Skip to content
Snippets Groups Projects
Commit a9343271 authored by Rostislav Chudoba's avatar Rostislav Chudoba
Browse files

lecture 2 video - links

parent 912f82b4
No related branches found
No related tags found
No related merge requests found
%% Cell type:markdown id: tags:
<a id="top"></a>
# **2.1 Pull-out of elastic fiber from rigid matrix**
%% Cell type:markdown id: tags:
[![title](../fig/bmcs_video.png)](https://moodle.rwth-aachen.de/mod/page/view.php?id=551807)
<!-- [![title](../fig/bmcs_video.png)](https://moodle.rwth-aachen.de/mod/page/view.php?id=551807) -->
<!-- [![title](../fig/bmcs_video.png)](https://youtu.be/vc-kLmnHMvw) -->
%% Cell type:code id: tags:
``` python
from IPython.display import YouTubeVideo
YouTubeVideo('vc-kLmnHMvw')
```
%% Output
<IPython.lib.display.YouTubeVideo at 0x7f76005313d0>
%% Cell type:markdown id: tags:
# The simplest possible pull-out model
%% Cell type:markdown id: tags:
An analytical solution of the pull-out problem is obtained by
1. Integrate the differential equilibrium equation relating the shear flow with the change of the normal force
$A_\mathrm{f} \mathrm{d}\sigma_\mathrm{f}$ in the fiber on an infinitesimal element $\mathrm{d}x$
\begin{align}\dfrac{\mathrm{d}\sigma_\mathrm{f}}{\mathrm{d}x} = \dfrac{p\bar{\tau}}{A_\mathrm{f}}\end{align}
2. Substitute the result into the elastic constitutive law of the reinforcement
\begin{align}\varepsilon_\mathrm{f} = \dfrac{\sigma_\mathrm{f}}{E_\mathrm{f}}\end{align}
3. Substitute the result into the kinematic relation stating that the pull-out displacement is equal to the integral of fiber strain along the debonded length
\begin{align}u_\mathrm{f} = \int_{a}^0 \varepsilon_\mathrm{f} \, \mathrm{d}x\end{align}
4. Identify the integration constants by applying boundary conditions: equilibrium at loaded end and compatibility and smoothness at the end of the debonded zone $x = a$
These step deliver the pull-out curve as a square root function
\begin{align}
P = \sqrt{p \bar{\tau} E_\mathrm{f} A_\mathrm{f} w}
\end{align}
%% Cell type:markdown id: tags:
<a id="PO_LEM_LRM_summary"></a>
## Graphical summary of the model derivation
%% Cell type:markdown id: tags:
![image.png](attachment:6ef958fc-7d8f-4dc2-848a-36d05b0e32b8.png)
%% Cell type:markdown id: tags:
# Model application
Let us utilize the the derived model to simulate the test results of the RILEM pull-out test
![image.png](attachment:image.png)
%% Cell type:markdown id: tags:
| Symbol | Unit |Description |
|:- |:- |:- |
| $E_\mathrm{f}$ | MPa | Young's modulus of reinforcement |
| $\bar{\tau}$ | MPa | Bond stress |
| $A_\mathrm{f}$ | mm$^2$ | Cross-sectional area of reinforcement |
| $p$ | mm | Perimeter of contact between concrete and reinforcement |
%% Cell type:markdown id: tags:
### **Observation**
%% Cell type:markdown id: tags:
- The measured displament at the loaded and unloaded end are different
- Their difference increases with increasing bond length $L_\mathrm{b}$
- The shape of the pull-out curve has a shape of a square root function
%% Cell type:markdown id: tags:
### **Question**
%% Cell type:markdown id: tags:
- Can the above derived model describe the debonding process correctly?
%% Cell type:markdown id: tags:
# Look inside the specimen using the model
%% Cell type:markdown id: tags:
The parameters of the above experiment are specified as follows
%% Cell type:code id: tags:
``` python
ds = 16
A_f = (ds/2)**2 * 3.14 # mm^2 - reinforcement area
L_b = 5 * ds # mm - bond length
E_f = 210000 # MPa - reinforcement stiffness
p_b = 3.14 * ds # mm - bond perimeter
w_max = 0.12 # mm - maximum displacement
```
%% Cell type:markdown id: tags:
**Construct the model:** To study the model behavior import the class `PO_ELF_RLM`, construct it with the defined parameters and run the `interact` method
%% Cell type:code id: tags:
``` python
%matplotlib widget
from pull_out import PO_ELF_RLM
po = PO_ELF_RLM(E_f=E_f, L_b=L_b, p=p_b, A_f=A_f, w_max=w_max)
```
%% Cell type:markdown id: tags:
**Remark:** that the length $L_b$ is not the end of the bond zone. It only measures the slip at the position $x = L_\mathrm{b}$ from the loadedend. However, the debonding process can continue beyond this length.
%% Cell type:code id: tags:
``` python
po.interact()
```
%% Output
%% Cell type:markdown id: tags:
## Let's learn from the model
Exercise the relation between $P$ and $\tau(x)$ and between $w$ and $\varepsilon(x)$.
1. What is the meaning of the green area?
2. What is the meaning of the red area?
3. What is the meaning of the slope of the green curve?
4. Is it possible to reproduce the shown RILEM test response using this "frictional" model?
4. What is the role of debonded length $a$ in view of general non-linear simulation?
5. When does the pull-out fail?
5. What happends with $a$ upon unloading?
%% Cell type:markdown id: tags:
<div style="background-color:lightgray;text-align:left;width:45%;display:inline-table;"> <img src="../icons/previous.png" alt="Previous trip" width="50" height="50">
&nbsp; <a href="../tour1_intro/1_1_elastic_stiffness_of_the_composite.ipynb#top">1.3 Elastic stiffness of the composite</a>
</div><div style="background-color:lightgray;text-align:center;width:10%;display:inline-table;"> <a href="#top"><img src="../icons/compass.png" alt="Compass" width="50" height="50"></a></div><div style="background-color:lightgray;text-align:right;width:45%;display:inline-table;">
<a href="2_2_1_PO_configuration_explorer.ipynb#top">2.2 Classification of pullout configurations</a>&nbsp; <img src="../icons/next.png" alt="Previous trip" width="50" height="50"> </div>
%% Cell type:markdown id: tags:
<div style="background-color:lightgray;text-align:left;width:45%;display:inline-table;">
<iframe width="560" height="315" src="https://www.youtube-nocookie.com/embed/vc-kLmnHMvw" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</div>
%% Cell type:code id: tags:
``` python
```
......
%% Cell type:markdown id: tags:
<a id="top"></a>
# **2.2: Classification of pull-out configurations**
[![Classification](../fig/bmcs_video.png)](https://moodle.rwth-aachen.de/mod/page/view.php?id=551810)
[Slides](slides/S0202-Classification_of_pullout_tests.pdf)
%% Cell type:code id: tags:
``` python
from IPython.display import YouTubeVideo
YouTubeVideo('NXB9BCt_UNk')
```
%% Output
<IPython.lib.display.YouTubeVideo at 0x7fd94bab5c40>
%% Cell type:markdown id: tags:
<!-- [![Classification](../fig/bmcs_video.png)](https://moodle.rwth-aachen.de/mod/page/view.php?id=551810)
-->
<!-- [![Classification](../fig/bmcs_video.png)](https://youtu.be/NXB9BCt_UNk) part 1
-->
The analytical solution of the pull-out from rigid matrix for constant bond-slip law
explained in the notebook [2.1 Pull-out of elastic fiber from rigid matrix](2_1_1_PO_observation.ipynb) can be adapted to
several practically relevant configurations that occur in brittle-matrix compostes. The notebook
addresses the following four configuration of pull-out
- Rigid matrix
- Elastic matrix
- Short fiber
- Clamped fiber
This notebook summarizes these four configurations using interactive web-apps to show their qualitatively different behavior. Using the prepared models,the correspondence between the pull-out curve $P(w)$ and the debonding process is visualized in terms of the stress and strain profiles along the bond length. In all models, the following material parameters are be used.
%% Cell type:markdown id: tags:
| Symbol | Unit |Description |
|:- |:- |:- |
| $E_\mathrm{m}$ | MPa | Young's modulus of concrete matrix |
| $E_\mathrm{f}$ | MPa | Young's modulus of reinforcement |
| $\bar{\tau}$ | MPa | Bond stress |
| $A_\mathrm{m}$ | mm$^2$ | Cross-sectional area of concrete matrix |
| $A_\mathrm{f}$ | mm$^2$ | Cross-sectional area of reinforcement |
| $p$ | mm | Perimeter of contact between concrete and reinforcement |
| $L_\mathrm{b}$ | mm | Length of the bond zone |
%% Cell type:code id: tags:
``` python
YouTubeVideo('P0bfIwI0_rc')
```
%% Output
<IPython.lib.display.YouTubeVideo at 0x7fd94c3c11c0>
%% Cell type:markdown id: tags:
# **1 Ridig Matrix**
**PO-ELF-RLM:** Pull-Out of Elastic Long Fiber from Rigid Long Matrix
%% Cell type:markdown id: tags:
![image.png](attachment:9993286b-4057-4b22-b695-3e395e3ffeef.png)
%% Cell type:markdown id: tags:
**For comparison** let us import again the simplest version of the pull-out model assuming rigid matrix, elastic fiber and infinite bond length.
%% Cell type:code id: tags:
``` python
%matplotlib widget
from pull_out import PO_ELF_RLM
po_explorer = PO_ELF_RLM(E_f=1, E_m=1, tau=1, p=1, A_m=1, A_f=1, w_max=0.5, L_b=1, t=0.5)
po_explorer.interact()
```
%% Output
%% Cell type:markdown id: tags:
# **2 Elastic Matrix**
%% Cell type:markdown id: tags:
**PO-ELF-ELM:** Pull-Out of Elastic Long Fiber from Elastic Long Matrix
%% Cell type:markdown id: tags:
![image.png](attachment:19c4f327-1799-4e88-b100-96d66ebf2dff.png)
%% Cell type:code id: tags:
``` python
%matplotlib widget
from pull_out import PO_ELF_ELM
po_explorer = PO_ELF_ELM(E_f=1, E_m=1, tau=1, p=1, A_m=1, A_f=1, w_max=0.5, L_b=1, t=0.5)
po_explorer.interact()
```
%% Output
%% Cell type:markdown id: tags:
# **3 Short Fiber**
**PO-ESF-RLM:** Pull-Out of Elastic Short Fiber from Rigid Long Matrix
%% Cell type:markdown id: tags:
![image.png](attachment:95a04ae4-2cb4-46a8-8581-9de442b93ee4.png)
%% Cell type:code id: tags:
``` python
%matplotlib widget
from pull_out import PO_ESF_RLM
po_explorer = PO_ESF_RLM(E_f=2, E_m=1, tau=1, A_f=1, A_m=1, p=1, L_b=1, w_max=1.3, t=0.26)
po_explorer.interact()
```
%% Output
%% Cell type:markdown id: tags:
# **4 Clamped Fiber**
**PO-ECF-ECM:** Pull-out of Elastic Clamped Fiber from Elastic Clamped Matrix
%% Cell type:markdown id: tags:
![image.png](attachment:9de172b7-49d2-43f9-8aa3-90031c3b9197.png)
%% Cell type:code id: tags:
``` python
%matplotlib widget
from pull_out import CB_ELF_ELM
po_explorer = CB_ELF_ELM(E_f=2, E_m=1, tau=1, A_f=1, A_m=1, p=1, L_b=1, w_max=1.3, t=0.7)
po_explorer.interact()
```
%% Output
%% Cell type:markdown id: tags:
# Summary
- The four configurations of the pull-out show that the pull-out curves have qualitatively different shape and explain the externally observered by visualizing the stress field development during the loading history.
- The pull-out curves calculated using the models 1 Rigid Matrix (PO-ELF-RLM) and 2 Elastic Matrix (PO-ELF-ELM) are not affected by the bond length $L_\mathrm{b}$.
- On the other hand, bond length strongly affects the maximum force and descending branch in in model 3 Short Fiber (PO-ESF-RLM). Bond length also affects the value of the final stiffness in the model 4 Clamped Fiber (PO-ECF-ECM)
%% Cell type:markdown id: tags:
<div style="background-color:lightgray;text-align:left"> <img src="../icons/exercise.png" alt="Run" width="40" height="40">
&nbsp; &nbsp; <a href="../exercises/X0201-X0203.pdf"><b>Exercises X0201-X0203:</b></a> <b>Pull-out with constant bond-slip</b>
</div>
%% Cell type:markdown id: tags:
<div style="background-color:lightgray;text-align:left;width:45%;display:inline-table;"> <img src="../icons/previous.png" alt="Previous trip" width="50" height="50">
&nbsp; <a href="2_1_1_PO_observation.ipynb#top">2.1 Pull-out of elastic fiber from rigid matrix</a>
</div><div style="background-color:lightgray;text-align:center;width:10%;display:inline-table;"> <a href="#top"><img src="../icons/compass.png" alt="Compass" width="50" height="50"></a></div><div style="background-color:lightgray;text-align:right;width:45%;display:inline-table;">
<a href="fragmentation.ipynb#top">2.3 Tensile behavior of a composite</a>&nbsp; <img src="../icons/next.png" alt="Previous trip" width="50" height="50"> </div>
%% Cell type:code id: tags:
``` python
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment