Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Tools
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
3pia
CMS Analyses
Tools
Commits
efb7e16f
Commit
efb7e16f
authored
4 years ago
by
Dennis Noll
Browse files
Options
Downloads
Patches
Plain Diff
[keras] Networks: now all LinearNetworks come from one class
parent
30b622ea
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
keras.py
+32
-53
32 additions, 53 deletions
keras.py
with
32 additions
and
53 deletions
keras.py
+
32
−
53
View file @
efb7e16f
...
...
@@ -1117,28 +1117,24 @@ class DenseNetBlock(tf.keras.layers.Layer):
return
{
"
block_size
"
:
self
.
block_size
,
"
sub_kwargs
"
:
self
.
sub_kwargs
}
class
FullyConnected
(
tf
.
keras
.
layers
.
Layer
):
"""
The FullyConnected object is an implementation of a fully connected DNN.
Parameters
----------
layers : int
The number of layers.
kwargs :
Arguments for DenseLayer.
class
LinearNetwork
(
tf
.
keras
.
layers
.
Layer
):
@property
def
name
(
self
):
raise
NotImplementedError
"""
@property
def
substructure
(
self
):
raise
NotImplementedError
def
__init__
(
self
,
layers
=
0
,
sub_kwargs
=
None
,
**
kwargs
):
super
().
__init__
(
name
=
"
FullyConnected
"
)
super
().
__init__
(
name
=
self
.
name
)
self
.
layers
=
layers
self
.
sub_kwargs
=
kwargs
if
sub_kwargs
is
None
else
sub_kwargs
def
build
(
self
,
input_shape
):
network_layers
=
[]
for
layer
in
range
(
self
.
layers
):
network_layers
.
append
(
DenseLayer
(
**
self
.
sub_kwargs
))
network_layers
.
append
(
self
.
substructure
(
**
self
.
sub_kwargs
))
self
.
network_layers
=
network_layers
def
call
(
self
,
input_tensor
,
training
=
False
):
...
...
@@ -1151,41 +1147,41 @@ class FullyConnected(tf.keras.layers.Layer):
return
{
"
layers
"
:
self
.
layers
,
"
sub_kwargs
"
:
self
.
sub_kwargs
}
class
ResNet
(
tf
.
keras
.
layers
.
Layer
):
class
FullyConnected
(
LinearNetwork
):
"""
The
ResNet
object is an implementation of a
Residual Neural Network
.
The
FullyConnected
object is an implementation of a
fully connected DNN
.
Parameters
----------
layers : int
The number of
residual block
s.
The number of
layer
s.
kwargs :
Arguments for
ResNetBlock
.
Arguments for
DenseLayer
.
"""
def
__init__
(
self
,
layers
=
1
,
sub_kwargs
=
None
,
**
kwargs
):
super
().
__init__
(
name
=
"
ResNet
"
)
self
.
layers
=
layers
self
.
sub_kwargs
=
kwargs
if
sub_kwargs
is
None
else
sub_kwargs
name
=
"
FullyConnected
"
substructure
=
DenseLayer
def
build
(
self
,
input_shape
):
_layers
=
[]
for
i
in
range
(
self
.
layers
):
_layers
.
append
(
ResNetBlock
(
**
self
.
sub_kwargs
))
self
.
_layers
=
_layers
def
call
(
self
,
input_tensor
,
training
=
False
):
x
=
input_tensor
for
layer
in
self
.
_layers
:
x
=
layer
(
x
,
training
=
training
)
return
x
class
ResNet
(
LinearNetwork
):
"""
The ResNet object is an implementation of a Residual Neural Network.
def
get_config
(
self
):
return
{
"
layers
"
:
self
.
layers
,
"
sub_kwargs
"
:
self
.
sub_kwargs
}
Parameters
----------
layers : int
The number of residual blocks.
kwargs :
Arguments for ResNetBlock.
"""
name
=
"
ResNet
"
substructure
=
ResNetBlock
class
DenseNet
(
tf
.
keras
.
layers
.
Layer
):
class
DenseNet
(
LinearNetwork
):
"""
The DenseNet object is an implementation of a DenseNet Neural Network.
...
...
@@ -1198,25 +1194,8 @@ class DenseNet(tf.keras.layers.Layer):
"""
def
__init__
(
self
,
layers
=
1
,
sub_kwargs
=
None
,
**
kwargs
):
super
().
__init__
(
name
=
"
DenseNet
"
)
self
.
layers
=
layers
self
.
sub_kwargs
=
kwargs
if
sub_kwargs
is
None
else
sub_kwargs
def
build
(
self
,
input_shape
):
_layers
=
[]
for
i
in
range
(
self
.
layers
):
_layers
.
append
(
DenseNetBlock
(
**
self
.
sub_kwargs
))
self
.
_layers
=
_layers
def
call
(
self
,
input_tensor
,
training
=
False
):
x
=
input_tensor
for
layer
in
self
.
_layers
:
x
=
layer
(
x
,
training
=
training
)
return
x
def
get_config
(
self
):
return
{
"
layers
"
:
self
.
layers
,
"
sub_kwargs
"
:
self
.
sub_kwargs
}
name
=
"
DenseNet
"
substructure
=
DenseNetBlock
class
Xception1D
(
tf
.
keras
.
layers
.
Layer
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment