Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import numpy as np
import plotly.graph_objects as go
import atom_properties as atomp
from itertools import accumulate
import qc_parser as qcp
import subprocess as sub
import os
from typing import Iterable, Sequence
import pyvista as pv
import sklearn.cluster as skc
if "orca" not in os.environ["PATH"]:
os.environ["PATH"] += ":/home/jovyan/orca"
def circle_coordinates(point: np.ndarray, v: np.ndarray, radius: float, num_points: int) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Generate cartesian coordinates of a circle in 3D space.
Args:
point (np.ndarray): A point on the circle.
v (np.ndarray): A vector perpendicular to the circle.
radius (float): The radius of the circle.
num_points (int): The number of points to generate on the circle.
Returns:
np.ndarray: A 2D array of shape (num_points, 3) containing the cartesian coordinates of the circle.
"""
# Normalize the vector v
v = v / np.linalg.norm(v)
# Create a vector u that is perpendicular to v
u = np.cross(v, [1, 0, 0]) if np.linalg.norm(np.cross(v, [1, 0, 0])) > 1e-6 else np.cross(v, [0, 1, 0])
u = u / np.linalg.norm(u)
# Create a vector w that is perpendicular to both u and v
w = np.cross(u, v)
# Generate the cartesian coordinates of the circle
theta = np.linspace(0, 2 * np.pi, num_points)
circle_coords = point + radius * (u * np.cos(theta)[:, np.newaxis] + w * np.sin(theta)[:, np.newaxis])
x, y, z = circle_coords[:, 0], circle_coords[:, 1], circle_coords[:, 2]
return x, y, z
def make_arrow_mesh(at: np.ndarray, dir: np.ndarray, resolution: int = 16, radius: float = 0.05) -> go.Mesh3d:
tip = at + dir
bottom = at - dir
v = bottom - tip
x1, y1, z1 = circle_coordinates(bottom, v, radius=radius, num_points=resolution//4)
x2, y2, z2 = circle_coordinates(tip, v, radius=radius, num_points=resolution//4)
x, y, z = np.concatenate((x1, x2)), np.concatenate((y1, y2)), np.concatenate((z1, z2))
arrow_mesh = go.Mesh3d(
x=x,
y=y,
z=z,
color="#888888",
opacity=0.5,
alphahull=0,
# name=f'{self.elements[i]}-{self.elements[j]}',
hoverinfo='none', # No hover info at all
)
return arrow_mesh
def make_fibonacci_sphere(center: np.ndarray, radius: float = 0.1, resolution: int = 32) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Return cartesian coordinates of points evenly distributed on the surface of a sphere.
Args:
center (np.ndarray): The coordinates of the center of the sphere.
radius (float, optional): The radius of the sphere. Defaults to 0.1.
resolution (int, optional): The number of points to be generated. Defaults to 32.
Returns:
tuple[np.ndarray, np.ndarray, np.ndarray]: The cartesian coordinates of the points
on the surface of the sphere. The three arrays are the x, y and z coordinates
of the points.
"""
num_points = resolution
indices = np.arange(0, num_points, dtype=float) + 0.5
phi = np.arccos(1 - 2*indices/num_points)
theta = np.pi * (1 + 5**0.5) * indices
x = radius * np.sin(phi) * np.cos(theta) + center[0]
y = radius * np.sin(phi) * np.sin(theta) + center[1]
z = radius * np.cos(phi) + center[2]
return x, y, z
class Volumetric:
def __init__(self,
origin: Sequence[float],
res_vec1: int, res_vec2: int, res_vec3: int,
vec1: Sequence[float],
vec2: Sequence[float],
vec3: Sequence[float],
volumetrics: Sequence[float]) -> None:
self.origin = np.array(origin)
self.res_vec1 = res_vec1
self.res_vec2 = res_vec2
self.res_vec3 = res_vec3
self.vec1 = np.array(vec1)
self.vec2 = np.array(vec2)
self.vec3 = np.array(vec3)
self.volumetrics = volumetrics
return
@classmethod
def from_cube_file(cls, file: str):
with open(file, "r") as f:
next(f)
next(f)
natoms_raw, x0_raw, y0_raw, z0_raw = f.readline().split()
res_vec1_raw, x1_raw, y1_raw, z1_raw = f.readline().split()
res_vec2_raw, x2_raw, y2_raw, z2_raw = f.readline().split()
res_vec3_raw, x3_raw, y3_raw, z3_raw = f.readline().split()
natoms, x0, y0, z0 = (abs(int(natoms_raw)), float(x0_raw), float(y0_raw), float(z0_raw))
res_vec1, x1, y1, z1 = (int(res_vec1_raw), float(x1_raw), float(y1_raw), float(z1_raw))
res_vec2, x2, y2, z2 = (int(res_vec2_raw), float(x2_raw), float(y2_raw), float(z2_raw))
res_vec3, x3, y3, z3 = (int(res_vec3_raw), float(x3_raw), float(y3_raw), float(z3_raw))
# skip all the atom coordinates
for i in range(natoms):
next(f)
if ".mo" in file:
next(f)
volumetrics_raw = f.readlines()
volumetrics = [float(i) for line in volumetrics_raw for i in line.split()]
return cls(
(x0, y0, z0),
res_vec1, res_vec2, res_vec3,
(x1, y1, z1),
(x2, y2, z2),
(x3, y3, z3),
volumetrics
)
@classmethod
def from_gbw_file(cls, file: str, index: int, mode: str):
assert mode in ("mo", "diffdens")
if mode == "mo":
input_string = f"5\n7\n4\n100\n2\n{index}\n10\n11\n"
if mode == "diffdens":
input_string = ""
sub.run(f"orca_plot {file} -i", shell=True, text=True, capture_output=True, input=input_string)
basename = file.replace('.gbw', '')
out = Volumetric.from_cube_file(f"{basename}.mo{index}a.cube")
os.remove(f"{basename}.mo{index}a.cube")
return out
def voxel_generator(self, threshold: float):
sign = 1
if threshold < 0:
sign = -1
threshold *= -1
for x in range(self.res_vec1):
for y in range(self.res_vec2):
for z in range(self.res_vec3):
voxel = self.volumetrics[z + y * self.res_vec3 + x * (self.res_vec3 * self.res_vec2)] * sign
if voxel > threshold:
coord = ((x * self.vec1)
+ y * self.vec2
+ z * self.vec3)
yield voxel, *(coord + self.origin)
def get_mesh(self, threshold: float, color: str = "#888888", verbose: bool = True) -> go.Mesh3d:
voxels_lst = [voxel for voxel in self.voxel_generator(threshold)]
voxels = np.array(voxels_lst)
cluster = skc.DBSCAN(eps=0.5).fit(voxels[:,1:4])
if verbose: print("Clustering complete")
xyz: np.ndarray = np.ndarray((0, 3))
ijk: np.ndarray = np.ndarray((0, 3))
n_clusters = cluster.labels_.max()
for i in range(n_clusters + 1):
if verbose: print(f"Creating mesh {i}/{n_clusters} ...", end="")
cloud = pv.PolyData(voxels[cluster.labels_ == i][:,1:4])
surf = cloud.delaunay_3d(alpha=0.4, tol=0.001, offset=2.5)
surf = surf.extract_geometry()
surf = surf.triangulate()
surf = surf.decimate(0.9)
ijk = np.concatenate((ijk, surf.faces.reshape(-1, 4)[:, 1:] + len(xyz)))
xyz = np.concatenate((xyz, surf.points))
if verbose: print(f" done.")
return go.Mesh3d(
x=xyz[:,0],
y=xyz[:,1],
z=xyz[:,2],
i=ijk[:,0],
j=ijk[:,1],
k=ijk[:,2],
opacity=0.5,
)
# THIS IS AN ALTERNATIVE VERSION OF THE GET_MESH METHOD
# IT DOES NOT USE CLUSTERING
# BUT SOMETIMES THE ORBITALS LOOK LESS GOOD THEN
# def get_mesh(self, threshold: float, color: str = "#888888", verbose: bool = True) -> go.Mesh3d:
# voxels_lst = [voxel for voxel in self.voxel_generator(threshold)]
# voxels = np.array(voxels_lst)
# if verbose: print("Clustering complete")
# xyz: np.ndarray = np.ndarray((0, 3))
# ijk: np.ndarray = np.ndarray((0, 3))
# cloud = pv.PolyData(voxels[:,1:4])
# surf = cloud.delaunay_3d(alpha=0.4, tol=0.001, offset=2.5)
# surf = surf.extract_geometry()
# surf = surf.triangulate()
# surf = surf.decimate(0.9)
# ijk = surf.faces.reshape(-1, 4)[:, 1:]
# xyz = surf.points
# return go.Mesh3d(
# x=xyz[:,0],
# y=xyz[:,1],
# z=xyz[:,2],
# i=ijk[:,0],
# j=ijk[:,1],
# k=ijk[:,2],
# opacity=0.5,
# )
class XYZ:
"""
A class for representing a molecular structure in cartesian coordinates.
The molecule is represented by a list of atoms and corresponding coordinates.
Attributes:
xyz (ndarray): A 2D numpy array of shape (num_atoms, 3) containing the
coordinates of the atoms in the molecule.
elements (list): A list of strings representing the elements of the atoms in
the molecule.
"""
sphere_mode = "ball"
def __init__(self, coords: list[dict[str, str|float]]):
self.xyz = np.array([[coord["x"], coord["y"], coord["z"]] for coord in coords])
self.elements = [coord["element"] for coord in coords]
self.meshes: list[go.Mesh3d] = []
self.viewer: go.Figure = go.Figure()
@classmethod
def from_xyz_file(cls, file: str):
"""
Reads in files with the structure 'element x y z' and returns
a numpy array with the stored coordinates.
@param file: String. Path to the file to be read in.
@return: 2D numpy array. Contains the coordinates from the file at the
corresponding indices.
"""
with open(file) as f:
lines = f.readlines()
if len(lines[0].split()) == 1:
lines = lines[2:]
return cls([{"element": line.split()[0],
"x": float(line.split()[1]),
"y": float(line.split()[2]),
"z": float(line.split()[3])} for line in lines])
@classmethod
def from_list(cls, lines: list[list[str|float]]):
return cls([{"element": line[0],
"x": float(line[1]),
"y": float(line[2]),
"z": float(line[3])} for line in lines])
def get_bond_length(self, i: int, j: int) -> float:
"""
Returns the bond length between atoms i and j.
Args:
i (int): Index of the first atom.
j (int): Index of the second atom.
Returns:
float: The bond length between the two atoms.
"""
return float(np.linalg.norm(self.xyz[i] - self.xyz[j]))
def make_cylinder(self, center_i: int, center_j: int, resolution: int = 32, radius: float = 0.1) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Return cartesian coordinates of points on the edges of a cylinder.
The cylinder is defined by the line between atoms i and j, and the radius is the given value. The number of points is determined by the resolution.
Args:
center_i (int): Index of the first atom that defines the cylinder.
center_j (int): Index of the second atom that defines the cylinder.
resolution (int, optional): The number of points to be generated. Defaults to 32.
radius (float, optional): The radius of the cylinder. Defaults to 0.1.
Returns:
tuple[np.ndarray, np.ndarray, np.ndarray]: The cartesian coordinates of the points on the edges of the cylinder. The three arrays are the x, y and z coordinates of the points.
"""
v = self.xyz[center_j] - self.xyz[center_i]
x1, y1, z1 = circle_coordinates(self.xyz[center_i], v, radius=radius, num_points=resolution//4)
x2, y2, z2 = circle_coordinates(self.xyz[center_j], v, radius=radius, num_points=resolution//4)
return np.concatenate((x1, x2)), np.concatenate((y1, y2)), np.concatenate((z1, z2))
def make_atom_mesh(self, i: int, resolution: int = 32) -> go.Mesh3d:
"""
Return a Mesh3d object that represents the atom at index i.
The atom is represented as a sphere with a radius depending on its van der Waals radius.
Args:
i (int): Index of the atom to be represented.
resolution (int, optional): The number of points to be generated. Defaults to 32.
Returns:
go.Mesh3d: A Mesh3d object that represents the atom.
"""
if self.sphere_mode == "vdw":
radius = atomp.vdw_radii_dict[self.elements[i]]
elif self.sphere_mode == "ball":
radius = atomp.vdw_radii_dict[self.elements[i]] * 0.2
x, y, z = make_fibonacci_sphere(self.xyz[i], radius=radius, resolution=resolution)
atom_mesh = go.Mesh3d(
x=x,
y=y,
z=z,
color=atomp.atom_colors_dict[self.elements[i]],
opacity=1,
alphahull=0,
name=f'{self.elements[i]}{i}', # label is too short to also show coordinates
hoverinfo='name', # Only show the name on hover
)
return atom_mesh
def make_bond_mesh(self, i: int, j: int, resolution: int = 32, radius: float = 0.1) -> go.Mesh3d:
"""
Return a Mesh3d object that represents a bond between atoms i and j.
The bond is represented as a cylinder with a radius depending on the given radius.
Args:
i (int): Index of the first atom in the bond.
j (int): Index of the second atom in the bond.
resolution (int, optional): The number of points to be generated. Defaults to 32.
radius (float, optional): The radius of the cylinder. Defaults to 0.1.
Returns:
go.Mesh3d: A Mesh3d object that represents the bond.
"""
x, y, z = self.make_cylinder(i, j, resolution=resolution, radius=radius)
bond_mesh = go.Mesh3d(
x=x,
y=y,
z=z,
color="#444444",
opacity=1,
alphahull=0,
# name=f'{self.elements[i]}-{self.elements[j]}',
hoverinfo='none', # No hover info at all
)
return bond_mesh
def get_molecular_mesh(self, resolution: int = 64, rel_cutoff: float = 0.5) -> go.Figure:
"""
Returns a list of Mesh3d objects that represent the molecular structure.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A list of Mesh3d objects that represent the molecular structure.
"""
mesh_list = []
# Add the bonds
for i in range(len(self.elements)):
for j in range(i+1, len(self.elements)):
bond_length = self.get_bond_length(i, j)
max_bond_length = rel_cutoff * (atomp.vdw_radii_dict[self.elements[i]] + atomp.vdw_radii_dict[self.elements[j]])
if bond_length < max_bond_length:
mesh_list.append(self.make_bond_mesh(i, j, resolution=resolution, radius=0.1))
# Add the atoms
for i in range(len(self.elements)):
mesh_list.append(self.make_atom_mesh(i, resolution=resolution))
return mesh_list
def get_mesh_from_cube(self, file: str, threshold = 6*10**-3) -> None:
self.viewer.add_trace(Volumetric.from_cube_file(file).get_mesh(threshold=threshold))
return
def get_mesh_from_gbw(self, file:str, index: int, mode: str = "mo", threshold = 6*10**-3) -> None:
self.viewer.add_trace(Volumetric.from_gbw_file(file, index, mode).get_mesh(threshold=threshold))
return
def get_molecular_viewer(self, resolution: int = 64, rel_cutoff: float = 0.5) -> go.Figure:
"""
Returns a plotly figure with the molecular structure.
The molecular structure is represented as a collection of spheres at the atomic positions,
with the bonds represented as cylinders between the atoms.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A plotly figure with the molecular structure.
"""
for mesh in self.get_molecular_mesh(resolution=resolution, rel_cutoff=rel_cutoff):
self.viewer.add_trace(mesh)
# Fix aspect ratio such that the molecule is displayed undistorted
self.viewer.update_layout(scene_aspectmode='data')
# Remove axes and labels
# self.viewer.update_scenes(
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
# zaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
# )
return self.viewer
class Trajectory:
"""
A class to represent a molecular trajectory in terms of XYZ objects.
Attributes:
coordinates (list[XYZ]): A list of XYZ objects representing the atomic coordinates for each frame in the trajectory.
vibration_vectors (list[list[float]] or None): A list of vibration vectors associated with the trajectory, if any.
"""
def __init__(self, coordinates: list[XYZ]):
self.coordinates = coordinates
self.vibration_vectors = None
@classmethod
def from_opt_output(cls, output_file: str):
"""
Creates a Trajectory object from an ORCA output file.
Args:
output_file (str): The path to the ORCA output file.
Returns:
Trajectory: A Trajectory object.
"""
parsed = qcp.read_qc_file(output_file)
return cls([XYZ(frame) for frame in parsed["coordinates"]])
@classmethod
def from_trajectory_file(cls, trajectory_file: str):
"""
Creates a Trajectory object from a trajectory file.
Args:
trajectory_file (str): The path to the trajectory file.
Returns:
Trajectory: A Trajectory object.
"""
return cls([frame for frame in Trajectory.xyz_generator(trajectory_file)])
@classmethod
def from_vibration_output(cls, output_file: str, mode: int):
"""
Creates a Trajectory object from an ORCA output file
containing a frequency calculation at the given mode.
Args:
output_file (str): The path to the ORCA output file.
mode (int): The mode number.
Returns:
Trajectory: A Trajectory object.
"""
proc = sub.run(f"orca_pltvib {output_file} {mode}", shell=True, text=True, capture_output=True)
trajectory_file = f"{output_file}.v{mode:03d}.xyz"
xyz = Trajectory.from_trajectory_file(trajectory_file)
xyz.vibration_vectors = Trajectory.get_vibration_vectors(trajectory_file)
os.remove(trajectory_file)
return xyz
@staticmethod
def xyz_generator(trajectory_file: str):
"""
Generator that yields XYZ objects from a trajectory file.
Args:
trajectory_file (str): The path to the trajectory file.
Yields:
XYZ: An XYZ object.
"""
with open(trajectory_file) as f:
lines = f.readlines()
block_size = int(lines[0].strip()) + 2
for i in range(0, len(lines), block_size):
yield XYZ.from_list([line.split() for line in lines[i+2:i+block_size]])
@staticmethod
def get_vibration_vectors(trajectory_file: str):
"""
Returns the vibration vectors from a trajectory file. Must be generated
by orca_pltvib, so it contains the vectors in the last three columns.
Args:
trajectory_file (str): The path to the trajectory file.
Returns:
list[list[float]]: A list of vibration vectors.
"""
with open(trajectory_file) as f:
lines = f.readlines()
block_size = int(lines[0].strip())
lines = lines[2:]
vibration_vectors = [[float(element) for element in line.split()[-3:]] for line in lines[:block_size]]
return vibration_vectors
def get_vibration_vectors_mesh(self) -> list[go.Mesh3d]:
"""
Returns a list of meshes that represent the vibration vectors.
"""
assert self.vibration_vectors is not None, "Vibration vectors must be generated first"
meshes = []
first_frame_coords = self.coordinates[0].xyz
for i,vector in enumerate(self.vibration_vectors):
meshes.append(make_arrow_mesh(at=first_frame_coords[i], dir=vector))
return meshes
def get_molecular_viewer_animated(self, resolution: int = 64, rel_cutoff: float = 0.5, arrows: bool = False) -> go.Figure:
"""
Returns a plotly figure with the molecular structure of the trajectory. The figure comes with an animation.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A plotly figure with the molecular structure.
"""
fig = go.Figure()
# Get and add all the meshes
mesh_elements = [0]
frames = []
for xyz in self.coordinates:
data = []
meshes = xyz.get_molecular_mesh(resolution=resolution, rel_cutoff=rel_cutoff)
mesh_elements.append(len(meshes))
for mesh in meshes:
data.append(mesh) # was in double parenthesis
if arrows and self.vibration_vectors is not None:
data += self.get_vibration_vectors_mesh()
frames.append(go.Frame(data=data))
fig = go.Figure(
data=data, # initial frame before animation
frames=frames
)
fig.update_layout(
updatemenus=[{
"type": "buttons",
"buttons": [{
"label": "Play",
"method": "animate",
"args": [None, {
"frame": {"duration": 200}
}]
}],
}],
scene_aspectmode='data'
)
return fig
def get_molecular_viewer_slider(self, resolution: int = 64, rel_cutoff: float = 0.5, arrows: bool = False) -> go.Figure:
"""
Returns a plotly figure with the molecular structure of the trajectory. The figure comes with a slider that allows to switch between frames.
Args:
resolution (int, optional): The number of points to be generated. Defaults to 64.
rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
Defaults to 0.5.
Returns:
go.Figure: A plotly figure with the molecular structure.
"""
# Get and add all the meshes
mesh_elements = [0]
fig = go.Figure()
for xyz in self.coordinates:
meshes = xyz.get_molecular_mesh(resolution=resolution, rel_cutoff=rel_cutoff)
if arrows and self.vibration_vectors is not None:
meshes += self.get_vibration_vectors_mesh()
mesh_elements.append(len(meshes))
for mesh in meshes:
fig.add_trace(mesh)
mesh_elements_cumulative = list(accumulate(mesh_elements))
# Make the visibility list
slider_steps: list[dict] = []
for i in range(len(self.coordinates)):
step = {
"method": "restyle",
"args": [{"visible": [False] * mesh_elements_cumulative[-1]}]
}
step["args"][0]["visible"][mesh_elements_cumulative[i]:mesh_elements_cumulative[i+1]] = [True] * mesh_elements[i+1]
slider_steps.append(step)
# Make the slider
slider = {
"active": 0,
"currentvalue": {"prefix": "Frame: "},
"steps": slider_steps
}
fig.update_layout(
sliders=[slider]
)
fig.update_layout(scene_aspectmode='data')
return fig