Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
Reproducibility Repository for Data-Driven Modeling of Conservation Laws
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jan Habscheid
Reproducibility Repository for Data-Driven Modeling of Conservation Laws
Commits
73c2a608
Commit
73c2a608
authored
1 month ago
by
Jan Habscheid
Browse files
Options
Downloads
Patches
Plain Diff
move influence of k to introduction
parent
96722872
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
Project3/LyX/Introduction.lyx
+373
-0
373 additions, 0 deletions
Project3/LyX/Introduction.lyx
Project3/LyX/Results.lyx
+50
-82
50 additions, 82 deletions
Project3/LyX/Results.lyx
Project3/LyX/TheoryAndMethods.lyx
+0
-70
0 additions, 70 deletions
Project3/LyX/TheoryAndMethods.lyx
with
423 additions
and
152 deletions
Project3/LyX/Introduction.lyx
+
373
−
0
View file @
73c2a608
...
...
@@ -232,5 +232,378 @@ The question that arises is,
based on the known mathematical model and observation data.
\end_layout
\begin_layout Subsection
The Mathematical Model
\end_layout
\begin_layout Standard
Consider the general mathematical description of a traffic flow (see project 2 for more reference)
\begin_inset Formula
\begin{align}
u_{t}+f(u)_{x} & =0,\quad x\in[a,b]\\
u(x,t=0) & =u_{0}(x)\\
u_{x}\big|_{x=x_{\text{in}}} & =u_{\text{in}}\\
u_{x}\big|_{x=x_{\text{out}}} & =u_{\text{out}}
\end{align}
\end_inset
with
\begin_inset Formula $a=0$
\end_inset
,
\begin_inset Formula $b=4$
\end_inset
,
the flux function
\begin_inset Formula $f(u)=u(1-u)$
\end_inset
.
In reality,
this model is influenced by some uncertainty,
quantified by the
\begin_inset Quotes eld
\end_inset
resistance
\begin_inset Quotes erd
\end_inset
function
\begin_inset Formula $k(x)$
\end_inset
\begin_inset Formula
\begin{align}
u_{t}+\left(k(x)f(u)\right)_{x} & =0,\quad x\in[a,b]\label{eq:GenConsLaw_k}\\
u(x,t=0) & =u_{0}(x)\\
u_{x}\big|_{x=a}=u_{x}\big|_{x=b} & =0
\end{align}
\end_inset
The boundaries are described by Neumann boundary conditions.
Purpose of this work is to identify the resistance function
\begin_inset Formula $k(x)$
\end_inset
for a known solution
\begin_inset Formula $u(x_{i},t)$
\end_inset
at specified positions
\begin_inset Formula $x_{i}$
\end_inset
.
Therefore,
an inverse problem will be formulated,
which utilizes Monte-Carlo Markov-Chains for the uncertainty quantification.
\end_layout
\begin_layout Subsection
Major Influence of the Resistance Function
\end_layout
\begin_layout Standard
Consider three different,
randomly generated,
resistance functions following a normal distribution with mean
\begin_inset Formula $1$
\end_inset
and standard deviations
\begin_inset Formula $0.25$
\end_inset
.
The form of the resistance function contributes to the solution of equation
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:GenConsLaw_k"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset Graphics
filename Figures/InfluenceResistance/sample_0.png
lyxscale 30
width 48text%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:InfluenceResistanceFunction-1"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset Graphics
filename Figures/InfluenceResistance/sample_1.png
lyxscale 30
width 48text%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:InfluenceResistanceFunction-2"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset Graphics
filename Figures/InfluenceResistance/sample_2.png
lyxscale 30
width 60text%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:InfluenceResistanceFunction-3"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\begin_inset Caption Standard
\begin_layout Plain Layout
The resistance function
\begin_inset Formula $k(x)$
\end_inset
has a major impact on the solution of the general conservation law
\begin_inset Formula $u_{t}+\left(k(x)f(u)\right)_{x}=0$
\end_inset
.
Randomly generated,
normal distributed resistance functions are shown on the left,
while the predicted solution (solid lines) and the true solution (dotted lines) at observation points
\begin_inset Formula $x_{i}\in[0.75,1.5,2.25,3.25]$
\end_inset
for initial data
\begin_inset Formula $u_{0}^{I}(x)$
\end_inset
are shown on the right.
\begin_inset CommandInset label
LatexCommand label
name "fig:InfluenceResistanceFunction"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
Figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:InfluenceResistanceFunction"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
shows the resistance functions (left) and corresponding solution
\begin_inset Formula $u(x_{i},t)$
\end_inset
at
\begin_inset Formula $x_{i}\in[0.75,1.5,2.25,3.25]$
\end_inset
(right) for initial distribution
\begin_inset Formula $u_{0}^{I}(x)$
\end_inset
.
\begin_inset Formula
\begin{equation}
u_{0}^{I}(x)=\begin{cases}
0.2 & ,x\in[0,0.5]\\
0.4 & ,x\in(0.5,1.5]\\
0.6 & ,x\in(1.5,2.5]\\
0.7 & ,x\in(2.5,3.5]\\
0.4 & ,x\in(3.5,4]
\end{cases}
\end{equation}
\end_inset
The resistance function is visualized over the spatial domain while the solution
\begin_inset Formula $u(x_{i},t)$
\end_inset
is visualized for the different positions over time.
The solid line is the predicted solution,
while the dotted points show the true observations.
\end_layout
\begin_layout Standard
Although all resistance functions follow the same random distribution,
the solution for the conservation law differs strongly.
Figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:InfluenceResistanceFunction-1"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
shows a shock for all observations,
while Figures
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:InfluenceResistanceFunction-2"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:InfluenceResistanceFunction-3"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
only show shocks for certain observation points.
Additionally,
the value of
\begin_inset Formula $u$
\end_inset
at some observation points increase over time for certain resistance functions,
while it decreases for others.
\end_layout
\begin_layout Standard
Therefore,
the solution of the PDE is strongly sensitive to the chosen resistance function.
This further emphasizes the importance to find an algorithm to identify the resistance function.
\end_layout
\end_body
\end_document
This diff is collapsed.
Click to expand it.
Project3/LyX/Results.lyx
+
50
−
82
View file @
73c2a608
...
...
@@ -146,25 +146,24 @@ Two true solutions are available,
\begin_layout Standard
\begin_inset Formula
\begin{
alig
n}
u_{0}^{I}(x)
&
=\begin{cases}
\begin{
equatio
n}
u_{0}^{I}(x)=\begin{cases}
0.2 & ,x\in[0,0.5]\\
0.4 & ,x\in(0.5,1.5]\\
0.6 & ,x\in(1.5,2.5]\\
0.7 & ,x\in(2.5,3.5]\\
0.4 & ,x\in(3.5,4]
\end{cases}\\
u_{0}^{II}(x) & =\begin{cases}
\end{cases},\qquad u_{0}^{II}(x)=\begin{cases}
0.1 & ,x\in[0,0.5]\\
0.3 & ,x\in(0.5,1.5]\\
0.7 & ,x\in(1.5,2.5]\\
0.2 & ,x\in(2.5,4]
\end{cases}
\end{
alig
n}
\end{
equatio
n}
\end_inset
If not stated otherwise,
If not stated otherwise,
the artificial diffusion parameter
\begin_inset Formula $M$
\end_inset
...
...
@@ -172,6 +171,10 @@ If not stated otherwise,
is set to one.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Subsection
Influence of Resistance Function
\begin_inset Note Note
...
...
@@ -186,7 +189,7 @@ Maybe move this to the introduction as a motivation?
\end_layout
\begin_layout
Standard
\begin_layout
Plain Layout
First,
quantify the influence of the resistance function on the solution of the general conservation law for initial data
\begin_inset Formula $u_{0}^{I}(x)$
...
...
@@ -205,7 +208,7 @@ First,
\end_layout
\begin_layout
Standard
\begin_layout
Plain Layout
\begin_inset Float figure
placement document
alignment document
...
...
@@ -225,7 +228,7 @@ status open
\begin_inset Graphics
filename Figures/InfluenceResistance/sample_0.png
lyxscale 30
width
60
text%
width
48
text%
\end_inset
...
...
@@ -253,10 +256,6 @@ name "fig:InfluenceResistanceFunction-1"
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Float figure
placement document
alignment document
...
...
@@ -268,7 +267,7 @@ status open
\begin_inset Graphics
filename Figures/InfluenceResistance/sample_1.png
lyxscale 30
width
60
text%
width
48
text%
\end_inset
...
...
@@ -291,10 +290,6 @@ name "fig:InfluenceResistanceFunction-2"
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
...
...
@@ -338,10 +333,6 @@ name "fig:InfluenceResistanceFunction-3"
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
...
...
@@ -382,10 +373,6 @@ name "fig:InfluenceResistanceFunction"
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
...
...
@@ -421,7 +408,7 @@ nolink "false"
while the dotted points show the true observations.
\end_layout
\begin_layout
Standard
\begin_layout
Plain Layout
Although all resistance functions follow the same random distribution,
the solution for the conservation law differs strongly.
Figure
...
...
@@ -468,12 +455,17 @@ nolink "false"
while it decreases for others.
\end_layout
\begin_layout
Standard
\begin_layout
Plain Layout
Therefore,
the solution of the PDE is strongly sensitive to the chosen resistance function,
which emphasizes the huge challenge of the MCMC algorithm.
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Finding the Best Hyperparameter
\begin_inset CommandInset label
...
...
@@ -558,6 +550,10 @@ The loss function
\end_inset
\begin_inset space \quad{}
\end_inset
\begin_inset Float figure
placement document
alignment document
...
...
@@ -734,7 +730,7 @@ status open
\begin_inset Graphics
filename Figures/SingleSample/loss_theta.pdf
lyxscale 30
width 5
0
text%
width
4
5text%
\end_inset
...
...
@@ -765,6 +761,10 @@ name "fig:MCMC_SingleSample_Loss"
\end_inset
\begin_inset space \quad{}
\end_inset
\begin_inset Float figure
placement document
alignment document
...
...
@@ -780,7 +780,7 @@ status open
\begin_inset Graphics
filename Figures/SingleSample/prediction_kx.pdf
lyxscale 30
width 5
0
text%
width
4
5text%
\end_inset
...
...
@@ -833,7 +833,7 @@ status open
\begin_inset Graphics
filename Figures/SingleSample/predicted_vs_true_single_sample.pdf
lyxscale 30
width
60
text%
width
45
text%
\end_inset
...
...
@@ -1104,7 +1104,7 @@ status open
\begin_inset Graphics
filename Figures/ArtificialDiffusion/final_error_ArtDiffComparison.pdf
lyxscale 30
width 5
0
text%
width
4
5text%
\end_inset
...
...
@@ -1134,6 +1134,10 @@ name "fig:ArtificialDiffusion_Loss"
\end_inset
\begin_inset space \quad{}
\end_inset
\begin_inset Float figure
placement document
alignment document
...
...
@@ -1145,7 +1149,7 @@ status open
\begin_inset Graphics
filename Figures/ArtificialDiffusion/prediction_kx_ArtDiffComparison.pdf
lyxscale 30
width 5
0
text%
width
4
5text%
\end_inset
...
...
@@ -1344,7 +1348,7 @@ status open
\begin_inset Graphics
filename Figures/DoubleSample/loss_theta.pdf
lyxscale 30
width 5
0
text%
width
4
5text%
\end_inset
...
...
@@ -1376,6 +1380,10 @@ name "fig:MCMC_DoubleSample_Loss"
\end_inset
\begin_inset space \quad{}
\end_inset
\begin_inset Float figure
placement document
alignment document
...
...
@@ -1383,11 +1391,15 @@ wide false
sideways false
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\begin_inset Graphics
filename Figures/DoubleSample/prediction_kx.pdf
lyxscale 30
width 5
0
text%
width
4
5text%
\end_inset
...
...
@@ -1443,25 +1455,6 @@ name "fig:MCMC_DoubleSample_k"
\end_inset
\begin_inset Box Frameless
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
use_makebox 0
width "40text%"
special "none"
height "1in"
height_special "totalheight"
thickness "0.4pt"
separation "3pt"
shadowsize "4pt"
framecolor "foreground"
backgroundcolor "none"
status open
\begin_layout Plain Layout
\begin_inset Float figure
placement document
alignment document
...
...
@@ -1473,7 +1466,7 @@ status open
\begin_inset Graphics
filename Figures/DoubleSample/predicted_vs_true_both_samples_sample_1.pdf
lyxscale 30
width
100
text%
width
45
text%
\end_inset
...
...
@@ -1539,30 +1532,10 @@ name "fig:MCMC_DoubleSample_u1"
\end_inset
\end_layout
\begin_inset space \quad{}
\end_inset
\begin_inset Box Frameless
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
use_makebox 0
width "40text%"
special "none"
height "1in"
height_special "totalheight"
thickness "0.4pt"
separation "3pt"
shadowsize "4pt"
framecolor "foreground"
backgroundcolor "none"
status open
\begin_layout Plain Layout
\begin_inset Float figure
placement document
alignment document
...
...
@@ -1574,7 +1547,7 @@ status open
\begin_inset Graphics
filename Figures/DoubleSample/predicted_vs_true_both_samples_sample_2.pdf
lyxscale 30
width
100
text%
width
45
text%
\end_inset
...
...
@@ -1611,11 +1584,6 @@ name "fig:MCMC_DoubleSample_u2"
\end_inset
\end_layout
\end_inset
\begin_inset Caption Standard
\begin_layout Plain Layout
...
...
This diff is collapsed.
Click to expand it.
Project3/LyX/TheoryAndMethods.lyx
+
0
−
70
View file @
73c2a608
...
...
@@ -113,76 +113,6 @@ name "sec:Theory-and-Methods"
\end_layout
\begin_layout Standard
Consider the general mathematical description of a traffic flow (see project 2 for more reference)
\begin_inset Formula
\begin{align}
u_{t}+f(u)_{x} & =0,\quad x\in[a,b]\\
u(x,t=0) & =u_{0}(x)\\
u_{x}\big|_{x=x_{\text{in}}} & =u_{\text{in}}\\
u_{x}\big|_{x=x_{\text{out}}} & =u_{\text{out}}
\end{align}
\end_inset
with
\begin_inset Formula $a=0$
\end_inset
,
\begin_inset Formula $b=4$
\end_inset
,
the flux function
\begin_inset Formula $f(u)=u(1-u)$
\end_inset
.
In reality,
this model is influenced by some uncertainty,
quantified by the
\begin_inset Quotes eld
\end_inset
resistance
\begin_inset Quotes erd
\end_inset
function
\begin_inset Formula $k(x)$
\end_inset
\begin_inset Formula
\begin{align}
u_{t}+\left(k(x)f(u)\right)_{x} & =0,\quad x\in[a,b]\\
u(x,t=0) & =u_{0}(x)\\
u_{x}\big|_{x=a}=u_{x}\big|_{x=b} & =0
\end{align}
\end_inset
The boundaries are described by Neumann boundary conditions.
Purpose of this work is to identify the resistance function
\begin_inset Formula $k(x)$
\end_inset
for a known solution
\begin_inset Formula $u(x_{i},t)$
\end_inset
at specified positions
\begin_inset Formula $x_{i}$
\end_inset
.
Therefore,
an inverse problem will be formulated,
which utilizes Monte-Carlo Markov-Chains for the uncertainty quantification.
\end_layout
\begin_layout Subsection
Numerical Discretization of the General Conservation Law
\end_layout
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment