Forked from
Jan Habscheid / fxdgm
124 commits behind the upstream repository.
-
Jan Habscheid authored
E-Diode not working, concentrations seem to be uncouupled, fixed 1/Lambda2 in Var.Form and found out, that Lambda2 and a2 also determine maximum of the concentrations at Neumann Cond
Jan Habscheid authoredE-Diode not working, concentrations seem to be uncouupled, fixed 1/Lambda2 in Var.Form and found out, that Lambda2 and a2 also determine maximum of the concentrations at Neumann Cond
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
EqN.py 11.87 KiB
'''
Jan Habscheid
Jan.Habscheid@rwth-aachen.de
This script implements the fenics solver for the generic system of equations for N species
'''
import numpy as np
from mpi4py import MPI
from dolfinx import mesh, fem, log
from dolfinx.fem.petsc import NonlinearProblem
from dolfinx.nls.petsc import NewtonSolver
from ufl import TestFunctions, split, dot, grad, dx, inner, ln, Mesh
from basix.ufl import element, mixed_element
import matplotlib.pyplot as plt
# Define mesh
def create_refined_mesh(refinement_style:str, number_cells:int) -> Mesh:
'''
Creates a one-dimensional mesh with a refined region at the left boundary
Parameters
----------
refinement_style : str
How the mesh should be refined. Options are 'log', 'hard_log', 'hard_hard_log'
number_cells : int
Number of cells in the mesh
Returns
-------
Mesh
One-dimensional mesh, ready for use in FEniCSx
'''
if refinement_style == 'log':
coordinates_np = (np.logspace(0, 1, number_cells+1) - 1) / 9
elif refinement_style == 'hard_log':
coordinates_np1 = (np.logspace(0,1,int(number_cells*0.9)+1,endpoint=False)-1)/9 * 0.1
coordinates_np2 = 0.1 + (np.logspace(0,1,int(number_cells*0.1)+1)-1)/9 * 0.9
coordinates_np = np.concatenate((coordinates_np1, coordinates_np2), axis=0)
elif refinement_style == 'hard_hard_log':
coordinates_np1 = (np.logspace(0,1,int(number_cells*0.9)+1,endpoint=False)-1)/9 * 0.004
coordinates_np2 = 0.004 + (np.logspace(0,1,int(number_cells*0.1)+1)-1)/9 * 0.996
coordinates_np = np.concatenate((coordinates_np1, coordinates_np2), axis=0)
num_vertices = len(coordinates_np)
num_cells = num_vertices - 1
cells_np = np.column_stack((np.arange(num_cells), np.arange(1, num_cells+1)))
gdim = 1
shape = 'interval' # 'interval', 'triangle', 'quadrilateral', 'tetrahedron', 'hexahedron'
degree = 1
domain = Mesh(element("Lagrange", shape, 1, shape=(1,)))
coordinates_np_ = []
[coordinates_np_.append([coord]) for coord in coordinates_np]
msh = mesh.create_mesh(MPI.COMM_WORLD, cells_np, coordinates_np_, domain)
return msh
def solve_System_Neq(phi_left:float, phi_right:float, p_right:float, z_alpha:list, y_R:list, K:float|str, Lambda2:float, a2:float, number_cells:int, solvation:float = 0, PoissonBoltzmann:bool=False, relax_param:float=None, x0:float=0, x1:float=1, refinement_style:str='uniform', return_type:str='Vector', rtol:float=1e-8, max_iter:float=500):
'''
Solve the dimensionless system of equations presented in: Numerical Treatment of a Thermodynamically Consistent Electrolyte Model, B.Sc. Thesis Habscheid 2024
System of equations:
λ²Δ φ =−L²n^F
a²∇p=−n^F∇ φ
div(J_α)=0 α∈ {1,...,N−1}
with φ the electric potential, p the pressure, n^F the total free charge density, J_α the diffusion fluxes of species α, λ² a dimensionless parameter, L²=1, a² a dimensionless parameter, N the number of species, and α the species index.
! If the Newton solver diverges, you may try to reduce the relaxation parameter.
Parameters
----------
phi_left : float
Value of φ at the left boundary
phi_right : float
Value of φ at the right boundary
p_right : float
Value of p at the right boundary
z_alpha : list
Charge numbers for species α = 1,...,N-1
y_R : list
Atomic fractions at right boundary for species α = 1,...,N-1
K : float | str
Dimensioness bulk modulus of the electrolyte. If 'incompressible', the system is solved for an incompressible electrolyte
Lambda2 : float
Dimensionless parameter
a2 : float
Dimensionless parameter
number_cells : int
Number of cells in the mesh
solvation : float, optional
solvation number, not implemented yet, by default 0
PoissonBoltzmann : bool, optional
Solve classical Nernst-Planck model with the use of the Poisson-Boltzmann formulation if True, else solve the presented model by Dreyer, Guhlke, Müller, Not implemented yet, by default False
relax_param : float, optional
Relaxation parameter for the Newton solver
xₙ₊₁ = γ xₙ f(xₙ)/f'(xₙ) with γ the relaxation parameter
, by default None -> Determined automatically
x0 : float, optional
Left boundary of the domain, by default 0
x1 : float, optional
Right boundary of the domain, by default 1
refinement_style : str, optional
Specify for refinement towards zero
Options are 'uniform', 'log', 'hard_log', 'hard_hard_log' by default 'uniform'
return_type : str, optional
'Vector' or 'Scalar' (not implemented yet, should be implemented in a later version), 'Scalar' returns dolfinx.fem type and 'Vector' numpy arrays of the solution, by default 'Vector'
rtol : float, optional
Relative tolerance for Newton solver, by default 1e-8
max_iter : float, optional
Maximum number of Newton iterations, by default 500
Returns
-------
y_A, y_C, phi, p, msh
Returns atomic fractions for species A and C, electric potential, pressure, and the mesh
If return_type is 'Vector', the solution is returned as numpy arrays
Only return_type 'Vector' is implemented yet
'''
if solvation != 0:
raise NotImplementedError('Solvation number not implemented yet')
if PoissonBoltzmann:
raise NotImplementedError('Poisson-Boltzmann not implemented yet')
# Define boundaries of the domain
x0 = 0
x1 = 1
# Define boundaries
def Left(x):
return np.isclose(x[0], x0)
def Right(x):
return np.isclose(x[0], x1)
# Create mesh
if refinement_style == 'uniform':
msh = mesh.create_unit_interval(MPI.COMM_WORLD, number_cells, dtype=np.float64)
else:
msh = create_refined_mesh(refinement_style, number_cells)
# Define Finite Elements
CG1_elem = element('Lagrange', msh.basix_cell(), 1)
# Define Mixed Function Space
Elem_list = [CG1_elem, CG1_elem]
[Elem_list.append(CG1_elem) for _ in range(len(z_alpha))]
W_elem = mixed_element(Elem_list)
W = fem.functionspace(msh, W_elem)
# Define Trial- and Testfunctions
u = fem.Function(W)
my_TrialFunctions = split(u)
my_TestFunctions = TestFunctions(W)
phi, p = my_TrialFunctions[0], my_TrialFunctions[1]
v_1, v_2 = my_TestFunctions[0], my_TestFunctions[1]
y_alpha = my_TrialFunctions[2:]
v_alpha = my_TestFunctions[2:]
# Collapse function space for bcs
W_ = []
[W_.append(W.sub(i).collapse()[0]) for i in range(len(z_alpha)+2)]
# Define boundary conditions values
def phi_left_(x):
return np.full_like(x[0], phi_left)
def phi_right_(x):
return np.full_like(x[0], phi_right)
def p_right_(x):
return np.full_like(x[0], p_right)
# Interpolate bcs functions
phi_left_bcs = fem.Function(W_[0])
phi_left_bcs.interpolate(phi_left_)
phi_right_bcs = fem.Function(W_[0])
phi_right_bcs.interpolate(phi_right_)
p_right_bcs = fem.Function(W_[1])
p_right_bcs.interpolate(p_right_)
# Identify dofs for boundary conditions
facet_left_dofs = fem.locate_dofs_geometrical((W.sub(0), W.sub(0).collapse()[0]), Left)
facet_right_dofs = fem.locate_dofs_geometrical((W.sub(0), W.sub(0).collapse()[0]), Right)
bc_left_phi = fem.dirichletbc(phi_left_bcs, facet_left_dofs, W.sub(0))
bc_right_phi = fem.dirichletbc(phi_right_bcs, facet_right_dofs, W.sub(0))
facet_right_dofs = fem.locate_dofs_geometrical((W.sub(1), W.sub(1).collapse()[0]), Right)
bc_right_p = fem.dirichletbc(p_right_bcs, facet_right_dofs, W.sub(1))
# Combine boundary conditions for electric potential and pressure into list
bcs = [bc_left_phi, bc_right_phi, bc_right_p]
# Repeat the same for the boundary conditoins for the atomic fractions
for i in range(len(z_alpha)):
y_right_bcs = fem.Function(W_[i+2])
def y_right_(x):
return np.full_like(x[0], y_R[i])
y_right_bcs.interpolate(y_right_)
facet_right_dofs = fem.locate_dofs_geometrical((W.sub(i+2), W.sub(i+2).collapse()[0]), Right)
bc_right_y = fem.dirichletbc(y_right_bcs, facet_right_dofs, W.sub(i+2))
bcs.append(bc_right_y)
# Define variational problem
if K == 'incompressible':
# total free charge density
def nF(y_alpha):
nF = 0
for i in range(len(z_alpha)):
nF += z_alpha[i] * y_alpha[i]
return nF
# Diffusion fluxes for species A and C
def J_alpha(y_alpha, alpha, phi, p):
mu_alpha = ln(y_alpha[alpha])
mu_S = ln(1 - sum(y_alpha))
return grad(mu_alpha - mu_S + z_alpha[alpha] * phi)
# Variational Form
A = (
inner(grad(phi), grad(v_1)) * dx
- 1 / Lambda2 * nF(y_alpha) * v_1 * dx
) + (
inner(grad(p), grad(v_2)) * dx
+ 1 / a2 * nF(y_alpha) * dot(grad(phi), grad(v_2)) * dx
)
for alpha in range(len(z_alpha)):
A += (
inner(J_alpha(y_alpha, alpha, phi, p), grad(v_alpha[alpha])) * dx
)
if PoissonBoltzmann:
raise ValueError('Poisson-Boltzmann not implemented for incompressible systems')
else:
raise ValueError('Only incompressible systems are implemented')
F = A
# Initialize initial guess for u
with u.vector.localForm() as u_loc:
u_loc.set(0)
# Initialize initial guess for u
for alpha in range(len(z_alpha)):
y_alpha_init = fem.Function(W_[alpha+2])
y_alpha_init.interpolate(lambda x: np.full_like(x[0], y_R[alpha]))
u.sub(alpha+2).interpolate(y_alpha_init)
# Define Nonlinear Problem
problem = NonlinearProblem(F, u, bcs=bcs)
# Define Newton Solver
solver = NewtonSolver(MPI.COMM_WORLD, problem)
solver.convergence_criterion = "incremental"
solver.rtol = rtol
if relax_param != None:
solver.relaxation_parameter = relax_param
else:
if phi_right == phi_left:
solver.relaxation_parameter = 1.0
else:
solver.relaxation_parameter = 1/(np.abs(phi_right-phi_left)**(5/4))
solver.max_it = max_iter
solver.report = True
log.set_log_level(log.LogLevel.INFO)
n, converged = solver.solve(u)
assert (converged)
print(f"Number of (interations: {n:d}")
# Return the solution
if return_type=='Vector':
x = np.array(msh.geometry.x[:,0])
phi = np.array(u.sub(0).collapse().x.array)
p = np.array(u.sub(1).collapse().x.array)
y = []
[y.append(u.sub(i+2).collapse().x.array) for i in range(len(z_alpha))]
y = np.array(y)
return y, phi, p, x
if __name__ == '__main__':
# Define the parameters
phi_left = 8.0
phi_right = 0.0
p_right = 0.0
y_R = [3/6, 1/6, 1/6]
z_alpha = [-1.0, 1.0, 2.0]
K = 'incompressible'
Lambda2 = 8.553e-6
a2 = 7.5412e-4
number_cells = 1024
relax_param = .05
rtol = 1e-4
max_iter = 2_500
refinement_style = 'hard_log'
return_type = 'Vector'
# Solve the system
y, phi, p, x = solve_System_Neq(phi_left, phi_right, p_right, z_alpha, y_R, K, Lambda2, a2, number_cells, relax_param=relax_param, refinement_style=refinement_style, return_type=return_type, max_iter=max_iter, rtol=rtol)
# Plot the solution
plt.figure()
plt.plot(x, phi)
plt.xlim(0,0.05)
plt.grid()
plt.xlabel('x [-]')
plt.ylabel('$\\varphi$ [-]')
plt.show()
plt.figure()
plt.xlim(0,0.05)
plt.plot(x, p)
plt.grid()
plt.xlabel('x [-]')
plt.ylabel('$p$ [-]')
plt.show()
plt.figure()
for i in range(len(z_alpha)):
plt.plot(x, y[i], label=f'$y_{i}$')
plt.xlim(0,0.05)
plt.legend()
plt.grid()
plt.xlabel('x [-]')
plt.ylabel('$y_i$ [-]')
plt.show()