Skip to content
Snippets Groups Projects
support.py 24.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
import numpy as np
import plotly.graph_objects as go
import atom_properties as atomp
from itertools import accumulate
import qc_parser as qcp
import subprocess as sub
import os
from typing import Iterable, Sequence

import pyvista as pv
import sklearn.cluster as skc

if "orca" not in os.environ["PATH"]:
    os.environ["PATH"] += ":/home/jovyan/orca"

def circle_coordinates(point: np.ndarray, v: np.ndarray, radius: float, num_points: int) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
    """
    Generate cartesian coordinates of a circle in 3D space.

    Args:
        point (np.ndarray): A point on the circle.
        v (np.ndarray): A vector perpendicular to the circle.
        radius (float): The radius of the circle.
        num_points (int): The number of points to generate on the circle.

    Returns:
        np.ndarray: A 2D array of shape (num_points, 3) containing the cartesian coordinates of the circle.
    """

    # Normalize the vector v
    v = v / np.linalg.norm(v)

    # Create a vector u that is perpendicular to v
    u = np.cross(v, [1, 0, 0]) if np.linalg.norm(np.cross(v, [1, 0, 0])) > 1e-6 else np.cross(v, [0, 1, 0])
    u = u / np.linalg.norm(u)

    # Create a vector w that is perpendicular to both u and v
    w = np.cross(u, v)

    # Generate the cartesian coordinates of the circle
    theta = np.linspace(0, 2 * np.pi, num_points)
    circle_coords = point + radius * (u * np.cos(theta)[:, np.newaxis] + w * np.sin(theta)[:, np.newaxis])

    x, y, z = circle_coords[:, 0], circle_coords[:, 1], circle_coords[:, 2]
    return x, y, z

def make_arrow_mesh(at: np.ndarray, dir: np.ndarray, resolution: int = 16, radius: float = 0.05) -> go.Mesh3d:
    tip = at + dir
    bottom = at - dir
    v = bottom - tip
    x1, y1, z1 = circle_coordinates(bottom, v, radius=radius, num_points=resolution//4)
    x2, y2, z2 = circle_coordinates(tip, v, radius=radius, num_points=resolution//4)
    x, y, z = np.concatenate((x1, x2)), np.concatenate((y1, y2)), np.concatenate((z1, z2))

    arrow_mesh = go.Mesh3d(
            x=x, 
            y=y, 
            z=z, 
            color="#888888", 
            opacity=0.5, 
            alphahull=0,
            # name=f'{self.elements[i]}-{self.elements[j]}',
            hoverinfo='none',  # No hover info at all
            )
    return arrow_mesh

def make_fibonacci_sphere(center: np.ndarray, radius: float = 0.1, resolution: int = 32) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
    """
    Return cartesian coordinates of points evenly distributed on the surface of a sphere.

    Args:
        center (np.ndarray): The coordinates of the center of the sphere.
        radius (float, optional): The radius of the sphere. Defaults to 0.1.
        resolution (int, optional): The number of points to be generated. Defaults to 32.

    Returns:
        tuple[np.ndarray, np.ndarray, np.ndarray]: The cartesian coordinates of the points
            on the surface of the sphere. The three arrays are the x, y and z coordinates
            of the points.
    """
    num_points = resolution
    indices = np.arange(0, num_points, dtype=float) + 0.5
    phi = np.arccos(1 - 2*indices/num_points)
    theta = np.pi * (1 + 5**0.5) * indices
    
    x = radius * np.sin(phi) * np.cos(theta) + center[0]
    y = radius * np.sin(phi) * np.sin(theta) + center[1]
    z = radius * np.cos(phi) + center[2]

    return x, y, z

class Volumetric:
    def __init__(self,
                 origin: Sequence[float],
                 res_vec1: int, res_vec2: int, res_vec3: int,
                 vec1: Sequence[float],
                 vec2: Sequence[float],
                 vec3: Sequence[float],
                 volumetrics: Sequence[float]) -> None:
        self.origin = np.array(origin)
        self.res_vec1 = res_vec1
        self.res_vec2 = res_vec2
        self.res_vec3 = res_vec3
        self.vec1 = np.array(vec1)
        self.vec2 = np.array(vec2)
        self.vec3 = np.array(vec3)
        self.volumetrics = volumetrics
        return

    @classmethod
    def from_cube_file(cls, file: str):
        with open(file, "r") as f:
            next(f)
            next(f)
            natoms_raw, x0_raw, y0_raw, z0_raw = f.readline().split()
            res_vec1_raw, x1_raw, y1_raw, z1_raw = f.readline().split()
            res_vec2_raw, x2_raw, y2_raw, z2_raw = f.readline().split()
            res_vec3_raw, x3_raw, y3_raw, z3_raw = f.readline().split()

            natoms, x0, y0, z0 = (abs(int(natoms_raw)), float(x0_raw), float(y0_raw), float(z0_raw))
            res_vec1, x1, y1, z1 = (int(res_vec1_raw), float(x1_raw), float(y1_raw), float(z1_raw))
            res_vec2, x2, y2, z2 = (int(res_vec2_raw), float(x2_raw), float(y2_raw), float(z2_raw))
            res_vec3, x3, y3, z3 = (int(res_vec3_raw), float(x3_raw), float(y3_raw), float(z3_raw))

            # skip all the atom coordinates
            for i in range(natoms):
                next(f)
            if ".mo" in file:
                next(f)

            volumetrics_raw = f.readlines()
        volumetrics = [float(i) for line in volumetrics_raw for i in line.split()]
        return cls(
            (x0, y0, z0),
            res_vec1, res_vec2, res_vec3,
            (x1, y1, z1),
            (x2, y2, z2),
            (x3, y3, z3),
            volumetrics
        )
    
    @classmethod
    def from_gbw_file(cls, file: str, index: int, mode: str):
        assert mode in ("mo", "diffdens")
        if mode == "mo":
            input_string = f"5\n7\n4\n100\n2\n{index}\n10\n11\n"
        if mode == "diffdens":
            input_string = ""
        sub.run(f"orca_plot {file} -i", shell=True, text=True, capture_output=True, input=input_string)
        basename = file.replace('.gbw', '')
        out = Volumetric.from_cube_file(f"{basename}.mo{index}a.cube")
        os.remove(f"{basename}.mo{index}a.cube")

        return out
    
    def voxel_generator(self, threshold: float):
        sign = 1
        if threshold < 0:
            sign = -1
            threshold *= -1
        for x in range(self.res_vec1):
            for y in range(self.res_vec2):
                for z in range(self.res_vec3):
                    voxel =  self.volumetrics[z + y * self.res_vec3 + x * (self.res_vec3 * self.res_vec2)] * sign
                    if voxel > threshold:
                        coord = ((x * self.vec1)
                                 + y * self.vec2
                                 + z * self.vec3)
                        yield voxel, *(coord + self.origin)
    
    def get_mesh(self, threshold: float, color: str = "#888888", verbose: bool = True) -> go.Mesh3d:
        voxels_lst = [voxel for voxel in self.voxel_generator(threshold)]
        voxels = np.array(voxels_lst)
        cluster = skc.DBSCAN(eps=0.5).fit(voxels[:,1:4])
        if verbose: print("Clustering complete")
        xyz: np.ndarray = np.ndarray((0, 3))
        ijk: np.ndarray = np.ndarray((0, 3))
        n_clusters = cluster.labels_.max()
        for i in range(n_clusters + 1):
            if verbose: print(f"Creating mesh {i}/{n_clusters} ...", end="")
            cloud = pv.PolyData(voxels[cluster.labels_ == i][:,1:4])
            surf = cloud.delaunay_3d(alpha=0.4, tol=0.001, offset=2.5)
            surf = surf.extract_geometry()
            surf = surf.triangulate()
            surf = surf.decimate(0.9)
            ijk = np.concatenate((ijk, surf.faces.reshape(-1, 4)[:, 1:] + len(xyz)))
            xyz = np.concatenate((xyz, surf.points))
            if verbose: print(f" done.")
        return go.Mesh3d(
            x=xyz[:,0],
            y=xyz[:,1],
            z=xyz[:,2],
            i=ijk[:,0],
            j=ijk[:,1],
            k=ijk[:,2],
            opacity=0.5,
        )
    
    # THIS IS AN ALTERNATIVE VERSION OF THE GET_MESH METHOD
    # IT DOES NOT USE CLUSTERING
    # BUT SOMETIMES THE ORBITALS LOOK LESS GOOD THEN
    # def get_mesh(self, threshold: float, color: str = "#888888", verbose: bool = True) -> go.Mesh3d:
    #     voxels_lst = [voxel for voxel in self.voxel_generator(threshold)]
    #     voxels = np.array(voxels_lst)
    #     if verbose: print("Clustering complete")
    #     xyz: np.ndarray = np.ndarray((0, 3))
    #     ijk: np.ndarray = np.ndarray((0, 3))
    #     cloud = pv.PolyData(voxels[:,1:4])
    #     surf = cloud.delaunay_3d(alpha=0.4, tol=0.001, offset=2.5)
    #     surf = surf.extract_geometry()
    #     surf = surf.triangulate()
    #     surf = surf.decimate(0.9)
    #     ijk = surf.faces.reshape(-1, 4)[:, 1:]
    #     xyz = surf.points
    #     return go.Mesh3d(
    #         x=xyz[:,0],
    #         y=xyz[:,1],
    #         z=xyz[:,2],
    #         i=ijk[:,0],
    #         j=ijk[:,1],
    #         k=ijk[:,2],
    #         opacity=0.5,
    #     )





class XYZ:
    """
    A class for representing a molecular structure in cartesian coordinates.

    The molecule is represented by a list of atoms and corresponding coordinates.

    Attributes:
        xyz (ndarray): A 2D numpy array of shape (num_atoms, 3) containing the
            coordinates of the atoms in the molecule.
        elements (list): A list of strings representing the elements of the atoms in
            the molecule.
    """
    sphere_mode = "ball"

    def __init__(self, coords: list[dict[str, str|float]]):
        self.xyz = np.array([[coord["x"], coord["y"], coord["z"]] for coord in coords])
        self.elements = [coord["element"] for coord in coords]
        self.meshes: list[go.Mesh3d] = []
        self.viewer: go.Figure = go.Figure()


    @classmethod
    def from_xyz_file(cls, file: str):
        """
        Reads in files with the structure 'element x y z' and returns
        a numpy array with the stored coordinates.
        @param file: String. Path to the file to be read in.
        @return: 2D numpy array. Contains the coordinates from the file at the
            corresponding indices.
        """
        with open(file) as f:
            lines = f.readlines()
        if len(lines[0].split()) == 1:
            lines = lines[2:]
            return cls([{"element": line.split()[0],
                         "x": float(line.split()[1]),
                         "y": float(line.split()[2]),
                         "z": float(line.split()[3])} for line in lines])
    
    @classmethod
    def from_list(cls, lines: list[list[str|float]]):
        return cls([{"element": line[0],
                     "x": float(line[1]),
                     "y": float(line[2]),
                     "z": float(line[3])} for line in lines])
    
    def get_bond_length(self, i: int, j: int) -> float:
        """
        Returns the bond length between atoms i and j.

        Args:
            i (int): Index of the first atom.
            j (int): Index of the second atom.

        Returns:
            float: The bond length between the two atoms.
        """
        return float(np.linalg.norm(self.xyz[i] - self.xyz[j]))
    
    def make_cylinder(self, center_i: int, center_j: int, resolution: int = 32, radius: float = 0.1) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
        """
        Return cartesian coordinates of points on the edges of a cylinder.

        The cylinder is defined by the line between atoms i and j, and the radius is the given value. The number of points is determined by the resolution.

        Args:
            center_i (int): Index of the first atom that defines the cylinder.
            center_j (int): Index of the second atom that defines the cylinder.
            resolution (int, optional): The number of points to be generated. Defaults to 32.
            radius (float, optional): The radius of the cylinder. Defaults to 0.1.

        Returns:
            tuple[np.ndarray, np.ndarray, np.ndarray]: The cartesian coordinates of the points on the edges of the cylinder. The three arrays are the x, y and z coordinates of the points.
        """
        v = self.xyz[center_j] - self.xyz[center_i]
        x1, y1, z1 = circle_coordinates(self.xyz[center_i], v, radius=radius, num_points=resolution//4)
        x2, y2, z2 = circle_coordinates(self.xyz[center_j], v, radius=radius, num_points=resolution//4)
        return np.concatenate((x1, x2)), np.concatenate((y1, y2)), np.concatenate((z1, z2))
        

    def make_atom_mesh(self, i: int, resolution: int = 32) -> go.Mesh3d:
        """
        Return a Mesh3d object that represents the atom at index i.

        The atom is represented as a sphere with a radius depending on its van der Waals radius.

        Args:
            i (int): Index of the atom to be represented.
            resolution (int, optional): The number of points to be generated. Defaults to 32.

        Returns:
            go.Mesh3d: A Mesh3d object that represents the atom.
        """
        if self.sphere_mode == "vdw":
            radius = atomp.vdw_radii_dict[self.elements[i]]
        elif self.sphere_mode == "ball":
            radius = atomp.vdw_radii_dict[self.elements[i]] * 0.2

        x, y, z = make_fibonacci_sphere(self.xyz[i], radius=radius, resolution=resolution)
        
        atom_mesh = go.Mesh3d(
            x=x, 
            y=y, 
            z=z, 
            color=atomp.atom_colors_dict[self.elements[i]], 
            opacity=1, 
            alphahull=0,
            name=f'{self.elements[i]}{i}', # label is too short to also show coordinates
            hoverinfo='name',  # Only show the name on hover
            )
        return atom_mesh
    
    def make_bond_mesh(self, i: int, j: int, resolution: int = 32, radius: float = 0.1) -> go.Mesh3d:
        """
        Return a Mesh3d object that represents a bond between atoms i and j.

        The bond is represented as a cylinder with a radius depending on the given radius.

        Args:
            i (int): Index of the first atom in the bond.
            j (int): Index of the second atom in the bond.
            resolution (int, optional): The number of points to be generated. Defaults to 32.
            radius (float, optional): The radius of the cylinder. Defaults to 0.1.

        Returns:
            go.Mesh3d: A Mesh3d object that represents the bond.
        """
        x, y, z = self.make_cylinder(i, j, resolution=resolution, radius=radius)

        bond_mesh = go.Mesh3d(
            x=x, 
            y=y, 
            z=z, 
            color="#444444", 
            opacity=1, 
            alphahull=0,
            # name=f'{self.elements[i]}-{self.elements[j]}',
            hoverinfo='none',  # No hover info at all
            )
        return bond_mesh

    def get_molecular_mesh(self, resolution: int = 64, rel_cutoff: float = 0.5) -> go.Figure:
        """
        Returns a list of Mesh3d objects that represent the molecular structure.

        Args:
            resolution (int, optional): The number of points to be generated. Defaults to 64.
            rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
                Defaults to 0.5.

        Returns:
            go.Figure: A list of Mesh3d objects that represent the molecular structure.
        """
        mesh_list = []
        # Add the bonds
        for i in range(len(self.elements)):
            for j in range(i+1, len(self.elements)):
                    bond_length = self.get_bond_length(i, j)
                    max_bond_length = rel_cutoff * (atomp.vdw_radii_dict[self.elements[i]] + atomp.vdw_radii_dict[self.elements[j]])
                    if bond_length < max_bond_length:
                        mesh_list.append(self.make_bond_mesh(i, j, resolution=resolution, radius=0.1))

        # Add the atoms
        for i in range(len(self.elements)):
            mesh_list.append(self.make_atom_mesh(i, resolution=resolution))

        return mesh_list

    def get_mesh_from_cube(self, file: str, threshold = 6*10**-3) -> None:
        self.viewer.add_trace(Volumetric.from_cube_file(file).get_mesh(threshold=threshold))
        return
    
    def get_mesh_from_gbw(self, file:str, index: int, mode: str = "mo", threshold = 6*10**-3) -> None:
        self.viewer.add_trace(Volumetric.from_gbw_file(file, index, mode).get_mesh(threshold=threshold))
        return

    def get_molecular_viewer(self, resolution: int = 64, rel_cutoff: float = 0.5) -> go.Figure:
        """
        Returns a plotly figure with the molecular structure.

        The molecular structure is represented as a collection of spheres at the atomic positions,
        with the bonds represented as cylinders between the atoms.

        Args:
            resolution (int, optional): The number of points to be generated. Defaults to 64.
            rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
                Defaults to 0.5.

        Returns:
            go.Figure: A plotly figure with the molecular structure.
        """

        for mesh in self.get_molecular_mesh(resolution=resolution, rel_cutoff=rel_cutoff):
            self.viewer.add_trace(mesh)

        # Fix aspect ratio such that the molecule is displayed undistorted
        self.viewer.update_layout(scene_aspectmode='data')

        # Remove axes and labels
        # self.viewer.update_scenes(
        #     xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
        #     yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
        #     zaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=""),
        # )

        return self.viewer

class Trajectory:
    """
    A class to represent a molecular trajectory in terms of XYZ objects.

    Attributes:
        coordinates (list[XYZ]): A list of XYZ objects representing the atomic coordinates for each frame in the trajectory.
        vibration_vectors (list[list[float]] or None): A list of vibration vectors associated with the trajectory, if any.
    """
    def __init__(self, coordinates: list[XYZ]):
        self.coordinates = coordinates
        self.vibration_vectors = None
    
    @classmethod
    def from_opt_output(cls, output_file: str):
        """
        Creates a Trajectory object from an ORCA output file.

        Args:
            output_file (str): The path to the ORCA output file.

        Returns:
            Trajectory: A Trajectory object.
        """
        parsed = qcp.read_qc_file(output_file)
        return cls([XYZ(frame) for frame in parsed["coordinates"]])

    @classmethod
    def from_trajectory_file(cls, trajectory_file: str):
        """
        Creates a Trajectory object from a trajectory file.

        Args:
            trajectory_file (str): The path to the trajectory file.

        Returns:
            Trajectory: A Trajectory object.
        """
        return cls([frame for frame in Trajectory.xyz_generator(trajectory_file)])
    
    @classmethod
    def from_vibration_output(cls, output_file: str, mode: int):
        """
        Creates a Trajectory object from an ORCA output file
        containing a frequency calculation at the given mode.

        Args:
            output_file (str): The path to the ORCA output file.
            mode (int): The mode number.

        Returns:
            Trajectory: A Trajectory object.
        """
        proc = sub.run(f"orca_pltvib {output_file} {mode}", shell=True, text=True, capture_output=True)
        trajectory_file = f"{output_file}.v{mode:03d}.xyz"
        xyz = Trajectory.from_trajectory_file(trajectory_file)
        xyz.vibration_vectors = Trajectory.get_vibration_vectors(trajectory_file)
        os.remove(trajectory_file)
        return xyz

    @staticmethod
    def xyz_generator(trajectory_file: str):
        """
        Generator that yields XYZ objects from a trajectory file.

        Args:
            trajectory_file (str): The path to the trajectory file.

        Yields:
            XYZ: An XYZ object.
        """
        with open(trajectory_file) as f:
            lines = f.readlines()
        block_size = int(lines[0].strip()) + 2
        for i in range(0, len(lines), block_size):
            yield XYZ.from_list([line.split() for line in lines[i+2:i+block_size]])

    @staticmethod
    def get_vibration_vectors(trajectory_file: str):
        """
        Returns the vibration vectors from a trajectory file. Must be generated
        by orca_pltvib, so it contains the vectors in the last three columns.

        Args:
            trajectory_file (str): The path to the trajectory file.

        Returns:
            list[list[float]]: A list of vibration vectors.
        """
        with open(trajectory_file) as f:
            lines = f.readlines()
        block_size = int(lines[0].strip())
        lines = lines[2:]
        vibration_vectors = [[float(element) for element in line.split()[-3:]] for line in lines[:block_size]]
        return vibration_vectors
    
    def get_vibration_vectors_mesh(self) -> list[go.Mesh3d]:
        """
        Returns a list of meshes that represent the vibration vectors.
        """
        assert self.vibration_vectors is not None, "Vibration vectors must be generated first"
        meshes = []
        first_frame_coords = self.coordinates[0].xyz
        for i,vector in enumerate(self.vibration_vectors):
            meshes.append(make_arrow_mesh(at=first_frame_coords[i], dir=vector))
        return meshes

    
    def get_molecular_viewer_animated(self, resolution: int = 64, rel_cutoff: float = 0.5, arrows: bool = False) -> go.Figure:
        """
        Returns a plotly figure with the molecular structure of the trajectory. The figure comes with an animation.

        Args:
            resolution (int, optional): The number of points to be generated. Defaults to 64.
            rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
                Defaults to 0.5.

        Returns:
            go.Figure: A plotly figure with the molecular structure.
        """
        fig = go.Figure()

        # Get and add all the meshes
        mesh_elements = [0]
        frames = []
        for xyz in self.coordinates:
            data = []
            meshes = xyz.get_molecular_mesh(resolution=resolution, rel_cutoff=rel_cutoff)
            mesh_elements.append(len(meshes))
            for mesh in meshes:
                data.append(mesh) # was in double parenthesis
            if arrows and self.vibration_vectors is not None:
                data += self.get_vibration_vectors_mesh()

            frames.append(go.Frame(data=data))
        
        fig = go.Figure(
            data=data, # initial frame before animation
            frames=frames
        )
        fig.update_layout(
            updatemenus=[{
                "type": "buttons",
                "buttons": [{
                    "label": "Play",
                    "method": "animate",
                    "args": [None, {
                        "frame": {"duration": 200}
                    }]
                }],
            }],
            scene_aspectmode='data'
        )

        return fig

    def get_molecular_viewer_slider(self, resolution: int = 64, rel_cutoff: float = 0.5, arrows: bool = False) -> go.Figure:
        """
        Returns a plotly figure with the molecular structure of the trajectory. The figure comes with a slider that allows to switch between frames.

        Args:
            resolution (int, optional): The number of points to be generated. Defaults to 64.
            rel_cutoff (float, optional): Bond are only shown if the interatomic distance is smaller than the sum of the atomic vdw radii multiplied with this parameter.
                Defaults to 0.5.

        Returns:
            go.Figure: A plotly figure with the molecular structure.
        """
        # Get and add all the meshes
        mesh_elements = [0]
        fig = go.Figure()
        for xyz in self.coordinates:
            meshes = xyz.get_molecular_mesh(resolution=resolution, rel_cutoff=rel_cutoff)
            if arrows and self.vibration_vectors is not None:
                meshes += self.get_vibration_vectors_mesh()
            mesh_elements.append(len(meshes))
            for mesh in meshes:
                fig.add_trace(mesh)
        mesh_elements_cumulative = list(accumulate(mesh_elements))
        
        # Make the visibility list
        slider_steps: list[dict] = []
        for i in range(len(self.coordinates)):
            step = {
                "method": "restyle",
                "args": [{"visible": [False] * mesh_elements_cumulative[-1]}]
            }
            step["args"][0]["visible"][mesh_elements_cumulative[i]:mesh_elements_cumulative[i+1]] = [True] * mesh_elements[i+1]
            slider_steps.append(step)
        
        # Make the slider
        slider = {
            "active": 0,
            "currentvalue": {"prefix": "Frame: "},
            "steps": slider_steps
        }

        fig.update_layout(
            sliders=[slider]
        )
        
        fig.update_layout(scene_aspectmode='data')
        return fig