull=0,
# name=f'{self.elements[i]}-{self.elements[j]}',
def get_molecular_mesh(
self, resolution: int = 64, rel_cutoff: float = 0.5
) -> go.Figure:
"""
Returns a list of Mesh3d objects that represent the molecular structure.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A list of Mesh3d objects that represent the molecular structure.
"""
mesh_list = []
# Add the bonds
for i in range(len(self.elements)):
for j in range(i + 1, len(self.elements)):
bond_length = self.get_bond_length(i, j)
max_bond_length = rel_cutoff * (
atomp.vdw_radii_dict[self.elements[i]]
+ atomp.vdw_radii_dict[self.elements[j]]
)
if bond_length < max_bond_length:
mesh_list.append(
self.make_bond_mesh(i, j, resolution=resolution, radius=0.1)
)
# Add the atoms
for i in range(len(self.elements)):
mesh_list.append(self.make_atom_mesh(i, resolution=resolution))
return mesh_list
def make_mesh_from_cube(
self, file: str, threshold=6 * 10**-3, verbose: bool = False
) -> None:
self.viewer.add_trace(
Volumetric.from_cube_file(file).get_mesh(
threshold=threshold, verbose=verbose
)
)
def make_mesh_from_gbw(
self,
file: str,
index: int,
mode: str = "mo",
threshold=6 * 10**-3,
dynamic_threshold: bool = False,
verbose: bool = False,
) -> None:
if mode == "diffdens":
color = "tomato" if threshold < 0 else "cornflowerblue"
if mode == "mo":
color = "tomato" if threshold < 0 else "cornflowerblue"
self.viewer.add_trace(
Volumetric.from_gbw_file(file, index, mode).get_mesh(
threshold=threshold,
verbose=verbose,
dynamic_threshold=dynamic_threshold,
def make_molecular_viewer(
self, resolution: int = 64, rel_cutoff: float = 0.5
) -> go.Figure:
Add the molecule to the viewer. The molecular structure is represented as a collection of spheres at the atomic positions,
with the bonds represented as cylinders between the atoms.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A plotly figure with the molecular structure.
"""
for mesh in self.get_molecular_mesh(
resolution=resolution, rel_cutoff=rel_cutoff
):
self.viewer.add_trace(mesh)
# Fix aspect ratio such that the molecule is displayed undistorted
# Remove axes and labels
# self.viewer.update_scenes(
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
# zaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
# )
return
def get_molecular_viewer(self) -> go.Figure:
return self.viewer
def reset_molecular_viewer(self) -> go.Figure:
self.viewer = go.Figure()
self.make_molecular_viewer()
class Trajectory:
"""
A class to represent a molecular trajectory in terms of XYZ objects.
Attributes:
coordinates (list[XYZ]): A list of XYZ objects representing the atomic coordinates for each frame in the trajectory.
vibration_vectors (list[list[float]] or None): A list of vibration vectors associated with the trajectory, if any.
"""
def __init__(self, coordinates: list[XYZ]):
self.coordinates = coordinates
self.vibration_vectors = None
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
@classmethod
def from_opt_output(cls, output_file: str):
"""
Creates a Trajectory object from an ORCA output file.
Args:
output_file (str): The path to the ORCA output file.
Returns:
Trajectory: A Trajectory object.
"""
parsed = qcp.read_qc_file(output_file)
return cls([XYZ(frame) for frame in parsed["coordinates"]])
@classmethod
def from_trajectory_file(cls, trajectory_file: str):
"""
Creates a Trajectory object from a trajectory file.
Args:
trajectory_file (str): The path to the trajectory file.
Returns:
Trajectory: A Trajectory object.
"""
return cls([frame for frame in Trajectory.xyz_generator(trajectory_file)])
@classmethod
def from_vibration_output(cls, output_file: str, mode: int):
"""
Creates a Trajectory object from an ORCA output file
containing a frequency calculation at the given mode.
Args:
output_file (str): The path to the ORCA output file.
mode (int): The mode number.
Returns:
Trajectory: A Trajectory object.
"""
proc = sub.run(
f"orca_pltvib {output_file} {mode}",
shell=True,
text=True,
capture_output=True,
)
trajectory_file = f"{output_file}.v{mode:03d}.xyz"
xyz = Trajectory.from_trajectory_file(trajectory_file)
xyz.vibration_vectors = Trajectory.get_vibration_vectors(trajectory_file)
os.remove(trajectory_file)
return xyz
@staticmethod
def xyz_generator(trajectory_file: str):
"""
Generator that yields XYZ objects from a trajectory file.
Args:
trajectory_file (str): The path to the trajectory file.
Yields:
XYZ: An XYZ object.
"""
with open(trajectory_file) as f:
lines = f.readlines()
block_size = int(lines[0].strip()) + 2
for i in range(0, len(lines), block_size):
yield XYZ.from_list(
[line.split() for line in lines[i + 2 : i + block_size]]
)
@staticmethod
def get_vibration_vectors(trajectory_file: str):
"""
Returns the vibration vectors from a trajectory file. Must be generated
by orca_pltvib, so it contains the vectors in the last three columns.
Args:
trajectory_file (str): The path to the trajectory file.
Returns:
list[list[float]]: A list of vibration vectors.
"""
with open(trajectory_file) as f:
lines = f.readlines()
block_size = int(lines[0].strip())
lines = lines[2:]
vibration_vectors = [
[float(element) for element in line.split()[-3:]]
for line in lines[:block_size]
]
def get_vibration_vectors_mesh(self) -> list[go.Mesh3d]:
"""
Returns a list of meshes that represent the vibration vectors.
"""
assert (
self.vibration_vectors is not None
), "Vibration vectors must be generated first"
meshes = []
first_frame_coords = self.coordinates[0].xyz
for i, vector in enumerate(self.vibration_vectors):
meshes.append(make_arrow_mesh(at=first_frame_coords[i], dir=vector))
return meshes
def get_molecular_viewer_animated(
self, resolution: int = 64, rel_cutoff: float = 0.5, arrows: bool = False
) -> go.Figure:
"""
Returns a plotly figure with the molecular structure of the trajectory. The figure comes with an animation.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A plotly figure with the molecular structure.
"""
fig = go.Figure()
# Get and add all the meshes
mesh_elements = [0]
frames = []
for xyz in self.coordinates:
data = []
meshes = xyz.get_molecular_mesh(
resolution=resolution, rel_cutoff=rel_cutoff
)
mesh_elements.append(len(meshes))
for mesh in meshes:
if arrows and self.vibration_vectors is not None:
data += self.get_vibration_vectors_mesh()
frames.append(go.Frame(data=data))
fig = go.Figure(data=data, frames=frames) # initial frame before animation
updatemenus=[
{
"type": "buttons",
"buttons": [
{
"label": "Play",
"method": "animate",
"args": [None, {"frame": {"duration": 200}}],
}
],
}
],
scene_aspectmode="data",
def get_molecular_viewer_slider(
self, resolution: int = 64, rel_cutoff: float = 0.5, arrows: bool = False
) -> go.Figure:
"""
Returns a plotly figure with the molecular structure of the trajectory. The figure comes with a slider that allows to switch between frames.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A plotly figure with the molecular structure.
"""
# Get and add all the meshes
mesh_elements = [0]
fig = go.Figure()
for xyz in self.coordinates:
meshes = xyz.get_molecular_mesh(
resolution=resolution, rel_cutoff=rel_cutoff
)
if arrows and self.vibration_vectors is not None:
meshes += self.get_vibration_vectors_mesh()
mesh_elements.append(len(meshes))
for mesh in meshes:
fig.add_trace(mesh)
mesh_elements_cumulative = list(accumulate(mesh_elements))
# Make the visibility list
slider_steps: list[dict] = []
for i in range(len(self.coordinates)):
step = {
"method": "restyle",
"args": [{"visible": [False] * mesh_elements_cumulative[-1]}],
step["args"][0]["visible"][
mesh_elements_cumulative[i] : mesh_elements_cumulative[i + 1]
] = [True] * mesh_elements[i + 1]
# Make the slider
slider = {
"active": 0,
"currentvalue": {"prefix": "Frame: "},
fig.update_layout(sliders=[slider])
fig.update_layout(scene_aspectmode="data")
return fig
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
class Spectrum:
"""
Energies in eV.
"""
units: dict[str, dict[str, str | float | bool]] = {
"ev": {"xaxis_title": "Energy / eV", "factor": 1.0, "inverse": False},
"cm-1": {
"xaxis_title": "Wavenumber / cm^-1",
"factor": 8065.610420,
"inverse": False,
},
"nm": {"xaxis_title": "Wavelength / nm", "factor": 1239.84193, "inverse": True},
}
def __init__(
self, indices: list[int], energies: list[float], intensities: list[float]
):
self.indices = indices
self.energies = energies
self.intensities = intensities
return
@classmethod
def from_tddft_output(cls, output_file: str):
indices = []
energies = []
foscs = []
with open(output_file) as f:
for line in f:
if "ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS" in line:
next(f)
next(f)
next(f)
next(f)
while True:
line = next(f)
if len(line.split()) == 0:
break
line = line.split()
fosc = float(line[3])
if fosc < 0.01:
continue
indices.append(int(line[0]))
energies.append(float(line[1]) / 8065.610420)
foscs.append(fosc)
return cls(indices, energies, foscs)
@staticmethod
def get_impulse_line(
x: list[float], y: list[float]
) -> tuple[list[float | None], list[float | None]]:
new_x: list[float | None] = []
new_y: list[float | None] = []
for xx, yy in zip(x, y):
new_x.append(xx)
new_y.append(0.0)
new_x.append(xx)
new_y.append(yy)
new_x.append(None)
new_y.append(None)
return new_x, new_y
def get_energies_as(self, unit: str) -> list[float]:
unit = unit.lower()
assert unit in ["ev", "cm-1", "nm"], "Unit must be 'ev', 'cm-1' or 'nm'"
if self.units[unit]["inverse"]:
x = [self.units[unit]["factor"] / e for e in self.energies]
else:
x = [self.units[unit]["factor"] * e for e in self.energies]
return x
def get_line_spectrum(
self, unit: str
) -> tuple[list[float | None], list[float | None]]:
return Spectrum.get_impulse_line(self.get_energies_as(unit), self.intensities)