diff --git a/_book/Introduction-to-Quantum-Computing.pdf b/_book/Introduction-to-Quantum-Computing.pdf
index 2d42978b42c8bddd5959bf358073b04664d35804..0612f3ad435774e5a068cdd52c0e4e67478baf57 100644
Binary files a/_book/Introduction-to-Quantum-Computing.pdf and b/_book/Introduction-to-Quantum-Computing.pdf differ
diff --git a/_book/content/bernsteinVazirani.html b/_book/content/bernsteinVazirani.html
index d4ce2b8b4f9c1548d777baaeb90a7598e289fc1a..960787263c6a60ece44f82d9be88b2c17ce00ed6 100644
--- a/_book/content/bernsteinVazirani.html
+++ b/_book/content/bernsteinVazirani.html
@@ -225,6 +225,12 @@ window.Quarto = {
   <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
diff --git a/_book/content/compositeSystems.html b/_book/content/compositeSystems.html
index fbb0dddd26b70367e04ab1292aa30fccbd971d7e..80e10f0e514b55e5b774243b6797bda573181b6c 100644
--- a/_book/content/compositeSystems.html
+++ b/_book/content/compositeSystems.html
@@ -225,6 +225,12 @@ window.Quarto = {
   <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
diff --git a/_book/content/groversAlgorithm.html b/_book/content/groversAlgorithm.html
new file mode 100644
index 0000000000000000000000000000000000000000..2ae93a0355ee625216c9baaaf659383e716bf765
--- /dev/null
+++ b/_book/content/groversAlgorithm.html
@@ -0,0 +1,820 @@
+<!DOCTYPE html>
+<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
+
+<meta charset="utf-8">
+<meta name="generator" content="quarto-1.7.26">
+
+<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
+
+
+<title>11&nbsp; Grover’s algorithm – Introduction to Quantum Computing</title>
+<style>
+code{white-space: pre-wrap;}
+span.smallcaps{font-variant: small-caps;}
+div.columns{display: flex; gap: min(4vw, 1.5em);}
+div.column{flex: auto; overflow-x: auto;}
+div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ul.task-list{list-style: none;}
+ul.task-list li input[type="checkbox"] {
+  width: 0.8em;
+  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
+  vertical-align: middle;
+}
+</style>
+
+
+<script src="../site_libs/quarto-nav/quarto-nav.js"></script>
+<script src="../site_libs/quarto-nav/headroom.min.js"></script>
+<script src="../site_libs/clipboard/clipboard.min.js"></script>
+<script src="../site_libs/quarto-search/autocomplete.umd.js"></script>
+<script src="../site_libs/quarto-search/fuse.min.js"></script>
+<script src="../site_libs/quarto-search/quarto-search.js"></script>
+<meta name="quarto:offset" content="../">
+<link href="../content/shorsAlgorithm.html" rel="prev">
+<script src="../site_libs/quarto-html/quarto.js" type="module"></script>
+<script src="../site_libs/quarto-html/tabsets/tabsets.js" type="module"></script>
+<script src="../site_libs/quarto-html/popper.min.js"></script>
+<script src="../site_libs/quarto-html/tippy.umd.min.js"></script>
+<script src="../site_libs/quarto-html/anchor.min.js"></script>
+<link href="../site_libs/quarto-html/tippy.css" rel="stylesheet">
+<link href="../site_libs/quarto-html/quarto-syntax-highlighting-53f539a478d6ecd1be31ce9fd30fd81c.css" rel="stylesheet" id="quarto-text-highlighting-styles">
+<script src="../site_libs/bootstrap/bootstrap.min.js"></script>
+<link href="../site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
+<link href="../site_libs/bootstrap/bootstrap-364982630eef5352dd1537128a8ed5cb.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
+<script id="quarto-search-options" type="application/json">{
+  "location": "sidebar",
+  "copy-button": false,
+  "collapse-after": 3,
+  "panel-placement": "start",
+  "type": "textbox",
+  "limit": 50,
+  "keyboard-shortcut": [
+    "f",
+    "/",
+    "s"
+  ],
+  "show-item-context": false,
+  "language": {
+    "search-no-results-text": "No results",
+    "search-matching-documents-text": "matching documents",
+    "search-copy-link-title": "Copy link to search",
+    "search-hide-matches-text": "Hide additional matches",
+    "search-more-match-text": "more match in this document",
+    "search-more-matches-text": "more matches in this document",
+    "search-clear-button-title": "Clear",
+    "search-text-placeholder": "",
+    "search-detached-cancel-button-title": "Cancel",
+    "search-submit-button-title": "Submit",
+    "search-label": "Search"
+  }
+}</script>
+
+  <script src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?features=es6"></script>
+  <script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
+
+<script type="text/javascript">
+const typesetMath = (el) => {
+  if (window.MathJax) {
+    // MathJax Typeset
+    window.MathJax.typeset([el]);
+  } else if (window.katex) {
+    // KaTeX Render
+    var mathElements = el.getElementsByClassName("math");
+    var macros = [];
+    for (var i = 0; i < mathElements.length; i++) {
+      var texText = mathElements[i].firstChild;
+      if (mathElements[i].tagName == "SPAN") {
+        window.katex.render(texText.data, mathElements[i], {
+          displayMode: mathElements[i].classList.contains('display'),
+          throwOnError: false,
+          macros: macros,
+          fleqn: false
+        });
+      }
+    }
+  }
+}
+window.Quarto = {
+  typesetMath
+};
+</script>
+
+</head>
+
+<body class="nav-sidebar floating quarto-light">
+
+<div id="quarto-search-results"></div>
+  <header id="quarto-header" class="headroom fixed-top">
+  <nav class="quarto-secondary-nav">
+    <div class="container-fluid d-flex">
+      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
+        <i class="bi bi-layout-text-sidebar-reverse"></i>
+      </button>
+        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="../content/bernsteinVazirani.html">Quantum algorithms</a></li><li class="breadcrumb-item"><a href="../content/groversAlgorithm.html"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></a></li></ol></nav>
+        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
+        </a>
+      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
+        <i class="bi bi-search"></i>
+      </button>
+    </div>
+  </nav>
+</header>
+<!-- content -->
+<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
+<!-- sidebar -->
+  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
+    <div class="pt-lg-2 mt-2 text-left sidebar-header">
+    <div class="sidebar-title mb-0 py-0">
+      <a href="../">Introduction to Quantum Computing</a> 
+        <div class="sidebar-tools-main">
+    <a href="https://git.rwth-aachen.de/unruh/script-intro-qc/" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-git"></i></a>
+    <a href="../Introduction-to-Quantum-Computing.pdf" title="Download PDF" class="quarto-navigation-tool px-1" aria-label="Download PDF"><i class="bi bi-file-pdf"></i></a>
+</div>
+    </div>
+      </div>
+        <div class="mt-2 flex-shrink-0 align-items-center">
+        <div class="sidebar-search">
+        <div id="quarto-search" class="" title="Search"></div>
+        </div>
+        </div>
+    <div class="sidebar-menu-container"> 
+    <ul class="list-unstyled mt-1">
+        <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../index.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text">Welcome</span></a>
+  </div>
+</li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
+ <span class="menu-text">Quantum basics</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/introduction.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">Introduction</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/probabilisticSystems.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">Probabilistic systems</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/quantumSystems.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Quantum systems</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/observingSystems.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">Observing probabilistic and measuring quantum systems</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/partialObserving.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">Partial observing and measuring systems</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/compositeSystems.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">Composite Systems</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/quantumCircuits.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">Quantum Circuits</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/ketNotation.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">Ket Notation</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+        <li class="sidebar-item sidebar-item-section">
+      <div class="sidebar-item-container"> 
+            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true">
+ <span class="menu-text">Quantum algorithms</span></a>
+          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="Toggle section">
+            <i class="bi bi-chevron-right ms-2"></i>
+          </a> 
+      </div>
+      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/bernsteinVazirani.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">Bernstein-Vazirani Algorithm</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
+  </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link active">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
+</li>
+      </ul>
+  </li>
+    </ul>
+    </div>
+</nav>
+<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
+<!-- margin-sidebar -->
+    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
+        <nav id="TOC" role="doc-toc" class="toc-active">
+    <h2 id="toc-title">Table of contents</h2>
+   
+  <ul>
+  <li><a href="#preparations" id="toc-preparations" class="nav-link active" data-scroll-target="#preparations"><span class="header-section-number">11.1</span> Preparations</a>
+  <ul class="collapse">
+  <li><a href="#constructing-the-oracle-v_f" id="toc-constructing-the-oracle-v_f" class="nav-link" data-scroll-target="#constructing-the-oracle-v_f"><span class="header-section-number">11.1.1</span> Constructing the oracle <span class="math inline">\(V_f\)</span></a></li>
+  <li><a href="#constructing-operatornameflip_" id="toc-constructing-operatornameflip_" class="nav-link" data-scroll-target="#constructing-operatornameflip_"><span class="header-section-number">11.1.2</span> Constructing <span class="math inline">\(\operatorname{FLIP}_*\)</span></a></li>
+  </ul></li>
+  <li><a href="#the-algorithm-for-searching" id="toc-the-algorithm-for-searching" class="nav-link" data-scroll-target="#the-algorithm-for-searching"><span class="header-section-number">11.2</span> The algorithm for searching</a>
+  <ul class="collapse">
+  <li><a href="#understanding-the-algorithm-for-searching" id="toc-understanding-the-algorithm-for-searching" class="nav-link" data-scroll-target="#understanding-the-algorithm-for-searching"><span class="header-section-number">11.2.1</span> Understanding the algorithm for searching</a></li>
+  </ul></li>
+  </ul>
+</nav>
+    </div>
+<!-- main -->
+<main class="content" id="quarto-document-content">
+
+<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="../content/bernsteinVazirani.html">Quantum algorithms</a></li><li class="breadcrumb-item"><a href="../content/groversAlgorithm.html"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></a></li></ol></nav>
+<div class="quarto-title">
+<h1 class="title"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></h1>
+</div>
+
+
+
+<div class="quarto-title-meta">
+
+    
+  
+    
+  </div>
+  
+
+
+</header>
+
+
+<p>Another well known quantum algorithm is Grover’s algorithm for searching. It was developed by Lov Grover in 1996.</p>
+<p>Grover’s algorithm takes a function <span class="math inline">\(f: \{0,1\}^n \rightarrow \{0,1\}\)</span>, where exactly one <span class="math inline">\(x_0\)</span> exists, such that <span class="math inline">\(f(x_0) = 1\)</span>. The goal is to find <span class="math inline">\(x_0\)</span>.</p>
+<p>There are a number of interesting problems, which can be reduced to this general definition. One of these problems is the breaking of a (symmetric) encryption. The function <span class="math inline">\(f\)</span> would take a key as an input and output a <span class="math inline">\(1\)</span>, if the decryption is successful. Otherwise it will output a <span class="math inline">\(0\)</span>.</p>
+<p>Classically, finding this <span class="math inline">\(x_0\)</span> takes approximately <span class="math inline">\(2^n\)</span> steps (when simply bruteforcing the function). Using Grover’s algorithm, we can reduce this runtime to approximately <span class="math inline">\(\sqrt{2^n}\)</span> steps. As an example, a <span class="math inline">\(128\)</span>-bit encryption would only take about <span class="math inline">\(2^{64}\)</span> steps to break it, instead of about <span class="math inline">\(2^{128}\)</span> steps for the classical bruteforce.</p>
+<section id="preparations" class="level2" data-number="11.1">
+<h2 data-number="11.1" class="anchored" data-anchor-id="preparations"><span class="header-section-number">11.1</span> Preparations</h2>
+<p>To construct Grover’s algorithm, we first need to introduce two new gates <span class="math inline">\(V_f\)</span> and <span class="math inline">\(\operatorname{FLIP}_*\)</span>.</p>
+<section id="constructing-the-oracle-v_f" class="level3" data-number="11.1.1">
+<h3 data-number="11.1.1" class="anchored" data-anchor-id="constructing-the-oracle-v_f"><span class="header-section-number">11.1.1</span> Constructing the oracle <span class="math inline">\(V_f\)</span></h3>
+<p>In the previous algorithms, we have learned that we can implement a function <span class="math inline">\(f\)</span> as a unitary <span class="math inline">\(U_f\)</span> with <span class="math inline">\(U_f\ket{x,y} = \ket{x, y \oplus f(x)}\)</span>. We construct a different unitary called <span class="math inline">\(V_f\)</span> from this, which has the following behavior:</p>
+<p><span class="math display">\[
+V_f \ket{x} =
+\begin{cases}
+    -\ket{x} &amp; \text{if } f(x) = 1 \\
+    \ket{x} &amp; \text{else}
+\end{cases}
+\]</span></p>
+<p>We can construct <span class="math inline">\(V_f\)</span> from <span class="math inline">\(U_f\)</span> using the following circuit:</p>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="img/vf.svg" class="img-fluid figure-img" style="width:60.0%"></p>
+<figcaption>The circuit for <span class="math inline">\(V_f\)</span></figcaption>
+</figure>
+</div>
+<p>The bottom wire can be discarded, since it always contains a <span class="math inline">\(\ket{-}\)</span> and thus is not entangled with the upper wire.</p>
+</section>
+<section id="constructing-operatornameflip_" class="level3" data-number="11.1.2">
+<h3 data-number="11.1.2" class="anchored" data-anchor-id="constructing-operatornameflip_"><span class="header-section-number">11.1.2</span> Constructing <span class="math inline">\(\operatorname{FLIP}_*\)</span></h3>
+<p>As a second ingredient for Grover’s algorithm, we need the unitary <span class="math inline">\(\operatorname{FLIP}_*\)</span>. To realize this, we first need <span class="math inline">\(\operatorname{FLIP}_0\)</span>, which ist defined by the unitary <span class="math display">\[
+\operatorname{FLIP}_0 \ket{x} =
+\begin{cases}
+    \ket{0} &amp; \text{if } x = 0 \\
+    -\ket{x} &amp; \text{else}.
+\end{cases}
+\]</span></p>
+<p><span class="math inline">\(\operatorname{FLIP}_0\)</span> is implemented by the following quantum circuit:</p>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="img/flip_zero.svg" class="img-fluid figure-img" style="width:50.0%"></p>
+<figcaption>The circuit for <span class="math inline">\(\operatorname{FLIP}_0\)</span></figcaption>
+</figure>
+</div>
+<p><span class="math inline">\(Z\)</span> is the Pauli matrix from definition <a href="quantumCircuits.html#def-gates-pauli" class="quarto-xref">Definition&nbsp;<span>7.2</span></a>. The empty circles indicates a negative control wire. So <span class="math inline">\(Z\)</span> is only applied if the other wires are <span class="math inline">\(\ket{0}\)</span>.</p>
+<p>Now we can define the unitary called <span class="math inline">\(\operatorname{FLIP}_*\)</span>. This unitary does nothing, if it is applied on the uniform superposition <span class="math inline">\(\ket{*}\)</span>. For any other quantum state <span class="math inline">\(\ket{\psi}\)</span> orthogonal to <span class="math inline">\(\ket{*}\)</span> it maps to <span class="math inline">\(-\ket{\psi}\)</span>. The uniform superposition <span class="math inline">\(\ket{*}\)</span> simply denotes the superposition over all classical possibilities <span class="math inline">\(\ket{*} = \frac{1}{\sqrt{2^n}} \sum_{x \in\{0,1\}^n} \ket{x}\)</span>. So <span class="math inline">\(\operatorname{FLIP}_*\)</span> is described by:</p>
+<p><span class="math display">\[
+\operatorname{FLIP}_* \ket{\psi} =
+\begin{cases}
+    \ket{*} &amp; \text{if } \ket{\psi} = \ket{*} \\
+    -\ket{x} &amp; \text{if } \ket{\psi} \perp \ket{*} \text{ (orthogonal)}.
+\end{cases}
+\]</span></p>
+<p>We can construct this <span class="math inline">\(\operatorname{FLIP}_*\)</span> by the following quantum circuit:</p>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="img/flip_star.svg" class="img-fluid figure-img" style="width:60.0%"></p>
+<figcaption>The circuit for <span class="math inline">\(\operatorname{FLIP}_*\)</span></figcaption>
+</figure>
+</div>
+</section>
+</section>
+<section id="the-algorithm-for-searching" class="level2" data-number="11.2">
+<h2 data-number="11.2" class="anchored" data-anchor-id="the-algorithm-for-searching"><span class="header-section-number">11.2</span> The algorithm for searching</h2>
+<p>The actual algorithm takes a function <span class="math inline">\(f: \{0,1\}^n \rightarrow \{0,1\}\)</span> and outputs an <span class="math inline">\(x_0\)</span> with <span class="math inline">\(f(x_0)=1\)</span>. For simplicity, we assume that there is only one <span class="math inline">\(x_0\)</span> for which <span class="math inline">\(f(x_0) = 1\)</span> holds and for each other <span class="math inline">\(x \neq x_0\)</span> it holds that <span class="math inline">\(f(x)=0\)</span>.</p>
+<p>With the two new unitaries <span class="math inline">\(V_f\)</span> and <span class="math inline">\(\operatorname{FLIP}_*\)</span> defined, we can construct the circuit for Grover’s algorithm, which is shown in the following figure:</p>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="img/grover.svg" class="img-fluid figure-img" style="width:70.0%"></p>
+<figcaption>The quantum circuit for Grover’s algorithm</figcaption>
+</figure>
+</div>
+<p>The algorithm works as follows:</p>
+<ol type="1">
+<li>We start with a <span class="math inline">\(\ket{0}\)</span> entry on every qubit.</li>
+<li>We bring the system into the superposition over all entries by applying <span class="math inline">\(H^{\otimes n}\)</span>. The quantum state is then <span class="math inline">\(\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} \ket{x}\)</span> which we also call <span class="math inline">\(\ket{*}\)</span>.</li>
+<li>We apply the unitary <span class="math inline">\(V_f\)</span>.</li>
+<li>We apply the unitary <span class="math inline">\(\operatorname{FLIP}_*\)</span>.</li>
+<li>We repeat steps 3 and 4 <span class="math inline">\(t\)</span> times.</li>
+<li>We do a measurement.</li>
+</ol>
+<p>The measurement in step 6 will then give us <span class="math inline">\(x_0\)</span> with high probability.</p>
+<section id="understanding-the-algorithm-for-searching" class="level3" data-number="11.2.1">
+<h3 data-number="11.2.1" class="anchored" data-anchor-id="understanding-the-algorithm-for-searching"><span class="header-section-number">11.2.1</span> Understanding the algorithm for searching</h3>
+<p>When looking at the quantum circuit, it is not completely intuitive why the algorithm gives the correct result. We therefore now look into what is happening in each step.</p>
+<p>The desired quantum state after the algorithm finishes is <span class="math inline">\(\ket{x_0}\)</span>. At the beginning of the algorithm, we bring the system into the uniform superposition <span class="math inline">\(\ket{*} = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} \ket{x}\)</span>. We know that <span class="math inline">\(\ket{x_0}\)</span> is part of this superposition, therefore we can rewrite <span class="math inline">\(\ket{*}\)</span> as follows <span class="math display">\[
+\ket{*}
+= \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} \ket{x}
+= \frac{1}{\sqrt{2^n}} \underbrace{\ket{x_0}}_{\textit{good}}  + \sqrt{\frac{2^n-1}{2^n}} \underbrace{\sum_{x\neq x_0} \frac{1}{\sqrt{2^n-1}}\ket{x}}_{\textit{bad}}
+\]</span></p>
+<p>So the current state can be seen as a superposition of a “good” state <em>good</em> and a “bad” state <em>bad</em>.</p>
+<p>The geometric interpretation of this superposition can be drawn as follows:</p>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="img/grover_plot_1.svg" class="img-fluid figure-img" style="width:30.0%"></p>
+<figcaption>Geometric interpretation of <span class="math inline">\(\ket{*}\)</span></figcaption>
+</figure>
+</div>
+<p>The angel <span class="math inline">\(\theta\)</span> denotes, how “good” the resulting outcome will be. If <span class="math inline">\(\theta = 0\)</span>, the state is completely bad, if <span class="math inline">\(\theta = \frac{\pi}{2}\)</span>, the state is completely good.</p>
+<p>We can calculate <span class="math inline">\(\cos \theta = \lvert\braket{*|bad}\rvert = \frac{\sqrt{2^n-1}}{\sqrt{2^n}}\)</span>. From this we can derivate that the angle <span class="math inline">\(\theta\)</span> is <span class="math inline">\(\cos^{-1} \sqrt{\frac{2^n-1}{2^n}}\)</span> at the beginning, which is approximately <span class="math inline">\(\sqrt{\frac{1}{2^n}}\)</span>.</p>
+<p>We now apply <span class="math inline">\(V_f\)</span> on this quantum state. This will negate the amplitude off our desired <span class="math inline">\(\ket{x_0}\)</span> and not change the amplitude to the rest of the state.</p>
+<p><span class="math display">\[
+V_f\ket{*}= -\frac{1}{\sqrt{2^n}} \underbrace{\ket{x_0}}_{\text{good}}  + \sqrt{\frac{2^n-1}{2^n}} \underbrace{\sum_{x\neq x_0} \ket{x}}_{\text{bad}}
+\]</span></p>
+<p>This looks like this in the geometric interpretation:</p>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="img/grover_plot_2.svg" class="img-fluid figure-img" style="width:30.0%"></p>
+<figcaption>Geometric interpretation after <span class="math inline">\(V_f\)</span></figcaption>
+</figure>
+</div>
+<p>We can see that by applying <span class="math inline">\(V_f\)</span>, we mirror the vector across the <em>bad</em> axis.</p>
+<p>After <span class="math inline">\(V_f\)</span>, we apply the <span class="math inline">\(\operatorname{FLIP}_*\)</span> operation on the quantum state. Since <span class="math inline">\(\operatorname{FLIP}_*\)</span> does nothing on the <span class="math inline">\(\ket{*}\)</span> entries and negates the amplitude of any vector orthogonal to it, <span class="math inline">\(\operatorname{FLIP}_*\)</span> mirrors the vector across <span class="math inline">\(\ket{*}\)</span>. This can be seen in the following figure:</p>
+<div class="quarto-figure quarto-figure-center">
+<figure class="figure">
+<p><img src="img/grover_plot_3.svg" class="img-fluid figure-img" style="width:30.0%"></p>
+<figcaption>Geometric interpretation after <span class="math inline">\(\operatorname{FLIP}_*\)</span></figcaption>
+</figure>
+</div>
+<p>All in all, we have seen that by applying <span class="math inline">\(V_f\)</span> and <span class="math inline">\(\operatorname{FLIP}_*\)</span>, we can increase the angle of the quantum state in relation to the “good” and “bad” states by <span class="math inline">\(2\theta\)</span>. Therefore two reflection give rotation. By repeating this step often enough, we can get the amplitude of <span class="math inline">\(\ket{x_0}\)</span> close to 1.</p>
+<p>To be more precise: Since we know <span class="math inline">\(\theta\)</span> and we know that we will increase the <em>good</em>-ness of our quantum state by <span class="math inline">\(2\theta\)</span> each time, we can calculate that only <span class="math inline">\(t\)</span> iterations are necessary with <span class="math display">\[
+t \approx \frac{\frac{\pi / 2}{\theta} - 1}{2} \approx \frac{\pi}{4 \theta} \approx \frac{\pi}{4} \cdot \sqrt{2^n}.
+\]</span> Grover’s algorithm therefore takes <span class="math inline">\(O(\sqrt{2^n})\)</span> steps, where an evaluation of the circuit counts as one step.</p>
+
+
+</section>
+</section>
+
+</main> <!-- /main -->
+<script id="quarto-html-after-body" type="application/javascript">
+  window.document.addEventListener("DOMContentLoaded", function (event) {
+    const icon = "";
+    const anchorJS = new window.AnchorJS();
+    anchorJS.options = {
+      placement: 'right',
+      icon: icon
+    };
+    anchorJS.add('.anchored');
+    const isCodeAnnotation = (el) => {
+      for (const clz of el.classList) {
+        if (clz.startsWith('code-annotation-')) {                     
+          return true;
+        }
+      }
+      return false;
+    }
+    const onCopySuccess = function(e) {
+      // button target
+      const button = e.trigger;
+      // don't keep focus
+      button.blur();
+      // flash "checked"
+      button.classList.add('code-copy-button-checked');
+      var currentTitle = button.getAttribute("title");
+      button.setAttribute("title", "Copied!");
+      let tooltip;
+      if (window.bootstrap) {
+        button.setAttribute("data-bs-toggle", "tooltip");
+        button.setAttribute("data-bs-placement", "left");
+        button.setAttribute("data-bs-title", "Copied!");
+        tooltip = new bootstrap.Tooltip(button, 
+          { trigger: "manual", 
+            customClass: "code-copy-button-tooltip",
+            offset: [0, -8]});
+        tooltip.show();    
+      }
+      setTimeout(function() {
+        if (tooltip) {
+          tooltip.hide();
+          button.removeAttribute("data-bs-title");
+          button.removeAttribute("data-bs-toggle");
+          button.removeAttribute("data-bs-placement");
+        }
+        button.setAttribute("title", currentTitle);
+        button.classList.remove('code-copy-button-checked');
+      }, 1000);
+      // clear code selection
+      e.clearSelection();
+    }
+    const getTextToCopy = function(trigger) {
+        const codeEl = trigger.previousElementSibling.cloneNode(true);
+        for (const childEl of codeEl.children) {
+          if (isCodeAnnotation(childEl)) {
+            childEl.remove();
+          }
+        }
+        return codeEl.innerText;
+    }
+    const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
+      text: getTextToCopy
+    });
+    clipboard.on('success', onCopySuccess);
+    if (window.document.getElementById('quarto-embedded-source-code-modal')) {
+      const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
+        text: getTextToCopy,
+        container: window.document.getElementById('quarto-embedded-source-code-modal')
+      });
+      clipboardModal.on('success', onCopySuccess);
+    }
+      var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
+      var mailtoRegex = new RegExp(/^mailto:/);
+        var filterRegex = new RegExp("https:\/\/qis\.rwth-aachen\.de\/teaching\/25ss\/intro-quantum-computing\/script\/");
+      var isInternal = (href) => {
+          return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+      }
+      // Inspect non-navigation links and adorn them if external
+     var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+      for (var i=0; i<links.length; i++) {
+        const link = links[i];
+        if (!isInternal(link.href)) {
+          // undo the damage that might have been done by quarto-nav.js in the case of
+          // links that we want to consider external
+          if (link.dataset.originalHref !== undefined) {
+            link.href = link.dataset.originalHref;
+          }
+        }
+      }
+    function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
+      const config = {
+        allowHTML: true,
+        maxWidth: 500,
+        delay: 100,
+        arrow: false,
+        appendTo: function(el) {
+            return el.parentElement;
+        },
+        interactive: true,
+        interactiveBorder: 10,
+        theme: 'quarto',
+        placement: 'bottom-start',
+      };
+      if (contentFn) {
+        config.content = contentFn;
+      }
+      if (onTriggerFn) {
+        config.onTrigger = onTriggerFn;
+      }
+      if (onUntriggerFn) {
+        config.onUntrigger = onUntriggerFn;
+      }
+      window.tippy(el, config); 
+    }
+    const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
+    for (var i=0; i<noterefs.length; i++) {
+      const ref = noterefs[i];
+      tippyHover(ref, function() {
+        // use id or data attribute instead here
+        let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
+        try { href = new URL(href).hash; } catch {}
+        const id = href.replace(/^#\/?/, "");
+        const note = window.document.getElementById(id);
+        if (note) {
+          return note.innerHTML;
+        } else {
+          return "";
+        }
+      });
+    }
+    const xrefs = window.document.querySelectorAll('a.quarto-xref');
+    const processXRef = (id, note) => {
+      // Strip column container classes
+      const stripColumnClz = (el) => {
+        el.classList.remove("page-full", "page-columns");
+        if (el.children) {
+          for (const child of el.children) {
+            stripColumnClz(child);
+          }
+        }
+      }
+      stripColumnClz(note)
+      if (id === null || id.startsWith('sec-')) {
+        // Special case sections, only their first couple elements
+        const container = document.createElement("div");
+        if (note.children && note.children.length > 2) {
+          container.appendChild(note.children[0].cloneNode(true));
+          for (let i = 1; i < note.children.length; i++) {
+            const child = note.children[i];
+            if (child.tagName === "P" && child.innerText === "") {
+              continue;
+            } else {
+              container.appendChild(child.cloneNode(true));
+              break;
+            }
+          }
+          if (window.Quarto?.typesetMath) {
+            window.Quarto.typesetMath(container);
+          }
+          return container.innerHTML
+        } else {
+          if (window.Quarto?.typesetMath) {
+            window.Quarto.typesetMath(note);
+          }
+          return note.innerHTML;
+        }
+      } else {
+        // Remove any anchor links if they are present
+        const anchorLink = note.querySelector('a.anchorjs-link');
+        if (anchorLink) {
+          anchorLink.remove();
+        }
+        if (window.Quarto?.typesetMath) {
+          window.Quarto.typesetMath(note);
+        }
+        if (note.classList.contains("callout")) {
+          return note.outerHTML;
+        } else {
+          return note.innerHTML;
+        }
+      }
+    }
+    for (var i=0; i<xrefs.length; i++) {
+      const xref = xrefs[i];
+      tippyHover(xref, undefined, function(instance) {
+        instance.disable();
+        let url = xref.getAttribute('href');
+        let hash = undefined; 
+        if (url.startsWith('#')) {
+          hash = url;
+        } else {
+          try { hash = new URL(url).hash; } catch {}
+        }
+        if (hash) {
+          const id = hash.replace(/^#\/?/, "");
+          const note = window.document.getElementById(id);
+          if (note !== null) {
+            try {
+              const html = processXRef(id, note.cloneNode(true));
+              instance.setContent(html);
+            } finally {
+              instance.enable();
+              instance.show();
+            }
+          } else {
+            // See if we can fetch this
+            fetch(url.split('#')[0])
+            .then(res => res.text())
+            .then(html => {
+              const parser = new DOMParser();
+              const htmlDoc = parser.parseFromString(html, "text/html");
+              const note = htmlDoc.getElementById(id);
+              if (note !== null) {
+                const html = processXRef(id, note);
+                instance.setContent(html);
+              } 
+            }).finally(() => {
+              instance.enable();
+              instance.show();
+            });
+          }
+        } else {
+          // See if we can fetch a full url (with no hash to target)
+          // This is a special case and we should probably do some content thinning / targeting
+          fetch(url)
+          .then(res => res.text())
+          .then(html => {
+            const parser = new DOMParser();
+            const htmlDoc = parser.parseFromString(html, "text/html");
+            const note = htmlDoc.querySelector('main.content');
+            if (note !== null) {
+              // This should only happen for chapter cross references
+              // (since there is no id in the URL)
+              // remove the first header
+              if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+                note.children[0].remove();
+              }
+              const html = processXRef(null, note);
+              instance.setContent(html);
+            } 
+          }).finally(() => {
+            instance.enable();
+            instance.show();
+          });
+        }
+      }, function(instance) {
+      });
+    }
+        let selectedAnnoteEl;
+        const selectorForAnnotation = ( cell, annotation) => {
+          let cellAttr = 'data-code-cell="' + cell + '"';
+          let lineAttr = 'data-code-annotation="' +  annotation + '"';
+          const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
+          return selector;
+        }
+        const selectCodeLines = (annoteEl) => {
+          const doc = window.document;
+          const targetCell = annoteEl.getAttribute("data-target-cell");
+          const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
+          const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
+          const lines = annoteSpan.getAttribute("data-code-lines").split(",");
+          const lineIds = lines.map((line) => {
+            return targetCell + "-" + line;
+          })
+          let top = null;
+          let height = null;
+          let parent = null;
+          if (lineIds.length > 0) {
+              //compute the position of the single el (top and bottom and make a div)
+              const el = window.document.getElementById(lineIds[0]);
+              top = el.offsetTop;
+              height = el.offsetHeight;
+              parent = el.parentElement.parentElement;
+            if (lineIds.length > 1) {
+              const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
+              const bottom = lastEl.offsetTop + lastEl.offsetHeight;
+              height = bottom - top;
+            }
+            if (top !== null && height !== null && parent !== null) {
+              // cook up a div (if necessary) and position it 
+              let div = window.document.getElementById("code-annotation-line-highlight");
+              if (div === null) {
+                div = window.document.createElement("div");
+                div.setAttribute("id", "code-annotation-line-highlight");
+                div.style.position = 'absolute';
+                parent.appendChild(div);
+              }
+              div.style.top = top - 2 + "px";
+              div.style.height = height + 4 + "px";
+              div.style.left = 0;
+              let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
+              if (gutterDiv === null) {
+                gutterDiv = window.document.createElement("div");
+                gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
+                gutterDiv.style.position = 'absolute';
+                const codeCell = window.document.getElementById(targetCell);
+                const gutter = codeCell.querySelector('.code-annotation-gutter');
+                gutter.appendChild(gutterDiv);
+              }
+              gutterDiv.style.top = top - 2 + "px";
+              gutterDiv.style.height = height + 4 + "px";
+            }
+            selectedAnnoteEl = annoteEl;
+          }
+        };
+        const unselectCodeLines = () => {
+          const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
+          elementsIds.forEach((elId) => {
+            const div = window.document.getElementById(elId);
+            if (div) {
+              div.remove();
+            }
+          });
+          selectedAnnoteEl = undefined;
+        };
+          // Handle positioning of the toggle
+      window.addEventListener(
+        "resize",
+        throttle(() => {
+          elRect = undefined;
+          if (selectedAnnoteEl) {
+            selectCodeLines(selectedAnnoteEl);
+          }
+        }, 10)
+      );
+      function throttle(fn, ms) {
+      let throttle = false;
+      let timer;
+        return (...args) => {
+          if(!throttle) { // first call gets through
+              fn.apply(this, args);
+              throttle = true;
+          } else { // all the others get throttled
+              if(timer) clearTimeout(timer); // cancel #2
+              timer = setTimeout(() => {
+                fn.apply(this, args);
+                timer = throttle = false;
+              }, ms);
+          }
+        };
+      }
+        // Attach click handler to the DT
+        const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
+        for (const annoteDlNode of annoteDls) {
+          annoteDlNode.addEventListener('click', (event) => {
+            const clickedEl = event.target;
+            if (clickedEl !== selectedAnnoteEl) {
+              unselectCodeLines();
+              const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
+              if (activeEl) {
+                activeEl.classList.remove('code-annotation-active');
+              }
+              selectCodeLines(clickedEl);
+              clickedEl.classList.add('code-annotation-active');
+            } else {
+              // Unselect the line
+              unselectCodeLines();
+              clickedEl.classList.remove('code-annotation-active');
+            }
+          });
+        }
+    const findCites = (el) => {
+      const parentEl = el.parentElement;
+      if (parentEl) {
+        const cites = parentEl.dataset.cites;
+        if (cites) {
+          return {
+            el,
+            cites: cites.split(' ')
+          };
+        } else {
+          return findCites(el.parentElement)
+        }
+      } else {
+        return undefined;
+      }
+    };
+    var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
+    for (var i=0; i<bibliorefs.length; i++) {
+      const ref = bibliorefs[i];
+      const citeInfo = findCites(ref);
+      if (citeInfo) {
+        tippyHover(citeInfo.el, function() {
+          var popup = window.document.createElement('div');
+          citeInfo.cites.forEach(function(cite) {
+            var citeDiv = window.document.createElement('div');
+            citeDiv.classList.add('hanging-indent');
+            citeDiv.classList.add('csl-entry');
+            var biblioDiv = window.document.getElementById('ref-' + cite);
+            if (biblioDiv) {
+              citeDiv.innerHTML = biblioDiv.innerHTML;
+            }
+            popup.appendChild(citeDiv);
+          });
+          return popup.innerHTML;
+        });
+      }
+    }
+  });
+  </script>
+<nav class="page-navigation">
+  <div class="nav-page nav-page-previous">
+      <a href="../content/shorsAlgorithm.html" class="pagination-link" aria-label="Shor's Algorithm">
+        <i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span>
+      </a>          
+  </div>
+  <div class="nav-page nav-page-next">
+  </div>
+</nav>
+</div> <!-- /content -->
+
+
+
+
+</body></html>
\ No newline at end of file
diff --git a/_book/content/img/dft_3_qubits.svg b/_book/content/img/dft_3_qubits.svg
index de04d98a834659c9e7b92d2074292b80710ccb4e..9dba79ae94bdf920b4b879baabd81938babd08be 100644
--- a/_book/content/img/dft_3_qubits.svg
+++ b/_book/content/img/dft_3_qubits.svg
@@ -1,12 +1,18 @@
 <?xml version='1.0' encoding='UTF-8'?>
 <!-- This file was generated by dvisvgm 3.4.3 -->
-<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='258.693024pt' height='100.441339pt' viewBox='-68.681163 -68.015534 258.693024 100.441339'>
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='258.693024pt' height='96.902316pt' viewBox='-68.681163 -68.015511 258.693024 96.902316'>
 <defs>
 <font id='cmsy10' horiz-adv-x='0'>
 <font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
 <glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
 <glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
 </font>
+<font id='cmr7' horiz-adv-x='0'>
+<font-face font-family='cmr7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='1' horiz-adv-x='569' vert-adv-y='569' glyph-name='one' d='M335 636C335 663 333 664 305 664C241 601 150 600 109 600V564C133 564 199 564 254 592V82C254 49 254 36 154 36H116V0C134 1 257 4 294 4C325 4 451 1 473 0V36H435C335 36 335 49 335 82V636Z'/>
+<glyph unicode='2' horiz-adv-x='569' vert-adv-y='569' glyph-name='two' d='M505 182H471C468 160 458 101 445 91C437 85 360 85 346 85H162C267 178 302 206 362 253C436 312 505 374 505 469C505 590 399 664 271 664C147 664 63 577 63 485C63 434 106 429 116 429C140 429 169 446 169 482C169 500 162 535 110 535C141 606 209 628 256 628C356 628 408 550 408 469C408 382 346 313 314 277L73 39C63 30 63 28 63 0H475L505 182Z'/>
+<glyph unicode='3' horiz-adv-x='569' vert-adv-y='569' glyph-name='three' d='M273 334C351 334 407 280 407 173C407 49 335 12 277 12C237 12 149 23 107 82C154 84 165 117 165 138C165 170 141 193 110 193C82 193 54 176 54 135C54 41 158-20 279-20C418-20 514 73 514 173C514 251 450 329 340 352C445 390 483 465 483 526C483 605 392 664 281 664S85 610 85 530C85 496 107 477 137 477C168 477 188 500 188 528C188 557 168 578 137 580C172 624 241 635 278 635C323 635 386 613 386 526C386 484 372 438 346 407C313 369 285 367 235 364C210 362 208 362 203 361C201 361 193 359 193 348C193 334 202 334 219 334H273Z'/>
+</font>
 <font id='cmmi10' horiz-adv-x='0'>
 <font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
 <glyph unicode='ψ' horiz-adv-x='651' vert-adv-y='651' glyph-name='psi' d='M482 668C483 672 485 678 485 683C485 693 478 694 473 694C463 694 462 692 458 674L292 13C216 22 178 59 178 125C178 145 178 171 232 311C236 323 243 340 243 360C243 405 211 442 161 442C66 442 29 297 29 288C29 278 39 278 41 278C51 278 52 280 57 296C84 391 124 420 158 420C166 420 183 420 183 388C183 362 173 337 160 302C112 176 112 150 112 133C112 38 190-3 286-9C278-45 278-47 264-100C261-111 241-192 241-195C241-196 241-205 253-205C255-205 260-205 262-201C265-199 271-174 274-160L312-11C349-11 437-11 531 96C572 142 593 186 604 216C613 241 635 328 635 372C635 428 608 442 591 442C566 442 541 416 541 394C541 381 547 375 556 367C567 356 592 330 592 282C592 218 540 136 505 100C417 11 353 11 317 11L482 668Z'/>
@@ -14,12 +20,6 @@
 <glyph unicode='R' horiz-adv-x='759' vert-adv-y='759' glyph-name='R' d='M375 614C381 638 384 648 403 651C412 652 444 652 464 652C535 652 646 652 646 553C646 519 630 450 591 411C565 385 512 353 422 353H310L375 614ZM519 340C620 362 739 432 739 533C739 619 649 683 518 683H233C213 683 204 683 204 663C204 652 213 652 232 652C234 652 253 652 270 650C288 648 297 647 297 634C297 630 296 627 293 615L159 78C149 39 147 31 68 31C50 31 41 31 41 11C41 0 53 0 55 0C83 0 153 3 181 3S280 0 308 0C316 0 328 0 328 20C328 31 319 31 300 31C263 31 235 31 235 49C235 55 237 60 238 66L304 331H423C514 331 532 275 532 240C532 225 524 194 518 171C511 143 502 106 502 86C502-22 622-22 635-22C720-22 755 79 755 93C755 105 744 105 743 105C734 105 732 98 730 91C705 17 662 0 639 0C606 0 599 22 599 61C599 92 605 143 609 175C611 189 613 208 613 222C613 299 546 330 519 340Z'/>
 <glyph unicode='j' horiz-adv-x='411' vert-adv-y='411' glyph-name='j' d='M397 625C397 644 383 661 359 661C336 661 306 638 306 608C306 588 320 572 343 572C370 572 397 598 397 625ZM196-50C177-126 129-183 73-183C67-183 52-183 34-174C64-167 79-141 79-121C79-105 68-86 41-86C16-86-13-107-13-143C-13-183 27-205 75-205C145-205 238-152 263-53L355 313C360 333 360 347 360 350C360 407 318 442 268 442C166 442 109 297 109 288C109 278 119 278 121 278C130 278 131 279 139 298C164 359 210 420 265 420C279 420 297 416 297 374C297 351 294 340 290 323L196-50Z'/>
 </font>
-<font id='cmr7' horiz-adv-x='0'>
-<font-face font-family='cmr7' units-per-em='1000' ascent='750' descent='250'/>
-<glyph unicode='1' horiz-adv-x='569' vert-adv-y='569' glyph-name='one' d='M335 636C335 663 333 664 305 664C241 601 150 600 109 600V564C133 564 199 564 254 592V82C254 49 254 36 154 36H116V0C134 1 257 4 294 4C325 4 451 1 473 0V36H435C335 36 335 49 335 82V636Z'/>
-<glyph unicode='2' horiz-adv-x='569' vert-adv-y='569' glyph-name='two' d='M505 182H471C468 160 458 101 445 91C437 85 360 85 346 85H162C267 178 302 206 362 253C436 312 505 374 505 469C505 590 399 664 271 664C147 664 63 577 63 485C63 434 106 429 116 429C140 429 169 446 169 482C169 500 162 535 110 535C141 606 209 628 256 628C356 628 408 550 408 469C408 382 346 313 314 277L73 39C63 30 63 28 63 0H475L505 182Z'/>
-<glyph unicode='3' horiz-adv-x='569' vert-adv-y='569' glyph-name='three' d='M273 334C351 334 407 280 407 173C407 49 335 12 277 12C237 12 149 23 107 82C154 84 165 117 165 138C165 170 141 193 110 193C82 193 54 176 54 135C54 41 158-20 279-20C418-20 514 73 514 173C514 251 450 329 340 352C445 390 483 465 483 526C483 605 392 664 281 664S85 610 85 530C85 496 107 477 137 477C168 477 188 500 188 528C188 557 168 578 137 580C172 624 241 635 278 635C323 635 386 613 386 526C386 484 372 438 346 407C313 369 285 367 235 364C210 362 208 362 203 361C201 361 193 359 193 348C193 334 202 334 219 334H273Z'/>
-</font>
 <font id='cmr10' horiz-adv-x='0'>
 <font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
 <glyph unicode='1' horiz-adv-x='500' vert-adv-y='500' glyph-name='one' d='M294 640C294 664 294 666 271 666C209 602 121 602 89 602V571C109 571 168 571 220 597V79C220 43 217 31 127 31H95V0C130 3 217 3 257 3S384 3 419 0V31H387C297 31 294 42 294 79V640Z'/>
@@ -35,98 +35,96 @@ text.f3 {font-family:cmr7;font-size:6.973848px}
 ]]>
 </style>
 <g id='page1'>
-<path d='M-35.0781-42.0117H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M-3.8438-42.0117H-18.0156' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M30.3359-42.0117H16.1641' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M73.043-42.0117H50.3398' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M73.043-42.0117H50.3398' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M105.75-42.0117H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M105.75-42.0117H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M138.457-42.0117H105.75' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M138.457-42.0117H105.75' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M161.1602-42.0117V18.1328' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M161.1602-42.0117H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M175.3318-42.0117H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M-26.5469-11.566406H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M-26.5469-11.566406H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M6.1602-13.269531V-33.8789' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M4.4609-11.566406H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M40.3359-11.566406H7.8594' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M40.3359-11.566406H7.8594' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M64.51172-11.566406H40.3359' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M95.7461-11.566406H81.5742' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M138.457-11.566406H115.7539' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M138.457-11.566406H115.7539' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M161.1602-11.566406H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M161.1602-11.566406H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M175.3318-11.566406H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M-26.5469 18.1328H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M-26.5469 18.1328H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M6.1602 18.1328H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M6.1602 18.1328H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M40.3359 16.4297V-33.8789' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M38.6367 18.1328H6.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M73.043 18.1328H42.0391' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M73.043 18.1328H42.0391' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M105.75 16.4297V-3.42969' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M104.0508 18.1328H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M129.9258 18.1328H107.4492' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M161.1602 18.1328H146.9883' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M175.3318 18.1328H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M157.67165-38.52731L164.6443-45.49996M157.67165-45.49996L164.6443-38.52731' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<path d='M7.85916-11.566368C7.85916-12.507774 7.097438-13.26949 6.159938-13.26949C5.218532-13.26949 4.45681-12.507774 4.45681-11.566368C4.45681-10.628868 5.218532-9.86715 6.159938-9.86715C7.097438-9.86715 7.85916-10.628868 7.85916-11.566368Z'/>
-<path d='M7.85938-11.566368C7.85938-12.507774 7.097658-13.26949 6.160158-13.26949C5.218752-13.26949 4.45703-12.507774 4.45703-11.566368C4.45703-10.628868 5.218752-9.86715 6.160158-9.86715C7.097658-9.86715 7.85938-10.628868 7.85938-11.566368Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<path d='M42.03493 18.132853C42.03493 17.191446 41.277116 16.42973 40.33571 16.42973C39.39821 16.42973 38.63649 17.191446 38.63649 18.132853C38.63649 19.070353 39.39821 19.83207 40.33571 19.83207C41.277116 19.83207 42.03493 19.070353 42.03493 18.132853Z'/>
-<path d='M42.03513 18.132853C42.03513 17.191446 41.277316 16.42973 40.33591 16.42973C39.39841 16.42973 38.63669 17.191446 38.63669 18.132853C38.63669 19.070353 39.39841 19.83207 40.33591 19.83207C41.277316 19.83207 42.03513 19.070353 42.03513 18.132853Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<path d='M107.449 18.132853C107.449 17.191446 106.687285 16.42973 105.749785 16.42973C104.808379 16.42973 104.04666 17.191446 104.04666 18.132853C104.04666 19.070353 104.808379 19.83207 105.749785 19.83207C106.687285 19.83207 107.449 19.070353 107.449 18.132853Z'/>
-<path d='M107.449 18.132853C107.449 17.191446 106.687285 16.42973 105.749785 16.42973C104.808379 16.42973 104.04666 17.191446 104.04666 18.132853C104.04666 19.070353 104.808379 19.83207 105.749785 19.83207C106.687285 19.83207 107.449 19.070353 107.449 18.132853Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<path d='M157.67165 21.61723L164.6443 14.64457M157.67165 14.64457L164.6443 21.61723' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f0' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -131.723 -27.208)'>|</text>
-<text class='f1' x='65.809246' y='-12.314553' transform='matrix(1 0 0 1 -131.723 -27.208)'>j</text>
-<text class='f3' x='69.911931' y='-10.820173' transform='matrix(1 0 0 1 -131.723 -27.208)'>1</text>
-<text class='f0' x='74.381301' y='-12.314553' transform='matrix(1 0 0 1 -131.723 -27.208)'></text>
-<path d='M-35.0781-34.625H-18.0156V-49.4023H-35.0781Z' fill='#fff'/>
-<path d='M-35.0781-34.625H-18.0156V-49.4023H-35.0781Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -94.1333 -26.2947)'>H</text>
-<path d='M-3.8438-33.8789H16.1641V-50.1484H-3.8438Z' fill='#fff'/>
-<path d='M-3.8438-33.8789H16.1641V-50.1484H-3.8438Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -62.898669 -27.0419)'>R</text>
-<text class='f3' x='70.606368' y='-10.820173' transform='matrix(1 0 0 1 -62.898669 -27.0419)'>2</text>
-<path d='M30.3359-33.8789H50.3398V-50.1484H30.3359Z' fill='#fff'/>
-<path d='M30.3359-33.8789H50.3398V-50.1484H30.3359Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -28.721 -27.0419)'>R</text>
-<text class='f3' x='70.606368' y='-10.820173' transform='matrix(1 0 0 1 -28.721 -27.0419)'>3</text>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 116.5092 -27.208)'>ψ</text>
-<text class='f3' x='69.531421' y='-10.820173' transform='matrix(1 0 0 1 116.5092 -27.208)'>1</text>
-<text class='f0' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -131.723 3.23788)'>|</text>
-<text class='f1' x='65.809246' y='-12.314553' transform='matrix(1 0 0 1 -131.723 3.23788)'>j</text>
-<text class='f3' x='69.911931' y='-10.820173' transform='matrix(1 0 0 1 -131.723 3.23788)'>2</text>
-<text class='f0' x='74.381301' y='-12.314553' transform='matrix(1 0 0 1 -131.723 3.23788)'></text>
-<path d='M64.51172-4.17969H81.5742V-18.95703H64.51172Z' fill='#fff'/>
-<path d='M64.51172-4.17969H81.5742V-18.95703H64.51172Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 5.4566 4.15112)'>H</text>
-<path d='M95.7461-3.42969H115.7539V-19.70313H95.7461Z' fill='#fff'/>
-<path d='M95.7461-3.42969H115.7539V-19.70313H95.7461Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 36.6912 3.40393)'>R</text>
-<text class='f3' x='70.606368' y='-10.820173' transform='matrix(1 0 0 1 36.6912 3.40393)'>2</text>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 116.5092 3.23788)'>ψ</text>
-<text class='f3' x='69.531421' y='-10.820173' transform='matrix(1 0 0 1 116.5092 3.23788)'>2</text>
-<text class='f0' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -131.723 32.9366)'>|</text>
-<text class='f1' x='65.809246' y='-12.314553' transform='matrix(1 0 0 1 -131.723 32.9366)'>j</text>
-<text class='f3' x='69.911931' y='-10.820173' transform='matrix(1 0 0 1 -131.723 32.9366)'>3</text>
-<text class='f0' x='74.381301' y='-12.314553' transform='matrix(1 0 0 1 -131.723 32.9366)'></text>
-<path d='M129.9258 25.5195H146.9883V10.7422H129.9258Z' fill='#fff'/>
-<path d='M129.9258 25.5195H146.9883V10.7422H129.9258Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 70.8692 33.8498)'>H</text>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 116.5092 32.9366)'>ψ</text>
-<text class='f3' x='69.531421' y='-10.820173' transform='matrix(1 0 0 1 116.5092 32.9366)'>3</text>
-<path d='M57.42578-53.668V32.0273' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
-<text class='f2' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -8.1058 -45.7383)'>1</text>
-<path d='M122.8398-53.668V32.0273' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
-<text class='f0' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 53.9852 -48.229)'>|</text>
-<text class='f2' x='65.809246' y='-12.314553' transform='matrix(1 0 0 1 53.9852 -48.229)'>2</text>
-<text class='f0' x='70.790585' y='-12.314553' transform='matrix(1 0 0 1 53.9852 -48.229)'></text>
-<path d='M154.0742-53.668V32.0273' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
-<text class='f2' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 88.5412 -45.7383)'>3</text>
+<path d='M-35.0781-45.5547H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-3.8438-45.5547H-18.0156' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M30.3359-45.5547H16.1641' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M73.043-45.5547H50.3398' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M73.043-45.5547H50.3398' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M105.75-45.5547H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M105.75-45.5547H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M138.457-45.5547H105.75' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M138.457-45.5547H105.75' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M161.1602-45.5547V14.5898' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M161.1602-45.5547H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M175.3318-45.5547H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-26.5469-15.109375H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-26.5469-15.109375H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M6.1602-16.808594V-37.418' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M4.4609-15.109375H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M40.3359-15.109375H7.8594' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M40.3359-15.109375H7.8594' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M64.51172-15.109375H40.3359' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M95.7461-15.109375H81.5742' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M138.457-15.109375H115.7539' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M138.457-15.109375H115.7539' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M161.1602-15.109375H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M161.1602-15.109375H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M175.3318-15.109375H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-26.5469 14.5898H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-26.5469 14.5898H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M6.1602 14.5898H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M6.1602 14.5898H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M40.3359 12.8867V-37.418' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M38.6367 14.5898H6.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M73.043 14.5898H42.0391' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M73.043 14.5898H42.0391' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M105.75 12.8867V-6.97266' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M104.0508 14.5898H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M129.9258 14.5898H107.4492' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M161.1602 14.5898H146.9883' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M175.3318 14.5898H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M157.67165-42.06637L164.6443-49.04293M157.67165-49.04293L164.6443-42.06637' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M7.85916-15.109335C7.85916-16.046835 7.097438-16.80855 6.159938-16.80855C5.218532-16.80855 4.45681-16.046835 4.45681-15.109335C4.45681-14.171835 5.218532-13.41012 6.159938-13.41012C7.097438-13.41012 7.85916-14.171835 7.85916-15.109335Z'/>
+<path d='M7.85938-15.109335C7.85938-16.046835 7.097658-16.80855 6.160158-16.80855C5.218752-16.80855 4.45703-16.046835 4.45703-15.109335C4.45703-14.171835 5.218752-13.41012 6.160158-13.41012C7.097658-13.41012 7.85938-14.171835 7.85938-15.109335Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M42.03493 14.589884C42.03493 13.648478 41.277116 12.88676 40.33571 12.88676C39.39821 12.88676 38.63649 13.648478 38.63649 14.589884C38.63649 15.527384 39.39821 16.2891 40.33571 16.2891C41.277116 16.2891 42.03493 15.527384 42.03493 14.589884Z'/>
+<path d='M42.03513 14.589884C42.03513 13.648478 41.277316 12.88676 40.33591 12.88676C39.39841 12.88676 38.63669 13.648478 38.63669 14.589884C38.63669 15.527384 39.39841 16.2891 40.33591 16.2891C41.277316 16.2891 42.03513 15.527384 42.03513 14.589884Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M107.449 14.589884C107.449 13.648478 106.687285 12.88676 105.749785 12.88676C104.808379 12.88676 104.04666 13.648478 104.04666 14.589884C104.04666 15.527384 104.808379 16.2891 105.749785 16.2891C106.687285 16.2891 107.449 15.527384 107.449 14.589884Z'/>
+<path d='M107.449 14.589884C107.449 13.648478 106.687285 12.88676 105.749785 12.88676C104.808379 12.88676 104.04666 13.648478 104.04666 14.589884C104.04666 15.527384 104.808379 16.2891 105.749785 16.2891C106.687285 16.2891 107.449 15.527384 107.449 14.589884Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M157.67165 18.07426L164.6443 11.1016M157.67165 11.1016L164.6443 18.07426' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f0' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -131.723 -27.208)'>|</text>
+<text class='f1' x='65.809246' y='-15.856842' transform='matrix(1 0 0 1 -131.723 -27.208)'>j</text>
+<text class='f3' x='69.911931' y='-14.362462' transform='matrix(1 0 0 1 -131.723 -27.208)'>1</text>
+<text class='f0' x='74.381301' y='-15.856842' transform='matrix(1 0 0 1 -131.723 -27.208)'></text>
+<path d='M-35.0781-38.168H-18.0156V-52.9453H-35.0781Z' fill='#fff'/>
+<path d='M-35.0781-38.168H-18.0156V-52.9453H-35.0781Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -94.1333 -26.2947)'>H</text>
+<path d='M-3.8438-37.418H16.1641V-53.6914H-3.8438Z' fill='#fff'/>
+<path d='M-3.8438-37.418H16.1641V-53.6914H-3.8438Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -62.898669 -27.0419)'>R</text>
+<text class='f3' x='70.606368' y='-14.362462' transform='matrix(1 0 0 1 -62.898669 -27.0419)'>2</text>
+<path d='M30.3359-37.418H50.3398V-53.6914H30.3359Z' fill='#fff'/>
+<path d='M30.3359-37.418H50.3398V-53.6914H30.3359Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -28.721 -27.0419)'>R</text>
+<text class='f3' x='70.606368' y='-14.362462' transform='matrix(1 0 0 1 -28.721 -27.0419)'>3</text>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 116.5092 -27.208)'>ψ</text>
+<text class='f3' x='69.531421' y='-14.362462' transform='matrix(1 0 0 1 116.5092 -27.208)'>1</text>
+<text class='f0' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -131.723 3.2379)'>|</text>
+<text class='f1' x='65.809246' y='-15.856842' transform='matrix(1 0 0 1 -131.723 3.2379)'>j</text>
+<text class='f3' x='69.911931' y='-14.362462' transform='matrix(1 0 0 1 -131.723 3.2379)'>2</text>
+<text class='f0' x='74.381301' y='-15.856842' transform='matrix(1 0 0 1 -131.723 3.2379)'></text>
+<path d='M64.51172-7.71875H81.5742V-22.5H64.51172Z' fill='#fff'/>
+<path d='M64.51172-7.71875H81.5742V-22.5H64.51172Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 5.4566 4.1511)'>H</text>
+<path d='M95.7461-6.97266H115.7539V-23.24609H95.7461Z' fill='#fff'/>
+<path d='M95.7461-6.97266H115.7539V-23.24609H95.7461Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 36.6912 3.4039)'>R</text>
+<text class='f3' x='70.606368' y='-14.362462' transform='matrix(1 0 0 1 36.6912 3.4039)'>2</text>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 116.5092 3.2379)'>ψ</text>
+<text class='f3' x='69.531421' y='-14.362462' transform='matrix(1 0 0 1 116.5092 3.2379)'>2</text>
+<text class='f0' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -131.723 32.9366)'>|</text>
+<text class='f1' x='65.809246' y='-15.856842' transform='matrix(1 0 0 1 -131.723 32.9366)'>j</text>
+<text class='f3' x='69.911931' y='-14.362462' transform='matrix(1 0 0 1 -131.723 32.9366)'>3</text>
+<text class='f0' x='74.381301' y='-15.856842' transform='matrix(1 0 0 1 -131.723 32.9366)'></text>
+<path d='M129.9258 21.9766H146.9883V7.1992H129.9258Z' fill='#fff'/>
+<path d='M129.9258 21.9766H146.9883V7.1992H129.9258Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 70.8692 33.8498)'>H</text>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 116.5092 32.9366)'>ψ</text>
+<text class='f3' x='69.531421' y='-14.362462' transform='matrix(1 0 0 1 116.5092 32.9366)'>3</text>
+<path d='M57.42578-57.2109V28.4883' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
+<text class='f2' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -8.1058 -45.7383)'>1</text>
+<path d='M122.8398-57.2109V28.4883' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
+<text class='f2' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 57.3062 -45.7383)'>2</text>
+<path d='M154.0742-57.2109V28.4883' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
+<text class='f2' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 88.5412 -45.7383)'>3</text>
 </g>
 </svg>
\ No newline at end of file
diff --git a/_book/content/img/flip_star.svg b/_book/content/img/flip_star.svg
new file mode 100644
index 0000000000000000000000000000000000000000..63d775847b0e75312eff884ea67b64c85d29e226
--- /dev/null
+++ b/_book/content/img/flip_star.svg
@@ -0,0 +1,91 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='181.505109pt' height='105.64081pt' viewBox='-68.680804 -69.078205 181.505109 105.64081'>
+<defs>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='.' horiz-adv-x='277' vert-adv-y='277' glyph-name='period' d='M192 53C192 82 168 106 139 106S86 82 86 53S110 0 139 0S192 24 192 53Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='ψ' horiz-adv-x='651' vert-adv-y='651' glyph-name='psi' d='M482 668C483 672 485 678 485 683C485 693 478 694 473 694C463 694 462 692 458 674L292 13C216 22 178 59 178 125C178 145 178 171 232 311C236 323 243 340 243 360C243 405 211 442 161 442C66 442 29 297 29 288C29 278 39 278 41 278C51 278 52 280 57 296C84 391 124 420 158 420C166 420 183 420 183 388C183 362 173 337 160 302C112 176 112 150 112 133C112 38 190-3 286-9C278-45 278-47 264-100C261-111 241-192 241-195C241-196 241-205 253-205C255-205 260-205 262-201C265-199 271-174 274-160L312-11C349-11 437-11 531 96C572 142 593 186 604 216C613 241 635 328 635 372C635 428 608 442 591 442C566 442 541 416 541 394C541 381 547 375 556 367C567 356 592 330 592 282C592 218 540 136 505 100C417 11 353 11 317 11L482 668Z'/>
+<glyph unicode='F' horiz-adv-x='643' vert-adv-y='643' glyph-name='F' d='M303 325H400C475 325 483 309 483 280C483 273 483 261 476 231C474 226 473 222 473 220C473 212 479 208 485 208C495 208 495 211 500 229L555 446C558 457 558 459 558 462C558 464 556 473 546 473S535 468 531 452C510 374 487 356 402 356H311L375 610C384 645 385 649 429 649H561C684 649 707 616 707 539C707 516 707 512 704 485C702 472 702 470 702 467C702 462 705 455 714 455C725 455 726 461 728 480L748 653C751 680 746 680 721 680H231C211 680 201 680 201 660C201 649 210 649 229 649C266 649 294 649 294 631C294 627 294 625 289 607L157 78C147 39 145 31 66 31C49 31 38 31 38 12C38 0 50 0 53 0C82 0 156 3 185 3C218 3 301 0 334 0C343 0 355 0 355 19C355 27 349 29 349 30C346 31 344 31 321 31C299 31 294 31 269 33C240 36 237 40 237 53C237 55 237 61 241 76L303 325Z'/>
+<glyph unicode='H' horiz-adv-x='831' vert-adv-y='831' glyph-name='H' d='M763 606C772 642 774 652 847 652C873 652 881 652 881 672C881 683 870 683 867 683C839 683 767 680 739 680C710 680 639 683 610 683C602 683 591 683 591 663C591 652 600 652 619 652C621 652 640 652 657 650C675 648 684 647 684 634C684 630 683 628 680 615L620 371H315L374 606C383 642 386 652 458 652C484 652 492 652 492 672C492 683 481 683 478 683C450 683 378 680 350 680C321 680 250 683 221 683C213 683 202 683 202 663C202 652 211 652 230 652C232 652 251 652 268 650C286 648 295 647 295 634C295 630 294 627 291 615L157 78C147 39 145 31 66 31C48 31 39 31 39 11C39 0 51 0 53 0C81 0 152 3 180 3C201 3 223 2 244 2C266 2 288 0 309 0C317 0 329 0 329 20C329 31 320 31 301 31C264 31 236 31 236 49C236 55 238 60 239 66L307 340H612C570 174 547 79 543 64C533 32 514 31 452 31C437 31 428 31 428 11C428 0 440 0 442 0C470 0 541 3 569 3C590 3 612 2 633 2C655 2 677 0 698 0C706 0 718 0 718 20C718 31 709 31 690 31C653 31 625 31 625 49C625 55 627 60 628 66L763 606Z'/>
+<glyph unicode='I' horiz-adv-x='439' vert-adv-y='439' glyph-name='I' d='M374 606C383 642 386 652 465 652C489 652 497 652 497 671C497 683 486 683 482 683C453 683 379 680 350 680C320 680 247 683 217 683C210 683 197 683 197 663C197 652 206 652 225 652C267 652 294 652 294 633C294 628 294 626 292 617L157 78C148 41 145 31 66 31C43 31 34 31 34 11C34 0 46 0 49 0C78 0 151 3 180 3C210 3 284 0 314 0C322 0 334 0 334 19C334 31 326 31 304 31C286 31 281 31 261 33C240 35 236 39 236 50C236 58 238 66 240 73L374 606Z'/>
+<glyph unicode='L' horiz-adv-x='680' vert-adv-y='680' glyph-name='L' d='M374 605C383 641 386 652 480 652C510 652 518 652 518 671C518 683 507 683 502 683C469 683 387 680 354 680C324 680 251 683 221 683C214 683 202 683 202 663C202 652 211 652 230 652C232 652 251 652 268 650C286 648 295 647 295 634C295 630 294 627 291 615L157 78C147 39 145 31 66 31C49 31 39 31 39 11C39 0 48 0 66 0H529C553 0 554 0 560 17L639 233C643 244 643 246 643 247C643 251 640 258 631 258S621 253 614 237C580 145 536 31 363 31H269C255 31 253 31 247 32C237 33 234 34 234 42C234 45 234 47 239 65L374 605Z'/>
+<glyph unicode='P' horiz-adv-x='642' vert-adv-y='642' glyph-name='P' d='M303 316H473C615 316 754 420 754 532C754 609 688 683 557 683H233C214 683 203 683 203 664C203 652 212 652 232 652C245 652 263 651 275 650C291 648 297 645 297 634C297 630 296 627 293 615L159 78C149 39 147 31 68 31C51 31 40 31 40 12C40 0 52 0 55 0C83 0 154 3 182 3C203 3 225 2 246 2C268 2 290 0 311 0C318 0 331 0 331 20C331 31 322 31 303 31C266 31 238 31 238 49C238 55 240 60 241 66L303 316ZM375 614C384 649 386 652 429 652H525C608 652 661 625 661 556C661 517 641 431 602 395C552 350 492 342 448 342H307L375 614Z'/>
+</font>
+<font id='cmr7' horiz-adv-x='0'>
+<font-face font-family='cmr7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='0' horiz-adv-x='569' vert-adv-y='569' glyph-name='zero' d='M516 319C516 429 503 508 457 578C426 624 364 664 284 664C52 664 52 391 52 319S52-20 284-20S516 247 516 319ZM284 8C238 8 177 35 157 117C143 176 143 258 143 332C143 405 143 481 158 536C179 615 243 636 284 636C338 636 390 603 408 545C424 491 425 419 425 332C425 258 425 184 412 121C392 30 324 8 284 8Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmr10;font-size:9.96264px}
+text.f3 {font-family:cmr7;font-size:6.973848px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-31.1328-60.543H-45.3047' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016-60.543H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016-60.543H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M14.2773-60.543H.1016' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156-60.543H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156-60.543H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M81.1914-60.543H67.0156' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M112.4258-60.543H98.25' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-31.1328-30.8437H-45.3047' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016-30.8437H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016-30.8437H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M14.2773-30.8437H.1016' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M14.2773-30.8437H.1016' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156-30.8437H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156-30.8437H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M81.1914-30.8437H67.0156' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M112.4258-30.8437H98.25' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-31.1328 28.0273H-45.3047' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016 28.0273H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016 28.0273H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M14.2773 28.0273H.1016' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M14.2773 28.0273H.1016' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156 28.0273H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156 28.0273H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M81.1914 28.0273H67.0156' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M112.4258 28.0273H98.25' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<text class='f2' x='56.263606' y='-54.037913' transform='matrix(1 0 0 1 -80.2489 51.78487)'>.<tspan x='56.263606' y='-50.052857'>.</tspan><tspan x='56.263606' y='-46.067801'>.</tspan></text>
+<text class='f2' x='168.58465' y='-54.037913' transform='matrix(1 0 0 1 -80.2489 51.78487)'>.<tspan x='168.58465' y='-50.052857'>.</tspan><tspan x='168.58465' y='-46.067801'>.</tspan></text>
+<text class='f0' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 -102.2407 2.4907)'>|</text>
+<text class='f1' x='36.327304' y='-16.258808' transform='matrix(1 0 0 1 -102.2407 2.4907)'>ψ</text>
+<text class='f0' x='43.174328' y='-16.258808' transform='matrix(1 0 0 1 -102.2407 2.4907)'></text>
+<path d='M-48.8359-63.5781C-49.5859-63.2031-50.082-62.332-50.082-61.0859V-18.75C-50.082-17.50391-50.582-16.632812-51.3281-16.257812C-50.582-15.886718-50.082-15.01172-50.082-13.76953V28.5703C-50.082 29.8164-49.5859 30.6875-48.8359 31.0586' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M-31.1328-53.1562H-14.0703V-67.9336H-31.1328Z' fill='#fff'/>
+<path d='M-31.1328-53.1562H-14.0703V-67.9336H-31.1328Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 -60.7067 -40.8812)'>H</text>
+<path d='M14.2773 36.1641H52.8438V-68.6797H14.2773Z' fill='#fff'/>
+<path d='M14.2773 36.1641H52.8438V-68.6797H14.2773Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 -15.2987 2.6567)'>F<tspan x='41.350152'>LI</tspan><tspan x='53.29149'>P</tspan></text>
+<text class='f3' x='59.68764' y='-14.764427' transform='matrix(1 0 0 1 -15.2987 2.6567)'>0</text>
+<path d='M81.1914-53.1562H98.25V-67.9336H81.1914Z' fill='#fff'/>
+<path d='M81.1914-53.1562H98.25V-67.9336H81.1914Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 51.6157 -40.8812)'>H</text>
+<path d='M-31.1328-23.45703H-14.0703V-38.2344H-31.1328Z' fill='#fff'/>
+<path d='M-31.1328-23.45703H-14.0703V-38.2344H-31.1328Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 -60.7067 -11.1825)'>H</text>
+<path d='M81.1914-23.45703H98.25V-38.2344H81.1914Z' fill='#fff'/>
+<path d='M81.1914-23.45703H98.25V-38.2344H81.1914Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 51.6157 -11.1825)'>H</text>
+<path d='M-31.1328 35.4141H-14.0703V20.6367H-31.1328Z' fill='#fff'/>
+<path d='M-31.1328 35.4141H-14.0703V20.6367H-31.1328Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 -60.7067 47.6891)'>H</text>
+<path d='M81.1914 35.4141H98.25V20.6367H81.1914Z' fill='#fff'/>
+<path d='M81.1914 35.4141H98.25V20.6367H81.1914Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 51.6157 47.6891)'>H</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/_book/content/img/flip_zero.svg b/_book/content/img/flip_zero.svg
new file mode 100644
index 0000000000000000000000000000000000000000..5ac6f04bf07d2cb59fff89108455b57f803b4189
--- /dev/null
+++ b/_book/content/img/flip_zero.svg
@@ -0,0 +1,73 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='143.133715pt' height='93.73061pt' viewBox='-68.68051 -69.078205 143.133715 93.73061'>
+<defs>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='.' horiz-adv-x='277' vert-adv-y='277' glyph-name='period' d='M192 53C192 82 168 106 139 106S86 82 86 53S110 0 139 0S192 24 192 53Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='I' horiz-adv-x='439' vert-adv-y='439' glyph-name='I' d='M374 606C383 642 386 652 465 652C489 652 497 652 497 671C497 683 486 683 482 683C453 683 379 680 350 680C320 680 247 683 217 683C210 683 197 683 197 663C197 652 206 652 225 652C267 652 294 652 294 633C294 628 294 626 292 617L157 78C148 41 145 31 66 31C43 31 34 31 34 11C34 0 46 0 49 0C78 0 151 3 180 3C210 3 284 0 314 0C322 0 334 0 334 19C334 31 326 31 304 31C286 31 281 31 261 33C240 35 236 39 236 50C236 58 238 66 240 73L374 606Z'/>
+<glyph unicode='Z' horiz-adv-x='682' vert-adv-y='682' glyph-name='Z' d='M720 659C721 663 723 668 723 674C723 683 718 683 698 683H276C252 683 251 682 245 663L190 483C188 478 187 471 187 469C187 468 187 458 199 458C208 458 210 465 212 468C250 586 302 652 458 652H621L62 27C62 26 58 12 58 9C58 0 65 0 83 0H518C542 0 543 1 549 20L620 241C621 245 624 252 624 256C624 261 620 267 611 267S601 263 594 242C550 106 502 34 332 34H161L720 659Z'/>
+<glyph unicode='x' horiz-adv-x='571' vert-adv-y='571' glyph-name='x' d='M334 302C340 328 363 420 433 420C438 420 462 420 483 407C455 402 435 377 435 353C435 337 446 318 473 318C495 318 527 336 527 376C527 428 468 442 434 442C376 442 341 389 329 366C304 432 250 442 221 442C117 442 60 313 60 288C60 278 70 278 72 278C80 278 83 280 85 289C119 395 185 420 219 420C238 420 273 411 273 353C273 322 256 255 219 115C203 53 168 11 124 11C118 11 95 11 74 24C99 29 121 50 121 78C121 105 99 113 84 113C54 113 29 87 29 55C29 9 79-11 123-11C189-11 225 59 228 65C240 28 276-11 336-11C439-11 496 118 496 143C496 153 487 153 484 153C475 153 473 149 471 142C438 35 370 11 338 11C299 11 283 43 283 77C283 99 289 121 300 165L334 302Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='−' horiz-adv-x='777' vert-adv-y='777' glyph-name='minus' d='M659 230C676 230 694 230 694 250S676 270 659 270H118C101 270 83 270 83 250S101 230 118 230H659Z'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmr10;font-size:9.96264px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-30.9023-60.875H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-30.9023-60.875H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-15.3438-60.875H-30.9023' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531-60.875H7.89062' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531-60.875H7.89062' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M39.0039-60.875H23.44531' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M74.0547-60.875H59.8828' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-30.9023-36.8008H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-30.9023-36.8008H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-3.7266-38.5V-53.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-5.4297-36.8008H-30.9023' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531-36.8008H-2.0273' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531-36.8008H-2.0273' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M39.0039-36.8008H23.44531' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M39.0039-36.8008H23.44531' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M74.0547-36.8008H59.8828' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-30.9023 16.4492H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-30.9023 16.4492H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-3.7266 14.75V-53.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-5.4297 16.4492H-30.9023' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531 16.4492H-2.0273' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531 16.4492H-2.0273' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M39.0039 16.4492H23.44531' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M39.0039 16.4492H23.44531' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M74.0547 16.4492H59.8828' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-2.02735-36.796886C-2.02735-37.738293-2.789071-38.50001-3.726571-38.50001C-4.667977-38.50001-5.4297-37.738293-5.4297-36.796886C-5.4297-35.859386-4.667977-35.09767-3.726571-35.09767C-2.789071-35.09767-2.02735-35.859386-2.02735-36.796886Z' fill='#fff'/>
+<path d='M-2.02734-36.796886C-2.02734-37.738293-2.789061-38.50001-3.726561-38.50001C-4.667967-38.50001-5.42969-37.738293-5.42969-36.796886C-5.42969-35.859386-4.667967-35.09767-3.726561-35.09767C-2.789061-35.09767-2.02734-35.859386-2.02734-36.796886Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f2' x='29.356101' y='-59.659714' transform='matrix(1 0 0 1 -61.6411 46.16295)'>.<tspan x='29.356101' y='-55.674658'>.</tspan><tspan x='29.356101' y='-51.689602'>.</tspan></text>
+<text class='f2' x='83.70226' y='-59.659714' transform='matrix(1 0 0 1 -61.6411 46.16295)'>.<tspan x='83.70226' y='-55.674658'>.</tspan><tspan x='83.70226' y='-51.689602'>.</tspan></text>
+<path d='M-2.02735 16.449207C-2.02735 15.511707-2.789071 14.74999-3.726571 14.74999C-4.667977 14.74999-5.4297 15.511707-5.4297 16.449207C-5.4297 17.390613-4.667977 18.15233-3.726571 18.15233C-2.789071 18.15233-2.02735 17.390613-2.02735 16.449207Z' fill='#fff'/>
+<path d='M-2.02734 16.449207C-2.02734 15.511707-2.789061 14.74999-3.726561 14.74999C-4.667967 14.74999-5.42969 15.511707-5.42969 16.449207C-5.42969 17.390613-4.667967 18.15233-3.726561 18.15233C-2.789061 18.15233-2.02734 17.390613-2.02734 16.449207Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f0' x='13.79919' y='-22.212692' transform='matrix(1 0 0 1 -82.4797 2.4907)'>|</text>
+<text class='f1' x='16.566598' y='-22.212692' transform='matrix(1 0 0 1 -82.4797 2.4907)'>x</text>
+<text class='f0' x='22.260531' y='-22.212692' transform='matrix(1 0 0 1 -82.4797 2.4907)'></text>
+<path d='M-49.9922-63.9102C-50.7383-63.5352-51.2344-62.6641-51.2344-61.418V-24.70313C-51.2344-23.45703-51.7344-22.585938-52.4805-22.210938C-51.7344-21.839844-51.2344-20.96875-51.2344-19.72266V16.9922C-51.2344 18.2383-50.7383 19.1094-49.9922 19.4844' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M-15.3438-53.0703H7.89062V-68.6797H-15.3438Z' fill='#fff'/>
+<path d='M-15.3438-53.0703H7.89062V-68.6797H-15.3438Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f0' x='13.79919' y='-22.212692' transform='matrix(1 0 0 1 -25.1581 -35.6744)'>−</text>
+<text class='f1' x='21.547937' y='-22.212692' transform='matrix(1 0 0 1 -25.1581 -35.6744)'>Z</text>
+<path d='M39.0039 24.2539H59.8828V-68.6797H39.0039Z' fill='#fff'/>
+<path d='M39.0039 24.2539H59.8828V-68.6797H39.0039Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f0' x='13.79919' y='-22.212692' transform='matrix(1 0 0 1 29.1888 2.9888)'>−</text>
+<text class='f1' x='21.547937' y='-22.212692' transform='matrix(1 0 0 1 29.1888 2.9888)'>I</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/_book/content/img/grover.svg b/_book/content/img/grover.svg
new file mode 100644
index 0000000000000000000000000000000000000000..dce5a1647e1816e56e93bdac9eeab4a7954e0085
--- /dev/null
+++ b/_book/content/img/grover.svg
@@ -0,0 +1,100 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='195.372255pt' height='48.402497pt' viewBox='-68.680855 -68.679792 195.372255 48.402497'>
+<defs>
+<clipPath id='clip1'>
+<path d='M106.7656-31.91797H126.6914V-54.3359H106.7656Z'/>
+</clipPath>
+<font id='cmmi7' horiz-adv-x='0'>
+<font-face font-family='cmmi7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='f' horiz-adv-x='557' vert-adv-y='557' glyph-name='f' d='M407 395H505C525 395 538 395 538 417C538 431 525 431 507 431H414C437 558 445 604 453 633C458 655 480 676 504 676C505 676 532 676 551 664C510 651 507 615 507 609C507 587 524 572 547 572C574 572 604 595 604 633C604 679 555 704 504 704C460 704 411 679 384 629C364 592 356 547 335 431H256C236 431 223 431 223 409C223 395 236 395 254 395H328C327 389 264 29 240-78C235-100 218-176 170-176C169-176 145-176 126-164C167-151 170-115 170-109C170-87 153-72 130-72C103-72 73-95 73-133C73-178 120-204 170-204C234-204 278-138 290-116C326-49 349 74 351 86L407 395Z'/>
+<glyph unicode='n' horiz-adv-x='706' vert-adv-y='706' glyph-name='n' d='M122 63C118 50 112 25 112 22C112 0 130-10 146-10C164-10 180 3 185 12S198 53 203 74C208 93 219 139 225 164C231 186 237 208 242 231C253 272 255 280 284 321C312 361 359 413 434 413C492 413 493 362 493 343C493 283 450 172 434 130C423 102 419 93 419 76C419 23 463-10 514-10C614-10 658 128 658 143C658 156 645 156 642 156C628 156 627 150 623 139C600 59 557 18 517 18C496 18 492 32 492 53C492 76 497 89 515 134C527 165 568 271 568 327C568 424 491 441 438 441C355 441 299 390 269 350C262 419 203 441 162 441C119 441 96 410 83 387C61 350 47 293 47 288C47 275 61 275 64 275C78 275 79 278 86 305C101 364 120 413 159 413C185 413 192 391 192 364C192 345 183 308 176 281S159 213 154 191L122 63Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmr7' horiz-adv-x='0'>
+<font-face font-family='cmr7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='0' horiz-adv-x='569' vert-adv-y='569' glyph-name='zero' d='M516 319C516 429 503 508 457 578C426 624 364 664 284 664C52 664 52 391 52 319S52-20 284-20S516 247 516 319ZM284 8C238 8 177 35 157 117C143 176 143 258 143 332C143 405 143 481 158 536C179 615 243 636 284 636C338 636 390 603 408 545C424 491 425 419 425 332C425 258 425 184 412 121C392 30 324 8 284 8Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='H' horiz-adv-x='831' vert-adv-y='831' glyph-name='H' d='M763 606C772 642 774 652 847 652C873 652 881 652 881 672C881 683 870 683 867 683C839 683 767 680 739 680C710 680 639 683 610 683C602 683 591 683 591 663C591 652 600 652 619 652C621 652 640 652 657 650C675 648 684 647 684 634C684 630 683 628 680 615L620 371H315L374 606C383 642 386 652 458 652C484 652 492 652 492 672C492 683 481 683 478 683C450 683 378 680 350 680C321 680 250 683 221 683C213 683 202 683 202 663C202 652 211 652 230 652C232 652 251 652 268 650C286 648 295 647 295 634C295 630 294 627 291 615L157 78C147 39 145 31 66 31C48 31 39 31 39 11C39 0 51 0 53 0C81 0 152 3 180 3C201 3 223 2 244 2C266 2 288 0 309 0C317 0 329 0 329 20C329 31 320 31 301 31C264 31 236 31 236 49C236 55 238 60 239 66L307 340H612C570 174 547 79 543 64C533 32 514 31 452 31C437 31 428 31 428 11C428 0 440 0 442 0C470 0 541 3 569 3C590 3 612 2 633 2C655 2 677 0 698 0C706 0 718 0 718 20C718 31 709 31 690 31C653 31 625 31 625 49C625 55 627 60 628 66L763 606Z'/>
+<glyph unicode='V' horiz-adv-x='583' vert-adv-y='583' glyph-name='V' d='M628 569C677 647 719 650 756 652C768 653 769 670 769 671C769 679 764 683 756 683C730 683 701 680 674 680C641 680 607 683 575 683C569 683 556 683 556 664C556 653 565 652 572 652C599 650 618 640 618 619C618 604 603 582 603 581L296 93L228 622C228 639 251 652 297 652C311 652 322 652 322 672C322 681 314 683 308 683C268 683 225 680 184 680C166 680 147 681 129 681S92 683 75 683C68 683 56 683 56 664C56 652 65 652 81 652C137 652 138 643 141 618L220 1C223-19 227-22 240-22C256-22 260-17 268-4L628 569Z'/>
+<glyph unicode='t' horiz-adv-x='361' vert-adv-y='361' glyph-name='t' d='M206 400H300C320 400 330 400 330 420C330 431 320 431 302 431H214C250 573 255 593 255 599C255 616 243 626 226 626C223 626 195 625 186 590L147 431H53C33 431 23 431 23 412C23 400 31 400 51 400H139C67 116 63 99 63 81C63 27 101-11 155-11C257-11 314 135 314 143C314 153 306 153 302 153C293 153 292 150 287 139C244 35 191 11 157 11C136 11 126 24 126 57C126 81 128 88 132 105L206 400Z'/>
+<glyph unicode='x' horiz-adv-x='571' vert-adv-y='571' glyph-name='x' d='M334 302C340 328 363 420 433 420C438 420 462 420 483 407C455 402 435 377 435 353C435 337 446 318 473 318C495 318 527 336 527 376C527 428 468 442 434 442C376 442 341 389 329 366C304 432 250 442 221 442C117 442 60 313 60 288C60 278 70 278 72 278C80 278 83 280 85 289C119 395 185 420 219 420C238 420 273 411 273 353C273 322 256 255 219 115C203 53 168 11 124 11C118 11 95 11 74 24C99 29 121 50 121 78C121 105 99 113 84 113C54 113 29 87 29 55C29 9 79-11 123-11C189-11 225 59 228 65C240 28 276-11 336-11C439-11 496 118 496 143C496 153 487 153 484 153C475 153 473 149 471 142C438 35 370 11 338 11C299 11 283 43 283 77C283 99 289 121 300 165L334 302Z'/>
+</font>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='0' horiz-adv-x='500' vert-adv-y='500' glyph-name='zero' d='M460 320C460 400 455 480 420 554C374 650 292 666 250 666C190 666 117 640 76 547C44 478 39 400 39 320C39 245 43 155 84 79C127-2 200-22 249-22C303-22 379-1 423 94C455 163 460 241 460 320ZM249 0C210 0 151 25 133 121C122 181 122 273 122 332C122 396 122 462 130 516C149 635 224 644 249 644C282 644 348 626 367 527C377 471 377 395 377 332C377 257 377 189 366 125C351 30 294 0 249 0Z'/>
+<glyph unicode='F' horiz-adv-x='652' vert-adv-y='652' glyph-name='F' d='M582 680H33V649H57C134 649 136 638 136 602V78C136 42 134 31 57 31H33V0C68 3 146 3 185 3C226 3 317 3 353 0V31H320C225 31 225 44 225 79V325H311C407 325 417 293 417 208H442V473H417C417 389 407 356 311 356H225V609C225 642 227 649 274 649H394C544 649 569 593 585 455H610L582 680Z'/>
+<glyph unicode='I' horiz-adv-x='361' vert-adv-y='361' glyph-name='I' d='M225 605C225 641 228 652 307 652H333V683C298 680 219 680 181 680C142 680 63 680 28 683V652H54C133 652 136 641 136 605V78C136 42 133 31 54 31H28V0C63 3 142 3 180 3C219 3 298 3 333 0V31H307C228 31 225 42 225 78V605Z'/>
+<glyph unicode='L' horiz-adv-x='625' vert-adv-y='625' glyph-name='L' d='M582 258H557C546 156 532 31 356 31H274C227 31 225 38 225 71V604C225 638 225 652 320 652H353V683C317 680 226 680 185 680C146 680 68 680 33 683V652H57C134 652 136 641 136 605V78C136 42 134 31 57 31H33V0H554L582 258Z'/>
+<glyph unicode='P' horiz-adv-x='680' vert-adv-y='680' glyph-name='P' d='M227 316H396C516 316 624 397 624 497C624 595 525 683 388 683H35V652H59C136 652 138 641 138 605V78C138 42 136 31 59 31H35V0C70 3 144 3 182 3S295 3 330 0V31H306C229 31 227 42 227 78V316ZM224 342V612C224 645 226 652 273 652H362C521 652 521 546 521 497C521 450 521 342 362 342H224Z'/>
+<glyph unicode='a' horiz-adv-x='500' vert-adv-y='500' glyph-name='a' d='M333 76C337 36 364-6 411-6C432-6 493 8 493 89V145H468V89C468 31 443 25 432 25C399 25 395 70 395 75V275C395 317 395 356 359 393C320 432 270 448 222 448C140 448 71 401 71 335C71 305 91 288 117 288C145 288 163 308 163 334C163 346 158 379 112 380C139 415 188 426 220 426C269 426 326 387 326 298V261C275 258 205 255 142 225C67 191 42 139 42 95C42 14 139-11 202-11C268-11 314 29 333 76ZM326 240V140C326 45 254 11 209 11C160 11 119 46 119 96C119 151 161 234 326 240Z'/>
+<glyph unicode='e' horiz-adv-x='444' vert-adv-y='444' glyph-name='e' d='M112 252C118 401 202 426 236 426C339 426 349 291 349 252H112ZM111 231H390C412 231 415 231 415 252C415 351 361 448 236 448C120 448 28 345 28 220C28 86 133-11 248-11C370-11 415 100 415 119C415 129 407 131 402 131C393 131 391 125 389 117C354 14 264 14 254 14C204 14 164 44 141 81C111 129 111 195 111 231Z'/>
+<glyph unicode='i' horiz-adv-x='277' vert-adv-y='277' glyph-name='i' d='M177 442L37 431V400C102 400 111 394 111 345V76C111 31 100 31 33 31V0C65 1 119 3 143 3C178 3 213 1 247 0V31C181 31 177 36 177 75V442ZM181 616C181 648 156 669 128 669C97 669 75 642 75 616C75 589 97 563 128 563C156 563 181 584 181 616Z'/>
+<glyph unicode='m' horiz-adv-x='833' vert-adv-y='833' glyph-name='m' d='M110 344V76C110 31 99 31 32 31V0C67 1 118 3 145 3C171 3 223 1 257 0V31C190 31 179 31 179 76V260C179 364 250 420 314 420C377 420 388 366 388 309V76C388 31 377 31 310 31V0C345 1 396 3 423 3C449 3 501 1 535 0V31C468 31 457 31 457 76V260C457 364 528 420 592 420C655 420 666 366 666 309V76C666 31 655 31 588 31V0C623 1 674 3 701 3C727 3 779 1 813 0V31C761 31 736 31 735 61V252C735 338 735 369 704 405C690 422 657 442 599 442C515 442 471 382 454 344C440 431 366 442 321 442C248 442 201 399 173 337V442L32 431V400C102 400 110 393 110 344Z'/>
+<glyph unicode='p' horiz-adv-x='555' vert-adv-y='555' glyph-name='p' d='M172 376V442L28 431V400C99 400 106 394 106 350V-118C106-163 95-163 28-163V-194C62-193 114-191 140-191C167-191 218-193 253-194V-163C186-163 175-163 175-118V50V59C180 43 222-11 298-11C417-11 521 87 521 216C521 343 424 442 312 442C234 442 192 398 172 376ZM175 114V337C204 388 253 417 304 417C377 417 438 329 438 216C438 95 368 11 294 11C254 11 216 31 189 72C175 93 175 94 175 114Z'/>
+<glyph unicode='r' horiz-adv-x='391' vert-adv-y='391' glyph-name='r' d='M167 332V442L28 431V400C98 400 106 393 106 344V76C106 31 95 31 28 31V0C67 1 114 3 142 3C182 3 229 3 269 0V31H248C174 31 172 42 172 78V232C172 331 214 420 290 420C297 420 299 420 301 419C298 418 278 406 278 380C278 352 299 337 321 337C339 337 364 349 364 381S333 442 290 442C217 442 181 375 167 332Z'/>
+<glyph unicode='s' horiz-adv-x='394' vert-adv-y='394' glyph-name='s' d='M208 194C230 190 312 174 312 102C312 51 277 11 199 11C115 11 79 68 60 153C57 166 56 170 46 170C33 170 33 163 33 145V13C33-4 33-11 44-11C49-11 50-10 69 9C71 11 71 13 89 32C133-10 178-11 199-11C314-11 360 56 360 128C360 181 330 211 318 223C285 255 246 263 204 271C148 282 81 295 81 353C81 388 107 429 193 429C303 429 308 339 310 308C311 299 320 299 322 299C335 299 335 304 335 323V424C335 441 335 448 324 448C319 448 317 448 304 436C301 432 291 423 287 420C249 448 208 448 193 448C71 448 33 381 33 325C33 290 49 262 76 240C108 214 136 208 208 194Z'/>
+<glyph unicode='t' horiz-adv-x='388' vert-adv-y='388' glyph-name='t' d='M173 400H316V431H173V615H148C147 533 117 426 19 422V400H104V124C104 1 197-11 233-11C304-11 332 60 332 124V181H307V126C307 52 277 14 240 14C173 14 173 105 173 122V400Z'/>
+</font>
+<font id='cmsy7' horiz-adv-x='0'>
+<font-face font-family='cmsy7' units-per-em='1000' ascent='782' descent='951'/>
+<glyph unicode='∗' horiz-adv-x='585' vert-adv-y='585' glyph-name='asteriskmath' d='M323 249C405 285 442 299 467 311C486 319 495 323 495 342C495 359 482 374 464 374C457 374 455 374 443 365L307 274L322 422C324 440 322 465 292 465C280 465 261 457 261 435C261 426 265 396 266 386C268 369 275 297 277 274L142 365C132 371 129 374 120 374C102 374 89 359 89 342C89 322 101 317 110 313L261 250C179 214 142 200 117 188C98 180 89 176 89 157C89 140 102 125 120 125C127 125 129 125 141 134L277 225L261 64C261 42 280 34 292 34S323 42 323 64C323 73 319 103 318 113C316 130 309 202 307 225L427 145C453 125 455 125 464 125C482 125 495 140 495 157C495 177 483 182 474 186L323 249Z'/>
+<glyph unicode='⊗' horiz-adv-x='892' vert-adv-y='892' glyph-name='circlemultiply' d='M815 250C815 455 648 619 446 619C242 619 77 452 77 251C77 46 244-118 446-118C650-118 815 49 815 250ZM222 499C263 536 340 585 446 585S629 536 670 499L446 275L222 499ZM198 27C143 84 111 168 111 250C111 338 146 420 198 474L422 251L198 27ZM694 474C749 417 781 333 781 251C781 163 746 81 694 27L470 250L694 474ZM670 2C629-35 552-84 446-84S263-35 222 2L446 226L670 2Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmsy7;font-size:6.973848px}
+text.f2 {font-family:cmmi10;font-size:9.96264px}
+text.f3 {font-family:cmmi7;font-size:6.973848px}
+text.f4 {font-family:cmr10;font-size:9.96264px}
+text.f5 {font-family:cmr7;font-size:6.973848px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-42.5977-35.98828L-38.0625-42.79297' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f3' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 -77.3013 -3.8)'>n</text>
+<path d='M-33.2422-39.390626H-47.418' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-19.0703-39.390626H-33.2422' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.8125-39.390626H9.6406' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M56.9336-39.390626H42.76172' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M106.7656-39.390626H92.5937' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<text class='f0' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 -108.3178 2.4907)'>|</text>
+<text class='f4' x='42.404353' y='-39.390053' transform='matrix(1 0 0 1 -108.3178 2.4907)'>0</text>
+<text class='f3' x='47.385692' y='-43.005417' transform='matrix(1 0 0 1 -108.3178 2.4907)'>n</text>
+<text class='f0' x='52.808685' y='-39.390053' transform='matrix(1 0 0 1 -108.3178 2.4907)'></text>
+<path d='M-19.0703-31.4375H9.6406V-47.33985H-19.0703Z' fill='#fff'/>
+<path d='M-19.0703-31.4375H9.6406V-47.33985H-19.0703Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f2' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 -54.7224 3.9663)'>H</text>
+<text class='f1' x='48.727835' y='-43.005417' transform='matrix(1 0 0 1 -54.7224 3.9663)'>⊗</text>
+<text class='f3' x='54.954515' y='-43.005417' transform='matrix(1 0 0 1 -54.7224 3.9663)'>n</text>
+<path d='M23.8125-30.57422H42.76172V-48.20313H23.8125Z' fill='#fff'/>
+<path d='M23.8125-30.57422H42.76172V-48.20313H23.8125Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f2' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 -11.838 1.9787)'>V</text>
+<text class='f3' x='45.448491' y='-37.895672' transform='matrix(1 0 0 1 -11.838 1.9787)'>f</text>
+<path d='M56.9336-31.25391H92.5937V-47.52735H56.9336Z' fill='#fff'/>
+<path d='M56.9336-31.25391H92.5937V-47.52735H56.9336Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f4' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 21.282 2.6567)'>FLIP</text>
+<text class='f1' x='62.744794' y='-37.895672' transform='matrix(1 0 0 1 21.282 2.6567)'>∗</text>
+<path d='M107.1641-32.31641H126.293V-46.86328H107.1641Z' fill='#fff' clip-path='url(#clip1)'/>
+<path d='M107.1641-32.31641H126.293V-46.86328H107.1641Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<path d='M117.5781-46.86328V-54.3359' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<path d='M115.8789-46.86328V-54.3359' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<path d='M109.6016-37.88672C113.1758-42.14844 120.2812-42.14844 123.8555-37.88672' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<path d='M116.7266-36.75391L121.5742-42.53906' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<path d='M122.812964-44.011748C122.613743-43.87112 121.676245-43.30081 120.96922-43.046904L122.184062-42.02737C122.309058-42.769556 122.707494-43.792996 122.812964-44.011748Z' clip-path='url(#clip1)'/>
+<path d='M122.812964-44.011748C122.613743-43.87112 121.676245-43.30081 120.96922-43.046904L122.184062-42.02737C122.309058-42.769556 122.707494-43.792996 122.812964-44.011748Z' stroke='#000' fill='none' stroke-width='.788999' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<text class='f2' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 72.0101 -20.3569)'>x</text>
+<text class='f5' x='45.330877' y='-37.895672' transform='matrix(1 0 0 1 72.0101 -20.3569)'>0</text>
+<path d='M-26.5742-20.6758H50.2656V-58.1016H-26.5742Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f4' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 -58.2753 -22.6361)'>rep<tspan x='53.778413'>eat</tspan></text>
+<text class='f2' x='70.382852' y='-39.390053' transform='matrix(1 0 0 1 -58.2753 -22.6361)'>t</text>
+<text class='f4' x='77.301362' y='-39.390053' transform='matrix(1 0 0 1 -58.2753 -22.6361)'>times</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/_book/content/img/grover_plot_1.svg b/_book/content/img/grover_plot_1.svg
new file mode 100644
index 0000000000000000000000000000000000000000..f75921ff58a96da2a7f400fe11601ddfe527ac53
--- /dev/null
+++ b/_book/content/img/grover_plot_1.svg
@@ -0,0 +1,43 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='171.821173pt' height='157.568902pt' viewBox='-68.679627 -68.681407 171.821173 157.568902'>
+<defs>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='a' horiz-adv-x='500' vert-adv-y='500' glyph-name='a' d='M333 76C337 36 364-6 411-6C432-6 493 8 493 89V145H468V89C468 31 443 25 432 25C399 25 395 70 395 75V275C395 317 395 356 359 393C320 432 270 448 222 448C140 448 71 401 71 335C71 305 91 288 117 288C145 288 163 308 163 334C163 346 158 379 112 380C139 415 188 426 220 426C269 426 326 387 326 298V261C275 258 205 255 142 225C67 191 42 139 42 95C42 14 139-11 202-11C268-11 314 29 333 76ZM326 240V140C326 45 254 11 209 11C160 11 119 46 119 96C119 151 161 234 326 240Z'/>
+<glyph unicode='b' horiz-adv-x='555' vert-adv-y='555' glyph-name='b' d='M172 377V694L28 683V652C98 652 106 645 106 596V0H131C132 1 140 15 167 62C182 39 224-11 298-11C417-11 521 87 521 216C521 343 423 442 309 442C231 442 188 395 172 377ZM175 114V320C175 339 175 340 186 356C225 412 280 420 304 420C349 420 385 394 409 356C435 315 438 258 438 217C438 180 436 120 407 75C386 44 348 11 294 11C249 11 213 35 189 72C175 93 175 96 175 114Z'/>
+<glyph unicode='d' horiz-adv-x='555' vert-adv-y='555' glyph-name='d' d='M380 55V-11L527 0V31C457 31 449 38 449 87V694L305 683V652C375 652 383 645 383 596V380C354 416 311 442 257 442C139 442 34 344 34 215C34 88 132-11 246-11C310-11 355 23 380 55ZM380 323V118C380 100 380 98 369 81C339 33 294 11 251 11C206 11 170 37 146 75C120 116 117 173 117 214C117 251 119 311 148 356C169 387 207 420 261 420C296 420 338 405 369 360C380 343 380 341 380 323Z'/>
+<glyph unicode='g' horiz-adv-x='500' vert-adv-y='500' glyph-name='g' d='M222 172C135 172 135 272 135 295C135 322 136 354 151 379C159 391 182 419 222 419C309 419 309 319 309 296C309 269 308 237 293 212C285 200 262 172 222 172ZM106 133C106 137 106 160 123 180C162 152 203 149 222 149C315 149 384 218 384 295C384 332 368 369 343 392C379 426 415 431 433 431C435 431 440 431 443 430C432 426 427 415 427 403C427 386 440 374 456 374C466 374 485 381 485 404C485 421 473 453 434 453C414 453 370 447 328 406C286 439 244 442 222 442C129 442 60 373 60 296C60 252 82 214 107 193C94 178 76 145 76 110C76 79 89 41 120 21C60 4 28-39 28-79C28-151 127-206 249-206C367-206 471-155 471-77C471-42 457 9 406 37C353 65 295 65 234 65C209 65 166 65 159 66C127 70 106 101 106 133ZM250-183C149-183 80-132 80-79C80-33 118 4 162 7H221C307 7 419 7 419-79C419-133 348-183 250-183Z'/>
+<glyph unicode='o' horiz-adv-x='500' vert-adv-y='500' glyph-name='o' d='M471 214C471 342 371 448 250 448C125 448 28 339 28 214C28 85 132-11 249-11C370-11 471 87 471 214ZM250 14C207 14 163 35 136 81C111 125 111 186 111 222C111 261 111 315 135 359C162 405 209 426 249 426C293 426 336 404 362 361S388 260 388 222C388 186 388 132 366 88C344 43 300 14 250 14Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='∗' horiz-adv-x='500' vert-adv-y='500' glyph-name='asteriskmath' d='M275 427C276 441 276 465 250 465C234 465 221 452 224 439V426L238 271L110 364C101 369 99 371 92 371C78 371 65 357 65 343C65 327 75 323 85 318L227 250L89 183C73 175 65 171 65 156S78 128 92 128C99 128 101 128 126 147L238 228L223 60C223 39 241 34 249 34C261 34 276 41 276 60L261 228L389 135C398 130 400 128 407 128C421 128 434 142 434 156C434 171 425 176 413 182C353 212 351 212 272 249L410 316C426 324 434 328 434 343S421 371 407 371C400 371 398 371 373 352L261 271L275 427Z'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='θ' horiz-adv-x='469' vert-adv-y='469' glyph-name='theta' d='M455 500C455 566 437 705 335 705C196 705 42 423 42 194C42 100 71-11 162-11C303-11 455 276 455 500ZM148 363C165 427 185 507 225 578C252 627 289 683 334 683C383 683 389 619 389 562C389 513 381 462 357 363H148ZM348 331C337 285 316 200 278 128C243 60 205 11 162 11C129 11 108 40 108 133C108 175 114 233 140 331H348Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmr10;font-size:9.96264px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-58.164063 85.429688H83.1137' stroke='#000' fill='none' stroke-width='.3985'/>
+<path d='M81.91801 83.83594C82.01567 84.433594 83.113324 85.328125 83.410199 85.429688C83.113324 85.527344 82.01567 86.425781 81.91801 87.02344' stroke='#000' fill='none' stroke-width='.31879' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f2' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.2539 3.4593)'>bad</text>
+<path d='M-58.164063 85.429688V-55.8478' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<path d='M-59.75781-54.65239C-59.160157-54.75004-58.261719-55.847699-58.164063-56.144574C-58.0625-55.847699-57.167969-54.75004-56.57031-54.65239' stroke='#000' fill='none' stroke-width='.31879' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f2' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 -10.5163 -147.1911)'>go<tspan x='-47.9239'>o</tspan><tspan x='-42.665813'>d</tspan></text>
+<path d='M-58.164063 85.429688L82.8787 57.2188' stroke='#00f' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M80.945361 55.492163C81.2266 56.23045 82.851602 57.093729 83.257855 57.14451C82.902384 57.347636 81.734417 58.76951 81.757856 59.558569' stroke='#00f' fill='none' stroke-width='.637579' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f0' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 -25.8561)'><tspan fill='#00f'>|∗</tspan><tspan fill='#00f' x='-50.414583'></tspan></text>
+<path d='M-1.4688 85.429688C-1.4688 81.80078-1.8203 78.17188-2.5117 74.6094' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 59.88603 -2.21)'>θ</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/_book/content/img/grover_plot_2.svg b/_book/content/img/grover_plot_2.svg
new file mode 100644
index 0000000000000000000000000000000000000000..c2a2f2aafa1ff7a75b3dc689fe79b04e64cab585
--- /dev/null
+++ b/_book/content/img/grover_plot_2.svg
@@ -0,0 +1,56 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='180.229178pt' height='187.61781pt' viewBox='-68.679627 -68.681407 180.229178 187.61781'>
+<defs>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='∗' horiz-adv-x='500' vert-adv-y='500' glyph-name='asteriskmath' d='M275 427C276 441 276 465 250 465C234 465 221 452 224 439V426L238 271L110 364C101 369 99 371 92 371C78 371 65 357 65 343C65 327 75 323 85 318L227 250L89 183C73 175 65 171 65 156S78 128 92 128C99 128 101 128 126 147L238 228L223 60C223 39 241 34 249 34C261 34 276 41 276 60L261 228L389 135C398 130 400 128 407 128C421 128 434 142 434 156C434 171 425 176 413 182C353 212 351 212 272 249L410 316C426 324 434 328 434 343S421 371 407 371C400 371 398 371 373 352L261 271L275 427Z'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='a' horiz-adv-x='500' vert-adv-y='500' glyph-name='a' d='M333 76C337 36 364-6 411-6C432-6 493 8 493 89V145H468V89C468 31 443 25 432 25C399 25 395 70 395 75V275C395 317 395 356 359 393C320 432 270 448 222 448C140 448 71 401 71 335C71 305 91 288 117 288C145 288 163 308 163 334C163 346 158 379 112 380C139 415 188 426 220 426C269 426 326 387 326 298V261C275 258 205 255 142 225C67 191 42 139 42 95C42 14 139-11 202-11C268-11 314 29 333 76ZM326 240V140C326 45 254 11 209 11C160 11 119 46 119 96C119 151 161 234 326 240Z'/>
+<glyph unicode='b' horiz-adv-x='555' vert-adv-y='555' glyph-name='b' d='M172 377V694L28 683V652C98 652 106 645 106 596V0H131C132 1 140 15 167 62C182 39 224-11 298-11C417-11 521 87 521 216C521 343 423 442 309 442C231 442 188 395 172 377ZM175 114V320C175 339 175 340 186 356C225 412 280 420 304 420C349 420 385 394 409 356C435 315 438 258 438 217C438 180 436 120 407 75C386 44 348 11 294 11C249 11 213 35 189 72C175 93 175 96 175 114Z'/>
+<glyph unicode='d' horiz-adv-x='555' vert-adv-y='555' glyph-name='d' d='M380 55V-11L527 0V31C457 31 449 38 449 87V694L305 683V652C375 652 383 645 383 596V380C354 416 311 442 257 442C139 442 34 344 34 215C34 88 132-11 246-11C310-11 355 23 380 55ZM380 323V118C380 100 380 98 369 81C339 33 294 11 251 11C206 11 170 37 146 75C120 116 117 173 117 214C117 251 119 311 148 356C169 387 207 420 261 420C296 420 338 405 369 360C380 343 380 341 380 323Z'/>
+<glyph unicode='g' horiz-adv-x='500' vert-adv-y='500' glyph-name='g' d='M222 172C135 172 135 272 135 295C135 322 136 354 151 379C159 391 182 419 222 419C309 419 309 319 309 296C309 269 308 237 293 212C285 200 262 172 222 172ZM106 133C106 137 106 160 123 180C162 152 203 149 222 149C315 149 384 218 384 295C384 332 368 369 343 392C379 426 415 431 433 431C435 431 440 431 443 430C432 426 427 415 427 403C427 386 440 374 456 374C466 374 485 381 485 404C485 421 473 453 434 453C414 453 370 447 328 406C286 439 244 442 222 442C129 442 60 373 60 296C60 252 82 214 107 193C94 178 76 145 76 110C76 79 89 41 120 21C60 4 28-39 28-79C28-151 127-206 249-206C367-206 471-155 471-77C471-42 457 9 406 37C353 65 295 65 234 65C209 65 166 65 159 66C127 70 106 101 106 133ZM250-183C149-183 80-132 80-79C80-33 118 4 162 7H221C307 7 419 7 419-79C419-133 348-183 250-183Z'/>
+<glyph unicode='o' horiz-adv-x='500' vert-adv-y='500' glyph-name='o' d='M471 214C471 342 371 448 250 448C125 448 28 339 28 214C28 85 132-11 249-11C370-11 471 87 471 214ZM250 14C207 14 163 35 136 81C111 125 111 186 111 222C111 261 111 315 135 359C162 405 209 426 249 426C293 426 336 404 362 361S388 260 388 222C388 186 388 132 366 88C344 43 300 14 250 14Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='θ' horiz-adv-x='469' vert-adv-y='469' glyph-name='theta' d='M455 500C455 566 437 705 335 705C196 705 42 423 42 194C42 100 71-11 162-11C303-11 455 276 455 500ZM148 363C165 427 185 507 225 578C252 627 289 683 334 683C383 683 389 619 389 562C389 513 381 462 357 363H148ZM348 331C337 285 316 200 278 128C243 60 205 11 162 11C129 11 108 40 108 133C108 175 114 233 140 331H348Z'/>
+<glyph unicode='V' horiz-adv-x='583' vert-adv-y='583' glyph-name='V' d='M628 569C677 647 719 650 756 652C768 653 769 670 769 671C769 679 764 683 756 683C730 683 701 680 674 680C641 680 607 683 575 683C569 683 556 683 556 664C556 653 565 652 572 652C599 650 618 640 618 619C618 604 603 582 603 581L296 93L228 622C228 639 251 652 297 652C311 652 322 652 322 672C322 681 314 683 308 683C268 683 225 680 184 680C166 680 147 681 129 681S92 683 75 683C68 683 56 683 56 664C56 652 65 652 81 652C137 652 138 643 141 618L220 1C223-19 227-22 240-22C256-22 260-17 268-4L628 569Z'/>
+</font>
+<font id='cmmi7' horiz-adv-x='0'>
+<font-face font-family='cmmi7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='f' horiz-adv-x='557' vert-adv-y='557' glyph-name='f' d='M407 395H505C525 395 538 395 538 417C538 431 525 431 507 431H414C437 558 445 604 453 633C458 655 480 676 504 676C505 676 532 676 551 664C510 651 507 615 507 609C507 587 524 572 547 572C574 572 604 595 604 633C604 679 555 704 504 704C460 704 411 679 384 629C364 592 356 547 335 431H256C236 431 223 431 223 409C223 395 236 395 254 395H328C327 389 264 29 240-78C235-100 218-176 170-176C169-176 145-176 126-164C167-151 170-115 170-109C170-87 153-72 130-72C103-72 73-95 73-133C73-178 120-204 170-204C234-204 278-138 290-116C326-49 349 74 351 86L407 395Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmmi7;font-size:6.973848px}
+text.f3 {font-family:cmr10;font-size:9.96264px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-58.164063 85.429688H83.1137' stroke='#000' fill='none' stroke-width='.3985'/>
+<path d='M81.91801 83.83594C82.01567 84.433594 83.113324 85.328125 83.410199 85.429688C83.113324 85.527344 82.01567 86.425781 81.91801 87.02344' stroke='#000' fill='none' stroke-width='.31879' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.2539 3.4593)'>bad</text>
+<path d='M-58.164063 85.429688V-55.8478' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<path d='M-59.75781-54.65239C-59.160157-54.75004-58.261719-55.847699-58.164063-56.144574C-58.0625-55.847699-57.167969-54.75004-56.57031-54.65239' stroke='#000' fill='none' stroke-width='.31879' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 -10.5163 -147.1911)'>go<tspan x='-47.9239'>o</tspan><tspan x='-42.665813'>d</tspan></text>
+<path d='M-58.164063 85.429688L82.8787 57.2188' stroke='#00f' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M80.945361 55.492163C81.2266 56.23045 82.851602 57.093729 83.257855 57.14451C82.902384 57.347636 81.734417 58.76951 81.757856 59.558569' stroke='#00f' fill='none' stroke-width='.637579' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f0' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 -25.8561)'><tspan fill='#00f'>|∗</tspan><tspan fill='#00f' x='-50.414583'></tspan></text>
+<path d='M-1.4688 85.429688C-1.4688 81.80078-1.8203 78.17188-2.5117 74.6094' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 59.88603 -2.21)'>θ</text>
+<path d='M-58.164063 85.429688L82.8787 113.6367' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M81.757854 111.300498C81.734421 112.085653 82.902387 113.50753 83.257858 113.710657C82.851606 113.761437 81.226604 114.624713 80.945365 115.362999' stroke='#f00' fill='none' stroke-width='.637579' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>V</tspan></text>
+<text class='f2' x='-52.35178' y='86.922575' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>f</tspan></text>
+<text class='f0' x='-45.526667' y='85.428195' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>|∗</tspan><tspan fill='#f00' x='-37.777923'></tspan></text>
+<path d='M-15.6445 85.429688C-15.6445 88.14844-15.9063 90.87109-16.4258 93.54297' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 45.7126 7.7111)'>θ</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/_book/content/img/grover_plot_3.svg b/_book/content/img/grover_plot_3.svg
new file mode 100644
index 0000000000000000000000000000000000000000..3649fd20bad184c86a1b68981c57233ae8c8a807
--- /dev/null
+++ b/_book/content/img/grover_plot_3.svg
@@ -0,0 +1,76 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='209.466796pt' height='187.61781pt' viewBox='-68.679627 -68.681407 209.466796 187.61781'>
+<defs>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='2' horiz-adv-x='500' vert-adv-y='500' glyph-name='two' d='M127 77L233 180C389 318 449 372 449 472C449 586 359 666 237 666C124 666 50 574 50 485C50 429 100 429 103 429C120 429 155 441 155 482C155 508 137 534 102 534C94 534 92 534 89 533C112 598 166 635 224 635C315 635 358 554 358 472C358 392 308 313 253 251L61 37C50 26 50 24 50 0H421L449 174H424C419 144 412 100 402 85C395 77 329 77 307 77H127Z'/>
+<glyph unicode='F' horiz-adv-x='652' vert-adv-y='652' glyph-name='F' d='M582 680H33V649H57C134 649 136 638 136 602V78C136 42 134 31 57 31H33V0C68 3 146 3 185 3C226 3 317 3 353 0V31H320C225 31 225 44 225 79V325H311C407 325 417 293 417 208H442V473H417C417 389 407 356 311 356H225V609C225 642 227 649 274 649H394C544 649 569 593 585 455H610L582 680Z'/>
+<glyph unicode='I' horiz-adv-x='361' vert-adv-y='361' glyph-name='I' d='M225 605C225 641 228 652 307 652H333V683C298 680 219 680 181 680C142 680 63 680 28 683V652H54C133 652 136 641 136 605V78C136 42 133 31 54 31H28V0C63 3 142 3 180 3C219 3 298 3 333 0V31H307C228 31 225 42 225 78V605Z'/>
+<glyph unicode='L' horiz-adv-x='625' vert-adv-y='625' glyph-name='L' d='M582 258H557C546 156 532 31 356 31H274C227 31 225 38 225 71V604C225 638 225 652 320 652H353V683C317 680 226 680 185 680C146 680 68 680 33 683V652H57C134 652 136 641 136 605V78C136 42 134 31 57 31H33V0H554L582 258Z'/>
+<glyph unicode='P' horiz-adv-x='680' vert-adv-y='680' glyph-name='P' d='M227 316H396C516 316 624 397 624 497C624 595 525 683 388 683H35V652H59C136 652 138 641 138 605V78C138 42 136 31 59 31H35V0C70 3 144 3 182 3S295 3 330 0V31H306C229 31 227 42 227 78V316ZM224 342V612C224 645 226 652 273 652H362C521 652 521 546 521 497C521 450 521 342 362 342H224Z'/>
+<glyph unicode='a' horiz-adv-x='500' vert-adv-y='500' glyph-name='a' d='M333 76C337 36 364-6 411-6C432-6 493 8 493 89V145H468V89C468 31 443 25 432 25C399 25 395 70 395 75V275C395 317 395 356 359 393C320 432 270 448 222 448C140 448 71 401 71 335C71 305 91 288 117 288C145 288 163 308 163 334C163 346 158 379 112 380C139 415 188 426 220 426C269 426 326 387 326 298V261C275 258 205 255 142 225C67 191 42 139 42 95C42 14 139-11 202-11C268-11 314 29 333 76ZM326 240V140C326 45 254 11 209 11C160 11 119 46 119 96C119 151 161 234 326 240Z'/>
+<glyph unicode='b' horiz-adv-x='555' vert-adv-y='555' glyph-name='b' d='M172 377V694L28 683V652C98 652 106 645 106 596V0H131C132 1 140 15 167 62C182 39 224-11 298-11C417-11 521 87 521 216C521 343 423 442 309 442C231 442 188 395 172 377ZM175 114V320C175 339 175 340 186 356C225 412 280 420 304 420C349 420 385 394 409 356C435 315 438 258 438 217C438 180 436 120 407 75C386 44 348 11 294 11C249 11 213 35 189 72C175 93 175 96 175 114Z'/>
+<glyph unicode='d' horiz-adv-x='555' vert-adv-y='555' glyph-name='d' d='M380 55V-11L527 0V31C457 31 449 38 449 87V694L305 683V652C375 652 383 645 383 596V380C354 416 311 442 257 442C139 442 34 344 34 215C34 88 132-11 246-11C310-11 355 23 380 55ZM380 323V118C380 100 380 98 369 81C339 33 294 11 251 11C206 11 170 37 146 75C120 116 117 173 117 214C117 251 119 311 148 356C169 387 207 420 261 420C296 420 338 405 369 360C380 343 380 341 380 323Z'/>
+<glyph unicode='g' horiz-adv-x='500' vert-adv-y='500' glyph-name='g' d='M222 172C135 172 135 272 135 295C135 322 136 354 151 379C159 391 182 419 222 419C309 419 309 319 309 296C309 269 308 237 293 212C285 200 262 172 222 172ZM106 133C106 137 106 160 123 180C162 152 203 149 222 149C315 149 384 218 384 295C384 332 368 369 343 392C379 426 415 431 433 431C435 431 440 431 443 430C432 426 427 415 427 403C427 386 440 374 456 374C466 374 485 381 485 404C485 421 473 453 434 453C414 453 370 447 328 406C286 439 244 442 222 442C129 442 60 373 60 296C60 252 82 214 107 193C94 178 76 145 76 110C76 79 89 41 120 21C60 4 28-39 28-79C28-151 127-206 249-206C367-206 471-155 471-77C471-42 457 9 406 37C353 65 295 65 234 65C209 65 166 65 159 66C127 70 106 101 106 133ZM250-183C149-183 80-132 80-79C80-33 118 4 162 7H221C307 7 419 7 419-79C419-133 348-183 250-183Z'/>
+<glyph unicode='o' horiz-adv-x='500' vert-adv-y='500' glyph-name='o' d='M471 214C471 342 371 448 250 448C125 448 28 339 28 214C28 85 132-11 249-11C370-11 471 87 471 214ZM250 14C207 14 163 35 136 81C111 125 111 186 111 222C111 261 111 315 135 359C162 405 209 426 249 426C293 426 336 404 362 361S388 260 388 222C388 186 388 132 366 88C344 43 300 14 250 14Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='∗' horiz-adv-x='500' vert-adv-y='500' glyph-name='asteriskmath' d='M275 427C276 441 276 465 250 465C234 465 221 452 224 439V426L238 271L110 364C101 369 99 371 92 371C78 371 65 357 65 343C65 327 75 323 85 318L227 250L89 183C73 175 65 171 65 156S78 128 92 128C99 128 101 128 126 147L238 228L223 60C223 39 241 34 249 34C261 34 276 41 276 60L261 228L389 135C398 130 400 128 407 128C421 128 434 142 434 156C434 171 425 176 413 182C353 212 351 212 272 249L410 316C426 324 434 328 434 343S421 371 407 371C400 371 398 371 373 352L261 271L275 427Z'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='θ' horiz-adv-x='469' vert-adv-y='469' glyph-name='theta' d='M455 500C455 566 437 705 335 705C196 705 42 423 42 194C42 100 71-11 162-11C303-11 455 276 455 500ZM148 363C165 427 185 507 225 578C252 627 289 683 334 683C383 683 389 619 389 562C389 513 381 462 357 363H148ZM348 331C337 285 316 200 278 128C243 60 205 11 162 11C129 11 108 40 108 133C108 175 114 233 140 331H348Z'/>
+<glyph unicode='V' horiz-adv-x='583' vert-adv-y='583' glyph-name='V' d='M628 569C677 647 719 650 756 652C768 653 769 670 769 671C769 679 764 683 756 683C730 683 701 680 674 680C641 680 607 683 575 683C569 683 556 683 556 664C556 653 565 652 572 652C599 650 618 640 618 619C618 604 603 582 603 581L296 93L228 622C228 639 251 652 297 652C311 652 322 652 322 672C322 681 314 683 308 683C268 683 225 680 184 680C166 680 147 681 129 681S92 683 75 683C68 683 56 683 56 664C56 652 65 652 81 652C137 652 138 643 141 618L220 1C223-19 227-22 240-22C256-22 260-17 268-4L628 569Z'/>
+</font>
+<font id='cmmi7' horiz-adv-x='0'>
+<font-face font-family='cmmi7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='f' horiz-adv-x='557' vert-adv-y='557' glyph-name='f' d='M407 395H505C525 395 538 395 538 417C538 431 525 431 507 431H414C437 558 445 604 453 633C458 655 480 676 504 676C505 676 532 676 551 664C510 651 507 615 507 609C507 587 524 572 547 572C574 572 604 595 604 633C604 679 555 704 504 704C460 704 411 679 384 629C364 592 356 547 335 431H256C236 431 223 431 223 409C223 395 236 395 254 395H328C327 389 264 29 240-78C235-100 218-176 170-176C169-176 145-176 126-164C167-151 170-115 170-109C170-87 153-72 130-72C103-72 73-95 73-133C73-178 120-204 170-204C234-204 278-138 290-116C326-49 349 74 351 86L407 395Z'/>
+</font>
+<font id='cmr7' horiz-adv-x='0'>
+<font-face font-family='cmr7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='*' horiz-adv-x='569' vert-adv-y='569' glyph-name='asterisk' d='M299 510L434 419C447 410 452 410 457 410C476 410 488 428 488 442C488 461 477 466 462 472L315 534L462 597C477 603 488 608 488 627C488 641 476 659 457 659C448 659 446 658 435 650L299 559L314 709C316 727 312 750 284 750C272 750 253 742 253 720C253 716 254 703 255 698L269 559L134 650C121 659 116 659 111 659C92 659 80 641 80 627C80 608 91 603 106 597L253 535L106 472C91 466 80 461 80 442C80 440 80 410 118 410L269 510L254 355V350C250 342 260 319 284 319C296 319 315 327 315 349C315 353 314 366 313 371L299 510Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmmi7;font-size:6.973848px}
+text.f3 {font-family:cmr10;font-size:9.96264px}
+text.f4 {font-family:cmr7;font-size:6.973848px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-58.164063 85.429688H83.1137' stroke='#000' fill='none' stroke-width='.3985'/>
+<path d='M81.91801 83.83594C82.01567 84.433594 83.113324 85.328125 83.410199 85.429688C83.113324 85.527344 82.01567 86.425781 81.91801 87.02344' stroke='#000' fill='none' stroke-width='.31879' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.2539 3.4593)'>bad</text>
+<path d='M-58.164063 85.429688V-55.8478' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<path d='M-59.75781-54.65239C-59.160157-54.75004-58.261719-55.847699-58.164063-56.144574C-58.0625-55.847699-57.167969-54.75004-56.57031-54.65239' stroke='#000' fill='none' stroke-width='.31879' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 -10.5163 -147.1911)'>go<tspan x='-47.9239'>o</tspan><tspan x='-42.665813'>d</tspan></text>
+<path d='M-58.164063 85.429688L82.8787 57.2188' stroke='#00f' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M80.945361 55.492163C81.2266 56.23045 82.851602 57.093729 83.257855 57.14451C82.902384 57.347636 81.734417 58.76951 81.757856 59.558569' stroke='#00f' fill='none' stroke-width='.637579' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f0' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 -25.8561)'><tspan fill='#00f'>|∗</tspan><tspan fill='#00f' x='-50.414583'></tspan></text>
+<path d='M-1.4688 85.429688C-1.4688 81.80078-1.8203 78.17188-2.5117 74.6094' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 59.88603 -2.21)'>θ</text>
+<path d='M-58.164063 85.429688L82.8787 113.6367' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M81.757854 111.300498C81.734421 112.085653 82.902387 113.50753 83.257858 113.710657C82.851606 113.761437 81.226604 114.624713 80.945365 115.362999' stroke='#f00' fill='none' stroke-width='.637579' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>V</tspan></text>
+<text class='f2' x='-52.35178' y='86.922575' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>f</tspan></text>
+<text class='f0' x='-45.526667' y='85.428195' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>|∗</tspan><tspan fill='#f00' x='-37.777923'></tspan></text>
+<path d='M-15.6445 85.429688C-15.6445 88.14844-15.9063 90.87109-16.4258 93.54297' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 45.7126 7.7111)'>θ</text>
+<path d='M-58.164063 85.429688L82.9647 .75' stroke='#008000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M80.56639-.22656C81.0781 .375003 82.898417 .640628 83.296857 .550787C83.031232 .863284 82.410136 2.593751 82.699207 3.328128' stroke='#008000' fill='none' stroke-width='.637582' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 -91.60992)'><tspan fill='#008000'>FLIP</tspan></text>
+<text class='f4' x='-35.055468' y='87.227022' transform='matrix(1 0 0 1 145.4531 -91.60992)'><tspan fill='#008000'>*</tspan></text>
+<text class='f1' x='-28.925708' y='85.428195' transform='matrix(1 0 0 1 145.4531 -91.60992)'><tspan fill='#008000'>V</tspan></text>
+<text class='f2' x='-23.114162' y='86.922575' transform='matrix(1 0 0 1 145.4531 -91.60992)'><tspan fill='#008000'>f</tspan></text>
+<text class='f0' x='-16.289048' y='85.428195' transform='matrix(1 0 0 1 145.4531 -91.60992)'><tspan fill='#008000'>|∗</tspan><tspan fill='#008000' x='-8.540304'></tspan></text>
+<path d='M12.7031 71.2539C11.1094 63.2773 8.1484 55.625 3.9609 48.6523' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 71.5687 -24.8875)'>2</text>
+<text class='f1' x='-53.181988' y='85.428195' transform='matrix(1 0 0 1 71.5687 -24.8875)'>θ</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/_book/content/img/vf.svg b/_book/content/img/vf.svg
new file mode 100644
index 0000000000000000000000000000000000000000..6588bc2ceb8a929ee774c05e5ca19f37665e18e3
--- /dev/null
+++ b/_book/content/img/vf.svg
@@ -0,0 +1,65 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='142.973539pt' height='50.22671pt' viewBox='-68.68023 -69.078205 142.973539 50.22671'>
+<defs>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='-' horiz-adv-x='333' vert-adv-y='333' glyph-name='hyphen' d='M276 187V245H11V187H276Z'/>
+<glyph unicode='o' horiz-adv-x='500' vert-adv-y='500' glyph-name='o' d='M471 214C471 342 371 448 250 448C125 448 28 339 28 214C28 85 132-11 249-11C370-11 471 87 471 214ZM250 14C207 14 163 35 136 81C111 125 111 186 111 222C111 261 111 315 135 359C162 405 209 426 249 426C293 426 336 404 362 361S388 260 388 222C388 186 388 132 366 88C344 43 300 14 250 14Z'/>
+<glyph unicode='r' horiz-adv-x='391' vert-adv-y='391' glyph-name='r' d='M167 332V442L28 431V400C98 400 106 393 106 344V76C106 31 95 31 28 31V0C67 1 114 3 142 3C182 3 229 3 269 0V31H248C174 31 172 42 172 78V232C172 331 214 420 290 420C297 420 299 420 301 419C298 418 278 406 278 380C278 352 299 337 321 337C339 337 364 349 364 381S333 442 290 442C217 442 181 375 167 332Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='−' horiz-adv-x='777' vert-adv-y='777' glyph-name='minus' d='M659 230C676 230 694 230 694 250S676 270 659 270H118C101 270 83 270 83 250S101 230 118 230H659Z'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='U' horiz-adv-x='682' vert-adv-y='682' glyph-name='U' d='M635 578C645 619 663 649 743 652C748 652 760 653 760 672C760 673 760 683 747 683C714 683 679 680 645 680S574 683 541 683C535 683 523 683 523 663C523 652 533 652 541 652C598 651 609 630 609 608C609 605 607 590 606 587L516 230C482 96 367 9 267 9C199 9 145 53 145 139C145 141 145 173 156 217L253 606C262 642 264 652 337 652C363 652 371 652 371 672C371 683 360 683 357 683C329 683 257 680 229 680C200 680 129 683 100 683C92 683 81 683 81 663C81 652 90 652 109 652C111 652 130 652 147 650C165 648 174 647 174 634C174 628 163 586 157 563L135 475C126 436 78 247 74 228C67 200 67 185 67 170C67 48 158-22 263-22C389-22 513 91 546 223L635 578Z'/>
+<glyph unicode='x' horiz-adv-x='571' vert-adv-y='571' glyph-name='x' d='M334 302C340 328 363 420 433 420C438 420 462 420 483 407C455 402 435 377 435 353C435 337 446 318 473 318C495 318 527 336 527 376C527 428 468 442 434 442C376 442 341 389 329 366C304 432 250 442 221 442C117 442 60 313 60 288C60 278 70 278 72 278C80 278 83 280 85 289C119 395 185 420 219 420C238 420 273 411 273 353C273 322 256 255 219 115C203 53 168 11 124 11C118 11 95 11 74 24C99 29 121 50 121 78C121 105 99 113 84 113C54 113 29 87 29 55C29 9 79-11 123-11C189-11 225 59 228 65C240 28 276-11 336-11C439-11 496 118 496 143C496 153 487 153 484 153C475 153 473 149 471 142C438 35 370 11 338 11C299 11 283 43 283 77C283 99 289 121 300 165L334 302Z'/>
+</font>
+<font id='cmmi7' horiz-adv-x='0'>
+<font-face font-family='cmmi7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='f' horiz-adv-x='557' vert-adv-y='557' glyph-name='f' d='M407 395H505C525 395 538 395 538 417C538 431 525 431 507 431H414C437 558 445 604 453 633C458 655 480 676 504 676C505 676 532 676 551 664C510 651 507 615 507 609C507 587 524 572 547 572C574 572 604 595 604 633C604 679 555 704 504 704C460 704 411 679 384 629C364 592 356 547 335 431H256C236 431 223 431 223 409C223 395 236 395 254 395H328C327 389 264 29 240-78C235-100 218-176 170-176C169-176 145-176 126-164C167-151 170-115 170-109C170-87 153-72 130-72C103-72 73-95 73-133C73-178 120-204 170-204C234-204 278-138 290-116C326-49 349 74 351 86L407 395Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmmi7;font-size:6.973848px}
+text.f3 {font-family:cmr10;font-size:9.96264px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-35.8984-59.8672H-50.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-35.8984-59.8672H-50.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-21.72656-59.8672H-35.8984' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M12.3867-59.8672H-1.78906' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M12.3867-59.8672H-1.78906' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M26.5586-59.8672H12.3867' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-35.8984-28.0625H-50.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-35.8984-28.0625H-50.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-21.72656-28.0625H-35.8984' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-21.72656-28.0625H-35.8984' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M12.3867-28.0625H-1.78906' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M12.3867-28.0625H-1.78906' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M26.5586-28.0625H12.3867' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<text class='f0' x='-11.75683' y='-43.964573' transform='matrix(1 0 0 1 -54.8685 -13.4103)'>|</text>
+<text class='f1' x='-8.989422' y='-43.964573' transform='matrix(1 0 0 1 -54.8685 -13.4103)'>x</text>
+<text class='f0' x='-3.29549' y='-43.964573' transform='matrix(1 0 0 1 -54.8685 -13.4103)'></text>
+<path d='M-21.72656-19.25H-1.78906V-68.6797H-21.72656Z' fill='#fff'/>
+<path d='M-21.72656-19.25H-1.78906V-68.6797H-21.72656Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='-11.75683' y='-43.964573' transform='matrix(1 0 0 1 -5.9835 1.9787)'>U</text>
+<text class='f2' x='-4.954565' y='-42.470192' transform='matrix(1 0 0 1 -5.9835 1.9787)'>f</text>
+<text class='f0' x='-11.75683' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'>|</text>
+<text class='f1' x='-8.989422' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'>x</text>
+<text class='f0' x='-3.29549' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'></text>
+<text class='f3' x='3.899744' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'>or<tspan x='16.104008'>-</tspan></text>
+<text class='f0' x='19.424895' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'>|</text>
+<text class='f1' x='22.192303' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'>x</text>
+<text class='f0' x='27.886235' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'></text>
+<text class='f0' x='-11.75683' y='-43.964573' transform='matrix(1 0 0 1 -56.9234 18.3916)'>|<tspan x='-8.989422'>−</tspan></text>
+<text class='f0' x='-11.75683' y='-43.964573' transform='matrix(1 0 0 1 42.5327 18.3916)'>|<tspan x='-8.989422'>−</tspan></text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/_book/content/introduction.html b/_book/content/introduction.html
index 66b9062540cea07956afdf1342f5450ea19b5236..f5ad0e5a3e9edbcc59ece3d891afa298e11a8067 100644
--- a/_book/content/introduction.html
+++ b/_book/content/introduction.html
@@ -225,6 +225,12 @@ window.Quarto = {
   <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
diff --git a/_book/content/ketNotation.html b/_book/content/ketNotation.html
index a6f552c63c45eb617227b7f988108da8f2404eaf..5cfaaffc7b9dd2e44f8700a4a557ef950243eb1e 100644
--- a/_book/content/ketNotation.html
+++ b/_book/content/ketNotation.html
@@ -225,6 +225,12 @@ window.Quarto = {
   <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
diff --git a/_book/content/observingSystems.html b/_book/content/observingSystems.html
index 6e3b1a891dff0c943a7acc4780afc800aa3f191e..61b7c395256956478f3cbd40c11bd95ca6783884 100644
--- a/_book/content/observingSystems.html
+++ b/_book/content/observingSystems.html
@@ -225,6 +225,12 @@ window.Quarto = {
   <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
diff --git a/_book/content/partialObserving.html b/_book/content/partialObserving.html
index c3beff1bce4c88abc5fe96f38c6e7e71323a6456..61520cbf86f8305a7e9d3bc4537c91f0ff217c38 100644
--- a/_book/content/partialObserving.html
+++ b/_book/content/partialObserving.html
@@ -225,6 +225,12 @@ window.Quarto = {
   <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
diff --git a/_book/content/probabilisticSystems.html b/_book/content/probabilisticSystems.html
index b1155962d5ee965be280116171dddea05ee29f4b..d91edadcfecd010f0c27609842e68636fe9af15b 100644
--- a/_book/content/probabilisticSystems.html
+++ b/_book/content/probabilisticSystems.html
@@ -225,6 +225,12 @@ window.Quarto = {
   <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
diff --git a/_book/content/quantumCircuits.html b/_book/content/quantumCircuits.html
index 9635c39edd04eb8a7a37b759b3d8b80d0f3e05c0..9bf0c3ee7622e6992689e37481a7aa910475c9dd 100644
--- a/_book/content/quantumCircuits.html
+++ b/_book/content/quantumCircuits.html
@@ -225,6 +225,12 @@ window.Quarto = {
   <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
diff --git a/_book/content/quantumSystems.html b/_book/content/quantumSystems.html
index 3a03a29a9e692a6ba87e2458adc5d79df7967615..07a3c4d00d4f1de7a160ca30eaf287bbaa3bd4a8 100644
--- a/_book/content/quantumSystems.html
+++ b/_book/content/quantumSystems.html
@@ -225,6 +225,12 @@ window.Quarto = {
   <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
diff --git a/_book/content/shorsAlgorithm.html b/_book/content/shorsAlgorithm.html
index 3ee35d6056ebd3a80441ee05b8b275c84acf4c6c..47d07c6ff8e4ecfe0b3800af1d7d19ec35eff348 100644
--- a/_book/content/shorsAlgorithm.html
+++ b/_book/content/shorsAlgorithm.html
@@ -30,6 +30,7 @@ ul.task-list li input[type="checkbox"] {
 <script src="../site_libs/quarto-search/fuse.min.js"></script>
 <script src="../site_libs/quarto-search/quarto-search.js"></script>
 <meta name="quarto:offset" content="../">
+<link href="../content/groversAlgorithm.html" rel="next">
 <link href="../content/bernsteinVazirani.html" rel="prev">
 <script src="../site_libs/quarto-html/quarto.js" type="module"></script>
 <script src="../site_libs/quarto-html/tabsets/tabsets.js" type="module"></script>
@@ -224,6 +225,12 @@ window.Quarto = {
   <a href="../content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link active">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="../content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
@@ -528,10 +535,12 @@ Example: Construction of the DFT circuit for <span class="math inline">\(n=3\)</
 <figcaption>The DTF for three qubits</figcaption>
 </figure>
 </div>
-<p>First we construct the <span class="math inline">\(\psi_3\)</span> element. Contrary to the intuition, we use the top wire containing <span class="math inline">\(\ket{j_1}\)</span> for this. We use a Hadamad-gate to bring <span class="math inline">\(\ket{j_1}\)</span> into the superposition <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} + (-1)^{j_1} \ket{1}) = \frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1} \ket{1})\)</span>. This looks close to <span class="math inline">\(\psi_3\)</span> already, we now need to add the last two decimal places <span class="math inline">\(j_2j_3\)</span> to the state. For this we use <span class="math inline">\(R_2\)</span> and <span class="math inline">\(R_3\)</span>. We apply <span class="math inline">\(R_2\)</span> controlled by the wire <span class="math inline">\(j_2\)</span> and <span class="math inline">\(R_3\)</span> controlled by the wire <span class="math inline">\(j_3\)</span>. This means, that we only apply the <span class="math inline">\(R\)</span>-gate, if the corresponding wire contains a <span class="math inline">\(1\)</span>. You can see this written as a quantum circuit at the figure below. After applying <span class="math inline">\(R_2\)</span> we have the state <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1j_2} \ket{1})\)</span> and after applying <span class="math inline">\(R_3\)</span> we have the state <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1j_2j_3} \ket{1})\)</span> on the top wire. This is the same as <span class="math inline">\(\psi_3\)</span>, so we are done on the first wire (We are at the first slice in the figure).</p>
-<p>The next step is to construct the <span class="math inline">\(\psi_2\)</span> state on the middle wire. We again use a Hadamad-gate to bring <span class="math inline">\(\ket{j_2}\)</span> into the superposition <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_2} \ket{1})\)</span>. We now need to include the last decimal point <span class="math inline">\(j_3\)</span>, for which we use <span class="math inline">\(R_2\)</span> again, this time controlled by <span class="math inline">\(j_3\)</span>. The resulting superposition is now <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_2j_3} \ket{1})\)</span>, which is <span class="math inline">\(\psi_2\)</span>. (We are at the second slice in the figure).</p>
-<p>On the bottom wire, we can just do a Hadamad-gate to bring <span class="math inline">\(\ket{j_3}\)</span> into the superposition <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_3} \ket{1})\)</span>. We then have <span class="math inline">\(\psi_1\)</span> on the bottom wire. (We are at the third slice in the figure).</p>
-<p>When applying this circuit, we get the state <span class="math inline">\(\psi_3 \otimes \psi_2 \otimes \psi_1\)</span> as a result. This very close to our desired state <span class="math inline">\(\psi_1 \otimes \psi_2 \otimes \psi_3\)</span>, just the order of the wires is flipped. To solve this, we apply a <span class="math inline">\(\operatorname{SWAP}\)</span> onto all wires, which flips the order of the wires an delivers the correct output for <span class="math inline">\(\operatorname{DFT}_{2^3}\)</span>.</p>
+<ol type="1">
+<li>First we construct the <span class="math inline">\(\psi_3\)</span> element. Contrary to the intuition, we use the top wire containing <span class="math inline">\(\ket{j_1}\)</span> for this. We use a Hadamad-gate to bring <span class="math inline">\(\ket{j_1}\)</span> into the superposition <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} + (-1)^{j_1} \ket{1}) = \frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1} \ket{1})\)</span>. This looks close to <span class="math inline">\(\psi_3\)</span> already, we now need to add the last two decimal places <span class="math inline">\(j_2j_3\)</span> to the state. For this we use <span class="math inline">\(R_2\)</span> and <span class="math inline">\(R_3\)</span>. We apply <span class="math inline">\(R_2\)</span> controlled by the wire <span class="math inline">\(j_2\)</span> and <span class="math inline">\(R_3\)</span> controlled by the wire <span class="math inline">\(j_3\)</span>. This means, that we only apply the <span class="math inline">\(R\)</span>-gate, if the corresponding wire contains a <span class="math inline">\(1\)</span>. You can see this written as a quantum circuit at the figure below. After applying <span class="math inline">\(R_2\)</span> we have the state <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1j_2} \ket{1})\)</span> and after applying <span class="math inline">\(R_3\)</span> we have the state <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1j_2j_3} \ket{1})\)</span> on the top wire. This is the same as <span class="math inline">\(\psi_3\)</span>, so we are done on the first wire (We are at the first slice in the figure).</li>
+<li>The next step is to construct the <span class="math inline">\(\psi_2\)</span> state on the middle wire. We again use a Hadamad-gate to bring <span class="math inline">\(\ket{j_2}\)</span> into the superposition <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_2} \ket{1})\)</span>. We now need to include the last decimal point <span class="math inline">\(j_3\)</span>, for which we use <span class="math inline">\(R_2\)</span> again, this time controlled by <span class="math inline">\(j_3\)</span>. The resulting superposition is now <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_2j_3} \ket{1})\)</span>, which is <span class="math inline">\(\psi_2\)</span>. (We are at the second slice in the figure).</li>
+<li>On the bottom wire, we can just do a Hadamad-gate to bring <span class="math inline">\(\ket{j_3}\)</span> into the superposition <span class="math inline">\(\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_3} \ket{1})\)</span>. We then have <span class="math inline">\(\psi_1\)</span> on the bottom wire. (We are at the third slice in the figure).</li>
+<li>When applying this circuit, we get the state <span class="math inline">\(\psi_3 \otimes \psi_2 \otimes \psi_1\)</span> as a result. This very close to our desired state <span class="math inline">\(\psi_1 \otimes \psi_2 \otimes \psi_3\)</span>, just the order of the wires is flipped. To solve this, we apply a <span class="math inline">\(\operatorname{SWAP}\)</span> onto all wires, which flips the order of the wires an delivers the correct output for <span class="math inline">\(\operatorname{DFT}_{2^3}\)</span>.</li>
+</ol>
 </div>
 </div>
 <p>The more general approach to construct the <span class="math inline">\(\operatorname{DFT}_N\)</span> as a quantum circuit with <span class="math inline">\(n\)</span> qubits (<span class="math inline">\(N = 2^n\)</span>) works as follows:</p>
@@ -963,6 +972,9 @@ Example: Construction of the DFT circuit for <span class="math inline">\(n=3\)</
       </a>          
   </div>
   <div class="nav-page nav-page-next">
+      <a href="../content/groversAlgorithm.html" class="pagination-link" aria-label="Grover's algorithm">
+        <span class="nav-page-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span> <i class="bi bi-arrow-right-short"></i>
+      </a>
   </div>
 </nav>
 </div> <!-- /content -->
diff --git a/_book/index.html b/_book/index.html
index ee5e147e43c5820c087a2c5b8c727f3d4344b7cd..f3d5ac27557db2b3a80f0f176053e2f5f619b859 100644
--- a/_book/index.html
+++ b/_book/index.html
@@ -9,7 +9,7 @@
 <meta name="author" content="Jannik Hellenkamp">
 <meta name="author" content="Stefan Stump">
 <meta name="author" content="Dominique Unruh">
-<meta name="dcterms.date" content="2025-06-03">
+<meta name="dcterms.date" content="2025-06-04">
 
 <title>Introduction to Quantum Computing</title>
 <style>
@@ -199,6 +199,12 @@ ul.task-list li input[type="checkbox"] {
   <a href="./content/shorsAlgorithm.html" class="sidebar-item-text sidebar-link">
  <span class="menu-text"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">Shor’s Algorithm</span></span></a>
   </div>
+</li>
+          <li class="sidebar-item">
+  <div class="sidebar-item-container"> 
+  <a href="./content/groversAlgorithm.html" class="sidebar-item-text sidebar-link">
+ <span class="menu-text"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Grover’s algorithm</span></span></a>
+  </div>
 </li>
       </ul>
   </li>
@@ -241,7 +247,7 @@ ul.task-list li input[type="checkbox"] {
     <div>
     <div class="quarto-title-meta-heading">Published</div>
     <div class="quarto-title-meta-contents">
-      <p class="date">June 3, 2025</p>
+      <p class="date">June 4, 2025</p>
     </div>
   </div>
   
diff --git a/_book/search.json b/_book/search.json
index ef5a4c0c29cb08bad9f81c3c0f0e487fd12f2f86..c4265026bbc1ab99808a15582b964bd0be1eb5dd 100644
--- a/_book/search.json
+++ b/_book/search.json
@@ -377,10 +377,43 @@
     "href": "content/shorsAlgorithm.html#constructing-the-dft",
     "title": "10  Shor’s Algorithm",
     "section": "10.5 Constructing the DFT",
-    "text": "10.5 Constructing the DFT\nSo far we have described everything necessary for Shor’s algorithm, but only described the matrix representation of the \\(\\operatorname{DFT}_N\\). We will now take a closer look into implementing the \\(\\operatorname{DFT}_M\\) as a quantum circuit. Since we only use the \\(\\operatorname{DFT}_N\\) for Shor’s algorithm so far, we will only look at \\(N=2^n\\), which is the \\(\\operatorname{DFT}\\) applied on \\(n\\) qubits.\nTo start the circuit, we recall the definition of the \\(\\operatorname{DFT}_N\\) from Definition 10.1: \\(\\operatorname{DFT}_N := \\frac{1}{\\sqrt{{2^n}}} (\\omega^{kl})_{kl}\\) with \\(\\omega:= e^{2\\pi i / 2^n}\\). To apply the \\(\\operatorname{DFT}_N\\) to a quantum state \\(\\ket{j}\\) we calculate \\[\n\\begin{aligned}\n\\operatorname{DFT}_{N}\\ket{j}\n=& \\frac{1}{\\sqrt{N}} \\sum_{k=0}^{N-1} \\omega^{jk} \\ket{k}\\\\\n=& \\frac{1}{\\sqrt{N}} \\sum_{k=0}^{N-1} e^{2\\pi i j k / N} \\ket{k}\\\\\n=& \\frac{1}{\\sqrt{N}} \\sum_{k_1 \\in \\{0,1\\}} \\dots \\sum_{k_n \\in \\{0,1\\}} e^{2\\pi i j (\\sum_{l=1}^n k_l 2^{-l})} \\ket{k_1 \\dots k_n}\\\\\n=& \\frac{1}{\\sqrt{N}} \\sum_{k_1 \\in \\{0,1\\}} \\dots \\sum_{k_n \\in \\{0,1\\}} \\bigotimes_{l=1}^n e^{2\\pi i j k_l 2^{-l}} \\ket{k_l}\\\\\n=& \\frac{1}{\\sqrt{N}} \\bigotimes_{l=1}^n \\sum_{k_l \\in \\{0,1\\}} e^{2\\pi i j k_l 2^{-l}} \\ket{k_l}\\\\\n=& \\frac{1}{\\sqrt{N}} \\bigotimes_{l=1}^n (\\ket{0} +  e^{2\\pi i j 2^{-l}} \\ket{1})\\\\\n=& \\frac{1}{\\sqrt{N}} \\bigotimes_{l=1}^n (\\ket{0} +  e^{2\\pi i 0.j_{n-l+1} \\dots j_{n}} \\ket{1}).\n\\end{aligned}\n\\] The expression \\(0.j\\) expresses a binary fraction (e.g. \\(0.101 = \\frac{1}{2} + \\frac{1}{8} = \\frac{5}{8}\\)).\nWith this we have shown, that we can write \\(\\operatorname{DFT}_N \\ket{j}\\) as the following tensor product of quantum states\n\\[\n\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_n} \\ket{1}) \\otimes \\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_{n-1}j_n} \\ket{1}) \\otimes \\dots \\otimes \\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_1\\dots j_n} \\ket{1}).\n\\]\nFrom this rewritten tensor product, we can get an idea on how to construct the quantum circuit for the \\(\\operatorname{DFT}_N\\). Namely, we can construct a quantum circuit for each element of the tensor product and from this build the general circuit.\nFor this, we segment the tensor product into different elements \\(\\psi\\) as follows:\n\\[\n\\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_n} \\ket{1})}_{\\psi_1} \\otimes \\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_{n-1}j_n} \\ket{1})}_{\\psi_2} \\otimes \\dots \\otimes \\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_1\\dots j_n} \\ket{1})}_{\\psi_n}.\n\\]\nWe also introduce a new gate \\(R_k\\) which is defined by the following matrix:\n\\[\nR_k:=\\begin{pmatrix} 1 & 0 \\\\ 0 & e^{2 \\pi i / 2^k}  \\end{pmatrix}.\n\\]\nTo understand the construction of the circuit from these elements, we will look at an example for \\(n=3\\) first:\n\n\n\n\n\n\nExample: Construction of the DFT circuit for \\(n=3\\)\n\n\n\nWe start by building the tensor product for \\(n=3\\). The input for the DFT circuit is \\(\\ket{j} = \\ket{j_1j_2j_3}\\). Using the formula from above, we can write the result of \\(\\operatorname{DFT}_{2^3} \\ket{j}\\) as the following tensor product:\n\\[\n\\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_3} \\ket{1})}_{\\psi_1} \\otimes \\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_2j_3} \\ket{1})}_{\\psi_2} \\otimes \\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_1j_2j_3} \\ket{1})}_{\\psi_3}.\n\\]\n\n\n\nThe DTF for three qubits\n\n\nFirst we construct the \\(\\psi_3\\) element. Contrary to the intuition, we use the top wire containing \\(\\ket{j_1}\\) for this. We use a Hadamad-gate to bring \\(\\ket{j_1}\\) into the superposition \\(\\frac{1}{\\sqrt{2}}(\\ket{0} + (-1)^{j_1} \\ket{1}) = \\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2 \\pi i 0.j_1} \\ket{1})\\). This looks close to \\(\\psi_3\\) already, we now need to add the last two decimal places \\(j_2j_3\\) to the state. For this we use \\(R_2\\) and \\(R_3\\). We apply \\(R_2\\) controlled by the wire \\(j_2\\) and \\(R_3\\) controlled by the wire \\(j_3\\). This means, that we only apply the \\(R\\)-gate, if the corresponding wire contains a \\(1\\). You can see this written as a quantum circuit at the figure below. After applying \\(R_2\\) we have the state \\(\\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2 \\pi i 0.j_1j_2} \\ket{1})\\) and after applying \\(R_3\\) we have the state \\(\\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2 \\pi i 0.j_1j_2j_3} \\ket{1})\\) on the top wire. This is the same as \\(\\psi_3\\), so we are done on the first wire (We are at the first slice in the figure).\nThe next step is to construct the \\(\\psi_2\\) state on the middle wire. We again use a Hadamad-gate to bring \\(\\ket{j_2}\\) into the superposition \\(\\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2 \\pi i 0.j_2} \\ket{1})\\). We now need to include the last decimal point \\(j_3\\), for which we use \\(R_2\\) again, this time controlled by \\(j_3\\). The resulting superposition is now \\(\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_2j_3} \\ket{1})\\), which is \\(\\psi_2\\). (We are at the second slice in the figure).\nOn the bottom wire, we can just do a Hadamad-gate to bring \\(\\ket{j_3}\\) into the superposition \\(\\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2 \\pi i 0.j_3} \\ket{1})\\). We then have \\(\\psi_1\\) on the bottom wire. (We are at the third slice in the figure).\nWhen applying this circuit, we get the state \\(\\psi_3 \\otimes \\psi_2 \\otimes \\psi_1\\) as a result. This very close to our desired state \\(\\psi_1 \\otimes \\psi_2 \\otimes \\psi_3\\), just the order of the wires is flipped. To solve this, we apply a \\(\\operatorname{SWAP}\\) onto all wires, which flips the order of the wires an delivers the correct output for \\(\\operatorname{DFT}_{2^3}\\).\n\n\nThe more general approach to construct the \\(\\operatorname{DFT}_N\\) as a quantum circuit with \\(n\\) qubits (\\(N = 2^n\\)) works as follows:\n\nInitialize wires with input \\(\\ket{j}\\), so that \\(\\ket{j_1}\\) is on the top wire and \\(\\ket{j_n}\\) is on the bottom wire. Note, that this is not part of the circuit yet.\nStart with the top wire. For each wire \\(j_i\\) do the following:\n\nApply a Hadamad-gate on the wire \\(j_i\\).\nFor each wire \\(j_k\\) below the current wire \\(j_i\\) (with \\(i &lt; k \\leq n\\)), add a \\(R_{k-i+1}\\)-gate controlled by \\(j_k\\). Start with \\(k = i+1\\) (if \\(i&lt;n\\), else stop).\n\nPerform a \\(\\operatorname{SWAP}\\) to flip all the wires. This means, that the first wire is swapped with the last wire, the second wire is swapped with the second to last wire and so on.\n\nNote: If the the output of the DFT circuit is measured right after applying it (as in Shor’s algorithm) or if the rest of the algorithm allows for it, it is more efficient to perform the \\(\\operatorname{SWAP}\\) classically, since this is considered to be the cheaper operation.\nThe more general layout of the quantum circuit for the \\(\\operatorname{DFT_N}\\) with the \\(\\operatorname{SWAP}\\) is shown in this figure.\n\n\n\nThe DTF for \\(n\\) qubits",
+    "text": "10.5 Constructing the DFT\nSo far we have described everything necessary for Shor’s algorithm, but only described the matrix representation of the \\(\\operatorname{DFT}_N\\). We will now take a closer look into implementing the \\(\\operatorname{DFT}_M\\) as a quantum circuit. Since we only use the \\(\\operatorname{DFT}_N\\) for Shor’s algorithm so far, we will only look at \\(N=2^n\\), which is the \\(\\operatorname{DFT}\\) applied on \\(n\\) qubits.\nTo start the circuit, we recall the definition of the \\(\\operatorname{DFT}_N\\) from Definition 10.1: \\(\\operatorname{DFT}_N := \\frac{1}{\\sqrt{{2^n}}} (\\omega^{kl})_{kl}\\) with \\(\\omega:= e^{2\\pi i / 2^n}\\). To apply the \\(\\operatorname{DFT}_N\\) to a quantum state \\(\\ket{j}\\) we calculate \\[\n\\begin{aligned}\n\\operatorname{DFT}_{N}\\ket{j}\n=& \\frac{1}{\\sqrt{N}} \\sum_{k=0}^{N-1} \\omega^{jk} \\ket{k}\\\\\n=& \\frac{1}{\\sqrt{N}} \\sum_{k=0}^{N-1} e^{2\\pi i j k / N} \\ket{k}\\\\\n=& \\frac{1}{\\sqrt{N}} \\sum_{k_1 \\in \\{0,1\\}} \\dots \\sum_{k_n \\in \\{0,1\\}} e^{2\\pi i j (\\sum_{l=1}^n k_l 2^{-l})} \\ket{k_1 \\dots k_n}\\\\\n=& \\frac{1}{\\sqrt{N}} \\sum_{k_1 \\in \\{0,1\\}} \\dots \\sum_{k_n \\in \\{0,1\\}} \\bigotimes_{l=1}^n e^{2\\pi i j k_l 2^{-l}} \\ket{k_l}\\\\\n=& \\frac{1}{\\sqrt{N}} \\bigotimes_{l=1}^n \\sum_{k_l \\in \\{0,1\\}} e^{2\\pi i j k_l 2^{-l}} \\ket{k_l}\\\\\n=& \\frac{1}{\\sqrt{N}} \\bigotimes_{l=1}^n (\\ket{0} +  e^{2\\pi i j 2^{-l}} \\ket{1})\\\\\n=& \\frac{1}{\\sqrt{N}} \\bigotimes_{l=1}^n (\\ket{0} +  e^{2\\pi i 0.j_{n-l+1} \\dots j_{n}} \\ket{1}).\n\\end{aligned}\n\\] The expression \\(0.j\\) expresses a binary fraction (e.g. \\(0.101 = \\frac{1}{2} + \\frac{1}{8} = \\frac{5}{8}\\)).\nWith this we have shown, that we can write \\(\\operatorname{DFT}_N \\ket{j}\\) as the following tensor product of quantum states\n\\[\n\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_n} \\ket{1}) \\otimes \\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_{n-1}j_n} \\ket{1}) \\otimes \\dots \\otimes \\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_1\\dots j_n} \\ket{1}).\n\\]\nFrom this rewritten tensor product, we can get an idea on how to construct the quantum circuit for the \\(\\operatorname{DFT}_N\\). Namely, we can construct a quantum circuit for each element of the tensor product and from this build the general circuit.\nFor this, we segment the tensor product into different elements \\(\\psi\\) as follows:\n\\[\n\\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_n} \\ket{1})}_{\\psi_1} \\otimes \\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_{n-1}j_n} \\ket{1})}_{\\psi_2} \\otimes \\dots \\otimes \\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_1\\dots j_n} \\ket{1})}_{\\psi_n}.\n\\]\nWe also introduce a new gate \\(R_k\\) which is defined by the following matrix:\n\\[\nR_k:=\\begin{pmatrix} 1 & 0 \\\\ 0 & e^{2 \\pi i / 2^k}  \\end{pmatrix}.\n\\]\nTo understand the construction of the circuit from these elements, we will look at an example for \\(n=3\\) first:\n\n\n\n\n\n\nExample: Construction of the DFT circuit for \\(n=3\\)\n\n\n\nWe start by building the tensor product for \\(n=3\\). The input for the DFT circuit is \\(\\ket{j} = \\ket{j_1j_2j_3}\\). Using the formula from above, we can write the result of \\(\\operatorname{DFT}_{2^3} \\ket{j}\\) as the following tensor product:\n\\[\n\\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_3} \\ket{1})}_{\\psi_1} \\otimes \\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_2j_3} \\ket{1})}_{\\psi_2} \\otimes \\underbrace{\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_1j_2j_3} \\ket{1})}_{\\psi_3}.\n\\]\n\n\n\nThe DTF for three qubits\n\n\n\nFirst we construct the \\(\\psi_3\\) element. Contrary to the intuition, we use the top wire containing \\(\\ket{j_1}\\) for this. We use a Hadamad-gate to bring \\(\\ket{j_1}\\) into the superposition \\(\\frac{1}{\\sqrt{2}}(\\ket{0} + (-1)^{j_1} \\ket{1}) = \\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2 \\pi i 0.j_1} \\ket{1})\\). This looks close to \\(\\psi_3\\) already, we now need to add the last two decimal places \\(j_2j_3\\) to the state. For this we use \\(R_2\\) and \\(R_3\\). We apply \\(R_2\\) controlled by the wire \\(j_2\\) and \\(R_3\\) controlled by the wire \\(j_3\\). This means, that we only apply the \\(R\\)-gate, if the corresponding wire contains a \\(1\\). You can see this written as a quantum circuit at the figure below. After applying \\(R_2\\) we have the state \\(\\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2 \\pi i 0.j_1j_2} \\ket{1})\\) and after applying \\(R_3\\) we have the state \\(\\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2 \\pi i 0.j_1j_2j_3} \\ket{1})\\) on the top wire. This is the same as \\(\\psi_3\\), so we are done on the first wire (We are at the first slice in the figure).\nThe next step is to construct the \\(\\psi_2\\) state on the middle wire. We again use a Hadamad-gate to bring \\(\\ket{j_2}\\) into the superposition \\(\\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2 \\pi i 0.j_2} \\ket{1})\\). We now need to include the last decimal point \\(j_3\\), for which we use \\(R_2\\) again, this time controlled by \\(j_3\\). The resulting superposition is now \\(\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_2j_3} \\ket{1})\\), which is \\(\\psi_2\\). (We are at the second slice in the figure).\nOn the bottom wire, we can just do a Hadamad-gate to bring \\(\\ket{j_3}\\) into the superposition \\(\\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2 \\pi i 0.j_3} \\ket{1})\\). We then have \\(\\psi_1\\) on the bottom wire. (We are at the third slice in the figure).\nWhen applying this circuit, we get the state \\(\\psi_3 \\otimes \\psi_2 \\otimes \\psi_1\\) as a result. This very close to our desired state \\(\\psi_1 \\otimes \\psi_2 \\otimes \\psi_3\\), just the order of the wires is flipped. To solve this, we apply a \\(\\operatorname{SWAP}\\) onto all wires, which flips the order of the wires an delivers the correct output for \\(\\operatorname{DFT}_{2^3}\\).\n\n\n\nThe more general approach to construct the \\(\\operatorname{DFT}_N\\) as a quantum circuit with \\(n\\) qubits (\\(N = 2^n\\)) works as follows:\n\nInitialize wires with input \\(\\ket{j}\\), so that \\(\\ket{j_1}\\) is on the top wire and \\(\\ket{j_n}\\) is on the bottom wire. Note, that this is not part of the circuit yet.\nStart with the top wire. For each wire \\(j_i\\) do the following:\n\nApply a Hadamad-gate on the wire \\(j_i\\).\nFor each wire \\(j_k\\) below the current wire \\(j_i\\) (with \\(i &lt; k \\leq n\\)), add a \\(R_{k-i+1}\\)-gate controlled by \\(j_k\\). Start with \\(k = i+1\\) (if \\(i&lt;n\\), else stop).\n\nPerform a \\(\\operatorname{SWAP}\\) to flip all the wires. This means, that the first wire is swapped with the last wire, the second wire is swapped with the second to last wire and so on.\n\nNote: If the the output of the DFT circuit is measured right after applying it (as in Shor’s algorithm) or if the rest of the algorithm allows for it, it is more efficient to perform the \\(\\operatorname{SWAP}\\) classically, since this is considered to be the cheaper operation.\nThe more general layout of the quantum circuit for the \\(\\operatorname{DFT_N}\\) with the \\(\\operatorname{SWAP}\\) is shown in this figure.\n\n\n\nThe DTF for \\(n\\) qubits",
     "crumbs": [
       "Quantum algorithms",
       "<span class='chapter-number'>10</span>  <span class='chapter-title'>Shor's Algorithm</span>"
     ]
+  },
+  {
+    "objectID": "content/groversAlgorithm.html",
+    "href": "content/groversAlgorithm.html",
+    "title": "11  Grover’s algorithm",
+    "section": "",
+    "text": "11.1 Preparations\nAnother well known quantum algorithm is Grover’s algorithm for searching. It was developed by Lov Grover in 1996.\nGrover’s algorithm takes a function \\(f: \\{0,1\\}^n \\rightarrow \\{0,1\\}\\), where exactly one \\(x_0\\) exists, such that \\(f(x_0) = 1\\). The goal is to find \\(x_0\\).\nThere are a number of interesting problems, which can be reduced to this general definition. One of these problems is the breaking of a (symmetric) encryption. The function \\(f\\) would take a key as an input and output a \\(1\\), if the decryption is successful. Otherwise it will output a \\(0\\).\nClassically, finding this \\(x_0\\) takes approximately \\(2^n\\) steps (when simply bruteforcing the function). Using Grover’s algorithm, we can reduce this runtime to approximately \\(\\sqrt{2^n}\\) steps. As an example, a \\(128\\)-bit encryption would only take about \\(2^{64}\\) steps to break it, instead of about \\(2^{128}\\) steps for the classical bruteforce.\nTo construct Grover’s algorithm, we first need to introduce two new gates \\(V_f\\) and \\(\\operatorname{FLIP}_*\\).",
+    "crumbs": [
+      "Quantum algorithms",
+      "<span class='chapter-number'>11</span>  <span class='chapter-title'>Grover's algorithm</span>"
+    ]
+  },
+  {
+    "objectID": "content/groversAlgorithm.html#preparations",
+    "href": "content/groversAlgorithm.html#preparations",
+    "title": "11  Grover’s algorithm",
+    "section": "",
+    "text": "11.1.1 Constructing the oracle \\(V_f\\)\nIn the previous algorithms, we have learned that we can implement a function \\(f\\) as a unitary \\(U_f\\) with \\(U_f\\ket{x,y} = \\ket{x, y \\oplus f(x)}\\). We construct a different unitary called \\(V_f\\) from this, which has the following behavior:\n\\[\nV_f \\ket{x} =\n\\begin{cases}\n    -\\ket{x} & \\text{if } f(x) = 1 \\\\\n    \\ket{x} & \\text{else}\n\\end{cases}\n\\]\nWe can construct \\(V_f\\) from \\(U_f\\) using the following circuit:\n\n\n\nThe circuit for \\(V_f\\)\n\n\nThe bottom wire can be discarded, since it always contains a \\(\\ket{-}\\) and thus is not entangled with the upper wire.\n\n\n11.1.2 Constructing \\(\\operatorname{FLIP}_*\\)\nAs a second ingredient for Grover’s algorithm, we need the unitary \\(\\operatorname{FLIP}_*\\). To realize this, we first need \\(\\operatorname{FLIP}_0\\), which ist defined by the unitary \\[\n\\operatorname{FLIP}_0 \\ket{x} =\n\\begin{cases}\n    \\ket{0} & \\text{if } x = 0 \\\\\n    -\\ket{x} & \\text{else}.\n\\end{cases}\n\\]\n\\(\\operatorname{FLIP}_0\\) is implemented by the following quantum circuit:\n\n\n\nThe circuit for \\(\\operatorname{FLIP}_0\\)\n\n\n\\(Z\\) is the Pauli matrix from definition Definition 7.2. The empty circles indicates a negative control wire. So \\(Z\\) is only applied if the other wires are \\(\\ket{0}\\).\nNow we can define the unitary called \\(\\operatorname{FLIP}_*\\). This unitary does nothing, if it is applied on the uniform superposition \\(\\ket{*}\\). For any other quantum state \\(\\ket{\\psi}\\) orthogonal to \\(\\ket{*}\\) it maps to \\(-\\ket{\\psi}\\). The uniform superposition \\(\\ket{*}\\) simply denotes the superposition over all classical possibilities \\(\\ket{*} = \\frac{1}{\\sqrt{2^n}} \\sum_{x \\in\\{0,1\\}^n} \\ket{x}\\). So \\(\\operatorname{FLIP}_*\\) is described by:\n\\[\n\\operatorname{FLIP}_* \\ket{\\psi} =\n\\begin{cases}\n    \\ket{*} & \\text{if } \\ket{\\psi} = \\ket{*} \\\\\n    -\\ket{x} & \\text{if } \\ket{\\psi} \\perp \\ket{*} \\text{ (orthogonal)}.\n\\end{cases}\n\\]\nWe can construct this \\(\\operatorname{FLIP}_*\\) by the following quantum circuit:\n\n\n\nThe circuit for \\(\\operatorname{FLIP}_*\\)",
+    "crumbs": [
+      "Quantum algorithms",
+      "<span class='chapter-number'>11</span>  <span class='chapter-title'>Grover's algorithm</span>"
+    ]
+  },
+  {
+    "objectID": "content/groversAlgorithm.html#the-algorithm-for-searching",
+    "href": "content/groversAlgorithm.html#the-algorithm-for-searching",
+    "title": "11  Grover’s algorithm",
+    "section": "11.2 The algorithm for searching",
+    "text": "11.2 The algorithm for searching\nThe actual algorithm takes a function \\(f: \\{0,1\\}^n \\rightarrow \\{0,1\\}\\) and outputs an \\(x_0\\) with \\(f(x_0)=1\\). For simplicity, we assume that there is only one \\(x_0\\) for which \\(f(x_0) = 1\\) holds and for each other \\(x \\neq x_0\\) it holds that \\(f(x)=0\\).\nWith the two new unitaries \\(V_f\\) and \\(\\operatorname{FLIP}_*\\) defined, we can construct the circuit for Grover’s algorithm, which is shown in the following figure:\n\n\n\nThe quantum circuit for Grover’s algorithm\n\n\nThe algorithm works as follows:\n\nWe start with a \\(\\ket{0}\\) entry on every qubit.\nWe bring the system into the superposition over all entries by applying \\(H^{\\otimes n}\\). The quantum state is then \\(\\frac{1}{\\sqrt{2^n}} \\sum_{x \\in \\{0,1\\}^n} \\ket{x}\\) which we also call \\(\\ket{*}\\).\nWe apply the unitary \\(V_f\\).\nWe apply the unitary \\(\\operatorname{FLIP}_*\\).\nWe repeat steps 3 and 4 \\(t\\) times.\nWe do a measurement.\n\nThe measurement in step 6 will then give us \\(x_0\\) with high probability.\n\n11.2.1 Understanding the algorithm for searching\nWhen looking at the quantum circuit, it is not completely intuitive why the algorithm gives the correct result. We therefore now look into what is happening in each step.\nThe desired quantum state after the algorithm finishes is \\(\\ket{x_0}\\). At the beginning of the algorithm, we bring the system into the uniform superposition \\(\\ket{*} = \\frac{1}{\\sqrt{2^n}} \\sum_{x \\in \\{0,1\\}^n} \\ket{x}\\). We know that \\(\\ket{x_0}\\) is part of this superposition, therefore we can rewrite \\(\\ket{*}\\) as follows \\[\n\\ket{*}\n= \\frac{1}{\\sqrt{2^n}} \\sum_{x \\in \\{0,1\\}^n} \\ket{x}\n= \\frac{1}{\\sqrt{2^n}} \\underbrace{\\ket{x_0}}_{\\textit{good}}  + \\sqrt{\\frac{2^n-1}{2^n}} \\underbrace{\\sum_{x\\neq x_0} \\frac{1}{\\sqrt{2^n-1}}\\ket{x}}_{\\textit{bad}}\n\\]\nSo the current state can be seen as a superposition of a “good” state good and a “bad” state bad.\nThe geometric interpretation of this superposition can be drawn as follows:\n\n\n\nGeometric interpretation of \\(\\ket{*}\\)\n\n\nThe angel \\(\\theta\\) denotes, how “good” the resulting outcome will be. If \\(\\theta = 0\\), the state is completely bad, if \\(\\theta = \\frac{\\pi}{2}\\), the state is completely good.\nWe can calculate \\(\\cos \\theta = \\lvert\\braket{*|bad}\\rvert = \\frac{\\sqrt{2^n-1}}{\\sqrt{2^n}}\\). From this we can derivate that the angle \\(\\theta\\) is \\(\\cos^{-1} \\sqrt{\\frac{2^n-1}{2^n}}\\) at the beginning, which is approximately \\(\\sqrt{\\frac{1}{2^n}}\\).\nWe now apply \\(V_f\\) on this quantum state. This will negate the amplitude off our desired \\(\\ket{x_0}\\) and not change the amplitude to the rest of the state.\n\\[\nV_f\\ket{*}= -\\frac{1}{\\sqrt{2^n}} \\underbrace{\\ket{x_0}}_{\\text{good}}  + \\sqrt{\\frac{2^n-1}{2^n}} \\underbrace{\\sum_{x\\neq x_0} \\ket{x}}_{\\text{bad}}\n\\]\nThis looks like this in the geometric interpretation:\n\n\n\nGeometric interpretation after \\(V_f\\)\n\n\nWe can see that by applying \\(V_f\\), we mirror the vector across the bad axis.\nAfter \\(V_f\\), we apply the \\(\\operatorname{FLIP}_*\\) operation on the quantum state. Since \\(\\operatorname{FLIP}_*\\) does nothing on the \\(\\ket{*}\\) entries and negates the amplitude of any vector orthogonal to it, \\(\\operatorname{FLIP}_*\\) mirrors the vector across \\(\\ket{*}\\). This can be seen in the following figure:\n\n\n\nGeometric interpretation after \\(\\operatorname{FLIP}_*\\)\n\n\nAll in all, we have seen that by applying \\(V_f\\) and \\(\\operatorname{FLIP}_*\\), we can increase the angle of the quantum state in relation to the “good” and “bad” states by \\(2\\theta\\). Therefore two reflection give rotation. By repeating this step often enough, we can get the amplitude of \\(\\ket{x_0}\\) close to 1.\nTo be more precise: Since we know \\(\\theta\\) and we know that we will increase the good-ness of our quantum state by \\(2\\theta\\) each time, we can calculate that only \\(t\\) iterations are necessary with \\[\nt \\approx \\frac{\\frac{\\pi / 2}{\\theta} - 1}{2} \\approx \\frac{\\pi}{4 \\theta} \\approx \\frac{\\pi}{4} \\cdot \\sqrt{2^n}.\n\\] Grover’s algorithm therefore takes \\(O(\\sqrt{2^n})\\) steps, where an evaluation of the circuit counts as one step.",
+    "crumbs": [
+      "Quantum algorithms",
+      "<span class='chapter-number'>11</span>  <span class='chapter-title'>Grover's algorithm</span>"
+    ]
   }
 ]
\ No newline at end of file
diff --git a/_book/sitemap.xml b/_book/sitemap.xml
index a37c9ac15ff1d758bdfc4d804a88b358f915aac5..f094cfe14de6d96ecd876df442c3a3395139c5ac 100644
--- a/_book/sitemap.xml
+++ b/_book/sitemap.xml
@@ -42,10 +42,14 @@
   </url>
   <url>
     <loc>https://qis.rwth-aachen.de/teaching/25ss/intro-quantum-computing/script/content/shorsAlgorithm.html</loc>
-    <lastmod>2025-06-03T17:03:57.368Z</lastmod>
+    <lastmod>2025-06-03T19:53:54.622Z</lastmod>
+  </url>
+  <url>
+    <loc>https://qis.rwth-aachen.de/teaching/25ss/intro-quantum-computing/script/content/groversAlgorithm.html</loc>
+    <lastmod>2025-06-04T09:27:01.821Z</lastmod>
   </url>
   <url>
     <loc>https://qis.rwth-aachen.de/teaching/25ss/intro-quantum-computing/script/Introduction-to-Quantum-Computing.pdf</loc>
-    <lastmod>2025-06-03T17:05:56.764Z</lastmod>
+    <lastmod>2025-06-04T10:37:30.177Z</lastmod>
   </url>
 </urlset>
diff --git a/_quarto.yml b/_quarto.yml
index 2378d89334fd575ca281700ea5efd507ce3feff2..f03ad30d587daedd25a60c5f4789835e743a4f7d 100644
--- a/_quarto.yml
+++ b/_quarto.yml
@@ -32,7 +32,7 @@ book:
       chapters:
         - content/bernsteinVazirani.qmd
         - content/shorsAlgorithm.qmd
-    #    - content/groversAlgorithm.qmd
+        - content/groversAlgorithm.qmd
     #- part: "Physical background"
     #  chapters:
     #    - content/physics.qmd
diff --git a/content/groversAlgorithm.qmd b/content/groversAlgorithm.qmd
index dfa0c941fd7b180f5b7a4e5c7df7f809bca381e0..6f8c5f7622a4ce8b2d3a11adc9e59d92ca80e471 100644
--- a/content/groversAlgorithm.qmd
+++ b/content/groversAlgorithm.qmd
@@ -4,9 +4,10 @@ Another well known quantum algorithm is Grover's algorithm for searching. It was
 
 Grover's algorithm takes a function $f: \{0,1\}^n \rightarrow \{0,1\}$, where exactly one $x_0$ exists, such that $f(x_0) = 1$. The goal is to find $x_0$. 
 
-There are a number of interesting problems, which can be reduced to this general definition. One of these problems is the breaking of a (symmetric) encryption. The function $f$ would take a key as an input and output a $1$, if the decryption is successful.
+There are a number of interesting problems, which can be reduced to this general definition. One of these problems is the breaking of a (symmetric) encryption. The function $f$ would take a key as an input and output a $1$, if the decryption is successful. Otherwise it will output a $0$.
+
+Classically, finding this $x_0$ takes approximately $2^n$ steps (when simply bruteforcing the function). Using Grover's algorithm, we can reduce this runtime to approximately $\sqrt{2^n}$ steps. As an example, a $128$-bit encryption would only take about $2^{64}$ steps to break it, instead of about $2^{128}$ steps for the classical bruteforce.
 
-Classically, finding this $x_0$ takes approximately $2^n$ steps (when simply bruteforcing the function). Using Grover's algorithm, we can reduce this runtime to approximately $2^{\frac{n}{2}}$ steps. As an example, a $128$-bit encryption would only take about $2^{64}$ steps to break it, instead of about $2^{128}$ steps for the classical bruteforce.
 
 ## Preparations
 
@@ -17,7 +18,11 @@ To construct Grover's algorithm, we first need to introduce two new gates $V_f$
 In the previous algorithms, we have learned that we can implement a function $f$ as a unitary $U_f$ with $U_f\ket{x,y} = \ket{x, y \oplus f(x)}$. We construct a different unitary called $V_f$ from this, which has the following behavior:
 
 $$
-V_f \ket{x} = \begin{cases} -\ket{x} & \text{if } f(x) = 1\\ \ket{x} & \text{else} \end{cases}
+V_f \ket{x} =
+\begin{cases}
+    -\ket{x} & \text{if } f(x) = 1 \\
+    \ket{x} & \text{else}
+\end{cases}
 $$
 
 We can construct $V_f$ from $U_f$ using the following circuit:
@@ -28,16 +33,36 @@ The bottom wire can be discarded, since it always contains a $\ket{-}$ and thus
 
 ### Constructing $\operatorname{FLIP}_*$
 
-As a second ingredient for Grover's algorithm, we define a unitary called $\operatorname{FLIP}_*$. This unitary does nothing, if it is applied on the uniform superposition $\ket{*}$. For any other quantum state $\psi$ with $\psi$ orthogonal to $\ket{*}$ it maps $\psi$ to $-\psi$. The uniform superposition $\ket{*}$ simply denotes the superposition over all classical possibilities $2^{-\frac{n}{2}}\sum_x \ket{x}$. We can construct this $\operatorname{FLIP}_*$ by the following quantum circuit:
+As a second ingredient for Grover's algorithm, we need the unitary $\operatorname{FLIP}_*$. To realize this, we first need $\operatorname{FLIP}_0$, which ist defined by the unitary
+$$
+\operatorname{FLIP}_0 \ket{x} =
+\begin{cases}
+    \ket{0} & \text{if } x = 0 \\
+    -\ket{x} & \text{else}.
+\end{cases}
+$$
+
+$\operatorname{FLIP}_0$ is implemented by the following quantum circuit:
+
+![The circuit for $\operatorname{FLIP}_0$](img/flip_zero){width=50%}
 
-![The circuit for $\operatorname{FLIP}_*$](img/flip){width=60%}
+$Z$ is the Pauli matrix from definition @def-gates-pauli. The empty circles indicates a negative control wire. So $Z$ is only applied if the other wires are $\ket{0}$.
 
+Now we can define the unitary called $\operatorname{FLIP}_*$. This unitary does nothing, if it is applied on the uniform superposition $\ket{*}$. For any other quantum state $\ket{\psi}$ orthogonal to $\ket{*}$ it maps to $-\ket{\psi}$. The uniform superposition $\ket{*}$ simply denotes the superposition over all classical possibilities $\ket{*} = \frac{1}{\sqrt{2^n}} \sum_{x \in\{0,1\}^n} \ket{x}$. So $\operatorname{FLIP}_*$ is described by:
 
-$\operatorname{FLIP}_0$ is here definied by the unitary
 $$
-\operatorname{FLIP}_0 \ket{x} = \begin{cases} \ket{0} & \text{if } x = 0\\ -\ket{x} & \text{else} \end{cases}
+\operatorname{FLIP}_* \ket{\psi} =
+\begin{cases}
+    \ket{*} & \text{if } \ket{\psi} = \ket{*} \\
+    -\ket{x} & \text{if } \ket{\psi} \perp \ket{*} \text{ (orthogonal)}.
+\end{cases}
 $$
 
+We can construct this $\operatorname{FLIP}_*$ by the following quantum circuit:
+
+![The circuit for $\operatorname{FLIP}_*$](img/flip_star){width=60%}
+
+
 ## The algorithm for searching
 
 The actual algorithm takes a function  $f: \{0,1\}^n \rightarrow \{0,1\}$ and outputs an $x_0$ with $f(x_0)=1$. For simplicity, we assume that there is only one $x_0$ for which $f(x_0) = 1$ holds and for each other $x \neq x_0$ it holds that $f(x)=0$.  
@@ -49,29 +74,30 @@ With the two new unitaries $V_f$ and $\operatorname{FLIP}_*$ defined, we can con
 The algorithm works as follows:
 
 1. We start with a $\ket{0}$ entry on every qubit.
-2. We bring the system into the superposition over all entries by applying $H^{\otimes n}$. The quantum state is then $2^\frac{-n}{2}\sum_x \ket{x}$ which we also call $\ket{*}$.
+2. We bring the system into the superposition over all entries by applying $H^{\otimes n}$. The quantum state is then $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} \ket{x}$ which we also call $\ket{*}$.
 3. We apply the unitary $V_f$. 
 4. We apply the unitary $\operatorname{FLIP}_*$. 
-5. We repeat steps 3 and 4 $t$ times, and then do a measurement.
+5. We repeat steps 3 and 4 $t$ times.
+6. We do a measurement.
 
-The measurement in step 5 will then give us $x_0$ with high probability. 
+The measurement in step 6 will then give us $x_0$ with high probability. 
 
 ### Understanding the algorithm for searching
 
 When looking at the quantum circuit, it is not completely intuitive why the algorithm gives the correct result. We therefore now look into what is happening in each step. 
 
-The desired quantum state after the algorithm finishes is $\ket{x_0}$. At the beginning of the algorithm, we bring the system into the uniform superposition $\ket{*} = 2^\frac{-n}{2}\sum_x \ket{x}$. We know that $\ket{x_0}$ is part of this superposition, therefore we can rewrite $\ket{*}$ as follows
+The desired quantum state after the algorithm finishes is $\ket{x_0}$. At the beginning of the algorithm, we bring the system into the uniform superposition $\ket{*} = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} \ket{x}$. We know that $\ket{x_0}$ is part of this superposition, therefore we can rewrite $\ket{*}$ as follows
 $$
-\ket{*} = 2^{-\frac{n}{2}}\sum_x \ket{x}
+\ket{*}
+= \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} \ket{x}
 = \frac{1}{\sqrt{2^n}} \underbrace{\ket{x_0}}_{\textit{good}}  + \sqrt{\frac{2^n-1}{2^n}} \underbrace{\sum_{x\neq x_0} \frac{1}{\sqrt{2^n-1}}\ket{x}}_{\textit{bad}}
 $$
 
-
 So the current state can be seen as a superposition of a "good" state *good* and a "bad" state *bad*.
 
 The geometric interpretation of this superposition can be drawn as follows:
 
-![Geometric interpretation of $\ket{*}$](img/grover_plt1){width=30%}
+![Geometric interpretation of $\ket{*}$](img/grover_plot_1){width=30%}
 
 
 The angel $\theta$ denotes, how "good" the resulting outcome will be. If $\theta = 0$, the state is completely bad, if $\theta = \frac{\pi}{2}$, the state is completely good.
@@ -87,19 +113,19 @@ $$
 
 This looks like this in the geometric interpretation:
 
-![Geometric interpretation after $V_f$](img/grover_plt2){width=30%}
+![Geometric interpretation after $V_f$](img/grover_plot_2){width=30%}
 
 We can see that by applying $V_f$, we mirror the vector across the *bad* axis. 
 
 After $V_f$, we apply the $\operatorname{FLIP}_*$ operation on the quantum state. Since $\operatorname{FLIP}_*$ does nothing on the $\ket{*}$ entries and negates the amplitude of any vector orthogonal to it, $\operatorname{FLIP}_*$  mirrors the vector across $\ket{*}$. This can be seen in the following figure:
 
-![Geometric interpretation after $\operatorname{FLIP}_*$](img/grover_plt3){width=30%}
+![Geometric interpretation after $\operatorname{FLIP}_*$](img/grover_plot_3){width=30%}
 
 
 All in all, we have seen that by applying $V_f$ and $\operatorname{FLIP}_*$, we can increase the angle of the quantum state in relation to the "good" and "bad" states by $2\theta$. Therefore two reflection give rotation. By repeating this step often enough, we can get the amplitude of $\ket{x_0}$ close to 1. 
 
 To be more precise: Since we know $\theta$ and we know that we will increase the *good*-ness of our quantum state by $2\theta$ each time, we can calculate that only $t$ iterations are necessary with 
 $$
-t \approx \frac{\frac{\pi / 2}{\theta} - 1}{2} \approx \frac{\pi}{4 \theta} \approx \frac{\pi}{4} \cdot \sqrt{2^n}
+t \approx \frac{\frac{\pi / 2}{\theta} - 1}{2} \approx \frac{\pi}{4 \theta} \approx \frac{\pi}{4} \cdot \sqrt{2^n}.
 $$
- Grover's algorithm therefore takes $O(\sqrt{2^n})$ steps, where an evaluation of the circuit counts as one step. 
+Grover's algorithm therefore takes $O(\sqrt{2^n})$ steps, where an evaluation of the circuit counts as one step. 
diff --git a/content/img/dft_3_qubits.pdf b/content/img/dft_3_qubits.pdf
index 8c6ca7b84586541e673912f442836ec0a6bdd9cb..75841a6cf5bc5fc6c60902ee320791937bd260eb 100644
Binary files a/content/img/dft_3_qubits.pdf and b/content/img/dft_3_qubits.pdf differ
diff --git a/content/img/dft_3_qubits.svg b/content/img/dft_3_qubits.svg
index de04d98a834659c9e7b92d2074292b80710ccb4e..9dba79ae94bdf920b4b879baabd81938babd08be 100644
--- a/content/img/dft_3_qubits.svg
+++ b/content/img/dft_3_qubits.svg
@@ -1,12 +1,18 @@
 <?xml version='1.0' encoding='UTF-8'?>
 <!-- This file was generated by dvisvgm 3.4.3 -->
-<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='258.693024pt' height='100.441339pt' viewBox='-68.681163 -68.015534 258.693024 100.441339'>
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='258.693024pt' height='96.902316pt' viewBox='-68.681163 -68.015511 258.693024 96.902316'>
 <defs>
 <font id='cmsy10' horiz-adv-x='0'>
 <font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
 <glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
 <glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
 </font>
+<font id='cmr7' horiz-adv-x='0'>
+<font-face font-family='cmr7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='1' horiz-adv-x='569' vert-adv-y='569' glyph-name='one' d='M335 636C335 663 333 664 305 664C241 601 150 600 109 600V564C133 564 199 564 254 592V82C254 49 254 36 154 36H116V0C134 1 257 4 294 4C325 4 451 1 473 0V36H435C335 36 335 49 335 82V636Z'/>
+<glyph unicode='2' horiz-adv-x='569' vert-adv-y='569' glyph-name='two' d='M505 182H471C468 160 458 101 445 91C437 85 360 85 346 85H162C267 178 302 206 362 253C436 312 505 374 505 469C505 590 399 664 271 664C147 664 63 577 63 485C63 434 106 429 116 429C140 429 169 446 169 482C169 500 162 535 110 535C141 606 209 628 256 628C356 628 408 550 408 469C408 382 346 313 314 277L73 39C63 30 63 28 63 0H475L505 182Z'/>
+<glyph unicode='3' horiz-adv-x='569' vert-adv-y='569' glyph-name='three' d='M273 334C351 334 407 280 407 173C407 49 335 12 277 12C237 12 149 23 107 82C154 84 165 117 165 138C165 170 141 193 110 193C82 193 54 176 54 135C54 41 158-20 279-20C418-20 514 73 514 173C514 251 450 329 340 352C445 390 483 465 483 526C483 605 392 664 281 664S85 610 85 530C85 496 107 477 137 477C168 477 188 500 188 528C188 557 168 578 137 580C172 624 241 635 278 635C323 635 386 613 386 526C386 484 372 438 346 407C313 369 285 367 235 364C210 362 208 362 203 361C201 361 193 359 193 348C193 334 202 334 219 334H273Z'/>
+</font>
 <font id='cmmi10' horiz-adv-x='0'>
 <font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
 <glyph unicode='ψ' horiz-adv-x='651' vert-adv-y='651' glyph-name='psi' d='M482 668C483 672 485 678 485 683C485 693 478 694 473 694C463 694 462 692 458 674L292 13C216 22 178 59 178 125C178 145 178 171 232 311C236 323 243 340 243 360C243 405 211 442 161 442C66 442 29 297 29 288C29 278 39 278 41 278C51 278 52 280 57 296C84 391 124 420 158 420C166 420 183 420 183 388C183 362 173 337 160 302C112 176 112 150 112 133C112 38 190-3 286-9C278-45 278-47 264-100C261-111 241-192 241-195C241-196 241-205 253-205C255-205 260-205 262-201C265-199 271-174 274-160L312-11C349-11 437-11 531 96C572 142 593 186 604 216C613 241 635 328 635 372C635 428 608 442 591 442C566 442 541 416 541 394C541 381 547 375 556 367C567 356 592 330 592 282C592 218 540 136 505 100C417 11 353 11 317 11L482 668Z'/>
@@ -14,12 +20,6 @@
 <glyph unicode='R' horiz-adv-x='759' vert-adv-y='759' glyph-name='R' d='M375 614C381 638 384 648 403 651C412 652 444 652 464 652C535 652 646 652 646 553C646 519 630 450 591 411C565 385 512 353 422 353H310L375 614ZM519 340C620 362 739 432 739 533C739 619 649 683 518 683H233C213 683 204 683 204 663C204 652 213 652 232 652C234 652 253 652 270 650C288 648 297 647 297 634C297 630 296 627 293 615L159 78C149 39 147 31 68 31C50 31 41 31 41 11C41 0 53 0 55 0C83 0 153 3 181 3S280 0 308 0C316 0 328 0 328 20C328 31 319 31 300 31C263 31 235 31 235 49C235 55 237 60 238 66L304 331H423C514 331 532 275 532 240C532 225 524 194 518 171C511 143 502 106 502 86C502-22 622-22 635-22C720-22 755 79 755 93C755 105 744 105 743 105C734 105 732 98 730 91C705 17 662 0 639 0C606 0 599 22 599 61C599 92 605 143 609 175C611 189 613 208 613 222C613 299 546 330 519 340Z'/>
 <glyph unicode='j' horiz-adv-x='411' vert-adv-y='411' glyph-name='j' d='M397 625C397 644 383 661 359 661C336 661 306 638 306 608C306 588 320 572 343 572C370 572 397 598 397 625ZM196-50C177-126 129-183 73-183C67-183 52-183 34-174C64-167 79-141 79-121C79-105 68-86 41-86C16-86-13-107-13-143C-13-183 27-205 75-205C145-205 238-152 263-53L355 313C360 333 360 347 360 350C360 407 318 442 268 442C166 442 109 297 109 288C109 278 119 278 121 278C130 278 131 279 139 298C164 359 210 420 265 420C279 420 297 416 297 374C297 351 294 340 290 323L196-50Z'/>
 </font>
-<font id='cmr7' horiz-adv-x='0'>
-<font-face font-family='cmr7' units-per-em='1000' ascent='750' descent='250'/>
-<glyph unicode='1' horiz-adv-x='569' vert-adv-y='569' glyph-name='one' d='M335 636C335 663 333 664 305 664C241 601 150 600 109 600V564C133 564 199 564 254 592V82C254 49 254 36 154 36H116V0C134 1 257 4 294 4C325 4 451 1 473 0V36H435C335 36 335 49 335 82V636Z'/>
-<glyph unicode='2' horiz-adv-x='569' vert-adv-y='569' glyph-name='two' d='M505 182H471C468 160 458 101 445 91C437 85 360 85 346 85H162C267 178 302 206 362 253C436 312 505 374 505 469C505 590 399 664 271 664C147 664 63 577 63 485C63 434 106 429 116 429C140 429 169 446 169 482C169 500 162 535 110 535C141 606 209 628 256 628C356 628 408 550 408 469C408 382 346 313 314 277L73 39C63 30 63 28 63 0H475L505 182Z'/>
-<glyph unicode='3' horiz-adv-x='569' vert-adv-y='569' glyph-name='three' d='M273 334C351 334 407 280 407 173C407 49 335 12 277 12C237 12 149 23 107 82C154 84 165 117 165 138C165 170 141 193 110 193C82 193 54 176 54 135C54 41 158-20 279-20C418-20 514 73 514 173C514 251 450 329 340 352C445 390 483 465 483 526C483 605 392 664 281 664S85 610 85 530C85 496 107 477 137 477C168 477 188 500 188 528C188 557 168 578 137 580C172 624 241 635 278 635C323 635 386 613 386 526C386 484 372 438 346 407C313 369 285 367 235 364C210 362 208 362 203 361C201 361 193 359 193 348C193 334 202 334 219 334H273Z'/>
-</font>
 <font id='cmr10' horiz-adv-x='0'>
 <font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
 <glyph unicode='1' horiz-adv-x='500' vert-adv-y='500' glyph-name='one' d='M294 640C294 664 294 666 271 666C209 602 121 602 89 602V571C109 571 168 571 220 597V79C220 43 217 31 127 31H95V0C130 3 217 3 257 3S384 3 419 0V31H387C297 31 294 42 294 79V640Z'/>
@@ -35,98 +35,96 @@ text.f3 {font-family:cmr7;font-size:6.973848px}
 ]]>
 </style>
 <g id='page1'>
-<path d='M-35.0781-42.0117H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M-3.8438-42.0117H-18.0156' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M30.3359-42.0117H16.1641' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M73.043-42.0117H50.3398' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M73.043-42.0117H50.3398' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M105.75-42.0117H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M105.75-42.0117H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M138.457-42.0117H105.75' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M138.457-42.0117H105.75' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M161.1602-42.0117V18.1328' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M161.1602-42.0117H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M175.3318-42.0117H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M-26.5469-11.566406H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M-26.5469-11.566406H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M6.1602-13.269531V-33.8789' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M4.4609-11.566406H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M40.3359-11.566406H7.8594' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M40.3359-11.566406H7.8594' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M64.51172-11.566406H40.3359' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M95.7461-11.566406H81.5742' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M138.457-11.566406H115.7539' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M138.457-11.566406H115.7539' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M161.1602-11.566406H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M161.1602-11.566406H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M175.3318-11.566406H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M-26.5469 18.1328H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M-26.5469 18.1328H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M6.1602 18.1328H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M6.1602 18.1328H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M40.3359 16.4297V-33.8789' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M38.6367 18.1328H6.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M73.043 18.1328H42.0391' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M73.043 18.1328H42.0391' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M105.75 16.4297V-3.42969' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M104.0508 18.1328H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M129.9258 18.1328H107.4492' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M161.1602 18.1328H146.9883' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M175.3318 18.1328H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
-<path d='M157.67165-38.52731L164.6443-45.49996M157.67165-45.49996L164.6443-38.52731' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<path d='M7.85916-11.566368C7.85916-12.507774 7.097438-13.26949 6.159938-13.26949C5.218532-13.26949 4.45681-12.507774 4.45681-11.566368C4.45681-10.628868 5.218532-9.86715 6.159938-9.86715C7.097438-9.86715 7.85916-10.628868 7.85916-11.566368Z'/>
-<path d='M7.85938-11.566368C7.85938-12.507774 7.097658-13.26949 6.160158-13.26949C5.218752-13.26949 4.45703-12.507774 4.45703-11.566368C4.45703-10.628868 5.218752-9.86715 6.160158-9.86715C7.097658-9.86715 7.85938-10.628868 7.85938-11.566368Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<path d='M42.03493 18.132853C42.03493 17.191446 41.277116 16.42973 40.33571 16.42973C39.39821 16.42973 38.63649 17.191446 38.63649 18.132853C38.63649 19.070353 39.39821 19.83207 40.33571 19.83207C41.277116 19.83207 42.03493 19.070353 42.03493 18.132853Z'/>
-<path d='M42.03513 18.132853C42.03513 17.191446 41.277316 16.42973 40.33591 16.42973C39.39841 16.42973 38.63669 17.191446 38.63669 18.132853C38.63669 19.070353 39.39841 19.83207 40.33591 19.83207C41.277316 19.83207 42.03513 19.070353 42.03513 18.132853Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<path d='M107.449 18.132853C107.449 17.191446 106.687285 16.42973 105.749785 16.42973C104.808379 16.42973 104.04666 17.191446 104.04666 18.132853C104.04666 19.070353 104.808379 19.83207 105.749785 19.83207C106.687285 19.83207 107.449 19.070353 107.449 18.132853Z'/>
-<path d='M107.449 18.132853C107.449 17.191446 106.687285 16.42973 105.749785 16.42973C104.808379 16.42973 104.04666 17.191446 104.04666 18.132853C104.04666 19.070353 104.808379 19.83207 105.749785 19.83207C106.687285 19.83207 107.449 19.070353 107.449 18.132853Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<path d='M157.67165 21.61723L164.6443 14.64457M157.67165 14.64457L164.6443 21.61723' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f0' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -131.723 -27.208)'>|</text>
-<text class='f1' x='65.809246' y='-12.314553' transform='matrix(1 0 0 1 -131.723 -27.208)'>j</text>
-<text class='f3' x='69.911931' y='-10.820173' transform='matrix(1 0 0 1 -131.723 -27.208)'>1</text>
-<text class='f0' x='74.381301' y='-12.314553' transform='matrix(1 0 0 1 -131.723 -27.208)'></text>
-<path d='M-35.0781-34.625H-18.0156V-49.4023H-35.0781Z' fill='#fff'/>
-<path d='M-35.0781-34.625H-18.0156V-49.4023H-35.0781Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -94.1333 -26.2947)'>H</text>
-<path d='M-3.8438-33.8789H16.1641V-50.1484H-3.8438Z' fill='#fff'/>
-<path d='M-3.8438-33.8789H16.1641V-50.1484H-3.8438Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -62.898669 -27.0419)'>R</text>
-<text class='f3' x='70.606368' y='-10.820173' transform='matrix(1 0 0 1 -62.898669 -27.0419)'>2</text>
-<path d='M30.3359-33.8789H50.3398V-50.1484H30.3359Z' fill='#fff'/>
-<path d='M30.3359-33.8789H50.3398V-50.1484H30.3359Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -28.721 -27.0419)'>R</text>
-<text class='f3' x='70.606368' y='-10.820173' transform='matrix(1 0 0 1 -28.721 -27.0419)'>3</text>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 116.5092 -27.208)'>ψ</text>
-<text class='f3' x='69.531421' y='-10.820173' transform='matrix(1 0 0 1 116.5092 -27.208)'>1</text>
-<text class='f0' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -131.723 3.23788)'>|</text>
-<text class='f1' x='65.809246' y='-12.314553' transform='matrix(1 0 0 1 -131.723 3.23788)'>j</text>
-<text class='f3' x='69.911931' y='-10.820173' transform='matrix(1 0 0 1 -131.723 3.23788)'>2</text>
-<text class='f0' x='74.381301' y='-12.314553' transform='matrix(1 0 0 1 -131.723 3.23788)'></text>
-<path d='M64.51172-4.17969H81.5742V-18.95703H64.51172Z' fill='#fff'/>
-<path d='M64.51172-4.17969H81.5742V-18.95703H64.51172Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 5.4566 4.15112)'>H</text>
-<path d='M95.7461-3.42969H115.7539V-19.70313H95.7461Z' fill='#fff'/>
-<path d='M95.7461-3.42969H115.7539V-19.70313H95.7461Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 36.6912 3.40393)'>R</text>
-<text class='f3' x='70.606368' y='-10.820173' transform='matrix(1 0 0 1 36.6912 3.40393)'>2</text>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 116.5092 3.23788)'>ψ</text>
-<text class='f3' x='69.531421' y='-10.820173' transform='matrix(1 0 0 1 116.5092 3.23788)'>2</text>
-<text class='f0' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -131.723 32.9366)'>|</text>
-<text class='f1' x='65.809246' y='-12.314553' transform='matrix(1 0 0 1 -131.723 32.9366)'>j</text>
-<text class='f3' x='69.911931' y='-10.820173' transform='matrix(1 0 0 1 -131.723 32.9366)'>3</text>
-<text class='f0' x='74.381301' y='-12.314553' transform='matrix(1 0 0 1 -131.723 32.9366)'></text>
-<path d='M129.9258 25.5195H146.9883V10.7422H129.9258Z' fill='#fff'/>
-<path d='M129.9258 25.5195H146.9883V10.7422H129.9258Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 70.8692 33.8498)'>H</text>
-<text class='f1' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 116.5092 32.9366)'>ψ</text>
-<text class='f3' x='69.531421' y='-10.820173' transform='matrix(1 0 0 1 116.5092 32.9366)'>3</text>
-<path d='M57.42578-53.668V32.0273' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
-<text class='f2' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 -8.1058 -45.7383)'>1</text>
-<path d='M122.8398-53.668V32.0273' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
-<text class='f0' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 53.9852 -48.229)'>|</text>
-<text class='f2' x='65.809246' y='-12.314553' transform='matrix(1 0 0 1 53.9852 -48.229)'>2</text>
-<text class='f0' x='70.790585' y='-12.314553' transform='matrix(1 0 0 1 53.9852 -48.229)'></text>
-<path d='M154.0742-53.668V32.0273' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
-<text class='f2' x='63.041837' y='-12.314553' transform='matrix(1 0 0 1 88.5412 -45.7383)'>3</text>
+<path d='M-35.0781-45.5547H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-3.8438-45.5547H-18.0156' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M30.3359-45.5547H16.1641' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M73.043-45.5547H50.3398' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M73.043-45.5547H50.3398' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M105.75-45.5547H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M105.75-45.5547H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M138.457-45.5547H105.75' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M138.457-45.5547H105.75' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M161.1602-45.5547V14.5898' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M161.1602-45.5547H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M175.3318-45.5547H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-26.5469-15.109375H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-26.5469-15.109375H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M6.1602-16.808594V-37.418' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M4.4609-15.109375H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M40.3359-15.109375H7.8594' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M40.3359-15.109375H7.8594' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M64.51172-15.109375H40.3359' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M95.7461-15.109375H81.5742' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M138.457-15.109375H115.7539' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M138.457-15.109375H115.7539' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M161.1602-15.109375H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M161.1602-15.109375H138.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M175.3318-15.109375H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-26.5469 14.5898H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-26.5469 14.5898H-49.2502' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M6.1602 14.5898H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M6.1602 14.5898H-26.5469' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M40.3359 12.8867V-37.418' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M38.6367 14.5898H6.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M73.043 14.5898H42.0391' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M73.043 14.5898H42.0391' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M105.75 12.8867V-6.97266' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M104.0508 14.5898H73.043' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M129.9258 14.5898H107.4492' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M161.1602 14.5898H146.9883' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M175.3318 14.5898H161.1602' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M157.67165-42.06637L164.6443-49.04293M157.67165-49.04293L164.6443-42.06637' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M7.85916-15.109335C7.85916-16.046835 7.097438-16.80855 6.159938-16.80855C5.218532-16.80855 4.45681-16.046835 4.45681-15.109335C4.45681-14.171835 5.218532-13.41012 6.159938-13.41012C7.097438-13.41012 7.85916-14.171835 7.85916-15.109335Z'/>
+<path d='M7.85938-15.109335C7.85938-16.046835 7.097658-16.80855 6.160158-16.80855C5.218752-16.80855 4.45703-16.046835 4.45703-15.109335C4.45703-14.171835 5.218752-13.41012 6.160158-13.41012C7.097658-13.41012 7.85938-14.171835 7.85938-15.109335Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M42.03493 14.589884C42.03493 13.648478 41.277116 12.88676 40.33571 12.88676C39.39821 12.88676 38.63649 13.648478 38.63649 14.589884C38.63649 15.527384 39.39821 16.2891 40.33571 16.2891C41.277116 16.2891 42.03493 15.527384 42.03493 14.589884Z'/>
+<path d='M42.03513 14.589884C42.03513 13.648478 41.277316 12.88676 40.33591 12.88676C39.39841 12.88676 38.63669 13.648478 38.63669 14.589884C38.63669 15.527384 39.39841 16.2891 40.33591 16.2891C41.277316 16.2891 42.03513 15.527384 42.03513 14.589884Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M107.449 14.589884C107.449 13.648478 106.687285 12.88676 105.749785 12.88676C104.808379 12.88676 104.04666 13.648478 104.04666 14.589884C104.04666 15.527384 104.808379 16.2891 105.749785 16.2891C106.687285 16.2891 107.449 15.527384 107.449 14.589884Z'/>
+<path d='M107.449 14.589884C107.449 13.648478 106.687285 12.88676 105.749785 12.88676C104.808379 12.88676 104.04666 13.648478 104.04666 14.589884C104.04666 15.527384 104.808379 16.2891 105.749785 16.2891C106.687285 16.2891 107.449 15.527384 107.449 14.589884Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M157.67165 18.07426L164.6443 11.1016M157.67165 11.1016L164.6443 18.07426' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f0' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -131.723 -27.208)'>|</text>
+<text class='f1' x='65.809246' y='-15.856842' transform='matrix(1 0 0 1 -131.723 -27.208)'>j</text>
+<text class='f3' x='69.911931' y='-14.362462' transform='matrix(1 0 0 1 -131.723 -27.208)'>1</text>
+<text class='f0' x='74.381301' y='-15.856842' transform='matrix(1 0 0 1 -131.723 -27.208)'></text>
+<path d='M-35.0781-38.168H-18.0156V-52.9453H-35.0781Z' fill='#fff'/>
+<path d='M-35.0781-38.168H-18.0156V-52.9453H-35.0781Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -94.1333 -26.2947)'>H</text>
+<path d='M-3.8438-37.418H16.1641V-53.6914H-3.8438Z' fill='#fff'/>
+<path d='M-3.8438-37.418H16.1641V-53.6914H-3.8438Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -62.898669 -27.0419)'>R</text>
+<text class='f3' x='70.606368' y='-14.362462' transform='matrix(1 0 0 1 -62.898669 -27.0419)'>2</text>
+<path d='M30.3359-37.418H50.3398V-53.6914H30.3359Z' fill='#fff'/>
+<path d='M30.3359-37.418H50.3398V-53.6914H30.3359Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -28.721 -27.0419)'>R</text>
+<text class='f3' x='70.606368' y='-14.362462' transform='matrix(1 0 0 1 -28.721 -27.0419)'>3</text>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 116.5092 -27.208)'>ψ</text>
+<text class='f3' x='69.531421' y='-14.362462' transform='matrix(1 0 0 1 116.5092 -27.208)'>1</text>
+<text class='f0' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -131.723 3.2379)'>|</text>
+<text class='f1' x='65.809246' y='-15.856842' transform='matrix(1 0 0 1 -131.723 3.2379)'>j</text>
+<text class='f3' x='69.911931' y='-14.362462' transform='matrix(1 0 0 1 -131.723 3.2379)'>2</text>
+<text class='f0' x='74.381301' y='-15.856842' transform='matrix(1 0 0 1 -131.723 3.2379)'></text>
+<path d='M64.51172-7.71875H81.5742V-22.5H64.51172Z' fill='#fff'/>
+<path d='M64.51172-7.71875H81.5742V-22.5H64.51172Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 5.4566 4.1511)'>H</text>
+<path d='M95.7461-6.97266H115.7539V-23.24609H95.7461Z' fill='#fff'/>
+<path d='M95.7461-6.97266H115.7539V-23.24609H95.7461Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 36.6912 3.4039)'>R</text>
+<text class='f3' x='70.606368' y='-14.362462' transform='matrix(1 0 0 1 36.6912 3.4039)'>2</text>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 116.5092 3.2379)'>ψ</text>
+<text class='f3' x='69.531421' y='-14.362462' transform='matrix(1 0 0 1 116.5092 3.2379)'>2</text>
+<text class='f0' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -131.723 32.9366)'>|</text>
+<text class='f1' x='65.809246' y='-15.856842' transform='matrix(1 0 0 1 -131.723 32.9366)'>j</text>
+<text class='f3' x='69.911931' y='-14.362462' transform='matrix(1 0 0 1 -131.723 32.9366)'>3</text>
+<text class='f0' x='74.381301' y='-15.856842' transform='matrix(1 0 0 1 -131.723 32.9366)'></text>
+<path d='M129.9258 21.9766H146.9883V7.1992H129.9258Z' fill='#fff'/>
+<path d='M129.9258 21.9766H146.9883V7.1992H129.9258Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 70.8692 33.8498)'>H</text>
+<text class='f1' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 116.5092 32.9366)'>ψ</text>
+<text class='f3' x='69.531421' y='-14.362462' transform='matrix(1 0 0 1 116.5092 32.9366)'>3</text>
+<path d='M57.42578-57.2109V28.4883' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
+<text class='f2' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 -8.1058 -45.7383)'>1</text>
+<path d='M122.8398-57.2109V28.4883' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
+<text class='f2' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 57.3062 -45.7383)'>2</text>
+<path d='M154.0742-57.2109V28.4883' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-dasharray='4.98138 2.98883'/>
+<text class='f2' x='63.041837' y='-15.856842' transform='matrix(1 0 0 1 88.5412 -45.7383)'>3</text>
 </g>
 </svg>
\ No newline at end of file
diff --git a/content/img/flip.pdf b/content/img/flip.pdf
deleted file mode 100644
index 66b03e211a751b6f5b32f9f712e07e34a26feed8..0000000000000000000000000000000000000000
Binary files a/content/img/flip.pdf and /dev/null differ
diff --git a/content/img/flip.svg b/content/img/flip.svg
deleted file mode 100644
index ee1263ba875ec8fa1857d92186a592ece41fd223..0000000000000000000000000000000000000000
--- a/content/img/flip.svg
+++ /dev/null
@@ -1 +0,0 @@
-<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="283.993" height="90.043" viewBox="0 0 212.995 67.532"><path stroke-width=".797" stroke-linecap="round" stroke-miterlimit="10" fill="none" stroke="#000" d="M17.493 11.456H3.32M31.666 11.456H17.493M74.55 11.456H60.378M88.724 11.456H74.551M138.445 11.456h-14.173M152.619 11.456h-14.174M195.503 11.456H181.33M209.676 11.456h-14.173M17.493 33.766H3.32M31.666 33.766H17.493M74.55 33.766H60.378M88.724 33.766H74.551M138.445 33.766h-14.173M152.619 33.766h-14.174M195.503 33.766H181.33M209.676 33.766h-14.173M17.493 56.076H3.32M31.666 56.076H17.493M74.55 56.076H60.378M88.724 56.076H74.551M138.445 56.076h-14.173M152.619 56.076h-14.174M195.503 56.076H181.33M209.676 56.076h-14.173"/><path d="M31.666 64.027h28.711V3.505h-28.71z" fill="#fff"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M31.666 64.027h28.711V3.505h-28.71z"/><symbol id="a"><path d="M.724.606c.009.036.011.046.084.046.026 0 .034 0 .034.02 0 .011-.011.011-.014.011L.7.68.571.683c-.008 0-.019 0-.019-.02C.552.652.561.652.58.652c.002 0 .021 0 .038-.002C.636.648.645.647.645.634L.641.615.581.371H.276l.059.235c.009.036.012.046.084.046.026 0 .034 0 .034.02 0 .011-.011.011-.014.011L.311.68.182.683c-.008 0-.019 0-.019-.02 0-.011.009-.011.028-.011.002 0 .021 0 .038-.002C.247.648.256.647.256.634L.252.615.118.078C.108.039.106.031.027.031.009.031 0 .031 0 .011 0 0 .012 0 .014 0l.127.003.064-.001L.27 0c.008 0 .02 0 .02.02C.29.031.281.031.262.031c-.037 0-.065 0-.065.018C.197.055.199.06.2.066L.268.34h.305L.504.064C.494.032.475.031.413.031c-.015 0-.024 0-.024-.02C.389 0 .401 0 .403 0L.53.003.594.002.659 0c.008 0 .02 0 .02.02C.679.031.67.031.651.031c-.037 0-.065 0-.065.018 0 .006.002.011.003.017l.135.54z"/></symbol><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 36.04 37.732)"/><symbol id="b"><path d="M.738.368a.37.37 0 1 1-.739 0 .37.37 0 0 1 .739 0M.145.617a.336.336 0 0 0 .448 0L.369.393.145.617M.121.145a.328.328 0 0 0 0 .447L.345.369.121.145m.496.447a.328.328 0 0 0 0-.447L.393.368l.224.224M.593.12a.336.336 0 0 0-.448 0l.224.224L.593.12z"/></symbol><use xlink:href="#b" transform="matrix(6.9738 0 0 -6.9738 45.28 34.94)"/><symbol id="c"><path d="M.075.073a.378.378 0 0 1-.01-.041C.065.01.083 0 .099 0a.05.05 0 0 1 .039.022.408.408 0 0 1 .018.062l.022.09.017.067c.011.041.013.049.042.09.028.04.075.092.15.092.058 0 .059-.051.059-.07C.446.293.403.182.387.14.376.112.372.103.372.086.372.033.416 0 .467 0c.1 0 .144.138.144.153 0 .013-.013.013-.016.013C.581.166.58.16.576.149.553.069.51.028.47.028.449.028.445.042.445.063c0 .023.005.036.023.081a.733.733 0 0 1 .053.193c0 .097-.077.114-.13.114A.213.213 0 0 1 .222.36C.215.429.156.451.115.451.072.451.049.42.036.397A.355.355 0 0 1 0 .298C0 .285.014.285.017.285c.014 0 .015.003.022.03.015.059.034.108.073.108.026 0 .033-.022.033-.049A.442.442 0 0 0 .129.291a3.78 3.78 0 0 1-.022-.09L.075.073z"/></symbol><use xlink:href="#c" transform="matrix(6.9738 0 0 -6.9738 51.298 34.187)"/><path d="M88.724 64.212h35.548V3.32H88.724z" fill="#fff"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M88.724 64.212h35.548V3.32H88.724z"/><symbol id="d"><path d="M.549.68H0V.649h.024C.101.649.103.638.103.602V.078C.103.042.101.031.024.031H0V0c.035.003.113.003.152.003C.193.003.284.003.32 0v.031H.287C.192.031.192.044.192.079v.246h.086C.374.325.384.293.384.208h.025v.265H.384C.384.389.374.356.278.356H.192v.253c0 .033.002.04.049.04h.12c.15 0 .175-.056.191-.194h.025L.549.68z"/></symbol><symbol id="e"><path d="M.549.258H.524C.513.156.499.031.323.031H.241c-.047 0-.049.007-.049.04v.533c0 .034 0 .048.095.048H.32v.031C.284.68.193.68.152.68.113.68.035.68 0 .683V.652h.024C.101.652.103.641.103.605V.078C.103.042.101.031.024.031H0V0h.521l.028.258z"/></symbol><symbol id="f"><path d="M.197.605c0 .036.003.047.082.047h.026v.031C.27.68.191.68.153.68.114.68.035.68 0 .683V.652h.026C.105.652.108.641.108.605V.078C.108.042.105.031.026.031H0V0c.035.003.114.003.152.003C.191.003.27.003.305 0v.031H.279C.2.031.197.042.197.078v.527z"/></symbol><symbol id="g"><path d="M.192.316h.169c.12 0 .228.081.228.181C.589.595.49.683.353.683H0V.652h.024C.101.652.103.641.103.605V.078C.103.042.101.031.024.031H0V0c.035.003.109.003.147.003C.185.003.26.003.295 0v.031H.271C.194.031.192.042.192.078v.238M.189.342v.27c0 .033.002.04.049.04h.089C.486.652.486.546.486.497c0-.047 0-.155-.159-.155H.189z"/></symbol><use xlink:href="#d" transform="matrix(9.9626 0 0 -9.9626 93.038 36.423)"/><use xlink:href="#e" transform="matrix(9.9626 0 0 -9.9626 99.543 36.423)"/><use xlink:href="#f" transform="matrix(9.9626 0 0 -9.9626 105.72 36.423)"/><use xlink:href="#g" transform="matrix(9.9626 0 0 -9.9626 109.386 36.423)"/><symbol id="h"><path d="M.464.339c0 .11-.013.189-.059.259a.208.208 0 0 1-.173.086C0 .684 0 .411 0 .339 0 .267 0 0 .232 0s.232.267.232.339M.232.028C.186.028.125.055.105.137.091.196.091.278.091.352c0 .073 0 .149.015.204.021.079.085.1.126.1A.129.129 0 0 0 .356.565.813.813 0 0 0 .373.352c0-.074 0-.148-.013-.211C.34.05.272.028.232.028z"/></symbol><use xlink:href="#h" transform="matrix(6.9738 0 0 -6.9738 116.18 38.056)"/><path d="M152.619 64.027h28.71V3.505h-28.71z" fill="#fff"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M152.619 64.027h28.71V3.505h-28.71z"/><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 156.992 37.732)"/><use xlink:href="#b" transform="matrix(6.9738 0 0 -6.9738 166.231 34.94)"/><use xlink:href="#c" transform="matrix(6.9738 0 0 -6.9738 172.249 34.187)"/></svg>
\ No newline at end of file
diff --git a/content/img/flip_star.pdf b/content/img/flip_star.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..e63b47d9aeffdec3ac2600f060ac7f46ce3842fc
Binary files /dev/null and b/content/img/flip_star.pdf differ
diff --git a/content/img/flip_star.svg b/content/img/flip_star.svg
new file mode 100644
index 0000000000000000000000000000000000000000..63d775847b0e75312eff884ea67b64c85d29e226
--- /dev/null
+++ b/content/img/flip_star.svg
@@ -0,0 +1,91 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='181.505109pt' height='105.64081pt' viewBox='-68.680804 -69.078205 181.505109 105.64081'>
+<defs>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='.' horiz-adv-x='277' vert-adv-y='277' glyph-name='period' d='M192 53C192 82 168 106 139 106S86 82 86 53S110 0 139 0S192 24 192 53Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='ψ' horiz-adv-x='651' vert-adv-y='651' glyph-name='psi' d='M482 668C483 672 485 678 485 683C485 693 478 694 473 694C463 694 462 692 458 674L292 13C216 22 178 59 178 125C178 145 178 171 232 311C236 323 243 340 243 360C243 405 211 442 161 442C66 442 29 297 29 288C29 278 39 278 41 278C51 278 52 280 57 296C84 391 124 420 158 420C166 420 183 420 183 388C183 362 173 337 160 302C112 176 112 150 112 133C112 38 190-3 286-9C278-45 278-47 264-100C261-111 241-192 241-195C241-196 241-205 253-205C255-205 260-205 262-201C265-199 271-174 274-160L312-11C349-11 437-11 531 96C572 142 593 186 604 216C613 241 635 328 635 372C635 428 608 442 591 442C566 442 541 416 541 394C541 381 547 375 556 367C567 356 592 330 592 282C592 218 540 136 505 100C417 11 353 11 317 11L482 668Z'/>
+<glyph unicode='F' horiz-adv-x='643' vert-adv-y='643' glyph-name='F' d='M303 325H400C475 325 483 309 483 280C483 273 483 261 476 231C474 226 473 222 473 220C473 212 479 208 485 208C495 208 495 211 500 229L555 446C558 457 558 459 558 462C558 464 556 473 546 473S535 468 531 452C510 374 487 356 402 356H311L375 610C384 645 385 649 429 649H561C684 649 707 616 707 539C707 516 707 512 704 485C702 472 702 470 702 467C702 462 705 455 714 455C725 455 726 461 728 480L748 653C751 680 746 680 721 680H231C211 680 201 680 201 660C201 649 210 649 229 649C266 649 294 649 294 631C294 627 294 625 289 607L157 78C147 39 145 31 66 31C49 31 38 31 38 12C38 0 50 0 53 0C82 0 156 3 185 3C218 3 301 0 334 0C343 0 355 0 355 19C355 27 349 29 349 30C346 31 344 31 321 31C299 31 294 31 269 33C240 36 237 40 237 53C237 55 237 61 241 76L303 325Z'/>
+<glyph unicode='H' horiz-adv-x='831' vert-adv-y='831' glyph-name='H' d='M763 606C772 642 774 652 847 652C873 652 881 652 881 672C881 683 870 683 867 683C839 683 767 680 739 680C710 680 639 683 610 683C602 683 591 683 591 663C591 652 600 652 619 652C621 652 640 652 657 650C675 648 684 647 684 634C684 630 683 628 680 615L620 371H315L374 606C383 642 386 652 458 652C484 652 492 652 492 672C492 683 481 683 478 683C450 683 378 680 350 680C321 680 250 683 221 683C213 683 202 683 202 663C202 652 211 652 230 652C232 652 251 652 268 650C286 648 295 647 295 634C295 630 294 627 291 615L157 78C147 39 145 31 66 31C48 31 39 31 39 11C39 0 51 0 53 0C81 0 152 3 180 3C201 3 223 2 244 2C266 2 288 0 309 0C317 0 329 0 329 20C329 31 320 31 301 31C264 31 236 31 236 49C236 55 238 60 239 66L307 340H612C570 174 547 79 543 64C533 32 514 31 452 31C437 31 428 31 428 11C428 0 440 0 442 0C470 0 541 3 569 3C590 3 612 2 633 2C655 2 677 0 698 0C706 0 718 0 718 20C718 31 709 31 690 31C653 31 625 31 625 49C625 55 627 60 628 66L763 606Z'/>
+<glyph unicode='I' horiz-adv-x='439' vert-adv-y='439' glyph-name='I' d='M374 606C383 642 386 652 465 652C489 652 497 652 497 671C497 683 486 683 482 683C453 683 379 680 350 680C320 680 247 683 217 683C210 683 197 683 197 663C197 652 206 652 225 652C267 652 294 652 294 633C294 628 294 626 292 617L157 78C148 41 145 31 66 31C43 31 34 31 34 11C34 0 46 0 49 0C78 0 151 3 180 3C210 3 284 0 314 0C322 0 334 0 334 19C334 31 326 31 304 31C286 31 281 31 261 33C240 35 236 39 236 50C236 58 238 66 240 73L374 606Z'/>
+<glyph unicode='L' horiz-adv-x='680' vert-adv-y='680' glyph-name='L' d='M374 605C383 641 386 652 480 652C510 652 518 652 518 671C518 683 507 683 502 683C469 683 387 680 354 680C324 680 251 683 221 683C214 683 202 683 202 663C202 652 211 652 230 652C232 652 251 652 268 650C286 648 295 647 295 634C295 630 294 627 291 615L157 78C147 39 145 31 66 31C49 31 39 31 39 11C39 0 48 0 66 0H529C553 0 554 0 560 17L639 233C643 244 643 246 643 247C643 251 640 258 631 258S621 253 614 237C580 145 536 31 363 31H269C255 31 253 31 247 32C237 33 234 34 234 42C234 45 234 47 239 65L374 605Z'/>
+<glyph unicode='P' horiz-adv-x='642' vert-adv-y='642' glyph-name='P' d='M303 316H473C615 316 754 420 754 532C754 609 688 683 557 683H233C214 683 203 683 203 664C203 652 212 652 232 652C245 652 263 651 275 650C291 648 297 645 297 634C297 630 296 627 293 615L159 78C149 39 147 31 68 31C51 31 40 31 40 12C40 0 52 0 55 0C83 0 154 3 182 3C203 3 225 2 246 2C268 2 290 0 311 0C318 0 331 0 331 20C331 31 322 31 303 31C266 31 238 31 238 49C238 55 240 60 241 66L303 316ZM375 614C384 649 386 652 429 652H525C608 652 661 625 661 556C661 517 641 431 602 395C552 350 492 342 448 342H307L375 614Z'/>
+</font>
+<font id='cmr7' horiz-adv-x='0'>
+<font-face font-family='cmr7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='0' horiz-adv-x='569' vert-adv-y='569' glyph-name='zero' d='M516 319C516 429 503 508 457 578C426 624 364 664 284 664C52 664 52 391 52 319S52-20 284-20S516 247 516 319ZM284 8C238 8 177 35 157 117C143 176 143 258 143 332C143 405 143 481 158 536C179 615 243 636 284 636C338 636 390 603 408 545C424 491 425 419 425 332C425 258 425 184 412 121C392 30 324 8 284 8Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmr10;font-size:9.96264px}
+text.f3 {font-family:cmr7;font-size:6.973848px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-31.1328-60.543H-45.3047' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016-60.543H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016-60.543H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M14.2773-60.543H.1016' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156-60.543H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156-60.543H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M81.1914-60.543H67.0156' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M112.4258-60.543H98.25' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-31.1328-30.8437H-45.3047' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016-30.8437H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016-30.8437H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M14.2773-30.8437H.1016' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M14.2773-30.8437H.1016' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156-30.8437H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156-30.8437H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M81.1914-30.8437H67.0156' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M112.4258-30.8437H98.25' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-31.1328 28.0273H-45.3047' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016 28.0273H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M.1016 28.0273H-14.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M14.2773 28.0273H.1016' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M14.2773 28.0273H.1016' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156 28.0273H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M67.0156 28.0273H52.8438' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M81.1914 28.0273H67.0156' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M112.4258 28.0273H98.25' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<text class='f2' x='56.263606' y='-54.037913' transform='matrix(1 0 0 1 -80.2489 51.78487)'>.<tspan x='56.263606' y='-50.052857'>.</tspan><tspan x='56.263606' y='-46.067801'>.</tspan></text>
+<text class='f2' x='168.58465' y='-54.037913' transform='matrix(1 0 0 1 -80.2489 51.78487)'>.<tspan x='168.58465' y='-50.052857'>.</tspan><tspan x='168.58465' y='-46.067801'>.</tspan></text>
+<text class='f0' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 -102.2407 2.4907)'>|</text>
+<text class='f1' x='36.327304' y='-16.258808' transform='matrix(1 0 0 1 -102.2407 2.4907)'>ψ</text>
+<text class='f0' x='43.174328' y='-16.258808' transform='matrix(1 0 0 1 -102.2407 2.4907)'></text>
+<path d='M-48.8359-63.5781C-49.5859-63.2031-50.082-62.332-50.082-61.0859V-18.75C-50.082-17.50391-50.582-16.632812-51.3281-16.257812C-50.582-15.886718-50.082-15.01172-50.082-13.76953V28.5703C-50.082 29.8164-49.5859 30.6875-48.8359 31.0586' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M-31.1328-53.1562H-14.0703V-67.9336H-31.1328Z' fill='#fff'/>
+<path d='M-31.1328-53.1562H-14.0703V-67.9336H-31.1328Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 -60.7067 -40.8812)'>H</text>
+<path d='M14.2773 36.1641H52.8438V-68.6797H14.2773Z' fill='#fff'/>
+<path d='M14.2773 36.1641H52.8438V-68.6797H14.2773Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 -15.2987 2.6567)'>F<tspan x='41.350152'>LI</tspan><tspan x='53.29149'>P</tspan></text>
+<text class='f3' x='59.68764' y='-14.764427' transform='matrix(1 0 0 1 -15.2987 2.6567)'>0</text>
+<path d='M81.1914-53.1562H98.25V-67.9336H81.1914Z' fill='#fff'/>
+<path d='M81.1914-53.1562H98.25V-67.9336H81.1914Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 51.6157 -40.8812)'>H</text>
+<path d='M-31.1328-23.45703H-14.0703V-38.2344H-31.1328Z' fill='#fff'/>
+<path d='M-31.1328-23.45703H-14.0703V-38.2344H-31.1328Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 -60.7067 -11.1825)'>H</text>
+<path d='M81.1914-23.45703H98.25V-38.2344H81.1914Z' fill='#fff'/>
+<path d='M81.1914-23.45703H98.25V-38.2344H81.1914Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 51.6157 -11.1825)'>H</text>
+<path d='M-31.1328 35.4141H-14.0703V20.6367H-31.1328Z' fill='#fff'/>
+<path d='M-31.1328 35.4141H-14.0703V20.6367H-31.1328Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 -60.7067 47.6891)'>H</text>
+<path d='M81.1914 35.4141H98.25V20.6367H81.1914Z' fill='#fff'/>
+<path d='M81.1914 35.4141H98.25V20.6367H81.1914Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='33.559896' y='-16.258808' transform='matrix(1 0 0 1 51.6157 47.6891)'>H</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/content/img/flip_zero.pdf b/content/img/flip_zero.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..e8d110264e4738214f41a668a512a80b6da1b59b
Binary files /dev/null and b/content/img/flip_zero.pdf differ
diff --git a/content/img/flip_zero.svg b/content/img/flip_zero.svg
new file mode 100644
index 0000000000000000000000000000000000000000..5ac6f04bf07d2cb59fff89108455b57f803b4189
--- /dev/null
+++ b/content/img/flip_zero.svg
@@ -0,0 +1,73 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='143.133715pt' height='93.73061pt' viewBox='-68.68051 -69.078205 143.133715 93.73061'>
+<defs>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='.' horiz-adv-x='277' vert-adv-y='277' glyph-name='period' d='M192 53C192 82 168 106 139 106S86 82 86 53S110 0 139 0S192 24 192 53Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='I' horiz-adv-x='439' vert-adv-y='439' glyph-name='I' d='M374 606C383 642 386 652 465 652C489 652 497 652 497 671C497 683 486 683 482 683C453 683 379 680 350 680C320 680 247 683 217 683C210 683 197 683 197 663C197 652 206 652 225 652C267 652 294 652 294 633C294 628 294 626 292 617L157 78C148 41 145 31 66 31C43 31 34 31 34 11C34 0 46 0 49 0C78 0 151 3 180 3C210 3 284 0 314 0C322 0 334 0 334 19C334 31 326 31 304 31C286 31 281 31 261 33C240 35 236 39 236 50C236 58 238 66 240 73L374 606Z'/>
+<glyph unicode='Z' horiz-adv-x='682' vert-adv-y='682' glyph-name='Z' d='M720 659C721 663 723 668 723 674C723 683 718 683 698 683H276C252 683 251 682 245 663L190 483C188 478 187 471 187 469C187 468 187 458 199 458C208 458 210 465 212 468C250 586 302 652 458 652H621L62 27C62 26 58 12 58 9C58 0 65 0 83 0H518C542 0 543 1 549 20L620 241C621 245 624 252 624 256C624 261 620 267 611 267S601 263 594 242C550 106 502 34 332 34H161L720 659Z'/>
+<glyph unicode='x' horiz-adv-x='571' vert-adv-y='571' glyph-name='x' d='M334 302C340 328 363 420 433 420C438 420 462 420 483 407C455 402 435 377 435 353C435 337 446 318 473 318C495 318 527 336 527 376C527 428 468 442 434 442C376 442 341 389 329 366C304 432 250 442 221 442C117 442 60 313 60 288C60 278 70 278 72 278C80 278 83 280 85 289C119 395 185 420 219 420C238 420 273 411 273 353C273 322 256 255 219 115C203 53 168 11 124 11C118 11 95 11 74 24C99 29 121 50 121 78C121 105 99 113 84 113C54 113 29 87 29 55C29 9 79-11 123-11C189-11 225 59 228 65C240 28 276-11 336-11C439-11 496 118 496 143C496 153 487 153 484 153C475 153 473 149 471 142C438 35 370 11 338 11C299 11 283 43 283 77C283 99 289 121 300 165L334 302Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='−' horiz-adv-x='777' vert-adv-y='777' glyph-name='minus' d='M659 230C676 230 694 230 694 250S676 270 659 270H118C101 270 83 270 83 250S101 230 118 230H659Z'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmr10;font-size:9.96264px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-30.9023-60.875H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-30.9023-60.875H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-15.3438-60.875H-30.9023' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531-60.875H7.89062' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531-60.875H7.89062' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M39.0039-60.875H23.44531' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M74.0547-60.875H59.8828' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-30.9023-36.8008H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-30.9023-36.8008H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-3.7266-38.5V-53.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-5.4297-36.8008H-30.9023' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531-36.8008H-2.0273' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531-36.8008H-2.0273' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M39.0039-36.8008H23.44531' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M39.0039-36.8008H23.44531' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M74.0547-36.8008H59.8828' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-30.9023 16.4492H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-30.9023 16.4492H-46.457' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-3.7266 14.75V-53.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-5.4297 16.4492H-30.9023' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531 16.4492H-2.0273' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.44531 16.4492H-2.0273' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M39.0039 16.4492H23.44531' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M39.0039 16.4492H23.44531' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M74.0547 16.4492H59.8828' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-2.02735-36.796886C-2.02735-37.738293-2.789071-38.50001-3.726571-38.50001C-4.667977-38.50001-5.4297-37.738293-5.4297-36.796886C-5.4297-35.859386-4.667977-35.09767-3.726571-35.09767C-2.789071-35.09767-2.02735-35.859386-2.02735-36.796886Z' fill='#fff'/>
+<path d='M-2.02734-36.796886C-2.02734-37.738293-2.789061-38.50001-3.726561-38.50001C-4.667967-38.50001-5.42969-37.738293-5.42969-36.796886C-5.42969-35.859386-4.667967-35.09767-3.726561-35.09767C-2.789061-35.09767-2.02734-35.859386-2.02734-36.796886Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f2' x='29.356101' y='-59.659714' transform='matrix(1 0 0 1 -61.6411 46.16295)'>.<tspan x='29.356101' y='-55.674658'>.</tspan><tspan x='29.356101' y='-51.689602'>.</tspan></text>
+<text class='f2' x='83.70226' y='-59.659714' transform='matrix(1 0 0 1 -61.6411 46.16295)'>.<tspan x='83.70226' y='-55.674658'>.</tspan><tspan x='83.70226' y='-51.689602'>.</tspan></text>
+<path d='M-2.02735 16.449207C-2.02735 15.511707-2.789071 14.74999-3.726571 14.74999C-4.667977 14.74999-5.4297 15.511707-5.4297 16.449207C-5.4297 17.390613-4.667977 18.15233-3.726571 18.15233C-2.789071 18.15233-2.02735 17.390613-2.02735 16.449207Z' fill='#fff'/>
+<path d='M-2.02734 16.449207C-2.02734 15.511707-2.789061 14.74999-3.726561 14.74999C-4.667967 14.74999-5.42969 15.511707-5.42969 16.449207C-5.42969 17.390613-4.667967 18.15233-3.726561 18.15233C-2.789061 18.15233-2.02734 17.390613-2.02734 16.449207Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f0' x='13.79919' y='-22.212692' transform='matrix(1 0 0 1 -82.4797 2.4907)'>|</text>
+<text class='f1' x='16.566598' y='-22.212692' transform='matrix(1 0 0 1 -82.4797 2.4907)'>x</text>
+<text class='f0' x='22.260531' y='-22.212692' transform='matrix(1 0 0 1 -82.4797 2.4907)'></text>
+<path d='M-49.9922-63.9102C-50.7383-63.5352-51.2344-62.6641-51.2344-61.418V-24.70313C-51.2344-23.45703-51.7344-22.585938-52.4805-22.210938C-51.7344-21.839844-51.2344-20.96875-51.2344-19.72266V16.9922C-51.2344 18.2383-50.7383 19.1094-49.9922 19.4844' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M-15.3438-53.0703H7.89062V-68.6797H-15.3438Z' fill='#fff'/>
+<path d='M-15.3438-53.0703H7.89062V-68.6797H-15.3438Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f0' x='13.79919' y='-22.212692' transform='matrix(1 0 0 1 -25.1581 -35.6744)'>−</text>
+<text class='f1' x='21.547937' y='-22.212692' transform='matrix(1 0 0 1 -25.1581 -35.6744)'>Z</text>
+<path d='M39.0039 24.2539H59.8828V-68.6797H39.0039Z' fill='#fff'/>
+<path d='M39.0039 24.2539H59.8828V-68.6797H39.0039Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f0' x='13.79919' y='-22.212692' transform='matrix(1 0 0 1 29.1888 2.9888)'>−</text>
+<text class='f1' x='21.547937' y='-22.212692' transform='matrix(1 0 0 1 29.1888 2.9888)'>I</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/content/img/grover.pdf b/content/img/grover.pdf
index 7ae5ed5e79afe039292105a82d10c561efd87174..f3bda9b258d85ef558f390743a796cfb4a21aada 100644
Binary files a/content/img/grover.pdf and b/content/img/grover.pdf differ
diff --git a/content/img/grover.svg b/content/img/grover.svg
index 83e499ddc7aa38db97841c8452cb00b7bcc9aa7e..dce5a1647e1816e56e93bdac9eeab4a7954e0085 100644
--- a/content/img/grover.svg
+++ b/content/img/grover.svg
@@ -1 +1,100 @@
-<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="269.348" height="62.579" viewBox="0 0 202.011 46.934"><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="m29.402 33.618 4.535-6.802"/><symbol id="a"><path d="M.075.073a.378.378 0 0 1-.01-.041C.065.01.083 0 .099 0a.05.05 0 0 1 .039.022.408.408 0 0 1 .018.062l.022.09.017.067c.011.041.013.049.042.09.028.04.075.092.15.092.058 0 .059-.051.059-.07C.446.293.403.182.387.14.376.112.372.103.372.086.372.033.416 0 .467 0c.1 0 .144.138.144.153 0 .013-.013.013-.016.013C.581.166.58.16.576.149.553.069.51.028.47.028.449.028.445.042.445.063c0 .023.005.036.023.081a.733.733 0 0 1 .053.193c0 .097-.077.114-.13.114A.213.213 0 0 1 .222.36C.215.429.156.451.115.451.072.451.049.42.036.397A.355.355 0 0 1 0 .298C0 .285.014.285.017.285c.014 0 .015.003.022.03.015.059.034.108.073.108.026 0 .033-.022.033-.049A.442.442 0 0 0 .129.291a3.78 3.78 0 0 1-.022-.09L.075.073z"/></symbol><use xlink:href="#a" transform="matrix(6.9738 0 0 -6.9738 34.665 26.487)"/><path stroke-width=".797" stroke-linecap="round" stroke-miterlimit="10" fill="none" stroke="#000" d="M38.756 30.217H24.583M52.93 30.217H38.756M95.814 30.217H81.64M128.934 30.217H114.76M178.766 30.217h-14.174"/><symbol id="b"><path d="M.04.964C.04.982.04 1 .02 1S0 .982 0 .964V.036C0 .018 0 0 .02 0s.02.018.02.036v.928z"/></symbol><use xlink:href="#b" transform="matrix(9.9626 0 0 -9.9626 4.507 35.198)"/><symbol id="c"><path d="M.421.342c0 .08-.005.16-.04.234A.185.185 0 0 1 .037.569.535.535 0 0 1 0 .342C0 .267.004.177.045.101A.183.183 0 0 1 .21 0c.054 0 .13.021.174.116a.533.533 0 0 1 .037.226M.21.022C.171.022.112.047.094.143.083.203.083.295.083.354c0 .064 0 .13.008.184C.11.657.185.666.21.666.243.666.309.648.328.549c.01-.056.01-.132.01-.195 0-.075 0-.143-.011-.207C.312.052.255.022.21.022z"/></symbol><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 6.477 32.926)"/><use xlink:href="#a" transform="matrix(6.9738 0 0 -6.9738 11.397 29.162)"/><symbol id="d"><path d="M.218.483C.223.495.223.497.223.5c0 .003 0 .005-.005.017l-.175.46C.037.994.031 1 .02 1A.02.02 0 0 1 0 .98C0 .977 0 .975.005.964L.182.5.005.038C0 .027 0 .025 0 .02A.02.02 0 0 1 .02 0c.013 0 .017.01.021.02l.177.463z"/></symbol><use xlink:href="#d" transform="matrix(9.9626 0 0 -9.9626 17.04 35.198)"/><path d="M52.93 38.168h28.71V22.266H52.93z" fill="#fff"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M52.93 38.168h28.71V22.266H52.93z"/><symbol id="e"><path d="M.724.606c.009.036.011.046.084.046.026 0 .034 0 .034.02 0 .011-.011.011-.014.011L.7.68.571.683c-.008 0-.019 0-.019-.02C.552.652.561.652.58.652c.002 0 .021 0 .038-.002C.636.648.645.647.645.634L.641.615.581.371H.276l.059.235c.009.036.012.046.084.046.026 0 .034 0 .034.02 0 .011-.011.011-.014.011L.311.68.182.683c-.008 0-.019 0-.019-.02 0-.011.009-.011.028-.011.002 0 .021 0 .038-.002C.247.648.256.647.256.634L.252.615.118.078C.108.039.106.031.027.031.009.031 0 .031 0 .011 0 0 .012 0 .014 0l.127.003.064-.001L.27 0c.008 0 .02 0 .02.02C.29.031.281.031.262.031c-.037 0-.065 0-.065.018C.197.055.199.06.2.066L.268.34h.305L.504.064C.494.032.475.031.413.031c-.015 0-.024 0-.024-.02C.389 0 .401 0 .403 0L.53.003.594.002.659 0c.008 0 .02 0 .02.02C.679.031.67.031.651.031c-.037 0-.065 0-.065.018 0 .006.002.011.003.017l.135.54z"/></symbol><use xlink:href="#e" transform="matrix(9.9626 0 0 -9.9626 57.304 34.183)"/><symbol id="f"><path d="M.738.368a.37.37 0 1 1-.739 0 .37.37 0 0 1 .739 0M.145.617a.336.336 0 0 0 .448 0L.369.393.145.617M.121.145a.328.328 0 0 0 0 .447L.345.369.121.145m.496.447a.328.328 0 0 0 0-.447L.393.368l.224.224M.593.12a.336.336 0 0 0-.448 0l.224.224L.593.12z"/></symbol><use xlink:href="#f" transform="matrix(6.9738 0 0 -6.9738 66.543 31.39)"/><use xlink:href="#a" transform="matrix(6.9738 0 0 -6.9738 72.56 30.637)"/><path d="M95.814 39.031h18.946V21.403H95.814z" fill="#fff"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M95.814 39.031h18.946V21.403H95.814z"/><symbol id="g"><path d="M.572.591C.621.669.663.672.7.674c.012.001.013.018.013.019C.713.701.708.705.7.705L.618.702.519.705C.513.705.5.705.5.686.5.675.509.674.516.674.543.672.562.662.562.641.562.626.547.604.547.603L.24.115.172.644c0 .017.023.03.069.03.014 0 .025 0 .025.02 0 .009-.008.011-.014.011L.128.702.073.703.019.705C.012.705 0 .705 0 .686 0 .674.009.674.025.674.081.674.082.665.085.64L.164.023C.167.003.171 0 .184 0 .2 0 .204.005.212.018l.36.573z"/></symbol><use xlink:href="#g" transform="matrix(9.9626 0 0 -9.9626 100.357 32.414)"/><symbol id="h"><path d="M.334.599h.098c.02 0 .033 0 .033.022 0 .014-.013.014-.031.014H.341C.364.762.372.808.38.837.385.859.407.88.431.88.432.88.459.88.478.868A.06.06 0 0 1 .434.813c0-.022.017-.037.04-.037a.06.06 0 0 1 .057.061c0 .046-.049.071-.1.071a.139.139 0 0 1-.12-.075C.291.796.283.751.262.635H.183C.163.635.15.635.15.613.15.599.163.599.181.599h.074A18.16 18.16 0 0 0 .167.126C.162.104.145.028.097.028c-.001 0-.025 0-.044.012a.06.06 0 0 1 .044.055c0 .022-.017.037-.04.037A.06.06 0 0 1 0 .071C0 .026.047 0 .097 0c.064 0 .108.066.12.088A.85.85 0 0 1 .278.29l.056.309z"/></symbol><use xlink:href="#h" transform="matrix(6.9738 0 0 -6.9738 106.12 35.113)"/><path d="M128.934 38.353h35.658V22.081h-35.658z" fill="#fff"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M128.934 38.353h35.658V22.081h-35.658z"/><symbol id="i"><path d="M.549.68H0V.649h.024C.101.649.103.638.103.602V.078C.103.042.101.031.024.031H0V0c.035.003.113.003.152.003C.193.003.284.003.32 0v.031H.287C.192.031.192.044.192.079v.246h.086C.374.325.384.293.384.208h.025v.265H.384C.384.389.374.356.278.356H.192v.253c0 .033.002.04.049.04h.12c.15 0 .175-.056.191-.194h.025L.549.68z"/></symbol><symbol id="j"><path d="M.549.258H.524C.513.156.499.031.323.031H.241c-.047 0-.049.007-.049.04v.533c0 .034 0 .048.095.048H.32v.031C.284.68.193.68.152.68.113.68.035.68 0 .683V.652h.024C.101.652.103.641.103.605V.078C.103.042.101.031.024.031H0V0h.521l.028.258z"/></symbol><symbol id="k"><path d="M.197.605c0 .036.003.047.082.047h.026v.031C.27.68.191.68.153.68.114.68.035.68 0 .683V.652h.026C.105.652.108.641.108.605V.078C.108.042.105.031.026.031H0V0c.035.003.114.003.152.003C.191.003.27.003.305 0v.031H.279C.2.031.197.042.197.078v.527z"/></symbol><symbol id="l"><path d="M.192.316h.169c.12 0 .228.081.228.181C.589.595.49.683.353.683H0V.652h.024C.101.652.103.641.103.605V.078C.103.042.101.031.024.031H0V0c.035.003.109.003.147.003C.185.003.26.003.295 0v.031H.271C.194.031.192.042.192.078v.238M.189.342v.27c0 .033.002.04.049.04h.089C.486.652.486.546.486.497c0-.047 0-.155-.159-.155H.189z"/></symbol><use xlink:href="#i" transform="matrix(9.9626 0 0 -9.9626 133.248 32.873)"/><use xlink:href="#j" transform="matrix(9.9626 0 0 -9.9626 139.753 32.873)"/><use xlink:href="#k" transform="matrix(9.9626 0 0 -9.9626 145.93 32.873)"/><use xlink:href="#l" transform="matrix(9.9626 0 0 -9.9626 149.596 32.873)"/><symbol id="m"><path d="M.234.215c.082.036.119.05.144.062.019.008.028.012.028.031A.031.031 0 0 1 .375.34C.368.34.366.34.354.331L.218.24l.015.148c.002.018 0 .043-.03.043C.191.431.172.423.172.401L.177.352.188.24.053.331C.043.337.04.34.031.34A.031.031 0 0 1 0 .308C0 .288.012.283.021.279L.172.216C.09.18.053.166.028.154.009.146 0 .142 0 .123 0 .106.013.091.031.091.038.091.04.091.052.1l.136.091L.172.03C.172.008.191 0 .203 0s.031.008.031.03L.229.079a7.187 7.187 0 0 0-.011.112l.12-.08c.026-.02.028-.02.037-.02.018 0 .031.015.031.032 0 .02-.012.025-.021.029L.234.215z"/></symbol><use xlink:href="#m" transform="matrix(6.9738 0 0 -6.9738 156.648 34.13)"/><path d="M178.766 37.69h19.925V22.744h-19.925z" fill="#fff"/><clipPath id="n"><path transform="matrix(1 0 0 -1 111.637 30.217)" d="M67.129-7.472h19.925V7.472H67.13z"/></clipPath><g clip-path="url(#n)"><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M181.6 31.918c3.574-4.259 10.683-4.259 14.256 0M188.729 33.052l4.847-5.783"/><path d="M194.812 25.794c-.2.142-1.135.713-1.844.966l1.215 1.018c.125-.742.524-1.763.629-1.984z"/><path stroke-width=".78896844" stroke-miterlimit="10" fill="none" stroke="#000" d="M194.812 25.794c-.2.142-1.135.713-1.844.966l1.215 1.018c.125-.742.524-1.763.629-1.984z"/></g><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M178.766 37.69h19.925V22.744h-19.925zM88.309 46.536h83.788V13.898H88.31z"/><symbol id="o"><path d="M.139.332v.11L0 .431V.4C.07.4.078.393.078.344V.076C.078.031.067.031 0 .031V0l.114.003c.04 0 .087 0 .127-.003v.031H.22C.146.031.144.042.144.078v.154c0 .099.042.188.118.188L.273.419A.043.043 0 0 1 .25.38C.25.352.271.337.293.337c.018 0 .043.012.043.044S.305.442.262.442C.189.442.153.375.139.332z"/></symbol><symbol id="p"><path d="M.084.263c.006.149.09.174.124.174.103 0 .113-.135.113-.174H.084M.083.242h.279c.022 0 .025 0 .025.021 0 .099-.054.196-.179.196C.092.459 0 .356 0 .231 0 .097.105 0 .22 0a.17.17 0 0 1 .167.13c0 .01-.008.012-.013.012C.365.142.363.136.361.128.326.025.236.025.226.025c-.05 0-.09.03-.113.067-.03.048-.03.114-.03.15z"/></symbol><symbol id="q"><path d="M.144.57v.066L0 .625V.594c.071 0 .078-.006.078-.05V.076C.078.031.067.031 0 .031V0l.112.003L.225 0v.031c-.067 0-.078 0-.078.045V.253C.152.237.194.183.27.183c.119 0 .223.098.223.227 0 .127-.097.226-.209.226A.18.18 0 0 1 .144.57M.147.308v.223a.15.15 0 0 0 .129.08C.349.611.41.523.41.41.41.289.34.205.266.205c-.04 0-.078.02-.105.061C.147.287.147.288.147.308z"/></symbol><symbol id="r"><path d="M.291.087C.295.047.322.005.369.005.39.005.451.019.451.1v.056H.426V.1C.426.042.401.036.39.036c-.033 0-.037.045-.037.05v.2c0 .042 0 .081-.036.118A.191.191 0 0 1 .18.459C.098.459.029.412.029.346c0-.03.02-.047.046-.047.028 0 .046.02.046.046C.121.357.116.39.07.391c.027.035.076.046.108.046.049 0 .106-.039.106-.128V.272C.233.269.163.266.1.236.025.202 0 .15 0 .106 0 .025.097 0 .16 0c.066 0 .112.04.131.087M.284.251v-.1C.284.056.212.022.167.022c-.049 0-.09.035-.09.085 0 .055.042.138.207.144z"/></symbol><symbol id="s"><path d="M.154.411h.143v.031H.154v.184H.129C.128.544.098.437 0 .433V.411h.085V.135C.085.012.178 0 .214 0c.071 0 .099.071.099.135v.057H.288V.137C.288.063.258.025.221.025.154.025.154.116.154.133v.278z"/></symbol><use xlink:href="#o" transform="matrix(9.9626 0 0 -9.9626 99.999 9.975)"/><use xlink:href="#p" transform="matrix(9.9626 0 0 -9.9626 103.904 10.085)"/><use xlink:href="#q" transform="matrix(9.9626 0 0 -9.9626 108.328 11.908)"/><use xlink:href="#p" transform="matrix(9.9626 0 0 -9.9626 114.146 10.085)"/><use xlink:href="#r" transform="matrix(9.9626 0 0 -9.9626 118.709 10.085)"/><use xlink:href="#s" transform="matrix(9.9626 0 0 -9.9626 123.46 10.085)"/><symbol id="t"><path d="M.183.411h.094c.02 0 .03 0 .03.02 0 .011-.01.011-.028.011H.191C.227.584.232.604.232.61.232.627.22.637.203.637.2.637.172.636.163.601L.124.442H.03c-.02 0-.03 0-.03-.019C0 .411.008.411.028.411h.088C.044.127.04.11.04.092.04.038.078 0 .132 0c.102 0 .159.146.159.154 0 .01-.008.01-.012.01C.27.164.269.161.264.15.221.046.168.022.134.022.113.022.103.035.103.068c0 .024.002.031.006.048l.074.295z"/></symbol><use xlink:href="#t" transform="matrix(9.9626 0 0 -9.9626 130.695 10.085)"/><symbol id="u"><path d="M.144.442.004.431V.4C.069.4.078.394.078.345V.076C.078.031.067.031 0 .031V0l.11.003C.145.003.18.001.214 0v.031c-.066 0-.07.005-.07.044v.367m.004.174a.052.052 0 0 1-.053.053.054.054 0 0 1-.053-.053c0-.027.022-.053.053-.053.028 0 .053.021.053.053z"/></symbol><symbol id="v"><path d="M.078.344V.076C.078.031.067.031 0 .031V0l.113.003L.225 0v.031c-.067 0-.078 0-.078.045V.26c0 .104.071.16.135.16C.345.42.356.366.356.309V.076C.356.031.345.031.278.031V0l.113.003L.503 0v.031c-.067 0-.078 0-.078.045V.26c0 .104.071.16.135.16C.623.42.634.366.634.309V.076C.634.031.623.031.556.031V0l.113.003L.781 0v.031c-.052 0-.077 0-.078.03v.191c0 .086 0 .117-.031.153C.658.422.625.442.567.442A.158.158 0 0 1 .422.344C.408.431.334.442.289.442.216.442.169.399.141.337v.105L0 .431V.4C.07.4.078.393.078.344z"/></symbol><symbol id="w"><path d="M.175.205C.197.201.279.185.279.113.279.062.244.022.166.022c-.084 0-.12.057-.139.142C.024.177.023.181.013.181 0 .181 0 .174 0 .156V.024C0 .007 0 0 .011 0c.005 0 .006.001.025.02.002.002.002.004.02.023A.15.15 0 0 1 .166 0c.115 0 .161.067.161.139 0 .053-.03.083-.042.095C.252.266.213.274.171.282.115.293.048.306.048.364.048.399.074.44.16.44.27.44.275.35.277.319.278.31.287.31.289.31c.013 0 .013.005.013.024v.101c0 .017 0 .024-.011.024-.005 0-.007 0-.02-.012A.129.129 0 0 0 .254.431C.216.459.175.459.16.459.038.459 0 .392 0 .336 0 .301.016.273.043.251.075.225.103.219.175.205z"/></symbol><use xlink:href="#s" transform="matrix(9.9626 0 0 -9.9626 137.573 10.085)"/><use xlink:href="#u" transform="matrix(9.9626 0 0 -9.9626 141.588 9.975)"/><use xlink:href="#v" transform="matrix(9.9626 0 0 -9.9626 144.348 9.975)"/><use xlink:href="#p" transform="matrix(9.9626 0 0 -9.9626 152.607 10.085)"/><use xlink:href="#w" transform="matrix(9.9626 0 0 -9.9626 157.08 10.085)"/></svg>
\ No newline at end of file
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='195.372255pt' height='48.402497pt' viewBox='-68.680855 -68.679792 195.372255 48.402497'>
+<defs>
+<clipPath id='clip1'>
+<path d='M106.7656-31.91797H126.6914V-54.3359H106.7656Z'/>
+</clipPath>
+<font id='cmmi7' horiz-adv-x='0'>
+<font-face font-family='cmmi7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='f' horiz-adv-x='557' vert-adv-y='557' glyph-name='f' d='M407 395H505C525 395 538 395 538 417C538 431 525 431 507 431H414C437 558 445 604 453 633C458 655 480 676 504 676C505 676 532 676 551 664C510 651 507 615 507 609C507 587 524 572 547 572C574 572 604 595 604 633C604 679 555 704 504 704C460 704 411 679 384 629C364 592 356 547 335 431H256C236 431 223 431 223 409C223 395 236 395 254 395H328C327 389 264 29 240-78C235-100 218-176 170-176C169-176 145-176 126-164C167-151 170-115 170-109C170-87 153-72 130-72C103-72 73-95 73-133C73-178 120-204 170-204C234-204 278-138 290-116C326-49 349 74 351 86L407 395Z'/>
+<glyph unicode='n' horiz-adv-x='706' vert-adv-y='706' glyph-name='n' d='M122 63C118 50 112 25 112 22C112 0 130-10 146-10C164-10 180 3 185 12S198 53 203 74C208 93 219 139 225 164C231 186 237 208 242 231C253 272 255 280 284 321C312 361 359 413 434 413C492 413 493 362 493 343C493 283 450 172 434 130C423 102 419 93 419 76C419 23 463-10 514-10C614-10 658 128 658 143C658 156 645 156 642 156C628 156 627 150 623 139C600 59 557 18 517 18C496 18 492 32 492 53C492 76 497 89 515 134C527 165 568 271 568 327C568 424 491 441 438 441C355 441 299 390 269 350C262 419 203 441 162 441C119 441 96 410 83 387C61 350 47 293 47 288C47 275 61 275 64 275C78 275 79 278 86 305C101 364 120 413 159 413C185 413 192 391 192 364C192 345 183 308 176 281S159 213 154 191L122 63Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmr7' horiz-adv-x='0'>
+<font-face font-family='cmr7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='0' horiz-adv-x='569' vert-adv-y='569' glyph-name='zero' d='M516 319C516 429 503 508 457 578C426 624 364 664 284 664C52 664 52 391 52 319S52-20 284-20S516 247 516 319ZM284 8C238 8 177 35 157 117C143 176 143 258 143 332C143 405 143 481 158 536C179 615 243 636 284 636C338 636 390 603 408 545C424 491 425 419 425 332C425 258 425 184 412 121C392 30 324 8 284 8Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='H' horiz-adv-x='831' vert-adv-y='831' glyph-name='H' d='M763 606C772 642 774 652 847 652C873 652 881 652 881 672C881 683 870 683 867 683C839 683 767 680 739 680C710 680 639 683 610 683C602 683 591 683 591 663C591 652 600 652 619 652C621 652 640 652 657 650C675 648 684 647 684 634C684 630 683 628 680 615L620 371H315L374 606C383 642 386 652 458 652C484 652 492 652 492 672C492 683 481 683 478 683C450 683 378 680 350 680C321 680 250 683 221 683C213 683 202 683 202 663C202 652 211 652 230 652C232 652 251 652 268 650C286 648 295 647 295 634C295 630 294 627 291 615L157 78C147 39 145 31 66 31C48 31 39 31 39 11C39 0 51 0 53 0C81 0 152 3 180 3C201 3 223 2 244 2C266 2 288 0 309 0C317 0 329 0 329 20C329 31 320 31 301 31C264 31 236 31 236 49C236 55 238 60 239 66L307 340H612C570 174 547 79 543 64C533 32 514 31 452 31C437 31 428 31 428 11C428 0 440 0 442 0C470 0 541 3 569 3C590 3 612 2 633 2C655 2 677 0 698 0C706 0 718 0 718 20C718 31 709 31 690 31C653 31 625 31 625 49C625 55 627 60 628 66L763 606Z'/>
+<glyph unicode='V' horiz-adv-x='583' vert-adv-y='583' glyph-name='V' d='M628 569C677 647 719 650 756 652C768 653 769 670 769 671C769 679 764 683 756 683C730 683 701 680 674 680C641 680 607 683 575 683C569 683 556 683 556 664C556 653 565 652 572 652C599 650 618 640 618 619C618 604 603 582 603 581L296 93L228 622C228 639 251 652 297 652C311 652 322 652 322 672C322 681 314 683 308 683C268 683 225 680 184 680C166 680 147 681 129 681S92 683 75 683C68 683 56 683 56 664C56 652 65 652 81 652C137 652 138 643 141 618L220 1C223-19 227-22 240-22C256-22 260-17 268-4L628 569Z'/>
+<glyph unicode='t' horiz-adv-x='361' vert-adv-y='361' glyph-name='t' d='M206 400H300C320 400 330 400 330 420C330 431 320 431 302 431H214C250 573 255 593 255 599C255 616 243 626 226 626C223 626 195 625 186 590L147 431H53C33 431 23 431 23 412C23 400 31 400 51 400H139C67 116 63 99 63 81C63 27 101-11 155-11C257-11 314 135 314 143C314 153 306 153 302 153C293 153 292 150 287 139C244 35 191 11 157 11C136 11 126 24 126 57C126 81 128 88 132 105L206 400Z'/>
+<glyph unicode='x' horiz-adv-x='571' vert-adv-y='571' glyph-name='x' d='M334 302C340 328 363 420 433 420C438 420 462 420 483 407C455 402 435 377 435 353C435 337 446 318 473 318C495 318 527 336 527 376C527 428 468 442 434 442C376 442 341 389 329 366C304 432 250 442 221 442C117 442 60 313 60 288C60 278 70 278 72 278C80 278 83 280 85 289C119 395 185 420 219 420C238 420 273 411 273 353C273 322 256 255 219 115C203 53 168 11 124 11C118 11 95 11 74 24C99 29 121 50 121 78C121 105 99 113 84 113C54 113 29 87 29 55C29 9 79-11 123-11C189-11 225 59 228 65C240 28 276-11 336-11C439-11 496 118 496 143C496 153 487 153 484 153C475 153 473 149 471 142C438 35 370 11 338 11C299 11 283 43 283 77C283 99 289 121 300 165L334 302Z'/>
+</font>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='0' horiz-adv-x='500' vert-adv-y='500' glyph-name='zero' d='M460 320C460 400 455 480 420 554C374 650 292 666 250 666C190 666 117 640 76 547C44 478 39 400 39 320C39 245 43 155 84 79C127-2 200-22 249-22C303-22 379-1 423 94C455 163 460 241 460 320ZM249 0C210 0 151 25 133 121C122 181 122 273 122 332C122 396 122 462 130 516C149 635 224 644 249 644C282 644 348 626 367 527C377 471 377 395 377 332C377 257 377 189 366 125C351 30 294 0 249 0Z'/>
+<glyph unicode='F' horiz-adv-x='652' vert-adv-y='652' glyph-name='F' d='M582 680H33V649H57C134 649 136 638 136 602V78C136 42 134 31 57 31H33V0C68 3 146 3 185 3C226 3 317 3 353 0V31H320C225 31 225 44 225 79V325H311C407 325 417 293 417 208H442V473H417C417 389 407 356 311 356H225V609C225 642 227 649 274 649H394C544 649 569 593 585 455H610L582 680Z'/>
+<glyph unicode='I' horiz-adv-x='361' vert-adv-y='361' glyph-name='I' d='M225 605C225 641 228 652 307 652H333V683C298 680 219 680 181 680C142 680 63 680 28 683V652H54C133 652 136 641 136 605V78C136 42 133 31 54 31H28V0C63 3 142 3 180 3C219 3 298 3 333 0V31H307C228 31 225 42 225 78V605Z'/>
+<glyph unicode='L' horiz-adv-x='625' vert-adv-y='625' glyph-name='L' d='M582 258H557C546 156 532 31 356 31H274C227 31 225 38 225 71V604C225 638 225 652 320 652H353V683C317 680 226 680 185 680C146 680 68 680 33 683V652H57C134 652 136 641 136 605V78C136 42 134 31 57 31H33V0H554L582 258Z'/>
+<glyph unicode='P' horiz-adv-x='680' vert-adv-y='680' glyph-name='P' d='M227 316H396C516 316 624 397 624 497C624 595 525 683 388 683H35V652H59C136 652 138 641 138 605V78C138 42 136 31 59 31H35V0C70 3 144 3 182 3S295 3 330 0V31H306C229 31 227 42 227 78V316ZM224 342V612C224 645 226 652 273 652H362C521 652 521 546 521 497C521 450 521 342 362 342H224Z'/>
+<glyph unicode='a' horiz-adv-x='500' vert-adv-y='500' glyph-name='a' d='M333 76C337 36 364-6 411-6C432-6 493 8 493 89V145H468V89C468 31 443 25 432 25C399 25 395 70 395 75V275C395 317 395 356 359 393C320 432 270 448 222 448C140 448 71 401 71 335C71 305 91 288 117 288C145 288 163 308 163 334C163 346 158 379 112 380C139 415 188 426 220 426C269 426 326 387 326 298V261C275 258 205 255 142 225C67 191 42 139 42 95C42 14 139-11 202-11C268-11 314 29 333 76ZM326 240V140C326 45 254 11 209 11C160 11 119 46 119 96C119 151 161 234 326 240Z'/>
+<glyph unicode='e' horiz-adv-x='444' vert-adv-y='444' glyph-name='e' d='M112 252C118 401 202 426 236 426C339 426 349 291 349 252H112ZM111 231H390C412 231 415 231 415 252C415 351 361 448 236 448C120 448 28 345 28 220C28 86 133-11 248-11C370-11 415 100 415 119C415 129 407 131 402 131C393 131 391 125 389 117C354 14 264 14 254 14C204 14 164 44 141 81C111 129 111 195 111 231Z'/>
+<glyph unicode='i' horiz-adv-x='277' vert-adv-y='277' glyph-name='i' d='M177 442L37 431V400C102 400 111 394 111 345V76C111 31 100 31 33 31V0C65 1 119 3 143 3C178 3 213 1 247 0V31C181 31 177 36 177 75V442ZM181 616C181 648 156 669 128 669C97 669 75 642 75 616C75 589 97 563 128 563C156 563 181 584 181 616Z'/>
+<glyph unicode='m' horiz-adv-x='833' vert-adv-y='833' glyph-name='m' d='M110 344V76C110 31 99 31 32 31V0C67 1 118 3 145 3C171 3 223 1 257 0V31C190 31 179 31 179 76V260C179 364 250 420 314 420C377 420 388 366 388 309V76C388 31 377 31 310 31V0C345 1 396 3 423 3C449 3 501 1 535 0V31C468 31 457 31 457 76V260C457 364 528 420 592 420C655 420 666 366 666 309V76C666 31 655 31 588 31V0C623 1 674 3 701 3C727 3 779 1 813 0V31C761 31 736 31 735 61V252C735 338 735 369 704 405C690 422 657 442 599 442C515 442 471 382 454 344C440 431 366 442 321 442C248 442 201 399 173 337V442L32 431V400C102 400 110 393 110 344Z'/>
+<glyph unicode='p' horiz-adv-x='555' vert-adv-y='555' glyph-name='p' d='M172 376V442L28 431V400C99 400 106 394 106 350V-118C106-163 95-163 28-163V-194C62-193 114-191 140-191C167-191 218-193 253-194V-163C186-163 175-163 175-118V50V59C180 43 222-11 298-11C417-11 521 87 521 216C521 343 424 442 312 442C234 442 192 398 172 376ZM175 114V337C204 388 253 417 304 417C377 417 438 329 438 216C438 95 368 11 294 11C254 11 216 31 189 72C175 93 175 94 175 114Z'/>
+<glyph unicode='r' horiz-adv-x='391' vert-adv-y='391' glyph-name='r' d='M167 332V442L28 431V400C98 400 106 393 106 344V76C106 31 95 31 28 31V0C67 1 114 3 142 3C182 3 229 3 269 0V31H248C174 31 172 42 172 78V232C172 331 214 420 290 420C297 420 299 420 301 419C298 418 278 406 278 380C278 352 299 337 321 337C339 337 364 349 364 381S333 442 290 442C217 442 181 375 167 332Z'/>
+<glyph unicode='s' horiz-adv-x='394' vert-adv-y='394' glyph-name='s' d='M208 194C230 190 312 174 312 102C312 51 277 11 199 11C115 11 79 68 60 153C57 166 56 170 46 170C33 170 33 163 33 145V13C33-4 33-11 44-11C49-11 50-10 69 9C71 11 71 13 89 32C133-10 178-11 199-11C314-11 360 56 360 128C360 181 330 211 318 223C285 255 246 263 204 271C148 282 81 295 81 353C81 388 107 429 193 429C303 429 308 339 310 308C311 299 320 299 322 299C335 299 335 304 335 323V424C335 441 335 448 324 448C319 448 317 448 304 436C301 432 291 423 287 420C249 448 208 448 193 448C71 448 33 381 33 325C33 290 49 262 76 240C108 214 136 208 208 194Z'/>
+<glyph unicode='t' horiz-adv-x='388' vert-adv-y='388' glyph-name='t' d='M173 400H316V431H173V615H148C147 533 117 426 19 422V400H104V124C104 1 197-11 233-11C304-11 332 60 332 124V181H307V126C307 52 277 14 240 14C173 14 173 105 173 122V400Z'/>
+</font>
+<font id='cmsy7' horiz-adv-x='0'>
+<font-face font-family='cmsy7' units-per-em='1000' ascent='782' descent='951'/>
+<glyph unicode='∗' horiz-adv-x='585' vert-adv-y='585' glyph-name='asteriskmath' d='M323 249C405 285 442 299 467 311C486 319 495 323 495 342C495 359 482 374 464 374C457 374 455 374 443 365L307 274L322 422C324 440 322 465 292 465C280 465 261 457 261 435C261 426 265 396 266 386C268 369 275 297 277 274L142 365C132 371 129 374 120 374C102 374 89 359 89 342C89 322 101 317 110 313L261 250C179 214 142 200 117 188C98 180 89 176 89 157C89 140 102 125 120 125C127 125 129 125 141 134L277 225L261 64C261 42 280 34 292 34S323 42 323 64C323 73 319 103 318 113C316 130 309 202 307 225L427 145C453 125 455 125 464 125C482 125 495 140 495 157C495 177 483 182 474 186L323 249Z'/>
+<glyph unicode='⊗' horiz-adv-x='892' vert-adv-y='892' glyph-name='circlemultiply' d='M815 250C815 455 648 619 446 619C242 619 77 452 77 251C77 46 244-118 446-118C650-118 815 49 815 250ZM222 499C263 536 340 585 446 585S629 536 670 499L446 275L222 499ZM198 27C143 84 111 168 111 250C111 338 146 420 198 474L422 251L198 27ZM694 474C749 417 781 333 781 251C781 163 746 81 694 27L470 250L694 474ZM670 2C629-35 552-84 446-84S263-35 222 2L446 226L670 2Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmsy7;font-size:6.973848px}
+text.f2 {font-family:cmmi10;font-size:9.96264px}
+text.f3 {font-family:cmmi7;font-size:6.973848px}
+text.f4 {font-family:cmr10;font-size:9.96264px}
+text.f5 {font-family:cmr7;font-size:6.973848px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-42.5977-35.98828L-38.0625-42.79297' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f3' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 -77.3013 -3.8)'>n</text>
+<path d='M-33.2422-39.390626H-47.418' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-19.0703-39.390626H-33.2422' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M23.8125-39.390626H9.6406' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M56.9336-39.390626H42.76172' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M106.7656-39.390626H92.5937' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<text class='f0' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 -108.3178 2.4907)'>|</text>
+<text class='f4' x='42.404353' y='-39.390053' transform='matrix(1 0 0 1 -108.3178 2.4907)'>0</text>
+<text class='f3' x='47.385692' y='-43.005417' transform='matrix(1 0 0 1 -108.3178 2.4907)'>n</text>
+<text class='f0' x='52.808685' y='-39.390053' transform='matrix(1 0 0 1 -108.3178 2.4907)'></text>
+<path d='M-19.0703-31.4375H9.6406V-47.33985H-19.0703Z' fill='#fff'/>
+<path d='M-19.0703-31.4375H9.6406V-47.33985H-19.0703Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f2' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 -54.7224 3.9663)'>H</text>
+<text class='f1' x='48.727835' y='-43.005417' transform='matrix(1 0 0 1 -54.7224 3.9663)'>⊗</text>
+<text class='f3' x='54.954515' y='-43.005417' transform='matrix(1 0 0 1 -54.7224 3.9663)'>n</text>
+<path d='M23.8125-30.57422H42.76172V-48.20313H23.8125Z' fill='#fff'/>
+<path d='M23.8125-30.57422H42.76172V-48.20313H23.8125Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f2' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 -11.838 1.9787)'>V</text>
+<text class='f3' x='45.448491' y='-37.895672' transform='matrix(1 0 0 1 -11.838 1.9787)'>f</text>
+<path d='M56.9336-31.25391H92.5937V-47.52735H56.9336Z' fill='#fff'/>
+<path d='M56.9336-31.25391H92.5937V-47.52735H56.9336Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f4' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 21.282 2.6567)'>FLIP</text>
+<text class='f1' x='62.744794' y='-37.895672' transform='matrix(1 0 0 1 21.282 2.6567)'>∗</text>
+<path d='M107.1641-32.31641H126.293V-46.86328H107.1641Z' fill='#fff' clip-path='url(#clip1)'/>
+<path d='M107.1641-32.31641H126.293V-46.86328H107.1641Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<path d='M117.5781-46.86328V-54.3359' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<path d='M115.8789-46.86328V-54.3359' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<path d='M109.6016-37.88672C113.1758-42.14844 120.2812-42.14844 123.8555-37.88672' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<path d='M116.7266-36.75391L121.5742-42.53906' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<path d='M122.812964-44.011748C122.613743-43.87112 121.676245-43.30081 120.96922-43.046904L122.184062-42.02737C122.309058-42.769556 122.707494-43.792996 122.812964-44.011748Z' clip-path='url(#clip1)'/>
+<path d='M122.812964-44.011748C122.613743-43.87112 121.676245-43.30081 120.96922-43.046904L122.184062-42.02737C122.309058-42.769556 122.707494-43.792996 122.812964-44.011748Z' stroke='#000' fill='none' stroke-width='.788999' stroke-miterlimit='10' clip-path='url(#clip1)'/>
+<text class='f2' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 72.0101 -20.3569)'>x</text>
+<text class='f5' x='45.330877' y='-37.895672' transform='matrix(1 0 0 1 72.0101 -20.3569)'>0</text>
+<path d='M-26.5742-20.6758H50.2656V-58.1016H-26.5742Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f4' x='39.636945' y='-39.390053' transform='matrix(1 0 0 1 -58.2753 -22.6361)'>rep<tspan x='53.778413'>eat</tspan></text>
+<text class='f2' x='70.382852' y='-39.390053' transform='matrix(1 0 0 1 -58.2753 -22.6361)'>t</text>
+<text class='f4' x='77.301362' y='-39.390053' transform='matrix(1 0 0 1 -58.2753 -22.6361)'>times</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/content/img/grover_plt1.pdf b/content/img/grover_plot_1.pdf
similarity index 54%
rename from content/img/grover_plt1.pdf
rename to content/img/grover_plot_1.pdf
index c01b1713fc4b5acc2f8bfa887f304358c1a935f0..e3457265aa5d3f59ad89a5b67640c9e7aa6a4dd9 100644
Binary files a/content/img/grover_plt1.pdf and b/content/img/grover_plot_1.pdf differ
diff --git a/content/img/grover_plot_1.svg b/content/img/grover_plot_1.svg
new file mode 100644
index 0000000000000000000000000000000000000000..f75921ff58a96da2a7f400fe11601ddfe527ac53
--- /dev/null
+++ b/content/img/grover_plot_1.svg
@@ -0,0 +1,43 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='171.821173pt' height='157.568902pt' viewBox='-68.679627 -68.681407 171.821173 157.568902'>
+<defs>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='a' horiz-adv-x='500' vert-adv-y='500' glyph-name='a' d='M333 76C337 36 364-6 411-6C432-6 493 8 493 89V145H468V89C468 31 443 25 432 25C399 25 395 70 395 75V275C395 317 395 356 359 393C320 432 270 448 222 448C140 448 71 401 71 335C71 305 91 288 117 288C145 288 163 308 163 334C163 346 158 379 112 380C139 415 188 426 220 426C269 426 326 387 326 298V261C275 258 205 255 142 225C67 191 42 139 42 95C42 14 139-11 202-11C268-11 314 29 333 76ZM326 240V140C326 45 254 11 209 11C160 11 119 46 119 96C119 151 161 234 326 240Z'/>
+<glyph unicode='b' horiz-adv-x='555' vert-adv-y='555' glyph-name='b' d='M172 377V694L28 683V652C98 652 106 645 106 596V0H131C132 1 140 15 167 62C182 39 224-11 298-11C417-11 521 87 521 216C521 343 423 442 309 442C231 442 188 395 172 377ZM175 114V320C175 339 175 340 186 356C225 412 280 420 304 420C349 420 385 394 409 356C435 315 438 258 438 217C438 180 436 120 407 75C386 44 348 11 294 11C249 11 213 35 189 72C175 93 175 96 175 114Z'/>
+<glyph unicode='d' horiz-adv-x='555' vert-adv-y='555' glyph-name='d' d='M380 55V-11L527 0V31C457 31 449 38 449 87V694L305 683V652C375 652 383 645 383 596V380C354 416 311 442 257 442C139 442 34 344 34 215C34 88 132-11 246-11C310-11 355 23 380 55ZM380 323V118C380 100 380 98 369 81C339 33 294 11 251 11C206 11 170 37 146 75C120 116 117 173 117 214C117 251 119 311 148 356C169 387 207 420 261 420C296 420 338 405 369 360C380 343 380 341 380 323Z'/>
+<glyph unicode='g' horiz-adv-x='500' vert-adv-y='500' glyph-name='g' d='M222 172C135 172 135 272 135 295C135 322 136 354 151 379C159 391 182 419 222 419C309 419 309 319 309 296C309 269 308 237 293 212C285 200 262 172 222 172ZM106 133C106 137 106 160 123 180C162 152 203 149 222 149C315 149 384 218 384 295C384 332 368 369 343 392C379 426 415 431 433 431C435 431 440 431 443 430C432 426 427 415 427 403C427 386 440 374 456 374C466 374 485 381 485 404C485 421 473 453 434 453C414 453 370 447 328 406C286 439 244 442 222 442C129 442 60 373 60 296C60 252 82 214 107 193C94 178 76 145 76 110C76 79 89 41 120 21C60 4 28-39 28-79C28-151 127-206 249-206C367-206 471-155 471-77C471-42 457 9 406 37C353 65 295 65 234 65C209 65 166 65 159 66C127 70 106 101 106 133ZM250-183C149-183 80-132 80-79C80-33 118 4 162 7H221C307 7 419 7 419-79C419-133 348-183 250-183Z'/>
+<glyph unicode='o' horiz-adv-x='500' vert-adv-y='500' glyph-name='o' d='M471 214C471 342 371 448 250 448C125 448 28 339 28 214C28 85 132-11 249-11C370-11 471 87 471 214ZM250 14C207 14 163 35 136 81C111 125 111 186 111 222C111 261 111 315 135 359C162 405 209 426 249 426C293 426 336 404 362 361S388 260 388 222C388 186 388 132 366 88C344 43 300 14 250 14Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='∗' horiz-adv-x='500' vert-adv-y='500' glyph-name='asteriskmath' d='M275 427C276 441 276 465 250 465C234 465 221 452 224 439V426L238 271L110 364C101 369 99 371 92 371C78 371 65 357 65 343C65 327 75 323 85 318L227 250L89 183C73 175 65 171 65 156S78 128 92 128C99 128 101 128 126 147L238 228L223 60C223 39 241 34 249 34C261 34 276 41 276 60L261 228L389 135C398 130 400 128 407 128C421 128 434 142 434 156C434 171 425 176 413 182C353 212 351 212 272 249L410 316C426 324 434 328 434 343S421 371 407 371C400 371 398 371 373 352L261 271L275 427Z'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='θ' horiz-adv-x='469' vert-adv-y='469' glyph-name='theta' d='M455 500C455 566 437 705 335 705C196 705 42 423 42 194C42 100 71-11 162-11C303-11 455 276 455 500ZM148 363C165 427 185 507 225 578C252 627 289 683 334 683C383 683 389 619 389 562C389 513 381 462 357 363H148ZM348 331C337 285 316 200 278 128C243 60 205 11 162 11C129 11 108 40 108 133C108 175 114 233 140 331H348Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmr10;font-size:9.96264px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-58.164063 85.429688H83.1137' stroke='#000' fill='none' stroke-width='.3985'/>
+<path d='M81.91801 83.83594C82.01567 84.433594 83.113324 85.328125 83.410199 85.429688C83.113324 85.527344 82.01567 86.425781 81.91801 87.02344' stroke='#000' fill='none' stroke-width='.31879' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f2' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.2539 3.4593)'>bad</text>
+<path d='M-58.164063 85.429688V-55.8478' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<path d='M-59.75781-54.65239C-59.160157-54.75004-58.261719-55.847699-58.164063-56.144574C-58.0625-55.847699-57.167969-54.75004-56.57031-54.65239' stroke='#000' fill='none' stroke-width='.31879' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f2' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 -10.5163 -147.1911)'>go<tspan x='-47.9239'>o</tspan><tspan x='-42.665813'>d</tspan></text>
+<path d='M-58.164063 85.429688L82.8787 57.2188' stroke='#00f' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M80.945361 55.492163C81.2266 56.23045 82.851602 57.093729 83.257855 57.14451C82.902384 57.347636 81.734417 58.76951 81.757856 59.558569' stroke='#00f' fill='none' stroke-width='.637579' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f0' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 -25.8561)'><tspan fill='#00f'>|∗</tspan><tspan fill='#00f' x='-50.414583'></tspan></text>
+<path d='M-1.4688 85.429688C-1.4688 81.80078-1.8203 78.17188-2.5117 74.6094' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 59.88603 -2.21)'>θ</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/content/img/grover_plt2.pdf b/content/img/grover_plot_2.pdf
similarity index 63%
rename from content/img/grover_plt2.pdf
rename to content/img/grover_plot_2.pdf
index 5d475e6df054ad42fc1d2de95f11284c0d028a6b..b6206b6a4ee2034e186ad0ab69cba227821424bb 100644
Binary files a/content/img/grover_plt2.pdf and b/content/img/grover_plot_2.pdf differ
diff --git a/content/img/grover_plot_2.svg b/content/img/grover_plot_2.svg
new file mode 100644
index 0000000000000000000000000000000000000000..c2a2f2aafa1ff7a75b3dc689fe79b04e64cab585
--- /dev/null
+++ b/content/img/grover_plot_2.svg
@@ -0,0 +1,56 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='180.229178pt' height='187.61781pt' viewBox='-68.679627 -68.681407 180.229178 187.61781'>
+<defs>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='∗' horiz-adv-x='500' vert-adv-y='500' glyph-name='asteriskmath' d='M275 427C276 441 276 465 250 465C234 465 221 452 224 439V426L238 271L110 364C101 369 99 371 92 371C78 371 65 357 65 343C65 327 75 323 85 318L227 250L89 183C73 175 65 171 65 156S78 128 92 128C99 128 101 128 126 147L238 228L223 60C223 39 241 34 249 34C261 34 276 41 276 60L261 228L389 135C398 130 400 128 407 128C421 128 434 142 434 156C434 171 425 176 413 182C353 212 351 212 272 249L410 316C426 324 434 328 434 343S421 371 407 371C400 371 398 371 373 352L261 271L275 427Z'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='a' horiz-adv-x='500' vert-adv-y='500' glyph-name='a' d='M333 76C337 36 364-6 411-6C432-6 493 8 493 89V145H468V89C468 31 443 25 432 25C399 25 395 70 395 75V275C395 317 395 356 359 393C320 432 270 448 222 448C140 448 71 401 71 335C71 305 91 288 117 288C145 288 163 308 163 334C163 346 158 379 112 380C139 415 188 426 220 426C269 426 326 387 326 298V261C275 258 205 255 142 225C67 191 42 139 42 95C42 14 139-11 202-11C268-11 314 29 333 76ZM326 240V140C326 45 254 11 209 11C160 11 119 46 119 96C119 151 161 234 326 240Z'/>
+<glyph unicode='b' horiz-adv-x='555' vert-adv-y='555' glyph-name='b' d='M172 377V694L28 683V652C98 652 106 645 106 596V0H131C132 1 140 15 167 62C182 39 224-11 298-11C417-11 521 87 521 216C521 343 423 442 309 442C231 442 188 395 172 377ZM175 114V320C175 339 175 340 186 356C225 412 280 420 304 420C349 420 385 394 409 356C435 315 438 258 438 217C438 180 436 120 407 75C386 44 348 11 294 11C249 11 213 35 189 72C175 93 175 96 175 114Z'/>
+<glyph unicode='d' horiz-adv-x='555' vert-adv-y='555' glyph-name='d' d='M380 55V-11L527 0V31C457 31 449 38 449 87V694L305 683V652C375 652 383 645 383 596V380C354 416 311 442 257 442C139 442 34 344 34 215C34 88 132-11 246-11C310-11 355 23 380 55ZM380 323V118C380 100 380 98 369 81C339 33 294 11 251 11C206 11 170 37 146 75C120 116 117 173 117 214C117 251 119 311 148 356C169 387 207 420 261 420C296 420 338 405 369 360C380 343 380 341 380 323Z'/>
+<glyph unicode='g' horiz-adv-x='500' vert-adv-y='500' glyph-name='g' d='M222 172C135 172 135 272 135 295C135 322 136 354 151 379C159 391 182 419 222 419C309 419 309 319 309 296C309 269 308 237 293 212C285 200 262 172 222 172ZM106 133C106 137 106 160 123 180C162 152 203 149 222 149C315 149 384 218 384 295C384 332 368 369 343 392C379 426 415 431 433 431C435 431 440 431 443 430C432 426 427 415 427 403C427 386 440 374 456 374C466 374 485 381 485 404C485 421 473 453 434 453C414 453 370 447 328 406C286 439 244 442 222 442C129 442 60 373 60 296C60 252 82 214 107 193C94 178 76 145 76 110C76 79 89 41 120 21C60 4 28-39 28-79C28-151 127-206 249-206C367-206 471-155 471-77C471-42 457 9 406 37C353 65 295 65 234 65C209 65 166 65 159 66C127 70 106 101 106 133ZM250-183C149-183 80-132 80-79C80-33 118 4 162 7H221C307 7 419 7 419-79C419-133 348-183 250-183Z'/>
+<glyph unicode='o' horiz-adv-x='500' vert-adv-y='500' glyph-name='o' d='M471 214C471 342 371 448 250 448C125 448 28 339 28 214C28 85 132-11 249-11C370-11 471 87 471 214ZM250 14C207 14 163 35 136 81C111 125 111 186 111 222C111 261 111 315 135 359C162 405 209 426 249 426C293 426 336 404 362 361S388 260 388 222C388 186 388 132 366 88C344 43 300 14 250 14Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='θ' horiz-adv-x='469' vert-adv-y='469' glyph-name='theta' d='M455 500C455 566 437 705 335 705C196 705 42 423 42 194C42 100 71-11 162-11C303-11 455 276 455 500ZM148 363C165 427 185 507 225 578C252 627 289 683 334 683C383 683 389 619 389 562C389 513 381 462 357 363H148ZM348 331C337 285 316 200 278 128C243 60 205 11 162 11C129 11 108 40 108 133C108 175 114 233 140 331H348Z'/>
+<glyph unicode='V' horiz-adv-x='583' vert-adv-y='583' glyph-name='V' d='M628 569C677 647 719 650 756 652C768 653 769 670 769 671C769 679 764 683 756 683C730 683 701 680 674 680C641 680 607 683 575 683C569 683 556 683 556 664C556 653 565 652 572 652C599 650 618 640 618 619C618 604 603 582 603 581L296 93L228 622C228 639 251 652 297 652C311 652 322 652 322 672C322 681 314 683 308 683C268 683 225 680 184 680C166 680 147 681 129 681S92 683 75 683C68 683 56 683 56 664C56 652 65 652 81 652C137 652 138 643 141 618L220 1C223-19 227-22 240-22C256-22 260-17 268-4L628 569Z'/>
+</font>
+<font id='cmmi7' horiz-adv-x='0'>
+<font-face font-family='cmmi7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='f' horiz-adv-x='557' vert-adv-y='557' glyph-name='f' d='M407 395H505C525 395 538 395 538 417C538 431 525 431 507 431H414C437 558 445 604 453 633C458 655 480 676 504 676C505 676 532 676 551 664C510 651 507 615 507 609C507 587 524 572 547 572C574 572 604 595 604 633C604 679 555 704 504 704C460 704 411 679 384 629C364 592 356 547 335 431H256C236 431 223 431 223 409C223 395 236 395 254 395H328C327 389 264 29 240-78C235-100 218-176 170-176C169-176 145-176 126-164C167-151 170-115 170-109C170-87 153-72 130-72C103-72 73-95 73-133C73-178 120-204 170-204C234-204 278-138 290-116C326-49 349 74 351 86L407 395Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmmi7;font-size:6.973848px}
+text.f3 {font-family:cmr10;font-size:9.96264px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-58.164063 85.429688H83.1137' stroke='#000' fill='none' stroke-width='.3985'/>
+<path d='M81.91801 83.83594C82.01567 84.433594 83.113324 85.328125 83.410199 85.429688C83.113324 85.527344 82.01567 86.425781 81.91801 87.02344' stroke='#000' fill='none' stroke-width='.31879' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.2539 3.4593)'>bad</text>
+<path d='M-58.164063 85.429688V-55.8478' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<path d='M-59.75781-54.65239C-59.160157-54.75004-58.261719-55.847699-58.164063-56.144574C-58.0625-55.847699-57.167969-54.75004-56.57031-54.65239' stroke='#000' fill='none' stroke-width='.31879' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 -10.5163 -147.1911)'>go<tspan x='-47.9239'>o</tspan><tspan x='-42.665813'>d</tspan></text>
+<path d='M-58.164063 85.429688L82.8787 57.2188' stroke='#00f' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M80.945361 55.492163C81.2266 56.23045 82.851602 57.093729 83.257855 57.14451C82.902384 57.347636 81.734417 58.76951 81.757856 59.558569' stroke='#00f' fill='none' stroke-width='.637579' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f0' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 -25.8561)'><tspan fill='#00f'>|∗</tspan><tspan fill='#00f' x='-50.414583'></tspan></text>
+<path d='M-1.4688 85.429688C-1.4688 81.80078-1.8203 78.17188-2.5117 74.6094' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 59.88603 -2.21)'>θ</text>
+<path d='M-58.164063 85.429688L82.8787 113.6367' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M81.757854 111.300498C81.734421 112.085653 82.902387 113.50753 83.257858 113.710657C82.851606 113.761437 81.226604 114.624713 80.945365 115.362999' stroke='#f00' fill='none' stroke-width='.637579' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>V</tspan></text>
+<text class='f2' x='-52.35178' y='86.922575' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>f</tspan></text>
+<text class='f0' x='-45.526667' y='85.428195' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>|∗</tspan><tspan fill='#f00' x='-37.777923'></tspan></text>
+<path d='M-15.6445 85.429688C-15.6445 88.14844-15.9063 90.87109-16.4258 93.54297' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 45.7126 7.7111)'>θ</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/content/img/grover_plot_3.pdf b/content/img/grover_plot_3.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..3e06315a7d6d5e9865c911838d06c8a4b34dd3b3
Binary files /dev/null and b/content/img/grover_plot_3.pdf differ
diff --git a/content/img/grover_plot_3.svg b/content/img/grover_plot_3.svg
new file mode 100644
index 0000000000000000000000000000000000000000..3649fd20bad184c86a1b68981c57233ae8c8a807
--- /dev/null
+++ b/content/img/grover_plot_3.svg
@@ -0,0 +1,76 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='209.466796pt' height='187.61781pt' viewBox='-68.679627 -68.681407 209.466796 187.61781'>
+<defs>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='2' horiz-adv-x='500' vert-adv-y='500' glyph-name='two' d='M127 77L233 180C389 318 449 372 449 472C449 586 359 666 237 666C124 666 50 574 50 485C50 429 100 429 103 429C120 429 155 441 155 482C155 508 137 534 102 534C94 534 92 534 89 533C112 598 166 635 224 635C315 635 358 554 358 472C358 392 308 313 253 251L61 37C50 26 50 24 50 0H421L449 174H424C419 144 412 100 402 85C395 77 329 77 307 77H127Z'/>
+<glyph unicode='F' horiz-adv-x='652' vert-adv-y='652' glyph-name='F' d='M582 680H33V649H57C134 649 136 638 136 602V78C136 42 134 31 57 31H33V0C68 3 146 3 185 3C226 3 317 3 353 0V31H320C225 31 225 44 225 79V325H311C407 325 417 293 417 208H442V473H417C417 389 407 356 311 356H225V609C225 642 227 649 274 649H394C544 649 569 593 585 455H610L582 680Z'/>
+<glyph unicode='I' horiz-adv-x='361' vert-adv-y='361' glyph-name='I' d='M225 605C225 641 228 652 307 652H333V683C298 680 219 680 181 680C142 680 63 680 28 683V652H54C133 652 136 641 136 605V78C136 42 133 31 54 31H28V0C63 3 142 3 180 3C219 3 298 3 333 0V31H307C228 31 225 42 225 78V605Z'/>
+<glyph unicode='L' horiz-adv-x='625' vert-adv-y='625' glyph-name='L' d='M582 258H557C546 156 532 31 356 31H274C227 31 225 38 225 71V604C225 638 225 652 320 652H353V683C317 680 226 680 185 680C146 680 68 680 33 683V652H57C134 652 136 641 136 605V78C136 42 134 31 57 31H33V0H554L582 258Z'/>
+<glyph unicode='P' horiz-adv-x='680' vert-adv-y='680' glyph-name='P' d='M227 316H396C516 316 624 397 624 497C624 595 525 683 388 683H35V652H59C136 652 138 641 138 605V78C138 42 136 31 59 31H35V0C70 3 144 3 182 3S295 3 330 0V31H306C229 31 227 42 227 78V316ZM224 342V612C224 645 226 652 273 652H362C521 652 521 546 521 497C521 450 521 342 362 342H224Z'/>
+<glyph unicode='a' horiz-adv-x='500' vert-adv-y='500' glyph-name='a' d='M333 76C337 36 364-6 411-6C432-6 493 8 493 89V145H468V89C468 31 443 25 432 25C399 25 395 70 395 75V275C395 317 395 356 359 393C320 432 270 448 222 448C140 448 71 401 71 335C71 305 91 288 117 288C145 288 163 308 163 334C163 346 158 379 112 380C139 415 188 426 220 426C269 426 326 387 326 298V261C275 258 205 255 142 225C67 191 42 139 42 95C42 14 139-11 202-11C268-11 314 29 333 76ZM326 240V140C326 45 254 11 209 11C160 11 119 46 119 96C119 151 161 234 326 240Z'/>
+<glyph unicode='b' horiz-adv-x='555' vert-adv-y='555' glyph-name='b' d='M172 377V694L28 683V652C98 652 106 645 106 596V0H131C132 1 140 15 167 62C182 39 224-11 298-11C417-11 521 87 521 216C521 343 423 442 309 442C231 442 188 395 172 377ZM175 114V320C175 339 175 340 186 356C225 412 280 420 304 420C349 420 385 394 409 356C435 315 438 258 438 217C438 180 436 120 407 75C386 44 348 11 294 11C249 11 213 35 189 72C175 93 175 96 175 114Z'/>
+<glyph unicode='d' horiz-adv-x='555' vert-adv-y='555' glyph-name='d' d='M380 55V-11L527 0V31C457 31 449 38 449 87V694L305 683V652C375 652 383 645 383 596V380C354 416 311 442 257 442C139 442 34 344 34 215C34 88 132-11 246-11C310-11 355 23 380 55ZM380 323V118C380 100 380 98 369 81C339 33 294 11 251 11C206 11 170 37 146 75C120 116 117 173 117 214C117 251 119 311 148 356C169 387 207 420 261 420C296 420 338 405 369 360C380 343 380 341 380 323Z'/>
+<glyph unicode='g' horiz-adv-x='500' vert-adv-y='500' glyph-name='g' d='M222 172C135 172 135 272 135 295C135 322 136 354 151 379C159 391 182 419 222 419C309 419 309 319 309 296C309 269 308 237 293 212C285 200 262 172 222 172ZM106 133C106 137 106 160 123 180C162 152 203 149 222 149C315 149 384 218 384 295C384 332 368 369 343 392C379 426 415 431 433 431C435 431 440 431 443 430C432 426 427 415 427 403C427 386 440 374 456 374C466 374 485 381 485 404C485 421 473 453 434 453C414 453 370 447 328 406C286 439 244 442 222 442C129 442 60 373 60 296C60 252 82 214 107 193C94 178 76 145 76 110C76 79 89 41 120 21C60 4 28-39 28-79C28-151 127-206 249-206C367-206 471-155 471-77C471-42 457 9 406 37C353 65 295 65 234 65C209 65 166 65 159 66C127 70 106 101 106 133ZM250-183C149-183 80-132 80-79C80-33 118 4 162 7H221C307 7 419 7 419-79C419-133 348-183 250-183Z'/>
+<glyph unicode='o' horiz-adv-x='500' vert-adv-y='500' glyph-name='o' d='M471 214C471 342 371 448 250 448C125 448 28 339 28 214C28 85 132-11 249-11C370-11 471 87 471 214ZM250 14C207 14 163 35 136 81C111 125 111 186 111 222C111 261 111 315 135 359C162 405 209 426 249 426C293 426 336 404 362 361S388 260 388 222C388 186 388 132 366 88C344 43 300 14 250 14Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='∗' horiz-adv-x='500' vert-adv-y='500' glyph-name='asteriskmath' d='M275 427C276 441 276 465 250 465C234 465 221 452 224 439V426L238 271L110 364C101 369 99 371 92 371C78 371 65 357 65 343C65 327 75 323 85 318L227 250L89 183C73 175 65 171 65 156S78 128 92 128C99 128 101 128 126 147L238 228L223 60C223 39 241 34 249 34C261 34 276 41 276 60L261 228L389 135C398 130 400 128 407 128C421 128 434 142 434 156C434 171 425 176 413 182C353 212 351 212 272 249L410 316C426 324 434 328 434 343S421 371 407 371C400 371 398 371 373 352L261 271L275 427Z'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='θ' horiz-adv-x='469' vert-adv-y='469' glyph-name='theta' d='M455 500C455 566 437 705 335 705C196 705 42 423 42 194C42 100 71-11 162-11C303-11 455 276 455 500ZM148 363C165 427 185 507 225 578C252 627 289 683 334 683C383 683 389 619 389 562C389 513 381 462 357 363H148ZM348 331C337 285 316 200 278 128C243 60 205 11 162 11C129 11 108 40 108 133C108 175 114 233 140 331H348Z'/>
+<glyph unicode='V' horiz-adv-x='583' vert-adv-y='583' glyph-name='V' d='M628 569C677 647 719 650 756 652C768 653 769 670 769 671C769 679 764 683 756 683C730 683 701 680 674 680C641 680 607 683 575 683C569 683 556 683 556 664C556 653 565 652 572 652C599 650 618 640 618 619C618 604 603 582 603 581L296 93L228 622C228 639 251 652 297 652C311 652 322 652 322 672C322 681 314 683 308 683C268 683 225 680 184 680C166 680 147 681 129 681S92 683 75 683C68 683 56 683 56 664C56 652 65 652 81 652C137 652 138 643 141 618L220 1C223-19 227-22 240-22C256-22 260-17 268-4L628 569Z'/>
+</font>
+<font id='cmmi7' horiz-adv-x='0'>
+<font-face font-family='cmmi7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='f' horiz-adv-x='557' vert-adv-y='557' glyph-name='f' d='M407 395H505C525 395 538 395 538 417C538 431 525 431 507 431H414C437 558 445 604 453 633C458 655 480 676 504 676C505 676 532 676 551 664C510 651 507 615 507 609C507 587 524 572 547 572C574 572 604 595 604 633C604 679 555 704 504 704C460 704 411 679 384 629C364 592 356 547 335 431H256C236 431 223 431 223 409C223 395 236 395 254 395H328C327 389 264 29 240-78C235-100 218-176 170-176C169-176 145-176 126-164C167-151 170-115 170-109C170-87 153-72 130-72C103-72 73-95 73-133C73-178 120-204 170-204C234-204 278-138 290-116C326-49 349 74 351 86L407 395Z'/>
+</font>
+<font id='cmr7' horiz-adv-x='0'>
+<font-face font-family='cmr7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='*' horiz-adv-x='569' vert-adv-y='569' glyph-name='asterisk' d='M299 510L434 419C447 410 452 410 457 410C476 410 488 428 488 442C488 461 477 466 462 472L315 534L462 597C477 603 488 608 488 627C488 641 476 659 457 659C448 659 446 658 435 650L299 559L314 709C316 727 312 750 284 750C272 750 253 742 253 720C253 716 254 703 255 698L269 559L134 650C121 659 116 659 111 659C92 659 80 641 80 627C80 608 91 603 106 597L253 535L106 472C91 466 80 461 80 442C80 440 80 410 118 410L269 510L254 355V350C250 342 260 319 284 319C296 319 315 327 315 349C315 353 314 366 313 371L299 510Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmmi7;font-size:6.973848px}
+text.f3 {font-family:cmr10;font-size:9.96264px}
+text.f4 {font-family:cmr7;font-size:6.973848px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-58.164063 85.429688H83.1137' stroke='#000' fill='none' stroke-width='.3985'/>
+<path d='M81.91801 83.83594C82.01567 84.433594 83.113324 85.328125 83.410199 85.429688C83.113324 85.527344 82.01567 86.425781 81.91801 87.02344' stroke='#000' fill='none' stroke-width='.31879' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.2539 3.4593)'>bad</text>
+<path d='M-58.164063 85.429688V-55.8478' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<path d='M-59.75781-54.65239C-59.160157-54.75004-58.261719-55.847699-58.164063-56.144574C-58.0625-55.847699-57.167969-54.75004-56.57031-54.65239' stroke='#000' fill='none' stroke-width='.31879' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 -10.5163 -147.1911)'>go<tspan x='-47.9239'>o</tspan><tspan x='-42.665813'>d</tspan></text>
+<path d='M-58.164063 85.429688L82.8787 57.2188' stroke='#00f' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M80.945361 55.492163C81.2266 56.23045 82.851602 57.093729 83.257855 57.14451C82.902384 57.347636 81.734417 58.76951 81.757856 59.558569' stroke='#00f' fill='none' stroke-width='.637579' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f0' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 -25.8561)'><tspan fill='#00f'>|∗</tspan><tspan fill='#00f' x='-50.414583'></tspan></text>
+<path d='M-1.4688 85.429688C-1.4688 81.80078-1.8203 78.17188-2.5117 74.6094' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 59.88603 -2.21)'>θ</text>
+<path d='M-58.164063 85.429688L82.8787 113.6367' stroke='#f00' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M81.757854 111.300498C81.734421 112.085653 82.902387 113.50753 83.257858 113.710657C82.851606 113.761437 81.226604 114.624713 80.945365 115.362999' stroke='#f00' fill='none' stroke-width='.637579' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>V</tspan></text>
+<text class='f2' x='-52.35178' y='86.922575' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>f</tspan></text>
+<text class='f0' x='-45.526667' y='85.428195' transform='matrix(1 0 0 1 145.4531 30.6578)'><tspan fill='#f00'>|∗</tspan><tspan fill='#f00' x='-37.777923'></tspan></text>
+<path d='M-15.6445 85.429688C-15.6445 88.14844-15.9063 90.87109-16.4258 93.54297' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f1' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 45.7126 7.7111)'>θ</text>
+<path d='M-58.164063 85.429688L82.9647 .75' stroke='#008000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<path d='M80.56639-.22656C81.0781 .375003 82.898417 .640628 83.296857 .550787C83.031232 .863284 82.410136 2.593751 82.699207 3.328128' stroke='#008000' fill='none' stroke-width='.637582' stroke-miterlimit='10' stroke-linecap='round' stroke-linejoin='round'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 145.4531 -91.60992)'><tspan fill='#008000'>FLIP</tspan></text>
+<text class='f4' x='-35.055468' y='87.227022' transform='matrix(1 0 0 1 145.4531 -91.60992)'><tspan fill='#008000'>*</tspan></text>
+<text class='f1' x='-28.925708' y='85.428195' transform='matrix(1 0 0 1 145.4531 -91.60992)'><tspan fill='#008000'>V</tspan></text>
+<text class='f2' x='-23.114162' y='86.922575' transform='matrix(1 0 0 1 145.4531 -91.60992)'><tspan fill='#008000'>f</tspan></text>
+<text class='f0' x='-16.289048' y='85.428195' transform='matrix(1 0 0 1 145.4531 -91.60992)'><tspan fill='#008000'>|∗</tspan><tspan fill='#008000' x='-8.540304'></tspan></text>
+<path d='M12.7031 71.2539C11.1094 63.2773 8.1484 55.625 3.9609 48.6523' stroke='#000' fill='none' stroke-width='.3985' stroke-miterlimit='10'/>
+<text class='f3' x='-58.163327' y='85.428195' transform='matrix(1 0 0 1 71.5687 -24.8875)'>2</text>
+<text class='f1' x='-53.181988' y='85.428195' transform='matrix(1 0 0 1 71.5687 -24.8875)'>θ</text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/content/img/grover_plt1.svg b/content/img/grover_plt1.svg
deleted file mode 100644
index ac0a7880662c39f66f4c5ba95f4a8ab0afcec082..0000000000000000000000000000000000000000
--- a/content/img/grover_plt1.svg
+++ /dev/null
@@ -1 +0,0 @@
-<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="198.624" height="190.985" viewBox="0 0 148.968 143.239"><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#00f" d="m13.255 129.281 110.005-24.387"/><path stroke-width=".6379617200000001" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#00f" d="M121.294 103.207c.294.73 1.937 1.56 2.345 1.603-.351.21-1.49 1.656-1.448 2.443"/><symbol id="a"><path d="M.04.964C.04.982.04 1 .02 1S0 .982 0 .964V.036C0 .018 0 0 .02 0s.02.018.02.036v.928z"/></symbol><symbol id="b"><path d="M.21.393C.211.407.211.431.185.431.169.431.156.418.159.405V.392L.173.237.045.33C.036.335.034.337.027.337.013.337 0 .323 0 .309 0 .293.01.289.02.284L.162.216.024.149C.008.141 0 .137 0 .122S.013.094.027.094c.007 0 .009 0 .034.019l.112.081L.158.026C.158.005.176 0 .184 0c.012 0 .027.007.027.026L.196.194.324.101C.333.096.335.094.342.094c.014 0 .027.014.027.028 0 .015-.009.02-.021.026-.06.03-.062.03-.141.067l.138.067C.361.29.369.294.369.309S.356.337.342.337c-.007 0-.009 0-.034-.019L.196.237.21.393z"/></symbol><symbol id="c"><path d="M.218.483C.223.495.223.497.223.5c0 .003 0 .005-.005.017l-.175.46C.037.994.031 1 .02 1A.02.02 0 0 1 0 .98C0 .977 0 .975.005.964L.182.5.005.038C0 .027 0 .025 0 .02A.02.02 0 0 1 .02 0c.013 0 .017.01.021.02l.177.463z"/></symbol><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 128.854 101.022)" fill="#00f"/><use xlink:href="#b" transform="matrix(9.9626 0 0 -9.9626 131.085 98.192)" fill="#00f"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 135.967 101.022)" fill="#00f"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M13.255 129.281h112.68"/><path stroke-width=".638" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#000" d="M124.38 127.209c.13.777 1.555 1.942 1.943 2.072-.388.13-1.813 1.295-1.942 2.072"/><symbol id="d"><path d="M.188.68a.079.079 0 0 1 .003.013c0 .009-.006.012-.014.012A.088.088 0 0 1 .161.703L.062.695C.05.694.039.693.039.674c0-.011.01-.011.024-.011.048 0 .05-.007.05-.017L.11.629.011.234A.366.366 0 0 1 0 .152C0 .068.042 0 .115 0c.112 0 .229.15.229.297 0 .107-.06.156-.12.156C.186.453.152.432.118.4l.07.28M.115.022C.09.022.057.043.057.118c0 .044.009.079.038.193.007.024.007.026.022.046.029.04.067.074.105.074.045 0 .055-.057.055-.089A.783.783 0 0 0 .221.117C.209.092.166.022.115.022z"/></symbol><symbol id="e"><path d="M.241.07A.084.084 0 0 1 .324 0c.037 0 .058.025.073.056.018.038.03.096.03.098 0 .01-.008.01-.015.01C.4.164.399.163.393.141.379.085.36.022.326.022.3.022.3.049.3.063.3.07.3.086.307.114l.068.272C.379.4.379.402.379.407c0 .021-.017.026-.027.026C.32.433.313.399.312.394.293.437.261.453.229.453.118.453 0 .301 0 .155 0 .07.046 0 .121 0c.036 0 .08.021.12.07m.054.254L.248.135C.24.103.178.022.123.022.076.022.068.081.068.111c0 .05.031.167.049.209.025.061.071.111.112.111.044 0 .069-.052.069-.094A.053.053 0 0 0 .295.324z"/></symbol><symbol id="f"><path d="M.449.68a.079.079 0 0 1 .003.013c0 .009-.006.012-.014.012A.088.088 0 0 1 .422.703L.323.695C.311.694.3.693.3.674.3.663.31.663.324.663c.048 0 .05-.007.05-.017L.371.629.313.395C.298.426.271.453.229.453.118.453 0 .301 0 .155 0 .07.046 0 .121 0c.036 0 .08.021.12.07A.084.084 0 0 1 .324 0c.037 0 .058.025.073.056.018.038.03.096.03.098 0 .01-.008.01-.015.01C.4.164.399.163.393.141.379.085.36.022.326.022.3.022.3.049.3.063.3.07.3.085.306.109L.449.68M.247.133C.239.102.178.022.123.022.076.022.068.081.068.111c0 .05.031.167.049.209.025.061.071.111.112.111C.237.431.26.43.278.402a.146.146 0 0 0 .02-.064.045.045 0 0 0-.003-.013L.247.133z"/></symbol><use xlink:href="#d" transform="matrix(9.9626 0 0 -9.9626 131.506 140.028)"/><use xlink:href="#e" transform="matrix(9.9626 0 0 -9.9626 135.51 140.028)"/><use xlink:href="#f" transform="matrix(9.9626 0 0 -9.9626 140.602 140.028)"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M13.255 129.281V16.601"/><path stroke-width=".638" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#000" d="M11.183 18.155c.777-.13 1.943-1.554 2.072-1.942.13.388 1.295 1.813 2.072 1.942"/><symbol id="g"><path d="M.285.258.264.174A.211.211 0 0 0 .218.069C.178.022.138.022.123.022c-.013 0-.044 0-.071.011.02.008.032.029.032.046 0 .013-.009.032-.035.032A.05.05 0 0 1 0 .058C0 .018.037 0 .121 0c.105 0 .181.066.2.142L.43.58c.004.015.004.017.004.021 0 .021-.017.026-.027.026A.04.04 0 0 1 .368.59C.354.619.327.647.284.647.172.647.057.499.057.358c0-.085.047-.153.122-.153.051 0 .094.041.106.053M.35.519.305.337C.297.305.236.227.181.227.127.227.125.303.125.314c0 .048.03.165.051.212.025.054.069.099.108.099.06 0 .069-.084.069-.092L.35.519z"/></symbol><symbol id="h"><path d="M.399.289C.399.384.34.453.253.453.129.453 0 .311 0 .165 0 .062.063 0 .146 0 .27 0 .399.142.399.289M.146.022C.107.022.07.053.07.125c0 .05.026.161.058.215.037.061.085.091.124.091.049 0 .077-.044.077-.103A.568.568 0 0 0 .275.122C.246.067.195.022.146.022z"/></symbol><use xlink:href="#g" transform="matrix(9.9626 0 0 -9.9626 3.848 12.281)"/><use xlink:href="#h" transform="matrix(9.9626 0 0 -9.9626 8.999 10.349)"/><use xlink:href="#h" transform="matrix(9.9626 0 0 -9.9626 13.581 10.349)"/><use xlink:href="#f" transform="matrix(9.9626 0 0 -9.9626 18.144 10.349)"/><path stroke-width=".399" stroke-miterlimit="10" fill="none" stroke="#000" d="M69.949 129.281c0-4.126-.454-8.243-1.346-12.27"/><symbol id="i"><path d="M.413.511c0 .066-.018.205-.12.205C.154.716 0 .434 0 .205 0 .111.029 0 .12 0c.141 0 .293.287.293.511M.106.374c.017.064.037.144.077.215.027.049.064.105.109.105C.341.694.347.63.347.573c0-.049-.008-.1-.032-.199H.106m.2-.032a.893.893 0 0 0-.07-.203C.201.071.163.022.12.022.087.022.066.051.066.144c0 .042.006.1.032.198h.208z"/></symbol><use xlink:href="#i" transform="matrix(9.9626 0 0 -9.9626 73.886 125.87)"/></svg>
\ No newline at end of file
diff --git a/content/img/grover_plt2.svg b/content/img/grover_plt2.svg
deleted file mode 100644
index f0e45d8a05aad3916154f11658c7b3749ca9545e..0000000000000000000000000000000000000000
--- a/content/img/grover_plt2.svg
+++ /dev/null
@@ -1 +0,0 @@
-<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="198.624" height="228.244" viewBox="0 0 148.968 171.183"><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#00f" d="m13.255 129.281 110.005-24.387"/><path stroke-width=".6379617200000001" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#00f" d="M121.294 103.207c.294.73 1.937 1.56 2.345 1.603-.351.21-1.49 1.656-1.448 2.443"/><symbol id="a"><path d="M.04.964C.04.982.04 1 .02 1S0 .982 0 .964V.036C0 .018 0 0 .02 0s.02.018.02.036v.928z"/></symbol><symbol id="b"><path d="M.21.393C.211.407.211.431.185.431.169.431.156.418.159.405V.392L.173.237.045.33C.036.335.034.337.027.337.013.337 0 .323 0 .309 0 .293.01.289.02.284L.162.216.024.149C.008.141 0 .137 0 .122S.013.094.027.094c.007 0 .009 0 .034.019l.112.081L.158.026C.158.005.176 0 .184 0c.012 0 .027.007.027.026L.196.194.324.101C.333.096.335.094.342.094c.014 0 .027.014.027.028 0 .015-.009.02-.021.026-.06.03-.062.03-.141.067l.138.067C.361.29.369.294.369.309S.356.337.342.337c-.007 0-.009 0-.034-.019L.196.237.21.393z"/></symbol><symbol id="c"><path d="M.218.483C.223.495.223.497.223.5c0 .003 0 .005-.005.017l-.175.46C.037.994.031 1 .02 1A.02.02 0 0 1 0 .98C0 .977 0 .975.005.964L.182.5.005.038C0 .027 0 .025 0 .02A.02.02 0 0 1 .02 0c.013 0 .017.01.021.02l.177.463z"/></symbol><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 128.854 101.022)" fill="#00f"/><use xlink:href="#b" transform="matrix(9.9626 0 0 -9.9626 131.085 98.192)" fill="#00f"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 135.967 101.022)" fill="#00f"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M13.255 129.281h112.68"/><path stroke-width=".638" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#000" d="M124.38 127.209c.13.777 1.555 1.942 1.943 2.072-.388.13-1.813 1.295-1.942 2.072"/><symbol id="d"><path d="M.188.68a.079.079 0 0 1 .003.013c0 .009-.006.012-.014.012A.088.088 0 0 1 .161.703L.062.695C.05.694.039.693.039.674c0-.011.01-.011.024-.011.048 0 .05-.007.05-.017L.11.629.011.234A.366.366 0 0 1 0 .152C0 .068.042 0 .115 0c.112 0 .229.15.229.297 0 .107-.06.156-.12.156C.186.453.152.432.118.4l.07.28M.115.022C.09.022.057.043.057.118c0 .044.009.079.038.193.007.024.007.026.022.046.029.04.067.074.105.074.045 0 .055-.057.055-.089A.783.783 0 0 0 .221.117C.209.092.166.022.115.022z"/></symbol><symbol id="e"><path d="M.241.07A.084.084 0 0 1 .324 0c.037 0 .058.025.073.056.018.038.03.096.03.098 0 .01-.008.01-.015.01C.4.164.399.163.393.141.379.085.36.022.326.022.3.022.3.049.3.063.3.07.3.086.307.114l.068.272C.379.4.379.402.379.407c0 .021-.017.026-.027.026C.32.433.313.399.312.394.293.437.261.453.229.453.118.453 0 .301 0 .155 0 .07.046 0 .121 0c.036 0 .08.021.12.07m.054.254L.248.135C.24.103.178.022.123.022.076.022.068.081.068.111c0 .05.031.167.049.209.025.061.071.111.112.111.044 0 .069-.052.069-.094A.053.053 0 0 0 .295.324z"/></symbol><symbol id="f"><path d="M.449.68a.079.079 0 0 1 .003.013c0 .009-.006.012-.014.012A.088.088 0 0 1 .422.703L.323.695C.311.694.3.693.3.674.3.663.31.663.324.663c.048 0 .05-.007.05-.017L.371.629.313.395C.298.426.271.453.229.453.118.453 0 .301 0 .155 0 .07.046 0 .121 0c.036 0 .08.021.12.07A.084.084 0 0 1 .324 0c.037 0 .058.025.073.056.018.038.03.096.03.098 0 .01-.008.01-.015.01C.4.164.399.163.393.141.379.085.36.022.326.022.3.022.3.049.3.063.3.07.3.085.306.109L.449.68M.247.133C.239.102.178.022.123.022.076.022.068.081.068.111c0 .05.031.167.049.209.025.061.071.111.112.111C.237.431.26.43.278.402a.146.146 0 0 0 .02-.064.045.045 0 0 0-.003-.013L.247.133z"/></symbol><use xlink:href="#d" transform="matrix(9.9626 0 0 -9.9626 131.506 140.028)"/><use xlink:href="#e" transform="matrix(9.9626 0 0 -9.9626 135.51 140.028)"/><use xlink:href="#f" transform="matrix(9.9626 0 0 -9.9626 140.602 140.028)"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M13.255 129.281V16.601"/><path stroke-width=".638" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#000" d="M11.183 18.155c.777-.13 1.943-1.554 2.072-1.942.13.388 1.295 1.813 2.072 1.942"/><symbol id="g"><path d="M.285.258.264.174A.211.211 0 0 0 .218.069C.178.022.138.022.123.022c-.013 0-.044 0-.071.011.02.008.032.029.032.046 0 .013-.009.032-.035.032A.05.05 0 0 1 0 .058C0 .018.037 0 .121 0c.105 0 .181.066.2.142L.43.58c.004.015.004.017.004.021 0 .021-.017.026-.027.026A.04.04 0 0 1 .368.59C.354.619.327.647.284.647.172.647.057.499.057.358c0-.085.047-.153.122-.153.051 0 .094.041.106.053M.35.519.305.337C.297.305.236.227.181.227.127.227.125.303.125.314c0 .048.03.165.051.212.025.054.069.099.108.099.06 0 .069-.084.069-.092L.35.519z"/></symbol><symbol id="h"><path d="M.399.289C.399.384.34.453.253.453.129.453 0 .311 0 .165 0 .062.063 0 .146 0 .27 0 .399.142.399.289M.146.022C.107.022.07.053.07.125c0 .05.026.161.058.215.037.061.085.091.124.091.049 0 .077-.044.077-.103A.568.568 0 0 0 .275.122C.246.067.195.022.146.022z"/></symbol><use xlink:href="#g" transform="matrix(9.9626 0 0 -9.9626 3.848 12.281)"/><use xlink:href="#h" transform="matrix(9.9626 0 0 -9.9626 8.999 10.349)"/><use xlink:href="#h" transform="matrix(9.9626 0 0 -9.9626 13.581 10.349)"/><use xlink:href="#f" transform="matrix(9.9626 0 0 -9.9626 18.144 10.349)"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="red" d="m13.255 129.281 110.005 24.387"/><path stroke-width=".6379617200000001" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="red" d="M122.19 151.309c-.041.787 1.098 2.233 1.449 2.443-.408.043-2.05.872-2.345 1.603"/><symbol id="i"><path d="M.572.591C.621.669.663.672.7.674c.012.001.013.018.013.019C.713.701.708.705.7.705L.618.702.519.705C.513.705.5.705.5.686.5.675.509.674.516.674.543.672.562.662.562.641.562.626.547.604.547.603L.24.115.172.644c0 .017.023.03.069.03.014 0 .025 0 .025.02 0 .009-.008.011-.014.011L.128.702.073.703.019.705C.012.705 0 .705 0 .686 0 .674.009.674.025.674.081.674.082.665.085.64L.164.023C.167.003.171 0 .184 0 .2 0 .204.005.212.018l.36.573z"/></symbol><use xlink:href="#i" transform="matrix(9.9626 0 0 -9.9626 112.377 165.231)" fill="red"/><symbol id="j"><path d="M.334.599h.098c.02 0 .033 0 .033.022 0 .014-.013.014-.031.014H.341C.364.762.372.808.38.837.385.859.407.88.431.88.432.88.459.88.478.868A.06.06 0 0 1 .434.813c0-.022.017-.037.04-.037a.06.06 0 0 1 .057.061c0 .046-.049.071-.1.071a.139.139 0 0 1-.12-.075C.291.796.283.751.262.635H.183C.163.635.15.635.15.613.15.599.163.599.181.599h.074A18.16 18.16 0 0 0 .167.126C.162.104.145.028.097.028c-.001 0-.025 0-.044.012a.06.06 0 0 1 .044.055c0 .022-.017.037-.04.037A.06.06 0 0 1 0 .071C0 .026.047 0 .097 0c.064 0 .108.066.12.088A.85.85 0 0 1 .278.29l.056.309z"/></symbol><use xlink:href="#j" transform="matrix(6.9738 0 0 -6.9738 118.14 167.929)" fill="red"/><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 125.642 167.503)" fill="red"/><use xlink:href="#b" transform="matrix(9.9626 0 0 -9.9626 127.873 164.673)" fill="red"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 132.755 167.503)" fill="red"/><path stroke-width=".399" stroke-miterlimit="10" fill="none" stroke="#000" d="M69.949 129.281c0-4.126-.454-8.243-1.346-12.27"/><symbol id="k"><path d="M.413.511c0 .066-.018.205-.12.205C.154.716 0 .434 0 .205 0 .111.029 0 .12 0c.141 0 .293.287.293.511M.106.374c.017.064.037.144.077.215.027.049.064.105.109.105C.341.694.347.63.347.573c0-.049-.008-.1-.032-.199H.106m.2-.032a.893.893 0 0 0-.07-.203C.201.071.163.022.12.022.087.022.066.051.066.144c0 .042.006.1.032.198h.208z"/></symbol><use xlink:href="#k" transform="matrix(9.9626 0 0 -9.9626 73.886 125.87)"/><path stroke-width=".399" stroke-miterlimit="10" fill="none" stroke="#000" d="M58.61 129.281c0 3.3-.363 6.595-1.078 9.816"/><use xlink:href="#k" transform="matrix(9.9626 0 0 -9.9626 62.547 139.829)"/></svg>
\ No newline at end of file
diff --git a/content/img/grover_plt3.pdf b/content/img/grover_plt3.pdf
deleted file mode 100644
index 33ac47c2977d9a5f75f98df22505c3abe5f45639..0000000000000000000000000000000000000000
Binary files a/content/img/grover_plt3.pdf and /dev/null differ
diff --git a/content/img/grover_plt3.svg b/content/img/grover_plt3.svg
deleted file mode 100644
index f575fd33249fd994db60d7e624303624df88281d..0000000000000000000000000000000000000000
--- a/content/img/grover_plt3.svg
+++ /dev/null
@@ -1 +0,0 @@
-<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="218.472" height="228.244" viewBox="0 0 163.854 171.183"><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#00f" d="m13.255 129.281 110.005-24.387"/><path stroke-width=".6379617200000001" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#00f" d="M121.294 103.207c.294.73 1.937 1.56 2.345 1.603-.351.21-1.49 1.656-1.448 2.443"/><symbol id="a"><path d="M.04.964C.04.982.04 1 .02 1S0 .982 0 .964V.036C0 .018 0 0 .02 0s.02.018.02.036v.928z"/></symbol><symbol id="b"><path d="M.21.393C.211.407.211.431.185.431.169.431.156.418.159.405V.392L.173.237.045.33C.036.335.034.337.027.337.013.337 0 .323 0 .309 0 .293.01.289.02.284L.162.216.024.149C.008.141 0 .137 0 .122S.013.094.027.094c.007 0 .009 0 .034.019l.112.081L.158.026C.158.005.176 0 .184 0c.012 0 .027.007.027.026L.196.194.324.101C.333.096.335.094.342.094c.014 0 .027.014.027.028 0 .015-.009.02-.021.026-.06.03-.062.03-.141.067l.138.067C.361.29.369.294.369.309S.356.337.342.337c-.007 0-.009 0-.034-.019L.196.237.21.393z"/></symbol><symbol id="c"><path d="M.218.483C.223.495.223.497.223.5c0 .003 0 .005-.005.017l-.175.46C.037.994.031 1 .02 1A.02.02 0 0 1 0 .98C0 .977 0 .975.005.964L.182.5.005.038C0 .027 0 .025 0 .02A.02.02 0 0 1 .02 0c.013 0 .017.01.021.02l.177.463z"/></symbol><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 128.854 101.022)" fill="#00f"/><use xlink:href="#b" transform="matrix(9.9626 0 0 -9.9626 131.085 98.192)" fill="#00f"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 135.967 101.022)" fill="#00f"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M13.255 129.281h112.68"/><path stroke-width=".638" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#000" d="M124.38 127.209c.13.777 1.555 1.942 1.943 2.072-.388.13-1.813 1.295-1.942 2.072"/><symbol id="d"><path d="M.188.68a.079.079 0 0 1 .003.013c0 .009-.006.012-.014.012A.088.088 0 0 1 .161.703L.062.695C.05.694.039.693.039.674c0-.011.01-.011.024-.011.048 0 .05-.007.05-.017L.11.629.011.234A.366.366 0 0 1 0 .152C0 .068.042 0 .115 0c.112 0 .229.15.229.297 0 .107-.06.156-.12.156C.186.453.152.432.118.4l.07.28M.115.022C.09.022.057.043.057.118c0 .044.009.079.038.193.007.024.007.026.022.046.029.04.067.074.105.074.045 0 .055-.057.055-.089A.783.783 0 0 0 .221.117C.209.092.166.022.115.022z"/></symbol><symbol id="e"><path d="M.241.07A.084.084 0 0 1 .324 0c.037 0 .058.025.073.056.018.038.03.096.03.098 0 .01-.008.01-.015.01C.4.164.399.163.393.141.379.085.36.022.326.022.3.022.3.049.3.063.3.07.3.086.307.114l.068.272C.379.4.379.402.379.407c0 .021-.017.026-.027.026C.32.433.313.399.312.394.293.437.261.453.229.453.118.453 0 .301 0 .155 0 .07.046 0 .121 0c.036 0 .08.021.12.07m.054.254L.248.135C.24.103.178.022.123.022.076.022.068.081.068.111c0 .05.031.167.049.209.025.061.071.111.112.111.044 0 .069-.052.069-.094A.053.053 0 0 0 .295.324z"/></symbol><symbol id="f"><path d="M.449.68a.079.079 0 0 1 .003.013c0 .009-.006.012-.014.012A.088.088 0 0 1 .422.703L.323.695C.311.694.3.693.3.674.3.663.31.663.324.663c.048 0 .05-.007.05-.017L.371.629.313.395C.298.426.271.453.229.453.118.453 0 .301 0 .155 0 .07.046 0 .121 0c.036 0 .08.021.12.07A.084.084 0 0 1 .324 0c.037 0 .058.025.073.056.018.038.03.096.03.098 0 .01-.008.01-.015.01C.4.164.399.163.393.141.379.085.36.022.326.022.3.022.3.049.3.063.3.07.3.085.306.109L.449.68M.247.133C.239.102.178.022.123.022.076.022.068.081.068.111c0 .05.031.167.049.209.025.061.071.111.112.111C.237.431.26.43.278.402a.146.146 0 0 0 .02-.064.045.045 0 0 0-.003-.013L.247.133z"/></symbol><use xlink:href="#d" transform="matrix(9.9626 0 0 -9.9626 131.506 140.028)"/><use xlink:href="#e" transform="matrix(9.9626 0 0 -9.9626 135.51 140.028)"/><use xlink:href="#f" transform="matrix(9.9626 0 0 -9.9626 140.602 140.028)"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M13.255 129.281V16.601"/><path stroke-width=".638" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#000" d="M11.183 18.155c.777-.13 1.943-1.554 2.072-1.942.13.388 1.295 1.813 2.072 1.942"/><symbol id="g"><path d="M.285.258.264.174A.211.211 0 0 0 .218.069C.178.022.138.022.123.022c-.013 0-.044 0-.071.011.02.008.032.029.032.046 0 .013-.009.032-.035.032A.05.05 0 0 1 0 .058C0 .018.037 0 .121 0c.105 0 .181.066.2.142L.43.58c.004.015.004.017.004.021 0 .021-.017.026-.027.026A.04.04 0 0 1 .368.59C.354.619.327.647.284.647.172.647.057.499.057.358c0-.085.047-.153.122-.153.051 0 .094.041.106.053M.35.519.305.337C.297.305.236.227.181.227.127.227.125.303.125.314c0 .048.03.165.051.212.025.054.069.099.108.099.06 0 .069-.084.069-.092L.35.519z"/></symbol><symbol id="h"><path d="M.399.289C.399.384.34.453.253.453.129.453 0 .311 0 .165 0 .062.063 0 .146 0 .27 0 .399.142.399.289M.146.022C.107.022.07.053.07.125c0 .05.026.161.058.215.037.061.085.091.124.091.049 0 .077-.044.077-.103A.568.568 0 0 0 .275.122C.246.067.195.022.146.022z"/></symbol><use xlink:href="#g" transform="matrix(9.9626 0 0 -9.9626 3.848 12.281)"/><use xlink:href="#h" transform="matrix(9.9626 0 0 -9.9626 8.999 10.349)"/><use xlink:href="#h" transform="matrix(9.9626 0 0 -9.9626 13.581 10.349)"/><use xlink:href="#f" transform="matrix(9.9626 0 0 -9.9626 18.144 10.349)"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="red" d="m13.255 129.281 110.005 24.387"/><path stroke-width=".6379617200000001" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="red" d="M122.19 151.309c-.041.787 1.098 2.233 1.449 2.443-.408.043-2.05.872-2.345 1.603"/><symbol id="i"><path d="M.572.591C.621.669.663.672.7.674c.012.001.013.018.013.019C.713.701.708.705.7.705L.618.702.519.705C.513.705.5.705.5.686.5.675.509.674.516.674.543.672.562.662.562.641.562.626.547.604.547.603L.24.115.172.644c0 .017.023.03.069.03.014 0 .025 0 .025.02 0 .009-.008.011-.014.011L.128.702.073.703.019.705C.012.705 0 .705 0 .686 0 .674.009.674.025.674.081.674.082.665.085.64L.164.023C.167.003.171 0 .184 0 .2 0 .204.005.212.018l.36.573z"/></symbol><use xlink:href="#i" transform="matrix(9.9626 0 0 -9.9626 112.377 165.231)" fill="red"/><symbol id="j"><path d="M.334.599h.098c.02 0 .033 0 .033.022 0 .014-.013.014-.031.014H.341C.364.762.372.808.38.837.385.859.407.88.431.88.432.88.459.88.478.868A.06.06 0 0 1 .434.813c0-.022.017-.037.04-.037a.06.06 0 0 1 .057.061c0 .046-.049.071-.1.071a.139.139 0 0 1-.12-.075C.291.796.283.751.262.635H.183C.163.635.15.635.15.613.15.599.163.599.181.599h.074A18.16 18.16 0 0 0 .167.126C.162.104.145.028.097.028c-.001 0-.025 0-.044.012a.06.06 0 0 1 .044.055c0 .022-.017.037-.04.037A.06.06 0 0 1 0 .071C0 .026.047 0 .097 0c.064 0 .108.066.12.088A.85.85 0 0 1 .278.29l.056.309z"/></symbol><use xlink:href="#j" transform="matrix(6.9738 0 0 -6.9738 118.14 167.929)" fill="red"/><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 125.642 167.503)" fill="red"/><use xlink:href="#b" transform="matrix(9.9626 0 0 -9.9626 127.873 164.673)" fill="red"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 132.755 167.503)" fill="red"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#0f0" d="m13.255 129.281 89.391-68.592"/><path stroke-width=".6379681" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#0f0" d="M100.152 59.991c.576.538 2.415.595 2.802.461-.229.34-.65 2.132-.28 2.827"/><symbol id="k"><path d="M.549.68H0V.649h.024C.101.649.103.638.103.602V.078C.103.042.101.031.024.031H0V0c.035.003.113.003.152.003C.193.003.284.003.32 0v.031H.287C.192.031.192.044.192.079v.246h.086C.374.325.384.293.384.208h.025v.265H.384C.384.389.374.356.278.356H.192v.253c0 .033.002.04.049.04h.12c.15 0 .175-.056.191-.194h.025L.549.68z"/></symbol><symbol id="l"><path d="M.549.258H.524C.513.156.499.031.323.031H.241c-.047 0-.049.007-.049.04v.533c0 .034 0 .048.095.048H.32v.031C.284.68.193.68.152.68.113.68.035.68 0 .683V.652h.024C.101.652.103.641.103.605V.078C.103.042.101.031.024.031H0V0h.521l.028.258z"/></symbol><symbol id="m"><path d="M.197.605c0 .036.003.047.082.047h.026v.031C.27.68.191.68.153.68.114.68.035.68 0 .683V.652h.026C.105.652.108.641.108.605V.078C.108.042.105.031.026.031H0V0c.035.003.114.003.152.003C.191.003.27.003.305 0v.031H.279C.2.031.197.042.197.078v.527z"/></symbol><symbol id="n"><path d="M.192.316h.169c.12 0 .228.081.228.181C.589.595.49.683.353.683H0V.652h.024C.101.652.103.641.103.605V.078C.103.042.101.031.024.031H0V0c.035.003.109.003.147.003C.185.003.26.003.295 0v.031H.271C.194.031.192.042.192.078v.238M.189.342v.27c0 .033.002.04.049.04h.089C.486.652.486.546.486.497c0-.047 0-.155-.159-.155H.189z"/></symbol><use xlink:href="#k" transform="matrix(9.9626 0 0 -9.9626 107.254 53.69)" fill="#0f0"/><use xlink:href="#l" transform="matrix(9.9626 0 0 -9.9626 113.76 53.69)" fill="#0f0"/><use xlink:href="#m" transform="matrix(9.9626 0 0 -9.9626 119.936 53.69)" fill="#0f0"/><use xlink:href="#n" transform="matrix(9.9626 0 0 -9.9626 123.602 53.69)" fill="#0f0"/><symbol id="o"><path d="M.234.215c.082.036.119.05.144.062.019.008.028.012.028.031A.031.031 0 0 1 .375.34C.368.34.366.34.354.331L.218.24l.015.148c.002.018 0 .043-.03.043C.191.431.172.423.172.401L.177.352.188.24.053.331C.043.337.04.34.031.34A.031.031 0 0 1 0 .308C0 .288.012.283.021.279L.172.216C.09.18.053.166.028.154.009.146 0 .142 0 .123 0 .106.013.091.031.091.038.091.04.091.052.1l.136.091L.172.03C.172.008.191 0 .203 0s.031.008.031.03L.229.079a7.187 7.187 0 0 0-.011.112l.12-.08c.026-.02.028-.02.037-.02.018 0 .031.015.031.032 0 .02-.012.025-.021.029L.234.215z"/></symbol><use xlink:href="#o" transform="matrix(6.9738 0 0 -6.9738 130.654 54.947)" fill="#0f0"/><use xlink:href="#i" transform="matrix(9.9626 0 0 -9.9626 136.832 53.91)" fill="#0f0"/><use xlink:href="#j" transform="matrix(6.9738 0 0 -6.9738 142.594 56.607)" fill="#0f0"/><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 150.096 56.18)" fill="#0f0"/><use xlink:href="#b" transform="matrix(9.9626 0 0 -9.9626 152.327 53.351)" fill="#0f0"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 157.209 56.18)" fill="#0f0"/><path stroke-width=".399" stroke-miterlimit="10" fill="none" stroke="#000" d="M69.949 129.281c0-4.126-.454-8.243-1.346-12.27"/><symbol id="p"><path d="M.413.511c0 .066-.018.205-.12.205C.154.716 0 .434 0 .205 0 .111.029 0 .12 0c.141 0 .293.287.293.511M.106.374c.017.064.037.144.077.215.027.049.064.105.109.105C.341.694.347.63.347.573c0-.049-.008-.1-.032-.199H.106m.2-.032a.893.893 0 0 0-.07-.203C.201.071.163.022.12.022.087.022.066.051.066.144c0 .042.006.1.032.198h.208z"/></symbol><use xlink:href="#p" transform="matrix(9.9626 0 0 -9.9626 73.886 125.87)"/><path stroke-width=".399" stroke-miterlimit="10" fill="none" stroke="#000" d="M58.61 129.281c0 3.3-.363 6.595-1.078 9.816"/><use xlink:href="#p" transform="matrix(9.9626 0 0 -9.9626 62.547 139.829)"/><path stroke-width=".399" stroke-miterlimit="10" fill="none" stroke="#000" d="M81.288 113.974a68.053 68.053 0 0 0-12.446-26.69"/><symbol id="q"><path d="M.077.077.183.18c.156.138.216.192.216.292 0 .114-.09.194-.212.194A.185.185 0 0 1 0 .485C0 .429.05.429.053.429c.017 0 .052.012.052.053a.05.05 0 0 1-.053.052L.039.533a.144.144 0 0 0 .135.102C.265.635.308.554.308.472c0-.08-.05-.159-.105-.221L.011.037C0 .026 0 .024 0 0h.371l.028.174H.374C.369.144.362.1.352.085.345.077.279.077.257.077h-.18z"/></symbol><use xlink:href="#q" transform="matrix(9.9626 0 0 -9.9626 72.86 97.724)"/><use xlink:href="#p" transform="matrix(9.9626 0 0 -9.9626 77.76 97.834)"/></svg>
\ No newline at end of file
diff --git a/content/img/vf.pdf b/content/img/vf.pdf
index 2103036ba267f0d3c5e6688486744e1845052c59..c8b3568e2858a572e657da12a430cffe58c4c6c6 100644
Binary files a/content/img/vf.pdf and b/content/img/vf.pdf differ
diff --git a/content/img/vf.svg b/content/img/vf.svg
index 87fb9210434e7f47bc14fbac51f1f3de6de72113..6588bc2ceb8a929ee774c05e5ca19f37665e18e3 100644
--- a/content/img/vf.svg
+++ b/content/img/vf.svg
@@ -1 +1,65 @@
-<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="245.397" height="74.761" viewBox="0 0 184.048 56.071"><path stroke-width=".797" stroke-linecap="round" stroke-miterlimit="10" fill="none" stroke="#000" d="M36.1 12.135H21.928M50.274 12.135H36.1M64.447 12.135H50.274M98.558 12.135H84.385M112.731 12.135H98.558M126.905 12.135H112.73M36.1 43.937H21.928M50.274 43.937H36.1M64.447 43.937H50.274M98.558 43.937H84.385M112.731 43.937H98.558M126.905 43.937H112.73"/><symbol id="a"><path d="M.04.964C.04.982.04 1 .02 1S0 .982 0 .964V.036C0 .018 0 0 .02 0s.02.018.02.036v.928z"/></symbol><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 6.56 17.117)"/><symbol id="b"><path d="M.305.313c.006.026.029.118.099.118.005 0 .029 0 .05-.013A.058.058 0 0 1 .406.364c0-.016.011-.035.038-.035.022 0 .054.018.054.058 0 .052-.059.066-.093.066C.347.453.312.4.3.377a.11.11 0 0 1-.108.076C.088.453.031.324.031.299c0-.01.01-.01.012-.01.008 0 .011.002.013.011.034.106.1.131.134.131.019 0 .054-.009.054-.067C.244.333.227.266.19.126.174.064.139.022.095.022c-.006 0-.029 0-.05.013C.07.04.092.061.092.089.092.116.07.124.055.124A.057.057 0 0 1 0 .066C0 .02.05 0 .094 0 .16 0 .196.07.199.076A.11.11 0 0 1 .307 0c.103 0 .16.129.16.154 0 .01-.009.01-.012.01C.446.164.444.16.442.153.409.046.341.022.309.022.27.022.254.054.254.088c0 .022.006.044.017.088l.034.137z"/></symbol><use xlink:href="#b" transform="matrix(9.9626 0 0 -9.9626 8.432 14.736)"/><symbol id="c"><path d="M.218.483C.223.495.223.497.223.5c0 .003 0 .005-.005.017l-.175.46C.037.994.031 1 .02 1A.02.02 0 0 1 0 .98C0 .977 0 .975.005.964L.182.5.005.038C0 .027 0 .025 0 .02A.02.02 0 0 1 .02 0c.013 0 .017.01.021.02l.177.463z"/></symbol><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 14.384 17.117)"/><path d="M64.447 52.751h19.938V3.321H64.447z" fill="#fff"/><path stroke-width=".797" stroke-miterlimit="10" fill="none" stroke="#000" d="M64.447 52.751h19.938V3.321H64.447z"/><symbol id="d"><path d="M.568.6c.01.041.028.071.108.074.005 0 .017.001.017.02 0 .001 0 .011-.013.011L.578.702.474.705c-.006 0-.018 0-.018-.02 0-.011.01-.011.018-.011C.531.673.542.652.542.63A.152.152 0 0 0 .539.609L.449.252C.415.118.3.031.2.031c-.068 0-.122.044-.122.13 0 .002 0 .034.011.078l.097.389C.195.664.197.674.27.674c.026 0 .034 0 .034.02C.304.705.293.705.29.705L.162.702.033.705c-.008 0-.019 0-.019-.02 0-.011.009-.011.028-.011.002 0 .021 0 .038-.002C.098.67.107.669.107.656.107.65.096.608.09.585L.068.497.007.25C0 .222 0 .207 0 .192 0 .07.091 0 .196 0c.126 0 .25.113.283.245L.568.6z"/></symbol><use xlink:href="#d" transform="matrix(9.9626 0 0 -9.9626 69.1 30.233)"/><symbol id="e"><path d="M.334.599h.098c.02 0 .033 0 .033.022 0 .014-.013.014-.031.014H.341C.364.762.372.808.38.837.385.859.407.88.431.88.432.88.459.88.478.868A.06.06 0 0 1 .434.813c0-.022.017-.037.04-.037a.06.06 0 0 1 .057.061c0 .046-.049.071-.1.071a.139.139 0 0 1-.12-.075C.291.796.283.751.262.635H.183C.163.635.15.635.15.613.15.599.163.599.181.599h.074A18.16 18.16 0 0 0 .167.126C.162.104.145.028.097.028c-.001 0-.025 0-.044.012a.06.06 0 0 1 .044.055c0 .022-.017.037-.04.037A.06.06 0 0 1 0 .071C0 .026.047 0 .097 0c.064 0 .108.066.12.088A.85.85 0 0 1 .278.29l.056.309z"/></symbol><use xlink:href="#e" transform="matrix(6.9738 0 0 -6.9738 75.744 32.932)"/><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 132.308 17.117)"/><use xlink:href="#b" transform="matrix(9.9626 0 0 -9.9626 134.178 14.736)"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 140.131 17.117)"/><symbol id="f"><path d="M.443.225c0 .128-.1.234-.221.234C.097.459 0 .35 0 .225 0 .096.104 0 .221 0c.121 0 .222.098.222.225m-.221-.2a.13.13 0 0 0-.114.067C.083.136.083.197.083.233c0 .039 0 .093.024.137a.134.134 0 0 0 .114.067.131.131 0 0 0 .113-.065C.36.329.36.271.36.233c0-.036 0-.09-.022-.134A.129.129 0 0 0 .222.025z"/></symbol><symbol id="g"><path d="M.139.332v.11L0 .431V.4C.07.4.078.393.078.344V.076C.078.031.067.031 0 .031V0l.114.003c.04 0 .087 0 .127-.003v.031H.22C.146.031.144.042.144.078v.154c0 .099.042.188.118.188L.273.419A.043.043 0 0 1 .25.38C.25.352.271.337.293.337c.018 0 .043.012.043.044S.305.442.262.442C.189.442.153.375.139.332z"/></symbol><use xlink:href="#f" transform="matrix(9.9626 0 0 -9.9626 147.057 14.736)"/><use xlink:href="#g" transform="matrix(9.9626 0 0 -9.9626 152.038 14.626)"/><symbol id="h"><path d="M.576 0c.017 0 .035 0 .035.02S.593.04.576.04H.035C.018.04 0 .04 0 .02S.018 0 .035 0h.541z"/></symbol><use xlink:href="#h" transform="matrix(9.9626 0 0 -9.9626 159.809 12.335)"/><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 169.582 17.117)"/><use xlink:href="#b" transform="matrix(9.9626 0 0 -9.9626 171.448 14.736)"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 177.401 17.117)"/><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 4.506 48.918)"/><use xlink:href="#h" transform="matrix(9.9626 0 0 -9.9626 6.916 44.136)"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 14.388 48.918)"/><use xlink:href="#a" transform="matrix(9.9626 0 0 -9.9626 132.307 48.918)"/><use xlink:href="#h" transform="matrix(9.9626 0 0 -9.9626 134.718 44.136)"/><use xlink:href="#c" transform="matrix(9.9626 0 0 -9.9626 142.19 48.918)"/></svg>
\ No newline at end of file
+<?xml version='1.0' encoding='UTF-8'?>
+<!-- This file was generated by dvisvgm 3.4.3 -->
+<svg version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' width='142.973539pt' height='50.22671pt' viewBox='-68.68023 -69.078205 142.973539 50.22671'>
+<defs>
+<font id='cmr10' horiz-adv-x='0'>
+<font-face font-family='cmr10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='-' horiz-adv-x='333' vert-adv-y='333' glyph-name='hyphen' d='M276 187V245H11V187H276Z'/>
+<glyph unicode='o' horiz-adv-x='500' vert-adv-y='500' glyph-name='o' d='M471 214C471 342 371 448 250 448C125 448 28 339 28 214C28 85 132-11 249-11C370-11 471 87 471 214ZM250 14C207 14 163 35 136 81C111 125 111 186 111 222C111 261 111 315 135 359C162 405 209 426 249 426C293 426 336 404 362 361S388 260 388 222C388 186 388 132 366 88C344 43 300 14 250 14Z'/>
+<glyph unicode='r' horiz-adv-x='391' vert-adv-y='391' glyph-name='r' d='M167 332V442L28 431V400C98 400 106 393 106 344V76C106 31 95 31 28 31V0C67 1 114 3 142 3C182 3 229 3 269 0V31H248C174 31 172 42 172 78V232C172 331 214 420 290 420C297 420 299 420 301 419C298 418 278 406 278 380C278 352 299 337 321 337C339 337 364 349 364 381S333 442 290 442C217 442 181 375 167 332Z'/>
+</font>
+<font id='cmsy10' horiz-adv-x='0'>
+<font-face font-family='cmsy10' units-per-em='1000' ascent='775' descent='960'/>
+<glyph unicode='−' horiz-adv-x='777' vert-adv-y='777' glyph-name='minus' d='M659 230C676 230 694 230 694 250S676 270 659 270H118C101 270 83 270 83 250S101 230 118 230H659Z'/>
+<glyph unicode='' horiz-adv-x='388' vert-adv-y='388' glyph-name='angbracketright' d='M273 233C278 245 278 247 278 250S278 255 273 267L98 727C92 744 86 750 75 750S55 741 55 730C55 727 55 725 60 714L237 250L60-212C55-223 55-225 55-230C55-241 64-250 75-250C88-250 92-240 96-230L273 233Z'/>
+<glyph unicode='|' horiz-adv-x='277' vert-adv-y='277' glyph-name='bar' d='M159 714C159 732 159 750 139 750S119 732 119 714V-214C119-232 119-250 139-250S159-232 159-214V714Z'/>
+</font>
+<font id='cmmi10' horiz-adv-x='0'>
+<font-face font-family='cmmi10' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='U' horiz-adv-x='682' vert-adv-y='682' glyph-name='U' d='M635 578C645 619 663 649 743 652C748 652 760 653 760 672C760 673 760 683 747 683C714 683 679 680 645 680S574 683 541 683C535 683 523 683 523 663C523 652 533 652 541 652C598 651 609 630 609 608C609 605 607 590 606 587L516 230C482 96 367 9 267 9C199 9 145 53 145 139C145 141 145 173 156 217L253 606C262 642 264 652 337 652C363 652 371 652 371 672C371 683 360 683 357 683C329 683 257 680 229 680C200 680 129 683 100 683C92 683 81 683 81 663C81 652 90 652 109 652C111 652 130 652 147 650C165 648 174 647 174 634C174 628 163 586 157 563L135 475C126 436 78 247 74 228C67 200 67 185 67 170C67 48 158-22 263-22C389-22 513 91 546 223L635 578Z'/>
+<glyph unicode='x' horiz-adv-x='571' vert-adv-y='571' glyph-name='x' d='M334 302C340 328 363 420 433 420C438 420 462 420 483 407C455 402 435 377 435 353C435 337 446 318 473 318C495 318 527 336 527 376C527 428 468 442 434 442C376 442 341 389 329 366C304 432 250 442 221 442C117 442 60 313 60 288C60 278 70 278 72 278C80 278 83 280 85 289C119 395 185 420 219 420C238 420 273 411 273 353C273 322 256 255 219 115C203 53 168 11 124 11C118 11 95 11 74 24C99 29 121 50 121 78C121 105 99 113 84 113C54 113 29 87 29 55C29 9 79-11 123-11C189-11 225 59 228 65C240 28 276-11 336-11C439-11 496 118 496 143C496 153 487 153 484 153C475 153 473 149 471 142C438 35 370 11 338 11C299 11 283 43 283 77C283 99 289 121 300 165L334 302Z'/>
+</font>
+<font id='cmmi7' horiz-adv-x='0'>
+<font-face font-family='cmmi7' units-per-em='1000' ascent='750' descent='250'/>
+<glyph unicode='f' horiz-adv-x='557' vert-adv-y='557' glyph-name='f' d='M407 395H505C525 395 538 395 538 417C538 431 525 431 507 431H414C437 558 445 604 453 633C458 655 480 676 504 676C505 676 532 676 551 664C510 651 507 615 507 609C507 587 524 572 547 572C574 572 604 595 604 633C604 679 555 704 504 704C460 704 411 679 384 629C364 592 356 547 335 431H256C236 431 223 431 223 409C223 395 236 395 254 395H328C327 389 264 29 240-78C235-100 218-176 170-176C169-176 145-176 126-164C167-151 170-115 170-109C170-87 153-72 130-72C103-72 73-95 73-133C73-178 120-204 170-204C234-204 278-138 290-116C326-49 349 74 351 86L407 395Z'/>
+</font>
+</defs>
+<style type='text/css'>
+<![CDATA[text.f0 {font-family:cmsy10;font-size:9.96264px}
+text.f1 {font-family:cmmi10;font-size:9.96264px}
+text.f2 {font-family:cmmi7;font-size:6.973848px}
+text.f3 {font-family:cmr10;font-size:9.96264px}
+]]>
+</style>
+<g id='page1'>
+<path d='M-35.8984-59.8672H-50.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-35.8984-59.8672H-50.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-21.72656-59.8672H-35.8984' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M12.3867-59.8672H-1.78906' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M12.3867-59.8672H-1.78906' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M26.5586-59.8672H12.3867' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-35.8984-28.0625H-50.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-35.8984-28.0625H-50.0703' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-21.72656-28.0625H-35.8984' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M-21.72656-28.0625H-35.8984' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M12.3867-28.0625H-1.78906' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M12.3867-28.0625H-1.78906' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<path d='M26.5586-28.0625H12.3867' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10' stroke-linecap='round'/>
+<text class='f0' x='-11.75683' y='-43.964573' transform='matrix(1 0 0 1 -54.8685 -13.4103)'>|</text>
+<text class='f1' x='-8.989422' y='-43.964573' transform='matrix(1 0 0 1 -54.8685 -13.4103)'>x</text>
+<text class='f0' x='-3.29549' y='-43.964573' transform='matrix(1 0 0 1 -54.8685 -13.4103)'></text>
+<path d='M-21.72656-19.25H-1.78906V-68.6797H-21.72656Z' fill='#fff'/>
+<path d='M-21.72656-19.25H-1.78906V-68.6797H-21.72656Z' stroke='#000' fill='none' stroke-width='.79701' stroke-miterlimit='10'/>
+<text class='f1' x='-11.75683' y='-43.964573' transform='matrix(1 0 0 1 -5.9835 1.9787)'>U</text>
+<text class='f2' x='-4.954565' y='-42.470192' transform='matrix(1 0 0 1 -5.9835 1.9787)'>f</text>
+<text class='f0' x='-11.75683' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'>|</text>
+<text class='f1' x='-8.989422' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'>x</text>
+<text class='f0' x='-3.29549' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'></text>
+<text class='f3' x='3.899744' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'>or<tspan x='16.104008'>-</tspan></text>
+<text class='f0' x='19.424895' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'>|</text>
+<text class='f1' x='22.192303' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'>x</text>
+<text class='f0' x='27.886235' y='-43.964573' transform='matrix(1 0 0 1 42.5327 -13.4103)'></text>
+<text class='f0' x='-11.75683' y='-43.964573' transform='matrix(1 0 0 1 -56.9234 18.3916)'>|<tspan x='-8.989422'>−</tspan></text>
+<text class='f0' x='-11.75683' y='-43.964573' transform='matrix(1 0 0 1 42.5327 18.3916)'>|<tspan x='-8.989422'>−</tspan></text>
+</g>
+</svg>
\ No newline at end of file
diff --git a/content/latex/dft_3_qubits.tex b/content/latex/dft_3_qubits.tex
index e2dd6829db22caafab856f1bd81e2a412a4422e5..61abe157d73161b5b71e772754c9acaca6c9aaf7 100644
--- a/content/latex/dft_3_qubits.tex
+++ b/content/latex/dft_3_qubits.tex
@@ -4,7 +4,7 @@
 \begin{document}
 
 \begin{quantikz}
-    \lstick{$\ket{j_1}$} &\gate{H} &\gate{R_2} &\gate{R_3}\slice{1} &\qw &\qw\slice{\ket{2}} &\qw\slice{3} &\swap{2} & \rstick{$\psi_1$} \\
+    \lstick{$\ket{j_1}$} &\gate{H} &\gate{R_2} &\gate{R_3}\slice{1} &\qw &\qw\slice{2} &\qw\slice{3} &\swap{2} & \rstick{$\psi_1$} \\
     \lstick{$\ket{j_2}$} &\qw &\ctrl{-1} &\qw &\gate{H} &\gate{R_2} &\qw &\qw & \rstick{$\psi_2$} \\
     \lstick{$\ket{j_3}$} &\qw &\qw &\ctrl{-2} &\qw &\ctrl{-1} &\gate{H} &\targX{} & \rstick{$\psi_3$}
 \end{quantikz}
diff --git a/content/latex/flip_star.tex b/content/latex/flip_star.tex
new file mode 100644
index 0000000000000000000000000000000000000000..9136bfc537dfcd394ebeaacb6383caae0abe127b
--- /dev/null
+++ b/content/latex/flip_star.tex
@@ -0,0 +1,13 @@
+\documentclass{standalone}
+\usepackage{quantikz}
+
+\begin{document}
+
+\begin{quantikz}
+    \lstick[4]{$\ket{\psi}$} &\gate{H} &\qw &\gate[4]{FLIP_0} &\qw &\gate{H} & \\
+    &\gate{H} &\qw &\qw &\qw &\gate{H} & \\
+    \setwiretype{n} &\push{\vdots} & & & &\push{\vdots} \\
+    &\gate{H} &\qw &\qw &\qw &\gate{H} &
+\end{quantikz}
+
+\end{document}
\ No newline at end of file
diff --git a/content/latex/flip_zero.tex b/content/latex/flip_zero.tex
new file mode 100644
index 0000000000000000000000000000000000000000..5796d71d358ea0a396b5df5e14dcf3469244e615
--- /dev/null
+++ b/content/latex/flip_zero.tex
@@ -0,0 +1,13 @@
+\documentclass{standalone}
+\usepackage{quantikz}
+
+\begin{document}
+
+\begin{quantikz}
+    \lstick[4]{$\ket{x}$} &\qw &\gate{-Z} &\qw &\gate[4]{-I} & \\
+    &\qw &\ctrl[open]{-1} &\qw &\qw & \\
+    \setwiretype{n} &\push{\vdots} & &\push{\vdots} \\
+    &\qw &\ctrl[open]{-3} &\qw &\qw &
+\end{quantikz}
+
+\end{document}
\ No newline at end of file
diff --git a/content/latex/grover.tex b/content/latex/grover.tex
new file mode 100644
index 0000000000000000000000000000000000000000..8be355f8cd13209ddc0990c5a9c8d1386c5ae978
--- /dev/null
+++ b/content/latex/grover.tex
@@ -0,0 +1,10 @@
+\documentclass{standalone}
+\usepackage{quantikz}
+
+\begin{document}
+
+\begin{quantikz}
+     \lstick{$\ket{0^n}$} &\qwbundle{n} &\gate{H^{\otimes n}} \gategroup[steps=2]{repeat $t$ times} &\gate{V_f} &\gate{\operatorname{FLIP}_*} &\metercw{x_0}
+\end{quantikz}
+
+\end{document}
\ No newline at end of file
diff --git a/content/latex/grover_plot_1.tex b/content/latex/grover_plot_1.tex
new file mode 100644
index 0000000000000000000000000000000000000000..517ca9a990af7938d506c6d92a9ee5b83269cc72
--- /dev/null
+++ b/content/latex/grover_plot_1.tex
@@ -0,0 +1,20 @@
+\documentclass{standalone}
+\usepackage{tikz}
+\usepackage{amsmath}
+\usepackage{braket}
+
+\begin{document}
+
+\begin{tikzpicture}
+  % Axis
+  \draw[->] (0,0) -- (5,0) node[anchor=west] {bad};
+  \draw[->] (0,0) -- (0,5) node[anchor=south] {good};
+  
+  % Blue line
+  \draw[->, thick, blue] (0,0) -- (5,1) node[anchor=west] {\(\ket{*}\)};
+  % Angle blue line
+  \draw (2,0) arc[start angle=0, end angle=11, radius=2cm];
+  \node at (2.2,0.2) {\(\theta\)};
+\end{tikzpicture}
+
+\end{document}
\ No newline at end of file
diff --git a/content/latex/grover_plot_2.tex b/content/latex/grover_plot_2.tex
new file mode 100644
index 0000000000000000000000000000000000000000..ec4190807c1d4181614deeb4d2b7bb16eb617235
--- /dev/null
+++ b/content/latex/grover_plot_2.tex
@@ -0,0 +1,26 @@
+\documentclass{standalone}
+\usepackage{tikz}
+\usepackage{amsmath}
+\usepackage{braket}
+
+\begin{document}
+
+\begin{tikzpicture}
+  % Axis
+  \draw[->] (0,0) -- (5,0) node[anchor=west] {bad};
+  \draw[->] (0,0) -- (0,5) node[anchor=south] {good};
+  
+  % Blue line
+  \draw[->, thick, blue] (0,0) -- (5,1) node[anchor=west] {\(\ket{*}\)};
+  % Angle blue line
+  \draw (2,0) arc[start angle=0, end angle=11, radius=2cm];
+  \node at (2.2,0.2) {\(\theta\)};
+  
+  % Red line
+  \draw[->, thick, red] (0,0) -- (5,-1) node[anchor=west] {\(V_f \ket{*}\)};
+  % Angle red line
+  \draw (1.5,0) arc[start angle=0, end angle=-11, radius=1.5cm];
+  \node at (1.7,-0.15) {\(\theta\)};
+\end{tikzpicture}
+
+\end{document}
\ No newline at end of file
diff --git a/content/latex/grover_plot_3.tex b/content/latex/grover_plot_3.tex
new file mode 100644
index 0000000000000000000000000000000000000000..0125d5b481ba2f59bf1b2f8b7e735e79a0cd6426
--- /dev/null
+++ b/content/latex/grover_plot_3.tex
@@ -0,0 +1,32 @@
+\documentclass{standalone}
+\usepackage{tikz}
+\usepackage{amsmath}
+\usepackage{braket}
+
+\begin{document}
+
+\begin{tikzpicture}
+  % Axis
+  \draw[->] (0,0) -- (5,0) node[anchor=west] {bad};
+  \draw[->] (0,0) -- (0,5) node[anchor=south] {good};
+  
+  % Blue line
+  \draw[->, thick, blue] (0,0) -- (5,1) node[anchor=west] {\(\ket{*}\)};
+  % Angle blue line
+  \draw (2,0) arc[start angle=0, end angle=11, radius=2cm];
+  \node at (2.2,0.2) {\(\theta\)};
+  
+  % Red line
+  \draw[->, thick, red] (0,0) -- (5,-1) node[anchor=west] {\(V_f \ket{*}\)};
+  % Angle red line
+  \draw (1.5,0) arc[start angle=0, end angle=-11, radius=1.5cm];
+  \node at (1.7,-0.15) {\(\theta\)};
+
+  % Green line
+  \draw[->, thick, green!50!black] (0,0) -- (5,3) node[anchor=south west] {\(\operatorname{FLIP_* } V_f \ket{*}\)};
+  % Angle green line
+  \draw (2.5,0.5) arc[start angle=11.31, end angle=31, radius=2.5cm];
+  \node at (2.7,1) {\(2\theta\)};
+\end{tikzpicture}
+
+\end{document}
\ No newline at end of file
diff --git a/content/latex/vf.tex b/content/latex/vf.tex
new file mode 100644
index 0000000000000000000000000000000000000000..4e6816e61a59bec848cb6a696722bfaf2b79e228
--- /dev/null
+++ b/content/latex/vf.tex
@@ -0,0 +1,11 @@
+\documentclass{standalone}
+\usepackage{quantikz}
+
+\begin{document}
+
+\begin{quantikz}
+    \lstick{\ket{x}} &\qw &\gate[2]{U_f} &\qw & \rstick{\ket{x} or -\ket{x}} \\
+    \lstick{\ket{-}} &\qw &\qw &\qw & \rstick{\ket{-}}
+\end{quantikz}
+
+\end{document}
\ No newline at end of file
diff --git a/content/shorsAlgorithm.qmd b/content/shorsAlgorithm.qmd
index c4f504c96abb561beab44671bda8f8cf4234b681..356eb84ddc3ba1ab5f120072e2796181aaef6760 100644
--- a/content/shorsAlgorithm.qmd
+++ b/content/shorsAlgorithm.qmd
@@ -277,13 +277,10 @@ $$
 
 ![The DTF for three qubits](img/dft_3_qubits){width=100%}
 
-First we construct the $\psi_3$ element. Contrary to the intuition, we use the top wire containing $\ket{j_1}$ for this. We use a Hadamad-gate to bring $\ket{j_1}$ into the superposition $\frac{1}{\sqrt{2}}(\ket{0} + (-1)^{j_1} \ket{1}) = \frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1} \ket{1})$. This looks close to $\psi_3$ already, we now need to add the last two decimal places $j_2j_3$ to the state. For this we use $R_2$ and $R_3$. We apply $R_2$ controlled by the wire $j_2$ and $R_3$ controlled by the wire $j_3$. This means, that we only apply the $R$-gate, if the corresponding wire contains a $1$. You can see this written as a quantum circuit at the figure below. After applying $R_2$ we have the state $\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1j_2} \ket{1})$ and after applying $R_3$ we have the state $\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1j_2j_3} \ket{1})$ on the top wire. This is the same as $\psi_3$, so we are done on the first wire (We are at the first slice in the figure). 
-
-The next step is to construct the $\psi_2$ state on the middle wire. We again use a Hadamad-gate to bring $\ket{j_2}$ into the superposition $\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_2} \ket{1})$. We now need to include the last decimal point $j_3$, for which we use $R_2$ again, this time controlled by $j_3$. The resulting superposition is now $\frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_2j_3} \ket{1})$, which is $\psi_2$. (We are at the second slice in the figure).
-
-On the bottom wire, we can just do a Hadamad-gate to bring $\ket{j_3}$ into the superposition $\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_3} \ket{1})$. We then have $\psi_1$ on the bottom wire. (We are at the third slice in the figure).
-
-When applying this circuit, we get the state $\psi_3 \otimes \psi_2 \otimes \psi_1$ as a result. This very close to our desired state $\psi_1 \otimes \psi_2 \otimes \psi_3$, just the order of the wires is flipped. To solve this, we apply a $\operatorname{SWAP}$ onto all wires, which flips the order of the wires an delivers the correct output for $\operatorname{DFT}_{2^3}$. 
+1. First we construct the $\psi_3$ element. Contrary to the intuition, we use the top wire containing $\ket{j_1}$ for this. We use a Hadamad-gate to bring $\ket{j_1}$ into the superposition $\frac{1}{\sqrt{2}}(\ket{0} + (-1)^{j_1} \ket{1}) = \frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1} \ket{1})$. This looks close to $\psi_3$ already, we now need to add the last two decimal places $j_2j_3$ to the state. For this we use $R_2$ and $R_3$. We apply $R_2$ controlled by the wire $j_2$ and $R_3$ controlled by the wire $j_3$. This means, that we only apply the $R$-gate, if the corresponding wire contains a $1$. You can see this written as a quantum circuit at the figure below. After applying $R_2$ we have the state $\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1j_2} \ket{1})$ and after applying $R_3$ we have the state $\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_1j_2j_3} \ket{1})$ on the top wire. This is the same as $\psi_3$, so we are done on the first wire (We are at the first slice in the figure). 
+2. The next step is to construct the $\psi_2$ state on the middle wire. We again use a Hadamad-gate to bring $\ket{j_2}$ into the superposition $\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_2} \ket{1})$. We now need to include the last decimal point $j_3$, for which we use $R_2$ again, this time controlled by $j_3$. The resulting superposition is now $\frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_2j_3} \ket{1})$, which is $\psi_2$. (We are at the second slice in the figure).
+3. On the bottom wire, we can just do a Hadamad-gate to bring $\ket{j_3}$ into the superposition $\frac{1}{\sqrt{2}}(\ket{0} + e^{2 \pi i 0.j_3} \ket{1})$. We then have $\psi_1$ on the bottom wire. (We are at the third slice in the figure).
+4. When applying this circuit, we get the state $\psi_3 \otimes \psi_2 \otimes \psi_1$ as a result. This very close to our desired state $\psi_1 \otimes \psi_2 \otimes \psi_3$, just the order of the wires is flipped. To solve this, we apply a $\operatorname{SWAP}$ onto all wires, which flips the order of the wires an delivers the correct output for $\operatorname{DFT}_{2^3}$. 
 :::
 
 The more general approach to construct the $\operatorname{DFT}_N$ as a quantum circuit with $n$ qubits ($N = 2^n$) works as follows: