Skip to content
Snippets Groups Projects
Commit f18964ac authored by Bichen Li's avatar Bichen Li
Browse files

-Add Simulink readin function

parent cda742b5
No related branches found
No related tags found
No related merge requests found
import numpy as np
import pandas as pd
from .timeseries import *
......@@ -271,3 +272,57 @@ def read_timeseries_NEPLAN_loadflow(file_name, timeseries_names=None, is_regex=F
for num_to_del in range(len(line_del)):
del timeseries[line_del[len(line_del) - num_to_del - 1]]
return timeseries
def read_timeseries_simulink_loadflow(file_name, timeseries_names=None, is_regex=False):
str_tmp = open(file_name, 'r', encoding='latin-1') # Read in files, using latin-1 to decode /xb0
# Read in data from result file of neplan
name = [] # list for data type names
value = [] # list for data
timeseries = []
line_del = [] # a list for the value to be deleted
for line in str_tmp.readlines():
line = line.replace("°", "")
del value[:]
del name[:]
# read in different data and start processing
if len(line) > 37:
if line[31:35] == '--->':
if line[13:17] == 'Arms':
name = [line[37:len(line)].rstrip() + '.Arms', line[37:len(line)].rstrip() + '.IDegree']
elif line[13:17] == 'Vrms':
name = [line[37:len(line)].rstrip() + '.Vrms', line[37:len(line)].rstrip() + '.VDegree']
value = [float(line[0:13]), float(line[18:31])]
timeseries.append(TimeSeries(name[0],
np.array([0., 1.]), np.array([value[0], value[0]])))
timeseries.append(TimeSeries(name[1],
np.array([0., 1.]), np.array([value[1], value[1]])))
# Read in variables which match with regex
if is_regex is True:
p = re.compile(timeseries_names)
length = len(timeseries)
for rule_check in range(length):
if p.search(timeseries[rule_check].name):
pass
else:
line_del.append(rule_check)
# Read in specified time series
elif timeseries_names is not None:
length = len(timeseries)
for rule_check in range(length):
if timeseries_names == timeseries[rule_check].name:
pass
else:
line_del.append(rule_check)
# delete those values that are not needed.
line_del = set(line_del)
line_del = sorted(line_del)
for num_to_del in range(len(line_del)):
del timeseries[line_del[len(line_del) - num_to_del - 1]]
return timeseries
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment