Aufgrund einer Wartung wird GitLab am 29.10. zwischen 9:00 und 10:00 Uhr kurzzeitig nicht zur Verfügung stehen. / Due to maintenance, GitLab will be temporarily unavailable on 29.10. between 9:00 and 10:00 am.

Commit 65789370 authored by Jan Dinkelbach's avatar Jan Dinkelbach

extended modelica read in (use of regex, all vars), added read in examples

parent b3a0cf1c
import numpy as np
import pandas as pd
from .timeseries import *
import re
def read_timeseries_Modelica(filename, timeseries_names=None):
def read_timeseries_Modelica(filename, timeseries_names=None, is_regex=False):
from modelicares import SimRes
sim = SimRes(filename)
if timeseries_names is None:
# No trajectory names specified, thus read in all
if timeseries_names is None and is_regex is False:
# No trajectory names or regex specified, thus read in all
timeseries = []
for name in sim.names():
timeseries.append(TimeSeries(name, sim(name).times(), sim(name).values()))
elif is_regex is True:
# Read in variables which match with regex
timeseries = []
p = re.compile(timeseries_names)
timeseries_names = [name for name in sim.names() if]
for name in timeseries_names:
timeseries.append(TimeSeries(name, sim(name).times(), sim(name).values()))
# Read in specified time series
if not isinstance(timeseries_names, list):
......@@ -14,9 +14,14 @@ class TimeSeries:
def diff(name, ts1, ts2):
"""Returns difference between values of two Timeseries objects.
Assumes the same time steps for both timeseries.
ts_diff = TimeSeries(name, ts1.time, (ts1.values - ts2.values))
if ts1.time==ts2.time:
ts_diff = TimeSeries(name, ts1.time, (ts1.values - ts2.values))
else: # different timestamps, common time vector and interpolation required before substraction
time = sorted(set(list(ts1.time) + list(ts2.time)))
interp_vals_ts1 = np.interp(time, ts1.time, ts1.values)
interp_vals_ts2 = np.interp(time, ts2.time, ts2.values)
ts_diff = TimeSeries(name, time, (interp_vals_ts2 - interp_vals_ts1))
return ts_diff
from dataprocessing.readtools import *
from dataprocessing.plottools import *
import matplotlib.pyplot as plt
# Example 1: read in single variable included in the Modelica results file
voltage_node126 = read_timeseries_Modelica(
r"\\tsclient\N\Research\German Public\ACS0049_SINERGIEN_bsc\Data\WorkData\SimulationResults\IEEE European\Single_scenario_fixed_PV\IEEEEuropean_60.mat",
plt.figure(1, figsize=(12,8))
set_timeseries_labels(voltage_node126, "voltage N126")
plt.plot(voltage_node126.time/3600, voltage_node126.values, label=voltage_node126.label)
# Example 2: read in multiple variables defined in a list
voltage_two_nodes = read_timeseries_Modelica(
r"\\tsclient\N\Research\German Public\ACS0049_SINERGIEN_bsc\Data\WorkData\SimulationResults\IEEE European\Single_scenario_fixed_PV\IEEEEuropean_60.mat",
timeseries_names=["N127.Vrel", "N128.Vrel"])
plt.figure(2, figsize=(12,8))
plt.plot(voltage_two_nodes[0].time/3600, voltage_two_nodes[0].values, label=voltage_two_nodes[0].label)
plt.plot(voltage_two_nodes[1].time/3600, voltage_two_nodes[1].values, label=voltage_two_nodes[1].label)
# Example 3: read in all voltages using regular expressions
voltages_all_nodes = read_timeseries_Modelica(
r"\\tsclient\N\Research\German Public\ACS0049_SINERGIEN_bsc\Data\WorkData\SimulationResults\IEEE European\Single_scenario_fixed_PV\IEEEEuropean_60.mat",
timeseries_names='^[^.]*.Vrel$', is_regex=True)
plt.figure(3, figsize=(12, 8))
for i in range(len(voltages_all_nodes)):
plt.plot(voltages_all_nodes[i].time / 3600, voltages_all_nodes[i].values, label=voltages_all_nodes[i].label)
# Example 4: read in all variables
variables_all = read_timeseries_Modelica(
r"\\tsclient\N\Research\German Public\ACS0049_SINERGIEN_bsc\Data\WorkData\SimulationResults\IEEE European\Single_scenario_fixed_PV\IEEEEuropean_60.mat")
dict_variables_all = {}
for ts in variables_all:
dict_variables_all[] = ts
plt.figure(4, figsize=(12, 8))
plt.plot(dict_variables_all["L12.Irel"].time/3600, dict_variables_all["L12.Irel"].values, label=dict_variables_all["L12.Irel"].label)
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment