From 06a27c382752d0138983169ec4ae47b1673da7bc Mon Sep 17 00:00:00 2001
From: Jannik Hellenkamp <jannik.hellenkamp@rwth-aachen.de>
Date: Tue, 11 Jun 2024 19:34:46 +0200
Subject: [PATCH] v0.1.3 finalized

---
 _book/Introduction-to-Quantum-Computing.epub | Bin 114974 -> 119027 bytes
 _book/Introduction-to-Quantum-Computing.pdf  | Bin 139430 -> 161008 bytes
 _book/index.html                             |  13 +-
 _book/observingSystems.html                  |  21 +-
 _book/quantumSystems.html                    | 238 ++++++++++++-------
 _book/search.json                            |  54 ++++-
 _book/shorsAlgorithm.html                    | 106 +++++++--
 _book/sitemap.xml                            |  12 +-
 _quarto.yml                                  |   2 +-
 index.qmd                                    |   5 +
 observingSystems.qmd                         |  22 +-
 quantumSystems.qmd                           |  30 +--
 shorsAlgorithm.qmd                           | 122 ++++++++--
 13 files changed, 463 insertions(+), 162 deletions(-)

diff --git a/_book/Introduction-to-Quantum-Computing.epub b/_book/Introduction-to-Quantum-Computing.epub
index 63c60101141d13f5ba273a135b93c0b04de8eb91..0fd605026909d362cdb0844417fd8feb51f08571 100644
GIT binary patch
delta 51518
zcmbQ&#Qu39J8ytDGm8iV69)r>OwZ|wyynax%KaXQnykUNzh0*2bVUD?|9h;N85lTu
z7#IW?7#LgwLY?%J^Ycnl^Gfvc3(~eu^DUlZA<*{zpQzT;8BC0yeR(H4Z`(F$Z|>UK
zlSh|MoFzHcQOW6s@&7v2M&5HXSkkr3Gxk>PioW~nMxE7E)+&}*ZdGHMc0o6VnU9?0
zjB3h%mv1;Wzs&r0*QR>*s)jhrVlV6PYm#<S!Ao0gY;9Yc!YfyNX;cZ^qO|IiVb+o#
z_Z$=~Jd}$Vtqup6R%df0^=R?#v`CG3Gqq|(@Rf~nqKkhoTkuPU>$1lR=crKD7N4mu
zpXY4()Tq-inek=PYUbIj2X{-iY*UpuwQ^zZ63uk|gJHdTH4EklYAo1NfAFdbU-G5Y
zskd&_Pn`KVp|)V!x1EXy+h4ww(!IP)(B^4(#{R}ynKR)RZDs_|U@zGi$7a)~Y&LuC
z=bEiICxx$>m*1kf!2Nf;`+u$8usw;#mi6{H{WlAlwajIHXr$?}X%~d|?rFdIRbs;(
z`FpB?M*NFX1&-IX8GjSz(&F#c{l{0IQt*Ag_?{VYE<VhrSrh8h3ljf1FBRc`!7aji
zf;}p1-bGHUmenFfdlRzfKIFGo$eF!@Yl~%i#A+skRW~nQ(>bhqRp)AeMQm^R7Q^UA
z0m4k)AKvMQa^0W%!td3yALlkqy3cny`1j5^k{43vPAj{8^U&u++q}o2R^FG6zKZtG
z*k2zLzunhw>4}AAvM~}Gwc94mHL$w%z&J;Q`)@vH%!LDUw56Ba4r~g%Zu3N>VDt8_
z{%t=EmBclE{pi^=|KZDwIXNQF+M<J|FDY34Tv7bRtvTE)`We*f$}Y}2k)V=N`uEoS
zjlbtsyk@=l{daBZ?a%wTw?wm;FO{!x7ZcaJVc7M^y#B?#I$aA%M)mzW->I4&4@}=I
zn7-NmVUFFSoPX+bblv9Yu3LM)h-J?nu{~0Z>({ZacR%nt``~QB56`>`WcKp*EzUlu
zyxXkq{JObUns#a^>{|ci;mxV+!ufoAD_?j{`R1Z@&u5o%UBRmS*QeqfzO|*lU1|3r
z_2RYI*{6^048IY1rGDS`a~}>{TFxjf)Z#xDCtGZPQAOBfGv}<IEN7FN(kvY}&sq@a
ze<7!C?aSRi)n{FQy+?K5lYgHR?)RV9*VSgvm4C5K@>X_$VNcCN;~MYp-=?l8Ix@xN
zo$c>qQ|}(Melo4({ja-c|HCpN2PhLpc$nN|=44@DuoGoqsON#@x03v1y}aa#wGn40
zJu(y6cRskJ^4uY_HpXQM%gi>LhOShRHanfxuX$4}B6Qo6sZS(t1ji|_pROJ$nPb4y
z6KZ7s-y^<0es%QSOJ54-F8$!tvSiL#nf=c#9U_h-p9(X6{`!$*@7&|<vo*V~wFlOo
zmsYyZXgl@f%=*b1Q}6G7_xg3V{;`m}s+cu*<PWCQJfEf<YkR#^E{|au=fT3C3*?O#
z85qo&I8%7_hkXk+G7F}68JHGx9el_A_oba&)x(w+JE@*Mj8X|k4iy&roHxF&4ixB_
ze){4O#_u+1K1EYa0{(U@i-udweJon}h&8xZ^WITS$++plcA}B>9!F+M25%R$?ycOi
zKucA0f>QR^58A;^$6c3fads^H5tFd2i)UWNG;uHM`d4|!b0^MX2yTo2cc8L$Y5cP}
zMyw|DEWdJpnsfL4-G=*x9+!SKxBh*r@?9h&N|Q}<(ahk!($JG1=f_kp-R>7MO|Ito
zwJZ0QzTJNLpWCI5^dn6%Q!47`)gOATG<n};gFn-}&py*UnBy8$_h?OV&n=6)Zl+<A
z@2<Rm=8wdd-xu4{7$SCU&VO~Tai;a(dHnK~g3DM^yhJCI`mvnd@{sS}T913jq7y=x
z7BhdaKDTd0TE?nn{P%^{sCysyu=mvZjM?!nHgS%ZR=c@}DD`NSge)%aU%305#H;$l
zF&_llO_l~-<apwyHOcdI0+&y7X3DdFb&@_Vzm*o}9M^vybZOGsMJ{Cp^#Sf7!m_dp
zZ?{~%5fXm*eHQaZGyRN+J!g}(1Aj6~nJ&x~@%0g9RiC)T)5Yb~>NS&8s&Y-N4pq*}
zlQPnqu6W*3sj{!~>|bZjRjZet`|xK@OEBZ}detpm2c}BSedV4Okoqj*+U>6!Z!_04
zH_5!QZqIvZZ{S;he}fsj)&K8TM8f7atxPJ9e!tn;VfLI4%)!5Ef1FxzD2drCL2Y_W
z%8uko*NwVl4XoJS#hLtZtUkc=;Cz74#~`({g{Kn4oZU9)xcq$oJM>Ui#?4N?+pRo_
zeXWZuSohV7m*^~%{%Y<0if!ueyxY%;Jw+S!=X&(%c=p}$?Bh!p(puD{72TKY-S@bx
zFZoBW#*Zcb{j#@SbgJ(6wBFD8$BE@Kw~yp6>HiC??rYX~gvSI-O)0CXJ>Qpq|3S#B
z>JO?9AN{ZYKY4EEEctIWhuiLHM|){0FO;^gcxH97v*GB}db8)V-si?dI-H)%`Z@O3
zCa1%*R*HUmsK3a+_35{*M<zbH-Ro1R!S7?!rkeV3_Gw1#nTw2?zokuhl#$LBnzm+(
zlvu=C(*{?kZ>?<CKeFAre*Jp%w}nB+&9vS|a2ngXR_|pzvooZWze@Jst{9CHhb=(~
zRYl*boMRV$*{6Eycc+mh!&j@?nz$H8w<`^<QesC>f7fH|yT3jE_UY}Jl`DT1d=^G6
zJC62$ndv9Tz@Y3l*_KnhKJRhVq-X!DxJu(pcCEhYr}t=9X};JFuO%LyDq91jc-ZcI
zcfE7cjrp_G=c>;t&XwCQmszde)yR0NbIXa%HG=AXb0S(S{{3BFJL^o;_BDrWem~~^
zBl^pz*x0)K(3$^_PuHp6nGpZ)*I)nr|An_FmM_<}=YC}}^WJ*-&6!zYe?O|$uXz1P
znxicC`_|d@XT9ZHG`pC7zn-CA-n?(8Yw}(RNvqa!Yq3TJrZe5IPU{%1H@W*JZT)?}
z-{1B;^tx<1_kI1WvvvM=Z_T;c7#WuL_xSW>-_+F79|VV|Eqf;)Ut?bEz4_c}ePiqM
zS?05kiKRVz^6l^gt2M&kch9(*`p%@x)-$0#?78t)!_B)q({tvD`P!a*SpFgJL8(_L
z|9Affmy?CkKCUU5Y`^c$w$R4c*W%N@2KdBW$%}6;Gu74Ch<%^P^20>nU)61HyMz1Z
z{ru}6d_DZO&!jyo)BhXpJ(IRF@>gP6@bjbFCEqNoue_J>v~=$B^0%9B=JrpW-WPpu
z$}(ZItJ~{uhO=nDSNr?C_)Yuy+0kZss|<A2^8P*MTVybIbx_T0$2_a%eM$T-?-vSR
zU%mhADjUwZH}jX({x$z?r61p`<!oOe!zTWB4cBDPpK(1qV=uQW%ZdH?rl7v2>xj(0
zvwM!bt>5N${OcLD$_cOjr)O6l{PFm($x+F?by~S?liTiZuB(rI(;NTn?w0rS@7xe?
z;5QI{bH#p_@R`R=`O?<k^Y&`6)P}9FS7fMN`j1U$d-}znf4b()7kQ!msqI$%=}*7n
z;~)P2>APmW=5^ViY4=+$fBW<Edc?l%f#0XR^S`}U>rnj1{=V0;|Aenx4Y1QX#(c?}
z@lS$I-o0sOcbnwhSN~$Zw5NWr^OKFw?enYuKYLp{;p*)t^?~Je7q0bR+%GhL+Z?|e
z`zBrIHvX(IRp<Pj{d??W-p}Rz^DgI1T4my`MB7ZI#=oD_`JdcBaq;(-lh(K1%e|hS
z^~c9h&gxz73*)0dernCrf3!IGbNQs|wI$b$|Gu65w5sx_!nOx-2L8)7anH4?xc8wx
z!{AU3m+&2F?UQeRtb0B0d;Vtq_;;~Qna3w{<{Ld<R>FOK&3fy?|340Qs4M^Vcso7k
z6Z`4Pea+vwtL}Zdzh{Yc(0Pr05!bl4)+YAeH`2~u`^ojim*!>nvQJ#!&b*}h@;|PR
z6MJ9pocZ_i67$MPf5#`!*S=ia|MTBs&R=%3n;vA<SMeV@Qn~cW`JSww^Y;F=VYe5&
zVk|X((iQ)jSM_JNHT*YAe&4+Ku82|i=6dG!XV1Sqe5CDna)J3t^OL9ZH{TEFaf$i8
zR`)mK6XkpJUlz=m^>4`$-<f}2@3%<Ht=pZ;(0%5AcWRhk-@odL1hXjiwPJOC{`T3m
z@*k?}tCH5Q-*UeG((;$hl6Tj%<VE*vUFWD28@8f%^=0ezs_u54<<%W=Keq>G{CXl{
zQu}tv%-8FW=KlWD9Djf6@3MKz!o#)vA0H7tySHNh+#_L*TK(Z()fx}4HkT#6ZQf|j
z_RTSvvFAu~?Rt$`n;A7hS99hn?~-WQ+V|1$=KFB=B`3~S&Dyl)duRQEV<}lPpGlM*
zz4%>trS**IYHMcpimzy!5Hl%oI+vsVk;@5dl+$G2MOdp<v8XuSj4hsBeBQL?O+Jq}
zgF%j6)w<`q7<O2mly>fT&Y*L8>9ZDTA-QYQjrT2j!@6az_PPYEMN*QXM<=I8NIm79
z8p5%}Aiep7c#6Aj72Buc;%GU;`r@@BA2wKas}<&al#zVov@W<Rx-oZW!$so;>x__y
zU#mD}qUH5Mwg+r;o01-T>a|;B+b0bjGrr>|cq$J~{o0wS;C?!}_JgRD&uKN~sjVC4
zMdwX;)XseO=ZnDE?K>{a3;WO)FwOGlnvR2!Oa+&x*vx+J+oKtsYw^P8q|Vgf@)PxI
zS(Ea3Sd~^K&rB4be{kWYW5K(HEmww}Uh~9Tr1vu8jr<itSu1$i=B<fXzQ}EB^3Bp`
zcM4p3m@6!ec#QR5g{l1fo2eJX+95n!`9ZM7#^~wAw(B?VydfjxKaoH3Xo>fg)kfDR
z-AbI8#2tR;@@I|C3SHgkDVGixR%huQ@VIe8sJ>?sE4NP50!<@>4QC%sy48C)AW*&W
z^NO>#*z%=yEPI&VNFLs4Ilt3(X6DO8nO9}(I?oGd%(<oNvh>r&khy*rv>Vq~Jq$>^
z*R?=#{+Fr6DXnr|n~$FAiaHdp@6)&CTdI+!+=fegmaOw;nONa^J9>BR^}<zo{Ex4d
z%a&H&bF95qFYJ3oabo$0AN#Czcl#cFt8{asz;&<KP#+bg;$o3?4(rxDshq>$u41`u
zOTN=qGkNLqz(?FO6{c3c&|O%RIEANs#uhg-_2?yr`>iJ|J~6p+8hZ*e=Qhq;3msev
zHcS3|lhm#07P@Dmeh!C3VM1pT`;6R|WtqiC@+`0M_63)PG1MDPIle{v)(?qDu8swp
z_6H>Vmk|zJX1Zae+-KX+%HO`iQ!;b&j-LHf(iFa_#%A^(w%cpJO)ENdY@SU}HD~!`
zr*~m(p)=E`hzm72>Mng2rE%p@($wNtd@HZ5@`x-5mToHMS}pM6m~lj#!W^Mh$A8vb
z{`K2d-|P12Iovz~kNaMC*Jl*WK9@Riov10-t(a$=;TByliaj_j-F6pf{p-;EC>MWf
zR>>`49Y5KaeCF>@4i!G!yuf=?`IUz!k~S~6m-BnehbR{_Gn1qv9(U93W^EOnWjrH0
z^LUB4@6$I|Z`rQ+c=Ddh*N+EGxHL?c^KJgH;gqtW-PgmNVn#Wxb0ittY_1=vpU@aG
zdDgd&8o_$6mmXNs9nq?s(0^{aSI3vG$V0Eiq{OGPho@{?f2nrw-5f7(0n<xSTyqX3
zEao{cp2>NvyQTO0;@5AE8Omx08#PV7nfj$>{-r3vc}hCxmlp3hU+uU$yqH=4&)03N
zM?NQJr_bH$S-@`~S<Jloby@WiBQL+3OilHh-OS5pHO%?-^r=sgdTG17b~1a0%)58T
zcUhlI-xSht>E5@rTZh<7MZSI1kjRyhJLMR^V&9g$-lZ<zAJ*}$+dZN6+0u88HyRDM
zmom@eEZF2Jc|&mBeU<He?azc0#b5W%+Vp1spP#Yq-#7pG==$r!lmBuytCM%_NZ-r)
z??tx#htu_Zt!D$@r`P@Dd?|m)a{Z(0=OWn+n1Yumx_U}+l=x~WW?V2ey^%fZxx(pS
z5#?R`PCss&IYsiMqUH7Q)t6#A&z#F+G2@@xdcZM7%y{wQk6{ZB*=!e!{<KJ6Br*SK
z(yABf?5ws~Q=*KvsI;n9dww<h{IqO$scn+Z?Xpc@ay5>z)_bRhvcG*Dm0^@EFLFrZ
zO4>^6AAwz8e=R79u$R$W9xGjb??#1!+K<wj6OtVcD>(F&7vE;JD&#13I9ZrCck8Bf
zwx5z52W$FNs&`I&_PW$UNL)sPtxDc|nZkphbgkg!Q)CoWPhR1f-8cQH`Gj-v)2f9R
z1>WKm=Vd<Lw6L=M;PHByNemY9Pg87M%Z%<uScs?zIv(EB`>fCJ_7ca$t40b9o42L5
z%7|}jim0l-kZdH+<0O%!Y-XJn6!KMf`@4SGE#LTdTub7vw-$eX@ll4!%FT}t?9BZ*
zTeoPN*>k4lZ8|Y$Sf@%o>`-3Qlc{mg?bX#LS3L)3Z|TyL1yL1d59<2rpSP5!XgMwV
zq__DM?*zxm^8L4!H{S1>XRF@#kI!D;gyDhtr3b6#<ONo<JvjG)>AB2IX?EES2WBMt
zcfWe#J#C%d?AQ$vncuds_N}gZaxzk1Te^I^+sqg0t(heg#mcyMg%v-zaG|Krh|Mzo
zu*ep>dHvTW7zS>L410M?xNnp8W8Hd#6w%&^%GbA<c)Q&&+h(@ypqAYxTmQgYtszPi
zEiQ3S(AL;>TWI3u1T$&VWw%{sMDU)rYAqDBE5FjYvHNIV;+#tra;ufNH~F<Datdfo
z*3ox#F;9EPl-A`TyY0r=>(?yOljYp5rOock<|*)g>EWO;uknr0HM0d}1}9r4e!kdI
zzw(*Uk&jJsCeC(hMcuB>jag1x58OJMsAFL%y!h_L^II4%dM$Vswl+;zeUjWcafvRa
zNxLQd)UsYjSwuVV&f9ux!_E&AdXFwuzr6OWZ1wzW-=@o19nx~veD_ag-D&2kn@lwc
z%sv~xy^P&ze4@r?ZA!`^%ZuK#UG}n0wESBa&9tSSt!>r3P?yE;rTgVB_1%u(*w7co
zG4X>_-g1TW%Eyxg*b5{d?I_BbGIh$tsN3CTE<%f%WSO{*KToch^LQhh?)AJhliF9l
zg_Dj5ZQZ`<l!FGRrOoE0LQ@}~i~VxItoQS(p6ib%I+<U)@pPMsY(uKt>B=Ie7iRZb
zWhxq{PuT0`DP8|Kb&~GmUF&=%m|bC>Zno9@2=5W$iE>{wQe*gvT_YwYSr#08nc&(Y
zrx<-C_18JGqUm=gE)4el7rS|LF?+OwspXPmufD|!Twgl<qNyUI!<Cg=Yqnjk3=P^8
z<#x;B(YEDVrf6=jn{~0f?39sM(fS3NXJ>zE<ail4_j$EPj^&!=hwAI>I6B-epY6Pt
zBhY{2)1ir`=QO-?byMPh&Z$1JY|CMxFcu9t>7?y<x1LGeBF4A-j>oEd?KL5f9~Jmj
zmp)jU+WoybYHpH%&*$cVwG#`wt7pw{yVuH~&aPchw>iAk^uFo#Z*wPZu{}0@<CEY2
z<m>l5&XBjgasOqm?V&=M-@06L>m$>Gnf^Ae|Eh4=@&2D%k96nMd-(6J{;=iU!wQ!_
zColgBma>_#yH>1ETwCYdx<<3(4G%X@F#NoivHRzXBoE(^Tdd2sC;G{1w3>fTE?U7-
zoYnGYiP_7yB}UptnF{ywoaIDXd_(1RV&5z;kGU`W=jS9Vvx`9tQ@y@gtuv_Ddt1NW
z^Gd15B&O}r2mF5PK1gWF&<xtOjjK2R!ecwWa#QJBt8*HJb_j%P8b4dx@WMgC%e$H9
zXPVp`Rh`KB;?o_q#doa`6PH-*&Zwxozrg>8z~k=b;HpDMH7#S_FqkHK$XmVa@V985
zCB>yt#3=k`fvt3woSW)BRo|UuSF&u<+L&k5FA56j@4e}AD$X(IO^?NnCu_XU&RRc#
zd)_67I;)-~Qwq;z&0hA}N+Q{cZL+D|dcWX9*QV7a3wKnSIm}G@D7Q##`NH&?YYx{>
zPU(I(eYU8+x@MTvI=16w7dAA8EZ%jGx3Bmb&;GYlT&qt7hWbCUv^eJ7cSryCJB5qE
zVWoEQ+fwSik7*Yb&sp<t=QQ?d(|rCPS@blokY(jt)kPCbGnhZ!TcX_J@p;>3rx~k~
zH*lMTJ>i_1#V#lxwe~|+Rp|}O-x<X&ipg>b(u<=u`f1&;y`sKpivPy4XX#6y2x(h;
zUF<Dd*wUgJp?WoUYMl9NvrpST=Wa2uICf|C%1{N7b;(Ajrq;KH>RtcPr*e+{UrmC$
zycmneibl^#op+8XG29Z_f37ih_8W`WDqGHGMXwf_;2;qswRHcfena!6uDJ}QyM3!>
z#jrkGXehDP@x9C@u9(%fqARt$);FJK;&qbT)iL?GeG7M2wBeCQCck>8itc<qe@h;7
zfs=^Ca|7p~D@>YA&y$qvw=wd+_y2OOAxztag)@J>+1(o@mKx_@-sqF6-_2J&ZOe2y
z6`tEKW^|Nl`8Nvf%3Kk=bd&0{)`^==SQhBW<Sy8-)GVagQFuksos_AuITtu2pLzch
z2$St(Wn;U*wD{%e%>B&%Vo8C9Wz!Q?Z)n`JUcBl-n`=8u%M2G&hZQW0^Xgacob0Z(
zf%|Eg`pmr-o(HoZGdR_}SNHVP1L|pUX}jH$7OV=D@{Hk6k?&sa#`a5hu8isJSU=9)
zhD%=xJ#qPD=O0)z$4@%&{iA)}wgClZ=^MBTrtaBdBdgafa@T7Gr`66UPXC0~F&3}<
z`DRDv%&;Qay4GA4x$b3&Uy{0Ks9fJ&UtF))$a?omufHyrO@U_1+Apt8%-C~Rzse(m
zuT)FyY^q>>*O8rT{9ko#`FbZqcER-O=4VzK-#%yx#c^+)oP6q-`BROM<q?<8F-Y-m
zC{<P#Em;}ia!-S0+t${f0ZG5sB`$L)-^dU&z3rmti7t*kTS`OH$|~+UX~|BA=~TTk
zhp+zJV<v0w7Ymo`pQ}8te#Jv(dFr}G&z#)tF{e28#J`oX*t;cXgUW%;onIFpG+14f
zZ+yXz^;@TWbr^@<!OMJ)yLZL(i0)U);!W#NSuC+^^W(|OTYBp{g=^0oQ4>Gf+oaUB
zi}A{t%o{NYt|zn}873(okIcKifI(q7+X|UeQER)M>$mgh)at39<!W)e|Jq`Oedmm1
zljKEpw~X)q-o5|2{_S<&x5ckJ{D^rzkD{1og8k={;XU;(^=GE?$9wPoFy-ej>(K5M
z#U*wV)RyKSt$6Cbgd_UYrd#r-PkY+^cyaG&bl1ysv*YYT7e#ZW`Mo(@YuO=wa^H_q
z!DWp{C3c>Z`?dE$eb5`dGk<G$>QBh!J#%(%he^ciHOyB$rxqIP-M%I}d*YkxO-xGz
z(<GnmYMdHok>!^2fw_P7^0S^=bCk8DczdT!m_B)W_qu{Ja#;_TZu!o?&|CWNi7-C?
zc}wOh-(df^X5CapjoH0QYkMY7I6d!0=Uc~+KEF__hA<12I=}Y9o+Tmm*Isu|bJU&L
zv$1s=`^AjSPTS3coYOhZZn982a(iO=55~K>{j+ow84VYi#Y#QS$eR<IlzZ#yDTfWo
zOpX)hO}$&P>~CeCRg`?rgPq4-oZA)awAU~D?VXacwxbr-{O(5|v(3EqR5oGz3#Vqw
zm25lqM$FE7x4Vb&mSe)(8T0th?|5H-m2<mUS?X@(H!`_8J;(kwMRk4KBwMc5m0xlu
z`HrsV3e6`g3p=@jo2mjhud<(emQZ9T%4)Z#qhD~P?gy2!(#v|Mm!6-wce3%r%Gb=<
zj~UiE`DaSVuq^$u#pUK2yAP)sdt#;DUt~!A9-+tcBuPh7RxLL&h{w9~g=lm4>lYE3
z^<~9reeA*W^>=(aB(OADjQ!%$#tlJ+P36(2QuQCFCQmY`ZrafN=E1I+aufU9rWM=X
ziJZCg`^y)iM>fXIeSErM**ORG?s)~9&+z-n-F!B^X;bRmcwe*I#)W4uYR&4~KKGi(
zbIpw8Hl7P!nk}Zu*DV!Su4J-X60<$v#jl?Cd^QdBW<RwUrUd7lzRDMMY>9V!URo=+
z`lM;kV<)a#d_-u;*DmV|tdBfTYGxH|EV&xjdSdU9wf=s3uQ~l@pJV&b(iW=E-r9IQ
zXuEG=7W=~EV%BW)YGrJkQyb1*(Au%0v8UJgY|E3wD=sS>Vo+o4S(RcXrpR}g(b2zT
zzm~wuptE<s?5WSbc5~JGGYlC%*{Pa_2cxXxUmXnma#c9K>s{W`l~)b~#@3&(eKSS<
z_S2&_&yMsR&er7Y@HiWGqa&sGK(xg^{k$p_Gv6mFL9Z_A<mOntOWbIur5zr>;7$N1
zQ`?#uCELR;@kGZ(D86g6j4HBg`5E(E|GAhj(^P$y><g+_!%m;5zhM+yCj8^+%qWk8
zQ#Ms@+a$xvo&LfqO4P~V-J*4^;cphcoUWT4T6Lmd!+ZVa4wtuiFFDw9FG_PxEw{=o
z>s~w|(Nz4zsmvpr7w>krIw{;7GDYJ0X4whHS{7Hu{CHX@V|J@@-J{db7(C>TxG-!s
zE;!}=@Z*d19BB>y)`#a=+{&nTo?fZ7QRA3z-|GXd>8Dq@JH7u<dEfMB>;B96H@C6x
z{=9ud?&h7kQ~oH-FX0e(tADmzuHc{GU-9aS5Ao+7TF8CgyK3Xvr4BCBCaNA5FHe_z
zW;->xZ-Hokb?SM+!b6N-{Nj!FxOd+Z;cRs)eNweD>XgVi{g-+lj;nk-+4E8Gj75Fa
z1r5Ld+FH4O%aiA<zq5()7SHj({+%CA7Q~r5Gdw<WYr=_IU#+r~r8SxBrfqcg`PVG=
zh|NMqHal)t)hgK&Z@s4PHQv&(X=kT&XYE2iZtnG&dZ!vv-oNenHDOkI#Z|*3?GA&O
zEVm+`GrMMo-BU_SofR_6Amlo4-3dvKIz#J<dW&55gC8cE?)e}-VFAYzH733!{|^c#
z{?lxC^543=!R~Z+)5|ZKsy)2Udd{nrt$4P0#xYo=wYK`5mi03|U*1(+v{z%&%ac!6
z7Pp?-<NGH4wyga8Zw^<r#XDYJmy-Kf>)Bmg!8tuy`|~_CtKe<C(tCs-zVcgIx@7h0
zS<6!^8Tsq~l%zGQ&MRg+_`OH(!$yU5y{fM3%2Qt@JvwHRsU)^{gJa61dGSrErdeUa
z)^Cok%;>sfIeA0u(W4R*uV^ia&q|v5zT~e$#hL?h;<tN@rio=)?_ApHJ}WYQe^23x
z6FoaUrgCv^D?8?9w8_VK+AMa9Y)L!$gw~4@$^kmXm607A>P6PO%w%xd^l?vGclqRn
z66P!gmLH}ytk;#Dv~*dC|F?@b-Y?(!VCI^{r<%FG3@ep=SA5n86PT?0L3RIvot1mn
zhM$sI#B%buQbFtF6Bll}XYN~CdQI+)YKH>v0Tz~Ar@RFUPR)H2{64Gf5z)|16S#3q
z$If}@M&<*jtBfU{&Pgt>*II5Mt<G_==bLk5^oB&WSswQ`+DN~#?%UJDXL4V!p}UwR
zuwQ!d-lWeTcJ8pY{Pl0c#W0C#p`+h(?(MbxS^c>5{85<~jQ=Zpzgthe`TeWg_N^LD
zFZ`S4`LgMlzRrI5W2@ZLTi?H4nvpv9zRI(Lrwa{?&40eT+qbXoMp|L&-~0FL<$r(u
z_V`)dgJi>3-IF9&?9gAaEA=n?0;Bi$^pp1fo8kE)-8}K_va7MjRSt1JP(Jf5@0`nj
z!C(3AJ6A{kVmNVjj{kuhd13a~_U&uh`T94<k+R883iBq0KMcKhf8Ex<X|mhi#m8~|
z+o!?V*!3@cf&H|?y>5+lr>@UEwr8c<^?&b=)@wfzf4WcpLEFmzIcfEu0}gXI{{M4%
zXZ-r<HtURQw%4&#vVG9v`5};Pb?$rioV^>T_;)>bSN*@y>to=T@3GspetA49eZQo9
zzGD3BuupbhZ{M4rcqgPcbl1H%C)I2o-MxA}F82aUq<>Vdy+O69oB8&ve+!%JXU=}^
z^y_BWect`O_3!0)u3f%nv%E(3qu?Rgbot~zQ-1GW{K@dd+X><l{D=4N%naNgc=CV9
zn?F@e;?v&C-dgVUIlWi^lwSPdy&G4)7ddNxwmO>o-RhK+;g4mvn;l+K)%)*{*#+st
z|J_BO-2GpZf9ZDC{gkEAPd#79byw}3e&=t1_P?xkbGHW{Dv;j0zdp6(89(dO>(aVE
zx5oUq*=Dz?Jp8`x|AX)D$t`+mB6_)T*ZuqMO5wYNQ_3&b&kik{sebbGPRAD(dEYix
z*>H2#vA<up_-|eGuIjz_zP;76_;AXT=Q_gy-SyM28Evk;7agBJzxCYR!{6^S|9JRR
z&*<l;+VX6-qW24@?3%@K@P7UI$@MdBcTRYfm?UK9=W|H9BFpf-{*1e<>WnN0<KO2!
zsI}kKId}QH_X~a+%RFJ8bN|hOGd1QX|LWhr*?v6Q$AEKrd}Y!9FG5BC#8f^Vxb^<3
z$W5DqlJeZA%Zl>XKf0UZn-!bN;cqnGt#-cc{uSRlk1mi8_;>cC^y{d{^IN|5-WJc3
ztY0>HgZ;@1*WIV>h@Np%H0>M9XO*ebWfJ8JudqIw!V+%&?CjHbOpi)J)`<(O7qLGs
z`su*c!lqfRSI^A3>wH#j!M|Uhc@N)DD*C4_{q4l@ZD({Zb4}i`%DFm>_o^w+?<3~~
z<u`n|owEIo5%1>c3$r!dRv*&tv?^Kczv+9<?|I2*<LVRkZf}3$zDJawdtLkLzblvL
zd^OYlsgrE)l~)vTzVY7Uu3sIiJI|e+x><U&#-xXv_nf(Z?<nVqvel>lp0PW0!9C}0
zQSsWh=J{RERr20>*8KFl-#<fSXGM4C_9;JYx3=BiGV#Uw7he~<$mMa=$1Q$nuKU{d
z>wP)CKO*hd=3jmEb8@|y{ib5;zqX={_qQD3*D<*%5<2a$Z|tnd(&-25qVk{nSMA>4
zJacc$&z%<=@0(n^vHlI;uLFmVt-7;m@2a!jOAU?Fr|n9+I_3Jl)6&&H#FF!G<@^bk
zI4sA1Nra&_&FHkeWX;J-=OZdF8wu|}#P#pMsjqpzO?Q{3|MKtHm)U(XUa{V5&$VDP
zowsUh?l1qjtaoW$tJ+V8V$-EdU+*!qH=6e$`kHWCU8~$zhyKFTIYKW)7R#M6oa5(c
zu~^t%|FD(E{l)!zQq>ZFOixmI(a30f;`IOD`~UlY?Rw+?Xy5jp$IR^eefdu4sry$x
zemZ$kT>jSoylzR8o=?8LmwgUrdBf(r*7eUGiB8X#yy&jyUCzb3{@oGdw^sV^*V){U
zao%)i=BMLts(RmCUSlU^@>Z_&TSwJjVZrhho2##s|ExXz$nI11*HgjoLj5{d&##}g
z(OrHE_Z@fXG`pOyUw0orZ}ffI(b|+eBfhWA^8ZA4+Dbiq%VJQ?R587K`<d6u;=x=d
zt#;QN>i_SW*;xI!Vm|N1<t4vPUb9_zMs13u`kQ<GGRtb-9$%w7ljrM{s$*AU-+g=Y
zRWEzaj~##a{B^3Z$}Ydp?VtU(Zoconn8&%RzVGkSWZh@~Sl{SK_Vcazr&#m%ues-U
zKD_R|!9n&5+b`7b_SKJHI@@1U_4kaReNMY$f6tc_<BtozrE;6+`?vhPf9z2wsW;r4
z(4!&Ez%bu}fkBF4dc$5una!2zBGQaJllz=xK}*jzuXFNX12cYl1PbxV^qh`3?sa+X
zG+73Q`?k|3_Am-h&W`4)f7y52YZ_>Nd#iNszR)#3dXHZ1x_&oCHE4;7-Xss+XYAi=
z1;Z!yvb{28n^C#5YSO|fGs|xI>2KvRa9En?-DC0GTHSAs?xlnA{~ymv@4mNw_70u8
zYIb|4_hNMqr^Usz?B8oGaftcnJA1o7@2=NBEL)TK_NVKWXE*=U{Ej%Y#<l+Q?cFPK
zSASQq;5qzwLygXB0niNhdh=Q3{x0wTt}3=$+_P6}$7Lk}mxk1<d!kdm`7VpMk@;eM
z`}cKb^O^hJ*8aGg^fCM0_HT!J-|YH$`~JPsTm$W$4EDaFW$*rf)BD1`f7|U%b=wP0
zFZ$X&bK55F^(FBgw|AWV!=K0E_~CKv?fUqG%NO2Gx!iaD{sI5^%{x5Ax6c3j?Va5<
zmwos5MQ=$qJ)QkGn|s&UJrh=ZYrcQa*3Qn*?16gJkB@!~b(21*er~^iHn@M?+|<<T
zdjGQPB6Ny&^F4mFP<Qor?i=U-f2q2ld3)QL`Nzb&fA<7mn-_0?Wt({U+22Q%o38r%
z{QoQU`)U2>hwF|x3qQZQ=4`#KW5~Ah&kf(XPn;LOp!`kgi=@@(=5K!&X>Ps|{b%*t
zd;fIgrhgR=DV1@PKl$L*u8c=H-?p63c$fW4@91f!`)Z#aEj#t*<6or{e_r=rd-1dJ
zZmNFR-~Tzf^ELl{JbmU-FTeT!t&eZcogcbi_nYFH(~0-K&%bk{{yal`LfVbWx=-md
z`nmV<^ZmPA70B@`a`8V0hA$p}d6nKheDU{BSDZW7mySITzrF9?^!F+EpZohezbZek
za?(20UU6^U{r{y}_UcR0J<nhK_NMED^1r<WwTJ$*l%DRAmwn9ovY5GMs*c>fZD-9>
z@61pCV!pPg*7?Nong92l|9AFw{qLmJ+mHUAy6^MU?RD~hC;oVO=H=19;@^JhoZS<#
zRD=7!e>~gq?Mck_UA;#at;sRZOZQjVQ2+a8!yjqWU)yp%d44lL{Hxf!?x}>n@OjTK
zQ<MKxh^`m^xOc@*>!Y<VOSaFb`+x6a^QJn(=r1`l{8tur>@};h{a~1Q<mesEAN+n{
z^}AkPzOwn<d-3=8Y^Sr__I)mLPxPMi+wgsN@0C6J`8r%={-iJNnf0N5|IQV~y?^kz
zDUScIecYwVE5e2Bqpzjs{f;!N(_Xu0>#6fm%h%g{z3D7>KX1ak;NRjM@>h2pJ^Ls=
zZNKL0YkIflpI`P}>hr_bB3}{>%lDl9BXe}-_twe#z3Nwe-TvwA`RotO&U+_)44(GO
z(f9B19PS_OtiSKbNEV;Iqw|m9UR(V0_DJ6Uub<^@%MZKuUi^PolFFmq`MEd474BdD
zJC*<VPT6yQcdp*l|Nrjh+Q0wo7{XkCs2|U(k@=fklTvnzAvY}1^SpiZUxAP91^<rS
zlY2Q~>Dr&oGyg1VdsnagEbO|%#C6hFj$Zva^ZF*?`A?5AE;4^Ow{@BB`b95qtDL>_
zFY@m3=kkBPt+DC<Y_fN!=T8^)yo`67pIZyxcG+ojS4DO~Pk8^Vqr2QMTe!Xp1WjrO
z|6QPQy=2SJHJLZJxs(`oMaw=8{#12CX5y+Xw`Zo_l{0emJ$Yy2TTQuD!SxbpmkPG%
z$KEm8tq|m^xI1OCUT9NX=e3MH;WTOKHM51nL6h3|i*|pW`uc~-otbtF2{($k{v7zu
zSdf0wI@n`6gU;!#&yHFP$!(u*yl>$h(Jk>>`x3Ml&6?qRcyfBgtS7QlO+k~|lQqJh
zIILaABQovVKD)$kVJjaLmW$;+x>EmG)o9t&JI}uCWBgskx;UNT`-LS%Uwp+Y*V)Cb
zNL>2n>=K=}IoHqb>U-)L@z$nqqU5DRQ`a6XnXr87O1m~L-e;xZ6Ha;E(37=4_3`mU
zIj1j6bdzIVtmVxSIJIlZ3|_;kY=(EcW~HCr<ZYO`zSn*3%9&e}c#mI-RQz@>L}8KT
zRo414PDz<nu{P!G6DLP))yvxFcF{z>@o?X&g?+aY7d%~JHML~b>{I);KRG6xBzN$1
zXX1?1tKXDP%CA}K5vt(##?QgyVavv~)2nWZd2h5%YgCf&Zj-#0aY1CC^4G^&$HVqj
zEST;&?L$=Dca5dTFW-Bmcfe)G2`QgVqTFj1tys-vP*nf+)ui2Xj|ZGoXgs|{{}<nT
zYaMGpCYc$JcUsTyWRA@EStxb;9>cZMCg;}F@doa!SrwWu@Wt)H?9~N18xou^1bDQa
zvMhYWu=HluV-;J$yl^vjt9Gl|vivtP9ItINZSvT&NLJ>t0neOOyB}}iul0|e&-)@O
zrc+OHf{F#(pVAH2>JP7b*yHj|<w$u^yr^-f#vh?p=?SZ)D`%!1;5_MPD|;(oweIqB
z@mGI%sd=PIvS+V|n`wGj$!zV!xlg-H#Q5Bcgeo`boa%U^aB!=mxmX9wyE5VUm>9$3
zE85IYPvvG5=35i^hGVns-Sx432G@dbKeTu%CaU0^>h*h3w}0p229A2Ic5PO^^O_Sy
zqS$Z0T4@vDTX3T^aPIbRad&iex$m9$^fKqO^_d$oGDi<B)2>{^C-g3Ts!fj1@{Q*;
z^ix=xt-MZu4OnyZ>ar&x%$eI(c~}-)pVgFp)R%|nvgDd%fpeUu51jVBK76=QeCglR
zldftVh0EW%n(Vy$VDpI!-BPS?_3BUethRCGv0Tz-vpK$!xBk$zAENQ6XQjw;h%N7{
z+t9rJ$*IqvDea<yOAn7EcCWbmc73JjmyVow8Ap63Zqsi&o2FlqzTwKJMoGO{r*_U>
zTOSg9`mXBRmnTZNG)k{ESXSJb(m5mQ`o%@9Ot%Hn-5M4i*lw7ja&^s8XB*8ar^|Hf
z4Ss5cK4h_2aC)nda`@484|Dl_SF1HhZ?Z7?x$y4$vaQM;QZLuA`Xz4gY@5D%58LI?
zW6Ro4e(%XVwfxw$Gbc8+H^s>nMXgTKK6om~>UjGnt&F#6nU6wu-2L8AVfXHCQbC!d
z9D`Z%`-HOF@BKp@Pg+Jh7F>L}Z6RkzX>9yCmGt_RY;{>a%oi-~*!#RqIGMgFtl`$(
z__ur7`(LTZT=F#dZDMzA@xCDE%-gfGJNF%HSKT3-Bo=k8iXqYc*uCwt6>0}8)kPmT
z{79UBmz(cwdeg*Lb7yUSv;Y6U*{tu~|2|GX-tPbP{nAZU+xpqhML&?wep~)(lY64K
z$&bL;e=T49BkSjwznp#)GNo<k?kUw#;=4jI<BF-NRYueU#cXX)!C3QCTawe#-Ml>X
zzMfsS&0HyY$J_(cHf|TP=+FsD`($!&Wyp-@+mig_zD!k;nG<wI^zWO62@bwN{>S>3
zY<LnH)O@#S@BR0G8)m%PH{ZBczB}`1kgKsn`!>;Chb&#D)*EoHjeRXwHz{bZtrl~c
zY`^&F7nc=h>|!|5vcb1sm06Hu>VeWEKDQ;p$9J$y5qiGORiC{qWL~3$&UBBm3D%iA
z?;aB_JlL4EgnwlUH<KRkHY0zpn}R``oOCx>?vdHoT=H*|-3@`>OL2Q%Nmz*b=vwqC
zKAXsLpjAWtv1QVUlIQgg0_Lc)@P5{ds<L`JNv+lNbqB+_Tk}M{Vl=dpWMvLCXgV2m
zC3g7UcogE{S^ReA+pi`Lw;yz5+iv6f?p-)@jbGaIYBqMg*!KHxCvM(s9d2PN_AyIy
z#T6EHnTH}i?wop;^1^hA7_Fjit;}w_{Ae?0{PYS>7WHL{Dyw9;mfvNpXEnM0af`iR
z`(BA1-j772epD`HWY|C1E&gdqyOjY$d0V)}^OJW>UNtZ;<H=qtr9DL^Hn!Yt%dL!e
zdsyeKXIt_#_j+&l@9NFxO1u-TVwbQcyKc|ol(CM|3p}PWJ$gpdw&kBsN^+}pmc3TH
z&vwZ3Tk0P6V~Z9V7CrhkFYP4D?dA37&Y4E4x_o=S(|h*>FC`)MD%K)VSN>|Hk6~x>
zmM<%r&$)S3;oWBjdWW7jZj#s@C8>S+)aBGwT{<VKc-vAP)|}b4$A$Cm&87S|ER}d~
zoQlYsn|X4XO;65SyZPHB9$dfF*$}XY;il=Dw+?SJCQB+$pFA_@ZmQ2^QQNF#HK(4)
zdDkD~y4sS~`gQf=kisHGwPTt(TLdp=EqH3S_nDBGXa93<9#zhhu|Desw&rTjkzK%g
zJ}P@xOpVU6S4FCy_nw}+PI0ZQUib@^)jUgov={GL+y5e!|HDLXgR5psdXE{LEZSsd
zWb`=V%PrN539cgdzHV607{#0%sxP(ZGJmW?|IY(&>t$GOs7be+s90E1JmLAoVAC$;
z9esr{mZhiMv^>`C@5*xmO=v4~9iJXt6ZL2%+uH4QiDlPqX8cy^RK1n(_{zip;i8(f
zY}J+OhvQ=#Yv)b#otw8@xb@wfOpVw~zJ}77r&7}xOXf=%vd29zeUcY=>1f5wl-FBw
zrKOknem(ItwqCj?ll`O1BKPnqM*7E>D&=@=l-qg2%8GNL`U$y@GhaWLwbWlK<&9}^
z?e#m4Y!2{UIK#TKxb3jO(p*`Q5^oQN2|QWa^Y7N&yfS6YwN5kN9nu=Msi$jah<{l%
z-(OPu=c)ykXK#O+*zwXcb{f0K8_PFdN3TECP>}L17u$PVk#Xbm`c~oWd4bbzS)W+Q
zY570m%yB;V8v+X|UU4Mne>sy{6ehR(p69B%-k(d39{o5c{_4c(*KF%#uO9PqG|=yN
z+U&Z_RxTrH9*a2B9PTv-TJJiFZu@iL?q_S|O!l7j!J0gW@7MiyTlhEP;J<TO(gO3I
z@67j<c(ZE;|AqT2w=$+wznHzhep?0i^ZA=DN$F3$W<Sr*!y^1vfgM}_wnB|ZFCQJb
zdei*kI}yVgLF2MYgT#$<YIrg`-F83tVyCxKdFh9;%2R#43Fn&wW^6UvJ70OT;$}Xs
zyLQhU9dDSvy?F8H>pwlO*_-U+i_WW7aV;oXd3PBvTYm51SuVBxDw+lR+3)<>#cosY
zBOvQ~YP;XkkFr%(OEzBIv~jnln?|#C;bi0Bo7^3IE{nF9ot*K0+QrC2o8DHIN^Y%M
z+MQL}XjmmAV8p3?|Il%fc-g&H0(x<0A3kDOA?e&UVX3m>!``estpz7seNr6Q&8{)^
zoNDr(SNwO$){0X-?gs8lm&~==?LDQrX~zx8kM#v7Z(o_U`Hq6P&GN=eR(?xD3ht%N
ze}3C+R*)6zX5D=`YknTMc0KXAP)Dtq<IJRw+AeF?d_2{%rZaEzPo1iW_hx(MJdMcx
zB{gSP;BmL0?pMDIs_sP^AFc}s+Z(!Q)x4$N1zy)>DkI|C7rUHazUuSOP3qM~cPH$=
zJm>5AwKki!q|~>IbzeL7iY4f`x07P@1=c6czUmwkr~iF$#Ng_(2LhREP6%sV?N_q<
z7A3mn%d?D%_LOob#bU`s>&-Ve#Odt_e=+N1kmdJVt`S!z`RCkGaW6mBDr7V*VQNfy
zXw~i9-zqoszn?tyMB?{?XMU{#JNiy)gopd>y?2Psb58%CpC|kj>vcFLTwvO)YP{3i
zm7zqlE}F@0zT})_&f4uaw`;Mc2((>Elg&F7eCq7+MRrYW$<w2YR~}$8VV$fiF()~!
zG5V{Q>Z-0ww_j{>S{%`)_bBFP|HrOJW;`1=E!$AswTj2dTe^%vT}7~@k6XoEc7jrc
zo@uZ+$A{If?|m~iJGxBZ;H%Fv_qiL;^l6gc-6h=LZ~r(o>77+WOX2)EMjOvQ-5Kaq
zE}Lqq6`kxjM`QIQ=H;g@yKzNlCmYW)Y1CRCdvV8AKHmw2JD2qr8c&EwNn+47n6+=-
zcWbT`MN!eqJ9?xKx_(@3zLG1?s>H{k!`DQ)#Y;fo$1MBsC0x4$>XJ{sX|;>4XP$9L
zgFh}dGLOY>^XXj%R-KKr;$Es0T2Hzjvc*br$GewrmhAjjWw&AWXT#X0JuY@rEW7-R
zw+ODC7}svYz?xsqHk%{-r1$yDA9tO)xVPojf^aW8k#!HnHe8Q7;kSF<OV#_2&2RWU
z*qEZWIK29Z+RoMcdBTMvF2>$&y|U_%@_eWI8*cf2J!f}czbYzpEqQi#XnEw)-CCdZ
zqP_1<SQj^IFMG_>)t<%7Q`mmo;mmKnrfrxieyd1mb+P_SF@|3E8`~yNWZPw;qx4>c
z>GtkJMQaT2zL>G|V(i+6JIfPGm^Udgt&f$RD#@H*?XgsO(&~*pQI{@OMkS_m+Qz-?
zF1Pz2X<9G1ymDrAf?2fvn(IbP@@8%9&!^Apy~a|pZR6_{qch9wcJQREIH1UV`9SAE
z(+o+8_^n^FvVQPh%rbCJVLfWlJUgmUsQj1e*)J;vb_a=+b9HIF;tSwjpX}Wzs<_;1
zd5f=2{@(jdObrpT7b>P~z8Q8rQP%QT(79c_9KMML1sAT?3mKk&v&`r3%Ts@1-v7I|
z>&>r&w@Y{Su6}<dg`?1e>35*-zQjMq*OJ%O{oJ~R|GfJB3jteOtkj<?X9oX@^D$3!
z>e{e)&FsS~_eFd%bm6zV7ksARUTo=V!M{-(ydMe3zY5&r@lG{owMD<oF`d$H6}B99
zN2LlS<z6|rzKKrAly|9La=0pAdSTo;pWT^vzyG`9`=nG`BVe9LUuM2_#LL#nY0K2?
zKkdkUtF!Wx--?VflPG6L&p5qZhYZ<Qv|qoZXmiXiH%@)q$BGM+c>D|cA4T5PN)9Qv
zcD*%YTEMABiH^U4A%1be)eT{lDs|_MXL>D(xpuod%)xf1@5<(D?ib&5*L#(h2f2%b
z=d+jm?)?5k(Da+S@3aXWGXkcsJDa(w{GM8I+26Eer5l>f3taSHCHB26h+H(Uthek#
zP;yEB?ez;+`(^*V^o{3oqK)!_z>iy;pB3I@xFZ*vX`sH9p<Ez3TGx5Lp`&@1O!Ll9
zA0_#l%^q)C7Wkd*;k1nB2_|x3^;e=wuK!KBp|S7s#)gmIRTe%ASg_1g>kRvq#a=5E
z3%0q>=3c47^)R%`%OkfnedYSwd9mxA&+V&H6`ucHaf50912w)WeFq%_POUXPCH8h=
ze1F2L%RfYW1HLs(J>;=&*{q9+m!_&7E!o_1&tS(6U%%dGW$DjKwtRiswOXGiu)3_Y
zUZhs4Lt0e1V*m1*Z$`0YW}KVFT4YoCufP4%!eg>2?$ySJB7JpdmoHHAd;4rooSVsa
zH>>Da&ixvPPH>&rw<lzZ_Ungf=WaIkX3x8Jp=6i*7C)==zS72G4PoAfYi1sMaCFHs
zt{*ds4|^@VZJZ}l$?*1+FN;Rlt5dy<YlAN>Pu^c&@M!9EkJp<6pWap}X35<Bu&<<*
zB`8f*R`1%rs!+vG3Wd?9wNq^mXWqWe*mz;%tEVdrK7>hqv-Fb`sCu<ASY*d?LxWH@
z37@r%tHm^KY`Ku*VdrPXtHhHKd|-*!w&wzmEaU{QELuOCYogxSOXttKZPzuseyp$I
zT$x$lB%w9QE%lc~=Nt*x`XlN~Z||}oWq01|$&v|SGv8hp{~aR4*1kPROt3R5X9K6^
zG=~kJ4h7taop@!Np!bq1lVf+^ka<_Q)mBqFK7Qey8yrk+IWz9u(5h@)tG{Lf-(#V*
zI|U9o<#Am1ZtrYV6IrDDVsh4c(Uey=EO&Pw`sK5BNrv4f)^(fa)w8gtzc9NQ;$$Lu
z^1@;1Z#QDE+rBobI^(b5o!{N!ayRiUr`p>K)|^v$=Wc7i>Z!3|T6fCPSsxxfk)Pnm
zbwop4^%#E){}RK8OXh_o*3LRMw=8bek6qSGK@5hR2PD+|SS@Yl9^yUNvmtfHyEPa6
zq}!DOIzvt0dd0Bo*+iR%tMJwL*~jmGw(CRrHQnpH3H3k4wq=*+#)#dw_OEK;Uu?fB
zR^Q@(&)06-eOL6~SIqKz>Uj0WyC6lS(<dfLb{&gs`|0p>hVY9emmMt&TxJzA<i5ym
z<IgahVZHE1j^CZotZPQCpR=nv4rzKjZ%S}tG4|&(>HK`Z?UeOttEEqmt+!sFUtb`@
zJA-?E@AF)9Hv_*M-%gt?OCG8DoxA=mZEn?(82b#xw+)X^7Ejx{{`swmck)XtEu2>`
ziMX|6=1%cbQI-|n#h#2Q?FS5QC+E$7c=kZYUWG#iYiHin+<ZGRuCo6|Z*Fkqv4Fz{
zZHDPeKaR>hxOmIINm41gLUf&iqu_~HCYhu4+6S927)8gQbiNY(_?u2XXWE75%86OC
zie#;s4HFi4e_}ddD6R9Y>RrZG8+(m?PuV?{E*GB+p3W7@vfD)G8{7OS_60k&#5;E8
znc6&DZ>p>J&@{$>?-}-4FU~H{z42r(OE~Y;YZDjdM$Mb{RMh5E@fo-5Jx_d^_8aXw
zu)Jx9>GgV%ou;qu96vHQ_p*x?TVeYNmA!jhva>GD(ffL%`}zfu%!<t$YmXk6n0Q6%
z$*yZhmYJ0N)nHk3U|!hoCZp?oud0?V?o^+3^Io0g<G{|jMV(rqLT@CV`5ARP8DEcL
zsEC%dlTU2D7-1YFQ(YU`xnWA4%S?u(P25d+{rts?W|XlM)LVY)Ysi<CowRh_H{I_k
za(thoJ~&<5aO+gHw8JeI;af(YqDP)_)SO+Pk$3am?cPl-8jf5WS?)YgG2(mY8TBr6
zZmD}YuaXD5fuQ5<3G$j97ZwUHxopF^p4H1+lBLYBT|XdCis8eiyS-_9pF}u66-j&U
zY8Z7PQKvxLOwUDHlf8ag`r^X}CQd)uJngq=!ACy@se<65fEYQuaQ}&m<@>C2n>S9=
zsMCIK`+V~L?eY9IXPV<a#K(XBckJw&=fB;)@78dVIoB3<hEr$z?Qh>sZ?bRrzVo<u
z`t{tO6K+2CZ9k>==Z$m0@_n^C%1VR(_TOJtyQkj9M!0TI&##+PC0A7K3#cy*|Es-V
zm(0G}&adB+(+eYPj;x(;?k~KVGri$`;x~Vr&42nY)LWmrJa_4PhM%q9g$>rlZ;^k$
zua5Dv$#+|U>*qK1?+Lwm#Jqa{{@C~1Z}0g2|I5yY^Yv8~14{o2zPNsU$3B<Fx)s+a
zAK&v*ZTnCDtKui-$A16Imp7+<y~TQd{qlMV#TWPMPW-N@c7JqC@Yh@S3E>R!TNv*j
zoptzUWpB6nv`>?t{k(N@|GuR^E`B*5TrU1s<I(AxH{aK})nr@W+`jaFdVR~s3nhMU
z*}MHMA1dFw{P$Kg-z>%3H&@>kPt8C1;^Dhz_e($czkIfJV%?Uj{!hODd#9RMdu!J9
zN%<o8ohvTYzxgd;f90QM$Ugoe^`AVCTmS5xAO2R_{HJ|v*}qAO9k26Q-!7m1Y(1O(
z?y{e%ccf?k>h=CS|Hr*=P0yn@JrVyh@BXdAYc-w!e&sGOKk?sPc<SN*f5a}|&bu$V
z_5PH|_xJU_vdz!_el_-^e#PBQ^Z9wczx%s($>y4!0d>`jm+pxbudmy>Q2uK5uKRoc
zXuZGJoYA)|i*LpAzkfBJsFk<L$gO)X-WxqV@|$J8NcFt<n)|kKTUquu`M;m{w`%{c
z>gwrl{{|NqRPVc5zklD}1=oJOt7T7qzrDP9{?62Q`=fUh8)np1Pye}h{=x2b8oTa%
z%)Y;S|3$X_KKteDZ8x5CdN_00ulfX+y2tu&EGOMQF~9kIZhm0x?roRv{ObSxBL3f>
z{YMwA^<G~cv`|+(%l!F6z4#5OcC$0y1^oN;{Qu{P)}PYN%a5^!KPwcBx2iAHc%>J0
z<E@jm<ZIU4-4}Bf?AWo`Ja*ps(z3WTJ8=h=+8BxW%%aQdS3i3^>-|}q;^m@l+js9O
zuP?LzK0A8hHtu}G-3jHB-|GLmA)l61{Y+PE`|ADrv+h?cnpw8u@y#tqyBiMuKEtr}
z{W<nam9b|ZuTLo5K1D+3*`Hk*t2XUT{8buztv)7Xru}@Wblo(DlX_hiv1`)rf9$?;
zZngDYXFK=fj}OhNy!-R#zg<&r?-Mwmw(H})sy+Qj%<E0xOFsU#?&0IL_wMielWx1^
zVsq{GyNjRe*Hwze{@z@@^PlkXT19=C;-I|6>5lb3KmVU)zGe35)49*S_jf;k>QZK(
z|3B&8l4p4fjb_}<u<JZO_077g$3<`XT3zp+?i+mS(&=}yS<~ycT$rq1ySKRba&hyA
zc@y6M(b=7_rd@ZpgM9tMqcP2Y7JdA`Lt@d5-gjX|c{hxIJ_`T+v-kMz*K^NS3zTI4
zzvp;1Zq9Vq;`+0nB^NNx{kX8;prmlkcg0z<|H3c)`>^KT>mP;b>>PjB@Ywe&JUPwb
zbgxU{TWe*X;uG!%&&y-w7r6f@{K;^*U*KQG=a=W7E{H$ncz;rH&7r6}8^!AP*D(G5
zt0OV@=C0ejH%0zQ{FZm0`S~f+-xqUIUJ1rBeBOWK(ezr&YM0RI>+YNQ%RSSTs6SWz
z{eQ#!?X!e?TBWb&iElT4)l<q|(`oXm@Mq=+y{F%ja!R?kMJ}8!a-rw!TFttn_58gz
zFTVbD)a0nU+pC#8d$RfMq~BYoxyViXd@5#ReTU@4qx$m?>@#^hXLVlG{qpTQTOV|v
zI<dXyL-=~ux`vPSSE3%=RQ-^@)^-2ah5Npj`qlsOdAig8--q2lAO8DU#d!Zm)oPFL
zO{MkzzyC9#%o1;2SMgdAJOw;wmZv&+3b<->^W-xs3=H{c;3?pG0~5W9jFQ}(x3xDn
zJ$9RRWB0zM;^oJcc}w)ggt%9)e#hd#pt3{wjzd|gd%}J3B-I6BEr%br*KLje^Q!(M
z`w#hN-g6jE?$!?t%3M>pTgydg=bYkCPi`6q{`#@r{eJe-syR0jKfL7H>$oneYC+p9
z*%|ZKUDN(IYuB&qx8K|SW45k;y|%1)UFy<(?DJl)7n>oaGJo9~lU}<61%V>wuD{iK
zd?ntN?f$S)uDDd{i(|jh(~BO_-92eKZ3-$fZYM)ePtKlGRj@bC?6RFr&WgfUo63I2
zuKs%QdhpJrQAKlJyj;Fo$CP2B?vH)i6Kelnp1P8~N@sau&DEg83Rjs8%qB7GhScjf
z2U~yr5`EQa!Z}~(x9&f#gp{jgR{mqX|NqOI1Gz_ceSf(s(_1Ije|=P@BxB9WI-f*S
zM(&MCcYl<W78lQ&ao~IM#o1{LHT@4?KDqtg;d-xDb=-`lYv&(uUj6j+#!U9>nG&@b
z3wQlL-rnmqW7)#`to*IB<Wzf1ZTI!1o;^2-zkaPWPrv`<x;l>EpK9+;D4ctvj%CHq
zmn=$?wnj18Z4tPeuW0^*^`+#N<<c+P!-T4~UHj!8x%U6Iyjve92X4%bDnEST#SO0<
zevey=4bRTHCsP>t;B>Qzb*IhFKNpN_{{FZpWqNml@%uwp@867)6Ri8r>~rzd>!`X^
z>5k7czf^6!UY{l-mT-T6L9#sKo(9GQ$NHtr2Ibs&Qrv&H+~aGi(G0%t*l?$$p0UeK
zcB_8;MQ2~fyba<<{y7UQyKmq4|8Vz)d&294mniJncJSMu52Y&ec`r#`j=X(tQO7-j
z{FSdc|Jkm%rFD<<80)2EHXCEH>-wLch02^YZuqA({bTrqJ753Q-}&<I(c8TrUZsAC
z*R(#r<ZJE=^C#lberM0k|L}U^%$)_Q9L#_F{ii-Qy{q82>ta^x#5K1xC%6dxU#=f|
zBHrWT>m4hF--TcOwNb)epvU|8%?>+(p6}rw3k35s&#rg*9`Yh<?!OO?7kdr%Z8&RX
z{On$c*tTg={L=4u+GHC%9QTLS?+GaNk4?X2zh&LJb9#<pu?dGZJM8ZJ>M{LtmHIjR
z`Mo>LFO}cecS>#l#yRcQ6>%31FS}pisUE^_U>9{wd1Gx#Z@iJV{@PE0FTVH$ofj(l
zT+~ov_SRqF-o(JyzOUsQ?z9wYvA>)iefik&J9g%d+jRv#sy(>5$@XpM1bc&3AG7Pf
zeLJmL(H_WOP$Rhf-p7^q)1n{LXMR0*@FG{s8PC`84|e@rSj&*|;(W99fq4BM`z`-A
zHV4mGw{J`8`G!5NznLYs)!t-rnsfBt_y227uKcqwvtjXpKZ}*rtuFq&c+bFiqk~(m
z@sfk{Ul!#SW()s$b+v!X&Bf&px>tTtaGNETxl5#8u(5A)pO?-7WA&=&bDzVrTjXY*
z6`6G}Q_%PNT$AAXFSE-&w6B=2{=BSjnY-z<--U-d(&TN;Cs%bo?O!c*S?c4Cqi%P;
zUg_O(E9#Y7jDv;ij?-ULib}j^ex9^tdfSbl4R1<1i}gxl`pqIlPHE0C^0+Ryzd$p7
z;?q-li`HgV9j;GOmN&9aO>5gaq2m36(9?-W^pz9Cy@K0k-da8H)g*VGWe+ymrKbN@
zo?W=ka&igBp^s&$FWS~Qf5<VP=eg&0+l7x7Vy4w@3!i@3pzapCwg1d*;knb*4;`8~
zsb%rE7aOF`?}}?u6i(Bhm^fc+*I(u484GRtx9_l->ylx4o7-sT+4@ca?YkLsetofN
z{Jf*T?3=*C(m5WHeMa8F)1NMk{-R!dlC$~H^Jzgcw;y-CKW{Qk()dc>44-nJwv40~
zdfvrOhwJ9BURiS9|8`g2&m(Eh;%VvH+j5)Emn)aJ`mrTWmz=oNtl@%A_s%$pG(EeS
z-A~g_9yyb+N!x7UrQ=U#nmC@QPmyN-aWI8LC5$s(m!)im-Xn!)kNl2*_0F(;eaz$9
z+=n0h3a7`aN3VDnas5`#&ZA3sYi=0vT<*IRvtY;9b-E?WGZfOJPrMO&k|ni$dZN^p
z)||(ZlRv6?%t*RmILRTrt@7sgkNfo2yxjKKa?Xq6mCJW;S^ZPb+Cg+>67!9Zzie03
z=SN109GIr%&K`f(WZ7#G=N)gKIL;HSY^$E#<<7hEPWo@#oy(Xm-VaHgwSIx)?X7!b
z?HqRftB}^;(iE>|GhODVZ<Dn0BsZT^bKb}vHM1(wm(uj}n{|2LnV?fv-x?k`Dqs9?
z$>i7uMRURHr?O&2-XyJ@cJ<Dctw$5~JM|r$cxFyLQ*lr4LD}xR3udUkIVG9x>=Ry7
zt61S|bm1`HtOGf7dTy^{&o#`SeR)~WlBC_IzSQ}AIj&-wdHWbc=kK61Ukql7t;|`@
zWs)Z*y-LVJi^r+^ltA3n#H-Id+0Uklipzu?JieP#y|q@fQHx2c<OA=m(=TflY<iLv
zuvF5q<f=l`v3idemv$`>n!4C0VU4lbZ{aI<b}td`kkr!O_Hfs1iPw>7N9(lCw?<ZP
zcXogLu}r_%xW+U}d$Met?8@A7Ta^-hDRE^_&nLC*k8LNt)R;WwtYGw(#epaE!Xk`f
zIbvDQ26bL9D@$^A-P)ck?N(cqxIu0D(`Qv@IS>C_cs5F?XY=j)myQ!|L@xZkK}r0G
zo{{wyTeC}QO(&BK7kO63d+*S-Q|LRApu<<5y~(}Ae3zkfe@Oi0i?;h^`g-3Al}?FE
zSi1S=#r_@{X>Vhx$uT--o0CjteZDEj=ej?kt9eJl)r%qbb?(fyD!%l#?WEcVgWIAz
zoNjo&;CS~g;$4Q_0rw~K9@YmQxsWQOy|Q)sCAEhvlMk01Fs{2FyMS-YyDjX(($;=Y
zB<4Qzxa!YivaqT2(fZ3jbHudwC<L8qNLS~H>%CZZzdv#N`>%IOmu9bC^=Y+>oYyr!
zJ*HiIzhxS3D(91HJG^%<U;myNeYb=JXI`%4<NSR#hL<b#nIM~r@h6_QzMp??tCuc0
zUZ?MLK_U8-_Qd05#}6j@Z`^&f>xSATE}=-L`0&h)((hMRFdcpMN8`8UuE>x-x7Jo@
zmcR9l(fiF^Y;kt!!3lP^UYptIzLC4sH=V61U!rne+J|{9jlNtDny#EZlP$w{w(`%Z
z*fj3_*MC2kk1MTsf3&~<QhW9P@{em~tr2dk|0MLmI{tTC{Iy*byOZ}kpZ;F)Z>-hx
ziNCK{>MPDUqJH?&`v8*^T~|A|2}PQEYqn}gNtxZS)Y}%b&dEHv!5~@Dh;RDhK%IV;
zw54e^`dhZzomUEZU^G>&$ZLy(WtrBKD~UJff5=u9`E#;peQCntXx`#eVQrJ;N@etV
zBC8GNpRX@%Uh~L?eVW~NR`XY-%}X4vWu8iJ+_X(;-=kp5xU3^(FZ3>-U2>rR>9Y;d
zPxBH(W->nBGjrGM3636XUN6|FEUKODnfFFuRtt+Y@28E5(GTS|J>1Y+`MS_7$A5X5
zs~m@h*2}HdQ!3|4h<#!y;oHk=^s&jcf%$9D4xY%O_JdJw^)L9=-u&C+7#k<l>znyV
z%GGJj&BWs^{cDevEEDK>YpK#(l%;-U+7>U*SR2U*l`Z1WZS7QkC@8TXlQNrephZ{O
zwaQQb2Ai|G<+C?mcIZx6xl!?m%=_7&w_Pav6|MPst0?#O(AL>!H|{mM?e4Oj=S|)0
z_!8|aiJqznoAlNvy<Aa$|1e*G8-IE?<KeDvaZdfYN-Dj&lP4U`i(v7xYGz{jQD}aD
z((9cGD{_mn*LBp!w<zS9>3n6~9kMH%E$Ms4{DiHB(Nn!W8e^Ajf30p^yh2C3IVbh2
z`y#Gw4wuE*wq9P=?4tT*r%3hbyDcZDF`Zrit7I3)LSMK3!+gqtZ#8eZ)-SvLH%ycH
z*v7QxBlD&Hl&$ISl+kK#IkvLvZ1FC4%O7__(^g%XJ>y0V|Dr9-riCm;-rp0=UR^pm
zr(}zr@oe1~tM3&Kt7Mnkd2zhh_u`#|>8tg>E}bjC{m$vdL0jE}h5Vb;8>X|LUTAE2
zMe*kGHr9LbTbFxXeYaDl%lGM>^~)@l)E_^r+gZ}V@Qyd2kgZ#K=BF8j5uSPG)>GEq
zUhW+zmA|*J&pP#r;Lj!f&;R<0ZhY)e5EgAL;O*11aEk2HMPBbTcHNN=I8vzbO(C;U
z!7sROy@Tc+@nFx?x4r?c?aEKjhn7{FWER$1C`FeXEK&bemGA%9_qjp4g?H<WjI2wm
zQ|eU%6SqqD8ZxB2^M|ZT{&Ld6dfjtFm+lRFBiJ}+>RzAeIKA%RIT4;&R?0nJEbKyR
zXFT4J8^Wb(vw<^d(^<8}i4L7V0|R8cMAUv9dnM$ud(-yZL!uK8hVU<W^Fms|PwLx=
zD-xO;j~;(=<KFj2ox<VTd+S@C?UPp9XuWpZ-E%%G>$?JEnOG%S-dTJp6PUYOdv+`T
z3x>euvR+4b8eZ+bYvP+SW15)swevxXON?8T=PoUMQ?m5%GTVplQv{~3*?L=pZ)eE{
z%VoyLou)d?jSAd0jp4uEs)PF+L^T-sG=sZJ6L)6ju#|Z5DW1?2ds(sm*ISi$ec~IH
z!$cQKP2Qv3UwpZq|3w|&rk;O4EMERFQSUcj;v3#ww!^Ju&e8tZ-#7FseU`k;aX+6n
z!||MD-R;TW=Ejw;OL%=G<*P5lCB9bqi5oVYJ#n>Ws&Tv5%j~@eb9O|?<(~88TzKdA
zao3Z)?3RT(;wR6wCfeWma8hLTvld0JeaSK&5*88jOgDdRnqTC4?M8ihn#Q_9y|VUY
znRUOubS>WdIbr{$+fqxGWxn#3;Iia%VEWs(-c%s+^`3}r6`bepFI^rRYqNIW%{)Wl
ziYVbF2bb=NVlOKVc$2Z-du~p)VN8N?(T-^Wifc+_yidB=2z<H2w|n-xmdS_LZuhK^
zG*MbM{nQtkj5Mc8$)r^~&mOd~ulK&xyGf+)!OVzto_X~jOsAgN9dKQKS+M!Ri!ZZm
z7g+6b3yiI>YY+Kv(QYzFe9FlS^R*_PNS*uk*4FUM^I`6eofR1>JvGa?isho6rWwe1
zOgWpHn{9t&@5_Dl8b^2R7ZJP2c=To0agF0WUt|M!xzsN{%2t0NX_^36#zVs?oo}Yq
z&+yE8dT6@Zh67POTb-`iMw@(Cmo8H?|E#v5YRs}b2kO#aED2RhKbK;AFr=nG^GJa7
z(M6Z!64?(eUs$kx<%+}uS&MhR_YYoOlqvpgnTz$!#unZFvp%YZmHG!C=k;4C-Tk-D
z#wgAIm5=R&?se>&1<k+J*i0)CEDhCu9eH@m=9qf1rOV#Bo;=g-X@9?U?$Jxdw+o)~
zMP%7ph|N~y-L&fOKZE5(r(^>+>u&h<yCmk@i-kGws^(T)y?^NL&x0?Mf+JdwWzQ@#
zxWxb2Y2(GbSBF|vzp?bilza|SI2F^=Ges^p?AEQBxz-(5wtbj6rKf7v`PJ@EUi7vr
zc5G!f?r68N462viZ#-LO*PiRj)xz~F^<HF}os~_#H_y7ZGxf>WL*YtmymdYnw)ZNl
z%K2Orb$w@kr|$A<pDE7;?OGYs_ZB|m5?E8VGm~R&QT|aaYrFGqpGz*b+OQl?(lm2_
zcrDd2YD%=n##ukDA7~XUethVhh}pNY{HA5y$=4%wtiD{a`eHq;-qwwe>BArC-S<=7
zd2ZehO<Tqim@&h8;|xcg_Yo)V@fqx2d?0pGa_q@a#b%3lFLt){xXoage5`7sXlPi=
zhaJAVS52Pzd1dXJz*h$xeiXgSu~qzfTp{4qnN9EXBEKZv*)Z4BKINg-r6ZfV`HvWB
zs?K`jvu(3N;Nr;R2Ty%#xOc;|-tpnI7H5<59j6&@<e!%Kyv|@^SbNct)v}LPgm!Z(
zYHsmWn&G3SdP!1g!oqH=4<3SbFJ7I@yJLOfcP!)XjP~aKR~2(U%u#PI+;FOmXVR0&
zIT}9RuU>HN&f$@LzGb^;Xf1<K8RwFh&Mw8rUSD`GAbP>fD0b)ZL*@x_v)?{Eq9j&-
zMe%t?wZPB0KQ|~Jj<UESSlqB|f{no0IMdTJYgT06;h6tX=3PT#Nqyf*k?JeA)9N|g
zOQxlzZI>6EcJFA_Nu!%aM$6@XySK<sS*h=GbK(1QO8(Y9<=uiy^_(@YFL?Yz<6=(Z
z4mL)mhnn-V6zyit{B&cZxWcp$<_<NTnpwRYS?VoSY;$a8Pxuk@^mb~Gez+tv)7?7x
zPo+|CdmhYdSjb#@Q_@&l>Fh+-+`yck>bqvSZ&%yxlP@!K|Fz)l^*Ptqp3seWCc>0+
zy8B>4&%)Oiy`29#-`mWlvS<3oWL3j68gZ+6HbpsPpD*D(+Q$ANueCT(>ig;z>4_^l
zjFyO(NG=PgzdP4(<L0LazfKEPNLi?GMol(n(+tOMhtpMx_k{&ii?o+N&$yLf*ILPO
zJ2hZY>C}rRw?vq|BexxoGi#c7%7jbI@*PXe<V~ldYc{6a{oWn_dV1*Hikte&%f7Vv
zyBV}9ef(Zi#QXUDMfuGim+Guttnk@1ocrR-cXR)?P1=2W=Yzg_pLU^uR3ndTw|{Jq
z&OdW5O8t{w@SF7GPxS=9%$V+6l)L_MkOj}x=9zBW@-=%z^r~k+o^^fq-l?*)URTH_
zeiq3(oy~aqL(J?b*|YOQHfK$EUNtrJO5rJgf%}{yp7YXPs65}k=!sX%Nx@Hf+oauY
zZBzD;yxS?Lyo9g)X-n!gkG^`ow(R2M*IP=~RCOLZxci~k<Ey<J;(gSYil%QqS)lUv
zM?nrp+l2g<lVRRTyh6&oO5f@tL(g51*T38>p<wwmbls&+^QI~67lY>V8e1KB5!Zj9
zvOKO(D!eT0^I8kJB(ccS5UXjcyyj&p`_Fv3cw)=LXnw~zsRH5-%g>hGxOil7y{YqU
zrOj8C{baDz%QVbCeakCIA~#h)HqrX9!|w{#m6gl&7rilPy|Hz|sqPC`Bss%$y(10X
z&)pMVHnHkWNYv4vT_K14mOU^@bi3QQfbUb5YI(;^A#;gZzlq%PhGKbl9y&Jdik!eL
zeCzbmGqYlk8(rMDyHsPNf5p0eQ?6Rb%~(@kbH(Y{z4N{qTDcD<=K2`5H9TCnU%I5q
zao0mO)i<w93g1M`y(h*0bJDAD!_6+5r8aXsRz1I<+$ON>oSER&obx&6pEli1f6VNB
zY?e$e%iOj%DUFlo%q#zTZ=uzh6t1^#1!|11bu4|8zp?2U+uNmkgP2k)zi2BfZGV~Z
zUhY)i`l<C>uG>$l5}0xA+=5RZ1WK=dyd=XoJNHD(icU`7-JhM#v{egiF-&FX{CL65
zH8V8BOjWO9(U+Tx>=$0P-FT}YK%LuN%;e_IR~C_q%+oJrM)Qm8UT=B$V4djC;N!tR
z9+n)*d%<DccJJIt4#jKY$61}$w!bM^-uif{`-M$r%{+Fmb?f<Nb2j_6AHAc#OMA)Y
zvme){uDE?^f*4PTM^clUrpT8&4pSz6To!f7;Fv>^_$o2y$Y76!I_44S?(*(}W;QCh
zcki#?lxbk4wuv=$lTnbG-p$~!XCFAin|9tP+_+%9+oMI%o9;f^!O2@AUiJB)<Gr>g
zU8<KBrcXSlB=JyGY>VRJ`t>uH8CWN+(@C~oxckPbja|&8+ZVqqGrBbWFJH8pO@FfT
zv3Otgx(0qe+k3jF%GA?*S<G)9lG!49tW9Y0_GKIVbc+lZ#JGN|Ha^|+{qDaDOq#P7
z`mu?w7vPy|wYX#Zs;R+GUaZ)Dvafm1aux5{tF3ISq%1<*b=jo!FLK#RmmRBLt*R^j
zS6BXlW_GXo?k<jPzofL=+7f;qnsAXfv^jImeZ6h9#`nUW`rO$renjE6gEMoYOh=@r
z%k>Wzv$Fd<mbsK`d$Nk0J+g_ThxKOvsz?u=h0NExCo88(&({AQdqDq>*Z!re*j8<i
zZ(4gQGOPVy^v@-3uQHz7-Y;$Z{QbrLs`}a8|1X){&XQgyo}_Q>GUGz>G3S#aVZRMe
zNperSd8jLTt$Oyf5?irF;inl7OKwSM@HjDTl5Vw(T65v_2W%yYGp9bE6>?yPgkG-b
z5}^b2p4ZQp?OrS0_r;?5Q-gvPTk(TEMfPXCxK&TAG+A;@(=<@_=<}pXlLAwrAN;e*
zjWagaU!796M!&Yu`K<ftjT_y6`CXXCc`}&)Zfv|_(5zCX6VcMzns<MEl9LtfnedsZ
z>)4_vxwe+N2Tm3H_@(T8UG1}7!|QUIYLCSU)~I*SMD=Ih5P3Vhwq^c@D`y(b4o!TL
zu;eXo-<4aZ%Ac0l&zt14kwtT%w&&v;VO*OIBu;%)(UDs3wqxznH)+$0Vhk^q?|NvF
zEVW~gYxO1Go|)NfpGBX)yB1J1M@Hb8g(zpc^|37%+}JZ>o+h6YVC7A@z2ZnF-^K{t
z7ph@PJWpMGTqv(=xnT3P29C(iCw*roJ&%c-;nl2X8hdnKAGdMjGS6^>H$2k8CBGAR
zcTHW9vhJF72It+SVf9i8+w3kDx-B@uV$J8G$Qge6X`6XfP5$lq?6H{(N<wr)ToS#F
zFYl6ATq=7rb?#9EsYR!}X7Mgn5Lnun;c%;@=bibB7QyOCrh!imF4SM(T&~jNd19H-
z;S<kX7<pVxl@}gv3$937r8DuPLHF0WyQW^t-XNwV(Ot3UbFt*1AonNrmoF5m&p0#b
zNW<&PIo5NRFZPsv`N>(h{DGijV(P-Y_P3UM->h6})nKU8EYZCr)n&Vy#QajN6whK2
zs|ULmolaQMr5$r2aWzvD|K&){qq*C*M{N*JTNYWSzQA{O`fponffOB`s+jXp;yR@(
zOqSTbcV^G!F6Y@+bWM1w^Y@FM#r4x(pY@S>xOc9?p0v;BzCF2q>~&jT_6gR1hqLdk
zzjMa!zIoQWMIW|tO59~)J2U<A7QJbIx$k_rD`RBocR1T$FI!5<^1|Ne#gei0D~m!V
z|9kv8Ie*sr*PjpUKE0xU-5G_8Kb=CIe;GRzM(nBU-1<+sdYfd-?UnD;m-8KPVtAlC
z<7a&)-+_AeU(=l}??zTJPms%qXK=gP{N>%d*TM$N_ib-jvFrKWv%QCoto!+Q;l6wN
z%gfgN|7iI5{Pal%Dpvd0zx*^^w>)4%`AaL$Gu=r+-|xHmE7<RP_nR%|wz>Qno4ELQ
z21+OF_ga5nR_DHGUgE2lvJ==D=Cv^9A7Xk{6PNtDb!mN#V)Z=kpP!?<%GcPJn<`bc
zKg!gfuv_18{;96-R^OI=x0Sf=x$MZUi@UaSmVfa3o}Det;;_tN)m83|TMc*R9r@$S
zxZm8If998aVe{L}Ki)l>a5w*~^O>(5+ZE<$R7)S*ePw>g(_DqK6Wk5-4%@$|o3gK9
z^8bIEK40c+lij~;%lCTov+^c(yUKow+~J=6>(tVpzbo~<5B{8{^EGA9vgMoJs`@Xq
zuaSPy`mo+>&4wSJvnR)i{nqLDs`901@4hS9Hp|}KjQyxyeAR%R(^+`${*;ni)4891
zmDWwHjs0=3?cT)lUH9+SrIkyoGTjnkY_)p-UUrg{K0{=Ty!{p-Q$E}GAM0aIUo)|-
zh_;byVUd4$d3U<}?A5!!?#_|-JLvc~=6AjAy7&O^lC3u#qkosMS_mweSwDA*=iB~u
zQCbCDCzoscpD*RljZ1gVw^uuGJ-*6MzbIyYV+{Mu^;Z&ZH*gue+P2lgF=wtK)2sjn
z)m?XQt-R``E8AkxxmK;z<I<$)KpCz2O-a>dlWx7L<P%_KzM=m1c-X?`rDD4JJh2H|
zE(v^LFuUm`d;G*&<F~q|Ul@xUn_0cLlzd3MJ~6cNvQQJ-LdG9bVqfP>wq@D2c4-r<
z>aKfVPB*@3O}lB7^x*aDHtq*XJ&n^Cx0F6k_L{wJc7FlOwQCM*_n*Jx|M>WxU0J{K
zo}aI0tZ8wqzPz)d<I^3U<%ORs8Kd7nQvR@TndyeD)i(~zV9@kr?4NZ(c!T{_Kj(Mf
zRHp|2y;SE^$S?S&>I2V`we}3ozXdZ+Z3%b0BYgB#LU4_>g|38)Uguw#xb^cw^KW!B
z-&>GBvu%~C`GSMfj(^*zs{U1NWz{E!KUNI$H1*<Ti|QYKoVoo&s($>HiEYLGp)A=U
zEWeFJcRJ43JXvYX&=TdI)_9Mr*X_<91JCI1(@&Q8e}8@Y`}2Fpg|gK7w=86=yu3)>
zJjTS`f7Z|CW(;o*?wS1Vr0E)&0J&r4x_)76#T>XLD%@&bF&<23IivexrF;FAztLYe
z^~xuH_>!Q1`r7x-`nR{|$;69zR>$fzOtRm?>EH6RefBl3GwWZjJZ`saU*rUyLmg4y
zOV=uT?K_d>9FolcYPv*{f~l#Ye)N3#Y^BN7CR>*VG{{~$t9FO&np5_N6LCUj%h;bV
zuDvX#p582Qcb$|#`47g+uM2d%<)SBTso6Dud8$TL?wU7~zXlza*kD!9)%<I2^R!=0
zyBNH;bG<HIJu}?DzGrdV;kl{17q8g3_Uomfo3>{?veGNm>ozgX(KJ}4JK<2u_qEes
z@{4h`oWK55VdYP?<-L*lC+a#cTswZtCH~Ki<*S1gs=hvxz9nMASUju$<PR<lsSO_(
zZ>)RrZE^m6Ir~EoJ};JGQA~(kyYYMd`qtBe3&L`v9zHhZII-^4!|%@djb`_lo3k(F
z`QQGXV!zMw>i^&Q@$TQAYizu~^v}wStJWWXKQ|YcpYM|*Blf_Ug^%X}$9w4mX~(Ko
zMKQQar879jiu^2L<(Zkt9Q40Lu6Fye>*)-a@A&-uoXJ(w{^_!$+a%Zcp6~0+EA)dt
z+SNbWZ|5d+C+R`?+55uJihqlHU$^;p`Q!Pu{%iMNEBbbQf5Q9RsN{Sd%ltLXYi-TU
z?B}iF448MzfqC`!8zQW`?zMz`ZO~a&U;Fqif8Ir5<9#JRU;IA()c>3C39SvYN<$xt
zgdMXp$oJiF>q<)82M>9_vQ6uh<|H?tp8dK1-ear%hw86a#c0^<eN*}M(Vu5;_k`~{
zr~fLp>a_ryK;>VJo}JxEaufK)M33#Nzbf&~o$>6>=OHWC{G59%F`<d!eV$%NZq)tw
zMYB?SAGTZRX12vP&0DV6Su3CQ$IR@(La)33Zr}g+&BOZb?fT#A|3AHxeV=W4{QiK(
zhFe?gnCt)UjB8!=r~b<CpZW)PPg}o2c+vfoyC)U><RuQ(|Gr)SJNBmP52puv5AF%R
zwf<=h@5|-qw;Jx0SU<l}u{wUKe-$V5--@@ddFQTuzr!Z<=I7n3@4GdhuPVEAc(PF8
zajPGf?6*u?xZeJ>{5uofs%%DnU1#CNb{@U{RWnQ$zCF3hKIqyLm38Y~%j&nL{(n{`
z^V7<@uO=|(`|j^%@=^Uh@12X*=l%cC{@!kP)i2>s#jg)9zn1Q5{`SH07gO&1yW<o+
z-+udqYw5NZ-bvXv=U(xfd_i1Y@vF+0tDYCSC)-JHT*K60KUYNH_s{22r@Ys$Z`k{f
zYs2;T2mij~uix=wM&=C_hfgP6)t9bsxmVB4W1Ii`t-MrH-M-m;F+w+HhjGU2;r+Bf
z;PjPUe5^*c>dc<WVhwxbUNBEkwq6_jbV-<-e^|--s|#2@FBUjsle)@(lEH&#U#u3|
zRqij2tDL?q({#^dJGJ+x4s_=GRz_a0+jrtf`+t_4Bl5HR!(^{0*5{e>D{OLZOkKm9
zy!vKy{k6Xbs$_1l)St-o(B&7etYm)h_eD74y~lrQCN90sShwzf<H9e+zj9XFA1`%h
zez{LP;-|PlooNqu;`RUYT4L)NC%l*Xx$pM<>Yw*sl`r-7?*CeRX|9;!1pdPex{klD
z6x9Ep_rv-7r~45n%G=`a^ZsABaH%JYRPN-z(^K}HV~qP)FPXpVVe!v5o`!nXqF>fs
zj^LYgd865jU#6~>Z#Mn#Ui-oD#qLLUzJ>JUO{-oPV4qrgcAwh8iP5bw+um_s`*kvC
zPIiCkq>u<R16GB(8m~UZ#r87oTa+{R&<FK`_gXjguPm7D<mVjxX^FzBc|YT$m&!+b
zh0WIgFei<%fiqw(x5L)@y{Co##(dp1o0Fr`hh;-k*@Agxze?s@d}3{S)i-nROgXmm
zUFzwRv(k(bva8PhV{o2#^_|a6zPv0(|Ll`_>tak>|6g`IxVM5?&BY=8RPe4+y*JmI
z{d8<EFTeJu&PO3&%I6G+%hg{@rpyVlwcdHWlIvFK|8F|&%Zr}3W}EL{TvGpD*7avv
zrTn#D|5A@u&SUuYHl|)rp}u|P{go$X*xJqh(feb=KP9smH}>+y|F8ew;mz>gqQvul
z9pmC_{yV<}f3V#8cbC$a&((i^eLOg`HRp<Y?bpxAnbi*ko@{^iVsB5auKvCy^M1b$
zx>7H1{h0A~!A4_s&AJC2wekO|E*s@7Gp)b6<hXme{?y6;_CKm|Ed6`1@`mz!);}-v
zLu#!)zhM0T@ALmXB5m`^>vlb!_TluDm-_QfZ<;g)Ml>r#RqTHg<}QB!UxLezUCk4}
zzue;A-nxygWS!l)opTcEe@h+vE&c6k^~a^Fch8y6bo)_CT5&~Wbm;^YlY_U-?=Ss&
z{q3b+(h~JAUreie_444Osh>n5=ABt0dnIzg+6rH%^3J;Rj8$S8iIZJY_1hwO*X-8#
zZoe;MkG%8$`}+I$$$Y4rZ1pCVDNH=+tMIj8x$mdG)mQ9#es<}l`1k*oq>KGJeU5jZ
zeZSq^C5-nA|1xe<`(k9D;U(1|cy{Zl)nS|cm!E#!pC1!vyQZGuaKb-*_9i<Prui>_
zin=Vk-=y)xGVp`!>3g>6KOcUy<nCy9NV<0?EazYDAFBtezHZLT`&RV*|FO7h6K~Y-
z=N5nCz2k%Lx38Rg{!9Gc^<VbQ>-?pB`_&VxFLwNSRQvZ7!*}bIUoWjZyE3eIo?pHn
zzkgrdxurj4XZ(BhCwn(r!v1>Bg#SVf>=yR-ovVxbu4L7I&r{h^6;obQ(3-E8KCia+
zWhU3$R^CSomT8G^yR%CwI{ruQ)#K`g+C1;_mR>B?{PxJ!pY@1$LrHvDW!&nVfH|)=
zlos52@c*0PiZ7*xE57KlpAUTMz4UQ;_s<ithW`(@R_4pwdQSg*JYH+^DzRnpW+g>G
zmD--CPyM>#a^}^)h9{@XYTNv&-1)!y*Z*UG<WW{rMFieZR?JaiU^o#3UOP2CZ$BeP
z{o9)FlWu#=dj7wPtIut>_2m~@5<-5LU&S^scuZj7bzm;4E@!$YeQ45)&?9>f?|o={
zQZ-{$MA)o%H#>S~Yqy557=14O`CDej1^@q59f$l<Q+G~35^uNY`-$UyqSBo&kDi;}
zzj|qbd+nd=^X>n9Vb8l3pZC1xxb7l>nC<(m5;Eu1*Z+JW=K4#r?e(sG>vw<me0D&?
z_wt8@b3cEydAWJ&v|p2F&YO8_`A&(Z2?dj$$y+bH_G!zb-BXLAzWw~>cKY(AGxP0B
ztn6LG7MAjapDtSc<I_f+9EBA2I+?DmCw_gpxG_ola+k{Q8-|m1Y)CRNznWxhxNb7{
zdXBa8dBq(+{GPnUzW(6z=(h=RGWzo$9PeK!&OY}H*ZvxtyQgDMYuS}`C3F1{y|%ES
zS4QJe+O)q<AOHPZnaF2<&h@>&@B??g^Wy*iF!J1$j*?JIz4%i!ro?LEG|RY}aFv(O
z`LbN=ckW%O?mE%s`R}>sGF|+QE}wd5boR@sKgG}G4sZUvX#Msr>-WF+t53S~G;Ru0
zW}WS157W)A2cGjKxyn9~+i$dY0-x^gA9qepzF=%!f2HS}|MPvbZD&ud?E7uN>&rj)
z4mabad1owNetFlkx@o<?(Ow(gt&gAg$wsy3zs!i*7S<NN`XB%0r=1V@<qrsbuDJdv
z{4>KG{YBeP-Ls4gYOei%uD90dgBRO`de+CitS4+VYIa3Nr`J|<eA?^wmyP+!ynnnp
ze(y5s_PcGL*K{X&{egeQb42Q^-2R_mf9aRlj&oBUJvqmG`}6btzE8Xzb`|WZxXs%2
z!uI35-Sb}BPs&>Sh}mG>lzCDQTsQ2fzH65M$s(5d)%qyO`sR~|Ph7wJBLCjK)obI@
z|C=X0uV;<Azr4=BuKbC~-d8jC&TE;uI`omswtt`QSl;`@`{<4IT)#<KZQ%?mlYZFO
zu6O?D)_L!l@7&7$FR%G0)-d<HKA_rhkKys{s5@F8=UxBfS9ad<`mZm~&+kfAzj-z1
z-BE-7g`2*eIkb20M*)L95+PjI=E|wL70B&6@o(qnkB?PVGwR(KoGK(|m(QFU6?O65
zk*ANlCHozJHQv52GWmYs^D=gQuDkbs<%hjI^Q!H!@YZ<;zImF|>8{zc?CIo7FIj{1
zId<0Xb=cMNEnP(ZNXFk~pV=E`t7vc8@#9}c)hR>!{XCBL<qk(@H)mhxKAWzvpL5mC
z=#SritNv(Pm{(CVed)f5!S(;`ZZrMA@G`z@v8u+*&*%6Hs(+i=F&M6yepGft{*09Q
z*7a{5ilj-d&%Md5^!{XBbE5tw8HPtj-2cDmFAK|<?{EIVr0n0K?47P(>b_ii<Fjt!
z#{-@cAB;o8^!67WSYB6s(xNtvyKZBzX!?nleO93<E-9P#qziBtoIU-pjeqgedalG{
z=Q24D=bW9Ac+0UZ_rK(vcg^yP_D<9LUfCwOJx1<%XL4J0QEk+f^LH~YZJ871aYFyv
zr)~Lbu0B0xdhHX_Ax))#ut_BxeNytzT=#nzxR&g7I{34}YR$219p5cXI+9|m10q;L
zmSjggzWVZ5;i162*S;+c-(Y+@c7@Xpe(BWuDO_G!dHt`hq%Xg>DWByDW3y&OlJCx&
z?+#3@d2l9#yQyH$?Hki_BL!@3`=zZCC{ZjiI+=2LcHoP`UH1i(Z%HV8UYEi-OGU57
z^n7Jjd*7^+J$%JH6K~A*Qe$4VjGbMqP$+j^Zb7cr(ier>giVWr1v$%jE_n(XewJCc
ziSgEL$NH9=pMzs1r?1P@IBpxuzhvht^+MT?U9(c}EfHiho}8?%vsHD;%W1lT!G26n
zUwH7yq^A0KGAG`;s%x%vEqhs6mGsWnf=*jy7kdXushL=-^*<AEI&Jj$w`UOB4wLEq
z*{x@9EZnm8dZ*oiEi<(gQ}&%qs(HVGWs;;z$`vJZEwRY@IUgg}i@UgIm@YP6vLxMN
z&sFBuZ>L)YeRMXTmNlQTtL?k=wA9_1ft@1zZ<V=PwQ?41Ym}L#F#YnH)he!cL{FDy
zcuy{!v-#_W^yeFw_OE)ZaEN`{j-*|6FFqGd3AK&-IP2%OJI=hB3C=h8*=sW%>`Ik7
zyl&yr-zPMDr+s@Zc;{>V>K$60tBxElRbH^I>dw^NvO5<gSw@*3UliqZIPXF0?W~Rq
z7gHwdo{0)5YCO+>$m;l8!;=bpPd%*TzrT^Y?0<Y${KRu53ks*~JLSY+lc94vF)&5K
z?2&5aQvLAKv$`UWZ=8`m9m7-Z{X{_i#HICy_v3E=S$L1{b>unSznzwcbZqN4i6vPm
zC2PN2Xn7{}=Mw3b3vArxqK`8?6w7B{l1e#};1m>eeRI2qS%C4j{>&bqsnO0U1<T`t
zdrt&=&e;*t$<f9pJ<s7+hGq7Tiu?{izvp{q@$j%@ab(;$d_7}-(yE0AC!S6Wp2FfN
zUC8A-K_x-wqJmWX^n^9$g=|8v-Y{LN?|&+ERcv;O>+^3}VY?zjGKveY-OaoBF=f-u
z%s)Kwec`*d9G%U)bz!*jA+F1wwqajmZhx&%RJl1%Pc){rV$<|K;k=DUKD~5WQo2Pa
z<lvpEo$Oc7@}0Ah=snST*0Ltja<!;_-?QI(&sQ0o%UxC-_%v<n)#I<crevmUd*2q5
z<+Z5(aH3?=s;dXi{N%M$;X6{G)W1!8lmCV6)AJUxXC*|v@C$Ggu3o%g-@X33NoMvg
zD`OLdOOGXFHHe1B^dB!?c;{fJ%+;K|)5Yf)&Wn2Oy1_K9Ze!%;r7ZoYa(iF5OjqA0
zk;8vnSNX_~8Fw}^b={cOmh7G-DAwcrW8;?je5__tEcM)1+Qas~3;495c}ePvEl#r>
z^A=l*uK$z~dM16dkGRXsOYKbR8!L<*cQ<P^H#^?o59>|Uo2`~rl)GeC^xD3e@3fMh
zT)F+LVp31pJuOR)BExs9TweJ+7gc$8typ>8*GP{W6OLsWZ?RwdOxkLhdZ4}Qg&iSV
zmg*$jK3uSW@s77i^`1FJrJN^a64%aJbkDCWM9p!gp?yYR>pJn?4O~)=Ynk%r%1%9a
zNYYok)FO%R-YRbY?DhR6#z);gn65tCEp%_9L5HVd%;agoZOdB@e^|JIXG)Ra*Wdp?
zJvSG=xBb;|^|yzU|Lsl-3*O8TUElk|d0nl#{%n(bZ*Sf|b-I7bKgG%QpDilp%@O5L
zFU&0IsS;t{*`<@hQ55o|b@!yy+eg}>?GK2g&SX*LKG36jLM8CnV;|}6H<vV8>mJQy
zZggH@ksuxX>}yHmr#m5QR_ryJ&@y#i$HXOX&dB9lKD%O(O|8n;m4`DD&+j_?vnKCm
z%H&YdjxSTy*)r$%eU^$8Z4Ef~>r}mOtDD9aAH&YG8UbBfLmsz3uG$|P=9p`~l=pE{
zFw5%}SC5`=7te&hUb=chwtnN1mIuoUO*fjF-*l9lQ?jwZRMY+L%PZL@Y#Eojr-}BM
zI4ZbpRckyLxWjFULEI6G0{yxAg01)Y!=(;=k+>{9MMsKbRnGc;zPuonBbK&#PA)g<
ziw;e(YOGl3Z={j`MJPCt$7|`wnirEU_|5y?+9L31ip(wT8)?bxWws(OfB&rz?*H>A
zpz!kHWp2y9&6=QH^We<xr0eoISB#9N%iJ+7sWUrX_A6()&=<pRY_W-s<}1!mtU5Do
zOG3iYiVMfT1)S_j>sCB{@}8e7f2@+?Ti)4|m96SmChwi$Xvp-bA|Us~)tD{4dOHiJ
z9m!L07O<C=UCX-s#h0$u9kNym7R855-B~X^Y<Qc`{_~pT%Tq}adUp>-m>m$CaqZBu
zZO=+(NVk}VZw|QWm9w&=XM>EvQKiOfs>YsGYrIOAYxMe<@9wSZiM&6T_j5)T_v}tn
zMXeVS&w2bz>tjL<Yfl}2-e_lhW#5y8&$25neVg*6`$?PRffz62uXDbfWwf5H%e0J(
zRbkb1Q9-Yc7weX7Uo(+!8gr>M>)iy!Zx8p)d|bg%DYW6~y{|KaymdUfHw5<bPrJMF
zUdeC9{-ofwU9&X#B5!6mE7>Zw{dNwSckolxVyCi6CRq;Ce<usn^UPSh#?S2Gl0$!!
zZ%uBkX$WsFom@0I;>&bt^=bVx<~XvNuS;pZ6Lh9<ySw21<vaFf9b06h+cK9=^n;&X
zNb~1wg_Ga$hnSe}ID0Vh$<==iITu*Hy{~0G_uX8YZ{J>Vz2Qd5D}&QDD}y{Y%laEQ
zq@U*DU6sy%;)czdXOc%wY}j5O@Mw<C)X+@h<13z}S+V*4HFRs+GeJV|%;y_wwq5QO
zF9ch*XfFMzvFyn!1t~k%E}?y8nN2Uu?k)3XF*2GHwJ}OgN&1TCV!Oy2$+pF<J##8{
z*Qx!C+`NU2JwuMwa~|vEH0SSWRl(}VI4lkraH@IkXq}-IQ6;m-y}iTmZ6MpZdjA!5
zVj`~V4)*MdC=QIgaeRSG#ij5&&i!HEU$0Z?(KNI!dRMmg_mW4+#b=WEw=Pr@+q%TY
znEhw0*`wIrR{?xNK`XDXzQx;hrf+7GjN^oO{jQVeI(AjM`HRieH|I^f5#*XZ`BZ08
zT0o;-vVo<?-j0V`PtN)>BkiJZSVu(RkH-3Me0LW&oa714n|YIG^GQqnoL{fjU0?p(
zYTGH<b5X|^yuHwB$k{!6Qp~yOqPz3IG~Sdy=f?f?!N)qsj^nW<5i&n7ZcySo?z)dR
z!NTjBlikr-mWij6p4_e$V&e>ZFsEp%z_Oayd5^5ECxu(gXH`C4xUZ&C`J!FQhWj&f
zb1#|rKCU<A+dA#&g2p=a>$f`6zQxt%e3Y77f5K<?p0ud!y*Cs1PHf@JXzssNBwBqo
z?)#;=OTV4!J^g9p@vM_xu1A+_ELfvZT<LF6tiSO3mLu6G)ncAEvE?cGMP!_jsYvr{
zRedBe_4wf?gVWtx*LAQL_-bfRy8l-BvVykMqQ!xRyhSo|>-EB&SEbJsaXtLmGR39c
zGUZXz3h%`ktCkzZe=}QsAX=>Uyu@*L6_?;bnT@_doHLkqKFU}TBo|+H_bvzj^4$mj
zX{0l|#w@88Nta?=T%*2q+Yv(rwru0gt$Sw{wnR90Pgp9GvO0k;Q%-!M)<LD`o8AdU
zezm=M?B#`f?t<Z_MUM3>Zwh(c_fCvASsM21lGh=gn)aDTPROKhx+j}lt(3GNWq00+
zz%w%+SBm&@Z|9uBz_;AR{C-p0+Ea5bDH!H1KP0@%Uq+y6gRNY|^7Y@ADZX$GKYVk>
z{1(A^E2s6awMBos8+b8z%CC%B){&*FqNGA@FWDY&XaTqR!3m4Q4m<CaGpt{*`qtZT
z#j6%I8Jga1Sg~JQ?YN!sr8&9#r|Ysy&zSeVR%-SkHj~KAp8kn}L05ORUvg!*zV42A
zWszgJ`$UVdqAc+<6?;v>|K(hEzOt_S{FRzJ=E?^x6xs`nyd2ibS{IsaI<fJg``(#b
zmbY&3|F+b_Q0&Z>Ibr*3-=F*2cxvOVta`zhnr^~eb}tJfSEV1;+_mJy-C6h7{_bt&
zVp0+j*pOnO$t>8!J8Qn$g-u-3=j;<*Rb-<tW+I|wF>U2cV?Q%S_FIcixxRX;bE_$&
z@%CPZZ_79A{rpQPN{4UD{)jI#R_>Pn5|iKb#&yEa>-QR-9n-PAVdl5;cxIAy^v-#X
za~|wIQGc#`<BH{nO->d!N=Z!cmDzSC#`RdTPm5>uR*l!o)(BTzN@Y5%KlkSq>o1zg
z8OnzW-{m`P>`+?}@an8r)olG=l6lqpOgt=hc>4bIc<lUhhJ0w-8_(I1bEIFcd7gay
z-Gs>MO5ca;x}19soH`}&W_z}Oi^G&FPybnn^~e<(%x-n5Ut#rlBFD0cKLua*3Y^%M
z!kw~2<o@NbeRIEjKa&@InDN%*hs}mFpD@X1d5Y<u7VLg9HKgyz%ZXMjkG9QmXtxy3
zOF1mn)E3K{`-{Wy?@6uBDi`KGy*kqlF6_&RFi5wyDDPz5y1wF=^s>NwyH}YTX7=bD
zkzB;Ogg15h{WDtIq$2Cp?2n~0_5V(gGM<qvbyRlEI%A20n!#dAo%w?fZOvFSU;Ag<
z)r!Xk77B+xM7ShHy<<P9!+Z8`$!>|@wn;0da>}Z)PkorBvVk*z)4%nQPeJCh4B`9H
z4N;dm6x#|uW?CLBN}2zC<4GT-k2@7h`X$%tc#DbbYGxFP<hdn%xK_})zP;_z><!+F
zR!m@h92C>mUNXI~{4B%$-m2Hko6XC$?UqOvF<+VEbRZ|xR>seu#58VJ#+LQJ-c4vJ
zm#WJMnI@aA-RwGzJ44i}ac%VnfqQy|cDkD!Cx1@fG$C*rPx7qPY~>rbCWUMLRtT9D
zp(7kP$J5p)>dXSyoN0euUUYZNW2^7I|J}FPV*VkfmRxTQ^UPWs-|Js5T%Gz(Md!G|
zC5y7NitTGVW@p`O>3)Ci%=DV?)t@&d-dz9u=^^j?Cr@%L3s(8JcFvtkKitn8k14Cw
z$z8bMbLlkho6F1p<@siAF%oay_&8W;mG|MAttY?TK6&fqTAf9UZdRFFYut|6V&v$3
zVru>NQ+<!>Qr^r}`l=M3e%0mWdVcMLi++3S7lz%`I{J+D%GEHXut!rZORLjVOgE=R
zgoXv1T}jmP@OW~3*D7D{kX0?cYuL2vpK#_{-|h=4zASuo(#zD2xdFfTDiyxrT6y7N
z#?v*n-GThR_U4rp)={&XHj0&ZuPiCqT%^`}>{XaYz1p^n?yFH#%+lt~oG@pW$j0tI
z-^cxnI)mOkl~}oA1Lv2xZDLoo{6v$@v}Q^q|EgsYZ>l^z`_IPhbMl{@<S0J5EZtz{
zEt6YkWZHkNk?IfSx!=O^NV_nMd4Ab0&+}9G-|@UXwI<1LwPI0##Lib)&w{Q-7H10E
z78)Nu@b{#U(W-m(4sJUG84I;HUJ&a{-l&zcW8J<K{yp23Wp;DyT)FGaD%DJty+Ow%
z4|%>^n8C9;ZROXFnN7FXm@Yrz+H#{?;Wg(1$5{Ont;}z?EIwwr<-OGlg&RMn*eD!2
z5M-i!x{YtS?3tFYWyS2XR%KVbxfyg)$iSv++u=BSy=#9yaIlLx%T(3pt>1r0_@M{y
zte((-Q!{#0u5#3-oe_F;<^GdRf$wgdjSAkytap2JN?O*-s4WsFPK#Tdj26xP`u%L(
zvcQb`?gy_sJvE}X9L!>qE)&gPd3;w<hm^Id`OymTH~o80*cd&0;1E^#W=HhwRg-GH
zq=k=4HqXe-Zpk@id6?yMl%BhFK>e1D$0a6hp4fis)h07ruQ-k)hL2t~9ucul+WBl@
z+{~U>k6UcVRN|EmH*AtP-&LBQ@N4nIyqRvn_E%ajmYi8TQ)ILI!)yAShMUFOS)JCp
z-6_dd6INA`I6KF2TfjH*-&>C?x*TZR&r#L+#Y}WxVQzBqmaDAXS69thoXL3fufjCb
z`jkz1B5cPZJQgoZGrZ(8SET>A>9yNN?S);v-zu+nm7Ok<>gV72%xUSe{!&ea-@h(N
z%06%_5sS7HUi&m6?t**YI{w#3j&1j}kbk$;*GbQEkwmNBOZ`WN_Yw-lH?c2!+_9Ni
zEJJFW=*y#Sr+H*{?4Iste(6RKo9(+9+)RDFH#6!jr!JC^fA`xdKz{e$o??MJ53|y5
zT#e*EC3|r0A+fD1p3LAX(S3D3M*a51=84=<X16D_^)3+B3I6doq+s^a`0y7y_UrK<
zUbX&t*KzZ`cE-K6tJ1GH2M0*bo!MJ8dFi2yuL;UWDh}=x&b%$~@mN&i*ArrQJ!Cdc
z%bj7+%su;P+JpL(+0QH{m)~VI)VY4)gj<As(sV7y+k&@p<`|xoyZAQ9w86#rXT<Su
zO)^W)>L`k2od3T0PebLmU%!jRPjK%y&X;WKjk<e1Lpmz5!t+m@edZ*wTff8J?Yi{S
z{Y?Dducq}gU;A$M4CCGz|1Q|)&F0AyUv-?m%kuOs>+!q<+l;VFUG>V%6Pjl%HA<<R
zEtng?S(&x(A>ZN}i-nwZC$6l!+|uZLbWQWaS8nc7f`87wTyZDQ+|g*;CZSbHO)qY~
znaAJ1JF~JRuxZXJ<*d+vNe^EO&d+?Dm@rA9-oPoq>2>eQa%1n#C#I(I+QQZCJb!kq
z7R<_c^YX2OI#=80WQ~}c-diK;-EZ;9USAWzsnnIWNh;52?TW@{qRXDna&uSozW(*%
zM+;HqZ&AH++dsPn$mVqM&0$pXU^4x@aBGD^rNqm&!^~TYR=+LWHQUE?TbP5l#EMrc
zpTEpnQ+Q)R1>>U|hVN#IZoemH6YqWP+NRq2Lk&~5zwj!_InSg%Pyc7a?xs)8Tiok!
z91c;d`8UBZNnCbOWUy~Vw3zRO+{Ie?zm6pBOb}V4_o*peZ8Brklg9JAoRuDiOtRn5
zb%4FeBDCGaG&XHwYqzm)@(G76dxd5P_>{lrd+B!V^no|;&(2x6aw%s|uBX_!t|@bp
z+ZXCQI~f#st?91#uh|D}mR((V&-jeX^rO6o{pxSG8>+p{W_+&i_LAf3^jA4cj%{4S
zmnv<vT)1Srn`+p*)$5jIAO7p$;(jn<&V&i>Q@6#Q>y%>YN^^7iZMvTONJ#jElPk`w
zS-UYXTzdhxpnr<ZZMUgxiLLtFu8-J-mKCZPK4Is%uKVn0#4DvO21Nz(a>62IYkJSF
zuuh+{uh68e-k@!&!0SmpZ4v8QI8)a<inJ}iu+ZT&WA{R~b)O6Sv$Htv`KP;^zApOv
zv}y8<nJ=sM&M35Ll>V|e;>w04?>^U-hZbMiXE^a)4a3{BymvP5JQnZC*8lF(=I0u#
zzxv2M{<~IVpXg`3k59f|d%dl7_KB(g-Wt9)_e+aECq4JvB93{?^*nbO8FemoEvk+9
z##|${`~LK(FqQI!WjU!HTW@gHZ}Z=LJHBn&wnhJce7p1e^7`GUkF+0N;oo;g;pJ0@
ztDaxPTQ)7J`z?_DdvWVL;ro@XqEDYQCOA1fu$^_alJ~)XhhN)+E$2s8wNDV8ec$oe
zhDVPczIknI^nBy@4v8=cyEVR(>+fX0{kzll-g?ov)W1(xKGbiYWT0YO)BWOfa?JUa
z3iqeH?wJvuc&YFI9J|GTp6qyUU9$JY&dACgyXPgkOsN0$?AGsZvYlnE$)fx&c^o#{
z%=ebE-ubyG`MGH5zRNcHj{iPQdDQ$;-&wuGZbO9~SHXANH{8Db_n*~C{T1uoz2}N?
z{poi$$6DB{o`2q&%fqC?-H`QID@VHLou5Iy_=En3&#rmgzxC?#m*CoR-iZF_;?q0l
zew1t7obvwik7Zxd!z<^X$UG%1b^Yc1wHmr{mM8yL-1zyE>GtV+MYoPmer9eyUuJiW
z-@B>4wU00SdA#d-V1cEox9#lwsMcq#KZ{>&&u89SZ}j(mvH8mXkJq}cKfJHUSlj>5
zsVx4lxBQn@7l!@08Ku0^;c&sKd-2>>cV9Pt`qn#biLGAE=7s!^=AJJvk3VvEvM^)5
zSEF<6x9^Rfr^P3%dCxcBdgnyd#2+PVU(Z}7x}U#)_M`{uKmNSC>A!sO?zg*h=AS?6
zSbg_dy>@ndz-isb^;??f{d}6d=y_P!*5#3xbuOCT<=(sJLytADh{D9BPgAe;F<KvW
zmAw1(_@1*-^44q~vOlNyFAR-Ttg3p+`}gN^nGlxi6F<L}D;EzdFO+<#`&n*+=$T(T
zjdy=~YxD3nV~sU`jkWl`x!my!<ZtbJQeOVu(bH<%w9>5AlaD+UWZ7j<zu`>ZvhC0F
zxUVyLFn#-S&cpXj-#0Glw~{}9pF74hZLM|UBo+lXG0*1*tv)RFX`TJ#TIizR=i2$}
z|2*zBJ1;r+d1K`LIgg&IA3QiC@oA-Y$)fG~!E>iEsGd6Hp%id3b%DZ8MaD(!4X%t;
z6N=aVe0ccz`T5rS?QGT8EM2)YH7bXpUdN>&Wl5{Nb#C$Rqt_1I`BfFktQBlfvFWD#
z!RNcp4}AQ(yX2n%!%@#aeJkerr#%<ffA@!J!pm2`)_=PGzsLUXjl9gajd!l9y}zaq
ze$>8l{sD)Fc8h<U{ImM|%YB<!jFVT_oqCXSX~*Y>mzVQji{E>0`Z@hwtTkV+i)=Wv
z=kRsDOZ7jWPCutVb*4z=@0TT=b~RN-3_<T6?>eWyc6WAU^ud3Z+J41f>?@llexj0n
z$sVz+_~>T`_AK8&J8aey>9*e=*L=&IR(AEU{^vz=`R8!Y_{ylN-h6~pV|vh8jRyTW
z*Wy0zDLLrXaK|D)bKX<tPO&>I-ah;$Vl!C{E;4%LPiN$HtPh>peDBHezV!JuuT@w+
zEYtoXZ!v$)(hE!tYd7y_c*U^vnxpmJ1xy;ZQm<`#-4J$+Nptnr9ZV-KSDguN*>+#z
zPSQqJ@%m+-cPeksKjbF+#qWF9Im@n^9}E%Gcd}V*XG+yix9ONzJyE>LpfK=*k*Kxr
z-gB0gSN1nLlrsIS^}chpepT4|^n|~!*H53DH@*JvFRod28;#HY5dHg0``cHR`L|C;
z|6owqJ?|k?^6~@s796T5_<LQJ^+?m{=tJpOY%YFfVdQSv^kLe8%=!k~$*YaRkJKcs
ztGcmp`o6_%-@aadcm14wx!lzkc2{4OeX;o&sv2#U{x@o2{Ktd^cb7{qnjh7|Q2%iK
z3awY}Ys6%oPwQSV<@795s$A9PXI{VO=xa;$ImeQ9YqHLWb$m;;yz!MKX4~uh>Dgts
z*KHMEmu8>uRQ<g3ZFJPvqvx(4UBB5@z02ONb9O$*kJq)5^It}*ePDaYY4_eigMAm{
zGRN7g*2Vpmn(O~;`L(OJe<U}>*6n-0UqWF=ed#{wtNX?I_TP-GYoEV$RsNdUa~Ypi
zG`6;<e4dao!GCV?mMYbyHCeuye?==@wZ2Ss`IvReim`6qU+Yiu4PBMXzOFc={F%M+
zLOyrPzNvRE>~~c7q9gFjXTk637i_Cf^p@K&zg;?M*Vj((nV-#nUMsg0`^<H8dFqk>
z_it`5+xB@wedzNYOs5RJnH_(N2u80wcjWe(LSY-bSg-EQjkl|ooSFaXYsxRxD>eN>
z_gBAO*=7;Sb;&vL-=2B@KO~B_%dH65^CPpWHZZ$(kLEVJdAD1aFS%uLYnt|gqdy)l
z6#nrrru3f3*@SDGyB=@rs$R;wlPgh{M_c#Y#XWfo86>uf-1@buUUl)y1zU9;73Xi4
zU0wQh`nHCTU6*XGMqjV`S@!$<ja^GP0-8my-}!dq+?@<IuWOHtl3a5)*{=Pu@bmI7
zcDv5M|Nm!G$?yDZy?ZyWW=9w9T|4K>uP@%Ss{L<u{>#r+|F>H8OZfZ!|Acp!h^~)*
zdQjv4=UF}cv%}T~Z`!?JW9XXFrurwM_7#`Xk4(S!b62o^*{$jAi@#;MvzN%Fro>8h
zzS#QL^5)U2pNenPZPxzzus!&LMX6$X?zykGZ=3Ljcgt$;U-+qAzAl41hIxz3&eD@_
z#8wFQX1D&l&{gwq_O0IUi%zmAyx`eft~DwCQ*Btog<o3?cJBOblJfc*cWU(fzb1b^
z)fc@zz2?jLbcwC<@8VLLg<lH2Sv;*VO5#U)-9MohQ;hdV#?OEC>ej9$t^UpdUTzap
zs~iq}kP2sbp<nkgrCySu;r6LtPny%1^6ph#eCqu*Sc2Kc=CP;h1*1Ku{vCLu*;uS#
zeX_hO`Dk*d?p=@4brR>6)kZFf`Q3g&<8axr&lW%H9ppH^>@3~%P?TYRe)T^;2BxN(
z@Qs(e{yFZdY`J=@ZSt)3$K9R?NzZpV)_&-jjFO;$(!rxkn=DIb9=-kW)8+E3A>Y@(
zeV{4UXuC(u>;0P-i@Vg_|9<&U^W<aV5y@cnwgvKb$>)vyCq8j(kG5{`6AZ~z@3*}9
z>R_&%%FfVjxjOaoTp9vZb~^I2uH4R4_fjw0fAq=vX;boV{5|6NKkxT^nfF<fgZD9b
z{1kin@cV^-zgc}Zi1#mit~uwv=lA=Y-gB?Zzwv8ZiM?RWT&-VsL*AcPsPq!gD9~HI
zE?~FS!K+{1f5@5G^iOu;r!2;Q<xZ!{zcH*=e){ge>WV#!&a93IJU6vIG$%?kVC&Y8
zs;O~1WA)-$=E|=R*tO)@?cAz$|5maw2HD$L*Zj?t{dR$C+x;7{^Np_i=hmJ4vVG;3
zi$7+jM&vU8jA*nm`n*Qi)!~ig(aVqbcAFjG5Endf=+vqCA}iG2ehMzIzdm7m>#25c
z;mUOkjQf|J`FH;Rulw0&jg>bz_$ztt4US02x>l93`tj51&DwKLUtw`Dvd(=vq4eDO
zAMf7XTK`bb_;&x>@ciZZ&;0%?KK;*%x~4^5>jD1{DFy~^3-Fqj?Fy`nT+*N;gSP7`
zFbY6e4%UqP(%{pB=B7`Qe<H=e@Yo!px*&}4n-o}eW+9`LbUo;jnf@ogRl+P87=DN{
zGKexTFt`SUI_a0BR+Q)`XBZe7!jBv3Q$AUC<9Chgsx776u}9B5xwn0H%aciWzR%V2
zRW4U6PSv~fOROOA#wNW#YBvmcZZz<mX8ZG|-2TM-UH=RA9}(PXxKlLp>d~36B)|HE
zPTV=C!=ms}eNN%IPXGG7K`AK*C6}#OIX{1c^%u5>A#Ta8p+9Oazn{4M<?Q|Y{y)4t
z|H<r~_jZIjESsj({Qd(!Q(WlT^X9>)FWI{-KK=Alp5*S!Jc?bZMl)Y<*%d#w`!exz
zZq;+oiB~J1N6NSc2l|@l3(RcFEqax^|Mi}4hBb`aP6odD%g^zt-t(ajSK_iMiAC3*
zOW%Ivs6O$<w`pFQcb-c(23t07GI`9FXma&Y$cHt4E7u(R!5_UywfOrPk)s=|mv5iH
z=$&fC<t^9lEr0QCvCb-?q=HY+rJv8Td}{HUZR0hojPsAe!loD=bXdlAynf%#-No@H
zi*KiIw0_?BVq5Fq>F?_qw!f3`s-I?h+i72uKF6YfHicE&r!A{@G4T88`$K7M<g{fw
zt_vR7>731WT5>zv(XMSj1$Q16Zu@;HSz_D&@7G=)TdS#M_2O)}c#Gf02~2iM8p{=4
z#2(7O!mL}o=c}NhX=KVo`=t^;<cq|Ozs)mpNtCi_d#QayB-J6)`n*MQ)hEvShU4<}
zNv^@uSAKPGnZEPtPQy(y{x>)EUo|(IHn)#m{($zIUt*W^Rhf#u?c!sv)|R*>bmn)f
z@NVV{?92z6eoON;aI(FLi79$l@mQluGw8fY!@bnF3oV;vZk~1*iPL-`Ti5c&e$}k6
zdHnx=FWzuYa5}f=)jU@N+xPRYr}isW>Q=5kt6cB;M(^j9qSA-?j*jaj1lssB#TnVp
zJo;vl=eO-)4f}=uB+J4@6Ca#gT>Sm$<=2m2ReV0bWG-`7t<<mBS4rnic6Hm<yxkxv
zuf1wn(f*t9GRv>IU5b_FSoBgvIjTV@xYK@riQ~Qv?#plc?arMab8UBuj1tfPw&O0&
zEroR=4;^i`)@SY8xU+UqbM~*t?z0}79(KQd#re#%P(9acv)c4oc$`BTmmRo!Y11)}
zce?A}%TJsw?XMEh!xFJ$?WXN)%ZsP5rXTuU@!`lcPxiI8-Rky+b3X7?F>}T5`ZVFr
zGAG@4JlX9z<vTtaZY#=}V!i4z<I*aTqVgEWPZ7W6jx3NaxT{cK&-B90SjTIt-t%RB
zJv;4F9KUm1sPO$zt99y)+{E@7s|vgB$K7i-?%>*5D7ft0i7VG<PJ0orXz6eHigD^q
zmw#GZ`t3iNU$B+0xWoA8)U1z!KQC7(^%kGmsA<jcDdfJhiH_D3hK?I%Ps;0028n&W
zxKrS2=tFap)S{C=*b67*mQAbA*s77i^5go8Z_8WvG1xtQ5bktBF!_V}?uQ}FrR#d6
z?(#*c@fe>|x&5Gep)x=Brc19EyMz|RDRvmH7G~MwneuS`qGH)U-iO|ozOQOjShZp5
z+v2BM6Yu|gw`Yp+a<5$G=vRx27TUh(DL#{MMcQws<8oQgC6j};$FE<%#58n*uXcTU
zX2o_J(Y1Mt6qbhneZ_Fy^c2(jDQoumY+Jg;Dfo(8%qwTd3EHO_O}D#h-+r?Et)S-l
zr@q@4O^)4b6W1@bImh|UQwhzjhZeug=*@mIdvfSKJrAeiBd$uFE;)ybZH~JxI$OBb
zQfX-f%j&B=eA;H0Z|pLhud-TlS;w}d(!M3Hp4NZMNtxC9g=KY4*4dt%M;W%(l1sNF
zRn62~w`s+KK;7gS3#3YAqs`S*wM=7FOlx#sntCfnrIjR#Z2X}zDdn;8+;?GbHBXmZ
z|9oasM1F7DtX&~ocPA!xY~_v2+4M6<ceb4R>)yg^Za4eXO0PT3?a*plyX>{=Cc(u!
zS5A`Q=~yaIFJG3FG%2QMb%cJXe&);^)2(UVf@ik%I{97B(G1Klz1Ey}?ZmWKkDod$
z?zXrpbM@jBOOq={Vos<9HhXHF*)(T;M6R<bmz#~A=4+4rGYtc*FZ;M0-*V;bnKx$2
zS1rt@#q)o>s9+_Zw)y6aJl#_-o$6(@)4yaGU6pZb@iDrZEm6O5UE0cxn`|fitjb+5
z>t?Fvx!GFo;bN~BP0}cOY9~1R<Yp&#L$QxO;dizi`)0Gr)38F*YI65Zk3y@hrKVP?
z8nx>T%x0fGGi_={&b9#YvZ6%wCkNY({J2<^<gd1}F6ymD^VwTbUzC>4P&xJ3mGi8|
z)`b_-rl(w2;eOU7GlO&Ata_yYMcpgv#!*imyZEiYwAs}wLu6&mtas8z3VS@Z9zH!S
z^+CnbfcIZs#?|jUvwioOs>?za+hS*ZxiEE?*UinUc8}R>61U1spXO_PfA-ZIT<0!w
zUDrE3b;_yC!ZSV3csGkpesV%!dONq%f`HY+w{OH;^bpHlSz@d9N%e|GUr!F-^7;<H
zTXM#!N{Tw{FMW4TxE7K-Yg^!?g^PMTmZi<Odq?DoWpJ2~<Yt3QT|81ZRg{-jBsDx0
zJF@7=li<CVj%}KJl4tR&iBhXPS;EsM&6bSqfAn!yz?$SkE?#G^^z{b5U3l&MjGFzK
z{=7#QMLkW+u{pMC>#YJO(OI2wTm7#e?>wtzTYu(@wx{2<?9;D0%vO5taX7UyXU@9l
zpR8JCE_+u!y={9ZXUl0xsm*HzPxiS6_vn~UUZLn_sCxC;XQzX49DnN;#$=vN{`pd4
z)(L*;&!05z#}rxC?9?bX$|#nb{Mjm6pS$vo!_A9}PRwdeTr?#{)qAU7>K*^5lV&m=
zH{Te#>qOCw`j$6gS${TkpM5dMYU`}EQx|>a-eZ;}^uy!O+SXlb!lIYhc4o<@&Wt^0
z{njQpx1f2ON!l#qY>N}OzGfVi(-$rYGT9m#DYgDua#M)#)hjCANgC$^Icw(TofcD6
zNzbair!g^dsm9igkxS(Jr@m6!w<?(JTEv3ci%uq|MZKNvbw8`#bT*ssH0#V=F3(=y
zJhH6qXjhlu)UG1GSNRs(w%^o{p1i7OS#s7&p^f{TN=gcCyfdOwmA-8iy}5DK#=szP
zskN?4Y$UfxlzN&!Rgqt~DMa|Rso2^?x3gEK%;`&7b$4l%tdRVAug{)V_IckYITv5)
zF8SoSZvVz<k8i2uUQuSd99189ib;Blc}o1P35#1*_<BmW-w@O4J-Q-9F)YbmELZ2K
zjFj;%n^_VmE2pKptFP2};F(o2^ASsQ84F+Fgp>2GY`yKJ_kH?%f37{nzaIDf+%UC%
zUrMT`-pR|y8`w8}<J@^BO=zP<y`Nsb;$N-S;?P^-=k9taO<fUw&CABuW!YW6`pg9{
zcHPeO|2>!Q{G+8GeGcuuJ5TLqq{EpVZP&KsZOsa}TD0x>jTArOn@Tg?FRz+%cf(w!
zwc9s3?F)=s^89Yn+&7n_B3G8H=h&P|H=F7jwM6@COjT&+=d%$juVxk2WF_l}HC)y|
zvT4b4qg6Xyeou3~rFD1yt0!$+G!~y$YZqOaUC;aK^pPyv8U5AVnJ4pe>}DyjdP`+Q
znzW{;%`lYKt-hR>rI0mo*R(U{S6q9SFT16p<hE5p?|XKc>a~oH*;i~NFJ5<vUlpJ-
zbB)eQs~wRO*)w9pZf7y+=<iBceD~0vE6W3v{5B+AJeMS7`RYUS)(HuhS9-*CJkR!I
zeSei>w%?-qMK<1o5sjVMInxs^E%rI2;~PBDbNN)|ttu;DtrWW7|0y!G!_SrH?AfAM
z0c+2kxvF$Of_HjGv%HFRw@YBg(Nh~E3oSN@ZkyhJOk&rCoQJ}@EH6%;xm8OnImLSO
z!L*+uYt!EHoO}?rb;jZ6g0okc++LcqPub7yhSszzL4ORgmub~Y=B~UHX1r*TL!Wnd
z;;Q>vpM7*pMXFAEZWQhmnKjk)`nmF#KK9Zl{Wl~Toxk>JcB#3O`_i1e7?a~pt?#yZ
zm*q#TDU&c@)w%xca`Lu7qnRq#r6h~WW6s~YYvlN?tL5r7CFa>HGC#i2kj+kz++sL~
z=jGN}bA4y424{YFvf<d(N%h?)qD(toswT(lbi`Cm%kV6jEcx^m)4f>?y1Db#oj<iw
zF|g;^SDuYIOVe@;Z|7`NO;Vh^VD+Lz&4^7szSCwFPP^E>_ff_g55twQ=Uj`|%=9=R
zxRI~Ga{f7v*_U>3EPXIFb<vG((-*!v>Y@gF9CfGoDhodBIc3m#Y;u-K_#vya^%?07
zOP}WW-tJk_V;k=sG%=#wZR^6AXqB{V+k1*<lac~ua=z5~>YlH1c6__$W1ry0Pgh;r
zJ$o-7sWLi#;ik^q`TY@F?_@?iY3Yl&=y_bqu(EJL-j|<RYq!k!Q=lp^_g_sb-^Mbt
z;OD=DHzx8t`W&{zAXO=HucCnMW^=FX*@g96+n6nq7advhxW;hlrqy+)I|SygxbbdP
z+NpQna_2>8pRSpFOu08w)c+)FQ1X<Fg$?{)ODkn{J5Q$6W?Ww_YI-+v&8agwbG5Du
zH)pEN?8!ZnsH0hWA*ean{hQar#(5zpm+I{Ek`BJ)arKDjxfSPoeEYT6De1ai@^Q|}
zX`5Lwx&EGx=`toU2hYh_vuyeVxL2w_TU@-R#i+MpmZwP8%Q=dX(>z@}1FI*5=XA$=
zn?-q?-E}$C#&{NgQt75ydeX1|l-MjtU-^zF|6xqo))Y6X>F<`hUSs*R_wb6zs&4K+
z3KMdwZpQnmo_-K|$SYK7;>}IDSJirijC+07=AN;d?K`Rd;p=Xm&}fb>FA?zrr!=mG
zecj<Cvf`G4s?h8*pVy0@y4r0#)v@}<tRvPeiT#~v!q0=(GFhJKRr?sT%=K|?@QGq(
z(HXKPk-n~{ovp8Ce-*p=vrTW)&Y;bg-mN=w=#1C2>%ys5<HWU=x)yECo1LsF6}p8n
z)9iz<_Q~>7r+VfuUsUgKU{dA5ciT_8C1zUxv5kKDMVQrj6-U#DpPxA$r9C#}PuW(}
zl^Xdhg4_F4KqKSdmNicUyL#nIqh*>uub#5SHvUpk^Fsmgh9#m6l6#g_)rQ_VlNmU_
zVDS#yIceOhW-Q(Ek3&0KTCXu$bF;C(kZ#~<9;2^JOL?C*dImjE(mEkl@4Dr{DU-{a
zdb!Rx>9}}q%8X*(6&=_3{$!qg=!`R>(>!&JCiVnvl$td2fYjbPP1)x+O00x)w<`5)
z%5uHI61nWP=u*embDL!4zo~9af9kSq)w)2*%cnzCcV84!x!3D+dg>(&U9mSeN`gF3
z^m-QVdna);Z|B<c8(B6ge*EHdVP|1|k*;bt^R)*jEwi6Yeww;OH~lh`)w@SdU9sDz
z2HHlQ^WS_~?$-HES-Xi7f9_oLM0|GN)G3=@JBD<Ir(HX?>`mm}_~SE=u%u5G-Ii7I
zB0_Y&x~S5kUiR4~u4gx2owmqi%}Y0>B`fZD96MuZa6_yu!B}(7te!<%ee`xZ86W*v
zHC42}XmN!z+qR7TSJsGSZJK1@7Q;Sy#>%;~!`4)6-yO60%@SiFvC~zBhSwgwU8i$&
zk@U(b{@=Y<KV9I&usX|V=Jre7TS9!z+Z$f{ueoLA9-@&rr(1gOBZFC)XVWG32&O7+
zwR1i5Vag)iX<Ir{bu@R)DJy#Fv}$hTn$su0E?WFqEKs)o%Z-0)EPEC&zF~4vX699y
z)f3Ke#h%>S#a5CV8qmu%eU*{1>b*7RjhD>ve)`I5dZsY%?u|1(u8qhJlX<#1WdGU=
zR`Wc|gtu1QyO6o~%7LnvS5g9I@DxciDtk`ZqQo${=<Kvp6E!Alnr!jNSN#6z%Z!*C
zSEpS)=aOR5D6Q<gBFnj6lmE=3qav~2W}TAg=wgwdzG$=Cl=&Syt<tuJ&y3tHt1fl9
z($G#c`^6p}mH!SpX`im<tg^VrVYc>_lzxx(=`<DpbIV@1gcPd!xf`!^ij(s6Y4Klo
z%q6=eY;}d@tVh3dt9Ndk9<@bGStTuvdu`i}Q%h$G^-p?zEk|Rz?ou|9rS%n;&-I)w
zJLmD?(VDm`pDy;EE4wz+W#wkG>&i-^>-lG|I{D)451#nrUPl~EroTK=GNnTxW!q)l
z#-H;(nFeWHci;PSmzUAUCtY{9ygn)D+o374Jm{HJZ}<g{^Q9IF6Tcj>IXv@mRGy#D
zvC}JBj&ffV4PHGn#c`R5^V^$Kb+YtcmDMl36R|uzs50le(rPh9eruj^Cbr)kGhT{L
znS1ruEFu5A16kgYwwYT)erTLDQx7bjm9zYLH<RMD64iUFj;z#J9cmGxkr>vZRoZfA
z+0GMsS~Afq)Mlk98Z!3_9u@Oj`dM2~O+-6z?griH6Cz)qOga6)a&tD{=8(on(Qu8(
zsA#YH$nDQvSFSw$W{+WB_+_7PY26zqR&A3K{Hdz-(Q^T(xkvX^p|8svuBIhPznIh`
zr8w!b%i(no)vU~mE7nH(t48riMoV|*oj=Fqx;>&tL#FZQ>WeXw$Gv>a<4%8@bd4!j
z_;SfTj}tQ`4Cm%_b$Y7WMF<v`UD7`>(>IHw?PdqVmU`W3OM`fi|GFyIt@+tCFUreR
zJtS$XWa{S7#phEl##vvQ&f2;BXojZMJ5{b-sUqfS3ukSziZD}MJu|25q(|~Ty<2y8
zs+5~&-Mn_{X_{@{_1kAXqEp|_aeH=3W3Bh>$h>2lmWC;Nxqa9uYj~3<HuptyYNl6t
zvgyrrZWntG=zo4upB3Y`LAhFayZ*E@^Y;7>+j*woPvOp-&R@btl1E>bXchXYIZNz!
ztDIwAv)!bf@pSl$t=5~*q?k!AS?RMqblR#zI<d!IRGoao-}`finZTo3y`3jgrcZvh
z%G&Jo9LJ!jRr=q0ODp3NpEWJ*J~icB-<G_*4X-B0s9hH}U6}u+bWdu%Yf{Mmp4*+Q
zw`UxST)Hna&#Rkt`$qGZq0MU+pYmDi9&-5DEAFBjlAenX?V7OU*x5qY^!AURPN+R%
zJC*(N=bq^E>AznvX@~wg<nW~9V%B8in@%M$FE^?fYxv*l{Z*B9<80MZE2+s*z51V@
z9$gS4ziHV)H!G{zetuKFrWvo+*t)LX^!<t#O1k+fR(U+97Pqb{pP6=4Eo9D#r;|8?
zvU0g{5@p|SZJQg#I)9m2VVi;5Y~HIWtBvl)gsfJ!F`N=uaxJu1HR7_9Pxt1zSGRN?
zwYsTyJ7UU((CII9l0<GxUyR&#T>bIWL}B*p*?T!QcZgd@>`QX}^mmi%R@27QeT&YN
zc-4R3w7SW{lWULabLqwNHojOYp__M^Q%Up1%%GW?x@NXo^K#0BYo=u{4bEkKdV7+f
zdSjzi#`0TEDNbuw?wK&tmvxN>Z~99=Lrw3P=}A0`Ri3OAU7dQ=)4RjOtvMs~$?GyR
z$=<Ljg_`q%*E%lT(&r^JG3My<k1_TOC%!HzOitNdA2DlX=qqKnd4gASHr<)QdzLTR
zf74;ctG%M1kJ-#Nitv)3VyUDw>#fVG1G+{rdHZIXuQZt^y|~k{*SAbFwL_nCkI3sT
z+o+|xwNnqjUb!%IuE*!nn8fQXF)>RmLPeJ)+wHyZtg3BgX{*+Qn>JJ5Y>=I-u;kjN
z<Zv~I%+u?xdK|A`(Gih;C3;iRuFGnZvsL%&T;t51^oEyf;*PbU%P0PdNXkm%*Y(Wo
z6R?~r*8OHp(5x>dOARMyZo0JM8GB3LXVFTV&687`v)A9s*cE@${MeeX*QY$2l4c9e
z+fw}Y=Yn}hrKYBOd!|)o)a>x!S#Dz-^LcTZ*(RA%AD`_?S$;v*BK1+yIlEj$&bzJf
zNx8f(KxeMj`s>U#c4}dvvg^;Bm00dmRpz{Qolln3M$KJb*O!L$z2lr3S`sXF>v2=y
zv#P6p)|=0zPg~u1O#RrbJ6dN~E}Zu2>EtlidCSsrx6ZopAWP?vc%-9-dH4>Oz#lv2
zWb$h^dp11Pd)1q`_f%>3$3M4J>QA!7oz>dw78@wMw6br?wAT@LPH<;9ozQO$>N(dX
z7_6|oS7UmfzExJ#B2CrnbGVMF1h4UFJbBFc>!r3OlOqq!3N0<#_44dA?lrTdZ>+wg
z<UTug<A%=X9c@<L$7iN?s=BlInrMHFTJIfj`q6|C;jp@>)&1t4r6<0AOl{TopITI}
zdio=ew5rgP4YoR5#|k#*m8oqk+mynuBr13IoYKvE8Z#e?<`|2tTKPsw`nwy?i@?pB
z<5tyJhh8!F)xFt!hTHOR%tIyn9WiB$J3sUmbthKzbjvoM4cMld^(y$A%IrrQepudo
zdiba5sr7dbOpkw)utPHIZ<%`f`O-aePG8efURZx;_LU7x_s^xb2S(lc^7?O$*QC#a
zi>~XYa@zzxYgAL|JCj%!YUsVyXH$UEwBST#Z>OlUTop+sOD_6K{+S_pRIa~$QrJ@-
z>rDZZPg=~MEB@r`lEn4PBaE&}gkGxEj!jS75@fI<%QGq1p-x~)iaVS0v_8q0@RvN7
z)@E%#=6~T)y-#o8$%$vq7(Z5;yQSlgPw$D^ede3kxJ(bOI-OJLIL+|Pi=HP7eImUL
zKC$}E6qy?MBqwcW40lppi~92`Lec%v(nTr{c-Lr%1a9(MHhc4l1$(?i7iIY9t-bX3
zWzwEJpRC@HvYV`G3r(c1@=T0dHmy@*vfhM=HQQzh+;puo*v3`gnmSjy_)kula>I%2
z<F6#A=6f~WdL_D~&^~G1t74PgStXM;A3CLQ%5Y7K<ZRcq2g*<BY}mFjuyL;H?Y(9f
zk4~SKDcTXWwqq@K!dX9WPhER2(Xg9(krPf7C5N0^B5mvZQ0S?etDxq}Gu>u!-ohJy
zZkckkBqKVhxcHii(Mvh*3H4{M?sVBU=iQ7StFCCyj#__Pc0x_x8QyMPQ)8`*g>6?~
z_*HtONMDdVoR&6a%KWX`RjiAv7pJ8zSv5Cs<ze?5ZoIR3HdJk!EbaT+By^Ve=?K?V
z)3R4~%-B|WFHd!PLtxIVl_zQf7Mx6Jez$0AS8hRan#HT{2O}nBt(|Oe>{L_NgZgW0
zoTF~}ta=<`H&sWp%f&8j>zXXvwzLyn6K1%sK54Qq&gih$8rPEIGqW^Z3-9!$EZ1yu
z+L<Y<{`LpkTcK8yFePJI&F*BMCcPCO|D;KFo|8WN^+d<h;=N`2=H+e*He4sv<ngTA
zGEg^o$F?(~MVJ2>&7YSaVRB8&?b#axspp^TXGiWoC$gdQ-MTq>^%vfR2=6T1S=05r
z^3Rj#uch<6H>}{dmw8sJWOTdRyeKKqBaorPje$8><8;%xP5Zm7zQ22BmKt$ut<Ty-
z`4X?EPpa=#O8raJkS+Ur_+|S0IriJ{H9H!-@;kw^s+uv>?>aw&<gHI70@{DvPcB+;
zuS;zCjCb|C4NeRXG-q&sm%UKO@at*7of%8j849(k8710+*D8D~<?pF}uc^SJe){0<
zU1?nc_vI5S>{C0r-<j|3_}(<BAS8Y+bCtxgt^BOExAmtd^-bd3Q@{Sb<2}yrwM^?)
za4a+r-(JU~-1YD0&GPpNeJnN357sbva2%K?^+82v!<@Z_^-At-MT%8?oqr6x3?25C
zpH{rMp!4tUhIe|I_ZDUREO~wIZm~h0?`$&*xtpI_80JaGb5{y5WHPQw`*Y4It>pED
zpOabkrJ5(I%$=R}z0iICXUS`2S%-8FtIunC@a;{eM0)jmy{XF^E&AUa_#prPgyybN
zl}Yu|Z}$9W(wAB;_SUTal1)jW`kNy8I}<%^1x@zXzPAvq2;B5?@AJrWi(GErX_q_4
zX7%aE{TaczKesQBv-114EvsOen!bg^mDBIPy;BIQc^~T*&Cq=C;=O*uxijPg_>7}W
zB=lrvU06_^S5y9`;k{Ki#~L+R9gY0DX19dh3{O6leHAp6be{b5ZuxSh)AdEKE<X_r
z;<R(UduOx1-wVAnslQ)nv460h@_!Da@D-oF!nA-C`}+(&(rOEW9gSVGSKU$I5#W0E
zTzY17fzh)in-jm!_fdHL*E&z>_*(WSVOvF|nvMos;QesJ_7bbY{~x>mCn>e?i+<r|
zp77=OvQvsu{Sm=@3oS1@sf0$a;+Vl&e|3|n$_rMdS<xD|S37hvvaC3CBbvP>uY)Tf
zSK}B{azlZmy6c7*)^j_YPl;_>;^PpQAT#USMvlF1Q8FTj1&k{A4jRq;ad-KOeeHq`
zDaRQ2?|qt;+hGuYYC*{5&;<vKcS{_S<#{Nc^n&km;gs)Ejvm_umu$bx;UKZE-@yCw
z0jGMS9XoZU5-bEH-3wR@*yZh*<twMFSHFKhVbSDjjnl9BIYe!CS;uiqWHRAfaERL>
zopnv`%vF!>u+`2A5_2$I%vhOK^uh67m~F_aX>3cHI1j(~UGVUhLCKu<yU#=1o}95x
zIia}i<j%XQ)d@A{p6oI{ExG8JRdAP%g~k4RE-$~^*1s<lJf~a1xPZyWn15Q|HWT|@
z{*DXZo^74KVw<qpTh}wnyQ_B2jxH?zQmZcU?})Cx-o5>=F9;mJe`spy=}%z}27cwT
zPkH+SjV+!Ylf20HwxT>{_5-#%n|XXi-+jJat|-~~b9YM9edluz_PoC=dqi&c|15)t
z@1o!JIP*4IDX@L0|F7=BZKwUK=J6{bbAPp)%NCb@==;1nuDO|M$r7e0qxbfj%XkeI
zbbPP>v;F_GV39wq^IyMPzM^_^(7`1;&*lf$X~weuYAZI~wTt!8w`czt%X*gWe<oMY
z!mus>;K6+9o<qyu9kjaCxToRJ-G@9AUL4?cj(OXEKJa3kolU|ci{>Tu2lL;`Ef6np
zxGle=`t#=UZgUN`KY{NVw=?WNc)R%Ut?HvYg}%y{D(>*j<d{)(E@|0<_tO%aXEtvB
z{*#Sox;W#sdzEW{RQx~u-ge9G_1)it40t!)pHqB#cJF20jAc)^e7Ki;u==gi4n3xS
zKfc%RzrIs9@JE1+NW=1f_v`IkQg<w_zqj3c<@0uS1=Tq=IWwmH6+Lt1@pP+Cl9de>
z|GI4JY8yQMN7dK3+_TN#QV+1NoBHJV_xK0-PZ&>37WiAc);_|)Y^KNGkL{b6>|p8n
zy)}Gl|GI>-?N6RQo_71-nyUWlD{A+;5BmIlSbp&Mi-)iNu;uKQV0rPh?oU@Y|1OEO
z_Vb+Uudt_Biq2fA|0qr}`QQ#c*+Y?X#oW8nGiI?KoxwZf`>n}|feNaAe;YsX_Puvt
zv3@0VC7`y`o$;%Cvc=^u7n1@fDL2O6)HIs+pk!X_BZ(LDA2187>eI@4cQVp_QuQLS
zkEw4&_GCBBblT>4c0u5WNvte8?!TKdxm4kV;LN5|Q<v4>+bbx^vqe#(E`Pi2K2FX^
zX0MyiPd}VjeN*_*T81s_mpJ~cR4DP5*^sCC;qikY`)`xlz1d0{%C0C~OXL>F-jjRa
z-=Xg&_ng<MRma)8J5N8lA&kYd*GOSw<Lh&0SAUqs{8RB>v~|*Nj?<PCOs}0QZ_sTk
zKKuW?`HNT^x%Ob@hxG@g`CMF+YiI1{e{8Yu`v=9vztZZyE@owII{s%Z`vu7-Hn)pR
zN*$J6Px=^k;NkX9!d~a<Z%O`L%DlDA<>r$&FPu`sM8pq-EoCY`$CAI-YBnFs?fdeQ
z-zsB2?Yz8h_M?3{_UohBl3rbPo$}E}Fm;Y-VB>~{Nr{%NJ+Hik(^{UruCJeS;f|i%
z^=74}rR8ynJA|HFuRfFi^7GA_XB|RZD?c#l3T=?c=(wG5@oz}?2m8M!-37n?xJqQG
zJG2Ixel25GvD>sDMY=2Y>elZ$H-#FvJv{L+{Mdx_8M$w#CNTbRyM1(V`J4V<kHa6^
z=(|Y;Y%U7f8Goo^0sl#{hjP>R+>?4!zwX(q>PgqaXY6_Vs<v;Ag}rrO*7^d6t^W&3
zCdD1SS};@m!S;hmOUuKH68^HL{j@CpzkT<!e_^k8uThWRyL|3hjUU$=_D38zl@c8|
zmsjLPc59u<ahHPfU5BG>%>94)Fd5zbJTv3F{GYz)H{P>auFLFy(PZSp6_y*k@SxiL
zJKZ+*EL?f<i<ZrckE~WQo*{qZ?TYsG;)=d|-EDJX1tq0S;-)P+$!fv*-R9N#-|HsT
zZM^(!dw@laU_JNOqFKzxK8Cj$S$;0OpPOuBSLg7rDd@|61^x}<@vi?qGID-Ya$n4l
z^o-H5T%P9_e?pPg>x1^MuYSDpXocGRjXxIOGdp-suciLrMl<H_o*lQP^ET@E$L{`W
z=D06Yo9X-7%YD~{gtoB6ew>$nAY1cBzl2l#)b!0vf~OgO?qVp@J-$-Tn|b;IL2lXK
zQ}Vm!mArkgp?R*YVU@06<Ykre-v`VR^UHQWVkoY9_5SOQXwGx{R{Yj`!Iq=>B>(&N
zfN4@Diy04U=I5_gsCW1;YQ|IWL{{?5y7oqA`_}9Ol@YbI3vX4-^T~~QW>NawWRGBl
zYHB!t$z6U%{dxO6PF}Y^bH4BFmWAH$xn|w@SJ33xqEc=UeqQ#*pU*!do2Nayy8K1|
z{{P4G=c+t$eERIf&6&R*Y}ytculwtBSogo;2et>^F5PR>eYQL1NwoIy`dPnjAF!^O
zcmH|myJ^b~Z*`4(60v{Mhm+!VF~=o~Sk*XqV|-cJg!Y|gyWb^kHz9wW#Qvs&ZpHUe
zyR{BUa+a&UJIsFP`QwGsVxN}m|K0xJ*9%vh&i@jh&M^HAadxwR{ce%{qvvmJy1#47
ztDnE)#pk_Z`nJ7wk+;v!U0J^R`vJ9w_4n7_pZ~q+!}@mzKd5Jj3U&Pd%fRYh9?PeD
zCH>tl3F{?)efF$vm}t74@pS}qHQ&4Sb4nAfZ)=}BCN;zKz|F>$%*(#M-F@%<y*lxQ
zS6b%GE!N%cKd0!u(MSKl4<EJq%>Pw7KRBN}b5B><w^vsR0y7w%L{51awY{(Tfak>q
zv+bu2)~{eVa>deZNeYXVX3bqUdoAg|oux%j|IE%mr&d-~&N@}GZ%=j`dtFqr0%LjM
z;*j{cZ7ZH%6!`i%<H!2^t=7Md3}g<SPhdQ?dhxD0iw{D3f0kCWs{L4dYU&Ro*5@8O
z*h+K!9rn+9bm52C(Z+gpr`GOYfnP-0H@Cc~;GL<>k``0nc<RBV0?V(aE$>zvFIuV?
zb?qz9+FXr;@4_z2^&U;yXe(vC*PC%;_nbRhEgM95e>v?vF~RsjUF+t(4@~}a%sKi}
z_S3nWb}avy9kovxm_*+`*=8WBaq;YGOCIKZMgPT{zDo0dJScX_SWrPpfTO8y`m@*D
zi*F>%|CAcTXWhQ-yLkP}$+3Z{I|TA?h6^&TJ)3j6%B#C1>2}Q4$>KA&n+58BG2V0F
z+I|I@*5WT7*Yh<${d1c+dDAzMwuejtp$oJFmo2k;Ij3!HRNuBIjSEtOxer>}O;<n2
zayzfj@!;GK^O@p`g}%Alo2I|WWe>W4Q7*{BN=oSS#fS5|cI9^Vu*B~ds=pb`c>Jzg
zc&q13cH?@Zc}db-g7-H3di?(1^@+J_+*T~Cx2XA_GWp-9$~%#E;;#ks0<MR@In2B|
z@>%;a-EReUYA>Xi9&%}2*q6&3eqnYz@4|$8bHqJ=)Mn0;XOQ3XYTe8AfnQzj?JSh&
zo5XpvN3h`3;!h81J9<vlyx6%tKb^6+-aR?eeN)huw1|hSjwgF`;|*t&y<Yvl;*<b?
z($N|to=w~SL~P7`=lZ0ff4}4E+OLAM-o)Rv(0Tk(``-_VgL<Y9)=PSBsJna8LM`n6
zgOWA;%O8Jx^zugR*YKI*Z{rebV)on+vsm`s=JteY)7Cc;;&H(zs~9AzxBt3OA+HhL
z``N4hS|A(8-qd+P1z$hN)}P%wk+Z(+g@C|DyL<J1dSwzfzv^<t{?Fl<`<o*+zTv{|
zxfi0hC$!A|{OWxNYjpZKy(9XHF&_?pm(u4@`^MzH_wmm;Sw`7SjaGiEvs3(XBHd<O
zn?L>RhWOZrr6${_PmTGZ`K#(&{D-yD{<q)sE|=nQ-CqAD#`f2nYwWMn?PFGT&Yk?l
z&MAJ`rq~5cHNwJw6SuOhetWlZ*WZ5+Zs|VDTPk@%x9KONrNjjmdu5GJ3#@M`6gjdT
zncbn<kjgM8g2{b;<y|3$9l=Zu%Q6DR)@}`NJeB#}V8Vm1rH`~(Co>5u6^oSo);GNn
zIqx~oIn6%;eH;JV)jRRl6w94i@+y?)_PJ?GcLtZXy1YH$_2aL7tySRV=N$gE^WyZ2
zKj%&ouJfGt?<cP!li0nGxk;>kDPO|^n^=GTS>sy%`Ow!dt2@|sDHJdKCAxn9;=&!W
zg+eT!&RykyATZ~Q?h)S=Y{>?)x#uHqZ|Iu2hpj+yYWBWJ;hb5r=T9)z&$o3`;=X0R
zH16o3t2_9*?>j!fwerjAzdV|+BEH(BPm}pFQ-4<b?zw%2iw@pcRJ!WHobU;J$FA2O
zFT8qt!z=dX+mure+&Uue5?)`wRPN4>=_{96YF6n*?yLJg^?7OhPJzn?=PtHnPkSa1
zCBhJJR&3daCgyuj#p`DM7gc%pqVlj+y}v`igt%IxE6=}1+1}2MZv9u&k-eaBqvN}?
zQzaU9#lG7Ae}3b)ch|K)pDsKxYeW6{^NIEAmMh<Qx^q>ybFDxF&+&=u7e4F%uztK}
z^@;msjc<QH-M?qbjiqTG4}bA{ulV%ix7i~{(a`usyOgdk-M`(x?A@;YR#R*L)HtN1
z=kC8>S6_8Xwd~HE+iT|(7|yb*J0|}?Zw~944eZQyI}X^EoXIX~y=2#T=y%Zc35^!B
z-m>~FeEs50e)_z>miuzL1gABB+p_vYWf4n3id5KxRwv<S1uRaV-bUvc{484j<h^Rv
zCSe)N){Vawy(+TZe&%Ol)L}o?@+T3Y6)P@QyIzt#&S2ADf52qMdGqq}z}93}tyA4b
z?e|_9#NXHMc{q*xc)%CFzn`U5UR645Q@#AYf5rLte;Qv-d2GsI`?vY?*|&}>Y*fUn
zq>E}lZ}|7oae>f<A9v0Os#mdPyh?OFs>s&Q_U`{1$46_{zj!?Vry19QwvBD7lN%N?
z+v&KbCppb_+VYT{{eW@3`GeZ)CWVJsa}1pSO%(OpT72B7*<h~Fg@-dswL^CvwY|E$
zs^kBQTYI-_nbgSpME~66G$(Jp+(h=Xx_e&nJ$6@>IFYwpF>qb{{wW)yeU{7b(Eqvi
z_oRI_m0$MHIh%cJb?YnfTRZB^4qfA@K6dQ6<II@_3+FX2I^>^MpT}ByLS3d_qQO3T
z{*<|Pw)g-1>8d**Cs!Zhd~JFC+clX_-u4^RHFW*Fa)~+INAT9Kc@w{^7u>CGTpcrg
zVL8i$!{24<QVY~{WY{b2F+Q)7y!?w{cX5yZSCi`(m_F>?vO@Rya?6TY&5QSG%cMFP
zZo3|RWPSgF><0O2mq#I-B1c%)7;?LDxYaW|G>gk*RYV_oP#ip8#c3s*c$nJnFsYwS
zacPq*Zypbyq`KU#zOd!$^v#xHdXemhZYv79vmL%G!u6}!-*EEl4-*nDi1&YFdVWz<
zdv;xYs6gGnrBB7&ccir5RlJ*hW8M1sS$wPwvmX}n>K_%AJ>-~o>f@>@|9AQ9Yft?Y
z94=^C-#vSKObm;{mrI|N+*fU@>UyYYdtvup(>C9f<)^lVKfZr{;?j8`(%(--{EAw_
z<sD|nlr8>hVtjb};VPRvf!$laEb;yG<z?XS#oVi>*8jO%zcj=vE`NvpzjyoJK2j)%
z+5K<UTSJk9KmFFFA1dZ?xcXIn#kn`LDj!bv|K@W#U#F<2{{M=&kY^I}HXXE_Dn8L)
z#E3QK#b;h)SHm}Xtp1z+Tvqqn^dTl(`@^|j`I(>2|9>&h#O>fK^#I$_Q}YZBo-ww4
zoz;-G<MpOr$y@K8SN#36E-7N8=z<@6^aa`Y-c72yk;2s>5~ONlXp$oK)8$9^a>x7g
zpRgwEIG56H9^3BZw6eGU|HJ#Ww>l?Q+PTe}UH;?1hFM>AzPxD_*)64cKvYHi)pcjp
zKIs`uDM>f71lBy>Fx_;|mgkE&E<EB=SRm$HlB;}bo6No9{1w-|3@VZ%TArT`ob=vQ
zT;e^0+75Q<2P_-%oP)QSPF>$TBYTSJ>(vgoqPKCCD7w!T*!yeByExXfh9dPke6k*k
zR;$|Y(NugAy)o}#5buROxwrfTq$*BN3^-R+B=FQgRF>oS)D;e`pTd`L?&U5sRfw{9
zZnJQK(%0&K{~OO78CrtxO%-GGzsOU*@x+~1FAMBA9+h!Fn$7g<(Z96F?CtT6cjCma
z>6n+jTH1cz_Un~r%U>^kKP{TQeEJmOBlT6DciZ;X20h;}KQ`g`_weodGD|&fc&mSG
zx%F~eJ=+@L%x572g{Lk%?&V@wl42m|$KQ3Ro?WN6<cxU6^EYo7S1CTqUz!&u@LEpo
z-F4o|ep$|(|D5Ks>th1HM{b;dKlI9T_UVomiA)8q)@~EMk3C%QL)-Vs{y*=<Egx*N
z-gNtOz5C(Dx`*fOL$BO(7MA<}ov-`Q2HPLabNKK4u9#Y5>R*;0Jn4U;yy!mdFA6sk
z^g~V`pHp%E&6&%utKRE{?CX2#YcsR^+a4W_eCcZ^ONx@u@*FFj#i+{4xir+mKc=AS
zed((s#^;k+&ZyowWp$#3byp9Y%ZBHCfeS*P-M!iWFWs_!vZ0Gq$H(BfRgZrPTJx=1
zx7x~*Z<RzzK&*QIi>r_Qj{e=SYv)^*YnA5$qS<4veN~h_e$Vx!x$}LcPyJ>OY8>Ah
zX0Mo#Y4&I14DB}-@r}>?f^S-1v@W_4{B>?X(J2-$J(-2CqssT5>RTOiTWjrwrw?9C
z*?0J1K=D$R9ocVxO0TG&aQxumJHPuEo^UcaF*PG9?ZkzO+B2KZAJ(b<`O#p#Zqz)R
zwzGl#ee;-~-D|vCee-AH`HtPTB4N8Xoj?4wa`v}J2kxeOFDX{vJomVA&ZqnT-Q)dt
z8u>LV8j3H<d!DkZ{zm&DHsO+j33s<A)Y#kP-`;ze<6pDLufK=qA2$9fcJfdC?bTh3
z8<niw?_78-9xBeg^E?y(-^yJUMVszFoi($%VSckwU+tfRmaXTzo6IGih$R+ED7>t>
zfBo`=_I7zWhWY&aAKy!plYK8-arf^ztL1-X9U48i*w=+B-*~*Z`p^7owg>rpgEA9y
z?3CIzH#3MHlb>VE*sM4I>22HRFM>{$I@ia(?z#3{@A31WpKMy<r1%zBnf|nJxu9_~
zaH-94{?b~XIVrB^rH!g5e!g@)eVy?P?G5{%D=KbrI#(qtA(@x9r|#tG?XHg;n@&wt
zx>9FkeatL&_q!PnpRc$(g>y2CZ^fzSSGjrr25q(#G{5`#Q_lH>?T@{d-<TiV@Bg4a
z-8w`3cm4VMj?FSpFCOMe`qL3FcIM%Nw({@pvFrbA+wv`RLaD9XpDoLFKi{`o<hTA>
z&7uXIZ#6v<n$C4Q=C?iAa^ll8*Q^bBCr*A?c6qm$y7HVD_DSKQIWNVI{irN<+HY?C
zN`2Y7%~6&`F}nLZUd@?gn72gy(iYw$i+oO&>K#1wt!~59srBDv>g8%L>mOn$-v397
zXLt3~bDDQnMYBJzzOiag>*D=4Z}-$(G)w*S!ZB{j<X=yw?3uVeB<HX=OZ|`Ci?hz0
z_Vcb}c(&J0G}f~6-x(1N+4WCO*{sp|#npcBjJ_?;v7&ELF6MR;ZBZ7Atot>TKh1i6
zS7!a?51SS(iJRN@nSEyb+WI|jjbn~IJo<y}$s4<K`vVtLop~q}Xl0*&St)gWS<`OW
z$2EUk*XXFb@pvdTh%0Wn$eB8M#VwiLsVaB4Jb3<Bd<ftEsy3-c?Q{KHVVC9WxDN<U
zcCa?66=|8^WZOB(y2YY<(`(U9o94Ce`WzZuW~&tKDtPVSoxXF$y$80wzioWIUeh6m
zwI(ZC==#~spO~NV7hhoV{>*aUvZbNcnB~uG#Up->9CHIp=GfZ({rc!G8~3ywf18vh
z>Q*n=m#{nj<K6X!KSbq1zx=4UclEvSsnAEx-#+dvc6x5S>F`SZ^q*WC)=ax{tHkT@
zu9<87<}wBfJcw*|wB+=^zvtG%S<@}Q{(JVRKJ@d$CyUunKmM|q{q=({i`iM~zXYr+
z);qEP@0UqILG{cWf0-BLeQ0i;Kco7=wfk`;Z(dBh86U2*&n&xqwN%dUHzCbIt`RGm
z*(b@@mA^g|^yzM2VMWRT`Gkhe&Pn%qBjxR1y_LDYLyK|O@;!{xisyaU#(us%)a*b^
zLj|9gRNIw$G546=(f6ZQ?hSsOqTY0O@xuvE>VH3}xt5>Y`K$5vvBC)();~G=agXjg
z^JAs!M8ZT`zJ3&$e&bbuV!e-tZ|$w{Ct=pR&+#zct9`!lN%waxndzS|w^Xa_{LR&s
zwBobZ4~OOjQBN&vbp+h?t4r=*{OqMADIpSYs%*--8~?<=FkP)beO~>~%G}-B7q47>
zbva(6^iavxwNu5aU)`FzgyWy$H^s8BsyCkhwm0w1PJFt@=C9|Rg8L56*B4LcE=X>%
zRamxOqNcs)5a(5kR|jqcw$9OcyFu^ED{Yk-Z@b;Ue-8ZM8f2WZkJWlxds28y)U4Ho
z%vrY<7j!kYrrQ2uJN5JbSI_!ewcmCY3Qt@cQq$t}`Ca2Oo)14C%~+bfD(pq9+GiW4
zg8LQgib{RcV=6>WZ46$lcVW(k)AGEgrK!5ye5Wl>YA%U<`(y8cx7*jH$95j5tMh%m
za@CfH+0jKiC%tg7Pmnj7`QGok)B4_N@13q!P3l_bZjc{xeV5SY3g=s5zs@}TJE#8E
zHP%PQPnzr(<-TnTj<b2T_E3vsE9dWNe?$K6dp|{Xr_G!~^Gz>Pe3I{UX4aISRhST<
z<5F<$WH+;Tyx8$CAB{il37ItiNyn4D&G+KhdR+MP_&GNh%iizB(e;)eJ9j(Y%HJ1q
z>|H0<?J6?^#hdFhgy*af(Ob&6`sNHrFT*=tMfF)rTDPgk)xP=vseYdM5BA0&kyn#y
z-o978!<xADZl*=)7teQ5Q!lSGVgFz-JwC`KdBuk`@oBe2)`#i7h^Tn{TD+#2v2=Qf
z>|U?b?rhy<^=G60d`;1{n!>5$aJ!<Et+@48cJ<V7=~+i>T~19~tmVt-GGmg&74MtV
zp72Gi2+kI)50fbDx@*aQQ0Cuu`y%@n0@EIax=h_<^4K}R_VaWFi8*V6wwsyi7p(~v
za@#6e5oO$SjL}6($|}iE^DsAipvVR8?N=WDwpPiGW_Pc)&SSm!h2x05<hf^+69pUX
z)Yc0IHyUPb5cD#$=!#`7G2V1G?{mW85A(Fn{JnH$>jdR{o%N}Wg(ClM`U=FX*rh6Q
z?%~No|M2ZBr<P|*e)y0Vx`S0A@$ZLxt-_ffK4%muo~YwJ9bBrn-F5Mt!;c>nUS?WU
zR1ouF%cjTbUd&qUtg8}Kue|-eLD9jqZ3k0#4Et*tpT~YO=R=uvwpOPX#5sii4Ymk*
z^+@!goWnXvt)&I=jC+pP>wo<mcXeSoU;pH5UY;Kc65OpM7jE7^*FY}9_vHM}coDvs
z`M2s6byYO>z7^nj(z<`o#Q7GPcT2>kPk#OCLR&LqyUe=jJ@NcoHfvY9znX60{>{(2
z=IO?^XFs1_u9`PTQDiySyYc{yLu<J=iU!UK|90)>o8sw<oZH!+AF0}1)g@dX_d9sg
zlg~?jtj+#v)OxG1NH$b}At;7bQKzo_OH)n5wznH)*-h`pt$uWvTd?9tsLZC<&)P~Q
zHJ%?lu=M|=DA~HEU-EVTHDi{A?3vEAH}qRH@9e(wcGj<ic6|AK_r5v@52wtdgO2v+
zz8-gfa<`f7^x1zuLMO@JuW#I6e~sr7!^e8|cSRrP-JUtwK=seVaz?464<^T-|L#=z
z$>`;yB>n}{e}B~ex1hVD!)0Q(*KdV}=ehhYzpidDis-3(Z?n2M-SzyobXV(WiF=w`
z-0yw<z#jK!v%KHe3(TE!Vg%1k3=hh1O7CD<CL*`ym28!&?Y|G{j?>%Tt?Qb7^ZDHU
z0#^FJW9s$4dtI9Qc5AfhJLz5jK72UL>afo%euKNYxb6;yA085)te@}d@p!<#jqykO
z{S)G6szvvG@#VF<u;{@&{cnqZJzf1r^7iY)8;?EZp2c%umqTJ=+WNqsS-N{Z``NiG
zo$wRZE8(~J_T%5zgvI5X_2aMJF8`$a?Vh{do}xV)l`U@O%GcM|)D&7*m-1|XeVqHf
z;R5YPUqi3|UC@xrvb4hf_QW02+w;zxGqTLLnNyw7@oI-sP5ndbcYZs5Kd;|&&Ema5
ziS)VBpygI!>;HCUbbdK_n0<oqa=ALQs)G!N&PdktwDT?7-eb+Uf9~C{d_FyjSEByx
zGJSVYC3ty7N&%Bl!eu@F`g$(~+q3hTS1miU*EXg**f*i{b=$F9Jx`|{<K{e=yX58N
zM~@`AgYN3>dn?&{KKjCq$D9Uwv+EcG&ZP4xZir43;FC2=__qFi`d8cjx`TPq>5P{m
zS{~_c|0J;JkkeM9iZf<AoX@BJQ1)?Xu3z}K<p1IS>;c}4ObiSn3``sh3^GhTr>EcA
z&1ekT5jtI952GWP5weFd0=#>)|H=P7*31kHoIKNa?O`+ki+PybWaeaHV6YRN{$mfL
zPBdr->Cyf#GyUWk7?j-@82A{FK_w>xWIt(MVi{y3DZ+jZ29Vwj_a^jcNHZ|Zw_sq9
zLe|Rgd3ya`MoqAbR_|q$W(szmyw^!q2i<^aKY~9h2{AA%5(0S(*@StX(*^f2D#?Sa
zIqr3N?KD{ihWoY*;7zUwb)TjO?PF8{TT{7@QJQIY<>b8;;?vjeW8?t~?g0s|oIU;K
zK1O8)kWp2en<t-9VPMElLpSQ{q3JUFp{fvP&!emQ@_c$cOci1`FS@G9T+<i9R2d71
zo_Qd}z;NFjUDZC-=}-4FDuW%$eSlG#`Jw~k^Z;u{vFY{)pzilOz$nf1IC^^a0jRo(
iAc0?H)7Kq<Iu(5bFd}TkCr$r&fKi=o!D&VY1_l7nQ2|c?

delta 47344
zcmeyokbPbgJ8ytDGm8iV69)r>k<Y=2yynax%KaXQnykUNzuw5_U<A)C-6U&f28OTP
z3=9Gc3=FOTp-%eA`FSO&c_n)J1!-HSoiCnkC2;)xPi>Q`<K_w*I(sD_%iVgpWpC-M
zn0u<qN0PFcghZ7#{{QXO#3Ix_?aJr84ZmJ(-hJz8|J(ND&_(P4ywjDAE|gDTX*xNl
zyS6Jo->%y5--g|{u1%@Gd)b!f)Y8ydI~RF=bbM{4_~hfqi_a@#e+0cfsl;*3<r=Ho
z+6VU0A1e5qJ~uUc8D7av<B97CT)W`GagonHr+%wB+P-!)nzdCmRDJ&IFo(yNcj+BW
z-=w6a@1ZV#(#9f7z--$w<4A!$yPYzk8<$yL-O_Dx@@Dad($!w#8Rs~r1k}%bASLum
z@#SVOpEva<&QuxL6;0#WsW`9y^6jl&D!HdWw}?thwHLlfeQoebY1-O77EMdVH)%w>
zoAf82*!F}q`$6_PZ;1=<u3y^EwKnCRQSK$Ts73E}MR%>e;2wE(t(j_xi@JP5nys78
z@AmTU1i{LKr?{QW4@<Rks*3);CQ{E{e`xpLhb-rpr3(f-Y?XO>Upi;T{S^X#<Z2r?
zu@w5RzGYbD*uP<_(>8IRwZVVRYqw+yM>bztE}|XD<i=|~W7g6gi@H>~yjEv_=-XE1
zt&`=Jz`f_UiuSu*!gsl@%H5N^_Gta#qAQ7c=S)_t^3>Y=*5~2pLfgD1-%T-Ur@z)S
zFZ^A<srIg^rRbgpx9<h(78c#)Dm(Hbp~-*av@_-VMW4*6`V}%;;cefeo?Fip-Sw}}
z4E&QlOJ2FCZ4tk}#^;yv{I^c2C6?__{_0t@yNa)<E$_?9mS+qL4y%jL?d)-@xn`pO
zH*@p-&du`#WB1>`y3F?dFNfc*8-m*omZuaxYm#kJsHty$_hx#NxbTCc@$0Hxzb0O~
zS#;>;r~d_Fz82kjv726Ve)zid!Bv)uQq2lm#<+N{KJ^11mp(YlQc<jE!E=wT{ov9E
zow8E<(%a9ydfPNz;Lg>g|4&Xeb{hXaXY=idcJVKPbhW>Qc2)<s`{wFN7th}Ojz#{b
zQO4tSr=Py*(LSq_Revu`y`ogDFKzDJ1B*9`yWh$;>6V=Jl*iY^x!Bfu^Q?uD=Pw*F
zHkoao-In*S_t{gc{7&tizwgZ6{^;`RQzsl}9^aAK_U_bV9_8>KBKI$x*~5|AI78&t
zzS#Ra=2chp-<kA}cmM8RtguYT0m_6C)AYMKwlXs?JP~4GsON#@x03v1y}aa#wGpw!
zvn@nw&#&L%JTKL*CwI=llUrVvEW3PnUHR<0cJDYQ^rks1n&dIZ?rZ*=`>*v^9uP=A
zuD9lmx!scD^On0F#R=Za{lp{JIbq7?)~9_k+#KDNPB*I(|Ni|T$9nDV+t3q_&gM;d
zZXx_6YQb`&og3<dmUc<suB)n&Qk`+?xuAIV@7on}K5w&@tbKm#+FMbF8A5YH#D5v7
zb1@&bjEv~)%JZ5PAyB-GBba-&$eU$X`tu%Lm0{0&uqfl%uM_=?HMwex-16SI8_TOZ
zIw*0!c|3ztGvt<IsefNc%)^|{>rduQ_bFXwp}zb{MX>LWkY|E|_3mjcW!h#w6@MH;
z-J}#;&0c+D4sKFUU9)B30*gP9Ny|>jysM0x;x$|T*4G_UE4c-X{`|1klhUc({A7ye
zf|G}`@+Tzc#^<yDX;YrGm7nL)^~rCX7i<XR2|B{PS}J>W*W>-IWvN>{L+8ESvpG6z
z|B|=gF8_1dG~@Y^hL|~4eboo*U#ke8f5lRFc4=zy{G@GalJ*9#B^KNHT`%munp*zi
zwt@WdzjnJW_%b+K?_F5->+qWrcfCE2Q>O?{kPLM&V-+;H-gy4QcE!rMR}QRTa<hIA
zKchD2Y|08L{(Va#{HHZM%-+2JQB}QQVL79xzm#lXr$N?*!0x&_KHuNPCz_W&5UlUZ
za9g^_@I?Ab4?W(=nKmXf(+<D+zA8oOR`;Auy8D~FJ+-%W301cJeQdUP*NY7PyDDp&
z7Vfgzw>sUUq{4CWr>}NqLZNRK1d88sxmdGe(MLzMOd-RGpOjXsbjC^d_7w!CoR^hc
zetJUk+le;E_B{Q!jOpstp!Xjh&1i9EJg)kstNwtm#NMml4=qqTvv1Ay*U8^_3)n@T
zeDr=^aPQl9-e|V<^B3{gyG-gho;CBEIOk@TqNY^MRps&eN-0SiDGnFs9T4JnEoA%S
zdSPG7=N10ED}VpJvb;3;q-rRO-F(-gG>@W7{zcnfH?8dOUgcxS)+WO)a+kqQh;{y#
z%BMZYa`R5q=U+RY&zIksP}QjE{Qp6INP^o#-)+yDR+*STer?rO)6Cerfq8zgUR}+9
z|9QT}A3h$EjgZ`0aQ8@nB=_B{1J&!yEd@U;u$`){_eojvL%mnZ>F-vVN(-)<F$Gl%
z`grYs&J*_HV7$wG=T+yga~<!xE^kz;v^J__-hr-7Pp%eT@km*gacIGG1CPQjyv?%=
z+@kItj5_{d!lda=&9`fq-+q1iHEeGGm7Tq-EZh#U$u(~^ke?Q_YTN6bJoT}9BDWOz
z>@Hs^|EfP}!>_L;)nA2Cv-yQLT{a(N85lBLCQsxPukX7ZHR;*^Dz2^Ez3;NhW_9n_
z^{%vewM*9&mmnccUN+`;zm?vlEN-mqt=wBVX<<?EvblcG*Un;OTVXOs>HH_xITnRU
zf{&i$|2Ir|x#;sME3HrW?GMgh=+CWR&Sie8`M$j@{~_6*FYWjJd%3;-QQ4b^d!CCY
zPG0)?_uFJc|Ff^}*W0)H2G=nj-1px8`|0zpq74SFfe#9#Kfg@8Aih55ZMd@X_Al>`
zD+#zXxJK4TExFdaZ2EoKufH?n<IL`4R89N+)xY~_{><wU-0E9a-O8@}f5q(InI}wt
zu1$@e`Th6u1E=?%%IbP``H<$PW2c{QTsn1k>t~Z4owKg|)_Ud}x?}C-Gxb6dCP$re
z*Y3&O%o?4NdizY#58fJyirGQtj~@&Fcx%}EDJ8J-<@@>XZoj(ld6s{7nohc&RDOoT
z@_Ez6!{+@rVftex@UP}RcU|-Ux@Xtz&&JM|)%NY)7WwD-pG^@dVWKWSV}qx}i*1<x
z_iO6nSQFogwp;YYzT1`s?u;u9kIcJLe=S~YzTldw8DHY{H_o?v|L*3F)r;56+4=K4
zd&i}se6NqGjFmT;e)ZT2*0%WB?*F-IMYl<jc>T6HxAz}?p8ECf3N5Zf&l3wQbzW)A
zo%;UjjNhhvtsiAJ=JOXV-sQ9Q<LN{Gdmn~pm)PFVx~#tPU;Vae;XU^DXM*p1e7EdU
zm`V1Jdga&KkKSVqy?Fljzk|KCtUp+c51;!x+5E7L{*Qedzsp_gcDmr+`iq<CLi($G
zg~EEVyZ!55JoRj}Q_f%Uclw@;e_yTt?BCP*Rr_g`!>R7w8TaPx|6@2!KKF|9(&LxE
zt?2rY{%7ywUk(3xU!`fx7k$k6aw|iffmnI|>1WGL-rZ0CQg6Pr=Wol2;`8-)zyCXX
z`?t#K?I-^`-u>wqec%1RPtA>@U4h@{?unZ@Q+?$V*LQ!v{yzM1^X5kTIlV_0Y3QnF
zrTMCCsQ>q(@sG6SFU#Cdjo<wHzh;}(EtK$=?RWdqn)IhiRA2n#y_G+$Pu8w4*>3#z
zY4_Wou3uHQeF!wT?~^LOv)=c|riV8ZTz<-^Rg{-SS)6pfuKYe;Y`&fCE|$}tX~OrO
zy^DQ1b>7uGWsg37Y!|%W^Tl|peahtfk>^g!*2G*mz3l&S?<$3_O^;Tm?hU#fe(i_u
z=1<qO;#>XfGhQujtEsbgs4{tbU(s%Jp|yE;{j9IcR?M>O__M=w?{~xadK1U^dhud`
znDg%wr|i0~`ICEb)Za7r>gF`ZbG%~h<@bCgZuj;7xor*qw<X9oFFq_|biKQtIsdHw
z+rwwtz9$!$pElQBrQdD8SfaDyTy*p|<`dO>_Fs6YvAHR-^S0LC>-B|ekNqmT&oHg>
zL-_4gwlaUezc}({i`=a>O-=LaxBW7F(tq$z{gHcdFB_Jg|IBV&S;=~L`;6$=W|v*7
z0@=f#m&bYY+MVTd@3_bEJvignn`tJsub0fcz5Z(L??27=?@c{kHgB1^xz_z-ozk<a
zzt-7zu08BCFK<d;z^T>hZ_ik%e@<vQ=NZh{b42*>3JqtYsG2DAoM44r5^lYHA2}^$
z%+;6ZtVye%w<)i0<pQ;owCHOhUzZB9th_RRO}4b@nREQ1!5-^hF7aNvVEUs<lkJ9^
zd->K(7GP$YwBSwd&bz4(qU<=!ma#KPY@1Va{<{ssow-lvYN~iMOnd58yjYgA|MqLv
z`vK>;Zt08qZx9LWJ-h4KNp2nAPkmn5EI~86Jw>!PEe~U6X031Cx}N9EEiF}>cY2Fl
zC1m3il7mk9y1mcdusY13im^bv*E{<DmW8ihJf8Y0{M5ak?mg!#?ygzoF|Xz7xu+5{
z70>V3WNWPZB+GSCf1^`#<ke?OHVJL>zRhj?r)1G@2GcF6E!=l2ndLcBV*}2#N!&GM
z*q(cIv+G5*8Jn&jn|v<hOnsE)_vMG;6tA5NQCMWQN@h134__$XJj=Z&JbR;_ipDR@
znACfq&^<K3`>nx;9Ca(v?W-oAn78|h8?&MRgR2P=X_01gJw6@(9JItsK)sAjAi$#V
zMws{Bj898%%nOR2=wEsEOZJuZ#pkE(Dx8|A?Qe7Gv_)^F?rN(kmlkK%=dC|b?_zO6
zs^_vO_nJc+bc+p2)_j^}x%PBGp?>4(9jAATy^qqd^<{c9`|;AfF&)Y?vu|cf&3?zQ
zX1eE;dAm(rQa1&z%+r6d^}zM!f>nm~&KCk4*iNZ#Q<h(PvnctvtYA*KnES2cT60DD
zZ)DWnG7)X^*t1CX?ct5@EknzXWy)8q+qJJ=W`Ux7huOP{H|&4@xiJ6w-*wOUHoo!d
zNKc=qwM=MYH7nP3h48DNj64~cJ$w83bXHuP7W{gxR*kCgl1)8-OheY5=}HvrzINi<
zn+_APFX}}?m77j<PsmX`xY0pfs6!&JTzG!Gtl{Amv&_4vGBXPEtqFX?vRU@-TG>8}
zHOrSBEv!Fv(%Ye}tL2*u`~0M6M!^uiFfN%GA*FL$#kPekwg}o<e`jmrRMTs5cXZFE
zS16x8cJxvCjl|+DQ;p4dmpIC*-tqR{d4EP(ZfroD2PfOssco+pcyyogJ-Cv6$-Pxd
zsfTlux!zf>QeH4$FF~}iz-@({_=j9^nf^T*Z`XV4nK<^;8*dB0_@r#_aiv=IERij{
z^@7)xh#Eeaz*TfM@9DKYjcY$L#-E;5Vke~IH`k_~o&U+HuMfHxcyG#oQINB_^2VEQ
z&SAe~m1bK@8453X`KfO6P42g>I$PGH|60AQ=v><CxmTXNdGqL)h2dHzueUpo=h&?3
zj_^5mxMEqW%xwX2w+6-f`<o3?RIYAW$ZT_N>gzIHgPU4`4<#%Xo!%;>*qjvlVO#UE
z(6@(8XUe~RbK_0<?o(ney<4s`EjPHKa`<#;SmQ~p)X9&Z>}=0Gwd~fUGaqukTJE(;
z+Y;vXTtb`crI2j5<AqsgFC96Zu=_p3$D&)-mHF?3?y&0|yLIr*w%gJnekUdCqn!%w
zy}IToJmK?(eQ_S|*2onsHsfzN_V8X|*00SqirTCz=KM`am8}U<e>lUZ>89$%l~P})
zN_pHq7vud!Kz90rZT%4$kuU99=1OGW-}0c9A$|6gX4{9XxmE8AGVDb8I`6HLJpJ!<
zeBG-Lb)xqByyW-&+^>HARg~Pj+xd<5zi-u-|Jmf7=zZn?)cAjGU-)0nF+chJTqL^z
zQ}7Z)XHO}PQr{H{8COhAZL(&)S9)DMM`2f;#-wR8r%Gxn?7Uz;`_!$DGY2zSw{_f^
zdcZMdp26hRAInxAve_<b{b|*Dk%t-LNy}b{i?h~dO|mlDq}r;=?)kO+^w+xm-)oXq
z?aJHsCAMBgP1XBpDZlJ&w~XT764MT;n1n6ey+cv8syL`BN5cR5=Y`%?^;xw7!cA(H
zqC74NAw1z5Z^}E(wQyx!AY!roto6<9haNGxBy4oKwD^wK>9=OHI<)zwDA)R^cncJ)
z+&*Pzu$TXYNzbzS&K^JgEZXDw`qztDFKWDXTRp8&_~4a4^_L|Q^gJ128j6hODYDPZ
z%a!T6G-E;HJxA{F<+7KSY^ahII^cSHvr{8?rRSQz$}fy78QKJSHX6>B-YIh3`FJk-
z;`VL-IImmfh`yQr$S6)SZT3!fz8EXB{kN6HtIIVDv(7BO8WgaSv(NI-xtY_1WR~1q
z6Y+#=%a$#{*Ljw^iVN4vO{;MH!4@nm6#8Z7-8T&~v;J0Gk~~tV|Lfc&gC^#>$V`R<
z@0VN*w!FKnkLN(_1JQFkjm&$k5}G*=&kO%*IUy%Dc6)ol){Ap0xnumlp4_}U_B!9Y
zw`aAkp69y!N=a8HtYop+ft5?2GNt+y?QGS|$d2KuJ~Pwe&f3>GuesaaoUE^4@2T`n
zesZK#_Ut6XZT@fOCU5d;c%xrDrA&2dgbGg;Ymut!_iClG@H2VK)k>yw8Ltk!nqr`L
zX!<-WW51nNYt9r;(-96$alE$HP={41b=p(Yo|o6OYz~|fSb03G{pq!N({c_SK5^~U
zrp#`}I8{lOmPeK+)+Oe$XQ_AlNba0bf2JjCee$F=F9MBIm8V+k$a#kdzY@K+)-U+v
z$(<7NJqp*|Tvj)<-7cBsJjb(YPfVglpXa-*T{~CgN<U0u=B>CWb@}0<V7sZ;8_#^>
zOXp!+E4!XK<$#v6=Dm+XxvPb%?lRZBVDQ<=`@*@_;AE0jeoD$Q%gfpAE`LQQ?mk=?
z&se{O&281Z>n^M1qvy+Qo_G5u$A(^Wj)|X~9;PUqS9Y`PQr^*55MvmXs{C}xHQq(S
zlUr6KET3@b<5LkyZ<~t?zFs?hw(P_oOTS4Gi$0o{iE@c5x{GfMdX!~Vv6}Hlx@Tbc
z$uc92l63#thaR69Bg8vnmZUelo8)|?F}#A;GI~l$y+NGXO|8sXx0o`6Z3`oB|46>%
zWFz?cVMEZfuUkS|cs0Y6#pn5#`MfaP<ZhGpLU!|q6U>r3zrML|s=oir2Hq>1owMHl
zyV33${L}KTfDprxy|+$?t4CiGRb3sr##i{=4=?w~BJmW<y|13>B&+gs&APZpb$&<3
zyep}NEl2tevuV{!O<UZMVRCog%e#CZJ8ktP)>Jx1X5}j%w|cNA*lxM(whf977c)8!
z|GQv#{bbzEH&yB@e+hgnZ0>%nDt%?*^lP$qJz2GW4hGtOPJ3OK*}lt868jy_G)H#L
z0oJ#HqT6cj-@9GzcBxMyUNuO7W&i(w!tTG{9Q@~(|5|w6YpeXg7xink<_o_luUX3<
zsrT#Ib+P=1f1Ims9iF`Wt6y6q%jV_0&rB+|@Ey0AwXQ5A&PF)5cf!NZ9UHqAb9Ntn
zlIY=l<(BC3?}3hUHCnfGDcfFcGBtN{ycO}K&TgjZ%xwV=N(A}24z0`c+os3&*?OHk
z=f9$}G3_rj8cr=qn|(!MkFCu0dX-l@RXiJi+dfD+ELULYxJ6X+_N}GIwy!AkS>$}!
z?VOtYLJ_^AzQ=rA)fKD+x-Q*PQQjBZCeG=-efrhXE32mJt$HeY?1iVp2@8$A#&&8y
zUOfrhS5T_WCtmH~D{0hl&Pqt&-HNnjOkFW2TG(HlaGTX1xU&AN(Yo1N*!*XFWJ#-E
zAz~h!y>(+zhyeR;1wFl;v%NM?mwwWfZW1uZUs&_$oZUCmZ*JpU-r{$lq+9>>=Q$fn
zLoZmdB*pp!EQ_dVSaG#dW=4bQ#ayfBi;jQIJA68`Ep*xPgPp?Lax_d=toy$Bb)1Ru
zi>lPCbGbvVUQXfkJ2^|a|Mfz9&o6UAWA(1v-mIT^vh9xK=BxWnKApHUNpw!+7OOQp
z6K=&PbKPv>Q;^rSa_d<0qRP5yr5fY!fMnNs0W0%FK5o41wSS@c^5*KEayG7+rv+}$
z{MuG(d{A<M;?$){eOo^(tXJv3VNuxjZi=?*5}kuuGvBTFvh8l!#{Kc{9#1`KcrEbk
z8=-{-vXcYXY1O~Y+S|&nQfT>cy0A6t1_cKv<};Igo|*|VURd}emr-WdmjgG`7iOFP
zc3avYa%jS-HBG*WDtG3Hl`3A5FS}V;COV^EEnyGqU+*JY1&jGY)~wRl%e!9Nq$lNt
z*138AMb>KM9Tr&qS!7FDoLF7KwO_IaI14#q7s;FqkY2(u&-=`gdd8X>i_6u*w{ipo
zRsJl#^)2|e_<}u4gw^w!|C&ifT#EcX!Qfr8vgmA|dCaOM*Mpu%rD~t)Pf86fco4Gd
zmPcZC?i%;WY5_-YJlz`n?t+Bm^z2_ES8Y36)z~gDEq?jBa=&xDm{6c0|Mfy;3k|y+
zlUF@h=IhSV65(R&w1S0k-}3s(&F)$owVz&1pSkza^kRNBgHz4T%BQy;SRNMmv^^|o
z!LHya&pUljCUiUxV{5aWD>du!+UG5I=Ugt~EK2?vk)mODc6o0G-^mN<b{ac&b4RrA
z@QSmZ*LN+o?Vaisrn^p`79{YRH*CGeRCcS>N4-*S|G_e*{-d7_s<yi8Op@M{TEAh^
zfk}C@%@%~I%2kORx>l8IAoiYTHKWkA<jI|>)v>C(jY`+w-n>gucCUf8xWto#OLoe6
z)ztL0Y<GGrHe(aFj%D8!%V{M=4ab~wZlChtjm;LDSkBe>RyNTxY(`ziOv?+gYa7li
zPAp;Gq{OsdR(9%4=6fX*yxLX56E(LkIefZ)%OO3XDybK%t1UlinhGA<b4J&od+qD%
z*^-U@vzxioulMm@XQ|k@A<;-OEm&5T&1%H~Ltdf#eFsb{>=J5jhOA!s%-m)1L7s`v
zL=J!PEBZEd#nttmtNeG~5L>h(IKU;aykXXE-Dr+A95+*qj^@1C_4==v2*Z;*Ok2Hg
z&d#lTb-jM!TK%V6?lxQy`C-e>n=V*<w#@4)fAur>`tRR=r5^u$|J!NbkbRFQD;`nf
zd=qZ>v+ZO5i~gOjUS?<V&ojRNU_q8)X{WyWrA1%%&d6z+A(9v!dEI^Su6a*`8{};F
zES~Xilk}Hj-KwbxqDKs^!WLIdos)fGN}$-Sp2!z(GA+2|j@HX9QnCm;E_BoUz$L3L
zkM7cUW-fPqW|m#v^?J|BxhE2}H3Gz*Z_CV$j(Ex9Y%DxkzVeRM`*T4rrB-BYGl_Dn
zbBtTR>yV-QistK=3@u#ca`}X#ciU7<<6HM&&XMk2p~p64m3M71Jny9Vdy#&bdZ6K*
zT}6y*OFaKf>b)%DJ#&qDeYkGBmC;-w>9u}~Za!W5?#+^E=LBb^7W#O66Mp|mx$1`W
zEFDEf!-agYGcTvSz2lqpe%IM!E(Xf23nI?1uCu#*aFau9E=T!?pyZPB+iMp(F5jA$
zxs&~J+MVY9#fvsNKP&smU?IEfQi5L=!#fSLX;Cb4$xVI|x7gDjEasN`;d`n+_pI|(
zS&ron(b9`QE?9DH(dKu{np+=P%YK&3_ZP}y`<WHA@X(wE^Fo|>8@f%SVjPYpGOQO;
zR@*8%Pi<bFW$0Eui|hh!wOwzR6SC(W@O`4K+uXch%G~Q3v(44(Y@0gWA2UlWdLyXa
zGBL(ibn)RO%HCZsml*C%EGU$g-ui5dc>OVp$X`WAL&Muv#H_aIl;d^T+9kN>dZ1kO
z+;!I7EjNu@=B9{WUwg)(N-9$S>x+cv+w4*%#|yb_-l=k3@a&z5e&NgypH>RYtKFo%
zPW9=Dstq%9x8*;awfd^b+&9&0r|K17IM!piAT)?2``N;B<)C2Jnln4<mR>l^YCorf
zA-CJNo<rmLk%_OFxA=MV_wBjU7nY~9R=?fo_OX?^9=CbR7kM9<eyRA*qok)Ro4F>s
zcix_N*XdgDoNaexA8_lgj`QbY&R<$L|KSxzr(Ql|r~8I(_d_HXm~WNRlU7Kd9J5*B
zr^!o`4ub|)#>rZd>wG&NS2$fTw$1T!*>%lZf49u7+<o<uS=ua7r|;eHa@z1saROU`
z5cAhF;fu;|WN4Wdh1k#GlD8IrSy#KYr^%wALV2m8;Od`jvnSMW{?In(IC8f^Wm@YT
zS1;2wrw%@QEH^dU`DVp0uBXSM1PoFRr?jt~^z_EBQ(T_*dKbI66?7i_O4z$)CdUe9
z#XC)ME6bw%)V59CSijp~h29k}uIE$EmQVSra>K&e{Npl_LoWrs%kD|^f4kvb#O`a#
zbxx60vyZF1`jQ=PkU9IF=ZcyOnXBU^o%&2;G_;>{p67kv@nw>J+e{6^dGB{9^m4Xk
zt!X+n<JjD?$W=df*)mSzH#9sT<1^=zafMM6@4=oAKNGBs-K}%q6vwO9hdte*T_C&T
zQ%)$q$CLSX?{=r{|4{x*_xQ)e{GVdmlDB?uo%H_6WW9$6U#zdWE_}{@(f=fW|9_`#
zB_{{Ug!bmHS5?~7qcgLyV#f)C_p4=+8_JAirz*RvXtG~muRZ(0PWM-_ipb2Z2YG|`
zPSczdf4Nq|CsSyGrLe+`%o`U}&i${?*2+GguB>Smca<r&@9~QBF+WT8<lHuFDNM@t
zda_YbRDGNAzD;JYkEo{ocjWfup2KrJE^OYsO!cDu7gPT;t$kFJ`7rHO%*xNFj!Dnz
zE>^Jp#lG1x^&0EFFFiLnm3YEu&6HYs^~>i|)<;(9cApArd-dC}!$SDr`Y`_f=YLgZ
zFxGEs4L`^wB+_{2=mAd|4!M?TFRK*#6U*hci&uIZ?6q6o(wTWGH08TXe<R;XZieGI
z8&164ae3#%pK%}0&67WFWV_p@bY;NK{oYMA^$#Y07F@ypl*{mN*x}^56&Zz`>mO#l
zO1XF4rTpBs#L4B!F}5qV^nLNY`(caD`Uex|pU>HGte*Rv%8$m2tagG&*6v((;_bpy
zHa>SE#e7v3$#3oOxpX>v$1=6EdBW58?lSeA$X+hCZFz-+@}#I<o^0PW-OcOfv&<Kb
zNZxv0vp9EgU-XSx85hoc`<B|{eKhRQ(N!T{8)^;8C(V35Yv;9^19wk-c*>&Pb8Oba
zr0CbLy;_#0D4${xsGqp@{r2iT^LdYMQEqtMxt+Bp`}G8!ty9a(cs^Imx!&}AQ(Nfs
zHJcfhbeb;IeB|P&(|6$dpRQ-q&hERZ;oTv$grWN&ub)!#dx=X${;$^<TV)G4Mm2D9
z-fG$t;MgKIS7Gim&kEgus6z@Hns3(h6$SG*Tz{KqvRd`HT!>#{S)N4wLQ7c}rtL|K
zW426KlwN6O^G&95ZcN6`c*gMS41x1!KU)0g!-u6c7M8z0Zn<nGQ7v|K{>?q^)t|l}
zd%drH=LO+^r={M{4@tAXCVlt%B91@<?kYp+4QI0QS|4w(ni75gd3JWFZ{hT)$Gz>B
zPVN1&y59cRw}%l=d%xEI|9Rv5clq-Ae&+ezf$>w%I6O^uylVT}o*~rr|7WFZxBI8M
zIo64r#)a9JoKc#?c<=BVxo2m-%wPDwY)bpArR5EK?)+uwdHnQj@!Qws2K=?}8!h5y
z*`3$zw%T>__vy9U?q@AJ_xpABL3=S(#Q@7cTwjhGt$QE1ApX<W1%~;nPOkl*{ZsbS
z>Z1Gg<pqm%Dh!KvRIf^GSy2D)>7Dc2z2&w`HeR=B-ox-ikEcRB+wNR{cFdlQQ~0}{
zyQ}`+==Cx3OMmQltzSNme&36HZ|Agc<C`zfue`6WZ!HYpUiS27cfQ#}$@dHQeM@Uj
zJCSxR>v`wR*@nAzhkq^?{WE)KrRI|O+^>f}{QmLoWI}EI?OD^O<SXBEu6XdKwkN*m
ze?iDS_MP&dxE^Qz5ZBk9ZLalmzo>P+{lWfK^JQ=4Pkp8@6+bn$j{p0yW&f6B{JXtp
z`_=~=y{7%i+w<BqY|6F!i}&y0{c`NX|FCw~|M%<7UgmDi|9on7_m<Cju6zGwzpGmz
z`af@7a7po@0{OlBQ%k1R`?EgXF0FfXZOo6OZFZZ#2i)KL=is}0@{4|&O#R$gb?1J%
zlKC#<lzQ`;$SZ!KOJ2U-nfPQ^+`oNQdpJ1jnB~_k{#zEmt9tjnZ%-91KCF)9+0Jla
zb>8%AMXRfC-oBGJ-}T+$!`JUS{doCQ(dg%wuLb#TT>n>2*)@;zV0^vyrB>tJ^%H(&
zCP~@)`z*Gu$lEBVKf{(qU6JMBeEGZwwWfQnXd1mYzwk?x?-Sp-`ExIvV%FDf@{hl{
z{CKsGLGQD8*Iz%rNEQ7QQ~7k{R{mF+n>K}C3UZ&W`}S`Aqq|RY)9$BmoHv^9UK_h-
z&x-GjM;E*g__sNF%eS@1?0aWf=WFcMI+d1KUq4~t`SUu3-wnE@&peVoW4?0FGmh&1
z#dcessqEOd`Q18xae?QHi*`3uEdF7*Zi4!{9?2}htK8WiIkr|b{pyd;m-r_(`Lz9}
z#Pc<8Rv+5-Mx*zYT9Me-i2H{&@V}Ay$j4nj@9nhk)WACaD)ZwRr6tN2UE=;aev8Yw
z@4e=z_L}+iZxw&a<v+dLH2Y&({VdDqz308`PTlCAG+XwX_k#I_u6vJP^?Cm8*v+}2
z(_a1vjGLDK{t?fUiqf~WDe{RgY`4AJx%29`=<=uDLgoD`cC}08-OqHz>^piS`qUre
zt!?+WOnf1K@pXEq&0T@Il^63T)?A*GRNtcV%cUs&dfe5!DIcTig~HzH8J%Bs`_;Ab
zzY59uQmKFX4cct8kH5L9tQ{+Io@Za$%kVXOGM9GRAL9CV<kZ_k-*i(yi~Z8?*q7OH
z(%xyxk2vugD~fKd_-T38{H@kk_l!yYCg#QKw(3f~w(VxvpX!qMqW{9;c`pp(rk-b-
z%e;QFsq56K?%Y<qU0PX(-Yl>Ga^Gl*!Jl>+`!7ct<ixK2|2O~t>VJK2^w*q^cKg`b
zY=1uN>dLgw_0PpOFS@rb>-_6g^80rG+;DW>)1POj+c4?1upc=3Q1rq1CoOwYmFMqV
zv&Zt@&YK?hi)JmV+Ht(PyxW+o+^_4??Yk@ZH~)GQyT$#=QR7!{-^<x7(31<SKlMJk
zzU<4)`?FWi6z<A8cdY5r;T~J*YtAohZyUVMT%8}kqISy8?K<y_i#Hc$%$svse&X%T
zg7?ldbmueJm)jR#_@De@{<*fobMcdYDKb`k{57HKjLx0<d-ba=UVl40z56rQe!FEV
z>%+_D>;LI5I=5Kv{FT)vkFQm}o-N$<JKyH}=g+<Ot=WA(aDLJKVt@a+#{H){_df}J
zv(*2|_qOhBeN~iA#p&*MmzVsum-tlAfI5rZ)-SYTGpmM`G$YGo2WMH(x~<I#&K_)F
z#%j+%AwJLwt`9QT+x27_7-rZ^J~&%svRn*j{qw%ZUeliaujBINWxH+r#z*R6*!}3u
zTZA-&ggiZ$Y`G!-<zB};86Jc68xOoYeRi_WQj@8nQ&X2!i$yH>{Ak*d4&nQTg)tll
z@Bd3Zamn?0Xlclk{q+s<3;E#_&NBRmn14QuxBL5Wd;J5%g!AXO$%gu8U)SHaZ}APT
zV>!6*z5MT|$$_j2K7k?@cQWj31Z%&Xy7sThsL1=jU$=t*qgd+S#EDVn^Wy#$TzP-m
zZlCOqk6(1YUzQi^zHhXCqnKYt=+^6h{w>V?6M2I5N2S(wqxawW8>d%Ky()6Gy*2nr
z@AUIq!1K*ccU*j5)fPE%G|9ie^sk=Hj`yzG>$IAGY<2%;xm9jjvFFQo{_h*DzU+B+
zc#-7knemT#d0$-Ftd#il=l=SNnwqGH=J}Zqk6SbTn0femxBcJ5c~vEAOmuIheO&+f
zaMHxcP=TlXzJYZy2jad>-`-qy(Zuze$-am?>2DSl?R~Xy)14J-?e*jY*HlG)$<N;y
zZ&xq>F3ILfVA#1!e_ji_WbQQQ|FNTCPY$DPlD^OUg~8|Z?etzL_1-yZA9e2S{-cjK
z{pwoP)%0O1k6yd0?9$E4YaNTPzib!L=i2B0#I1B@)Z^o=^Q#V@F9A<5i?9AyzwESl
z)Bd`d(|0^Re71gVM%nZ9i}|PQSitkk-O|5V>mP8R;jupNe~;($st>grzR&yOs`w(j
z_m?o+1?8{d8+NoW{{32NZ?DJ;!OG)r?Vq`RKED3L|1Wyi&d+(xsi`lwsIvOsm-)g!
zEfsBxtNOO3hquUoly7}4{4ae)bXZMkkN6UO-VeT;Dk|=q-G5qGKkwrGtw!Hu)z%yT
zFPr~&_4e;a>%-n}{_p?mocX<9$zR+bO*dXHT^fJ$b+^gqq^WyO?A>1@D|5e__m8HT
zSofkWb5_i>op|8i%W&pT>!-Z<z2~I*z5Bec_3!@ZP2S^Uqkhr6?_;s<J*|(6SNxQ|
zS^KtR`;31-E`Iy7sLC+<N6w7%D>wDuQLC~3Fw0<3%{!4j?AE$-p44Z)iu~5!%`ZRC
zyXmP)F;{-^_l2Ll&S&LWfBf@Ry6e2>uc^1|wbcJR%-wGNW6g!z3;!S2vfWs9_#^k$
zeFeAmH+`(md}^z^KV$B`k5|(9D{J;UR{6b+SKQZC*ggBG{h7Mpklv~0`{((-H+^<_
zyXK3_N$)CN|FrB0`mU{BKRIOe`}(K1<EKARZ>u`|c)HHl$+LdNZ`OTauYcqDvlj;2
z&wPC}|KRNpxBnP)Kdild=j=D%?pKc=$p`kh*gW5>`<v~F`=<RLLG#NuLG#Ox>x<VO
z`&A*&aN6cackWfWzJHchhSqD_%~mg1@O=N;I-Z}&2KCAL{Urx3J^$G}bI+cpcgoM|
z!>%h#T$gp_;MJcquLm{zZ$2!z$oya}r|<l`la}RAHYxs{UMfHT|A*U~KiQnS{N>rP
zr^a)4EZnI-?|t_Tt20kt9(&2LbWhc#b8Cu?_}yO2F%doBVRNy+%SdJM(dDIw%~%(8
zCti6WF@M70!eXaWhq9ijzJ4}?E6XWuTdHqhyp-dFdau7HcWnzi{N_)9Y3r9+e!D`r
zsx;@h7fT!8esREx(@;Ty^VGd*w`1AXJ)NA8Ud7Omc>3h`n)A#D?nd65>9mO@A#$CG
z`K^f`cI=J&!25K~g1<o@S-b_W-dK}8Z_j~CD(_cpaZ_mBIm2b6QgxQ8K|nyn?^6fX
ztPMK!_?=Qz%f*MR^+sw-@1%U$$F@6*b+I@@`NbVuzWPe<>a&YmS-14f*&Qc-_gp`_
zs_Tho#M_v@iISgsv~L?<c3Kyv@=HR)WJYMNpO$vw?k#%_4*RR`;tz0+cH41buK9<?
zfNQKrb2=`@G8fzqvxyeTZPKjHwR!1tbj{S_daXC2NpF2vm9iF}+L&E`;6cFC2Qx2s
z&$+T9H14Blm)cDZneq_UtylP%&zCI<E?jNZ`DUkgo{7L`mN?$F#A&IQJ5}m!^j%l6
z6eguJFt!S}=We~ytrp+)R`aXq&nee^_PhPH`ku2=I$Uzwrz6UHdoItozG;=SrtPe6
z&%bf`v^1|dXc4>dfELefBX;NGTJ`H^Uf#tc`dw&8&+a|hAJ-kdbXn!VKFhdUr&}#1
z?VL7u*~XWA2dZYeyxbY>9HJ&Y_0_kgIPMx-j^$FH%~^O^Qx?P|S$_(grE6YxNAO@-
zYT=UFHJ5IFZ0LQq+&5UU<B0aHi*_=<=LMIh&-vE)eAVmIj8dN(Gak!z{+)cD|8M2p
z_w`xt1WvDOsVIB4GD%BtXZV5w-l9-l{mCK*6Rx~?aiB>m*K+H<Rfocj9JNlLh<Cnv
zYK?^0#*E&a^L-x4j`d3F6V<!-aGVqqlHo2<YV3GeX8!T#RYBvPRh63~ECmc69*{cf
zXK?%C-CGYk4p(JG$t<6<hb3i&M}~jN2hDAw0*+7X6P6x0sH*rVCOgsFv`abk_wiWi
zu*l@MNAG^BX*1uH6QfhtE^Fo<ZJB)8LF!82p}kwC{O--XevS2M>y(6m=*%5_U0YV%
z5t&ov@M^7Akl7uxWe?^pwqpAAk||7(BfaHSG2{KRgC9?HU;4M}iIeaVi{xri-@NP9
zI+w~9xjF8BZB+l%D_oG7Z>7TZH(_~arEf^df7rUl^SScDM^{dMF8|=LE{1;}$1auM
zZG6YgX1AZsvrk!iUvbmU#e&9;v-IAZ&)$0>?ts(js%87Lw4Uc|yXWb9?wnp;kML!!
z1y|-(pE<U8SI5yOHa+Q4CpPjHCbCF;vgLMm3-Xn=I`BAVXWn(D$@Oc6MEe?*cg1K6
z8fk>F=38e(UA2pu{Bz^EzO!}PSLZlh@u=1<;A-|Y+7pv1I%7?cnWf*n>KV&&R_UJP
zIUhFv^66x^?9`IJjf*DeUEC<avi7Eq?;f6Qzxf38m+zhY{hQv=+5<^zWY6U7-s|{u
z%AAd=EYH{G$(k@)^1puF`sCcJdPeiC&kPwd?_`%Rvp+4qDX8JpP5!WJ2h~f3`cA6M
zh!vW<DlmR!<CeE)wz}|NEac4l-O)O2>O1Efog2UTa>sELob$B2AslyM+4m;r&npW&
zzJ#5P__qJ=%iXN+)BipeKi+=+>-(jfc1>&l{jK`J`mNvCOK&dSp!(|n8oheAU%PeA
z)z5zN`q3I@iAK#!GZw1ww(L?15iof*OG?i4Z282mmVN@U_9C9A&z$QKnGo}0wr^^#
z%d-btn4(?Yc|A}t@}F_?YQ^r5#Cf;7WGk<RcNJ{mHVppK-Q8qo>M1LEbJC$n%}ajm
zep<Evezl!pXsmhqFFm2jla_wk)!yf;yk%!Ck9T6dkksl+v3Dj2?X}djHS1aa`sW4J
zz4lw}IyfCC&*5TI63}W}ed7)PLcckSm;$)w+<rFqO>|-*qtb>5rI&$uOP`iW`yLTx
zKQ+-#ZIUX-jw{ipY&4gudw3R`9)I>>(@(KWKVSdKa5VASeQ{Ol0~Z6+|0ZlRyoDIV
z7tHBNKjFA6TDrb{k%?NyjPeVIu4cBIXs(HCXDPV&ZB4)fr#PYP{~W)3<QfuLoO8}R
zbJIKe^+Mt8gD)1Ytv|GtFPioD(j7hFZ8y{2H8M}{JNy3IiKF*oz2-=L&e$pvlGT*l
zx1o61QWo}1Gi|Y*OuD*nub3Xrym+*wT{TW%-@z*_E~2%0=GF@B_0O#4m9Q1w>E5?l
zrRPCIe3%r&2kXo)A%5FeDl->|SF{$dJL9{U??%F*4bMYs`Bb9AufJ7{$u&v8$8<fo
z_S2iZ>sy<vt2cXn-F#@vE)VW@(Yq^H3$ikII!I2A$xGzAB_)1Xu2_w){I%8XUrmbD
zM)w$#<1R~B7RI`7PU(3oTwVWs#u_1o->2^^jrCL&<7|#=jPbnqcV5R`(apD4a^78f
zNGB`ARI;c0!_wvFdV<&SX@8!hdfG)aazbe~k9VWT%-l-e<Xv02_%|52yxMp*ap%_M
zs<S^BY}&dj=T=ffxF;Lq!V11k*%7xJZ=F;McGFWcUU=*E3>EFFD?T?pp7M1cuNS)7
zQq@|z`f^B7k=`+O<r7;4FKR7#Xg2qmK>8#({cwq{<Vm|{<>_VJcH42ofjMr=v63Ax
zruaWCRoJ}uu%xp?_VL#Yk{eD1bd~RMx&5jo?mL6L6+>_y^REDTpG`B)NlVTwJon|6
zVqm@NlXnGo!Wq^!PF(fe^x~`I*Onh&^SsQgo+;-suhWt}0Tz-cK6eE6J>poWEEC=n
zcGJUhWoh$^BPxnoH#C<N)L6P66Y@97*!#6;v#e45yU8lkGXC_&wmP|<xY)XO%8prl
z_p%tiMFw37-87en>+a3qc#BIi46l_Yc7Nfy5L?t?@quf-VtV%^zGJ6VqE&r^qZM*j
zsq1A+*Vp?*b*LxV$^@L+GjCeg2F0UUPY!)P*~e+?_O0VM&)#G)xk?4)?ekvme)eR#
z+_uIlJ&(0_<$oJwYS}NBc4BJS5ib4nQOfCEi&D0BZOuF+8~;+n`(2aH^6<Mgry@=^
zH>H{6pHx>`q+S{+qqy<$hQ_Y8ry2@UzT4BQwma7(o#$q&&yEY2cI)<ujeHjGr<^~|
z7kxuuLB^INiS;jLyiQpkQ?_?<NNvZD9S4tooW%R;g!gMcdAF^0>IySN)fe7Vx-9qI
z)Uf-nHsd+gum?@wR&Yh{%YXlK?!+z1$HF^BSPs75U%&jqzOW7ZH{SZy@_N^~YMH9l
zr=Bx^;m-n3FTXo4_P+k%pV+WlhrO461<fxPFXerf{2@cOuhJy;?TS4WYPX~m4?h=7
z7IhaE>pppSLfeY1+J5gBH(3R8<%_yitzylVYiZiD@x@;m%=u+wtn<t0)64aAo?k|v
zUaluFzg&~>dewqbjw8EfEb!U*gCTJBXA1+y>_xXr?7HQy@8;ECE*Um+9-F$~jZF)$
zEZB9ge_i#(GYei%4K3FT2=$+=YN49lXS1&TpUTD0D_<4ue0Q?X$Lz_u8Jqtto#;Mo
z+L{Mv>K9#2Ol`RGPb&C?SP8?=jEja&DX!OV3;LLH-e{N7{?y`Cy11i%ZrCs0y_T|f
zlJ^(~oQP?=ac+(In%SJ^7<gCeh!(G(%U-EkdE{89amn%+O~q8su#+Y3OSiw>*8TTy
zk^Fj}zKwlZY127cU(e_%3e60Ety`nedAf7|oEw@Atc>+SQVH8qw6=G0H1HkG=YDWu
zDf>A)?%3To&9zvU2(*QyiRN%AKYW%PDDLz(ar)fnL5)8%n2tqX*zdB2$^4bW(N$fS
zZhzS2bl9V9-J_VF{ujF*nelA2@^{RBp8AkIeeHe5IRfn$R8LLh+3MK!VCNAZnFGh$
zjrW=_Jj*8Nc*uTLZoU21TE<h}R)vquZsad+RGqt(pYySuS<uFlPj&`6mFt$S3*C0;
zk49J+E4$y))x9Fyt{tl~$z%%ciH);<%GW!waOX1rz`K(pGLjf{4QB0|_ucwSs-mFi
z=K@*trshY@)+@R4Zk4z=bhutoZt)U$P(8~$e2LKRpt#y;H??amzbDi)Ew-_+*c8KE
zlO-Bjm!ZnG%6jS4BX2$UIxF&06K-5yxzO@nmEDHfpABQ1?nKy$Np|@cZxKAJDEaFQ
zJ8OA4<7<KNli9~FU)*)(!rqps1<@XIB5NM9ZMYV7z;AcoOO^9a&2RWU*jS;qIK29Z
z($0g?Y}%YUFSlhfXN5jm=&qQvw*ER>^2c)<q!bcu&1ObyyB@kpJNWx9+tt#SE^==!
zZgiCMne}?%k>k((Dzr`V8Z~zxnDp3VZndX6dxp)CZEJh3T-cf>Sh-x_#y!Dl$*nKj
zr_GeUdzI^ijg*_Yg0|9!TNeXoT0Zb)Us>W&Bswj~+iH)G_8X;z%NzIYnyx%QNI3CK
zeO6xM&79c%ai=+I?#RSg>@LgMp?09Vm3Q(<gW0cM7+i2<?aQ3-ql{(U!Ox73PcMt|
zHQlc$#hcb)vRq<W`J~P3UDnq52GyQAx=rBd+$N>2UCdYR<lb~ja6O?nSu-v9dhGk{
z3m6ohi>-(~buZ_1@P5ABTFvEe*;<wzcyF0u(LJL+dt30Te?_Tv>&ol1W6Ny*|J`-R
z<tcxbQOgaL#=mRS?i>7*du<rL_m9rogP%{DTdaukiG6gsbBji;zS?XBHP;(q*S=m{
zu`d0m$O3o%_ZrLgzhV0u(;cT8!CKhUcU2=!^|_Qu>XcTqWHGC1slF!njqNKq`mSzt
z`Nq3pOP|uEr24tLc>~RZm)+g+&MH4kz32uP*Oa3>bE9sHg;^cEaOTJpce(B7c5e>Z
z#ilh&w>NA;{DkYP*A<)*eDz>!36I}I_t}S!T+`#9x3pQ?LjB{Sys3t3Zp~H7J+nFB
z#J(5ZcRfRRwy%qE(2f<_pYqt`Xpq|Lv!SOK_W3M7;<kEnMp@-b>w4>zON(35B4vap
z{XMe#Plw#MHZ^Y#51$pz;m=GWt;;9h+MT!AQ1Fb0qQ<q)tL7(LMTo6f&HIoqF01EV
z-fmNq7hA6B>V8kS)l>bUFvO(ngpHm&!*b_vsWYCu2V{>P3+g_Q>~n$B`S$^ynv#Re
z`#pEAtz5B-`JqTgcCv}wlq*s7CD-njYzU}Xo^1E{t*6sjg?L}BkQw|d)Tah8KS=5o
z6AvhqII#Lihi7i<^3LVaexYlb&q>{B>eTzqaATHwf$&eS(+?ChQlFcidUm!mzCYp7
z#UBlA8r4U*5>>*3kG?Q?d16wMRi;nAM9iIIZfh;ywi^0P+ZR)Kb*iG)buIrz?)A)p
zYm->smrgkzxBT@vrNnPMiRw3xmTDVMnCEuQ+t%vF&b9nEpG<GLn4@>H)Wx`b$>pmK
z6_s)=>GR)oWqVp~lFNBE=WX<kXIZAc>c8W%m!7_}#W0yKW2(r(S(PvDc3cTzls8@%
zuUS%jkY8QS;dYWR(<#fsC%+ih3SU~RtiOG6{Zwi1*QXbr*;bgveW~p5+!sP0mwu7i
zz9XXY)dHs{fseMOZ=dj0WVvoR`wyqntFBKzbRc@={d9}chJeL~doGmsTr>}5d*Qpb
z?KInon=03JJnVd}c$Ih(0uL<lnwBm6$YP$r7a#uFLKD}0y>wcyy=-=V+byofYn#ls
zO%hmB%dv#9e$EjG+s{*9$ePXa>Xo_5zx>egbFRDM<8>D+@X6fs$n-dpweO&sN<7oQ
zQ@l)t<_evuis=)Bcvlx~u)MRlC|g6?KYrnz2yUjfoEdL6gl>|Fj*nD)d0aKBkg<g|
zMt;q7GhxP3g_h_G%2)kPpFFb7s7##gYHO6|!<v-OvZ=P5X7%ST`0mkcEwDOL%btHD
z*m{liwRK-R<_Ao>_sp=<>hCR4pIghyg|y^LZoLX`n~=;ae(F@^q2j~VN_(GlC#re%
zJh#^KNN!pvwR(Zkvcl!D)3o;G`8Paq_Te#L7he8{XI@W&vw?Dr-HdZO7yYDv-wE#w
zwS3DJ!@kZY`YN-~&*ky;>tl;!e@MTc_V~w!?KS+jH{Mdy`XoPBJ@!!Z#rap)iO<=8
z{MXTWaj&LV8>ua}SS58k&f6tLGSZ0oW5LA4d*PPH7~ZB>X}R}#1o184|26AjZPb_N
zei}yE&C*M%bb~GSFZ*pU<C2O(v6_Ry<qZox=loy4a*gf$-X%9GLb*#U`xe*R6+gZF
zaZ~Pbfn%L(H76c#3z>7{+>cYY)(B6Z@tR#%MYq5xraH2+YT4Wqf8D14<=)cud1>qH
zmBmZXX-ns4=$&i)@<RU1vni3{6_<^Z)H@7fGSjk_gk3&AtGpvLT5Rf4o~z%J1q#)g
z;@8T_o&W7=z?{OpzDZO?gK1}X<75i~n|co2%U>Pj4!^U>)BiLrp{mwSNNt&B_{6)y
zwro}^`V2Cg4=Qbc?DxFwdG%52>N=UzUt&I8S?cukpC0F@zm5Lq+!x4A(LTZx&D;NT
z;i99ed)ij7oLm_%eD~)T-r0MkAHQ;3TDm0vRon8^O4j~AGMgVt>03;G!0smg!$n~G
zvsp^p>)W+H8x*ETnoR7dyP{;|slWc=tXU?zePh18x@O`kcjxAfd5;o%JhDuU)|hV8
z<J(myR1=oad)03FnXSE6d5PJJ9F1?^?l;sEjph_z9i(~i+rc}YY4ft5MSW&0*FHR5
zc#VNnc3W5O+V$Fk(<b$52s^lJ+jsxn$2vce%Y6*%)bG`ceOSBJdDE4!dp8ZwJTAP(
zdOnqR^|{D&Mi1d^r{E)<O%XDU>wk)#)tz0tIdGbQst2Q3v-BL7WA_Y~Je_wfGQH%Q
zLemxoVWBOol?$6Vbgdk%&QAUiwO~t&V*>l;pE6IE$uX?IeK#Y_yU%vToI`K!7&sMM
zb+F_eb=#St=z9KBPJP82%THE2FBI)(TDOjIk)8Qb_oELVdjAwbOfbKHy61V#r|sXs
z6U^NIZfD=SzjNl_n)@&6#9cd@ZeHlNY)lQie5X$5clrmr?-jXgS82)xW$!r|5Vdo9
z-KY0gw(}p?%3t*V=kG23-}~Fs4_!aKB0gqj<EiJ|q2(9r_cN~Q`uBT!M1Fmk6zfmt
zD;1G{O$=uju>BBB`@SXZ*?+FT*B9H|jr_$pVfya<438@+KUaPKsy$=*PI=G_^S*VU
z8Rnb6AHS{If7NB~_v!k)|7$ck8&5q<UvNL}@h>UXUn^t$<vy>Qedn3|)Of}E!n@zu
zcLa*<iL|uYa|blTT>tCkt>d??g|>?}Uf<KShw;ZM-XDtBWX_$p(z_S<RQ&AcwUg_s
zy+2<4az40Ryf*dY*Ees<_a6dHG5@~vezX1IiWSkjKm9rSe9nii?<M=cO#@9af6IFA
zdL!DXYRB%M{IY+FcU5LDnV<Vr_~+jJ)t(Xaw?ET;E`79LV4liv!(;XSOY6C&$~WKf
z+;^Zt@&Aj|)X(R9|DB&ccYoXi_p9HVzJ2!nY~CCnv-^+KyScu9&n^9V{`I}@P0yn@
zJqiD^?s`OERDJKiZ@CM~PyBb675n@D&%H(8@9sORy<YFqx!tj^zV4s$Zuag+@oP)F
z^6U)m?Ee0J(z#DhoqoRUo%X0K_Q%<_`h6g0SO4_Ax0n5*jPFyKfb+k9pL%kvyzPyA
zTYvYhm0c!(i*hA)uABb<hV8vAEc+Y%-_QG7wtrW3_4K!ogNqBQ_g$@DziaP;u<CQQ
z?8@K2^Y5K*<@&5P!lKx4Mg9K?Rdc5w>NY!n`^-13^LzJSWZUnvU)Fryv~xZWXD<6w
z!m+phR&+$Miupow_W76ZEc#WJyL{hQ`R^D1|M>o2_nB|#j<=IJd^ZN%w&dS_vq^W;
zO_$>KPxAl&)yIXm-+S}y+l~iaI;R$Azt-)myxPXSIx^!};@$<i>T`HSo|b>vb#~Lv
zbLX<siWyxl96$O{+B5Id)~7WwpYK$jy_3oM@a?*HwL7QRSAJa^5WREvjMxo(KYkO7
zee%_Kqv`sy;@em6*PnF%T8nXRyzA!7&*E%5f44GfouA3SWOLlt$N34B+o!zHfA(kB
ziqngBCRT-phSbMRS!q6BDqS;;;pC~$8j)+#?|=Ms<kTtayUu3r#~(kkSzr3>`R~_Z
zexIFeX20C_?b_qLLidmCsZZ~@y}PY{dsY4KPxn{v<CI^s`>kAT{>S6#*QT29p8nW&
z?GEivo09xa`TjWb!v5di`m@rv&OLo<_Idg7qnoW3UOjtz{|xh$`=VETNH?G5|EO4X
zxA)go3q#e5_g36AS*mg8%e{r$Zmw>fSM&1r+}X3|Nw@rNsfj<oiTl}~4XNTUl(*E+
z$eu9$`n~z$wGx&O?|OaXtyYWwlV-dBV@37e&Hp%>{GQ&mUU9Q~v(oza>nrV;uPm^&
zd%|at+$3+;y7};bwy62@j#f+CpL@g5I9=@EbitMyS;rIAf=Bl0%uD9@$@SxB>~;1R
zf^{x((>^G-*xsx8<!$%kdd-FJKjzHaAXdKSsC>PB^WV(0o^z*f-QK+^^Ghb*Cd+{N
zC9CrH8Q1IP3pV~Si+<Lb*4J?JpT6*w&ny+~4D(HYH0pg|?)e}7l1cyH56L&#v0tK@
zpYFV`w)nWd%RK2l{`E8D-_6e#{c-MkwASAATfe!F{TD}_tj&BC`+m0~1H+eKhRs(h
z?<;~QX}8VxR0mJe{ytIseWxM=gR2*4lD6JNuOg!)H|J?h`sPO-v)+CGC7R>=_KnZ#
z^Aj0&&U$xm!UPtkmWc*UYj1K?=1-Vj^=f}Um&G=}nTF<%+<0U|7o4fd-S^B>>t+1E
z-JORVQ&V?NKeB(H`}>LCnYGP?E_ct3zyE&QA=$70_SaW`KV4t2`s249&)D+>TOaJK
zmu9$R@xT7--e{4R?h@->|Jo;aPkkoyViVuPzWbm3ExqWjt@~A6+tzriezqZt;zO0Q
z_xYXHPR~4AZvE8h+sB^{`j;=AxqpwBZNE#{LSCNm(?zR)e65YV;c$}ikBMmZ#ILWb
zk9V#0(Vq0??*WfThq?~l3h6$3q#`1w!ZqV>+71q*UHdbBbJy3%zEc0ZXm4%Pe7m+d
z86G3;KVSc*>XhrQuCUj*C2~T0&9a7G8Hq<})Be8x{rk6eBA@+Q*Z2C|57ar=ch*<4
zFMG$U%QJbC#2-F6wq}phGWz?pCw+O$uyxUX8~H1f7kMmt{Uf1Z=Eccpwrtw%W4zbs
zzr~K@AKrL<`DyvS{rm22srvGr;!7Q7-(Rm2boPz%gU1XT7cmy~+jH#Q$fvvehsBA>
z7mV5KFZBG|fAFtC^;WIVGT#d&XPGtM;dWfIH==ms%h}p;JT=u5Up~!Tu~nYEEW`Bv
z=8Ic$*7C^j`SpLMuD(e99|n&z-`4fVpJjen6TH{_+qsjIq~84I&wIn&#-GCwU2kwd
zvf=FFgVPV*+I7p?X@Y#|t8x~F?_cZ{9!=_d)*t=FCU`>io8AroCDf13kNf!l^XxtQ
z#ACw!3X7gMzWw?6{_;<274E9s-Sk$h>xJ#dwIzE$)hAsIKYIK?#e*-G7~@5{cW<x#
z94a|I{lH&e{m1cwpDaHAH2Te-|Gs(sJ+c4g$Li0CU;LH(?)ww|aKFo|<9@z&omu(8
zYtE5t@p0<MuNO7%cy=sd!jf4JMHPfR|Jc`?DE@cs-KRHu*QtM5QTurwr#F5yDAZnb
zp6T)LFdOqn(UG71yQ*bNYW?c}tcWg~WV_?+Udv}IL$1w>+;N^=j=N2qc}c?Emx)O%
z*H_MdC(r)=e*OKZrZkoXEz>tvPLEu<RP?Xk9lN@Xk5+ovd;Q*>^~wB9<-TU~=6U>o
z?af|ly_$JMJZ&$>ZSku=)^7SVZL0o)%i<HOx+nbJ&Uk6<mi>=@tZ<ue-u$1TaB@nk
zn7DnMufFZG?fTvq@|hbdia)%mTKH4z#C*}KZ?eCBJ8t@;Z}Gg7Kk60zYnLzom%WYk
zU#7vn#>Kh~XMR3V-yvTYC*L4-ZTbVgALc%r`kU>03b;1+Y~S{VTkZa(zmYuE6Q4CG
z=xzSs|35XW_1i}yhUFVSi^rbUP5QEVdwO_L?-_N!Lk-u1ZtnbZj&c66zsiq$W-3=C
zTWg=2aJpkxNQz6!rkWH1=?`a4*FS9JU;LIY@!7f7mc+iaQwD!k4u7ln)qDKF^~?E7
zxpUHIRO&y?oNJN3L;Sq>qQZA>-Rq`radxWPJiR|Td3_%Lx{cG#1^fgXH%(rmmSJjl
zrn_)rLf4C`)~3&lSKmCV*74oKG{L7kRwIW=>yqi(&#%5buz0xUUiR}#+Bc@Y%?nYi
zw`rei<jtxo+P`+!mzzts%StoeOfX>8U!%I+$~5LA`#G<z3LMAV=jPs=#(Hq|<D{ir
z2L+tOyM4^|ineY${ke0-<zp<7{Hop;R0<!jt~?j4UUE%0tYk)V$B}s<Ml%CUZ8IZ|
zcy1{zJFs=>ltph}sboD_s3f$8_mZoi;cJ<7n>g#OtQ=b`KLy9moW3qo<L%6K>X)Lv
zPTtX1;d<66|03t)sV6sbPqPxb^y$R34o&sOOIAY6?vawgms}$FN>BH8{GGRQ?nOtr
zs+IuR=P#yBS;l$x+{tTmoH8QQ{#baPVwirdXm|LHp1EGftLDED_K998<n*jv=h%5Z
zZ-tqTE^fL-o9mM%AC;Wn>*jdHX}9QHMb*8B9xj&C*b<-DlaM&md7W*-D>*y)h-tFR
zTvdbqyt5E_DWZ1bDq~Sb(;dCd3nz(u4AA+$P*?X`;kj#<C(b=S&2IHA&lZ23!s9%D
zFFb#$vD$6Rqte&Om2Fm+4lLUs?|1CNk<!y9ZL!YY=O+fv(s_H`xW3{=cwwkeXlMIx
zKZo3{wo{i2?_8W@d8<4(Fn8fggAa$2O<iAP6rM0k)798{;Cb(c^M%!ZMjg(Umrh={
ztv=FodFQ+EC7b7D$Si%oNq|MpWcu3;8b&;`KTg_ndHe2N&&;|mmSrC|GQWITEb~#D
z&R?m|Z}*-x|5_Nez9{dt{u#-%`j->83Lch}j6TV6Hc{`i_+f<>zKDty67J4il{cnd
zQ&Cpqo;0a#o~`Sq&RH9ieUejF*+?lhTYsJR%4MF{qa#bbTntQZd|<icemeB{@pR{&
z0;}g&Q<4+{+#N0p?sGpb8tlv4cgJt{A{CBX9l;rmDvZgUY!`p-Vo6@yYCJLExk&wl
zI-Th&wpprJTWv32ed+8Xr|9n04?lLC6YoCk`8fPX*}lt5mG7BeX}ouqL)%CEYs}T+
zw<eETC#1OV3MmkMbTZD$f5%y|)6=CVUc0y{fc5i>r*a|X>K309Oq9&co_|Pv`lf7;
zMfCjkIjav@lt;{Sof>`hn#5}Dz-1G!R!S7D)U5C1YftT1876G}od3s^jE<L1^JL4P
z%vkV!+FmE=tfZ(Ho&jmxzZWdnXV-T(X=~o1E9*A2?n*K+J<z4K?)m4f0rMWX^kr?c
zJ1u=~hW^^WY8F!3`z_ww3~EY$y75@)q0_?gJbk{^DJ>H7C##1!2;RO_ux6=Q;z5fR
zdGF^>LlPEy)^BjE%`lhpQ{~TA(RH3Kddas)`s~Vz>F&Fe_C}@dQaClmPSm3F=x$c4
zIWCeiK8Ff7yw)kcT^cw&+xV(&R_Pg@azW+g_bwivoKp6w%v1Tq(V7)PD>ui4PpG)H
zzIVs9aK%Jtsnu&QeB2Zz|6)d*%VQD8$3YjjZEBF6{qm<v;qkNe(=4965}Ras=vJv~
zZOoh%K21i+cQXQ8-<i+dz-{HYmMMS!)>A2u&rF+YHP^6ryY!*cx1^O1`)m}fIiK}<
zQH#F{PgW4m^(9ZIJY4$FphhEydFdUO#~<te{#?!bzWT?<qaPox{BK(l7QC4wy1x5o
z^7_AS@n)Gd7Mu28pFZE>Z?swc^U4pqEVTvv9$i|~>n6gyvr8w1<C4~=V|Pz(%1yew
zSU#a^lW)@`)`LB&CzJx8efF8%{pOlRYvH4r!i~-=EE24PpM5Q9{&Xj3&5F%N6I<ra
z>zKG?&Kbd+%Xil-vZ+<;U75CRWBB2hReQJPY&yM)E9BQH;pP&b<CVQ{x|}qUYoFII
zb5a+HS~lZIqL{|fxK$sQ-JRcmTWiJJbz2f+3c3>JZ{X;>XgBL;*4|RlqW7v3rU=|I
zS|_&cnVR~E=E;g;@5G+w?1-t7tyEjECAI9Jk1$J8ShmoNIjz+$T#tQwn!jB7DHQnQ
zbIEeWGaZI|Jx?xbTyW~!zS4rpN{Z(s3%QjJZL8;Ac7^i@ckLv{%H%0CxRL|3dY=bR
zZ}Iz7rK8d!u>8rDdk4*=tv9@0c;bfq@%D;m&wY>T&UWtAd26c}{^Lj_|Ivl^mMc<I
z@+>PdUi``Go%`jgrs@l`Z)(no&gCo4PpmpKZA(JJ(Hf&;=K@Zi37f5X`s6)N*V&2_
zCwyx>ds1@lmHLfwYZgc_*4nJ#dy=Pn>(~Svi|9ut6BRq+&qie**0kE2toW|QkK<fS
zLF{S=E13<CAFJ3~8OPrAIlb0;=4rMYOqXxnxN<SZuef=`wJb3$_fB2WiGtgNm)%gg
zurEdIWJl=AheAsyK7Ckn;r5KLcdwfCPuo@y5y8Ev>6S%$!K%lr>boR^?e_6~nYyq~
zl|6bsgO_#iB>hS3X-vhMXRl;mGFN|-wUu**mPo^@xG)zD#YM|!*==&Oy6JZ%S%jy#
z*P`usTHj;EC!PnUr(aL^(%q<_dnnD+?k3;#Dsvfjn=ak0TCb*Aq@-?U?(FH1kn<0$
zWIbKo%XQQB(n`kIdAAj27}T#_qsRAf(V@R)vL~JF4z51A&wHn<&ad0e!l!lB(gO~j
z)xN3FFLHU_IgLlZMasj@MogLBT5xG0likVItb%)X?=BTPyJk0AoA4>WKgV0-V6LMZ
zxqI^VGv5|}mU<M+oOF5V;hfKFy;ScO?mNIRU)k7n#Y9`h<jptN8h1=g%wK%OvOZF4
z_ocL3E1rc}vFZM`bZgr)K|=7%=NpQ-N5$q<u_(%VW!iOX?#yyIyxb%3(04swfy3vl
zc{&~3mU(N3omSh#=r^nP<e_=5XKJTBIb_{yeDeIRwWgU1N<~yE#dLNv+eW>NohxBH
zf#I@Bgvvv~q*V#83qMHCRXSGWB5ARI!Li8t0Fj++#;?-OyQU^?ckKMIWc`k_9bxBx
zFH||BX_#&KeaH3MppP3((>D6%uIO~l)jWU3v3`2*kC4SyQ<~dCUVU9x)~vKSd6`1G
zz?18<lM0O%CC<Cp?fdL>th>avkc+n#6)l=EGvvV(!$^}$8c7wo8`W)>-R7Ars}v@4
z??Rk$4r{$n+Kf*p)`ZRQU03<gAk2TU;ofT-W8W2Avtv8X7dvC}h6;_7Z>yp=KKGkH
z<MGR^ZGlq#-?^P~`~x><{=B(GX;#@}d1i^eNqZ;gZ_M+(u}R|Rx0x-D&7u~|@8q_q
z#!sLA>)g2~vggtdo++FYU;o!@aqXLg|0&zIdR{i^-L7&aO02$_`HOkg+TM(3FV3#l
zz4z#I{>{wo{By6}lINSjY_*oT@8H^PcaO%EU)%d7W#!^e4>r}j*%-AcIMDE=j*Rw+
z7(3xJx4d82>VAwW;`qLEL8IdlPVU~w<}+tjZg7!V{HY>BAgprZb<vHC=UX-@|GaEz
z#Jg#cqSY+X(+bBgJ}om}>Q+C^GtgvDoU_}NHHyOGF0r#*y=|xdEGoIddT*OV^)Z{g
zi2}YyE02_UswQwf>Ds)~tFp$j#NXH^W}e#fuybl%J3P;8oGW2+`{|b@+i9ktR&Bhw
zb@R-^mI&wB6PC(6S&_h(xox(`)P#w}k>%ZQj?K$?T#_+=amQ+_oeE6b?jF8apYcpQ
zcIDK4TP7PY+b60S8b6=8hX47EnH>@umhY^y#EPHQ$hw|B^p;7j;jpUVnf?a{!czS*
zC(I}dddO<4Ce<=e=5|}@u~!+AO`Bij?V9zu+u)G#)kzl*6rA2@t?kwow0&9Sq|oK7
zmU@=@xJj$>v=xZ^SZ0~$zWUq4xO~;+mwW1$X=%*}Ud_DX*Yc!`eKTi1lR3UP$J+A1
zmtSu#-w-leaMUlkrl)7ps%y4W^q6*(J>7U>vh=Pj*F|feT+y5Hvo8DHpR0*2E1bpS
zSN^QYacjD$;JagnDns^hzd2`hit>J3%ut=1sVFl!Su?1IceBp)srl>Mv+EZXt=V?l
zrK;;<OH;kRTg<dqH%mJ6G(T;5?*F^+`GTef4ptT$Nxf4JEeXxfrgLstdq{V=eCw(?
z>$`b*TRHktv!0!q?0ldxIq<2{*D_IA$JGbk1~UBizF}9H%&BX}`!?T9Iql^<b>-{P
z3h9C+|Mr?M+-d3U*Ecu#RpG1~=K|M-3#k9lEBchABlXgt-uF|?0yef3;j<GXSD&cq
z>omxGZ<cy@YAKU`n@_@zrJLib&dxAeW~Q_y`@cY!>lOxw%q?0kllMuc?|A$3lFGve
zdZtgO9a~;Bd%Ko%-;%>x=Xy&_KW!|tNc|QU7rbNjBLU?Nn~Ye0zrDq+D4<$eo%g)S
zP)Ta@ZI6~!#&VqrQZwtfpU7x)*rpo2KzZqpncF@+PO3@sJ1)g{L6G14Skgr9niZ;%
zdvw!vCWQxC3QyO)%JOJqjKkSkocx;-eGfLqvL62;ne?kWR;agwFGV^sr+HalPJ}_Y
zx<z>>Z|S;<W3!iC%&?Wt+%WTu&XJjmSeN*wrr%kswQW|Un*H%`rvBdv^^(Ss$x=s6
zuU(jV=D`%r?n?{RH6KQqn4O#Y=Rnq;i#}2=Gq$;^EPGlhwC2(U8~y&-mZ=(@Q8NQJ
zXN0t^o_IiwK`4%^b>@Rhr!I=^+s+tqsY9`?;A85}14U2f^lv=srSx&DBF}A}@NKHx
z4ewHzT*aFEo_&Zoa$)7d9<evmG_+Fc5AP6}{!r02<xa5qLI2Gc_a&ZtmU+Cr#9gjo
zrZ>lqwX2q2W^H@-ELynt+|?U%Cw=fdJlikzX5}{Hh?L!pWebIG>|*zS_*m@uWu@6A
zmiFr0lBp*RmPKweYg(*ZxwMGSX=(RSBf+CnO%5$N%XRBWnx$XM#*P=67k(z+H(CB#
zRmY+J#>SSS$=9BrE{XS#jg{0pRK%w|H~G5EB^lQ{A*c23{3%G^_jPyuHht-7f6L<a
z_I#1Hl{{F|b!7kb$<=cI`~J>2Ew^vlwt#|9rQ4)$F8BYJ>7Th}lUVc4$H7Xgyf4?3
zpE!5?=sn4|I*S(F{Iw-(O0r(m%mu1X&fQL3TQN^EeYr>d-V;|NO#_epPE(KgQt?{#
zoZjuFH+D6&-SRu)wZ~}syAwT2@~-->KK1HUU)Hpy7MHp;t8Z;`S?XnRB5T1XUH^>Z
zR|}`jYM;1b+8GV!H!W84MLUzrJzD+Jt<&E}_S`CYeCNr-$2r+t$Kq^qrv<%Ed+Igo
z?A65+baF0=t=_94d&Z{TSkcl{^O4Bb*yraLwFb?3DzS3K2JSC`+r+PG`H3c*YR{BN
zK9<ZR-c)*gc8&F|b^M=_+IFUx8_n=}Yn7XN&bc=9>~pO)c_)^SQ!Q3I`dJ@NNjcTK
z+o|1X^^DV5T_#-0;m&98tg_0^%S}>|3zLwD&rw_~<(o2Pwy3~%VeZ_?^%i2Q54F91
z6}|1@Ug3u~Tu<m;%?-=-RF<4-bxy#~%ilFQsx&&+WsS(4w6&(Lc}hp_vE1}vV88OW
z?T*C-&ur6k3u~`CsvkVK{0XNZ+q6ZJk!Gb9YYm03S+AANSo!YZ&U9~8?*kunto+;`
z@3`^#vKXIETZY@aj6H{i7cNzcJ*HK!k*bq6DXYcKIGwZbrF_v%4gWWZ>opH^PM;fT
zWW2RRKZ@tcQ|UQR)^=?>_Wa$ROBy9LE+76LQW4R$N-%BqZSUHCH90nO(K)}9&W84^
z&&xz+>I(ZwUFu3cZhI?a>YU(P5gO-YuH-~3rv#sqRExM?WNFQK;n+4qm2_kNsaJDz
z>#L^h5$rH~^s4iSh<eiQ=L-X8o{9CaVmqdEU+HqgCW-T1rTIy}HowfA?dENNrS)df
zxwkV#Hm5(lsLyG*+3YOa!ZPE$N|VX0LP9-h>lC6jj?examvr&znmBisy{>NUT=qM*
z6=vj?9(LNQ^*kfW;iE-IDsSW)>()j?u}c{%Zl9?)306P4?QZg7<;!P+bIQ)Ohn3u#
zcDmx;lUdwTXW3m}+92~fI{n&#xi511YSf}`@7%L6x^La=+N8(FRbu?l-%?cEE)#gh
zY5EuQk23E!RB+rBzFc@Dw3&5Qo2+Y9@dYDh_LuLLo^CeTKILRbcCq7ujh526(}P4F
zU;Z4y@v6+?ltn%JLD_X>%be$aU2sS6j%rTeY_GnR4%ZibJXN|$*mma52Pe{`FKrPn
zX-eg)pU0KA{p)M4x&7Z$jn^KlT31nHE@gcB#&S0|TT|Al7iV70*>XdxC(NJEsYiUy
z?g@Reg7Rx*!_Mbi>^&lxeY1_zct^nv88yGM7q_O?Nab~8?rcvpt3UKhV0S3zt-cHI
z9-Q&q=Gq^9l|gFllWl!(c`ZG6hdOCom?@uL*<AVU-|=ek7u^3-?i=w)Z*9x}Xtrh3
zhe<!8pL<T;a^d3ls_V@2>yQ64y=VVLzqtMd-^o1X{?o->oylc}!Lo(bQ499$eRzX;
z4f|ccTZJhCMFN{cm+9miFXEk0KVkVZ_H{F#US{?E5WK8xt{#t!R+=nNIKS1U&IkT}
z?oU5fa7@}cb!vd9@R1W~=WA}vo0j@|5zEey^egKYs2skoY<KzD<pU~?{}Wmkw0vU^
zmQR}|bh0|jHeBo*=gc1;1C*~^u(*7@(@%uw`SE}qo403e?B616wLWsAkc-IK6jPh}
zmZ(7H)7n0#O?&&CrmcH@?W2XL^0}zqZO2R1SMY6fQ9s8bsL~kq^FmyXhn!p6!z~NT
z@=9~2FF!gdC7V@-lQ}dtWnSE5Q$A@CeFquq<F=b0eLLRtJo}_o)VBBf5*I$1Id}HG
z4SjIrwXVEOdB8o7^p@OdMh`#x9_w%}=}L>;TK^z7(&S*KbZF&eb+g;NixWyGirZ|C
z@VPLJ-SV|xXG^f>zC_VRewM<OewkT2&nj_?htE1Tp)sRcb=!g&4{y%BG<VJPMoYWd
zmd?S^!WOqD>C6$;v^+j*rOvaHVS(S8Y{ibXpR`(bb)}ur8JFotnGfsz)=&1ib)D(l
z{WF&&SLI)=zv|PQ969%tS&E+ci_CtnH8x?fp4XQ>@9a3&v~!1oV!u}I?igWH4UxND
zE$6D^#5<O*Q|OMI8R`Cb!Mm~pVoGr*D$07acn@*Ki*+60SMho5k#x#mA}?Z1_f8X+
zjKpUT>}=FE)~xM4oU<cs%EpUQ!4ikPI!Zm=oOQwvwG>@Ztmir${32w*(}tq~%-4Tb
z94R$rnLmAX*x9x_6}um*l%?*vr;#S(|3EESU(8fz<?%l^?p~ECedm+1W1d6$XNLZq
zb)U;89bCNp%Ph-NdHW|l|M5ekD}Ht5_Nq_kAC=xd<ol%Y|L5#`@jGYM?#?gS*{xK;
zSMY^FWP^ux*T2)7=07-nr~dEGE1Q&da&O&sUGZv?_Mfx+*1WsVqx&}W|IgRi@AdP`
zx3~6B4~&nQ>3HdO>#FWo@dl?R{dzq;;`em1D!-cNqG40w)f>1OoAW=eS!d$#Px*EI
zoYP;=T{4%5-1w6@heuma?)|=fNyT%2iwPg*I_!SS<mBFa_vL@T{u}i$^jdtJRsFv*
zO-|=a&#Ha)?>Y8$7Wb#vz3T)&r_K2CdH>S&7W;R+`^~#A?upIfoOg2X43tjP*G>Pn
z?|-k0|HFu*%9GQ1;tn?Ce`0!Bv$^m?o2LDXdHT(NPDgk3uiNh%>+~h?$m>Xfa(ktH
z7ruOWeMx`w{l|sVr&p!jY+gR=!-@A*`?sxkY^YCVTy(1<V4J>M`E-N-X$|&MXFvD*
zbuTP_di;mG&IhY*&3ZoRx9I&x1y|qPw%ND(uW9JMvrjfXVeM~!D!*1k_uh_^|4VNE
zG;MsF8t;8;`Rr%s+2Uh%*PMOV>-+cA(x2+Pwl98A<~^-y>%A>pXSqLLzcc^8)QjGy
z|0nPE{Cj=9;9lAKZ>e)4D}}<s>Q`Q`TX|Q!{Am0|DNj~D9`P^#!Y)eM#b~^*zc}g3
z_15{hFBVr_|9$tc{;PMYoepM86&B|G{;jcOI(Nji^0UVs^HMw|_AM#3y}ad7e*1A_
zj}P26f8XBJpT2tc-~5|)aR(j$-}zpz{knd^wCH20?6#k;e?P!n80c1CUOD^w-xq%m
zF!(C||5}?78rBh4cdqT<H*dbGzlYC!ZI>xGS1T`+d}(`I@dDGDU%4B07RlVPV48d3
zUwdVF`Fp;&hkRVunH1E&_v~R;WzL<D*17Iw+>58J>33E*DBM`!G}E3xi(4X^|Bwo&
z!%ZzA17?}0FKs7XWHW!u?k2?ey}n6|yQf6=!}ROPtH0GL920Le`;Zg#-Q;=~$Ew>0
z7}TClE1h{gN!MpiSwi}P+uxb_dtR$BSF#=X)~s*3*XJ((y}iG0C;WYS<iX3Y+uf({
znfFqi@#o#c*&nXGzWHam_P=j2RvIb_PFxS>a=$qf@5wH^bi=3o3DxV<)<5x?(zNqZ
zO?|e|gkrG|)lZIw-)6Kqxi|gHKQoE%ftT}-ix-O*E%o3D-+iGe_w=5$1yA=b=G8u5
z{VA5m%KO?r%b)M=%K!UtYFGK{8&WFYQg<&>(P#6&zH!Zku3xWTZ@)R+`pwhxi(Vdj
zRd-;IOht#yf@=SIS>`kIF2*K@zpe~bu$}a#?m%{%bv;8;Bd7Vn>yixjg90`j@Y(-M
z{qaF>d)wk*>mR}IT;o=x@(X6v9lja&$7W{S(L?j!vqwAJ*S@sAcICIDlk5_8ia$*L
zw&AXQ?55@Wzszs^`_i<+I=ud!>FN0u-z%3kuh}|>+lF;#Dxb-Pds_|s^*Xr<K0k;u
z{bX0WO+4$Z=BXZ)`rQf9ue<kX-@3lL{A%p>Ust}Z+gYc0{<6xu_b>Q+mVc;z#58B(
z7dGjqp=Y=y_wx3aJ_uavt@_GWd&>i_iQmsYHoRdXYa$=e#K!Pxy8mMSC*SwZRXCyK
z-TnDqa#W#ay?E>W6BEilEc{tedRIHzzQ(Kg{bBLCmovYrI2>#DfBmMue%5}zI@v#K
z<9~1ef7C99r)=x1Mf1}4ZTa?mwWWiTyjbFoQ{o#_W3>|YFYx*8FCTCqV8<?w6U==t
z8^3Km*OZ)AvG(5d<WtfUzkR&ByI<a(ude>5H=C}nuI}X|=91NR2N-96Z~pgsdwi~d
z#kJ?sXN}L*Gt7T4cRT$2&(GaW3%)qlzrVNlT+(|@>-GC&YM2^7ugsU(_3!tO&;O6f
zGcd9CzB;`8&m7VH^{?L66+B6Q5Ry={{>;<!+TOqFe^;$5Ue9;`izCB<iIZHez0TTN
zdvW%<sHf9&cD}p(Gxg;<d8rrCikIJCWq%@NlF)9q@Arp?cb6Z~s&lVeYyVP=L397|
z>sG%i>l^s&YNZsK{U0cNwD`f<VZ7etMYM^Be{<bbwyN%Dljml#C4B#Vb@q+t=WQo%
zciVsH>$~GS@74C_zMqs@bh6^D)P_pwm!2Hoc8P!eImu2zhF!NKy}@kL5uIMS)`nA0
zr!U}`X4qhtVBFBXcai>=%Ka-BE{lHn;E>>j<(v!lOuHRk@5<^j=j!(6_NMBUllxOo
zy!jd1thhh#-qjbUB@Y?d+vhwx?l}MciFo#U7S6t=1#gmz3O?R=&|m-N`33KH%GX!c
zU6%Xyh4tm-KjKULW9)5n-f~~k|68M4A;aGJY0mxrHT43e-`5M2e)nxEpT3~ti*~`+
zgH<if>!wC-XNtYTkXKc|jn|DKuVQL<{jY-0XLKLuovQ!wx%KkWYjI3I-S@hh_noOz
z?R50tGes=GTJ8Y<ivxvqf4TTW_Ql<n6OK>0)9@+#ZPir0)@bP~5B7X)nZ5R)X<EL<
zs`dZ2zHVH=61wMIV$l8PmrYpan*G~!`B{I*FJ7IR%!%SlKZP$iw<GfI^W*jBnHxMD
zlp3Ee>S6R(cy%r6_ZjWt*KO)@nvF{OQyG4~Xml&Q__%7rt}Qd;UUMJWKSBMY_}b6Y
z?)cp_pY`b4wFdXN^_OMNcE4wD?{0bXtKUBG{x{PHm#Z%P|MmV-BSUFWTK^H(Ni9{E
zY!oybUY#=k{(iaK*FUeL9{8TP>#aC{zi7RKaKq_+CFig2dMMgDMZfV!``y=5_aC3n
zrT>cY@N<59`{om~?#iF}^?Z6%%z{(zn$q^&3ivO#pP@oNv)R63yZdyTDSw}@+tJ4u
z@xi(6i<h0kW9jSj*%qiUZ2JE<C999w=XT>OC8i4(j-PtaT(R)w*{=sK?tQWG=HZ)5
z^@aOW`cK!(DHs}@(4WgK_x3MK)*)86x*N9T{Kgg5%c|0<e#=x;7N(}Qvit3}x95Hw
zy{yr0T1?i3+jsQ#$bEh}^IW{!yYGtUZyWxQ`fZa|&0oiMZR+8zSv9W5z57G%w`kVy
zIV3GoQ^8u8clI5}iF-?Sf39+Rzq)1lc8>fayI9LTOdidS_3NL1OZ9x+yQlSPl(zHx
zcZtt}oU{4goM8=8Z(gwe%inUTW;x}Q1#7-mANV5r@1Xbfwoe<P{b&A4W!+P-KkU2R
zC%r}N@>lrz1%HK|++S+;#Mohqcz?ZYaNX^XZJb%}`wv`@cbWHhllGdIS9hfxzZ?5s
z_Qu=UEB__`-+TRO_QuoyWq4oxN89Vawc_%^-wF&2&fo<ilNDaD*FUZKKIyi{tmpr$
zxYoIC-+lRomV}Vs<yW>13?36$cpaEO{VHR+Cw)kGZ`Y3U9p-z~ce40)hH6bUxx8CY
z+VHBP=)|8-pMNsmzeMQo>HVgGH&(CF`9A5#<?1hjmG?I%DI4y+@$*aFW-+-H-~WGm
zy*vJ2XEe|C->UbEyERzO-(4>kQ7`p;{=MC<6YE+Y?pi1R`d{)SO9QXVCU;6q-s`)_
zuibKGeqdEv*8EK9GLi32YbR$O<(GcC=gs544(gXLor%BywF<OM<SS&E$d`ROISW$w
z{~3v9PyG6FZ}QQwWul(n_NA*7CLV1tyP9Ndn0KT#yye>Zwr+(Vk0Wo_$3Hk7U_MiP
z`D^tbr;lIgZjMW9oquos@uKUSy1wsyG=-_M^{U8*iOkM-&TO*ZTVJzB=gdR>EiWF=
zWca7_@ad!Y`;9Bzow*M$(W%<s+#aWY$>?~ue3#1K8_sKA=znjn3KH=wk$nI4oN?8p
znPJ~1WG)MTCSTnzF)voEcHi^b-+v40!yYSsUnG+8`FE@9s+qAYHE$Hdt~kqmoP9z2
z^@UB{{d;XVZ8v{cKl|d}Yuj&|#Y1L3-{GH<aqCNwKFh>!J<oD3&lWLfj#oF@Ys0(s
z^6`1HQD?vBnCM1pAD$ilfA-B!J|CC!Cv;X;y?7M<*})<{^nFil!KNi_zyCE$|L%F%
z%bQTo{VbY$L#5FVn}}%fYIcrKi~augF+7?0&)Q|q<%@p`yWbhJRvwAt{M}y|^yfAA
zzxukV*S|NtKBVa<XS2b!{@?A8ePT;iFUj5(>nvESa?k5J_kaC0yH@=Wkudi=FZ&^M
zV@1VX^ZQc@>)7tZe>M8YtLSe$|NQ3q@89m#eBJe9zhQmZzOHNAciK;~kFoS!U-fW(
zdg`-hQ!P5z?%(6nm;aQl@MLeCzNhJ7Z3mS}KmPx?*z(8P^w+kWS4zKUXa2S6dC&CN
ztWbARdE>`g?RUKu+S&gW?3nI&{ppwE{ku}tZ=TJ4chxZ7EA{Qn)@u6?AqIOS6j)z7
z@(U~P@QE$`f1~>UzxrE3Cdv$|dwR~cpYhUN`=ad8uaDYY`mVn`Z`}`>eBa=C9s7E=
zyZnE}XO{?;s(+jrdH&G1NYlEtYxbl)HGc6WbV;1@laHkhCAx3*E$miaeCqptzQY}r
z$c0Cb_J?0C?*IAqwa}MreuaB7HoN08_HlgLy=YeL>U;lou-z}bGPg(mQ~j0ls#o>r
zwjHql+7@20g>8c6`@byZhrfSiT#;DI`>vt>u*&Znzb`W^H#l99dwO5er)lrX4d1xV
zVs6@T=1~1#@nG#O{m&UKdgtzc5tS#{Jb$n5?g`l`Rz*T=f6h$pJ)JM}A@hc<(YXmX
zo8xn`k4hHF1wQZU>F}Ax&y&PDuhQ~P{l~;D_Y}@tvD8nTv3I7CkNL?BcjFg-w)mmA
zEB&R_IpZ^1CVy)6n`3lm^YhP(65qLP-ZpuQqf_11so$NGSFbByw{dDXc#X)!C2AI#
zH8aEyD;*TM_?3(GIrFNUKHDQ^Ww1sV>6tCuz_r5T`j%^}FVB74GP!ECtoQl^@ol?<
zT0hiFY&)eQIwj=J{3|=ppWFNO0>=rqX3dJUvpbJ2eCTCYAhwFt(c)fy?&)nh9C2^b
zxkEXA30Tce-Skpd<BN&CT!&_E&xF+YO)S1b;rnJiw<&c{f1BgjZrSGX#!+>$VCdz=
zZLV`%qSLHnW_xQ^Maj7I-U)SSn%h(o=5ofUeRWPtJs+PyBHy2o@MTN0rB1!{xUQVJ
z@|S0f`<_K<GtIMGFCKbwL(=;#XXd_i?;}$tJ6Ku@K^BR4%=ivkB=UCJ%DD&q-c`2*
zyj}ic)|6wMXZ=o2wrsnw>CBJBNmCg0be~=hOEfOidHXtdQNKa%LNAV)?>9-<Tj?~W
zun9_TJ>gs56)KiqV<y3Jk@J?$3m(mvtbFgkIxPHKl*(d!`c3h2*=2bTANQr+tcwa!
zI-38jcA{TmQ_LHMcC`~<ZC-183VuIYBz@~rj`Z^!Te%yRIWH%_GU@s-Q8jPIKKWmJ
zWKyp-gzYKYsox*qEp<cU+u@4>Qakfz9@~(e@zT)9Yx2^+RrO5Y|7xxCTBP-{;5OHa
zwe$F%K6J=i5z)8p?aCF`F6@x6c(_kWxy0mls`h5FDKQT|yWM!U!&X)D$U>Qy4_?o+
zO=x==@?HDV%zl%;OXiUrO#HJ>l|_h1w)s|g-h1)dH?~;&sKr+A<3{0+4@+f2SBb1W
zYyPz^M!zWU?fEmD^=U6BZWTJrDH(l|;cTMb>GZz}EoBiqR)bcF?7TninufBQ@uW$=
z=GnS!nmB8tGia5_9cj=ik!e}3XsbkAPak)Ot`bR62=I1z%(&0BT{O6tw=bsuHguIp
z8)TKpuU#z3%`=TB1w5}8fUFX^r7CT;-MkyTN~Ej%UtPan`sTZikHvpf?Yg+s_MX|5
zzI#3#+CJ%DL#`ITHF(fEA%z{bO2l`^RjJd@wIQoSir+t#3)#*NUL_I^UL}%aw#On;
z?l)+a$oARtu2ZA0ToVAV5;?k2zG!8=CUljEvhnlsA2TvKKKjgiWBz2qg6-4xI!I@w
zM7?kfP&2MxzF?nS&)uYrIiOV{Gj}CGR*5XXyfi=#vP$HX_PH77*1pxcA<e!2M()j^
zCiSQLpsPf_oy|PYVQ8nyzotQH+tP<OI-^=y9}Cp!$UaYQ?5%e@$n|yM*#-8~Y}QQN
z!ZSDA!}?UN$?`|Oa=BeklP11w(g^+)@jyi^KRu&fB(=bRtNq}zt!GMayXCI)4JluL
z)$sCtm!3IQ)$;z6P9D6i(yJhTd7sykb2X8Uj}mvAJc^2MY2nRWv(2IXbJotq$yH*!
z!7RPruF<ENw&fo?&V2N3eRy`#^wrrO&p5I#i+!ytTVTX_swZ`^tLU!St%uYyShsTR
z$t??V(@r;9f8}FK<{n@9dDrg=yiD)veGnZMEv8zdkQgvIX@{Eba-Q?N?GK$3Wi_5^
zN%8%Edj5V+#r?zm=ll5Mf8AfZdDbk~8^5y8%&&SYU3+uM$A1U@#l`<S^isZllcj(2
z^s|wT1wzx+mS;E^PFQ`ysZBxMHEySL<Tl@&J>Qvq0<U=nY*Lu9k!7apsghZl!4qSp
zmm2uk6sr_)h_dHopV~8TUBJBA-J+!-Zj&}#6gHeRrP;C}ch}sIDa-wrC|>mm`?knF
zPH*}&-))hhjb8DUNfY>9TCAVw8_1Emrau2pNJgvEX_3h{e3_Qs@G`wOXWQ|=ySTD;
z>*h*`&r!OersI^fr9W+7)cV-gJ5`)2sx0RHt7op=d6MzdgC+f~vm-5Eo_`+aEyt;0
zYdAY$5hs)3N>ffBzeBo8tsk|HIaa-_>D2gBxaXok+JPDOR-{~X2uQ82E-C;o6DcrO
zsy}qi7_m%b0(6;3^7IzIPemHwWg<839Wa9|6S*LNY<I<@=e|eJ&W`Op^Hx_e{KtvN
zZ%6mp-&&cPvd(fx{)<0Jow8q!DyqH+e$)HwP*+~yeC4k*bTbbg=z5vaA-izWOr5ag
zX_NOhcbU~HDZZ7RJz2QkYGv}?2nR!^UljpwPn-?f(rdS~_}Y;~6=#9{Gv=%jUH;-r
zTk8&HD<zBKV_Vf(FFkCKedqr3-pm)LvSQZVy%=J4Ky1dfQ_H?RtC=I+vNdFLz)kO*
zl^s1B<P48$HEvTi_GVk-_4T<%@0s%UxpiHU_hWlLXXJ73o@uJA^+M!1k6-=Pm{3FK
zQ^%(_?lZWu@JYgHW`|67uTQQ;$9od=md>p5{PnCORws-xxRoj3>gg^HRhKUTm#eRN
zxWAsbtG}skgHZd23ug*#T5LFfe0uTAXQisx64x6`j=8`77nA?{aD)5ConfwTW!l%|
zY*L=cD0uj=p_YC^<?291Ywsx21*act)^oU>@eE7fT@d#0pQh{yC%Z$dFK+YQ8L9K@
z^<3f8>OSWdG|dj%<oHhWS&7A>j`zWL0!@<x=ZPP3Z0Gu+AinBg<?S85{k)>Oym{9x
zdiGeFo#2bzxFsc*@1D(VzCQ1ca^4Q#=X{&bUDukr<@ZY-=9+J3ZY*H?*3ok|ZSxrg
zx3<0YQ-z+VtjzJ6ZRu*d{eoe}JAXr?C#^?166PH*d+BL&Fu7l0Nvx)?x}j=#Z^jQ1
zO|Ku<mU1q-U$xs#@WhFVyrWq+UCa)6PF9S(5o}xB+B2uJJyGpv<nC>5yjyyjRL(b5
z?q1B!y?3o}GLulk9G1;0cbt7h*VyveElNHzgI|OBd42j71MV)R>j`eLxjR?rya^6a
zvU#bUXT0F*<8At!!Cq(l=Ip-z%5LS48$z3JEHk@uWYM)L>CYDIKkZhtB2e~}qqEl6
zs^Hy@6K@&@PY~w#^g7hgS|ZT?{EM4fpPz11<%wREksD?ic&10I;FQE!sZ0UGJ!ZEj
z$z5Le>m-|?HeY^5{rZ>lS$xuF6rI-*o8hZhnP?uu->kUz%0}OJ1=q~L3q>Yv*r9#$
zYf<dR<6-hM4}VPB6a-!<Vk5gKt@M%l<E{+9)iv@53Z~?=*7R-lJ~Zv<iS7L=JW^{8
zSUyctJ@a#y&Gqs!rThXrZneJ0HNU>}y8XU#@L$4q@IsO6^`Mm^&CFk<_g-@|DgN;4
zy4d=UKil7Ic^$oc>$csp&l>z*Hza@XjLuJ5Z~H2)YQq)BoyC!M-y(Exu2?Z+i&&p%
zik>`Y+Dp|h)23DE-fX=cbK!u(qn6fVI*w`2LL!v<0xNBFIJ)=Tc-3{IA>HZbgg*}@
zX0k<I6p;1ps+{onMNR!)$zbNwOEje7^c0n|rcLPNUZm%{Xy?3BHI_GWnet<KY?Gzt
zPZ01unt5a!WTD99jb4>CH_Q2jZRW_k9iKd>SEO*NT;QBc)}BvuuiO$|-XM{C_Ka9x
z+A+Z--nCBCiYDxBvRqOb<+_Tcd(P=y*(t_fQlytV|CVr#xq6CKuztgGT^U}rx{K4I
zUV2M&8h>C;6A~_-b+W3yOSZG4anj#yOVte1{iX++=-)9*V6vDa{I`amFDLZb6t>Px
zcF}nkofkR2xcKkNhI0Y3XPgVf?)HcW*NM4REQ>OdlE||xQ9tSs_-b;dT*}pzS(zbk
zCm;0UY__|@mfUx%XLgl!;(_{=uL>;mR(5eMyOPAd>fgc{bKB0i6n{JHxJ~YDLRICL
z%p5-H3ptAo?cCfvLto2zi8IFR{uJ=!q-gA1mq#HdSH>D#etYZAkM6q+fxq?k1$=&a
zp@(I$<E#QRPljuKb1h~^Jh}2=@j)l6OHLLl?LkW<wA13wY2T0gHvON+(}>*7UG-l?
z7IU)B=iQ-mb@NA=*x)CLr{%XDzUIivD9FW8VKirIBga9uv*(2~Vq3HQ?sJD)#)@f6
zaS6(tzH(-!+U^GC<BLwYzWS<kt2wOkb~D4b=NoE2v<XG6k-8PXmhH?P+dj5+=FWXe
zFaAX5yA%gclX)Ax{K{jKjdS<L=qvbrh<);){%C~Bg~VA;b~^C#oKTx(yE$ayOA+D3
zOZV2C+NJxNW!~4B2R?YGTYjIVnA(%;VxjvtRzvI}55v-fi<W%<nKk3#w&&i9TbgfQ
znc{C^H_iX2XX=T@Ezw7IPSj(wD|^*HbM5r&BJWmN9N}2ArsrVY?r%OEE}pUS{=o+&
z1bT0-Q*pXlFWK*6(0j)JL_!m6smR1_pZ?}lr11Tg;=91eZ+<Li8f2-6o;rA`h~RVe
zRh&m^Et_Yl3cpJ^EY-}so2&1o@R2X+vsI)7bWfOVieUGZy}2PlkFVgJkoK#Hk3Hso
ziw_nVT}UvV8PQ?v#_b_}`rL-tkQ~#EK6Uk7`Ydwa86}OQlBABBhTWI+g)9|u2QL*l
zGqvV;)}D(!QZ5qnyF7eOKh}s?vaoW_`|#jX0YY1i7N%WW!4t0B=*ysDBhF=faB1t}
zvo-mw8<q$<^E`a?xv1^w2}Aj$&8;qvyq#anH;RdzuEVfvv7ksKkJXGr&VtUz+l=aG
zY|LJ?VuI-7pqRGylKF-FZ#nFJ*lxF3&T8kCzofg9IqjU{gKewi`qL$L&0ObeVio3G
z?sJHpH$Q4>>hhb%5+;7-y4B*B@LJBM?R)kd|L&YC&;Cr&NtvR0ct+aITO8lEJ(+sS
zkYlQu*l8CL@k<Po!?-g<XFoL%Y*Sja-0?MkZT)2#{pTAP5`PPw@{O8*?sBeeS?N-H
z?$eq*Tl!*)JvNIM2J7A~_<DHm&s*>RWyG85{QkNxrs5@Hsfe}Q|Bk;iPUppYM{8L8
zw0b@D&1Lrg8<v_xMRpy$@=;Up>e9k}H&c)Q&3VmZCKh-xr#8aml%4omp9?}ok8?Lo
zuCJIQ;lA7hvQ(t)cA9d;mx8yd=hSX5xv{C?*DW{DQjzEH4)iQ3yV$q-RMzQfS<j$L
zMfSKX^}2B~Yr!Y=c^AHQ|5Y(9XAabz>DYFIv(!dQ=y=`)E?IxGbJsRYY|U)ndGhe@
zlea{A)>cHET{?O8RPIcp(C<!0n_Z*p*KAv~#rX4?mM2%1bU2q}Mb`_Ro$^TIxQA<N
z?gIWzYgdF7u9E2XJb6UISVm}vfKK$iC;rV}i`37n&G6pF+<fxNwyR>#Os<GuEm@WH
zL(fGZzH_tGlP#D1*_Pee!M#O)bC>1%V;+kQimqNivvt+xXSdYY9_2MQe!MAVwCbRT
z+fL7V#zN_h7s5J|H)`eVShp`t`ku8wUu?^rnAr5IvrHyAu6)e%aLJbllVhQ~udy9*
zI+%McD(H!p)0@x<yetI{ch{Ym$}GEO@-fRT@2y^F-1s@gM(NOjAQR=&$M}|;rX8wk
zU&?&;s;<q~oRuk@67yVse@u`NkFKj}V(wO))o3k|_o3d!B5<);vgj0}G+|Fur};BC
zwOD*F-<dOoy=?o{DgQc7_vy@>8MRAPm+jLhQNK@NuF;2+t79@mtnMiPC`%LS5_`L0
z*1==7N26bFTxSxPz5L0#8FEdJGX-X<tI3!y5k20wd;3Z)%Vk>(gXd_jxVg>k#IiZY
zJ{#6NEh=JI&}(~iLj4?Hn~<>UTVDo#@>1{<4DVN2W+Cuem!J1k$}6W!b_Qubr6k#>
z9IXgjQ>}b?eh>d^lUctP>iIki&O5zihArp!I?s-oTeHGAw$3d0ym#iADH9S*iWzS@
zS;ok27wSHz{?$n7g{jev&>!cv_TD`i7OoSrx~Oj%s|bH{#I*@Gw}nd7OC&4yw%xkw
zVq6+zGk4pKg!3ksMP|!<-X|)1?WxT?vz^bJmM-%z)l_Kzb!(<cfwt9Z+xeZ>s<hU>
z5O%+Q)@<X)S|PpT?zz(^WcO*PE%g4ix}s})#GUpx6JJ_9T6B=f_wYBRy|*%FHa3@h
zzx2~@R@AAC19OWU4{X$wUi&;q<niPB#{nF#g6k&~@-<n<yzTjI_1bZ#@{Zygi^8VL
z1UIg8J>2>_g}ut8@ZiL=W=jgSU$C4O`DY?}r|j)@Q7hTJ(`hlhUt>Q0C^JZTw$Y!r
zrz(d_Yq4?n$%JiT5^Lq&wn*q(l&igsR=O7{y=LBxMbe$Z*EaDArxhe_ztuY@=lVRc
zPxTA;D;;|(HtPn*Yv(snsu|W!x91wG-W1*yznbkrhT{BJH{vEP-V&?Q!X*1Mahmyz
z^!)lg<&FD3u>YQxcw@!Y`rhper?yT%l0R47_mUI){nxSPcK<v6X7AYhRlj(5cKOLP
zRsPe-U7gNlW`VMWwKEp(+56~*>>BpBZnp}+i$&_gjzLz7Oj!QRdfm(?k0pISBrhwQ
zYX)5`Qf_sr3%ppQZa?>=l~cisMGmC(*Hl=YIX$^s=t<1nfZ0uxc;fqi_{{EOp3L&M
zS+Ggy);piQ^CP`f@>f0$nR$~v<;n5d-T>#v9`D_)0uAQKJ3l-YxB95rCB7G1(&~?T
z2?Ux<zFHuj<;ttG-az-di4|Amu66!>$5%=eUdj5hC4O7etAyf`Cp`j=LMvMNbC0$?
zNn9e|C!O^;?DyqA2D2yUtZh(ET(D~MnakOmjwLofV(my?z9T*CPFehi8r{h1)8GC|
zGDqE8rGIhbUXD2xJD)ZGWjiJPvSY*97`2*x^(Q4Z_V-;}vo>vyZnv66?qaR{Uq`a`
zCW)-k`_z=4wpp<1k>j~t$x07HCgn%CK45m7vpRX!to55u96H*%%rHgaR$S*<jb-&E
z$4j(drzY_Ar=7cS<rd4iZ7SU9u3qOhrs;H7ZVH>SHi5tOVcwRW%+fXdJjNGO3y*L3
z{O+{G<ZoN+8$O3mE@^s|U1}KkI3n!$Cf=E!C97^M64K@m4ZpPYW1-5T$q8ELJWee3
zx~(_eg_p~9x5C25)2_27t<ye{6O?xC-i?*Bc{j9nq#Mn9yV$FF!=dS|N*|dyFI!BK
z_^jOaTKsg9)>px(85TSE{W-a;uO7?06mN9uf`w$V1bDSbJ#@Lq1trjGkqG!|kpo*z
zS>&I0PoDL4=fkR_o^KA7>~%b2G4DWcTbxc-L=gYag}YZ;zPd5Xqu#Qq?-`%mjhNT@
zD$VZvFI9`DoGnxI|M)OYWPj-Abzh(KLsp9%`~Pp&ck{fo`1jIt-!I~r$1HP~nN{af
zeb=Jjo8GAZu=!r0vvrM!oYUJYFDGPe6#bVqf93A@wrORn{{P9nb^P=CcI}6kQ?I0l
zr%m`$weZ!NU*SEQmi+ssdhMM%x2<~J2QKYX`oafV8xBU>tUfKJ@W1ox{qs+Y(qHnr
zh2{KXkUreiy?pn2{TngQ?j<EfB>vc9=3BJ>^Y`QL>Z|sLRZRUl{dwR1IIlw!w)~X4
zyncP*-X~2p;p@GR?2%Ht`)B=2?sMnY{oZ%*diR{&Q_miL%ctD*r~m!B+Bf$mz6i4j
z`*`F@-$8DP4{G`o&V@@?ub=U$`Q1;e6Z`iq{qf}2>noNn^Ii7LVJ-Zw{D|9^f4}Zu
zo8Pu_{FN)yr``P>BwRo5N9?=nWu_b(bR0sY%~N+LeJSAkY|i}0d*{ybOW(Ksa;iI4
zzP;&dYW6$Ta*_PP9U0%u`rl{OdrsXxbB^b{k2@yTZ&|dZ;;GvI>8H=>i{FU*wsy(i
zqRW5sKHS`TditBVn^*E<X8qsv?yJU*dy|&NU6>uVurl%Aq~CvUJFK7ZfBl_$-&g<t
zu614CUMra%Hm_ys)!0{C=VyPv8v9W^yLSl_dz*1p{n{5_^2JZ>HjkS0Zr6vqZFVcm
zcizAIf7QErlQ~j?xrAQr+VAgVwX-4h?}eH-Pu-@qJp8<MUHYuBKV=nn9Gl`FoZg+j
zf6n@MW$!oD?rCU#xAXP?uxookYeg#AZ9msv{_S#p?V4A4o0ml{%HAbjRryeoUy4Ct
z;?k$7*UmE9A9a<qeX@Md>!|nDY#FjYmw#Uv8mU-S_mcPT*Xc3}O}EcHE$we#y`p_b
z&lkTR3@^A=)V<ZsE2=*K<Xgj?dz0_n3(b44C4Qs5O#i2?&7R;%^VX*Bz4c19u!5;o
zk4I<o@|X2@_uf9V)j@@^zG}LM@0)qwx+LDR{yu*19MinD)rpf>7PyIdzCUUGL3}Qk
z`N_4j-TL>IzyJ4Txpj6N*RBhUtKLtl_!(JfkRDNaPjl{zySGE0s~+gsWH5<CVJ8p6
zBx|t+RSg?74oE&}GQGd|_m7Xs@4r9)-m=wX>lUAGUIA{w1j+i$hri>>cl=GsPRy&_
zw~q0Ih|j#*Z|Wa@K9oNA@n?HZojKD3l{)9E_t-aopDq5qj(OtCSHIqWdS2ge|L0C_
z=G(@5S54oaQ#3zpUm<_M<>9^uKMwv`{r%y_?QByvhT4l46lUJ3{{HZ=_3QO<?}Oi)
z-(}kQtD4ItE$;Kq_Ahn6*M6^$PE~WgS8HXz$bbGk--c<wQ)Az6*SouQjq`^6rAz;n
zZ&@Dug|*6#K{wywZLzw{j_-fcuV+rKIbLWVf5t92)7<)xk-k;cgqQ<s{R4~2JmxU$
zn3CnjSoCnuH?i~C;%itYN<Wu9-(9!hVw2;BBVP_2RNCy|^TlCF`RRsMhR|mZa_T=7
zpWl3bXK5Hy%4OXz^Ht_gUV4E^AbNTY;~mE-QN3k#j;sY+POlNZ&g?G9y=9HwW3C1M
z(+$rnZ}~0W{5#@JQ}_N4KW|LlZJxMT?$?59*Y`oL_x3U`IvvA2$+~sZdd+uNcPJk`
zr?P!#vC?1vfCc9c{=H#Xx^>m&=dKg}ef|ELue|=WeSMv3SKVggvp;12{;~e{Q^xFj
z|Mx^@rW;>*#4RjY>)1{_(tH~4FA%`IE}uPq(bJi|&)05u;N*TUIp;g;55t|3#obf*
z&z$A6{&LCu%mKUq_x|7c{rsM|@vrl1cg^1`us<tB{aI4{@-Nymx!3$IIR3?1T+-oZ
zw2A1~=@PnCZS~WlA8b)kxjFNxB<o!E`hESEz4a~5ACLNRXJ#zJt?N${t_y#-v37s_
zx|??m*DCMW`F9iN-4n+5%lEumJwLxYUc5R}puQ?hfB(V<@B3409_G(f;BHC(_>;lQ
zVgoM+?=G>@)6cH|s4=iF(Y$w6R`|`Q)3yK4GPth&emL;2`{9T0{pzRLPe`Bp()x8?
zdV}@8uGZyhpRXiL;NR;#wQA|qninyde?==@wZBYd`<S)*71O;v8-6VMDL&J`YQg>M
z%zwl5o$Dj`zqHEr$Fsjum48?C(6uA(<E2`*n1g5TPw}*$;P!l8;X9s7!UENu_wVh!
z-B7Ii!Xxg_o;7t>qwn80z5ZRiqW;I6(CPNE)l3sUEmwc?{W5FnokkUhsnrw3nG~wt
zntYG_EqbFe_)r#)wys`eO!;memQtBrb+<NNEGd|x$yjiDw{TbK=a}m|_AD|v-}|<$
z|6TbvA+zh37^?CLS7*jQcs)0jVUfsnN$po%Zz_-a@2&ThUwr(}$Mf;qU;Q^S_<3wy
z{k?=Ixe=DLzdqb<@_pXH;}7q%%l}`T{3ZOo{Xf~=i%wkM`{~J)|8)yK-Cbw=I_Al`
zi#H^%sXBi0lCwEH_2btyCAU}3ufBVFQDFJ5w~R|7-L8pRxUGMC{-*xAY4JioW@~&|
zKL4D>mmVwqYcapRZLgGCCuSX1cl_!6x?d}q&Da`d?5r<c`$Fsh+cDlq8^`ng^}>5<
zR?j-)z!H1tO|RdV=(;mp0e17vm+Zdy{A$GZeMZ|(-{gPnAHV+ZuJeCBtM=^T=Z_ct
zW&B#`&Ejc{JS?A#_t(6vXH&d?G&J2NbpB-N13mo742p|R7}+jJtXQqB@M3-C$DDde
z0fz4#ujVwTF|obhT>s)%|BB~EY$+ATHqX1jx##6Sl{c2n-ip?*%hx3z70*z;n_2o&
zR{VP1-F1083{6gLSX>dQKK}-Dt6iC=**?|-^0(*xU&6rD^+({(3zK^FyS1qoueNQT
zx&FG_lPKx<l|39QdK}(}PM*UrdUX5hC++e~?hIKmTGv%28+U9w^Y8wDub=y)&l)RF
zI8`O|a_=Fghpc?n&mR^3KJ{viUB?$A(?*NU*K?Du?LP3Pz5Si^2JO`E8-HJW{b%Wo
zpZ{6E{%1rvoMZa}E=CP$(1{$|PpdKtKv?%282KTr57CSw5Egqmqm(rGz>Zy4gjdMx
zGcf4wo_uh&aJ``+<iw7*wKw}7pO|)|x}J6J=1_j^$=xbmtD>heXDxJj`}<i*e1Z7U
z&=}Wiz7Gz4Fk;>xd&7X|#sP_W;{V(JzWdq!TeWXN*;1pWYgX-vt*u^VZLDfkq4elT
z=jP)NkMEC`v=Z{@TOIXmx%4Bx{f;WZ8(gl2*xlt}Ka>0JS^fKW^*?^B_j>y%;g+Uy
z@%ak}%YU#l_Ro5^eD==gH{}g<cn<G2C{4HIa(nW*GKcl{oi)<66LRL;XRYkoHfM`!
zp-p$>w(8~=GH-&7^4tGD*~s56o-kiX{oelu1$o|+j|CFXS+09hyX&K^B#+R+Z`*y&
zO|ZMGF-g;MPP(OeN5af`^(jr;%+kB2ZODDIa-QB@?&3KL?<QTWJ92IM1K;c2X7e}v
zb&oYQJu>l&zxheiay`#`ypLSXUYwsCCa1O|L8;h%lKtH~ch}07Y^;rbq?g(7w%Vfh
z$3OOh*M1L5?tZd;V*H~?f$h1*s>;`q-`HCw^xT(;d!l=ObI;dO7SDGdrYU>XpIdvl
zbJhDghj%A>HrKuQDDdsu`&^@*=y1~<gIVXZ1<cf)xPCM|nAG^7d}i))=?lA5s^tZ)
zUkVlc$?ezhU$I>C`I4!NwLZrhABt04w~E=zI&1Qomq*2JbI!|GS+#C$@kMr*YfG;#
zwd|U7=I1Z5)%S14^s(*x%^)YZIND?X9Ig}fmBu9&H=~bkblUJPT<?wG0bL0Ou{-^$
z3~A;MpCoCleLnlx$Lxt!3z`4u{b!9;xgEHt&aK^=b-(iY34hryf4VpK!2gdrYrKza
zZA*#Tt`#v)KHmHZuk)=hTW;n`2dTVUF@4)>sef`JPr9rR-EgvUJ0P4^SS@FM{@cVF
z_6z5eEI-%#sPDG!KY3R_?w;<tbLIcNZdE$1)py>1I_|8ctEt7o>w>dyCLP`4^U{3z
z?8iIzI<EcB))Zl;zCv!nk(_7i*WH~EZ?Wk4?{jN^*Of)fPyWc5n3JC~;{{`4%)Fxy
zRpM@$#^1cFdGVm_--pclC#P+8y<O8h!*(@K=*8LcaW@QkuCmn6YAQMXdfI}u`MJmb
zG49-XvxCL&0t5GV-;dWO=5&63;FV)%m$@<h((Ze4M<>V6IQNh%PpzclW$*GW?_Mo9
zzBp5M;#)y;yW?T!&VKSJt#Vo^&9&2dy+UrpZ_Xok4Ib=s{3p6V`t(PO%e&{zRx^6`
zPm_C>d&9BUP4A0C#r-?}G_0(*I{)$ZYxe@iK=#_0)|K2wUvKMhf7|X+xLAg_;nW+Y
z`tF0L+y5}~I9IK@!}#abw9kw`yGzvEy$<bEt!8?%bff%*4Os<T3Q6}b-v8TsqVi7r
z6Q;D;r}8V#O<nP&x-=x?yVIVyKpm++*<af~e+pon-}OOzt;kEwAHf}}mk&<Xo?IWc
zzkTzT$IDn(aqpX6{cFb>>1IX0>r<Zy&YIU{=6iT{3FE(2D%TI%bJgYNt(%^?i?90T
z_T<+kFJDxD3b;5|x>w?x$&s%`<yU5lwO&jyn8&?1PW<c>jkWeUX5mpsrj}mUt`fVM
z{(RN-^Ha9o$%>Glxb0}=gNdumugqLG&A6hk`)d6KIqj}EZudKv!uL8w&ns8&*>~k}
z-PyEXX4buGYh4#E<?Cvi7CSM5FWX~nQ1v#gpQ*l?{wgA8Q-U_?oSf8>^fq&`ZQ>RY
zFB2(0|B&03N?E$;A-4J<AN*En8pce1tEaXu`rO%$s5=?YOQ#>1-Fj0cJG3Zq-zKdG
zT}Mmj6t-p8o8~HIosZD7=F{lzG1>i4vgG(trsYmc(lu0<iJRSD|GPNwh5PB6h|DrI
z?$bQIMfHy?vXs-bayN!#h!h2{x;aa%Cgx3Klzq@FlQfHcGqb~Hgmq1S#%3yYap5Gn
z??GBeSuR@{o-kV-wlCnkTau`1&3#RA-P6~N&id&~edYFBSbu9yn{xO12{F}|j%<E+
z!_e4!sl&rQ2T7+B)3V~O8_wM{*)Q9zh3|GH`}fapdCZ<}t*d)j&bn5yb7hc;n!0k1
zrJe|v=56j9F_jj+8!M$3Z+dIE>dDGC3!X0dH7$KvME#P}XOEpI;Z8Kw-M#F{^`;d`
zDOy6-OM<y;1K&ydO*r?x{^}0nuhTQ;h@Q~ec0t>9i_!ew+d9v(o{N)e(ii*Gy`gQX
zSfk{RkO%2s0?!D1QknI0b7a{J<LYA?eR~ob!h&b5@^99fXD*ezT)WNZe(I@rU6MN`
zcg|Z{sJh%FojY#o<&ul*K6fju-l7$wd7NKXRzNQ5{mEU=Emb15&8wa340!4f2W{7P
zDRiHBB(K!$K=?DQ*ZNLHiv3SMY0U{cye(QvM=GgzN`>>QO;x(tUSYEeHconM7Bs7`
z&$CwM0#|$W-jFxmqV20pHtkIFn!0*N@Jx$VrIQ!;&aoGbuv*-*IOfc>;%S*@i|x*F
z$f&LGDRcbsc1MmL>$MY4?tVJ5io-%GxIV*luB7162EJ8Jn$|0h&GQeeJh<f|TVCdt
zBU~YS9?X`QnWr&TZQ+?MZw|fr$#Pvb`tTlY{@efV7}~5mye;^$W?;U_G2?Z2&hfl*
z-e-CC$m%;5_G<zs<(VJ))l$AQa@Uy`H=SnXS1n}-uU-|q-Rmyn%Wb=I=Bd}@AL<Cc
z8hX)SUVUO;m!R7=?delC$!i==oVm7i+R95cO{rdwuT7de<<`OwmBS5hpMLyiv~+sT
z#*<pAmku8F3=q8g$s%}ZSjg6kt9{#VDovI5ESeqhRBMsTnHhC!75jf5Y0{rny#8*a
z<TjZJy`Hnx)TLgsrbVnTm#A-xv{lw=IUToM<x2FW6{~$)>%Se6?&qo#Uj6g3!QtRl
z*}4(AySkQ{B&WT)8QG{<5c$X`Wy<SUa%%&)H}A{|o!Jz4an}(h*=503mwBz5HOF}i
zlg+vvMh~BzS(weU*KhaR4?MR|e+*rAMJMGE+r(88e9J<=EHdj+EfhHJ_NHj-$(mEG
zYICKeO3sHZ@9s&xn)d2KeUzc?`gyYgwq1I~qG2sv%3}QFww3DQn8s}3qhS{$pP#Kc
ztZ~aC@mFo$h2#@2SM8ef)a&xQ2C3bX8E<I^UNZQ0C^LCl@vIffC1G;}1s3O>;n_N4
zCd(|VqD6H}S6_)bxFl+E_$!0ftxj7zme1MOlkUd4?(xqXI^B%(Qj!wGf@*B*1uaS<
z)7hf#zn41t=>DG{YYyyQVlOw7zxwC)scV$f1C8qWe)wJ6r!f6!joQ>{`X`^-E{R`S
zur7P~p`HC{n`Wlz8eOuKn)|)Fr}=T<{_Au3t8F7yR$p#)`}UjJ`!jdL3{UR-h`&{L
zAHK>-RQTa@G3Y2)@S);mVI4=~W^Ui@vhzxPQuCcn@tH=>_mX<k>eZGRTFPH<nse&<
ztfO~UU7LD)W!Cb`6QAU~VPSmmrSVi&nPL7eMY}IH$IO2|ypxu6?D3p^9=+L7_oYn_
zpV5-iUEb`#{q)B4jXaAhZk^D25NWhuVa`z%nKQp{PRv^9+pV?r%mT&Y;_S9nGo~ti
zO+37QX_Rig={Y^kD}65(hCP;OTh$sPd}qx|<vlBB#~L$l6OaG)v92;ww#Z`cGS{t-
z#5sCret8nOB;`nqn6Bo_pk|{Jj?LdHxx&A?PE$MObW7;>mI<?;80VGFb4}mtH*urJ
zu`QcJD?3iI1|NK;)hI6RTAXuD?46dz*09F{`6rcEiKl3Jsn;J}CN}ls5%VLCoZg%@
zJMSu{*Hotk|2z?*t+{M=f2XVF>DjFI=Q);yuNOI~`s(u5vh7hCU$5M3iCC(kt=-R^
zw{6;Xr^(-Mt>|R7T*vzO&4$CLoV2XN*siR(<b1Jcx0vVMp!w(dxid1|LRL(=p>Z@&
z{;A>GfH`4zRt7!(eRq}pjQa3bwv0NB8l_L~gye+AHcqk<c7N|bn|1&BOJ^21RmXD6
z{wz7{C9bwJr2E9<wI6fNxThr==7+~FRyBUyc4YyRiBYW8<Zf?A2l3)=ANR+%4=uS7
za^f6MM&{|5;)7|&OIWpUR$9GD5l>orA+Oxj>Vl*}$kmTLO-Y@RGv<r2>^7=j;j^r5
z+NE7Ng4$hqYKs?V2|p;ZjK5%)?x~SJVXHx~<dUeGIa*n%O*w^)g4>N&Jh^f#(#CgY
z#73_#w<7Y7JpJNyxJy0iUcB3^u!W27Eit?%?U*Kb^QGM5FeArQk=sk#PU^8GAARGR
za^7)oknIc3o0)xmY2HlnIz>yLx|rOIt3REbX7eg>^E`7wuU98}-agezFKM|{vGl^;
zhefUZoq3A)r?eSwecE&BG+)#_?u>(ZnqLmc`V@uPtTp#wNcReFjfq;9;#+9?#zN!n
z;VXIfOE%Zlzc^iz(z4Xdf6-dkxo2Lb9uwkO6Qg##?1)=L=+YI>ZscFfPFp9wCL(d-
z=}l+r&t%M7z9M8zU+|P`hga*KobyB5nXM{l?ToKatlpoIRKFdN?z((u!K22I$c3`b
zn`7Lwk3O#1b@uo|)hh?sRzyV|zO-CJHiLO<i*Bcu-j++2iotnLy850~>a|~-{BA|c
zk9jhgc5&zQetizLvXATw@?ADBdF~36`F%fJx9wN3UJ_Ct(R%2}q@w0ITDu(feP<~a
z6S8^5)cEA{LxVZl^OR?AnZ9=63#B(zy)zS*#HinYVbvWc6Wnx%=TnSw0MF!gEC)`l
zFbO-m#c}%1V;ZY36`H5=7Mf|KhE<kM?ULB!e)->&yzQQrw>6C)KT4UV_srVHvSjKc
z6QjnP2aUh#9P9i0W<k9%2iNHt>pPBS?Y{PQ{gqFL7T?H7TeB;0XBh8_&?}|OrP?H~
zbreRY+*$ZUE?ehGsu(lVG)>Ka8%}RIwQ&B2?@nvY&rFeByG-NMa{u!jx8}0^_R7>w
zcMTLd_f?>%kCW$xc*@$I;-p_|Za<Ql6TftcY>w($6RCbrR*xvw83zT;CF*Bo?RgSf
zt>$~_Uqzh8?5xJkZNg1klQf;HBDZf}@}e*6sr%2gnVXOOI+1EoAQ)cKzt}n<eV66k
z<D!ZIrzH+=iOoOq{if&-zpw2#Kjmb0IGLSTT)Ft!RugmQEo_Ig^mIFS#>l-c2{;&0
z8en*ML(S&2Efu@Nzg>R3a2em8MOs(R)^l9voV`}M^#+&3rv7s`qe>?QpRUWYTb=sl
z+L}#0Renp)m%UY;xG=fxjIK!Zte}Z*p>B(mjlC~w2Ih2>eRc9XxV$##WLMzz8779?
zO!UvN|JbnN+Y_I->C@W+xgO1P&uq<Tk$idUP<QRQc$0SDpc7|2Ca&r%U4DG|t0$9;
zGOo<3?|T$;R;Tl8U*eWMm1{0aE!)0giZv@+^aG836I6HJWXXQgeTD0M__B+u7Ko_7
zoW_@PF>!0GzIloAW1l5*3ptDTTdc2qS!dtlQh05)hU1MjEWz4$-@cCG>fV~AX})IN
zp}=0Yu&X)S-aKiV6Lx;<@rKvu_qc^D$)01RyKJswYR}Vp>(j3DauS(tNfdo)IwKV(
z@JVapcN3jC-@9@wZ=Yos^mcVTKh1WRom9tR*XlXP)K^w6vn_n>dNH9zbl)XuQ|=eH
zmL*x4YDSBTx$U|e^GtH@3|+I{eHWHS*J($bm>ZHFICBcuoekL^%w{hCHPda^lN)=2
za|N4Y%FMLRyB&>Cl&EJ*w-HGQ%KstNo#eFd&ZY~F3;4bMOyT@fb^P_SK-u#X&K(JS
zbuB`hakIvZ#}60e`ZTUMaUzp9dW%8jGO^h$*JGcG-_4tqcXs;JFEP0fyv02JO^iA@
z{Z(sDs+6`}{;g?ie5w<rbq%{M?Sg$Td3=tri`L5&_H{_jGF@sdyeCe*K2k@Ue|Me4
z?}e?VL0i;xYL;FO3O_n0U}~Y-E1hFjuO)dGXe_;5SNE!{+s`db{A^d~p`_?Hu0MUY
zitoJGa&Fn|$J<_Vm09mqSR67{Ze`w#(`VErr=)T1trK1IJtogU>h>I-X@PSEFJ1BK
z+3lNk=yH~r`pz}d4_`|4oeJ`25;|FbPUrI^>s*oPUvi|9q$cVmYcIT5Fmuzn$Ue&t
z*{pYXXVvxQy6&8M%<nJTu2&a+?NIj!P1xYyFf;D(QP<=Q$xJP_-MX)Nw}fV#kWk*1
zKErzXuAQj?%dW1<U1Gh}q`foD_s~?WhYMr2E*E)R7Qm4;DPmpvEg#Fx3};_>wLd9Z
zI<<aEke2D0WwqzSKZ(ws<z2by#kaeKjoRF+PjRKMnwY*}+x|5fxzXa&*Jf^?C;aQ0
zionItWYdM-itA2_Txf~zQIDFL7X46)dn<Q|=Ruduta+I~c`qHEo;NXP%j}yz?g>E?
zC%@$X!xT`WEqY}_hEnYDE*;O1*1BDR5&>}y<u5DO)jvu3Qqwi>{3EZlFz^1bFF|v7
zPgmKU>pN%?t>F+Y5Vo3klEgK3r9_?PM|)-+O^Znr_2+8cWh}z=V?j4xsq5rQ(bY+p
z9hc=)`>B?l{<`M6GFRl?GvZte7x+G1_UileS@-&VuWgUmcGqX}**xjDvlhi~nW5DE
zd7GGi7kA*AvM7oA=1IZwrAKYz^KUNRVD<d>%C>jc4Q;}nY-m}(EXQrmkB#^CMj7Ql
zxqJOos^g^dr&Im6#!onDaq{`5nchZ{hklrzdOT@!skb-FhMK94+qa)MFSa?b@AP-;
zHDTdmmeU^04lTDRn|Aq_hbO<P)(P=Lk=0k{?^^T3V9r$8RnF>3(@hiWS5|DxI`i|;
zkyqmGs}+@>b~9fMYCCs9&022Oqc)wF=}a3<{kz?a^NwFtn2=<DZf%s0u(_C;{lh4`
zi##(5^B4J^3Y__9+1t#sV#hPf9$n64pT71^(arp6T+TKMtF|sQ3R11w)YZK%;@GmS
zjVCyi%dX{`F5dZg`|Pd1Qcgwi&YW6*GvSEY@kOsYGR}(?Updq9s3Oo<sy6?o@kfQ_
z$ED_%xxG;_c)Rbyx}RG-FCA5ynz+R;M(lK8)dk7#Ql>@odM`7*^?5WSySsF5KKs{S
zEoXX4W#Yg1s<Tu_c}8Y#+&*i2XUO^s;?a(x@n2uYO?Y(VV2geS^GvVJkIgvOnX|1B
zSW>TTyC~%Ig-a8@?pU|fqm@(b%=14BHfXIj_L^wB_sT4uISCU)*K9eTp5e9eb7<HK
zwvP?o!Efu_^gQOqY|DO76kdFZ#~{G{Zceykdd!ijQ~o5a6A;babK<Mkly#o9eg$(@
z1w9H|6dI5&%bM%!77;sjc3tD44YLf_F6&-qt`)BAQ$IN)YwEn^-G_UQy6p6NBl63|
zFXPHAVaNCjUzv_>6HDH%{$ul@iX&fxr%u|elOj8Dv-=vC#j9?gO*tJjVS3l;ikr`h
zTnf9=-FPRyDn2%YCv(%RSF4%tJ^8JzJnik98>`Q6Nu6SLq~n_Q>NP2|PSt2VXUfie
z-s%>=l6jtPaftt$o%JSbOApP9pUt>*t-#ET^D9@n<Qs9gnqGfx6p}LKkk{mIX;%_L
z+%E46oxk|(N;Q)^jB!_sgw}egtq(imy4FhihFkW+&pvBI^?NgBPs#pO@-TRfa%p(1
zjrp3XQNb6pzLa)7J7T6~T(@zzj48LvYOyjNE&BtPA1fHoJAKGvlKNeydMUpuy~OGj
zkyp;hwVS&Y&Odg7>D1GUJE9-E*qwH}*x}><GW4!mwzs*e<mSfvMz6J}&t7bI{QA#j
z({w*EFWq)1DeR@+X+CY<S9|m9w4NTmdSa4su=o3r>343N;`5pke);)L*XwK2lP>uz
zEOHGI*|t~7v`=|?&OYmBGK$RGc4uv`KX!K4mGw)!C!RKt+!SZPwsu)!+N#q^i(3P=
z-cAv*Sv<vQ>8wZGTCcRu>}mDfnRmgsSn9mw(Qh$@X+OPk`FzYGGs2SFmUC^{zT);7
z8#$dr4J*Xm|E-b|socJP+T)Umc{96XqBvG78858d73*!zRy&JZJNej|ilvo{EqgVK
zb$IJfZcy7?+`Lv)B~rl9>Tu8Q$6b$l9<R7Nd+Dx_tMUs?CG~YK97=F{n%dlP+{-q)
zqvK_QQiI^u>cEUscXN*R-4?s*KK<#U$Ll;o<zn@BH^lt#+NsK6q`36lK{1Q_!MdMS
ztAoyXx%`^+=GLK~rl;0F%Fy0_<f4UK^x?eqFZ6RK>DG%$ZS6e7m&UtDr`)^M@L2Z8
z4VF5orh8j1HP>won3fsFHfw@a;qj%RXV;p23fbw^UaWe}R5e{p#K>6kbH$k^dGq`q
zmtRI~el_Xw;zrNF%$*x_USC}E)V;Xr)Hb!PcP^YZZDq}$BD*f`>Jgm@@+OOazR1w|
zr0M=jdT-#m;P>WF>LueMXK41#dU43ee(i@T?$gE8R`EYQctl$APS1*VR<neNrh+Qr
z+BL;-9BFbB=A169bk=`z*dXZ2rIsbrVmw?f`<?L-+2k5Bh3lNj%$VxNz8j(2dLC--
z-F1rh`9YJcvr=nw6yGpU4w&sD)px4>ra?33PNU{&Twi;%*p^<rqCLI-@G_IBPmV5f
zWS)54*YxwUJJ&=u8*5}=R(!Q?miL|wSzlMURzAIu)3rj#PsZd_QNL*8R$re}kD6Zb
z?JAkiV|!iua<5x!$Ek$#=T=V%ot1KWwbOjfY@XY*LO$=jcEE56&+TUxR;xE|dNsLM
zW^UBE)jxL}|2-=rrb}<`d0v->oRymOsa!eho=;kx)nB^Sald`i6Qy98aI3Vspr@Cc
zGCtat`G`kdkW_vqJ|`@yB)hEl0sG{#+@x81J-4baPFn4F#?58(1#Q1)zVlY=Y3l@D
zewCx#y~;9v+Fw3VCO5(Dn_m=#Jd<2?^!rD*v*k-x8qDKqPtcok^F`{Mm4XEtFLkSW
z((84%sGXd;DP(KRLT}CWkFU<wv^jre${D8B!Inl`t%bT*7yfot6j~+W`70xF-crk$
zS>~R{{Et`6*L&WfHTiue>m&iAnwvh;9|;_twzkZqFlgzc1<_ezw;sj#&fc=fXsK7A
zX=LA)LrFU=<lC0sF%tV2vb;&}sNu9}-XD{0h@3idratcdoPPyZ-d#05s(IS(_-C^}
zPqM$3MxN^UA@(nE)_3EXH)q!@RuOLv6m7_0F)(QUZ1Y0rceKvV^6g(Nk8jQ^)oV)L
zU>SVr{nI6;f0PT%WPbgAe*2zkeV#dQ`N<XTn#Mc!dam$l`^PdNx%IsI#zXaU)@eOk
z`^vLz_ddn|4u(A}^~MqQ%)jn8{wvaWJ!h#ngXgjeRtZO=y|M3JbI$m>cX|WIq;>D-
zZPg8L{qc|C@^4Fj-X-^Cl<Ou>ae4IZmC%LdnK8=)K6F2h3O*BQ)cF1VTj3M#FZbym
z2<3hH;N;b}X6=H<|G#>)x%@*9OO4aSJ+c#+8Pu~5bZ<CNcJGX!rSVkl`iq~ZoS2`c
z`7U7p&Z!e#tn0qKyW!osm-il5{QY@v^6u#gcXrvm_b}S@oYT7E^`EE{%?uv=0b4i7
z>ZG`B=bX9U<3V*<amNyG@4b2RUX(|-ZH=FGcwS=nbcHqU-;8>?7suyMo!+S8+n10t
zyM6-CZR^P=_xqRG)jEXDeQx&F?(&}p^^XE?J=NS{-2Kbv(w~1jKZk5MIqB@&E#j*E
z!KL3tem%@wV0`xfR_pDD>ObFcetz<vx$McUUmTh|_kQ~LV&0Rk`8L`Sj0O@yZ~w|%
z_RJMN^{`Wndl|R9&WpT?*MHt!5#BdDM`^?CoDB=jUhjU*@{QY}ZTo8e4sDBR>*VdN
z!(9W7>f_b=nWsKb-ey<*&Cv61Yx+&QHB*^?$eyY{*~oq+#?vD#K-B&&gO9b|g5aY?
zA^CZC6qp3K-Yu7o<x-jJ(YIOfyL_y|>+R*&*e&zS9rAqdKTwQdVn57q_T5A~hM&jp
z|2G$3xIN(D4i1Ks`|@WCC7tXrpDqwrWb0zQ_JYd+tr_+6@)dRmDy-VwzG*+#6bXk0
zwKIEt9d7hxF<fmEwlQGm5a$VEy&XDnj&;k|2@{GLT^lPSwy7x9w3Mi5v?-=s;8Xnc
z^UGcLGj<0#95y{@XxqN&skN4k{?meGyTcYZ%ueQ+$k}#6+pxqvr!eGJNt3~AzX=Be
z)fp0>XdbdT%_M!Ye&V!!uNq!Dq|7-ect9qnhSBcRx+6Swdz`gS-gJ)bzo&d>-OG<P
ziY|N?EE>4<8Rm*^FiXr^<t^Wnd9IS-XcOy`mD&f}Hs$99WLAky;L`KiU*6dE`tX%P
zNxpa^*3hE&6E?Q|Shqz^&zRw}w^;e!O_LT!C2d;bp>Xi)U7abl_BZNH!XMshVrS4g
zV01d+b;QEoiFdiU-ky!h;a?@Y)HmPg*~H|%HMQFwJ$v)n)98=!cC*Tlw|8^$dVbQq
z6S;lSo3|Wll6i~v9JGw;OSz+BY_(|a*|}SN3z*+k_N8ilU;20Rgq{PxVmBYKcRDx0
zX8%&_4%?4kF5YcgKR;@{#T9`a>PPAs{{833Og!CXcXv%`=WKEQo6k0=RjB>EnsdOD
zG02EfcjtF`-s|iV23LOD|Jz;vTadZ_;qz<1gtzTGIWytnwY%^8{}gTG{nGnHYuhf?
zL*JhLW8~|3ZZ9rh&&2S}|KQ2@)<+UnS8wRgQP5vd;BUdKVpVWBFnsxE?~pC}^W_W*
zC)Im?da%8e{{lB#!d$<i+RvAtO?y+o^dtEma~@+|^YZC^<)1u?SZ|xfI!BbJDkhv%
z^`FtavAT~xjBVY$<<bVRk*pC_+h3-3f3N@7&U@>6|LX6z@+80HmY-aEHp}LI<I^fn
ze*1ORH*Cs8@0c?E`|-WL-e`wyV9vsv0EVc)_y7N@7n$15e79!zw5qxah9D)&cHaKf
zdN%E^KW>YC;;d}2_~&C&SJ&Y2|4vnn%RSqOwj~Ajwb#BJm#^opSLSz^Cv)Nc^J~rQ
zDU-Xm$kp%g=u%9$bH6G)_u|&*ySA0Nh1#--*Y>EJUs-l<_3o*^p5K3Om*ijmJUpSg
z*Rdh)<?{1Oe$^+ej(Gi1Xwg08hcTkhq6NSA8g83?eQWTJ6Uli8KggW^v_RrB<L5pz
zBOd0UM?38U_8t6bD|oPT7mMkYwMQN|{7UAW^g8e2qrxbq#_OAcMa`OwGr5l%Ua&vN
zt`H&|dc}6)=1!IS9Z@OT$<H4|imwsb<e$Yhx2fGm;lTF4=Tz^q)i=ppv|JGr`Rs1F
zQgfpj%hC65>yDVSJ6&rG`u4S`V#B^Yf`{hHzF0en?dfyjh0#+RN>4Y=XPN$OXS>-B
zkpm1rTy%wmw=rx~`^_h#UvqAf`H8JxdavtWyioczK)Y$lG0O=z4t#y`Z1#s~>YtqV
ze(yW-O>)|2munU7_ZhdbWaj>>uitg>{iT;CF;X1-_dFD&rtN60yfZ`P<m6-il2^k&
zubywCAz*gqel<h0qu%DVF2U?6zru9x-7fsG_fN~D&-44z>fgHTRSq=UZLyo#X!Q!l
z4WT>dT0U=DzRz;@J<e_W?Tz1_-t{DV`rWdt!8hw7x8LbpnXk8K&h<`>=ZiXSadK-&
z)*rG=3CZ7*aPDB$-}UJx+gCsTny@0_b!?c#y^hbZA<w>l`I%)`?8ey|Qqd~L8Np+6
zq;|v0e<8C!?EjN#_VCZw*#*nzGKe1Aa^|*#M~%vZ68Wy!;@tN?cP(eiRi1eGzJ#;%
z;hg;SZ_Ex{%h+A@t@H22sy}aHo*nhz&I;?)`u^OYUjBvir%;K<mlp3mxbIrb_IXQQ
z@QUT{uZ~w%*IVzm=$5olz}x%tW0&MV%Gz;``@`<LX;1shKb`w^d*;*WXa3%oo&CFd
z?fYF5Ywm6FYYP0Zp1HoWVd~3$iE4}@FS1+fwj6PZaNou6Y-6tf%jcWd%Z=xc?5f`{
zyF<OsbNYv<N8-E|_3lp-u9^u;<@`FkSIc?9gKwr;uV&7DD*Jwo@Wh?b@)kKc&Fl4@
zW>xm*Z}{4FV#9)uLaWwoIehZriH&b}$!ot1x6Z9&Z#|rU^}gfYInx^o|3p5BIazB{
zdb^^(|NX@M&v<^DpJ0|bnjTtL<50HeM756zmqMDHz@Hrt^Zqa_OX-rX{~^BDN_wlr
z<}ci0_S-mx=eQ`!cz$7xNJ){s7a@N7){5-yvlUK+w<?`jTYBsEmzFnGP3wO2rYBs!
ztS4vKwr^GMSuU3~EKjl--b8sCnd|VzG`Z=NyeW<j{t|ip-^59iSXg|tT}n=0y7rLy
ze(PdOIWHz1$(Lr=HuI^f6khzgIiX%+!*b^O-)1dBQ5SmHSki0i7dFZMy04Jnp!9ym
z-B)=AAFlXsG<#qc@%P`~?Cj$&t9<#H8}paExn&*u{coSR{(g^>+wbe^pF8_?q4#@U
zlbx4ezELYw*t!3T-sb7^_0~&mF}YvU`R@n+{~uesTWn@r656>V=>7FIZ)d+3`(3*G
z=)Zc)5Bm<k-MV;B$Jx~}PpY+#&(1%5z`Z8U?rG`k32BG6hDJ_3lB@bKUB2SK*|`bk
z2~8IcZ1qV{n0P$rLv`Wd_fKv|_3Upf@K$_pbzJKZE9ZB&JMQ-i=kxpD-7rD@Z@c}Q
zb^iN0)KALu*=%;O-#X#sd8ybt=YEt<O#fQ9_2@}$=acpALa)4k_w8Hr{`$HryRY^i
zP@8z))jsZ9(TV$anm5KSxZ3FOXTE<xf!V81SDb27uN<{hdK>;Im$hfjQvL{cmN%9X
z@jG7}@;jvMnZUb7>cN`>R~S$K`n&ty`+ffvomO&M?%uNPj-A)Bzq2~)j~qB|UbyGv
z`q@o2lBdti&PcyMM`~TY7jJ`2ck#7rxsMb)`Z645-=2~X#_;IYqy<G*Omjt|?;f+$
zmfp@id(PC`_x`-gd6ZI;zrbk8#PYX?JMGsS8Z_))vpHnHC2!&S#ftBqU;MCt@6~xn
zQWLC>d}HAbh!ej0^{=r0#q$06_Zv9t))p<To7q&X7TatsF1+EsPocqnx5D}f_g4ly
zd{h@?-ql<gY0|T_rS&h<3ZA@9)8%#C3xA)L41BR--uJS$Yj#r~SX?P_N?sZAs^!?c
z{vd}pO6T2j=Q$iIOMbZT#DwC6JxZMVDzf%U;)PZ1d%O>|Kd4v82$fxy7VW-VF^1Wz
z<oj8fHtT&w|F3s_pUwNITyaUbl7p*4y#UL9*IDc1&nK1_p3;9@bVPN_--@YrH^Y4$
ztsdwu*HT)rwe@|Ke&$5ayxUQ4r-VMNj$Wbv#ki(%ZM~~i*OV6%v-dC6%4beJIdSWB
z10M5+ET-7bVqIg)b1#1^o1Wn<EimU@6nnwB^-nh^lqGIIvS7lzkMo)0KI^>UzrEP<
zv9Cq_gx{=3C-7}vtY|oY?!V&5?Xsa49z4!>`F5x8@w?5d`8*@pwEySW9kmmEWROt0
zJ^1CkI;))PRxf_>`zzX6cf4(@vbhxyo-Ov;Wc~RgzjyE6{e5lpqlZO(7os^j%mX_8
za%Fcc-uH9G+3UT(Hg)asf2W&g#9bdb>qYee@%tuSzq0E?Tql;l-qYjqvL)&G&BAk=
zKRrCoY?So0x$OS_yR0S(-Xg-Dr$0`6EStySCtmZHcXIakeZTq7OFr9uXQQs<JHNu*
z;^W`a4KJw2{K;MOV{^OSy0ZWE4QhX$m&Q%|{9|TKjZ0^*<NwWRVlMZ~49{_1eP3X?
zX!+^F>aRsI?|+#`ir2r66Wq4rN7C&FbFO{PI{a?7X2$cj54xdi*c&#Mul~MPzI;{K
z>rInNr!hLczv-q~@wsH)+j+nJ#Qt1e>EduC@8iGXqK(UE#>F>Zc#-b>qNw}A3$B)X
zvP&PW<Mvo{{y?5`%I<(Dp{YNLJ>+Ztd!LnO;jWI{pwOvalJ{~Ex7sX=jrI2)sT`e`
zDs$=AYd`ZjVbMR#X5F4XHQ`5a&(}%YA7nEJ?tU^!+}h?undPpkZEx?X@3!SFT&q^*
zc`0A;SE|-+QLO{vh8N|-1aIWNpSR++z1_|-?={ZZd_~;?w^?MFGMeTK$W(3+&K21C
z$mK}+#At@oOe#BBJMBK_dNWP%^kkS<|2Q=E>mpy*RZHeC?_|9nr(U=CNsxk5NoR9n
z!v&`1si`L?PI3}xxBR}p=SuThOa8D+cR~biub-B_cKRz`zP$HqTIzo+?>~R#hvnhm
z_~qAMUn;79(Yfc@oqtam1bMj&XL){XQn_5UUgIEB?d{;6*9pgNea=@BlW5YDy|Veo
zH^IL8<qtd49TnbR`^7lNsb~^+r2Gc9;sW7Z{hPNptePpuxMRYpwQD0cb1#}}zmU}~
zU!rqeM0}};c4@@i*O`VkFJh|SSzLSBsrfF(bZ^R3p)Wh*xA2v_GYf~fe+YfQlc{7j
zQ>nrIfBw_b|8mX#eX{fTVdKUAucG&6RLU<~^XAIL*uMJj=grg}XZWl?XHfs6XTQ3f
zT)mO}B&F$dnCIP(Gya$39e-d8*MUn4+r2IB?y`Gzx#q;;OY2YUEZS7?I)Bw_H7ORI
zls8s~me1a8eP)8o)Wa#E(?3{C%YC^$XGQFFN!5ZseE(NVv)o?c^*d_y_w;W!cfYOM
zveRX+MaEy}Pr0^D&AaM@E*-qQ@M*@o%ZEDsmF6@YTodd!*+BZnrFI$J$VX>S-TVKv
zS*>#Z$K(6&7#TP4syA&FV{m7YcRC=_x7U5o=3b=(Nq0Z|o7Jvb$SSXMe%rOuAT`s(
zhXQFq)}JOQuJw*tv$|=fe(!`onYs%3z8Z@1G53GG<??LXTje6Rru68xuk|K%MrFd5
zawaNUU);X#5HtUf{JS?YmHRt?zV591al4!IqPpvqZR#cW?Rr1P@Az7Ne64w(NTT$~
zqWD`?54u)6Elmh^c^V&7JI|Lh?zY(Ma(0y({fFTWnoXkV4Ckv4?TkxWeSYJb?*#_W
zcU(EZbX#i0EQVidv#ZX3ujCYK^b^UhXMRx`&@s11^rqbEExHGK%~d9ehzDI^n6`}h
zGjlQHf`iPQx;61jHauM#-DGhhV9%xnC$9&c$p3iSWRvxlFK&~b?7SH-+wu49(JN<6
z1K+!pJ1KRtwE2ni&FVeBankmO3cEeyZI5ejxoNJ`@$Iy=&Ck#IYroDsm0fm2_L9B0
z#E*aVek&Zm?f2u^n(*>`eBa$I-kG-XXI{l`JE@;I`_D>#`S>Gezt^ZqDtx&Wd@{Xj
zZ|;>t&$k>n`*yG98zpzSF5k=tZ!b!{<62r6{x>W8$E*#n?kR65T`2dn@@q*{|MRmC
zO?CHX2=4!Lsq^wp*;P~P|NO0g?&H^=^s;~dfBEAUH<pRk=gCa_{p#xO>rQL_3Q2Eg
z2#NjA;wpRH?Ox)+FT#gEX=f`>vY#0q>fUm6=h7t!!k;EOKWpHw-6i<U!tu`92izO}
zJ!)mTA$|NRmre0z-h{vN>tpsWXlZU=wy<heh__%u220xi9Svzqwx@o5?sX*2>D%hf
zv6G$h8IDd*jyKr<V8)ete&1!X6P;GI=u24}bZ>L{k?!9doqtKqPua_pXL_~q`vV6%
zJN|!pZ!gz+DXxFwbveHZ0hiO&qE&uI{nw;44~VLWzq{_N+9^DPIpxuhXL`$~Z<x*z
zXH^*Z=E5d12M67@7q{5weV3_we9z#%7XL@<!%8*2yvuWIpLK1h%x``wS3kvwZO!eC
zJ++$0wmY7geRcna_w8x|zvksLP1U%lb;Y-Ib?Jeo=`4KHrrqIOV(vZl&$^V0*Ji{{
zx8BU~^7p#=Eo%-2cP{YS7TUC;W%~_>XX`_lUrpVw)cWGC-WJA-N~-zFH?D5}Q+Qaf
z=EcpDy>D*^KPdC+I{Z;9LHC2{{etr^F4ez!`oNy0a5wwM(1-uOm?d4al)J8X>VCVZ
z|J=n{tK0K^Z)cp>4-dE1yT<jdEoRcEqO&W{Pp)Zv63Te|z&Ul@H}V$V6APwz&eAG3
zdGl8K$)x6$Cx1R(vV%8dJ%fWE`{#*oVm)uZpTAl4RLQ2|!;=$UsV#g{y>i#)(>>NI
z@A79WOt1eXyyT#5>9s$vntS3^mz62HJyAH;@n&7z<NJT!nZLA?RJl2;J+m=?N&KJv
z|Npw~J8CQX=KhJayRWBhQr*~mp55!rY%3Z0TOV3I-gCTR{K8u=@O;yKLqQAAcbroM
zI@kVv=)38Mxz(wE3$DrgUEKWjkDcd1n^QOLBnR&m@4NQywpG3M`Vgb@sgw83SonX}
zoe#cOEKmM-n{+40J>oZq=LwE)CzpA4Yu_vUVRp5o_4-G~hf--zZ7t<lO3b)dNJ+o%
zXY9RjcJAdl9)U%y?oS(ceVP;euIAc{iT3OEhY1ST$7p>#9y@up^}Sgxw@;n86c)6;
zJbcl_NV`8DStKg!>WbdqI9val!F-lU4x2XDKL2^~)*G(xyM074_id?D#tn6?+t=3A
zuaYR@>fy~_Q}yn^y8At^kMpzV|6+Z;Gbr{w?<CKw)gMc@D96Qb`WtP$Nj$!H(upUV
z-#?4E-+1`<rt+$oknp<iOxZTiwn)dsZxhkaHoff^fBL`PUfriga*5Obf3(k6t$!;0
zxWrubq1P4Jy}Hl%mj@iV%QQFQQGENy;H4$@d)CfNe)r<xNyBZI#f|J@SKhsyxNds%
z>*)tnBBmcXE<ee9r_BK=(FS$S6S_*148rw()@dD`(B3XDCzY`9Th_aWk6%wal>DfV
zVZycht}kX*a0$#i_~Yf~PNDvOdzJOQH+x?w)k{mN<Zpj;ZC~5=s^06_D_@oJ&E}o7
z&bQXUJT*$iWn)9_`d!wq=T%qx*z7irGf(}f#eX$y)xNVS_Y%za@o}<;)C-C>@yTAl
zzmMzEch^Vd?5B9H%n>>(Sagl~`{S_5pK>QQuV4H;<%d%04q2ZF6%Y1T3+6vLH~)t+
zzrB+`{~vDA(lfv1|Jet4GcqwSh%hj5FfbVT9Gt%XG@~(SRsZy-rx_i=49zo)5qw5I
z2P1fH=_Xk-GcbJRp5A|k(EuzqO~0#SD>DPb6QSv6&oJu9gVbGk(`EBPmVqI|g@J*O
z0U4-HmpIEPs{m5e)-SX|Lz;nMz6Aq=6tWryNA=148Z!I{hjD-%)^L_lnrWfa<a}q@
z>ATJ{@_^lT5+wM>WBRkRj7nf*Kge8f*OO&nm|?@fAc|tFL-b_681d=$=b&2s&VkIU
zn4W!(Q5kI3M36xLtm*5{F)D-2LR>J4Zr1IC(?7ygZH1pQiLUDS<H-Uq#HV|ohuRo*
zo>7|lD+}ZF4P1<3)B9k;bI&tMGbt!c-*q19kOv?EW9#XE&qEzDH+_=)6DbCU$L8o(
xxQ0!4xByjk-29c{D=7wsuNbOg3a2;2R3SEDpqo|MGyT{FMs>E+yBQf67ywhIaJm2h

diff --git a/_book/Introduction-to-Quantum-Computing.pdf b/_book/Introduction-to-Quantum-Computing.pdf
index 2281941bb415c535f482868b87aa548499ebaf21..624c75b16525a6d7acc4c446016d0e236d3c1aa0 100644
GIT binary patch
delta 94925
zcmZ2>kmJKk&IzXVMh13vT*W0tsfoE<6}P5N-0R0|$aB1W-XZ;hgM~@z6IV%3VCdw1
zX?Em7cC`=Bp8rjA`KuI49oA0m{@?d@K5zU3#;?y6C;k)kn_pEO_WQ^8pBoPRoy_i}
z?!<GNZO+_+wv)ovM%RD7ZIIY|OER!aN@>&l<qcXFmhp*Z<R+;I>()mwtH{pU-sXKx
zT0VM@{ac||lGg?OkI!>7F3NdzB1iv_)qZ{b4?FHOeY_`{W+dVN<jd4c23BWGGA1os
zn0<LG%dC8p#MU*O!MZ_pQzmHnwThdpFFCQ{tuY7hhBQ;|ckP#Ks!J~J2)QMBD*jBD
z_yKqEMIn2FVgy=GAAKso7PG@IY5T0RzFSx}ZmrL3P0kbh6|(qCc<HOpE|R))^scA&
zuwD^e-@EQp(A)zN8fB@g|5ks|b8pjhaaa8+SKs`~`AvD={T$U7*XG5)-^X~1ami<{
z)VvgEV5a7!<R@iunHWqIP^mXGHZnmD=eJR(`?S>s?mpN4#qP79fl1|bxAt9^Q+kui
z1I6;rmxe_?`ETCX_UPi4<9DwoXD-P+8<Dp?bA^_lEMIH;e>TH{|LSba|K{^wum8LJ
z{@>U0cfY@X?(q8kos1UFEVgs<n+1F_ZDm@Lq|O%9{eFGI@>cz1=Kp%@<}^Qvi9Dw|
zhfnC@{i}!SjUG<^I6tAM{L1Y5bFF1hr5=9y{<Ht#@1OG&n~aaoUBP>C8sn*y4ncLz
zzLmkzyk>rEXRY2_ht4uy`)u!{r?Hz$?lMcHwaW6j{V0FMpjY=Jy2t-RXy4HznpVoZ
z7s@jl3s<MfW>s5doZJ6qYW<Hh-*gxHY}XLhiP={Ciy^i9LHUUT989g}Etb#O9~4@r
z$S?8vrg##YT+0u!&q_5b8zvPx=b1EnZMQXNDL>=1&5A`gO5cJ-s!{&ps*{&y`7Plo
z^y(DOad$6wwvv20KX^IwjS}S_a<eo~ZQm};!sk?Of1gFESmRmPJI?Q~QZniv-97wD
z)}k>*=q``HMVgId;EU}FX@~sXrtY{jRZjVnQlxOgBU{t9u!5X$v9*u3Z<*t(S-zLw
z@WVW>=T@i7Q*vE=g!i%gY&kLCsglQWnxV4bifJx$CN^%`uyQ9mSNkE4Pil8eBlb=0
ztSjjLm2q~`H+2m$*2&8(ww>506m^Epx;}JLa<|;EKMHMgHLOf$&pN|AMQ&=q?)?XL
zgc+$9=6#vRC-1%9w_xer1MA%k*)0wS9bLbA(@|G7(;1Rqt}W^jd;LLWW9E8)u?NW}
z!K*eGv!7kvaHXYEc*2_0Q!gwh=-qB8X`j+{Y3>P5H>G($syv(`znQwd+x7lyMONTK
zdHYq0^)Y<x59;!Hv}`pe330Dyn6`oIa+cb0*15~$Shk5CTEDfX{hHf}Ef1Zy#{OVb
z2;O$9YVwEOS02@?{jv9Zu=TL_&e#WykIwYZm3_ey_xj}CT%Jn7?QYr`L0-p>*8G^O
zYVYg0a_$Vd$oC3f-pkg`P+T>svSRHvwiZdhNq%zOJ*RKh3yZ}~F5}8<cJ#Qd@;2&r
zS;k&28{ZjM`{zFhO}72BO4stEmj5BSQ)QPw++?!-xcYwFse~Wj-kQsCe|q5dH}Gx#
zA=xEskA6Dw*n4OE$|HY$JC+q)y_?*BoN;=cX2>})(|OtwhCOlbeWu=jVAPsjbm7`@
z<JZfc&3sVj@ggdHKHuE>_?EfHlx%`u9Ln_7e7p3NrKoktHv4KdyF;6gO<QjJnRBhn
z(*Cg3vmfmCQfQdM|KyWdyOi*}vJ?6&*FsiH$(CfSN=kK!yBxFg`?Oi6d?wCzuN&?g
z8fa>#sjdn2bk|N}6P)_U>D4`rxwbcQW-3p-{^U$UvX#M1t}CtH#s&G8YwFkYyJY{m
z+{kdWXYI}NEjx?#QiBZE8%5tS2z?p<BqqJD?QK$w=WFK_>E&Gt*LObfdVOt5<Q}~P
z&ysa)A}yvp)-TdaQdwOl9bLQR+NtWxGmUpIh+n>NN}5F14O=mjHR2B)yCSp2CWy3D
zxJ=sTYICK1XYE4egv3j}FISj9UX(3azyIy2-(MNCR+ijZF}G6L@WPi$`S>8i?h8AA
zga&M7bd+T)xYMBUrCM!g#{zCej@%`u4q3nEvt3-E@+)@9J+9h~M^6{F)>Sgywfv_#
z@$%W)|BEM;Pk3yucJ2{V(IGp%!v3BcC(`TtHhkQ`v_H*g<sK8`RDJzgsg_cSn?(#u
zWDFv7zX~17x#l_j)%V7$7a#md_x>w&&FEIif!@hsRW&b+jdPCQK3#Z4aiRT>$c6it
zCL}y5aOgK!y6S%6otLl9$NytL($5!(rEE2Ul&z-5$Ytx=2=D&KW<2}8hyUR3(Vkd!
z<A6dt(_5y!TTiTgk!aKT{fhJN|NNq^LHxHp)r`CEIx2N8`SHgi^+)-JX3zg`1Qh?8
zAO3Bh`BnFC?f#!XPgnl<X>Q#h>C9k1=la207c1@eM3^s<J~w@TTyN*M7PDHVdWpws
z$q9zXZhxs=xcBn?=l9#=&+qlIk1#%$woU0Wi$vTX6Db}g6BWlDn=UX!Ug&n7?DwYn
zmf>5!8B@c`J$N6fguXC|iINMt78`N$%<T68aXm#zeNWZ%b|+18P>b^uXl;5@U0roj
zdc&uss~VU;o?I&G^<>Ydd>{W~rB3=!+?UojZGRQ{{)o;*KemUHLW<>!oy<ye7j0XW
z&G7S|M9~|!Ifkq<?(fq$`C?YfRh4fmco_YHZHCOv59gMb<l9BQJd!Pu9{cla%G#4B
zRW|Nl#j)GKP-jh8;IBm@>(=~Hi`vBe%EQ;IFVC5OjndAjGU3=cKZP|zf{XZlV$-zN
zdZ$M*)VrS(Th-i?9dq%b(Dw2zlVXzcPl{&ub>C!hef!Ktq+EZ`^6VmuV>>=hdeiWu
zbY*CGt#iob)oL2cy$@f%v+(4RFPbxNbX5hK$QTL9I5u&uJ&~jPC45`@6Tx4_8`kSR
zyZFk=sBDtTs$~=8CNU@l@~;0b*P8!)lA2zf@U$B9L(RMDU5<puhN>*xdP}=>-raeV
zg7SO>dK-#V6@`zf<V-U<r}yl~i@db!JjuIXtoZzW&BT*ev!!A=j_OR6TR7p?;Xq;Q
zO-m*P%`&JoPxSvdQ>mT1s_S}}r<P?f>%*vs!fWeZS!J>t`AqhA;S<ewSk&>)<ls5U
z4LPb)<*p?dHczP1va8>c(!BWgo)<Njk4-Ds(c66Z=d#?YsNI}v7b&f~c6{kCzT$fu
z;!Tp=O%yiv1r*PCr#>s$B5h}YRH~m<y|ueb@yXJqLHglc_oVLTHg=T1i=LAFq3FVy
z6As}$J_n5-rey?I^9KEz*_Fn6)P}3=L*8B4CG`vPR~uh`x9ai_CjUux_0K{WO+GIX
z{uw5nmt4l(=5zI~gr4b3uR>?vkF`!k2N$<iv+B?K=%>f@t(9f%x>a$qCbMD!@{ODg
zwM=;@yx(Iw;mXXlWmSysoRw@I<>@<o?#m|{-;t8}xg_`Tp2a)&md|*g82pwg$S;b$
z(XZjdvgZ!6SGe`|Y*)A0bb%xI%e?v<e>YsI(%lu{!LU@KAk=H^hob84$qD6e=dSNN
zs}pcLsgCKw=f~&sKRw;Q_;>@ex!dG8X0vmTWxN|^r~ExJ`_N7mwzpwDPmWBx%J<WD
zvYg^sVfF)k*E0Q8k8gKo)-&C*bKkVJPu}w0ZEny1U~nkKRP*|;o=dadWLc){nQ)-0
z@ngM%B0p=^!g)_#Ugf@8HjB4>>)RMl#+e?spPYQKIODgRJUioZL#I1M+n8m<oi1sg
zuy}Fn;_9UrFP@0KsWhkb`1#$NSI(LE_lClnMS@z>riRZh`^&WS!uJ%h8@>B0*_X6!
zsO66BtKjA_mOpEG#iwhNg3zZH)dTB#Gvzl}H_j?#5w5orUeWjYqH@aPuTwhZ!wet(
zmpHBQrKijGx!v?t#;+@!Lhj|p8Cx<JeZAsS`GG@R?$qTA`}^ncJ@IehT&X(K|L20o
zclclAI!#@d@$1+%MegH*x2_)l^L*X*4<-F&FKpk|^1huW_V!S8f0@N!i!FyWrylw;
zQ|XoE?fD+tF21zAQ<gY2K(70#;%}cYegBk)GRHXWr?$#I57+)U)2E1IadEtt3jghG
zE7yK<SD*Cxv&GHxDnaKZb7U`Wo@=e}u0Hbs|KCd+=BM?yEwK(;B&)dWr<H?`;YGRq
z?^%ESJnsLWx#h`?*2zC5E$WSp3{gtix6z*cDcgDXJrCbg+)%Z+mQjjT*&*k^b~d&X
z2R|%aot;%PgL9M2r|-_4i(Fp54BcDiFL1c?c<;MQUO`vX^S1t}o!H$_U-XgdpZMw5
z;Xl4G|Ean6_wVxl)9vq{E;{mR&Zg7HZ!0~`S`+JcX^q{ir;qEuE>~AvV>REW=fm`g
zABsf}x&9EmpnP6kccJs$1&mf#Sgm`#=4O8Q`Mlp=um0bT?dCa4dV_27mtT8u``!m(
z3*J}4dULm5-oW}L>&4Y`&g+A3OyVe*7-d@XiS5};r~E7ro+XLTn&wa3IPsp(^4KL2
zi#s-5;JmG~JR?jobm3)Ht-Siw`!2m<t+Td#anUhwI?S=2OR)2q!&<NT{#rJo$BKfJ
z%qPyDJ$c7d?R7J+@4vWVi{ER@`9hoh0@mw3U;gS}-#7jC<7Pc41UpxKHIe%~OI(Fd
z_1y83;eMfZn@?z7oM-ov``tv1?aMrk0;k-Xl@fDP_3exJNqIi}IjbUqZiiNxXVg#I
zJt3{K(|YkAk8-W;KZBoX{&%fO|Fy1Ht9YSc=P#X)+(l2<y*={jZKdtHoJ%`Hy@R*D
zl?mwDFkQe$Z)REG3-M2#e&5&BSY9@9Pp!Mnc{$>Zdsg7TE5YZr-(UND@7lUQ&jYLf
zOy2i$m(@vw*M^^jJFO$9$p4=G#o~DGx;r0KPu16Y?pEu~{B>sQzBz^S*4r+WE>z|=
z|5~=PtawJ>vdb~0S3IwVWhYs#b+4Kbc1U`qk<tR2QdhzHr!v>AOOJ~F`W^rD*t=N9
zUZ1Ay>67)Jg(z=~eeiEmS(2{7)gz9J3aU4Y?iFa=E4^{MsLr8lG7Nnjn;V)U{61{S
zblrYT<cX<Q{nXhxQ|!t%rJnnHHq%y5BWI=5du~3inC1zy_H*wLUg#GYxOKPZuG#12
zte+S8@5A2bFBa-7VB7P!$t2KxPTSQ&w{~+cCYMuIinji|J?DR@-Q8iq#Uc{4C5iuF
zFSlFo`6&0_Aw^k7Olx8%yt=Va<pxjFMBS%8QtHV^vXUg$sdLqrs_|ro3+Bdd-Ob=A
zzwF$OtDQGGW^>(pX5MwIfo*<H$(aooy3TOks<H6NFg-kT%CvJcPWV2%RABr%?&8yX
zRT?`cr3<`o>3-L>zHHwyk8^s*F8vO0m)nuQLwld=)IVt|U#7QxzHiI!_`PA)le(tq
zA+GiZU#vQH=}qGDiPI9*>t5BD?42X<tw;SznsDn5(V5|2L^jE7E3?}2#Yf`pjE5e|
zF9Ig$8CU*zz3|7uf4csL=U!dE`za#&QsC|~)(K9pbj!P*1Q_lwoIfRfx3#&(p2MG`
z7FJrUeY^K{gM7Nr#(3-KwHDP!CKWzoc$fX$t>(n){jA?_^K3D@D|_epYU6on`VIBW
z)-xWSYPIxR^~?IP@`HzME$#gb?`|{lZ7XRop76@*<K)l{JD+S-+<dO2=!1@XM|dFP
zk>elBUT<ET7q26;@>-bq>mv;7TX~B3{=f76!2ka8x7=6Xx>irz*PAI|7%6ZsBm2<p
z`@(Yr9mT({<ukf#9sX0wkRh7?;I_;8h825dc<bYqn`vE*J)m98$l7lia_i{LupT{*
z>4sa|xH^KjntnCD=P@CF%F&MPvk#}AFHozmUV4fxuCV&f>X)_4<Yvvie}&t5+8%dT
zH5b($#wF3u=9^7>e{$EFYwu)4oRc0*VRhP6a{A>JhA#EZI|Q;9+TOJ=WEEQ<ww^6v
zrc_`;;41^edPnWz$>mwvOqYbJo(o--<SNeRx18q`WXj}p&NGn1tR`Y<b!Etf><x?e
zb`*Iws+7O~v2?ye`q!Ez$yTdg|LB^$>Cuue?~k6`<aXSoLq0O}`K@b;iTxHIlo$$Z
z4{Tt#{>-9<u{C$Yy5>Kx9-I<xn(4a!qNmI<dsl%!r>`(hSiPyf;aAQV?@zX=9lJR+
zWBcwGc9>Y5NvgcmzrciRieJy8&dh}LhZE-c`Zeh_f05}ptsZn_hnszrBj>9-u`8NO
zrzB_HIQr>U>+VwB>(9gw@JV-MuD%u#nd|vEYfk^VplHQQ7F~~5C@uQ+)9v%BS6V{Z
zdn0z}HUB)4{morVcCN6&hx(g3nt4;V?u_oVsSA20^s&dTi;r<h&%5Up&98T#ntr`%
zdZt`~+#;*l9lgQ4zkdhl_qT`}|6(~mU;0gk{>Mnq$)Pf`exkWoo4WK<Wh7-SCR>Y^
zoDV5^-)0pvbAJ88mlKXhyNl<#cDWUE9GCf6KJl}=ottFoo$IO_PPHBOeyv%rZz^;9
z#l1;;U9{e8)<4bM_N4w|e0x*UC7BK1E~J~<+)ysveqEXI;g9x%+k21S*;DxUT7pxt
zJEv?>_nw#2mMT0xc|}9#%j~?oH!`=|n3LF;{wZ=)JPS4x3^-p~Q6OuRGr{k-rp*st
zn}F>0jn%I?za5);``U}#$|bWRFWx_J<7EAoEe}3799sHR;nh3iK;{*T%0+G+%j!DN
zzSSVUFq!R4uHxr;>b3_jPl`^K2#s0VX{o<AZs`p+u4OlMqg66o_bR{e7B=|tCxhK&
zpQ-=JRj<-}`3xeG?-gdRd2%c&Y4)dzuo<DvPrv;VwJLt6qkdkjVtLYr)BC4g>G|Is
zI_3P+_4Us$6(4dvy?)Q7V&B7e?|ypcv+>W4KVOXh>^k&B{=xIlDS=Bv${wtZsqLAv
z!d>oG(C^RcF1FL_Tle4BxGlw}p~sd}`t;xP8+}=SzxgOPtG_gP5z_MC>Hovmo8Ek@
zefhg>-Q~Ia;sXvC9bL1<XZDkRr==A$J2E*;U6w!e;wpG0BwZiG5Oj=Tp8VNd-SwxF
zdgA8x&*J|xY1Y}SIg@I(7;2h7j!D@4CD+3%ZmZdJ-~Aul7Oj0dDI<T$68{ZcXMN?3
z>n*fvkIerzvu$6R=ik)Gf2Tx3ek45D9xl{l!q_g|6!nks)`y4r^YicT-Pe%3r{>@D
z|Ex7J2OKzm{F~_AJ*z3Iwf>Wl(ByO8*7<KV^mCJV^<GVop7O~`cKW7E<y(@u1DM{c
zdo1DoHR;5LxC3riTv9F`QhsV{Kh^J8z;dQN7guYP+%=F@UbCWP>8h<cR~Tk<Kc0F1
z+N~$S-(Sp{!RNDt`^=qx9=qm$=$#@H`saID!S=GVmoL1S;xFwwb)C)bM+;8L{;%KP
z->mkGUFP@t{rim+j|)ATwZvGnYtFTp(v$_RtDeTaka_d!$*Ea6_x9VIP*3}Pch<9L
zGwZtRA@ipA*GV_O++G>BVGHxr+RKrW+7Fl}2&dJY{d#it;!g~bws)kSwTB&CG-XE2
zf{hYqt%G?cTn*s(6mEF*lSX?_wN0PWIi}l!YwA-ccz*0&^XYPc8N<|!jo)Xva%@um
zGPkev1sCJzE_UHylb^Dh9Fh;;zmQuNc=w^ntCI}tH0|3?$vsh$Tds6v)zl*)ET>&o
zJSaC7<dSi`9+YzJ+r7OPA7vb2YTtGyc7Fchdw&fC*SyUL317PC=n^-9=wi07x4bl$
zTmJGj^4wkJRUdZiv*z+l7oT6e`{T=6Sd3m=GL2KW+mkx;T()rd={KJ~J(BUiQqp+(
z#&7W*OA>5kR=jMs<$vw8<<^yycjsqjO)gl?@qT*f$(-M!X}udC9!LuL77*C8)qTeH
zcX9Ww&DzebEEPASC_*Z&cMaRJrM1tNwq$Gn^e(8r6tVT|%CywP`gIJplUJUowsW$T
zS$LB}G4G2p`}Yl1i>*UWJBC<?r7b+7u3H;n{<?|H`dpUnN#QRG<F;~seU~z=%z5wc
zsYhxT6#0uUI~p`uUunyF={@ERdzMy6=g3aWDrL*}yX!keAntT%)K$$Yk>l(3&OH+F
zpZVHj<5tso@9Xzw<V9*T^7YiKSb6Va^OkRa&t9=Pa7K`gh|F&{?rXIH%hrcox)bqs
z<$bZkRlkp{7Vp0I@zHfFrtXS2mp_=cC9U~=AiSny{>&-n7L3JKEPMA{F$(dYR-2Jq
zo9NoHrfAFB^Y`8uI!@IOzv4cl+kH~0)u)z($ejYq^B(UwWpR4Sw}h**PFMC;OsSu*
zzSG|?)p1|mY7=eu>-$cba2j=+&D#6kBlKL%Qr4yEyR6pVI`qnMx6nch&7-rQ@wGE^
zCVvaLz1XzUVVUv5DW}!G9NxLdiQjnV6#sLTDQ8QC?ay{E-z}3eJB+(~>s;~BX>zv(
zTc6FIE53Ew-W{sF&$PvlSG-&``$FomE!+u$Tk1dk{baK3PIzTbThXgX+suf$`S&_Y
zRn6bI=y&|Flb*S^e<4@linE-PZ^=yVeYlrPI@~?vhUWd%N>3Gd&9AOFr}_H=592-e
ztRq)f2VS%kbd+6l_~67nX)E7)ZvWo*<aN!mEmuoTuTMN2l{I6F+Kab=J>PThUka4o
zy|8*--O{O>x4P~77QEm3TZGN8-gV}pYy5LI{BrfzD&Z~P|NnNhe$+Zm4bByB!jo-g
zzAn7p_4Dw4#@@2W_Lw6^(-$-{s?{5rnVQ=n&3e3*I^Czd{o}m#FNztye)`KG)+DH4
z_TV-H^OJ-h8<f|YwQm(vZ~s%bs!M0njsA&gVP$E#@7E}lnntck+S@&+ZswOI5B&Wv
z9;i2+Ti3Mw{e#b$U+*5zvbBD{-1%DZ1<B`sj4m2TnXkP0?8)-~ejIxL>#wePRs8pB
zz<n96bH7|?$mK<SyxE!ctM1oB_a9b=@4SDo`Dm+Q+BZGlbLTycAGbF5W!C?iwWR%5
z_{{3rHqiop^VZCE=BhVXCOkppz23`14;<OKe@%H9FC||$YuVlM`Nzw<!`svE{oR~n
z5U_0V)g2smX{OStPDcd4O6pvUtl$u<uXGUenH@UM@A8v5bDhsjW3O?WFgw;@mb;~a
z@Kk3H*_RAjuZ8s5J{iqdouK*h$HWVM40eoS^Sb+w_{?nWe|mX-<%`a;r}CG-Yz}Y}
zo!tCBV@v;sw>4gAzsx!Q-Q8~&yU()rLc@d0_5bdid3)AmvzeTZ`x~BSr&*i1ZyHrA
zX6>)%mC;ylV5%-LjU&P5h;8Yy*A^Gz6dXF|ZuQ&6|EnkE$BF|Il1EYuAE`c7w(s>j
zI6-84gX{XHywi<8O3DQEW-MWg;M(V)ef~%i^S0QG7pg8N>XO47J5R?)?!OqjQAynN
z-(Jo)mwYALpCu^iP2ruj)gU?GVdMYx(Fe|aIpqF#fBoYXZtjLhEux=q6FR!z*6;nk
zuNFG1*DODNdQ#W%&;0MFZj#!wDcEcNlp=qx${%lq4xIg%u(na~o_6X7-ky@@i#r*(
zCF^E?n)Bgjk8#2s)?=(c>}2^B<mdcdxJUI*lG&j<!O@F@7=llqI1+N@{s&o}vp+t5
z{QdHMzjoRCN&0&|1?!ogF?iLj?r`+Ge2|%A(rTq7-b0%==2+)t1Z;TgcX+l$mqWl7
zjS2sb*~bb>_hw}UinbT53EMbbD<(uU{gsW_=9StH^QERnPOaEtXQ&p!DD(R6M~A9#
zF(HOWM?zXxdPRwDPdcnFZJigk?OR=E*F{Nfoy9rxt*Z1VY!GEwykcqn`+aAF%*>8k
zrWDL@)rtH4SW$b%x=o+ho-DSzlG*IR+qLCv&@-QAK0o!4zUFNKW*ZF`+ep7Wv9XB5
z)U{5>+vvub{KDybj;W^{wF?#dRed?tXU*juNq=0|XPAb%ZD47yT`u{zGu(CW3yIl$
zX)C?|Y`YM*HK}pon!fv!X7yEGDXO36zs{@t4^Me1d)Ki|u_56h_e;AUL{7C9Ih&&(
zH7TY>^z;FppVn?CxF>u|*|_$J<Xhdgh!3Hq)7hQ`Uz~DNbNdzHdY`a&9EzQx7iZfF
zF#4=YyvM6)C#clK@<wGAi(vkfJ9?Ja7VAE~V0Jb_n&Y;|&t16*4`pWO@_0G1@H~sH
z_mE1tXqFhT?AtT7@PG@O_AOs`^e)?~_t`3@e^ofnWokcB+YzsN!nVNi+lJebxBO+c
zbQO1X+Fo@3R<Xg`jx+qy`~rXPH*OhmS#|6B7O%Qqbosz_S%s;qvs^dHOj(~JJHvea
zidC^6+#`Y|6~o<XbUe=KN3aJpbM0N@_|4P8O1XYVb<(>@1w}U753Y|Wlq}VqGcC~D
zST|d7zU$=GS8wm>;&XFhPf?z*PIk`HwVcOOj@)*;S6QOH=V{n)U;Uo^M?vRHZ*-}c
z@XdS{;@>sx%!aiWuP*6vxOH;bEsjr5d6id3F8>p$_2uZdmT9e*E4q@WC|=dM7Z5LV
zIbqEi&mzae(e-`@PhMg0NSTo(`SGw&CAY4K&$XmGmnW6JNZp=1?aA6lDIcA!C$66z
zcval}qj~SM*n*tn0&{lCnjd-~eL8sg#+GAl_q~hw43nQOp6|8h)tq9xQ`zjBpSGSf
zbSmVEtTc$Ta$`O@qs?edTlInWMp8?+o7!GIdevn5W{vC_Rn3gH^+&w2dH(9A%bRYE
z3EHZ~)Wo=|scpuoPzMj0&xyQ?S92L{&oNfrWg2>Lp)Tw4`0&qy#leXVJC=O7(W%3#
z<=y(K>V$7%&W2-MU$zCTPOU7QwnpsO_18vIns-;fV$$+k(|bbb^aM|lJ&k`2qW3RZ
zcxIhwnc%m+*6l(|uO8D6TePhH!)-4WUdvaT79Y~c_gve(GhAG7M~VPv?}@oF5fLfD
z(znh%T2QvNP+M26b&Y3~;KaK6^SZaT*1b)8ePCD1*JkJTnElcA=i2%c^&2`TnI`*W
zdX?3k<F4q^tL9vhvd&NR>hn<X##*M=8`MnK1}bzpugVGk^ffWF@ZQ!f@gna`>eq43
zDA?HWIC2W7N#2P|d*g3S+iw^b7L|AU7U#+}mP=1>lDWKR`ZJ4jfxS0sWvwc5!*+@a
zd(GZ>vugD_-3xcpDvrjkS#7zgb;Xj~smFy^`hMJa%<cGu)GWJm&zh#Ncs@>b(MXMu
z*{XTgZh2UH=*i01)b35$wi7otoGuR9<ttKCuQz=|anD}vLqGX$AK)vqPJh4cwDY5g
zH@Q!@yjd#7m2Tm`MDq3A%jWOzBz?ASQ9e6iap<;JyL{Qp1MbZ5lPlrcY?isu@vM`c
z^S|N(Lp|n}&F`l>N-kX8*Yoh>zg3=g?~hOGdT>}K=EdI)r?cl|>$y~ZjhZEP&*X6a
z<*Pe#=UR8x|7(iO3pwd1VO4RJD^lh1y6v-E6x}WaUOZ)#KJiMymnG&4o=Qh^Z!KG3
zEz!LxFy!*oe%<Kq;&*drEGtvhRyovhXyLBxx6>!Rxp6(ai|5Acu#RSz8#nKNO7n^T
zSZAKRhVAs<rf8+P%i>>7J5f7RZ@bHe8<)QEAKP+$^VN6veD*J`Uv21k_T;W3(=D04
zX(`|3)SNEgG_%)y*Zt=i4G$k|cWjTA<-N5&Z3`>Qib)@;cd2}SzU^LF>@miPUQ2Ca
zR^4FPcks1QuV3ZdCEWWO4|J*s$42w+c4T{RYT(Liz%_s2CnHzpZ_z?M`<$0NG5_}E
z>-5xpUWI$VZ8~#Z=brVw#XHjLV|2f3$cU`e-1lac&(cS?LT5fabUO9(naRI>BWA6b
zcdl#MO<v8<vVE-O!i&r`jSs9zu2^^`W=`;<ZQC#Jy`SwGdxO6v>^d_?)T_<6j)xwP
zi+Xt=m&q#UmgS>$`T47xGgj2TTJ9ZlqG<9g>GexruFcBK(0@ErV(X^T8+*MEs;3p!
z`}1eM<5lTqYdrf%!$am(Zs=3j`m2lf?1@?v{h3v^<*ZWi)gzhhA?LXh9&^+`)?)Ty
zy+5=1w&&yY&G`=Y)5EL9UL2BXlAkzJ-|1Sl`mHxX&m5f6Ru^wOx?x_gpYpY6k3HvY
z+wUelzh&G0y0><^V#<s?8E^J~sL+>RTNQ6@>R4a4DcoG)&9$o&XIK4n(GB3b)SDBw
z{9eMcZ)Q9Are9ig{z=V^7x%37`_oSaTZ^nKbKm#nO#aUs5xW*O{bp^8o}2q%<%<;V
zU$grT{Q6ULj`N-7#glv9#EaEj)X^)FIJu>SchXO{UeVZBAG_ke2&}J?J~QvsTh-r!
z=JT!cznp$7y1f4Mv`!0V)`aa#Gs3QGn@zKIxM%tLiTn93Z5bc7bMp_mf4MJmD8b+P
zt1{P-<uB)O`if=TS;Q{W_^xk3wa@0->910ovZf#3wr8`&yn5gM^7V5g-mkP>-xwWt
z&S{g(tw`1rrP=!r<=o-r%ga4_tVz5z<PSsXAs$Vh><jz)|D68MAhEV}*+k5?shQD4
z0o8g_151>qsf=%b^7gm);y<2aUE^`Z+(1Hvbr!=;-CYj+j(m?lTG{4wEwg>{e)<%b
zTASCEIqTD{ci()I_vW~IponLnifiT1+`#T5_E{er>Ysl4qiy%M;eVaw&z#(;LdR~U
zK3`LCFmV3;X;*Z%MlZQwc;o5!)&uoF*NbejnV$dt)a=+}k#<7M%Efytwk?jSi>do1
zY0r1#JNqB=*{lp4*@qT6vLshLtK{OnTJ}G9*1f6rsb%@am!y^oe++I2uixMq-E8rA
zulii|9l?Ie!OH){kG027PyKxN_{Y1iuD(07yFQIgIrUVwYx9N0#!N9^+M<@EYcFB#
zuD?HbndTD7ikI2@xhmqslD8Dty;^tEy-6xjX2rU-h8<>B;#&Xs4vDC=@H~BJ_sv0V
zRj-4Jxz-ELjRo;lK9^7JePQ@N`~00RmLH$XpZ>JoPj@Llo4u{Z>yMXj2qgUEUv;4T
z|G%d{raxD2<*57l-hA7>BVhtuI_sA8x$_(noVw{?{Rfu0;bnX>8u|vBP2E;13=P*+
zR5qOA-;&M|v`8>JVC_YBrNdP#lUNNSdn$Z?TFm!KH(wa{K~_iOeUdESQdYl(iHVc6
z5_JFa=ob40uQ_n4wQFB{$)@=QqUwczjI*s~8ic)Eb0L2Afxg_p;L9%#Ty_x5Xe{TJ
z3ayy&f4XkMy!tPvqW<px9_HGXw9(6j)A;?z_3x*@-?#mW&Z!mCz8^Ogea~-i>#<Vw
zR=V=is%e+rEZy?sE=x=Eln;M)IO`>AR~$0GaY^Bdj9ht?@Rj-#0@-r)b^jlK+WuYL
z<<8N~m6LnI6$+Nd9Ixo^T4!r~&z3DoY2#JTl$GK9Ds2DQev6(KuHTYu>BOL@r?gI)
zv*-2%j=5*{I;LN|lzvF$)AH{A2b}X4$8EZ>(Dv~O3Getn?;4JOo=~l}i(gV%Mw0u*
zaoLvkMwz*49#Ws~e&6_<J7Sal3uy!IdEToVtD`*DM$ZmDlr}?lm-N2UUkyiQ9J$ZG
zb*H<b)#NB|$8Et3w-#J+w70%i|Kh$_qRFY>-(43=H20i7=dz_M<Mfsyr^v$%{ip8-
zPM!3n`pMSWTRrA!G0VKoSrr)ZXHo0&b)BEK=<uIOEOoDZ{6F%0$E3N_0$rM;R++e^
zw+d!%adAF4^^3#&tIc1^t~96UZu_dxaG+5yfO$o(TFKcf40AQuo244QM`tZ)`e0Z8
z+R<V$yH_+%)`=AfAqmP_O_u^6s2ytHb<Ox25c?+5c7sNvBX3THE%)!fy<f{`OLpW=
z77GcQ<+C(VSg4xSQ%Zn+^0xE&t0u|)3iDjEWLu+Q?6L<xC+9c^UAnS4_!E=mQ9GR#
zMsb1nu84lJcbdn>>wJ09-<Bo5`M$?Cba5Ads-H6BOWVeYlO<XMVhz6h(2_gpbMA5Q
zdz-|XW3h)l%)6Sdc&roKnbxGNAAi*Q0{`iglf6Ty2aBCv{PZsK^*yPK=Z;Ly>Gy52
z7t5$TJZC}NnX_9?uiWz8H>_h)+=&a@`nEavU5%UBP`&l%oR^#OPW*m)+JRFv&wo*g
z$=;w>FV1b&tLNMtKJ#nzDOt&o?8UjhMG~#&x-aX_XK=EXjGDBVsZC>rQ@e_L>oyzK
z$L|$<4o07rZJf?$zoti#bymt|z0)$a$*)>xF7EReZF{@ONSDu@VNzpDkxU$;@@9!!
z#~+H`V9Ig3ufV+eUc#ft$5hUn-;0|Vvdei!{dL|IM}F>DcV4#soa*(6l{52w`1Y?l
zXIOK>Z<>8d{D$(V?)lAjvX$9=e>}d-);VJ%FW<UFH)7K?<<;6u2j*Pfd5ZI}fB1>W
zvts5M&%YcIzTGFsz-+wfjkcI(QF*WB>ucu@**JIZm3kK0x>3EXW<s?)W4wz?``+0{
z|N2?H4xE~NvhAk8^TeIT9`!ld;XjUDQ7fPGa@)3kqXia!U%tKC_$$(KrqB*&7x!yB
zr~2=I=q3Jtp2EM(Q{MVIR!3W>|5k2uI<@o6RnHSWr#fD3Se!B=Rc@AKT*_7>@9TX@
z1%1bsclB94N?E$3e_`6heL@X+Ntu62el)POPpX_Tx$lMPtS#K0*KJ=`3uP+C*846N
zR$pYlT_vyc-geuYvk#Sf^(@Hf?FcIlQhjn^bJq6F&#x<OGf-6zXS%}qyGCGDYWbR5
z9nV|dUb41Qx4pb$@445T_#RxiG*LHZS(xSowbtCoLz8kZ9QS(9QXQ3_xliVpuu1Zn
zWWLD8HJ!GzjiM_)qzD;Vsp*+1X*wV1?60fOR4?9`F7y1dK=EwDhx^&IFDzffG@+Pr
z!N(7I*<0W89Qzk`Zd0>q>7v8BYJTn0s^=|b+sm*rewnOO@Vr&~B)^yal62Yb@wM1#
zzxT_YDVjWuYePOnhq+iQ*525lwEE9d-eyt7%^QsU%DDAE8`_B!%6qY`_^_gYcY1O~
zLhPgM&h=5RxjffQO3QqcXDJ>Ny8ZHRyY1G#yOiQXli%Fg<$mY;VV}FFCS1N6ecvZ6
z-!G}U+30JeZ+6tD3D&C2Wp9da<i=Ia+w528ANfx7?7j`l4c6a0URR#GJjGPD{7vgJ
zeM!5>i8WWYJ&nlNQFrxe@p5BHW1iiHMqB3_Ctu^OJkDiY&l7X&<%_Q;7x%3Q_nLXP
z^48X4XMX%>pS|s9?YUjM{eSyTof-MC**$&!>xD8$?<`xoRp#yVW!#&z6V}W~co89R
z^uoG7o$L}>ON@BqLl@pOKNc64mA18O!@3wN)_rG#Hv6Q<cV6k-cSwe{eVwS1<-^(>
zORGA$)c6Kx(V)hylNLAC?_^|K>Hp)Wr)ygLycKo}PrT_Cc`JK)e)-){?^?+`Pl5H?
z#YskSS_Z4{t$us%ob~a2J1(A7FKd6cKl=Ml@5|d{7j4%x6>Z)AYVwk8>-;Vo98p%k
znwh<>T+y#P=c}(I(~f;f4KH`@aLbIEyKIHk7Ju#Of4099Vt7$pCGqILX}((himBok
zcPK7>VIghhADYZ>(h$3<YH^Xqg6H<jR@s(>s(rq*Qt;p^!&<%2vlo=wA6-tI=IE+B
zS@EgRVykeA=Njkzw4SL*#d<F-j@x>C?V+95&T_x}W04=D8YZEaT$>n^f8ob$tGvpZ
z!aEJ!o^wA~&kM;4{3OK1{^)Xh_!bLsmHKM`LdjM6CG)rbTPppj?&6;CLo@v~SYLKj
zE#2_#+~sqLx@(0D>UU&nuWd2^_wI9@_rpC#UMwYo*;BiWcBori)w9qnaa7#(t}VEk
zM=pz*e_}dwxu7clrREtE)@!c#f9&3Cr)pRCbqu=I6O#{HetFCKz4t<$-(Efwg$Eo*
za^)u0D=_YzDaLMg!b?!%&haMRTM{A1UpO>No%vB+z2Sc=*ZXS)|FZ?Z$ughZop-qA
zv}RZK`ss#}^VR=sKmPB_hI{%CK1}AjmC9{U+*)mSQ(O6|^EDGME{<C3=)KMI``^~=
z^=-^9*|$!3yV(k*uVJ%ow>eGx=Ogtgm(~2(<0+91B`@onAN`yup_tccn7qfOXQ}4>
zq6ft>a+}ttpFDhVt)O3Eiqe9(>=mk#%a?zAX%m0CNbr~l-;2K$C!flw>!}ylepg8i
zJypKF@bqHqK>nIV^CZi>JH65l^QvmyxH|utD%YVS$7|<#Uz=}s<!kz#l|CyTsT#Ai
z?&geMlm9#0N#J_r>iXHstyUjf$i;fQD|E^&9VPGh?87$GZ%nlj4J@d1(QDwCHs^dO
zBg+?8{xuP`vEkky=LYZ3YV^Dq?D{xj$D;LX=dF63^#5oo`&53XW;f-Wf_9$k&p6b@
za_i~?FIN7GF!kiU_$z8^aejbN$VbahyWB;YPhYsOK<kx%lh*84np_t3;yH>twJdfC
zF*1a%RDbDo#r=-nB8TT6d@k{AIsP*FPHu*?(UdLBhjL4qb5-8$S{J8rwsSZCac|)^
zUdAUszbA`d=uXaFVtB(}LVAA%^Wht;Umo3fvM|fI&(<?ymFx11$*ezZuFn1&BA(aO
zSM~WzSKn1u&PyAM<o}i|G(0C~6H)IiE?c@iWTnh~+l5!VKR!HE^?ULpzxn19pC~-J
zHzmD3qgp6mYpK-xqgqveq%@pUodnwQr+Kfx_B(5>O7m<ToddknSwH2aUccU8toMzV
zf2x|^MsAyB@9qle*{n<c)>>3hbf)B}N%+(LsWVEtcRtuzaXVhwSUt|~{btpli+sOm
z*PE{`Q0w*F)8Nup7}N9P#-8ODwmsRCTbw<Qi6P#<p;1$3<rD8^W;)mFR{P)H<5RNY
zI0OG*j=#F8_nyrbzq<X2e3pml=hk^)5tff0itU;`_vU(UyK1Qn!L63z{#NHZ?}u+!
zK4Vj1{QQ<Hmx<n|nb&=N_hkE4dYzS*c2*V33}>ph+Sw_qA()l7yK}FZ&$ampC-#2K
z{gtyVGwQ_ZR-+C3UT+Bg(#%nEoas!#ZuL9IqPUFP=ec$*e)}XXt>V=6;-q?`+ncNG
zKk|Q0m>v33D@gG8>2RqnvG=F#fA*<=|G{_HP78+R$M$&?ODoOenJF4GyZeyyz7CaM
zgSy=FX@^W+rqv&rtEAO`&%b=HW9!eI72lH?mmll)Ogehfe~HDin4>%VD%9>8?|hlg
z7Z%8-_vOXyCr^%S+;*tC^tWisggS}z+V9IhB;OZV9KQYyyP^E&WfwnBIJ08q^`wgQ
zb9?4QADPOs$!TZJ*H<A6Kk+Nwt=W6*{>Libxxu@{zn<^DaCf4NQAq6TT;pK#e`or4
zpZK;k?drG6efkcvmT$9mRSTT-W3iXb@%E6^t~UL8tg}3I%@nKGE(h<$2MON%KW&Qb
z->n+kqm0vxS*>>lbtNr$^5<Nm_^|@JOE=FZJof+3oOMI-_vFov7WKv^=7y+UywiOu
z+uzPxzoNKdn(JOx9yZ5@6vq2=bS5-EJpAR$mtPyQkDNQWUp^>5bhX@F>&@25>#z5|
zOnU7Yq~aPB;=A9^pzsg-WYHh?^X2RxUbg;Iv*X9_@82(%|Gy$!@N8%M%fFRO30|*X
zIw-td{(ZUp`+5s=Ir}-qsutox`{yh9T>AX;pTgP$VIMmDkN>zRP~B1dX6c4@n;`F*
z$1WHAzx?}sVby)#^Sr`N3Pp)&GRwAXI^(f;#l*C0he`y_RLs3)IrUcQ5sx-|A7AU7
ziuwy}1se+9b7X6BXz%E*5axX~<)h0x(Ot@Wby<xrrn#JE48C=sKKb9WODA;Y*B+A0
zT-LyP*5&a@ljOOb3KKVfKXj@1VfnMoMTM>z)4G1kZ05PHb<V*yQ}^%<qqUPxZ#lMe
z4QGrkL&mbTNA*txPF?CG@@u+k%RJ`3<rlNE&zpR|-Cg@RDtLGOp82c1Qa)~*);M*E
z)P6rl=_V_mIiByoeEIG2;D>#By^ZbieETKwe1&JesP}wv4qUTUGTi#p%ik}L&;M|q
z^Y^~P=i3j?SfRLsFHgwB?!=l06I-mV6#e&}Q|IwtsC510jLy}M<2zn>JYei`xmWe)
z{8#?@%Q8Q1@Bf>>c|M=^{=YJkJu?)&9422_{K%&;U34qQ`2z=<kG*#j;{5TZ<>9t3
z_1X=`GlRU0lK1A!s#RH$bc!S6mex|q@5go+)iIxxXkj!q@&CS&Rcy&A9>%9lthNs|
zcIw-*ZA#Lw>Y4v*&TKoje}B?v)vZj@)G`0TzLxFm8`j9h_X8OA{eIv6`M#Vy!|wVY
z_sy5(8HO4NNR_U97|6D@CMzLMI4+}1hu#0kL$mrvGEuP%?YANriql*(lBNl4%k&aR
z?sTpEA$Dnl7NfPFszmy^ikGim+z8CrAiG|PrTx^6v;YOepec?spV)ku6Fjm0`Tn$t
zD$$dd>Yuu2ey>g~-#9zn>hIR?@(QJkCLWyOJ6|f{Nr?25*#S3etGdq3wRQb&VLh|=
zbjgLViJLw9>g6mek57F3xWGQp$T~14`_BnkyEtRnU(?v1);^cLC*R`jx9rSWPUFc1
zGXhV@{)!jvd{m|DF2%$W9CU666YJECmu*Uv5Bp6}4^MCIx%{h7{%r8CGOJmQ*_xu4
zFD-sj#e8%7mp_iS7w-$ME_`jqw)f&P_m7*EFFi>=o<HsW<uiu$i#%+WM|f6lzs~(W
zT%+RAq-wSoM&IXEY|r|ZboIj5>6R)R_<wrdl36C&!I5#?K$%rZg6Y9}?T5!SI-HM1
zz0~{rt8b><*#PBj4idcX&W3`^V((5AGAK~ZTCyX{V8X$pm#rrRrOpv@J}KnP>ZZFk
zH>W(cW$Ml9P!rRjjeovJ&Z&PGe`)$_WA?a3QQb!zGvCE_Oc%BnS+)H_&HSI*Uj&c+
zubRH^kJ+p{6QfStd~!1{Yh!M2L-K-`31&^Ak<tRWqH893zG>gmpd>scnCW7gpva^P
zNAkU$gsbDVO*%X0%Qj6GH7oPhy|80(@$9RM0xBJ=9|SMhw$y#~mYFGwCtd7PtIukg
zW_)I+(c_Oj$`7{fo}%24BGMk&w3D~N&YQtM#kg~=g4+`LDFsh%o$<-@5or~bDH7e=
z()8~zXSqnhikC-P4LK#QdTmLt_MD*0d0fGDB8$XChPF!W=+_-He&pROy0-GJSdf_3
znwSl>4{!g=z4=&5YHQ+-i&+uI8+L4t%)e2uFWf6F=c}mwuJ`a=AEV5L#rjO!o2wPq
zL>K7?<b{0E`(`QrLhSLq;uW$^VH=*v9dBATqnbCW=|pzy^uk!{fTcQ8B6nAZTot;-
zFTS;<=d-R#P8Mfh?vA|J8_aHYOH>7VGp9Gstz_Yjx@Zx1mG`u?L&0)IXYX$}kNTfn
zyWEbmKJ|9zGPbl3(=(CG1y^?1%0wsIUgpc)zGdfqCJU`s2M+H4qPgVY0sgi3#eLS9
z1>41!P2F_w**BZy=F8lv;qzy{ni0pkZpNm1yIria+!sH*`LfQpGgZ;XYNycRl~Y)b
z>WUPa#Y~A=IN`tvy{l_{T1$Q|=Xz(fP&8)q%+hIWVF8u(xteJv4SeNBX{;IEJGI|l
zFuXlI<=?Rf*_Y2Y3ArE2y17*D_=WH(OZK?zU%GN?6VnmXNkT3&Coo)Fba~1|t%jKr
zDjBn%>mE3@(Wa*L3zNa4H*aUYG2fN*eATlnSEL;m>VIwu*%w$S^0bdRzkcR?!<GNm
z+|EC<ikmC2Rch(g>B7GClKoSrG(-do*1SmW`MpR!_EXU=&!l;a^yk|qRV_1^@aNBq
z%HUPf|AXwpTX%I9OJBQ^6ZYl2=G7$?y`GwkQ)>R(1bfUp7TMxcc}t?g-d!pG=Ig4t
z+J25-OHb=suyq^hZ*P*?b0Rr7CFE3P(#dX*#K4Fv$-eWiZBi{fH}k!WO#RYp;zunt
zOR`QCJXojZS7dK`eo?=HRHyfk)czeYA<~_@w-tHb2`y`RbA0981)OJvkJv3$S(tU4
zd-AR+GyOR`J_Y-FFZm+dzj06AqyH95=cTeQHO+M0w8-qjnjYDbX)K->PIwo4@3MVh
zVx6C{S>=GrJGP9b+EYF!+=Ca#E>r2MfB!xsk+pczCCvphT*}`FH|a1h*M9N%Oa7HU
zg-f+!%H>Pv_&=IiW7U5suXmxwgL{dEmzK5YdQF`D`Kwu6O!b$9Q#E%bgIah_UzO^M
zKjorh_*qTnQS7uCo`K!G%xS&b_%GMJ6j&yD|B8<A);gidlmA&gtzD67dpEOqndAMW
zZ*KL|M7|r$eLM3&0@HS(V+Z5HZ?D*~`23-ZGZe%Z`(FukHkl=*(Ry%)$4!_2FE+2z
z;>jy%+r`DI-yX1av#zR-MaqYO-4_-*R)(?doviXby>?}cLn?RMj|GZXzScTTNSid9
zD=J{!ven5uRu#W}Wjrxs(~A>awkr-fWbj6v{eHM%)}4Ckz^IKPqRRcRRbAbEm~w?4
z%dVRlqpCKuOW?{=(+U~ApM^Vmjz64~zvb=pKZ@M*dHiIH^)~j;zZQJ?g)m2<;<uS|
z^8?-p#ulUnb*yTrHQKU>e@k+Ovvv1Ho+UoBdt107Z)PX?bDwy8Gp+eV_OdxQZ#=)m
z&?l*WYo%~XaaOxVeN^dUwOI=1g;KTTPuKZw3=8ir%|AQwc>c{<_w}wh-!$S<JyM>O
zYjbMat!b|>mA1$5hpyrac(UuvUd0<rU(b))aI`gH{mty}$L>y<_{U4o|C+S9>!qro
ztq0m>Un=>_m3PWRQOoV9@5&=<c5C`xH-ED147aU{7Q@r4hC0rtlf$*@XZ-S5V1GB)
zyDjTsOy{}Nk@>vKvMz}F&%FI6P~6IU=jwS2WsJ7_|K?kzIqx;+)XzqO6DI~%pK^W5
z6=Yd)M*ZH_C0gG^`wy=YI-SuwCFR`h%1q7^Zd%E{3E7Khg&e=&xA04);kxP%R;zdx
zcrw_&<$V0;N|trkXPyA#*~extTzISg+r)gilC#b~*EotB95sx+A(QiH#r0(&Sxa&c
zEk1i8`*zFDq}da$=LjdgH)CAAug#fh#Wwe<Wrr57-@sHJ9q-t^&+T28VzQ@4udenf
zH4V{8uB+a$vp<-mpUWF$)E|8(Y!kORW17{U!<oib5z#-U&%6CX-h^NM!{XY!W98k|
zk@Y?ocbaZnT&*UO=N;tTrq*`jUBHxpJ6su^Z?~@IcYP%L=tM^Ikq5_e!|pQkozcE{
zPXA@y>dmu1o5!+$ejoLHLYVWkqWtd`oXqq1V!s`dXb$Rk-frW&z;|BM65HLgv~6Uo
zG+PZ*|DC%0^=J0=i+^@k-r}zcNSS@4Ol*bLro$3m^)t`0sa#mbTX15@o0)q$1S5i%
zFFMuQki~M1bA|2pkM~RX&x*cVxaXLy$lmH7M(jn_Uax<5yO=0g$uF}0`K2o}@6^<p
zFFKwI`)8+>zw@;;Ff?0stXU@})<64<YktcoZ~2nlx9kKLIh~2r<F;WnX;z-;|JX>-
z>GiiY@22?wF5<1<yK`mRziXHI1GRtphbJ2(zuxnFmAY)ds;h<H8$I<5({7VT8>WYg
zmPpqxah}!mNV9+0@x1>JR`g4}5;FU^NA<XE&=s$+QXO@*r+4=5jl4X^bDGD(=`T+Q
zJX<#FLw3@N8t(VYI`eltXb$_8_j1ztrHuy-SaN6no0Pik?3DB2Y1;M9XK%hOoz5Gi
zACmv;Ov>@9%i>DEO{dP5TJ>rBspm-^CCM$%7v0<G-XPBPw*FlNLu_tHV_EA2)~MGK
zr&)M49)CDqIr*UZws*RExt5^`5{Vg~mK8V7TbOM%&udapV;tj|ouUhK8{-(K9olVF
z(^|6T*Wo><A4uo#|FD~9Ua5GOYkkF%SO1QcOKR}MsU8s3H=fY8UEf$j?V;{0spq?<
zOXjqh2kbEp*uJY(!T$MEb~b}wTd(i^>rl;h?d(qt`7Fl7eTLE%?3>np<ZdZ*4d|Rv
z(fnr8g1LQJFSb5iv1-OATaMJjiT?9rZWTV2kX=x<J)FC`zi@%qcg@4wTYpcP7n%C2
zo_p$H?WHRguiNc@^O$%?be(^5gY?nVd&M%YI(sA!hTJ+FdntB{_kp^+|EWQzo&`R2
zJj}u+GgWA_^HLA5b&0$)mQON&-2PH>i{w{V`KSxJp1Nhaa<R*ICVnisn-I67G<(8}
znW5rA-z;O+?R~XXlKGQrp5udU?@g>F_PRQ)TVi0bOL)`6hf@-+?bQ3h_hx#`^kyyb
z0xqksJeq5s3MA)qWgq=_(NxXK$n22O(odPI1G_u^KmFf%clyD}>s&4BjVw?%%!8JW
z$v~ElH7q>wNLoP5vEfETz7q>*>6r1_iTp(Zs_g&kR(Xh>e3$0`ecjZE!ZlYDmaRTn
zWq(3x`T5DSRQ|0z$^38n<+tiJzr^h2&F|-~2|5&E9Xq8|DZ_WNoquMGl!fQQ<PDe4
z3pakQuh&ee)Z2e=s`>PuEj6k>@6S!Fu?Y6N?|c7$L%gxyKQVh{O9qDsVKw=dz<H_X
zjZ8v*e`fdDt6lH9Z+%EkFI(5-&rFN{?H7)g)MmK*+57a|)IA!@FRoSk$9=ke{<6&P
zcb7lieRcKe=5qTqS?x~=YdbuuwoGHtx-@~O!0Dk(x4&QgWQj<w<b~&QC)_rXT-^FO
z@H?};;0=z)4qq4ZYK6ExcXD6aZm7+f%__cVewD)KYbyla_lj0I>DWw{n_N>VX8X*)
z`q{$mOIGgpy?ozVeyW|spKlA+9M4a7Zg@HW1#kYpk01XnzrERsMgITS-A(7UC0dxg
z4X<qpb-cy#)Zj;i*Yo<RcbmWM5uYJ)&{bB5;Xt;LM1;?6+wYQ1domV=1ms>&PdZZ7
z8I>epe5~X8p7koLdcGNbjl00Sc(cbG%}G~#dS)2SSj%>^!ii1%<m3gsw?slRbsXkO
z_k8Jobm#wxfBu$zvbMW_=AW<lF80R6#Oi~K1`}(Y_=^`8ym|k)^_+dQzW&qA^>JOI
zsRBAjRv1gWWuLR(KmT4$a%RkwK;QT8rS0yWzrTNKkhaewH?PvkmtvM~`Ei@2<?v<K
z>;r<=yg0wGxzGB^X>%y%$o&cPnQhOTFdx5LIOp*D+m~72x@>;W`aR~J&@}Cb%eM1<
zRC46BdR#p5eu!7G)ch3<b-Pp)CKi2qS>OKszHfcye!;(|*BsdA*PR{HxcAH*IcDD1
zVcX0im2bX`S|jwL*=qa7h|v4pZ|C0G>@QV)%#O8lUs}h^pT25-Pfo~QI?=Ml(kpdA
zx@K?WhDpbM@JlA~_FuFMUU_cXF~M&~ls;yKKD&SVjJ07}ps?79=e?&cIs|vr2H#xo
z5<72xJ<E(vgT#*)oHy4^Ht5u~Pu~`kHvi7_7^lZ#T4KzB9VvfPw%G{w=oOydA5lMh
z!l`_BweEjgP6|!xWiozsPlEHQ=4G*O)|c09P`$==Y{~qYiqWgyz4h4A%KgNU)tGD2
zy#rfsN?eaKakpjln8dGp@S!8m#UoE_zo-1@{x<E)%S|5jSEn}IH#i+B%5s-ulERdn
z$g?UT-!44LTgWwYWB9Hku2syE%aa95!(`Q;PuehZn$qTXpNmdS$xK-`cgnYCvu`|?
znWHX}6_6&IbWnHkhEG*K@#ijRbZ-?~#?8^b`oo$xjhCNwo}Ti|aO%;O^Jh3+n=E-(
zH+xCjtI{J24?g8z+x@AezPMbOtvMj^Xu|UZ<zqT}i@r1&o?=;8dHtw|eh=sCg6B3i
z#arJR8~=T#b7<L#(#Z9`GZgC1EqeZwr*`AyRJ*t*DJviGUs=0E^p=*$eU6ofBG=Bg
zU8_Iwag^?lxYy_160H{V?0Z}lAtHKY^1kf~Zu4ZP?^|xSq_N}jqKqG^2cL%5e+=8a
z`{3Ea);6}#!2e1byXH(jkPsjFF6C(L&cMlqhnh|?f4%!@(aX;&J#O>=Rt5>Slsn8@
z`LX?&=<Y6w%uD7MmcLxTBhItChqcp6^f6aXV9&n-`B~iN_m26rOnAHcLX20|%=$c6
zhgTEJ-ZLe2O4Jrdb23anc(5&w$sn%bN_)M~mX+!%J0fD5Cz`uIY|b^}De1qm*0ZOb
zeHFW8Yhl-l>V=_6GM}9%tZV!xu|8PW*TDN&;B~%GF_vTRm5(ysI-+|bTXW5p<4-D|
zb^OviynIau*VK#awcmU8@~N)MD%`TMwbhOLMZjV{*X_Ro7CU!uij(@e>LT-}(q|37
zGJEw3>*IV}_A*)Oy!$D?VlC??^9Y5jO6(#R68SieEcmDYq+#KsY=v;nD833E$Jtd*
zOx;|eleeAB_x`q*ck<uT83*E7W7U4A>scS!&z5rb|Eg5>t&5vx2XseN$?sgeVT+>e
zC)W=m25A$gUT9$ad^j;|Rj_*|=gsYhSn9jVy6=1aR;a7LeZ`Sse@EHp2VTDqG{3$w
zS?*7$g~8X~GRx8hn||Go4eIq-S(xx)WBi1SBYX*b;wrhXk{pZXp5GPN-f(#N#X1?g
z+*jI%mn*J#csawKZ+_mZ!XG_c4$c8EIi;GebNjC`eVG5UX5VAxedW8aONiOJyILzh
zKk&`g-QjD!%iD_PuYX#&1+yA%KHpRMBrV`p#JM|*z2C}b-Q2P5t&ePH_FMB3BYvxS
z8Ln1hZ1NYk#B}a?lq;J%eWI|z>a&{}e{aj}-Pz7CGpo{@*YI6a3dh&SpVkLU=VU~u
z?f7(N<Cdw)d5LG&YC9XuSh@4v?y}@*hxXk4wwTLAMWftqWoi9UmmS^bV{4_RsT)=v
zKlQ?jA$D@=>b~s!Cv7_=W}WHaX0(6N5^?pM!j9t?qD~&M{+=Sf_b^|Y+1|HTE_>AO
zyP~zJYxnLeg@w1*mA~mZD>2Jy`lR%E8Fi+WFFxi}9m)K&==o&J1|84YJD+wsx2bx+
z-IM+D#*V_v)jcm;YW1Al=hpLXd6)iF;f2-hmC;A$ZN5IU%C}?6ys-O$>q{n^Mssq=
z*-UGY*iiJq&*kwfCX>73j-9QG*GV_;;@WURwsh68-nLbDUH?jLOPv08&yIykGNRuV
z!aWO<`;%KD*{2!hFK2#LlC}AQBctpqhSm1(=Ef~*j_}ityKA?^hx^{F%fAwi)UVZ#
z>OQh-a=l;EpSueqZ+pg0S6^at_H6CCGanBZhg-gLmK2TdzFV@~`}aGS=Tf?V7OW2H
zf4YMq;#TD0;_I$$sS~5iyW`z6msBi|O7lo_X)M~it9(sP%UfZq-@WE%66S69)oIPO
zdtT_u==IEbN%ZohGU=0YtM?mRy?dtRGs}beWy`z0*q*M4S-W<M;H`keE7z{=ImkOX
zKU>?Y^+)6MwHwQvo`3w+W%(h><LF;$?b{buO#JIPd1Bq(OJ48KZvDLO#ABX<im!Yc
z(yMjFFNj2+(<wfBHrRBH``pCm3*@E+TL0W$5Y%^st9Of-*Z#i3+p^6|ioK?Xg<YR~
zqfK##V{csjgb8o;-*^49Y|W6oW@_u)w!*po%8YrJ4wkmbXDAzQ+pdw8V;jzEKKJow
z%Q7K#v*?L>z1yB{^Y;30DrgwGH;VoG6NSHSi`MFWTN%Fcl%dgbzOcV-@06xqb7r%P
z{oLKuE4@B!e#bkD<Mxq}{9D|QPj7ow8{I!+(%OD)hw==Gocf(wA?Fj;=a!t?W^(Fl
z_tAvwr+EHe{M&shrC|ROpR_QZ`z{<`54l!cHLNvQAHj5S@5)W9_Fmx9nN_OOUUz;~
z`J8Ryr<a`8F=cF8Cv94*X36-b#WFc5Jncl)>#5~yl&`Z&vRpI08NaP!$2O^7YlQ`B
zieq?+*ZXWgm>siLfBn_l^}I373}Vs`rY?)ydiXm3FUbkj-r^hFBDQWU*}k{*Li{o7
zO+Q`<9Xz8wO>gyf>9W-8J8#)<k2&^2ti1fotuMTj)}40PFC6p!)lJP?hh807x}?eE
zOLXuAr{<e1Zo$(tcRzb<S}hsN8<KZa^u->@;`f<*OsplYU-x+YRN{4D!LGeh^>d!<
zpZc*Vc5+<tDrt_X5=n<u-<Chknwa>L>DH@LzS(j*yR6%P_wRADn15)sS99HM@k(*8
z!|sNcf~RM(E&aQvGCXibL9UdM5ufIq!k||_Gna<j?w?vxtnb>i<LeFGuPIm0-Smp!
zH@~!pYnAQ%)amV^j~9GBA0@xOtmMh$t+mHAW{7X^)#lyn{n#UNt$9g}uh<r$lI%Z^
z8uT&>uRFiKEB9OeAMYgncatZd46&#;F|a`0GcJQP)1mr`SBK59;YdTio7jniCl)TR
zt}c#{E-d=+zWqvc=&IvqzWE%Reem6a-H}xjL|i8-MP6P%d4|P5;mNFj&M!ZG{>SU;
zKfm|<`1ASr%ia55c@{j|DSr9*Z55WsY|Dfjx6HSTtN&GhU}xc+)6&nmK3Ln#SyIdq
z+Rx$IvE#vaZQF-3>-g1=Hval?qkW##{NEm@cZzX5l$><?q`^9Ojt4tVEuAOuKO?QF
zeP_(O)mIO59uhaq)_SbYD?H&Ff5OJOru_eZ{9wNHCVG~mMVd{a?u69`mxbA;TLgza
zcWcesk(zU4>4Vl8v$E^+gqN#XaW0cv8QS2`;>O3y$1_1V#`vt_S?v~K=O-+|$Hbph
zEprPKysW&u!`kE}+jOC>vqiiCpC@tVmE9-{x@5RKaFNPoE$@(tD$1OeJIz=bKHn4F
z^`v##!Snt%OxNtuxc|k};JJ#zAC1M4X-fi4W(e_YnWOSqtxr9_s%2ABz2C`~A-4;A
zm6k8%ihg*om6Ju$|Nf#0>gPVTH+1VPQFM8&qt|)fF~#YA@@gS_)hoJcYiF!4nxWef
zBDU#7l;i3d^`bf%+>&2)cs@m_{4sJ=b~Sn^QfYjwz3$?+-p$LeHMdSbc6ry;w`_~2
zUh;XlOSN$7inE@YM_Y`ICr(yd7qhJ1?14&jXlP4N+tlVA%Nlntoa@7-zrtAaxwe2p
z>2Vj<NRhA#uI(00d)@wRy~Aq}TYP#`UQpUqp@-G0RD-qz=vsVNEqJakzr4z6!Yv23
zc{1q_8vMHAmls&HTuyxCQ*~$8eqWZp|CWzmmjC*eTvgPSysY2gQvcIAH)j=YR-Rus
zqrUDJdtJ=N_uqefuQX6wFzv!AU#G=V(|_*iR=Kk9+Hd{BUxt6Zuk7_*q`I!JUU89f
zqk3Y>g#$~Pcgx%RUw*Y&|L^9Ti!UGBT<^xFoOZ~|aq<QK4=Xz6vSm5$S4|J&J`l`k
z%5qVGb+X^$1<(3e3udY<RWZJHdf83!CM_ESN0Z#C^_P08lVj#CXyW2aJi>GKb8Tj$
z<Z3Hc#n_7r;w`-1dD}B5ZWRC9Q~$L*uZmOV*Kd=*L9D|5&LNXB6fbC=w3)E)w|Uor
z^8deTeqVmtbM4NTpZ4!_?xt%SFwXiG{4|Jd>zq>tDsJ41d6>35Rbtrl@YsS%$Fhz!
z4fCQUXYF83n7yo?#W3uJRZZiUHC_k$f;o@PbZ&j{>P5!(Cb4agLt7pMNZ#h*QgQ1t
z(wIDleO|HFr}y8E>r7dazv++b%j)NE!#|mAF59;H|Mm0<3*MS=CNxaDHE*`&kvoZ*
z7dq9XYHpeLA7DHD(dU`mKi;!W*&Vf4^{)IVfA?0+eDiFFNv|`HT*|AzbTj=8X93e(
zdHe0Q7kAzIuvSptSUIv~XTL=+=i#N7XUt1^ZTe5C+ptb~zRInQ7hC(xzRx<Ws$%K6
zc6+Cs8Q<p&JHhvY7hm7xtI^)@!sO<$?U&B=PdjG#H1~OQ<O*)xd}s9lBlfgIv9ouS
zJ=}L|laC<Re&0)0Hvj*WY^pfN(OmE4Hu3a1?I)+dm{0kzL2vK+iPhV*KUX;GyGj(F
z*vt|W;dzDoi+=jLRCCdylWf;FnefQzMC^X`nB%Zb=B!Z1)AP$W{;KngzqajDkw&Lb
zazN?cMV~MDRJy-sv_E+Gv+hf_)#9Jz-}#gmDHN1+yI=Y*eOE#C^0|9+-<dzPS{SL+
zQ-9S?`X|eWS?t!TQHL6q^^|e3+J9d=;oPoO56)d!|KQjf{moxCbexJVUig8dh|6A=
zBlo1yWxmkIj_R-G9`r9=R`9z}vG+aCYr`+RGaq<=iJldunbFu`Fz<7vTa@R*mj>rE
zLQgmeDed^0qP1ny+A|j$r3@uLe%Ic!_5SlmcVDF~uU~eLfwkzuv&Fslb4o;B^fBK*
zm304N?Vi_xGJo9{bSu7h=X+vcck|)Ici%3~->CJ|uitQ$<Hhch_q9%W>hJaL{n>8*
zt@!+hAHBO8t7klV{p|AX7`-k5?c$29NhXn5cNXM{`Q<5TYi0>02P>+HJkC66&a-jZ
zCb8FYxqbH?x=ID>m#i~6`sj*=nD{Mw`%RaQ^;pH1nR=CI9Fbl6xuRn?_oZH^EU{Lm
z1#MT_CZ?R<v3aq^cY}g+4m;G3z6cV@G7}KWo_VclpTPvnl;xS0EcV<}W1eiDbTiRy
z-jCuhN0%lC9ZU)6cIfAtf0RM^WXq&Q-!k5}vj6Kz?t1e!_`A)@=-Krl%8M_2d8a1&
z*z@6yC4V;Ay>#WvlkG{?U@Q5b#woB)R&UvU$%!w@8mFCk=vnUcds^kf4<^jbZcEos
zc$c+g=k*n~6Yuz3Y<-<3)M?~3S>l{S;GB5tXM0|%bxzpo>E+*S6ZH2lXY5pqDcsKN
zZxy9<zfHLNg>#el;-j0dcR8CR1=rhL+3l&6GTp7+>&k&=suSHFDqdY#y68rHh_+^W
z$aMe7B2OAh*;QP<4lgNQyTl_k@WRz~D@<a)yRe#TZ$7ns(WNt+G_|+Bb_jds#Txly
z2ggnyuAt~AcN^?aNVMNC_`COhQvV|1fGtjHTN767DO<Yc<u3KqAjvPU7f#)jHqF;?
zb$u*<*UX3$H#J(_wQP>B<-Rp@T~`p_dDXdIFQuZ2>`(oEwP4}g2QL-2s>!T<xPsMF
z=#S!U#_W{=Zy&luJFb`-qr3R^+)U3m96K&lihVq{BO;i$t7G%;3B3Ks1RfY}Rb5ow
zJ&n=k8PAL<GnGS>^imGCJe=B<%Uhze^Vwok-!s*(>ldj^KWeyZ-^IL)$eTB}PV||+
zxpES#qN1eO!pjx4AzS4NerMdt-h5c+hH~o6G?_&vD^s#|?>zZ=jmzRlFW<%`Yn(kc
zDd)d_7MWe7dRfm|D_N{JW|PkP-nq|a$Ea)G4t;S!=H>>rYdZ1=b?4>mNWPeU`BsjE
zow6mn_?ga4ieaDYU%cp>{@Sd+?-+k&iRQNn{1bBi_b|(*EL%89e(43>M>4CpKfh_U
zT;krUI^UBkXM$4PB$0{Rx(+9MUXC;L5nsP$yGnW3MH$t*GVw>5mvk@Q(rx-EK3n!-
zYUfF>^9wH(mu;AI)h0gP^UJoipTEbQ6udY|GrOEu?4ivqUbd~>OGD}vcO7>!TU5y=
zx+TfWB=)6|Z?1&Sp<upQy}k!K>ZWl-&0bn|^y$N@`+8w73a+L~Zfq;moUhC0eER~|
z&eK^8N9SylU478_!S6MByB1Yv98D|QbRhMiNS5BTKYPF3_<WQ{W>@+$apU|6``I(r
z$9_M;V`IR(cgEF7v!iQX{<0P~=B#g$yxuvJrFqAj&AVP&iEO@C$<)W~ocW<iM)&57
zJ6C_-32XUxuk7TuhF#880{b<dIIdnOlo8HfRifn}bE)}8h~)LNlN@$eU5MVb+g@$K
zzZng7clX>B@h|t_4s#RN-EsECEz!z{Ypb23CVa}aR$OemVKJxnUsw0H7vgul<BAGR
zuMfR&O6PXdwUWQF+)<%vtrtW2^Ne?u*(zi_(Pf|gj^#kh39UO_5k5}q7DxS<?)A*O
zAwprY;-<o{sq3a0*A!$=ay!8q`C&p5L+Z9Ct8W+ECw)Cue0uK&x1*&Z*E;;a7C3&~
z!<$)Llc~}_N9LBxql^T`897R#XIC0uVztU>ymX^JWy^H$O<}8-iWSZ}HBBbi=V_&e
zfZY_gwrauHb*}S@cQYQo-Mh}?b?G73?_Sz5{++i@YrhF@RbMzGq@@0)OAYU?lb4=J
zBzZBIsT{J4NsRrqBrzuaWboeb6&XC&pZ`=^uN&3t9T5F|*V@QeAM5J$)BB8eE&0CU
z^%sXwkMpNlQ|fQt;t-84ZF%@|Ptlq?E<c?&o;Em^^~T8N?K_#nE4sPt`FD!x)|?hC
zYT0_abaC94(1wMvJ0G6;7&R|-)7}Pcjk55W`}8OK$bMRzJ?+Cbv!IVPuczso?9M)9
z;2V6~eRbFKb+5h`U)xc;%i^uk-AU@cS<VvAmNXw|`><r%mzk~-H|k}$EMH$u_1?bL
zYD&_y$}bi3ly9vJ<oYn9I?ZkBB)97^rRBPha;m&1SZB@JdS>-yjU9Y~e;3}L>{=(c
zyTE*M+_`MK=%-p&9xbxIf0NxNW!KX0OLOmK`}(Fw&dc7fkowU1e4l1g;a{0sUlKcP
z<~QD19e?Uu=dI`NS)nWj|85DJ*DIPISzC0<BvSIjjijsXl_g?xvZIPZEo{0bKc5uN
zTD4>KuaF5hvW_UQzP)#PvFML^wk%nyeFDFqM+C`ik3GUM@$8SU3s!#K!nO61fX?m@
ztAo1=Pj&3EYuOX$YG)jp=IL`r#WacW*W|1%cCzay@4cDVYv9}QZ^;Mutu7)rQ@qaB
zm!-6@ygIbq*=_AC_Q_o*gPStWX7dDn)`>jZQj{tjxwY@rt%Z}4;@19LamD9H=He~t
z(YY6swkd!1(yeX17_?SU%=g^BbAL6NqF+CK{BgUG+iv%rRXwV!b~0`a?zlg>EW#%!
zPV$OH_LdWqb|>y$t$XTt*wx8~*LU8H%sF@Q=#1q0tD!f;9<2@BXR_5afV02y?55di
zr+!bp`(Q>~jqBg4<}2Kx^Y6@j6H@!hC}scBN5ZaG%b&0>y~Lq9<AYOoRIS2_b^X_+
zTA5x5E#cmx-K}vU>S};mhJ$2#{_?#4bJx0i`$qYh8m#Zt&HUvdBPX;^<>mAH#bK-o
zvlq-yRDEsNf2W>FO0Cvd^!NLi+O1K4ch9p?t)Ab+b6)$}^*biv1@5c9rdIq6Esiu_
zb*<dz#=fZf%IVkdJf7OJ^`q^*YqIyUO!o`SldK3bwdXi3W;5}5N{+cIS0n$PJ&Jk@
z_GgP1m;d1{WD0P4d;02|YPOIg7v1u1?RI)+eW~nCq7dgY&85FP>W>>~C0|h7G5NmL
z@$+9cSy?#fPExE&`Waapr7RULzF@gkT-Cu1i;`_W8vMAkZKwCc*QJWbms(Y6oc`YS
zmG8oJ>!imA_(SK<%Hw3Y{#sxCN=EPx>-`54?lRQ<(&h;`Z``MMH~Uvm=_%`9K^8y4
zMLwBZ?46=r8oz3?_E)8l{hI#uUIx8yV+?;bE=rCGeJs^p@FGB@+y3vnw`*D6y#33P
zlk?lA;yL4ypZgW{U(H?WZnL7zn^o+S!iNl<V|D?oolRM9(+|uE7rb@zw`9cI-!|aM
zw6Z@d%J1#lWL|py@N>C)Q_Os(J_<~oy#2$Bvo@QupT66Dt|!U=!`vrTH<JJQ)~D~O
zX8+ukpYpprEHkZOW4g(u)903y`5S#-X;6^&c6HL*-@4iHzs&5*GvD8i)ZIK`oBtKv
zV_W<hv(DOI>5<O1d$OJ92)pX^mG!et9{dY9ewejPOpoLD3da-kj=#@!o*c8KChF4>
z!?(Vth3e#<d24;jjy@;4Zn=-=lU=)Nr5<tDcjT|lKEb&8$#)jL-de6xUljaTf948T
zTWIclc+(Dl{W$gY#gg&o90IRbDLc$h^v~f;soFJnZCh72D{Dp1&*FQxZ~p$c<K3Qf
zw!bz-JbRGz`(3w3<J|4LuFZ1!Y4JI-RJT0mi0#isQMMTuQ>I^))0|-Wi0>8u$+MHJ
zjdyk0mY10bhU@-bd^1COyZx7WE>%<KGoGGu>bw1`%UX}>f9OxL>->bd3C?`_!bV2b
zdP8GlBa}6g5~uTI%-`Hwe_`i=Q%Yai#M}ZGa89_*#8$;obmQ(zEB4(Px18(uFS%!I
zoh;qa%#xYY@4iT5-$_ALJ5GVFI>(A7_NwRlO{%@m|GoPAx^>~_V_X47t2iFLQ({=M
zNui8qQ{Wxn_ust^zAS4GyL`g8-b=D>!m){A=e~q_RfZd$S?Q1*m*|sUarMn<yEQvj
z<X?RMI`7W&*k4AEmc}+Nn30+Ot5@22xs&VNq#Nlz&(3VAkS$%_ApEu@@j=MOpKJFj
zJ$=2W==+S9=^WmjuI|RVZ=1xI1(d7JIdJ~;oAhsY^JdybC+c0#h+lT-Lr?kdhwtXr
zPjHj`G;i9qkoOy>I&a)`E#k>0HG7@;<yR*ic|GODojsk&5jQk!ExKm9Tw0av{OM9=
zx`eui^xO-R{-qvs58aR^n6^Z8H{<EHman(xzL@A8n4z;!k#`Rp-$Q>T*IcgXg-iMl
zcGa^sf1W>S)tS>T0>a8>W>l(rwNGR4-&9kyT<CrMk>C7ZW@UViu6h^Vp`>J~)FGha
z5^HSu`hsWf`*^`u0d?JV_gCDSCF8R3;nLFo)@u(&t~A`U>t5t>SqtAl(U<CH)cc)s
z*4du9F6O;k{hD2x^yG{KMz+&dnol{X=;C&gL3^+2)y!ums~PWk%F1k8%Ud9JNJ4jR
zf0aXZ!itH<Cf5Iw&FYz|WhKtWr@W?XVuo44!yg7rt7GPJp1#ZaP%?03b>*y*)4MBX
z&9_^>;(5x_`>j8UJN%zEFWm0FVcxxCZ4Hm|yIN-Nf2Y5HPXCv=qTm1jF?e^nr(5Vk
zQC_LH=>*eDu9Fu}{b|i##%*;fF2RdUywroiW&O>_jDzQwoEMnnTJPP!Ap5eBbz_`k
z&H}9n)jd;c7X}KKT*>Td;M+1O#w9Vt(n!TBU{~i=#cqog4;EDhZE@b+DAmts!rg58
zdy>`k`PpxZb5}dgbN=(Y_})@=tHo~Z^CVrLERmlyhp8&B@%@pTp?_U<f4`ca@PNxH
z-e8K~!KlZZZ+$rP<V1TA@13pnQ-Xi2oIfR)-|;Sc<m~gW0?yrEen&QA?t<rUjq48n
z*kf!bJ9T>1-g6sYNtdQS@xR=?*E39Lw}-lf*U>jV;#sT1r59wqxie?!G~MkJEV5g;
zzD0R=FTZ4EwmsbZyTb#)H`|$4zJGfzU(u*`r-GN_o=Z=TYOMWsWlo^smyO%1t~`EK
zf5rZg{FTL3Qb!+8*_N#pc8*)U_DEH*!`}Rsls=i&Sr>bRb|^VGIjq_uH-lsDWFbEr
zA!UZ=Gpu=iKV;w0J(2O%>btV!A*Vc@RD&`-mh}P-4;5M`Gk#qrBEG4yP&z0g<_5#`
zE9E6JElU;MB3ExU@OnEfXw8=k*1lUrMDxB)T~^OlEcrrJ=0mabj=LpOqIopFYgeq4
z*mmdPlD)wPpNIsVFFd>5Fmm6=zNJoFa}VuQ@wzK}+~k4ubQ@zm_DcU3Uio|88!m5?
z-_`O{ZN<ybOG{(?CvZPJ)w(>%rssE^;*@l$?Vt7~o+*m6t=GN$<I2U$rcS1+>&kBh
z--}K0Tju3AtG=r+=+N$od2hrsW_~-9dX}m9=j<hgD-J|9UEL75+RJKgkk9_=S=Wr3
zWSr9%b!{o-o@ukvd4k0Bb2-bRT)ey6pZiSv9y>F~S2bYDqmaB+Tc*8ivTBM9<-IJv
zRcZb8yjL%F90{=G=x~1N_Mw<<XHBfQ(c??J_q9ce_h>EdNSVDjq0wlSPT=W`X-kWz
z`Y+3S*^#)e^Y_*B%#nvyuI|6wCZ@k^o^I#a(D-K>Wh=rt+t1Ga{k-3)qj8Fg+LbvT
z$u+&E=UR4X{_+3MxTZ?56iXp%F@1vzqiVf{8FCrBHT-PfZ5y6F_5KgVJG3TF%3*Zm
zW4*<+R}^$^vh4cmR}0_Quk`4eG{<81&0PB}Zhw>mo%zz2$ky@aZTLA~+U>;uw*^0^
z&foXs_4B*;`=38NoNnG=YUm_!?)8H?9~F7npP!xaryy>h{Mw@>RzIeEirr9ujVVf6
zasS!yGv|}{)$IH3U1vU@Pr_a5rGG}hk&?yCr+S}GFINA#)Wh(k?T0rNQznY=hxI;B
zkDR#g!yMP7a_#>X^|A+M&M>O`pmuZP1OClD*H>(jv;EyQO{s6=!i7^aj&jI+z5J7R
zsrSy3pWCP8ty=1=*|B@hg{g-!9`WQ{da|`XX1(~&*wkP0L1lI`Px`4omoQ1Mn3SWD
zm)F6p?x&v-7%#qV!kzuiEZ1ghHaUHo+P3_9Rinf2pfZiQizDv0s;Eqk$>j)9u@k8Z
zR(&6|YBE>jQrjIZr*DTJTk}XHIP#`_c+{?AkEFhQ)$4t<(l$Kz=9$x1RxR54IpC{R
z_o9g%W%a&4r#_yl{pTBxTlOZgkmFZ2UF}{Gt&z8VUi8lDe|(~gIh!}%be#11Vnuse
zN!0m(RmcCn-m<yyihAtA+V(THKF5P<mfmBWD6AUM#(9NH`LaX&+up{L9lnpPmabg7
zdv+G1(y`Uq+nwS>Cmy$xGo2jj_F{HnVEwKlg~;#A91fP})ti2g*D%YM-+U%mMYlVs
zM(J{zyOZ!9qtH`j4lRqBGF?@S3i7%*Qf|s+F3}cIG*UHkUlY3cpq8<_cKpUSxh(BE
z>-VMfKXcg0+wypYBh$8%T%D^sw*ScxSucCYUxoL-j<}j%()zV`C+ITT{!F@lt<Xp=
zQQ4@=;rmsidAG~X%GBSGTPr2uCMc==wrt)k{?kT&%a>RuY)!oIFLSqY>4Dc~Kbm5K
zjS}w!XWv+1ddDO=;BT76qKLR^ts|#ff*LR63vPQn%RSdbG4cJ%-sAR5wr#lhfv={b
z#jtOZ<m?Bk$5=kAEdC~0JyBP;Ou)tCW>EUkTZ^w}9bLX?(bCMI(@x>j>dziATJ*s1
z<V3Cewp08<((X_7YT5Te@YSt?JLe8<og4Sd!{B?n?F$)=`L#!x!tO>#XLla>W$T)h
z#q(8R#`fcDZ|(f5vXgnXQ2(pTpV!@5CmF;(*J`RszV34sQ|qH!a?bzSRr~N*uPI;i
zE}<FUSX|f4Y5KKQ-MRFTU08YFsl20`>jk?M*5uyopE##rbLZXuz}2z+p%-Sl&-PrO
zVtv`%r)ACMw+h#9$4oqRFu}>{wiL_X$30iB95|5Yv^7;V@$RN+YMa<L=H}n{IlXJW
z{rnA^W8!SC<km<gobsL0Yk4SRkNj?4^*grV^}pZqFIc1QjadvZSr~#&956SsL@oy2
z%AC$qfvspd`AAxzMZqEIfVndFlY}P=F0Pq#_*Tc{=6d_k8ZpZ^7d@<_^u<0!T_`b)
z)EDdi`XJ+XZt(0Q^;w@A{-1vPQM~4tTz#G0@4LsfRC~7GcJvgu$TI88?P<rBHqI8Y
zV%z<9pP<G6di_?N^G`4LKRv6cth--mnf!X?%ED!L>TcBi68~rQ@X7m+>8k7u9Ni~$
zl)f)JH81tWif_;LXZ+guNBdLl(xmK|1wX=)(gpcXWrpM*`G4rghtu2M?)z=BZ+4ul
z-k#s(VTPNQ?Fn;HvGr126E@B5NxDFk<cA+mOgsZyI4&$JJMnm1J$N0{=f?RQIW2_?
zeq<!CnQ(FEffWT24^<R%FF1V`W)Hh&C786g*vY?R>A9uHRpREk_WxXNe|=%Ur~m&u
z+v0aOHcjWNkCf~zV#$8=Eq+VO`+uK5UyhfP7xDZ5v;O_5y<s~QL?Z6Q_=NKw`EoT;
zVM+fng(FofjgB;xrCoMfS--%fdCp6n=I(P0Hu63S&!?uENOWkgVcNNm%ctwXB0kyu
zB5Z3uH6Jr#2@LJi*5I6Vbkzc_3Rj!g+Swmpp1<mFk~K8?%(Nft9?s6#p;d9~dHs)<
zOEU5Wv!32rTJU7O{I>W1=GC-x7_EAHIQTI;Q<drVT8qCW>Z&zUf|{rNQ(3yOUjEOU
zq<^`h2jB6#dCFvFitO9iXm|hr>%;sW2aA{va-|3UWZk+|vev27zTn7xqshubQt$Y0
zRmrTpTidYP=fd1i8ndRlc}YF}u$H@0WN&Ey%-BP#YiD|H?)!OH$LUyr<)yw24>vEK
zuXJk38i|%|%eaLvZP;HcVQO<?{Zhe>@=FHwf|vYbVk&km40^QFsmEuJoI+E<4rx9w
z?wB8E&aKdOS)901vTE^rt;JtGZOtl9yzkK1IAx38>)WEy;cJ6u#m@V*%Vk~Cgp{9W
zkNNTM>;1ID@WSf{3iG$DcP-K4-~8_JsklI0k1XpA6LWRfB)$&X(x>CNWA$s7*AZ9Q
zf5~N>-LtxWg2}RVRbdjsJJ&5WuUy(B$Y`>5#)VrS*3P_^tf<Voa+cZVf{SN@__Tr*
zdKB%ivw2NrXG&ALryL|(Q_FnyO#SVaiz{B<FVwa$Q8vjI7htJa)bQ!hmgoMr?JsmM
zeQO}J?z7FWD4FRRHeS|21|Ez{L`BjsdMx)@9x(5_#+FJ(<$B)mlnq9w8;aU@u*$@=
z9*)#H;574z-$#uHV!|^2eoVEqT_~I5W~Wo|sIZm&-Uhqh7B7`Qs9HUWk~{F*R@nXP
zjf6C5`wElu?4JwIKj5#plvvVnXYoCQ31{C_zsQTX*DaTwwLCQSva0N&?$0+TOz>98
zni?s&@^C=Hjm}>u7xDGf2lZQA7GT?XTt}gQ3PYjq;g#?7lcL1!xsLDoU2?mB@#UoI
zLd7}GbqB-xgVv^(iE>?E#_Pm?`%38d-74E%t5)h+7v(RjO-{4On0=e0s`A8@``bNj
z>UHJy*myVJS>bVH<)Vgd6JJfdcIA!T>F3smr|Z}*bUwRk%|G*%m#;FfTy&}a_(uUR
zIZH*4mId}#Z(d!$ed{9T9fFNXN&gmg?tJxN@{)CXBugf8&T^UHt+e{Z)T-n0X;n8r
zE`6X7##?r0amHpbPf5=+!9miIQ!Z?5Va&aLJ=9BU^F(&3iRbmVT<UljQ2dGOrNz4~
z>})nSrL@-7p1gd{BBH@^j@RcKmXROK@64_LoR#lxw|Q33<VBORyQ@#>sH){kyh&HA
z*_v}U_vB9RZC8HyGP-$qWFCF8B_`8w!O!g%wg+{yN4_``dva&<g%?qC|14_tbo*4+
z>e(~P;q~?K7ZSnwAv5-Dys^{Zr(05eXsf5ql#3_!<{vd?VOgu8xcaDZmz}H|+uE`)
z#^i~Moa&FCifr9f6tURgkdgHLfXGj=TlF=)igF7V^qyNCXY9PtP~*sql~>P5J@HAG
zw7GIdYRmOQQoW2vLcYD7qI$pd&v6m8{3@%bhg6o`7Ko3W9>Ta)<V@tvHSMXIZihT>
z&ZvlW6#D$jLQG}tKC8OJ6STbKcDtD#Kfq~p_3X5(F0P)->g(3cdeQzzJXr7L;Wgra
zH@4P<-AlFW=_+5#WbXL<g!t3!#2mTkki@I3z9})G!jkOQUD`f)*f<~CvHhwzpTfr}
z9eG?uhDLrdTjr=u_b#2T=^S%bPjUar$~ODesUPMnWBV{=;<ciz=?kWXIG@bC<YoRh
zW!<JP;d=7~rH)z!tl+BOG4u4M!=;-|trRn#-RySyG~p-9JlEyw=AvIWw+8He*cueD
zcg0nXyM^W70wOLtR(yE;W-iklVZ~b^>Z_J+N|ohm7d&LQPGrF!xwzJ_wz%?EiG#H<
z2M+8KFYl{d`!F-Mf_vRo)~c7M{999fpT-=^&~LeN)Z49(+uhaf*M<q<!Sxf(O_Ek>
zI34yb6`1~`B*v(LJ6(6rnY&lEnuRpyo$YR4t!ox)-G1`d!jPS*tLK~Fe63!6Chb<2
z+r}AhH%c0s-`f#>G&tm0*uv`?!MsX*yQ0E^7{#wx<SG5mUUg{0GVbSLOSEnm99+)0
zur@w$t5Rz4+1~3?Cv8uE*77d$cIMQq|Jriwl3&6cKlbBI`(LyiXHDUeYw$bRzU)|>
z;@9Av+pc#6zf3MvsJ^JZHvEgZ*WWvF@A5UiOw4=DeEHG(unDXF{N-8a?s}_v-TQ;h
z-}u;%&E33m-qJlz)BK|&d3JB{)|V)gD_okm+-gT&+uQkGvIdf6tK{EGm>o-cR=K+`
z^L9b~=4Gp<GVV=&Fta=^@$`g{60M`^Mv?Mv#fuju$i2+&wMgmxBH?`RtnYKhV<$?w
z;x505@-+LoGx^o?uTIA7PaRG)@L4Ug^|L*+@at0LW1Fu`{~T5E(lFbQ@h)r0i3_um
z?#kbJwqS*@jv-6$*AJF!!wzuwKeS&|yzKYu=9AA4CBLm#yHadF=eqxS)h$;Vwq0q?
z+7kXqv**wjsV9p)M8AAy(h@naT3dC=JI(_NNxC81a}U0g-SSy!N?(>(RGECl;qX%P
z@{G!px6VJT;%C^+e`fZt8@`5>=aQGcInUe4-6q*4%{TYyuO>OC|C_d@$4-$sC|ezK
z+FG+<mg}sr`QLv|VXH5BJVB~<!GcM4s^1Iq^a5|(yw0|n$D`$F?%`vK=Y%GIiA%6~
z$;#_H>(iB~xw3hGU!2Poa^Ny}GEpV%kfLd`>8)AUWVa+w&e3|8FB&GB-n(t`3Jagw
zmHpbHY$bV1COPg7xfP<XbEZxH_~e-6w)HP}e(UnLKIm%l=0v;f`Bv$Z^^fBg*UIX>
z$=+ab^r&O|xret}pO?NU(zf+nzIU&N+)oDM9qZb!ZQr&^X1Q3UpRSAkEY(HdZ(L;2
zGT&m*_jBKJxj$QE_;1bpIaBuX->x6UvX?im*{I32C@>=I>V=AHKdxCmHRX1n=-^ZN
zH8?ju&75V=+L>0(`z-Wseco$cw*F~sJwM0q7gdHG=kC}{FN#_#R%^93>))JXSF;mL
zSLj&G-}|dY-Z|@<d++n)QocA|bM6bv&h6^pJfy90^1SMb_FMca9vOk|FK3?q9ke^M
z;<Vz0ITndQX;<^_9OQQot3F{-y_B)=D#!Z$(dpM?E-iWD^Zv-8PsP3~w12NGda?YJ
z#Rrpmx4By@PX?`8w$kuZPUO8i<zKY!JDt|KCH7*ft4Bb%)uh9J*`1>T_Q`&oJ3XhY
zFSC3@+|%`!n|CFw7p-5s?Vi1=Y<$s7otG!Hk^;`<$)3CNh)caRX4A&!S1$Dg&ONHR
z>Yh-|yR@{xFw-{4;H<yVua8SNl)P3E`OU9tq`#dZvbbKl|FBr_@)@)LTz*^^d^2H>
zMANTHzNv1X%6wA;oM!#_^-e4KRqw1*=3>_7Q}27cS-)~+j*8oYQ(KNLKluGzK<K`2
z;)Yp03(XZ@f4&gA>cGO6k&S!PZ%!}{So;61$>jT?RldSAvsWIR!mwb*{%wqc5B8Mp
z-F=f`@j9(3-_4{ql&aTD|KgJj`Fhr*|9<K3*4f9*ZEJ6Bk2F|Sm3sX~!l6~K-+o%X
z@7$ubw&#z8-AyhLxqLmcWao-%IXAzD>3qlZTY{~7A7!|HveW-@t+Pu|T;<HH7iXvc
z7W4SN=ULH~-NnAMYCj(G+WWbetK-$0BX-a0bt_+dT>fOb_UpZ8=83OO{=T<ft=sEm
z#{SD|CzPFvRnc+?tm;|4|B3yhX|KKKCH=fykZfGek>v4Xx%RB{*Pa?&OWJ$*$kda2
z7R)fXvpoKFIJ=<p{~)34FKbpTod0U+6c;|FAj?w$E7xpgn8xL~XKJwC^i4cvuKiKJ
znlFj(SlqB6Uj4wVNbLpYSMo}l>+EOLUgfR-)nn|nFzRcy)@$Z9r$m&uOzUKPGxcWT
zy!g$BZTg?j{Q39ZwMYMS&foo>E_(fh@>JC>o&);P-}U<|%ku5dKb(Fb+sgLTlKm5W
z*0xth+?gjYy{dYzwQqb8@A=<8hoW^WcI>u`d71Zi!XMj7$<_Nm&3buu-}OB;j(4J_
z@B8zEwYak0?Ni%Mo2<y%W4@Wku1G)qWG=S*$)|kfZ{gEUOH1xa?Ofi~^-lhZiGL?U
z$mRT*>8xiI>)ZNvrnmB)Ojk2dnLo2VUu%AS`0K5fwU<SjU0>VyTVFJFpI5r<d1NT3
z#nU;Q$Ar(c%w(Q1Y2VVEf3d6M)%y3pJXzel-z$-~L*Xs=r}~QQKXZ=T>wNyv5IKEr
zUgQ1syS?|7O#j5&yZ7BB&+kX$Cf?Kb$y_1-dD5SG?^Iphr}2LLbMO0~y4voL(ph0Q
ze>YE_w@+hTVCNO%MbS%sPBss)i`=>A;B%g|eH*4fTtCU8T`h<G)yuHGJv&P5YAfx8
zeNN`9+46BMtyP=8`n7<)cYWt%FS%*clX&bT%<sN-mV31{N-{c1W?E*U&t?4>;dw!|
zb*16Dy2U?&eipb|)UT}hcP;Dmp}i05o18Yk`~HL7_1bo`DHqP!AHH3|d9`h>ed~j}
z-6?P4&#>Ri=db;4(D`irTYhm@nO!pfzDMfan-F^~NZ~IpOWoy^=aa-2OfI`)-4vdt
zVe;eSr0JfTGqR6vJAB~u9@pBE^^p_LuPJ%c{_Fa^nw<}JC_J!pR^oe6X0e~?ao_GU
z|6l&Eo5=Wn@{<PhdIe((6VwA0V!ZohwhQii9{$Dhz=az7hJ#8R6C^&I?P!qUkuNLT
za>~)@(US-J=WE$@-%TlhpS4t?O{X_~)?JnE(4$o!vvv3DB|ZG$uH$zoexFTk)9UvR
zKPP_vd%gU0dA)h}1Dy{F)5_0x3-m<qjM;Fq<>}q}zst3sU$d`Zz3*ldv*q&*rH8^6
z;{G4bek|Y1y!Mr(-KK2?dmhC&t=@b1yRPk0)jp2<H_GaFNGyDqsV=`{_q2aMxZfxL
zH*u2;wF!*ssoUXEf0qC5r3W5!zCAU}>3!nmB_p)p&YT~42{E3Ftjx`d?%3)-v9uNH
z+_yC_D1DBv){=TH-W8998w1+QPu(@M`gZu=r=0?yK78ISFSe|SDNr-5MDXeiz8!U4
zw*S86W&UE^bnTeVbcGorTwkADS6$_HrMLC)hkH8vb#Ki1S9I)i>A$bZ`-(l2pRKpJ
z)E|2KTiTtsC#K6!n_t(q-ula5IXii_WG~IczjYJ)SeJHfTdulg;j{X`+fDw?`2XbU
zUpw)&4ptAjb**$iD6L_-$M)m=ck%htQmfu4*XNhM-c<ZPzVo2N%mS|mDixU~m#qpq
z{f}fHULqt{7v1XJke$EQXls0KMU>cD(am}qpKiG4v>L7zc@nvn_wm7~_~YujtxXmQ
znYx#2m-M!-Fk_x{XT<?+iKSnT)}P+7<_fp|<>j%{-RCRS|J$jv-(>5QzUUuDHV@7?
zE)xC0uW_LK|Gy7^rZ0Ej@Z@y+|GMN?g2Af7mkz`!*=YGr@n53LBCTU0aoqL5(M;Wz
zSP|hvhx1nPW~VK^c1A~2wo)W|jqoyF|7ecYMajok-Z|Fz-tniIReF@vL#w!@ViK$B
z1EOa=61v>w6&zV4S#fsdk^Rr@#izPN2XE1T2{|5tJ3GAk*Z;TmEP3iOH>Ij261X;Y
z87NzZF;Dj4i+=K3<i?Z_uBS_TI0VCc*m&(&%X!#571>Nz3taPl)}S@7-HgqyM%X@f
ziI{ca>?=j)dCg|C)#LU34PTbdzBm0qcD-DQcjAnIyraUY-dB7%ubByQ8fNrNj#aUm
zEc9XpTL_nkwlLFTo|#8Y)}LR(VN#TAvVdi}a;ofv)fXF>MDDJzQkt~fDF3N$`?vEu
zB<gZsG9SC$`B*j5!SDF)NKP63Ovhc%a}qr!PCQrCIk7nDge%+e1*uZX_Ayf~t=<u@
zS*%w7PX5F3mpf#+>X%3u+svB0NLKT&1P@yci};Nt>2i9Ek;j;07?^)3UlN-6L$01v
z>(K^_8}q{+JDl3guwUelegD(19R{b@TsXbdcKVhWpRJ5<<O0`kG-DBKSz7&&>6w_T
zg4~`xVr{Q|nM`H{MBljnkfr+ev)4~o9iJI8@kfY=nnArj|F=Mf&Fie!>U%YtxL7Td
z7FAK1x{#asXsG9==9LCto-YhuxMk5oDaOQC4P}StNT1-~UH&!qchpR?sh`Ap+#+&U
z{b4Z(el}-Mj)(8|;*{;D79IRMWnEg@4%^#DR-F3LJjL>=YFm#1-wvN6FS^|YGx~yj
z6ITRHNKRbkni~CNRsAt*XXE@M2e0`C?_VE$`r?%ZlFL@g?U*ysUh{tbr0;(x)$du6
zB+@Q&$M9{+&B{fbLH9Pju!!e2-p2DiWsh-a_m%wRt0v7`;WcwziIzjEYGat;vgaF~
zeKxzId3{cG*1<(#&n~T5@l?sVJ?)64S+KQ-Xy9A7TfB-(Gx<2V3%hQI)+_q88SvO{
za^zUB?AjV0r-#{}9vQ3>jZ})r_YN=VyApKwz}_u4gqW(NSg-63sS2AjdEV6OOPe2g
zRIRK}XFnw|b)C%dDP75$C67v_*Y}8eub4P*%RZs66Dru|m8e^W^(;EeeZIKoXNS-e
z&yut!rok6%Z!O$i>R%f1{mkF=m^WVa$J=Ap_`fd{jGgVd`O*jFZEL<*t*;K*rS`eB
z=2NA+`>njA2PfY6qLbd?vg_=WJxgVN9WIP0eiQj!XikjLzJ?@+ET)6|n>f^eAJD7m
z-v7w&{2%7GpYGnxxc;ama$l(3#trqaSKZRy{ES)nj$Ep2XQWC0#*}Ysf?JyQe5u~%
z`_ZpHy<ffYxF)Ckrf(rZD`tMq2ss#@Y&YAPp>mzM3!mRE-~6lTNw?Njm=tL<Mr3Dl
z%xs!Id+ovQ%0mon*SLJdPWo8>Y0X=*ZQ&C=F44z=vJF!V4;_8Vvp9x-=E~6df~98<
zmE2>i_1rY`#ui_*@Q-gA3??+>Gk&}2@^VX^N1lTGiu!H8zZv~~QGNP&PI7)p{gclI
z`z;keCni<hn(JA_{rl?a0wsOH*p#G6cTd#mp54@C?ADpwkg)yydWG#XpNCH{SReG|
z@1Iu%iULa9>vngAbUN?ee2BCC_`KZ(x7O=~pP#C1`S!<$5J$#5kJY~z68GzTbNU)8
z^ev@O=iA5DSGT`jtN&?Gp0-E*_=?vh@?mSfCeA(Brgm}KpJ~aTWOAPQm)gbt2;*HJ
zveQ}7Kx*=IgFtDq9<A2HADq<6_FiP0!eLakvpQd4s?0k>gX?Q0RAS47`lBZ5Ocz_h
zlhXSjYy!`@m<SziGk0r&{4IyGw)j>3<oz}wS@Fo$qGNlb>~xum#M|pzJ1%`G{K>v#
zUE#tKrc0s5+}eGcPrNGsr6l*6>m$FwTaooA=U<3DnK_Nm%%L^Rv9fv7O@%o(HBTq$
z`B%I*Y&KqAslU@AWnW0fdfU`}Aro@5Do@m0`f7US{KiAqQ~sszNMhb7q^~OQG=2x~
z?t6Q6y9N4gmqhj*RbIJhz3RjL&+8R*+TxVbzOMZCr2NqKe?JQgo^9}2^J~#T@vZp=
ziY0n}hvuZMX<$gYDqSpob)rW8<rV1%a=4o(22Y5v<tdW$El~6LS`a_skkOi3^F^Ml
zNLVpr!n>($%$Ma9muWZ7Z97!)*DL90>13fdy6nz|dDp51eL7QR7WzkUiLY98WySvK
z^{#g}8Ek(!&$2_TuQ2<mr%!(L#q^lkZ9W<oGksfjo5r0ee8J&ZusNb~`O+f4d7tme
zulXw4R2k5d{_xHhmYG|{Qmz|ro6Kdzt{l$J{%e<|iH6#novs@vE}bOBC&m3->vY45
z?t%?-KREE~G(X(eCVk}X#6?v)JNWO;OBVC6@3E{uu+_4)JxPIW0e3Q=tRVB+OtIoE
z>on`_imJ2ZiXXhY5zX^t`llmFHtDB!=NZN^n;-p{6m`A0`{u`oM_5xmciudyx<SCq
z(ssw5e)T5~LY6z;B)7eJSFxg9&nR5p?Y!x%4<;Nv!8XbdoEJDUtefERP~ppk*szTo
zYn)S-F)>Ca)E^6PNt>j3UtqT8jM8^s4P2eBh%=?{`?$&2>ho!x-``ozUt#*TB6Ohw
z=hhUzBcD7S-!f|VG#RWZS;H&aw0c`vz@b~WE;N)fT?)zg@tDD6|HiL6E|ZH^ZS!2V
zmu-5KL-_@PCFZM`K4&?fUwg?bv1RMVB*xbt)-FxHD$lm)XYcm-ddWpUm&Iu$o2W8B
zitoJ0BJIe~se3SMW=(B(>uFJo%lFz!gFEi8eQ|K+s`YBu58ti%HL0)m(?z9uM>2jr
z>NA=n_tEvqr9ICK4(B*URQKF0sr|(BazpH9kM}Z_4Jq5FF3<B>C@HR6y`D41Cf+Q(
zX=#Ck<+IE0Pc?L9cb<P#73)~faOAmn?S0#8pUU5?F1mO17hnI*M-rPqpJ(Em>~%b6
ziTysiHO?Jj5i>rz9W68$EuZ{>GgCG8;N2a1YtM5fnW=wYHuw1Qz)4DW5`}X$lf#bK
zIC~vYp5L4QD!pQP?bAx8rO~T9+V@6n{h)TAzeuUEPHK(vWX1ITuTD-%@o!#vq^Vx_
znV(*ih{=3D?rjg&8X9Wr#;&`rreJG(<Dk*W&61o)8+ur01f_p1dA)~io*92le5?QA
zNAeLGJO{ltdfd^vB9g`(-emLf;Vs8NeXW2yQCIhroGV-AA;Pst`>KOf!R{*#lfK?j
zSf&+w@xsx-T};_lzh^7z-?DnOs>^JeY|KaF`pP$kVb*6aKkO+xr}{c}*YQhlj-Oa_
z;QM*y$BFUz(S3zw!99ZYf<de8YCEnxl3o(FWbtDKd8MsC^d99l%oj;F)chlG_1Mwq
zk69fFN<E*Yk6rCrD>;oRd+yYnQ)P?1eQKKDJ($~jC~$)N!n<XMr*9Vw^1i8jb@!=F
z)>SVGnK}aMYXZI=W!_M1oquB9V(a1?woc*_${HRUGo~!d?cm#@*pkKbjboc?lKJjO
z6)i7j)NG5cDL%6DKKG%Ef@P~c-ZwwGE_YS#tFm3LHrqm*(5OHbFP?8TIX)Ra+i!mE
z)K9tpe%|K;{{5wV7i2#aWHkhOe=F_%csb^&#ww|W8e-ksztl6V5pz_J5!^g$T~*k&
z=iJtw^G}^K)V{nY+kHZGy1|59Q~172)Ud9rwe7R5t+l;(x3<>y>--tLK9+{kR{M9!
zIkxU?y<xa7s$(*Pzx4gig|F7N+9)dr9@t{Fc~z7Ar!c?AB>}T<GzEMw+L8FNlxcRV
z(virO+`nE;Uii64DS6_;`YFm2=56z7`B%Dd$4B|CPMQbS|9)%R$9ShO>Y3T$_s$PO
z6Rc$R9~Nc5-I<=qcX-Wr*@}#&<%T_zw*-7nzM4DD;!)N1^`bXLwu)30Kj%uH_GKeS
zz*bI<Ii<=kU1#|`?JK@8!Js2gA^*1R*#g;vaz<t|kNms8_e9^Rs#ktFOV_#8*P8vy
z7P3tCtSIv@+Eb(=Ww`zPZARuwv!9xW3a$n&*d?~X<Jg4>&+eI++Zwhrduh)UQL&cG
zdg`iu!u-RItZC7QT%OH2lRI_iU!Ix8+$&idkMW&so4;)D-KlS{bFIuh+qQff8`lw|
z{7KzU(#l`)38-55clvC+=6mgOlA+E0sfzVdFL$Ze&U<F&<t@t1!PXRV;brNm8_Y*%
zT#wLRb6z!vVcyo2ntTox4-^>#0~UO1DZg4Ha&UQhK+f}XU3vFU+)gg~Yt`}6jHA|c
z*{x#l4V;V-8|%c~>?a0@dR|GJ@;=kO$7yXuMz!o?*UxiH<5s=(+&+2Un;9$LuB=gd
zZh7+ArFt9p`8Vs8xdjdcN0jcFdP};-S8ZZO7OT5(Nx`Qb+$rDsU!F1F-@qFG>>lHS
zwkZk>t~=$XEj*kl)6Deu`66c(ZN=cT>VZawV+xM#j1bo{uM2-YLtu^2(_MPTvC}y|
z>OR=D?)lW`97k68Cm5&qycB2*o)gw{>O{d_ah?ALmozpy-71bbylZjttliTS4WpMu
zCZF>>n9Y#RtZO3m|1C48akjgW*>8)rv;V%Vk5dpkg*gpuX*jvyxZ36wNovwemPVT|
z)T%KvS(<^x<Qj8Tm@LgFU#L~xylE*DGqa%qMDd*!)1;XV4UDFLU}aR>JnP66CT2qe
zv&{v^|Hv{M8kmEHC(k-EWwXXJ2PS4iLy#`@%@be5$}$-mZU4Z^_=kzf5NyYG5l+VM
z(oBZt(>J&<9^8ITm64s9$q1}|`#%lF4bn_TM%y>IFrHv$GBTZB<-u57Z(*)rpb(_*
zT2bO2T#{Ils$gLO7I4eYE3vWBcQZ0qu&{)P7+EM-nn0PBT$WH#V*>?41E{dEp@N|S
zOx#$(&=4kWqF`tU7Pqt04@fL2NiE7#Ff=kzFxZ~u$>_<>WMn>3K$Y3R*l_yY07l7r
zXSV`YwpxQXf)8fD*(YgNQd<7=QKMq~m*0I4{M0sUc}pcOTbh$Lf#=w#q{MUIPA@a_
ztiSTC;oqsZf35$16aM?B`ul(T{dw{GX8L*xrUcx6og3`s!F{{6-RDM}{lA}~UayxP
zk^Xz&G^=37k(kUc&R$>jmj0_?JRYLh`!aiBSAKn^UZAvVzUp7T&Pmt3r+7?x!R0Dx
z`0FXtym&{cu=vX<i$8Ji5RE#%yY7RB(!=yM*~euU{z+4O>wDT|UF;Hlnb*Ih>)!s5
z2`i9)=~5GBCuq#^UjKj9-`n4=U)PEXYA(oF>UZkId2xLctx222#CTUPTiNZhzE|<0
zwDO#7e?FbwUjM%6_v!lW^Ix8y$oKw*P*1?QOI>|(Oli47${$@GORl=}vUhQ@^!f9j
zSH8=6)}&y0X7*dw%`;y0Zn$<fc&*l~E}K=e-)=3qx2?xAd%c@FS6ugfsp^t{$N5;k
zBwUcIx={H~R;5lmbgFaYa?hnd1lOOj-#azhVmaT1LzSDH9d!5T)k_>GOZ@Zr=8Kch
zuGrjODK7tWb<ORXYijSy?!^iD-Y<Nwf8S~U?9Yd+Rl<xWuSrt9Kjqw!#aU|{Zg&W(
zMJwpdS-WjPl}bXCx^OPjl6l*T=3IQxGiTM5t>O|j8z;Y>93+><A2e;+UH;jrp&>o_
zU2{!uWqj09%$JfpAL{m1#hfjreoES2H5K{U7xqYZgvFZPJ6toZK4$qX!<P&AxiarR
z^1dbhYigeIvs8Np$#|1jH;pgH^>0v`yLJ10gVX9&OG=u39%XS$iybp?TWoMORwT^H
z*|D*S@nU2m?_c#BK40C=<?)Cm|4bD=GV@;D-7SJIIQ$MqD9*jVFW-%ucU$kD^xyUD
zu2V9?{_>^x1a0<>($sOd#dhX-*J}kE#jmcMER#9bo5ym>wwkXtmXm67);*A7C0y|G
z6w`|uS=s8%jN*HLGCA~pE2}>3fAg~VZ$;U-e2=74yDRtKI?H|GiGA-o2ICI-wbJ`+
z9^Vi-Q&Mnr<NbLhZxX*fxUuShUAy+b#LMMn^`%~J>_X{j_fKqZJs`7kzPX6m3nini
zLam*v-n~%SP`|24L^Zf6``F3o#BEhAha^=md7QidMMPNXkQ<j9bIEFDt*0m6X|Iw_
z&FEYD_rA%bjXOFF-y7<9c>d9<Qx{D>@Z3pCs)grbO^Bdd#BKkE6uX({G9SFXGx_$!
z#b<y2ocf{uX54XJ<F=iAhutg>Z&g%I@p=5bEuvNGT9jq$-6*%RpD(67ZsR<WBYv7a
z#Jqz4D({&Ud2O>6u=H-SY2P`+$MCb;a#de>sUHeI4`?eZZLPMKn#gYw+s5Izsp{OD
zS6^;iNVK@4aKVD<#%B4bBfWt~A6QM^F+(K(mxXA5L`K)VNA-q>MP5(7Bj;+u>@KML
zZV5l@@o%~^yAR0=?r#$9Q&`>|U-`uGkJCzx87-SXo}Ske|10IsrQ|=SED|=yvRdA_
z8u;L#gL~V3kxGt9t(RK4d6p~lKg!$oRr6E9q~%lJ9FWT66|B1K`F=)}Z`=g8b0T(~
zn|^USeV)Ea^|+kY(%ru_>T?h3yvknWz4c<mQ@M?$*DZxl&f(ksx!{qNUd#fE-o6gY
z=jWe1zNT9+Csa-Syq1kf!WFY;tk+F$d5P39M@CQN?-pHn>Nk^;Z}#0z<-by{(>byN
zEUc9>(qC#H-*jm8oQfws{-;yd9cx{3&uSO51s~H2kyTG)uLpT8->AwE+wWJuuv0yH
zZr<7LOFe21Y@NCDSYvkBmgACVjPqkZPEECsj=pj|>VNRWiS7@hl7mdQtvK1JC4Mc$
z%ZcS|M*gzy`{%FZ7r%Y>{#ssL`0m!{&gMb?o?nSepPYF^FJO9(=<Et{ZDm%$<?o-d
zSndy*|MO+bO=*Fsmx}lIC4aMcayxtT{i*dDE!}G0&wJ@Hw5#=p2zuS0U!-fdYVs+u
zwFjOaF1GI4p0Re>r)8$>hdQ2V+pQ5@7XH|g(`k8D&571TKix+`lcprG9&ZrTmG2ea
zbFgE}@8YMXbKcnKE&l(=;n<gx4{y~7IGN4=QF5%N!<EBc$aLkVfaa{bw{M+ixpnV!
zN2<`r(E7GRe<sC$Fq~=8INh(p{L^aVx<Ipy2^<s5KC1Jic`VXPV|b8tN-*a49>@A8
zeVHLUZ>_dDzcOO_q0IST)HCcRFI_(MUHVJTB}-MzBSj*2ACWD*ene)*Var!OXRkjD
zO4!3-`MTJ7^}ogYH>_Nm`E;#&d*4($OP!nXv!_(w=U!c`QSWh^r&rON^L}o4W=0;%
z|6L2OIB6ECFEKi%wIqo7<hmGx+>8~byX=DJzFNU`q$cyD-r;@o99JpM>GZBjY?3VZ
zbavl;Wo1a5_nD>k_s%TZXOtq;)h82@S<8D=RD*w_q*e&WnM_v&^T3Ic0$!`kN&@0O
zh8z=F^jPTN)Yv<Y%`Nq(6qWbX?AwzRB6(`fvF1ghCtt73`)p^-ux^K4=IZm81-@Rp
zxc0-6<RhJ8uD$VPS-O*TwDv6Kd&+6Eyl1lWYfqcwoag(y-1SZ7{xZMXH}BK!vd|av
zUq|(A{=IG~U)9~MOUyrCb(Cs6-(<bBRyA7j#)=F3eiX$9pW1Wl#q`wpbxHM!tI8g^
zZg`z_A$y_TipnE5C#*g`G4yuZnF_%Sw_mf4eqOOF@$ov9{e9C)Hg0x(|Fuc|+Sx~J
zi4NZ$grAUeZ}0y8;JJpNyWGRth0+CfKjO3%U)tE3|2h?2zE!MLwrbs-S3w3p+OONB
z=JDPr>^t}NrKN=UY?<eNz0d#6Yb@eEq*5>2ea?Er8rH15+1BjZ5qc9f0vrl<eB34y
zZsC^Exsf%by)VgS!^dSm4+*c?V%*|;pXI`=8v92%j2o+(W%zS8|HxXxyYTMMr6o5%
zzMU|W%k{q3sz-r^o!QR(|4ux7Z~wIY|Js5h*;;)Wsb_DdHN1QE^T*_tqoOt^6}O2k
zOTBT?r2gCj#oy8|E6!ybw*}cexqUK(qvZR(wRbPwKQ=u_|9;xDH9}>bHwr&4;8B;~
zbv{r3z{DqK>#nU54o~dyGPU~ki78p@C6A9d*VE+gio}A|;!Bq&x3g(C>8+0Z9P>sZ
zo!>m}o_)qE)h@=Jd*%lkgvDEne6fDgrCgzVaoL$S)#;V>Uz_hmKKw3t&fsZm594`D
zS)R-{?+;4&S!uc}1zzsbyzQ#@dI7I&B9Er~=jAR^OA9XDIVz#QB%Jxkk+iif)#9!9
z&hm-6w|ObPV$7Pq`fHZEuUt&1!-G48J(IUMoV@epm04urwWsw{n08c@ztMP+wE4^L
zv_OXK!lzF({@_*LJf;3?)?M{e*)N3y_nh7(AX4)4z&=Tr3wh}?k54@K?XgGKm3M1G
zkIOv0uu7CE)a{o$XK3ao6X(_$+q^uEPn<ma;uP2I3z;`+o!Y0&m9^??Pbt5$`r4bb
zOLf;f|9sYRHs9d&54E_7Q?iB2SXsRf@*k6X<LJ}%QT^zvU3p98Cz+Rjv##H4@qJF#
zX}#9f>x`=x&YBQ#NGCXujlonhTuPId`TMo<l;21CG@lBujE*Yb(K9LQs+#}r_}g0@
zyo1{9QrS<Q;tsJtRmR9PQ&_p_@|57rO|cKU?ehetFJ!*W`bmj7=W$$M*$<1?#)&N{
zIX8VK<?WT*kX)WMEq49M8xea&3(o7++n?1iXUTnLY5Q!p;oIFkx^cEE*2%klJguOk
zllS7v+rPeZuhht2n~+~O@2&YWeUnYP-&oV%zOC)KpAsT3zwh*g!`G!$B_%WY_lw+(
zUoN&{qr9)Bdy>@TTY3v)zo+sZ-*SKI&U?NwnjOC{)bG67T`BtXU58<6Zf$AwIu;ED
zj~n$jueu96?cS~>>ge+;E9j7N;>3{SS`MdUzdi_y^40$GP~z_uH&3~VwUOpAa<dQm
zi|(ti*W5aVYni_6Ik9~e{7iGZ=LboyY+*jvd7#*UFZTrpqwUp&b6!ZCESLDcS?S&4
zpcJV^+ixykyzj_cm5o{xH(XvDUn4rl>hjtJFRs75EfU8uH!StfxtbZ_vE4kAg(Nz?
zYrOAF<No)F_4l9Fkc`;hSvorli{Iv{J@~kPPKReg-nH%TOO2my)&Kq5tiFH!(Nj14
zzAt?^mr2-W?z}@wSl?aRwNAg`VaCk)|G(6W{$!cFaD_0lp|R2Q4fTww^(F?W*T<sG
zH!>s&vUKqNc;@23=f=0&I_jx{<i_F;_x(k?kA`nv?*8eNAy0JN8=l$ytCBWG^sg`f
zT^KyOr9O*W>fiL+pWT0a<NdS8{?Fg*+i!=*ul9{hTyy>Q?diUniF0r3d38Ox^zB>y
zufNiobEg@p{E%I0^73I)@S(8J2`c}>f~sCTeAxL>E?UR-qtJXO?YfKp1`*TOeMtWJ
zoGaI#|9{o*x8JsJR}Rf{7D@@S4GrU->9p{a_B`3^CXQZTd$N<f8>TIgH~D9_>s#eP
zyDL&pn)|-4taf&p`6+q5O}D>E-><~(I`;bwruFibac`WbJSbkmBzbzjV-n-9wj1XS
z&PA$}X+D{7Bf!ccHSdbPjZkW?Q}oI{_J>t*pS@%rY28ShuQhj8)aE%ty2~a8FOBz&
za|zb3pTp?RW`B}<du-Dx$%i_tr9RC&S*7^MGkb!IIk(@}+kJmCZmI2G6q~wc^O^}4
zZeO^Ta%p}={kmPfU!$W>-`(z6nX=>3trLem+TUMU{Q5q3+|B5waPNcDE4AmQpPEp;
zv1-=xz^pUnletgLsM6W~W=3r6&A0m>x@|eD;d9IA+sf;Ha;!@Pgu|62=cnC_zUTI4
z<*&~ZkEhn2_X=V8bLqtc|L-}g<kHLzSBUhbbJ~<{(ab7NP+fDf-ey(%iu*h@ky6oX
z)wjmo{?_;UvhcFTr+(6wA7aj#eR8YKpR;3I?az<l@yqXh%2HkAXP{AD7B$tcxw4F@
z$MCyiUv5~kzl`|Pof3<8H&30)yVEeuj>YZ#H7_yFsr&Y>D$2emoZPnfcF1j!x0lY>
z+}*;xIj+i(Bh&WY9Q(YVR;TK}UsP-LyqIgBf5Yd$x8mvVpI+|%^u%fMwD`(p?_ZrQ
zD?T|}`RTW}-~R4@a9xzGp4tAr_~fj$iOG-C_HwvwW_GaIva;{Ee#ftMf3*Mnb-QV{
z!SSW{Mqiz{Ddr0ISpFaVc=~v*b<MZL8Z+BncPhT+3mHyW))csdqs~`K(?qU%%KQ2P
zo2iZZ_Y{Ora@5GZK5*;9p4@9v51ox-xAWh~de|Kn8=w8qL!E#AD<)^*ixbkHgvGsg
zzJDTQtLlUoZfteUkrg_1XL~Mc{PD7XYh7M@PUzS3ZGSI>1hc<<IDIl_xSv$+9sdQ)
z@qeHHJsm$!UX-W)|9$%-ReE8%Q_2b!SZNjp*XyrbcUCp~!EWv#)hFRn8>YKyh&H<a
zv+LF}7xT=NjdIWV;JDMO`2GdXl_q>fTDd_k^L=uPy%V<vCr%LBdLYC{(>(QAhh$z-
zTIHiiH<g{!?KfL3TA6rOdGBxMRr7U2#a@+6`v2a%|B!J@u=e}>qqjxUSBHA6K5*D*
zUz`2M6UFtFJATMWec8C9{>;5=S~YxsqcjiZt*q4L{@i|i>gDB323O|TJ(bgQJoKpl
znuyUl|M#bsCz#eXbsRdGJu@f5rXewGS5^Db*U@XUT6?PAXSLnD`bKT?&6A~B@Ap49
z<MX^=c--OoYZKQpy&HOm9L=p3h<63Dnza}PGTx2lJinrvvp&Ssex_}3*3yjU2Mf2k
zNGs{HuUoc8;I>D{6!A|xSFkMC)BJQlR*Z2Hht1;YJjqjIDxcr#$~dg{z_NR7LA%V#
zIU8R_iD^r#&bg<T%XVjuH=oXv$63=SH8|{#-&k??@}2|!T#36~K1A7mt!Y{NVC{Lk
zT^rc?Zk%5*IYC-QPD1)%y+?+@d@ZYob8~&=x78ouJon4~<z{g%%K$yD<Qzq>nR|FV
zj9=_vO-!!*w8U|@sg_gf70p_OXnp6)$A!G*j|3$s`@W8ucHECquEP6QZ`i?(kS7n5
zqI^XU?!BqERyt@-B_n^(!4kD!A0>D<UAgzv_~uEW8uf>@7SmIucTak{guPz;!@&d2
z2Qy`7h#Xd2o)^}4zBTd|%i_e1X&qm(1b<{Knag|T=rPOgWaZ@-iZ0AOb#PBmhUZ_)
zGt2iq&WJD8ciB|8DEZ7nOSacnPTOsbv#inW<Vcy8JGJ%^58wLt?;`5YyzQx!m1^F0
zuB_>5YRlEXR=<{}CKvZ7Sza`m`c^}1OZ_L8n`(C$&K#Cn|Ln@#SFXnCPPcSh#h>5b
zuPI*_bvN9MbLQKaovXh`X8f<Hd(HZx`hnQ&w3nCiUzfBuEe;laSGAzv+S@N@cUYwJ
z7JJ`Yn(b*9@^V^BhxDXfJMG^a#Pd|Pzs_-;(Z2ejhu4O+VXLkOTbFoCefxaxlJ%>?
z==WiL^<4k!=1Tl+|MYMf|FdPaJrWzTGY>RbnEBPt(%bcq<@L77U$$&Fn6hn7^vd`h
zGp9T<)ZV_xhBH<ucT3Ww-(Sjnr&q5C*cDV_aK`Y+-pta+w)2|3?Hbl7bMw_spT2H&
z@wDBWJ2%_T$yH2WtsUNHlCl4t#`|+?_hj&=oqTc6Uu$PXy{mJ{CShi)pNls6#I5c1
zu<eXizb>k^D#&Ht?(fW-!^L-s_WfV_>{GP+I<F0rJ^g=KF@De03`%O`bnAAgeKw^?
zdD^5aTT>JM&0EE|w!;7Ff{Xbx?9OI?FBN;0zC&-uw3nHuUcEXulfVD$&HI|Y7tQ;b
zYQ9~S-petWN3K3`ODs!$!p(D1v1>G@Yt-aV_I@<;_pCDiu%Ayu{snJ6vig9#nxJoY
z%_@D<xvtM&SIT-xPxO{{u9|yVBm26v-Y$lZ-&tjEoQT`CyN^%bhWDmwyML5$>V>i=
zyJsmZ`t<zVYUa(it=DhJE8M<Xn)_d_!SgzumL9pk0=x$s`)~HQ-VJeZ$*s5glKlF{
zipF^-`}aC18}xtg^$5Fsc!qybAHS?6n-ud?gA0*7FC}(c=&w04n@y=u)i9OkuuH)z
zQ`uvBHrE=aNz{s2N1WMZQ5^h_GkD2t*7vbj7j!RXS4mAcu5+W)?ZyPQvLvCfnbtQN
zH+t@zD0?qP-zLXJyyLB@bG6{!x1Lk#wL7!t*zTI=!W+0I<lUSjR^RM8cY8icm^yE1
zWn9~b1^N<3rHj&iXYpBk95NT*9A$UYC*XOc_+jSl+*gC9dt0*`*1XuPEuJg$tR%$p
zZnoG%28n`6AGWNDT+KFVBa?R1kqsdSC(N~7yUk?6%Xh241<x=Dda#${V$O`;8k={0
z$lG84^x(m7hdNCcDDfS7(;t0A_+9kr4G(kwSzT~Au;8@Nv!kIwpLTw-G!SI7sW;%=
z)DSQy`c~GD6%NHBJLD7jgkMbh@Mhu^TkXaL`@UU0&*L^jYu24Z;stB}T|2#eZ4e{x
zv7Xj@u}8m5HfNp3Is45HZT;?MjyA=kH}bhHgbqDCTD_@W-^z1g=^V3TM_>Oc3o%$K
zc<}n{ns36JBbI+jj^=fWveuB4f7mFSEOX&Xak9*`qC=YIrB9w`MsCyE#kMxjYfjXK
z&5pNII8P)UPM;a6FXq(nK<nk@#cXVjFD&MmYBzg4`?F!|!u9319yFa%Z9Z1lX{xVw
z@YKQccJs14V{2s;57wW}zhftAAYYPy#ZFw{8AEf_s(24OQ%9c*%eiV-$o+B=;I;AL
zdb01$hwvjDy2tc#3cQp25}gk6CH}RW>SD|05S*8JVtt$pZ|mjPDe2!A*&cesvf2K^
z>YT)u)r*!U7oOKUR`o?L&Z6)s>$SDZB$8K#F;<l=ZL4kDvs=aYo6y1f<-7;qhVJsu
z?abIb_fg%9J@HE}-;L?doH{Y^!QHPHO0r`UHqO}D8?W*I&!Kf2jbh)XZFnB#k-U57
z?2bDY+m9;WKFWUjh=+L9*F_Iz_ayE6`OoIC%-i=*OCz>kYHSd1wBPSE;cCs_${kJ{
zd2$Y1Nw_#Uy3Z$F`h{b}FY!3V;-ly5k3Hl{Y_Cody7PX;`AU}1VzsX}yF9Mn&lS79
zW8%?wx8C1m3H`V-J$QF{_Irn051V$Z4b<j+7~@yI)55jx%)25*0nOdgvT`4H?5ei5
zwwuRq;m(!Xk~rh~_w?h-XLI{ZEc<LyebB(AqCeznep!3!!YI4W1-0Hv>-KmSSPPsh
zdQ@MwLf~Lt+PS4130?;8SVT|QC1qL#tjW`uQTo>Y@>`E;>#Lcf?H4a!@~W7APBt~O
zrHr}Qfq`ZBvniG`S(nem)F-t)>Hge2e-HP@@-XYj@~TIsE!zx#*Z0<Fx1Mgi%K0<*
z#SU|GzS=#HFSrX{eIZ)>Y16T=mItvbYMkF%-Bi6*uRU$r<|Eg>tKSXJdH0U*<ck!$
z_m2IY!G6L*epMZJIA-o|e_{5~QG$P=cff7cMy9(L43;_yUQ}<}+fwmMS*rH!u4#)m
zH~%!8A(zzkY}*}<!(SxYN?&|<_3++~$;Tf#PQJ(&{8x(O@oO2$jrNXHn-+Tg<=%KS
zA<4C1zt*-L(VxE7Z#Y^IvDSD#|E9McznpG73QwE8;b?rv+xtS>ZXDDVnry<;RGJ{#
zl$8<uW1h+)mdco135AZWr3VgNyVjQU^yhA|We>hL>-=+G@%>>}wdGYaZpOv_3m3Tw
z`iO|eyz0?e%e#5QimmPkuN~t`TYGu?G{=zr(j_0|H~pPzcx-(Yb7)WfM#lQ@pAC*(
zQwT7+*J!xy%e0pt_Pw7gk*uz?Ece*f1NPhtzn@?9WS4Wu(yoJ3*S=zO|1{NIA!=>$
z6Un@WRbe-ITOGuLlL7)}MErT9UbSDZy3Tut;f`ww3D;+uE4i54h&12N3;!J}pjc{<
zKBeny=Vs%mB>}O41x5bc>ozR!{!s6%V{_=#3cjUL@zy<AH3uhLlI93M`{I^esMpJ_
zeEVwrH=cMT&GF8J#m$&0aLrb`>C^4=_zD}=ZIxlsFyIT`b*-^m_=?Q@GZ*$wD4w9}
zFjL|7YA=SE&G-1026t@d^0}e(gSWhJYqHvY7yb9ma<5|c<yQ(_y3DgXGF_}l@An>-
zdUiLyo+YnYS2JlWv=i0oGdU;U_04AEgr&t3A{t`3pNpF7hU#rBxsn|rdO9Ti$@Yb|
zKc_@g#2vo&_YCtJhb#N`=r&$E$+vVam)SF};|xDjd1g-Tt|*_V$yDWRWv`x~@@clv
zTo0ZjpX5$wsVf~^$o6@|{K^Qox{H1Nb2bYmR>#%zUgjw~Cpwp_Y@T*VN`uHDpEPEZ
z=5;rJeCWNvJe~8_DK&4o**fnc6XJO0txX8u`zm%t{9SW}7?({Y-_O1}DzPxC_T$tC
z8;>VGOFxhtT6dkTOg;6%nHRPpz8jvg-0_+@YoD9v<7YyeTeti<|K~aXsWq}8CSq6Q
zF9vKq8Fn}3+>LsZWoHU<rv}e@$-;YZ=kis$?z5b}DF;NpdD(rjxym`<*vD0NOV=Ow
zex`M_g=^>Xn7t+2r+BPd_~NT$<<(Z#r!^iAwjQ}tJGJ=Kg}akeW3N=@EliZtdv%tp
zIJNz!n8w@-2UDiM53{VY<;&r^k$hL>*wrh4)P#0Pc&*b9d@FE_^IQG0IRV;_v*s$4
zoSSvMF6feM#-t911DcEY-e<okER?dTb-MEO`}&Y<E0-%*Hy-0=yR}}j=z++J#`(+|
zcNOg?Hyk*nrgiFAbX=RSl48mo$vq0b&(2NqeY#9pe=*-yfx>I%PY!+Fv_*tx-w_3+
z)4Q(fv9(*icDcSbeVuRn2IdHXJ@t%{e74ieJ1v>h?f1W94GNF^BWRN|b*8bx{%b}b
zu8CzRcXRviiJYWx?0LtgcIo9|NlNx7zg%aJsG6pzQ`pRL-JC<Px#4is)*AOWAO0Fl
zW!&-Ua>yyy-Nyu7v)QMvsy~$ZeR<D`f`*{IFB2HIE>*m9S?=5XvJcg-LRKC1k7bCg
zcl@*RzqhGr+2udy!hRcDT={CoHurRNRn_g*jP>tDF0AH0UG5%pjceOoHlF3ylj@GF
zIc>|<HNo(3<GyLvgRdJWC$W5ee<y6usVmz**z7NORj%(IeEaK_iYX6*_x+x>)&IyX
zmE9*qzwEAAF6?x!V#-h7>;C12Yp$5jP0e>yNI%DvCSfJqzTe=<+_?{qnz=`QpLiuX
z^`-Rnh-@u~?|%;|*Ps6PEXn3Kck$Xu{XvT>*F{ch*tB2k>;&Q08`MK5%zt9*Rl9tC
zSD;pnx)tA}3AHT?1b3u7bov}2w|Qanq8X11p85Z0K6KPXY5K$%M&Zd58P)2IP0UeF
zDtH_1-LDK?;N5U5<s&cX%Df{D`LlH<G*3L7WpYcVtoerJkN3-0{m|NWBj|kETnWED
zavo=&Esi+9zU#`T!;8dQ|9=r;_#b}ybb8G%vHy1WYX1HE`{}Iw-9=Ytg<LxQ`}Lx)
zS#zWPt~|N)>EEaNzmtQ`X+519#5RRX{Lkj|^|k+H`Fx931g`F8dw#b0%<0c3?KPK&
zzLp8g-?MaIVXvL8dPHr}&i$c<W-DVCn|8lge&y-UCAR0*I4#IuxV3ff)dTCr&TN>|
z{n_?|*ps4XTfa!(coM!o=JqPreH9gUk_t%=)=a58cx}f2j_iV^+dp>J-#by~v3}F^
z^g6y*GphsYpMA5eU;h2dJK=Br=hd@Kzg{~pIIqY*&i<)?^}>mzyjiB#C0p~OclIr*
z{aX1cZUy^VFJmLq-2YqWbN=Mrdg<2GYfjEHl^t$6${d?ltbOss`2(LUT!q@)U0o;M
zT(#m~&<W#!j;AksHT{>I2%R}sZ}#^3)SFJ<cnfXBZD$5NUzKAT5Ur)%$y9wVhxv1j
zmdWKw#<iCjF9^+2vy?HqXtr5Rc=ooPIU4m9`%8k?r*Ye@jkDhLQ(nxhc-v>!wQ8>0
z|7-~;{ujS?737ln;CWkWKKQ(!b$rL}CwC`i{mlFMZ~c$Lg9q<Fx_|uS5{8CHJr<Sq
z5nBtdmOu6Vvh$nzjDWA}{%A}8X?=HlL5qj!pI0`2&cB^)r&#m1_PK3Rj=_ou&i~zy
z4?j=6S^GV+W_xAnuFvoCXCC*M#piZe=?e#2?p;TpE2`!aJb`^@<n1%16LdB?GH%(p
z_i1Y6nxl-0k~cpJo8G=!bz#%?t$Cp*e`|zI%$-^<GH<Kdbyxe7$GoEBTQlA-xgdNl
z==de&_xk;dj{mtnKl{4)vn%n_p1yZ-5A6`MXU-7+aCw(R;!nY?4`<ic?D_ZZY4b5o
zyMLem^VpqBh%mMIq&qiyE2oL$+!;Z4m-1&gf4<iE?b0%iV~H7y*cuW%5+0ODtT?ah
z(H*(9Z&&#*mzMe+3rezlr*5$NIPF`Z``mz?>ML3IUR)#bT=Mo)(Uq!E%YBqrZ_hDV
zXf}QBXSeF?^yp}36W%O?$NG8Cf8Ad7|H<Q3i_%U1f8~6Ct9R}$HU361FNZdL9$C?<
z2M5->-YESoUH>hf|L80m4z{EzX(gMN6xv6wDVfsanI3TV!|yqa<@KkV<233GC(A5(
zuCMxhN5`2?MT_+LtOwFF{1fWAubt(Mc&^jB-}Zzv*Q$H(e!o7jK7QGbNXxT{nacYO
zKNqd;-<K8>nCA51>C6f4uaDZSQ?tCaU`|0?ZaSx68oS<&Ydcf#_%c@<oO9{gGKS<$
zXDnrMj9vJRA0;`Q?o(m>!u)Vry~`b$=ZDvS>D^otCEp?Ys#X2Vi^Mtchq9zzn|!g!
z+sd}|qwp;GXSNPcr*Cod$+y>U=<z)EWtso!`GMDT<~1HO6Vbh~VwRwB;iL(^sYf2p
z*s@^0^OIA`XS(N4NG;4ex2^Lt$B7QTy==l&mmQ`@EaYX~tyQwDa_V*MK$TT?%{Bh@
z2>~bP9Mk7uZC*E9Gwi(G!JoNG?+!)(<vRaygVn=Bf$tC7c7LCl`upTM$Jvj)<a+Om
z%}l$T#S@$tU2%Hz_N1BH7Wo|W|9nb}&2Vm$j@g_!WzpXDCnm*KAJP%uyjSvQ@v1F{
zS6umd?Q4RO<$~QjFBz<#c`x*AdC|VL=&kYfxoe8*wU6x3wDDZq&7NJkv+r5zo+jzJ
z&!#!=Qcs_y+38%Olr^ni_D#>-)S0{YO{xCkv@pN*kn^!=*+u3{9qjd4A4#jft`lZ!
zGr#gLhtF4C_C))x+)_i?i@805j7<+d_w3IMHI%uYej(7W;{4**Thv1CyUW?SnFw`h
zb!Zw~b!(p&P;W1wwSAgw{XI6eEy7P{ThE_m8ND--nfL6G{o5i={yM(6fq``?_ly2w
z`}(sPZ(Q<s6x@${tD*CYJ$<`sP>=5mZk-g%UGt?ky+{g_f06$x>dY#Iw+F;lbT3=a
z7R?m3anp%?N9=07p6Qlcl>W=LqF&-Y=dKp^3rE?TR-X9s#59?uo-1*g`Q5{Ml{yEq
z_P#!ShgIKW(xo-8UNTmEoVS7H7Mr7((wWCP3(fB`>Q`z+nL5Nit$DcrHv=2H!JC8U
z&zV2;RLrXt{Z_5qaI)Cu)5@jS8x<yL?qE+4d3ruSu+rz?K{-al8RfqeGj{KCaMv}k
zsXb9|ZJ}n+Fva3n+P|Z^$N$&!$}~?fI~KiSVR<1BqeJzTkE<DVPu*ml&}i-8cCeo7
zxQlL~kKN2Ei57C_9w^%!FyyQ4s-1nkH17OGp2@Y>kGf6BSZ1@8*Vf56_aEcgCmW4T
z4*!*&HFHCtyrVJi(Ir<^%-#0?G<-g<Df-LbxV9bZdDFfG8Wf*DoZZ?OTHMMaT>r&G
zE>4?=Z{PMe7C-EaW?XGKt0Zi(`1=DMpR;$@YtA@%^6mM6<f`!Vf%j?;mh$rmo_M)S
z_y480o9?P}WEIT&yJx=d(>vvETmHSg{psoPo2vv(+5VJ;x*t1GE>m!B%hM}8Wrw&v
zrb%7b)w_KzgkRWc@v1Enmrm&DzWdN@s&g$mw%$bKSJM?&@i_He9v^NBzc}=Oq0h_0
z>WFFP<=Nk+Y~(#^Af40tKK%NM#3`>o@0CcFbxI3hjkYlNHTkf5bIAX4JsH!0{F40>
z7I=KwX3TbTNothw0o4#6_wAy4)@{$ZB(vst$IP}DE9R`%5_9<BoF`dOl+a(b^QP1C
zLyPCC*>k<BuhQ07d|_w9l*tEQyg6VyW%9wb8E&mXetL1w&P~kY;`MW8Q@EGFtNf<>
zeCg!byRA2~uuP3uuD4qD{hHA4=Tam~gDk}Tgca>hcKa|hiW*65GS>U)dE&vF2^v>d
z1if0nv!*_JO8WD{hiAORp0AEc-)M4w&rYA1%jf3G%$n#vy*r{_*Y94>a|>?UPsJ%`
zkBe?8K3eL*9NKiu{`fXd)${5`0s=W_Gw<GhAMLwju9EuUtEoR_OS|_q@3S`GdU3(;
z*Z!TKIrgz<??^i+R#&UIUpoA~Rk_0gnTsO5TQjmfTRLtlR9WA0S$8nU?QnZmlIx-A
zS|2sPa5DXpNiJ{hboZa_R=@v|j+KhCw|VgKrLtYBS+`=><<+DG_^@-Y&D1|+(K~T^
zJDXkTj^{gN4m~?qDEqKx@@(!Id$ydq`Lnl3+WmFW&%pHj;JiBr=jBQBOupy6-DBP_
z&$*8C&in8?i_}%i?7#5#QfZLn{(B8o@1vq`cu#E=nCSV^P_3-tR!Zme6=9zB#(a(j
z2_^Zru1>PLve?YEn5X?noAV9>re5LOEH`$Ys8}NQ<wZi%8|B?SZz`&D^|<Q}v0X`M
z{rFo@j`?lH`X+t{R`=f%cx#_b-<arr?ACz|e;N6nc!W8aK3_ClC`8|Q?;+lb26l!6
zA2+_;X3|x*;g^f5flrM|NaP+7NtMF5{Q4C_$)!8l*E|-R^it++O42RA_|x}xY+CPf
z<%DL2tj&>0cY-PzSVfPV6iu&vQDpdi)yCDw?`{j(y?f5Fy*bIId%x~JvdP-2_=<k&
z?v>e_N+!G5Pmo}WxX`TpLV9Pc?7F!ZP4|SFUG>@jEGyvED>mOd6*t1_Q_k-0+M%Rp
z{Ml73te)pRzw@-ip*Pm6?{!PRz!sb0oS|!N_JZfP%Nwzahu$zRku|WN%(!})(B7KG
z^H^#`%7b%$raD_op8KkE{g6+lq(7Hcll0G+@Ljs5veQGg*%}Qbwk|c8zG%yl8P7Lu
zUdZC=ro_ACRrBYk9p;-tompLTzxr}DWI3x#IJ>T#zR;t-`IMF0lsz}5POVZ}TAAs=
zK56b>zsBhIzor}%F8FSD!>07S;5pSj4(vDAu9H*sjGM=DElT#h4acVKNA!g5eF;4m
z_Hy;Yv+=ur{I)r}gWYV#v8Kgmc>T9$r%zmaV~g#HKU$$OM>1xeyQVXh$7xnb;h*;7
z6Z9*NsC-PDCbZP1?Z$(8^OxbO`%hN;Y%&W!m!<Lgz#p^X%u`c89{;@Z)jo}l(`vry
zJi27UfA>$2%k!;Vv%g;T_F5%2bMud%JRHS0j-Q>iV9Lf9hg~K41G%1A*M$Wv{@gz$
zMXcndrT*I2=9T5Qr|##pzQeSB3ddxVzA3MaYWp(6!X8v5t+^VvL!+oRtlhU>b;XyP
zoM(RKZq<ul6#jJC4xVYg>wU~b?iYW5;2s|`bAtN~Z~opO&Q<wp%v*S;gxJrE{wAV$
zzQ#q6!zFU^`DMH3pW7VX7}lP~o>I`D`0(1z)xFmzsI!+YYiLUr<v5^Lul+(@ul$>^
z_Ub1uCx%8VpViJ0$&0pjJ?mBXr+0q+-1^5Xr>9T-o&QIJsfztkcxmO;n-6`L=^cL`
zb#F!O>wjy+yH>xN7<luj@3P=6E%&Ew@+^0|wq4b{C*}0R)a?n!9N5*jFF)bBP}Jwp
zZaxnGt&)#_$L<UMmXMRSd++J8U0G6zg0j+j%w;}D7XLXrcXQozp2fKf?wmgmcUAOu
z()IwikowsVAK!b{kg8#pYx^?p)Glf5Q)`(Ru8UP>%%A(JR&HT<n||t~64lh7vf)8D
zf1H@QrP6Dm*xr*5>b>_Z`@=g~&HnP4lPNAD{I^SzPM<5fnYQfFBel~e`JaA-exKC$
zNUHQ!+|Ic&w=(>S_+>qF{8Sd)J#};K%;$e?4v0CKs_l1KYb&uXzSP{`T=mexI-w{1
zj&t|DnJU@z<7mdlJ}#NhEC25Oe8Mx4UunL|T$`4w+q^Hd81A`kd+pEJ{S31{CaOZZ
zagA(h^+qNJsMmo+o$gcJ&U^Q{_AB;vN?lb<&2bVQJSoqYlsk(3{c!f!<^r>ye`UOu
zYORd=I^*3oUiE`#T*FtYbWJ+p9Q5SNXP3#x>}NF{the1;bM*H2AAdiez5iZrx&6PJ
zzDq(cbuK&p+hxfX^UJ=oVrI$3|NrNjT`w=M^mzT^_SveHpV;;<G2Q!M{j}##xubse
z&7UaNE%tfMR@0^PZGK<>DQkOHyJ}+(_p^g7`lT_;mONeCGqEyf%Kd{j-!Iv7{7vKg
z`P$>wtBA_S0mr{id9wSbV7}e@-}3$S2gR0ZYMj4!if`rtt)m8adp@0<D*I@6bd^==
z+^?4|Yt?VdGdlGmV3+0b;_Y?kw<Z})-eh=A`rJYt`^|svY%Ja5u<+mV<3IoW|MmCJ
zhxHddi#xn#zYVlr$UjT()Mu}J|2PZQRL#5<Gp4uCzWyyo`{s%#e~*_L<(6Gix&P+L
z<W!FH{mnb`uT?zN@!!6rXL02>@%ZU~j8|-U{_?(Xqb<9dXKTI3<?AP1rq0xRZ|_?_
zyG}#;@}%|68=PiM|F$UBdCu0&PBxmpQ>@uu-1XYK=Y8P%#X>Jy&fl<HpX2r7`J|cW
z1>`km9X!XV)bW@__k;1t7azHmH#xf6+_|<d%AVIFD)otql;w-eJjGLz^Jbl6=ns|t
zVV86yLUb;}VxAM+yJt#-G1l*#DPX95bK)`erwX@TD{Z*yqA!us8pzF5mHxXo?BI!i
z?FZT=9)w)E;JTivIMnr^Rd)IxQ{#U|rzbyHxcRC24v9TAHy<TsT812a()j(K@If8N
z+??*zLjj3%j30kJd3KqC^Y3iN`j@lM9xjf}NY4n0yY`@DGIM;HUF?Lqqdglu>RGt_
zPfz^j^kl)GJjshu^Nk9#OT|`;-Zx;95Rhr;n7zl*_@AtlK-iggv$xsEz0&h2zm~lF
zkJ4>XwwszvHy2ohm7Uz<YU}*s;Rb_rQOA}>ADIo8wrnZ6ab?vlBO!+Dwg>5{+6L?j
zH=4v>YFb=77Z_Fce1-B}=9so!d~!ME_x$TM^mndmH0&)ie00*!>0HRPvlHe_-pY92
z^m0?Eb8?H`k)Qr^D>?N2UY?MQ&EV13+tt%<Eztb=2oq~k+Ohc$?A}Ov1PN~bW}*D(
z6H8&??psW2SlHMsY|k9vUKQocI-M=*^R5RM-yChd$sCh#D@Rbf-cUPWOa3E)RB`ob
z@(il4>$8_-Z91%&Gr8?V>isjTGY+TbZkhk0`AwFx{w)cqT$8R98H?>NxN$v7b9{5c
zX_mw+r-D6;OtUY~TeZe{q0!e1?XNrn_cTQ8k}CSEvoy1OTB^>Ii>%)xrA|gFzw}YQ
zyk_EauFQ3sOKc6kPyag6-d8^V<cg$}2UD-_)fHmdvee;vz3PcWkB<M#dA=-|bCY1v
zTRl&KT~hMDBE2r}WU&lf_(9uCpjqa<R{%F-9FO_AHF;YNo%4nL1XMZ{oI=j4DBM$d
z|2@Lt{)<1mD{l0+Zt;{AcK^n%XK}o?(%oXg{P$%l?-?g>{Ehw-EoJqCXZ63c+>0M3
z3bw9%S;li+dbPzOj;r-2<vv{6${S=Qf43tyvuxF?SJATqS#RyQs$VBl(OFP-&}Zrt
z!&HWi&vQ3SIrit+m7ur-Edsx+xo;$D{Cl)zpRm7@jzsYCm&KPg=eewwxvXmA7{2V@
zyR*K}D<(z!>^hoWkyNj2!x{cj<xf$C(T8lQrlV^PZ@g5ZQ)bS&_Swqdz4h%o_xEHd
zS%_VC+Ie(&mm^D|f27A9YvWR7znWLc9@6hQYn(V=>N!sQue)%?&TvbYMH?EsAI9=(
zKfWWOFT=C{zsw#3k&E}Y&x)CS?!zGoUdb=vADni1@!UFRWIp#%t08B!*!`#V2gHy6
zOYm;8zdo@b)cwWnsV!EjlF2NO*nEH2FMJbv`Oafyt8Erv>-c}yd)WSEzbec$`^i6(
z)yx0SsIuB&zRdXf)|Vl+vNpoSC+B#FuiiO-sma{c%gZn5{rkIW`Pnzm1y3)nI3={G
z^O-i2@^sB#sdZA?g4Rb*&Wn|Kd(Ye2%iZaIrF`7FIu$q5)fUb@EjL|RH?S9Rd;jb^
zQEyQ1)%t6NL>1%A*?vb2GE)yNt>$~#<yyY^jPLWL84spR{Jmb_@CVMM4%I-3?uAza
zZ(Da;^j)0uMeLmA>0~p;zE7JcetBn5nZod3UpL1?nfE?wjvKdyA9`NX%N`NOG-cx%
zYu<NnBc9#2xG<?P>-?u+nHN=W{$1KAy?DWqf*p@0y^yYdrTE1$tS(vkrkQs5=R<uz
zUT@6|cfGdpfLe0D5QCIjbJ9zxE$^3W`tH_jNX^+d`P*K#D$o5%Q&axy-+n*&Z7x^C
z)*o_37n#cwc3%6m(bs%h3PZ)5;K^S<-9NwIcj=*Nx~qeHy#4spmwvU4pVu!`Vc^bD
zko|mdWaZ?D2%*I>7WJFfXDgnb<+0XO;*+X6gZWaGVzJAjzk>7+p0~`jW{Q6PY3<dt
z%uP>!&OD>0yP@z(;@Zs;hhE5tXw48wyy~iK5Gycus&V(c>C@&GHI*(fKNX^Uzlv|}
z2bC3KC71PAnYO4+cKzRz&L*-mMrp$b9aG^)Y4V@<@V%+%%afUIVIi+ue?GaR&EDnC
z$2pH0()~WT#GKwND*kiI)6_dNp87gAY_>gpPX7_>!_7~RsH|8ku$s9vRlxjp#)Nq7
zwXu7rUXJ&Y*Kj|%`X#&Y?)8xq-_<_z6;Tf_XuWbK*yzdc&s!`H-Flvzx1q+;?`~wp
zvM<>xmn!%79aydL^0188`9)tZy(<o{kDV6XS2R<!??>g$?;#9sQGa>t<HDmv-z_<y
zBtIiUNHbKUV{3^vYyQ#%#=4@CqW8xHHZFaa9o#FZAC~-NY2Tu&9e2flw!D(PCK)j!
zV*V1D(@*EctG8!_b<NH?J&$=qAB&3YvZZr=++O&F$5MOixxlDz&m!E69!<~ndlg*U
z(_C-xZdbpc-ppFrikxrUv;Dt6VmOg|sP)X2?hfwQ>IM-B!3YccgK2MW3QlUj!gXX_
z`VF7rnvT~u;(v(T{UGx5lV;mn&9L_cH3#zx=H&iYOgy5RVi#%kOkMNXTa{y?DVD;L
z$JQ_|%vUz*Q5UN&Q!_ey!+2t%*U_JmuFGaVi%7Xvzj43zM9J>1AFuCto!Tn#sQHmm
zkD}0@#UZaGl-{=q%w?W07GAyXmfb3;Rqy`oJIq)AL`}^w`qs`xd)k;c^X7U@jyrn9
zY}r=Rnj5c|g=w~PUsZYaH|tE!-RB9Zv9k*<ebN=a9$Qct-L^NrFZam3XS*yocEoBe
zShDK&ZCfMzKM(C$X2;FV0JX+MrpKf)sxX-vO=fJAs#h>EHL*ZG0Q6{dWch8kS+(!u
z8{LbatqAySr0$-+XN$1^oGtxtdnRA|$n5H9v|KgNIY=_S?(dyw22ULpRsYK$n^_j@
zJGA{y{z_I?RqjZQ;3FX#@fn@o8a;ijU9DT!1*|N%*BJ1FW0%&VBa`(e9Xl%GwWxnv
zYkiPhNXhj#Pq|ZX>WZ9t*m!3TZ>w7I7vl*Mi?w^0;xiTbdJdkEDA=~kKy1xk9iB+{
zn3F+^WObNQW^+t?GyTA&*N3z=^eo$uu#jn8LhgYp4{t8o-|Ued{P5$OX8nZz&VXx&
zFFi>SOi4`jVvWBl(4=>bCA@`&<AAwSi}$96Q)UkJ89c4MiXwsns;b-*3QAp#T7!dx
zykn9l#ym{$n3(i%4Y%v2Ba;@KJj7ZMDwMC%Kd(aBaSc;eT%&6IcehW+9<k|fzUs`A
z=ku`k2=5%$Vg{>}-yE7;e%wa)ZzySSwiU!&VCeb5mi<ywB1<;<!g0rRR`G{zx)rtu
zj&sRzU0iHjA0s04CiH{vnXZGHf^i3X^%rrzk?GDzl&*<$$>^8n?O|BL>N0J?L#Yp3
zaowB@TI?HCY?gnR9?~?=j?s=yXwF2Pn@kU$NHks))AV@3@Hn{1v1^ytt7Qx_4lWBa
z71-A>NIP{}Sg}l3y6RkecEXfE!xH93XN?SJ1C_^@ghF{^>Nh7EbZnecc(lIvL*RwB
z+!E(6K78Aj=47{th-puMzhHlnWCf?z{R;sC<wwGu))jS@v+x-5ZS;{|Uvd2V4QFkq
za|{=EwB|0!IxVtwkF%e_{RhD(uPowmj;Q@+Y^u<3OJKQ!p4oCa%ji=)PbMX68l=h=
zv9R2;Ome8>Tan&*OSs<D-FN2UuDUCB0ovPG!+KmK4_-2!BDjL_ZS$fpf<Il=EN$DE
z8tt|?xPM`^*s*#w=T4R5T1Uzy%VsI&q#SE-)L1xi*;xY_nF${{n3lfUl`7F`bzEby
z$7O4`#d#Vkdha5_a`q)VHlN+$y+>L6u+`BY#y)1g^Cg;DuIt1dQ<`K_Z)hUsks)S~
zto(FRcd$;vlSex5PaI{;wV0C0l)Yt<>^xTAi+ty^Ru&1VdMWQ;pxJB1?&h&z%Y+V<
zoi0H$G}MeXz06(VzW?LhDaq4!sT@n*W^{48+4Q7E9`_?Nf7pNQ+vv3Z*{S6+$}=<j
zo6cGvQ`Q#cY2Q0@Rq>P!zLO7SrIyzB33-`pv6_@sbS|hbasG)t+rP-QOJqlOXH4Dd
z@$(Gl1fzK?*PafXblc{AQFPL}pjp>tBu?Bk)<1c&Dr-V1-;o)q7ulYfY`(~LY~|^x
z?1c+6r}lnWoF;a|rOr}$sruDRRS(wGo=f`?W_)^1vWem87=>^1DpWIm-YtLn`RLcA
zpYQ7PtX2oSN%^>~X6KIB#ebJ-#r*Brbb9vX%b(5`8CHj{J%7qvKW^Il)#qP-x_b7@
zs;ap7c~_^0%lrHPXJUK*f5+-m%eQauF8%rLU(MO&*FWE`pK@O8baz(evB2m$oqCP<
zsprp!{QV%Zey{fa_&xDc^yjTvb+c;Uj=$my)dl{F`KMp3=it7xr~A;eIX+D@A2y4w
z=si9yds|Vkkl@C5YlSCCrcG`*yk|PoK8r~=ZZ3a$cUKgb>4vaip6ta!YjW;YEbPl(
z9iY2WIyqHflCV}X%cE1-x;X{z(^vm45}bah>fGchA2>qv7dsT%8l7sMQ6!gSQ9Id<
z<%y~r|HCzwoAy?97_-%9+&FFM&C(-tB4lES&8|C&=fXJo{%g21g-WVAEtn!7`%a;A
zPM?6wPK6{3))N{2$NlbYnA%<0<S|J&iraBThay+s`Ewo%4^Mo2>dWI(YF;Ok+aIjC
z<f)!yv#tKD!MdCeO6yCO2u=F@w?*N@vlmV5jj6U$pI<y{J;;&LSRU~0M7_gp#tUpo
z24517DKag8b53brU+mnw4myjvlnr!5=e$pvr?sKTVpGI@@oWLViIdNWuq@vbv4(4P
zU##k3hc)GgZrG>`%~74zk@d81u1lf9H7_;Z={!xBl^)xuF}ysHblG7|lf=2LYtDwZ
zOrCI@FGcltQmIqwvrp{j`?TwOj=amL|J?KTf_A%U^U{mUe!beUy>X+&>6wqc<wSUW
zVqG6y(r`VvSJ0<2#bV!`gBdNYjSs%{ik~ai>YerS(Z{E^8e@8P#jt7KIGwuFai!1k
z>95&}3?-6GXSv58KRVrU>m7?950^588^>4cHkA4<G*kQg>6_^Pc{Ne%--rDVo3=UC
zH1>Rb{ra@-*|U$n_0pLZ{`6~2*xhxjLM#6rKlyge7N=>^n{z)YdE_lgJ)b1hkbcfe
zCQbg;Yw3U2&%b_uf9>+uUC|y-zElK0_0GF=wS30j6YI6>)Jv6DFTLb8(LVgoxf-9~
zyU(sAxLyc+e?D${T*&m#w|^#BoqsA>?!4Dc^!W*y4G~A`ZH^?z3GKD(b1t*ka^UB3
z!Jq0=rB3`0W4z2aIe+EJ`4KAn7Ojw-!LRb%ymSAws_Ln~{%01ImsW1yW99z*rPSoj
zw?DalwRW4n{l5Kb>nnTbtuuJAhI@X_&zh?5&Zhf+wJgs#^?d#^?-Nx)>;9)39^75J
zU%0hTfBo|C)rZo&=h;Tr*VtKKTxfA}_a(2_N)}TjFU6f(zglVK+N<{d`Kvy??bomS
z`Qc0a{QqCfrmVjf%v0f?zy5;%wD;Gpo~;*Cyc*i8AMmQEZhM^0>3Hd@YXSrQocXD8
z$6e|}&aPEAwjciSv}R}2Wu^l+A0K(|9P;98$@S!5Yt4wM@5T4uIhWqe{bF5l{q?nW
zPuqVU{dKu({<KZba_kSfh0bZ|8(x||z593S&K+w{UHwzM^WT;=T8E<l<!`N#NY<9_
zS?W{UQ!D=Xdj0Qy{`K>Oxm3S5y^&`(+TUaQ$iMwSXWr}j6aRA$814NTzrE#8tv**U
z%iQRV`}`cdx$4-jyb)Z>v2*@Ig%(e~>MQy6)o%s-_ANBe{du>|x?K3P+LZM_%bAxn
zpVD*6k#XsG?dGxNv7nHfl1iOt%N@HXHJeZBC;#3TzG;4ffBe5c-+0gbc{%m9#ebKZ
z$NqZS9s4VI;aFVX*2?z^Az2er|E#*jII;FvKuD3wMGMZKOfveXXSZ*(37j3(TAC?;
zI!>v!;&c7O<@e)Ks}FNb3$)dm8gpWyq|3jUGfyUL^X!}OeYr1R#bo=XMu(QZKc4SC
zQ|w0&|H1NjraB4c|J_YL+CNQaUua$xd^qP#^7^X6KhN%NHutYT@$B2G8+?Bj$cvt6
zI}oMAztcRY^|5%7mD2S-ktGitxthN{h-}{Dn(DQ4-Hto_a`hK0#qU0nz3bn#Zjtrz
zmWA;l`kITR%e$pcbDEyvbg+Cj?PiVT?sa+Z)?fd;`?bBCA7A(!6}@LaXBxWP{TQHc
z{qNW3+1LH+TOPizlRnM&dqty~nr@Kz6~6an8~6?19{<%C5T3kn-J|IVR(tna#rviI
zUvbS_==A58pB`!kF>UyBq25!%xga;8RR2r-|Gz(Pr{7P1?CyNuZdKcC3B#IajyugI
z%3QWEmNB=K?w{gq&$m&IJ9;no?Z-NC*XOS~x@p(TcmFi=mMf|7e6pNB<IpA3MO!3T
z6_!}O(-L&5|9ksqy`$dldmltvf49w_zI%5QS7^Vy;GC!X%=XWDJhOdX!vxRc^|zXG
zEf=avxrS-w8A%^p9IbUglA}7=@RMY5&)+4@(wy~X|8xa%(uG~K;_F=te@^Lr@YCF7
zsexB*=%3QRjehFtA+-;jEQBYrNL<-w-Rgcb;CGvK*xWta{g`rlZvRn}6yS(Zh>|;S
zS>ku^e>Q7H{<ZsWKD?hE%)<FD{W8<nUG<q+Qcu=7{@CUD<MQQSPp^NT{j;j{+moY7
zWlY`EUZ0#Co_(xwUX6}rM@fdwY*yh}dcty(Z`+>Y?ALfZ&-44*blX7FDEZxsvR7rY
zY=4r+VRL&+a<cj=woR2~!t;u6+5YDAw|+bCa7+5UZRal>x@o9u=5=JA(1n9reHL;h
ze)r&gRR3-w*A|hsn){c`{VI5}UFv3Sv3ph)>LDzrq%!;NN(nicH(L&{-YcDzu<rX@
zu^W$^m$N?mvBQ07n9r82zY6O%S_PN3o@uxHeD(FSS>Fn7)oP_ZntMlA{JHvN>vPK6
z-QMjgu)P|_U%_@alX1zyZq@+aSe=IO6$@W@K9StMu<f>Az4&L*wB+aCb$GXKTkYTd
z)KgE}I`@0|bHh`8E`Mf+uD;sx{GVCN|9$iCt$UyE7q&)Tc;3uA0h<<ddoPI$xqIyN
zOCIADKi^($xqsPuNtB`7rQ7)-?@GdTpLchAu77oNo$cFsHcs0Fi~G%&owoP8cKYSp
zS4A85%)EBYZU4(lE0@@))?4Jb%N*OWT=t^G<#}aCQuZD+Gg<j}>BEyx|GcV;?3A2y
zZrcsRm3M<x?}{H5c35?<`L&tz%9P({)r<=drx~qWD50@9$YKs}^_BIPwOg#_E?T?(
z>$h|}72A}K(wo=3Kb$N2SNZ7)pEF1H2eE$Jxg~pdI$b(zBE8~u?1E=+JJ*?q)X#Fa
zy!h4b)HKWUJiJ#|uB=+@eB<SYg)gd_msFYw$G(>}IbXKuwQlpXo4yr772n^e?}}r{
zXU$l8?8}W67q2sUt(azbVWHfL*X}C<*0aBM&sY#872G)O&=mROPmZ5_$1v^fO9Az$
z?L3~svFjg{<ug30QoLgKYvpUzfZri%{Fddj>JuFHwpF;SDEV^w;quqL^J`x1+qdl3
zs_$3Nz5Shc$<}M*)@@gt-Pc>sV)B{0%a`HGiLzk3o|Dbb?wUCymTdQZ)|VD@dY440
zALF;HYj%H_Q`B!-V7Bi*#}eNc=7;<)Z#2HHAot<jHpiZ+>{C*8v(BIWu5nt=M)h9W
zoZy?Y;-p)z)+cV7H!nWicm1tX=aeGMKX2<x*jxVTTBP}dm&+vG#8!Vz`(nK_#xLD^
zuXX;5w5;oqKVPKPx#vmnon$|JsVZ)*+OC<ea#?-Pi_e(<BJJ4r@P97mpZ7E0dbzjw
zP+5Y!$yz_D;OklcJ}lXHEm-C4t<D=$%5P5j>>Jm*?6ukcbFU%;>VLk@uh$ovcF=IX
z|G_ICzy165>v8<KSC!7)ZvvX#GB15{cq=iJ-RN@P=9`l~zg&H2rb@zLjYw;`zjDgA
zMK;FCs=KQTuq=MEz(pqf>@Ed^kUq&}&O%kEYZ@}_Hf;}G%lAv{bHk%M7hZjMk+3Lg
z&g+-Ov)4@d5M6(z`DfiZW~u%0^*>F#$}~CFA3r&*eTLgfvt`XGk6Y#Xg`eLl*fu9{
zvTuRJ8S|9T@ULQXk2~~8FPG;07JbC|f9?^3XFneAdlGl?$8DXQ=<=I(rb$2NxSgC8
z{d>2D^pVafy3=_Mb(|@$v<|paeK$!is&Scdv3Rteq|tQ87kl~cel9z`u=?aPgPZd8
zDziUI<nOM!zxvb-_7^WVmYE)$u&1ER#M(EDHR^NilBGKip4d`*^PTc;1Fv(-UtZF<
zsU-2`$89y1f16UK=okv#5<kW(*?Q}iE#J-dm3A^2zb+Q;Xn(`^`?4%waQ%<B+pND&
zi01sp@LBDDz}6<a3G*cGx~=><U8%5S$_5Fka^~0d4LzCBr{}JV?={s^>zgJ!@9~zr
zIX<tyTHKsD?WXf4Bd5OUHq2*zrPRHZlkUvEXKLHV?85U?Q&ys-$0N;V`%<xsJ=2Tw
zUGIo%SzpX5X?Wds%3<??%^%BZjG6>b^<UTdr}1>cn{xtN(+ffun)XZeywTAqo3e_z
zVn*%ZBj28;xYw&E&T8lXw#rO~lkMI${xh03{K@hSF<TFn+@EsjO<Ki_+WjlSUWfiW
z`Td*m+uuKb?fUg@)2=;JE=g(D9+`hAzSW-R?Y)QjZTr3L=F9y`d@}pxr1-qA&sN9H
z-<!SJnD;dIwz+b@=BEE!HLL#luAeo#YAg2bI6uE@`=Zx#pMQG(>a$h-|3{_!XKtG&
zyP`Yq%R$?`RD-j{hxV?$?ZMrkn)9yIcYW#lg<RjhJb16M{l<%JP2U&-dgZryEs5G$
zvtBASG`Z!L#zmWWlfO|4!IhV8q$juRw6Xo6d}iLI{ApL;|J;7`cc8DXYKd~i;t827
z%a`r7vi%Tzz4x&1?T6dm7ThhbSUjsfr};Hs#eQ~|Zz+rav%OfmkN3sR-_v=|nr!h^
z*`lOoKY6{S?T_yBx;xgb{o;{kb(1O7T<*TI&5~oEw`HF&ODWanIyUFx@6HVWi)>l<
zuUYjutev%E^44ir^0<p%9Q~B6BU5<#o9*VtI+=gZ$`?d0He2;y{y=c$boenq)2-$)
zaxq#?KIp2-Y+`9NeL*Fo5~niT^j*B6PPZ3NKUK*nRev-8yRYqvo8I@Q?UcW=GH=zr
z_}kI(Ri$5^@9LZs5?X4>(fa;VP|3xdVvSw-M~|+)`To!8hu6=akLRzv7&G}t;oW`V
z{rT&6A6a#3zQxa~_j|lrzu*2-C;KP${+y_-5iVY5>v~$(JJ*NvuU=*Q%m4E3_q9)d
z@3LIozTH>u-jnU?s(rtU-{;Zln|3-t&oSy|*uPt%OW$`td$ZWp#?E`|jo$M{pM1Z@
z-?5okW;3<EtIlfPn&XcP=ct}`nC&3u6`Z8Gq?2=PM`njs*o&DFY;QZJZ>VB4ub;P2
z*HCfJg%X2|lVt)?YXqW9&Pmru3NxiP&JnN*uA6^wbBNUf<E6V3-Q2Pk-Qrvr<y~%L
zeCFDs%bW`@8$@^eska#Qeiloe)fu@(A}wX+3}L64)3h`$U*b<~^Njve;<RWopI-@A
zr{5Nfk37?5^ekhFG>Wx7{(0|sol^Jh{(l#xo4z|U=bSn0bn=<cYSX*y^4A?JU;i$2
zJiJsetp3)eT_5GYdtEOJ4*T(k^}}P{EAZ&b1+nszvbc;53_zFnn4k>Z#ZHRPZZ;4(
zdjGFT<sFHm|8F&MglTiUHp}9^oxCbs{ffp)yDzu>i=E`fJRVFhe&<_Me0IwTu8Y2B
z{!DTXy>w)j-<3)44(n(qg=bkO-r!rkJL}StYpb3wPF&`0SNCDwjGwhWm*zit`?o@>
zN-rn9cv0ED`of(%=M-Bfn3@*Mmsd7)FP=EH|F=u6;;cs3i3exwY$^TjX?Mdrh(Ek4
z_PbrG?<Qg0>YYoL-qL(txF^s*DQTMEajm(%uS1=EzfTNT*_m;&V@>K2om0~VrBz<l
z?|Q8C=2po5m~~~=v2Uh{-uUQs&T-;%%_7+hyNu;0uFfjUbF{3Vqi{axNs7YURQ4jl
z=?zR7)fdF3G<{Q;tI8}Z^3zO%{UM8Z{s&vvg{)4~1fm*dxAL8Ek6~!Kd{yezqsMO<
z{rDXhu4`H9wI+L~SoPaU>61e?PdPn(WmwSJ4gaFmU);=nY_Kjc>mTEjd+V)00bg8F
zl$wYX1%?v^RO(I5Op%9AW2fBCyX7F@aR0C9?-{GQKIE1+w@f(D#<ewbvV+}$8{At(
za!$`^|5N+cR#{1ubIIm=cP)+O(x$!r6dTN+_3hI3r}ubYg_wuFU-x#c{#>hF#dlc(
z*R0wl)AA?3Qgc_rG+Xhz?;kz7^5(;@U!RYk{vLn6KL72~j71+lo}HU7@B05o-3>Rl
z(051P9Zr89qO<4p_xaZk#+IF38QSf-;7X27SbY1xVB0mTzP;Gzn_d6w)YsDDF#h*9
z@2!86AN&2G-a5$;37zTxc5&?8wD!(cZLjO%XK%807yQw=nq*x!tucGm|9R1eH$GnZ
zC;H3fZyC0E{D)1V>Z?xKNNV&|h&dUGICEOJhS_*4yfbmSGjq*?JC}F7$UMAL<W>=%
zm&&fTj=YwRc{Yx1bJ;e%5vfXAK4-SGkmDL%m1|B(YJx|2yqt?pD1Myd{7ADU-RoWQ
ztba2FuBGuN&JCI_lC7*VPsrb<bw%E;#ue)XmD*XvdrNn<ZZLC-P_N%p-n;eL-t0AN
zC#aQcEj+0>jU(c?%k?W(YWBW-QA!h<MJMqIif65Tsnfhw^ib60NVaV4mh?lvjVshj
z8U_88By3D$6FzKls!%IZpV#SfJovJATU7LkF7=OVDjp>r4fc5D$*MbV7FU$bT7h}f
z>NZ~5y@!4GB)$FRyXMAhf1Sw`?eYEQpX~lMIs3w1tj&3~yW&@IzeujIe<0h^06xi#
zckJCh6EctZZ2o8`bvpWffAcB+0DGq8nW5(I?2>nHo9*}Wy}fX`a|O2K1wC%S7&U!O
zzMJ*fK%n*gUy)rong{>S(q(a$vQD`1M$dQi_dXj>-mN(z&z17`Z#y@kRZ8f`l8bX@
zD*NtOd-_({WUl`^4$4#nJwLatZ~fu3l40umO3XThua>0=efqyF|Cqv^ce6i+U*631
zdey4F`uMtc_uKbvEZkDRYWcI(#;YG6*Sogrsd1D2JLT0bJM{R!zdll%d%ihpJ@e8-
z-z~qF7L|Y9lG!e7ub;g?_Vl{V;$KVd$o)C>(5x^1&gQuxA|kE+;)|_}x75f=A6~an
zobTGjKcZQCXYW@^xLtSqypfFc+_UMAr+xU5%h$h1N6#kLHZx#SlaPQ?DObHy$}YyK
z^Pai-ix#CVkUiIUiDgQ&iIQo@2K6lm<r-aLJw)mnTo|Xgu2{-)w4;W#b5{VH6MwOh
z{|iN7+mlUso4H!@Of}k@?lmr$aOj{6mq_D+2`4Ny1e8oysa33<Xxx5X%F>e~vgn89
z_DA1a9z<$Q4De7@U!`W@zleRkr^thFJ<qEjCKtG~oacB2!kWJp_ujexm~Z8u{hwaR
zFWIx_X{Mg?*BKhc#d&oP>fZf%p|gI^=06f=3niup|NGAWi}~dyY>{gWI#sV8bz?*9
z)YDmy4Mf_$S90lF^Qi9n#iXbZEjBsPN>=UdGHdg|OAe1&)MLNAJ#M#OJxDg=;qTIQ
zoBB-Fhm~EGTX*u0fBCI7e@$=7-pYNhzq~*1@#OIR_FIhgCcRB8mhJqP-*>jsY`xs9
z&+nhTnEdl`|Mcni?f2LJ&sx|1?ctWMvA-|G+<*7~*WcsSm+#u!Th3F9-rs!w^7EVO
zNl&K6*2k^;w<D{3dCJBaswel9TgR-sn_iT@ZF%_r+zWEM?OrXst6qNo>Z~bWkN^Dh
zu7BTNwVZ7+K^A>V=Cz#Di#LCaz5MQP&cR>zjUspa+dk)KnRVpz#kXJQeZE#wpAz@w
zSx;w;XNm*s3Z|(F+^ae)bX0XJc{eGruj*7;l;JXQ!<7wZHqB!Z)|{BA;I_2iwClfU
zJD=b@?JLbXRcD$$L|V2rOg^KQ%WXLA1bh0z;t4FhXE_%2G~aMAx~_0bFS4gj$|SE-
zNh^1Y<0h}gHJgqtJ1z2L(VI&zHFhUePN|Qzl-#=Jj=<$-LASXqr><^xn(t{`7%bAP
z)O={+j0FMlv%<|?r8Uenz9??xC=5Cx7#UzP#YW@G>ac}ruCW<sou4pu&3Sf7aZ}ln
zC11C!Uo*??TvM-HZcIQxv0Uo(fJOHN)wf@Mvvc;hxD)z&+aIr9emp$6&m?_eT**mR
zu`gS4>gOdZ)~NU1J+dHE&@?en;cVNvZhg6nE*iEoJFWyqPP*uM>PkTO1J=2RVt83Q
z&RmSt*wVMI$7%V+seuyG>t|ZUtxnk!wo*U4MDWC+rlJ5=EeF*T0+MW68=pCdcI=Bz
zeEL=|!oc}@>xryW=_*f!=lnA65)PG8=`@(jwzvCM<AwT(XFFbqblsbBqDdk&P3Ed5
zSA^B7GX|%^jgI(8u3)(6sl~cz3D*;ckVwmC$y=J22ES<hqc!V`gH(!xtIM^3_cB{=
z7^yxIbCKL3vFUT&`xibl63<)s=NAX;o;Ah5zwfZxnaPiZx;VO;Cb73p4!Wy$b)(U|
zc@J5o<sRJrz5C~jUHboImxRxXyYbM_X3M{C6XyFrKiK{6A7jkn+cntoj0vd8V{C#_
z-A)S3ZZ;4&4r=nek#Joc8ZEH!D%YV~y|?nJx1PMoY07!g?#u1-PY%h68GJbX|J|SG
zdUb)*x4uw+RG)EDYKF&k?sbV%_|G=PJiNx;-`4UyrzoY|Y|E+7-Oj7~-ZC7yUn|Q$
z|Ni>?_Q^6)j?GW~?)|L)RJ1O`$)ZG}s!mH`;p1I7^B%J}>sonkI-`8V{_ND_p7tk`
zPCpfmJ9BgQvjx?K%H7@<Z%lr+@QN&(fH3DCo9$0Es*)!iUJ=E%OVs?sri3`lldCG9
z%5nVjUoP#lyX?*Kt7>z^iYo+EOw2{z>8=f%wn$*BL}s#PQB>=#TbE9`=G9LKS`(!3
zHb8r#*OI+UXDEewM5sFHf4mjcG0`(YlXqf3_eJlfb3yLWYlIXZ-d8^3eOH!A<+-Zk
z^Wxnx@jj2w?D)UztX$Ojx7+g%@m)K!K>Wk^oGBq{r|b5=TDtfHwm>&kFi-%sI6+5i
zX6BSk-_Xb?R&Q)zgc1uAZ)Y7g;AwmRS!CZE3Dx$pn{0|3)XtuW*nV*f|ASjzX&E_>
zRm5w5TL!&2%3@SAtuDHK!-~^Ut0%VFpX*?AyQZZp%ac~bbc5AuX|qLQP-mf{jqCYb
z0WtQx{T2K=cVzAFy?*xbbAgHNb^X`MC6}kx@BaET<f!K43qhY=rZuW^Ur#NTc6*V1
zS87@+WAei3D-%o1w^dDk#>D^m?)J$Kro6lHD#oPZvd^`+h3vMQG)@%P=q-EIGSMJH
z??B;Q#|f_Yil&9$`^2#2kNEew3*TJoihuX)OUmQRi#2?UmdIXgTcLDIDOY*P5*06v
zZ(dtoOpEXg+Tvc-)v2{e_fm1olcyeEoW0iPteE!P_GQp}R<q3^w%bkDKi<b{X!*Ro
z+4}It^TI(=@3OZZJE!%<-mqih7i^(yK7C?4qYaaV+4S@6j4JhO!`3pNTVc`9al)pZ
zC50>4W7FgbEs8x{D;BJ1NM>!1S{}80^|9=$-!?CGUHfg@RlnC4&c6O$#<6Ys?_c}A
zf2y5%?&i(v^;`daU0?sULnA!gOGT(sCwAK{eWScTJ1!P4KEx~&F2)sih~ddOP8rn?
zN{;tjC0;0fDLd+XH+J5R-P`JOk3Zk@B2E9g$47=Pq1JCDd+h4H9o{vcP&d0++wu6&
z^mqBeLK8h6-P`?t`~H8^i{Du?23j+Tv$D8pIf--%AM24ef7!g^#gQ8m79_OR9NJMR
z>~0yi{Pgp_iTd9@^LGawZEZdASBd#a_wf_cdnfAm2Tfe9_~~Kb#80w~2kRbMKdle6
ze!8#m_0x}qjT;L;Ex57b$BP|;$xrqjR4gnC4au1?XU}oAHuhgfS=mlJR%T{Oe%kfG
z;pZXK)wNH#7b%H;TB`W3abjWPr;Cf9e%f)sp>l(h;NN#QHg^43U>La3F}Zw_VPW#&
zxy_G`S=E_W9qf9#Z}D`!UkU#{UHyDqLrCP)+`#&cpBfxm<2@?w%<!96^SM=tf7+)-
zY=O-y%U4XiB9WzI+BnO@cj2<2%PU@9;dxb?WoFtw%lqtdv7mcbgt9cZ_C)#p4A5Q~
zdL`@B^eE@GORoh>uk^i=mL<J)?x)3N0gNFEqCTww3qvGC{agbALrg@SH8oVHI;aL|
zF1jD1F){gRz2uc1y(g2kmoAFy7Fo1@_ma}emqyp0I$!r(#~vGfl<T8@$&8eRPbNIs
zH@o|`*mmvMmFtps&wKsss_xF}?eC;_hnKLI%YR>O%l6gdZQ+IFS?<Z_b#32&pY(m#
zmuqd?^{VndubKF5qTE~C_21v!W7<5;@=ki~{PVx^-rT;B@3H^*-}>JN6Z@~t;8N|$
z5!<%HWi9tANn@j|E(;lzJwo%n`dqZil-72++@4%1bLE@Y8c$cNUY#m=t!J-Zeu^sD
zGsB)uFUi6~UQ&~9TV!bZjsBO9YFErU&UNGD1CCpK2UX?8WY4aCpTFR2p~v*)1)l}9
zu9j7ldY3T$I>7UxNKom#L4aa?BWJ~w#KX^cEd%e(F>+oUdU}(NHt)=sZ3owE+>|C<
z`C+;L+|_@k{M})4rJa8o%VQx~IkW$l=H&O;XzaLrWVK4-wI#wa%(Yt<tmr!)x8Eq)
zO>u2}$={3b8@FGRut?I$YV)yXF|D?1Zrs4X$AERumy*{m5vLD0oC$xorQp1_UQPWM
z54L+2EI$h){MnbTEdP|Nuj<&E$tx3bIq0Z;Vy2+ZqmMj0PA5oxcikvc)~xWt%UfQK
z+5BzBKDPhOl1k@q9eKE2QP?JPWwz`G4&y!T1+5bIliDk$zL2UosMY?rTA|ajIYIQ>
z%zcU8Rc!2<lbj=$TJM-U_qv_mbXk|<Jb&8ik9}S-rB#4s-}8={RcU-ut+9WTzKgE5
z)R=gqi!aP{)A|cHZtih^o%OZf>0^J&%0#`jo3wq>Hs6?(d+yq+FIBqYYkNXkSKYm`
z@Zc|jvYVSWxz*RbZY}v8d-E>S@0Z*$mp}TSwoB!|_G|_J2lgw!%R)8pmbgv6cO>d;
z+UCale`j0N>#Lg|Khb*AiQ7pxZ`uTbWDV<_j-rD$b^n@vEIgd5tkr%m_Q2Ww-zUFv
z-}Z3D!Uglz>s!Q>RcxPqGUL?N6E-a(UzIC9d0ct$;o!7lpG3dK>pF~Ia$PDe(XgHC
zeQ#^!@scuws?x{YpQo?S4^wx&@;Pg^;L}a4$Nt1H=bzEukut6RY5LQ5rygsWyNaAi
z|JY&p`6K&}yU%VKZ2Bd9c;f9E-_C;p3ZFC9I-foCF72YR1k?UQ0@JT$RGhT&`+NOW
z^_}gTH}1|g>^}WZ`9i8m#{Q;-8|EE%{*|y%ivO6ROj^s`3$xok)Y!1?{#R{cD?R7p
zk-rP~e-T%F&ZE4iM)>G~FIN)k<yNaK-<G$bZF7b6p?%WZ751>1eY(`H?tfFt|D$#H
z<^Bl_<qF>wH*=@DtlF_8qE)X~wrie!MMGS}>&90lsj87C{W?~^m@01CW;b4JKK=cH
zlC0hlM?vN@U1>H=lV^Qg^8MK3z=~U^B@O<)Nd5dUx+Znu)s)GRTiL%<#^m<hn^1qy
zYR{Ty*MF}$!Iiw!d!xnLr)|^PYfG-$9nO^79U-}rpKrm^hu3|o<!a8>#ce8D)~Rz(
z<UiB58;W~euW;Dtu-tQX*w9<K?eC`^t#`Yfx9wh@YLN3q@{Vjb8|#C@?9<b2dLOj8
zthyJib@=hV7zZYUPZyah+7CB-ep_>8{d}v?^7?O+t*0&Smyd3KR=888Fzt1i->en8
zzkE>Jb@`KsZp@KN4hN4{i^Vs5OBXtrsCQ`VwRt}CF7M8@wR-gJj^y^we)3LwD&ASA
z*BqA);_i4qIq|Tj)Rd@?6SYd(zBf$cT6*C)AM+c<vh!&#>|2lc=<T_xl_aHF{k2U%
zTRk?vGh|Up{j`Q;@w)c;ih*p47c5X-G3oeul}l^BEtSexxxLu1=;U{v+|}-1zdCC4
z#`7yx*<00pzA&$+#dc1}yiC)VXL1C!G)jN*|K<2sCh=$SbKye`N1`vKC^9EWym<cG
zR!&xW`eec52Q4D>GmSz*-@8|vf7~&R&->K3=O05)Uel`m`md&b%k~-8+rFQeH~Ee4
zmw#s>U;K4^$o*OV_h+%S*CriJdu1~7W=)rq;2hP-X{q;ARLmvR>OZskD6Y#<S|{_@
zDPrxXme&{F*1k~tD(017{J20wz4x0i+vTrWxBc?;=1%Al$+YRqmDWAy<95p>a?Ruf
z#X14qtJ~_=EL>{$R_}+a(${)BPivWTj~mq3>KzWNWSm-WI(?^SEssg0*!vC6;R1@)
zJ+fgpZ2cYcC&lc29Ouo?z4Z`>TKMMh@B?qpIv#T|t8t#CG-3VSJ$mKVuiMp?Z0_za
zID9d{u1cNj!U-Xrg`yW@ioWeSqPpqBq|)okJ7=8U{?+$QXhd&<K+j=j!L*;g^(6sZ
zo0fjC+_~H9+vzoIiw_?1oPWe5)>ZV4=ZuboUsHeV>T%k)hHs_+hg~tN&mDO-Q#VY`
zohP+sE92+q+5K^QGOWtJuhYCR{r67aLlwzVtv^p+yt^za<Y=R`u4rwck?ILYrXx%H
z->jI+W~XTKL9W8{IcHSRRX(pJ>GikD9=%Phj}~)TT2K{a`)}TjxdvSmYige!aZl$G
zd2Jc<_)F<=UH*ft*KW9)Wt22(PdH(baO@#(NtA$Ns_mwa8y3pevD}Ie(})&d?Q-68
zp2M?voh|!5Pm;}i#Q0N1c-yK2vMTfB4;$#H&n)1*Hfinui!0e4+N;RU$p1gLWKQUg
z6L0E_OReh<s(L7$<y?N^jJobqcF&iF*5;phe(l(@&gQ^_!%fyxn1pU~O;imJTj->D
zr>JT=*UBk2bq)I64;zYiO*m(5d+Fhv?<x;Iacg{F-MDEB%iA>jh1y*g86VAbe=+q#
z$WxWJTgE>7mU!*Y=Wg${OnUg_{w+THf3rXK>Bcqx)8m`{KdJtW-(%~XZyBmODm;61
zi&`p{eZE;8l^t9?L)LNLbLm|g9l!N5yH57|esEqG{j;D|OGo>rZ++jpl$o#V+y1`X
zx;Xv3h}LzhL;wEoarL?-{r{VY%Z1BJORvVWxmYV-3R^k-fz-nVKXw>3dF(Wtdv;Zs
zpGt_7O2Fl^fH(1l0&f%d*Vi)dFkkRb_~N~Mf!bS%Zx*b5@4md~|MJxT)(d1yQ#Snd
z<JQUhn8RXuM){XFU(w6=OXhH#$*<awaCMXGE7jK)_V?HDZcg#;UG2B_(KXq8pM3}a
zZGM-PE4co=fl9{q-MZIR_>RWj_;6xR?ZrK=i%qj`aRwY#Z&|9bDRrj&+P`wE>ILUi
zoO;-(>%(=(+3lReH~D|9Z_Zo1oM63lGn?fc$^Sb)e3<C0&S@(Xb#ftp!s(b9&E6jz
z<@ZSGAJoo!^fQ39wLd{gAkkvYl$i|$0^bg53$ob#Zd+map>Zn5da3sbkxIEyZx%&8
z+HKIjN3*elZQ0q3W5FMLB85Ms*lexT>uIn57=Jras(o+Hnd*!=GQlriKIacSo$s))
z(^z)1!tRDQcH!>@HubeIUTSx8u?^lYymIHyL)*XPl_bp8a-Tl!n5r7<JDGLG-aRL~
zcvd;P?)h@ypjGib#(irumZ@9~+#w_WP$Txng9RPeuBvPi?O%9fVSAgSq~^o5Jp!i>
zoDeksC{fQh``<Jz1t~Yrgg@QU1}(>H<nzA@={(-RF5>Jj^-FB+jQ0n4<}GefEo)!#
zS|#tiQbect&o#Z=oR6e}xSal-*}y&b<0hX?55KsEoN+2>-*(mTAIJA&Nv=t8byDKt
zZD*buotPvdBDc=!=svRtdACoj+FZEk)Ay9AD{gL#5ubBzM*RfCwH?vF3K+k%cuAVr
zGH&nQz9VMy#TnY#L5o%NCi-1jxWq+nH~-w$`^OI&-AR_`Ymux_nI4d+5*gq(T}){D
zUsLlR6Hh*5ogwi;kh{_4SO1eT?NXK1LN8TJy{;<F)t&mk<XY?<;qX%hk4@e@dwn)F
zeW8qsx30_57|Yl^m!(hZZFcOh;&|`8;SBRSr5D=2q<-ykNHP5!uqi&j<6+uG!>U>y
zdvBrS3-6!HUHZ-2_Lr~1FR<>XN5z|h*8+~e+z$NHbvV6h!cT$g8{A~V5--W6*)Q*2
z6_7gb+>EGm`u~D>F13fv$eaF9ku6PAYEKpC^J@Q?8S|WZBK?*hQEvTp;adHth<i&k
zyDy&#n54%(dC{(otqX3;hc)XTvQ{goKYH^IhiwtZ{p%05b{ZUUQ)K5)ZIPZ^lHc^?
zo0<HU?xWe0K0J{$_Wqa>QMWMh{6=M)IPWPT?3y0CEtcljYoslioh-aqdHaTZ<q2}u
zeG9~QObdIWGUap7&wmk9X1H0k2R+)AR<D||Ab-={tnYi+YJ(T7@69>reM4!Ey2r7{
z7pjgbiCE0{K6`8GL`7$f<8zKp%@<kzRLb<{8k0jwCQ)Z=E^l16Y4e-4dw!J8HZq#>
z@y~|s7Z(UbN(D)7iAh_>I(1|E%Pe<}RjT{%><$S(>-m{4<c)oiZ(IBJnKP`GFFfey
z+&nj8U48Z8^L;wI9Zeb+Uzcg>c=y&b>TKXzW`3gzu{lEV`jwR;RVNde`y8Sz=eT;;
zznoH*ZdJ5MBu2%6S6=+MsQ4nUZ(4ho^T<B==#i-Yc=9H;?@tQkJKF6`c7*0cx(K{>
z>zeXo>E>meOy^BJzbRxVUAa@@ll$z8`P>@WYctndYsu8>Oxsga^QKBKJkMa!-y>&J
zk|qXx6`uJ<_e8_?m=-rBk%OhTrXOClW8&0D6`wb)I=yNAJ|nrEC3>ZoBlUJ(S#Um8
zH!ZlcQ~zgF&KYO7$vXb|9lDQRJ^MN1`exw|5vp;9>l07siPqP}2LD=o#Czq`Szc44
z9jjW60?ev5nU%b{qg=n-ykMJ&?5V`frngdb=i7L$IqhP#*5_yOgvjHX`SojVpFd=+
zpLaMS>D}&@jQRJ3P5&@Vt}hULVlZK+NZ|B{Q$Me>NB{YBr-u8_=f0DEGUu$zcH5cN
z*-wxAF#m7z%UemMdf_kR(>fBjCrKV^HV<<PIsUOU@%Sda)pz+a&ZXx}uFvH=!F6NX
zt{0cm&aJsPYtzk=ShsESt}k7()@!<|U5E3Xb=~S55$BrI^?1rfwlgjLz@%XrFwdom
zf6_UzfNc9^LZQDUJ?tB#c^)nOq9%Il$a1eq0Zy)L>T~BN+xje7x#i(HM;_zMH3v8n
zKUYOo*O^>e+J3?C9!uN$M8S($%6C82a|OihJQL~qerrv_{(F-y$GLfO%6<`HTdUL>
z;y2N2Rhpi1MBnwop!ieQ?Q2p^^6Roz=vcl}d+SwO_8_cIHhN$D>|N8ZZ`rPKDQ*hy
zO|KtpC*x8$^d2o?D|PfS@k;;5+2Zdb)3kv%NN(QEyA@6UUvxeFq%1j2TH<9~7R#r3
zpX%rR%KSWe@BF)umrVIpY|>wGuyBh?&Bx6gQnI2~cVGQ`e%{+A;kucVe5(U_*`s|P
zZTsbS)NRG|18Hk_q^(~ZE!?(RUi4O@$==$~Mfn|bM0S}Os?9as-E@2L#Ym%w-njX5
z&!(?h{P^#U9Zxnz+pLIIsV_?wo@Zew|1PFvmeZnpH|rP9`kugTyQS{;+&}z*FWqBi
z{`C6!j&J_Eo&1TqN(GIH_pM8oE<Rkl>*cK<TJO5~SLeq~JE&r_Bg0VcfvuA9?OBaG
zr0NUfW{E1!ygI`><LSSj)hjyoPL$te$ePQ=|K#zaq*6hvt#*#<ukK9E3@n?ZbMfQ{
z`Ag@y!q0v>7iFTCQ{VS>m-+np3(cQcJXm`9vqo;G+q7GM^uDy-{9nQM_crUn{HCYw
z{xA4GrA%<2ppo6$W8C8#)K#YadFP!q22M}7zb4tVw$*)@7IAC!k{21do*QSI{CIR+
zTz|`n1IbDO6%ik_d=IGUDQ9~JEc(7v^{<icG8ygJ`CD%J?78y%+&pFV`uq(+Zx=g%
zo~F<FC2nJj`qR|i7Phi4%T5|un|vwH&p0P@|IRI6SBpFerKBX4hY#A<PWI?l@+o7x
zz2CXpZ)#6ROpon`=pR?-TO{6+PSvx0kg~{ANQUM8I|j`Q2H!bcELQdWnq}an`s%`b
zy|<q}_xnwLRC03BgV4`m>EiJZ7JRHftDAoKlETFJ&L2B}$^BZ@+5NJ_=mwupdr4mG
zWvgi``&4^97}oZ<+@4f%W}D}=hlW*?cj^6fskd>B(6yT?(mLghl$ENOYc|LJr5_h$
z{EmDRUexfS<#~xK@2?G0+ASV#wYZ*UFoUyh%Uj*48T&Wfa_ta!W@NfiV`lKBx>rwD
z@YL5??6Z*3>(bt|Ny~g=VM&orm(s0+a}GIwH`{n){SL9Io4?DZuU79qsp_a>CT<;Z
z<?;8u=WPG4%a=VX)1g)!c4?Ky7TsR?8^@NeInQzS#<h6=>{SyD-%0y$D*uuVUVUcb
z8>Oh5b{R_ll*)Eg6{pS6>*P88N8{b>*z4+t|JE(PRIe1sB<-}^WwA$#$<7q{%eUe>
z|8iw>NZu`qxSsL2Uhu}G{<Ws8>A$2iZhLv>{Csph*Y=m?u{Vit`wZ2&Po8fHe{?4)
z#jU<FVf}_{t{rPqJ{1*h{$y#xdhO8d4Gu90&O6g0mv&X8TF;%)HYvEGH|^t+*shZf
zUsvB)YNl}`w<N3Hrt7@YiZf3<4Zj}~{$N#D7S^X0EEeC{wKMoj;^LPDs`q*J#y?g}
z3f<V7^WAyZ4kpWU$G6;gul=ymD@0$X$mId^GApU2MITFqE}Ea*6ZToJ?_$Mn!Th;*
zKfe9;{?0o0)TucM$ufd{Ck<02O>NfX%$~CH%Brm||2khT%Z)wUrd8jyHfvE=37hWf
zlUJ6dMv2WR`myCtf9X=4FIL=lzdieC5ZWO!yL-aL#>R{i`Mi7LSGkg7T2gt>Tr3bd
z`S7CEM=_}_A6D*Ia3Vu*>RcZ8-4->|)P!sco-2l&J$&1(khyp3kKn?pReqCIKCgC7
zmASL5`&EE*_4yR>d6wt=_G}PeS+D&$(V$YDQ+>t*Yc@84UB^8wBp-&HdCbV6?jWS1
z9Khrs)svJaI&0?B(?>I|K2F<QeC7P=t$R!?UNcn{I+cmu-7x3rDqq(7HOKy4HVbu)
zIB<2B+}`ceB0eqoyW)*#g>JUJR`bmZ@wb#hxa^IOTR&Y?zx<!y{j!($`vm5k{N?_<
z{`1eXPUg=ok8v%?e0f;v@xxontRFMQ^p0no+P2Ac#fB;N`YWA|MR2G0sv0D+um5y3
z_Q%V)=N?(ToSr^iRd%^Tcx%Md_4TK+AM$<vRR8Mr;g};lhKWz!$V6r_PJCfj)qgPI
z^kZ9@`i)<OBEBzV*65n`=*RgpFC^nNb99?0NKI~Ze70-nFSniLuJ7)?y?bEw@7B9w
z-3Jp+nMU}qm4BDdG5ge8V?NXOo$WvA7c+IDu#IPf78Fg-n#U-k^lzTkAqSxZCWf=C
zI5uNZYG?==`nKBsXddHBPG)06<B0+)({Bnh2~KBT$*9U~Y-kFWuQ#_eLRsuGH;O$*
zBz*h)(wnk5D|)g^j-5&9jC~U*+}pKxQIhz}(5gsA!H83vo^JAfUz(_?$I+4Se(%H;
zhMlTeCevy<RcFmGe)6eyzd84@A8~&^-TPklQ}@lAyE~u%@&7%)SWr+*ti?lRQ{1+i
z(tw8S2Q43y>%*(7PXCQ{J{vCnf%zwYApf*<&UwNg&0>EzCe>|VmAmG=XL-BpZrOX*
z0gHahdfTaR1QzK(+<N+hoy{x5h#%QE^ljT_=@;1ADe3GMP+DYtarO)U8V?)Qf0~oJ
zs{ZV}DATWCe*UQ3yvB$79tH~M9`B!TW3FMLb>;eP^*d>getfK-d~8Pi^4m9V-qI;7
z{m$LR@%i)CLf$VMB9pQ=-?^6N8qiX3^?I61z=Gb{%llXFpYA(h`dO*-yk?&a&R;N)
zet$usvfzeC^lVeReTim*jtlF|4!sZXulK)h;Lk5zxu89Lh3}63<!29V<;%_yV_|K(
zt@F9`I}gw2Et1yPj;Wowe7XLZx{b|`$%T&(J-xThapAqkds<8rAOEoyZ|ya%&ws=8
zTQvKaUbId5Kd$zl+a6AQXcp(V&`fUL!*%=qC2p&4{Pwn0)Nvu>x_>Pn5;_`>C?pve
zwn(`4s2vkX=8R5~F>IXS;iF`ywoK@9$IBz?N0uK+KcbUlX4t+#`I*q?4%Q=1^+|#o
zTOz!4l&1-6cT7E^m1O$RVU6N7q1PR}N8FNxH_j|jnZqf5XljA74Tt}s?hlGJooid<
zANsQh9CYCj^lA|<N|F}zbP>GWnW5Cyp?a>fPVleRFJB!AzX~1oX|sJZ99=p*F7n4Z
z?fRqiO=!NzXR*mTUaE&xT7xEr_;z{Z*Pkw&b~5&N>E;(<m;N@tOWu|L{$FbUPTN&g
z=UzwN`#dc)VLjvCqN?vNa^L*jb$*xK(QCD9Hm{u@{8_U+tNi|fedej}{@T4+{wv`a
zd;f3!xBs6u++!AEtMRP9bl)g@#<WIfwtGJVj-E@`FOuF_H9OI)oXwO!&f>?b2k~tz
zyg!cz)JLz_oaODHb|d4_c9)J@F~4Un^7uWY$BMQ6?`@Syds2MeOoZ2l9aAa3vG?!s
z6}<1PuVu0Sn5_TRVU?;{QSyq7LGvfgUG$jm0K1UGrN<R(R9u$^uX@42E^_AA<X>&8
zGt8TRJ5A#`y)=Q*Ts3S@RN{@irbF)SJlD3GANYH!R9W<Ny}Qknxm=|R;jLPt(V@RD
zM--?;2TU$kzWrq5#sXvG+Q!F^8ZNz^diChisXI@WMhETqwd%0t)-w+;%L!ZR7d2Py
ztBP!Rnsfic*K;OIe>};2ar7E<HQ%%iQ|4A@O?~aS>`l$T?K1zqtmyHQG`@a4b8__G
ziIa896RWJUuZAr$a0q9vztg=V`(JMDDUKte4&m2g3}a841g+J}o%bPvZDWNP&w=0%
zK{j0ehh~5DO8A)mpyExC+d<WBMzU2`#4p|S)R^Tv!7Y1&)y(4mH_UQ$nx{XgGhh^J
zV&-Y=PmrqN*jymKMrOK6qM>_h-Sg%?v4RCEr?+Z8d{dUW#Z1-tWbB<ycJ=q0C9RH$
zMJK<O&yAmJ5psFc<mmaeIz{H6YyYjjZ}G;&+s#rS&_i@{Z|t)@j*<t@Y~9bFBrtz(
z{oZc@Tb!BQ1-tfmEa_Xc_LdokS)QrG<daf6b{9Nbd6zq@UYgxIm48`%@6nxaE>F^)
zzHgCy&+g{m8{fwM(OzO+!j->nZ_}4+^%{1`hyVO+4APQev#I*Q&-cBpdehR`%aRPc
z?U~kY@ta;aq4i$St7Dgc^<OU({jo0R-mjO=k$2o*tvI>j@dBZ+NmGt~7Q5{_N3=dB
z(c(T+I`4z4Nq={hevG|vcPZbeqYw0%vz`>|%zgPtLiFsRP$B+Mk3T0@&-9$V<C}a>
z%3)T|`U=O>$JR@{_;=cPLgD40lsKv14(iwHXFtETmFMZxC$SeLjvbw%SZm0em%{0F
zQZvQhbnclo3E#|HD#8k;=KZ>w$0QP06nr~k@{23lb`{Ha<mwzbu_@4P4U^{MtvYg(
zGK^)rXNXoD*0bO`p73|wXN4*YIezV@NhKb0&x<J4O0w5~Oc6X4up&f5Z{l4G_e&49
zK0J}ZcAI;jA?NOd@*fiZ4Wb5LB?}TXHTDK2w(L^xb-TE3_lAF+Gv>40O}+WiWA1`L
zP17~G4<=dYr`=t$*MN1|y-dq_rGc+w&+lA0m2qQ<N1;n;YUagr`e~-MZNGaCv%Ks5
zZ70t-&EdLJf6g^7pZXW3EPKW7*6X&J?wPtqZH<zFfsT&B2BkI2mMvP;cGO(=Uy<(*
zv3YxWuk8~%nA9vWCpcyLp;>op7d1IMbu~$IeY(84IO1;40?~7Q)4Z03tzI<wQb^{`
z?RkuvN4%trws!g`CA^ofW8A2JB=_~hg*;)&Y-$f8-<QwR3!1^G)6+1u{?3QG2${_H
zdpmjiBKBrU7_YhP{^M>+yY$`(aXXaemruF9+bH{#&#uGKBFlo+EHr;~pWJ^m>cILX
zQ$Ib?{x$Q&&rZp9%YWjNv}%rrZm_>8@FHmEw1aoq`i~g-*h({A^8Q_ZRchx^6;tUH
zu|SW-H_iq5&SswTM6YLZ`O|j>dP^efYj@4eyE1q6&GWNPm0h2k@G82@V&;xHZ#|Ox
z=FN2aGROF?`N0s!_l^9ClLg(Rzq%F9=6!O)Y3U6!lRJFp(>^qq%f<idsG0TnyJ33E
zqkxwpt^YO3m{j(1ip&%_7Pj_ajAHr}w#JxCb?<Z&Qu7&qd)<0z!kC(nE)aUZwdI<5
z+~oQd-hLM}giYTB%;(gYck{)*&4zQhEn1?aGgeHM`m*B9&s)oP@Nbhb52;vMFUzVD
z@s_=ibGroFiGn>MZp-c)ze|csO+Mya;JbCtuC>zxuM{nL!?B{j<EO5H^R)#x-rqdr
zHqA9%|8DZn)W;8#*M6DYx%@c)|CGMmDd$!mop`o0o2TA1Z+ncW#nD6-+ZRt4#XEj_
zeE0s1$`3)?ZY6Kt%impne_GDXmA67&=I_5#^!C@%uf;bvmCejK_vY*6<!AO5eD`^~
z^gWA4)!8W_?s7a4iV8L!4nG!f@^SpkeBk`OeY;$nRAR@(tS9x4%}-k;SbYeeu_UBx
z-#@jiq*?OHrOfHKyy}BiA78Miif_yJlk+$IH#l(R$J)g=H7DpTbt{{-pk2gGQq~~)
zMC8H9lt-#+GivlND=>9mQ|CW&;o3FtYcE2#=lwhWnr-8ZIS=c(?<>p|$(R^$)?wB3
zH<le&sx2;?74@ktZ){%gm~|-j;G{qQE-bA5#WW@4z_FE!lAK?DIMlIfR#W{Yu5HYz
zFFxgbiM^50!2j-Cy;#WJvkUq+*nO(GeYk&q^Bcvh+s*fjZ9B2x_ZRUQH{J-neSG#%
z)uc^2!PBm(UNyS#`qkq-C8be9?xm^|q*PbmZ0Yb7?3P%?{cxY^;xiMyudEhWwDPX<
zqrfDScK*qM8iw}H%l-XRxr?RzYfj4;=hb(fdcw80L{2(WK1Kf7sj8OB)||vQVe<C7
z=Pph=f9=)RTQbYmornnBcz1{CG4)Jt_o-j!7o|=K*sL4>k7Y_E|3RNEozvYr9{eyh
ze9wM4b=ku|X`4irx~s1^dsAS3_V=kjoKL1~p7?CT?LSL@JxgBEnrYd0<!ruVwZl2%
zlN+MAvg-G(KC)_UP+pUS@c%&fuzx=m?$G6#l&U5ay;Aj^yz*Z2=keZlm$dinSgNw^
zK#0=?p*<`2Dck3-vHpJhF=s`E=5O<tJFn%x?G)sRYqUQmyivQX^<;(6ntgS<KfTfO
zo45VAZTm^5nNFPBlxGKB)|-9xNZ!*8zs~&obg0PTY2njr2K6tqRcwBDiHfXzu=t1I
zrbRoV`Z>~<&erx$be+3;b=<iddJ!LHZa#Q<M{oCC!L3)@zn%YV;=1A6?Y}X1UhX`9
zy+O3(_tO_=f6Z7dz3S$x($yEZ)UL2DRVl1ndD~}eiI$eWR%-LCSyxrh@Q1IvlhKpM
zqx-zf)MSaM@fCKiDUDyE!s-`#g&nzg`|~5N&E7_*B5nAEHzlmS-xpw}XJ~U`?#!OJ
zDd9`6h)Gz!nxtgDc~2GpX9iyW=L@{6%WvMQly>KfF8K1J@ow+$FK;4W)^2bJ-r@JJ
z{2<G2tK!>+jCIrNmKl69-n{S!*Cxm5#m#FCJg?dnPf&ksDgCn6;y>3WWwAn?dONm_
z^}C;(H&VEIy<Roo;N5uTQrqvx*#a1j7aXjf&havy;~ZmtkbTKcrg`BjUe~Oh@cVlE
zqPbCgGADkYcyj-M*wGx_*rPtB+rIZb+wx)al&W8P)f!dOdxUHwW<<VLV!d_#pwXx4
z*~|4}&qVH?b=2_vnu!qyYd6>{pK44pywb3@{tb^_oNLrU`}-pM8u^bF?4PgMGG}33
z^8~x+V$qpl^=%9G9q-}$s(mv0m-(yJqQ*A_Hs@_;xjQSb^o81$+~P+c^BFH@zkXl$
zd&yKICLxpPHD1||Dhxg69y3c5)l1iGU6od$9Vfnb$-cP7caH}Cz5c=e^r}PJ%r&j|
zbavRJJYQFTDQoeAJ(fkxOx;@(6wN=}_PKU8VWWsn-9G=^C$_h9&IGCkd&j6N?p1$&
z-@(p#qg~8yWy`$9hpnbbt%>P4S5bWBLh?>)ZRsYjW{a$Ocg&B?Tzp|p_Ba0cxc$FM
z`DRb*EZLn=r+RZvzaCe}Bb_o+k-GEkr5TU@J$aGe9lcWiV14%Dp7043J(2Cwk!i*^
zCirm%Pg84OyhmW0!d8?0UF&+Zc)7Z|I3nw{UVOPOu4kLJa$jz<?!Cp6HX3`j&-nYG
z^!4?%zH6_<+66nD_U`MeE}GHQDzsM5GS+{2ob~j%C*y2xEz<VhXfpBDfe4W!75dkg
z9x3>j(rFeg=<R;wh^kus#tMOLlRi9D3H@IeF8Ffc>FDrE*ElQ9orWupDt7hVS=VJ!
z@ApF0)HKSsSHNCKu}(?pM`wPPxQWEd(|^|TrG1#F<hJ6_=NT`9vTD>X-t>Iu^wWM*
zshXy#(_34)orZG8_glD2|JHw6mXz5(pCc}vkD*ZeDo5H{>y$_TU4z2!)$8w$D0q0^
zec#8h*;yJZ+J598-QRs*_-e&66PC=ylPqMe)bX)@Sgy*Z*xznk@$7cdYPIHxj{`o}
z?tZm!wdCZ5FA_wLn=hHL;7_`^XHHa<liB3O=g)YGa^*++dwTsgeR;bg?~l`p^S<+y
zOBXj>370Jkk+{dQ`NQRMh0+~wkKA{u-}1cdo#UA~GU~_9T}-VM_^$0)+s*#h^ZTiP
zxjDh@_vP>Y-_DcZ*ERQG+*$wiVn#{nFG@lmud7P@9Dc%ZM)rKyN7ri>s+c>@7CQOh
z{GaS4tV^SE8N=84U39zjR`oyI4kaU9OV`<}o*ds||5kqb)J10#J_WjQ9+y{Jec@nu
zPWrw2YIgNi&+e=5-M%5_r~RRz&+kLbCQoTo|9(ne>Z0(Bggd!g@+w2Vaa7qaijxt~
zcql6=Ves?l5!2a==EOvpFE6-$)8yUfzaASb?%yd|Hs`By;hPD%tGBJc`j#v0d+Ifj
znTNQZTx8^w>-O7G%Wkyr7cYx_-W}naCiep;M=V_An(tUI{&(jJw~{9YwM?=)*(v=Y
zZ_lkx=ezRLO0;l_>crR6cja^+;PrkoHTQB)TGoR<UOFX@{8Jt@xpUiI6WSxte{}N3
z*#VbwKUPFAcqf?nFsYYi?BfxC%)h)(y7%RKMfsw{8{*~i2PRZnoQ}CC>Q-07zV=?_
zb)Tedrxv{baD9jRyLw};?v{$Fe~qMeIh~(BpL0%n)Uq?uYo}Uo_A7dRptq;H_-12*
zUWvTbeFyV}!lJ)#Fo&|A{$}v|+o@QsonGQwPECHdz_VuY%Si_&HSHJr9Q=FcpA(#~
z=D79QJBKO6TI??Qsq*CbkI75Z1D_hMi`A%qwS#lb{GBc~4%IVk`K`QM>fLW|+%2Rx
zYt8HUg};A=Klsq~Ywg*l@Kf`8f5_FJcyzt~?bdtoDZ&YAoVE==zOkBbnXfE#%i|zR
zv?2G?xv?jmHGQ0#&1QP*#ichHveh+c9?SUqi%aC*(yINL=iP0Oiy6nxeJYrv{nNd5
z@3e&_&u-P;vzpW@r&7P`Hjhzvk6(6u<nOb$*X@;mXIcMBru_V+X9;01t_FK$awxCd
z=bp`XT_$zi{P``aO+3s6SGL_Rcj=fnU+}Q)9F@z;cfTo#eP_(Jk6=yC+;E$>>;m_%
z4V61RmM=FBsY?CR(mEsRWZr?;M;j`%Y>nB!+jOexyeob8Z&Hq$ZRq@u=Xw>Rb`*2J
zNUb*)y->{S(Gqr~?$px?x0OMfS3QD-j@n8WMrAy;&9ph~tq{3)qp7rXyGd5m%vE0J
z>%OoCq~Bb8K~?<7_ZNL)dp7^K`*;0Ybiw_nw-=Q1Z*l9WI4QUJ|Etuc6E)h7ZVgaB
z>#iy&s1Z~V-v0W;3=a{(z@|@@0{1+V15z?IwN9qjFXYQQ`9~;3>xT<x-1k>q8&4J-
zJaAoNt^Zzu9M<1)F47vUi_YrDP3tWZ;k<RELU(uAOQ{EkEZW}f5;+#QmZik{pX`^`
zi(lfCj&r(kmsE7Fw6k5^CL27#{vCVUFQ1Q_SlDEqvT@4ZJ!4^$alz-?lsoTFc%?P(
z?~X2rOX+Hhj;`<0U3a)l>eGQ|x7Bq--E3MLgA3H!+aHBRE?Ga{>s*e9O+Y|!*!7Y_
z4|Zv}AGrVH*iN@nA1AK$9Y4AD_<eJCwANL(J?_0K`L15wsf5!97Z=#ydH&L1!=77v
zwjVq2u=Tyg%nONkru}qfJ$d-XjEMaS?#J?uIxoEVw(je@@a@rR>+6NLeR5wPpV!>n
zZ*KqZP(tl1&zrA(*N5AG-09t``or_j^G(L@%s+Ve=)~`6S;}_qn{L0RdB5oQ-CSjs
zc~-#}4mEJ-etDoFe)QCf6)QB#KF0jqA-ZMqg;34n&jDeE(f&<eFK2(9sx#GK_o^*x
z7PcNUd;9bK=K386j{6kcVK{E}xL#uKt8CY)TUhJ$z1=N0a!r}AB=xyw?INd{zMby%
z9S@W8-D7WsY+sgg;BwdO=lPfH6JOfe%sD!Lzwqmj2e&iwcciUbf8FZWefveWvL2f@
zu>QPOynFA&|4LPyMfu-SRxZAGR(-1V%-OExt1NY%tDh8WscmxK5W%zaQqh#`3!8Vn
zsh0{lWy8cR`p@G)!2|i!7p1RX|DM9@|DiTz>pxSyvU}YzNf9rS^sMgu?m8DgJ0*IO
z)W<zfADT;AExEceE7v84LpEgF;eeboYfZ&%7BbGsZ;D*@S?$M?sFGKgo=;D>scN{s
zNpzEV_j@1R)WZ15DV2@KJB`0w6@H$7XgQnBS<Siiq01Cf`6jnt^0K&b>EajF%&mo<
zYtCnR`Zh#=c5yqwI+@MaI<MS##_2%W-rc+QYGtMeZJnMP>GAE_+An*0i<h&V^RnL4
z7hCF7>v=n2=2~BuEHyDz*TNeU@AOS7G72iOl+?Mj{F-cft?%?b@<tcFelvcdbl|WS
z&n}_5fX>ppiuDE7B6S_J*xp_UFSAKVkI~z`^_uc!)616>(*y5G?%KEMr(KEX><8<U
zgN2G(?Djf8ns3eGcWuFrh_JO?{sAj>SKHpbz{eI{saNztlV{bW;;o8TPw6M?tbEOO
zb?%FuU)bco&kWw{UoU?0*~+aeKjy2vy|0)V<>lqcx%#qVY+>ip`q%sZ-ZEl4!92e{
zQ|?p7_K)B5uW)td-xD^Jzj`gcEi@=+=}GOt!iAUC-tbMD@``)2-m|As%hK<-RPyZb
zZgs0(l){v@E$N-Im7JxlMZ>rB&F&{B|C&5g{l=9~e}4bgV_;tWJDt;VN6)(j{C^&N
z+TH(sMkn)`N|7%eS>hGV-2s;MYX4e}a_=?E=}XY|IA~pMF0(cx@R!sL*>@*S?oVo8
zSdboe+48yb<%0M#36gvVmnK-gXYaG(d?f#$@$XJf%}r-B9+%}`vrF(Uve>NiAf|Cr
zw^c`;_+|6#cpEL7hH0~JB<XKSoE+I_?)gvTf8&hp`P@^Us-$Qpg?#*&CHDVue0|xZ
zClOP6GF-!){OYpGw#{p;|C6WgDXi0U=5XS{r{OuxrD}oAf=2RA%Qn70u+8!hTjY{T
zHr7iXI^r9eG=H*|8qCsM=Q1m2olmRC!z}{S_GzRUyw00fvB!md2J?C=HMw_B5~l1w
z?X%N6u&z*R_34#Psysb<H@cQTnVmi95Xby_H-|->(_AC|7pY$1*fQ~#?7rrEn=UWR
zK4Hl?FRuH-V<j;kgCi~NGc@l!30PTH)o|8h>e4w&eC|J#(tP*TIp*-zSJ~68(tWQV
z5Ney|ynVjDglocY7S8kgmLzmXZn8d|$ETV6K4k9Bs_uQpFR#2v-25gz*VN_O3@=_&
zcbSWP-!{~*G+p1AX{R|~V0onIqcf~I-$L87bhmaU&QeheoV}!Xxv1odj=So6FYhQ&
zk=vng;bv;t#Yp*eb~jUQ_?oj!XKVX;)S~}?qG88@S05iwmknMl?Vo?3DZbt;QvT=H
zo9kZ~ezo2&_NL{ZhNZ$u%ewZ|q)SOE=^vC{z77|X;D57IxL!YFg5QqbwHs2-?darl
zpRjL*-S(YEt1hVrHgC!LR`j#;nDLp%d*}N+UvYYV-kgnTmfhDMtQBfy$~=@YZ%R-Z
zQ|t8EKe(4Q&rR-q$sa%S-lZRTS$F>G_8!;wu&KDRJXxmDTzO5}PrG{ib1ys}IVN<r
z&Sv`gf_;M6#$Q2Gwzjvuu1}G@b^qYKv(B%b)o%PgcO%J@z4^UFB=dwTaW;R>@7dWf
zXHVtAyCGK(ChJ^f-lx3s**X7wrLQi0{YvSJJ{ml`vhNkQ=^K_wvvj9ie3SdfV)BZX
ze!<U~e*zqpeJd82&6$~VZDrtWVL4Crj1Vo>--73khy`c|K3f>#5^lCIDeOXA{gP=c
zyO+OUYU%rtwCa+5fAc~K6~mXip4h1An`%dAJhp3?9r@I?Iy#sw;_p0lmHzZ)0m02D
zcm4QokahU|DLw&H#(%dMmI)s}zjbM}a^_O2z{M#aSCpCC%<P|<5p4Q0^UFEo6+t&b
z-tG-(5Q?4|9(>tvy5jqoa|ZIoZ;L;O#3|Nae6>~b*Y|a{|4Oqqh3m2Rz0IA(ve(Y8
z|K#=5C!9)t&o4ii{O!yCvcMAu`2N_QeEDeaP2V1YGfaL;!Hu3Fcg)=HJiE|2#U?;I
zJ?HHAybDr`m@-u_sT|+*xbPYWqekeuu<35$rVE1{`xLW09TL?2dRu4R$kFqiDLg^Y
zl2!e?d_D8hNhyl&m;T!r#<2DAJolojbxm8Y{V@0RnPnHq5Hfw<{9}K4c=ZbxyG*=Q
z=y|`fF#N~1A03+O;||=gdGNv_$wBRPj9qKc=gOw-0ovEyUS=J#^f^3d?(TB=bt_~N
zvNH56GUReHoS3#K`W&!|^;)AKmm0k6WKZw1#gCIGPkr;Lex`B#G?f(PSgY8838AwN
z1ywdRv_x$>Yv?MjqqBe3qOJBPY>ykcS1&1yu}!%8Z0f9BC+kJ4O_qij+0XiEZ5qAK
z|CIIuUenU&`&0Hy>YWUE;;Q|!rA78&)U=>-K8IDaw#=G)Xa3$#dw)OLmOJ;{!}sfW
z(+o1(mh3bza$49Es%cqoBRl=!(E^W2Djd_@rb`BYFQ0LnuhL-0{0-Y?{80)P3_8&$
z{x7iU`sDYimJgq#zj~v_cWu%JF}vw=@@-~Eou09C>FR|)<cvO?Q+qwB`pUokZf%~?
zJ8Y-)UC)~I_(o!c_6NCUm#J$#eV1xW2cG=j(c`Ro!u`R+#kX7+YO7{HapbO_W^|?Z
zNkNFr$(cdMysagvDTx&=Hf9G_9{qjd=(EeqwIgO6KR+pEjm@kejgHMil0Wx3^`9&k
z{Vd<O_ve%q(TB{^b51_U3o`g<s}gCM_Wz`}OQ6m^z0e1mPKlK><1TT;N=)!7%&qqK
zY?^Rx(#sh<j#fLgO_!HBN7py6c&V4dRo}asJ7)S_zkP2%i~hbm?Pcq_p1rXhYo(uW
zSEzip{L7mwoM$)R@c$OqZ*gYMk7aL;*T%e^x@GqE7nwUZ-ON~+q-mXY{1t=xvE-#6
zmuvVH^4VH?$2+ZcN^F0p8lNsXbJw*Mf~qmwm}hPE(O9|N`gwjPo8XJ+i62C|7Nth(
zM>e0=t8brrZr-YtZH5;Vb!SL6>t0W8I(+GWU7FIh<{#&meP~O#yWiel(RYV*#3X)x
z**pL5eHM`kSMCmTKf-qL)RYUWSi)qxg&t-2B*jmd;QxM0j9rXu=MDQ~z7Do4jXUDD
zH*Np9e0}Kcf7_K!3|}sko1<|t%S6L%1GmSL^Y7p9+^|`(-fqv7(#smni(amsx>5D%
z(^l*A>oR8=XKwx7r?JiM&ejrTW3lqP4X*!JFS}R&`KHS!2e&oS?Wgb0z5VcSZqFI#
z$pT`Ir;8VNPmWy3c}pwf>m$d@H@kj4S+HvRWyJ+@W;145)~MWQwz^rU@~b`UhLxkx
z+N&9YfBUjRe&5$j@7~Q_&$aRYY^V34zt(zaP2S_I@;>a<OKYaT-Cx4ILT-u7?K=Iv
z*qJNMK+KZoC;!38IZxA1pNa5TdC$J4_<{DcPbXG6abAsS(z3E^={t2NaEVFzZT<z3
zEK(U_pRE<6%Cb*Bl{B8FGt=<#r%BP<_2T!b9(aC!^ZLZxmKWa4XUt~spOvjonR<Km
z9_6G*Q@z3tcy~`wv!A-|?2k{6Sk1N<ADA#_)|we++~u3s7u<@Dj|n|_Xjk3;pVQA&
z*ME;<Ic-&5_W1qjbFFX7e?Gpm*Tml1cCPQmmq7xTj;_eqzhvj>X`2gWi`hRj)||VW
zzhHLd^Z$Rm!<>%Iyi@sL|C|4NH&6X3f4k~)q)&gMybz0_YlWm=)M?&7ca%8Jc$$0M
z%oEFQsw#1{-8Fkx?8`ili!<|QEWG^k{P!1$IoFoIzVx-KHmWMCf8KxArT-T^#WwwJ
zK2bn*`kCX5l4|qc|J(EX7z1k$&k+Vq200-vcWmmXPiSYfsW&x2*@n3`lCvT>b(fvu
zoQMTttc$<M*s3!rt<dc_rL;&V%xs~~(VzpD_WE8{%baDFd)dTu^YiobOzvJ@R(-j4
zp?0dEwt|L6m-T{h*|~*j??mU??_FO0&NkEWg8Or;;{0DGzL)=;|9S5FzWcxT-VbLp
zDpos`P;c<Aw(@zLW17wXlcI^Yk9?H8bL7D6-GBIh$uk{nneXsN<?#8L59?>VjJKHl
zqsH3!;r{0I0Pm)mwFiyWlUFvfU;Ofaj)T0D0NV`dihu9oEc7cB|8mXeiIb^#eENa=
zgawiu%rkq>xXL-mx%_Jh=$YAb(>^vod6I%+Wpt2H{29^u=j(amH$HlKmML*x$Lv{Z
z&(_3je6&)X>3p{3>_e8f9}8D9d7AZ~?tHFZxUIdotgX0=Q{~I<m~%ml^CwT3BQ}5H
zA;BdDize|G6m6R9dUH<5L<RR5dv)drPd#?_nFouKT>C#wuX7%K=l%R1J^3(slB-N%
zlu`QWf3<;grnA%-K2NRBOER*zo+&JL>|u(!dhw+rNe?%lp59#?beMI~m8Y6t(l<>{
z_o>&Yu6z)4!+YZHMTg?<ZL>_ezOSR8aNdl`N&<zGCLR5Fr{~Rwc(otP@0WAB%={?H
z@%O;XJvvTu?(-ZDO(;mQ+$0p)y2fpu>ovvm%K8e@6M9dmJ#kIZ-o#ufd9%LrjpH|^
zz!Qv51ccg;D06y99df-SC^xB-Lr_r3t!Sc+ioB*nijURXFUmZe+zbZ7n&~!&BxV%;
z@A+#y=giJC*VEe0{*g1?ux+E=&TIn>-4$imY&UDAP2N1W*yNx;dwu11<MQooGMp37
z$J%UvC-=}c{_bsq_X{hRKi7U&{biq4{kMs~pWmzh(s+jbUQ~hUmU1JLC$$fn*=zqD
z7CI&^TyCtsEo}4Y5C^HX<z`YHJ2=H&nM&yf#jFa}Hc=_9{j_<9_@k1{wt&`)Gx!bm
zuDs!EvL!;QHuqQ9oiH|=Jkfxe9=)1Z-yDwF78EX8D0$8~QSP*_ZMWB^r-fXWCnis4
z;;z4VH~r<yH<!vEd<zQj4bpego$Zx&F!qD6iOa*U?Uj=C`%ZkReyCK|$+hCCTXJ99
z4fWI2GrQ9pmld(EC^4BVp2(b~%bq437M&3M=}OGni4rFshkh#P@;tk2-hydsr22MT
zGL5KS({J<Q-MP0%c4tf1h^CbKzm#kUjQ(`P=IXih`o$j(uQHE1UQ-bEHSkl;;SUk^
zb~glM`FpaO+jtgETE3`J(_Qkzy6X!+<SzTq@h0`Z?x%<pBlGFURqr*vU2!r=k8y@~
za^TCUZj0wdta5tl)@sNfJf-1N;O3~6*H1HSEScoeTb1f$wC&f6Y2P3CSa931$*Zo|
zc_nO{hn#pJgZR?=>v57LrQ00DUanw&)-`LvzG?IN<Z4!==<COMoPGFy1|P?_8k;An
z2PEGg`0?7O{ub{x-=|?Od)$_GaopY!6yES&oVRy=&aZ`qQ}$diy=K|6yPbzqG^K~_
z2&2!dY1d4zR#*2OEq%Y>-NGAJoU%?{GT-)Bde8e;@!A~%uiig!*Z5IiDCeT+%pm!B
zz4OJ{IqSEC9q>NybAFXx#+wgYw+qcb)PJM&k`$w1y}5bwbj5X3Ov-=Uswt_cUvBo~
z&|iC_7oUC9MEW<}PVL>}5-2r4eEFKSD@&qtT^@cmwB}Q1JDC|$I^*7=vXH|&Kjc}o
zbNrO~p(bH>?8vp%XF9$9mzl+Uc~f5>kkhp5z$C4VM;498ud{G{Ij~^zL=n52?M0zd
zSH)^x_3H(A9x~S1!Tzo}W`^^+mx=G61y5Wpr}|B<#;{Iy-;Ak@I()mA9!XJGd?@d1
z9m^MN{ZIDw<^JTA>?bDNwoo?te5-D9rRcXRA-zxWf99@uzpyJHe&Ghqf8Qq-W$Rfx
z*Kf_fyMDr@$aImA$*Pxx>g1N0zv7Wfn#Jv;ALBl`v6M5bx^61ZZPEANzD?n=oOL2D
z?DcK2^BO-3rFT3y&=y=(uCqi;ccIcenb@z#Gk-i@F!`^+R<R|*J9T!XJ*f8Pyce$i
zWRhY~l!jYP!Hwe<<{w3hm2S;Hx~^F;W3el9(Z`eZ&TE)dPv{pl%qm=<#pbY7TSYTx
z(_g=uI|rP;$!`6^+yA1yAYAjq6ftJal_|MQ=Zv%sqP0($FXY{OYS#lT5wRCbtTZzN
zq)V%M>@rHDedMG+N{K8|TYWO^@SUOs`bMulZ#~leGw7mJjqPh29oO4)866(#T)V$V
zQa|<e=PyZ@H0oWMpP%-<mQ~zvJ7mxG&z<(?*$>;T`fB8I{lU&`pZ|@WKi@RA>}p9>
zdR4b>)`_KQ3vM&DOupa{HsN{1Y_;^0<yyifI~T@;29{{8JF_`N<3w0=Wi9Wsv-%Ue
zTqbR~(Rk;b^k0LeryaGKTI-Ij(qg>2Wt!N8*O9peqPO0b%ztxeZv9raOv#xmr>1&u
zn3I*7>g?>RF8Im0kN;H7Kld7*A2-C$aEj|BTbFK2QfglP{OHlBM+KpRvfZ=$j-J$7
zZ6tO2MAY8P8iz{`ED#c~)aLE-aSRBGnPMYZpY%4`pk$An-B-<&N%cE^v_ItkD8E~-
ze%6^wpT5l4#B$?>PgrE<<^b{f6HD%PF(!9TV#o?uqY!tmBd+Uquw-*Er%3;)g-@;+
zo6EIv|Nn5WpqzW=+fU1O6}I1ew{61W0{N(P^XWW~QuCtrWJ+DiY_;C=uaz-yQFr>c
z(>W(T<h!pGHCY$@NJo72535D4YB_y}SI)c=dnM@A!%*eubu#iV^mSE>!%ruh?5t<X
zd-3pyOF)NsD#P{(YYL}b3rkErI&aM%p2(o2@_$?9?J8a~^DDMq+>-Y`O1|~IdCdd4
z+}6!m?k9qIo1ORmki4EHx^nu$;M})!_{&&syh`?SxsdD2t5V%?nYH0^l%vC)`_0=d
z=bkhF7$v@<Z1veJBTL8mQ)VQ19x`>^KV?>I{S?Nfvm(+LJezOv#k-d4!~W&>FWtVr
z{{2zelIy!ggBt!keR8|RxY>72Zpc}Co08>zvG%dG-?jybGCD8p6Ij)9`rCt@$GSeX
zO>#@OjV#_Ie@^DOUH2!sJF})uo9VcRy}fREQJ}Z_eurMR#Y_oY;R}~<TXQN`k?n!o
z?CWvapWAlT@A7%}YTJTsvl`9sA7nqfai?{EKygZEiePyBoNn1nKiR*_nDsVa3@w*)
zo0nF@_tvL^S1xJx+p_hd+#>dluA5cZ0+uNAO6ATI(=KYtVshJPV-}FLF!QSEUEa9w
z@6!&gw|x^NI^hiqpE*NcCdckflQ-+UD{?t?)w~uc3qStKS<hKGjU`5Re%RtZF)3c=
zwIV8CAEemNTBjA3d$hRQao?fD0+uT)_SZYyZ@12PEtC-(yz=kFceUT=%2nq6YcJVR
zzHHihA-jF-;U|53dsE-0-hEQ}gDL7#Qd!l8>yxB|4(+&Nl)K>2DW7LW+85tt{YjH4
z-@Wxw4r}~e_q27MkzJ?iCzWz>P79e|@aT5gj~P>EoX`BUd}B8E-kCOWZ2HTMwl7_K
z_Ig?H@;~*wEtAT4m(5-1e6la8{_%WY<@B{W$K8zBzv<StR)yG>+9s^pBAjpbWv+Fj
z`HbREOMlr!S<BB)SuB;zR{C8nCYr(P(@DSWE4h89PHu^xAXXi7t@P`qsoM2&R%{*q
zE&sg)Ci`pc5q`6{C;z-b;_tIA8Kw@a)vqX-EK<;q`>@{B<<&h;+pH^@s;xJ)V>K7s
zn)>plx`d|xtmGDBn(kY@zw;+!mVeA&+bjFFEq_+va%Q6P%p<CyThzt+ZD#z_nr^e~
z*|uX3R|*v_n{vim=N9XR%p9LM>5qO}>z~iy&u6JQTC&b8Ks~Ve*ov#kT<M9vnNtrx
zR`~VcvUz1(8P5#w?B-)pY{&E;9)94kFyO4Y$mH8AH`PD8kS}`t_hp&+lUC-dh20bR
zS7O_Ld~3>ssHjj8y~W)&i3MIo8<U!EEl^q^IoW!JN4;p&O2b)2g|F_-KQr;MNC4x4
z>)M|6SqD=l>u4=~5$e3cEAfo}w%4*L+3iQKUt9UzH}YN3R!_forqWW{2HYE>wK-3G
zo9=Y)$@YweXHzte-woUKc+!N&_R*F9wk$m=lBH=HI#F>>X3d}AA3xUri+dSatzopj
z<466GCl&^wTUoA7=a2pQKtAhy$qvTlF~9gO=eOH^lP|B2ulhCZZS0?C=T?7^JJH6S
zDKB^Nbl>U7Gu<kSey}I;Kl0SvcRIOu!p*WSo7=XxZgtCN+ijZ7v+&_8?ZhAR7e4jy
z)Sl558j@fnI?+<Bccskc*|BQch3>i*reVFuGIXX0pV#jT`25u|YL^_BK^4=cFqzHe
zeF9hBc-ox`UODA;VZG?;gs6{epB$Kwnotm7U*SC??&CrAWuN6d&&&7C{(Su4ju5^1
z64Q@Q>-u+nNmfIMu7c*Zlr>t;OZ|=7#4b0_xV5Zwg0JqhXWRN1v`;My2`OW^;r*u1
zEnD>_>+}VzeQhnm7AXfT3p8Wg?isFm6Bt(>_2PEPB;^ABTMuo%f6TV8mk)X2sARxu
zFk`=!BTLL-|L?BRc^S)l54&X<{|@8f+k7@f{eknp#^^(fj9!bb%w*EMsC537%@<?)
zyZ7(jxZ>k=ZFa*GOV>Gp+Yd{GxTF_%eb1dc?b|oK+S^xTCrLlNVgGo8qo>}VSC6@@
zzMjrluJQSN>iiq;{OUDL)!e=2gs9Y4Uiz<Ux7{jgPTC`;H4eJV6i@t<*>1`l$vbn|
zh0ia{UYyEa^KI&PA;mc|_m6a?vDuUe$}QY{nX~(*?yG-m%$%M~j-HosZgc96EzcD4
zTpgqBzujz)kNdx^^7JvC#Zl9pB~oAHZZBt2yZ7+h7PrNVW^~+b-#7QmBG0DF9Y!zS
z?_N~DcYP1H=k9x}S6+~vtZNbY;!5~a_MNHk=7i)N{pB8>cjH3o;&azh3We3IU+J+)
z?Nki-axuin>vzdsxyv_7%GyuHJW{!{v^Q5Z)$#Z4^WvAT%w(S_(EK^WX^Q5a_4Q1L
z_4_V1w9jw*9GCt}zR7>n{)qUw50qHGg*;~ni?9ATd0Bm4>ZI8ZUWPcSF54h}CERox
zACLN%yv1p%HgbReutsiflL+C{{GM#{aMw}G>YU?Cj}%Hvu*_J#LML2DqvNjWykB}X
zYuMX(gcX$!JYSxXytgvRFJZ}<l<kLfON<)cE@Pdklj!+HA>R4jvTX~t+<BF;Ihac)
zOnXBF$L5<UTA4ge_5A%N*PYDn9bCn1we?m&&IOibv-wQc?uhs)qBmFXPEdk!|NJd7
z_Jv;cHU{^v?3lV>f=-I3@tLZago{z9GnX!%E5~S9zkKo4%(7WdXV0kxwBBDa`R$U^
zfjeiLXfQE~utub83yIG7SL>=Bv4Y>t`vun$>5c!dMR4`})Or+9_o%IY?+yWz5I=pF
zd+o_DO2el9ewMSf?<()~dm9x6HH$NkOj@!0Lg-~hcDHB#5wlm??UH}J#7JkE?Z+eg
z<>w2XlhNPv#@hY2&wHDS6<=@6lzDGGeQ)|Rag9Go6)kTs?)~nhUbwjU&ujh-uW$FS
zUH(iba);L0!|&h8y_5N@QB%|#w)$fIY#uRQ#yOjudQJ;}P?hrkdOW`VckK6!e`zZx
z-SS<ldSuPd#~zM`Cqk_pMQ@(@)FVCbtbUx7tY;DH`mUspGiF@-&ikZc-J0D@t3yJ%
z_$8D+Z|`x7TW)Fko?XJn{b%1{ZtuMtrl(!G6(;efwfkP`rP`dYYj4J`QWi?_jNbmJ
zNu_>ysFzjn<QT~vi*6*COh}%;|N8sYd`%DIYijv68CG2X75sYT((IKt-U?OUxp3S)
zvB1ByFg@^rAH#*2JT0+#x|5RsOldDaId$7J?(heB5|`|iVw`P1eR;KXcV|RmO<7Gz
zz>%z@-ItvLvdk{G?YtRz_iER6Q*SP*6Mx*|{p9)H*Gsj{zEfhWv*YI6Y4g`woc+@O
z|8VT})EoV?-m1-JEncmqGBa!6DTkazZCidG2#68UI`KGN?qG5^`|b1F>aP||EV*{;
zl<kd(UHW=9y-}-n=6ctjTV~Iev(ipGT62o(#7MzN>BSqDAOE@BuWZY<Yr?-*vzyGD
zpR1CWdqAS#=*>@;>kF<;_t}3*{>-~6zkei6jEH#>aQmuD?X=eE-JE>EVXxNx?b`V5
z<2L<Sdcxbhs*k?!Qc9kx^2uP^Bb)!cKkgX(S?{LgQvG?B|2$pm+P^w?{-_owJ<pFZ
zow$92LSx6dhpKzJj(hy>-{tf5o#Q8s8osU7-oMra|9rH%wPfG7pvo0d^$BODCU*6h
zu6Jqpe%jA;-}~P^1r<5__0LJXa-5)gWQSi~vYBFr^ri5JxpPyGN1vS1W%p3}$IQil
z-*20=R=hg#ho@EkN3Q&*?jIISFZ?7Wvv{`q!`z0YQI8}OeS&QC1gFhgQO<8+eS+_Y
zK-Ho>FSiQbxx|n%HD!^IO7r}xgCA|{m;PDtrMc4Uk<U5D<s9`T_Fo%*O#8ik;(YVD
zFWw%Gws~|U=jXvkB0+nY?&_V574Lk#*|C!G=BpCZkc8fy-;^e5nA^TwQBkpF@A9o(
zH=>JuE_T${%Osha$d<D#`@!3|=lt)}nGVH8|H}U@|MJHEH|LcU^Z!ki${O)=C3gP)
ze{5%cVtj3+q~luOdlf2d_A0M8GETmks8qY{(lW0#VXw}qKfC?Jb5`xezjv<Z)%^V%
zFSTseiOTW?&+a~#eE!FK#=j1Su%{0C=C8U-Tzvj1=E>+yw2Behq!XMs^+A-VL6&Fx
z=4}giO4>1r>sBP!d|?)MV_vwhaYA;--j}XXn)BA{WY(Wi)_%%bYEzROGh@k(#DZzF
z&MY;%^g1W=#j)&Fp<eotH{P*{RwO!ZbkbUSEnv0yn{KNuft{MM2i`4n-Y&HDsjsu`
zj_WH0LMKl;)nz09@2+M=y{+f#mq(apo!@-!F!%Erb&4^E-~C_4zV466>&u6JYkqrH
z+O8R<QfOe)cWaN(>3Rkc&W+pmy>0K0QINZT%x;cwv4Yg|qgQLb+!VFARXKCdrP@=s
z8^4#QzPlmeSbEgfvF*+7y*Gbdu-<yJ>W@^-8>yJ0Udu$DH{1KJ96fqGec2Piot&>i
z1WW4$RFk(J7LT2J?$m-J_vqIWaTgcqf0@8#yWb!=%kpZ-^IYl9bvNB@>rX^)^K|nN
zTYQ@-d*91#f;YO(>fMSGSv$EkEj#66ro{;+*Q-a)Z%=Ax|7^9M|1kT5PhpRA_VhSO
zW^;eto0EKy&$Vnt(Cl5W8T2MboaR1hHT(EwgHj)ja}Q-Drhki(s$YEH+oUIKj*ev|
z=e>vzFH7PV`<nl>S^a8OSYWMg#)c#HwR`xtn>79L3R-jaw6O2d*!wSDF4}uJ#OdDb
zSM$2<GG}_7G*9=7*>Ah`&#nt~4DtLI?lKx|ml6?}(iQrb_t)}So6HkA?%6C7H=W?#
z<@l&1wQBb2>U9B|8#}me&2X{RQTcTE!rSf9uPv{6UvaVesxfP+UX|)sbKx&n6=Im=
zGu7(P9oQaN@uROyMxuZDk{LTRk2cnSy!-fg^K_dQg%ibJE;oNabNb^i^WBNtc3wKI
zly<&Hh~+%f!Qwre{m*}l$~f;{|1~V~?ZJb#p<lAwciu_){3E;h{Wt6PvnwY3wfEUN
zJr~Q!uaP0*B)ExEQqz6!G74%=5SS2dR%fW5e5hG}^*ja!^?Pi8u<13PKCzwAs@~Ap
z(A>h#j;pu?e3EX(t+h4m2_m82^A8!#_U4|H`cr3vw4;FQtOX^G0Rbx;1)?+*Z58)!
z_uZCq`{un(FK>RC=fKp+aA~)O!h!`FT1r~?+m$NR?_B-<PGwQu*V_00<u>2EyVJP%
zz2)<HpRM<AE@t=d|M%C{#@2RzjMx+z$@<+kdMYM{Wt9O%M~+-w_)ycjNoZ$s{$}Ny
zfd&yrx@;mgs=vP7Upwu%-Oc$de9uaG-u=&hdxE{$oo}yw(FxhKDedjge=hv8_x{a9
z<@Q>G3X{LTs?I!kzGK?r=HpcrUq65NBJs@dkn<D6gP$$WTh2TEuW-+G=SSPx_sI%L
z&6b%tr(RHC)(jCz@z>U+m)3-*>2`IW_vqp2_xM&@dFsk^b-yL=FV`M^Bvf0i`u(l&
z-RZASmoNRFbpNg7K5q4&`-DYgWT#IPk^MR8{VLCW*^`8goy%F$(_DVD9c?SnU9Hrd
zRNeo(Z~5aK{$7q-g3qMIpS_mfb<bS2lkdIsJc;Q-^S>ObSBd}MaYE((mK{ej;(yJQ
z*rjZup=ol&Ty+}X>)A4buXd-rm8!pgv~c6eeW#V0os%a!)vEh_@#W(E+Uw!hH{Z6h
zsL1Qbk{w4roJ{;OWywkFU*|k$oryIo{CG<ApYZg(dtaOt&AvBh%A9$3R)>3J6a_r#
zTjKdYE$yFYF8{CmhT{(P{RicoZQ81A9N)fqtoT9V-A9wH+ioPUJDx4qC^y@7Tg8&f
zkT0|E<k#-k{VP=Q(?)%LNBM;EN#Awf%e_ymzw&?iKl|_hr@lP?VMgN_fn&2JPuU#&
zVZfATp`0==WnR*}G&iHg5{8dY+nnx6oR@ygxLeXbjdycjXX++N&dH}eBw6bxpVyES
zU7Tjp(|6I>?bxaRN3#{HvJc#1WMqzF+rnpI_TWcDFtZ=Oh4F(o4aLm&q(3}7@Q^v3
zr>6G7qQ-pQ7(;`y2kFf6ye0fj&1^igOfo(#xZ%jp_Fei6kDS4hyc6>j-`hPj)k%wZ
zXYkVCroq<@-z%>yeX(DsU+3J;U%{%@^|l?)YtEmY=lZwhFVpYXXG_1yU#d_2|K*?T
z-~Fl6j5*JU{*(Bp9+$kgZ&Bomj04%s@AzVDKAd*k*Sw2uy>w09i7$%T?SEd)H7a>5
zTwnR<&j$WlEmnQ5b$s=;75xTPE$2JV?cekD$(-fWY;FI%)SrJ+(y~USCrVjL-AXy`
zq4k;i?SF5+x|r?uURt^S-1nW$$>F`TP4nJ=zJC1r-VG01+4YzC%rH)T*}|<~>R*$U
zbnA$}`q}v*#y7J+&7OSSUvEZD>8JAGW4@NgUuUjd?|awis@d0Tr@7<#s&}T|T9j$;
zGu{9Huc?{qJ>q`83f&*R{>%(Z<=SKX#=>dy=1;Y{U0hawcg~-k($BumzV5KDVseLk
z--i#rO2SQ!$roN6kBRPKX7qQTUw!dAx5bC$*;RY*F|ZkE`g&bxa9e$GQk}8;WCw-M
z7kTu5{cB)(RA>A(YF8tt&zIJW{Si*q?~W)sty}(caiPM??=#)p%>$Yy?Q>Wg{@T?3
z?Ct|!P4;eI{<7Qi!HoJ!sa`kUtObW>I`CJ`jcfm1`>kPemffdgGiB%LTt4`k^Dx^&
z=d{zp6KgBv=l`CjKDn?uWxn`#-ScY29fo%w7vGmLo9*24a%S8e^Nr>|IpnGyZI89t
z6RK`Ae}}e;mad`RKAVM+Aq;+t@1|XNUFz`v<<<$z>)qG%be%fA_|)o&hw7IYS=#-S
z;1~G%_2W@zxo`G5Yy4Mr_4;~s^{(|=wSN7oRpOQX*4wz}-#(iBw<_uPlPQf(E2k-c
zdc6K$&$Kev-H%n6r6YXUv=7<aeM&E>%F3|)BscxhtIA7HcfK~x`P*|m@9^~251pST
zcWBSvKR;B4MLRL^&^OPE-BUj&@aY)%)xVvyKmFU&EzAvl2i!$t@0-RN#5TXqNNW@j
zJ1}X_(wq8g`))ERZdhgY`1hXR54>|)iVN;lE#cwcm9?7f3eR)nQ^#&!KTs3l*52l}
zZSO_l<M9tS8oQaeRr`io-#Yq+bG_CD_3ml<bJ;F7lvPZ<9LIN6p?qTa4y*E28ddE3
zuYORiFS+p6J0rCCZcUH8&5wl_pFd#U^R+B#>jTE!V)`O#pQajit-X}f`X|?e(dAxK
z`*%sk?&S#=S1K3qC;q$Q-(j8@H~-J4S<ML=nYu65oLtc<aMJQ|w)TDNOLa_nhv(fi
z;C_}f<Mn<S!Fr*iU(WdoCGGujrKnUsQLb(sTlL?9Ww+|n&ENfh)n9SW{PTP68#ZOe
z^YmM!Pp|7;>A>`;aPhYzu35{aFZcOMnAbo3qY++Jo4j-NzXXMpZYlmb<=Y(9Wqcb~
zPFVfX`-aqJ&7ip}re;qz;hK;w8Z}{&4fm9eT|b!0@AZCD)t@l2J9&H8_Jd86Iwr3@
z<tF~dCHLdgjh+`RqwAO7sg$nn+VK7DZTl`u&fEKb?wM5E=k@)o_5BAE*0c7nNHK4@
z;kw7JBJv5pwDGpwoBLEPJN)D&zg^|tVLzws+})|_0b9f;_S}4<eyU~buODJ6KX#su
zioY}?WXdE_W$wz?C%(;2(m8UkLZwg4|DT(M@u#Dii*#=ASf5imxVWdxqMn2O0Y^#r
zmg{nNUgoscUXY30v{d2N4j!}12dY*v`@j0Iq_A}T`S|*WpX>V<%h~NW&+~BjUtfJ@
z_jBGknmQYuLYIl|T>sEY?czkqxT)<o_AWW#`+vrgJ(E6Uu^(;g?^yWwqPMKwjDGjY
z7iF7f-*7Yf?Is#C<Lis1(lrNt*ZHq=t@qhefA-kDKgSDy-(IR`V>M%Uftn$Qe5&w!
z`=q#nhsW0IpIv18=iVdRK8aN~1l~REOg{Iy?S9Jhzyq5#e7jixvGa9qILPgnbL)H9
z(chxKzaQju`OYtETW~eWC~`-!n}6i?02iLPx_|$;MZA_eB?d*Ull%Jp@h!1?ao-!P
z`<<EVZB{h5FAsE;`&s?B&wc-|>c4&V|GoISl4^@&Y!99+tUR^wVtvoXLRoXRA8+sf
zse2W@a<*Bs{G#8l|Cs;NJKlV|U9b51T#KqNS@UHq`WIcA&j0cCoo;g*x%Gd=U$o42
z`xBmfZ~aDP`(ryZ?JQnCHeK5^dyV{VkBmU`wvHeLw|VtzIwq!PK8cE5xb9xvscq-C
zNUxf}d&}8LF+{H^C3r*b;@YKpVbdqCJa4KJb;;-AwiE}&SF&84mJ5B~G_hqbU3xHT
z&GuJYW=3`9RDTl+a9|LMVR)3OSj=^D^RAfYQ=DR5ld9B(?&uuypZU?{fdApd4Jq{s
zudi5bRaKqERJwIhO#Mxj)ht)i))jW`wQtnBcJXPaf8F8a`?43e9()~HVA6FnZ#|o-
zOXs}^uZjt58pYY1`-Scq&spJ?xAi*TiR!Q|iQ4~Hd=#6r;I^*CDyMt%my|sE9#!zs
zZ@&MB3z=7vjpffBVrGfoRIWMaU~j89=YBTMcaIM4o@LjR{NmV+%SYOI>Sg!mWj#1|
zXVb4;U1owI&#tx3{{Cin>WYTb1sXil8sc9}x%jg%YO0yzY<Ke$ZZpd?MCU%|epg>y
z_4UWb)7SRtoMSfPxF-L~MBF53^S0xmuCB+Iu=O5fHh(x#$>#I%{db>U`7>|rn@>A?
z*&p1R-(1H1ZbSTot%nr$S;g+M@zy#&zn<}?NXqrk=jC@4y$N9#`t#xI%=7*SoLkx_
zD^5Ql@#)NuO8qsjCy8D&n_AYjKzCtH`@+2Uoo(MA>eakr*FV6sf9d+Y%^kB?jDu#1
zZQ&9*+*TDh+vNL~>~DMO_~Z8;PyX+9`Eq+hwx^;dOVI8NMFDZWBdraw(_PPB*4e_6
zmcHJnzM{~t%%J5UPx>Q%OZP3)AF#zVavwdu+W!BJ6#fO;1r}TWoIUi_KsZeC{fjNj
z<l^?8pBTKc{o}pE8<(>jk7S>x-tt-T_@Af?pUm7oeB3&hefLAAUDod|bT7Go#Z|vk
z;eu%7tgu;GfpdEtnxeBO9b4aevE##r>qTe86A${&PvYNL|KPFYkNiW^=ig;gVwmce
z=#p~6Rc)chI<Z?9Z=QZD-?c9G#*em$g4L&NeRd?IJ<y)~eBK_#CT;ir`WrPmQT*4L
z1AV_8oN+(p&quks#eCfRzF1c0XG?FZQ~xpZ>f^IcXZCy&u5{WWdhKa0uj`HTuVX!#
zMVJry$Nk=QVxfV?(UP3{fR&R|7&F&9%dot-zjE5FD^v0mIG?0;o~&E%b3#|_ro-~>
z;%_XgZr$QqzMyQfXPi_jAFKU>$H#MgdG1f!B6z|2Ls;~qO0EyqS5vPBbbo7!RNcUM
z&2O)vD8Jalhdch4-*A5;%bQzKF`NJ2qi1`vo49j$=V|6B+mvk$XN?GQ*;yYVm&vCz
zfA@Ar3+KeG)nfKSMd{s-4*&e&syuH&)3%C)G-t=|A8peg9NJ^1sL2>}=v%Ud^@9mk
z-}Fm%?Th~;d+z_dWmW9c&y_5>KRu;EgG)?1e0^sR7vI8_Q#k5obg&;#-|)QPY21`&
zt|ciMFTA?c7=Qh6lX9Eu=FEK~pmdpby_%Y`ZrRC?3wA5nu-Q9r*ZBBDz9r>IQ|W0J
zMS*8Mx7%6xC*4jomsz^;R^a`>tG8kbIqtQ#y?E4eOX2Wrfkun9H(#0g=lq;<{8&#0
z_tz@9IcJl;#jcO))$`j@a#Q4OnZv^=x8}4jE<KU^v5V>C=S2alz9c2DPg}EruRZYW
zzqZu+`?@bL=gb!1K33~3I-5C~IcVDf-qTa(E|2b$$+TzZy`ZSy@6KcvIC&Q5MvaXs
zOBXKOvge=6g@qrVSbnmpoa8c@>5VP__r*C69?Jd^-}vBQiy)I&m~%jlN03X&FE^`l
z#jh)4Z}NU>F1hr6-i}|KzE^rBuO_b03K4fPW>CN8>Q!GjZ|%{oAx39r7t81GvHqWa
zus>wS_11#im!_B2Pny)sZe1SNdilk#DU(~=E7q@@EBw+cKSO8z8ezxUsH1$f+1FX!
zt>3h6)-;f9Dl$`l)4|nyIVV6pOT+cL(uAx}ML7XVc8A2j#8_{;Hr-~U#u<MZp35?h
z>bt-8rLA!A^_*&5|LBp?cK<(_ta3_+9=(5m=W)ziwSB)o_{~0lvpu5Dd{b+bZ~uKk
zw@+6!FNF$qd94rh>pfxgui1KS>GEAGcdnbWr+{srbH$0x;U@|{9qD;F`TG07TdQAr
z-|`Y&``V><x?Mr(VOt9m{<Onio^~%jEO=7gh|6=zx1)+>T=Q=&S;v00zEW;iZ*>0W
z2=#vf96RPe`Sq;Z`kU_i8P4vf*@8A_2u>)P)4Q2*dcDTHM<Rz_f7q20d25QQ=D{gy
zYghR0o>;s|e7fFYcUO1qb@Nxhc;fMO;fkRBkGAe|HJDp8UFksFydC!69zERh_|P_q
z@S2dM8lMVhuiWC&T;{X;^&OP?a#GCemsM_ibaKzU3q=c^xr8njF?8>eTl*qW!q-y5
zSdlxVt434FeusT((|xX!H&>mzdWzwa;{7FCoODg3UM-ke^is_sO?`@GidCyc<ouM@
zEDZzeHLcT_WNR7(54r8L+d83VNsCF^Tq|97uFT3-hDClil3y%QpC20Bm#^1QWEj~!
zwccqGV+HfSo{wtl9g_Rg7pu>{Z|oZ}fn7_mGRSwHkpUOy+k<SWyR#KzeO{aNy0x7!
zerM(;wrtut)+suRk8>YTI96}?VENUatqiBQo=i|Ww?KXQ%iynC$`%J!ZGWZ9VSm=l
zV4GR<U#kUL+EY6BMlQ?0;r`Y3vgPTNONl=@7qs4~FM0B<WWRmC?dcWTrV||0b4BcJ
z`7agchLovK$>QE}RBE%-iWN~?t;7WzZ=dmKHeQ^*dScL`vlC`s4J#DhA~kCv>#Zwi
z8+`mU%AYhk?TMNm&NnsT;!GaC7WYlNOFtadm+P?$cNZ;exS6;~p{(Y-fb0arcilZE
zF3QWh(u$hDYt{d1X<Ya$r2Lzo>rQ93mx+Y|T5QTMe3x?AUtPWAUY%%ws`?u9d!J@c
z;t3Txptw*&VqssCM~8t6<EisY#kMqu*2KK_SXw$EYVz7p<xBV9x(nSfa*JDaHE^EG
zyl2Z#{#tgZL@Xug)0W*&H}3mcd8;I<>mPURTcg-{H~jU>9e*a**3VB_EtzbW;S<#I
z^_{+i_cF)i#aYdb!uO`z9=c)eC2eo05Zu^z?n3XBWApZ#RPC$py}tPO<{uM7{%ok%
z{}*!Uu*;<7o!7rS&pZ}?n>GGI%e6-@oXT%5uUcCy8PL16-04b^QH*a3o7=qW%jJDL
zL<1ISUcIqJq4Ce21%Fbe80E6oGr9@7Yx3~My}zAr$MA;v2j>}+$Lbe#dnBvVGY`KH
zdc4JM^7oq05ziz#g5EFaQNAL;_j611sUIS0TV1m+n+4rym}Ap9$Libal!rWfJYS|9
zhzZ(uJLCGz(f}sbom(94^WDDUIDz9dZ|8pPw<7bIHeZ?6^ughh%OOvx$?LCVeV$q`
z&CIm<+G^EWL7oZEmz-R1^8&})4c>RJiPwLNk?ly`C0n(k`O%_BOzOV`t84yVm+!bU
z<#2<It+C70<x6$6g`Zj-&^TnrwoJ;e_+s`$B_FP$kI`1Wikq1Q73~h!6ntcqyAl!}
zzjgDgDF;_>W}Kq<{<xdLg&EtldW!;?j;wmz=vP0#aoXFTLLTQgXZud8@?9liG+8*r
ztE*?poG*vjXZ~?A2w)2;Wq8wCX61W@N$JtzG`ZLMKV$0`pPAP2A)u)F;!55UGe=pU
zxWF`zKU-f}MorOs&#Yh=%D^9P9P;B{$HL+{Tr)-FK79>f5Q|>Dl4<LsbjjeE=MuIm
zt~qSY%{{ZNzU|pGejh%+xj|2AnWJvROWS@tl@;e-aelRvG^@nKYBPJz6=yF`w6E;G
zs9`y~SWW*y7fbiO4Z{33C35}?YqHsP^#46%u;5hKX&sZeo2q}bF1$RG`a;Mrp~S7Z
z)op`k>a<3lEn2Rx!i<V8D}9pU-TU)^++vTl#;<%6-0pRMim89&GClpcYD`JzajlOM
z3uE2RDlZLRS!{IwWW-k4M~<=1&gYhH51L+Hd$+At(p&b$O9s`Q-+Vlp-iVZXxmD-9
z6}$D9;S)<L^J6u++TXKw$nZ(|$8KWV>h`uhY{eR#Jgv;)d8~Z@Hq00JWco8o^_Igm
z<5N5rQquFj-k&Gx?&)-{KJW%B`|J-FPSy6Rf8SPqpgO>U`%`Aytl7^G>Bg7tu(4kM
zV28C$*~9Zr#rss_k0@5|t9e)Ph;!!#o=5xvbr&P+wm<cG{Bd!0Ul7ktP0b$nNE6HF
zPf}8|jT{>%d3`?hDtomRAIrA=j`I}#FHU-RbEW#Te=Wyr{%vr0V!QjgjzvzrdHT%w
ztc*u*XWkdDzWHI2&g5xrKfNX>a6NGS{grE_$J}j`JZAovR%S>~f3ey4m$h^FOWk8a
zQ`#^8Q&+2Mo27BD_4y8)@3kG?v;Oz?K5KkaoYBM-n|v{|WJWxH_!o9<J+m2pPKvL%
z-p2T3UTqOSxoD&M^M6~<E6mO?wQuuje_Oxk?Vs2mOMknXHtfnyRz7;~%N2$2m%3*A
z1pD`fzWQYIhxcE@v}Np7^90`Aj@cP2!g<;#>Dcq-tCo5mVb`sj^ZnG3=ZTHcXHxde
zuuPSG`l53}+^+Kp+09BJGXp2g6PPWuYpM3i;1UrlziIDstfD*HU+BCL+4qCh;AxD&
z<v&{UPS%&txsWBJ-Xq#N{S522O_LUJy_#woFl}R~YVU%r=|!1&k-mGgm!Ft@<5ybA
z5#9N}cAW~Y_RHNdH&DBx<#x41Vx?bUQB93gO;uvr)D@c+ZgSN5arBvAtqkXau(WiY
z?x>A&D<0p-+_ctAJZzrZZaD+iuM4(ck2>w!DzfmK+xGk!^%7pkPAy@bviL@3YqHk5
zzuOisWL+atrYIF8x>9SUO(M5r<n1M#lQcYB8+8SLyWZdSc%xaChkcgE?eH}V!#z%#
z^YZ?9x;Z<ayDoA5Qln{4r>LkNS2?~!G%d6%D?2;uXjA-QkGUTz0$#UmTrJ=4^;&E0
z)-}Jr?7Qr~P{1oxfaPTUE1OWYSuf-cEIEIFOBL@~@tYG8vo~Cj)NwyrnfkGF<I0Bz
zWi@}hia$K}@YVi>`57;hwU$qpp734fmGAOA%bgA%4(6u+xo=;Xp3S?K)%Q(6qI1z_
zu|S!eY5KE-C8dO9X7$!3r5o=xoW#TZl+(m5<L~^B&m|O-?@pHt<$JpA=Y;y0bz2&R
zyK<f}P0rPi%UhQhc>hGxc1Oq8?wUehGKx%hP7z%Dio?#u*e`eE>b<*87yglFQqN8N
z^lPn&zNgFuHq~QZ$%eZ8J*ro@-+Z{Y=~uXH?^0jisiD95-`_4~IJ1Cx?>2|U%-MFA
zE-#8-e{;#SRtLRPMN6)CtyuhK(amiO`RfH=zrLxxyz5-)^-ooKe;d2z=%=u|?0@)w
zxBiV)IqNn#?>6M`J6wHmw>U!-!|UyBtQm7(P1~{RNLNO%(po-qy|X@Ha{O60oNiWB
zb?7jsx_E>YW{DJV6`pvjwKHVj{$8=mu0<TJA*J(DWIriK_E=fl&)jsr$0<_KS8r*U
z_fEh1_zSt~mU*0+5t}xBrI01Rk!x>ze!aW4T(rd5j?ONNN}ev|j)`rVpHl-@nM6K$
ztS5CaCO3Cc<COCfbJ{;9yy2`qAjtV}gH^|e%S<VrTBl+H60%*)zn(4(o4EbkM%xb$
z?W#A(|JiGMX`0L0n?JsPv)Cj3eet)7`sm|I4*N6fbLy)fKZ|?2R5Eg+<?0=~{_sBy
zod50VmFg8t|NU?2-}h)s&z-EAz4H5?$bNAT2j#kz;nR;*{dwUmr+skkq5Saq^Yw2r
z%s#Z(X^H!`(3Zbu_L37PO|7@L-R~K})OzR77gy2a*^-q@+%}2^=p8k+JRY6BaNqWQ
znGavhj+>{~I)`_PSbfLB1oL@`E6a{ubKT=zY;oxD2a7*@Dgvhqgt-c?@40Zo+}ySG
zqQHb2w_4Ey85$1kAF7T8MMsB6UAYyJui41AqU%B3V#Ue-1C}?Zz5Dt`X<=Y)SjQ&?
z3kzejryd@LOI=eGB)yJJ-l#t(rY>?1ds*n#tqXNiIF<V+ufCQsu_dfNL}u}C@vW^Q
zo6NqR%DFiEtJ#+RyFQyI+II%8-t_pIPAs#w<5xq|WB;n&L~h#s@zlb*b7S~s`5Lb_
zue>;~E59c8!fRve%vp8avPwC<c@g?m?A!8u`X|5V&FA`~|Mt&(8^`>dgUY>2S8(<x
z^qkxEPHXzrp!m)0kLnBc9D0mYIqQY0ly`4ix2ZRcfwlC>aw*&M^PWCDe`97$>omn#
z$MO#^*1R?I_l_Q^M_V>=h&V0tWl{6>G8SF>_0jqt-5$HOCMVszHFu$VosHk!lX}ZT
zRhNckrQX|S$mlt73WL|&l1smfzKibpe|w*a>bJhL#g_RG6}T4JeZ9YC#j)@EBZGYf
zx72sZ>ey^qWf1g)U666-$<F83ZzVJKM*6mN&M`a^X7J+cwrTCpS4S`4iAsIIZf$g*
zOL<@9Y2~JEML#%K`gKjZsus?AW#KK6>@uGur!UW%Gh-KhzEE~CL60Mw+miLgze1fg
z&lZL1F!y>b?)VftNrYE%!c~{&v)u%qmgrW9B(Gap|L2*~j0Id;Dk4sgr(||cxYFLe
zZrP>2`=9>2TVJ;O#>`B!Ro-(S`5m!5uDR#SoCgmR!w&U{PkVM_lcq|_)6<(wy?*kA
zvU$zk-1;dZ^xHP``)yw*TzAcGt5r>p+Nbr-#46*P;GeGs(@o;Je)D@82hLjH!Cz;V
zY|3)zbb7KM(=FC|UDeXkNu@ibo0)}_oRiIiqqZNNuygf{w8@8<RCd(g$lGk4>6F)F
z?lpPwCbPU3T-M6F_`m00Ph_h-|I6T*)2TS!6Vm(VT|dMXZ6jZEcHOPhuOl1g3yY;)
zsyxeZ>fI)zIDd}L1y@7XbvLC=tX;lS?Cr5)$>7$#b8oG537W+sIiY@vcE9&}&fG}1
z<hPNJyxk^VOkS_IOMM^Xb3YN0DS0-tc1>@~$xU@FKD+MF;gSHMhWjFUYO7a-I!vA@
zCblK-I9o?UgV7J3Z=tpswp(7m*nM@k=Crq+`f;AgnH-`M-+ZpA5az#i`tXnUu4k&$
zGlNeg3(8uxAMD%EargFeg{g+p^_#YI@JuzF8PyvGI>2D(m13jr%%XhO)wdQh&04(k
zzI5A;$&#h>+}wP3eoDC^`Rc@0*U+<H=ejQ6A;oC^{np9nW!LA;zVUD7pU>aFbIE-*
zv7M$mdD){sU%pJ8eLZ(k+)52L@eql(X5yubC-v3N;CFxMb>QCg1TLM={Wn(aF<h=v
z&vW7P#uTF`BF&yLOjVmNMwTr4bR_T9M6pwo72Ks}&2I==rndjg6ZL1gOB3e@X=yeq
z6-3HjUGYZha?^aqz4u<M`77`{Dc^!Y^y7xsv<=TEg)1LaPF)w|lzq08{jh&mon4oE
zNcUd-TfsLab?0sWURu*-UH9zkkEHD%PG!7y3lyqf`(pZ;)3$HI_X;X0nrSPlD0*z_
z>zfgKq><?b&$O(Nnq67(zyCY#NYdDP)4L}ud-6(|(0fTdS5kRgS1jl@oMs}MwJv*Y
z_LeO{Pj2!1&b+-TQChdzh<nnk*HNo>x!lV!+p=-T+2WM{Pv&VJS`^delcHij?OM~M
zk|%Nx>*{T)yXph4HR!edx+zgNizTRt>wv1>GMD8c!Rsz&YbY`Wtk@*@u`pXQGNtT^
zjOirrEh`tC))X;6ke4jn`&M|BR@eJ0eSV#OYH_QUM?{_w?V4itaQTfY**|aU4oDb%
z5lQAg_-ccNfc56~<(DU=-%a1?qCTHpLs>ki!Ef#k9xdLd4d-6f&#>CDWEFGDGFkCw
zPP1nGc2shnf9CF|?aen6uFu>#KWmjl^zM6AtO2dUT1W1sUa|^{d0zP|_}k36wQ~+>
zE}Wy(zB>GIvH8;VTum$iI~Is}t;wAxrT6&u?b5X9%{!MZm|eA9`|v#1NcW<=x|pou
zl(TACGasg~^d5R1SCjuy{E>3~hW#6p!*8Avz9i+vyE=Ah@4DD?j}u%{*y6NUx>}-4
zxm2_zU1PkWymtA>$?WAlq_Brg@8H9#JL@+k-&cPxcJ-jE#%%x2mhT~%vg`I;4tQSq
z%y`Y8dB;z^=RRxH9y7)Nwbss>dnrZ@hYl)r*fFFp*e6gew`;@a0}FRGU+Md8dbPe#
z!^Ym4FDRg<b<35jQG5P3SEgp4>~`^Sartv<W#$ylGrRw7cbZsUw?6R0w|B?Oer`x#
zcVWq<r(Ks4mf1`!dL^T~R=S95VS>HJ6QzKRPo_p&W-T%PZ|=r$?#hMqtS{x;^e*4#
z@oPEyCedxVxk%B`UoxLQ|345HeR7-Cw`Q|7E9*b+sS&TQoqqh^1!I>T`N?0aE{5Hh
zA+cXk*Jq#VR0Wgm=jYB1(Avjz`Ho?ak!tZjwO41isOY>Xk-DY9veT%0(&OYw&f81W
zWklvSulvlpZrgY5j{&ueR&D41OnnxmUTVvk(xLuQd*gv!=cDqAc51E4&@T;`wmWta
z-}0-4UY=#C^|{Wf;k<b-HgEpW=U<-v_i5Yd)%&Jzy_EGKIVw~1`L0Kgl7*9u=dRqk
z=+`Z)sLa1X&Z`d|zc+LJDerlkORG7)7OKjMYU!qmyq;xe*}&R!Fi(TQ`W4^3m-cnW
zk~1|IhE7=_utQ!ud*6$!?ByDXlP_D@TiRO}T1L6WC58y4>K(0Lb)fIU;ziZ55g{(d
zZwt<q#DDQ(zyJ75e^}x6^l3pCy;MX$Zv0sIF_KlYbkVI}v#K^W@GAEnTHLrhOz2*a
z(z%zi8ycL~E_x;0er`@f)`rweCbO2Gyr^}NWqZTP7?}s#xl|^sK5u+YBw}^O!Pu$q
zd~Qz^keA)1{c*|*kq3;qy*KKmYkTDl+1lrY<)66iGq?V`torjAc0YbiRlV+i@9r(P
z$TODLyl>38BBv0=`+D1YejcvATN`bK|Mtp$p8c8O`K}N0vD?L?rbup)VK||8;z`Yg
z$h@+bz11J2j~(*vdVKQ0!Hq$OueO+EYOO5ZTc}j^|1O)2pxpV+pqcY_>;CKQy;8sB
zQx>0LhTqDCKi$(8Y+b;dH}PPrW81Gw-=0lcRQ_H5jh$QJjg{NHwrgf2PPzM9e9<ko
z>v>t#ty|WmJ8XYGbM=kQz3t_HYrkmLg&+J_u4VIZnqk&Tv;L+JmmXVx3to`B;o6(E
z8TvLq-B)CO(o~$3;}O5BmuuyUWzQ{mQt#y7sITWT%`eN6*C>0xYG+Te{^L2Pcdd4h
zuIxAa!zo++H~;pxgjro7tpSWv)zV+yYdUtWy`X2;^>-Vpro8OY<yqpo{Qs&K3O~=9
zckPTmpMC8(i?-gHqTJ;()hpXoB$u{4U9;@i6PdOok<uBr7EMlNFT2>2;JHv}+37<X
zCQE#J)ef)huYaZ<Bpc+l)a0b&#>*+jH#26f{;`;&xa8H^uX9Uf@3yZy#Cc)ua?#2~
zQIj^au}<9CvuXXGKmOC-GuBonUv6wZzCKWuXSO0|Sf28pH4FAwOzm-VcL=|-d+$NT
zPjw&EnLU54xorGy|CV!iuX`~u{N1ek@21F$|Lb-C%{5v-vBAvdU;TEIj??cxM`&Be
zXM{zjPH|^<UFPb2dhs{izwAEte0Ou#8HxBEGqn5{^|na&)Y--<HIwh?<+YV1b3fJG
z9opNFb7enQv4Xj(9M_RMkF0|^%P+5*c~P=7&0yj4W1N{GPqRZsu1+^T<#WMflam?y
zvGzaGA@#gVPW<L|*RpOmw*Ob(^UOi|c6`N&{YiT>WOF?4?oxdGg{xX<ua%*tww|TR
z@%Qq%RlC;w{-1GKNn?BD>91+-;<}%*H?l7_4zF8l9ynPpXH`)|_UZ2dUV&?Mr@Ndk
zdYs{U>}XzU@y)!hm!DT;^JISBQ#|#!-NAiIOI|7je-Ya9_+!txCFX@bn#&D()9R<b
z@o{ZZy127mJF?^0r^~;0gsl8w9pU;(W9j79W|p;95_K}4&n3mDuTOs36sCN>Cwg05
zul;d`xh6Aj^@>(m{}L$w!{H-&mO1JDySVFLZq|SQYWA)3{og27`OWhKm}R4*gmi8(
z91PT4C^>hw^tB5w-|U~l)BDgzxvc42Mp0ONz4h+r4DP#(6NHyM&70u5$it{>qMO^=
zSbtt&=9R4;1+V>g8t9p6<{aMmgn3czg~<55yR{x<xUnm|DV5@1{g_3pc*crTzOj3X
z?n*7#7{G14a9Nj_!=6w5-^0v<SLC*J$*BDJ;U6Yam?l!a`~NAsoG)`u+KHG=iZ83E
z+?*`4GNS(C!<(BoHGj_#G~+n9#z^z)>eJiGTHg0&d%vAjnw?YBE%M1hZE=3oT(&JI
z<N|hXv^*giKKaUowz`dfGJWT^%1@p)VTzEr=#)KyQVx=OwtMq;u8>_Lw)gC{*o&dp
z+ira;E0xhVe%ZUXTvP7srKOKL_n!XYW~5#(tQ7y>?dGR*TkG#em$#N4mk*2l)cfhU
z(~8m(=g`^GO;Lw0uGjw*eOsz5{Ox7Qk~>B5d92bW6yse_`a48CxHe&H<LT}DC-!|Z
z)l${%|J3WX`B~7fnQz^hc01i-&Svi6lA37JeIw_AL&Akix|#83-gTILdEr{;QsEPD
zDQ#`kY27z(Ll1MMExs63U%g}R?(FLm-x<%Herm!_|K96vEX(peIXd0;pZcNb8=b{;
zde`Z1*WP3~^{4!ay;v>0>vHBnbGH9aS^7mMM>`o5ot}2`!TR(>&IJ3G_UeoM(h*JU
z^>=p{-Q-AHsyRP8|Mc1zF&~BI4we&XT;g$Gm@nJv%s8MMXLcdz*p+OLTYKwYv+&n9
zg>zKzzU{-7$SGKJUN=50`03O+tRZ(krP@@y;$3IGf8V=5X@Z=RHe1VCH+SuxnEy<n
zHTs~=4>|rvEKkCs?3#o3Kl-}o+v^f5$E?Yx9F#tm7|o02e4}tgN&i>lOSxrh-I^P@
zSju*Wo?0t$X@#lEM5D6`-?Iw(o${*I)mMuwtDdn<%EXQLd-J-hUOPo)Tju^1?cX{_
z_}e#&E|!g}J(cDyzP9>{)~v>-MZc!y2S{DDnB;T(@m=kMwky^jcWiklcxzSAYD?Fp
zVLRtWU0h-Q!tgEQ<#`$HB^^<BJ}9q$e#gTom_ux<<$aGeH|Fm-TE-~d7-1@F#&p@%
zC;F^geY2#_g9*1jYux*)738>0pto9nhw7b2))0r!QBr&5S!VrJ#foe7kBP_Y%olBU
z=DfJ!w+HLJLoXdY`8;+`2$J}8Rx3yK-w)k#@g2&)ta=nm`Y&9onQA33G9i7sRfg-8
z)$9-l-Qf^jIj?qA$QR9|1zl^FcD-RV6H2T<9FZrOw!Y?W$iB1tPp3CG*~gyclRc<)
zeAm>t`ga8?#UUp&b$_KV?R@B-_wc3ttry$neov9R`M>SM#~%|z=GunL-TL!YTxrqU
zP4+7{&s=r+Z@X3P^vzz1qA%S4&A;vTh3{AVt%-bZdi#4+7Bwrg|CIldGJmnv%BttL
z7jE$8b@@{Nj=O^C!NL{pZik;#8cF!8B(G2UC3R-)rJ8-~YhT2FWYMX*p10wGWb2_j
zO)~H18M-nX<+ILoh+{Nj{OjbevN%q~xT9ik$l3=>PHy&io23(1KmE*t_Fv~_G`##-
zajz?`W})Wh1q@s}+j;rkKYFOf_c3Ef=GTrj36mwahUWcZeqG<drhn-49mAG?h1?%Z
z>m4R;EoZbV@Ac!adN+;l`;3F~{StppKRx$EdC$Y`U;lsEQy*vLZMW;2fc?+gk~*Ky
zrwc^>uiwX||ES9L+w!lw*Z*66@BeGoJ+^<lTf(?4o`$(J6}~?f&{A+pmuq#)B8J?j
zX1BDK|K{2m!zi>`=HY{VW%X^3T8^yRaAK}Vc)<OyTdsP2*A4p;uUl2uFYBB8^5W+?
z7vf~&rc7^%TOv^@6n8+#ElPCSTMrj|p;>o7=xp!Um=e;wRpjB!H6F{8&AeJtRCfBg
zJ$l{q{R!W<cE0m@@8(|L+%o&s&%%5*Hib=`-}8LR9q!IHkhg8W+>#=^{o=O6^>@Wz
z+cot+NV@aT!R3<2eMPko1$SI;{R+H$^xff(+OvOW87O=>yW^*U{Jk~YFWmOtefa)W
z%Z+}YC30`ww|6f2KKY&Rk-Cz_Z*TZN`J1t&`p(XYf9F28sekqNL2rs!!KR6vt52@*
zOrB6J@|{P<deTngXBLu2Ev+KY?^7=6FX=D3T+e*Qzx>0B$1xliudldj@9Xq#``s@F
zwkLdkWtz%etxh;pX!Giv|BC0A^ryEZt4$1CeUjxt+~U6eoy|M`&6K;p*XfN~^~bnJ
z%WlVA`tAAsTax+R4C}IPIsK2vqstzZmlyh9@cHwWbJpns9{)qC2mWk)5yyW+`u?Ji
z4ksJ-_4Ax?s9$&GgypQ-`8Awp<oR#Lw3(&|Y5pvpEZ1Sa^Xu<oy|75f{24D-^79`5
z{&9M(bLZaM7M&Ig+wQ;NOb-8hexA*bet*>oj#qw9ixJ)R{Sni&e}<ubXSN-&d9u&#
z)eIj?m8mBLPuH$Lr=96tq`)3|L%sF)X8WpS``^X++#i4cKU>UK|7N?(7x`UQ``0o*
zFVH{lZ@tr<(a!&0uGzIuCxabq-g|%KIP&XbHlx)e#+`qEl-V#<-#hLf$hUji|KlMS
zKgX-qFTB0_NvMzg$JLMS_jT{R>3gI=gnh}^Bc&B~r!H{`|Lo+x7xghKXIfFAQ02UD
zR{S4qzm*<KdY$U!wpQ<c+X>V9GSk=GJkOZVg~X_62b%6_Qr#cJq87LMu40<)-KeI!
z-jX|~_-){NdUHX@mEwu-?|$BC{owS(zx8+gf2NyAI=XX9etskLNObb58pXyRmmj`k
z%ud^%suN~4r}Oty=S25+8|EdxiL<(Mxxo7PGE1fZMxTGRy;{S+ZOfTu%##&&q^i{4
z<nu8~J@~5Tl)~l4Tf3f3=O~}}Tixx{-!T4KrJgtOZo#o-=O6mTo!|b{sr}A0?`)y1
zO7`MApZ|H~D0bN*B+@j^b$#%uCmDa3UTuofT^h!<c-8b(jc2>~-X4;^>n%~-7x%g$
z>4LPbYX@)57q;Z07bSN#=f0WYp18ZR-^X_Puli#X8oZV*k$d{*t4U{ysLPw^DWxwt
z{K~Hz_Aa=5^R&Qi(@phS$%Wrkr+?OzwLM=_A@}yjs^;TKHe1(=&#L>pW!9V{EeD<^
zYAgRST`9nMaN7p0S99ZZ*TweDEf9W}XZ>f9XWAq&2CWUZ-aehI`9)8?``8546v@c1
z4SO2JA3eSQpg!|y()T9w*30{rFK}A@+l^VS@N@K&y~0)>{_(|JeE3sRR_guI#q~jY
zOFl0+uj`on@$=)45p4Zh|6VZFv>ME>n6Jbn*!j$Tb;!je^KV^dt7f^B|MX>Z-Yg;i
z>jL-j3EVxV)BO}Lyx10eP4dh$4t3%43pOsgx#LmrzuGq&bGv5TsV{NoTE6l7zDL#b
z+xfo5wX1iZZhb0w=hXSz2dXyN8%$&BGIG0e``Nh%>C2s>qF6;bKVE<Et>piK6;r*U
zIu+LW9!dM)?X@uG&Hcl|yKL`#Ph)(2@Luwsj{+6_f3H5h9ICtXyj^{Kkgml&WA6Q@
zYzwC?@S3Kox%o<wy+iSjbIHBG>%Y%i9vb_7={fEK*+j!iw(shnPcVHFc{n*xX~ylH
zJAU`B+dkXO^7@6(e;sl|#S{<vRxaJ-7TGJbaOSa_B?&QXD+CT7m5o=Ozj*J`c^$j?
z!UgB`{jM$e{ky&UgovO{$9#EfZEKAxEgiR&Y%4?_X4br)sq_Ev9+UZ(ylR$8*+;6@
zd!$?6h;*vfYv@?5d!?&XpVeO8#_#ruzZy^Ugx>gC$<`zo>bAG<^^CivxV14h$HZ{=
z2JvrKEO&f)pwOM5w<aJ>>r#-|F##6N3F$!>MEJv|C#$debEodkjTPmu=DMX{zJKna
zxYaskZ^y>&TeqWUzD`o#y}|J8=L6N|F%{>lZR)=%=?NYB+K}IIqp$CwiL)Ye!uh9R
zyH<wI+`E0oNfXt|dCn^)ez<gW=Z)ybN$N&B8!rXC<J;<*{pgQpy1|RD&$OHsZ*|5e
ze9%_25wmChk?At&qshbKcPGzy9bOc+gT3N|_zm&>4_vNHbT!H4t7+{~)PJ_<_nVYw
z%2z+0HQ=q3ub;B>2B%(**XNb%t*h>pcm+4w-&X#yG+m>+<@h6RV_{+8AQuJ0=eM8q
z?Rmv=gT?#$*)ERx-#!I#EDx|;ovyRJum4(ELimd*cV<cSYB5i|xqr`rGuvCY9j?@9
zpQU``dPIU|W6>A={B3pD1ONX%dyOS?kxG*A$AxX@TBfhd{ck5<fAX;7WZ?!Dm$}o;
zq<5%WR=vL(tx+NI<=LzIZ!Yk~AKY$V{%-Y)A`^w^t*^abINcMil;6~Rxn@qU#mkxl
ziF5Y3e`xsIn8jx56~4{*zK;0`1#y+1K`VV$oq0TC*TkajuSA~nbvR5|J#|I#<mEqn
z=W%B%WG#O)Ve`3r37Hpee=*al&zpE@BC|(<x$Kh8Qz9xA3ilUwT|DNt_O8eyer<(^
z3UgYEoR^*qEm`&U#<|06d0Q6?e*IUH81Q;$)Lb#Ctki$su6BBFp62O1RZ)O(^XuvL
zEH89qUfrrZwsBAC>)#)Q=Nvu6X2W9nO+==J?@6u2`y<B||M)C?<t+cTJ68R7OPeC<
zztul{d?;ISxmd@EhzL)nut}vy7T26L{2}m4t8jm?_!_fW4J)=p_egCvd1q==*2JMU
zFaAfd5|=`;<W!f_wia`OrsY3>mnHdTD%<LnJH`6ln!;vZTco?t*mm}$87qIJ7RGc<
zFmUmZJh9{+yZckCDXXta9(j7BIrGTj^|kff7h3CYZJmAO-h1nyn~d^5HZ1mIsZ-u@
z^RtSzU&Q<ajTZ#|m32(c<@EC4i}ddFUnji7^sUw2o8R6YHGaTUGHZYHmuPRcV{6V#
z_XxhKwbsjdGe?SON~jaN#ka89-g60(ax6aIPEFA?m|ne1_l8KmpXR*>A)?NzA)yYU
z5vIp#tXrpjssGmVxPbZ8g2f+%4julnwB(aaSV)GsNHJ&o@AD$_66Q<V<V|UBKmPj8
z|6YZ!FEypl{R^G(C`o+kgNTAFA5WIeot}|U|9{6pW}RmCLk}EfnPbf+UyMjF;+MN)
zxZ-e3hRMucx6L<`WNcX2s{iMQHwBlWZ3SXY%HlFMn!d1+QMKOC*Z_GWQ1*$x3(p)l
zaDeql4G&KbkHUom4oVFf*+~fn3M;0xHYPH5Brz4rL~=x^9Z6ZR@A+HT1yX8l4gv??
z)`vBSOy77wf~zG&=!=OoSMVqHGqN%d7&sVy&1>XzW$svhuz<nCNV#(X10S0xI~&`j
z=GmQ{jjCP^6SrJQ@o8uk7G|i|<=c(sRIp3UA-k5042;Z>-C7&Q9U}5v^k4hkxs0*m
zDG_UTTNt~^buosi<X$xs68+F9!6;fP8XzX-D0Xw|awW#F#>i`nm_EAj>I*VPR(iSj
zT$Hl)s=DGNl-nb>cI(RHGHX}vU2Jdrc8$uss!Nk+8keWN`@idc`TpPY=Q|WxD%Eow
zvdwbs$&3zqmJ|EHDcEh(Wl_zl?%+yQWh0Li&WXi>%TK!KTYd{ZrKkOLG3$>WbIF&w
z_m|D+5}5e--In8OP0K&&zC8Uk-b;S@<Bm(>fqESd>oS;vlzD$yGco<$aH9I;va@YV
zPqz7Z&r-El@mS6sn{w*Zc|UK{s2u`x^UmF__p_cJEpbHG`_`nqQ>M$87kbV-d1sSC
zo~wX(?y0GJGVkyNt8KrT;B(63p^s+F9L0IJ6U|a)@4S+8xliZw83ny_Gt!<F`QCgv
z=gT>>6p2Y^+EVh|(>5v2-Ymfz^W@bH3%x^AG9NCwv`xb3ESsLegvV#tnA5jJY<kAZ
z9$mJCZRV!>;O5{ZcF!L4Z1j7U@O;OCj;R+58w0(?TiuVhu}6N=iRsdu?QIq@>5|bI
z$NZvSzxX|;n{zoSX6QvVh%NHiBD2<EbpTJ7d*_LcOBceX^nJRhH`8TKNu{E`dTUXN
zGk<5rqaEBYg&qg#&Q{udqV0)X(cC>=b?%12g}ps$)f(|H>H|9KH&|`s-0+Eo#mXl7
z0Pm#6C0`%iR4Yvuj6dRX`v<?Y=>$L9h(DI|B%4F4pR1HS+qz}z_3v{}SjWU24Ux~^
zel>Id8=t5H%L2PkfBYx(X7$4E^hWo8U)Q(Z+sD?%clv>O-T66+_Uj(cj@TopVS3k4
zdxwT~o%i!h2Z5p&Yvu;l?^UUEtWgknz<=*i%7^KDfAIWU)utoEkhN!?Wb6udlV1$V
zdv|oSlnOAs+c5R$KQmLcvh|+#kGSN`2$ooTwC)k}2j%}2>iRVk-uBoFNG=KN^t~q6
z@v5PcZ;|YtS#ph^Ci>_wntz>WQ|Iq^be@y;W<_<i+L>bht6MbZZzyQYSyBHm`qmod
z*XK6%O)+&>+G1gHh28(iEOo{Yd@Wz>?a%Dvl`_>+UA-%}_N(kV+v8QQqP9K=YgL!d
zUE?M5j8%c9FjkMTym3nB-N`Ks3Ub_xk78CWeN?_|&Z$##cT4{1zqpjk_Dd4e>914v
zzE-@y{_W25)5|wmhzebqq2AcOn(HceRQ)2iXAPlE|C-b%T$-!#G{fb{<Q9$<i~sH1
zb-O<7kJe$nWkUN@UmmyE6S8pmx;M`!-@Le4u!_s(?Ssg56Mji)D7@p1vyGg;x#3`M
zvM-mY#o}76vwzbsRMs(DtzmL8Zx;E?b#eY8{YS0me(G61KO8=%Ii!sBZ};m*!KM2*
z8XI2BsQ2-CWAg2LdD%DPRpQ=p=^u4>=$wf2X%pKzuSY}ofTBgvYvojT?FmmgXFRx`
zE&QiqcVq3`>(WzRrJmtm*mKZFs(R0!mj|bRK7PQi`~BC8Yh$+;T7S;X+i-UQZ|_Z!
zspps$y|``h#`N7ri~9#^>pz@2*><Nq{_($=%M6eGSLai|Tfa8{!d^ACI_t+VU!R>{
z|0{Ug(ZuY2kNuOB-mvR?N>5nH=KCS|kM^JJx%%^(Z2vvt|NPMW`}`*B=Dk^07uvYZ
zIA+5C;vd8RlMg4KS-H6OYxAvr`<#-Qqvszxo_k@>q&XR)Z7N6KwtbwmPn~myu=@(O
zeQDK&tnp!oj_i4T_<2V0*LwNM^06Ca_a5n!JG5rWuFL0tI=+2Syzh_6>ky_F9k&-u
zKFGfPpMTlWGxC|0d>!neiYs17CT-COuiv$+H224}(m*jb5fR&_=YLy7T(1knze{Kh
zh;X@^!FE-+?Y#DhD>-@Rb8~aozn{3|vbN$5Re@TjDV~osrydDbbX!q;VAYTB_0}nT
z+q77OMA)<Qn)|;!d!Z|{LjCP?$7AuA;wI(%tPDHQ_-O5VjTv#q@{>)2M2~ru{+DM=
zDz=@^xKcb}j)T3J?Lp_iEA8fW`IyfR`{>-uv!!W%!(W9k|IlCS=Nm4*V;bu8fj3Wa
z=WpwOU#=cFD#-bxps?PWMejvh!@I;8x31Q|{b{<P@qpTa5V>WSd}iF>@V+8$^gi*v
z*|Vy@CyrLnn$5lLL1x9D{ORZYb56gK%E+_-dh^w-y=KoUp1)+yy=DFFX>_;N$0skt
z%8FfGpU(5T&ab6yw;?N||Ir_*e;m%`3ook({5ex$``)_t_pMrWvkkKBvu9VEeyKE>
zaBtd#lr!~R^Z!<;u8^GNEMWQR$-~vT>}rQxXIxXQh+|nMC1L%e;J}6Uqs|j_rzTeB
zo%|G=y6)N|gM9(re?1rej`{D<uKic&#BS$9%De%W_fKe=C$J;w+wb%;v#sAv=GadE
za`9ZPPjGhlTIcHb-zO#tww?HJ^paZNWD(chKf7Xl?OdmKzOSFSrF*hUd&H|9uN2r+
za-Umnt>tOE+ONG(Bzogkq3LJlBpz-}Xx*fxQK6K%+fVlN>r>Z^9Ct4&%e}npm|2g=
zM%Cv(-s@+y{XEY<Ct2>w-4&Ua=Dj-WZE;G@@8R;ZS9?OA89(G+&~L@z**byAL#<AI
z>N1P&L)~kqR*T;FZ~f`r*7|k(w_ba%nU%t|CXzMU<mB4hvdg1pSD#nqNfdw6SUYK>
z^keyD|Ap*}PhGyt_ilaGH%Xm^vsP6qcdzgLDXR7S<1yzeT7Q=qbNyPHa_3m3*!8aW
z@-4n!O}DBT`^lvT?fQ7?;~@)$<K;Krnnho=yZ!I4y1w>Qr_%fFSGRs+{=F*et;{LT
z|ExL(jM}g@5x^H+g08F7c#x0~R1hNKnUV41zyl@*@p|U1STq<zue&VdWpZR=Ha3P`
zcWKUKZZJJ2jZuQf+(O?iv#7X4!OYBTGGn9Eq)?W6Bjo1C)~M)yVRzx$|8=hWSw(c;
z{eCL!6qU#6*}&rAVKkF{^SoFc-EXJ9xqWzFylVCFJZb(LI%`r&{o_}y_M5wI-Mq-R
zizhf$t8WQ$V%J^cVk_~m$8}|k|CbzBo)D{rAqyJgG*+(=YAL$6K!~+!g(|10Zj@5J
z+!D_f84I^^u2^t2$yIi94oA<I&oBCeBv$UZpvSp5NyJTJZKlyGtIUO446X$;vsp;D
zx;7U(M(FpL&yZ|3aP)ep;}y|lC%jTwGf~KD&r&1Kj0B-4uT)OP=q5}Iy~Q~rQ}oGU
zjn#7n15Qb?9^JUlbOSqE1ouy?#3jLjF8x81>owS26`~!}Uz?t7oS@Li)v(2JvRr_b
z7Xw>B&Y2=ZTeVqy2Tx8cjkEB)z`b1L2<LMfo)($siIW+5^cYQ<*VuHLNwp>FXodZF
zkZAIS^WLJP2evR|@8!67Fym$7Bt|EtNwXL13q2rfUy?kb<D$fm;3F;)n%a{#g#~0X
zEb>*doKesAze7aDz;UL{6U~K7SXc@qvs}2;0}I=>xE^H>5}7mc;v)V98k{vY&op^k
zdFs3bzuJT*^zW!H|B|(9*PD0q%AY?EveHbw5L9)=cIv7r1#9dd8%g}h$#jmrJf}+T
z)*kK0*S=OS4qo%M=*!_hS8Kj}xVFhU+V}Zp>tB64Yv12{QU9@IV@zVRO3q~Q#qr0k
z9&Y~mHAmI&%8TnC7tLP#NpI1&c=5aYD>%LsyubH<-!#Q5Vc#7m%ztC};LY0~Syy%6
zy@;xfUoD^g^=wq_^sKL?brsk4#y>UKa9`|&T+GIW$$OnHX0P4+^k3X_#{*|&U8TO?
z`Y>xRQ<?+gaqjdBzgkV0r`C&ZV0{zk_-R-AhvMH$g7id}mo#&|vgI<0alFs4FnLeZ
z<VoVXaj6|u>t8Xh-z62YJ3c*n#?E_6A>UaQn5^I2jB+>FdHm4rPd1umtBv-p`FXJ_
zUfMf)cQN<!+)q0n&fTLHlfO9W_U2gjM?a2M$YigV-gf=kw_l8LGm<X1)Xq1bSijP2
ze)8Ts8>@aM?%no7YF|$O%{ce7GG}UCpF7Syw83xRHBG*RugiYy`EjL;RlnNdz{}E(
z!&WU(?IsJF?|oRuUzc4kqL-QQq~>B~%)=#Sji#^TD}3)nv!B2Be&PnX4T`+C1+=9n
zWWL>gFz=Dax4HKo-1>a>8{^)4>PzSS{9($^Sg*RhUo&ja_M{gg8d1OJ%}nzb(TMx7
zcltT@vf7ugl{c(kYqx%phiqn!Zu$+Qy~mBp!qzY+$yoJP8|^sEwC%snO0D2?=6ru|
zrOi&<{8~rjmj4{)=d=HQy}9Kx!_+q$yq1NXtW^sMzilUPzfS3fT~g@1#cSQ8Pv1;5
zy}MzSbHdC`^<MAKACS7IaY7?9)wOli98p7u+OQ{VN`aydzgr@&Ii;w&Xv+Oq6n$>J
zc=}zT>9g+qeRVjL{ipa{wg~~x&W2UQnN`jdyDU9*uEvz-N(F*DPaG~NedbiSaOZ={
zTSX6dBxufBnlWurWLKhQ+fs>XNf9WF(0kkJudiZ$yS4ITS&7x`v*D*}rl!x4&i;0?
zwEfgp>mu#{xkoIE7g#K>-Y*dT`{C(F`MYNxXa9fx^2tq_|B`KTHEUFtUpmbHV&aoN
zxxDu^`FwNUUoSJ6^ZfmT)8?0)S$^i$Oup5gKcT(L`}pJ6GiLYQeDSkWf1Ny|2pi+2
z+g&Vs>-X8$m;9?^FZ^MV@~`giX~oY!f6CnKW1f_6)FfPUuyXN(hHo2{oTUwB%DTQ$
zn^gGa=E7NzG)fvYjwY^FimoqE@F@BaB(t|{y1}yxsupiTy?2}yTBoz|I+t-q>;2fI
z>s=e-7P%ahy%;91HS2J$>aKl7ZzegsUo^pUf!B)gXOp8ZzD=zcP?u4fwt1C|j_Y~F
zK&=l?gmQi_xKO++e7&sgTeZs{|Ni{l_RE$j%VQTu?S>b}R{vb&pLxzAu|)NA`Nk!>
zb;Y0K)Z4H2&NALmefwqLDxsjgo(lF}{a##KXP3*DJYJJ`>fqaDF&-)F!t>3K^=dCY
zz4i2d%|l*((~K8y4tl@C{(QY=_YCvdd)CI+>`hp;>EpjyaZlEKKGYGCXE;A*erb2~
zd-eZ*>(!pWzt>%#m$`E77NbAKzs-KLoV<Vd<Eq_XKm6Z$T6^iFi|1<fzm^BpmCwHW
z{m-h|bD#N4^!Hv8w%Tm+lb1D@dh6oL&aV%jep%AubIu>WYA5S^d9|O_yp@yIdd{rh
z`7L3ORQx&pjOLdYSdK6)kImKz-<!2IugT;~+1{=DI6Jhiyh?Fie=4!+b<X3LYc0#{
z<aTPBhE!Zm&=FeH5XY)p^Ey~~Pi}Ko%#&#kW_2*S7R-}VU4Qrzi>`lc*yZhAH;&zq
zczIi8_E(jux1Ma8$CfU<GI?v>!{y7uJw44h`RZ?Qe9PfUNH131n{Cd?yYC?LsS``5
z_43YR&1Ao8D{vvQSM0!1HfhDf$;yt&z1guRdgVSSW?0O=e|!5q^Do;jdR}I0GT7o6
z?A_+b*xMj{dt2be6i22-XLUWFUOZ{8=9D~>eZiU49h+FDJpMLquV<N4ZSt%J<;nXN
zS}6F*xk}~KuRZ&o@5S_q3)Wq!_|dv6LusejP5Ih)3OO&t3$_J{-<+EG<%4cp#Z*?y
z)XWMqzIUHy?JGTMc0*0ka(TbfUmYQ*zGa@SX1a4(FHP6{z}t83)Kq!SEe%~ZyqhFl
z4%k>lek++cN!IONTdzvyT1$PN<*(Mvp7f=%J;UkVGAmw&{hR8yOENwb*s{>HdhQlA
zM$L)07_=KjtzNt2C^&O}@HoBEHtMld%%7<26%2Zc|Cv4ozfxWFgX_tKT^t9e?W<3%
ziR5}GD%keJ=8*9BnI@_4A8eY;Ugf*y<ZPi$ou(ll3MRCtG}+t`GZDG1VCZq``TFR;
zHmVy-eNQM{6j{1J)=VccrM{SRUGrZ_<(Z#s)^phfFn(LU?7Msli(16$n6lKTi?^;f
zd2f0+Mj>JEnTV=3lb3I98Ochi%vo~bg7DFt*D=p@)J_If=`9qT${BsM@(6pznWfK!
zq)n#Zm=x0Fv}%1zP~fr<p7V}<Vp7hGOxtrG*@rT8EcLqL>!c;Gx^SY$%oxLZUzY6}
zw-z$~S#*-KxM;~yvE#Ce?^BrbCGOnOshx49ODah?af|w5UZ*LG4RT&uYkp-4d|b>b
zr!1DH*cZ?;`vR+dAa_&2l8#1=J3kymUo2DE$-YsbT-H<c{29+aIgKjj1aFxMU(Q~2
z=$!D~!eAqZibBIx$@)8do(*hAdzW#A)jJA=C@y1@6`aDh;DeE&n`Lq|Z<dMJoMY>+
znzihi{qZn!nMkeN@%2{?w%6bIyHNO<`pQ5@9>sN;{bEY}YR9wJwFDWuxcE<vIL5L}
zqE70MTX@K%-AZf1wun9m*u6}pHu}DeO2M_?4Cks230Vv7KBIKlg~LtPM8xQU{n2gG
z-4p7k9#_7fY4fAm>x{10okbp34{h91Ef|`^@Q-ujjU>C;17CMaN8hx*9rZjTP3Jk^
z4gcqUJy!B3tuE|*+#qnrkGt`X0>|9#c2Awv7)vxfYDM%K)O(j%IHqfuS#D(C<FJlp
z6YItP1(RF7r>iGdx|mP5*rmvHYr=e+2p-dybC_pp)H}FN_cygVrEsVq=Ty4*BIQ=T
zTX`8_A{?J?UVVPBf8wtGxVZh1PhFm#bgo*)XSvHhu59P`_0#Qb|9<}ZeZNhu<viV~
zHaqS2&$)16y8N`&@9s{%`P1gUnBKC}S05c-d->!a-}34&HHI(6F5f)5R$W--<>jmG
zw<DgudbO$A-E#L5^ZJAde>X(W(_I$sG3PU*hvenM*T3*(f3f;6eem1e#Oh-&N-Etp
zE&8II_4d>Ew<+%W3$MzTcso5R{hDmPx8iiO-~YW8wsY6qW6GYLdUtuqzm~pU;a$ut
zC)j^X{@pWAA#wJ+x##rstQFn+^^c2t|2nm1PRkd5kF)QU&d)wO{ch~d|Mjjrzm~6$
z@VNP?j%DTdk6$*OJ}wl$xFK`<q2yc1KW=%lS3F<B{`bl8i;HjGtYLERS!LFiZPdo}
z`Ol^1_2%oJ?LWUv;_ky^pFKsteSUI&`Eve$R;_CK&)y$1Uh03K^Y!VEkE9Eh?m2p=
z!1d+qf}^_~SIr0rW>x>qxi`_ZVf&Z+3W@dhp??&-@2E!@b;KVPS-Ne;qBDX%l9TFn
zq95r+7c|<;(_LTp`|Wf2y4Y;x{i@M#^rHXt-k8L8Gb#A2*ktDJCG~dP@pE;Xe_YKe
zyq&}8z9H4)-^QFo*=;Wu^({X=*}Y%x??3mYe9Av{ZwQs&SoGBQ#-p}=Md|Eq3em~i
zF4(f<)EC~)u?+my=TbGpr=-=wu}-kKZNZw($=f;>UllweDNwJIpYv;m`LBw5Hvd1q
z-#`EFm%sXtua>y2FB03l{PES>`4Txl9*6tNR}24&uym1+k<|XBF#pI+my<@zTz=&T
z-_hykF#oAK+oXBPPo6%}@+~)?^;tJr&yRZ=!Dac?u=Py+N0D9sf8D%n|8EV)-(I1F
zy|Wo!&sIHfiZAH+3#(5G_vTzEXLB_VP&x2ywfceIifcSK&t-g_Z1iC7q5fy5<`pFG
zZ_w7S`}OeT>A2}XcpvxN^ld!b8}z`S#^<Q+rX4<Fy-U<uZI53$J872U53OZ0-tyd#
znas%FVgGB_7WH*s0^iw7y0P5Ygsn4YGF@MmNy5?6EX~Z&)HF54!YtJ?F)hW&%+S)@
z$iUn%E!85$#LUFbhJcFc9kNXF%*Mv1(^ttdsnnaBn<IDlbg#PmggS~G`)C<{%2^;p
zM?*oYqbbORkyTV$t7-3dJu{aL-|vZ5zu)_P-3?aLV=i}RP1s>@uvL0`-j{p-=bY7#
z-)H<i_1^BumB%DLzn`D1a%IcWkTtI*gmZpP+PqP@?4Vzg&kVyghDzezd*6Kfn$c2!
zhqpLGW=&(=i+)Cl4m+Mhvm|;HBe<Ond9ssbx9sM1-`)P}27`1Gi<yw}?~>=eHy6eV
zYpPv{|E*E=JH&3MdfD-NGqlxG_OI(-R%pL7aG{xR#+&E2?{DD$cDTl{aN#baHnpxh
zAwE$PzMXxs_~?_6%*%7s+<fY^bCWXfEI;ORsa~yb*~}T8_qS#`UXD3)W&f=smydML
z{2w}dn#so}VKW+X4Fb>n;`pvRd-CPd+H9YLDu(H&_GG56@tbVO8+^1z=fg7l=F(eY
zmp9Ixku|@(j)|%CmYj7$o5zIt=DqiqUG_P1tWSwEdQav%)wyYj;%`(Yg+KCL{`G2R
z`WeBQk^ZyS)hnqso7~=<wZFRjjpC+F5zD{5Ri9M6ak|IN{JFP2C)BUDQ#x*+F~2>!
zz-Zoa?g~Nf4?=Orv@1l{KNNY>9$YBpcid@Cqwz-jbBB~_I*K<+Jb%a_)1eyC^|_Ey
z@5pQmj_D6QW4g~5n%z5ga0j#cL)ksu-#^&#9TeRm6#h`trgwFHp$6aKrxxt|53KGq
z94=JOJ9Ku3==O(YGL7sX1>}w?SBUgK^swnu-@sG;Fz-(D;sTR*M{9S;Uw=?l(~|tb
z(C*;!A3WzDM9OqO|G;+d(A*sy;*Tw2n!G<+O?%8-)A+cM$?wSYIqB8w_Z<uW!FT^b
z^fiv1Oxl@mPS)$6o5J|3|3Q5_-!+GNo&yeF5(Tauxdn^-U<0PZ8|`lGHWzx!JG1AT
z+LrQIA+?0;iO1dd?0)o8{ro4T^Ws<Mt*@)t=lyX_#p?SS-cM?mJu{iOD&_3lyL+OG
zttY-}pLMtTS@@1;-yZ!)%Xs(j+4)(Qk7j=IE!Hng3NlUaFg~)}^8DF&8I$xb<82F{
tF`4UMxZ^nIWc{7HR;uszf39zho_%F{tpbxQkC}mip(&TDs;j>n7XVW3w)_A9

delta 73421
zcmezHl5^QXjtQpqh8A{qT*W0tsfoE<6}P5N-0R0|$aB1Wo|1mS!Hvo46IbzhG#qIw
zkxqKC)mDw|Uj4yy?Bxoj4r`}&|K0w0{@Z;q1q=2+5PBtl=Vx&K`7HVWcJgWE|3ze)
z#2w2%zp|))_-0wdn~O2iw=+BNWQj9qW-%OiXd#%v5MG+WFkP%Cqux<?wZo-_m8)Ym
z-TQIn%fmg|E7D`y<ox$Gg*~~kXz`}h3q>{a<L^AK;Z|dbpK&pPY0-6^rHLOV6kbr#
zZH~VDmDAvU#v!>)YC2h7KRW|fS%}6R*mFrS^KQ6+Ov2eL(Hs0rE5E&1v@7J6=TrT(
zqsroomTQQv7x7<Iu=9tH$%Bm9K6$3IXTK0WaqZt$TbW|xSHZoPHov;kFPvsz8Mi&P
zhxLl6e($<ZNplZGXnZ*l^_yRyrtghfmz?)2+kb3VU0#&m+b5a-_UG4k(zm6S{F%P-
zD5Ef=`E<j3j4JhphL$GCLHl;*$-c*C0&VXrx%M_lZi=|WaJZepv*8ZY53wf+Hy2wz
zo$!5sOLXDIOSxNbA7scqW1@3fC^YoXtMrW~f2=zif7d4&Jox|l;jjMx-**51z3=DG
z)0IDdnj12tM>R{GyR5+CytJ*^Vc8bRbKCd#&B?B=FM42qbZYU0Ig6jh9D1p+^;`PX
z5BGh3r2R3MxGcHn=kJ&u>*TU6{?`6W{_%BBYR7{!h3ZkxQ&JbCnjPtwEOOjtMXsEg
zTXR~oKD+DDnTLL^`1NU7<SJQ4p3R5&*p>gN^D>D4|DkzQ{fE}^tfZcE9{dq}8I6VA
zn;ECt%8ERX|K?Hu=ft<Qfy=5+v2eHlowLvRrq&-nV}qszA0(e&_^F)p$@}wx8Rz#2
z7=I9W6@9AvgEEuq<GwpD<bF-OBXGx%`{*lyEh&2+2&Ay=Q(e7i>DoCSlJjN=tKV2B
zJD2xm%7y#w%b9P~DE*Mrb3V2GHfIyt&)a67eKXF^5i8b?=luRA<;A1=y+>a0&T%kW
zdACR1R%~9+icis<oqt4D9hus9WyT5bB;Nx|iY?k!Ke(}8hwJkCEpv`e*`24%b}#tl
zokO3*Bdt4M9#X$s_gCbFWK+<w9+d@NlM2*WwOV~w+Xk45xM}4did_79z0v9Zd%?9|
z(ma1Nc3y4r43>?)8o_D1`JmsKr#I?XwQJgYBrbM&e)^H>XNITIs$1Tz*H}08jHj*n
zuc>_Vwb#cMEWNvMJ=;uX+vJrOukYS;R8`e<m&S`L!EW89J0@Q#iJZUYL9&Q*%#EK-
z&mt8{6YsH3+RD>AtGVPR`=vIGt6t_^!aXWBFW<)sYNf`fKUw{*+Roor^wr;J(U!vx
z8S3x6?`8ZvS1CN{q5c7(u*9gdPj&=7e>gc|_u>z)b?X;y6`pBVBlTUpj$ziq+->(l
ze#G8-R3G-EKCbb)ecUNs_ICwG_+JKGk(wd%uu`=(>b|7i>5dl@);~{~(fIf4I=gEQ
z2VEXtOtXHsO=11h*Zy+<=O=tutWvqL?+VAy=xO^l#nyW$et9HxTjyXbS7^z(ZF?{L
zUiNh2fjYk%Rq67avp-u`r>;8md_(KDjJwXy#YEp~ZMYG)M`-@T(Dc*Fah?upt?QIZ
zwzshCH}toABBM}VZh3k3hY7|RGYuo$7x^t(l$*5h!>s2g0-c{W=N>t#Y@fGhB9F?}
zz7Nq4S9@-<5Z1NWQh%OzrB&dssslN5rDr+ntT%G%72G{><L}_o%?GTGR^AhAIrpW#
z=>gAWKa*Gk;b&)d&aphW<yea0%RB$7CMD0cyxo`kUhG13nD>$w{%@03TspE~sivAx
z{%onGrfdAg`nE3hsZ%w{uwIqBYt`HzD=w+spDC?!`^^5p_h0wzIkmU;X?>jdURAGr
zg(qJxMr=P6@FGs7?aCC7jQC!i?Yxam5h72;)muA`PJMaZb@Q59*}(6-!m;UjTW*yn
z=S^0f7|F{mzMm_=`oT-4C*tkDUrwCnnR)%iP669nYPoB&itoQ}4iTMnZ(UZdbKI^+
zFMTr4sjO&y9N#Gw;?o}X<<_0|3davSrmu}uRL{Av>D`GVZZ8*ECq2F!cg=RP=8}{c
z9iPgro9iSFiS@krxb9W{HohNAFP?a~z_z;M?CdqY3;+FjX>TSwee&c+Mqx%nXklh-
zgi=pzjqvV&Y{s+id-xCjBU3$Wa}p*vH<mTti+U3FMWFw9^{a({|F?H3t!#g*vN>90
zce9Jo(dWn8jsDo)IJl&~tYgBz*$@A&-|}nHzkPOp{=78%^P^k#K#yXBeBSMZw=ed{
z>s{-8(RTaS@!5tK<1Q}qXQ@xVlft8OtYY>){VnBxKYx4u;q%((FWIw?-8>UkF^l2w
zQUApU6?~kNTBMD6CrHN1%qmH`f4MKS{Lq>$yPUHw_y)E59lmu>G4<{#uV=d>+wL9J
zP=7Y3epjx!kIac9U%3J`I`(hB?tQPJw{;a0-x2lf(^F1VK7H@wf2`Ce{L|u~gY|o>
zu2~y;@0jekL*?q7=W{0b-kr4~_mz~xG<oN~yB)^M8Xmv6t8=iie^vXbb7Fcrtttne
zoM<bzQ{DM9WwG%3#5tu;x3Au+*6f+|f1%EsLq|4jh;n@ysu>gcGj>Y~`<01YUVVAa
z{A-kUMwJQ2&iN^<84_H??;~q8_1aQn-v;CKdhV;7kEFs&wv^nqj^dnlBU&lxbfMwy
z1uO3MI2V3DRJ}{BJ-NqP|0G{W{PbC+SIu2a_i8#w>Yd%|*4EVdQh3IVE-eiyK1stq
z1;^HDsoTV=Ccc%dZ22c6v$^|yM%i3RYtD{UnoHUl94uBn41E{*gHJE>(WCOjlbZzN
zo~SDAds)9KEGTOA-bv4IzU7>vWH>d0MPy>gOaryF%}WZ)43E2)e=c>Exb5mbcYk`X
z&$+nEFPuWp1icCr4XU=tN^*Y|qOi2#<nEQ<MCNBcEpYVzxcHjN(>W`f?nFftUR(Fd
zDwEyFXR?0_ziPh2qK<!72M<bacw;$L?%I_kJ*QVIe_WarTQ7U}@uJVZ($T99=gP>O
z<IlZ(`Ic{n=+;MBb!)Dc&nP@xcd=vc#fBqRPDc$+s?Yjdbf#vZ$tfPI{}RfJb|%EG
zymET#qU~<wx1EkypVvKQxMPlqvC#!l<=_uK6%x0u#5FIeTec|DF<Xw+`Q5v_vP<e0
z<Zm{<EVt?MkDz%hcF&@?>ofLE_InbYyQBAJu3^e5zoZE57hXlqtv>`O%=wV<F!E4$
z+Mdai8)_9DSFc_b9xmnUw_^91fS9SX*iIP9^Qx4lt)3g#wYbGb+~a%74xjt+SJNs?
zEIxVOK33_zv9@H!73XDEEKBBW;bWT1@NnI82iYs$u@(9L6)6h^m%Xsv_&c$F<<F>+
zg%cROj2<kTGV7shRkZp+xm(uVeP?w7ZYR|-UHJU?yZ)!A^EV%FU^aJ~9LH>S?y-z_
zgY<^FXTA?(lA6oTyBTcUpVj_no@f7rXPwLm?yt8jpY-_lLdNM*x8}s3p7%M<>HC93
zPC2(3YnqBypVv5hQg6ERI&q;0{Zt#Bl124P&F;MB41BaCWOt^S&DCwis;ntWxs%nK
z`xm{fu90P#bBv>~esitK3+wLV^R_L0^H=87j}W)rm#u$BUh!L7lU}(tcVqD}L7yLT
z*1KoFT@WSoPr9T`zJEiNi_jqxzi;~$Pdaz2+~WQB-%;q7!L66o6RzCn*;ckT=lP!R
zCH6Ism)EzwPj0LaGWV;K@;rQE#+NHy&dFzN_P>13`Zu5T&%L@o(FeOH73oCfbtOv~
zcYTnG3Ui8o7b!Pwn^q%#z;BnlTaNJz7f)Wf`{<PEde?1lr0d>ny!=A>oz$k+#<IU6
zN+sNK(zYAb7uJ>fb~b)^<al?%;&~rd@4Ke1FW90KZ+v>KM`^}g<@XKila$SbV`e&>
z_MG>rE9_}!n8``u*tn<97p&a6#H?WD;^5Wm7unrAU+`C@`eNS%r83S52G6{N?#XZb
z@wUC5aY1WRF{n(PZg7uLwcgm&7`1sQb8?-`_K)+{zbJ0VERJVL6kzG#{h{XIz}LqA
ze(y&OcFhw-C*ChVku=fOta_Pyl~>BmY3!eO?Fbd^K6<NaTD@M8;0J%bxP$+bDt~hL
z+aGxT_ucpT_jT{r>WgQF<<5z^7b~tAp8U3GQc|y(-g~`z`@MpPw0^KC-ue79C5feD
zy3>o*0-snHe5|>2j`@m%{qh%{`!2+PlYAilCRZ<$#cp=`tAz{Nr*bmgXNwNjpPMGa
zP;L4D&%5JK_1{-rc{}NYNTAr2#IH|Nu4paNU$MJ@&uXDUqNbvd%fl;@rGXd3H!aB5
zOP?y>WqV0t>dCV!Vub6hu87|jylLWR8|>Yb<-hvtlI=USf9||4_p?LrOnADw*sAQM
z>O!TG>$$g@KP&9I9kFwvc5>0t(7(ab>$$}^y?vwS9M6v5<}PHqDInSD;f6!}pH@5&
z_>{KJDoem*Z<KRWnLp1ZpI1z;Gp4o#DB2r;<JeiyC2aDx_Su3%{>yBg>$UH1@Ynb)
zdrC~o-8b}D;fySeM~7zRSIynE$<%pD-W!Fm9eXcwak5Wz`n1mF-n5O+g*o+-_10E4
z%oN-1q@%7Hw$|q+yYl8OhXRA1Do8Kwf14v&TwOS;-<V4=^pS0!f5)u!TP!)-Wy_Y7
zoa$LM*LTw0EzfJd`FtwBU%k#|N~uD9Kbu9MO5pUF$@660OJ2F146TY}uV`H&k~-n3
zN4%wV7njD0jH_Z7!q3gP6E7YpV`=<+j?~wvXC()%%DgT$mZfBPTRuK^QexvQiMGd`
zK64G7qb}^+cJ7vJ!vg-~^gFLya!&Y4=6~jOt#xSfH`}%5m8808e9aA?hFOXJTrI`2
z^^VVWzC5c_?K<tXW{1!ECxR~4FI}g9Ew?<@ac*7T(%%ce*%aI>2;I}I^~>Vrw+jWo
zcE488KQ5B>==aH;p$C0;UA-7OW$De!bKRnrS$|wP`RgX<8%FN}q<tkG1)b2kQnhmG
z)(tx^FI$>@C?niY%|3IBX2<lIF@H*fYktp;KWedReto%ja_f?{Wp6nY+O9;M6ZyFC
z)gQN7p?Pm#-C6K~?|U}uhYiuUi?3_e$rxV!d+TP_k(<iXdW_k>>?_N=!e9B#{Y#y6
z<FRGC7k>Zwrf1nr-UkP`(yEqDxUEuL#aUsY`0$--!|O6GcE!1eBm+uif1lL4A@hmr
z#1i9~DLS)PR)~tOsQ+OxFRymnq_qB4rK<_0oBDVQqE9G1e|6t>$-jqnx9<7gjVd&~
zwB63v)km$x`qr!uKWZ0k4!hu5b8<#W$-9`P*;g1jY?o}CTX*Ea*CLaOxwkq(${F-~
zUso<mI-sm7Szfp;)Loo+dg&^+H>+3950~=!yCz@dgZZhXBe%~!+njAtzj(iGP%7j4
z9k%bTez6JW?mbuj%J{NQW$&t)0oqTSC;HE<-@LKL|61zCvgZqCsIhr@$LDjEpMIwh
z&M~pZOfZuBL&>8fAsZ{UR+(x{TPesYwv<m;c#Dwv&gI*56f_rB>m|+&P0V{6%Gb2+
zZBXfxIU<b-ciSU(&30$q%VvG6`$WCCg!0|BZ>QHSvReIIS$1+@?C)?}&DHbHd^mq;
za%x{+MuPpMRp&&nWgd!qe4v-1>vbO=cR^0yYJ&qCO0R9594{+Vc_|_7Vs^<5@Bc!L
z@BM>+$FDopbSZ!C{7KI>o$p-jzr^UeDtLk$ds@Nu*%7}2ReRqo`D?T)_Wj&i=ODA2
z?DbY$mx@he=6Ucumin8)tm^taPs?hCyQNyoSuKCvx;>X>wQ0sNuGtW1kb6x^WAy|R
zz3#*%Hy<c$l~nq=Sffu%XVv*|sc_bC!RXf;4^_^b<i8~?f61eZI~kbgp6z>N7Ad{^
z>50GGspkaGe^`7&Kx4|qpEBq3_lExb67^olS5SOweecVhN2Y$JXU{L#=(#S>?F*-#
zy?MmNxJOGTv8}e)HCyYJ7HjD4DRn7D4?NxlU9b$kSi5b};h8`GiO=EtxqEB*#IPe7
zCT$ze3+9V!?th**CGNOwY*5(EoQf>nr}Nr!rRPR(n&#0``z@t%$Amrlzg`D;_{?J7
zCReqlt-Wf=yKB4Zk1M>XH~+Hj<Mi43>*RS=P12`qac(=2%~_$wa-zh@l#ToCGHGe+
z?b}{58U{1{TPO74%;FrK1=DW7I#~KDaq-J7^H;I&59DWgTk_^!P1D`Nr&~;GUjJQ{
z9p$>eY31a?%!SV#xy4U7uHEhL!aKj~o^J;C>XmGEI;}rDq>W$P5i_WNpLt2RwkzOl
zNl4)owPSm}R838iR-3VGTh7A;qF;L!sQY#ueC}<%;N{$@NeWw5O*h@OKcTns_}Yz=
zB(i_npL+OGp(y0rQ)QE9M<UP7(Jk;lnlSyp4rkAQ=i{GZ{#8Xs`B`NCJY~Fht>uo{
z-uGlQr^!#BU)Q#to97>+-Fx-PT1)FU{my&(DtSqb+NBH2Zpqs_zRLX>{^GaS$!i-N
z3k?%iX@8%sY`yC1*G@Mk|4W$@R&xAr{rB+krZ?MaU)*k6cDZ-ke#Pe0u87Q;Vki5Z
zmS)WCSjo+}=yHJy>yDC69!-bfV+?ijy}1*nry9DgKj(hdy3QkEv($2x_qjf&&RB@w
z(5koP2|T$utRV6WGrLe;?$nlQXI0ySIwoeeX}=0Ws*d<qFI%TSGq^r>+J0k3Q9Fqr
z-@KY8swEUV2b|vTAhqxJ@!zlK$IUyS8+Y&j?{YTzbb|z@b@fl~C<O$p4v2G8x>T9@
z`~cr)CgJRYz;>R1Q?Iwgp7Of?uutFs%RB!E9<RUDD=tjj+tAA4l5z2f@-tgoQGd4p
zbtah?p(4BVW^5Bo3)z))RYBU&p+M2*^34Uk_NBdiM^X|F#VS1e<v!`}lKUPf0*~z9
z+PiyO^1NMc%WI-ER+T)tDaao9?!|vIvsoSTUvB*W`){gev5w-pPV33HHfA0SZD)&G
z67`Pt+`)Bz>(<nteD?S9+?=Fs_t$3bOWpjq+&48$&h7sCWP{qd)vUqRx$<|kQ?D~z
z^E~<W*Q}S5!`+WEZmQa0dSd>C^gu5k-GKO>XLB{#PH1Vc{9HXFVdr$mW2W!i1=9=P
za$Ga|u;hnp*w0K2X_2WJ6Ti=L=Gf%?#aQ<Bg{h3sB>9&u&G?Y6qEMgGvVZaJ*)FB+
zlUJxSSNT@n|NXvPNbpmgn$y}S&oeF_)4Bo<zF(#!Qqi<7^~9RDcdHj4y*PojEVpyF
z-QBjezYCRS+zwp7&cn6avs1yTnCa^!EzRYczkKyPckl8IyY*S~d8UgG6W@J*Yab@L
zlAluRg=Oz;a(TXV<7(Biuf~_R)}QY^bnE*!PCZKre(Nl`Rd1doE(n{v(>_hh|Ik{c
z8oSM2X}8xKWcBc|i!I&M-j%e*)@e`a_D|cc*_`Xis7O4Om^Z_8lhll9KW0uBTDSIz
zzUH0D$5yS4&k7Se#wB1fGi%Rt+behFW_=ZS<TZb175{4UU6->hd$Nw7(s}ZO<q~^Y
z{brqv4Nulwo9yE#|0Z;H!h65GO!FJN<2~=RYkf~ijM7>9b#|dm+k~&$Efcm&<R4yp
zIAra)2M?dzb>VopFJ@`z+y(B1Z*JW76#2@1qd#AB!^dymswIl6b$5x1Fg%PDGK=_S
zu}A*FS+@kQj{ybwQF~-w+i6@6*UntG=G&G0?!>+IwTD-Wci;K===v?@?us|FADXr$
zt^0i-ea~upV=ew2jKwxAv3pr0SE--2GTC02=Gw8QXv^92dT$L~r}BqiaqsAMzf@}V
zX-dM(oeIm>CGYpLI6d{-sa3aIR#bn}u=g*XKj&0W&CRgPur9sYshLSBX}KnscQN_R
zT)ji#yHEJ@P{sN+a$B?oyCw(ii9D5gqu*ee|5n?mN$e3;!d_c*g6b@$iN8qHnl5z8
za^jku8ILaSDcj}kv@LP#x`^AAzNwiTWrH&I-K_M@j_i)Ul(Da<tS5clFV5I3pWPGg
zORl~rdap<KXXv|G3uje@`ALO6pIx04>)B_0(O4<|yj$A;<URA+>tD?=Sb5IyrqsRF
z8w<C(hgv_~t2K#lQbF+AS97-TpA~qJtKuHBPfBdAxZst8UNUb^uAX*lR!LR<hJAhM
zLD6%=izPMJEN%15X}b6B=nAgyy0Tk0O7D98Qh4p0wO_Z+|8sZa@kbZUcgbl*%)gOP
z@gZ{I>t2_2TdPEs{^<+v%sF}8yZ(vPZnmE<ciOgH7Wc~7XLNPOg)3>L2md}h;dg99
z{olL)W*O}aT;rwjT=V=4r~HFz>|0bGE{ciuHhdI3J<lOvdX!6mH}^G9Yk_sYbyIWe
z)1R$%iQlxgr+e4w`@W6wiEY~+o#c3Q`)tBJF7?+%8)}W3Jc9yPH55J;JXKsK8nH8=
ze))5OZQq60)m5c^3*VVIf7Z;urTHJU(|*Q%RXeIP|NCmQXB&0o7Z&O(NBb6@j+c>M
z#PCG(`gP+j_iv%ki@x_RTVFg~{>;-uevDF@t<&nZu|D=YuX_AQvb$T}rfqwk=CzzU
zp)9DSe7xN1OhoPKdHH+H^IyF#ajUBfxK(m)Y2e~|>5jMUuVziG?Pp!GI9~R2cTJQ-
zRIJ7h!AT`N?~QjBJKF~8@O*ys`-RxnZSkEOo7LlQ9iMM1$iIK8u1>wY=Zv%OPv1}!
zx)l11d-u;$>EbW7OKi%5XHPhuyl2^2{||d#bfguYfA?LY<>ldhtGUu931vAll`dA<
z*M0l7^TwpLW%ufzt=CtSG*p@*v~SjC7i}>O*+)u?S`WV1?s+RaS2r!VuJD<WTfjEP
zO_}Ec+D&KpdwB0M&<(FpIMe+8_E-CDM!o@ez5K2w3;lZI_WiZg+wf)=al>1^KWZAg
z-#J`*`OkInmYB&)OPQ<-Oxx;$y^qHp`Trq)55GVRS885LaY<3?<SrhAdLuJSbCf9p
z>C=76JKxS*zoM8STjf<KlT@#QLs{cqQzHkyZrh%>-=16$PMLi8U!8{6lodr&-@YrH
zH1F<QN&npuLPxiIc-j87nd$jB-q`g(eU(+s!R7Bie*XF9`Fwjn`F)=!U(|Y;vaEmk
zNr|U>=9fu6x%}nhkNU^W*FLN%waChSSjb-I=HU@ltvvsYXEytfxyP39T&;9#n<Dtr
zvcI9W^4$Hs2j_Q4_E~7(YX6kN_cZrPzkocKnEB)44DDA=6Cd+WnO}BZ`N=6s`5R4#
zLo1e<_csb(_FjEX(tTm~%iKF}XYTIVA8_xv*^hkzZa4Z`>mJz!-(1mLzsv2|%h*cq
z*H6Bh^mheVo-R4RC+yke7vBB$wSN+CY0lQsI-~VIB2iGTu~WtDgMB~89My|0$0d*4
zc8gP;&6zkc`f=+d?#`nUYdS*<WQF9q8fNab(=+yEid$i3eCPU$v>>;XTg)c}Z+@_H
zGu!O<(^c!t$xS;;o|?>C^kn@kwX^ldD*G}Sx>seGP2-Xht8AOP(uXbNe8>E0CuTBS
zdfX+oeN9W`R5=%=O&e77i;q;PNk$ZH+B-oq<Ve)6z^&rXjT%3{xW{_@k_ETPd70Sh
zC%N1$ciWUoo%|;?&8>Zb-Q}8dKP(m}=Fh6XGn4(K<s0kkGD;IJuW8s{BlCFCOo!D1
z2kQ9?1$&x!lvr7hybmh#%IBV1c~vGW>O`aA8-uSIcdez9mYTNxo945)WtQoxX&0rA
zD~29i$#Nj%Z2#uk6?II@W+@b(wsQ_C2|nq(&~4MFw^1sqSFCs0)a0$z-+Ury;hI@V
z0U}izK2P@^Y+7q~t!LHRxR=6f#EzZ6o|=(x`EEID{Zxf(ZYrHigYSM|>pT4B@1!=P
z-6s}nRUbb5Sws4!t4G~>(?w|?Uc0HtTFz1md^jcDu~s|fh?LSPuCs5S&0^o8Yp7$h
zX(n&yW|kGc*)ryzn%a3L?Gybd(!XzhhuPly7OApT(?8T1c(UH!Yk&S2e}Tw}&PlC>
z{+VuNdqh}m-s;uw(RAK^(fHY`D@q4$JGGd5?7FVy7VT;NdsFm8wY~9|*YkV#e_od+
zzvuYVJ1cv#xzu9TJg9i`(PrIm^M2Wy)Ax78hed6=P&IF}$Ss|TmpY_orJUHbXStx^
zS=r;3y99UVI$P&I(Al2k<SDUkQ#`Y3x|7H~rn9+y;fGo;=Lzba5U*b}Epa-t|CwXL
z^IzY4A+gEl?D3na*VlF}`B>zB!lmYiUf(qn?fGe2wmJn|ons!lJ+izpov)0;^X#oH
zolWPT3W>eFvb}N6`wjd#3ELyq?J!%J!+B=9TxztX?k1B%4;ntZ%qrBgEZ+P??9h9G
zdzo!AYd3{n&o$f8_~=+kQTnq5JoRU|xwGVoq(04`+g-TR(PE~)>2h7kg?G#vj{jb*
zS83U&%X^SrG$z9<S7pD}j%7|$uIDe!6!aCYYtK98Tk`HesARV@*QzH9JhF?jT6HF6
zHWlUF=Q3>SYYUrZ*|nst+`p<hY@brpnyt)IM=x0{TCq%9K6{^7XqPY3**9Kc9xe5P
zt<I(4-`-Dqb7OmS*PRX3tDDU;x;r<Rt9`ero0k#3B)9O=jOw#>zfw;<_~fr0JOB0e
z<-gLxCtQ<ndATxogZT747Qz1ZKKB1w?E5T!R{yDqbL3)JBA$JroOyd57r*S)Z+}D=
z&3kqK)P3vJ+l!inL}QNqdv@cSTjb++=gJZVyX&3TM1~x)|NP@a>MXPSdwbrCtuGV5
z_jhlHgs1VvS$jO{c%sf;yU0*wvf{-H!=41Yxs@CX4m3BKt!L!B{A5n3qMCNw-jo%=
zGv-ShUb9?Z!j<@rn<GHAQNU=z^y-NYYOB^y$b1*_ME%I2;?K$-L(`rf|Mc>_%@>DH
zKX04-b(UDxS8u#bPpe6>(Zc?`!C&s&2Z!zL=l?7D(IWZh%g_7!yT8tgU`$@-UM^&m
zG{ISE>pWp&iA5h@A87o<b+}OR=1c~L2$zME4$QW=5U1eL89GCCw%rTW$qyHst!$j3
z<F;o>&6DL9H6?_)@)dfNj9spWIUnHZ*dKU>Veu!)s7N(F=?$Fq3m3i@Sou?QrV{sZ
z`%QD7a~xxfJ@fPWvUS1bFKtX%Po(yEO}HDq!&vIWf&bgr#HCdVuKf4jdiBY`q@sv5
z=L+94<otfneR9RuwL1fL$QQ-;2Hl*jV_E%rr`f!s-bK}M+Pl)tpPcJv<Nv?MKkSR$
z)wUJBJnKVdtM@-%bmYsm^`ffvN%qo*in^A>WL36J3tGFa<ZJT!O+F9$80T6)y;L0f
z@XNPtlRDaN)!Jt~nl<hB)jQ3)fAeEkyHrc{A78OLcbcx=%})Ne40%_DGT-s4bjLON
zJ__-e^M0-9i=$0n7hT#Dwf%bCkK402SATsLX}^4Kcx;%%d*|)bDm1$;2Z&_r7#h~=
zZR4AAa{g5@rrNi$y^p1KEpYmvZ1h7bWp8g%!epZ_DeT$4TTI(}nT-1*@)bYsxm$O9
z!nY%xUoStK+Wy+NZh7&f-7h}w|FlHkHtKJ{Y%@o*t>^WeZ@gRaDCG0BZFP#*n!0v)
zhHtm}5@%ex%dlieW!#oIbNID;Yo0&#^sUT#ez^YXdyQ#wKXvCToDK*n*ng-ndjqeH
zDf`W)f6Fd!u-h+FnN%_B<%GCxM%?>2x~*juW=>n^Xmo$Y#zl#?6-~Wz-&fxg+|2$~
zF<zzO+@a-aGPTaD_E@gn*}<&Cv|HcRVt3}oO>g*${ZrHI-LCC9#3xj=kN>=7-DR;h
zBVN<KjF9;Y>y?+k+2rw9%J$~YDuow<pWhgS%sG8`jRxPl)fXe@T-m?$?(VCRI_+)Y
zIt99?B7J5!TW@pNyY8g6Mu9ftJDZ$JhBLe0{@-M)Ic-mJwNT-%^%)VIi~f1n?y}w-
zdwcQ%g<1DyZp(Gs`{cem`)zlYf10^}#NQ(2v)UzP_kU-|xeAolzo|80>)C4NeB4gT
z+4b_8N8$p@9)w?=_a}DE_O0r3jgFnqdsDua@qTjkq?c3vYA>u{oV{_K|K7%@pYL@|
zTxz;OV#AfXMm}C0wr^#ki>C`L{4Kh&&b9edbjXd_(o^nlX?lO-^{&_NqN-x=U8rpe
z|GH~N&-E=D4=+F37qIin_4nL&>lbR=_shSx{0*<ht7-eazFBEzTz{c6eQvaQcixVr
ztgE-z#Ki`$y(9ZbDk$d6s@H|)5B{i4j@y57OYGlg)vbP0?7wXYQ;b}?HujEG^iD&w
zB)%EN9h-hx-p@2#I_KF#!LJfAnFm(NIEXH}#j~;f0=MB)9j!mpPcD*6pSwx!GwY0o
zdd0J|7W9<Melhwh`nJ=@LGQxyS!aCLte*2nYQJaYpQO+;#o_Cg%(T|3EzB)Qzvwb~
zbuHum+TL~79?ssj;ZJH)SX}<CLp)sKvkX#A!q+k`n=7%s@^t>il%=oV3E6+Ocr-0=
zM&!|oyIMV8BVGhdI4Jtzv^a~ZXl#3qMC%O67i(VDPYSFsS$|ON-DU2(dh6GHb<%IK
zOo>1L$)fd;SJTtCTTTA)IaC_QJjq+!mfiC5+3$C!uhlg@Ej`Dw`Ud-duY%9D4_UU~
z5r5acDLDM$9COL(Pp)iUl;S#h;zv`PN8cC!5P$Zhal+;9*Eh45>(uNB^pi>aY^C6G
z^U0&?Z*Nbj9BZg^I9Tp#E7Da{6FvR+n=J~99`2Ox<386bzGmUx%J$B+MS7b=w(Whx
z|DVzH-d$%{!!<D%#L7>~;xaRs4qoVDY;IzJ(u$Qi-KVl0+=^|OsQQYRht07eh4KCz
zoe9kk4}bac<=F<aq~{Or^J{iig{)pCe|z)H*!9<&*CoAl3=(k-nlde3e5=Qw<zoCl
z_Q%YtJGQ<2$M=UXwoeW9lE|KJ&Fo~o>eK5<UQ3g@MXcC%|Jf&CQU71RRp<TFm+haP
z>X}E@1$o=gx%{yE>yuA^KRx#UvHAF__aE}zm>D>-4>5VIIFORg6y<&UYQMp+g@3e{
z?Dgz2?enP-?J_PcKb4u1edPb4AD=#N%BlNpQ5RjitNP*X{l?{jhEKOH@_TXBL$G&S
zo7a+ZRU3=m^M1mtoeYvSYr`4q{ZA+Lh@Er4EBf0bK)Hwc>QvKXT#|FSxBlfjB(a1|
z^3>hhH;tkzZ#g^dOmfV>!F7G<b(gSpuIqoU-&=ff`H}hcx~KJh)ed^M+lRTmvTQOf
z{K<R#|L*@a7Jr_;3{3pW|Nrl?E5Saj3lBW<c~x;_!90J_wx^4n!WJL<7^KRusIj9y
zYhg&hE=IRB!z~8f2g+SJAMM$+_9vTUL}&x^axR~)2aEXDmTK}uJY|nd<uE&X!$@P|
z49z5g$!B=iTTcC1{=>LiWu?@#eLB_mD}HzGNxio2*_Z#79|KKhuSonqsq^FY@2AV_
z!&jC}3DkYhFDlNV^kDk;-}3L5wxnyCdc6D|Bvt?GaJu;C^`R`)J1$>L^xW?3alpRf
z$IHLpZ|r(2{XNj5TSoV6RCm3U_Q^Xu4>nhw+J9vW=bfv}6*})_%aTnLOEluSl&&!C
z4ffq0uiU<W-Ga?ZV%O8$qoxXSt-NvnUcZb~2E&A=E5A-CZdJa*qo`@T>4^S~)DR9{
zb#AVW`Mj;B^%@B*YcAd3IZ?f{_&k5Pz{Z7t&t2`3W4}7HrB(P`mB`~4URMRuW%>_E
z9@#ooJ105kYH<7Zt=}sdW_&Dou>RVeq8UEVScN){t#<x1MQn?iSmta#rEM!0K6o#`
ze9xCdixgujc3RJ1H%W_m_R5f5^pq0ceOV51-Om@!+;R=m-dysue#xSPA6-_@I%V0_
zF<Er-nM<`v&zDqAadcqbC{lOFUinbtimTBpl0Qe?E)KkI`^sACQq!(k3)ju*__tK@
z;Qs9!66-bj^<Sy)4)WLVJw2D#Lz274nej@y-<G+xl}bsRLRqVvlOHD>vzBiu+UR@s
z@08e#yDzQkgX1+;t-K%ipmb(Ei$l^I&mP++|1OJr?r)i@ox9}aR_!11TKgtnyPV?v
zMW}bCU7q3h%tASb9r>pwq@^YYr*W6h`{J0_H?f=7bF=p6a{F_ymuQ#WId);8_R$FI
ze2pH?|E3X*$5Lb&Eae%l$lS~IHJxG;!et>kx$WW0*&bFR^IjM9R$ca)|IPSLbG^92
z*UT%5CO21Jntl6Pv^QH-iiIPq(n+W9Q>u1so)qU{+IqlC>xZuDqPY|7ax^9~`ag*|
z;dR7hZ9)2+H_PJEQupXH`+eG&ouk!rm{amy<g6drvH6Emn=kt7yxTqd!qT-`cVAk+
zP?}j~_1IA<J2bei_^Dj0QKDMG($g>htc_Qz|7^~=>Kj}8)%DYyvLeNeUT^U|ouKTq
zo<n;<%C{+!@w0D={u6m;DtdGMy2`azzx&P&iB<S{`sBOGN}m3++gx9LI5boI%LWZu
zebZB!59j`x6S!&J>Dxz7npo)yt>c$2_1GJ<;?1#?=?Rh?j~~nT<#c<`Ej3sFt=q~u
zSJbY;<ePWB%W2C`+kLq+Eu)NmpC^PL5b#`aL2*gwLS3y;>lY3^hoiYg7UglX)!S-(
zd8NXa<#77Jo`8qu$L7iEm}IP3&Eb3}gR91wahdWH>!x1|*BiK>Tey1f!`<IE9)13!
zR^~U;o5jUEt9c$wlTMKM%4u(}`0a-(-_?b_8Cp`Z6|*1xGpXOX`()1{>kI#v^1bDC
zo^Ku-TKwViqe(1<V*lo}iL#k=CAXTbG(TE&H#K@{&ZRWHV3x^$-`(4!pH{M|^X|Tz
z@5Ov$9ZuhP^5I7EN=u2m|8}<QJ)`TSf1B;%Z5dP1*6pt*yY=p6>HE55V%9$o+4Z{X
z%Juw;bH9cLGVQPki~ZPmr`~T-()`=`ahEmSuW2#XzUg9SSfLWd!jS97@63>JcDCo`
zQ{5SN1cFLrc;~jS+Q_DLKrdu1f7!Ee_AP&o2W)MB_U3ivn=2g&S0(JGuX4+n==`zJ
zzI(x<DJLf^>fCsux31{yY7w`^I{)@%xEGcQ8FsI_d_idG-mLZV)9V+_P(LYCpR65o
zcA@X`uO8;-gtUD=q<`)HHobrC{ZCb!;`4)YGLOD*EEoHGMr41>p~fFS{&Yz_?<sg+
z7#)=<_~m)Yv*`ZqpP%j(I#=Vw<#G7s)S6qjh33Xaxlc;{m*Aqkw#EG4wUGU)_HmM`
zOt;!hO<g5pcw#o~+U&pV!nc+eDc*jW6Asp!<UTm~H0Qy&sZac>1e8CSR(`&Jqk5+Q
z`i%9W3tDwI1zWW5vt7SW@z&)lryZD?zB$}^CdVmsp(m3sp?M8U<H5bcHx~3dZtdqY
z={VT4|9bV$_!kdiUq7$cZLW3Z|1_<;pitrBwtQ*z=av&#yU#!VdfRz_c0|<8(DjqI
z-AMhceX)N28tJN~%lGV@RpnW?AisK*xxsz&x9iL;Z%MsfclwxAz?;2K4sL6orf})K
zi*w7HBm90At-=bE>OKAb<OnF{@h0Vcoa3nDnz=d5`SzZtdcSR^-I@DMS8w9PhUz}Q
zD<M6PZGUX(UY{v`e}&Gg5Z7``Ih9ZPg^y}X7Ot1})>vvYz5a`|rCR2f+b<foUo_so
z?xfGjm>o*StgC-Lj&R8|*jPB-^W>w;yLQ#YTc@&LE%Rh|Ow7yDy|#W|cb;R+@m1^8
zN~g6rXL4>+U8%8kro}Y5?1MhuZ;a-i3MlY%IakFo?ajH;Ys_C}^65m>+J$$&-m6j<
z`hU`b<tE1rV_oBCnT9^EKl-kln^Q}^g>A2bazQ1}bT&41soYr($|AXs`d3a05!kvu
z)batF>K^g=O6RMm7;fO<<z2OCp3~WxsiHxLGJ`&9re`Vc(z38(W(?R|epSV-V-?5r
zZVidenG5)~xWBsi^xCD4lslJxF@=Sna9go1)TO2ANx<FD3;6|iZLSK7W2u*JU&s9-
z<$i-kl<C{s^RI3{78=@DD}LeRzL$w_Duot=bo=?K^*_8El2R6IXu+J-w_x!Jn|<?K
zOWkZrd@j4cj>-74j{We}Q(I16Rnt_xzuWyvx#7L}Gh^$g9C`Wq*F>M@nAwM3eb2Rg
z^mR$f{kdmmstYdPF@;ZI$!D2+;jdM<s@3-$4BaLApldN><-$#K>&|v-+$j%xxbM*s
z$<oH(SN6IdT6t{ic{_c+zOt!$3dK|3MNGW7Z)@?luKjsuWF#&2Zk={aeCtCi%Z&wU
zUp@CUw6qn@ss3?+XZZ!O$9ocrGu0Ry{FM(J5RqG%;=0VpX5C+<`C=6_KLqeIzWXgF
zb@(>Z{d%4i`%;qrD6U`G<9~Xw%<YFlyB42&b4_!eEuTrJ)Y+?T=S)6+&njq{`8Mxa
zjJ0>eG0%H9Z<kuE>?mKWG5Lzl#*3bh6yF-zZ5H}|c%59Uy|1<Zgo0X+m8T@{v#)-4
zKE&sm{MHHCkFS5ZU2@r^Fq}Izp>|8-w^J9cP0Wy;`Ov_BM}6Pc2xC6e(;9udCU?(#
zs5}2y=U=y+^RMn6F*-9hS8dT_A@wzOwH=PzW3OnR`}ITnOP(!X;@4}19WJ*Yyh%Bs
zbMV%jr;?v`Dw~|``5wGIS;lAbIj1`(W`4@}Si&w9G9$ma-7L0ms`%m~O_T3?6!=)y
z6yAI=vt-i~r}mUr@ef@3>-Pz&tE+7ly|?;wpUjPSCmap3if%3ckbIqGvH1ENc0>8k
zi!OeiaAn0x_QZ<Rb9?4wAGykr(pdC!$yI@aD>&8uz4~nOukCqeM*gL_BK9RRyO<|B
zXJqZoN_)fBd~EmTka(@I(D~0VGlooDymp!O*9li#K3qPx?U=^)Q*OSt36El5)@vU<
zvuk0(V|~w#H-6Di4odUvyy9V>8nIqO_F}Qo>(<g_r>jpdUoW_u$KxS$RHi1~_e@)a
z)t9WVyy^=rXSG~=Id$&Ry-~MM%`3IKJon{WO$oj?p?o`{)Yi7XJXx|lY{y;^8SkWx
zl{56N&Rr)e7p9%lckJ7a^@hnmT3?xZv;LY=KdmpScX^C`<kMRkzwRtwyK!ID3iI<f
zBHm6q_(Ae=(JsCG3UOW|hnKG>n_4Z2({z7&EM>Z}*?Q-1(z_?K{dK$_KYvlubZ5uk
zb1p0o2s!ZUS{IM(djG^11+`vT^*iiTlRt#s_59qs^7&oQ;Gb9SFHQRWw`SK%mv6U!
zif%{?Yg_lO-uL8zhtou?bDs9E`8Dg^lAp(JpRZIu>l?nHO1rn{-KpwK9j*VnVvDXF
zHMut1&TQXotGf={d1C7f&ss$ZoagwPbKgywc~;`|ShvLv5^JyL1d2}I`POEu+U2AJ
zduKO0pS!s8?UZ}-=RJG*cNUY6;nMG`t3-QiOwLD#Ut(A)^=r<H`t@Pf`y^kAob~XJ
zPCxF;bDiDp{gxi5lRJz~v?qQx-X8k8?7vT?^rGNdwta=Gt8V<9TP+)0K39*0<M_9~
zuZ)<Kt#{t-V_p`szOH2XLiMY6-5G!PN~g}TW!5y_d7UZleO$w8vupXKd(Uojthvf+
zzSFn+a!T!zOpi~Vf**`U5>)Fa1pGU``_qTpYd$-Cc3N*0AN#U2X>tEK-c_O8e~(E$
z+3@|MnxOEOzAKJ5<sK~8U3qe={?u8Aj`)`y_2jp%&x%`6HGSV*(JQfGMwjOOn6l#S
z%aw@^*R)pG?zw4d;@9#Z-8|{!&)x`6?S033Bg)yBW}08tJtCfWEa;s4{T|nt8I$WB
zZd)+gojx0(d+_BP*<*92O#Qy?u<PrhBZei<TAnTI{&&aa>AI@DS=QX=Zl61qk{fq!
znMUyC)d%-^+|fJEe)yShx#J9rxRURSN*!;SJnKqs$xoc7@M+s^o!ZK>p7Q9AQ(nF6
zZx&DMyjUR0sh)oF)vMilU)Q~<>c6hkt9J0%nitVJ`qyI(Le^+V<SFe+>W+%Entxry
z_&md{*maTmp^@jmEs39Vwrs2Hy}M!Ca_fA2YS*&toKVi!epkY8QDNETrk|JpGyHz-
za1+$61<lMLb#RTL9b8i*W3&!#p0wqseeoBcvmW{Imw_kQ@W45SVs5hoa%{yNI@-k^
zVw3M4{_`(vqK;iuNV)ekVQWtr=T}*FuZ|{#ZhZ0bvx*v@eNvIozt1lp3fuf;+Ar^C
zmmRG*!z}HVr|Jw2IqTYaNxN?pJn~`9U$$S3rGEMUIUoPb*}wN}ep%*)KZ5R6yK_$+
zomca#^w-<+9~KVJ;~$i}v`?8N`8KiOu+GGJ9xIgRzPCH@GWXxfCwl`{iJnmRY06%9
z_q+Rck;X{nJiqcqh3adVwsL(q|DAvSvX^gm_y65}bM@UryX}Sg8BHHfIpFyr@YI1h
z;g^yoa|Fzh%&y<rqP}_p&l0DiJg1k@iu{+CY)!hxde!VtM?!#<w(ISv?86lsu9<H(
z+0f)AGxdPU%j04mJFZ3weDC72JE(C*Twb|$rMTU)`@ejA<&~EIv-SO-Su(|X{lm+i
zi83`=kN3{`$9?O=v-AAN>uvUk8ysl=|2N@78JoA-63&HB#Tr$<*Pro77YWRqYmmM`
z_MPOhncE$Ia!k0SDKf+4Q0WbIjt7fo2*h1+lNS_xyn}<)rQ_m(;ycw{T8ngj*NTZK
zobb?8Jl(=kaPCD@2;-S63eLt?C!SzhBeVFS_LA@h!Su!nkMDbazPM{*mpbeJZ%4}3
zoR*o*#(m<^@*}GEbqWKX_A#%ok3Zw`<4jxa*SFydt~Q*#-X!ql#Q8rj?|ylf-u#w{
zKdGwR=HTPI54T&No62x_t))2soY%Gz9zWLE9(elKPm@!(=V8nv>5P^9-!CzqVf&$X
zdGqn-%-<Ty+%wW2etuZT?sVwhahq?7`;P{GvoPDY)j-eZgri-djr0rOnJ)!yACFv8
zzw5rMf?w*-zwh7I&HeZDUCWo-6|wrkkGS@%JALGBLTBWpZDO9MGz7P*OQvO77q;hr
zkUn+yl+I<P>M06)T_YbwAHS?|Lu;Fz19!i!%s2Z>w^e*gmsC1<o_g_P<>QF&p?j2j
z+-?co&$&45j)<p!^X18QQxc7=3j`kols2t8#8Oz_zp^$b`dIhmM{iCT#;C3;T9Y7a
zz2MU#Ck>8SPGbH?bkAkJTVc(4JZ<6yr`!cwB&=6VF5T7AqI>2@zF_`50oN-9F;0TK
z4rv8X7Hn=2-WH~(^#9p&1Ir7Zs~7KLJt*>qEuqO-&D}O4YSDc4WuhzI$0sDJe%A7_
z=Fi*CzroPsUHyy(hUp6O%j*x`>fpNT7huh{Z10I+8#!aWx$mSOtZbNjIPv<4$j9%?
z)ifv0FaB!fcVf-0X)a#ejuYRd{5|1)eA>?`r(Yf9Ryn;jUX6FZzbVtodz}s6?w{Gx
zF)b}e*EsELQvSws-IIOx=4~}MS6*~(lk?K6^At8dSKQjut-5b*NB#4sV!1VuIy2=&
zDwJIXwzLE=nF$>`7}|N{;0NZX#vAT(Z`gi@ZSt+mcOT15)=cnO)Ep>X{82)>>7)sh
zutZODyg+<wyMuP9b4D`9EA0>#+m=<m0Y1|U93MQq#Z=DrB{KSh@1}e5XJ1|tl8QBc
z&^$rL<I09@EJw7uZgW{}-Z86w-89R*=c`vIKj@RZ6LFzli$^56T8-^WK>i1N@i#6<
zPb|vUvQ9F}m@4slhEdkU897=>9_~gJ5?wX+B0uXi?ucgSfBL?pMr&8enag=+6PI#i
zpU<?dVhNhJ!gk|l(N(q!wD-(4S)g^)Og1Wle@8Nl^jhUSR;~A@ULhwA#Z9his@L*N
zuHt2S!kgommpc74^MjVVS0p!CZ4KnfxiMAyqFXK7f8jUpuZL&XZjAbVO{U_{thGPC
zX4ziRUG3=XwEUV`gWt>2y?U|cFTNIdUS;fxo4zw#WOvEmb)wPpG`>yR`)&OlU&)v2
znZ%VXuI|$0daC(n)$B_pf4TBbWjKcPbj=Q`?~E)9p0#fM3E!EnQP!;744YqBYt9Vl
z+vN4_-s;^_VK4vM2wf0)eB7g9QTwdYNx#)B{4XBb$Ga@+LhD7geXDma)+^|nAob{J
zNAo4VZO)6Iuzd>lbbG65w!U!Q<u787cg_ni<*p3UV!i*OG-cMG;|!Wya>**s9xG@H
zovwX)*rT?-DOp3AciMEL`d=Pt>^Wsuz4)U;w*`t=U-vnF!LRWftL0YN1AcFpFt2Iy
z^mc3T6i90_IJdsFaQ5OI2UymeS@uzN;X}*W)n6BQ%bl9cX4|aU^YZbt2S)DA8)v>u
zoz0P8eCCo_;`}X&Iyu6h*e<TwBKLuPKU481r(-@7CvUjf##L|iIx8SNz)xG8S9`^>
z3%gE>9xU4+9P_c*n)ycrW598r>G8Lox1?`7Y%gcpth}SG{^icTf9F0_{IR?BEG?&e
z!_=32uN80aO$^fB@?0rPe8b&lwZ?6t7c943U*|B7*Y?qY3~8nt;(6kGne`$rY?>>d
zRHwE#dhY(0Rx|1+-$@SRt&cd>>}_`_Y?|IO8}9go|I;p&>YQB=IxXv<OyqgiX?(R)
z4ox?zPks66&(_x&|IX^XWxt!b#iz)YJ>>evZwWHF=}bl$S6L(!F8oU0!kF0kb;~4f
z#;a^P!U0uz2lf~8-MwJB#lMJIe2()?>-O`-65pr2^0_x}?XuT>2Ol*&s5<ek{>o*o
z5B|EH=JQJ~WiH=*Hd10&!8Vy`5z~bp2a1RFb3V%~&GxTio-)5`f$=w8nfq*f=cXvR
z|2AACdDp|LOIgXG^j7mOX4$VxkL)qIKBxAIp}y^J58K<tTeuBoY%IN3e6imzeUi~U
z)oq1rGu}ncnb_9L-f(oap33{~X8HRfBK-9xvm~wmE^ZLEd}VC)a!2bSIn|dx=AQff
z%eg$7X~{d6O)Ok{gXX&#T`%~(NI)x`GsgVm$(5IOEoz*(@AcHPKeF1Ni@8;HG$@4q
zYckz-cFOkE8$&lfc=Kz~X||Q=T4s9<Z?3%YW#)-G&#lYEluF-~Eb#L9kbK~gckn3|
zMu7w66PDH|GnTXlvfc`H6wA;}(h)XMIP`Go)frxAejfaGyt)5rdPd;(&>8;{USB(P
zX<9HVn_`<|`K(o+85TGns9F*;H=Ln3Pc<WYZg|7eSL=A<6=he)B{)7QeLCO1qS|xg
zOJ1!HdAqoma@oYZN_?5--{pAZM0t3`%mptw0_?uc+c~ZHe7z(y$2{))JQkj1Gn&g2
zvTSbfXq6gCKavjIW4v&EDR=9wM=i4_rM-(xQoMF~UDDg@&I$oyYIEj)4&1x`Y4g8z
znnpsa)_&-2DKib2IpfBm`9fPR2KMf~CKEc>XrI7W>yG1BJ#8*{)(SjY%>0CVdr!%C
zYu&~Lduz|!=c~3p5u7l!e)F~s7B6p{_+fBK@yDu(8<)n4$1~(b#%>V_Uv+xVbBivC
z)bs<dH%~3I*?z-qx6p<2-?x1J{_CR-e~iui{Fx0C7hfwXTQ<dGA=kBz%5@c+6KBk4
zoSj%BD)(ZRS<&PVAN0<O9$LJ~QRvPl(-U9Lba5Xn?RfqrR&LAW`L|W<pFZBnUq4^o
z`s`-uxED#hzb+pv*6ev#lT%@$I`gnj_U;=>zeUZT&N=12<k75Mj(o3cIyO!_Y$bcT
zVdDj_x|11OXMQTXsFf2SHMb@E@HV!U>0M#@K4o2D2QN-?tSwJTp1JJHvu7pymuSRF
zG&2M~@=VkbzObBa3dhF}Yu%=ZUb6fodgthrdeJ*ax>Bc!xvi-2Hg~Ew_;G26>|K?D
zRa;-`3-&G4fA5yzx@GCgt4(4OI&zH{dNfSWHm_1FZk?0i#I)V9xHXJzs-;!HVm9S}
zaq}fAmLA&uE$+p3r8m-PT6w!fm;12p+JEfF>2=&fa`t)cdQ}Pf!H=fj=WF%tvh+@!
z{VYO1by@uyk8?dU4D?s)RIU_eJi6_+Udl1Y5X)z4u3ueoV^hrJ?&dQ0d7O=6OK&W5
zR^66)O1yaX<R)M5z@p+><MfJIbAt9bYdpPWddp;G?)t+IkJP=K6yw5u_;$nvEpMep
z{&n9}|4m_jGM8&<m|~sszqxBxekoJg^uVlJ=Y}A2^IUFazWSY>TO|LwZP|RW=$~Gn
z2kU;$BCFMVr6*on>5x_Y?3dB08^^R_)!*&iGh6=QY%}X;*+Lpx=Qr+^U-dRq)3LsL
z^Sy6d58vJw|0phN=IT4fvX3`;PTIKCZa&APIh+Bhr<yrUwH(YgTtCM(f!)g5?|$ON
z_}d$Ie*GPwzxmmg>kQ7k@9Oz~x%#i0@J`V9fy+uhL#;mxVrD<vAf90#|2CGlCS3G=
z@!4uKC6%tIk9ASZ{x>&IdRKRCSI<7R<d~^?I}*9N!*5IPdmUpQ{rXaCdG5`x)xDnH
zCJ)j>_|06`oO-Kfxw^WxYF_e<iqog9UU`OB<drYCSWwT<V;*$;_saPUEZn{IySc2&
zdAFB@3b>xppKa^S`D{an$eslLxB_QJxkDc7!ZcUJng<kws+L9U*(WvQSoRq=OEH!>
z-APRA&)wv*s_vY!D@iV??)o}S=`in}$qK@^ef#V6yJvrWx$=3&x7V*WOn;x1t9wK*
z$52U3XsgWG1)+UX3bl2S*#|Bzbm`PDt^alC;?$Sk=MTO)AKMlyzR5IUxobMJQN~p^
ziw(_xykm|^812(};^erM@wCX5b<!F;K24ifb?NTj*3&D!n6l!_ukZYLH@*F}Yq{IW
z%x4E})<`YARGKpN)7|vlneTShoW7%ddV87dn)|x-{tI{lM0cFoyXe5u*KVwJg1@?N
z+TD&_S6^5A@5+xLi3%aTE%!QvDp=juS1E7Je%||rKU#E$WP_Oh-0I4YSJs8=&9icd
zv?+b}^yuZ1*m#@A-WDcMe(>(H?)3VKi`V{FZki_^b2w7t;UW9OUDNNaJ<>5<s6TAJ
z>!1Ap>|H%I6<B(Klevsk>n%-D<~a9;@9dK{<azs9^fPmqO3-l*gBTVMrX}1D^gJF$
zt`A;%;=j3|XW*qDH@;f23nlAyR@L<PU-H|pW`6V2d0);`_13n3b^Pa_et-Pz>-N82
z{!N~JV3vfU&+p4m=6qE2k$&!bs_vHj{@k^_?RSqok9l`!VZDv)+EV{(zlwSz=l$Ju
zJHf|9Y>jW=x-X)Q`!0Qc_xs=JFNOcv1Po`taAs}X*|^~v(<vd5eQVN!e^v?v+&I9p
z-+A{`!GkAtn*74$Y)^+Cykz^~&5pO8hddt#Ds54!eQ4?4X}iY9v&q;{{Lcg5Z7Uz~
zpZ>q(+|QgntWWdu?kqHTR6nomg_iLwOXb<7)lXlSPLqH1QvM0gHEE6&uF@vy79M6I
z+e41D2`?AlvLc_`+~b|T6W2|P+ci(#e-~{0HnnWU(!~+-j!k^Nd|fPo6MqCeJ?pz?
z`6<73OxHdoaP{-Akx4g>-ny|qZxc`JQJJ2a>rNj-=Bex6Ty*+QWZ*j+lf!!TNtr4O
zW4G5`{&9q7za=w&Mp8#siq_3*Ju9L#-ffs?UHJ8nq?VhoTDmv)$-GuIwcs~vGqkE>
z_WNl|Pqur>_19YDZQ{MKPoY)pDt=QESk(eFRi-uWyVcF7rX1G#I%L_rcUMES1zzsi
zRi^%_$3?EXKE%h$>Hd<%-<EIYQ+XXHP%rZ5!rEycxsN{kn>?|yYe{<GNp-{AmxnT(
zf>&MI=Gd~9>7~jfi5(^GELk_@GMB6tQrx6s<Q}!!t$FeppRj#NckgiUZQb*2Qnd-Y
zR;q%OJFn0N|1gg;N^!3i2kr^uu%Br9XY(I}VxjA&Zuvf~XtX;Nac$w7S()dwCkL|Z
z%GZ5dzw`a|HI1?tvzQNSs3k8seD3n6#OPy{(@WWNawWFZ{d(si`k_jCPwsVr11TQY
z-$;d(@rqxSxN?BCKVq8r{MDa~76u6%vpvL@^m)ZpO_evgyFdQe{YETIZ6A~TyNNxE
zMNXzwcp4qFIlbcbq`ex`C&{u125k$8+9>*RXY9v-+>$r-%R-`Fgx45v?$@X|Q?yL0
zynLx}=*{+^P6HwNg==|lf7P-1`uMa2=d_Po*qynxmdC$jRKFWjo!NQ#n6GP67Ei9z
zhBfD-*B0Fl{KS>xWs|iyZr!c7F^ahhKR=jsFXpwQ=kB>lR_pwK@2Y>eN;X@Dtu)PG
zEoava6V}`t^Q=}0fA!k9_4$fdW;WW3ISz$Qdn|F1Gko`rw-UW?%hok5to$<bi`O^f
z+QUvKtPYD6?K>a)?ep!w{1+rWBK~zXr|j|n`=nC&$o2C5j5~{!^(UXPx2QKZM_YLt
z<J~WFoOj>z@Gq7Jw!Hq!Al9wmkaWOYnW@O2=ElvNQ~5Uus<Z$9J7JCZ>RnZ7Wv1HP
zhrFbG&3DJ8Y>aqv{8eOK{1c@I>tpsb)hAW{5q-C>{rvH>-|yS&-2Z!7FKA7m%g&mL
zxFs>I!KWEL&Gh8!{p{~@K5P>BC29BS--4}7T~$ri?fw%MH71GNSy{Av#TJ2oEdG8k
zqim-y|1@#>)i@6Ag)tuT+V7{b?^-Ul@ZRIU=jH1n{(Vf$TyxN%cdLO<YFNI^ryswa
zas=bMBT9M7ekMB>{ZbE``2O?N{+}lmO=s<2u~dF_%ek`3ZObC+BI@dYN$&Ft_*wm<
zW{%0KDN$=VyIYU#)eN3mk>UIH`h1>O$N!jr{yufn+Qg<u(HrMR*mx{=+#~p}<=?aG
zsW)rCt*ke*v6@r)&0ENj$G1v%qwp@#qODO;IuqYrU9~h&?%f<Wy$M3T9IL`|ryNg(
z?7!izbJ`Ty8$4;c*|Bv>R^s&$`g5kaJN1TTz56VzK5gMvzk(OJDi!Q&r|hcmezP>H
zVz%AeeIm6gmVc`w>$164?J4+>>Uw0};!SFL|5<&1yt9{||Nq+$2C>YaKlYbDjMI+U
z>Xn*UXc!qPG&y|n%FrJfJOOLOjRMzPI;T@L)yU(lhV)F;qG>aO=83ya`h01VUA;sn
z_ZoqndyIV79CVe9`kiEY%Im(TPT+!-Mvt77+=QcBLnQQh`#*UF)%?p23@~wY6`!oO
z&-;g(kRFrVwV(6%S$oDr-`G;}Zqauav!>ntCUV@TFWr7)H*xckIf_M7lYXfke_m2=
z5ai(5z4Sq+tGUO-+r~fA53W1c^r86jwPnxheLqg^`=A?CeuK3#M{KX=+jq=Wc{dhX
zFAa+5_Tticdg8M8(hr(dnHDiQ+ka$)yq;mZqp|ghlVsp0zK8c7s&6*p&~6KjzC45T
z=*8RL{kIxCSkUHpXl}FDn?=l3#tV<Eb?8~JQ7$B8b@SDN2~|gHwR@L~hZoM;zG$ZP
z`A-`!Iak$(#bgNW*6>e%yen(bin4v)!ooXyraD|*?^RayVe6Fksf=mtT$MMr$x1Z8
zNYP5W``ITk(bYnuB0=?aO2lC`wQkuqmwWZIRtT8}oLN{L^MI@M)Ri4AEXN}BCcpHZ
zwTj`HX4RZcq1lJ8r*WlhvspBq>)3mSV41fkQe_US8O&L;pnigXNWd}CJM0-D?BVlP
zh+SCY*1Y8Zf~^V*-zhfPFG+L{yu_?1a%lO}_=IB_wnqwimsWB0ij{uQ$hqIx$Ty`y
zlG&V%TWaMlIib|`-BH5kQyz3FwD|pLT<7qV;b`qM{#Pd#sC_!JX@hLRQcga*I<=tv
zZ8ui;R?OJK87-DmbyuYR?e@;;UFR=dw7n}o<$HA$pVFp-Jy~@Qi$5mJ`&ROgVfS4v
z){d~~8`HW%4>WAMQD+;feB)@-)XIkw1^BgoEb%co!*JKzI5>p;pTl;kubWvFB{bz1
zE;}f8<X*<YU}mXnol&92jm_6?&RCTk)wpZj$$JGGzgi@oJ6Mr8VbS&Zi3atBy_=>n
zYDX^(owi4zf#FEdnX)HrzQ3)e<!xR&P5H%3x8QyG!ZrV<>Blkdme?Wicw5-gH+HAr
zSRYRBd3Ru$TA-M)&!du5e=Xma$@}>y1}<aMnlkyl*W099uVWsn#aIVM9^PZMJaOHP
zibq$Ts?XI4YHzc8GN<EE)yutG=Vw=4yj8Evt|-R2ZCmv<H_b%`9cP6*c}=sf7M8G{
z(wTT7=gB#@Ctr)>Ll)h>K4(Xh^*yt-jqBzv;a$46_FQJF%$lIZ-mYJ*&h+0}pSyjc
zc&+uPS*}yH#Fy^2+F5$}c$?F5d*Nr@Y1!+%&&|EO)GF?iA(LsBv0B^9MJHDnsEg@%
zul&_=roQ^ovXpFvEgx4m#(v~(n!M)p?Z(NB-y+t=_g~uRxL44kGI^V@#ZR}K`p^d|
zZ%!_Faxa{Lm&4JU=M-1NvqM=j7Hp#S+AVS`G_J_mYKO3OUX`ngk~(J2;=8Z=o9Y3T
z>0;`)UhK))A!)$tr})E1)O_`n-ZMfw51-ZA`Y>^8f8UXMmv3(!CciiOSA5{)?00^g
zb6N_bkA^2r_L^bJwzu)ztY|kop^8(-j=Xm8?0B8b?-f<M^*@_lsK}l2-l8v!okkAn
z!7hPGJuCGUyY_L{r^dAMFOK;VT>5j(4)4bXM)yJm@)q>X)Bg~D_eO|W_n}k9lRR=o
zJ(rm6P!Vdae$;vCcl}<`IEHx%(>wACiVhkt3%oKz&2ibTk5e?(xlGrx^(<_=?;vTj
zOq0*XZ3$~ou8c^8>6004X}eCT_i7c^KYcPYlsTH6^%|o~(6ZRr@aSeip|mx&jFWet
zQ2(GY>)joOH|o5OdmgsNM6}G#`ci*q?cIl3R%_yZ?)%2a@cf#9?m?G&R;}5G0s?rX
zbDkRgd-DC()CH*trRluPJEw9#h%hgBKI2)G?fJ&-53;frD2CT<$hg>&w}6*JbF#A+
zpK!Z^e4NjZs~w-)Zb>#OMc6EEzHsX04-;typE+CgP0Ul**)}aKT_?ZpT7;AJ?o+=M
zneQ%gdciL1(&+x;l-%T5VHY&gw$|HD6YA5>zr*}dMMCJ#X)PDch5L*m!=hH%s)VwB
zVEki~c)?#Q=LGWy>y3Gp7b<1_*s??tua^2fU8C>4LfT#0oq2Ad*rHN}plSNd<xJ*B
z4qr2rOlVp8rIBBNCG-6eXVH{q4|iU!RlQMj)1r-LFujhR*&W%(vvBt2$UY7w-w*XW
zGcVi6PtUcyy0=MeVRrY21$&uw`>baN-}JF`aZ{6QonkV3-MOr7Mc1><T23p49sPFx
z#g-N4IL?UPUjIpIuiN&Du1%+Hd6yq7mykB}*$~_|KOnXC#nrQ7zDms#&cq9Oe%(Il
z0hgXn`P}`kwzG92R>f{enfz|M?#q=qQ(|q;7}W20XZY>X%T4hYOy2nHXm8Y(T-&_i
zXv0ARH`Ac$^OAnb&oFCWDJHtXN#pnVOf&Wk_nU9834iaCzv<%9m_%N_T^VxTlNRn^
zPUK$gR}@tE^^?(c#>1s0Cl<%9-EhDp=EVgLYn^ru=Oa^AF`RU%pO(Dm%C_X43D-*(
zZg|X5%FStczJ8X(y0$fyTR!ETxm_f3yI<;R&7m}r%SQHQcU6L`bZmdGO)EU+pd0hx
z_l1&uf(Mgte?B-tdV}X0mF4el#Kg{v30yvLY2vfWSN?~33pKwkU!oN||HPu4P}XHZ
z{V%<ZzXoauo)kXwZOYv#(`0+pZC^T{4y|mK&OTfH+I{;~ch=Px>KDd6oWwOn=~~j&
zRe@z9n?kQ-PpF&LdToKl6;?gRnO#;Z&i?k8a@WqwSEFD2xl9DJV}I-axodVl{`ra_
zJ7)&-g0eRfIT?0waTi`R9$r3qLG#_H6Q`B7Oq{kaOmLfU@wDALtb~6|s#_76qrKUd
zSvW=Z*`kE<Nv7he-&q*TtUhtn$Mrc%bN>vv>u7J>xQl;6yw`$n8po9`E@wO6(kNpk
zVYE<JK}Vp?IYBvS#^0DtGf%Q;&U?DVW#M@@?(5awQ}1RMUf**#Y}XvoMZ7a!C3UP;
zf0v@POh>Er^72RSWw~)SysCw_S=Jg}YVs3#ap?5BIgD?FXD?9-v{>L|*0&;V>X&+j
zAg5BtBCgmw=^D$o%{FhyI<QeSGwtQ^x!<l%bQD~9md(Z?+H}&&^Un^NJ)hDt=a;pi
ze62QTWolJu$;(i|-G*Q7GOQ1T{Jo&H@*e-%f9`(Hx2&39#zaXa7XLccE$C5N{<XAo
zT8OCz%gfh#_uD3IIcNB=?3DK3(xeILSGI16udkl1KVN2!zq@BwNy?8Ir*3cKlis+)
zW>QdJ$eT$KtMpFwb}RjTa&+p=$g?_Y7I7zgmk2N{Uaz=W=JF}Wzx+pi{hu>Mu9Gf1
z{3>BGbKOH$i5t%aSpQG5OuP2<ZP6JorwWny`8lc0Rf}al_ullgd}f~XJNuNO^atK%
z6I1@I2RjefGpC#0?I<kIusm6GUv)Ou#?y^rN#2Rqj!CZk^8f9VY4=^LeEnv6ue_un
z67=HJ^fe0(K0bMCYf8H6mrYtB^IokvGHcD6v*upvtMb*R|IxdxKgW6B%Xh)?1&rHY
zP4!F>Zb<*zBp$P6>uraeY2IwshI<|?`n>V(T4~E2^G}M~KlXiFzob`r(UecF?-!ns
zxGr!=p<`O-&h>RA-C5_XcU!wJyV)&a?Y`{b>5#y@2j2{Tt={PT*^bpdGm<ZJ+lq{L
zyWXqDsIV^9eXO)FpDUJy!y&1FXR^I)eGBXLv^g<9gUf4-mA5qBlHdEvyF=!X*E0F3
zp2?n(VrARv^x|c&N!*I|(y4!L{F-;o6rR{}tt2tWmP@B&xK1f`9ocO4l;PjYochKE
zde`oM3E0c^tCZ&qdv^HJzcasnk}}D-KehI1;jb@Ja%ml<Hyl4towZQJcB{gXE+N_L
zF6}GpI{B`u?VL34{aW3;^FeoOtHW-+I^MCu<(cEh#n<2F8lCt1xO$F8Qu}My)%7<k
zF2#2&pLO15%jPd-9?a7N&wZ|tx?jaRJy-44ghdBqC#|)<A1kc*a_OYxTD#4&zCPD^
z7WVm1X5s6@T5JDJnrQR-Q`<xvkI1@X8#B#Tn0GzNKU3EC<bK=R^*WQxl`2jj@{?5E
zw?3@NW+z+g$s1DTVuxOQP|uRD6w4B?TE@5QLcMYC!`WTW?jNnnb%|F!nsL$Ue6ydy
z*@?&Jl-PH5bvPgKG?9x7Iz8t=%NO0FpWX-kH46OWTRt!Pk54P}&93P!AFur|?5Us8
z_K|Usp0y0;{`u<DYy9+<ZkDV*sp_15JWlYgH%I1=#2wj(s%@qSd`#!A;{5pI-u54L
zbxT6F*{$7D|D9dkW}oRg$Br3Bhm@DTJS9DK{hAqa&kh^21ip3sv033<BiHS9<yJ}h
zN<MR!o4*Wh7x}Yn-ESww^z%nb%4D~kcS;gEdH9P(&%(zB8;hSLay)HV+hMB3cX@?H
z&|72owsw#B_O}zy#~Hq4>75}f?x#PaKYznDg*&r9mcQ|Owfld4<HVo*{3k-K>l1VS
z7KTWd)rlS4E&lPwy^G;CH|1_UN|fo%|4_c%MJ7V#U$yQsS?=5Orp|TJ?5g8ylsCR<
zd3WgnH|uo=jCEtSe){`T&slKB>WJG5rBCm0sx4VRbK-dxt8cb{v-|hX*&JPQjr&pB
z@()WYe!B8~-eUb>{~!4q_p}&aO&0UEU^X@}njGjYTW`YV*l?sFzgq{qLjTOUXB)DQ
zoIJQ+K1k^6im=eq{&e%UjoYMck6vn4(%g6Zw0?J#%D>fO{6FT$%(HuZ`TLKb6<_~?
z*NJcMo}_eY#kBAG-9b)P5q>P23M>Erc^v5_F4uG{f3=+7G4>{gx<yl7aqd_B8+%_N
zWd8$pEtgC6lczKUeDAqG-R2a-+K&4y)pZt;sRdiw**~Pu^RK^HJ!}5;2ccJk`@2o~
z)j6IUy_h7f{>0}&B8%?}r+yj51%J&x9X?btsi&0DtmIFz<q2=ONfY*M3H_9Ei`OJ^
zs<=s}%bN|0&Hrp$>-RasZjXTyzy03-iGo&HDO1I+8LWO*@u2>5@T`y9zk5&Sf3kIB
znWd|$L*}H(@zYeKJk7*9PqXj-vrE9@zj~|A`KRm4pPtoRAGz<6*ZWmd-oD*o9jIro
zWB;!u{=CKa>OVDe)^IXZ{M*nV9+*AtTTRQhE8qTP&$&0X{`AYb`R&(E%>B{IH<!O6
z$WJ*}`JeEy_VcGV{d{-%M_&EcS6e>6i=TO*W9Fx*i)vpodJWXP76`t)$#p^N!F|8W
zf*&j`mgmk5XN2uE;Qj3q5OcZl)iJ5$)}C{%yXx2zc`h~aJbi2T)xmAmTL%quofn+p
z4|jf<(Kj{yV)DN&>2klOy!d=R_2<q`)ryxNPM`9yc305-ATQGJ{@>q^^-uNv`&XQt
z-v9rv+ZE+SO#ulX^-4{W0{oZri7oEtW4z`q`m*4d##1rfDO?q^wGw>S@aP_4`fxX(
z$zpv@^uG3zC0Yj>gILujz6)&Mwo8O<%_ruyMl92lawMnp&G0{>U}vPiXIaRy`={qe
zs(4=C@Fn%;Z@1g`J)+g#zViFO|80N$qSr3k*01?weU^sFr8ym!RGFlk$6a%xk9W5|
z+ci6-s+g0~TTHm_M-)v;D#{Ae%VBsZs2w?No0$ElQ}tGjf!1}>5;wly7I=2*+3Uxd
zj0d;8WwwsH?Pso`J>{GBtc>Gv<^3B9B|X15PM-fp_!8^X8|$+ImjrC!QrdB9O2nZP
zR`qJt3p%AXvoiYfIm8CMy4l3VdiT{XrG?A6a~}r9{1&(BvDyBi@y}bILO!vMOD}T;
zne;7nPQ2ff++@)2^U(X#9Aig6fxQkVmi7NBxO8mopSs*Xx^@3s?BsN(t$o61y1d+A
zZqBn8$(zI`Ui^K`=63;?i28{R{))Pv9W%VF_Wuf~|Cc4x*M0o;OCH@N%0&_Z$_sCu
z&So`sKEt{EOi|Y3O%qo8COT}r?tT4pO<;CTy{MmB#G{5Pj)JtR-K&43Z(I0rh2(qX
z_b0;4`IpRiID1Wj#<x>4cNTX9<+HC$U#O@eq%>PRlzrjc*ZyUfywb1vZF4$REzBl)
z%6--;!A<gy7(dmARjgObQM&rlY4-uXPg^e?<m_xK-4m92#4}qX&@$fha(u?39oJf|
zOBR2+JWVMtSzFzB$(p@<vx?J_ytrOp<j(!&&ALsqOC;!=md{eI#X4Nus@@r;fBjP=
zA-F~=FMrDF+tJ(p1#EA-c}+vw%;9nG>`0M+b(2rLfBxxstmWb@OX??8xY~Yr8r(av
zKy%IHqO)gMX2zZVk`}D<Y0um}UUGr0M)ou3G-){nnY>_`e|XLL+X>5Sjo(W;Wv+Ev
zx^~Mnf0nsgLhp}GyOFrTBguSnUWu0VUDuTsx_7li*$w^X_Ae4p>RP#3yY)cH*)o~%
z(p3d5MtMJ1-dA>BrCO2Jk*sb||E12M_IC04mA7|1Pw21qlP%OgFaL#Mec(r}c|6Z$
zEU$W=&$W%yRt*%k`&skmdx;!x-xu?so~etp+4ZZ>y!4QnGPATS&0_EUT?=>5^sk-q
zQ|I&c6&5P}{3|2e-v>_gnSFNmH#v`{HBWZUsh+my-8bnMBBy%&cEsK|P<rp>+9@yV
zEsSE8<>)46@h|7ub#T+WRtwe48mEH?9<bc4=WWYP@ZaAOwC`nWoknb8#q2Lpw>Es(
z{z-l5H+|>0>ZRA5M7(w_-k~hKx<4gmd-cSXe9c8)o-dkxX||($zJ;85;g1Ph%v)RC
zemHoE=9;>0Im+5_J8kjv2M6QNUQ5<VyVK=nyt%&VT<+&pC)>}QJAE|t`BA%x%+2Yp
zN~@PFd*c1wGhljU`K5+sPbT^>xJ`a;bKcMPu7e}zAGZD3heORbv99>eGG}JMb;jqX
z7SB~^v*D<<D39J!vbm*Ui__^<d-cD2p0JRX>z=mvi}{i(M-GKf)p1>F{Pgm@9G4vx
z$%p4I^wbhgJ6j*96MZlBY37+l$2;D=6R@3Uu<K^u#-@%_`%-&a{WeWXJK?oa-RcUr
zxrWX5yFM>BT#8i=?fbDM`Dn2i>q<tye!W9=S#SJ4UTr9!<l9}nC%C5l<}#6z?N`3L
zX_n5lJ}fL<JR_%IW8s$8{V`hl@6vvTd^WZy2>sfmCoFMriO)O5`b8U+qRyT?T%j)5
zesc-)jdq{1ca<R%q?VQIbWEFmAUo>Jk;NBd=iE+TsdKD1BZ7lhv&My0BKBkXg~u7J
z*_Zs%eu}=IAa1y9vzKCXoSi<`VsZUs=Gv%#jR&)>GWI)~U*%|5_uK8T)jC<ppT*Z!
z;Kln5cc=KDjqzPyE@Jgdji>(mlXH1x8D&A6Mb4IQ;TJi4b9N?wkgSlr$;;Olgyl_+
z&1U24yzg7f`;k5V;cEf=MZe0|8y^+ht9sH?K=$39w!?1%r!O_@JN<0q9*<PbY2kc7
z*{^#q-C>tL|4<*ZdEb2N^m#!?t9+zu0{^y2KT0tZ`j&P`t3)Aevu4#r=B|R9^<S#e
zG!tXitZrHIC$S|r--+w$Q~vLgE9We@^0&8V&QhMO0T1F=T4;O-%=)ZSak)csy}jqD
zo%41(Jp5qsr0b;ic8SnV;YqjVuMl>7d28jh+tmq$+GqCg{dm*3z2MI7W6GKbax>>w
z{=3P!^s0jC%BO2DGCf<TY<18#dFt$G!d9v0>z{AjVfKt;+uWp8?d77YTPDPMI~vLs
z+paV$+F&q^ug5ZeDsM#VUK4$@i6T`;FaAEHdfv$K*AkmJb*)zm(>54|lrJ`}j*YTi
zdS`jsdG7WV^1oy<ZtYoiN@5e^N2U3Pm#k}KyY<QP))g5?`I)wR-xgnZd&8RN*z|(K
ziA^F_KOP#?A5<{C`Z4j=mD_xqlMh=9hgdw_ermdh)1D`_Uq4muTj(-n*Q=*5j75so
zlXZ6s@O-I>Io$cmamAdVsSbX#d6j~eeiq@2;Wu^>4WE^NYwpU4j(nXTMQ<DL*1f;M
zKA7|Q-`CNi)=TyUG(VG;-(8YXH#7PFyeO02L)NcKp5!?(A6i{M#qQxbTb0(UFWNpH
z;gZ<3L#rf1ea(eyf)VDR{X_E0JwHoF=I361qZyj0;A4;xwDTh$qhQn3t(NPV+_DU}
z<g2bZaEm`;dj5pQkop;BXY;rGJ(W8vKdaSiz8Z(izp1seRw(aUc0?>;tH-{7lUxt2
za=aY7tTOn^{kc-oCSPax)~|bdH>mbx>inRXC0;!*>-Q{P`=+}_?cFn(ZNJPeuC;x4
z`%ChNo`)NvC!csT#inKU6~lJZse(aUU+iToSa~Ste5`q^`uUAl_G>d{rF%<xKmU4%
zdBU;cy8HImzLd{e?S1F!Gr!X@nZ0YdG`6=lnrTW&a^GmL<hUxt9lhmZ=H1mj^}El?
za{W|sK6Lk&;u?LXr1e?fw}n3WtQ9FBzs4$`Gg<J+CTG4Q!gF&o9;H83sI}Rby)3%h
z<G}8yr5~8&)eI*pS@+%wbkMoDzOE>CLwZ1H(4lEb>hn#wR{HyMMsK+$GQ%*X<LfQ9
zyJs4zCYV=lG+q|*WTR8)tGPG#Sgp?txLsCX6MuD~+e!N?0Z*C=H+jTn?bm!Kc0TsK
zXUFq}@?V!E-`^Rgs(<}vo~MxOyO*adCtTZe)^frc+x1n;wBkH3E)8vC$zJz2_iNmi
z;w!-$O+N9ilQl_wTe-jNUiu4@TPwY<ZT~BKdbj-dG}oQ+{XR$c1#Xuqzm;1id2)Bv
z)>khM$LZErUR^!)gM^00^1V?-+n?uNa$K4B)@x#WZEnzB(Y4ELePkaV5`CC;?3!P2
zqv`ouv8Tc=z746#zPHdkoawrGrNO(rh<WuBCn(mquPSBTC!74aFi+s6b;~N<d0VWv
zS2=H#aXy>4y=C1A_X`q9U*l#K8cJTcrW{hc!TpNv%Iac|zWU{Ave8+)b7lvx|7HB$
z;#c1ttB1cAJgt0_<Ns-*+wNP<2Np|s>0HPvdM<46J^9ya>-jG)-Ti&nivORa#`(rg
z&0>E3yRK}ii!J{txw2b4bZS6S_u}xhOY5f1@>}xmN>-he=gnirmb)#d&M6LhR(ri|
zfy4G&4zB{+mi71C{OEt<a{aB@_KE)a<@JZ=J<ng!+f=#S%;)FNsw{08(<8UHRIqIo
z`~F4wx3b*JU-n!Etsz@~F5Gps@UGeng)48)9p!bm*C=?i>A3XHxNDjroBr<G^l`@Z
z+1p+wPLXMnytO~r@Y%(H>vK(Go`u%VzjvY5JmucWrP9IgFDnVPIUG4=c22tDY<<~^
z6FsuqxHmuen6gFO!IxdjbocrCG_f|X8{2m08qE9dUTbIeSKlz}iemrz5Z5K<QGdEO
z-)er<Ccn9-F0sE#+bHhm{H+JW#T!@ddvSRhzun3W&K`5y)!F4{K44eg^zzjIm-Tz>
zsvlskEikuKFi^;!ZhDVVezR?}rZkg<0eH#z=AL;>%#$w`t8U)But0^$!W1Ivd5oEv
z(E@aStjgx1lQX56EFsFL>#;FT+kE1w0~4d=bi*TzDx39Q+>~XqglOBY$HsUKBx7)o
zQDwUpCu5>4lL18I_Kj+cH<+dy9AQ-5zD|?zmo$?BRL?nA#wE<t_3tsNZlCVSxJ8=D
z5TaxHIakKH+xgNM*_oLPji-xeG8WgHn<^M61nIk0l(+|%B$lKqn45tG-175EY;5%1
zjLa3x%^@O2777+dP^Kl91yt17K*16!YHX-r2@^F|Ff@P(n<y9>fW__X^aB!0N>YpR
z6buc)vfH_{7~R>K48bl}W3n)tUQ@^@S+AtLgULyrC7P*bvaR{y_I2y@;%x+;bl2S%
zymK-oES1-7#><x?#vW|Rl^YGV{@u6I_mccp%LV(3e*f_L|CRgipXVRU&kFLby^@($
zx36MhVD3SVF9%L<Svpnd){M7{6gVE+?*H@f`TC;Yuk&xO|ML81oqerh(PmA}CZ4R{
zMfXJ{>KD#gDq1QaboSfRZ|miks@N@I`&B#j(!Ce%myGws3QW8wRrQ$Z@3%jHzP;D4
zzyI&s(=%y(-zFI3v&nxJ>Rx$|Bm1t+Rjo&_{bE*}SiI}9{kBgl?Our3%~c9M5`1$)
z+RJR)i3{h~T(fxnjqTlWmy^kzLNkKYx#GI-OI4TrV{Z>^s^76>^M!>MT8qTy@9-*W
zoBpGG!jH8fp?s-x)kI4=`@)~eFTNCWT>G$PX@l6g$+Asf4t)x+VZ7b?@qGGX_1VFn
zbC%z$d9waf?&rwadu~@&dz#c9-&_B~^2=^Z{XNb}s>Ua^!al{m^s!lWjB87;MB*ma
zM~7}^ack|<ElOQKp>x{&diPtWHu~hBKe5tF(xE}GXw!A^r8Z~emgwm2mNz?n$$Z<k
zPs?sZF76due}ntfiHdbbtJHT+?7b+xIZk*||HoMmtRG%&%(xo*IA45f`HD~duS2ZW
zWVfWA+IMvN7X2^UciqmMu5&QjmvLot`m(+A5?!sb^Y<rC^Z(-Ul5OUZt72w4^*xC_
zZiyw0+^thD1O!}|_HxaJwtt*@f_o>gmu@~9R(GGpaM^Zyv$F>t-!N<9*id`7M@%Y5
z_Q(5g{#@!8m;HLWRXk|3qte9axn_)?cP3eK$WN#c<B(jtzC4z5?uHZGE(Rtotx*jp
zOVl1*>Sw+1(8{VTm053>QMBdU@Bik_-!!{k|C_Vbu6qG2v&%o%ZJph3SDabG-r)Er
zgX^ZqbuF%ak8X;b7070(sK2<m{bqCe>Zac^>wmQ8-oJU(({rVV(%A{=PkuXP^!YTH
ztL)J8`jn;0Cw%qpMb8BGP*$y^8;=x<&pK4<p9z~DU~$+*YNu+&rQm=L0clMMz6)#n
zR!mVoUB7-q-js!w)4tVT_h5UhbfV_S4h7YZtAET5;bEH3otYtE#G@v1P0eNAmB<N~
z56s>vZa(>t-|nANpWIAne{0mRlkb3=<l(Icl~NoYKW7VXmAWQn$$BTsE$`=pDfinr
zkLHM<VD~Wp!EuTA%!GL_o_7RJdoCevteJN2#g-*6A2Z3T)XP_-IxH!A@6P<GaoK4B
zMUSxcGw;rki+*J&lP8cN!}#VVzwVu56Osz%y2bc#nbl6{a@R3&_5U~{k?V_R-uXi_
z8y6Rdm0w!?VAjV;h0%#8l=K@5qDuoccl&gC%_?4JZ}#LybB>k<$9)a0l^x$w6FR)+
zwlBEQl{|eq6Bp0pyE^rvnyuy@_nvtD__cXa(6`*#YgJDijOshY+3CP+(p{-KtwLyi
zxoR=*@?_3OdE35fPAj;#Z0ef_;_uF$uWt5uKO@R_+g!JESByG0RWUk!ZrY^kF09qJ
zdy;zYL7i9Gi@cwni`XHz@#}@BLMP`u-1fOZ&q^<b!K}B>!eaT6Cp)j{UZ|fLs-`|e
z$3|qwWiz*5*;2Wo?E4$ntUb|ww9EQwZDZTAt?!OZtn2OdE;oAPsjOEvZC{a&_8zHV
zPTlE}GsNZ@t+tyQ(X6BB{b6lV@zH&!GIKb!uP+YHcyuysdGzO8%{_7jxoPVPAIuVc
zTiEvEOmw(^>do`l#J+C5_CLh@N#Kra^&Y{!x>-dFPHi=MIw3^%R%k@sQnlHy4gYVD
z`@FkKXOG;(i9uG&zj@8hIb8N}yUKzaPj*L0YQC`eYjEZHl)&0&%Z1DG8=9urWq+?Y
z^e*_RVtdN@C-WjWKNe(s&RCi9@vr9fM~iR7Zp(1hmY)~xv&S`CeyaJ}2mH!&*8h0$
zXF>SmddE=5<ykc+S`*cNpKcCV-4j&*K*Dg*%f*FF<`Ta3_3QSuO`dx?^+&wSi5Yg!
zqi6Fwop>fZ|J)4zjT{fF52;<{&I(vt9shf#!|iIxjXp~IP6f<}|HK`#=v8pT%a(HG
z{Z`BpONF`H7&3+H4<)qeyh>tYS+`8);#Pl|FS_N9i%->GjeA<@cXXGC|L+*P#LqLI
zSg-wJ@zYO3S9Rw}t|iZFWD2j(kePAV@{JGg)rA-1kG43Mem(NM?OU}U_hpZ@7TWo?
zRwZk`+)VWRe{0E|^KlWfS2>sDwz+w62FZR%6mM<2;-p!mex+t%(#k6io3!24BHH=7
zdh=F^pL-hh+qtcFay{?Ljsi73&j<cy)^8@Y^_8s*?(O-vadl=?@VN<|8dgOCOC1eL
z{y0>2oC#QZs8u3p+hdIb2F40gLULa$czrxrGPt8JyCtBkklmMmReR5eOZ#Ht4Oj7$
zhCOz?*rl?rdy$ciKF_)x`wl4vI$w!)-+pLvpP+h_h-ux;+O0mHoF3PIWSKYlh~<{L
zWUGP@+p2{tTYgV_B)C?DtNX}>{nt8V(!ck5$bQ)+=$ZfQb%P1heAe=!aIbA%8v+;B
zetyce>`LX<O8wLOVvZdOdG}%0T8|T{{x1~&c5GIR>{ni$$20Sz(uJNcroGPtOOGFm
z^{kWCeVKH)>)vZt|24CZu07E3=3xE$3ATOTQiG%<7rDq(wta8SJMi;C_1cytpTFFB
zp`CxXH1bO6i=9QQyZ1eqA9r`kPSb?rmR99+o+rfQ6wR^zI_dXo=2N;HlP!+4xNlg)
zn)R;5nq50$ovuC?2cNm0zUu;k|D~6OlKEHg$sX-+SZQpu$okj@1Lqqh=l!!^?R$SU
zufFwhW3E_y?-s=^)qAGs30sSu$tl=(HRR~hM^e|><o`T9WM6lZ|9>=N=k*X-L!Qd6
zpcT7+KY9F~N9_A6m7O<YW=u=;zihF%?alg`j~&;amGb&JVZBVS>V?>6+uFSAkH%fv
zTjM(Ove%8&q~lkc7tK1Nb$9u8@dp8)^6ay3cCNN?tKTXmTU)AWIJJcBSa#E=zb<>&
zc3j_m{_?_R6*vBfHwX8KSslB1Sa#ZX|5;U?Nep`L(*=5tUgu-^%eUhZN1XQtP2=D9
zBIEupC=dHl%VzBJQy}R;u@}3u*l(7k4}wPu&aIS4YFhrrLT&enP}waDl{*-{YJa>|
z@Qqx5@txw43tn;cyd1)_w+hL{{;f3M9V{cs)w+UxMeVw4t7T1hz7wAKz2KF_A~D?n
zA@jYvl*8tf{0tZQ!0~uzS@|1{DPN*8J^qQY7FciWk?FW!p!a%aPs;5-RhqR<J1U$@
z6%}4wsJzd;Xw}^_M*YgoZ<}=+t?cG*dbQ)!!cgr6>HPP#3$%Eq6x9cLu9@g9ueVMl
zJmucDh0GhZR()XN?%}fisgg6PE@Se&71_CSTc$0{G<fwxEpEaT@5#}5vvrQx&9J)B
zTp^O|Ulo0Qt+FjcljZM+H@dslp6$+_uI>0+LqnCbCQ!@P$MaA^)UDFHOyBQqPyW58
zPxGyI<?L<7OS1Q8OnUxz{o9}g^{FeICvRd-=?a|I^Ua#kD8OhL&u)9kHQVNVW(+u}
zwUJkLhMvZ@oNZOk{KxE#<LqzgB}_k=aXX&x#!AzrcXJ{OTTCT)uL|9F^Wk#Ir&SBi
z+AKdlXKm%})a;M<7P8z-oUYfutHJ2d+e^XU%<WUM)J^VB{}<#?{=R<GZ3)RuYZM>U
z-<#{8A+_PA-EXcfX20_uZx=uMKKbAF-AO)+Rc$l3ygK-N!Gps!2csSwzc=g9G1m=#
zGL!G<9gH>4GMzo|_py*~m1^FJwr}>Ach3D9dc(Ut%G+>hVeQu2YIkl`-kuw}e#W$k
zQ!I<!&VJxm)LEx+fQ_*%@69<c*E>hkw**J4T6&h%=igmWmBTkXoIzCncyYE1$G2)#
z&r?tH&zL;VUJ}{$JmhF8v-`z4`+q%{ZK~|}AlRj(itBmW{JFn`PE6jj%I3|Iw<bpQ
z-)H~2V#;&>)tQx<jTc^q9MeD9Ub(dJo>R@`=;ib8s{2pfcuuG2^s`%cJr6Ma(5#rO
z(R)T$)%gCer&imIO5fdP-}!UfgIn7fe$A`z-+uJS4Ug}wkD7~wZFX`z+|8O-zT@BQ
z&xilBKfJ#GkNnK}TW(HISjH#<>fNZ-n;4qeAze%NHp+Xw^me{`-^0)BY7p(bB5Yx?
zV~2zEg56u#Uo3j@=!eC**d<4EcfYu=ui05unKPeF^Ooymi^mT=9yzOgo%s0e^s_m$
z{>{>5_<Q;GY5$V%)9mEe#r^-iW$({hImfiN$ZcExIjv{Yxm@<ep+%Y1R)0U#FWAbw
z)_GC(6{*XQ4=y_rQsZ(qeDT)hg7fAr`0lguY3KDnQ&!Y4yU*e&)u`2}_j9qf`}gC^
z*>6`b>rA~J!7}%Z##Gj&!7G9)l~)`4^F+-Se|B<;!xV=81K}-Z&(0)snZ9uEc)PM%
z!zuCajmc{s1<wpWX2^Q)vh2!di`Se^?o#<vKWAye(N9x##4>U^9&>%3bv3D7%g<0c
zx_$Z?7mL$A+f3Wetvsv#xawi0mXwkBvYW}1g}F>`Yl@~Fm?iZi=bM&M@3-fo6=@&3
z_g36C-6^G&e)MX@cb#iHIpX)Uxt6SccxK02n{_(3--hp9eXcZ2W|CX-%~?9X0<UG=
zzVXgV|NE|b-&4kiSAIy7O|$&-K<@C5iyw~NGum_0v?g}@$;$JRpEL^nZO(-W@7*1H
z<5=pEchh3S#b@n$ESv9gzh~8wwZ;95%TMVDE!8O0Qu=&3r&{~=3FWgA@|AJlzQ1v~
zdf>TUdrkG(WrwyH`F*}=5vNlilVaTZOv5|kjMc2;9Q>2xww<ZZy}3ESzqUI4-_y<$
z3T67zmM>$HXP0Ux=exw*-}mRo+3T5S_9TR~xJ>?(z`l%c)}_tCQ+iT;F5XBp|K|Gm
zl?}U#1e3P4bawL&HpWA<)|PAykhR{mD&X@x1;2&2W2IM@AMBPf|9c>(Jx;|}Mt;uz
zoS!DAj$d3Ry6nZa`{ruX>+7RlR>kk%yV{>G^=#Ei?Y-ITw{`o>)nC1x{kC2HWznLY
z`7b{wru#B1$nBk7s<mM1<NYfxOy6bqKWJI`*ZiyR=C3rl^lr(1kC%%c9IQ~et@ca!
z`Rw`I-oD!0|9SJ%iw}=&{x8ZrIYn(jqFT-D7xqkX^W3le?r@0k*Y02Ayol2-U_<?>
zBW@Kp&9Vc3PAHK0HgV;&yaPPRx{*QZ?~~IFCU)^ux-R6}->)3F<dsgu3q7{`7qyJ0
z=Wk9*6}vypfB*D_`Zt~K=ifem*HAITUwpZ6vEPB0Z^Mfk&Hw)|_;>#F=7lfi>waHf
z^ZhK>sRr-NEt4j=dGne~cUn{}zQuEmernq0h4n^iQaRsOuQb{i#ij72(dWa#9os&6
zNc4nsPVUv}ee+uQ*uHIHVskhrPvvTzCgj;VWvccm4$mo5Tf?PAPtV;iQvSq8d0zOR
zck!$1HiaHt;jQxj?(@Ef0=Fg^+1=IJ;@z10Eh{ovC^K*AyUyzhryn0=)N|cYf6gF#
zeIB3kdXbQV`VF5pv7UOjz}9*BgtopX9F>w%YdH7Mj=3o<_P%zu)CrC~IuBje+stGN
zRZ@xAkmR#lr^jf@9R9;65;#BKY!Zn-f060w#SP~Tbz~a<WIoZjQS5J56w5xn!F)}_
z_Sq+2@ob&DZ;jHN$``GIQx%t_-C^8d_A+eYv{J9BQO}<L63cF^7y0d@wW9p{1x*!=
zkR`@34q0=%6npPAzfTC=vT(I<_SWJlwh|iFJQp>LE@y0XUgz@V^SitNJINWmp=SJc
z5pQ2q#$<`Cbl7=@bFmBKv{{#rM%hh&xOE}}@Avh`K8YL`>6s|x%-f%yq;`AWYL?WA
zPJh3jW$_A}rF^~WROq}-7U}gO{=(8PAAgfgog~v?JpaMwXxX06TdX&}N;TN57|ZPP
zDOY;6fP00%Xa+};zZb)~15?j_uDY=&>TLYVXBwf&@-a8h7d|bj+9iKtV!}0%5S`*{
zZIe0{vKqEocBo}Hm2>g*TvHKn_f)yFJ#GH(^s`4F^0BZ<wtUR+x~`F`|D{E{-m!hR
zB%>qmySrtH-?CN-ZhgBuz&l#{y5FSUOUF*P)~^bz*Ls>OslT?(sBGTb=>N+*d@PU7
zTxffMx7p~F-0u}JPS?{ow6o=^9D7V_xaz-i{VT4|e5X6r@(#zw=EQ~PHW++rEPl`N
zT+lSX=-%qvfuGYauPoW)wTz+lNtO5S3qAGAB6l19J@7>N&+YABPp_|bU+&wrpEF}e
zPRsA-zn`y9Z%DZAs>heNvu;|`*XO^Us;Lxqe|B3J=P3Q@(KT_Y+o1-Pf+y-u2OIzJ
z%)Gz$%IU&tkL5i(eD1&Xl$hn2aLnVBNJJ8Mmf0ND+_ihMg}gq$wKyJHsby$<{EC$S
zrBcz`mi5;QuKQMRT_)k7ZSXqSXhV_S8a{ik{Myp$iEB-N<VNMD9=?#9Z!NW2=Ni9;
zYI5I=Ysaq{$g+E7@11+ZY|Yuc>Wgo-<q24ncYdDHy)Q#}TS-*vou!}3qwjyay7s-A
zeOJwfPv`WxKgpgtz4l7_yRv9j?zZQBqDPY#Rq)*Vmi+5oz4QW04WAPmR||aW>eMlG
z^8Ilsefqtu_xoqX);!@9KT`MYp&XOvsh^A&-hREaeBb&n-`6V`=?NG_uho9yCma5W
zvxY(1IB0P`gR9Y^*k%)n5EHxPS+ge`TPcy9c}XH%;@Sb;gK}DRl6Qa1esN5|#)!vG
z=;gt=P72XU1#?Se@1CfSv9e>C+LhFP;P1H_y_G2oZB)L@b6v}{$Z&Fl=%zDFSvnEi
zFJw56w6dtwxEu{vj}_f;*0;~+>HCGAr{6NPoBR6DnsruahB0p|_Y4!3eD%@-ciAgi
z33IMEYI!p6bCT6c@Y&F9wQ21Zk4?%Z`@e9ms#O*hZ0@PL{)8oLZ|UTodPOacccMny
zcFs>LI%T9U75^vh&m?ClSN32}B{BU;9^MKIpRE2^`<iK8n&+NyMWtNrC0!R|E9x_6
z9H?`DbFm;_V`8k5sOgfF#Xe~-Uw`kM*FEtJ<N0--lXM>%&r&{m$IT(m+xJmfv1F|&
z$Ly2pZ+o74&)O2__w?7JO^ebkde_&l{d91{o-Uy-8LPKjV<XESUE&iz@{{-O(benh
z_o{#KiTv~;Gx(hKJ*mlFhJCx4PHG)*KRY+KafztIobN}EUjFwmF~fCLeYJYdQP-QR
zybq^kG2c9S^vG%TT!EEIErF6H3zS-RpZYR${-b2ecMC)xZ(i@Z%0MmrbZYRM{VNV$
zRV=H&;{Is<yEX|mFO$M9!`01R74|3ER?gQxWmEZJP3787zB4^j_I9O5P3S$ab+35d
zfqi#Q&i?z4dFjh`_OHDEzid`%lHm7t&#ZcUXF<WTa{)VYu4E?gJb${~%$ec(1>d#I
zg{Fxo-ZM(<E{%QqTwCZ%vSiWTLwj`oX#{YlTsZltkx#%<y3Oml{Ccrf@qZWvHPzZc
zO*0E7V~fd!^Q7xd%q>yQLpd80S$zB0tlItinfkB!NWQ6^>9z9M>C#7?lV5L|>{%3A
zw?Nh7S&Vnc#1gfc@%GP4nq8O`G;SrnJJZawV0ymg{Y%=quBuuqR|{yr)KdNMVQSdI
zNehjRg&Boiiwp_TTM!rK_`o|f@Zmyj%?oZby}at%qfEkco@!;@I1_$pk>E<p#agb9
z{KBMUoCT&%Q;=7_(P;1^(<D^t4X;P^l*wC;PgY_5#X6yd!>wV-k;y81SLk?fwl8Np
z`9Qnu>ZOpB)RHxG7*`5tv0svNTG-8(@aUo)TWn>tB<HSs4>JShe)NPgaOZw_`*F)E
zr{H7-^AHoc`cEvOGX-i{FNHb0)X?U3)#_Tn5OYO<^N?$JB)8?FL&EZcZ#COlc%>Pw
zGb|Jvx-JMv6?i<<T7J3vP<Nu}6LUG$ga<M%Q<(O~q;TG1xwQCP<6ei$uHKtjGPpkp
zv3=qCACT>R`4MNOYR)s>lF0^b?Ijh33`|<y2VUE5n8+r;T7Sb+Dxg~~#nGyRV`W2C
zK*OYG{A?0l4Kg~GPS+;9aJV+%2zQCGz~q8$8a!+H3vPtEahLGO1~8eiJ3H^rP~6Z|
z?DqVn65EM`$GjF5s;GT&mI}DExW%EFM{aIVR@L$bU)86=E#8L~e_*qpWOeZU3jKv4
zF7j%Jr1xH0X0-gp@tXQ()uoD}zVYg%3w0+J)+}ae`_l77dZom+ZEvzW7O?szCWd&f
zXk{%ws-HM{)swX36A#s89=BX+EoPar_2juJVHIw3)ouNmt3Q2cZ1k#PoHl*S1db^k
zWde=ooHP>*uWgE5^3P;?$C6i<q%~P~P4u|NRiiBQMR<ba?kBllR6Si%>Mv<uI;)c8
zST*fp+@!SWUCZ2lJn9uvEKuQLwPbpk>6^D?x$Mq~T#E$rr}g>p2&7jucYDshr_e6+
zBr&l<^~T{#@*cu!hs`%O8l7?0RKI9<#?8nwiA&Ib%gl)idKDA+k1U-ZxKAOYHpsK^
zNJWFhk7fD?@?XAOllqIfa$lgCJ7>MphTsm@2hAHMf64D~TXQ0?Wy;%*T}!@{#Jf!s
zdgD0Tu=K#vl?#_{>Ctwr);h|gb2FTE+QfNmo4l5COgnR8$)kj5Hp?%}tgbv;5*97n
zGD~iGN8_~(YnAkFRb4Y`s(E$#M8}3HN_uS?TF0gt_PDsU753%#^f=g-eEJbG&Bkt%
zPW?~I$_uC0Je+VqW3yaxx6-Q<O`6Az8!x;M<ZGEZy;Hv+pzYtfm*zDa1(bFQ?@-=(
zIaxL!;E06fgr75Kvb$~4Oj<BIY09n!p2G%(XX3jYJFlHs@+FKV)AjJrDbbS3XCluy
zRTy!5?b?zcsBQY`N_hO)dAjy`;rZ{MPv<RKx#HfL`Z%5UW*YU4G4u9M)csjhXIH&9
zDsEq{nfT`G=i|@RWz^k16L;@i{;c$$A5HAz_F3Ei=jQnH;diZZby4~DJ7@0IRqcOx
zef811_G$jpSFcVhJy;mEXLhY|wPkgg;^*VSCDqoyt9~9X`u6AIuAO&urj`E>T5Y_c
zu6cd;g6w9OM>#9%eWh5E&VDGmcjdy*D>YyH@_R}r$gI!N4La0g`bjP)eD(srBi}w9
z{!@2(O_t@Qu!+82S*FYQCG28#{a0t}a&L=HZC%g0JRs_NLEiF^-YfM*`?5}4cU#fR
zvue*8L9PkPS5Ek;yH!33me}#?1n2AvTipwk|6aTHLiqLSV;0fb*?#pRJ?m|Q)_+~p
zXEbNddx>=AgC0i9uVy+u&wl&p<j=k)j!u!D6XH`(9AJ=q`ti!a*JU*mzr60y$zHlL
zxa<4EX9?XhG1~P>`!6}~H<}n@q3E#gkU~Q1T4xURv~0JWxvHxo<c~;wPCWBEwbm&A
zUeQ+Nbsse6in$b&tW#UFda-?JTYZW0HlZAgvmN`Mv79=vb&bu|ZFMKY+?TlU9c1Kd
z-MPzgnb5Z@GqrkdSh46VpLFgjS23f{^=zF0zcXfiH<bJYch4!gGUsfPV{~#}>8p$W
zJwHxGaG!g*QcY;dwPj_?&-DlO2pcc^cEt24cel&ZsWuBMxz8=WvgScVMEXO?tW%8Z
z>&4!Esc~O9bC#4({MMqaPg}&C4W}_Lf1cwuN4CgBeAWet<U|MIjbC51tFMUJ@$aT_
zh>n!j&Z{quo9qAl{^D?2@&13?Z@wwIdd9pve)j37Z{L2(i`5S|-`wAQ`dQxHHR<o`
z>ubs_jknHtyX6?u;%_rLqJ5q+g)I@|JX5T*MM8LK{qM`7|6k|NUVlID+3dF8YD-FN
zR^Q~-@w>GtLh}FfP49QSWBK{`&Hok3@ut_icOT8LJO0zse9wlSb(fQ_ByT<7D&3YK
z{^q%}f4xN0{;QH#rHYSo=KPanv(!21_oIGM_P^je8;rf!9iC50*7#@7@ileQo%=EO
z*XP|^{IRBa;m^Ep^?QDbTE0Dd-M_f`&a0DBnR&rGGt$mK`+nb~dp5sx-mP=<YG<rJ
z@cLrT=liFPznpz5=WSB+v9NCQI-g5VUS58hFWx_Oy_|NQZXx%TXcw8+aXNNpQ~Ryg
z?w^0(Y_s`&yZ;}TtN;J?X196Ww<2TrS+zyw&1Fg7$}Zper+(`>Lppm=eXQ;~^V3(~
zJP$Kjtje-~1E2Sg@{k8FYwm8y?f=kyG;8ldwi)aBH44q=GVPsJuDdO>rRV9J_NV>j
z-KU?12D46__3p{czgu?Ps);C8wv&8f!7%@P!kU|=$EM%>`ss4kwmsQtuaD+$KHDC8
zS>WEy|0b*34b2uEjYu%Oa@=Bu-Ldum>c7d`@2zpuSaO4VlQmz;!OcDG|2NpJa(*8_
z|DUPc>ucZc$1rWw?$6xz?3ul{Y?_9Hcfz#?1{I4~uf4U~dil(8iKv@O-^)%FRqtDy
ze>&*?G^_HkOHFrDf7P<TTzILngVULxbJu&tgFe+Ab3X`tx0EaTKH=k6vwd46Z`Mh~
z`^VMP|9@t><<GmNZ*TtFXtMU}VvA$H7*Di0c1+!3&9YR6HBy2_a<)&Rg!&?#y09s+
z=kw%`ecX8GnWjFw#W6>ozh8bWe_vNQv*fF=1zTl^NaXxImkz(4`?%`>$K_+K{<ll4
ze(v&fcPz<!*tYJr@G^$D6^b7M>)AdCpOdyfUAcee-yaI~Z=!OGr*k^rVgL90*W1h2
z{r7pU;+quCz9-z>a)a6mx8z@JKYViqPfT?4&{VEkBRTQmMlDyVq*o6oZs^yXd*ce<
zwSY|JiN|MTN$}J<S}*>w(U<L@z?&tW6YhM!-IBi9c`?HY&BZZ#VbkSj-}aX`@BZDt
z-(E&+Ta`?%-5y7-u-5w8giZSz|NZ*=I^2I>>%IK?nOr=@S3U@B@ae1dsovskFYk1!
zv+Dl&ql`XpMV7rQHkf<=?w<Iw`u{KHgsqvgcm8_0c@nM+r-hy68msfG5AfOizj}ZE
z-pXI4L3NitpAB3Y-QM76%zLz1al`RNEI0ZD<(3sZT&6fJI8WPpyY1Omx%HnHMy{K6
z``@(wE$hq*lGX~mu{rSNj@{Ez?llkZTnzp^|Npmt`yKi=f4*H}b?4mf{wUkO@^jaJ
zEpJjOl3TwdLitsRP|nBRg=d)*WUp#|<LA1%yY%$*busc$OEw(bAAc@Y_d}iK`Um%N
z1EUpoHQjo;=+@l%&(EzF+unWl*Q1M{pFXWmezE)39NVg$3*VpETyA_UW_{mx{sm6A
zpY(Xod>1_Dqrv{)X|+sGV&{jh3)NM=`tfGihd=w37oV@-Uhvy2eGm7A+S|tWIBwJ~
z-Ypg!Q+oOe?~JB)y%0w3*bFAVTP5?~^-K>^v-q*OXz}**N9TX!JKg7J@z{0R-E^DB
zxngx?&zIEiIekf+@tE7Yhp{u(AOCmz=+$3M=4}^LV<k@cPoMAhR`Kdwd9mdR)~>sv
zW->3f5TA7OV7IdLy=|J_4Jmy+ob%rGMEm!@4?q3A|M_>BY3@CZ`(7SqiO7{#Q^-zT
z&+_0_&I88Udoq%zH)oe@jY!t0{@<CYa(dgp4KcQUKbKF=t*<Yhsl0#nQTyp<t7?z!
zHoV>C^6r(?!l}V2;T5*~k0@;3vD@<T-DPp1Y3En#{dV>5eK-4RQe|n_yQfQQU(UOd
z>K&(<byGz4L5ts8&30ysy~}0t9-Nt1WYN62{cf&KW?8)OrrlAK=lgB(-yZ+J==G<I
zUmrcYylSQX!PeA$%j<7W+FrknEot?VR2gw+&-t-=F7r+=+ZgiQ<HZy;+wLjXr+t<a
zTlv(VWvBU3^Vhi_c^B?^z3=DC<rS}{EtmeVgl*$u#@A2g&iT`6aaP*m_BoqZa~?GG
zgx^ViS<EQ2@B&MrB$uneluF?R$_$~+@5LSW?g^<oaKTn_)8mS%vPZY`O)1yClv;nx
zaPOlapUPwVf>*4VUU~PfDC52rzg!y(^i8~zjAmt?d)ehxf6gdn-mDWhn04<OJluLP
zE|Tlco>i~pkDS~y>&@ptCz(mz2XD*|?PE=rj_c9RysYQ-!f~cmaOJ@(yPX$)5?XTJ
zt+Q4!&LnWk>utWtr@y96PcCQrCbiloS)co)W&O6+?PrdtH1_O>G<j`2RsF4O|Igp5
z$0DXKe<Qr6a^Z&!)xMo`_L{x7TvEOD=gZH*)09JJOGdYs?d&}B+vVlG+}mH2(zo6`
zzyHtPu4QfiY-S!ddH3$}@&5PULX#!?k61;%RT8?i&FcBCkh$kJX|GQ1P0ZgE6&a^J
zdzG2tm1hp68|qDu{X3bZzj4vbb=&s2&6^YCvv8O4y!0g3eBDspva4ktcUA^8WwBq4
z>pW>S-7IZ+mac;17N0QbSa18t+zqF$Uf$c=X1Q#&Y0N_7;~a*oYxkbNvNJ5Xma{*1
z_0liRRrj`W?|yfUXVu;#O~>R{9Lu`q6Q+H1cD(h?Gbd!$m9UzAsV`LIj&NJ&;Q!Jm
z=+{iIBf2q(;trNh-*-D{UZ1y4HSPB+{s6g~T*6(q-lt5<x)Iua$lpzB^Q~VeUzKdL
zm$lk6W9hQ$;?>)Q&#nv%=~i0xHSx%m!~>5mF1r<+%P)OP&TN^rPLyQz?^TC4?uq{2
z?z+n)=Xj>X#^vg(O(*TR@LMFi{<71Wza<3|cUTALI^`Zt+4^xKANwlBS(heXz13Ru
zLo)Pme|L(NU&bnr$i-V07#5W6ESvH{MrhvrbJO_v&Cf;`*4I|uIQpjM|AyN_?j5Cz
zFV9QSK7BBE&WovfpC4|B(hS^PtDJuOHj}uq<vT68M{lO)&Jl2L=17ySlM-e3zmr-o
z=F>IL{PkI@zc(_rr~f^i^m*gYSG#uZ6FZcl7;|9$k@#l&e*5nI-hX00|Ne8q_UHA_
zqT4tAjPBd}B-hh#yUO~Avbq<y>Tf0a?H9fIPW8RrJYD;xwV(S++1~$tw%zyF)f085
zzR%ujc4s|3XdTyj{cZV?-6vDmd~P_Je?N5H`AzBdEB090SFEkmPMDUdy}*hgB)fgC
zfFbwvd#T!Ma;8p*R=o9o^|n|>qt<lU+c{G&Tz}5~{t16e-QKJ^-~H!r_Gjs|1n53q
z>#!?T=Juy&e-7x&M>VIrtvzTQ65YId;la%rH$QHB@QV4GJi|nto2T}(R;lN6S8e)N
z8om7XuC?kSa+B-#d4|uI|HF8IFD91DR&ZvR$bwbZ9#zlyeIx4L7txzL*J$lYI3>{>
z&%?u#yZ6A9pxvA+QeT%Vd3(MrGx*)8FTeO<OJv#KFJiwkf83tW`esT|J;R6dLeCx7
zUs(G7_oeTD|D{|v@37sdWOX|`{Q9%06PfnTznpW_eCdyMBJuC}@7C4F&5?4DJ5fGg
zx48bstCN?zPgy*?ue;3p@u$1JwST;8tIhfHk2kz+P`>@`X+p>+Yg4~8spUpbvkc!h
zd!~iH(AfOWt7L~w%VY7!A9wz`m06p-a=nc~zt*w4Z#Qg|R=Rbv?QhJ^J4<4A^~kT?
zr&D((%<U@Q&218q%ThjFHaZ!!Y-Rn!AGPK(>XNg>^e>;Smz!hOk|`OY**tTCqiAqr
zT0;M|=^_T3)=kZfd!VvA(|OYVudhwY_r3dLc=7R^cdz~&SfBgtb-**FTz;SIsCch!
z!GAOTCY>!6z8^bh%lnh^zVXXlPK#E>$R<vH_&#%+R_ej+Q9n5ObC>F=_bt}B5S3`Y
zvVPCJj$hmI%qz9G?$g`kF*DQ0^ZB0-?@QTcZ9P`BbXG9)&1;fxCJO&#pSvpH=`Q0J
zE3aO=oHd<WUzWdz`Fd=Ptwo}hlZvtKC6OPuL*I#M++Vw9pGDQ@{%f~h`oCtb{I$5+
zJJeY4k!#wmb>+^UN5ou~oZ-E1^7`rWtEq>hGwxnpS%3ZW?6l)5_gfwI@8;ciU3_=(
zUhbW?l9~Ptx10BWo3X?;B9q_ylk$AgXPtpl(<?%&3zhsoYF(8(lA=|)V$G)$AzQ<>
zi|p1Fd9B`bEA-mBQyccaUOjDXMN8IA=KD`y2fY5WUpK`=|C8)Q#=9}KEO)<IdAe_x
zIk9c;^|hJ1Zsw-Vs_$PIwIcfJ>CIRD<g7EDj3=Zo+HbdM|6SRAv0J_?|7!W9+OEv;
zG@6ao;M?ZL%>L(}*s@d4#-06?+gZ!Bv(cfdzP>)Ee*5<Q;>W+~>lUjpRSIuC72P$J
z`?u<hEo<L<Kd`=i>RZQW{r}uo|JA2quGutVGBpG*$7D9Ku$X>$2cr_l=EBTdL8=#4
zPk*<AQL5fDhu_zB#m)2kbc^j*1m6wWyMNpEeP3R^IA1EPx^mU4A_1=ZPnW(}bo1HL
z7yHD;*QcG2FFzk&SO4$ZB=NJRo$}Y;R)78RZI}O=Rew4sum65-b;yqmXWw5x7|(Zh
zWoWnSk}GenNBpq*QvP+rs#}Zyo9z94F?`?p*_*2>Za;bGTladGZ+ZR4vkM+&?BsbW
zv}9`T)Ag}|zxHLEvx_?Ncymbi-yb^4_e1_4?NxqTq4i(nZ;4H0|MABb-qRY*8g-^D
zI}+p}EF2|xSs--Hg}w;3x1H0k>|`{rFS{^phJas&mBf~mY7X5n4qd6|y!(1M8#g)l
zam>}+fBr$Fmh6R@m+l%UE1L$sZ3$Sr)Owy|TK2`4Ef+FptaV*3>@@ROWw+7UBRWw$
z#+!W3a4z)m7M+s$vc0*_Gdj@CSN&9ri{#z8J6iPl;$`+(Y}p~I@?Y*xiIL&&_wy&b
zS?+Mh#P3;RYfAXC)LD5A{oD)oeEqv)(!*ICr|sUR-u=-(dr9_gP3@Y0Oss-j_prp6
z>GZ-{M%8*_6O>8i*h&7~%?1KT-`91??ABTOZ#%1C)LMltcb9If_Af1Il~R4R@P3`C
z{+A7nEOnKi)lR0E6;4Z8Bzf~$beXH4@@lC-FR5LgVn^gc%nxnI2{Svo!gH<b>FQ+R
z`IYq#b<e(gQ}oNSe%`t3>z*FkbUl34a`pP@uYc=qtqBWieQ|rWdRq3mNq<axuB0t`
z6(J$jlbaT8-1F&Z*zZl%7mjcGuIfFhcg4+Da?i8W=l}ZWsoObmrklvh60vpRC91r(
z`W{7rlLcpe?ueLiPT9y~%Kwtvjc)@*_s8fx46|vUy)56A`=-0=y45E(F05QISIIrw
zs)*Z5u%5HX*R_o4Qe>F|`##$f?PUzPj)pH7E=3Am2%MPS7$o3V@PX}osK^Y36wU=d
zcSI&M+x(~zP?BA{P*3jOyT@M`L|%B!SaoFAH1Cbm^(xIh4LvREXJ)Bh<vG3IwCUd6
zYvq3*1%2ih=wI)PEeebkrW@U3RIWEQF-M-+kDU^m{m4PY;r?II&o@#v)n=aYVHM0-
zv}VIyz23i!hLU$3e4Vba|NpC2tfw0iVDY*1{GFZmDz}|3&n*u9yx%!o^xvvJ-)R1S
zm+rQmTHS1K`c}s;<Zej#!Vl4NPuH29k303xzw%pF+?(#}Z?2!eub*FkcW2Jy7az~g
z&y#=p;m5xF$HK1uJMrr8-tSt1_nsd8TlDpLZ1tNfMV7%?c6r%)*B`EvyH;BM!G77s
z>kGd*U!Hg6aCKPA#7Eb@%l~_Gdv#aZ>QD<kxAm{G>R+Bd#h+UJX>+PcU0BvmS^L#9
z^IzwG_S^inV9md&hqu_&$xU|;lv>YJpW3K1<;WS=04CK5X-hB6vg9pXCi=){Z`&t_
z#|aB~e+Olpw)5~VVHUj0B^Yb(IBlv}(HfDeq@{179fTa$$f{g(N>UR%!sDg<Zi4fp
zoef8VInGbn-G7~@*eT+6I>+lNdzM5*D}J0(@krC9>@u%Q*;;|}3p*s%T-I&bDtajD
z^SgSs?8CdI*UX*p@LkHGf_4|Bgt-ED6LO#UteHFEN{fs7?zX5+6;_HiyjxQ~mN?DG
zj60LGtg^hj`{7dE_wQN^E*Ej7MLkMPTOsakC;Q|`4~O5Gj(10VJc`_=$)vUESQb5N
z`A~ADW%4hT>v_6U|3seE`!6-|@9g!0t5j!eY0mt&&O`ZVw5-Ot1tO;uxpkdZPnc(5
z+Pm_0t=aBZW<1HSIdu(9wyykdviAR*S+&>wcOUw0KS$Hb5nFl!t#encH!-q6NllaQ
zW<53#Xnp@zWLHjP*MC!87H2cR0~<WOC)qV9`v*DeN*~>M;`aKr#!CX6ndX}qr<W|@
z3=fUGSr+oJ{q@;K_tL!F$3Je}pOaYn$UD2)BG5P6P4R#Jt}2d0SGUQPl^)l!S+{-n
z<9FxxzuosfOWM6&|7t}2_GeE&@95l`^`qy(<JyF&9N|wN*2(T%{bpx)x9ftC9rLr|
z-OI!MPcO6o_<7H_cT#0*_pVre{_4T?GI@tToRz&D=;|2wqsVZVaqZ#j3(ekSRX<D+
z^o?IAHv6SE)3&qg|LQp2dYQ8?%e?*gYE7H2l9)47mMmcTB0i-_V5VNZ<I?4s7cbum
zp4Mn~f_W*Y279JUmO!F^MyD-P=dKAFdzxGrr?|dY%5t=$hPiXs1#OPl^hFAl7V+EI
z9@a=rS-k9CLx6E>dgZfDB>@qklg&(uL5uyHc1xKS?^qo;xg|igy*c=Eoj-@(QX$UP
zkgP@7P1jYb3Z}a-)=etmW#`-;=v2_Tz;8!pQ&rdJi$QsB3bRB0t=aR_U44CaUESv!
zHp`CPnKN5%<9uCvxzFBty7tHNU$k4E{{N5JQS3<owpazP;a90Qvp|_(ik*5oZ?S<$
z+xJSYX|lbmel+d$2vlkQxZ={5VAHp6Gz){4v?(}=)&6e$Y;4G?IdR{8JM-T+;-2$A
zTe$Lf!rwb{SI>Rj?0ol)b-88y?o+Jq-$j^f>owKJeigo0U#fNcs#U$t?d6}IG=04v
zuYZ2MzkPlE^xC^N^S-akmOK6L@xP<8>*uGI|NoX%De~qnquKiSwcJOJ@TYw*eR=og
zLd!YLXVXMkULRbu@5|lrg5}?zmw!*b@~@=%`Yubh^8BBDQ|@lfwZD7PwDv&QZQY%Z
zJvK=N?bwp~bk`=!U02(9@0;DY@$mM#n9cD$>Km%;L*!H4H(ySyH%nH!DU=z&b;?ol
zL_?8MoPa0urUgwNhx`uuB`q_Wa$Y3z&-ug4dBtOtxNKIQ6plG^^9hsNB;78-B(LWF
zV@aDPHEBFkFq`BPxPqtCXo}j(oSE*%`kM|go#Zfao!}C7R;fj2rYpzW7e`fsX37ML
zOg2}260jv)NaL9HmYOc(_4OhFlV&ec(zwUfy{@HSRB>9z-bD*4>;?a5?EJEL&(uvz
zT*@L{V}4ljbj@FEp#Cs!V!)wP(ay+YUT-#ah19J+WIiRvY|5jgJA6m48d;mH7TP?8
z=g`Gtt5v=-pZwm}EiNnGo-A-M_*H{SPbbgY@>N&fWGvO1CA&6c_Rkr5&yp=G>nE;c
zR9zr5rO9Z5+9jSTiD#OM1it!YJ$cKLJLB2oTirVrR73^Y99+pJTeK*qQAKc9eEW&Z
zM_d9OlbgN;OA9QH*|PMEi<hynm86pk&y=PNcVoug8Z40luIHC=^n__{R{W&0dyeJ=
zwxz~KQoj$ZP@3%Oa;M>hx_GjU-I@~-6R!k4_9}Sy`&yC4zI@&30WIMt*w5$x&5tyD
zfAZrm+4%n3j{{?O=j}N1vUB0{#62fpAG;g3@Y|ifurI&ay<X3Z!<Meiz%9mlV<Quk
z;%ZW0ev^T~@%ukTYD*${L_|y!RkSv3IFl<_dm}lQ-(4v;_`|_``&-#H5yG?nRQ=!m
zZ)f(7)u*G%lsWhJKH}|J@^*=V!HV4v9rOy`rZ^-kS=m(;S-+pjcj#{8OaE)koU`X|
z|L*(qSE0qKd7e^dx4)`ad-gooHCSnZ>&ur58;{I;y{VE%`ODTE(UYGWCVa36m2>;7
zu(>xtykcW|yj#P|CsWUy+kI@VN%`9R3(Yc~A|kEY?iZ!Qnb^)+NT{tBcye(I*QD^v
zT1*oj#m`BbQI`2r-#AR}y?UjHu2}0*m9i;%6R-6N$*(rpR<z~ADbq`0D>GcQCVuOi
zCbH7$(4H2hwK7Ln_$a$a_OxtNy*F>s^fQ;)R;zeaR5w-5ESFWR)Yq(<8};b_U9;nT
zUn~Rb%+s<q&fYCO?`^UA!=ENwE}5OKt@mo47m6*k&B38P{nb%M!TQ|nW>5(K*8H?7
zSw#NUO<tE5Tlf~<_1Y@0;OnP;Ma8A|V*dUL_1cZi+<%I``@cJQ{?wk3yC?o^zPhMs
zqUqd8Vr;gNjBnU-m+vu1+9dqgsiJG1^!f9CcWOS%&4{nR`uo+7Dx27n^H+cWVtQNh
zysUO@w?Ueal-D|WwumhSGsElq6I=F$^rm?}GJIwoY2NegU|99a{0~O=|3+|b3)YQ}
z-OQE0>f{XTFALnnDl)syw}#BUAjEc<HDX=Vhe-z_Pfa=$`Koc!|3~YLr`(nLc>3)e
zx!jm4fg^!kUp%)cYISV$xXqw>s#B?}RzP=`>NH{53HO{9HDz>f;hr!@rn9c&rNdO-
ztDCGR=#|Y&H1@t)9R1m9-fe-&Tk|Y-7|Z;&S?G7Lc&*#)$ku=Co;xNnVGGOY=Q)^c
zn9Yq0rdJ$iRH@Hh8^t~+us}|5LM0#P36W(JQq&bWoh4EO90M7TbMbBU+v*qIdwq58
zd|lmJS@F?(Wv?xqef|AgfgJtsUu)k#{cSXN^XBhy|D#^V|Gy;|xNhAP50y_58!uhA
z*Q)!p<RkYYWhUA1X&iBf1fHDZlu`Yl<ap0n;+4{u@}tUkW9RMIU0?R*$n(7~!t}3e
zd=%&sYW-Te$FA1d;oadA>eEW)AMW@d|1LjBXrjlXd-Wf-@BcHs_}$OOi@Teqv9Y;o
zI*ED)tNF|_dHeUpj3qlRJP>HDIkm(y__$?U`e|{W3HqP;Ir_tnwzr@9yO`<eX|)sK
zeiPPrg-u+&@YBVMfuCX>75@qDu77%Q_tQE@>8G3@9Sc8xda&a~%Zwj}!cXcH7k(@X
zEs5DNXU}m~SC*g0*;!8sFJfwb^rUNo!p}*i`|3U&y%@;#v+F{`f)zg$e*XAaR9O=+
z!Nz4_M`iUR7gwhbEiZOF=-hpB#*a?HbB-T{W%o<(ulTC9|D*P_efu+}zF)-I<<eSH
zUSBfD#=zsDyp*8*Lg`8C_Xj*V7!-HKAj{&bnCY}x4!%p41q82@yyBB3W;%P8^IrF}
zi=PE^uW-F0bZT~#-`WLXL8~?7vv{{o`?U1Wiqb1pS;|{y-g3%aS{7ifS)U~?>cJYQ
z7@{HS)*3u9#6;BjXb_i|r)rRA$f_6N;$BZ8zUS7zdMo#2vi8zNah)QI)>ke0Uh#0#
zfv3#ZGuO4p+&;?n@qEdSl+Gs`o;1$xzHPRBwe8Az!qxNMKfS8Gw0!-&+124+*~;a=
zXV<oU^?Y4?B6*s7@%`Ld`7e{d@BVXanYmu&yANw7^G%R@y??|1d;et5L_Pb?xRQBg
z<7@VN5=-Pt82c*fw;T`COw3um!B;gaKIZg{iGjgq9wt0o`lG~4BxqxBW~j)mnTH-f
z=$oG8D|IO|#qf6^=XH<pD~p9y{}dJo9#;JIBBHS4>?*6%buQE2xNo%yJCMibeyNN@
z^Y4Nm5p|Cfm~;Ewch$7cZVy<y?eOW_izXW|JZqTVEl@hGQH#^(;NyCp+1v6?^?rLc
zWv0~HsA;*8$tNBa@uc-mHJyE;*}nK!%~$m|?x~4(H61D}(_ej9;X3_!eeIXThj+!|
zR5`b+&3`iMMRMy=UYl>fT4x&YW&TZ;>aXSBv-R8o!Q?>gl$(k>u6~x}Y5n`4RrA5p
z^jpghRk5`t?W@|}`g_@{NA3No59)iJC)&4vEh*SlWq$volTgf*dq*5~bwmHihKU>w
zk~`m6&9m&IgUInjbB?xoTfST@EV$hF{Pl<XGXy`q(Uqwa-gIE{v|VNl{RW4tIl?<X
z=9YN`bgpX_UsHM`p7Z3HNS5r4=im6=HZrpGm@0El@AlER@AiG;-1SGmD(`{0X}m*f
zy-thL2W$T`SByVjw0QGMe*1oxvyLl|gw?EAHnX-<?c8JATeVm1xm4{ZEp^+u<@7qE
z$hAq{eU|R4FTdUz(_`c%x~wd?z4e9j&8ga_XEXnJD{lPed&+mNx9NICy6SeC|66QB
z=C8IpAs_Poe(>Uw%aXoT!r7*?&$89MU;pUOojo!2%Hnz4+B}<gL^?V5CcarAc<Lzk
zPuFf?x4vn;E9ENl4Y$AeXCG?6$@e%<Yi~{R!-=1itMB@_1<!MRrnqF4{Nc&R7pbwc
z-9BgRy7TO=q;pHO&z!iru!l!4_58Ki%{L#uczX8y+4w!XLTAg|Jh3|0ZOU;mDeg}^
zdkpt~*c2HyVea;N_4%vs2}SPcIGU`cbLjo!?a|K<-niAz>;C>j=~6c5g=ZG;W!%bD
z9qoEPf#naAa?Gvd2dtknZ`J?0_k7>n_Pe>KBVzvL_vtNn{H@y4(rY7U$k2VY!h-Lq
zf%2Qye<m&>4>)gpjo<t7=94dKay-pT?YVcROFlfBt<RRar1e9Ds%8D&+R3I(N38|E
z-QL6duyn)B>2_A7x31O9x*t2KaEiqa?IL-@>VUK<UEY1cFD~7j_+oZD|Ha}0+lbi<
z*Qj+ro9uc#o<)Cmx~)M~!B4rEC5u}tG}0O(?{*z82r{1c?Ocit-}x#-b~X9kNp?lE
z*XwPXm1DH}+XB1!tIuDRHi~3FRi9P2`24Fk1!23Gx-Z|(%c{KLfBlX5oQE5`r%wF!
zz#&Si@NUS@58B^0Uow3^>%=2n&hrZ|@d@TGN_&vV`9Y7VN%qX<x#7>Q6x^5HcGp_D
zIq>oMNB1I3bOijP;y3=uR54fb`g)E_a^9DtNsk&f_RAlNmXY(@l-^tS_{_{*#q#&J
z*310<5}f_PNv~h!oXy=?nZc#g<?lL`-=4Qf)!UMvk;Ak0hs?GAE;bgYTzA~NH~nP!
zqT3gjpU%H;@we<?r{WXGt|j~KR4vk6J0W2{(`>)X3$AqaUt6$w5Bru-%~r-Ti6s85
z)!Pm|kUWxJ^su)~@UqU$<>oC>mM`7BrwA?Gpknc@{=xPimO`l<Tzqz2t1AEaD4l&5
zv#N7im9@C?^grh=ZF9SFL!#%>&t8Q^{0oG)^M$9Wg%t%=PP@9qc=OQ}8_smf{}N<+
zWAMlQym|{GXVfJTMd2h#i6`G}<>bZZ&z3xYQ00b3rs0(<at^<@eb_ON&;K0fgO8>s
zze&};ZDiWAzQwwJ-}{WGn%~5#-rwE%VsE0LH<umn1Kp^#s<Y2t%G^}+BcxSHC0gz5
zxm~Uvc@{qZe-+PgT#%y}&{wbbW0lQAwl7uuRi1lWgKnI%Xn3^5@ZX_=U4gl`&+0A^
z4xXSi_jsY~<D-$99<x=ti-mMlcor|cb*{g3%a!HAP4iWQ-Un}CE~uAd-)8WmR%)4}
zx8vTOcYI$ZFF3iWV!CWq6UWWuw;OJ~tCadR`N=E!|6WxtE5wf(RL-j1<&+n%XQZ}K
zaP}op$C|&_cq^?V>up3I-eh#0-PiijaChJWw`m!itGgZs6`85%PIsM>w?pvg(YT$9
z^Ap!M>Nh1CaPqs(c)I<<!IdYb)t`F)?5(D)!e*%+Hg5G=q1#2gp&OScXf@po7nU;W
z{_%-ziQUQ9pVn9j&(7Z#Q7L0N>EmTKy{IL&WiKba{IR!snS%Yh<$RovdoxAk6x_c@
zy$a-I&)X96<>$&P3GAE#9`d&X)p=`tG9Ji&n4~ANWyvbpNgn6_79T%p?w%VhGxt>e
zOV6)AvXjc&0@plQy;|MgCVIt<6A!J_uf=Y+VG)l=7r(jSChIyUp~oD?eEEwmH+zPd
zDM|CswmRJ3@=ZMS)VEZvi{>i+3a|aeZr!Loxz6Nc1JfkV+o2EmgwFRTh)kR8vxD#T
z$!qoR!<s+5pR{hq`#*C_CWY=e@}}0dRQ;f;*P{9}oy$+2S*|16?(x#l+WZp_+m0>k
zEl)g9ZnB=jD0I7Pf~tSmQm2)7w5s~KR!*_0>sa6Ma6$2|3-7FLZ?T@U7Ap8DDe_}c
zL}Xakw@vbwLsefWI6gD1(zFS+>|FRyCs<+S#rOA*B_^+nu=qNC+u{EINqdsJuP1Kk
zKK#sHa`){YdiAqyZ*g*SI=}Cb(W|@u^Ns!Ly-P2j<x|)H!W}Jjrgpl`;V0+Sel6bc
zwx-2Nbl%)Y%k2HjH=p@>|L(spzcv=9cTagOoA<x|o|5WY(|xt9f?rBA<9{z_H1z8)
z33;u$!_Pv+Zefo~P@Yry=B&BGoLAX6uawFNv4_YyO?|U{J@dQL`hfp}7w@fC{?&8%
zM&j-J-JXyC`Jevxy`k*N#E0K@=WbYYcC+M@4HI7ITb@|De`1l6!TwhVn?kjxubQ6!
z;LqPp=4Yp_HCSi6ciQcOMV3$1et&Pv{(5we-Q@`@?!MgSHQ7YydxG+!Pv4J!5bM3R
z;-!iM?|g}Qt4>Tzt=;jjdWCDjC(Ziy_HBkMIr=56*>BeW@K32f=IMS%ceeEz#<WA}
zhZY~_o2&ArFhjN7t|6B@!A|dJd(8&@xW4fFhq@QAb;%tLQ8-i(B5BO}FyT$}bp?*9
zZ>E9C516wB;;e5T+~jg=%T3p>EV~QZ_h`1Vu%(^NJZk)L&d%TuB{rK&8GYJL#@|e=
z7i-^}bH+Mjl1%W6m+Achx7Rx?T>0KA&9RK}X6?GWswuLp&P)1RPPi>AG!H87ZpnYS
z_r(Lg&~<vYbG^OzZrMgXpC&R}R`gCoSLMrt&b-h5G}pL)+&#&}{b5l|OL9rz<YuK?
zwVm0k?OKJ}<)m1jE@|0r>?FgSeEiNKVT+t!-u0^*BqY=uPoB>|%pv!gdC%3;8+#7R
z1u)fSN<{3bny8%ip+;3_yR}QKd0{o*L8(1g(rarn46aX!lKAD`7W+m{Ut4wdxfmx^
zotBc!Xj$Qgf_j}Wm8arMia$O*5u@0g<C%DI;;hSWw3**+ZC+!=udZ3|9oQKqd;04E
z$sSJ0%iZ-mMf=5^<5x^`JS|+XyJYrhW9i<?O-ZI+&nCT4k@fO>wDI?eoj+`4ln&Q^
zd#o^{`FK%hsM{n~(UM5P#y9789-QyPcmCiJhxry9N|)+&wui4&j-2YEzB+K0*vp*E
zKkCKrAMV=`)iygl(cC^?PhI+{Qe>2%)?=*~T*_Lj9~}Jqv|hP_-zi0|fcK!o#c+cQ
ztc$W{x=&)Ra@H}Q-gotN^3R=<BAWj(eDAPJFpw!|dCv1xyua07c0-@QlJ%@_;@L7P
zd5z?s&AQfkc(u<h<u~aig}kfIU6;J9^&>UD!|~S%uFY?aYz`e*<8ZikdU4(Nqpp%W
zk4y+H$zlpx!Jogr<FRl3tWOndc~oB)8EUSYecPjiy+Qwn;+|}-@5|?(?Z24Z{-KsN
zE}FwRN37_hhue;uzTefn-o5$YSRJuPPtt$>=RC=Ie5>`$LgnmFJ^t$ASvs+4OMCDy
zzBVDZU8Z`PYFX01)tFv>6z2HVm>n6Km&B?+RldX7^W~Ca4dn}4wH%q5>x18f?S5V=
zF@uXaH-$Uykl90~&J-KY+z=gC$L<|l-q_BZY1C45_GQe`w8E-+fx!p7ly%(}Up=#3
zCSTM3_`P%fH#Vpm2hTjvUnR`TJ$0$_RL9e)Pa^{?tNYfK?pP4^>GR*yyj$m({7<;r
zxcGW%MM-;SW`UH{BNLM&lBaps|GZg0G1a_Nt>DWnWr2%(Ydu$6uB&~a$acQ<@+0Y`
z`hAY}k~xPaW>~jx&U|_P?xlA*;eJyZyIIm63P1WWNh#!P++yw17Zv6DMazusR=zHX
z=i_f+k#J~^zPfFxO441Ai9-7eu9-MKm?`F|x=GDd|HOeSVSe?ePhNj`_vfzFhYlK@
z?5_9kzklMf7LQv=!vP;PF;3I}DwFpz&iv5UeZi+iX~(%=Ng=%E+oI+q#6=dnetSCo
z*y8Eum*-j@UphtdOXZrQIa;P4m&SMY{ydQ}>FI0U!lN;Vo#a2em2u5mab&f)S?=xC
zkMwggPFBn*v0NJ!ytYXD%!(kklgIq8x1EhC_;N<=T>Z3l&O3AZ+-5I&8oaEtG}2@F
zRLy!Wv)2|+=k}MdM^wE2DLcdCOzmuex0in}S|*?Hi(juvrp;)&vh<`=I~tA&bl2~j
z9iQm%ukhwc<)6pjn;cV>d0@o#e{a1`bo`=okGq%-@os!mrsG`k<Jqedw<`82{;BvT
zy7ji>+14|%o7OhotZ%fg>DJGGdPZukX8YL-sn1?i#%BGx#S?kyaK(|gJ4+_9oM!!S
zrukyuqp%es^O#lHPfhlCpLnT~DNFuH$l|Da=9laRlO6Xo-CN`o{lmo5$ZO51CrdsT
zt#$7(nQC^|xZ`20l(vD>jXi<aX3C!}xtUlp$Gq{Oc7)fKTM^s;I8BMKS1b;@_&fLg
z?fflI%ccbeIknriCT4poP7Pi%Y1K?^j<AQkbFTD%;_iqLK0JHA)GBZP9iG)e|1BzZ
zFKAqAvB3BC@ocMTkxctjZ8=M8Ca1_7wTKi4HSaPoV@uueL*<bA@;-+fY%BZEz00*b
zSzmFr=;=nD)4V+;@}_K+=PTU*ZmIuza$o(O=S!yiGTt&_!2^pZA-n&cENA<=Ufq57
z&;5MaMajCzNxHuSWZ7@~JnB1^choIo%7L)8JM!i)juv)XEiZnv(PS@k=%V$Vb404P
z8K})QUEa0&$_t&DYuwhKKlyO;6+_N{IW=BCbLFn&PO{&%QPY2pq5Q*`l4(wh?%iEF
zOS^t!tK7{UpYsl~uXy9U?oQ3tq<ryZQ~4G4__F93ysB<rS5mUWe|yaQn8UUI9N(_h
zHk#4aF0OyrdC&2brxC`2;o=JC{I@HqY?k`WvDRisfxPHubM8ZC%NOYiI@Z*b%+U*4
zeog(=R;%qfx~Dv+sai_@WBwI+@z&0JH@($c&u_o?q5c`S(bu*Z_llQaY`o&vO<cNl
zA1`y_z5Dwb56*3R5PtB}V)ZX<m0Ty3JEw1TdKP(1P1Cu0Dr-z!nT6sf)hfezj)xU0
zoORxYN7by^x8;bhRME@D-r~1Y9vF&h*l4A!RV(10K69_G#mV1)J~>8;1+SZ`YY>&I
z7Wb-n`==KxXRisV|NY~`q0rOKd&2dfdsg1mJa@ujm+huCdc1${%3B52#!4&~DqZO^
z-EZQJtJW+fb8AvOrnRk!eK9+@XkzoT>)Yq#x=wbfGySyu*6$am#q_q_{u!J8!-6I6
z_pWc9KDjcP;!K&TBDW@<N#5qXiP8VU>?^#Q>g<mto7Vp*DKZJ#^!i2p6$_EYiaJxy
zH7|OszOnwLW6;_C3s=9oz@BPzgnRvwO0(vJK6}=@&8cx=XNebA42n2#<>*2YKhNK*
zgBKb9y!hi%#txNrr_Qarcj(w<%|eY?Ar-}1{ClmBB>kUM6>`w7U{1q4Eyd|98*jus
zdSKOm|C{CaKePAM+7uhKy@~W(z35_nUrAjC`}AFg#yZ8v6KvP6bUpTCy`gH4WJ%0g
zBlnHonW@hgto-qL$HiA`BOmTcG17T`_{aM1cV_VMv(5GEck0a1m@C!1NZ`_wiM3~5
zRcL<GU!^>y@OEPC=HCC23EuXbu8Gc*%~_C}ty3s^I<EAK<P(YDlec7({X{3u=hQ!1
zsak)c=buZ${0;Y9J65HAD*n8Q+rozV+Tqz7B4RR}E7Kykb}iU6+0V;ebLAel%{jN^
zj+QK73w;|XE%JuXN|#YJW%7-ak33I)Jr?|dt<bM*otpQwfL^a1m%j)ue(7O)pX+b@
zL&2ob&fc8w%)6FwS^90<a^t`E!-ZZ~G;~TU9@H)~t7ltU$XQ|(sHnLo?6X<l)r#GM
zTh6`xRrb6*&wSBlZ}W{C`S_1No3*J|O72>T&*`A7tG9X%CcdoRwm$i=h-#SWMLnzL
zX;)J+FK^cA_T5=ib<lm6k=U=f&2hg!RnE|K={$S%#EXtbi7yO!wgOkVg=1Q#`kvXy
zA#(KLN2`x!Qd>UMckbA5BSUZU+%AV|i<&+)C##I_i6N&C&vq*m?%n!BxX^8u-(;Q7
z>)oHq+*#Ny9T1$Jo-97k($8Yg2JyuIt_E}VR11F0YkDss;p8Ey{#c~tvO#~l!W@p1
z6Pg@2Z8BNBW^8?NH^*KtZ1p^o{<-V_EekvC?Yv2U(R20G>lb`aTh_0;7V_h({f+&%
z(^h$`+ZAQLsQj9+_q-ChjJ+)Dr_N=MGU)&EG1qD92jSvH(RyqpuMd5Zo&JC6#d5XR
z@9+9w+|IRk&T`(>jmwtyzv^*+)i0*DBzi~8V$I{H#1=0y`q#9CP4cnM9MirQPV1Vr
z^6w6we^-`t%{SF%x6(_i)jQOVXx7*NbY|f$pDF%7m{tCv((?|^{AW*2UE=DTu<hbh
zwr1V=-wXb5Uh_}5>&~}OBdhIk{MycWoL3KhE8<vdESa%x`s(;C)&5WJ-M+`Yrz-wV
z_C^VwWj4)6QwqxeA52ref1-Ty%_sMs?`QnBh+#gK!Dut^!W##ree<jiIS3^%F`SX&
zSdC4c@$?HEOjg^^-eY{p$!uf>o>f$xZXd%WI{ottMg?XgGjp(tdUJC_L*yBmxl!yD
z!q+#&DSBrgkocg)v^(Ycl>lG<2@We3mM5<&e7~2|Jm<9Qwk66Z_lDmrax~j!XtwwJ
zGZqd{4Mr!YlinJQEoZEbf3M9?6`u6_(BAbCHAeSeWt=}#pZ08i{WYaShnfUBUCgw@
z*Yfj~@XoTytUpxcpI_OKJ>%!Aq&klOcAJtar#-L~%)i|%ul1}w@<CwOqrG8bbGbk4
zQxy98KH`&|V@J?$uJ^WW-=0srYVfdLd1{#Q8F9AgUKO2c0i{Le7yBh#_W0YV{!^UP
zwdUWQjD7AKW<NLLKfi$Ee#Z;VvdL<`(GoI3vd><>6;8BHy|ko$<>RyOH|L1oxT#lO
z`klXz=ll1qrM#au#O9^%K6S3Fv|vfW)$3&?1ryfJUf!SGFg<s}^tWv1&u;rvaDGEU
z^!p77l^#DNtZ(z$?R&Uw;=#m!+YY@qIM3jJy}+M8x^hB$`i$I`{^f6l*njhG>uzpV
z$_f9qtD3E~`j+2}gly?|FEi_33kwQ<x_G2huqc1`1B3USaffDo=w!UxeMo)Qe)GhS
zv#v_3t%=$8;qujQ^KZGjxZbE@ZNFJn;kM%!Tg&agytlTChq1S_?qU--#P7_b*d}zi
z<KdBrBpJhbGaPOR3U{77B9f%_QPHq@hUXb2J0&|cJH=;0pF4gYVM<cm*b(8QQ?EEp
z=ya#(5w9fCjk6-W*C<~T{&s}zP~#1c9JOsiw>jJo%`8xi;WR(g{6VFLBmPkT2X&?n
z2c;Gc)k7T|PJV9`7IkDOwRI>z>ioPY-erGRoiMk%+8-VDX|wsyH+6_iTqIxB^6iJ~
z8&x~iXS&Oxrg*z~b}dy}*(EaZ-ZWv|;Oct5H>np_ulZiR_xSg|mw#KYI<1~%*ZnKx
z+s<6sE9C|E_tb^`?fDz`{r-*pSC;MfU3a$lRq(0WhPMnVlTX^oTVy}@{GIFG@8b$j
z6(shQe8{bmt(_=&T7)Oke#z&*&TnGA8RuDq=j^`s?c#+83uhkw#p5kq#wxYOdeQ{W
zZ8Ltnow%r;?|S31j3VEdu;!-2jIu(Wj;pM+r*(#EJ`S>cbMI&Jm$dJ5`DPtteBy08
zL94U#j!@c~YuUwHt==i@QD;=KZB+Nzl4+GHC7aRjbb}%2ehKf}#19N7CMNC_(RncK
z$gFTp9z!*ax{@0S!S%v-*55M-`dIVC`Q}T5>Y~^gK@X>w)hjf!x^Lp$T4BCfS1!71
zyWwUrYdvnA{*~)=b=RNs&%LqksZ@5~ldHz==PG<2?m2OGm4B!<v+nbsZMj9uG>^Lb
zAJ*F{f2Vpy&r-1+%dhW{OVZL4sXP3zzyGAh+aIm_{G#tl_0P-N&A!<v@^zn4D`S<^
zgSscSpYvy5c2ii#v<r0G+{>(O6SK-+erP#v)N#Bx(O_O*_=AlVTKC$nGj-cD9)CQ2
zbC=%ct1}a>M)*8mwjjdHQ);!_s*rPkop*oW<caHJKa>)|^vyuV?T}A}{If@L5tfFj
zpN#sreqUpk)qdpQ8J4w0FsH{PZ1LHkqUqc6wZ0^{^=v<EcH^1*?r?Sf`s-WYJ~DeM
z*MIA9P5h5n=6u#?rv`p=G4blYeQ;gLy)`{4V(Tgyk_6^g7cBl)u%=enU9hW3V@cPt
zwbo|b>38xP#3u6=e1GufGOPXyW?7jv6Kc(0YwMg#pFb^j?;q8_caQ9@P`G_ld4X3|
z@bVAOtX6yEZ+#?eX44?Av{WhK!{YY({|6t|6~u2#dd;Jg_R-^lhjd9~d&CR%rFnL_
ze+rbtTi>4)%bjJ~boB4izE^A5_*NzAdPdshZ;n0{`B`10jXSsC979~L+4|el?=s)D
zeI*dj#b~tPn9cD^mU?{`H|oSFf8=OYY1lJu?xv}){~Yu%i=E;kvNiYTq{e&uZI~s^
zgX^_F2d(EUN@6an_+@D@W%}gu&|(Ym@WwAoO?FI7^_U%gW?r7<)Yzjk8C+l2JX&@4
z%j>%=8hf5B>*G|r_%giagkIrsmX66!7p<va4N}XBu(7#WCMIUM`s1^^1w4I+m)#Y2
z_);Jw7kcjK%L%I{XuAF4;uAV4G-auWw=?I-H`9Jjs#jZo*8R9)MX!K#@J8;kcK(kk
z5xmCp7}=*aUCtJD%c!`NBl311`|NogKUZFeo;JH9#PgNO(pg)%qvkz0nlon?|FXk9
zyK~ix^fLEITbfTbGMLAw+q-71p8n0RKkrQQFZka%<G|k!4bK-J6nas$;Z*9{gDr8+
zAF?ktUr)MmAo}#H`a`RmnhqUqZd!Hd^{Z8@UPaWLew2T`CI4Zi^?`?5Ii^V-d9Y?`
zEMI=<_f9@eUR};iEv++W&L)>`ZVtD$j?$Vc<tsIJ(!^;K>wlX~a9Wq55Zr!3h3VVD
ziQ)qPo$hSplslDRo0ecS@Atb0FBMyF9ypW{ak|z(pnLJPiu_b(rR(eKrH}T!>JzNv
zzbWdbzeIffDRJ4y-`1X;Y1jU)ORV+f7EV9Tk4an^n*~2;XD_$;xvEj^)8!{?lx6;N
zdy4*74Jlx_De@%f?SThzhmR#lE}PfO_VOw7?$^C{j3&)uH|ow<5_V)m$mwkk>N~j~
zKZ)I|K8HIubZ+L-*`?24^KDqxWy@QyKJ(bNxqfPT`fMxD-ZXYUG4Jy-cC{IbKWv{U
z=9nI`SbR_8-G)}1$QdHHTU~Vye3r2J;d^Adz0&+=KkH9OE;RA6iWM}NHkU^;U&vLh
zmD5z(ApDHv(t`@qOXk&cM;whluy0BkyKe%kjzLG(d&i*PvsZXtTdKBl>dCCKmh&l7
zPSocV-oGkykX6p@t*^-yZ{Dhqk9QtwzU$Xj?-RK9GX6Ld=QVbRm}9!l2aV=vv>ML*
z-n)Bd_|6$01)PFa*S~#{EwWX1tp(Sr#YuJ6XQr8I@>Oix7$~}Nr}np~x{EbWDy;ve
zoSNw=Ut@A#FY5V~XD6PinzTzM>s)8`-7fFTU%T^5efWew74OZ<1ouo?`~AkYW9>)(
zzVq1j-s^U(Q~ZugWq*%7_2s_V<u^0u-yYx1%k=kDywCajG@n)D*SU#T++?|8bQNqu
z9DYpT<m399dBXX7`*!&@$;2HKv!2yI-hOgdg4K`m8B3;w-LK%@YOuC{;;K&LpA)bA
z`nY1jMCP;1pO)XTujfl}TXf%|%qqoerQu!o1l87!Zq;YRimw&$&8+C;Tz2=oS;v7z
ze@~Vty?F6LJNsMKjUO-DrQ0{nm?K*teP3m+NXE(oX$n`pzsWhR+B+wc-7<de^&<zv
z6-*z_OYp3#|M8)&R?tf`N%+#D$A@2ZJUTIJ*P>5a+qhF-e9XCHdn2i#{`<SyUphO=
z+8yOHi@*HrYnQiUzv-OiV1JKs+vx@0*ND%!@l5FT<Fkj<CT&_1FwK0)72^xvZ#{1E
z33cOg|Ee;9Yw4;ROHQnv=q<U5{oy{_)rTf}Ut6x|5?t-3zUWB=pS<GYz@o%ye)DIZ
z6MJqt|4*A`-W|EQXGN=D+HAXEm*KmkUi-D+JJDTpBRBjzvQwgOmbw4p>)D@Xv<W4L
zhW1?4Kc}8*?H<ZAtFCm-ft%Cx>zPiyX)o~E(mCC|>%oyy!}t7~Q<m}n$W5_4)#Dp9
zbG4$~{g>LD4VyBbInO%(j$^{B=>ElK%igjCZQaNE*1Bk-XIp4cz(-rvYqD31gpbVp
zF)_A2^ylIBM|}kzQ)hbQtev!@zT?Zi7zf**9_v3m3Y&0)DcJMi>5tcrt^2iS>BB$y
z{pyeTPu;8!p7;8%tY2T+hpaz}^O|BeYWo}xPW;<zef4=+@u#M}?<#%xPKjw$Fy5Rr
zukh#_wX)SMU(@+R#KM_Y`K;K|xH4Yxp{c`~1s<&OXZ!1?O;x#4?P8^UHztxxTPh~@
zYtga1kB|K4@Xk9X8}sK}hP}Mif&-UDPOj_xSYEhX-0nWZwF|GOCvTT}+?Ts9HQRih
z^Xi!f;!AuV{<&N}<JHTOkjS8OY}>c2IyFOnUEJQAGPh;IPQJ~{I;D}i;=70j_e;|?
zO1hyF9gd5rh&-Q`8d|@pLQpM5QR@HP#2lw0mkrj&yn9!yxp+-n((=_NCHvi*%Je_W
z{!(aamYcgbm9KkSkL1=LH#(cEXMKNtv-lEwLgTXHyMOPy3cq=`F84U=k65-@hfeyR
zVLuu^(RbIL**Q}^SACk<ZzFlW(&PPM){u#@J3AhKEbREd-TU7X#+Ca%de<)$z4KW#
z$h4?FhrzW#MtpB^XTZPKCo+GQeR1wz{h)H{u7lUPx7G(s+*<nZz`U9UA4cCC&pGiw
zt<u^)OTCZqW48BRxxD_ZoYy_I^)CEk&(@W$WRiW5p!)Ol*UQuOpIWX-FT4|f&120&
z#x<7Or<#KduN;)R85y&yZ%bSK9>sl%_54RaBrMRJGG}d7^8~y1X3@E2_1hloJN`!R
z`|6Xof0@5qEwcG$z~=nztoNhx%73bT*tYWn%a+C$ThDIaUwg$*l96+suJ`GThZTmN
za}RDy6JPg4gEh=}kLmjMxJx%yTzm6ug`@P3`KhLYR~z>=$#Jjbxx01uo@*K``Sb2H
z95}?NQ~!jmuKnaPQJt`cqv!co=<Z2xUu(HKMXU35$dd0*m}Z?w*SOdIx<o}iZ{z(F
zL5HV!Ux>`_lPa{S4=)Was5Efbo%H*dWwFSt`r5OHr<<><oq9ZL^Ta&!v+Gr(xi6|N
zoNCb?%X{?x=ZCTLcGz2fyS=IGmHUTVN{>ZV<nq5gOzZnuFOlQ9e924gAmso@jp!+H
zaS_hp?$g=X-QC;rtYmARt?r&Kzxhf-U!vIif|EC5mpGp-{IKiq>TlD^UdheZUGP-Z
zUERjg=b%uh+w@s0mtS5#|NPlBec9~Gp&7cqOSClPSdH(kF1cl)*PwIxiPoc+Cw8<v
z5fS4*dQHf#X^GT*S*>~{+b<Q;TI)}oUan%^zU`*_<v_#Cz-Q+<_byrIw|JfKCwHYM
z{wXT<PkGB7Cr{jU=>EG`JZ@T#Sj6IvoS76fd6)Fu*e7`*Ka_7LObS{YdT;Us>Bol8
zeRl<z|Es<qqV={*Sn<^vPKCVXvktx~o$mXme$thz<+t_3oPK;a%wKeMn^=8Umf}b0
zkMAFqr<l%D=5?L*LWGaKeBSZKKa!n}D;^8-%=<hoFEoXtNG5S#zQ64klVl?%*;NmJ
zsOfT^s{b<KNP3FOQ=`gXZ}yZlR#^Y?*fRI}()`ame-<~+kG6AOmBzSIfA_h-#EQvh
z4((@jUZE_j{@>TF`dGpJqi4?-Cy80?s$awPtWI@h{)Y?pxA%6{&%AwQVtM-a|Ld4$
zbSIT>y8dZ%R%_RdxmLEJJC?`Y_#;}x^U&(~q#vg7Iw$=vWh|EX<LNMW%ZixAnvb+X
zqkKi~Mt;+8&{i}K+B&O5)qdaSmkU~C)~a=Dx<sbR)VHj0Y>(S`xAeWfMPTXwT`%^w
zK7IASUTE5``lp+AdS+G??f*1M(6;g9F<ZCU+uTL_7u;8Vb(C|V?jCJsW;Ofyn-a6P
zOy++5Oyr?e|FOUO<(b9Aqi&xI+w@PRPkvu*Y)^AuImd4M-Rq8s#HsZ2`h1G0y7V@B
z0_PiZmOnc?{Zou<kNc&vx^>^}(_<~Tc=p8$!Cxv?As6e<$gRB@eBp#l&WBR1hZ^2W
z_w8$+mMt{bnH*kz#$;AB^Yic|$4>i+jofnT8Ec+aaL#L3o@m~9>Fo!V2%gi4GCr*8
zWiAVOra$_g?jzIw^8G@APl;Eaf8W>qu)Cmd<~>ojx}fmry|3r(?EE<SU;}^LW4j&y
zBXop5g?>A2@q)9quD(v~i;eN-)O#l!-<`2KIk$P6f!;Y$cIO=%{=RS$zT4y%_BNgW
zn#`&jr{COHFJJj=RqO>T|6QwnAI<ii-m0hh#M{t5dBMr~bJm>7e)eN?is&WR4ccM8
zuK#=(BJ21<<)2%z{t8z0N&9<N<fH7Z({KK+>sH#8a(rIaj+9NAHLY?l>f;;#YQNgf
z#~r6xZT74Bk6m~C|Jdxkvr{G~@NtGY)O>D|HoPFnX%u9^WPipfb-PxjM(fIq7h%Rv
zAN8t9<Ue4a{iw%m{d%X5wyW+-SK58E+&1I!E1mw7+b8WMzEw@TH1qYBN@)+VstJE2
z^ERK9F)~|x_TlU8t7;YAeSX>V^WD7qr)w40EV#P$sY%P^D-Fq|?yvd`&Gmea3LR`a
zXi;_iy|uFI`SV>5?ffRboT#^~<>=po$K<aaWRVhk)5v;3{MTmIpB~GXZ@%>9)RB|k
z23x1y?WtBt_{dY`C-<(H%RA!E_dm@~clxC5vU{y>-WKujT<(JDcY_?}^C}1~IWg;H
zxR7LhYSgTt)+?zO?`*!9&Z7C=^YP9&r^#3OZ*Ta>>9Kav)R&nvclO({zmlouse01<
z!|tx?!QEfKckVx(uUPZ(Sa^7^Zd*6ozH=GHzgipg-qZ_bFA(YC`|lE|cPdyVbCR&>
zn&wNU7g`H>Zr57QS$vE0Md_nx35Lfn_Pg#D?h%%{@w9%~u`_e5%4z~19+8)LC4BU>
zkwi_8v{uFjOU{ZH7cAdo?)-mo>zQW^;@c-QX{?=9tZ`h-T%oOvX~W-VoZhX%{)s0_
z=A3;fxFc5V>FfDw>1OKkI;&P^WLRbv#7<XNNUIU%OWvI(el+}Ojp#j%-_1?uPI#X8
zoOG*VySKdYjiMV7^)>?E>#ewS)^B~c+PI+NWc(qg3oPX+|1KW<RA8oe&;H27$PK?1
zD)?5%@BaRD?zT+n*0oF*UQf4vaN%)ozrFd5IdwrFt6snU>R<CNP?)1m>;KF*YkvFM
zunDi8rjx!>@pFy#W398z2bkAs^w}m_MPE7Az@hu`frj|eTQ^?3$SAv6@AUJ?)h&}3
zG*9`-s<C`ZuFAn@FTWnkn&vetJUH&+6}RNu=MI(6jcB>xIP*aZV_$i?T$Sm8Sz50-
ze#TAf{PajvL(}!JUeGU>cEjk&{eK0HAHCnXZ_n05=bI0fhi=!qv#9>irQbi8#p=IJ
zf3u|N-m~<}rN+u}?}OIVKS@`ckWwgJ|0(y$w~ECLOTQF7x%cX1(D6Od{+i{6+r8dh
zD~dShKUJ6SKSzJsMu|^Lr)u0^kY2j8bj6%X7O~8VB@GWJ*mpcG{r#GKimv~Mzo}mt
zOZB+-Oy6~6<AuXM!gqFOJbJ(BTHg{k`~2!3rPKH_OV)S^&lK=t4}W7aMe6hGvm&Y<
z+x&g&4X&3QWRbtx<rn|&jnSGtI?paAY<+Wd({AHakv0cZB14}Pe$uIZ`=mAc!$!vQ
zC8tuRMlCs$%oX4!$$ooxN>rEI<Ozp<t(ks>b=OwE#FjU6txBGCvTk?Uv1dy%=k=tl
zpt7Y`sv^T$p8fiHv3r}&96=NF$0yv%?s{HL^_`r$PEE3Y<&26cLT3}*jo6kxNzE*+
zjMTZb+<Z<#t?%@`@<tavpEG`;c;K)W&n~07jG4ZN6AP?m3TMpXoNM4vrc@B_WcND!
z{lvGkax>>|-||4`Zp7VR3{@#Ud>1y}T4LiESswYPc>2MWSyKegueu~O`BKQVt@H9S
z)SK7ZPQUeAg#G%7oxkcYL_HNRoOXrR`PSVVtzXjQzgrsbIbS1vRBVOG%g%fq*(<4;
zZDG-2$6l3qgh!>l-1Wa<Srg-@2kG%MjvLLA{nI@AtJBJ;FD_@?%Xua}G|}7^CO&0p
zVPcT|8#P0(uSYGXbA8e^-ki6PiS5qPCX;zeGkYZM&-5-4o_P6S^9u*P>iQm=rS?;6
zC;6_|soC&f$zVfWKwp5V_6xm3&)Y-qRqwg(^VQ&g;0NVZ!3kC33$OYA<m{eak$X?<
zWY|Qfl5g2oVON)ZG2LK&cVe)^RX^vC>*h@Re6BtH5#x-5MlxNe4;EeImnr2sV*ihw
z=aE`=>g@~DB=XCAAAGyQk(T=4r;@68eJ#gb&87KQ_g93}2&^^QxHK-~bJ%B>u#Q_-
ztrHe|UP)<r(>@_r#$ZXZ-Tp|iRJlJ5CS0dk%M+^-1DSi0y;e`On!eh@xr-y}gigGO
zc~7Z%zhvB^<}(MwW0Tp+izKw}<i0CD9hjJDwfgjG$5fsk?N5g<bDwotU~uU8#0fb~
zQ|l+1?T_I#X3AYs*Pg#{{u`egY(;eomR}G0vZIAnn8*C#!)N<4qh^E{YhNhynYDDz
z5}*5ztTf;Kc6Pe__15d@yV-579~5#6aauoLU&=M%I}7J}#w85TV{YD^y1gxYLwWYO
zxZS?@=T=qSS+O(w*)PdOuY8`i?ONQIp<aFDO5BAbTk7Xc^7ji^&t3YAY5UJrhfJo;
zdQwozHF=HaMU_ikIw6PNO~02LXT-)IDf8rw(fTKI_^;2%GJ3Ocw$rKRLw_I7QUAMv
z$0gzKkB_I<1)e>-+&uB)di&WqegA&F3I8(V*WB_3)+P;4UY|n0JDD@*Y~nd7xhLe;
zuc<6*jMe|1a7!(j{JuURTW6+yVb|ZlCHk3X^4IpQ`{o&@+}pJ`sB+U!ozE5b-8Wmj
zI(0lcEkEMuBi<YSivko%EzV93%4)n|e%kks>*a;-A`h);U+<G&{X9<V&hOm!J@FGN
zZrtcUZv80EE#myAzyJU8EadNOZ&DS@<9f1K-XZGHtJ8t!;-vB>@V;;euRonLPek7A
z;J*E5xTckFJsVq`#4zbryZw*NUv$-$=SFWzaJ#keu}&)M{YfF&-<NNnkj2%0d{XfR
z6^Z()`nN}|%8WeE3ePYoXSctoqV@Rkks3C8rw<;of=fCRmd&iqy7t7?<)Y`SEheni
zLg~reE2e932Usmy9UY*lU7;W3>2#-l>n;b!wm7eFHjx4Yre+nr;OS8ZM3y{%!gcGV
z?T)Fzk(<`XTHpBfok{Wk{F#S*eAQ-Ox_@}(+5OtP9YWaIGMHxO$=F|>^4s;ISLmjw
zlaDse&8v`-*T1-AwXyMw*z~}y8&;mG?qpEiX10D=+Pswx_kPZK7<{Jm-0{nmtuBkN
zr@XAczw_IX@Ruv&e#%&sm3d71^6LoGvViHK3NtLa&o}g28UKH|D8S|I&)<`bm;Nq_
zmQb9@I>%+1(&QCelK1U6yiZ!Qa)R5r8#CYEU1I3Me$i`*UvIkl!#Nk30y2L}#j?d-
zZaT$k-L_h#(ebW@src&0#XEUY;}XKIl+3Zpu$kf=)LMUO>c8Vrj91oG%bgAX$$jnC
zgZnCllD|?I17gz>*}fZ_>^*W;$hGRaYOVM&+lR9+Ene2-#+dv$WMTHYejl@+d!_|_
zWOdpSkS)8Yv{X=LS>nHSw$*(hq5Nj1Tg7CJ{DrS9Y@8LKR<PJlT7QQ7&9D`lA1A-O
zapXsc>h7#_bLOjh*6;L~?kO(%bV_#QDhGoJ0iI<RS*41HK4nLpo#lL|Sf@Cq`AXkw
z_Vu^7h3$2|z_2T8^0rw&FWxZ;{`}<ElqRKH0oMy2a({cxuX3}iDMEGblr6?Chl5tV
zTj}iE?Y6i3ckqIH^$PE9T$Ghzd^bygZE~7NRQF;f(NjN6RNK=Za_!-%=kpF?d2IB8
zEBROBy2o)1HWD@g5z$_C^VV|cK0CnuU*q8H6Xj-Ff=|>}-4WxH@hE6GuOdF{{L<^j
z&%Rx_8c-!KS&=^3_h#*@1NV&&FVXDdTr6z*>IzGl$Tg0&-Hwx{t@iU@zIt}x&HB?l
zhf_~1pU}K<?xGD_C-HuIa8z63Ra#a(i&pO=pO-h=l6G0GvQP?=lYepLS?!mg*E5Yn
zb#xv*_tFcMzbwZ6Y>lg1U4z1#AM=vxRMr^U&w4p^%VEiAqaD*leD+LLQ9mzZ&w5g0
z)=~2%TsE-^)27c%J$s><aiz%h@^2GWIG^fF?K>^Brnx$(IMcj@$EYLfo#VCzVzCd}
z-qicOlAW)AbN;sTT4kx%bU3yaKmH@W{M^qO^QPPFEY<scai8==_ZgGp!~g7<zk2_y
z!q;ZD#_?wSx`AsFj=ztQe{rN@jp;v;vzq4?t3Q8ndPVGmv=_18Li;9WX7tO&9(#Ig
z@lI{lvVE6rznn7YaJb*sGTotTnrv;Vuifsq*R86TEv?^l*72L9;+cw^ot(ll)Bb&K
z=GrKCq+V;|>_adA{ce|7!ug%a`_sdR&g}Po3NWi*IhhnX@#DcQLDFH9kF0tW7{t`;
z`G#BQ)62WtwB557U$}jfHGqHinOKb;5uW9KrM4ShU*ky<x~<}wWSYgh$TZ8eOZXg{
zO3<p$Kb!Z8mz%1()lb=+mz7$e^EO;IJ}feF&+9vF+kTeq_@1Vd^j}?m`2_aOkM3H;
z{PbVE!QRKq_~dS%PkGDd{X4qgzslaJlT3QUrXLgiwOf(Zn5X+q`~Uums{fbMh3xC*
z@%)}C`||tY>+JheH2ddBO$j-zy7Z`8+og*)t-YtD>Hd)2(&fOrHmOd${>Z63{ryJO
z-#$IvoE{%p_xsya?d_~Tm@2-RTDWxWGdN(={Bz>Ey=$zN9kVvl3tXAPy2pfLCHLi*
zzt-sM#io4T{WL$TYE{y+m^<0NQ!np3c4=0Ym>J)n{q-mJeBZv_b;G9Wbn}0WZ)$!p
zPPd=OHC_B!TH2<lxqjUf^z?ea`A6=kFA|-7VQJUd{`SxBYI*mbvHpL5zlugiUDWr-
zFQ)!~KX>if`mC${>1*8f`U@N>`7G}*dg}!5pF=_%r%s!A+>8^GZdzNVwEEt%xbSM}
zEmog-H<wubW!2VBUTqgVedYDn#zvRd{`w={X7IWI+bp%E0(eXO^nMN|DfPMe|MpZL
zV_@y!Il`dHz`KU?D;6#0hM;L{>w05DBjj1@wUL|^!Ku6K4Ce$a5My0j&^J%mL6C)O
z(P5=W5gRvgrfN=On)WVtmYL_}Et#{^vcLVgd3o8(X=Zn4zvGV8?2d?Z4-gR*zhG@;
z_4v%*@REOD=G~iFeQD8x{&S_z?tRIerS@}v&GWza-v7P#o|}25A#-BAfyDRyd$Q*%
zXgB_UGAs1<QO=onmOPleo0*?oj&Y$&g9DR_@`0V|8#*K-Y?^<Rup57Tzwmp2xAV-}
zg~n=+S2VU??D;>-LEce-ZHDxo|DWnC^h*r?a_pA-mGPl-_QHNe#qSC{DP~6El^m54
zKZTtP(+tx7f2b5Z*>q&e+mo6#hV|hw8_a6X&RV{mqlHx|FKX9}&1Gk2Ee~URZ(bC~
z@%)X4$0JS^OB+4)#`$M%3ZA<udhVv~gbU}3EKjr4_$7H&Ii+d2PdL@-XL;h}Sx>>I
z1(#f!ViM1ND)1|@GH+KF?5L3WwO&KjSXEJ7b>`&L{(gdmM_y{qS<C*-y*N(j!_hhQ
z(|3Am{+T0kZdIs^pPv_(daRC^-R7#T7UsG!3SQB3z4oi8mp=P4yC{tP{Mstbtnx3b
zrf<*hytCKdC}xiSvn5<EbDoG4GMO8z|5?uP|HJ>hMh$I6;f4A9%H9)1Pk5z>3iYjV
zyQcJd!q*eVC)A!;KG}Zavj@v3rcJyzJNNXwajO5O^m{_a6NMs)PIsXRE-JDQl_WX%
zPdc@9a0n__de{Xuh$tDU@mkhKH?HAmvS;3CEM^$e6Wp`^Zt#hiqhHQclpfojVgGvR
z%<l9!-kHKmb6d}8%{V)|`Rq=CuJ&8+diR*C=9JAye5YNke=mL4{L1>*d#?Qaeontm
z;Zx)L8&mn~-_>t;zwo+vg_?MqW^H4r-Ld)l#>{p*T4GnRNwuDwvRd`q=}+;`9^G89
z@(!og+_O(oZ#3LG)p)e;s@Sbi8{Y7ACALqMQ*GuX1#MnA^~$Bv!xOLXV$1ITKC%7I
z-O9NY<+;uKo7TM3wB|O*%C?)m{N7g|lRB5bZm(y^pIc?;HZQwgLhki(cIhOc2G8Ux
zlM+Ktg_sz8m0&(sBg=I^g{|*U+_(6}eeO#OK3Bv%(!J3)Ywfh4hN&5Avzkw(7zv!d
zvf|JZlc&k2f&%QaF0SBVlT?`IJ88wq1ztV}ugTy3#W#mB{h<1T$1JAPZygiUe5B0(
zXi?9t>}J)ux)WTjUN<gXq*lLV{nF)&+2ytF9`_aqD*j=;oVm&NdV38|#rbH1hib+X
z>bi5ocVDfV?737e%yrFG@ki_~&X1SR+LtS%s$be$%J=Y{Vsa9z<Z9NB43l>)E%p7n
zZ{FjNcdb|c)-c;TBWl;1-nakR<bOQ5uiatrD*u7C#*aKX7e!|V$<O&t7g@LY*GFkT
zNKHvi2^Tjj`*AzEv;P768>`ITh8g?YXP-PR67Dt2`cH11)t>!<=bs;BzHj*AvyYlc
z|AyPCy?aywt>%X>U$u5+$?Z2T7mGJq_p7vOyjb(fusQVcnzrJHdkgpkziEE(H~7=j
znLFP=U5nZJM!`wr|DGE;UkQ1yV)@A>{^3{sY=?!65?_rb9a8@tur6x#y)OT~5lmX1
z71LP1ANo6iyZ9up?Hk(~t*pC`kL+{SSIaphpPI_F`f{SKskMg(%drdRgqH7={XgsL
z#jh5x6ph~a%@dqenY;hQ9xiuV&gm?A|4*%Xzx2t9{T?@_e0c4#Q@4Na%6ofXrhB|x
zWz4ziWKd?kroFuJj4y7whG$t9^5-o&d0-b)sja<to9wCW)zx0@b9__uSAX?gT|Q;c
zJvKedjSsKfo7=ro)qCX$b@%Ik3$6Zsyl^zmC6`6gMUFd9;>WS5uJ2blcc#n``SGwr
zp6|EhbM<*ien(g~-7GZ_%H5LXC}&qWBXk85Ymxd2N%mJs4E0xjDNQ=0cKiLge(8vl
z`;xEidnkBVATEe)PwG(zuT>HH4AYOZ>1^Zr#I$Ac{0(|jML4;?2JM|<lI2sy>?Xfu
z=i0ROb1Qhc0ym${*`A!oYH-50jY;-nQe(&##`|Y>ah$$T7H+VxK<xGUeP^Z@@%&^n
z%$&67;OD1l(OXqd<Z2y!UjNr%!u$5sb}PObx|l!sDShU^!Oov=8jtKc@>J=S<GQvJ
zi{CkJXXjL3C>-fHFMY3prT0efsVmM#p9npje5oLG-&QBjZMROp&Nhg5Tp6M=X~}Wk
zC#CmawXclzixSlMk{lMQx#HUjN5!2pud-cVcvtWHO1(Rw*;A@c=*-n|Z+aTGx?W3K
zD$A;KLw@n!fM@(R&(aU5+a>!=ap1qbbi26l%ot{UyK_?gtDlzW<XMS{pAJqnsyq?Z
zd|Ku3mjf%r1a@Zkp3-sjD5}|_#2UZzV|l^D3fr1j$|qF*7yRTu{QmL%(zO+{&RqM*
zGh>y=jZBr*IY%s4@GHICka!?ul~Mznh<0cFbma@$AFH*K3$-Rb3fwuR>DSq{t_2_E
z?@7MPQ!MtX$;`WxS-4~E6OB9l*DQ6GHt#sjyQ+DT%VDnaUrgQ2i(JIdznOk>g5ZtD
zTUsyn_;qe}TJ!96r`XI5mU7F}0*qItURhMC9KC+7#0!0G<<Hl&leShey*s4r>A8So
zdOFkg32W*Lr(O+9oR^ee=D1A9a^>y^$F{%!`_5KhvDI)(-urtpz48Y8p3CL7Zq9N)
zahbQ-dGC*#lfGtMQgA+eZ|Tjdd;Hc-IbV&{l~&)B<DKw^b)67H%r-8jM~!k@&OR-Q
zJ&^6~ur)gQ;snjkwkJzmvW?bF{U4H57VI`9D`{@)t@=k7{OiAJp7=knE;~Pd|3dNd
zX&2w@kPVvf=joH#CC1IZYu<*OwYMqR?swNFxb|IN(8<P)9{wCx4?V5^XcO#O>72QE
z^}IEfSNYR>lI7ih^W}Q`pFgE?uhDsb(9RX9ljko~TkOeckm@;c`?cVw+k}`64!tYB
za;uixd)Jw1ueMFtHmi|4zy4wKv>kh5-B(&}QVBX|D)KzhefDLy{cjphzb&~M+Y*>A
zG2e+@_+CT%O|kaF>4%$+`Ue>5bPAsMx+HM*>FbF_;w#h=OipLBr-sc6i@kjJ!Pf(F
zYJU!$)(d7nsrR6S`N15&MDw}4?k7d}Y?~q`EP7$GCuiG{BNf?7>jHgN2fB0D&*fEK
zE28rCLyG;Zg?eH6hd*~YHeSjsVY|9wfBk_A?bfyjq;q0}FVwkz-^YHgXOG$cTB|#|
z7d~Cxs{QRz*36wNFJ6B4QceHR{Y6W4#iol_>n>F+6`dZnjyr6|@f^+Vf^SuO<NF@x
zZTFkA_(}GslWTZao(_oYiqkwe>9w$b-BrH&`5Od3TlzMZl;uv;?>>I|$<wfBTeoce
zdAno7N%g7wIKLSl3s0Z9;cpp_mF@*ej$V#loiqLdf3o*>?5e-iFzbtzr{FiQ@K+iB
zzQN7yD_-gB&p3MM!KcjIriS(>R(1N<@vhE$v({2bvieJgSfQ)z<KDxI`BL|sQti*)
zvG!xdESLH@s;ZwSKiSP_#@l@}UH#swZ*t!s_cpAbBK0Y=vwogctJGGtxs1WPy0T8K
zniHpfk$wI?U&Hf-37V^UC9@?Z_BZi2H@iCV-jDEkx4`EAnT7F>p6<T<WmZs!zWTL$
z*Y5Bz_aEPy_Q-12f~l&@ggz~~sCx2nSFhCKSqt9HyyNN0x~l$y*V>bF+JnFUf8af5
zd7~6Vv!iPex7zHKiz`2c_i|tL3U=Ih_<>5a^_qX%{F>#<FQ~>WGt@p&E0&zhn#Rf(
zt;%?_(dfkNKU}(-X7@hbaof$@TBwNWxt9LCjoW63N1Z+snj(>IW#72+4~yN;t)crr
z7KH4Z^P~RENzR0IS)42N>*aTSyJxTS`(;71+SWI^X$KhpzOjF|^V65_eV;FK@3w3F
z?r0X{6aC;sTv^S##d|cAX4M<K6PP#W)qbmM95Zv5pDez+c<tUFAD=C*K4D-LTddl1
zAU{Jj;Nqi&X(zeQrdiI+zB=o)Vf)e}Im+)=u};6X?CLBZSFT4p-IYyioICo~)wetO
z1hVCb9+#b~%wk$SssGcJtgC4;XSL>tMN3;6q{vFhnDNxD=Uo5e;i=3!i!)xo-;?{7
z|LF3<pGS5mt@HV^ziAa~P;bMMh{=Voe6}jy+_E8p@snxU+{rmv8_l+tvP3?dDP(Zd
z@qtFEg>>%J6!DlYF)L{y|3?!TpC3pqu&k`VK4(LC>E+a=`j=h%4(!cnfBom{^*S5n
z3vzZD2PDtTH+_Gw?eF2zi+SQ!FXqWQ<|fw5H(yRNx90fak?^28F)*6v)RvOQDH(w&
z<#PWfPJR16FDFY)b@o|@Piu_sExDh`HSuzW-^YDxFW<U%FEwNKE+-?VzQ4xL#HKtu
zcz%8Og$woi%YA3*7)-A%YPWv8bjytx%|fr4Z_fUh{^QQ8oWjTs?+r{_XSFN*4!(1b
zC&e^n*QEoCtphyklDF>PGo9n{lV9rBOpG5qJpDnV*H2w1ZF|PA&9^xw#wW(!oRfcE
z=VGMO4$;=!zc-G*|Nrk<_}OUXO}<jKdWn-3miJuqoKZ6U;-&hTKBtnD^6Y=5ed<o*
z^h=-O`2Sqb$Gt{+Dza?zw>j0vY<rM0@pM3_z@uq9i!X05oh={#`_Jdt?XTYWhM6ap
zEqIr-AXK8+Ro;2&f-SCQ5(aBy-xti%U8;8|_S%iGSDcm?YBzQ)J7;sEMPiP-@S(+D
z_Wo1k*>B^fZu5s{&UY*05A_^1lm6a(_Ued`(*uuU-h{7Pr`zYe3RB(9IWJB(B+<(~
zu{JdM=7EBw_hngOkGf_&*E>0D>yZUn9;FPAIn8Zn?Y>^;<TYnQvtvW$(|I-<7Z~Jy
zuef#lL#LdCnNLeELw&;{+qcs?Ee~eub>HRMekp<B_uF^&k*6j}I5bYX<DBbSpSknu
zWxK^Z5xHgwTZP2BZ^qn`U=r^&x$b0k@8Bxts@`J}KIfl&Nx0a!Ok8~RyhBSbw??zQ
zdD0ntO<3Ju+K<J(TWUL($V6A2%w<O#xYt-kTdv)*<)o5=*o%^FyL9wEJ9V$-40*Wy
zRm$!cMImn$dru`Wd{XGvxt67UcK`WI*68{d?S?|Tm|nWc{HRl6S;k~qxI^LP&)OXV
zCLw<BmF~4Bzwiy4`ukhN=FY3U)9-GbBe3$*iyqZr|AnuYIrI6gmfy53pti*Rns;hM
zPW7de|1Atv=j^nrxLQANTgAT04+XD3Zr-_X`?_D}&gqA+9r>Vfdv*Qu?Q@T;J@--n
z-r>A=7W?XF&e~k^aaW1{{@v9(iqEY6qP@jx?zIH7sI4poC%X*v{0~ge*n9Q*{vWSi
zzq{C^8zj25{gy{Z<mclP4<$`lUeu_yY35T|bGzVxJvwS#Pq^Ylk3QVEaqWAllZ<<p
z?`B#Z64u2pwU}#LpWEFfmZtBcCA{2!PP@#0x@N=lv@6HLBwp1wd*4gDRGahnd-CQG
zf0a{{w&xyZJ*hW)O36~y=_!v+B`rSb(O3J+Z~uNPmbUtDM=MVpdvNCLa`WKRW<iD4
zDt$i|zCNCi;a^&~+@?a6;l)|ELkl;Y6qT?qy_nZ}>R!!DsXNSvf4R3vuQ)z0ZhsEH
zpt{cq&koMcnDsS<Q5>gq#OiOYHru^wchtviX`YG9kr!T^e|z}hnZzGWv)8q=Zr^?R
zRk3LLjK+`kJJNP>{SNFtoU=VCue4Rg`*65)r}zrRSVjY})8bs8enz@~-0|q(x8k?+
z&12MJw|*<qH=FjbpWlD^w9NMwPWxBC?00m}IB_nJGxcOjSxT7;&$llY|G%v4tG{-w
z>XF0OhHJkUrylrzTAeMXc-<eKIbW;O97H)%%eDU0Z1m8XW^KyH8#q7r>C?m}<te?h
zDjh7Z+1>jVc{%h@+{+a|LIYFQO?HtzcrE71e#ZH-ZU66jw7kr#e>VBKO?uwE=IFZf
zb8dX)o<HkIbj%EoBTqgF#UD*x`uDiknXm60>pw}<h?V~E`kfP8@zK;tYJF{p-73Ku
zpHgNR6(81~_#pQD%VXt#<%Rv$|Gj=x(%Y72Q>(=Fqq%1kS#q7*wDzpMT)b$i&)OHl
z`x@ulUi)9BeY0w(c-#C%h28<bwCo$E*Y*UPKajX<)AddzVwG~8a*way0o6mBCVzd$
z7|wo^QQooMf13GTv!-b2hBcFXf*M6WIO|(%+}<NUw@@SAb<SDaCqfVV<rl~a`LlAJ
znOgSg^0LW$Yb(0L=S*2_5i-ZC>-qxgC6%)m6*%*0=&MA>s`83PB+ql!6MCAeA}`F}
zzwP^$Fu~thecI9=^Zgvwv@Lsl?g7K!8iDVX^_I*Te&_yM)qj}M`1d(O<1E=}^9}M@
zo@P&4^zF}m3-dSYzgKW%C3_vY81ZMrn&W(D#Fo$ea{Kfwt&LGDcQ?$)4_C?le*8;u
z{O+$u&FeE~WGRW?Jvgg8K4lKSPAZ#H^9rp7$3&wOUtMwzCg$1bO|<e>S)%TpIQfB<
zsliK+<*T<X+$m|tHeIKpKDp-0UZEbpmT7)1PTp@$Pk6ngqH)z0!})7MM6P}O(D5U5
zQquB^p=sNu-1MBkdg(&x^((_x*Q5mQmJWH~+IrM$<&;|vYvVWA|0-zV3ZBZ)KAZ2Z
z+m&hNyk8&KO%Dq3_0rP*^!La0<qw;`s;pfu%$;F(eiw)S+;p~<0_NTSPs{D7|E9dg
zpIv^*jc7C3g%N>A7JjJ6Ivu4W9H4Tf?t7?x%^RVON!GtT^4=Vjm?Iwl`QY*E4>F#I
zev0~@8P9(2{?x6;N|Ro7#e25B-M=}c>c08bkf=gtyFzBYy$9zQu!eiPzkVbvv?=Iw
z=N=c|SshgdEt59hdf2Txb=|26Md{J6CF1HYCTV<{<i)&Sqc}_dO33qU>CTlm{cX=g
z|7+@*VAGYypLb)~ZMOnN)98J^a*L<yp1F7`=~CeY-X~X&^os|%vwgPC=R4f~;8oZo
znLS-jlG)l{dvz8SEH_GD=rw)YZw0-HH%@h*u-bk7wn3?n#<{1mGSk1sNY*dD?{3l)
zHb=|0w4U`|)Q5{D@r!-Uf6A<W)#evjtDLgoO6?;4?Pg6)UO{V4pBMK%8hii6+eLdX
zizvMJDLt<$zs<+-)6<)i&ENaz+Usw5fAD&9NjcM*wT!JSOVdK@JO8abR?OJ;@T@Xh
zAamsw2^HV)W$SnDdM;%u-LYaqM@rVj2^tZt?{-{{I=?xtevz8disKh^djCw_63_DD
zv*QjCyK6pkTJsluI1&5S!a~m9)37kQt2sX5uJ{4x>2^&DCpI5kzv!Ql{&n#ikJ>D!
zdC7OruvLx{u;Okx_wlTq@$vMfw(@^3N2eCIw0#S?*gtn#(dN6-D|q*sKd4H0<oWGC
zgUv)%ZTNsFPcDd=pOnRAWNtj&@E)V;^j~sJ0-6s5CWM>S8K@^8YSv#pkAXq$9NQC+
z%Hoou)I=mbrqe;&gX%3UEY0ogxS+BXx7Jp3Rs>(&R_|=_lFiG}D`5Qu5dle-Ms7Zz
zMT;7yZwxpU(srqG!RHy<GL20xpSt4X`+V7FmuQcLTN=(NXmD|8D0PG%Vcer3erNfc
z7vH~S&VBbe_Ws}f@9$5ZGiUSW^S83s?!A`3cIw{KpQS7=bRU0QZ@bY(#nh_K)hVK)
z=ug*#D=RXy4=G=M<TPpL`+F(wo0AW?AL-f?Vc7pw{y^W;&Hg+p2kmOMpFc4FmAm~1
zN!vI7UM!3^Oy0An;(6P}&kU!N7t2@QPnX#{XX5M6Cf65zp84RZ?Sby+UuRs`(4TmH
z^Pc6EpDRxP|6Q@ZP4x{&y|Io>y`8C*skVlVrK*+Uz4~Xx#q;KG)=)ImwzM+Ry83^;
zaoWGqTP9WW-pWs$@aF#Uo%Qyw|H<h74{hxJTb}ZB|F=2+?>jjq3mXL`Enfa>ecieG
z+^kJ1HhLkGL|@Ab$sgOgrjM`l{qKAALbB=Z6(JrmE%i<<^$9=N{%;Yn+EbrW<WwJ(
zbn40TKg^341^+P?nw0$aWqMIXOofM6#f<tW8`*32rdoIEPwv{<_^(^|QSjgC?(J>I
zm$&@(pZ#pUklZ`@sk3HTl>hp2Wy^`@LX(u2yI;`Ly!`mr?<GFZ<z{cIxO(b9=IQ$}
zUyhyHnr}0G*34V#;Sm*C9wjlSivOpj{ZrT`{<mKGiRq2g$Fo;lH(38L<h=5pKP#3U
zjr+Ve?i<&)TaUJu9{9o-&93s%`$zka<v-#-zyB!D=fYf{@Z(HEnuhTl$%8)(l_eEF
zvlzDt8vi>Jk!E8&apsXVsn?7-d#0RBPU)ExXqe@8I75;-Icd$k^$S&-ukmt8ZOIO}
zz2I{5J-L#!3-vc0-}6+JUtn)`=c_CHu)0~CH_p<c?nCdv{<Z~*&22X3DZeKCP~@+X
znD6K;-S$rU*R_K8$3MwUwpFWtV{2#1`)m8zZ0U3rX3fKM<65>)*xnj$<Y1vtaX|H-
z#y_WhE%yxzo*bCYHjQ`B*__0CLN<yoMDBdQw&>)Fnh6O3zaQ+VSA1Nf_A^FmSAoX2
zUOBUx8}lAcIzG+r+fR;@9q<3{a(~sjy5+w_=>Hw(ABWHLs4V(1d2jv6npG(!Pi8PC
zi!3sCec!qJkNeN%zv5-B>(`{LNqn>Waa)gY|81Lh%RjC@zPx99pZ(`AN0v{w&7EnG
zd8je{n2qr7Gy6LIeXscKvCe!|zvR|QVYSoCd}bE?ySZ)Ur_9MGQ{#oc-VL<d=lR6R
zAged(@Q>Bqg$569z6j2*vg>dDUwJjbK;j@r+SEwas0**QSQ$N7TBss%!s*K*b6b0b
zgB1t7*<@`G@TC26nxZ!?=+ImXpA&&m7JTfJ8O^s;RW)#hd|{PpKDOZR^QO--OK;ZK
zPD#^OJNQ^UV`~&|Mgw0u8?(e0He0!Z$Bf6XIz8!D&67L5<L6$%8yY1ia(^ma>fOzH
zCv;!Txw{kd^51FQS1a!@+$&rV&Nut4;-M|e&C6B4smdR6maDsb^!V*Bhl)>DA4)Qs
zBrK#oIm*@bfyvEWw`NEFFXtCD$5fbRh5Go^)!T{2HBU*~db9AYvW>?T|Hqr#Yh)^1
zZp;W0mY+XKNIrh@r5h2!mo+}sKKmi}=bW6K^abhr=a<V&(duQI_`aSirDTeT>hVH0
zvkfzP!&>&&i=24D8*-8D$#0)otG{!K=bz`z*?Ta3`(tmX9m{r!l~$gfYq?Z$16Q2)
zt&cHplCCn<&tP9aBdtvDj`{bXV~!5)4-c<emmhU*_WDD|Uo2Hp+{5JkY5G&2*v-Y-
zEeBuST4Vil`9p6D*7pZ2Uti?1dD693EI@nC=~XjQ;<>pKEoG%<-Rw(~^V@SKJznOj
z%xl}=$1emntMAP|FhMJ7V~*GnrmoNHmW1$KSM={JU!s=3Ov9|+??T!i>m4sYmS<cp
zNU=M_FIRKj=FtV_J#Wj3*4}3>ldbcep%d^nByaLl4bgljDTPfUa`)2zMA$HQ`^mRf
zb8x4{Der5kEd3RKU5+U^GCD9lHY|3E$3e~b@W1aa_DwF3{&u$2(jfowp97*DER!Ub
z<>v(nyw?42)PL8<;ygLi`u^&_S^onSeq5EQVr|;@Qr(gH|J(9?d)Fs-ZaBkbDy01>
z<|wbvCTF3@$^AF}E;-?R-^Z&iGG%S^tRL-1UeuXfwPoV|U}1FbZMpF6jwSUW`#%@U
z`R>*Gu>0i2Cs9X^d|xi}M*GLnKXr9iT93CD@$Yl#Ipl76<h%Lhuh#W{m#-|Y*JzE8
zu9>fROv<dM`s0Ul#eXK6-(<a#udB8B)6@ga?XEXo@T!}a>#wa^|H{F9j?0&SA2v3J
z>!fXNeQlg~?ALXdBQInHBz|-SEe+B-t95#6awB8R?d<K>?H~Lqbn9*3@v}lq^hw}?
z@9Xov27|~i_8%SRZk*qrtZr$ich<tD{@r#%v$fBUH8e0s-}8>2wXc$!MWJfHUBTt`
zH8wkHe+YfQb29n(x-Xv#d3Qy)i}TO_HR=35(^c7vzeg09bl;SFuf}_%BQD<U#{@=?
zO>2Duc;8F;UsLKoX3h8Mc$Zn8u#EBDrpaG+upYnC5wz=YSb6V`UiOE-<ek3#sy$lQ
zcAc}{nPryG&90o8iypY1SlG71vEbc<r;nH4J@J0G{<)eeAvq<RNj!T!j!j;!raNQL
zKJU1g`$6|Ko4zeMWs!XN-(=tS2V;MzFsL2wW;`ADPg+Sz=+ucPRu?oc`kCFi{XHrw
z`+Y;$z2o0MOs%f@7X9jwJi|Kmqe~<_{w})Su%p0GkL^wUE|pmxwxyhB&PGl(NsaT<
za5>O@?#cV2{#Sa3N_X%)_x8V1_bc$Gox}8p9u-fek4isKjp(gOUMSn2Bj0Ghd*_2y
z_ba#Y?N`ZBuPN&-7mc{&Qn`RFQcr1q)i!4pXWcdFeF{>ao^=T+vsQF*+OKZ==92Kt
z>7w4p()|6Oxo@>Dsplz>v~Kv=dp6@>BJZ2Wy~=&}B0ur!?QouZy>UJF#(6wHtR+>t
z8jr3r&0d`BbT~mxVE_AN4;>45zsat=*Kf3^a~=<OysB5Tf^(Abr`@+RjovXyubR4}
z?A@7D9q~m<Pu6ktANRkg>}K=QT2b=rsb5bQ8FUn=l_>9LUn#pmyzgTD$zt<e*|(xr
z^Bs=9AQC+*L_Vp8dC{*WY1y|cZ+zmMf7f!A?VV~Ri|C_oqVIi;s%^@+`AKq@Y=e?!
z#N6g&-V@0m`xsxk1X_qzZCvSZ6n3LQc}2?q1E2DzeevEF+wpha&skh%{M%TU=C;0`
zc6#^yd!=78j$2<~$#YFr`jk9*>&tqf4)>F(nZCYHr}nBl^Z6_JPwsreDdgR?;XRX$
zLrblEU8}tKZ`+EpDe~Oe3Mz&=s#<2n!Z|G)j(u4-NA0Mh1#h{3+)lQ;7v_XYH)b9B
zs(3}xVw+xqom_PPYt8f-_V4ZPm6Si^ue%@oEKc;$)zt8l4OvgVA8x+8d;NjiFCI(Q
zFXx#5AwI%f|JKx-S7IXXDl{GIS!LlIeZA71{Z0GkOap1BqU|b2kG801m}gDeYVzWh
zz=<tCcbaJk%ZvW_8fUxj+<cyR5kUpM*2umI!M1Gf+93<4O?kDWh2>;l=Kq+^_O1;-
z&V_$J67tgg<K6c7t^F3i1+?F}y<Ze%{9r%lV%GXuCO5M*zb>4fImIPq=YxacxxCA(
zSM1W8Z&lB>&#~ggjngSAlK&pPc`5yE<r~x9)VEJhZTq_DS@-+hRS)E3;uwk(zjYnm
zII%-Sz_L_<>j`JaT*U=enJ-*<_Z;3{cstkb^$~dvM*azPd!9PQeCPUZV->|WVV7%n
zL&zhUIm|mgG1q_OSuPOQ8ou<jahi@NcdPD(O?Ho~-mSFL-^C(7O=k74A9Gjv>G{a@
zY4U5tE{|u~oatsLIjgY1c(-Qr^|s}os}F0p@=1EQYBT7}a@(?Ldg7L;36mVmR!n6z
za@qH}=1_|s@9DeCPF_CAXteOanoUl&CeqRirn2o9b7=KjQE=jGy;tEX#iLwX143SG
z5R2~m^1;rHV>V0Mmn0*pl#J(9zHaMyj6QWUy3E~h{)VUZ{Hqrh#6+-6P1?k_x<!Ti
zgIi7W$D`2;cTT^4ruxX2b7D*uORfkmHZc_74Ll~{z*;$_Pj<~CVJmkl-gQ#BeSXa+
z9Q+wPle8sVclyouy82Drv8{ei*%rsvpE@UwKGB~S+oKaAWF6kj^{I5G$^MO9(F@Mr
z;M%<)_A=LrH!WVfW9IAg8EC`=aEk4{`NH7`=eB8vq7Bz{oNqk%*|X83Cra9aq32mq
z%io)ed+x^Gt2x_o#`PE1#`j;hJiB*%cIErnr{7=IpRY4XwSRPfv;E{RMi-yxAE~eY
z=E61c^{xlTv!=W)Dp|Pu&E%f7cN6xrtT@LtwXfzv$4L)fK`BYsy8Sgt4O$wPr)B3_
zO>lCo^KjJin!R-r!(yKWGyLBk|Nc#ypP`?@M#gyU56%+q<YV_D?|sp}Zm~H2>E8H%
zhd%ptTs#uk!DsH~#Hi}Mc*3PM8(-w?O3T_gp?<c0=n28f#y#JZ?yV^@3Wx~Xcs=F%
z?XLlBu9YUQZ!_LDRh+=1-E(q3*ISYKZB8?Fc^@8J(&{paXPLv&%c3jHSXtBaFL?Z3
z%cF4L^W%!EH+W<>xL>}Pul&u%w&Uq93uY6COwY`T!nOT-_x<>0y~yCX(Sj3GT2_88
zHPP`5n8)l>uVi!R#Faz0=d?z4Em-8i#`Q61?=_7=Wu+tOGrsHF9B_`3lFBZ-KF7@J
zt62lrlieEkkNOpVydz$C($#MDp~tOdmKiQa7gn0?oU}i6?LEfM1uGYCduSB#^3INZ
z8OQ(iENx7CucmQ&v$q0k(Iu12NZF5HqgQhBDIL}<vNL{rV|IA`(WwO|N`5UeU84Jp
zVT)sFX{LAN?$0_G;*tv*1h}@aT8ZBBFf&-CbK#lCHr971{1!CKs^<B2V4;}Jnq9kp
zUirsozK8p0@qz}m)X$$|E3QA!6JP(?$nQtj`F-D-H*7c%q_Ajf_cjN^dZCAoaysot
znnk*;wco$9x?J<<#=hh$H_Ge1yM+VISU26d^G0SZ%M^{JHv1QC+;^<jV8`RqPa>6*
z)R>dg=gs-=Z}abRyQ|XuowZp91*<L3{)upRTveX9f8vt^Av;}GFEHi^nv&i;iJ5Jw
z&ytf7t|@2!cMCOKHvaNj@^AN|Y#y;-$y3KA|BH*-x`s}9ap-f*o_G8Ok+1h(yjagP
zp`J@OU`f7SrL?S|$)VK43s-UbJ_`=$*>%WT{IbB8HzJ!d4z2uo|C@G-u`ko{$u~DR
zZ*kth?!Pxah<(L!JG)uScGn0!(%OGi&FnGf_EWKYl;a<L&x|YIP`+bBwf9%PKogzw
zw=7pG#439$Dql!)OtVXQRw!4)7x%Ga<{HgO^^&hM?I!cge0tX{+Iq@@S8EoXS@L7c
zhqbYqa~CB)unXO{`)Q7;+^X#hF8?@`ejwzQrp5^er8>_C7Ar4X`OR9@r7tFSQ|px1
zsuiKv99^%OZPno_3dpLAbB$e`ZGN^k_ph<lt7{#{+Fo7$?U%o2Zs_~(9OYk(4xPGl
z>B^BKOOBjLs`u<&v1{cn&o|!}pPl@#TfM<;>g269X;0Y}v?aG^t<cq3S10|p@_>kG
z)4{m>wI<@h;kV>(Z!C<mn5i&bH1NRo=6eZxYyaQ6yM=p=h<rxs)O9}Lr$s!YIZxfw
z^PY6f!HVmiXsN@OQucWX!oOervfa2*P~I~3lb^rs{M!HK`A;h9Pecf9F1x(m=0;Y|
zx-RAFj|>)!?{mxbnM{PubSE!a)%QN*p3~#xv>7_u)>h@F)3wD4pRrZdF65pXyT;~%
zU+)=3)>92?@w?<$C*-(I4xZq3`rDeMN=^~SomYcanu~lDxfWEP&K29LS8Q4&m*h38
z|IWX*XA0XmetqcjO-cDyR$sYFkN;C(L39ZJ)W?#mPm~*RW*rOuosyY%q~Gqr=Ab)j
zf2z*zY+cm5!O}?0r>vwp)J4Ai)0#CIFSX9`{yUH;DWa_)6J+``%QJpKvdG1#r)Cb7
zSL#G!6jrw%+qYm(H}|O+g~e(UcMIy68H&6;svng#_akp$KI0({`?mQ9g^$*E?`qj#
z)mD+->b`%Yr5e*cmY2L5OPFW(xV})hcOc@`Yw1(ow`NJ}rf#{mw)2ruq0wLS!aE|0
z<{P?O)O;5PP2pd-aMF)0ixZb_NmFY+X<*dpGovQ!sOm?%8^M?F^=+G^+N0#SFmAPT
z&@8qBf&a%Jcvqggcjx%#qX8Kk7Uq?4f35%JFlj;HbCor*+r+{ee<`o(VeXv~zHR%@
zPY?IbowNS@QjTZd%Who$_*K8_S5BIF>*1wu0urNhF0);{pKyEG8J45}PE337Kj3_Q
z8YkOjJ)2u0eNi7Yjy=hFv9d5yx3~27iuqHYF}?{|y3|4FR9Q;U+tBU7{=q@cb(?0E
zf76k_pHLtFNNAnTMIA?Lx%72QUcKv<l=8T6a&dsfOjF(&Jd&;~QqPah=N6mDx0Pkn
zg<W?ay6?AlJbQ8-!&VPIt6r`8-#->i$?#yGIoYqu-YxDJ`@VPW%p3D-_MNWeZogBs
z%gv;2=O(fH|BG_h-sjKZeXVS>XO~5k2t%M_<;s)KuibpiSl=7(+;Vb`(UC9%DV}Yy
z{O7N}YvRh7?96b)bDEpL|2Lw6inlYQCUCv<dvZNGyDZd^d6oa>XK#G`y6zTfEcPzp
zyQMF|-K})%upjfTdM55{%Y4zxHsNbSkNwd1>})kSk+<-(uWiS%bFmdX!4ctqpRyV_
z^M-h4UYoz*lt<eXySMe7F}hFR&Hq^P{&{um8*fQ7E$`+}t5=lEEdRKv{EwVm;?g%N
ziIwYg+nt=s8g1NH2OU|tIpElywJDm5&)xiYZ1x7mPrEaOF2<InU4OoGt{QuY(*FGZ
zf(It1kNgj4MowFDhDUbxR<@>x>(k5UF>PTln`&y}as7EN7q3?rU;lll!}ZU@7N_`Y
zS}feb@$;^I()OE~dOfp*eK%d1@y1trx6-+ecZdJp=AGeKenYTl<%~2=v01I#pS@3N
z-R*Yg-K}!r+xZ%HwfXz+FTN-CXUm2Nr{&>J$q9~W&sOQaHV@9#_CClOs<!*A>($_A
z?~XA=8O8D4vKLJ|@ae#c+*PkXpHgD*t?yC4thim|%p)TMky&$8)mQt!TRLl7z?{~Y
z$O=axuh}zyg)dXEtd}-@zNILWbxOnOS1Vja!)M0+&@_<nIrocygZ;PG=76aj(TTn%
zF0ag<a9=reo|o6;RbShc{5$I`+T5>p)#~54d{eyqV_x}g`-AV~f9(BtLwS$Qxm})9
zoPw{{t8#zpW4V&I=w@C`Sx`h!M~SVh;qn&avJ29>TUUH}JL_HF|JI#B8ryH4_6f`G
z-YFD%KdDFc+udVAAy<yhI2FaW-E51gN%XB1?s5%cC%?(u@Vl(x8R(ULc-<_$iTZYq
z-syMFRg2uP4vtu{=~Tu)*@b<}c1AX6vQE%qzqG_}u5bOF#oDJAE(}{3ocT%cVdXR-
z?&xD0r?zZSKYNO0W{}5e-6pL<(H$kBSy6!%Q4*CqQl2yM20eRa^l5EY_YP4jpWQ1M
z=Z9Qp*mV2s(xa7Inj-QRGz9n@UVk&B>x0L&w(r&Z64%^Rn>+W^wRp>po6bG8<(aQd
znT@8uSbb!laVqbQZ}qE}vE7>~9Z}kTUh5q<_fx*sj%#vJtw{$<j5szW2p*AZF}@Jd
zQ`vt0y<NqQhXS(C8@8D-x{5tfagg#_GimDXTVDKo_Af}1o#}MM#pTHP`SV;8>kl6P
zuOaqR?1WTAA@jY9hpT@Je_MIC=3Dc<pH7=^O;bPBFkR%N$;{JNFDA^1uIF)OcUURV
z7!<u=>S9xs$)5SW>u&pm8c*s`N<Mix_+IRvnLjjSGRoesj3^BXV}Bd)S}VWoZQ;BH
zldPAD+$dUUsx2IN@7bBFiW6A8#MjDc^O!B3Ec~BivAIO|PM!+6pN<?NY8kR3K4BME
zsp=~02Cw7jz3az4;e^!=4tJ@K4O#W&-?wh}l6t@tqO&CMTDkPidk6O2@7v0|$GiNa
zc=^va<$Il5@6OIL@7Q*5*^?u^l7d}pU$QLx*~F8lH8((SAJ1kRYst`ADG$@Q{+XQD
zdQ~EId!fKi71foU*1?Cje^Zea+RGgKyesDI`_RXUZAv9F^M6ibS}h!NH0Xqoz50q{
zb@kWsvKQZcx@y(J5UB-9`RyUjr&XqeO$&~_A98kSg!J#PI)AcU{G%T)UFN;|{fXNd
zU0(%#H+p@J;q3hA`B5mnYVV4T`xeey7Ex+)^ihb~A}#HJ=gZIC-lp7h%u`fWbd|2C
z2t(95*&}s57xQ$OtY2~7m9@y^meidn)*KkZ6SFd^{(EG2HM^<)>?XDID_Jd1YF{Y&
zWV3kMs!uDJ*>@lA?|fI97}$AZ`-G@l_twvuBieI7K0fZ#$CbNp-^#41X#Xm<ZCMFR
z=d}aBWTl&&osu7wd0eo+@zMUgNI@A>eU^I4n&&#x=daFuKSznv{NcG%PSX!=;oqO9
zwQq&ZL@pVH6<dtzrQEMrele2YTW9p`z+E*P-nzgBuc<S)+kX7&8^Y(RyY#@qC|OsB
zy%$5=wBJV`S#ELUM#Q~~QDL91H9FfK*A%ia4ZB&k)MnPRop)3^Ud@iF&ioT_N~((e
z>xXkO2ltfO-TS<L*}6ZWEXVhE7~D}#H!+H})Ag7(x5L_D@9vXP+xOS6TKwZme%V^x
z1q<DF85Z9xJGErfv~PtH+B@cR*QH<I_vVb9@`JB$R_<>3toQJa_b=_^w|?}SU5fb@
zuU7rLFMzA<RZ`UP@Y!>p{_dV-Eq|!cYI?P@)Wjo_@iIKdiUp-P9gm*9UV7*JqHOaw
zJfZXA-!5`BTXM`ZbFciw-ECTvjoItDI7BjDd;5jT+;L7kG0DyH%oO(kd!N~o-flt7
z8Xn7xmP|dZamH!o<s9SN8W+O;PP=Di#e418Ikxii548(~zDQ>T&Ra9_**aIn6uZTz
z7DR>pefjwJfq<KLiauQETphykSgdRL>TSYxWgc}+QGULLE3}`jweuGFY4>Ap(~`fp
zUe?z>v%hlg?)1}541WW~>qA(7{a@W(uYTrrUrCvqI?q1GhqsUMiOBJ-xup=rAANay
z?wP9UrM9hyB8#%hoU$VF4%9#Y@V0B-|EY(CR&0sX=56iMi|V<OtnU^d@wfG$kEG3&
zpvN1og}+<;GiU9(ASvzh-V0_bKj*x<R<v4EMt4D1z1*#Hzh809mpx~vzr;gL(6^P(
zrt{)#-n6XiPj?=b6cH#^Ii-@i>GJ`zPg1i!cys88*E6s7wBx<_$s_8;dOMLyrqAb-
z>eKI=JZ<z_JwZk1{syxN-7oy4*xxMEYL=~SxO<;D*iq5v&F#zP7nS+$)NY+CTc^I@
z?0e;JQlS?<rl!^}+#<x)>&boo)tyUQrm;0Qo<6Z*?wqV6eivq+Id^My`ghqSk$JUZ
zIc+_AdOu}|_#QLZ^kPP-^opc1rz*owyT4jX_;>hs-l(wox?qL0m2~#^Yb>&-i!Pr!
z{yX<i1oQC?Gn^$#<9<B~eSMv2>zb+?yrrflfse!Mw(Q?Fl_^|1<Y~Rq{{Fh<u7b<m
zHtJj7o7gusFYdjT`TvVbIU-IAZ>=#}v+~BXzB}_T%)6)h{^BhWG07**F@FA5d&Npl
z$c5}(X?kR8!1PN~8tb<F$<sWibYtekDU+rN2v6GODaK+Y`}W@ch%ENiM-w)G4JkF<
zviRHI*muIBY0W2nT$lK~xcqU;zN_{7-39GG2P9PNO>%v{YhG@(Qk78u3SCyUqxv=(
zU%oh)M$dA(r8F_UdBNJfnfbok@2z-#ZP(6H{Q!r?S#2*DbUesSeBBiOrovWOG~=q)
ztoPzGLRxQi&rC0q;eE&TnqwWmktX-mFs_4U(iQ>|rC&T=-rH%uN_L|(OW;In=b&vb
z>P@WjLU;RfX^YJAnf6Or);6}f@7tW0dm<XSelM-43@LbaZOMj+CoctBw&twmUiV_<
zjri@$SvSfy*>3zjxymTh*IdrNZqoU#le&sCc9>Q_`g~MIhgHU*SS$Zmp{)1D^WwFq
zzo}`2%;es2G%fGuz4wtuEgp?I3r}{L|2^=9@3(FJ>9u#HGu5)*T~=0oZ*}tc^$%W&
z@;h}?IHn2hx4v_0ZyVS8M<xrNU3<6j{F&D>I~(eX7>hfm{5bO_dS7_4eV2Gq_su(>
z_THDZX-O{NKKpt8p_lVNSI7U$G@Gl?8=0$evBGTTk#$UE97z+w7G4gUe9=RaY4;(m
z#b2&O^-fc%zdT3d$YwU1<O%KHzV;ma!go1r@wFwUh1U|7Ml#5@%>8XSf9oFQH;XOW
zS~g^R7|mO5xPmuJYM%&Km6pLOA1N8%w8x(FLLW$8@-O6ASl+U2m8q0pz|7FZ<xwV*
zJ#0Rj30|E-OPsHSFa2C_`TL)H<*Ql}E{cdrbc(K5_P$wrz^z_6XU+lL%Bm$1uU{Sv
zP2oPiU}jXuT{hSK)w5*Hx<Y+Ftk_fUUtm()6L#cV&BRslue3Hz&9J>YMM~+|`<<zA
zW?cHIyEllki_Pk3t^F$e-D33;k^PdkA9j71{&Dfip!0S~s;{|BW-$dg&6_)G{?7P0
zT6<WtZ^|Vs{r|~gwNOyozIyRL`*K6>F9=$cy4zFq-l>-p(=-$w+eBsRXoMtda~|=w
zjeXGh=vrCr$BP$TN;1AoIN)saEmLc9l}V*12j9}zG?hi$)gGra@;mP>%8C>2<e%rJ
z7IW~6>-r4m`rjM!KW>irGVN~0#^9}@&qbdGX)m)|qRbsODgESUhk35{m-<rb&xm|d
z63m~FIYq|&r`XKc=A+W@CW*fc|7$z%=ob694V%vEXQpUsH6`V>pPFb}bLWsEt7-6D
z#)(sNv=(pFI<r5KC1A08#m;o~h532c+rF8LZ~ON4)`NK$r89W5-`t=5>Gr-U{|k#5
ze+uOPsl3eb_WSWz<tK+%^M4e!|DG_@{+mMmr^fo4Rpkkt7qS?aAL{bZcxNr~iqo&v
zHFIiE_VTrN9HT|Q#H|d_aLfu-khyjLTtNMVsHtMDlYjBQs-L$l>gC>}UH=yAGQQvR
zc*UEzz5d*9w@y_3shPobv?<s?(pxgp*QHNcvesXt<FTcjVDiaTtlDe8#3i{_*>3jK
zQdxZRczue=zZoCrzDwI*{JCm}@&0m7b5m~NdmMaDDaP-tXUtpBW}cu}C6&%`GVR@h
zT=yzHlNt{BL#-{!2Rl+G{98ZcfikCf#_M)o@v1(BZ>i@`A6oFhTuAJYQ^jJ%73^Op
z9=>nFQOGdUP1m47?y|>y^}Vy(m|r;FE^K%)-Bz{Yb>5%)YjSzdFK(G%E*IPM_=jZ-
z+nM~`HarcrA9b^YO!_2#J?@YZ(OTQIn*aUe{mh?lKU?CxVVaHmsk-|q43E6?{_e6r
zp{4(7vkCLuX%m0g{j2^TkaWMSPq}a9MDuFp8(05tU#nNYi?@wuq42IJT^BaXi*NjL
z_KJnd+mk;}6i+oV5Mr%gGDTD1bnNwK)3+|Sn9#iE+WFS!$MUb-klw%in^fI<`<oGm
z>wI16onGB3Ge7q<ZjZm!&b{jMm;JMme$Dd4Q(@0<BO9)bj7?Px<w^?v4F~$%6Ytgj
zQ8`<7jk9jH)~)}npDb+S6!a5*b;b+)|6_YL!%X<Gq0E$vvmG{f=FBySoKXMg)TOEV
zN77e|EuYXi<rUL`?>E9FyVvTUm{szNNm?oVrs*1cg9wI*MSC2=7DiRbdDrh@@LA+1
zuAWvYCwp*SYLAnfdPMK1+yK2-dmSd4E&uMJzW@7cuZ7Nzr#IMK(BS?wA^o0zT#BLf
ztib54t*7joCum<-624;RixLwhE#FuB>N&X0w5|5A=YP^k<SOR1Vqe?Oqvp+-)GWXE
z+zi<&+wJoGvi~)b^#4!X`90~sL{Px#&=Rw`_IrI7MXCz^o}LnK(`9VS>tp=l>o=|=
zWxaAU&PB}md!tP6?A_l}W|yD&yL0yWB%96ixm^F(%r!H&)U0qlvTB7xu9b`P3f)C*
zQEm0#^{&eu&)dOSzFmH1(zMyBt_@vl%Br81bg5{cSoAT4Gtw{2USa*?>mR!GKd$lG
z_<X8)%jS0sa?aYb(v;;&KW9JLEq&)lgLL@LO7j;ND(q$dMlGGtX5btrIjce4?~t&B
z&9X0tKYy@1#Pq0o){jn)H40&C`$VfZl&|r;tF%iyqux*|`sj}j?Ds0vEzd`MKI3Jr
z+qbrCmQKs2orhkwh#NVYh=<oI?dadT?YzL`+4C|U>U_KRoauh?gS7WMD|Ob1gr!}4
z)o_Px+VQ&M5nU_VX9vX3R`;GTnNLzOG(hQCd_(*5pM4isgqSqC#LVtED>P-Q^HPfq
z)AhepRK7dQc&&SH{qY}<7JktCJvrMYeC-!I>yP`kTzl{GUgi(ec5gk;xmx~#so5fo
z4bM2|9G}hq#@@a7{k-nE&mSg7`AuH_!C_Ow9;bOKOh#@jpRL8e@45Fi?R47ns9W|7
zCSjqRpLVZY5q5QDR-n<AAnEzMJ*PQBlXeJvuY6@aCF<A7mi~uahc<t#Z}^^nzj8;%
z8G(b^o!pO~KWRB~uH~r4U5=|tHr@|bpDNyXIrhesgVsOZm5Sf{t~Y;ggLlh^!VA+~
za@>y>wr!ljxZ!zW_aUjROY)~SoC%uPImf%NZKe3L<akxDxyPQco<6kGm96{S8Q(?s
zGE5}6vU`qZn9n=&;Q84KraG<<@dBRpM>n_lS1&VO-P3*Rfn37;^Be5vy>Yox<>I8!
zJYW6s$tgA^^XHzcSz))4HBIrpbCLM(HQcj}-Av46tkdn*u03S_?dRVc);+F=9(Nv{
z^yJAB6G0Dd?i?=nx?G{Pv!|_{FDz>Ldi`mINlAz2+~e%Im$IPJ;KtM{(e3Y6g{CVS
zeLr4*@{Ch-1^b+4uNBr^e|=r28Le>n|M>mW`#YrT|L(Q%oTk%z%g4<@$Rpv^RoQZ`
z2}(j+b~>Ku&-i5gEXda3e^Ga9)tZX|5x+OfSv@HJ@vHsZyH$Gb!kez{`o|Z0V!PIV
z=4<N7Et@5m&*8ReGXDP4HevtbNse<*O?|AR5hC$)0(<=>rkOr^!B2~C&g?w)|CUL*
zjEmxl%buo{D~*|!op0YNusOQ!#?6HMO(v2#Y|^RQU7ns`eNt{NoN{uN$&>F6g3Ir%
z?Cy`;ZmA;>=5$HXf_v(*tj(*Rl>Gj9*S$w=otay0=)Az>2d|`N#bkxBT3=JqKOLvX
z9p36Fawa$CqvC?i^#wb!ze^tP+LrtNp#4J~F|&sYPi$QOLSV<l_tkwRWfy)c-!N2f
z-v4Fy&EG7)do~z$7Oz;?Bs)RjzSN{CQrr62F4(BEMzUWmSon4=clrU=7rBlyk{kMX
z?(JOVpyhpiMQN6<tIG+!Q|s8wExui^X*`!;DaYh<Zq*h^1NonG+XIU0lM<s|x-H)&
zvTETnuB-#AOhs?3oSjmZGPmJ%0OPwy-5mC68q2K;BLX+xjX2e){{1}b;hW2A=1D$&
z`t+;T_x((*%2nEKo9=U6j(M}lNQS?Ujq&Ef?_#`i5;GncpLk>}QPZ}AeRodU<dr94
zUOav*_ef92Y-Z-o@Q4h<pFFJc_y0>Vt<Ik9ifw%y<o?WhLqn8Xc(YIZJ#gm0fdi~Z
zYIvS7xfz^1a^QhOPZp~}S|Za%nMer<sSlc|Ndf^kFINe!aT7@4-~2t0anqa?4pYQG
zFq(;|J?5WbZE;{1^9%*WhDQ|>wz4;<7*FEhdXSJ%sGz=M<_w7yEE1j}^BBI%GQ?cx
z3g!|{%}ar<%}dQofvole-9~9$Z)jnPa%y*N7=M6pxKzFOB;G8Z8LCyjCFLtUCYUKk
zRh6HL-5Rk#>jKw`fM6Dt2^?w;OpYJyT@<-L{$akhGD_gpQ<ly@Q*S4&?AyBdj_+H?
z^;PMwUsUd$=j`5Z{XDw%&Yj#P&#%1ny?<`s-M{y$?|-k}|NZy9`e-K4r5y?#6P`>l
z`8_S>w$fs|dvSB*4OBUcTPx=@iDjr5v>agLd?=*o)1@pr$zSBsNv%HzV~jG_m2~IG
zIk~ucEXbS7s&(}9qv#EOf`SGzp*jwq6kHZ0m<X?&$o5y3v2h>wr>uRp=l2-h&nb?Y
z8!ax~bL@ubw@GVLuQ_#3j;+rz+4m)BLENEZ(l<hP&hC1n=RR@j*{x4Euja|=YV_T@
z+hz6C-c7e}*lbqazN2BQ_y);mKHKgj>J@KjP5t&s=(rQ}?8J>$5!3gs=@6Zt`Yfq<
z-QhXsr``T^Hg(PAq_oM`mZfj#ESo*qcUzv(ZJD&N_34rAH_t@PIX7vkq2aktPR;du
z*BC5wc=NbJbKa{b9h^Ov)%Q)Dwa`Cqr;?(n?ZF3YN;a{6GcvpX=FC<xYo7B(zrJvH
z9&Hd?tePR&<-R(QE2{ZYfZ8cXu@u+Yfr7WXwt2f;I<m-V6+>;%l-_lMJR6&LNKFwd
zaZ{SQW=e$W^rgj1DmNwEw7Y3BlXvc^<0{9w%j+wdN({nhFk78m-2ZTWmd3%03y$Sq
zocvMEVRE^l5vR7tiKYyW#<M)vOjj6gERGE{o4e)V(pMq6eIoCiRDS+muO-|zW8E2N
zPqyBmjN<Q3Md~_Vg=Gb<mGO&wS2-j%W0_st$+v4)-H(2|%sga?=-Nw<3ixflD>93p
zyr%Z<O6K>7`fHWP;y1jjSR{7*nA?NMh+=!GxVEFr{QZXdO>Vu}Cyvc)`#0^}gL~hr
z`+saPSSxsbqltl6;*`gY4_bA^8Mik~;jrEOGehCn&y2**KOukDzY&!?ziqC`zvEB5
zW^(>AXk4ncbNlb?JcrxW?W<oW6)5I}B=@oKtvfZPUt^+Fr~I}056il>6pm`Mdt~_>
z*!<JQLh1kYTXJ`~XJ(&yx`ln8;>yA~0m{ZF*ULQlH1p)=PBqIFdlsyk+*y0JNFk3u
z*7kDH#-3y9%V(u{aV)4+`1Ma%A~e29P@6IEtwNHYU`f#{p+5c}yJbGKuV-P?+-vko
z{dx=gD@N~dzrLfBCSOjKl&F94N@~H>{>%G5o3<L4zv7$i&1>5?+sS(3P4UE-`CrR4
z|MqGh%f5DOS*p6YVZ)OvzI*;?epu;no?*Xn$y1-zuct0QP`@OzYt#FO93P%mx2-SD
zoVm0_;ni39{$I|!S^~@0JJ?<nl4&t0EIhc3&G!uRALBp8kD30+@cr%Pd-OoOyk5?M
zqxbNvs~ct9W*ib>e{oLX`@@aKUv3Kj)pfr0?_ZX;_T{9fMrIlFGTaJ2D=$hZJH!*X
zU~}aeuH;W)>sFS8+lKFM_p4TIT76-c&-;n*<8mwtXU??gk_<F^E?4AyYhioLT}!nM
zQxa72ngW@2=l_}iR50iN;-`uVd{eG2ShA?4KE!d=zl^o{wTG6iNm1uDvNUa*{;xqK
z@;gWP^YkAP5sLrU$WHm5xo*>`WhY-3{H&4H-Mi&e;Czc_X`74Zopo*aP4_$r+&f{#
zI)?3U?(0t$y`lTqbAoK%E>6K)uP2*txaU%(-_Wvq&0d{rrQ#BDuUn<#PbAg_%c#vh
zV&Ww({N29ZX36dlVTV~2GtLD+ZsKyfDnHZcsi!O7Z>hW|D!g_bPYP9*%zh$wH##t|
z^kC~Fo_$A_dwlczDZfu*kBORJP04i!_7~H?I+UE(IP>~l;9p4zTLbAtIrh&QRXYoW
z;=<#%+&#waclmnMF}=IjV&cnK+aF8rkCB~TylYAIhP{v99Iwxw{oVA!{&!a8FSdNs
ze*fyMwN1sj8uQ8F@$YZG=DhcI<^8wU0v7JxW>$DSbCvX5<;DkMX|r~)e)hip{{LCF
zWuFVGtLL}vYGCX3%RjSqN{XITJ@XZlqe>o9yZ?WkT+5txP?h8Tv(V`cb_`p@l_D0b
zOg<E-5j^{Z)%AH-Z)Z2(-CaMe_-fP|<)8B&HXb~e@XBz)cDEnZQWMVqk72P5p1<kE
zS^jNXOTTQJCx5QC{C3^0v)Avwxqk0o?xjyI#X*O%dFrH}pDKIv<W=mfwMDDKDyA-J
zVp93pD)m3q-cTcJx6y*P-xEV@-!)3TIhMzNZ?nNF#_(q8Ea`=>_N{oU{Ho+!#P0fe
zW;y=%_PIvSxM#Jk`KIxizn>SSP5FIyVdAfM6VK1OwI%(xmifGdKGA}Q-X_5_Ef3c7
zUE#D>TqVH8;MtOY^omH_gvZzK%&Rq8^LyH!ubJQP*XUN4&snnij%w&^lb`#7{zt}F
z-~Vt-P^QJX(8X?^+v{nw|8=M{ed77(bYk+HxeYnjpXRb#a5vk}-E?|N<NwA0$JHGo
z{H0$mA7GSUe(S2vo=S;L(X(cGR_!u5yl%!Z&9o1f8|Pen`PIzC<Xyf+#fLNMT&(pA
z{?BDTd(Zi|^z6M|Gyk)8|39+<OH;rCeB*|ynGy0j`RoJ+CN)-f)`=}`ZTviX4C4IE
zYq05s-omjlhRKnQ*~kKM3x~jTtz;%OH4{q(0|ijMZeyb#Qdy9y@1K+vT#~Err(kTV
z@0M9qT%urPVKBLHo^-vDk+CVV6ShXg`b(b_s=Xh7F`qlCaQS}wFpka^l?~=9feDkV
zO|AL)<T_M0Ow0{?c>jL!uH$KEwr+mCLE+fl%dw%cv8AhaRW*qQWvIJ`IIUEeBy@{y
zVUt_8<m47Hx9Ei~95X&I;9=Bt3t?*PcajWhbY|^bS^uEbi|^0G%OXO$ZgU0a#Wp`(
zWDsQeP(iZkL)s)}-LRqv6%Jw1BS}_`-qreRE_rHbuW2mlu3x^vVZw{!4d#i$^@|E7
zt!C4fIhv?`E;0Pv<NJZ00WOOTwf6L6EdC(Ho%v<&!MYfMd(!&fzOU|on^R=IHzWPV
z%J!*tVb8yB&;44TSa5WHruDq^;KD~wQ*4g^UK2K<wQ-r1OuzbPNe-p^{CstXLf)C#
zukE__DZkrq^`g0NT$~?Fs%2}l-Y}cpGPSY3ziqSBG1qvO+0wse3z>HW>@vuV-mztC
z?CagzHiR#KTVPUQ_%p0nmH&9l66=Nf%ikv0&3qTXZTj?}Tilv^C)Hny+`^YTCCFQ|
z`FOQf@z2<4`|>|d5ZiN4Cgl0zpQXDeOg&X|pyq-s@9(}XsWzwg=#)g}sdv{dw~D$t
z`SAC|ncJ5=mKCeD*gnN`?;*$13iJQJHtcltf4NQh&n3?8)WiQ4RmZr0Ui$c@m?3x7
z?+rhS9JeGc-16G&;>m@KpDJut*wy=}AKu+vw(E25kLNGSDk?ww{@J)#wICt&M{@c0
zA1Nl1^1RR9p1Zid@|5>dfn&%1D}6m5^lwk}o$vp)$;!t~*kLB=y59Y>TJw_<qny?E
z)8GEy{qt)E&zU{acNos?>Yj4cfQ_ric*C@WGZEF6Gx*o3hxhQxzDnRpx@LN8+Pd)G
ztM#Q5*aGKDy?#9*N3L{JnU`Wy>f@ZZ7h7-D=sK@Vd+f^_m1tAc>3FMX-^Z1F_skrx
z>P?&Y;1x%cUqM>`rZvG!IQ7nJu2!C}cI=kNeU(W4nITz|PFG2#IIK$En)hIN)xt@W
zQoRcrDkQu^HZ)#6UA9!jYgP+m{A1Q!owd`p^6oRJ&t$)AtFvIU6fci>Hj9&4f3Hce
z>AFHi{;C=06FggVFXcS0JuCBeNhXu8#H<CDlg=(k=nZJz(%E&UiD}VUWzW=CPqLS!
zX3XQf@GR72JIfU9$G#uczH@%<UCCUOH{rzY4HmYmCQe&>cI6EInxJJtZy$>LO`N#S
z_1$r^&AC5XUVN$-`9AgRi-*w@4sctpe_XL3bcf~HE$=MuutcjT7&H|fbX6=dnQ3)1
z#)`YAlV8^N*_FVHe>aH8@~)Y=gu8Il(TlDgg(lnF6}^|9p7mk*xh&1j`3@}?F20$}
zaN$&+-t6asp>upwPtFng+R!U>V8LcR7RFE=1qT<CV^^;+bGPyO2-bfRF1S)S?ZyY&
z-EGHQIgU<z)$LhmV7!ip|M?4JR>n(5Ir-N6JTw)Y#4O;{DPYFa?XVy~qM=DZK~rIV
zSExws(xXlKhwr!Kh;Gtg-6}B0r0cA10q>IZ#V4lx-1Dl3Np!=@5d9if$%PFo1J_-%
zU9TsT+$Ejqq`&!UjbYrSo0YQl{*PnW6gz4%H_F^z;`m(h#lkHes@n?oMU^;R4_x+o
z#-YUlO9j@ya0zxl>B|six7#97<+q(6kBZ-oigPVGxix&wsR@qBvep;+9gIDs`&Mq8
z;v`eB_2W+F(?Uu!1v3qd(k8NJ%in11pVXqU<j<p{Q{rcsKIHSR_c+Zb<HVx4qke;W
zH%FVfPSPF8lY9<oCe{KyXBI16V9`F|w%G4wRe@hFqq+@mSL=jkcK_x}tX-_?*KB4S
ziJNrgg@VV+gtvxH&oixDru)6HQY#BySRvNWHf@7P$R;1x-0A<WUwqv@eaXWNc?N+8
zPM!&}7JR0YSgj6J-fQ33@!O|$)<U<bC;aNqD2wH#oiM+~Hp4)%H*!NI`;MY3mY1F?
zxOVjgKELeEzAU4C?;-ms>=p;}dp5HKJ2LVaok<XyWVo;5oPtHuS;p2XrgQvBjtAdF
zM@^r(QQ=afx2mi{?2QTcZ6-X)vEzPF!B$pc`PumH<(;a_itF615>E);ln67JdirN=
zp!Pnu`qZeocWY-pKm6xO$NM=Gu67?>b9VFb{d=wIKF^Q8H*X&AF=N&5aX#zXRcv?9
zKYM%j<d08P#1DrrzFAYXzu00<O=kJ(@0Sy;Wqa3``L$^zxPSf~yQZkR`tH3A^QN-1
zS3X@_R%R%BchQbB-#NoX-RD<6Ut#w=`czito>PIc=kzqR>%HO&r~I{@np4WQ*6yL*
z<G?w0<hCzfy}tFuhx4n?FMjw(J12MZ8gZTS?=#ZBmpm%%EL_x+yGmHZbaD6Lk5@~z
zQ@;MHDlmO~*3FXh<#&zv?}6OC>YK~r_5Ll2`Dy*4>_k`AURKNBRV8;nX-z$)%V?Gx
z_@;Vm+GB6^zr63?==SWZFOS(P74Oql;Br-3`<WEqf&(qvh2qySJfD33xN^Yu3omwS
ztvP<OeR6re{amNX{gY=OjCg6A@aSEYK`q;w2O(80qQ6DfRBRX2Qv0&7Nw~1zJZVWn
z+}w%G*PM>#yLA5M^D?`&zFj0gY~rJB4yV+9-d?2o&pztQw+u^b`|AInDpuC_*7$At
zaXh2b-^u${huG|28HSb{8Fa<AzP9h3*8A=CV%0T^RC61r`F`5&diqhcm%LtD^^Q6F
zt!m5vty}K5@rm&Q)f4U+oWC?P3TO8#O8?F{_%r;%p+mA6g{w1e27ikeni^wtvGf4v
zr}hb(PfoFYFvZ`;`vJ>l)&jGR`(oy0XX_WHY(IW>xw*W3!0dxHCeNPtz5G#P@c&oO
z$z?UuULQVg&uSNz*Tlar%J#>Cc}H#@5t7iEct4>~`L@#CC;Wkza#+sB-`LnMyS;1f
z2G+8D`%hgHh$;@+DQ~gz-|uJJ4=<KmFn=WjUqAPQA6u9rZuVX<+%>;)LjHuxIRSfg
zK5;*?kE>@`Z=NV`vRbs@&N8Mr?V9K{J4|05`+vaj>$5)}-n@01{-dW-%}%fJ@no+D
z8-C8{(oQIp)RA)a<;w0`xm?tA_L=L>UNLJM9-E1NVEY)Ioa!4FnX>agqurXNoY)#p
zW@zoA2+yF@G<{E(Xq&VY3zOs|^Atlf<D^7O<3tO?6eIIQb8{mLO9L}ga}zs4DyC-_
zGRZR=S(s1nEo4%uH#0XuZdU1Di45>7lsNwJfAN<6OFc6E6&16;*=~AoebR4ROTeTM
zmzFob*Dac$ded2Brs3mLyvLSG8XwcW9D46_?flv2|2+F?TYPTjciZRrJ%+lv(+tlZ
zW4=4r>P)cAK^2DRWQA>l$$xqik9RCtno-wx$j@L~a(z;wc8T-#SepyNdoM`WUTEC+
zqJ8Z}dFBng+m1Sv+%@EAK6;|CcH6ffLe57jL|)m5#6R?yXDM<!nWe3>@XzJH1~s~B
zXBJK_Sd(rnrEDl>eZj5c<rm-Y${**>IAS%|<zcm<XRlS~F*d{G*QJkkontpF-uGIi
z?e*>=ow6eqZ&cFiT^m2&H>{jry4<+zs9qA+zgxLS6>}dOGVbnNxn}F_HlN(x$@*^;
zmuVi(t6!FVTljZUzTy6BxAI$m%jf=1sP_^1_$zn&+}bT~+nWm-JpPF9_FZ?aOo2~q
z=7hDA6_t#$O!%LQ7wnBa>=Jak#7<`W;~1TT&K6w!j|Fv(F1FyGTu^VPcc67f)8azG
zWsj0#x}F#Cs694{>C-My?K>K}L+Ww?uiWv%9gN=}i^epm7ucjd^t5SR{*lM;K<A7;
z=|bVO2P$U{>+TTU{xEM&&(Da4)*bB2AH?Y#s-4kmU7+Q6SmsXW&K=y#AE%u;^0|Uh
z{}IogmZKF6{EwpMbiOXIl{<X8zCtYhVa}Z9@Q<8v$Fn2)%s23?-oTWfq<Zhr?F#ny
zNv8J>|Ng-s|JZrWLHCH$((kN{Uw@F?cVPPuHtCxsb2s`XZ7rUA{_MGa&!SCl^0l_#
zG1I?kw*S_)536!78s7e!xa+-sP|T{E!B0*}oXwrP(`oZ`kEiNq9hE{q&f4ob>y&A`
zNk`3>Yj2c4Df<=gFc!}&>v$Tr$kI#ayUN*pNk8kZ$|z5Zw?A8##A>y_cB7JT&rkka
aPuFTqKVHHl%VTU|YGS~ps_N?R#svV#>a(H%

diff --git a/_book/index.html b/_book/index.html
index 17ca231..f1230b9 100644
--- a/_book/index.html
+++ b/_book/index.html
@@ -8,7 +8,7 @@
 
 <meta name="author" content="Jannik Hellenkamp">
 <meta name="author" content="Dominique Unruh">
-<meta name="dcterms.date" content="2024-06-01">
+<meta name="dcterms.date" content="2024-06-11">
 
 <title>Introduction to Quantum Computing</title>
 <style>
@@ -251,7 +251,7 @@ ul.task-list li input[type="checkbox"] {
     <div>
     <div class="quarto-title-meta-heading">Published</div>
     <div class="quarto-title-meta-contents">
-      <p class="date">June 1, 2024</p>
+      <p class="date">June 11, 2024</p>
     </div>
   </div>
   
@@ -271,6 +271,15 @@ ul.task-list li input[type="checkbox"] {
 <p>These lecture notes are released under the CC BY-NC 4.0 license, which can be found <a href="https://creativecommons.org/licenses/by-nc/4.0/">here</a>.</p>
 <section id="changelog" class="level2 unnumbered">
 <h2 class="unnumbered anchored" data-anchor-id="changelog">Changelog</h2>
+<section id="version-0.1.3-11.06.2024" class="level4">
+<h4 class="anchored" data-anchor-id="version-0.1.3-11.06.2024">Version 0.1.3 (11.06.2024)</h4>
+<ul>
+<li>added/extended 9.4 + 9.5 (Post processing and Beginning of DFT circuit)</li>
+<li>updated 9.3</li>
+<li>added chapter 3 (Quantum systems)</li>
+<li>error correction in chapter 9</li>
+</ul>
+</section>
 <section id="version-0.1.2-31.05.2024" class="level4">
 <h4 class="anchored" data-anchor-id="version-0.1.2-31.05.2024">Version 0.1.2 (31.05.2024)</h4>
 <ul>
diff --git a/_book/observingSystems.html b/_book/observingSystems.html
index e9b9fe0..3f35bbc 100644
--- a/_book/observingSystems.html
+++ b/_book/observingSystems.html
@@ -261,7 +261,7 @@ When observing a probabilistic system, the observation is just a passive process
 
 ## Example: Random 1-bit number
 
-We usa a the random 1-bit number example to the random 2-bit example from @sec-prob.
+We usa a the random 1-bit number example similar to the random 2-bit example from @sec-prob.
 We have a distribution $d_{\text{1-bit}} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ which represents the probability distribution of generating a 1-bit number with equal probability. We also have a process $A_{\text{flip}} = \begin{pmatrix} \frac{2}{3} &  \frac{1}{3} \\ \frac{1}{3} &  \frac{2}{3} \end{pmatrix}$ which flips the bit with a probability of $\frac{1}{3}$. 
 
 We look at two different cases: For the first case, we observe only the final distribution and for the second case we observe after the generation of the 1-bit number and we also observe the final distribution. 
@@ -272,11 +272,13 @@ From @sec-prob-apply we know that the final distribution $d$ is
 $$
 d = A_{\text{flip}} \cdot d_{\text{1-bit}} = \begin{pmatrix} \frac{2}{3} &  \frac{1}{3} \\ \frac{1}{3} &  \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}
 $$
-We observe this distribution and will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $d_1 = \frac{1}{2}$.
+We observe this distribution and will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $\Pr[0] = d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $\Pr[1] = d_1 = \frac{1}{2}$.
 
 ##### Observing after generation {.unnumbered}
 
-We now observe the system after the generation of the 1-bit number and also observe the final distribution
+We now observe the system after the generation of the 1-bit number and also observe the final distribution. After the generation, we will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $\Pr[0] = d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $\Pr[1] = d_1 = \frac{1}{2}$. 
+
+We now apply in each case the matrix $A_\text{flip}$. This will give us the outcome $A_\text{flip} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 
 :::
 
@@ -310,7 +312,18 @@ $$
 H\psi = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} =  \begin{pmatrix} 1 \\ 0 \end{pmatrix}
 $$
 
-Measuring this state will get the outcome $0$ with probability $|\psi_0|^2 = 1$ and have the post measurement state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
+Measuring this state will get the outcome $0$ with probability $\Pr[0] = |\psi_0|^2 = 1$ and have the post measurement state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
+
+##### Measure the initial and the final state {.unnumbered}
+
+Measuring $\psi$ with no further unitary matrices applied can have the outcome $0$ or $1$. We will look at the final measurement for each case:
+
+
+The first measurement will have outcome $0$ with probability $\Pr[0] = |\psi_0|^2 = \frac{1}{2}$ and the post measurement state will be $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. $H$ applied to this post measurement state will be $H\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$. When measuring this state, we will get the outcome $0$ with probability $\Pr[0] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$ and outcome $1$ with with probability $\Pr[1] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$.
+
+The outcome $1$ will appear at the initial state with probability $\Pr[1] = |\psi_1|^2 = \frac{1}{2}$ and the post measurement state will be $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. $H$ applied to this post measurement state will be $H\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$. When measuring this state, we will get the outcome $0$ with probability $\Pr[0] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$ and outcome $1$ with with probability $\Pr[1] = |-\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$.
+
+So no independent of the outcome of the first measurement, at the second measurement the outcome $0$ and $1$ have a probability of $\frac{1}{2}$. This shows, that when measuring before applying $H$, we will receive different probabilities, then when measuring only at the end. This proves, that measurements can change the system.
 
 
 :::
diff --git a/_book/quantumSystems.html b/_book/quantumSystems.html
index 0cb5b29..6cbdc24 100644
--- a/_book/quantumSystems.html
+++ b/_book/quantumSystems.html
@@ -69,6 +69,35 @@ ul.task-list li input[type="checkbox"] {
   }
 }</script>
 
+  <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
+  <script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
+
+<script type="text/javascript">
+const typesetMath = (el) => {
+  if (window.MathJax) {
+    // MathJax Typeset
+    window.MathJax.typeset([el]);
+  } else if (window.katex) {
+    // KaTeX Render
+    var mathElements = el.getElementsByClassName("math");
+    var macros = [];
+    for (var i = 0; i < mathElements.length; i++) {
+      var texText = mathElements[i].firstChild;
+      if (mathElements[i].tagName == "SPAN") {
+        window.katex.render(texText.data, mathElements[i], {
+          displayMode: mathElements[i].classList.contains('display'),
+          throwOnError: false,
+          macros: macros,
+          fleqn: false
+        });
+      }
+    }
+  }
+}
+window.Quarto = {
+  typesetMath
+};
+</script>
 
 </head>
 
@@ -214,7 +243,14 @@ ul.task-list li input[type="checkbox"] {
 <div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
 <!-- margin-sidebar -->
     <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
-        
+        <nav id="TOC" role="doc-toc" class="toc-active">
+    <h2 id="toc-title">Table of contents</h2>
+   
+  <ul>
+  <li><a href="#quantum-states" id="toc-quantum-states" class="nav-link active" data-scroll-target="#quantum-states"><span class="header-section-number">3.1</span> Quantum states</a></li>
+  <li><a href="#unitary-transformation" id="toc-unitary-transformation" class="nav-link" data-scroll-target="#unitary-transformation"><span class="header-section-number">3.2</span> Unitary transformation</a></li>
+  </ul>
+</nav>
     </div>
 <!-- main -->
 <main class="content" id="quarto-document-content">
@@ -238,94 +274,126 @@ ul.task-list li input[type="checkbox"] {
 </header>
 
 
-<!--
-With the basics for a probabilistic system defined, we now look into describing a quantum computer mathematically. In the following table you can see the analogy from the quantum world to the probabilistic world. 
-
-| Probabilistic world           | Quantum world              |
-| ---------                     | -----------                |
-| Probability distributions     | Quantum states             |
-| Probabilities                 | Amplitudes                 |
-| Deterministic possibilities   | Classical possibilities    |
-| Stochastic matrix as process  | Unitary matrix as process  |
-
-## Quantum states
-One of the most important element of the quantum world is a quantum state. A quantum state describes the state of a quantum system as a vector. Each entry of the vector represents a *classical* possibility (similar to the deterministic possibilities in a probability distribution). The entries of a quantum state called *amplitude*. In contrast to a probabilistic system, these entries can be negative and are also complex numbers. 
-
-These amplitudes correlate to the probability of the quantum state being in the corresponding classical probability. To calculate the probabilities from the amplitude, we can take the square of the absolute value of the amplitude.
-
-This means, that for the classical possibility $x$ and a quantum state $\psi$ the probability for $x$ is $\Pr[x] = |\psi|^2$. To have valid probabilities, the sum of all probabilities need to sum up to $1$. From this we get the formal definition of a quantum state:
-
-::: {.callout-note appearance="minimal" icon=false}
-::: {.definition #def-quantum-state}
-
-## Quantum State
-
-A quantum state is a vector $\psi \in \mathbb{C}^n$ with $\sqrt{\sum |\psi|^2} = 1$.
-:::
-:::
-
-::: {.callout-tip icon=false}
-
-## Example: Some Quantum states
-The following vectors are valid quantum states with the classical possibilities $0$ and $1$:
-$$
-\ket{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\quad
-\ket{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\quad
-\ket{+} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}\quad
-\ket{-} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}
-$$
-Note that the symbol $\ket{}$ is not yet introduced, so just understand it as some label at this point. The probabilities for each state can be calculated as follows:
-$$
+<p>With the basics for a probabilistic system defined, we now look into describing a quantum computer mathematically. In the following table you can see the analogy from the quantum world to the probabilistic world.</p>
+<table class="table">
+<thead>
+<tr class="header">
+<th>Probabilistic world</th>
+<th>Quantum world</th>
+</tr>
+</thead>
+<tbody>
+<tr class="odd">
+<td>Probability distributions</td>
+<td>Quantum states</td>
+</tr>
+<tr class="even">
+<td>Probabilities</td>
+<td>Amplitudes</td>
+</tr>
+<tr class="odd">
+<td>Deterministic possibilities</td>
+<td>Classical possibilities</td>
+</tr>
+<tr class="even">
+<td>Stochastic matrix as process</td>
+<td>Unitary matrix as process</td>
+</tr>
+</tbody>
+</table>
+<section id="quantum-states" class="level2" data-number="3.1">
+<h2 data-number="3.1" class="anchored" data-anchor-id="quantum-states"><span class="header-section-number">3.1</span> Quantum states</h2>
+<p>One of the most important element of the quantum world is a quantum state. A quantum state describes the state of a quantum system as a vector. Each entry of the vector represents a <em>classical</em> possibility (similar to the deterministic possibilities in a probability distribution). The entries of a quantum state are called <em>amplitude</em>. In contrast to a probabilistic system, these entries can be negative and are also complex numbers.</p>
+<p>These amplitudes tell us the probability of the quantum state being in the corresponding classical possibility. To calculate the probabilities from the amplitude, we can take the square of the absolute value of the amplitude.</p>
+<p>This means, that for the classical possibility <span class="math inline">\(x\)</span> and a quantum state <span class="math inline">\(\psi\)</span> the probability for <span class="math inline">\(x\)</span> is <span class="math inline">\(\Pr[x] = |\psi|^2\)</span>. To have valid probabilities, the sum of all probabilities need to sum up to <span class="math inline">\(1\)</span>. From this we get the formal definition of a quantum state:</p>
+<div class="callout callout-style-simple callout-note no-icon">
+<div class="callout-body d-flex">
+<div class="callout-icon-container">
+<i class="callout-icon no-icon"></i>
+</div>
+<div class="callout-body-container">
+<div id="def-quantum-state" class="definition theorem">
+<p><span class="theorem-title"><strong>Definition 3.1 (Quantum State)</strong></span> A quantum state is a vector <span class="math inline">\(\psi \in \mathbb{C}^n\)</span> with <span class="math inline">\(\sqrt{\sum |\psi|^2} = 1\)</span>.</p>
+</div>
+</div>
+</div>
+</div>
+<div class="callout callout-style-simple callout-tip no-icon callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon no-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+Example: Some Quantum states
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>The following vectors are valid quantum states with the classical possibilities <span class="math inline">\(0\)</span> and <span class="math inline">\(1\)</span>: <span class="math display">\[
+\ket{0} := \begin{pmatrix} 1 \\ 0 \end{pmatrix}\quad
+\ket{1} := \begin{pmatrix} 0 \\ 1 \end{pmatrix}\quad
+\ket{+} := \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}\quad
+\ket{-} := \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}
+\]</span> Note that the symbol <span class="math inline">\(\ket{}\)</span> is not yet introduced, so just understand it as some label at this point. The probabilities for each state can be calculated as follows: <span class="math display">\[
 \begin{aligned}
-\ket{0}: \Pr[0] &= |1|^2 = 1 \quad &&\Pr[1] = |0|^2 = 0 \\
-\ket{1}: \Pr[0] &= |0|^2 = 0 \quad &&\Pr[1] = |1|^2 = 1 \\
-\ket{+}: \Pr[0] &= |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} &&\Pr[1] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} \\
-\ket{-}: \Pr[0] &= |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} &&\Pr[1] = |\frac{-1}{\sqrt{2}}|^2 = \frac{1}{2}
+\ket{0}:&amp;&amp; \Pr[0] &amp;= |1|^2 = 1 \quad &amp;&amp;\Pr[1] = |0|^2 = 0 \\
+\ket{1}:&amp;&amp; \Pr[0] &amp;= |0|^2 = 0 \quad &amp;&amp;\Pr[1] = |1|^2 = 1 \\
+\ket{+}:&amp;&amp; \Pr[0] &amp;= \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} &amp;&amp;\Pr[1] = \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} \\
+\ket{-}:&amp;&amp; \Pr[0] &amp;= \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} &amp;&amp;\Pr[1] = \lvert\tfrac{-1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2}
 \end{aligned}
-$$
-We can see here, that two different quantum states ($\ket{+}$ and $\ket{-}$) can have the same probabilities for all classical possibilities. 
-:::
-
-## Unitary transformation
-We now have defined quantum states and need a way to describe  some processes, which we want to apply on the quantum states. In the probabilistic world, we have stochastic matrices for this, but unfortunately we can not use these matrices on quantum states, since the output of applying these on a quantum state is not guaranteed to be a quantum state again. We therefore make a new addition to our quantum toolbox called a *unitary transformation*. 
-
-::: {.callout-note appearance="minimal" icon=false}
-::: {.definition #def-unitary-transformation}
-
-## Unitary transformation
-Given a quantum state $\psi \in \mathbb{C}^n$ and a unitary matrix $U \in \mathbb{C}^{n\times n}$, the state after the transformation is $U\psi$.
-:::
-:::
-
-::: {.callout-note appearance="minimal" icon=false}
-::: {.lemma #lem-unitary-matrix}
-
-## Unitary matrix
-A matrix $U \in \mathbb{C}^{n\times n}$ is called *unitary* iff $U^\dagger U = I$ where $I$ is the identity matrix and $U^\dagger$ is the complex conjugate transpose of $U$.
-:::
-:::
-
-A unitary transformation is by definition invertible, therefore we can undo all unitary transformations by applying $U^\dagger$. 
-
-::: {.callout-tip icon=false}
-
-## Example: Some Unitary transformations
-The following matrices are  examples for unitary transformations:
-$$
-X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y =  \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z =  \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}  
-$$
-These matrices are called Pauli-matrices, we will get to know them later on. 
-
-As an example for applying a unitary on a quantum state, we apply the Pauli $X$ matrix on the quantum state $\ket{0}$:
-
-$$
-X\ket{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \ket{1}
-$$
-:::
-
--->
+\]</span> We can see here, that two different quantum states (<span class="math inline">\(\ket{+}\)</span> and <span class="math inline">\(\ket{-}\)</span>) can have the same probabilities for all classical possibilities.</p>
+</div>
+</div>
+</section>
+<section id="unitary-transformation" class="level2" data-number="3.2">
+<h2 data-number="3.2" class="anchored" data-anchor-id="unitary-transformation"><span class="header-section-number">3.2</span> Unitary transformation</h2>
+<p>We now have defined quantum states and need a way to describe some processes, which we want to apply on the quantum states. In the probabilistic world, we have stochastic matrices for this, but unfortunately we can not use these matrices on quantum states, since the output of applying these on a quantum state is not guaranteed to be a quantum state again. We therefore look for a different property of a matrix for which the outcome of applying that matrix is guaranteed to be a quantum state. We get this property with <em>unitary</em> matrices.</p>
+<div class="callout callout-style-simple callout-note no-icon">
+<div class="callout-body d-flex">
+<div class="callout-icon-container">
+<i class="callout-icon no-icon"></i>
+</div>
+<div class="callout-body-container">
+<div id="def-unitary-transformation" class="definition theorem">
+<p><span class="theorem-title"><strong>Definition 3.2 (Unitary transformation)</strong></span> Given a quantum state <span class="math inline">\(\psi \in \mathbb{C}^n\)</span> and a unitary matrix <span class="math inline">\(U \in \mathbb{C}^{n\times n}\)</span>, the state after the transformation is a quantum state <span class="math inline">\(U\psi\)</span>.</p>
+</div>
+</div>
+</div>
+</div>
+<div class="callout callout-style-simple callout-note no-icon">
+<div class="callout-body d-flex">
+<div class="callout-icon-container">
+<i class="callout-icon no-icon"></i>
+</div>
+<div class="callout-body-container">
+<div id="lem-unitary-matrix" class="lemma theorem">
+<p><span class="theorem-title"><strong>Lemma 3.1 (Unitary matrix)</strong></span> A matrix <span class="math inline">\(U \in \mathbb{C}^{n\times n}\)</span> is called <em>unitary</em> iff <span class="math inline">\(U^\dagger U = I\)</span> where <span class="math inline">\(I\)</span> is the identity matrix and <span class="math inline">\(U^\dagger\)</span> is the complex conjugate transpose of <span class="math inline">\(U\)</span>.</p>
+</div>
+</div>
+</div>
+</div>
+<p>A unitary matrix is by this lemma invertible, therefore we can undo all unitary transformations by applying <span class="math inline">\(U^\dagger\)</span>.</p>
+<div class="callout callout-style-simple callout-tip no-icon callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon no-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+Example: Some Unitary transformations
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>The following matrices are examples for unitary transformations: <span class="math display">\[
+X = \begin{pmatrix} 0 &amp; 1 \\ 1 &amp; 0 \end{pmatrix} \quad Y =  \begin{pmatrix} 0 &amp; -i \\ i &amp; 0 \end{pmatrix} \quad Z =  \begin{pmatrix} 1 &amp; 0 \\ 0 &amp; -1 \end{pmatrix}  
+\]</span> These matrices are called Pauli-matrices, we will get to know them later on.</p>
+<p>As an example for applying a unitary on a quantum state, we apply the Pauli <span class="math inline">\(X\)</span> matrix on the quantum state <span class="math inline">\(\ket{0}\)</span>:</p>
+<p><span class="math display">\[
+X\ket{0} = \begin{pmatrix} 0 &amp; 1 \\ 1 &amp; 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \ket{1}
+\]</span></p>
+</div>
+</div>
 
 
+</section>
 
 </main> <!-- /main -->
 <script id="quarto-html-after-body" type="application/javascript">
diff --git a/_book/search.json b/_book/search.json
index 6e466e2..568eb4b 100644
--- a/_book/search.json
+++ b/_book/search.json
@@ -14,7 +14,7 @@
     "href": "index.html#changelog",
     "title": "Introduction to Quantum Computing",
     "section": "Changelog",
-    "text": "Changelog\n\nVersion 0.1.2 (31.05.2024)\n\nminor changes to chapter 2\nadded chapter 9\n\n\n\nVersion 0.1.1 (16.05.2024)\n\nStarted the lecture notes.",
+    "text": "Changelog\n\nVersion 0.1.3 (11.06.2024)\n\nadded/extended 9.4 + 9.5 (Post processing and Beginning of DFT circuit)\nupdated 9.3\nadded chapter 3 (Quantum systems)\nerror correction in chapter 9\n\n\n\nVersion 0.1.2 (31.05.2024)\n\nminor changes to chapter 2\nadded chapter 9\n\n\n\nVersion 0.1.1 (16.05.2024)\n\nStarted the lecture notes.",
     "crumbs": [
       "Welcome"
     ]
@@ -85,6 +85,39 @@
       "<span class='chapter-number'>2</span>  <span class='chapter-title'>Probabilistic systems</span>"
     ]
   },
+  {
+    "objectID": "quantumSystems.html",
+    "href": "quantumSystems.html",
+    "title": "3  Quantum systems",
+    "section": "",
+    "text": "3.1 Quantum states\nOne of the most important element of the quantum world is a quantum state. A quantum state describes the state of a quantum system as a vector. Each entry of the vector represents a classical possibility (similar to the deterministic possibilities in a probability distribution). The entries of a quantum state are called amplitude. In contrast to a probabilistic system, these entries can be negative and are also complex numbers.\nThese amplitudes tell us the probability of the quantum state being in the corresponding classical possibility. To calculate the probabilities from the amplitude, we can take the square of the absolute value of the amplitude.\nThis means, that for the classical possibility \\(x\\) and a quantum state \\(\\psi\\) the probability for \\(x\\) is \\(\\Pr[x] = |\\psi|^2\\). To have valid probabilities, the sum of all probabilities need to sum up to \\(1\\). From this we get the formal definition of a quantum state:",
+    "crumbs": [
+      "Quantum Basics",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>Quantum systems</span>"
+    ]
+  },
+  {
+    "objectID": "quantumSystems.html#quantum-states",
+    "href": "quantumSystems.html#quantum-states",
+    "title": "3  Quantum systems",
+    "section": "",
+    "text": "Definition 3.1 (Quantum State) A quantum state is a vector \\(\\psi \\in \\mathbb{C}^n\\) with \\(\\sqrt{\\sum |\\psi|^2} = 1\\).\n\n\n\n\n\n\n\n\n\n\nExample: Some Quantum states\n\n\n\nThe following vectors are valid quantum states with the classical possibilities \\(0\\) and \\(1\\): \\[\n\\ket{0} := \\begin{pmatrix} 1 \\\\ 0 \\end{pmatrix}\\quad\n\\ket{1} := \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix}\\quad\n\\ket{+} := \\begin{pmatrix} \\frac{1}{\\sqrt{2}} \\\\ \\frac{1}{\\sqrt{2}} \\end{pmatrix}\\quad\n\\ket{-} := \\begin{pmatrix} \\frac{1}{\\sqrt{2}} \\\\ -\\frac{1}{\\sqrt{2}} \\end{pmatrix}\n\\] Note that the symbol \\(\\ket{}\\) is not yet introduced, so just understand it as some label at this point. The probabilities for each state can be calculated as follows: \\[\n\\begin{aligned}\n\\ket{0}:&& \\Pr[0] &= |1|^2 = 1 \\quad &&\\Pr[1] = |0|^2 = 0 \\\\\n\\ket{1}:&& \\Pr[0] &= |0|^2 = 0 \\quad &&\\Pr[1] = |1|^2 = 1 \\\\\n\\ket{+}:&& \\Pr[0] &= \\lvert\\tfrac{1}{\\sqrt{2}}\\rvert^2 = \\tfrac{1}{2} &&\\Pr[1] = \\lvert\\tfrac{1}{\\sqrt{2}}\\rvert^2 = \\tfrac{1}{2} \\\\\n\\ket{-}:&& \\Pr[0] &= \\lvert\\tfrac{1}{\\sqrt{2}}\\rvert^2 = \\tfrac{1}{2} &&\\Pr[1] = \\lvert\\tfrac{-1}{\\sqrt{2}}\\rvert^2 = \\tfrac{1}{2}\n\\end{aligned}\n\\] We can see here, that two different quantum states (\\(\\ket{+}\\) and \\(\\ket{-}\\)) can have the same probabilities for all classical possibilities.",
+    "crumbs": [
+      "Quantum Basics",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>Quantum systems</span>"
+    ]
+  },
+  {
+    "objectID": "quantumSystems.html#unitary-transformation",
+    "href": "quantumSystems.html#unitary-transformation",
+    "title": "3  Quantum systems",
+    "section": "3.2 Unitary transformation",
+    "text": "3.2 Unitary transformation\nWe now have defined quantum states and need a way to describe some processes, which we want to apply on the quantum states. In the probabilistic world, we have stochastic matrices for this, but unfortunately we can not use these matrices on quantum states, since the output of applying these on a quantum state is not guaranteed to be a quantum state again. We therefore look for a different property of a matrix for which the outcome of applying that matrix is guaranteed to be a quantum state. We get this property with unitary matrices.\n\n\n\n\n\n\n\nDefinition 3.2 (Unitary transformation) Given a quantum state \\(\\psi \\in \\mathbb{C}^n\\) and a unitary matrix \\(U \\in \\mathbb{C}^{n\\times n}\\), the state after the transformation is a quantum state \\(U\\psi\\).\n\n\n\n\n\n\n\n\n\n\n\nLemma 3.1 (Unitary matrix) A matrix \\(U \\in \\mathbb{C}^{n\\times n}\\) is called unitary iff \\(U^\\dagger U = I\\) where \\(I\\) is the identity matrix and \\(U^\\dagger\\) is the complex conjugate transpose of \\(U\\).\n\n\n\n\nA unitary matrix is by this lemma invertible, therefore we can undo all unitary transformations by applying \\(U^\\dagger\\).\n\n\n\n\n\n\nExample: Some Unitary transformations\n\n\n\nThe following matrices are examples for unitary transformations: \\[\nX = \\begin{pmatrix} 0 & 1 \\\\ 1 & 0 \\end{pmatrix} \\quad Y =  \\begin{pmatrix} 0 & -i \\\\ i & 0 \\end{pmatrix} \\quad Z =  \\begin{pmatrix} 1 & 0 \\\\ 0 & -1 \\end{pmatrix}  \n\\] These matrices are called Pauli-matrices, we will get to know them later on.\nAs an example for applying a unitary on a quantum state, we apply the Pauli \\(X\\) matrix on the quantum state \\(\\ket{0}\\):\n\\[\nX\\ket{0} = \\begin{pmatrix} 0 & 1 \\\\ 1 & 0 \\end{pmatrix} \\cdot \\begin{pmatrix} 1 \\\\ 0 \\end{pmatrix} = \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix} = \\ket{1}\n\\]",
+    "crumbs": [
+      "Quantum Basics",
+      "<span class='chapter-number'>3</span>  <span class='chapter-title'>Quantum systems</span>"
+    ]
+  },
   {
     "objectID": "quantumCircutsKetNotation.html",
     "href": "quantumCircutsKetNotation.html",
@@ -112,7 +145,7 @@
     "href": "shorsAlgorithm.html#discrete-fourier-transformation",
     "title": "9  Shor’s Algorithm",
     "section": "",
-    "text": "Definition 9.1 (Discrete Fourier Transformation (DFT)) The discrete Fourier transform (DFT) is a linear transformation on \\(\\mathbb{C}^N\\) represented by the matrix \\[\n\\operatorname{DFT}_N = \\frac{1}{\\sqrt{N}} (\\omega^{kl})_{kl} \\in \\mathbb{C}^{N\\times N}\n\\] with \\(\\omega = e^{2i\\pi/N}\\), which is the \\(N\\)-th root of unity.\n\n\n\n\n\n\n\n\n\n\n\n\nTheorem 9.1 (Properties of the DFT) Here are some properties of the DFT which can be used without further proof.\n\nThe DFT is unitary.\n\\(\\omega^t = \\omega^{t\\mod N}\\) for all \\(t \\in \\mathbb{Z}\\).\nGiven a quantum state \\(\\psi \\in \\mathbb{C}^N\\) which is \\(r\\)-periodic and where \\(r\\mid N\\), \\(\\operatorname{DFT}_N \\psi\\) will compute a quantum state \\(\\phi \\in \\mathbb{C}^N\\), which has non-zero values on the multiples of \\(\\frac{N}{r}\\). Note that \\(\\frac{N}{r}\\) intuitively represents the frequency of \\(\\psi\\). This means, that \\[\n|\\phi_i| = \\begin{cases} \\frac{1}{\\sqrt{t}}, & \\text{if}\\ \\frac{N}{t}\\mid i \\\\ 0, & \\text{otherwise} \\end{cases}\n\\]",
+    "text": "Definition 9.1 (Discrete Fourier Transformation (DFT)) The discrete Fourier transform (DFT) is a linear transformation on \\(\\mathbb{C}^M\\) represented by the matrix \\[\n\\operatorname{DFT}_M = \\frac{1}{\\sqrt{M}} (\\omega^{kl})_{kl} \\in \\mathbb{C}^{M\\times M}\n\\] with \\(\\omega = e^{2i\\pi/M}\\), which is the \\(M\\)-th root of unity.\n\n\n\n\n\n\n\n\n\n\n\n\nTheorem 9.1 (Properties of the DFT) Here are some properties of the DFT which can be used without further proof.\n\nThe DFT is unitary.\n\\(\\omega^t = \\omega^{t\\mod M}\\) for all \\(t \\in \\mathbb{Z}\\).\nGiven a quantum state \\(\\psi \\in \\mathbb{C}^M\\) which is \\(r\\)-periodic and where \\(r\\mid M\\), \\(\\operatorname{DFT}_M \\psi\\) will compute a quantum state \\(\\phi \\in \\mathbb{C}^M\\), which has non-zero values on the multiples of \\(\\frac{M}{r}\\). Note that \\(\\frac{M}{r}\\) intuitively represents the frequency of \\(\\psi\\). This means, that \\[\n|\\phi_i| = \\begin{cases} \\frac{1}{\\sqrt{r}}, & \\text{if}\\ \\frac{M}{r}\\mid i \\\\ 0, & \\text{otherwise} \\end{cases}\n\\]",
     "crumbs": [
       "Quantum Algorithms",
       "<span class='chapter-number'>9</span>  <span class='chapter-title'>Shor's Algorithm</span>"
@@ -123,7 +156,7 @@
     "href": "shorsAlgorithm.html#reducing-factoring-to-period-finding",
     "title": "9  Shor’s Algorithm",
     "section": "9.2 Reducing factoring to period finding",
-    "text": "9.2 Reducing factoring to period finding\nWith the DFT, we have seen, that we can use a unitary to find the period of a quantum state. We now look into using period finding to factor integers. We first look at the definition of the two problems:\n\n\n\n\n\n\n\nDefinition 9.2 (Factoring problem) Given integer \\(N\\) with two prime factors \\(p,q\\) such that \\(pq=N\\) and \\(p \\neq q\\), find \\(p\\) and \\(q\\).\n\n\n\n\nNote that this definition of the factoring problem is a simplified version of the factoring problem, where \\(N\\) has only 2 prime factors.\n\n\n\n\n\n\n\nDefinition 9.3 (Period finding problem) Given \\(f: \\mathbb{Z} \\to X\\) with \\(f(x) = f(y)\\) iff \\(x \\equiv y \\bmod r\\) for some fixed secret \\(r\\). \\(r\\) is called the period of \\(f\\). Find \\(r\\).\n\n\n\n\nTo start the reduction, we need a special case of the period finding problem called order finding:\n\n\n\n\n\n\n\nDefinition 9.4 (Order finding problem) For known \\(a\\) and \\(N\\) which are relatively prime, find the period \\(r\\) of \\(f(i) = a^i \\bmod n\\). We call \\(r\\) the order of \\(a\\) written \\(r = \\text{ ord } a\\). (This is similar to finding the smallest \\(i &gt; 0\\) with \\(f(i) = 1\\)).\n\n\n\n\nSince the order finding problem is just the period finding problem for a specific \\(f(x)\\), we know that if we can solve the period finding problem within reasonable runtime, we can also solve the order finding problem within reasonable runtime. We now reduce the factoring problem to the order finding problem:\nWe have a integer \\(N\\) as an input for the factoring problem.\n\nPick an \\(a \\in \\{1,...,N-1\\}\\) with \\(a\\) relatively prime to \\(n\\).\nCompute the order of \\(a\\), so that \\(r = \\text{ ord } a\\) (using the solver for the order finding problem).\nIf the order \\(r\\) is odd, we abort.\nCalculate \\(x:= a^{\\frac{r}{2}}+1 \\bmod N\\) and \\(y:= a^{\\frac{r}{2}}-1 \\bmod N\\).\nIf \\(\\gcd(x,N) \\in \\{1,N\\}\\), we abort.\nWe compute \\(p = \\gcd(x,N)\\) and \\(q = \\gcd(y,N)\\).\n\nThe output of the reduction are \\(p,q\\), such that \\(pq = N\\). This holds, since \\[\nxy = (a^{\\frac{r}{2}}+1) (a^{\\frac{r}{2}}-1) = a^r - 1 \\equiv 1-1 = 0 \\pmod N\n\\]\n\n\n\n\n\n\n\nTheorem 9.2 (Probability of an abort) If \\(N\\) has at least two different prime factors and \\(N\\) is odd, then the probability to abort is \\(\\leq \\frac{1}{2}\\).\n\n\n\n\nAll in all this reduction shows, that if we have an oracle which can solve the period finding problem within reasonable runtime, we can also solve the factoring problem within reasonable runtime (since all other operations are classically fast to compute).",
+    "text": "9.2 Reducing factoring to period finding\nWith the DFT, we have seen, that we can use a unitary to find the period of a quantum state. We now look into using period finding to factor integers. We first look at the definition of the two problems:\n\n\n\n\n\n\n\nDefinition 9.2 (Factoring problem) Given integer \\(N\\) with two prime factors \\(p,q\\) such that \\(pq=N\\) and \\(p \\neq q\\), find \\(p\\) and \\(q\\).\n\n\n\n\nNote that this definition of the factoring problem is a simplified version of the factoring problem, where \\(N\\) has only 2 prime factors.\n\n\n\n\n\n\n\nDefinition 9.3 (Period finding problem) Given \\(f: \\mathbb{Z} \\to X\\) with \\(f(x) = f(y)\\) iff \\(x \\equiv y \\bmod r\\) for some fixed secret \\(r\\). \\(r\\) is called the period of \\(f\\). Find \\(r\\).\n\n\n\n\nTo start the reduction, we need a special case of the period finding problem called order finding:\n\n\n\n\n\n\n\nDefinition 9.4 (Order finding problem) For known \\(a\\) and \\(N\\) which are relatively prime, find the period \\(r\\) of \\(f(i) = a^i \\bmod N\\). We call \\(r\\) the order of \\(a\\) written \\(r = \\text{ ord } a\\). (This is similar to finding the smallest \\(i &gt; 0\\) with \\(f(i) = 1\\)).\n\n\n\n\nSince the order finding problem is just the period finding problem for a specific \\(f(x)\\), we know that if we can solve the period finding problem within reasonable runtime, we can also solve the order finding problem within reasonable runtime. We now reduce the factoring problem to the order finding problem:\nWe have a integer \\(N\\) as an input for the factoring problem.\n\nPick an \\(a \\in \\{1,\\dots,N-1\\}\\) with \\(a\\) relatively prime to \\(N\\).\nCompute the order of \\(a\\), so that \\(r = \\text{ ord } a\\) (using the solver for the order finding problem).\nIf the order \\(r\\) is odd, we abort.\nCalculate \\(x:= a^{\\frac{r}{2}}+1 \\bmod N\\) and \\(y:= a^{\\frac{r}{2}}-1 \\bmod N\\).\nIf \\(\\gcd(x,N) \\in \\{1,N\\}\\), we abort.\nWe compute \\(p = \\gcd(x,N)\\) and \\(q = \\gcd(y,N)\\).\n\nThe output of the reduction are \\(p,q\\), such that \\(pq = N\\). This holds, since \\[\nxy = (a^{\\frac{r}{2}}+1) (a^{\\frac{r}{2}}-1) = a^r - 1 \\equiv 1-1 = 0 \\pmod N\n\\]\n\n\n\n\n\n\n\nTheorem 9.2 (Probability of an abort) If \\(N\\) has at least two different prime factors and \\(N\\) is odd, then the probability to abort is \\(\\leq \\frac{1}{2}\\).\n\n\n\n\nAll in all this reduction shows, that if we have an oracle which can solve the period finding problem within reasonable runtime, we can also solve the factoring problem within reasonable runtime (since all other operations are classically fast to compute).",
     "crumbs": [
       "Quantum Algorithms",
       "<span class='chapter-number'>9</span>  <span class='chapter-title'>Shor's Algorithm</span>"
@@ -134,7 +167,7 @@
     "href": "shorsAlgorithm.html#sec-shor-algo",
     "title": "9  Shor’s Algorithm",
     "section": "9.3 The quantum algorithm for period finding",
-    "text": "9.3 The quantum algorithm for period finding\nWe now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor’s algorithm requires a \\(f:\\{0,1\\}^n\\rightarrow\\{0,1\\}^m\\) which is \\(r\\)-periodic and is show in this figure:\n\n\n\nShor’s algorithm (quantum part)\n\n\nThe algorithm works as follows:\n\nWe start with a \\(\\ket{0}\\) entry on every wire.\nWe bring the top wire into the superposition over all entries. The quantum state is then \\(2^\\frac{-n}{2}\\sum_x \\ket{x} \\otimes \\ket{0^m}\\).\nWe apply \\(U_f\\), which is the unitary of \\(f:\\{0,1\\}^n\\rightarrow\\{0,1\\}^m\\). This calculates the superposition over all possible values \\(f(x)\\) on the bottom wire. The resulting quantum state is \\(\\frac{-n}{2}\\sum_x \\ket{x,f(x)}\\).\nTo understand the algorithm better, we measure the bottom wire at this point. This will give us one random value \\(f(x_0)\\) for some \\(x_0\\). The top wire will then contain a superposition over all values \\(x\\) where \\(f(x) = f(x_0)\\). Since \\(f\\) is know to be \\(r\\)-periodic, we know, that \\(f(x) = f(x_0)\\) iff \\(x \\equiv x_0 \\bmod r\\). This means, that on the resulting quantum state on the top wire is periodic and can be written as \\(\\frac{1}{\\sqrt{2^\\frac{n}{r}}} \\sum_{x\\equiv x_0 \\bmod r} \\ket{x} \\otimes \\ket{f(x_0)}\\).\nWe apply the Discrete Fourier Transform on the top wire. This will “analyze” the top wire for the period and output a vector with entries at multiples of \\(\\frac{2^n}{r}\\) as seen in Theorem 9.1. For simplicity we assume, that \\(r \\mid 2^n\\) holds.\nWe measure the top wire and get one random multiple of \\(\\frac{2^n}{r}\\), which we can denote as \\(a\\cdot\\frac{2^n}{r}\\)\n\nSince we get a multiple of \\(\\frac{2^n}{r}\\) on each run, we can simply run the algorithm multiple times to get different multiples and then compute \\(\\frac{2^n}{r}\\) by taking the gcd of those multiples. From that we compute \\(r\\).\nUnfortunately this only works because we assumed \\(r \\mid 2^n\\). Since this does usually not hold, we only get approximate multiples of \\(\\frac{2^n}{r}\\) (which is not even an integer) and thus post processing is a bit more complex.",
+    "text": "9.3 The quantum algorithm for period finding\nWe now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor’s algorithm requires a \\(f:\\mathbb{Z}\\rightarrow X\\) which is \\(r\\)-periodic. We choose a number \\(m\\) which needs to be big enough to encode the values of \\(X\\) and choose a number \\(n\\) under the condition of \\(n\\geq 2 \\log_2(r)\\) for the post processing to work. Note that when using this algorithm for factoring, we choose \\(n\\) to be \\(n:=2\\lvert N \\rvert\\), since \\(r \\leq N\\). \\(\\lvert N\\rvert\\) denotes the number of bits needed to encode \\(N\\) here.\nThe quantum algorithm for period finding is shown in this figure:\n\n\n\nShor’s algorithm (quantum part)\n\n\nThe algorithm works as follows:\n\nWe start with a \\(\\ket{0}\\) entry on every wire.\nWe bring the top wire into the superposition over all entries. The quantum state is then \\(2^\\frac{-n}{2}\\sum_x \\ket{x} \\otimes \\ket{0^m}\\).\nWe apply \\(U_f\\), which is the unitary of \\(f:\\{0,1\\}^n\\rightarrow\\{0,1\\}^m\\). This calculates the superposition over all possible values \\(f(x)\\) on the bottom wire. The resulting quantum state is \\(2^\\frac{-n}{2}\\sum_x \\ket{x,f(x)}\\).\nTo understand the algorithm better, we measure the bottom wire at this point. This will give us one random value \\(f(x_0)\\) for some \\(x_0\\). The top wire will then contain a superposition over all values \\(x\\) where \\(f(x) = f(x_0)\\). Since \\(f\\) is know to be \\(r\\)-periodic, we know, that \\(f(x) = f(x_0)\\) iff \\(x \\equiv x_0 \\bmod r\\). This means, that on the resulting quantum state on the top wire is periodic and can be written as \\(\\frac{1}{\\sqrt{2^\\frac{n}{r}}} \\sum_{x\\equiv x_0 \\bmod r} \\ket{x} \\otimes \\ket{f(x_0)}\\).\nWe apply the Discrete Fourier Transform on the top wire. This will “analyze” the top wire for the period and output a vector with entries at multiples of \\(\\frac{2^n}{r}\\) as seen in Theorem 9.1. For simplicity we assume, that \\(r \\mid 2^n\\) holds.\nWe measure the top wire and get one random multiple of \\(\\frac{2^n}{r}\\), which we can denote as \\(a\\cdot\\frac{2^n}{r}\\)\n\nSince we get a multiple of \\(\\frac{2^n}{r}\\) on each run, we can simply run the algorithm multiple times to get different multiples and then compute \\(\\frac{2^n}{r}\\) by taking the gcd of those multiples. From that we compute \\(r\\). Unfortunately this only works because we assumed \\(r \\mid 2^n\\). Since this does usually not hold, we only get approximate multiples of \\(\\frac{2^n}{r}\\) (which is not even an integer) and thus post processing is a bit more complex.",
     "crumbs": [
       "Quantum Algorithms",
       "<span class='chapter-number'>9</span>  <span class='chapter-title'>Shor's Algorithm</span>"
@@ -145,7 +178,18 @@
     "href": "shorsAlgorithm.html#post-processing",
     "title": "9  Shor’s Algorithm",
     "section": "9.4 Post processing",
-    "text": "9.4 Post processing\nSo far we have seen the DFT to analyze the period of a quantum state, we have seen a way to reduce the factoring problem to the period finding and we have seen a quantum algorithm for finding an approximate multiple of such a period of a function. We just need one final step to find \\(r\\). For this we start with a theorem:\n\n\n\n\n\n\n\nTheorem 9.3 If \\(\\{0,1\\}^n \\rightarrow \\{0,1\\}^n\\) is \\(r\\)-periodic with probability \\(\\Omega(1/\\log\\log r)\\) the following holds: \\[\n\\frac{-r}{2} \\leq rc\\bmod 2^n \\leq \\frac{r}{2}\n\\] where \\(c\\) is the output of the second measurement of the quantum circuit described in Section 9.3.\n\n\n\n\nWe assume that the theorem holds for our outcome of the second measurement (If that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome):\nThen exists a \\(d\\) such that: \\[\n\\begin{aligned}\n&\\lvert rc - d2^n\\rvert \\leq \\frac{r}{2} \\\\\n\\Leftrightarrow&\\lvert \\frac{c}{2^n} - \\frac{d}{r}\\rvert \\leq \\frac{1}{2^{n+1}}\n\\end{aligned}\n\\] The fraction \\(\\frac{c}{2^n}\\) is known, so the goal is to find a fraction \\(\\frac{d}{r}\\) that is \\(\\frac{1}{2^{n+1}}\\) close to \\(\\frac{c}{2^n}\\).\nThe rest of postprocessing will be updated after the next lecture.",
+    "text": "9.4 Post processing\nSo far we have seen the DFT to analyze the period of a quantum state, we have seen a way to reduce the factoring problem to the period finding and we have seen a quantum algorithm for finding an approximate multiple of such a period of a function. We just need one final step to find \\(r\\). For this we start with a theorem:\n\n\n\n\n\n\n\nTheorem 9.3 Iff \\(f: \\mathbb{Z} \\rightarrow X\\) is \\(r\\)-periodic, the following holds with probability \\(\\Omega(1/\\log\\log r)\\): \\[\n\\frac{-r}{2} \\leq rc\\bmod 2^n \\leq \\frac{r}{2}\n\\] where \\(c\\) is the output of the second measurement of the quantum circuit described in Section 9.3 and \\(n\\) is the number of qubits on the upper wire of the quantum circuit.\n\n\n\n\nWe assume that the theorem holds for our outcome \\(c\\) of the second measurement (if that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome):\nThen exists an integer \\(d\\) such that: \\[\n\\begin{aligned}\n&\\lvert rc - d2^n\\rvert \\leq \\frac{r}{2} \\\\\n\\iff&\\lvert \\frac{c}{2^n} - \\frac{d}{r}\\rvert \\leq \\frac{1}{2^{n+1}} && |\\text{ division by } r\\cdot 2^n\n\\end{aligned}\n\\] The fraction \\(\\frac{c}{2^n}\\) is known, so the goal is to find a fraction \\(\\frac{d}{r}\\) that is \\(\\frac{1}{2^{n+1}}\\)-close to \\(\\frac{c}{2^n}\\).\nSince \\(n\\) is the number of qubits used in the quantum circuit and was chosen, such that \\(n \\geq 2\\log_2(r)\\) and thus \\(2^{n} \\geq 2 r^2\\) holds and from this we know that \\(\\frac{1}{2^{n+1}} \\leq \\frac{1}{2r^2}\\) holds as well.\nSo if Theorem 9.3 holds, we now \\(\\lvert \\frac{c}{2^n} - \\frac{d}{r} \\rvert \\leq \\frac{1}{2r^2}\\) also holds. Our task is now rewritten to find \\(\\frac{d}{r}\\) under this condition. For this we use another theorem:\n\n\n\n\n\n\n\nTheorem 9.4 For a given real number \\(\\varphi \\geq 0\\) and integer \\(q &gt; 0\\) there is at most one fraction \\(\\frac{d}{r}\\) with \\(r \\leq q\\) and \\(\\lvert \\varphi - \\frac{d}{r} \\rvert \\leq \\frac{1}{2q}\\). In this case, this \\(\\frac{d}{r}\\) is a convergent of the continued fraction expansion of \\(\\varphi\\).\n\n\n\n\nThis theorem uses the convergent of a continued fraction expansion. A continued fraction expansion of a number \\(t\\) is the number rewritten as a fraction in the form\n\\[\nt = a_0 + \\frac{1}{a_1 + \\frac{1}{a_2 + \\frac{1}{a_3 + \\dots}}}\n\\]\nwhere \\(a_i\\) always has to be the biggest possible integer. We call \\([a_0,a_1,a_2,a_3,\\dots]\\) the continued expansion of \\(t\\). The expansion is finite iff t is rational. For a given continued expansion, a prefix \\([a_0,\\dots,a_i]\\) is called a convergent. Writing this convergent as a normal fraction will give us an approximation of the number \\(t\\).\n\n\n\n\n\n\nExample: continued expansion of a fraction\n\n\n\nThe number \\(2.3\\) can be written as \\[\n2.3 = 2 + \\frac{1}{3 + \\frac{1}{3 + 0}}\n\\] and the continued fraction expansion of \\(2.3\\) is \\([2,3,3]\\). The expansions \\([2]\\) and \\([2,3]\\) are convergents of the expansion of \\(2.3\\) and written as a fraction will give us the approximations \\(2\\) and \\(2+\\frac{1}{3} = 2.\\bar{3}\\).\nThe number \\(0.99\\) can be written as\n\\[\n0.99 = 0 + \\frac{1}{1 + \\frac{1}{99 + 0}}\n\\] and the continued fraction expansion of \\(0.99\\) is \\([0,1,99]\\). The expansions \\([0]\\) and \\([0,1]\\) are convergents of the expansion of \\(0.99\\) and written as a fraction will give us the approximations \\(0\\) and \\(0+\\frac{1}{1} = 1\\).\n\n\nUsing Theorem 9.4 (with \\(\\varphi:= \\frac{c}{2^n}\\) and \\(q:=2^n\\)) we can find \\(\\frac{d}{r}\\) and from this \\(r\\) which is the period of our function using the following steps:\nFor each convergent \\(\\gamma\\) of \\(\\varphi\\) do the following:\n\nCompute \\(\\gamma\\) as fraction \\(\\frac{d}{r}\\).\nStop if \\(r \\leq 2^n\\) and \\(\\varphi\\) is \\(\\frac{1}{2^{n+1}}\\)-close to \\(\\frac{c}{2^n}\\) and return \\(r\\).\n\nNote: It can happen, that the resulting fraction does not have the right \\(r\\) in the denominator, because \\(\\frac{d}{r}\\) was simplified (if numerator and denominator shared a common factor). But the probability of this happening is sufficiently small and already included in the probability in Theorem 9.3.\nThis completes the postprocessing of Shor’s algorithm.",
+    "crumbs": [
+      "Quantum Algorithms",
+      "<span class='chapter-number'>9</span>  <span class='chapter-title'>Shor's Algorithm</span>"
+    ]
+  },
+  {
+    "objectID": "shorsAlgorithm.html#constructing-the-dft",
+    "href": "shorsAlgorithm.html#constructing-the-dft",
+    "title": "9  Shor’s Algorithm",
+    "section": "9.5 Constructing the DFT",
+    "text": "9.5 Constructing the DFT\nSo far we have described everything necessary for Shor’s algorithm, but only described the matrix representation of the \\(\\operatorname{DFT}_M\\). We will now take a closer look into implementing the \\(\\operatorname{DFT}_M\\) as a quantum circuit. Since we only use the \\(\\operatorname{DFT}_M\\) for Shor’s algorithm so far, we will only look at \\(M=2^n\\), which is the \\(\\operatorname{DFT}\\) applied on \\(n\\) qubits.\nTo start the circuit, we recall the definition of the \\(\\operatorname{DFT}_{2^n}\\) from Definition 9.1: \\(\\operatorname{DFT}_{2^n} := \\frac{1}{\\sqrt{{2^n}}} (\\omega^{kl})_{kl}\\) with \\(\\omega:= e^{2\\pi i / 2^n}\\). To apply the \\(\\operatorname{DFT}_{2^n}\\) to a quantum state \\(\\ket{j}\\) we calculate \\[\n\\operatorname{DFT}_{2^n}\\ket{j} = \\frac{1}{\\sqrt{{2^n}}} \\sum_k e^{2\\pi i j k 2^{-n}} \\ket{k}\n\\] We can rewrite this as follows: \\[\n\\begin{aligned}\n\\operatorname{DFT}_{2^n}\\ket{j} =& \\frac{1}{\\sqrt{{2^n}}} \\sum_k e^{2\\pi i j k 2^{-n}} \\ket{k}\\\\\n=& \\frac{1}{\\sqrt{{2^n}}} \\sum_{k_1} \\dots \\sum_{k_n} e^{2\\pi i j (\\sum_l k_l 2^{-l})} \\ket{k_1 \\dots k_n}\\\\\n=& \\frac{1}{\\sqrt{{2^n}}} \\sum_{k_1} \\dots \\sum_{k_n} \\bigotimes^n_{l=1} e^{2\\pi i j (k_l 2^{-l})} \\ket{k_l}\\\\\n=& \\frac{1}{\\sqrt{{2^n}}} \\bigotimes_{l=1}^n \\sum_{k_l} e^{2\\pi i j (k_l 2^{-l})} \\ket{k_l}\\\\\n=& \\frac{1}{\\sqrt{{2^n}}} \\bigotimes_{l=1}^n (\\ket{0} +  e^{2\\pi i j 2^{-l}} \\ket{1})\\\\\n=& \\frac{1}{\\sqrt{{2^n}}} \\bigotimes_{l=1}^n (\\ket{0} +  e^{2\\pi i 0.j_{n-(l-1)} \\dots j_{n}} \\ket{1})\\\\\n=& \\bigotimes_{l=1}^n \\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_{n-(l-1)} \\dots j_{n}} \\ket{1})\n\\end{aligned}\n\\] The expression \\(0.j\\) expresses a binary fraction (e.g. \\(0.101 = \\frac{1}{2} + \\frac{1}{8} = \\frac{5}{8}\\)).\nWith this we have shown, that we can write \\(\\operatorname{DFT}_{2^n}\\ket{j}\\) as the following tensor product of quantum states\n\\[\n\\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_n} \\ket{1}) \\otimes \\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_{n-1}j_n} \\ket{1}) \\otimes \\dots \\otimes \\frac{1}{\\sqrt{2}}(\\ket{0} +  e^{2\\pi i 0.j_1\\dots j_n} \\ket{1})\n\\]\nThe rest of this section will be updated after the next lecture.",
     "crumbs": [
       "Quantum Algorithms",
       "<span class='chapter-number'>9</span>  <span class='chapter-title'>Shor's Algorithm</span>"
diff --git a/_book/shorsAlgorithm.html b/_book/shorsAlgorithm.html
index 3e16d3c..eb5f325 100644
--- a/_book/shorsAlgorithm.html
+++ b/_book/shorsAlgorithm.html
@@ -250,6 +250,7 @@ window.Quarto = {
   <li><a href="#reducing-factoring-to-period-finding" id="toc-reducing-factoring-to-period-finding" class="nav-link" data-scroll-target="#reducing-factoring-to-period-finding"><span class="header-section-number">9.2</span> Reducing factoring to period finding</a></li>
   <li><a href="#sec-shor-algo" id="toc-sec-shor-algo" class="nav-link" data-scroll-target="#sec-shor-algo"><span class="header-section-number">9.3</span> The quantum algorithm for period finding</a></li>
   <li><a href="#post-processing" id="toc-post-processing" class="nav-link" data-scroll-target="#post-processing"><span class="header-section-number">9.4</span> Post processing</a></li>
+  <li><a href="#constructing-the-dft" id="toc-constructing-the-dft" class="nav-link" data-scroll-target="#constructing-the-dft"><span class="header-section-number">9.5</span> Constructing the DFT</a></li>
   </ul>
 </nav>
     </div>
@@ -287,9 +288,9 @@ window.Quarto = {
 </div>
 <div class="callout-body-container">
 <div id="def-shor-dft" class="definition theorem">
-<p><span class="theorem-title"><strong>Definition 9.1 (Discrete Fourier Transformation (DFT))</strong></span> The discrete Fourier transform (DFT) is a linear transformation on <span class="math inline">\(\mathbb{C}^N\)</span> represented by the matrix <span class="math display">\[
-\operatorname{DFT}_N = \frac{1}{\sqrt{N}} (\omega^{kl})_{kl} \in \mathbb{C}^{N\times N}
-\]</span> with <span class="math inline">\(\omega = e^{2i\pi/N}\)</span>, which is the <span class="math inline">\(N\)</span>-th root of unity.</p>
+<p><span class="theorem-title"><strong>Definition 9.1 (Discrete Fourier Transformation (DFT))</strong></span> The discrete Fourier transform (DFT) is a linear transformation on <span class="math inline">\(\mathbb{C}^M\)</span> represented by the matrix <span class="math display">\[
+\operatorname{DFT}_M = \frac{1}{\sqrt{M}} (\omega^{kl})_{kl} \in \mathbb{C}^{M\times M}
+\]</span> with <span class="math inline">\(\omega = e^{2i\pi/M}\)</span>, which is the <span class="math inline">\(M\)</span>-th root of unity.</p>
 </div>
 </div>
 </div>
@@ -305,9 +306,9 @@ window.Quarto = {
 <p><span class="theorem-title"><strong>Theorem 9.1 (Properties of the DFT)</strong></span> Here are some properties of the DFT which can be used without further proof.</p>
 <ol type="1">
 <li>The DFT is unitary.</li>
-<li><span class="math inline">\(\omega^t = \omega^{t\mod N}\)</span> for all <span class="math inline">\(t \in \mathbb{Z}\)</span>.</li>
-<li>Given a quantum state <span class="math inline">\(\psi \in \mathbb{C}^N\)</span> which is <span class="math inline">\(r\)</span>-periodic and where <span class="math inline">\(r\mid N\)</span>, <span class="math inline">\(\operatorname{DFT}_N \psi\)</span> will compute a quantum state <span class="math inline">\(\phi \in \mathbb{C}^N\)</span>, which has non-zero values on the multiples of <span class="math inline">\(\frac{N}{r}\)</span>. Note that <span class="math inline">\(\frac{N}{r}\)</span> intuitively represents the frequency of <span class="math inline">\(\psi\)</span>. This means, that <span class="math display">\[
-|\phi_i| = \begin{cases} \frac{1}{\sqrt{t}}, &amp; \text{if}\ \frac{N}{t}\mid i \\ 0, &amp; \text{otherwise} \end{cases}
+<li><span class="math inline">\(\omega^t = \omega^{t\mod M}\)</span> for all <span class="math inline">\(t \in \mathbb{Z}\)</span>.</li>
+<li>Given a quantum state <span class="math inline">\(\psi \in \mathbb{C}^M\)</span> which is <span class="math inline">\(r\)</span>-periodic and where <span class="math inline">\(r\mid M\)</span>, <span class="math inline">\(\operatorname{DFT}_M \psi\)</span> will compute a quantum state <span class="math inline">\(\phi \in \mathbb{C}^M\)</span>, which has non-zero values on the multiples of <span class="math inline">\(\frac{M}{r}\)</span>. Note that <span class="math inline">\(\frac{M}{r}\)</span> intuitively represents the frequency of <span class="math inline">\(\psi\)</span>. This means, that <span class="math display">\[
+|\phi_i| = \begin{cases} \frac{1}{\sqrt{r}}, &amp; \text{if}\ \frac{M}{r}\mid i \\ 0, &amp; \text{otherwise} \end{cases}
 \]</span></li>
 </ol>
 </div>
@@ -351,7 +352,7 @@ window.Quarto = {
 </div>
 <div class="callout-body-container">
 <div id="def-shor-order" class="definition theorem">
-<p><span class="theorem-title"><strong>Definition 9.4 (Order finding problem)</strong></span> For known <span class="math inline">\(a\)</span> and <span class="math inline">\(N\)</span> which are relatively prime, find the period <span class="math inline">\(r\)</span> of <span class="math inline">\(f(i) = a^i \bmod n\)</span>. We call <span class="math inline">\(r\)</span> the order of <span class="math inline">\(a\)</span> written <span class="math inline">\(r = \text{ ord } a\)</span>. (This is similar to finding the smallest <span class="math inline">\(i &gt; 0\)</span> with <span class="math inline">\(f(i) = 1\)</span>).</p>
+<p><span class="theorem-title"><strong>Definition 9.4 (Order finding problem)</strong></span> For known <span class="math inline">\(a\)</span> and <span class="math inline">\(N\)</span> which are relatively prime, find the period <span class="math inline">\(r\)</span> of <span class="math inline">\(f(i) = a^i \bmod N\)</span>. We call <span class="math inline">\(r\)</span> the order of <span class="math inline">\(a\)</span> written <span class="math inline">\(r = \text{ ord } a\)</span>. (This is similar to finding the smallest <span class="math inline">\(i &gt; 0\)</span> with <span class="math inline">\(f(i) = 1\)</span>).</p>
 </div>
 </div>
 </div>
@@ -359,7 +360,7 @@ window.Quarto = {
 <p>Since the order finding problem is just the period finding problem for a specific <span class="math inline">\(f(x)\)</span>, we know that if we can solve the period finding problem within reasonable runtime, we can also solve the order finding problem within reasonable runtime. We now reduce the factoring problem to the order finding problem:</p>
 <p>We have a integer <span class="math inline">\(N\)</span> as an input for the factoring problem.</p>
 <ol type="1">
-<li>Pick an <span class="math inline">\(a \in \{1,...,N-1\}\)</span> with <span class="math inline">\(a\)</span> relatively prime to <span class="math inline">\(n\)</span>.</li>
+<li>Pick an <span class="math inline">\(a \in \{1,\dots,N-1\}\)</span> with <span class="math inline">\(a\)</span> relatively prime to <span class="math inline">\(N\)</span>.</li>
 <li>Compute the order of <span class="math inline">\(a\)</span>, so that <span class="math inline">\(r = \text{ ord } a\)</span> (using the solver for the order finding problem).</li>
 <li>If the order <span class="math inline">\(r\)</span> is odd, we abort.</li>
 <li>Calculate <span class="math inline">\(x:= a^{\frac{r}{2}}+1 \bmod N\)</span> and <span class="math inline">\(y:= a^{\frac{r}{2}}-1 \bmod N\)</span>.</li>
@@ -385,7 +386,8 @@ xy = (a^{\frac{r}{2}}+1) (a^{\frac{r}{2}}-1) = a^r - 1 \equiv 1-1 = 0 \pmod N
 </section>
 <section id="sec-shor-algo" class="level2" data-number="9.3">
 <h2 data-number="9.3" class="anchored" data-anchor-id="sec-shor-algo"><span class="header-section-number">9.3</span> The quantum algorithm for period finding</h2>
-<p>We now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor’s algorithm requires a <span class="math inline">\(f:\{0,1\}^n\rightarrow\{0,1\}^m\)</span> which is <span class="math inline">\(r\)</span>-periodic and is show in this figure:</p>
+<p>We now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor’s algorithm requires a <span class="math inline">\(f:\mathbb{Z}\rightarrow X\)</span> which is <span class="math inline">\(r\)</span>-periodic. We choose a number <span class="math inline">\(m\)</span> which needs to be big enough to encode the values of <span class="math inline">\(X\)</span> and choose a number <span class="math inline">\(n\)</span> under the condition of <span class="math inline">\(n\geq 2 \log_2(r)\)</span> for the post processing to work. Note that when using this algorithm for factoring, we choose <span class="math inline">\(n\)</span> to be <span class="math inline">\(n:=2\lvert N \rvert\)</span>, since <span class="math inline">\(r \leq N\)</span>. <span class="math inline">\(\lvert N\rvert\)</span> denotes the number of bits needed to encode <span class="math inline">\(N\)</span> here.</p>
+<p>The quantum algorithm for period finding is shown in this figure:</p>
 <div class="quarto-figure quarto-figure-center">
 <figure class="figure">
 <p><img src="shor.svg" class="img-fluid figure-img" style="width:100.0%"></p>
@@ -396,13 +398,12 @@ xy = (a^{\frac{r}{2}}+1) (a^{\frac{r}{2}}-1) = a^r - 1 \equiv 1-1 = 0 \pmod N
 <ol type="1">
 <li>We start with a <span class="math inline">\(\ket{0}\)</span> entry on every wire.</li>
 <li>We bring the top wire into the superposition over all entries. The quantum state is then <span class="math inline">\(2^\frac{-n}{2}\sum_x \ket{x} \otimes \ket{0^m}\)</span>.</li>
-<li>We apply <span class="math inline">\(U_f\)</span>, which is the unitary of <span class="math inline">\(f:\{0,1\}^n\rightarrow\{0,1\}^m\)</span>. This calculates the superposition over all possible values <span class="math inline">\(f(x)\)</span> on the bottom wire. The resulting quantum state is <span class="math inline">\(\frac{-n}{2}\sum_x \ket{x,f(x)}\)</span>.</li>
+<li>We apply <span class="math inline">\(U_f\)</span>, which is the unitary of <span class="math inline">\(f:\{0,1\}^n\rightarrow\{0,1\}^m\)</span>. This calculates the superposition over all possible values <span class="math inline">\(f(x)\)</span> on the bottom wire. The resulting quantum state is <span class="math inline">\(2^\frac{-n}{2}\sum_x \ket{x,f(x)}\)</span>.</li>
 <li>To understand the algorithm better, we measure the bottom wire at this point. This will give us one random value <span class="math inline">\(f(x_0)\)</span> for some <span class="math inline">\(x_0\)</span>. The top wire will then contain a superposition over all values <span class="math inline">\(x\)</span> where <span class="math inline">\(f(x) = f(x_0)\)</span>. Since <span class="math inline">\(f\)</span> is know to be <span class="math inline">\(r\)</span>-periodic, we know, that <span class="math inline">\(f(x) = f(x_0)\)</span> iff <span class="math inline">\(x \equiv x_0 \bmod r\)</span>. This means, that on the resulting quantum state on the top wire is periodic and can be written as <span class="math inline">\(\frac{1}{\sqrt{2^\frac{n}{r}}} \sum_{x\equiv x_0 \bmod r} \ket{x} \otimes \ket{f(x_0)}\)</span>.</li>
 <li>We apply the Discrete Fourier Transform on the top wire. This will “analyze” the top wire for the period and output a vector with entries at multiples of <span class="math inline">\(\frac{2^n}{r}\)</span> as seen in <a href="#thm-dft-properties" class="quarto-xref">Theorem&nbsp;<span>9.1</span></a>. For simplicity we assume, that <span class="math inline">\(r \mid 2^n\)</span> holds.</li>
 <li>We measure the top wire and get one random multiple of <span class="math inline">\(\frac{2^n}{r}\)</span>, which we can denote as <span class="math inline">\(a\cdot\frac{2^n}{r}\)</span></li>
 </ol>
-<p>Since we get a multiple of <span class="math inline">\(\frac{2^n}{r}\)</span> on each run, we can simply run the algorithm multiple times to get different multiples and then compute <span class="math inline">\(\frac{2^n}{r}\)</span> by taking the gcd of those multiples. From that we compute <span class="math inline">\(r\)</span>.</p>
-<p>Unfortunately this only works because we assumed <span class="math inline">\(r \mid 2^n\)</span>. Since this does usually not hold, we only get approximate multiples of <span class="math inline">\(\frac{2^n}{r}\)</span> (which is not even an integer) and thus post processing is a bit more complex.</p>
+<p>Since we get a multiple of <span class="math inline">\(\frac{2^n}{r}\)</span> on each run, we can simply run the algorithm multiple times to get different multiples and then compute <span class="math inline">\(\frac{2^n}{r}\)</span> by taking the gcd of those multiples. From that we compute <span class="math inline">\(r\)</span>. Unfortunately this only works because we assumed <span class="math inline">\(r \mid 2^n\)</span>. Since this does usually not hold, we only get approximate multiples of <span class="math inline">\(\frac{2^n}{r}\)</span> (which is not even an integer) and thus post processing is a bit more complex.</p>
 </section>
 <section id="post-processing" class="level2" data-number="9.4">
 <h2 data-number="9.4" class="anchored" data-anchor-id="post-processing"><span class="header-section-number">9.4</span> Post processing</h2>
@@ -414,21 +415,88 @@ xy = (a^{\frac{r}{2}}+1) (a^{\frac{r}{2}}-1) = a^r - 1 \equiv 1-1 = 0 \pmod N
 </div>
 <div class="callout-body-container">
 <div id="thm-shor-post-process" class="therorem theorem">
-<p><span class="theorem-title"><strong>Theorem 9.3</strong></span> If <span class="math inline">\(\{0,1\}^n \rightarrow \{0,1\}^n\)</span> is <span class="math inline">\(r\)</span>-periodic with probability <span class="math inline">\(\Omega(1/\log\log r)\)</span> the following holds: <span class="math display">\[
+<p><span class="theorem-title"><strong>Theorem 9.3</strong></span> Iff <span class="math inline">\(f: \mathbb{Z} \rightarrow X\)</span> is <span class="math inline">\(r\)</span>-periodic, the following holds with probability <span class="math inline">\(\Omega(1/\log\log r)\)</span>: <span class="math display">\[
 \frac{-r}{2} \leq rc\bmod 2^n \leq \frac{r}{2}
-\]</span> where <span class="math inline">\(c\)</span> is the output of the second measurement of the quantum circuit described in <a href="#sec-shor-algo" class="quarto-xref"><span>Section 9.3</span></a>.</p>
+\]</span> where <span class="math inline">\(c\)</span> is the output of the second measurement of the quantum circuit described in <a href="#sec-shor-algo" class="quarto-xref"><span>Section 9.3</span></a> and <span class="math inline">\(n\)</span> is the number of qubits on the upper wire of the quantum circuit.</p>
 </div>
 </div>
 </div>
 </div>
-<p>We assume that the theorem holds for our outcome of the second measurement (If that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome):</p>
-<p>Then exists a <span class="math inline">\(d\)</span> such that: <span class="math display">\[
+<p>We assume that the theorem holds for our outcome <span class="math inline">\(c\)</span> of the second measurement (if that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome):</p>
+<p>Then exists an integer <span class="math inline">\(d\)</span> such that: <span class="math display">\[
 \begin{aligned}
 &amp;\lvert rc - d2^n\rvert \leq \frac{r}{2} \\
-\Leftrightarrow&amp;\lvert \frac{c}{2^n} - \frac{d}{r}\rvert \leq \frac{1}{2^{n+1}}
+\iff&amp;\lvert \frac{c}{2^n} - \frac{d}{r}\rvert \leq \frac{1}{2^{n+1}} &amp;&amp; |\text{ division by } r\cdot 2^n
 \end{aligned}
-\]</span> The fraction <span class="math inline">\(\frac{c}{2^n}\)</span> is known, so the goal is to find a fraction <span class="math inline">\(\frac{d}{r}\)</span> that is <span class="math inline">\(\frac{1}{2^{n+1}}\)</span> close to <span class="math inline">\(\frac{c}{2^n}\)</span>.</p>
-<p>The rest of postprocessing will be updated after the next lecture.</p>
+\]</span> The fraction <span class="math inline">\(\frac{c}{2^n}\)</span> is known, so the goal is to find a fraction <span class="math inline">\(\frac{d}{r}\)</span> that is <span class="math inline">\(\frac{1}{2^{n+1}}\)</span>-close to <span class="math inline">\(\frac{c}{2^n}\)</span>.</p>
+<p>Since <span class="math inline">\(n\)</span> is the number of qubits used in the quantum circuit and was chosen, such that <span class="math inline">\(n \geq 2\log_2(r)\)</span> and thus <span class="math inline">\(2^{n} \geq 2 r^2\)</span> holds and from this we know that <span class="math inline">\(\frac{1}{2^{n+1}} \leq \frac{1}{2r^2}\)</span> holds as well.</p>
+<p>So if <a href="#thm-shor-post-process" class="quarto-xref">Theorem&nbsp;<span>9.3</span></a> holds, we now <span class="math inline">\(\lvert \frac{c}{2^n} - \frac{d}{r} \rvert \leq \frac{1}{2r^2}\)</span> also holds. Our task is now rewritten to find <span class="math inline">\(\frac{d}{r}\)</span> under this condition. For this we use another theorem:</p>
+<div class="callout callout-style-simple callout-note no-icon">
+<div class="callout-body d-flex">
+<div class="callout-icon-container">
+<i class="callout-icon no-icon"></i>
+</div>
+<div class="callout-body-container">
+<div id="thm-shor-post-process-frac" class="theorem">
+<p><span class="theorem-title"><strong>Theorem 9.4</strong></span> For a given real number <span class="math inline">\(\varphi \geq 0\)</span> and integer <span class="math inline">\(q &gt; 0\)</span> there is at most one fraction <span class="math inline">\(\frac{d}{r}\)</span> with <span class="math inline">\(r \leq q\)</span> and <span class="math inline">\(\lvert \varphi - \frac{d}{r} \rvert \leq \frac{1}{2q}\)</span>. In this case, this <span class="math inline">\(\frac{d}{r}\)</span> is a convergent of the continued fraction expansion of <span class="math inline">\(\varphi\)</span>.</p>
+</div>
+</div>
+</div>
+</div>
+<p>This theorem uses the convergent of a continued fraction expansion. A continued fraction expansion of a number <span class="math inline">\(t\)</span> is the number rewritten as a fraction in the form</p>
+<p><span class="math display">\[
+t = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}
+\]</span></p>
+<p>where <span class="math inline">\(a_i\)</span> always has to be the biggest possible integer. We call <span class="math inline">\([a_0,a_1,a_2,a_3,\dots]\)</span> the continued expansion of <span class="math inline">\(t\)</span>. The expansion is finite iff t is rational. For a given continued expansion, a prefix <span class="math inline">\([a_0,\dots,a_i]\)</span> is called a convergent. Writing this convergent as a normal fraction will give us an approximation of the number <span class="math inline">\(t\)</span>.</p>
+<div class="callout callout-style-simple callout-tip no-icon callout-titled">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon no-icon"></i>
+</div>
+<div class="callout-title-container flex-fill">
+Example: continued expansion of a fraction
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>The number <span class="math inline">\(2.3\)</span> can be written as <span class="math display">\[
+2.3 = 2 + \frac{1}{3 + \frac{1}{3 + 0}}
+\]</span> and the continued fraction expansion of <span class="math inline">\(2.3\)</span> is <span class="math inline">\([2,3,3]\)</span>. The expansions <span class="math inline">\([2]\)</span> and <span class="math inline">\([2,3]\)</span> are convergents of the expansion of <span class="math inline">\(2.3\)</span> and written as a fraction will give us the approximations <span class="math inline">\(2\)</span> and <span class="math inline">\(2+\frac{1}{3} = 2.\bar{3}\)</span>.</p>
+<p>The number <span class="math inline">\(0.99\)</span> can be written as</p>
+<p><span class="math display">\[
+0.99 = 0 + \frac{1}{1 + \frac{1}{99 + 0}}
+\]</span> and the continued fraction expansion of <span class="math inline">\(0.99\)</span> is <span class="math inline">\([0,1,99]\)</span>. The expansions <span class="math inline">\([0]\)</span> and <span class="math inline">\([0,1]\)</span> are convergents of the expansion of <span class="math inline">\(0.99\)</span> and written as a fraction will give us the approximations <span class="math inline">\(0\)</span> and <span class="math inline">\(0+\frac{1}{1} = 1\)</span>.</p>
+</div>
+</div>
+<p>Using <a href="#thm-shor-post-process-frac" class="quarto-xref">Theorem&nbsp;<span>9.4</span></a> (with <span class="math inline">\(\varphi:= \frac{c}{2^n}\)</span> and <span class="math inline">\(q:=2^n\)</span>) we can find <span class="math inline">\(\frac{d}{r}\)</span> and from this <span class="math inline">\(r\)</span> which is the period of our function using the following steps:</p>
+<p>For each convergent <span class="math inline">\(\gamma\)</span> of <span class="math inline">\(\varphi\)</span> do the following:</p>
+<ol type="1">
+<li>Compute <span class="math inline">\(\gamma\)</span> as fraction <span class="math inline">\(\frac{d}{r}\)</span>.</li>
+<li>Stop if <span class="math inline">\(r \leq 2^n\)</span> and <span class="math inline">\(\varphi\)</span> is <span class="math inline">\(\frac{1}{2^{n+1}}\)</span>-close to <span class="math inline">\(\frac{c}{2^n}\)</span> and return <span class="math inline">\(r\)</span>.</li>
+</ol>
+<p>Note: It can happen, that the resulting fraction does not have the right <span class="math inline">\(r\)</span> in the denominator, because <span class="math inline">\(\frac{d}{r}\)</span> was simplified (if numerator and denominator shared a common factor). But the probability of this happening is sufficiently small and already included in the probability in <a href="#thm-shor-post-process" class="quarto-xref">Theorem&nbsp;<span>9.3</span></a>.</p>
+<p>This completes the postprocessing of Shor’s algorithm.</p>
+</section>
+<section id="constructing-the-dft" class="level2" data-number="9.5">
+<h2 data-number="9.5" class="anchored" data-anchor-id="constructing-the-dft"><span class="header-section-number">9.5</span> Constructing the DFT</h2>
+<p>So far we have described everything necessary for Shor’s algorithm, but only described the matrix representation of the <span class="math inline">\(\operatorname{DFT}_M\)</span>. We will now take a closer look into implementing the <span class="math inline">\(\operatorname{DFT}_M\)</span> as a quantum circuit. Since we only use the <span class="math inline">\(\operatorname{DFT}_M\)</span> for Shor’s algorithm so far, we will only look at <span class="math inline">\(M=2^n\)</span>, which is the <span class="math inline">\(\operatorname{DFT}\)</span> applied on <span class="math inline">\(n\)</span> qubits.</p>
+<p>To start the circuit, we recall the definition of the <span class="math inline">\(\operatorname{DFT}_{2^n}\)</span> from <a href="#def-shor-dft" class="quarto-xref">Definition&nbsp;<span>9.1</span></a>: <span class="math inline">\(\operatorname{DFT}_{2^n} := \frac{1}{\sqrt{{2^n}}} (\omega^{kl})_{kl}\)</span> with <span class="math inline">\(\omega:= e^{2\pi i / 2^n}\)</span>. To apply the <span class="math inline">\(\operatorname{DFT}_{2^n}\)</span> to a quantum state <span class="math inline">\(\ket{j}\)</span> we calculate <span class="math display">\[
+\operatorname{DFT}_{2^n}\ket{j} = \frac{1}{\sqrt{{2^n}}} \sum_k e^{2\pi i j k 2^{-n}} \ket{k}
+\]</span> We can rewrite this as follows: <span class="math display">\[
+\begin{aligned}
+\operatorname{DFT}_{2^n}\ket{j} =&amp; \frac{1}{\sqrt{{2^n}}} \sum_k e^{2\pi i j k 2^{-n}} \ket{k}\\
+=&amp; \frac{1}{\sqrt{{2^n}}} \sum_{k_1} \dots \sum_{k_n} e^{2\pi i j (\sum_l k_l 2^{-l})} \ket{k_1 \dots k_n}\\
+=&amp; \frac{1}{\sqrt{{2^n}}} \sum_{k_1} \dots \sum_{k_n} \bigotimes^n_{l=1} e^{2\pi i j (k_l 2^{-l})} \ket{k_l}\\
+=&amp; \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n \sum_{k_l} e^{2\pi i j (k_l 2^{-l})} \ket{k_l}\\
+=&amp; \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n (\ket{0} +  e^{2\pi i j 2^{-l}} \ket{1})\\
+=&amp; \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n (\ket{0} +  e^{2\pi i 0.j_{n-(l-1)} \dots j_{n}} \ket{1})\\
+=&amp; \bigotimes_{l=1}^n \frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_{n-(l-1)} \dots j_{n}} \ket{1})
+\end{aligned}
+\]</span> The expression <span class="math inline">\(0.j\)</span> expresses a binary fraction (e.g.&nbsp;<span class="math inline">\(0.101 = \frac{1}{2} + \frac{1}{8} = \frac{5}{8}\)</span>).</p>
+<p>With this we have shown, that we can write <span class="math inline">\(\operatorname{DFT}_{2^n}\ket{j}\)</span> as the following tensor product of quantum states</p>
+<p><span class="math display">\[
+\frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_n} \ket{1}) \otimes \frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_{n-1}j_n} \ket{1}) \otimes \dots \otimes \frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_1\dots j_n} \ket{1})
+\]</span></p>
+<p>The rest of this section will be updated after the next lecture.</p>
 
 
 </section>
diff --git a/_book/sitemap.xml b/_book/sitemap.xml
index b28a67e..b6f92a7 100644
--- a/_book/sitemap.xml
+++ b/_book/sitemap.xml
@@ -2,7 +2,7 @@
 <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
   <url>
     <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/index.html</loc>
-    <lastmod>2024-05-31T13:16:17.782Z</lastmod>
+    <lastmod>2024-06-11T17:32:07.892Z</lastmod>
   </url>
   <url>
     <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/quantumBasics.html</loc>
@@ -18,11 +18,11 @@
   </url>
   <url>
     <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/quantumSystems.html</loc>
-    <lastmod>2024-05-31T17:19:26.978Z</lastmod>
+    <lastmod>2024-06-11T10:58:17.042Z</lastmod>
   </url>
   <url>
     <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/observingSystems.html</loc>
-    <lastmod>2024-05-31T17:18:58.860Z</lastmod>
+    <lastmod>2024-06-11T17:30:13.951Z</lastmod>
   </url>
   <url>
     <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/partialObserving.html</loc>
@@ -46,14 +46,14 @@
   </url>
   <url>
     <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/shorsAlgorithm.html</loc>
-    <lastmod>2024-06-01T09:32:38.929Z</lastmod>
+    <lastmod>2024-06-11T17:28:37.603Z</lastmod>
   </url>
   <url>
     <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/Introduction-to-Quantum-Computing.pdf</loc>
-    <lastmod>2024-06-01T09:33:36.308Z</lastmod>
+    <lastmod>2024-06-11T17:32:55.904Z</lastmod>
   </url>
   <url>
     <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/Introduction-to-Quantum-Computing.epub</loc>
-    <lastmod>2024-06-01T09:33:37.814Z</lastmod>
+    <lastmod>2024-06-11T17:32:57.519Z</lastmod>
   </url>
 </urlset>
diff --git a/_quarto.yml b/_quarto.yml
index b7faca1..c70b227 100644
--- a/_quarto.yml
+++ b/_quarto.yml
@@ -8,7 +8,7 @@ book:
     - name: Jannik Hellenkamp
     - name: Dominique Unruh
   downloads: [pdf, epub]
-  version: 0.1.2
+  version: 0.1.3
   search: true
   page-navigation: true
   site-url: https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/
diff --git a/index.qmd b/index.qmd
index 736859e..9958abc 100644
--- a/index.qmd
+++ b/index.qmd
@@ -12,6 +12,11 @@ These lecture notes are released under the CC BY-NC 4.0 license, which can be fo
 
 ## Changelog {.unnumbered}
 
+#### Version 0.1.3 (11.06.2024)
+- added/extended 9.4 + 9.5 (Post processing and Beginning of DFT circuit)
+- updated 9.3
+- added chapter 3 (Quantum systems)
+- error correction in chapter 9
 
 #### Version 0.1.2 (31.05.2024)
 - minor changes to chapter 2
diff --git a/observingSystems.qmd b/observingSystems.qmd
index b1e0c82..afe207e 100644
--- a/observingSystems.qmd
+++ b/observingSystems.qmd
@@ -1,5 +1,4 @@
 # Observing probabilistic and measuring quantum systems
-
 <!--
 So far we only talked about the description of a probabilistic and a quantum system. We now look into observing/measuring those systems. 
 
@@ -23,7 +22,7 @@ When observing a probabilistic system, the observation is just a passive process
 
 ## Example: Random 1-bit number
 
-We usa a the random 1-bit number example to the random 2-bit example from @sec-prob.
+We usa a the random 1-bit number example similar to the random 2-bit example from @sec-prob.
 We have a distribution $d_{\text{1-bit}} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ which represents the probability distribution of generating a 1-bit number with equal probability. We also have a process $A_{\text{flip}} = \begin{pmatrix} \frac{2}{3} &  \frac{1}{3} \\ \frac{1}{3} &  \frac{2}{3} \end{pmatrix}$ which flips the bit with a probability of $\frac{1}{3}$. 
 
 We look at two different cases: For the first case, we observe only the final distribution and for the second case we observe after the generation of the 1-bit number and we also observe the final distribution. 
@@ -34,11 +33,13 @@ From @sec-prob-apply we know that the final distribution $d$ is
 $$
 d = A_{\text{flip}} \cdot d_{\text{1-bit}} = \begin{pmatrix} \frac{2}{3} &  \frac{1}{3} \\ \frac{1}{3} &  \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}
 $$
-We observe this distribution and will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $d_1 = \frac{1}{2}$.
+We observe this distribution and will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $\Pr[0] = d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $\Pr[1] = d_1 = \frac{1}{2}$.
 
 ##### Observing after generation {.unnumbered}
 
-We now observe the system after the generation of the 1-bit number and also observe the final distribution
+We now observe the system after the generation of the 1-bit number and also observe the final distribution. After the generation, we will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $\Pr[0] = d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $\Pr[1] = d_1 = \frac{1}{2}$. 
+
+We now apply in each case the matrix $A_\text{flip}$. This will give us the outcome $A_\text{flip} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 
 :::
 
@@ -72,7 +73,18 @@ $$
 H\psi = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} =  \begin{pmatrix} 1 \\ 0 \end{pmatrix}
 $$
 
-Measuring this state will get the outcome $0$ with probability $|\psi_0|^2 = 1$ and have the post measurement state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
+Measuring this state will get the outcome $0$ with probability $\Pr[0] = |\psi_0|^2 = 1$ and have the post measurement state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
+
+##### Measure the initial and the final state {.unnumbered}
+
+Measuring $\psi$ with no further unitary matrices applied can have the outcome $0$ or $1$. We will look at the final measurement for each case:
+
+
+The first measurement will have outcome $0$ with probability $\Pr[0] = |\psi_0|^2 = \frac{1}{2}$ and the post measurement state will be $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. $H$ applied to this post measurement state will be $H\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$. When measuring this state, we will get the outcome $0$ with probability $\Pr[0] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$ and outcome $1$ with with probability $\Pr[1] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$.
+
+The outcome $1$ will appear at the initial state with probability $\Pr[1] = |\psi_1|^2 = \frac{1}{2}$ and the post measurement state will be $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. $H$ applied to this post measurement state will be $H\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$. When measuring this state, we will get the outcome $0$ with probability $\Pr[0] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$ and outcome $1$ with with probability $\Pr[1] = |-\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$.
+
+So no independent of the outcome of the first measurement, at the second measurement the outcome $0$ and $1$ have a probability of $\frac{1}{2}$. This shows, that when measuring before applying $H$, we will receive different probabilities, then when measuring only at the end. This proves, that measurements can change the system.
 
 
 :::
diff --git a/quantumSystems.qmd b/quantumSystems.qmd
index 3d08c9c..9c7283e 100644
--- a/quantumSystems.qmd
+++ b/quantumSystems.qmd
@@ -1,6 +1,5 @@
 # Quantum systems
 
-<!--
 With the basics for a probabilistic system defined, we now look into describing a quantum computer mathematically. In the following table you can see the analogy from the quantum world to the probabilistic world. 
 
 | Probabilistic world           | Quantum world              |
@@ -11,9 +10,9 @@ With the basics for a probabilistic system defined, we now look into describing
 | Stochastic matrix as process  | Unitary matrix as process  |
 
 ## Quantum states
-One of the most important element of the quantum world is a quantum state. A quantum state describes the state of a quantum system as a vector. Each entry of the vector represents a *classical* possibility (similar to the deterministic possibilities in a probability distribution). The entries of a quantum state called *amplitude*. In contrast to a probabilistic system, these entries can be negative and are also complex numbers. 
+One of the most important element of the quantum world is a quantum state. A quantum state describes the state of a quantum system as a vector. Each entry of the vector represents a *classical* possibility (similar to the deterministic possibilities in a probability distribution). The entries of a quantum state are called *amplitude*. In contrast to a probabilistic system, these entries can be negative and are also complex numbers. 
 
-These amplitudes correlate to the probability of the quantum state being in the corresponding classical probability. To calculate the probabilities from the amplitude, we can take the square of the absolute value of the amplitude.
+These amplitudes tell us the probability of the quantum state being in the corresponding classical possibility. To calculate the probabilities from the amplitude, we can take the square of the absolute value of the amplitude.
 
 This means, that for the classical possibility $x$ and a quantum state $\psi$ the probability for $x$ is $\Pr[x] = |\psi|^2$. To have valid probabilities, the sum of all probabilities need to sum up to $1$. From this we get the formal definition of a quantum state:
 
@@ -31,31 +30,32 @@ A quantum state is a vector $\psi \in \mathbb{C}^n$ with $\sqrt{\sum |\psi|^2} =
 ## Example: Some Quantum states
 The following vectors are valid quantum states with the classical possibilities $0$ and $1$:
 $$
-\ket{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\quad
-\ket{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\quad
-\ket{+} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}\quad
-\ket{-} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}
+\ket{0} := \begin{pmatrix} 1 \\ 0 \end{pmatrix}\quad
+\ket{1} := \begin{pmatrix} 0 \\ 1 \end{pmatrix}\quad
+\ket{+} := \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}\quad
+\ket{-} := \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}
 $$
 Note that the symbol $\ket{}$ is not yet introduced, so just understand it as some label at this point. The probabilities for each state can be calculated as follows:
 $$
 \begin{aligned}
-\ket{0}: \Pr[0] &= |1|^2 = 1 \quad &&\Pr[1] = |0|^2 = 0 \\
-\ket{1}: \Pr[0] &= |0|^2 = 0 \quad &&\Pr[1] = |1|^2 = 1 \\
-\ket{+}: \Pr[0] &= |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} &&\Pr[1] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} \\
-\ket{-}: \Pr[0] &= |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} &&\Pr[1] = |\frac{-1}{\sqrt{2}}|^2 = \frac{1}{2}
+\ket{0}:&& \Pr[0] &= |1|^2 = 1 \quad &&\Pr[1] = |0|^2 = 0 \\
+\ket{1}:&& \Pr[0] &= |0|^2 = 0 \quad &&\Pr[1] = |1|^2 = 1 \\
+\ket{+}:&& \Pr[0] &= \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} &&\Pr[1] = \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} \\
+\ket{-}:&& \Pr[0] &= \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} &&\Pr[1] = \lvert\tfrac{-1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2}
 \end{aligned}
 $$
 We can see here, that two different quantum states ($\ket{+}$ and $\ket{-}$) can have the same probabilities for all classical possibilities. 
 :::
 
 ## Unitary transformation
-We now have defined quantum states and need a way to describe  some processes, which we want to apply on the quantum states. In the probabilistic world, we have stochastic matrices for this, but unfortunately we can not use these matrices on quantum states, since the output of applying these on a quantum state is not guaranteed to be a quantum state again. We therefore make a new addition to our quantum toolbox called a *unitary transformation*. 
+We now have defined quantum states and need a way to describe  some processes, which we want to apply on the quantum states. In the probabilistic world, we have stochastic matrices for this, but unfortunately we can not use these matrices on quantum states, since the output of applying these on a quantum state is not guaranteed to be a quantum state again. We therefore look for a different property of a matrix for which the outcome of applying that matrix is guaranteed to be a quantum state. We get this property with *unitary* matrices. 
+
 
 ::: {.callout-note appearance="minimal" icon=false}
 ::: {.definition #def-unitary-transformation}
 
 ## Unitary transformation
-Given a quantum state $\psi \in \mathbb{C}^n$ and a unitary matrix $U \in \mathbb{C}^{n\times n}$, the state after the transformation is $U\psi$.
+Given a quantum state $\psi \in \mathbb{C}^n$ and a unitary matrix $U \in \mathbb{C}^{n\times n}$, the state after the transformation is a quantum state $U\psi$.
 :::
 :::
 
@@ -67,7 +67,7 @@ A matrix $U \in \mathbb{C}^{n\times n}$ is called *unitary* iff $U^\dagger U = I
 :::
 :::
 
-A unitary transformation is by definition invertible, therefore we can undo all unitary transformations by applying $U^\dagger$. 
+A unitary matrix is by this lemma invertible, therefore we can undo all unitary transformations by applying $U^\dagger$. 
 
 ::: {.callout-tip icon=false}
 
@@ -85,4 +85,4 @@ X\ket{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1
 $$
 :::
 
--->
+
diff --git a/shorsAlgorithm.qmd b/shorsAlgorithm.qmd
index a1cbe2d..8b412cc 100644
--- a/shorsAlgorithm.qmd
+++ b/shorsAlgorithm.qmd
@@ -13,11 +13,11 @@ The DFT is defined as follows:
 
 ## Discrete Fourier Transformation (DFT)
 
-The discrete Fourier transform (DFT) is a linear transformation on $\mathbb{C}^N$ represented by the matrix 
+The discrete Fourier transform (DFT) is a linear transformation on $\mathbb{C}^M$ represented by the matrix 
 $$
-\operatorname{DFT}_N = \frac{1}{\sqrt{N}} (\omega^{kl})_{kl} \in \mathbb{C}^{N\times N}
+\operatorname{DFT}_M = \frac{1}{\sqrt{M}} (\omega^{kl})_{kl} \in \mathbb{C}^{M\times M}
 $$
-with $\omega = e^{2i\pi/N}$, which is the $N$-th root of unity. 
+with $\omega = e^{2i\pi/M}$, which is the $M$-th root of unity. 
 :::
 :::
 
@@ -31,10 +31,10 @@ This transformation is best imagined as a process, which takes a periodic vector
 Here are some properties of the DFT which can be used without further proof. 
 
 1. The DFT is unitary.
-2. $\omega^t = \omega^{t\mod N}$ for all $t \in \mathbb{Z}$.
-3. Given a quantum state $\psi \in \mathbb{C}^N$ which is $r$-periodic and where $r\mid N$, $\operatorname{DFT}_N \psi$ will compute a quantum state $\phi \in \mathbb{C}^N$, which has non-zero values on the multiples of $\frac{N}{r}$. Note that $\frac{N}{r}$ intuitively represents the frequency of $\psi$. This means, that 
+2. $\omega^t = \omega^{t\mod M}$ for all $t \in \mathbb{Z}$.
+3. Given a quantum state $\psi \in \mathbb{C}^M$ which is $r$-periodic and where $r\mid M$, $\operatorname{DFT}_M \psi$ will compute a quantum state $\phi \in \mathbb{C}^M$, which has non-zero values on the multiples of $\frac{M}{r}$. Note that $\frac{M}{r}$ intuitively represents the frequency of $\psi$. This means, that 
 $$
-|\phi_i| = \begin{cases} \frac{1}{\sqrt{t}}, & \text{if}\ \frac{N}{t}\mid i \\ 0, & \text{otherwise} \end{cases}
+|\phi_i| = \begin{cases} \frac{1}{\sqrt{r}}, & \text{if}\ \frac{M}{r}\mid i \\ 0, & \text{otherwise} \end{cases}
 $$
 :::
 :::
@@ -72,7 +72,7 @@ To start the reduction, we need a special case of the period finding problem cal
 
 ## Order finding problem
 
-For known $a$ and $N$ which are relatively prime, find the period $r$ of $f(i) = a^i \bmod n$. We call $r$ the order of $a$ written $r = \text{ ord } a$. (This is similar to finding the smallest $i > 0$ with $f(i) = 1$).
+For known $a$ and $N$ which are relatively prime, find the period $r$ of $f(i) = a^i \bmod N$. We call $r$ the order of $a$ written $r = \text{ ord } a$. (This is similar to finding the smallest $i > 0$ with $f(i) = 1$).
 :::
 :::
 
@@ -80,7 +80,7 @@ Since the order finding problem is just the period finding problem for a specifi
 
 We have a integer $N$ as an input for the factoring problem.
 
-1. Pick an $a \in \{1,...,N-1\}$ with $a$ relatively prime to $n$.
+1. Pick an $a \in \{1,\dots,N-1\}$ with $a$ relatively prime to $N$.
 2. Compute the order of $a$, so that $r = \text{ ord } a$ (using the solver for the order finding problem).
 3. If the order $r$ is odd, we abort.
 4. Calculate $x:= a^{\frac{r}{2}}+1 \bmod N$ and $y:= a^{\frac{r}{2}}-1 \bmod N$.
@@ -105,7 +105,9 @@ All in all this reduction shows, that if we have an oracle which can solve the p
 
 ## The quantum algorithm for period finding {#sec-shor-algo}
 
-We now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor's algorithm requires a $f:\{0,1\}^n\rightarrow\{0,1\}^m$ which is $r$-periodic and is show in this figure:
+We now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor's algorithm requires a $f:\mathbb{Z}\rightarrow X$ which is $r$-periodic. We choose a number $m$ which needs to be big enough to encode the values of $X$ and choose a number $n$ under the condition of $n\geq 2 \log_2(r)$ for the post processing to work. Note that when using this algorithm for factoring, we choose $n$ to be $n:=2\lvert N \rvert$, since $r \leq N$. $\lvert N\rvert$ denotes the number of bits needed to encode $N$ here.
+
+The quantum algorithm for period finding is shown in this figure:
 
 ![Shor's algorithm (quantum part)](shor){width=100%}
 
@@ -113,15 +115,13 @@ The algorithm works as follows:
 
 1. We start with a $\ket{0}$ entry on every wire.
 2. We bring the top wire into the superposition over all entries. The quantum state is then $2^\frac{-n}{2}\sum_x \ket{x} \otimes \ket{0^m}$.
-3. We apply $U_f$, which is the unitary of $f:\{0,1\}^n\rightarrow\{0,1\}^m$. This calculates the superposition over all possible values $f(x)$ on the bottom wire. The resulting quantum state is $\frac{-n}{2}\sum_x \ket{x,f(x)}$. 
+3. We apply $U_f$, which is the unitary of $f:\{0,1\}^n\rightarrow\{0,1\}^m$. This calculates the superposition over all possible values $f(x)$ on the bottom wire. The resulting quantum state is $2^\frac{-n}{2}\sum_x \ket{x,f(x)}$. 
 4. To understand the algorithm better, we measure the bottom wire at this point. This will give us one random value $f(x_0)$ for some $x_0$. The top wire will then contain a superposition over all values $x$ where $f(x) = f(x_0)$. Since $f$ is know to be $r$-periodic, we know, that $f(x) = f(x_0)$ iff $x \equiv x_0 \bmod r$. This means, that on the resulting quantum state on the top wire is periodic and can be written as $\frac{1}{\sqrt{2^\frac{n}{r}}} \sum_{x\equiv x_0 \bmod r} \ket{x} \otimes \ket{f(x_0)}$.
 5. We apply the Discrete Fourier Transform on the top wire. This will "analyze" the top wire for the period and output a vector with entries at multiples of $\frac{2^n}{r}$ as seen in @thm-dft-properties. For simplicity we assume, that $r \mid 2^n$ holds.
 6. We measure the top wire and get one random multiple of $\frac{2^n}{r}$, which we can denote as $a\cdot\frac{2^n}{r}$
 
 
-Since we get a multiple of $\frac{2^n}{r}$ on each run, we can simply run the algorithm multiple times to get different multiples and then compute $\frac{2^n}{r}$ by taking the gcd of those multiples. From that we compute $r$.
-
-Unfortunately this only works because we assumed $r \mid 2^n$. Since this does usually not hold, we only get approximate multiples of $\frac{2^n}{r}$ (which is not even an integer) and thus post processing is a bit more complex. 
+Since we get a multiple of $\frac{2^n}{r}$ on each run, we can simply run the algorithm multiple times to get different multiples and then compute $\frac{2^n}{r}$ by taking the gcd of those multiples. From that we compute $r$. Unfortunately this only works because we assumed $r \mid 2^n$. Since this does usually not hold, we only get approximate multiples of $\frac{2^n}{r}$ (which is not even an integer) and thus post processing is a bit more complex. 
 
 ## Post processing
 
@@ -131,27 +131,109 @@ So far we have seen the DFT to analyze the period of a quantum state, we have se
 ::: {.therorem #thm-shor-post-process}
 
 ## 
-If $\{0,1\}^n \rightarrow \{0,1\}^n$ is $r$-periodic with probability $\Omega(1/\log\log r)$ the following holds:
+Iff $f: \mathbb{Z} \rightarrow X$ is $r$-periodic, the following holds with probability $\Omega(1/\log\log r)$:
 $$
 \frac{-r}{2} \leq rc\bmod 2^n \leq \frac{r}{2}
 $$
-where $c$ is the output of the second measurement of the quantum circuit described in @sec-shor-algo. 
+where $c$ is the output of the second measurement of the quantum circuit described in @sec-shor-algo and $n$ is the number of qubits on the upper wire of the quantum circuit. 
 :::
 :::
 
-We assume that the theorem holds for our outcome of the second measurement (If that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome):
+We assume that the theorem holds for our outcome $c$ of the second measurement (if that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome):
 
-Then exists a $d$ such that:
+Then exists an integer $d$ such that:
 $$
 \begin{aligned}
 &\lvert rc - d2^n\rvert \leq \frac{r}{2} \\
-\Leftrightarrow&\lvert \frac{c}{2^n} - \frac{d}{r}\rvert \leq \frac{1}{2^{n+1}}
+\iff&\lvert \frac{c}{2^n} - \frac{d}{r}\rvert \leq \frac{1}{2^{n+1}} && |\text{ division by } r\cdot 2^n
+\end{aligned}
+$$
+The fraction $\frac{c}{2^n}$ is known, so the goal is to find a fraction $\frac{d}{r}$ that is $\frac{1}{2^{n+1}}$-close to $\frac{c}{2^n}$. 
+
+Since $n$ is the number of qubits used in the quantum circuit and was chosen, such that $n \geq 2\log_2(r)$ and thus $2^{n} \geq 2 r^2$ holds and from this we know that $\frac{1}{2^{n+1}} \leq \frac{1}{2r^2}$ holds as well. 
+
+So if @thm-shor-post-process holds, we now $\lvert \frac{c}{2^n} - \frac{d}{r} \rvert \leq \frac{1}{2r^2}$ also holds. Our task is now rewritten to find $\frac{d}{r}$ under this condition. For this we use another theorem:
+
+::: {.callout-note appearance="minimal" icon=false}
+::: {.theorem #thm-shor-post-process-frac}
+
+For a given real number $\varphi \geq 0$ and integer $q > 0$ there is at most one fraction $\frac{d}{r}$ with $r \leq q$ and $\lvert \varphi - \frac{d}{r} \rvert \leq \frac{1}{2q}$. In this case, this $\frac{d}{r}$ is a convergent of the continued fraction expansion of $\varphi$.
+
+:::
+:::
+This theorem uses the convergent of a continued fraction expansion. A continued fraction expansion of a number $t$ is the number rewritten as a fraction in the form 
+
+$$
+t = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}
+$$
+
+where $a_i$ always has to be the biggest possible integer.
+We call $[a_0,a_1,a_2,a_3,\dots]$ the continued expansion of $t$.
+The expansion is finite iff t is rational.
+For a given continued expansion, a prefix $[a_0,\dots,a_i]$ is called a convergent. Writing this convergent as a normal fraction will give us an approximation of the number $t$. 
+
+::: {.callout-tip icon=false}
+
+## Example: continued expansion of a fraction
+
+The number $2.3$ can be written as 
+$$
+2.3 = 2 + \frac{1}{3 + \frac{1}{3 + 0}}
+$$
+and the continued fraction expansion of $2.3$ is $[2,3,3]$. The expansions $[2]$ and $[2,3]$ are convergents of the expansion of $2.3$ and written as a fraction will give us the approximations $2$ and $2+\frac{1}{3} = 2.\bar{3}$.
+
+The number $0.99$ can be written as 
+
+$$
+0.99 = 0 + \frac{1}{1 + \frac{1}{99 + 0}}
+$$
+and the continued fraction expansion of $0.99$ is $[0,1,99]$.
+The expansions $[0]$ and $[0,1]$ are convergents of the expansion of $0.99$ and written as a fraction will give us the approximations $0$ and $0+\frac{1}{1} = 1$.
+
+:::
+
+Using @thm-shor-post-process-frac (with $\varphi:= \frac{c}{2^n}$ and $q:=2^n$) we can find $\frac{d}{r}$ and from this $r$ which is the period of our function using the following steps:
+
+For each convergent $\gamma$ of $\varphi$ do the following:
+
+1. Compute $\gamma$ as fraction $\frac{d}{r}$.
+2. Stop if $r \leq 2^n$ and $\varphi$ is $\frac{1}{2^{n+1}}$-close to $\frac{c}{2^n}$ and return $r$.
+
+Note: It can happen, that the resulting fraction does not have the right $r$ in the denominator, because $\frac{d}{r}$ was simplified (if numerator and denominator shared a common factor). But the probability of this happening is sufficiently small and already included in the probability in @thm-shor-post-process.
+
+
+This completes the postprocessing of Shor's algorithm.
+
+
+## Constructing the DFT
+
+So far we have described everything necessary for Shor's algorithm, but only described the matrix representation of the $\operatorname{DFT}_M$. We will now take a closer look into implementing the $\operatorname{DFT}_M$ as a quantum circuit. Since we only use the $\operatorname{DFT}_M$ for Shor's algorithm so far, we will only look at $M=2^n$, which is the $\operatorname{DFT}$ applied on $n$ qubits. 
+
+To start the circuit, we recall the definition of the $\operatorname{DFT}_{2^n}$ from @def-shor-dft: $\operatorname{DFT}_{2^n} := \frac{1}{\sqrt{{2^n}}} (\omega^{kl})_{kl}$ with $\omega:= e^{2\pi i / 2^n}$. To apply the $\operatorname{DFT}_{2^n}$ to a quantum state $\ket{j}$ we calculate
+$$
+\operatorname{DFT}_{2^n}\ket{j} = \frac{1}{\sqrt{{2^n}}} \sum_k e^{2\pi i j k 2^{-n}} \ket{k}
+$$
+We can rewrite this as follows:
+$$
+\begin{aligned}
+\operatorname{DFT}_{2^n}\ket{j} =& \frac{1}{\sqrt{{2^n}}} \sum_k e^{2\pi i j k 2^{-n}} \ket{k}\\
+=& \frac{1}{\sqrt{{2^n}}} \sum_{k_1} \dots \sum_{k_n} e^{2\pi i j (\sum_l k_l 2^{-l})} \ket{k_1 \dots k_n}\\
+=& \frac{1}{\sqrt{{2^n}}} \sum_{k_1} \dots \sum_{k_n} \bigotimes^n_{l=1} e^{2\pi i j (k_l 2^{-l})} \ket{k_l}\\
+=& \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n \sum_{k_l} e^{2\pi i j (k_l 2^{-l})} \ket{k_l}\\
+=& \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n (\ket{0} +  e^{2\pi i j 2^{-l}} \ket{1})\\
+=& \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n (\ket{0} +  e^{2\pi i 0.j_{n-(l-1)} \dots j_{n}} \ket{1})\\
+=& \bigotimes_{l=1}^n \frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_{n-(l-1)} \dots j_{n}} \ket{1})
 \end{aligned}
 $$
-The fraction $\frac{c}{2^n}$ is known, so the goal is to find a fraction $\frac{d}{r}$ that is $\frac{1}{2^{n+1}}$ close to $\frac{c}{2^n}$. 
+The expression $0.j$ expresses a binary fraction (e.g. $0.101 = \frac{1}{2} + \frac{1}{8} = \frac{5}{8}$). 
+
+With this we have shown, that we can write $\operatorname{DFT}_{2^n}\ket{j}$ as the following tensor product of quantum states
 
-The rest of postprocessing will be updated after the next lecture. 
+$$
+\frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_n} \ket{1}) \otimes \frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_{n-1}j_n} \ket{1}) \otimes \dots \otimes \frac{1}{\sqrt{2}}(\ket{0} +  e^{2\pi i 0.j_1\dots j_n} \ket{1}) 
+$$
 
+The rest of this section will be updated after the next lecture. 
 
 
 
-- 
GitLab