From 06a27c382752d0138983169ec4ae47b1673da7bc Mon Sep 17 00:00:00 2001 From: Jannik Hellenkamp <jannik.hellenkamp@rwth-aachen.de> Date: Tue, 11 Jun 2024 19:34:46 +0200 Subject: [PATCH] v0.1.3 finalized --- _book/Introduction-to-Quantum-Computing.epub | Bin 114974 -> 119027 bytes _book/Introduction-to-Quantum-Computing.pdf | Bin 139430 -> 161008 bytes _book/index.html | 13 +- _book/observingSystems.html | 21 +- _book/quantumSystems.html | 238 ++++++++++++------- _book/search.json | 54 ++++- _book/shorsAlgorithm.html | 106 +++++++-- _book/sitemap.xml | 12 +- _quarto.yml | 2 +- index.qmd | 5 + observingSystems.qmd | 22 +- quantumSystems.qmd | 30 +-- shorsAlgorithm.qmd | 122 ++++++++-- 13 files changed, 463 insertions(+), 162 deletions(-) diff --git a/_book/Introduction-to-Quantum-Computing.epub b/_book/Introduction-to-Quantum-Computing.epub index 63c60101141d13f5ba273a135b93c0b04de8eb91..0fd605026909d362cdb0844417fd8feb51f08571 100644 GIT binary patch delta 51518 zcmbQ&#Qu39J8ytDGm8iV69)r>OwZ|wyynax%KaXQnykUNzh0*2bVUD?|9h;N85lTu z7#IW?7#LgwLY?%J^Ycnl^Gfvc3(~eu^DUlZA<*{zpQzT;8BC0yeR(H4Z`(F$Z|>UK zlSh|MoFzHcQOW6s@&7v2M&5HXSkkr3Gxk>PioW~nMxE7E)+&}*ZdGHMc0o6VnU9?0 zjB3h%mv1;Wzs&r0*QR>*s)jhrVlV6PYm#<S!Ao0gY;9Yc!YfyNX;cZ^qO|IiVb+o# z_Z$=~Jd}$Vtqup6R%df0^=R?#v`CG3Gqq|(@Rf~nqKkhoTkuPU>$1lR=crKD7N4mu zpXY4()Tq-inek=PYUbIj2X{-iY*UpuwQ^zZ63uk|gJHdTH4EklYAo1NfAFdbU-G5Y zskd&_Pn`KVp|)V!x1EXy+h4ww(!IP)(B^4(#{R}ynKR)RZDs_|U@zGi$7a)~Y&LuC z=bEiICxx$>m*1kf!2Nf;`+u$8usw;#mi6{H{WlAlwajIHXr$?}X%~d|?rFdIRbs;( z`FpB?M*NFX1&-IX8GjSz(&F#c{l{0IQt*Ag_?{VYE<VhrSrh8h3ljf1FBRc`!7aji zf;}p1-bGHUmenFfdlRzfKIFGo$eF!@Yl~%i#A+skRW~nQ(>bhqRp)AeMQm^R7Q^UA z0m4k)AKvMQa^0W%!td3yALlkqy3cny`1j5^k{43vPAj{8^U&u++q}o2R^FG6zKZtG z*k2zLzunhw>4}AAvM~}Gwc94mHL$w%z&J;Q`)@vH%!LDUw56Ba4r~g%Zu3N>VDt8_ z{%t=EmBclE{pi^=|KZDwIXNQF+M<J|FDY34Tv7bRtvTE)`We*f$}Y}2k)V=N`uEoS zjlbtsyk@=l{daBZ?a%wTw?wm;FO{!x7ZcaJVc7M^y#B?#I$aA%M)mzW->I4&4@}=I zn7-NmVUFFSoPX+bblv9Yu3LM)h-J?nu{~0Z>({ZacR%nt``~QB56`>`WcKp*EzUlu zyxXkq{JObUns#a^>{|ci;mxV+!ufoAD_?j{`R1Z@&u5o%UBRmS*QeqfzO|*lU1|3r z_2RYI*{6^048IY1rGDS`a~}>{TFxjf)Z#xDCtGZPQAOBfGv}<IEN7FN(kvY}&sq@a ze<7!C?aSRi)n{FQy+?K5lYgHR?)RV9*VSgvm4C5K@>X_$VNcCN;~MYp-=?l8Ix@xN zo$c>qQ|}(Melo4({ja-c|HCpN2PhLpc$nN|=44@DuoGoqsON#@x03v1y}aa#wGn40 zJu(y6cRskJ^4uY_HpXQM%gi>LhOShRHanfxuX$4}B6Qo6sZS(t1ji|_pROJ$nPb4y z6KZ7s-y^<0es%QSOJ54-F8$!tvSiL#nf=c#9U_h-p9(X6{`!$*@7&|<vo*V~wFlOo zmsYyZXgl@f%=*b1Q}6G7_xg3V{;`m}s+cu*<PWCQJfEf<YkR#^E{|au=fT3C3*?O# z85qo&I8%7_hkXk+G7F}68JHGx9el_A_oba&)x(w+JE@*Mj8X|k4iy&roHxF&4ixB_ ze){4O#_u+1K1EYa0{(U@i-udweJon}h&8xZ^WITS$++plcA}B>9!F+M25%R$?ycOi zKucA0f>QR^58A;^$6c3fads^H5tFd2i)UWNG;uHM`d4|!b0^MX2yTo2cc8L$Y5cP} zMyw|DEWdJpnsfL4-G=*x9+!SKxBh*r@?9h&N|Q}<(ahk!($JG1=f_kp-R>7MO|Ito zwJZ0QzTJNLpWCI5^dn6%Q!47`)gOATG<n};gFn-}&py*UnBy8$_h?OV&n=6)Zl+<A z@2<Rm=8wdd-xu4{7$SCU&VO~Tai;a(dHnK~g3DM^yhJCI`mvnd@{sS}T913jq7y=x z7BhdaKDTd0TE?nn{P%^{sCysyu=mvZjM?!nHgS%ZR=c@}DD`NSge)%aU%305#H;$l zF&_llO_l~-<apwyHOcdI0+&y7X3DdFb&@_Vzm*o}9M^vybZOGsMJ{Cp^#Sf7!m_dp zZ?{~%5fXm*eHQaZGyRN+J!g}(1Aj6~nJ&x~@%0g9RiC)T)5Yb~>NS&8s&Y-N4pq*} zlQPnqu6W*3sj{!~>|bZjRjZet`|xK@OEBZ}detpm2c}BSedV4Okoqj*+U>6!Z!_04 zH_5!QZqIvZZ{S;he}fsj)&K8TM8f7atxPJ9e!tn;VfLI4%)!5Ef1FxzD2drCL2Y_W z%8uko*NwVl4XoJS#hLtZtUkc=;Cz74#~`({g{Kn4oZU9)xcq$oJM>Ui#?4N?+pRo_ zeXWZuSohV7m*^~%{%Y<0if!ueyxY%;Jw+S!=X&(%c=p}$?Bh!p(puD{72TKY-S@bx zFZoBW#*Zcb{j#@SbgJ(6wBFD8$BE@Kw~yp6>HiC??rYX~gvSI-O)0CXJ>Qpq|3S#B z>JO?9AN{ZYKY4EEEctIWhuiLHM|){0FO;^gcxH97v*GB}db8)V-si?dI-H)%`Z@O3 zCa1%*R*HUmsK3a+_35{*M<zbH-Ro1R!S7?!rkeV3_Gw1#nTw2?zokuhl#$LBnzm+( zlvu=C(*{?kZ>?<CKeFAre*Jp%w}nB+&9vS|a2ngXR_|pzvooZWze@Jst{9CHhb=(~ zRYl*boMRV$*{6Eycc+mh!&j@?nz$H8w<`^<QesC>f7fH|yT3jE_UY}Jl`DT1d=^G6 zJC62$ndv9Tz@Y3l*_KnhKJRhVq-X!DxJu(pcCEhYr}t=9X};JFuO%LyDq91jc-ZcI zcfE7cjrp_G=c>;t&XwCQmszde)yR0NbIXa%HG=AXb0S(S{{3BFJL^o;_BDrWem~~^ zBl^pz*x0)K(3$^_PuHp6nGpZ)*I)nr|An_FmM_<}=YC}}^WJ*-&6!zYe?O|$uXz1P znxicC`_|d@XT9ZHG`pC7zn-CA-n?(8Yw}(RNvqa!Yq3TJrZe5IPU{%1H@W*JZT)?} z-{1B;^tx<1_kI1WvvvM=Z_T;c7#WuL_xSW>-_+F79|VV|Eqf;)Ut?bEz4_c}ePiqM zS?05kiKRVz^6l^gt2M&kch9(*`p%@x)-$0#?78t)!_B)q({tvD`P!a*SpFgJL8(_L z|9Affmy?CkKCUU5Y`^c$w$R4c*W%N@2KdBW$%}6;Gu74Ch<%^P^20>nU)61HyMz1Z z{ru}6d_DZO&!jyo)BhXpJ(IRF@>gP6@bjbFCEqNoue_J>v~=$B^0%9B=JrpW-WPpu z$}(ZItJ~{uhO=nDSNr?C_)Yuy+0kZss|<A2^8P*MTVybIbx_T0$2_a%eM$T-?-vSR zU%mhADjUwZH}jX({x$z?r61p`<!oOe!zTWB4cBDPpK(1qV=uQW%ZdH?rl7v2>xj(0 zvwM!bt>5N${OcLD$_cOjr)O6l{PFm($x+F?by~S?liTiZuB(rI(;NTn?w0rS@7xe? z;5QI{bH#p_@R`R=`O?<k^Y&`6)P}9FS7fMN`j1U$d-}znf4b()7kQ!msqI$%=}*7n z;~)P2>APmW=5^ViY4=+$fBW<Edc?l%f#0XR^S`}U>rnj1{=V0;|Aenx4Y1QX#(c?} z@lS$I-o0sOcbnwhSN~$Zw5NWr^OKFw?enYuKYLp{;p*)t^?~Je7q0bR+%GhL+Z?|e z`zBrIHvX(IRp<Pj{d??W-p}Rz^DgI1T4my`MB7ZI#=oD_`JdcBaq;(-lh(K1%e|hS z^~c9h&gxz73*)0dernCrf3!IGbNQs|wI$b$|Gu65w5sx_!nOx-2L8)7anH4?xc8wx z!{AU3m+&2F?UQeRtb0B0d;Vtq_;;~Qna3w{<{Ld<R>FOK&3fy?|340Qs4M^Vcso7k z6Z`4Pea+vwtL}Zdzh{Yc(0Pr05!bl4)+YAeH`2~u`^ojim*!>nvQJ#!&b*}h@;|PR z6MJ9pocZ_i67$MPf5#`!*S=ia|MTBs&R=%3n;vA<SMeV@Qn~cW`JSww^Y;F=VYe5& zVk|X((iQ)jSM_JNHT*YAe&4+Ku82|i=6dG!XV1Sqe5CDna)J3t^OL9ZH{TEFaf$i8 zR`)mK6XkpJUlz=m^>4`$-<f}2@3%<Ht=pZ;(0%5AcWRhk-@odL1hXjiwPJOC{`T3m z@*k?}tCH5Q-*UeG((;$hl6Tj%<VE*vUFWD28@8f%^=0ezs_u54<<%W=Keq>G{CXl{ zQu}tv%-8FW=KlWD9Djf6@3MKz!o#)vA0H7tySHNh+#_L*TK(Z()fx}4HkT#6ZQf|j z_RTSvvFAu~?Rt$`n;A7hS99hn?~-WQ+V|1$=KFB=B`3~S&Dyl)duRQEV<}lPpGlM* zz4%>trS**IYHMcpimzy!5Hl%oI+vsVk;@5dl+$G2MOdp<v8XuSj4hsBeBQL?O+Jq} zgF%j6)w<`q7<O2mly>fT&Y*L8>9ZDTA-QYQjrT2j!@6az_PPYEMN*QXM<=I8NIm79 z8p5%}Aiep7c#6Aj72Buc;%GU;`r@@BA2wKas}<&al#zVov@W<Rx-oZW!$so;>x__y zU#mD}qUH5Mwg+r;o01-T>a|;B+b0bjGrr>|cq$J~{o0wS;C?!}_JgRD&uKN~sjVC4 zMdwX;)XseO=ZnDE?K>{a3;WO)FwOGlnvR2!Oa+&x*vx+J+oKtsYw^P8q|Vgf@)PxI zS(Ea3Sd~^K&rB4be{kWYW5K(HEmww}Uh~9Tr1vu8jr<itSu1$i=B<fXzQ}EB^3Bp` zcM4p3m@6!ec#QR5g{l1fo2eJX+95n!`9ZM7#^~wAw(B?VydfjxKaoH3Xo>fg)kfDR z-AbI8#2tR;@@I|C3SHgkDVGixR%huQ@VIe8sJ>?sE4NP50!<@>4QC%sy48C)AW*&W z^NO>#*z%=yEPI&VNFLs4Ilt3(X6DO8nO9}(I?oGd%(<oNvh>r&khy*rv>Vq~Jq$>^ z*R?=#{+Fr6DXnr|n~$FAiaHdp@6)&CTdI+!+=fegmaOw;nONa^J9>BR^}<zo{Ex4d z%a&H&bF95qFYJ3oabo$0AN#Czcl#cFt8{asz;&<KP#+bg;$o3?4(rxDshq>$u41`u zOTN=qGkNLqz(?FO6{c3c&|O%RIEANs#uhg-_2?yr`>iJ|J~6p+8hZ*e=Qhq;3msev zHcS3|lhm#07P@Dmeh!C3VM1pT`;6R|WtqiC@+`0M_63)PG1MDPIle{v)(?qDu8swp z_6H>Vmk|zJX1Zae+-KX+%HO`iQ!;b&j-LHf(iFa_#%A^(w%cpJO)ENdY@SU}HD~!` zr*~m(p)=E`hzm72>Mng2rE%p@($wNtd@HZ5@`x-5mToHMS}pM6m~lj#!W^Mh$A8vb z{`K2d-|P12Iovz~kNaMC*Jl*WK9@Riov10-t(a$=;TByliaj_j-F6pf{p-;EC>MWf zR>>`49Y5KaeCF>@4i!G!yuf=?`IUz!k~S~6m-BnehbR{_Gn1qv9(U93W^EOnWjrH0 z^LUB4@6$I|Z`rQ+c=Ddh*N+EGxHL?c^KJgH;gqtW-PgmNVn#Wxb0ittY_1=vpU@aG zdDgd&8o_$6mmXNs9nq?s(0^{aSI3vG$V0Eiq{OGPho@{?f2nrw-5f7(0n<xSTyqX3 zEao{cp2>NvyQTO0;@5AE8Omx08#PV7nfj$>{-r3vc}hCxmlp3hU+uU$yqH=4&)03N zM?NQJr_bH$S-@`~S<Jloby@WiBQL+3OilHh-OS5pHO%?-^r=sgdTG17b~1a0%)58T zcUhlI-xSht>E5@rTZh<7MZSI1kjRyhJLMR^V&9g$-lZ<zAJ*}$+dZN6+0u88HyRDM zmom@eEZF2Jc|&mBeU<He?azc0#b5W%+Vp1spP#Yq-#7pG==$r!lmBuytCM%_NZ-r) z??tx#htu_Zt!D$@r`P@Dd?|m)a{Z(0=OWn+n1Yumx_U}+l=x~WW?V2ey^%fZxx(pS z5#?R`PCss&IYsiMqUH7Q)t6#A&z#F+G2@@xdcZM7%y{wQk6{ZB*=!e!{<KJ6Br*SK z(yABf?5ws~Q=*KvsI;n9dww<h{IqO$scn+Z?Xpc@ay5>z)_bRhvcG*Dm0^@EFLFrZ zO4>^6AAwz8e=R79u$R$W9xGjb??#1!+K<wj6OtVcD>(F&7vE;JD
I9ZrCck8Bf zwx5z52W$FNs&`I&_PW$UNL)sPtxDc|nZkphbgkg!Q)CoWPhR1f-8cQH`Gj-v)2f9R z1>WKm=Vd<Lw6L=M;PHByNemY9Pg87M%Z%<uScs?zIv(EB`>fCJ_7ca$t40b9o42L5 z%7|}jim0l-kZdH+<0O%!Y-XJn6!KMf`@4SGE#LTdTub7vw-$eX@ll4!%FT}t?9BZ* zTeoPN*>k4lZ8|Y$Sf@%o>`-3Qlc{mg?bX#LS3L)3Z|TyL1yL1d59<2rpSP5!XgMwV zq__DM?*zxm^8L4!H{S1>XRF@#kI!D;gyDhtr3b6#<ONo<JvjG)>AB2IX?EES2WBMt zcfWe#J#C%d?AQ$vncuds_N}gZaxzk1Te^I^+sqg0t(heg#mcyMg%v-zaG|Krh|Mzo zu*ep>dHvTW7zS>L410M?xNnp8W8Hd#6w%&^%GbA<c)Q&&+h(@ypqAYxTmQgYtszPi zEiQ3S(AL;>TWI3u1T$&VWw%{sMDU)rYAqDBE5FjYvHNIV;+#tra;ufNH~F<Datdfo z*3ox#F;9EPl-A`TyY0r=>(?yOljYp5rOock<|*)g>EWO;uknr0HM0d}1}9r4e!kdI zzw(*Uk&jJsCeC(hMcuB>jag1x58OJMsAFL%y!h_L^II4%dM$Vswl+;zeUjWcafvRa zNxLQd)UsYjSwuVV&f9ux!_E&AdXFwuzr6OWZ1wzW-=@o19nx~veD_ag-D&2kn@lwc z%sv~xy^P&ze4@r?ZA!`^%ZuK#UG}n0wESBa&9tSSt!>r3P?yE;rTgVB_1%u(*w7co zG4X>_-g1TW%Eyxg*b5{d?I_BbGIh$tsN3CTE<%f%WSO{*KToch^LQhh?)AJhliF9l zg_Dj5ZQZ`<l!FGRrOoE0LQ@}~i~VxItoQS(p6ib%I+<U)@pPMsY(uKt>B=Ie7iRZb zWhxq{PuT0`DP8|Kb&~GmUF&=%m|bC>Zno9@2=5W$iE>{wQe*gvT_YwYSr#08nc&(Y zrx<-C_18JGqUm=gE)4el7rS|LF?+OwspXPmufD|!Twgl<qNyUI!<Cg=Yqnjk3=P^8 z<#x;B(YEDVrf6=jn{~0f?39sM(fS3NXJ>zE<ail4_j$EPj^&!=hwAI>I6B-epY6Pt zBhY{2)1ir`=QO-?byMPh&Z$1JY|CMxFcu9t>7?y<x1LGeBF4A-j>oEd?KL5f9~Jmj zmp)jU+WoybYHpH%&*$cVwG#`wt7pw{yVuH~&aPchw>iAk^uFo#Z*wPZu{}0@<CEY2 z<m>l5&XBjgasOqm?V&=M-@06L>m$>Gnf^Ae|Eh4=@&2D%k96nMd-(6J{;=iU!wQ!_ zColgBma>_#yH>1ETwCYdx<<3(4G%X@F#NoivHRzXBoE(^Tdd2sC;G{1w3>fTE?U7- zoYnGYiP_7yB}UptnF{ywoaIDXd_(1RV&5z;kGU`W=jS9Vvx`9tQ@y@gtuv_Ddt1NW z^Gd15B&O}r2mF5PK1gWF&<xtOjjK2R!ecwWa#QJBt8*HJb_j%P8b4dx@WMgC%e$H9 zXPVp`Rh`KB;?o_q#doa`6PH-*&Zwxozrg>8z~k=b;HpDMH7#S_FqkHK$XmVa@V985 zCB>yt#3=k`fvt3woSW)BRo|UuSF&u<+L&k5FA56j@4e}AD$X(IO^?NnCu_XU&RRc# zd)_67I;)-~Qwq;z&0hA}N+Q{cZL+D|dcWX9*QV7a3wKnSIm}G@D7Q##`NH&?YYx{> zPU(I(eYU8+x@MTvI=16w7dAA8EZ%jGx3Bmb&;GYlT&qt7hWbCUv^eJ7cSryCJB5qE zVWoEQ+fwSik7*Yb&sp<t=QQ?d(|rCPS@blokY(jt)kPCbGnhZ!TcX_J@p;>3rx~k~ zH*lMTJ>i_1#V#lxwe~|+Rp|}O-x<X&ipg>b(u<=u`f1&;y`sKpivPy4XX#6y2x(h; zUF<Dd*wUgJp?WoUYMl9NvrpST=Wa2uICf|C%1{N7b;(Ajrq;KH>RtcPr*e+{UrmC$ zycmneibl^#op+8XG29Z_f37ih_8W`WDqGHGMXwf_;2;qswRHcfena!6uDJ}QyM3!> z#jrkGXehDP@x9C@u9(%fqARt$);FJK;&qbT)iL?GeG7M2wBeCQCck>8itc<qe@h;7 zfs=^Ca|7p~D@>YA&y$qvw=wd+_y2OOAxztag)@J>+1(o@mKx_@-sqF6-_2J&ZOe2y z6`tEKW^|Nl`8Nvf%3Kk=bd&0{)`^==SQhBW<Sy8-)GVagQFuksos_AuITtu2pLzch z2$St(Wn;U*wD{%e%>B&%Vo8C9Wz!Q?Z)n`JUcBl-n`=8u%M2G&hZQW0^Xgacob0Z( zf%|Eg`pmr-o(HoZGdR_}SNHVP1L|pUX}jH$7OV=D@{Hk6k?&sa#`a5hu8isJSU=9) zhD%=xJ#qPD=O0)z$4@%&{iA)}wgClZ=^MBTrtaBdBdgafa@T7Gr`66UPXC0~F&3}< z`DRDv%&;Qay4GA4x$b3&Uy{0Ks9fJ&UtF))$a?omufHyrO@U_1+Apt8%-C~Rzse(m zuT)FyY^q>>*O8rT{9ko#`FbZqcER-O=4VzK-#%yx#c^+)oP6q-`BROM<q?<8F-Y-m zC{<P#Em;}ia!-S0+t${f0ZG5sB`$L)-^dU&z3rmti7t*kTS`OH$|~+UX~|BA=~TTk zhp+zJV<v0w7Ymo`pQ}8te#Jv(dFr}G&z#)tF{e28#J`oX*t;cXgUW%;onIFpG+14f zZ+yXz^;@TWbr^@<!OMJ)yLZL(i0)U);!W#NSuC+^^W(|OTYBp{g=^0oQ4>Gf+oaUB zi}A{t%o{NYt|zn}873(okIcKifI(q7+X|UeQER)M>$mgh)at39<!W)e|Jq`Oedmm1 zljKEpw~X)q-o5|2{_S<&x5ckJ{D^rzkD{1og8k={;XU;(^=GE?$9wPoFy-ej>(K5M z#U*wV)RyKSt$6Cbgd_UYrd#r-PkY+^cyaG&bl1ysv*YYT7e#ZW`Mo(@YuO=wa^H_q z!DWp{C3c>Z`?dE$eb5`dGk<G$>QBh!J#%(%he^ciHOyB$rxqIP-M%I}d*YkxO-xGz z(<GnmYMdHok>!^2fw_P7^0S^=bCk8DczdT!m_B)W_qu{Ja#;_TZu!o?&|CWNi7-C? zc}wOh-(df^X5CapjoH0QYkMY7I6d!0=Uc~+KEF__hA<12I=}Y9o+Tmm*Isu|bJU&L zv$1s=`^AjSPTS3coYOhZZn982a(iO=55~K>{j+ow84VYi#Y#QS$eR<IlzZ#yDTfWo zOpX)hO}$&P>~CeCRg`?rgPq4-oZA)awAU~D?VXacwxbr-{O(5|v(3EqR5oGz3#Vqw zm25lqM$FE7x4Vb&mSe)(8T0th?|5H-m2<mUS?X@(H!`_8J;(kwMRk4KBwMc5m0xlu z`HrsV3e6`g3p=@jo2mjhud<(emQZ9T%4)Z#qhD~P?gy2!(#v|Mm!6-wce3%r%Gb=< zj~UiE`DaSVuq^$u#pUK2yAP)sdt#;DUt~!A9-+tcBuPh7RxLL&h{w9~g=lm4>lYE3 z^<~9reeA*W^>=(aB(OADjQ!%$#tlJ+P36(2QuQCFCQmY`ZrafN=E1I+aufU9rWM=X ziJZCg`^y)iM>fXIeSErM**ORG?s)~9&+z-n-F!B^X;bRmcwe*I#)W4uYR&4~KKGi( zbIpw8Hl7P!nk}Zu*DV!Su4J-X60<$v#jl?Cd^QdBW<RwUrUd7lzRDMMY>9V!URo=+ z`lM;kV<)a#d_-u;*DmV|tdBfTYGxH|EV&xjdSdU9wf=s3uQ~l@pJV&b(iW=E-r9IQ zXuEG=7W=~EV%BW)YGrJkQyb1*(Au%0v8UJgY|E3wD=sS>Vo+o4S(RcXrpR}g(b2zT zzm~wuptE<s?5WSbc5~JGGYlC%*{Pa_2cxXxUmXnma#c9K>s{W`l~)b~#@3&(eKSS< z_S2&_&yMsR&er7Y@HiWGqa&sGK(xg^{k$p_Gv6mFL9Z_A<mOntOWbIur5zr>;7$N1 zQ`?#uCELR;@kGZ(D86g6j4HBg`5E(E|GAhj(^P$y><g+_!%m;5zhM+yCj8^+%qWk8 zQ#Ms@+a$xvo&LfqO4P~V-J*4^;cphcoUWT4T6Lmd!+ZVa4wtuiFFDw9FG_PxEw{=o z>s~w|(Nz4zsmvpr7w>krIw{;7GDYJ0X4whHS{7Hu{CHX@V|J@@-J{db7(C>TxG-!s zE;!}=@Z*d19BB>y)`#a=+{&nTo?fZ7QRA3z-|GXd>8Dq@JH7u<dEfMB>;B96H@C6x z{=9ud?&h7kQ~oH-FX0e(tADmzuHc{GU-9aS5Ao+7TF8CgyK3Xvr4BCBCaNA5FHe_z zW;->xZ-Hokb?SM+!b6N-{Nj!FxOd+Z;cRs)eNweD>XgVi{g-+lj;nk-+4E8Gj75Fa z1r5Ld+FH4O%aiA<zq5()7SHj({+%CA7Q~r5Gdw<WYr=_IU#+r~r8SxBrfqcg`PVG= zh|NMqHal)t)hgK&Z@s4PHQv&(X=kT&XYE2iZtnG&dZ!vv-oNenHDOkI#Z|*3?GA&O zEVm+`GrMMo-BU_SofR_6Amlo4-3dvKIz#J<dW&55gC8cE?)e}-VFAYzH733!{|^c# z{?lxC^543=!R~Z+)5|ZKsy)2Udd{nrt$4P0#xYo=wYK`5mi03|U*1(+v{z%&%ac!6 z7Pp?-<NGH4wyga8Zw^<r#XDYJmy-Kf>)Bmg!8tuy`|~_CtKe<C(tCs-zVcgIx@7h0 zS<6!^8Tsq~l%zGQ&MRg+_`OH(!$yU5y{fM3%2Qt@JvwHRsU)^{gJa61dGSrErdeUa z)^Cok%;>sfIeA0u(W4R*uV^ia&q|v5zT~e$#hL?h;<tN@rio=)?_ApHJ}WYQe^23x z6FoaUrgCv^D?8?9w8_VK+AMa9Y)L!$gw~4@$^kmXm607A>P6PO%w%xd^l?vGclqRn z66P!gmLH}ytk;#Dv~*dC|F?@b-Y?(!VCI^{r<%FG3@ep=SA5n86PT?0L3RIvot1mn zhM$sI#B%buQbFtF6Bll}XYN~CdQI+)YKH>v0Tz~Ar@RFUPR)H2{64Gf5z)|16S#3q z$If}@M&<*jtBfU{&Pgt>*II5Mt<G_==bLk5^oB&WSswQ`+DN~#?%UJDXL4V!p}UwR zuwQ!d-lWeTcJ8pY{Pl0c#W0C#p`+h(?(MbxS^c>5{85<~jQ=Zpzgthe`TeWg_N^LD zFZ`S4`LgMlzRrI5W2@ZLTi?H4nvpv9zRI(Lrwa{?&40eT+qbXoMp|L&-~0FL<$r(u z_V`)dgJi>3-IF9&?9gAaEA=n?0;Bi$^pp1fo8kE)-8}K_va7MjRSt1JP(Jf5@0`nj z!C(3AJ6A{kVmNVjj{kuhd13a~_U&uh`T94<k+R883iBq0KMcKhf8Ex<X|mhi#m8~| z+o!?V*!3@cf&H|?y>5+lr>@UEwr8c<^?&b=)@wfzf4WcpLEFmzIcfEu0}gXI{{M4% zXZ-r<HtURQw%4&#vVG9v`5};Pb?$rioV^>T_;)>bSN*@y>to=T@3GspetA49eZQo9 zzGD3BuupbhZ{M4rcqgPcbl1H%C)I2o-MxA}F82aUq<>Vdy+O69oB8&ve+!%JXU=}^ z^y_BWect`O_3!0)u3f%nv%E(3qu?Rgbot~zQ-1GW{K@dd+X><l{D=4N%naNgc=CV9 zn?F@e;?v&C-dgVUIlWi^lwSPdy&G4)7ddNxwmO>o-RhK+;g4mvn;l+K)%)*{*#+st z|J_BO-2GpZf9ZDC{gkEAPd#79byw}3e&=t1_P?xkbGHW{Dv;j0zdp6(89(dO>(aVE zx5oUq*=Dz?Jp8`x|AX)D$t`+mB6_)T*ZuqMO5wYNQ_3&b&kik{sebbGPRAD(dEYix z*>H2#vA<up_-|eGuIjz_zP;76_;AXT=Q_gy-SyM28Evk;7agBJzxCYR!{6^S|9JRR z&*<l;+VX6-qW24@?3%@K@P7UI$@MdBcTRYfm?UK9=W|H9BFpf-{*1e<>WnN0<KO2! zsI}kKId}QH_X~a+%RFJ8bN|hOGd1QX|LWhr*?v6Q$AEKrd}Y!9FG5BC#8f^Vxb^<3 z$W5DqlJeZA%Zl>XKf0UZn-!bN;cqnGt#-cc{uSRlk1mi8_;>cC^y{d{^IN|5-WJc3 ztY0>HgZ;@1*WIV>h@Np%H0>M9XO*ebWfJ8JudqIw!V+%&?CjHbOpi)J)`<(O7qLGs z`su*c!lqfRSI^A3>wH#j!M|Uhc@N)DD*C4_{q4l@ZD({Zb4}i`%DFm>_o^w+?<3~~ z<u`n|owEIo5%1>c3$r!dRv*&tv?^Kczv+9<?|I2*<LVRkZf}3$zDJawdtLkLzblvL zd^OYlsgrE)l~)vTzVY7Uu3sIiJI|e+x><U&#-xXv_nf(Z?<nVqvel>lp0PW0!9C}0 zQSsWh=J{RERr20>*8KFl-#<fSXGM4C_9;JYx3=BiGV#Uw7he~<$mMa=$1Q$nuKU{d z>wP)CKO*hd=3jmEb8@|y{ib5;zqX={_qQD3*D<*%5<2a$Z|tnd(&-25qVk{nSMA>4 zJacc$&z%<=@0(n^vHlI;uLFmVt-7;m@2a!jOAU?Fr|n9+I_3Jl)6&&H#FF!G<@^bk zI4sA1Nra&_&FHkeWX;J-=OZdF8wu|}#P#pMsjqpzO?Q{3|MKtHm)U(XUa{V5&$VDP zowsUh?l1qjtaoW$tJ+V8V$-EdU+*!qH=6e$`kHWCU8~$zhyKFTIYKW)7R#M6oa5(c zu~^t%|FD(E{l)!zQq>ZFOixmI(a30f;`IOD`~UlY?Rw+?Xy5jp$IR^eefdu4sry$x zemZ$kT>jSoylzR8o=?8LmwgUrdBf(r*7eUGiB8X#yy&jyUCzb3{@oGdw^sV^*V){U zao%)i=BMLts(RmCUSlU^@>Z_&TSwJjVZrhho2##s|ExXz$nI11*HgjoLj5{d&##}g z(OrHE_Z@fXG`pOyUw0orZ}ffI(b|+eBfhWA^8ZA4+Dbiq%VJQ?R587K`<d6u;=x=d zt#;QN>i_SW*;xI!Vm|N1<t4vPUb9_zMs13u`kQ<GGRtb-9$%w7ljrM{s$*AU-+g=Y zRWEzaj~##a{B^3Z$}Ydp?VtU(Zoconn8&%RzVGkSWZh@~Sl{SK_Vcazr&#m%ues-U zKD_R|!9n&5+b`7b_SKJHI@@1U_4kaReNMY$f6tc_<BtozrE;6+`?vhPf9z2wsW;r4 z(4!&Ez%bu}fkBF4dc$5una!2zBGQaJllz=xK}*jzuXFNX12cYl1PbxV^qh`3?sa+X zG+73Q`?k|3_Am-h&W`4)f7y52YZ_>Nd#iNszR)#3dXHZ1x_&oCHE4;7-Xss+XYAi= z1;Z!yvb{28n^C#5YSO|fGs|xI>2KvRa9En?-DC0GTHSAs?xlnA{~ymv@4mNw_70u8 zYIb|4_hNMqr^Usz?B8oGaftcnJA1o7@2=NBEL)TK_NVKWXE*=U{Ej%Y#<l+Q?cFPK zSASQq;5qzwLygXB0niNhdh=Q3{x0wTt}3=$+_P6}$7Lk}mxk1<d!kdm`7VpMk@;eM z`}cKb^O^hJ*8aGg^fCM0_HT!J-|YH$`~JPsTm$W$4EDaFW$*rf)BD1`f7|U%b=wP0 zFZ$X&bK55F^(FBgw|AWV!=K0E_~CKv?fUqG%NO2Gx!iaD{sI5^%{x5Ax6c3j?Va5< zmwos5MQ=$qJ)QkGn|s&UJrh=ZYrcQa*3Qn*?16gJkB@!~b(21*er~^iHn@M?+|<<T zdjGQPB6Ny&^F4mFP<Qor?i=U-f2q2ld3)QL`Nzb&fA<7mn-_0?Wt({U+22Q%o38r% z{QoQU`)U2>hwF|x3qQZQ=4`#KW5~Ah&kf(XPn;LOp!`kgi=@@(=5K!&X>Ps|{b%*t zd;fIgrhgR=DV1@PKl$L*u8c=H-?p63c$fW4@91f!`)Z#aEj#t*<6or{e_r=rd-1dJ zZmNFR-~Tzf^ELl{JbmU-FTeT!t&eZcogcbi_nYFH(~0-K&%bk{{yal`LfVbWx=-md z`nmV<^ZmPA70B@`a`8V0hA$p}d6nKheDU{BSDZW7mySITzrF9?^!F+EpZohezbZek za?(20UU6^U{r{y}_UcR0J<nhK_NMED^1r<WwTJ$*l%DRAmwn9ovY5GMs*c>fZD-9> z@61pCV!pPg*7?Nong92l|9AFw{qLmJ+mHUAy6^MU?RD~hC;oVO=H=19;@^JhoZS<# zRD=7!e>~gq?Mck_UA;#at;sRZOZQjVQ2+a8!yjqWU)yp%d44lL{Hxf!?x}>n@OjTK zQ<MKxh^`m^xOc@*>!Y<VOSaFb`+x6a^QJn(=r1`l{8tur>@};h{a~1Q<mesEAN+n{ z^}AkPzOwn<d-3=8Y^Sr__I)mLPxPMi+wgsN@0C6J`8r%={-iJNnf0N5|IQV~y?^kz zDUScIecYwVE5e2Bqpzjs{f;!N(_Xu0>#6fm%h%g{z3D7>KX1ak;NRjM@>h2pJ^Ls= zZNKL0YkIflpI`P}>hr_bB3}{>%lDl9BXe}-_twe#z3Nwe-TvwA`RotO&U+_)44(GO z(f9B19PS_OtiSKbNEV;Iqw|m9UR(V0_DJ6Uub<^@%MZKuUi^PolFFmq`MEd474BdD zJC*<VPT6yQcdp*l|Nrjh+Q0wo7{XkCs2|U(k@=fklTvnzAvY}1^SpiZUxAP91^<rS zlY2Q~>Dr&oGyg1VdsnagEbO|%#C6hFj$Zva^ZF*?`A?5AE;4^Ow{@BB`b95qtDL>_ zFY@m3=kkBPt+DC<Y_fN!=T8^)yo`67pIZyxcG+ojS4DO~Pk8^Vqr2QMTe!Xp1WjrO z|6QPQy=2SJHJLZJxs(`oMaw=8{#12CX5y+Xw`Zo_l{0emJ$Yy2TTQuD!SxbpmkPG% z$KEm8tq|m^xI1OCUT9NX=e3MH;WTOKHM51nL6h3|i*|pW`uc~-otbtF2{($k{v7zu zSdf0wI@n`6gU;!#&yHFP$!(u*yl>$h(Jk>>`x3Ml&6?qRcyfBgtS7QlO+k~|lQqJh zIILaABQovVKD)$kVJjaLmW$;+x>EmG)o9t&JI}uCWBgskx;UNT`-LS%Uwp+Y*V)Cb zNL>2n>=K=}IoHqb>U-)L@z$nqqU5DRQ`a6XnXr87O1m~L-e;xZ6Ha;E(37=4_3`mU zIj1j6bdzIVtmVxSIJIlZ3|_;kY=(EcW~HCr<ZYO`zSn*3%9&e}c#mI-RQz@>L}8KT zRo414PDz<nu{P!G6DLP))yvxFcF{z>@o?X&g?+aY7d%~JHML~b>{I);KRG6xBzN$1 zXX1?1tKXDP%CA}K5vt(##?QgyVavv~)2nWZd2h5%YgCf&Zj-#0aY1CC^4G^&$HVqj zEST;&?L$=Dca5dTFW-Bmcfe)G2`QgVqTFj1tys-vP*nf+)ui2Xj|ZGoXgs|{{}<nT zYaMGpCYc$JcUsTyWRA@EStxb;9>cZMCg;}F@doa!SrwWu@Wt)H?9~N18xou^1bDQa zvMhYWu=HluV-;J$yl^vjt9Gl|vivtP9ItINZSvT&NLJ>t0neOOyB}}iul0|e&-)@O zrc+OHf{F#(pVAH2>JP7b*yHj|<w$u^yr^-f#vh?p=?SZ)D`%!1;5_MPD|;(oweIqB z@mGI%sd=PIvS+V|n`wGj$!zV!xlg-H#Q5Bcgeo`boa%U^aB!=mxmX9wyE5VUm>9$3 zE85IYPvvG5=35i^hGVns-Sx432G@dbKeTu%CaU0^>h*h3w}0p229A2Ic5PO^^O_Sy zqS$Z0T4@vDTX3T^aPIbRad&iex$m9$^fKqO^_d$oGDi<B)2>{^C-g3Ts!fj1@{Q*; z^ix=xt-MZu4OnyZ>ar&x%$eI(c~}-)pVgFp)R%|nvgDd%fpeUu51jVBK76=QeCglR zldftVh0EW%n(Vy$VDpI!-BPS?_3BUethRCGv0Tz-vpK$!xBk$zAENQ6XQjw;h%N7{ z+t9rJ$*IqvDea<yOAn7EcCWbmc73JjmyVow8Ap63Zqsi&o2FlqzTwKJMoGO{r*_U> zTOSg9`mXBRmnTZNG)k{ESXSJb(m5mQ`o%@9Ot%Hn-5M4i*lw7ja&^s8XB*8ar^|Hf z4Ss5cK4h_2aC)nda`@484|Dl_SF1HhZ?Z7?x$y4$vaQM;QZLuA`Xz4gY@5D%58LI? zW6Ro4e(%XVwfxw$Gbc8+H^s>nMXgTKK6om~>UjGnt&F#6nU6wu-2L8AVfXHCQbC!d z9D`Z%`-HOF@BKp@Pg+Jh7F>L}Z6RkzX>9yCmGt_RY;{>a%oi-~*!#RqIGMgFtl`$( z__ur7`(LTZT=F#dZDMzA@xCDE%-gfGJNF%HSKT3-Bo=k8iXqYc*uCwt6>0}8)kPmT z{79UBmz(cwdeg*Lb7yUSv;Y6U*{tu~|2|GX-tPbP{nAZU+xpqhML&?wep~)(lY64K z$&bL;e=T49BkSjwznp#)GNo<k?kUw#;=4jI<BF-NRYueU#cXX)!C3QCTawe#-Ml>X zzMfsS&0HyY$J_(cHf|TP=+FsD`($!&Wyp-@+mig_zD!k;nG<wI^zWO62@bwN{>S>3 zY<LnH)O@#S@BR0G8)m%PH{ZBczB}`1kgKsn`!>;Chb&#D)*EoHjeRXwHz{bZtrl~c zY`^&F7nc=h>|!|5vcb1sm06Hu>VeWEKDQ;p$9J$y5qiGORiC{qWL~3$&UBBm3D%iA z?;aB_JlL4EgnwlUH<KRkHY0zpn}R``oOCx>?vdHoT=H*|-3@`>OL2Q%Nmz*b=vwqC zKAXsLpjAWtv1QVUlIQgg0_Lc)@P5{ds<L`JNv+lNbqB+_Tk}M{Vl=dpWMvLCXgV2m zC3g7UcogE{S^ReA+pi`Lw;yz5+iv6f?p-)@jbGaIYBqMg*!KHxCvM(s9d2PN_AyIy z#T6EHnTH}i?wop;^1^hA7_Fjit;}w_{Ae?0{PYS>7WHL{Dyw9;mfvNpXEnM0af`iR z`(BA1-j772epD`HWY|C1E&gdqyOjY$d0V)}^OJW>UNtZ;<H=qtr9DL^Hn!Yt%dL!e zdsyeKXIt_#_j+&l@9NFxO1u-TVwbQcyKc|ol(CM|3p}PWJ$gpdw&kBsN^+}pmc3TH z&vwZ3Tk0P6V~Z9V7CrhkFYP4D?dA37&Y4E4x_o=S(|h*>FC`)MD%K)VSN>|Hk6~x> zmM<%r&$)S3;oWBjdWW7jZj#s@C8>S+)aBGwT{<VKc-vAP)|}b4$A$Cm&87S|ER}d~ zoQlYsn|X4XO;65SyZPHB9$dfF*$}XY;il=Dw+?SJCQB+$pFA_@ZmQ2^QQNF#HK(4) zdDkD~y4sS~`gQf=kisHGwPTt(TLdp=EqH3S_nDBGXa93<9#zhhu|Desw&rTjkzK%g zJ}P@xOpVU6S4FCy_nw}+PI0ZQUib@^)jUgov={GL+y5e!|HDLXgR5psdXE{LEZSsd zWb`=V%PrN539cgdzHV607{#0%sxP(ZGJmW?|IY(&>t$GOs7be+s90E1JmLAoVAC$; z9esr{mZhiMv^>`C@5*xmO=v4~9iJXt6ZL2%+uH4QiDlPqX8cy^RK1n(_{zip;i8(f zY}J+OhvQ=#Yv)b#otw8@xb@wfOpVw~zJ}77r&7}xOXf=%vd29zeUcY=>1f5wl-FBw zrKOknem(ItwqCj?ll`O1BKPnqM*7E>D&=@=l-qg2%8GNL`U$y@GhaWLwbWlK<&9}^ z?e#m4Y!2{UIK#TKxb3jO(p*`Q5^oQN2|QWa^Y7N&yfS6YwN5kN9nu=Msi$jah<{l% z-(OPu=c)ykXK#O+*zwXcb{f0K8_PFdN3TECP>}L17u$PVk#Xbm`c~oWd4bbzS)W+Q zY570m%yB;V8v+X|UU4Mne>sy{6ehR(p69B%-k(d39{o5c{_4c(*KF%#uO9PqG|=yN z+U&Z_RxTrH9*a2B9PTv-TJJiFZu@iL?q_S|O!l7j!J0gW@7MiyTlhEP;J<TO(gO3I z@67j<c(ZE;|AqT2w=$+wznHzhep?0i^ZA=DN$F3$W<Sr*!y^1vfgM}_wnB|ZFCQJb zdei*kI}yVgLF2MYgT#$<YIrg`-F83tVyCxKdFh9;%2R#43Fn&wW^6UvJ70OT;$}Xs zyLQhU9dDSvy?F8H>pwlO*_-U+i_WW7aV;oXd3PBvTYm51SuVBxDw+lR+3)<>#cosY zBOvQ~YP;XkkFr%(OEzBIv~jnln?|#C;bi0Bo7^3IE{nF9ot*K0+QrC2o8DHIN^Y%M z+MQL}XjmmAV8p3?|Il%fc-g&H0(x<0A3kDOA?e&UVX3m>!``estpz7seNr6Q&8{)^ zoNDr(SNwO$){0X-?gs8lm&~==?LDQrX~zx8kM#v7Z(o_U`Hq6P&GN=eR(?xD3ht%N ze}3C+R*)6zX5D=`YknTMc0KXAP)Dtq<IJRw+AeF?d_2{%rZaEzPo1iW_hx(MJdMcx zB{gSP;BmL0?pMDIs_sP^AFc}s+Z(!Q)x4$N1zy)>DkI|C7rUHazUuSOP3qM~cPH$= zJm>5AwKki!q|~>IbzeL7iY4f`x07P@1=c6czUmwkr~iF$#Ng_(2LhREP6%sV?N_q< z7A3mn%d?D%_LOob#bU`s>&-Ve#Odt_e=+N1kmdJVt`S!z`RCkGaW6mBDr7V*VQNfy zXw~i9-zqoszn?tyMB?{?XMU{#JNiy)gopd>y?2Psb58%CpC|kj>vcFLTwvO)YP{3i zm7zqlE}F@0zT})_&f4uaw`;Mc2((>Elg&F7eCq7+MRrYW$<w2YR~}$8VV$fiF()~! zG5V{Q>Z-0ww_j{>S{%`)_bBFP|HrOJW;`1=E!$AswTj2dTe^%vT}7~@k6XoEc7jrc zo@uZ+$A{If?|m~iJGxBZ;H%Fv_qiL;^l6gc-6h=LZ~r(o>77+WOX2)EMjOvQ-5Kaq zE}Lqq6`kxjM`QIQ=H;g@yKzNlCmYW)Y1CRCdvV8AKHmw2JD2qr8c&EwNn+47n6+=- zcWbT`MN!eqJ9?xKx_(@3zLG1?s>H{k!`DQ)#Y;fo$1MBsC0x4$>XJ{sX|;>4XP$9L zgFh}dGLOY>^XXj%R-KKr;$Es0T2Hzjvc*br$GewrmhAjjWw&AWXT#X0JuY@rEW7-R zw+ODC7}svYz?xsqHk%{-r1$yDA9tO)xVPojf^aW8k#!HnHe8Q7;kSF<OV#_2&2RWU z*qEZWIK29Z+RoMcdBTMvF2>$&y|U_%@_eWI8*cf2J!f}czbYzpEqQi#XnEw)-CCdZ zqP_1<SQj^IFMG_>)t<%7Q`mmo;mmKnrfrxieyd1mb+P_SF@|3E8`~yNWZPw;qx4>c z>GtkJMQaT2zL>G|V(i+6JIfPGm^Udgt&f$RD#@H*?XgsO(&~*pQI{@OMkS_m+Qz-? zF1Pz2X<9G1ymDrAf?2fvn(IbP@@8%9&!^Apy~a|pZR6_{qch9wcJQREIH1UV`9SAE z(+o+8_^n^FvVQPh%rbCJVLfWlJUgmUsQj1e*)J;vb_a=+b9HIF;tSwjpX}Wzs<_;1 zd5f=2{@(jdObrpT7b>P~z8Q8rQP%QT(79c_9KMML1sAT?3mKk&v&`r3%Ts@1-v7I| z>&>r&w@Y{Su6}<dg`?1e>35*-zQjMq*OJ%O{oJ~R|GfJB3jteOtkj<?X9oX@^D$3! z>e{e)&FsS~_eFd%bm6zV7ksARUTo=V!M{-(ydMe3zY5&r@lG{owMD<oF`d$H6}B99 zN2LlS<z6|rzKKrAly|9La=0pAdSTo;pWT^vzyG`9`=nG`BVe9LUuM2_#LL#nY0K2? zKkdkUtF!Wx--?VflPG6L&p5qZhYZ<Qv|qoZXmiXiH%@)q$BGM+c>D|cA4T5PN)9Qv zcD*%YTEMABiH^U4A%1be)eT{lDs|_MXL>D(xpuod%)xf1@5<(D?ib&5*L#(h2f2%b z=d+jm?)?5k(Da+S@3aXWGXkcsJDa(w{GM8I+26Eer5l>f3taSHCHB26h+H(Uthek# zP;yEB?ez;+`(^*V^o{3oqK)!_z>iy;pB3I@xFZ*vX`sH9p<Ez3TGx5Lp`&@1O!Ll9 zA0_#l%^q)C7Wkd*;k1nB2_|x3^;e=wuK!KBp|S7s#)gmIRTe%ASg_1g>kRvq#a=5E z3%0q>=3c47^)R%`%OkfnedYSwd9mxA&+V&H6`ucHaf50912w)WeFq%_POUXPCH8h= ze1F2L%RfYW1HLs(J>;=&*{q9+m!_&7E!o_1&tS(6U%%dGW$DjKwtRiswOXGiu)3_Y zUZhs4Lt0e1V*m1*Z$`0YW}KVFT4YoCufP4%!eg>2?$ySJB7JpdmoHHAd;4rooSVsa zH>>Da&ixvPPH>&rw<lzZ_Ungf=WaIkX3x8Jp=6i*7C)==zS72G4PoAfYi1sMaCFHs zt{*ds4|^@VZJZ}l$?*1+FN;Rlt5dy<YlAN>Pu^c&@M!9EkJp<6pWap}X35<Bu&<<* zB`8f*R`1%rs!+vG3Wd?9wNq^mXWqWe*mz;%tEVdrK7>hqv-Fb`sCu<ASY*d?LxWH@ z37@r%tHm^KY`Ku*VdrPXtHhHKd|-*!w&wzmEaU{QELuOCYogxSOXttKZPzuseyp$I zT$x$lB%w9QE%lc~=Nt*x`XlN~Z||}oWq01|$&v|SGv8hp{~aR4*1kPROt3R5X9K6^ zG=~kJ4h7taop@!Np!bq1lVf+^ka<_Q)mBqFK7Qey8yrk+IWz9u(5h@)tG{Lf-(#V* zI|U9o<#Am1ZtrYV6IrDDVsh4c(Uey=EO&Pw`sK5BNrv4f)^(fa)w8gtzc9NQ;$$Lu z^1@;1Z#QDE+rBobI^(b5o!{N!ayRiUr`p>K)|^v$=Wc7i>Z!3|T6fCPSsxxfk)Pnm zbwop4^%#E){}RK8OXh_o*3LRMw=8bek6qSGK@5hR2PD+|SS@Yl9^yUNvmtfHyEPa6 zq}!DOIzvt0dd0Bo*+iR%tMJwL*~jmGw(CRrHQnpH3H3k4wq=*+#)#dw_OEK;Uu?fB zR^Q@(&)06-eOL6~SIqKz>Uj0WyC6lS(<dfLb{&gs`|0p>hVY9emmMt&TxJzA<i5ym z<IgahVZHE1j^CZotZPQCpR=nv4rzKjZ%S}tG4|&(>HK`Z?UeOttEEqmt+!sFUtb`@ zJA-?E@AF)9Hv_*M-%gt?OCG8DoxA=mZEn?(82b#xw+)X^7Ejx{{`swmck)XtEu2>` ziMX|6=1%cbQI-|n#h#2Q?FS5QC+E$7c=kZYUWG#iYiHin+<ZGRuCo6|Z*Fkqv4Fz{ zZHDPeKaR>hxOmIINm41gLUf&iqu_~HCYhu4+6S927)8gQbiNY(_?u2XXWE75%86OC zie#;s4HFi4e_}ddD6R9Y>RrZG8+(m?PuV?{E*GB+p3W7@vfD)G8{7OS_60kE8 znc6&DZ>p>J&@{$>?-}-4FU~H{z42r(OE~Y;YZDjdM$Mb{RMh5E@fo-5Jx_d^_8aXw zu)Jx9>GgV%ou;qu96vHQ_p*x?TVeYNmA!jhva>GD(ffL%`}zfu%!<t$YmXk6n0Q6% z$*yZhmYJ0N)nHk3U|!hoCZp?oud0?V?o^+3^Io0g<G{|jMV(rqLT@CV`5ARP8DEcL zsEC%dlTU2D7-1YFQ(YU`xnWA4%S?u(P25d+{rts?W|XlM)LVY)Ysi<CowRh_H{I_k za(thoJ~&<5aO+gHw8JeI;af(YqDP)_)SO+Pk$3am?cPl-8jf5WS?)YgG2(mY8TBr6 zZmD}YuaXD5fuQ5<3G$j97ZwUHxopF^p4H1+lBLYBT|XdCis8eiyS-_9pF}u66-j&U zY8Z7PQKvxLOwUDHlf8ag`r^X}CQd)uJngq=!ACy@se<65fEYQuaQ}&m<@>C2n>S9= zsMCIK`+V~L?eY9IXPV<a#K(XBckJw&=fB;)@78dVIoB3<hEr$z?Qh>sZ?bRrzVo<u z`t{tO6K+2CZ9k>==Z$m0@_n^C%1VR(_TOJtyQkj9M!0TI&##+PC0A7K3#cy*|Es-V zm(0G}&adB+(+eYPj;x(;?k~KVGri$`;x~Vr&42nY)LWmrJa_4PhM%q9g$>rlZ;^k$ zua5Dv$#+|U>*qK1?+Lwm#Jqa{{@C~1Z}0g2|I5yY^Yv8~14{o2zPNsU$3B<Fx)s+a zAK&v*ZTnCDtKui-$A16Imp7+<y~TQd{qlMV#TWPMPW-N@c7JqC@Yh@S3E>R!TNv*j zoptzUWpB6nv`>?t{k(N@|GuR^E`B*5TrU1s<I(AxH{aK})nr@W+`jaFdVR~s3nhMU z*}MHMA1dFw{P$Kg-z>%3H&@>kPt8C1;^Dhz_e($czkIfJV%?Uj{!hODd#9RMdu!J9 zN%<o8ohvTYzxgd;f90QM$Ugoe^`AVCTmS5xAO2R_{HJ|v*}qAO9k26Q-!7m1Y(1O( z?y{e%ccf?k>h=CS|Hr*=P0yn@JrVyh@BXdAYc-w!e&sGOKk?sPc<SN*f5a}|&bu$V z_5PH|_xJU_vdz!_el_-^e#PBQ^Z9wczx%s($>y4!0d>`jm+pxbudmy>Q2uK5uKRoc zXuZGJoYA)|i*LpAzkfBJsFk<L$gO)X-WxqV@|$J8NcFt<n)|kKTUquu`M;m{w`%{c z>gwrl{{|NqRPVc5zklD}1=oJOt7T7qzrDP9{?62Q`=fUh8)np1Pye}h{=x2b8oTa% z%)Y;S|3$X_KKteDZ8x5CdN_00ulfX+y2tu&EGOMQF~9kIZhm0x?roRv{ObSxBL3f> z{YMwA^<G~cv`|+(%l!F6z4#5OcC$0y1^oN;{Qu{P)}PYN%a5^!KPwcBx2iAHc%>J0 z<E@jm<ZIU4-4}Bf?AWo`Ja*ps(z3WTJ8=h=+8BxW%%aQdS3i3^>-|}q;^m@l+js9O zuP?LzK0A8hHtu}G-3jHB-|GLmA)l61{Y+PE`|ADrv+h?cnpw8u@y#tqyBiMuKEtr} z{W<nam9b|ZuTLo5K1D+3*`Hk*t2XUT{8buztv)7Xru}@Wblo(DlX_hiv1`)rf9$?; zZngDYXFK=fj}OhNy!-R#zg<&r?-Mwmw(H})sy+Qj%<E0xOFsU#?&0IL_wMielWx1^ zVsq{GyNjRe*Hwze{@z@@^PlkXT19=C;-I|6>5lb3KmVU)zGe35)49*S_jf;k>QZK( z|3B&8l4p4fjb_}<u<JZO_077g$3<`XT3zp+?i+mS(&=}yS<~ycT$rq1ySKRba&hyA zc@y6M(b=7_rd@ZpgM9tMqcP2Y7JdA`Lt@d5-gjX|c{hxIJ_`T+v-kMz*K^NS3zTI4 zzvp;1Zq9Vq;`+0nB^NNx{kX8;prmlkcg0z<|H3c)`>^KT>mP;b>>PjB@Ywe&JUPwb zbgxU{TWe*X;uG!%&&y-w7r6f@{K;^*U*KQG=a=W7E{H$ncz;rH&7r6}8^!AP*D(G5 zt0OV@=C0ejH%0zQ{FZm0`S~f+-xqUIUJ1rBeBOWK(ezr&YM0RI>+YNQ%RSSTs6SWz z{eQ#!?X!e?TBWb&iElT4)l<q|(`oXm@Mq=+y{F%ja!R?kMJ}8!a-rw!TFttn_58gz zFTVbD)a0nU+pC#8d$RfMq~BYoxyViXd@5#ReTU@4qx$m?>@#^hXLVlG{qpTQTOV|v zI<dXyL-=~ux`vPSSE3%=RQ-^@)^-2ah5Npj`qlsOdAig8--q2lAO8DU#d!Zm)oPFL zO{MkzzyC9#%o1;2SMgdAJOw;wmZv&+3b<->^W-xs3=H{c;3?pG0~5W9jFQ}(x3xDn zJ$9RRWB0zM;^oJcc}w)ggt%9)e#hd#pt3{wjzd|gd%}J3B-I6BEr%br*KLje^Q!(M z`w#hN-g6jE?$!?t%3M>pTgydg=bYkCPi`6q{`#@r{eJe-syR0jKfL7H>$oneYC+p9 z*%|ZKUDN(IYuB&qx8K|SW45k;y|%1)UFy<(?DJl)7n>oaGJo9~lU}<61%V>wuD{iK zd?ntN?f$S)uDDd{i(|jh(~BO_-92eKZ3-$fZYM)ePtKlGRj@bC?6RFr&WgfUo63I2 zuKs%QdhpJrQAKlJyj;Fo$CP2B?vH)i6Kelnp1P8~N@sau&DEg83Rjs8%qB7GhScjf z2U~yr5`EQa!Z}~(x9&f#gp{jgR{mqX|NqOI1Gz_ceSf(s(_1Ije|=P@BxB9WI-f*S zM(&MCcYl<W78lQ&ao~IM#o1{LHT@4?KDqtg;d-xDb=-`lYv&(uUj6j+#!U9>nG&@b z3wQlL-rnmqW7)#`to*IB<Wzf1ZTI!1o;^2-zkaPWPrv`<x;l>EpK9+;D4ctvj%CHq zmn=$?wnj18Z4tPeuW0^*^`+#N<<c+P!-T4~UHj!8x%U6Iyjve92X4%bDnEST#SO0< zevey=4bRTHCsP>t;B>Qzb*IhFKNpN_{{FZpWqNml@%uwp@867)6Ri8r>~rzd>!`X^ z>5k7czf^6!UY{l-mT-T6L9#sKo(9GQ$NHtr2Ibs&Qrv&H+~aGi(G0%t*l?$$p0UeK zcB_8;MQ2~fyba<<{y7UQyKmq4|8Vz)d&294mniJncJSMu52Y&ec`r#`j=X(tQO7-j z{FSdc|Jkm%rFD<<80)2EHXCEH>-wLch02^YZuqA({bTrqJ753Q-}&<I(c8TrUZsAC z*R(#r<ZJE=^C#lberM0k|L}U^%$)_Q9L#_F{ii-Qy{q82>ta^x#5K1xC%6dxU#=f| zBHrWT>m4hF--TcOwNb)epvU|8%?>+(p6}rw3k35s&#rg*9`Yh<?!OO?7kdr%Z8&RX z{On$c*tTg={L=4u+GHC%9QTLS?+GaNk4?X2zh&LJb9#<pu?dGZJM8ZJ>M{LtmHIjR z`Mo>LFO}cecS>#l#yRcQ6>%31FS}pisUE^_U>9{wd1Gx#Z@iJV{@PE0FTVH$ofj(l zT+~ov_SRqF-o(JyzOUsQ?z9wYvA>)iefik&J9g%d+jRv#sy(>5$@XpM1bc&3AG7Pf zeLJmL(H_WOP$Rhf-p7^q)1n{LXMR0*@FG{s8PC`84|e@rSj&*|;(W99fq4BM`z`-A zHV4mGw{J`8`G!5NznLYs)!t-rnsfBt_y227uKcqwvtjXpKZ}*rtuFq&c+bFiqk~(m z@sfk{Ul!#SW()s$b+v!X&Bf&px>tTtaGNETxl5#8u(5A)pO?-7WA&=&bDzVrTjXY* z6`6G}Q_%PNT$AAXFSE-&w6B=2{=BSjnY-z<--U-d(&TN;Cs%bo?O!c*S?c4Cqi%P; zUg_O(E9#Y7jDv;ij?-ULib}j^ex9^tdfSbl4R1<1i}gxl`pqIlPHE0C^0+Ryzd$p7 z;?q-li`HgV9j;GOmN&9aO>5gaq2m36(9?-W^pz9Cy@K0k-da8H)g*VGWe+ymrKbN@ zo?W=ka&igBp^s&$FWS~Qf5<VP=eg&0+l7x7Vy4w@3!i@3pzapCwg1d*;knb*4;`8~ zsb%rE7aOF`?}}?u6i(Bhm^fc+*I(u484GRtx9_l->ylx4o7-sT+4@ca?YkLsetofN z{Jf*T?3=*C(m5WHeMa8F)1NMk{-R!dlC$~H^Jzgcw;y-CKW{Qk()dc>44-nJwv40~ zdfvrOhwJ9BURiS9|8`g2&m(Eh;%VvH+j5)Emn)aJ`mrTWmz=oNtl@%A_s%$pG(EeS z-A~g_9yyb+N!x7UrQ=U#nmC@QPmyN-aWI8LC5$s(m!)im-Xn!)kNl2*_0F(;eaz$9 z+=n0h3a7`aN3VDnas5`#&ZA3sYi=0vT<*IRvtY;9b-E?WGZfOJPrMO&k|ni$dZN^p z)||(ZlRv6?%t*RmILRTrt@7sgkNfo2yxjKKa?Xq6mCJW;S^ZPb+Cg+>67!9Zzie03 z=SN109GIr%&K`f(WZ7#G=N)gKIL;HSY^$E#<<7hEPWo@#oy(Xm-VaHgwSIx)?X7!b z?HqRftB}^;(iE>|GhODVZ<Dn0BsZT^bKb}vHM1(wm(uj}n{|2LnV?fv-x?k`Dqs9? z$>i7uMRURHr?O&2-XyJ@cJ<Dctw$5~JM|r$cxFyLQ*lr4LD}xR3udUkIVG9x>=Ry7 zt61S|bm1`HtOGf7dTy^{&o#`SeR)~WlBC_IzSQ}AIj&-wdHWbc=kK61Ukql7t;|`@ zWs)Z*y-LVJi^r+^ltA3n#H-Id+0Uklipzu?JieP#y|q@fQHx2c<OA=m(=TflY<iLv zuvF5q<f=l`v3idemv$`>n!4C0VU4lbZ{aI<b}td`kkr!O_Hfs1iPw>7N9(lCw?<ZP zcXogLu}r_%xW+U}d$Met?8@A7Ta^-hDRE^_&nLC*k8LNt)R;WwtYGw(#epaE!Xk`f zIbvDQ26bL9D@$^A-P)ck?N(cqxIu0D(`Qv@IS>C_cs5F?XY=j)myQ!|L@xZkK}r0G zo{{wyTeC}QO(&BK7kO63d+*S-Q|LRApu<<5y~(}Ae3zkfe@Oi0i?;h^`g-3Al}?FE zSi1S=#r_@{X>Vhx$uT--o0CjteZDEj=ej?kt9eJl)r%qbb?(fyD!%l#?WEcVgWIAz zoNjo&;CS~g;$4Q_0rw~K9@YmQxsWQOy|Q)sCAEhvlMk01Fs{2FyMS-YyDjX(($;=Y zB<4Qzxa!YivaqT2(fZ3jbHudwC<L8qNLS~H>%CZZzdv#N`>%IOmu9bC^=Y+>oYyr! zJ*HiIzhxS3D(91HJG^%<U;myNeYb=JXI`%4<NSR#hL<b#nIM~r@h6_QzMp??tCuc0 zUZ?MLK_U8-_Qd05#}6j@Z`^&f>xSATE}=-L`0&h)((hMRFdcpMN8`8UuE>x-x7Jo@ zmcR9l(fiF^Y;kt!!3lP^UYptIzLC4sH=V61U!rne+J|{9jlNtDny#EZlP$w{w(`%Z z*fj3_*MC2kk1MTsf3&~<QhW9P@{em~tr2dk|0MLmI{tTC{Iy*byOZ}kpZ;F)Z>-hx ziNCK{>MPDUqJH?&`v8*^T~|A|2}PQEYqn}gNtxZS)Y}%b&dEHv!5~@Dh;RDhK%IV; zw54e^`dhZzomUEZU^G>&$ZLy(WtrBKD~UJff5=u9`E#;peQCntXx`#eVQrJ;N@etV zBC8GNpRX@%Uh~L?eVW~NR`XY-%}X4vWu8iJ+_X(;-=kp5xU3^(FZ3>-U2>rR>9Y;d zPxBH(W->nBGjrGM3636XUN6|FEUKODnfFFuRtt+Y@28E5(GTS|J>1Y+`MS_7$A5X5 zs~m@h*2}HdQ!3|4h<#!y;oHk=^s&jcf%$9D4xY%O_JdJw^)L9=-u&C+7#k<l>znyV z%GGJj&BWs^{cDevEEDK>YpK#(l%;-U+7>U*SR2U*l`Z1WZS7QkC@8TXlQNrephZ{O zwaQQb2Ai|G<+C?mcIZx6xl!?m%=_7&w_Pav6|MPst0?#O(AL>!H|{mM?e4Oj=S|)0 z_!8|aiJqznoAlNvy<Aa$|1e*G8-IE?<KeDvaZdfYN-Dj&lP4U`i(v7xYGz{jQD}aD z((9cGD{_mn*LBp!w<zS9>3n6~9kMH%E$Ms4{DiHB(Nn!W8e^Ajf30p^yh2C3IVbh2 z`y#Gw4wuE*wq9P=?4tT*r%3hbyDcZDF`Zrit7I3)LSMK3!+gqtZ#8eZ)-SvLH%ycH z*v7QxBlD&Hl&$ISl+kK#IkvLvZ1FC4%O7__(^g%XJ>y0V|Dr9-riCm;-rp0=UR^pm zr(}zr@oe1~tM3&Kt7Mnkd2zhh_u`#|>8tg>E}bjC{m$vdL0jE}h5Vb;8>X|LUTAE2 zMe*kGHr9LbTbFxXeYaDl%lGM>^~)@l)E_^r+gZ}V@Qyd2kgZ#K=BF8j5uSPG)>GEq zUhW+zmA|*J&pP#r;Lj!f&;R<0ZhY)e5EgAL;O*11aEk2HMPBbTcHNN=I8vzbO(C;U z!7sROy@Tc+@nFx?x4r?c?aEKjhn7{FWER$1C`FeXEK&bemGA%9_qjp4g?H<WjI2wm zQ|eU%6SqqD8ZxB2^M|ZT{&Ld6dfjtFm+lRFBiJ}+>RzAeIKA%RIT4;&R?0nJEbKyR zXFT4J8^Wb(vw<^d(^<8}i4L7V0|R8cMAUv9dnM$ud(-yZL!uK8hVU<W^Fms|PwLx= zD-xO;j~;(=<KFj2ox<VTd+S@C?UPp9XuWpZ-E%%G>$?JEnOG%S-dTJp6PUYOdv+`T z3x>euvR+4b8eZ+bYvP+SW15)swevxXON?8T=PoUMQ?m5%GTVplQv{~3*?L=pZ)eE{ z%VoyLou)d?jSAd0jp4uEs)PF+L^T-sG=sZJ6L)6ju#|Z5DW1?2ds(sm*ISi$ec~IH z!$cQKP2Qv3UwpZq|3w|&rk;O4EMERFQSUcj;v3#ww!^Ju&e8tZ-#7FseU`k;aX+6n z!||MD-R;TW=Ejw;OL%=G<*P5lCB9bqi5oVYJ#n>Ws&Tv5%j~@eb9O|?<(~88TzKdA zao3Z)?3RT(;wR6wCfeWma8hLTvld0JeaSK&5*88jOgDdRnqTC4?M8ihn#Q_9y|VUY znRUOubS>WdIbr{$+fqxGWxn#3;Iia%VEWs(-c%s+^`3}r6`bepFI^rRYqNIW%{)Wl ziYVbF2bb=NVlOKVc$2Z-du~p)VN8N?(T-^Wifc+_yidB=2z<H2w|n-xmdS_LZuhK^ zG*MbM{nQtkj5Mc8$)r^~&mOd~ulK&xyGf+)!OVzto_X~jOsAgN9dKQKS+M!Ri!ZZm z7g+6b3yiI>YY+Kv(QYzFe9FlS^R*_PNS*uk*4FUM^I`6eofR1>JvGa?isho6rWwe1 zOgWpHn{9t&@5_Dl8b^2R7ZJP2c=To0agF0WUt|M!xzsN{%2t0NX_^36#zVs?oo}Yq z&+yE8dT6@Zh67POTb-`iMw@(Cmo8H?|E#v5YRs}b2kO#aED2RhKbK;AFr=nG^GJa7 z(M6Z!64?(eUs$kx<%+}uS&MhR_YYoOlqvpgnTz$!#unZFvp%YZmHG!C=k;4C-Tk-D z#wgAIm5=R&?se>&1<k+J*i0)CEDhCu9eH@m=9qf1rOV#Bo;=g-X@9?U?$Jxdw+o)~ zMP%7ph|N~y-L&fOKZE5(r(^>+>u&h<yCmk@i-kGws^(T)y?^NL&x0?Mf+JdwWzQ@# zxWxb2Y2(GbSBF|vzp?bilza|SI2F^=Ges^p?AEQBxz-(5wtbj6rKf7v`PJ@EUi7vr zc5G!f?r68N462viZ#-LO*PiRj)xz~F^<HF}os~_#H_y7ZGxf>WL*YtmymdYnw)ZNl z%K2Orb$w@kr|$A<pDE7;?OGYs_ZB|m5?E8VGm~R&QT|aaYrFGqpGz*b+OQl?(lm2_ zcrDd2YD%=n##ukDA7~XUethVhh}pNY{HA5y$=4%wtiD{a`eHq;-qwwe>BArC-S<=7 zd2ZehO<Tqim@&h8;|xcg_Yo)V@fqx2d?0pGa_q@a#b%3lFLt){xXoage5`7sXlPi= zhaJAVS52Pzd1dXJz*h$xeiXgSu~qzfTp{4qnN9EXBEKZv*)Z4BKINg-r6ZfV`HvWB zs?K`jvu(3N;Nr;R2Ty%#xOc;|-tpnI7H5<59j6&@<e!%Kyv|@^SbNct)v}LPgm!Z( zYHsmWn&G3SdP!1g!oqH=4<3SbFJ7I@yJLOfcP!)XjP~aKR~2(U%u#PI+;FOmXVR0& zIT}9RuU>HN&f$@LzGb^;Xf1<K8RwFh&Mw8rUSD`GAbP>fD0b)ZL*@x_v)?{Eq9j&- zMe%t?wZPB0KQ|~Jj<UESSlqB|f{no0IMdTJYgT06;h6tX=3PT#Nqyf*k?JeA)9N|g zOQxlzZI>6EcJFA_Nu!%aM$6@XySK<sS*h=GbK(1QO8(Y9<=uiy^_(@YFL?Yz<6=(Z z4mL)mhnn-V6zyit{B&cZxWcp$<_<NTnpwRYS?VoSY;$a8Pxuk@^mb~Gez+tv)7?7x zPo+|CdmhYdSjb#@Q_@&l>Fh+-+`yck>bqvSZ&%yxlP@!K|Fz)l^*Ptqp3seWCc>0+ zy8B>4&%)Oiy`29#-`mWlvS<3oWL3j68gZ+6HbpsPpD*D(+Q$ANueCT(>ig;z>4_^l zjFyO(NG=PgzdP4(<L0LazfKEPNLi?GMol(n(+tOMhtpMx_k{&ii?o+N&$yLf*ILPO zJ2hZY>C}rRw?vq|BexxoGi#c7%7jbI@*PXe<V~ldYc{6a{oWn_dV1*Hikte&%f7Vv zyBV}9ef(Zi#QXUDMfuGim+Guttnk@1ocrR-cXR)?P1=2W=Yzg_pLU^uR3ndTw|{Jq z&OdW5O8t{w@SF7GPxS=9%$V+6l)L_MkOj}x=9zBW@-=%z^r~k+o^^fq-l?*)URTH_ zeiq3(oy~aqL(J?b*|YOQHfK$EUNtrJO5rJgf%}{yp7YXPs65}k=!sX%Nx@Hf+oauY zZBzD;yxS?Lyo9g)X-n!gkG^`ow(R2M*IP=~RCOLZxci~k<Ey<J;(gSYil%QqS)lUv zM?nrp+l2g<lVRRTyh6&oO5f@tL(g51*T38>p<wwmbls&+^QI~67lY>V8e1KB5!Zj9 zvOKO(D!eT0^I8kJB(ccS5UXjcyyj&p`_Fv3cw)=LXnw~zsRH5-%g>hGxOil7y{YqU zrOj8C{baDz%QVbCeakCIA~#h)HqrX9!|w{#m6gl&7rilPy|Hz|sqPC`Bss%$y(10X z&)pMVHnHkWNYv4vT_K14mOU^@bi3QQfbUb5YI(;^A#;gZzlq%PhGKbl9y&Jdik!eL zeCzbmGqYlk8(rMDyHsPNf5p0eQ?6Rb%~(@kbH(Y{z4N{qTDcD<=K2`5H9TCnU%I5q zao0mO)i<w93g1M`y(h*0bJDAD!_6+5r8aXsRz1I<+$ON>oSER&obx&6pEli1f6VNB zY?e$e%iOj%DUFlo%q#zTZ=uzh6t1^#1!|11bu4|8zp?2U+uNmkgP2k)zi2BfZGV~Z zUhY)i`l<C>uG>$l5}0xA+=5RZ1WK=dyd=XoJNHD(icU`7-JhM#v{egiF-&FX{CL65 zH8V8BOjWO9(U+Tx>=$0P-FT}YK%LuN%;e_IR~C_q%+oJrM)Qm8UT=B$V4djC;N!tR z9+n)*d%<DccJJIt4#jKY$61}$w!bM^-uif{`-M$r%{+Fmb?f<Nb2j_6AHAc#OMA)Y zvme){uDE?^f*4PTM^clUrpT8&4pSz6To!f7;Fv>^_$o2y$Y76!I_44S?(*(}W;QCh zcki#?lxbk4wuv=$lTnbG-p$~!XCFAin|9tP+_+%9+oMI%o9;f^!O2@AUiJB)<Gr>g zU8<KBrcXSlB=JyGY>VRJ`t>uH8CWN+(@C~oxckPbja|&8+ZVqqGrBbWFJH8pO@FfT zv3Otgx(0qe+k3jF%GA?*S<G)9lG!49tW9Y0_GKIVbc+lZ#JGN|Ha^|+{qDaDOq#P7 z`mu?w7vPy|wYX#Zs;R+GUaZ)Dvafm1aux5{tF3ISq%1<*b=jo!FLK#RmmRBLt*R^j zS6BXlW_GXo?k<jPzofL=+7f;qnsAXfv^jImeZ6h9#`nUW`rO$renjE6gEMoYOh=@r z%k>Wzv$Fd<mbsK`d$Nk0J+g_ThxKOvsz?u=h0NExCo88(&({AQdqDq>*Z!re*j8<i zZ(4gQGOPVy^v@-3uQHz7-Y;$Z{QbrLs`}a8|1X){&XQgyo}_Q>GUGz>G3S#aVZRMe zNperSd8jLTt$Oyf5?irF;inl7OKwSM@HjDTl5Vw(T65v_2W%yYGp9bE6>?yPgkG-b z5}^b2p4ZQp?OrS0_r;?5Q-gvPTk(TEMfPXCxK&TAG+A;@(=<@_=<}pXlLAwrAN;e* zjWagaU!796M!&Yu`K<ftjT_y6`CXXCc`}&)Zfv|_(5zCX6VcMzns<MEl9LtfnedsZ z>)4_vxwe+N2Tm3H_@(T8UG1}7!|QUIYLCSU)~I*SMD=Ih5P3Vhwq^c@D`y(b4o!TL zu;eXo-<4aZ%Ac0l&zt14kwtT%w&&v;VO*OIBu;%)(UDs3wqxznH)+$0Vhk^q?|NvF zEVW~gYxO1Go|)NfpGBX)yB1J1M@Hb8g(zpc^|37%+}JZ>o+h6YVC7A@z2ZnF-^K{t z7ph@PJWpMGTqv(=xnT3P29C(iCw*roJ&%c-;nl2X8hdnKAGdMjGS6^>H$2k8CBGAR zcTHW9vhJF72It+SVf9i8+w3kDx-B@uV$J8G$Qge6X`6XfP5$lq?6H{(N<wr)ToS#F zFYl6ATq=7rb?#9EsYR!}X7Mgn5Lnun;c%;@=bibB7QyOCrh!imF4SM(T&~jNd19H- z;S<kX7<pVxl@}gv3$937r8DuPLHF0WyQW^t-XNwV(Ot3UbFt*1AonNrmoF5m&p0#b zNW<&PIo5NRFZPsv`N>(h{DGijV(P-Y_P3UM->h6})nKU8EYZCr)n&Vy#QajN6whK2 zs|ULmolaQMr5$r2aWzvD|K&){qq*C*M{N*JTNYWSzQA{O`fponffOB`s+jXp;yR@( zOqSTbcV^G!F6Y@+bWM1w^Y@FM#r4x(pY@S>xOc9?p0v;BzCF2q>~&jT_6gR1hqLdk zzjMa!zIoQWMIW|tO59~)J2U<A7QJbIx$k_rD`RBocR1T$FI!5<^1|Ne#gei0D~m!V z|9kv8Ie*sr*PjpUKE0xU-5G_8Kb=CIe;GRzM(nBU-1<+sdYfd-?UnD;m-8KPVtAlC z<7a&)-+_AeU(=l}??zTJPms%qXK=gP{N>%d*TM$N_ib-jvFrKWv%QCoto!+Q;l6wN z%gfgN|7iI5{Pal%Dpvd0zx*^^w>)4%`AaL$Gu=r+-|xHmE7<RP_nR%|wz>Qno4ELQ z21+OF_ga5nR_DHGUgE2lvJ==D=Cv^9A7Xk{6PNtDb!mN#V)Z=kpP!?<%GcPJn<`bc zKg!gfuv_18{;96-R^OI=x0Sf=x$MZUi@UaSmVfa3o}Det;;_tN)m83|TMc*R9r@$S zxZm8If998aVe{L}Ki)l>a5w*~^O>(5+ZE<$R7)S*ePw>g(_DqK6Wk5-4%@$|o3gK9 z^8bIEK40c+lij~;%lCTov+^c(yUKow+~J=6>(tVpzbo~<5B{8{^EGA9vgMoJs`@Xq zuaSPy`mo+>&4wSJvnR)i{nqLDs`901@4hS9Hp|}KjQyxyeAR%R(^+`${*;ni)4891 zmDWwHjs0=3?cT)lUH9+SrIkyoGTjnkY_)p-UUrg{K0{=Ty!{p-Q$E}GAM0aIUo)|- zh_;byVUd4$d3U<}?A5!!?#_|-JLvc~=6AjAy7&O^lC3u#qkosMS_mweSwDA*=iB~u zQCbCDCzoscpD*RljZ1gVw^uuGJ-*6MzbIyYV+{Mu^;Z&ZH*gue+P2lgF=wtK)2sjn z)m?XQt-R``E8AkxxmK;z<I<$)KpCz2O-a>dlWx7L<P%_KzM=m1c-X?`rDD4JJh2H| zE(v^LFuUm`d;G*&<F~q|Ul@xUn_0cLlzd3MJ~6cNvQQJ-LdG9bVqfP>wq@D2c4-r< z>aKfVPB*@3O}lB7^x*aDHtq*XJ&n^Cx0F6k_L{wJc7FlOwQCM*_n*Jx|M>WxU0J{K zo}aI0tZ8wqzPz)d<I^3U<%ORs8Kd7nQvR@TndyeD)i(~zV9@kr?4NZ(c!T{_Kj(Mf zRHp|2y;SE^$S?S&>I2V`we}3ozXdZ+Z3%b0BYgB#LU4_>g|38)Uguw#xb^cw^KW!B z-&>GBvu%~C`GSMfj(^*zs{U1NWz{E!KUNI$H1*<Ti|QYKoVoo&s($>HiEYLGp)A=U zEWeFJcRJ43JXvYX&=TdI)_9Mr*X_<91JCI1(@&Q8e}8@Y`}2Fpg|gK7w=86=yu3)> zJjTS`f7Z|CW(;o*?wS1Vr0E)&0J&r4x_)76#T>XLD%@&bF&<23IivexrF;FAztLYe z^~xuH_>!Q1`r7x-`nR{|$;69zR>$fzOtRm?>EH6RefBl3GwWZjJZ`saU*rUyLmg4y zOV=uT?K_d>9FolcYPv*{f~l#Ye)N3#Y^BN7CR>*VG{{~$t9FO&np5_N6LCUj%h;bV zuDvX#p582Qcb$|#`47g+uM2d%<)SBTso6Dud8$TL?wU7~zXlza*kD!9)%<I2^R!=0 zyBNH;bG<HIJu}?DzGrdV;kl{17q8g3_Uomfo3>{?veGNm>ozgX(KJ}4JK<2u_qEes z@{4h`oWK55VdYP?<-L*lC+a#cTswZtCH~Ki<*S1gs=hvxz9nMASUju$<PR<lsSO_( zZ>)RrZE^m6Ir~EoJ};JGQA~(kyYYMd`qtBe3&L`v9zHhZII-^4!|%@djb`_lo3k(F z`QQGXV!zMw>i^&Q@$TQAYizu~^v}wStJWWXKQ|YcpYM|*Blf_Ug^%X}$9w4mX~(Ko zMKQQar879jiu^2L<(Zkt9Q40Lu6Fye>*)-a@A&-uoXJ(w{^_!$+a%Zcp6~0+EA)dt z+SNbWZ|5d+C+R`?+55uJihqlHU$^;p`Q!Pu{%iMNEBbbQf5Q9RsN{Sd%ltLXYi-TU z?B}iF448MzfqC`!8zQW`?zMz`ZO~a&U;Fqif8Ir5<9#JRU;IA()c>3C39SvYN<$xt zgdMXp$oJiF>q<)82M>9_vQ6uh<|H?tp8dK1-ear%hw86a#c0^<eN*}M(Vu5;_k`~{ zr~fLp>a_ryK;>VJo}JxEaufK)M33#Nzbf&~o$>6>=OHWC{G59%F`<d!eV$%NZq)tw zMYB?SAGTZRX12vP&0DV6Su3CQ$IR@(La)33Zr}g+&BOZb?fT#A|3AHxeV=W4{QiK( zhFe?gnCt)UjB8!=r~b<CpZW)PPg}o2c+vfoyC)U><RuQ(|Gr)SJNBmP52puv5AF%R zwf<=h@5|-qw;Jx0SU<l}u{wUKe-$V5--@@ddFQTuzr!Z<=I7n3@4GdhuPVEAc(PF8 zajPGf?6*u?xZeJ>{5uofs%%DnU1#CNb{@U{RWnQ$zCF3hKIqyLm38Y~%j&nL{(n{` z^V7<@uO=|(`|j^%@=^Uh@12X*=l%cC{@!kP)i2>s#jg)9zn1Q5{`SH07gO&1yW<o+ z-+udqYw5NZ-bvXv=U(xfd_i1Y@vF+0tDYCSC)-JHT*K60KUYNH_s{22r@Ys$Z`k{f zYs2;T2mij~uix=wM&=C_hfgP6)t9bsxmVB4W1Ii`t-MrH-M-m;F+w+HhjGU2;r+Bf z;PjPUe5^*c>dc<WVhwxbUNBEkwq6_jbV-<-e^|--s|#2@FBUjsle)@(lEH&#U#u3| zRqij2tDL?q({#^dJGJ+x4s_=GRz_a0+jrtf`+t_4Bl5HR!(^{0*5{e>D{OLZOkKm9 zy!vKy{k6Xbs$_1l)St-o(B&7etYm)h_eD74y~lrQCN90sShwzf<H9e+zj9XFA1`%h zez{LP;-|PlooNqu;`RUYT4L)NC%l*Xx$pM<>Yw*sl`r-7?*CeRX|9;!1pdPex{klD z6x9Ep_rv-7r~45n%G=`a^ZsABaH%JYRPN-z(^K}HV~qP)FPXpVVe!v5o`!nXqF>fs zj^LYgd865jU#6~>Z#Mn#Ui-oD#qLLUzJ>JUO{-oPV4qrgcAwh8iP5bw+um_s`*kvC zPIiCkq>u<R16GB(8m~UZ#r87oTa+{R&<FK`_gXjguPm7D<mVjxX^FzBc|YT$m&!+b zh0WIgFei<%fiqw(x5L)@y{Co##(dp1o0Fr`hh;-k*@Agxze?s@d}3{S)i-nROgXmm zUFzwRv(k(bva8PhV{o2#^_|a6zPv0(|Ll`_>tak>|6g`IxVM5?&BY=8RPe4+y*JmI z{d8<EFTeJu&PO3&%I6G+%hg{@rpyVlwcdHWlIvFK|8F|&%Zr}3W}EL{TvGpD*7avv zrTn#D|5A@u&SUuYHl|)rp}u|P{go$X*xJqh(feb=KP9smH}>+y|F8ew;mz>gqQvul z9pmC_{yV<}f3V#8cbC$a&((i^eLOg`HRp<Y?bpxAnbi*ko@{^iVsB5auKvCy^M1b$ zx>7H1{h0A~!A4_s&AJC2wekO|E*s@7Gp)b6<hXme{?y6;_CKm|Ed6`1@`mz!);}-v zLu#!)zhM0T@ALmXB5m`^>vlb!_TluDm-_QfZ<;g)Ml>r#RqTHg<}QB!UxLezUCk4} zzue;A-nxygWS!l)opTcEe@h+vE&c6k^~a^Fch8y6bo)_CT5&~Wbm;^YlY_U-?=Ss& z{q3b+(h~JAUreie_444Osh>n5=ABt0dnIzg+6rH%^3J;Rj8$S8iIZJY_1hwO*X-8# zZoe;MkG%8$`}+I$$$Y4rZ1pCVDNH=+tMIj8x$mdG)mQ9#es<}l`1k*oq>KGJeU5jZ zeZSq^C5-nA|1xe<`(k9D;U(1|cy{Zl)nS|cm!E#!pC1!vyQZGuaKb-*_9i<Prui>_ zin=Vk-=y)xGVp`!>3g>6KOcUy<nCy9NV<0?EazYDAFBtezHZLT`&RV*|FO7h6K~Y- z=N5nCz2k%Lx38Rg{!9Gc^<VbQ>-?pB`_&VxFLwNSRQvZ7!*}bIUoWjZyE3eIo?pHn zzkgrdxurj4XZ(BhCwn(r!v1>Bg#SVf>=yR-ovVxbu4L7I&r{h^6;obQ(3-E8KCia+ zWhU3$R^CSomT8G^yR%CwI{ruQ)#K`g+C1;_mR>B?{PxJ!pY@1$LrHvDW!&nVfH|)= zlos52@c*0PiZ7*xE57KlpAUTMz4UQ;_s<ithW`(@R_4pwdQSg*JYH+^DzRnpW+g>G zmD--CPyM>#a^}^)h9{@XYTNv&-1)!y*Z*UG<WW{rMFieZR?JaiU^o#3UOP2CZ$BeP z{o9)FlWu#=dj7wPtIut>_2m~@5<-5LU&S^scuZj7bzm;4E@!$YeQ45)&?9>f?|o={ zQZ-{$MA)o%H#>S~Yqy557=14O`CDej1^@q59f$l<Q+G~35^uNY`-$UyqSBo&kDi;} zzj|qbd+nd=^X>n9Vb8l3pZC1xxb7l>nC<(m5;Eu1*Z+JW=K4#r?e(sG>vw<me0D&? z_wt8@b3cEydAWJ&v|p2F&YO8_`A&(Z2?dj$$y+bH_G!zb-BXLAzWw~>cKY(AGxP0B ztn6LG7MAjapDtSc<I_f+9EBA2I+?DmCw_gpxG_ola+k{Q8-|m1Y)CRNznWxhxNb7{ zdXBa8dBq(+{GPnUzW(6z=(h=RGWzo$9PeK!&OY}H*ZvxtyQgDMYuS}`C3F1{y|%ES zS4QJe+O)q<AOHPZnaF2<&h@>&@B??g^Wy*iF!J1$j*?JIz4%i!ro?LEG|RY}aFv(O z`LbN=ckW%O?mE%s`R}>sGF|+QE}wd5boR@sKgG}G4sZUvX#Msr>-WF+t53S~G;Ru0 zW}WS157W)A2cGjKxyn9~+i$dY0-x^gA9qepzF=%!f2HS}|MPvbZD&ud?E7uN>&rj) z4mabad1owNetFlkx@o<?(Ow(gt&gAg$wsy3zs!i*7S<NN`XB%0r=1V@<qrsbuDJdv z{4>KG{YBeP-Ls4gYOei%uD90dgBRO`de+CitS4+VYIa3Nr`J|<eA?^wmyP+!ynnnp ze(y5s_PcGL*K{X&{egeQb42Q^-2R_mf9aRlj&oBUJvqmG`}6btzE8Xzb`|WZxXs%2 z!uI35-Sb}BPs&>Sh}mG>lzCDQTsQ2fzH65M$s(5d)%qyO`sR~|Ph7wJBLCjK)obI@ z|C=X0uV;<Azr4=BuKbC~-d8jC&TE;uI`omswtt`QSl;`@`{<4IT)#<KZQ%?mlYZFO zu6O?D)_L!l@7&7$FR%G0)-d<HKA_rhkKys{s5@F8=UxBfS9ad<`mZm~&+kfAzj-z1 z-BE-7g`2*eIkb20M*)L95+PjI=E|wL70B&6@o(qnkB?PVGwR(KoGK(|m(QFU6?O65 zk*ANlCHozJHQv52GWmYs^D=gQuDkbs<%hjI^Q!H!@YZ<;zImF|>8{zc?CIo7FIj{1 zId<0Xb=cMNEnP(ZNXFk~pV=E`t7vc8@#9}c)hR>!{XCBL<qk(@H)mhxKAWzvpL5mC z=#SritNv(Pm{(CVed)f5!S(;`ZZrMA@G`z@v8u+*&*%6Hs(+i=F&M6yepGft{*09Q z*7a{5ilj-d&%Md5^!{XBbE5tw8HPtj-2cDmFAK|<?{EIVr0n0K?47P(>b_ii<Fjt! z#{-@cAB;o8^!67WSYB6s(xNtvyKZBzX!?nleO93<E-9P#qziBtoIU-pjeqgedalG{ z=Q24D=bW9Ac+0UZ_rK(vcg^yP_D<9LUfCwOJx1<%XL4J0QEk+f^LH~YZJ871aYFyv zr)~Lbu0B0xdhHX_Ax))#ut_BxeNytzT=#nzxR&g7I{34}YR$219p5cXI+9|m10q;L zmSjggzWVZ5;i162*S;+c-(Y+@c7@Xpe(BWuDO_G!dHt`hq%Xg>DWByDW3y&OlJCx& z?+#3@d2l9#yQyH$?Hki_BL!@3`=zZCC{ZjiI+=2LcHoP`UH1i(Z%HV8UYEi-OGU57 z^n7Jjd*7^+J$%JH6K~A*Qe$4VjGbMqP$+j^Zb7cr(ier>giVWr1v$%jE_n(XewJCc ziSgEL$NH9=pMzs1r?1P@IBpxuzhvht^+MT?U9(c}EfHiho}8?%vsHD;%W1lT!G26n zUwH7yq^A0KGAG`;s%x%vEqhs6mGsWnf=*jy7kdXushL=-^*<AEI&Jj$w`UOB4wLEq z*{x@9EZnm8dZ*oiEi<(gQ}&%qs(HVGWs;;z$`vJZEwRY@IUgg}i@UgIm@YP6vLxMN z&sFBuZ>L)YeRMXTmNlQTtL?k=wA9_1ft@1zZ<V=PwQ?41Ym}L#F#YnH)he!cL{FDy zcuy{!v-#_W^yeFw_OE)ZaEN`{j-*|6FFqGd3AK&-IP2%OJI=hB3C=h8*=sW%>`Ik7 zyl&yr-zPMDr+s@Zc;{>V>K$60tBxElRbH^I>dw^NvO5<gSw@*3UliqZIPXF0?W~Rq z7gHwdo{0)5YCO+>$m;l8!;=bpPd%*TzrT^Y?0<Y${KRu53ks*~JLSY+lc94vF)&5K z?2&5aQvLAKv$`UWZ=8`m9m7-Z{X{_i#HICy_v3E=S$L1{b>unSznzwcbZqN4i6vPm zC2PN2Xn7{}=Mw3b3vArxqK`8?6w7B{l1e#};1m>eeRI2qS%C4j{>&bqsnO0U1<T`t zdrt&=&e;*t$<f9pJ<s7+hGq7Tiu?{izvp{q@$j%@ab(;$d_7}-(yE0AC!S6Wp2FfN zUC8A-K_x-wqJmWX^n^9$g=|8v-Y{LN?|&+ERcv;O>+^3}VY?zjGKveY-OaoBF=f-u z%s)Kwec`*d9G%U)bz!*jA+F1wwqajmZhx&%RJl1%Pc){rV$<|K;k=DUKD~5WQo2Pa z<lvpEo$Oc7@}0Ah=snST*0Ltja<!;_-?QI(&sQ0o%UxC-_%v<n)#I<crevmUd*2q5 z<+Z5(aH3?=s;dXi{N%M$;X6{G)W1!8lmCV6)AJUxXC*|v@C$Ggu3o%g-@X33NoMvg zD`OLdOOGXFHHe1B^dB!?c;{fJ%+;K|)5Yf)&Wn2Oy1_K9Ze!%;r7ZoYa(iF5OjqA0 zk;8vnSNX_~8Fw}^b={cOmh7G-DAwcrW8;?je5__tEcM)1+Qas~3;495c}ePvEl#r> z^A=l*uK$z~dM16dkGRXsOYKbR8!L<*cQ<P^H#^?o59>|Uo2`~rl)GeC^xD3e@3fMh zT)F+LVp31pJuOR)BExs9TweJ+7gc$8typ>8*GP{W6OLsWZ?RwdOxkLhdZ4}Qg&iSV zmg*$jK3uSW@s77i^`1FJrJN^a64%aJbkDCWM9p!gp?yYR>pJn?4O~)=Ynk%r%1%9a zNYYok)FO%R-YRbY?DhR6#z);gn65tCEp%_9L5HVd%;agoZOdB@e^|JIXG)Ra*Wdp? zJvSG=xBb;|^|yzU|Lsl-3*O8TUElk|d0nl#{%n(bZ*Sf|b-I7bKgG%QpDilp%@O5L zFU&0IsS;t{*`<@hQ55o|b@!yy+eg}>?GK2g&SX*LKG36jLM8CnV;|}6H<vV8>mJQy zZggH@ksuxX>}yHmr#m5QR_ryJ&@y#i$HXOX&dB9lKD%O(O|8n;m4`DD&+j_?vnKCm z%H&YdjxSTy*)r$%eU^$8Z4Ef~>r}mOtDD9aAH&YG8UbBfLmsz3uG$|P=9p`~l=pE{ zFw5%}SC5`=7te&hUb=chwtnN1mIuoUO*fjF-*l9lQ?jwZRMY+L%PZL@Y#Eojr-}BM zI4ZbpRckyLxWjFULEI6G0{yxAg01)Y!=(;=k+>{9MMsKbRnGc;zPuonBbK&#PA)g< ziw;e(YOGl3Z={j`MJPCt$7|`wnirEU_|5y?+9L31ip(wT8)?bxWws(OfB&rz?*H>A zpz!kHWp2y9&6=QH^We<xr0eoISB#9N%iJ+7sWUrX_A6()&=<pRY_W-s<}1!mtU5Do zOG3iYiVMfT1)S_j>sCB{@}8e7f2@+?Ti)4|m96SmChwi$Xvp-bA|Us~)tD{4dOHiJ z9m!L07O<C=UCX-s#h0$u9kNym7R855-B~X^Y<Qc`{_~pT%Tq}adUp>-m>m$CaqZBu zZO=+(NVk}VZw|QWm9w&=XM>EvQKiOfs>YsGYrIOAYxMe<@9wSZiM&6T_j5)T_v}tn zMXeVS&w2bz>tjL<Yfl}2-e_lhW#5y8&$25neVg*6`$?PRffz62uXDbfWwf5H%e0J( zRbkb1Q9-Yc7weX7Uo(+!8gr>M>)iy!Zx8p)d|bg%DYW6~y{|KaymdUfHw5<bPrJMF zUdeC9{-ofwU9&X#B5!6mE7>Zw{dNwSckolxVyCi6CRq;Ce<usn^UPSh#?S2Gl0$!! zZ%uBkX$WsFom@0I;>&bt^=bVx<~XvNuS;pZ6Lh9<ySw21<vaFf9b06h+cK9=^n;&X zNb~1wg_Ga$hnSe}ID0Vh$<==iITu*Hy{~0G_uX8YZ{J>Vz2Qd5D}&QDD}y{Y%laEQ zq@U*DU6sy%;)czdXOc%wY}j5O@Mw<C)X+@h<13z}S+V*4HFRs+GeJV|%;y_wwq5QO zF9ch*XfFMzvFyn!1t~k%E}?y8nN2Uu?k)3XF*2GHwJ}OgN&1TCV!Oy2$+pF<J##8{ z*Qx!C+`NU2JwuMwa~|vEH0SSWRl(}VI4lkraH@IkXq}-IQ6;m-y}iTmZ6MpZdjA!5 zVj`~V4)*MdC=QIgaeRSG#ij5&&i!HEU$0Z?(KNI!dRMmg_mW4+#b=WEw=Pr@+q%TY znEhw0*`wIrR{?xNK`XDXzQx;hrf+7GjN^oO{jQVeI(AjM`HRieH|I^f5#*XZ`BZ08 zT0o;-vVo<?-j0V`PtN)>BkiJZSVu(RkH-3Me0LW&oa714n|YIG^GQqnoL{fjU0?p( zYTGH<b5X|^yuHwB$k{!6Qp~yOqPz3IG~Sdy=f?f?!N)qsj^nW<5i&n7ZcySo?z)dR z!NTjBlikr-mWij6p4_e$V&e>ZFsEp%z_Oayd5^5ECxu(gXH`C4xUZ&C`J!FQhWj&f zb1#|rKCU<A+dA#&g2p=a>$f`6zQxt%e3Y77f5K<?p0ud!y*Cs1PHf@JXzssNBwBqo z?)#;=OTV4!J^g9p@vM_xu1A+_ELfvZT<LF6tiSO3mLu6G)ncAEvE?cGMP!_jsYvr{ zRedBe_4wf?gVWtx*LAQL_-bfRy8l-BvVykMqQ!xRyhSo|>-EB&SEbJsaXtLmGR39c zGUZXz3h%`ktCkzZe=}QsAX=>Uyu@*L6_?;bnT@_doHLkqKFU}TBo|+H_bvzj^4$mj zX{0l|#w@88Nta?=T%*2q+Yv(rwru0gt$Sw{wnR90Pgp9GvO0k;Q%-!M)<LD`o8AdU zezm=M?B#`f?t<Z_MUM3>Zwh(c_fCvASsM21lGh=gn)aDTPROKhx+j}lt(3GNWq00+ zz%w%+SBm&@Z|9uBz_;AR{C-p0+Ea5bDH!H1KP0@%Uq+y6gRNY|^7Y@ADZX$GKYVk> z{1(A^E2s6awMBos8+b8z%CC%B){&*FqNGA@FWDY&XaTqR!3m4Q4m<CaGpt{*`qtZT z#j6%I8Jga1Sg~JQ?YN!sr8&9#r|Ysy&zSeVR%-SkHj~KAp8kn}L05ORUvg!*zV42A zWszgJ`$UVdqAc+<6?;v>|K(hEzOt_S{FRzJ=E?^x6xs`nyd2ibS{IsaI<fJg``(#b zmbY&3|F+b_Q0&Z>Ibr*3-=F*2cxvOVta`zhnr^~eb}tJfSEV1;+_mJy-C6h7{_bt& zVp0+j*pOnO$t>8!J8Qn$g-u-3=j;<*Rb-<tW+I|wF>U2cV?Q%S_FIcixxRX;bE_$& z@%CPZZ_79A{rpQPN{4UD{)jI#R_>Pn5|iKb#&yEa>-QR-9n-PAVdl5;cxIAy^v-#X za~|wIQGc#`<BH{nO->d!N=Z!cmDzSC#`RdTPm5>uR*l!o)(BTzN@Y5%KlkSq>o1zg z8OnzW-{m`P>`+?}@an8r)olG=l6lqpOgt=hc>4bIc<lUhhJ0w-8_(I1bEIFcd7gay z-Gs>MO5ca;x}19soH`}&W_z}Oi^G&FPybnn^~e<(%x-n5Ut#rlBFD0cKLua*3Y^%M z!kw~2<o@NbeRIEjKa&@InDN%*hs}mFpD@X1d5Y<u7VLg9HKgyz%ZXMjkG9QmXtxy3 zOF1mn)E3K{`-{Wy?@6uBDi`KGy*kqlF6_&RFi5wyDDPz5y1wF=^s>NwyH}YTX7=bD zkzB;Ogg15h{WDtIq$2Cp?2n~0_5V(gGM<qvbyRlEI%A20n!#dAo%w?fZOvFSU;Ag< z)r!Xk77B+xM7ShHy<<P9!+Z8`$!>|@wn;0da>}Z)PkorBvVk*z)4%nQPeJCh4B`9H z4N;dm6x#|uW?CLBN}2zC<4GT-k2@7h`X$%tc#DbbYGxFP<hdn%xK_})zP;_z><!+F zR!m@h92C>mUNXI~{4B%$-m2Hko6XC$?UqOvF<+VEbRZ|xR>seu#58VJ#+LQJ-c4vJ zm#WJMnI@aA-RwGzJ44i}ac%VnfqQy|cDkD!Cx1@fG$C*rPx7qPY~>rbCWUMLRtT9D zp(7kP$J5p)>dXSyoN0euUUYZNW2^7I|J}FPV*VkfmRxTQ^UPWs-|Js5T%Gz(Md!G| zC5y7NitTGVW@p`O>3)Ci%=DV?)t@&d-dz9u=^^j?Cr@%L3s(8JcFvtkKitn8k14Cw z$z8bMbLlkho6F1p<@siAF%oay_&8W;mG|MAttY?TK6&fqTAf9UZdRFFYut|6V&v$3 zVru>NQ+<!>Qr^r}`l=M3e%0mWdVcMLi++3S7lz%`I{J+D%GEHXut!rZORLjVOgE=R zgoXv1T}jmP@OW~3*D7D{kX0?cYuL2vpK#_{-|h=4zASuo(#zD2xdFfTDiyxrT6y7N z#?v*n-GThR_U4rp)={&XHj0&ZuPiCqT%^`}>{XaYz1p^n?yFH#%+lt~oG@pW$j0tI z-^cxnI)mOkl~}oA1Lv2xZDLoo{6v$@v}Q^q|EgsYZ>l^z`_IPhbMl{@<S0J5EZtz{ zEt6YkWZHkNk?IfSx!=O^NV_nMd4Ab0&+}9G-|@UXwI<1LwPI0##Lib)&w{Q-7H10E z78)Nu@b{#U(W-m(4sJUG84I;HUJ&a{-l&zcW8J<K{yp23Wp;DyT)FGaD%DJty+Ow% z4|%>^n8C9;ZROXFnN7FXm@Yrz+H#{?;Wg(1$5{Ont;}z?EIwwr<-OGlg&RMn*eD!2 z5M-i!x{YtS?3tFYWyS2XR%KVbxfyg)$iSv++u=BSy=#9yaIlLx%T(3pt>1r0_@M{y zte((-Q!{#0u5#3-oe_F;<^GdRf$wgdjSAkytap2JN?O*-s4WsFPK#Tdj26xP`u%L( zvcQb`?gy_sJvE}X9L!>qE)&gPd3;w<hm^Id`OymTH~o80*cd&0;1E^#W=HhwRg-GH zq=k=4HqXe-Zpk@id6?yMl%BhFK>e1D$0a6hp4fis)h07ruQ-k)hL2t~9ucul+WBl@ z+{~U>k6UcVRN|EmH*AtP-&LBQ@N4nIyqRvn_E%ajmYi8TQ)ILI!)yAShMUFOS)JCp z-6_dd6INA`I6KF2TfjH*-&>C?x*TZR&r#L+#Y}WxVQzBqmaDAXS69thoXL3fufjCb z`jkz1B5cPZJQgoZGrZ(8SET>A>9yNN?S);v-zu+nm7Ok<>gV72%xUSe{!&ea-@h(N z%06%_5sS7HUi&m6?t**YI{w#3j&1j}kbk$;*GbQEkwmNBOZ`WN_Yw-lH?c2!+_9Ni zEJJFW=*y#Sr+H*{?4Iste(6RKo9(+9+)RDFH#6!jr!JC^fA`xdKz{e$o??MJ53|y5 zT#e*EC3|r0A+fD1p3LAX(S3D3M*a51=84=<X16D_^)3+B3I6doq+s^a`0y7y_UrK< zUbX&t*KzZ`cE-K6tJ1GH2M0*bo!MJ8dFi2yuL;UWDh}=x&b%$~@mN&i*ArrQJ!Cdc z%bj7+%su;P+JpL(+0QH{m)~VI)VY4)gj<As(sV7y+k&@p<`|xoyZAQ9w86#rXT<Su zO)^W)>L`k2od3T0PebLmU%!jRPjK%y&X;WKjk<e1Lpmz5!t+m@edZ*wTff8J?Yi{S z{Y?Dducq}gU;A$M4CCGz|1Q|)&F0AyUv-?m%kuOs>+!q<+l;VFUG>V%6Pjl%HA<<R zEtng?S(&x(A>ZN}i-nwZC$6l!+|uZLbWQWaS8nc7f`87wTyZDQ+|g*;CZSbHO)qY~ znaAJ1JF~JRuxZXJ<*d+vNe^EO&d+?Dm@rA9-oPoq>2>eQa%1n#C#I(I+QQZCJb!kq z7R<_c^YX2OI#=80WQ~}c-diK;-EZ;9USAWzsnnIWNh;52?TW@{qRXDna&uSozW(*% zM+;HqZ&AH++dsPn$mVqM&0$pXU^4x@aBGD^rNqm&!^~TYR=+LWHQUE?TbP5l#EMrc zpTEpnQ+Q)R1>>U|hVN#IZoemH6YqWP+NRq2Lk&~5zwj!_InSg%Pyc7a?xs)8Tiok! z91c;d`8UBZNnCbOWUy~Vw3zRO+{Ie?zm6pBOb}V4_o*peZ8Brklg9JAoRuDiOtRn5 zb%4FeBDCGaG&XHwYqzm)@(G76dxd5P_>{lrd+B!V^no|;&(2x6aw%s|uBX_!t|@bp z+ZXCQI~f#st?91#uh|D}mR((V&-jeX^rO6o{pxSG8>+p{W_+&i_LAf3^jA4cj%{4S zmnv<vT)1Srn`+p*)$5jIAO7p$;(jn<&V&i>Q@6#Q>y%>YN^^7iZMvTONJ#jElPk`w zS-UYXTzdhxpnr<ZZMUgxiLLtFu8-J-mKCZPK4Is%uKVn0#4DvO21Nz(a>62IYkJSF zuuh+{uh68e-k@!&!0SmpZ4v8QI8)a<inJ}iu+ZT&WA{R~b)O6Sv$Htv`KP;^zApOv zv}y8<nJ=sM&M35Ll>V|e;>w04?>^U-hZbMiXE^a)4a3{BymvP5JQnZC*8lF(=I0u# zzxv2M{<~IVpXg`3k59f|d%dl7_KB(g-Wt9)_e+aECq4JvB93{?^*nbO8FemoEvk+9 z##|${`~LK(FqQI!WjU!HTW@gHZ}Z=LJHBn&wnhJce7p1e^7`GUkF+0N;oo;g;pJ0@ ztDaxPTQ)7J`z?_DdvWVL;ro@XqEDYQCOA1fu$^_alJ~)XhhN)+E$2s8wNDV8ec$oe zhDVPczIknI^nBy@4v8=cyEVR(>+fX0{kzll-g?ov)W1(xKGbiYWT0YO)BWOfa?JUa z3iqeH?wJvuc&YFI9J|GTp6qyUU9$JY&dACgyXPgkOsN0$?AGsZvYlnE$)fx&c^o#{ z%=ebE-ubyG`MGH5zRNcHj{iPQdDQ$;-&wuGZbO9~SHXANH{8Db_n*~C{T1uoz2}N? z{poi$$6DB{o`2q&%fqC?-H`QID@VHLou5Iy_=En3&#rmgzxC?#m*CoR-iZF_;?q0l zew1t7obvwik7Zxd!z<^X$UG%1b^Yc1wHmr{mM8yL-1zyE>GtV+MYoPmer9eyUuJiW z-@B>4wU00SdA#d-V1cEox9#lwsMcq#KZ{>&&u89SZ}j(mvH8mXkJq}cKfJHUSlj>5 zsVx4lxBQn@7l!@08Ku0^;c&sKd-2>>cV9Pt`qn#biLGAE=7s!^=AJJvk3VvEvM^)5 zSEF<6x9^Rfr^P3%dCxcBdgnyd#2+PVU(Z}7x}U#)_M`{uKmNSC>A!sO?zg*h=AS?6 zSbg_dy>@ndz-isb^;??f{d}6d=y_P!*5#3xbuOCT<=(sJLytADh{D9BPgAe;F<KvW zmAw1(_@1*-^44q~vOlNyFAR-Ttg3p+`}gN^nGlxi6F<L}D;EzdFO+<#`&n*+=$T(T zjdy=~YxD3nV~sU`jkWl`x!my!<ZtbJQeOVu(bH<%w9>5AlaD+UWZ7j<zu`>ZvhC0F zxUVyLFn#-S&cpXj-#0Glw~{}9pF74hZLM|UBo+lXG0*1*tv)RFX`TJ#TIizR=i2$} z|2*zBJ1;r+d1K`LIgg&IA3QiC@oA-Y$)fG~!E>iEsGd6Hp%id3b%DZ8MaD(!4X%t; z6N=aVe0ccz`T5rS?QGT8EM2)YH7bXpUdN>&Wl5{Nb#C$Rqt_1I`BfFktQBlfvFWD# z!RNcp4}AQ(yX2n%!%@#aeJkerr#%<ffA@!J!pm2`)_=PGzsLUXjl9gajd!l9y}zaq ze$>8l{sD)Fc8h<U{ImM|%YB<!jFVT_oqCXSX~*Y>mzVQji{E>0`Z@hwtTkV+i)=Wv z=kRsDOZ7jWPCutVb*4z=@0TT=b~RN-3_<T6?>eWyc6WAU^ud3Z+J41f>?@llexj0n z$sVz+_~>T`_AK8&J8aey>9*e=*L=&IR(AEU{^vz=`R8!Y_{ylN-h6~pV|vh8jRyTW z*Wy0zDLLrXaK|D)bKX<tPO&>I-ah;$Vl!C{E;4%LPiN$HtPh>peDBHezV!JuuT@w+ zEYtoXZ!v$)(hE!tYd7y_c*U^vnxpmJ1xy;ZQm<`#-4J$+Nptnr9ZV-KSDguN*>+#z zPSQqJ@%m+-cPeksKjbF+#qWF9Im@n^9}E%Gcd}V*XG+yix9ONzJyE>LpfK=*k*Kxr z-gB0gSN1nLlrsIS^}chpepT4|^n|~!*H53DH@*JvFRod28;#HY5dHg0``cHR`L|C; z|6owqJ?|k?^6~@s796T5_<LQJ^+?m{=tJpOY%YFfVdQSv^kLe8%=!k~$*YaRkJKcs ztGcmp`o6_%-@aadcm14wx!lzkc2{4OeX;o&sv2#U{x@o2{Ktd^cb7{qnjh7|Q2%iK z3awY}Ys6%oPwQSV<@795s$A9PXI{VO=xa;$ImeQ9YqHLWb$m;;yz!MKX4~uh>Dgts z*KHMEmu8>uRQ<g3ZFJPvqvx(4UBB5@z02ONb9O$*kJq)5^It}*ePDaYY4_eigMAm{ zGRN7g*2Vpmn(O~;`L(OJe<U}>*6n-0UqWF=ed#{wtNX?I_TP-GYoEV$RsNdUa~Ypi zG`6;<e4dao!GCV?mMYbyHCeuye?==@wZ2Ss`IvReim`6qU+Yiu4PBMXzOFc={F%M+ zLOyrPzNvRE>~~c7q9gFjXTk637i_Cf^p@K&zg;?M*Vj((nV-#nUMsg0`^<H8dFqk> z_it`5+xB@wedzNYOs5RJnH_(N2u80wcjWe(LSY-bSg-EQjkl|ooSFaXYsxRxD>eN> z_gBAO*=7;Sb;&vL-=2B@KO~B_%dH65^CPpWHZZ$(kLEVJdAD1aFS%uLYnt|gqdy)l z6#nrrru3f3*@SDGyB=@rs$R;wlPgh{M_c#Y#XWfo86>uf-1@buUUl)y1zU9;73Xi4 zU0wQh`nHCTU6*XGMqjV`S@!$<ja^GP0-8my-}!dq+?@<IuWOHtl3a5)*{=Pu@bmI7 zcDv5M|Nm!G$?yDZy?ZyWW=9w9T|4K>uP@%Ss{L<u{>#r+|F>H8OZfZ!|Acp!h^~)* zdQjv4=UF}cv%}T~Z`!?JW9XXFrurwM_7#`Xk4(S!b62o^*{$jAi@#;MvzN%Fro>8h zzS#QL^5)U2pNenPZPxzzus!&LMX6$X?zykGZ=3Ljcgt$;U-+qAzAl41hIxz3&eD@_ z#8wFQX1D&l&{gwq_O0IUi%zmAyx`eft~DwCQ*Btog<o3?cJBOblJfc*cWU(fzb1b^ z)fc@zz2?jLbcwC<@8VLLg<lH2Sv;*VO5#U)-9MohQ;hdV#?OEC>ej9$t^UpdUTzap zs~iq}kP2sbp<nkgrCySu;r6LtPny%1^6ph#eCqu*Sc2Kc=CP;h1*1Ku{vCLu*;uS# zeX_hO`Dk*d?p=@4brR>6)kZFf`Q3g&<8axr&lW%H9ppH^>@3~%P?TYRe)T^;2BxN( z@Qs(e{yFZdY`J=@ZSt)3$K9R?NzZpV)_&-jjFO;$(!rxkn=DIb9=-kW)8+E3A>Y@( zeV{4UXuC(u>;0P-i@Vg_|9<&U^W<aV5y@cnwgvKb$>)vyCq8j(kG5{`6AZ~z@3*}9 z>R_&%%FfVjxjOaoTp9vZb~^I2uH4R4_fjw0fAq=vX;boV{5|6NKkxT^nfF<fgZD9b z{1kin@cV^-zgc}Zi1#mit~uwv=lA=Y-gB?Zzwv8ZiM?RWT&-VsL*AcPsPq!gD9~HI zE?~FS!K+{1f5@5G^iOu;r!2;Q<xZ!{zcH*=e){ge>WV#!&a93IJU6vIG$%?kVC&Y8 zs;O~1WA)-$=E|=R*tO)@?cAz$|5maw2HD$L*Zj?t{dR$C+x;7{^Np_i=hmJ4vVG;3 zi$7+jM&vU8jA*nm`n*Qi)!~ig(aVqbcAFjG5Endf=+vqCA}iG2ehMzIzdm7m>#25c z;mUOkjQf|J`FH;Rulw0&jg>bz_$ztt4US02x>l93`tj51&DwKLUtw`Dvd(=vq4eDO zAMf7XTK`bb_;&x>@ciZZ&;0%?KK;*%x~4^5>jD1{DFy~^3-Fqj?Fy`nT+*N;gSP7` zFbY6e4%UqP(%{pB=B7`Qe<H=e@Yo!px*&}4n-o}eW+9`LbUo;jnf@ogRl+P87=DN{ zGKexTFt`SUI_a0BR+Q)`XBZe7!jBv3Q$AUC<9Chgsx776u}9B5xwn0H%aciWzR%V2 zRW4U6PSv~fOROOA#wNW#YBvmcZZz<mX8ZG|-2TM-UH=RA9}(PXxKlLp>d~36B)|HE zPTV=C!=ms}eNN%IPXGG7K`AK*C6}#OIX{1c^%u5>A#Ta8p+9Oazn{4M<?Q|Y{y)4t z|H<r~_jZIjESsj({Qd(!Q(WlT^X9>)FWI{-KK=Alp5*S!Jc?bZMl)Y<*%d#w`!exz zZq;+oiB~J1N6NSc2l|@l3(RcFEqax^|Mi}4hBb`aP6odD%g^zt-t(ajSK_iMiAC3* zOW%Ivs6O$<w`pFQcb-c(23t07GI`9FXma&Y$cHt4E7u(R!5_UywfOrPk)s=|mv5iH z=$&fC<t^9lEr0QCvCb-?q=HY+rJv8Td}{HUZR0hojPsAe!loD=bXdlAynf%#-No@H zi*KiIw0_?BVq5Fq>F?_qw!f3`s-I?h+i72uKF6YfHicE&r!A{@G4T88`$K7M<g{fw zt_vR7>731WT5>zv(XMSj1$Q16Zu@;HSz_D&@7G=)TdS#M_2O)}c#Gf02~2iM8p{=4 z#2(7O!mL}o=c}NhX=KVo`=t^;<cq|Ozs)mpNtCi_d#QayB-J6)`n*MQ)hEvShU4<} zNv^@uSAKPGnZEPtPQy(y{x>)EUo|(IHn)#m{($zIUt*W^Rhf#u?c!sv)|R*>bmn)f z@NVV{?92z6eoON;aI(FLi79$l@mQluGw8fY!@bnF3oV;vZk~1*iPL-`Ti5c&e$}k6 zdHnx=FWzuYa5}f=)jU@N+xPRYr}isW>Q=5kt6cB;M(^j9qSA-?j*jaj1lssB#TnVp zJo;vl=eO-)4f}=uB+J4@6Ca#gT>Sm$<=2m2ReV0bWG-`7t<<mBS4rnic6Hm<yxkxv zuf1wn(f*t9GRv>IU5b_FSoBgvIjTV@xYK@riQ~Qv?#plc?arMab8UBuj1tfPw&O0& zEroR=4;^i`)@SY8xU+UqbM~*t?z0}79(KQd#re#%P(9acv)c4oc$`BTmmRo!Y11)} zce?A}%TJsw?XMEh!xFJ$?WXN)%ZsP5rXTuU@!`lcPxiI8-Rky+b3X7?F>}T5`ZVFr zGAG@4JlX9z<vTtaZY#=}V!i4z<I*aTqVgEWPZ7W6jx3NaxT{cK&-B90SjTIt-t%RB zJv;4F9KUm1sPO$zt99y)+{E@7s|vgB$K7i-?%>*5D7ft0i7VG<PJ0orXz6eHigD^q zmw#GZ`t3iNU$B+0xWoA8)U1z!KQC7(^%kGmsA<jcDdfJhiH_D3hK?I%Ps;0028n&W zxKrS2=tFap)S{C=*b67*mQAbA*s77i^5go8Z_8WvG1xtQ5bktBF!_V}?uQ}FrR#d6 z?(#*c@fe>|x&5Gep)x=Brc19EyMz|RDRvmH7G~MwneuS`qGH)U-iO|ozOQOjShZp5 z+v2BM6Yu|gw`Yp+a<5$G=vRx27TUh(DL#{MMcQws<8oQgC6j};$FE<%#58n*uXcTU zX2o_J(Y1Mt6qbhneZ_Fy^c2(jDQoumY+Jg;Dfo(8%qwTd3EHO_O}D#h-+r?Et)S-l zr@q@4O^)4b6W1@bImh|UQwhzjhZeug=*@mIdvfSKJrAeiBd$uFE;)ybZH~JxI$OBb zQfX-f%j&B=eA;H0Z|pLhud-TlS;w}d(!M3Hp4NZMNtxC9g=KY4*4dt%M;W%(l1sNF zRn62~w`s+KK;7gS3#3YAqs`S*wM=7FOlx#sntCfnrIjR#Z2X}zDdn;8+;?GbHBXmZ z|9oasM1F7DtX&~ocPA!xY~_v2+4M6<ceb4R>)yg^Za4eXO0PT3?a*plyX>{=Cc(u! zS5A`Q=~yaIFJG3FG%2QMb%cJXe&);^)2(UVf@ik%I{97B(G1Klz1Ey}?ZmWKkDod$ z?zXrpbM@jBOOq={Vos<9HhXHF*)(T;M6R<bmz#~A=4+4rGYtc*FZ;M0-*V;bnKx$2 zS1rt@#q)o>s9+_Zw)y6aJl#_-o$6(@)4yaGU6pZb@iDrZEm6O5UE0cxn`|fitjb+5 z>t?Fvx!GFo;bN~BP0}cOY9~1R<Yp&#L$QxO;dizi`)0Gr)38F*YI65Zk3y@hrKVP? z8nx>T%x0fGGi_={&b9#YvZ6%wCkNY({J2<^<gd1}F6ymD^VwTbUzC>4P&xJ3mGi8| z)`b_-rl(w2;eOU7GlO&Ata_yYMcpgv#!*imyZEiYwAs}wLu6&mtas8z3VS@Z9zH!S z^+CnbfcIZs#?|jUvwioOs>?za+hS*ZxiEE?*UinUc8}R>61U1spXO_PfA-ZIT<0!w zUDrE3b;_yC!ZSV3csGkpesV%!dONq%f`HY+w{OH;^bpHlSz@d9N%e|GUr!F-^7;<H zTXM#!N{Tw{FMW4TxE7K-Yg^!?g^PMTmZi<Odq?DoWpJ2~<Yt3QT|81ZRg{-jBsDx0 zJF@7=li<CVj%}KJl4tR&iBhXPS;EsM&6bSqfAn!yz?$SkE?#G^^z{b5U3l&MjGFzK z{=7#QMLkW+u{pMC>#YJO(OI2wTm7#e?>wtzTYu(@wx{2<?9;D0%vO5taX7UyXU@9l zpR8JCE_+u!y={9ZXUl0xsm*HzPxiS6_vn~UUZLn_sCxC;XQzX49DnN;#$=vN{`pd4 z)(L*;&!05z#}rxC?9?bX$|#nb{Mjm6pS$vo!_A9}PRwdeTr?#{)qAU7>K*^5lV&m= zH{Te#>qOCw`j$6gS${TkpM5dMYU`}EQx|>a-eZ;}^uy!O+SXlb!lIYhc4o<@&Wt^0 z{njQpx1f2ON!l#qY>N}OzGfVi(-$rYGT9m#DYgDua#M)#)hjCANgC$^Icw(TofcD6 zNzbair!g^dsm9igkxS(Jr@m6!w<?(JTEv3ci%uq|MZKNvbw8`#bT*ssH0#V=F3(=y zJhH6qXjhlu)UG1GSNRs(w%^o{p1i7OS#s7&p^f{TN=gcCyfdOwmA-8iy}5DK#=szP zskN?4Y$UfxlzN&!Rgqt~DMa|Rso2^?x3gEK%;`&7b$4l%tdRVAug{)V_IckYITv5) zF8SoSZvVz<k8i2uUQuSd99189ib;Blc}o1P35#1*_<BmW-w@O4J-Q-9F)YbmELZ2K zjFj;%n^_VmE2pKptFP2};F(o2^ASsQ84F+Fgp>2GY`yKJ_kH?%f37{nzaIDf+%UC% zUrMT`-pR|y8`w8}<J@^BO=zP<y`Nsb;$N-S;?P^-=k9taO<fUw&CABuW!YW6`pg9{ zcHPeO|2>!Q{G+8GeGcuuJ5TLqq{EpVZP&KsZOsa}TD0x>jTArOn@Tg?FRz+%cf(w! zwc9s3?F)=s^89Yn+&7n_B3G8H=h&P|H=F7jwM6@COjT&+=d%$juVxk2WF_l}HC)y| zvT4b4qg6Xyeou3~rFD1yt0!$+G!~y$YZqOaUC;aK^pPyv8U5AVnJ4pe>}DyjdP`+Q znzW{;%`lYKt-hR>rI0mo*R(U{S6q9SFT16p<hE5p?|XKc>a~oH*;i~NFJ5<vUlpJ- zbB)eQs~wRO*)w9pZf7y+=<iBceD~0vE6W3v{5B+AJeMS7`RYUS)(HuhS9-*CJkR!I zeSei>w%?-qMK<1o5sjVMInxs^E%rI2;~PBDbNN)|ttu;DtrWW7|0y!G!_SrH?AfAM z0c+2kxvF$Of_HjGv%HFRw@YBg(Nh~E3oSN@ZkyhJOk&rCoQJ}@EH6%;xm8OnImLSO z!L*+uYt!EHoO}?rb;jZ6g0okc++LcqPub7yhSszzL4ORgmub~Y=B~UHX1r*TL!Wnd z;;Q>vpM7*pMXFAEZWQhmnKjk)`nmF#KK9Zl{Wl~Toxk>JcB#3O`_i1e7?a~pt?#yZ zm*q#TDU&c@)w%xca`Lu7qnRq#r6h~WW6s~YYvlN?tL5r7CFa>HGC#i2kj+kz++sL~ z=jGN}bA4y424{YFvf<d(N%h?)qD(toswT(lbi`Cm%kV6jEcx^m)4f>?y1Db#oj<iw zF|g;^SDuYIOVe@;Z|7`NO;Vh^VD+Lz&4^7szSCwFPP^E>_ff_g55twQ=Uj`|%=9=R zxRI~Ga{f7v*_U>3EPXIFb<vG((-*!v>Y@gF9CfGoDhodBIc3m#Y;u-K_#vya^%?07 zOP}WW-tJk_V;k=sG%=#wZR^6AXqB{V+k1*<lac~ua=z5~>YlH1c6__$W1ry0Pgh;r zJ$o-7sWLi#;ik^q`TY@F?_@?iY3Yl&=y_bqu(EJL-j|<RYq!k!Q=lp^_g_sb-^Mbt z;OD=DHzx8t`W&{zAXO=HucCnMW^=FX*@g96+n6nq7advhxW;hlrqy+)I|SygxbbdP z+NpQna_2>8pRSpFOu08w)c+)FQ1X<Fg$?{)ODkn{J5Q$6W?Ww_YI-+v&8agwbG5Du zH)pEN?8!ZnsH0hWA*ean{hQar#(5zpm+I{Ek`BJ)arKDjxfSPoeEYT6De1ai@^Q|} zX`5Lwx&EGx=`toU2hYh_vuyeVxL2w_TU@-R#i+MpmZwP8%Q=dX(>z@}1FI*5=XA$= zn?-q?-E}$C#&{NgQt75ydeX1|l-MjtU-^zF|6xqo))Y6X>F<`hUSs*R_wb6zs&4K+ z3KMdwZpQnmo_-K|$SYK7;>}IDSJirijC+07=AN;d?K`Rd;p=Xm&}fb>FA?zrr!=mG zecj<Cvf`G4s?h8*pVy0@y4r0#)v@}<tRvPeiT#~v!q0=(GFhJKRr?sT%=K|?@QGq( z(HXKPk-n~{ovp8Ce-*p=vrTW)&Y;bg-mN=w=#1C2>%ys5<HWU=x)yECo1LsF6}p8n z)9iz<_Q~>7r+VfuUsUgKU{dA5ciT_8C1zUxv5kKDMVQrj6-U#DpPxA$r9C#}PuW(} zl^Xdhg4_F4KqKSdmNicUyL#nIqh*>uub#5SHvUpk^Fsmgh9#m6l6#g_)rQ_VlNmU_ zVDS#yIceOhW-Q(Ek3&0KTCXu$bF;C(kZ#~<9;2^JOL?C*dImjE(mEkl@4Dr{DU-{a zdb!Rx>9}}q%8X*(6&=_3{$!qg=!`R>(>!&JCiVnvl$td2fYjbPP1)x+O00x)w<`5) z%5uHI61nWP=u*embDL!4zo~9af9kSq)w)2*%cnzCcV84!x!3D+dg>(&U9mSeN`gF3 z^m-QVdna);Z|B<c8(B6ge*EHdVP|1|k*;bt^R)*jEwi6Yeww;OH~lh`)w@SdU9sDz z2HHlQ^WS_~?$-HES-Xi7f9_oLM0|GN)G3=@JBD<Ir(HX?>`mm}_~SE=u%u5G-Ii7I zB0_Y&x~S5kUiR4~u4gx2owmqi%}Y0>B`fZD96MuZa6_yu!B}(7te!<%ee`xZ86W*v zHC42}XmN!z+qR7TSJsGSZJK1@7Q;Sy#>%;~!`4)6-yO60%@SiFvC~zBhSwgwU8i$& zk@U(b{@=Y<KV9I&usX|V=Jre7TS9!z+Z$f{ueoLA9-@&rr(1gOBZFC)XVWG32&O7+ zwR1i5Vag)iX<Ir{bu@R)DJy#Fv}$hTn$su0E?WFqEKs)o%Z-0)EPEC&zF~4vX699y z)f3Ke#h%>S#a5CV8qmu%eU*{1>b*7RjhD>ve)`I5dZsY%?u|1(u8qhJlX<#1WdGU= zR`Wc|gtu1QyO6o~%7LnvS5g9I@DxciDtk`ZqQo${=<Kvp6E!Alnr!jNSN#6z%Z!*C zSEpS)=aOR5D6Q<gBFnj6lmE=3qav~2W}TAg=wgwdzG$=Cl=&Syt<tuJ&y3tHt1fl9 z($G#c`^6p}mH!SpX`im<tg^VrVYc>_lzxx(=`<DpbIV@1gcPd!xf`!^ij(s6Y4Klo z%q6=eY;}d@tVh3dt9Ndk9<@bGStTuvdu`i}Q%h$G^-p?zEk|Rz?ou|9rS%n;&-I)w zJLmD?(VDm`pDy;EE4wz+W#wkG>&i-^>-lG|I{D)451#nrUPl~EroTK=GNnTxW!q)l z#-H;(nFeWHci;PSmzUAUCtY{9ygn)D+o374Jm{HJZ}<g{^Q9IF6Tcj>IXv@mRGy#D zvC}JBj&ffV4PHGn#c`R5^V^$Kb+YtcmDMl36R|uzs50le(rPh9eruj^Cbr)kGhT{L znS1ruEFu5A16kgYwwYT)erTLDQx7bjm9zYLH<RMD64iUFj;z#J9cmGxkr>vZRoZfA z+0GMsS~Afq)Mlk98Z!3_9u@Oj`dM2~O+-6z?griH6Cz)qOga6)a&tD{=8(on(Qu8( zsA#YH$nDQvSFSw$W{+WB_+_7PY26zqR&A3K{Hdz-(Q^T(xkvX^p|8svuBIhPznIh` zr8w!b%i(no)vU~mE7nH(t48riMoV|*oj=Fqx;>&tL#FZQ>WeXw$Gv>a<4%8@bd4!j z_;SfTj}tQ`4Cm%_b$Y7WMF<v`UD7`>(>IHw?PdqVmU`W3OM`fi|GFyIt@+tCFUreR zJtS$XWa{S7#phEl##vvQ&f2;BXojZMJ5{b-sUqfS3ukSziZD}MJu|25q(|~Ty<2y8 zs+5~&-Mn_{X_{@{_1kAXqEp|_aeH=3W3Bh>$h>2lmWC;Nxqa9uYj~3<HuptyYNl6t zvgyrrZWntG=zo4upB3Y`LAhFayZ*E@^Y;7>+j*woPvOp-&R@btl1E>bXchXYIZNz! ztDIwAv)!bf@pSl$t=5~*q?k!AS?RMqblR#zI<d!IRGoao-}`finZTo3y`3jgrcZvh z%G&Jo9LJ!jRr=q0ODp3NpEWJ*J~icB-<G_*4X-B0s9hH}U6}u+bWdu%Yf{Mmp4*+Q zw`UxST)Hna&#Rkt`$qGZq0MU+pYmDi9&-5DEAFBjlAenX?V7OU*x5qY^!AURPN+R% zJC*(N=bq^E>AznvX@~wg<nW~9V%B8in@%M$FE^?fYxv*l{Z*B9<80MZE2+s*z51V@ z9$gS4ziHV)H!G{zetuKFrWvo+*t)LX^!<t#O1k+fR(U+97Pqb{pP6=4Eo9D#r;|8? zvU0g{5@p|SZJQg#I)9m2VVi;5Y~HIWtBvl)gsfJ!F`N=uaxJu1HR7_9Pxt1zSGRN? zwYsTyJ7UU((CII9l0<GxUyR&#T>bIWL}B*p*?T!QcZgd@>`QX}^mmi%R@27QeT&YN zc-4R3w7SW{lWULabLqwNHojOYp__M^Q%Up1%%GW?x@NXo^K#0BYo=u{4bEkKdV7+f zdSjzi#`0TEDNbuw?wK&tmvxN>Z~99=Lrw3P=}A0`Ri3OAU7dQ=)4RjOtvMs~$?GyR z$=<Ljg_`q%*E%lT(&r^JG3My<k1_TOC%!HzOitNdA2DlX=qqKnd4gASHr<)QdzLTR zf74;ctG%M1kJ-#Nitv)3VyUDw>#fVG1G+{rdHZIXuQZt^y|~k{*SAbFwL_nCkI3sT z+o+|xwNnqjUb!%IuE*!nn8fQXF)>RmLPeJ)+wHyZtg3BgX{*+Qn>JJ5Y>=I-u;kjN z<Zv~I%+u?xdK|A`(Gih;C3;iRuFGnZvsL%&T;t51^oEyf;*PbU%P0PdNXkm%*Y(Wo z6R?~r*8OHp(5x>dOARMyZo0JM8GB3LXVFTV&687`v)A9s*cE@${MeeX*QY$2l4c9e z+fw}Y=Yn}hrKYBOd!|)o)a>x!S#Dz-^LcTZ*(RA%AD`_?S$;v*BK1+yIlEj$&bzJf zNx8f(KxeMj`s>U#c4}dvvg^;Bm00dmRpz{Qolln3M$KJb*O!L$z2lr3S`sXF>v2=y zv#P6p)|=0zPg~u1O#RrbJ6dN~E}Zu2>EtlidCSsrx6ZopAWP?vc%-9-dH4>Oz#lv2 zWb$h^dp11Pd)1q`_f%>3$3M4J>QA!7oz>dw78@wMw6br?wAT@LPH<;9ozQO$>N(dX z7_6|oS7UmfzExJ#B2CrnbGVMF1h4UFJbBFc>!r3OlOqq!3N0<#_44dA?lrTdZ>+wg z<UTug<A%=X9c@<L$7iN?s=BlInrMHFTJIfj`q6|C;jp@>)&1t4r6<0AOl{TopITI} zdio=ew5rgP4YoR5#|k#*m8oqk+mynuBr13IoYKvE8Z#e?<`|2tTKPsw`nwy?i@?pB z<5tyJhh8!F)xFt!hTHOR%tIyn9WiB$J3sUmbthKzbjvoM4cMld^(y$A%IrrQepudo zdiba5sr7dbOpkw)utPHIZ<%`f`O-aePG8efURZx;_LU7x_s^xb2S(lc^7?O$*QC#a zi>~XYa@zzxYgAL|JCj%!YUsVyXH$UEwBST#Z>OlUTop+sOD_6K{+S_pRIa~$QrJ@- z>rDZZPg=~MEB@r`lEn4PBaE&}gkGxEj!jS75@fI<%QGq1p-x~)iaVS0v_8q0@RvN7 z)@E%#=6~T)y-#o8$%$vq7(Z5;yQSlgPw$D^ede3kxJ(bOI-OJLIL+|Pi=HP7eImUL zKC$}E6qy?MBqwcW40lppi~92`Lec%v(nTr{c-Lr%1a9(MHhc4l1$(?i7iIY9t-bX3 zWzwEJpRC@HvYV`G3r(c1@=T0dHmy@*vfhM=HQQzh+;puo*v3`gnmSjy_)kula>I%2 z<F6#A=6f~WdL_D~&^~G1t74PgStXM;A3CLQ%5Y7K<ZRcq2g*<BY}mFjuyL;H?Y(9f zk4~SKDcTXWwqq@K!dX9WPhER2(Xg9(krPf7C5N0^B5mvZQ0S?etDxq}Gu>u!-ohJy zZkckkBqKVhxcHii(Mvh*3H4{M?sVBU=iQ7StFCCyj#__Pc0x_x8QyMPQ)8`*g>6?~ z_*HtONMDdVoR&6a%KWX`RjiAv7pJ8zSv5Cs<ze?5ZoIR3HdJk!EbaT+By^Ve=?K?V z)3R4~%-B|WFHd!PLtxIVl_zQf7Mx6Jez$0AS8hRan#HT{2O}nBt(|Oe>{L_NgZgW0 zoTF~}ta=<`H&sWp%f&8j>zXXvwzLyn6K1%sK54Qq&gih$8rPEIGqW^Z3-9!$EZ1yu z+L<Y<{`LpkTcK8yFePJI&F*BMCcPCO|D;KFo|8WN^+d<h;=N`2=H+e*He4sv<ngTA zGEg^o$F?(~MVJ2>&7YSaVRB8&?b#axspp^TXGiWoC$gdQ-MTq>^%vfR2=6T1S=05r z^3Rj#uch<6H>}{dmw8sJWOTdRyeKKqBaorPje$8><8;%xP5Zm7zQ22BmKt$ut<Ty- z`4X?EPpa=#O8raJkS+Ur_+|S0IriJ{H9H!-@;kw^s+uv>?>aw&<gHI70@{DvPcB+; zuS;zCjCb|C4NeRXG-q&sm%UKO@at*7of%8j849(k8710+*D8D~<?pF}uc^SJe){0< zU1?nc_vI5S>{C0r-<j|3_}(<BAS8Y+bCtxgt^BOExAmtd^-bd3Q@{Sb<2}yrwM^?) za4a+r-(JU~-1YD0&GPpNeJnN357sbva2%K?^+82v!<@Z_^-At-MT%8?oqr6x3?25C zpH{rMp!4tUhIe|I_ZDUREO~wIZm~h0?`$&*xtpI_80JaGb5{y5WHPQw`*Y4It>pED zpOabkrJ5(I%$=R}z0iICXUS`2S%-8FtIunC@a;{eM0)jmy{XF^E&AUa_#prPgyybN zl}Yu|Z}$9W(wAB;_SUTal1)jW`kNy8I}<%^1x@zXzPAvq2;B5?@AJrWi(GErX_q_4 zX7%aE{TaczKesQBv-114EvsOen!bg^mDBIPy;BIQc^~T*&Cq=C;=O*uxijPg_>7}W zB=lrvU06_^S5y9`;k{Ki#~L+R9gY0DX19dh3{O6leHAp6be{b5ZuxSh)AdEKE<X_r z;<R(UduOx1-wVAnslQ)nv460h@_!Da@D-oF!nA-C`}+(&(rOEW9gSVGSKU$I5#W0E zTzY17fzh)in-jm!_fdHL*E&z>_*(WSVOvF|nvMos;QesJ_7bbY{~x>mCn>e?i+<r| zp77=OvQvsu{Sm=@3oS1@sf0$a;+Vl&e|3|n$_rMdS<xD|S37hvvaC3CBbvP>uY)Tf zSK}B{azlZmy6c7*)^j_YPl;_>;^PpQAT#USMvlF1Q8FTj1&k{A4jRq;ad-KOeeHq` zDaRQ2?|qt;+hGuYYC*{5&;<vKcS{_S<#{Nc^n&km;gs)Ejvm_umu$bx;UKZE-@yCw z0jGMS9XoZU5-bEH-3wR@*yZh*<twMFSHFKhVbSDjjnl9BIYe!CS;uiqWHRAfaERL> zopnv`%vF!>u+`2A5_2$I%vhOK^uh67m~F_aX>3cHI1j(~UGVUhLCKu<yU#=1o}95x zIia}i<j%XQ)d@A{p6oI{ExG8JRdAP%g~k4RE-$~^*1s<lJf~a1xPZyWn15Q|HWT|@ z{*DXZo^74KVw<qpTh}wnyQ_B2jxH?zQmZcU?})Cx-o5>=F9;mJe`spy=}%z}27cwT zPkH+SjV+!Ylf20HwxT>{_5-#%n|XXi-+jJat|-~~b9YM9edluz_PoC=dqi&c|15)t z@1o!JIP*4IDX@L0|F7=BZKwUK=J6{bbAPp)%NCb@==;1nuDO|M$r7e0qxbfj%XkeI zbbPP>v;F_GV39wq^IyMPzM^_^(7`1;&*lf$X~weuYAZI~wTt!8w`czt%X*gWe<oMY z!mus>;K6+9o<qyu9kjaCxToRJ-G@9AUL4?cj(OXEKJa3kolU|ci{>Tu2lL;`Ef6np zxGle=`t#=UZgUN`KY{NVw=?WNc)R%Ut?HvYg}%y{D(>*j<d{)(E@|0<_tO%aXEtvB z{*#Sox;W#sdzEW{RQx~u-ge9G_1)it40t!)pHqB#cJF20jAc)^e7Ki;u==gi4n3xS zKfc%RzrIs9@JE1+NW=1f_v`IkQg<w_zqj3c<@0uS1=Tq=IWwmH6+Lt1@pP+Cl9de> z|GI4JY8yQMN7dK3+_TN#QV+1NoBHJV_xK0-PZ&>37WiAc);_|)Y^KNGkL{b6>|p8n zy)}Gl|GI>-?N6RQo_71-nyUWlD{A+;5BmIlSbp&Mi-)iNu;uKQV0rPh?oU@Y|1OEO z_Vb+Uudt_Biq2fA|0qr}`QQ#c*+Y?X#oW8nGiI?KoxwZf`>n}|feNaAe;YsX_Puvt zv3@0VC7`y`o$;%Cvc=^u7n1@fDL2O6)HIs+pk!X_BZ(LDA2187>eI@4cQVp_QuQLS zkEw4&_GCBBblT>4c0u5WNvte8?!TKdxm4kV;LN5|Q<v4>+bbx^vqe#(E`Pi2K2FX^ zX0MyiPd}VjeN*_*T81s_mpJ~cR4DP5*^sCC;qikY`)`xlz1d0{%C0C~OXL>F-jjRa z-=Xg&_ng<MRma)8J5N8lA&kYd*GOSw<Lh&0SAUqs{8RB>v~|*Nj?<PCOs}0QZ_sTk zKKuW?`HNT^x%Ob@hxG@g`CMF+YiI1{e{8Yu`v=9vztZZyE@owII{s%Z`vu7-Hn)pR zN*$J6Px=^k;NkX9!d~a<Z%O`L%DlDA<>r$&FPu`sM8pq-EoCY`$CAI-YBnFs?fdeQ z-zsB2?Yz8h_M?3{_UohBl3rbPo$}E}Fm;Y-VB>~{Nr{%NJ+Hik(^{UruCJeS;f|i% z^=74}rR8ynJA|HFuRfFi^7GA_XB|RZD?c#l3T=?c=(wG5@oz}?2m8M!-37n?xJqQG zJG2Ixel25GvD>sDMY=2Y>elZ$H-#FvJv{L+{Mdx_8M$w#CNTbRyM1(V`J4V<kHa6^ z=(|Y;Y%U7f8Goo^0sl#{hjP>R+>?4!zwX(q>PgqaXY6_Vs<v;Ag}rrO*7^d6t^W&3 zCdD1SS};@m!S;hmOUuKH68^HL{j@CpzkT<!e_^k8uThWRyL|3hjUU$=_D38zl@c8| zmsjLPc59u<ahHPfU5BG>%>94)Fd5zbJTv3F{GYz)H{P>auFLFy(PZSp6_y*k@SxiL zJKZ+*EL?f<i<ZrckE~WQo*{qZ?TYsG;)=d|-EDJX1tq0S;-)P+$!fv*-R9N#-|HsT zZM^(!dw@laU_JNOqFKzxK8Cj$S$;0OpPOuBSLg7rDd@|61^x}<@vi?qGID-Ya$n4l z^o-H5T%P9_e?pPg>x1^MuYSDpXocGRjXxIOGdp-suciLrMl<H_o*lQP^ET@E$L{`W z=D06Yo9X-7%YD~{gtoB6ew>$nAY1cBzl2l#)b!0vf~OgO?qVp@J-$-Tn|b;IL2lXK zQ}Vm!mArkgp?R*YVU@06<Ykre-v`VR^UHQWVkoY9_5SOQXwGx{R{Yj`!Iq=>B>(&N zfN4@Diy04U=I5_gsCW1;YQ|IWL{{?5y7oqA`_}9Ol@YbI3vX4-^T~~QW>NawWRGBl zYHB!t$z6U%{dxO6PF}Y^bH4BFmWAH$xn|w@SJ33xqEc=UeqQ#*pU*!do2Nayy8K1| z{{P4G=c+t$eERIf&6&R*Y}ytculwtBSogo;2et>^F5PR>eYQL1NwoIy`dPnjAF!^O zcmH|myJ^b~Z*`4(60v{Mhm+!VF~=o~Sk*XqV|-cJg!Y|gyWb^kHz9wW#Qvs&ZpHUe zyR{BUa+a&UJIsFP`QwGsVxN}m|K0xJ*9%vh&i@jh&M^HAadxwR{ce%{qvvmJy1#47 ztDnE)#pk_Z`nJ7wk+;v!U0J^R`vJ9w_4n7_pZ~q+!}@mzKd5Jj3U&Pd%fRYh9?PeD zCH>tl3F{?)efF$vm}t74@pS}qHQ&4Sb4nAfZ)=}BCN;zKz|F>$%*(#M-F@%<y*lxQ zS6b%GE!N%cKd0!u(MSKl4<EJq%>Pw7KRBN}b5B><w^vsR0y7w%L{51awY{(Tfak>q zv+bu2)~{eVa>deZNeYXVX3bqUdoAg|oux%j|IE%mr&d-~&N@}GZ%=j`dtFqr0%LjM z;*j{cZ7ZH%6!`i%<H!2^t=7Md3}g<SPhdQ?dhxD0iw{D3f0kCWs{L4dYU&Ro*5@8O z*h+K!9rn+9bm52C(Z+gpr`GOYfnP-0H@Cc~;GL<>k``0nc<RBV0?V(aE$>zvFIuV? zb?qz9+FXr;@4_z2^&U;yXe(vC*PC%;_nbRhEgM95e>v?vF~RsjUF+t(4@~}a%sKi} z_S3nWb}avy9kovxm_*+`*=8WBaq;YGOCIKZMgPT{zDo0dJScX_SWrPpfTO8y`m@*D zi*F>%|CAcTXWhQ-yLkP}$+3Z{I|TA?h6^&TJ)3j6%B#C1>2}Q4$>KA&n+58BG2V0F z+I|I@*5WT7*Yh<${d1c+dDAzMwuejtp$oJFmo2k;Ij3!HRNuBIjSEtOxer>}O;<n2 zayzfj@!;GK^O@p`g}%Alo2I|WWe>W4Q7*{BN=oSS#fS5|cI9^Vu*B~ds=pb`c>Jzg zc&q13cH?@Zc}db-g7-H3di?(1^@+J_+*T~Cx2XA_GWp-9$~%#E;;#ks0<MR@In2B| z@>%;a-EReUYA>Xi9&%}2*q6&3eqnYz@4|$8bHqJ=)Mn0;XOQ3XYTe8AfnQzj?JSh& zo5XpvN3h`3;!h81J9<vlyx6%tKb^6+-aR?eeN)huw1|hSjwgF`;|*t&y<Yvl;*<b? z($N|to=w~SL~P7`=lZ0ff4}4E+OLAM-o)Rv(0Tk(``-_VgL<Y9)=PSBsJna8LM`n6 zgOWA;%O8Jx^zugR*YKI*Z{rebV)on+vsm`s=JteY)7Cc;;&H(zs~9AzxBt3OA+HhL z``N4hS|A(8-qd+P1z$hN)}P%wk+Z(+g@C|DyL<J1dSwzfzv^<t{?Fl<`<o*+zTv{| zxfi0hC$!A|{OWxNYjpZKy(9XHF&_?pm(u4@`^MzH_wmm;Sw`7SjaGiEvs3(XBHd<O zn?L>RhWOZrr6${_PmTGZ`K#(&{D-yD{<q)sE|=nQ-CqAD#`f2nYwWMn?PFGT&Yk?l z&MAJ`rq~5cHNwJw6SuOhetWlZ*WZ5+Zs|VDTPk@%x9KONrNjjmdu5GJ3#@M`6gjdT zncbn<kjgM8g2{b;<y|3$9l=Zu%Q6DR)@}`NJeB#}V8Vm1rH`~(Co>5u6^oSo);GNn zIqx~oIn6%;eH;JV)jRRl6w94i@+y?)_PJ?GcLtZXy1YH$_2aL7tySRV=N$gE^WyZ2 zKj%&ouJfGt?<cP!li0nGxk;>kDPO|^n^=GTS>sy%`Ow!dt2@|sDHJdKCAxn9;=&!W zg+eT!&RykyATZ~Q?h)S=Y{>?)x#uHqZ|Iu2hpj+yYWBWJ;hb5r=T9)z&$o3`;=X0R zH16o3t2_9*?>j!fwerjAzdV|+BEH(BPm}pFQ-4<b?zw%2iw@pcRJ!WHobU;J$FA2O zFT8qt!z=dX+mure+&Uue5?)`wRPN4>=_{96YF6n*?yLJg^?7OhPJzn?=PtHnPkSa1 zCBhJJR&3daCgyuj#p`DM7gc%pqVlj+y}v`igt%IxE6=}1+1}2MZv9u&k-eaBqvN}? zQzaU9#lG7Ae}3b)ch|K)pDsKxYeW6{^NIEAmMh<Qx^q>ybFDxF&+&=u7e4F%uztK} z^@;msjc<QH-M?qbjiqTG4}bA{ulV%ix7i~{(a`usyOgdk-M`(x?A@;YR#R*L)HtN1 z=kC8>S6_8Xwd~HE+iT|(7|yb*J0|}?Zw~944eZQyI}X^EoXIX~y=2#T=y%Zc35^!B z-m>~FeEs50e)_z>miuzL1gABB+p_vYWf4n3id5KxRwv<S1uRaV-bUvc{484j<h^Rv zCSe)N){Vawy(+TZe&%Ol)L}o?@+T3Y6)P@QyIzt#&S2ADf52qMdGqq}z}93}tyA4b z?e|_9#NXHMc{q*xc)%CFzn`U5UR645Q@#AYf5rLte;Qv-d2GsI`?vY?*|&}>Y*fUn zq>E}lZ}|7oae>f<A9v0Os#mdPyh?OFs>s&Q_U`{1$46_{zj!?Vry19QwvBD7lN%N? z+v&KbCppb_+VYT{{eW@3`GeZ)CWVJsa}1pSO%(OpT72B7*<h~Fg@-dswL^CvwY|E$ zs^kBQTYI-_nbgSpME~66G$(Jp+(h=Xx_e&nJ$6@>IFYwpF>qb{{wW)yeU{7b(Eqvi z_oRI_m0$MHIh%cJb?YnfTRZB^4qfA@K6dQ6<II@_3+FX2I^>^MpT}ByLS3d_qQO3T z{*<|Pw)g-1>8d**Cs!Zhd~JFC+clX_-u4^RHFW*Fa)~+INAT9Kc@w{^7u>CGTpcrg zVL8i$!{24<QVY~{WY{b2F+Q)7y!?w{cX5yZSCi`(m_F>?vO@Rya?6TY&5QSG%cMFP zZo3|RWPSgF><0O2mq#I-B1c%)7;?LDxYaW|G>gk*RYV_oP#ip8#c3s*c$nJnFsYwS zacPq*Zypbyq`KU#zOd!$^v#xHdXemhZYv79vmL%G!u6}!-*EEl4-*nDi1&YFdVWz< zdv;xYs6gGnrBB7&ccir5RlJ*hW8M1sS$wPwvmX}n>K_%AJ>-~o>f@>@|9AQ9Yft?Y z94=^C-#vSKObm;{mrI|N+*fU@>UyYYdtvup(>C9f<)^lVKfZr{;?j8`(%(--{EAw_ z<sD|nlr8>hVtjb};VPRvf!$laEb;yG<z?XS#oVi>*8jO%zcj=vE`NvpzjyoJK2j)% z+5K<UTSJk9KmFFFA1dZ?xcXIn#kn`LDj!bv|K@W#U#F<2{{M=&kY^I}HXXE_Dn8L) z#E3QK#b;h)SHm}Xtp1z+Tvqqn^dTl(`@^|j`I(>2|9>&h#O>fK^#I$_Q}YZBo-ww4 zoz;-G<MpOr$y@K8SN#36E-7N8=z<@6^aa`Y-c72yk;2s>5~ONlXp$oK)8$9^a>x7g zpRgwEIG56H9^3BZw6eGU|HJ#Ww>l?Q+PTe}UH;?1hFM>AzPxD_*)64cKvYHi)pcjp zKIs`uDM>f71lBy>Fx_;|mgkE&E<EB=SRm$HlB;}bo6No9{1w-|3@VZ%TArT`ob=vQ zT;e^0+75Q<2P_-%oP)QSPF>$TBYTSJ>(vgoqPKCCD7w!T*!yeByExXfh9dPke6k*k zR;$|Y(NugAy)o}#5buROxwrfTq$*BN3^-R+B=FQgRF>oS)D;e`pTd`L?&U5sRfw{9 zZnJQK(%0&K{~OO78CrtxO%-GGzsOU*@x+~1FAMBA9+h!Fn$7g<(Z96F?CtT6cjCma z>6n+jTH1cz_Un~r%U>^kKP{TQeEJmOBlT6DciZ;X20h;}KQ`g`_weodGD|&fc&mSG zx%F~eJ=+@L%x572g{Lk%?&V@wl42m|$KQ3Ro?WN6<cxU6^EYo7S1CTqUz!&u@LEpo z-F4o|ep$|(|D5Ks>th1HM{b;dKlI9T_UVomiA)8q)@~EMk3C%QL)-Vs{y*=<Egx*N z-gNtOz5C(Dx`*fOL$BO(7MA<}ov-`Q2HPLabNKK4u9#Y5>R*;0Jn4U;yy!mdFA6sk z^g~V`pHp%E&6&%utKRE{?CX2#YcsR^+a4W_eCcZ^ONx@u@*FFj#i+{4xir+mKc=AS zed((s#^;k+&ZyowWp$#3byp9Y%ZBHCfeS*P-M!iWFWs_!vZ0Gq$H(BfRgZrPTJx=1 zx7x~*Z<RzzK&*QIi>r_Qj{e=SYv)^*YnA5$qS<4veN~h_e$Vx!x$}LcPyJ>OY8>Ah zX0Mo#Y4&I14DB}-@r}>?f^S-1v@W_4{B>?X(J2-$J(-2CqssT5>RTOiTWjrwrw?9C z*?0J1K=D$R9ocVxO0TG&aQxumJHPuEo^UcaF*PG9?ZkzO+B2KZAJ(b<`O#p#Zqz)R zwzGl#ee;-~-D|vCee-AH`HtPTB4N8Xoj?4wa`v}J2kxeOFDX{vJomVA&ZqnT-Q)dt z8u>LV8j3H<d!DkZ{zm&DHsO+j33s<A)Y#kP-`;ze<6pDLufK=qA2$9fcJfdC?bTh3 z8<niw?_78-9xBeg^E?y(-^yJUMVszFoi($%VSckwU+tfRmaXTzo6IGih$R+ED7>t> zfBo`=_I7zWhWY&aAKy!plYK8-arf^ztL1-X9U48i*w=+B-*~*Z`p^7owg>rpgEA9y z?3CIzH#3MHlb>VE*sM4I>22HRFM>{$I@ia(?z#3{@A31WpKMy<r1%zBnf|nJxu9_~ zaH-94{?b~XIVrB^rH!g5e!g@)eVy?P?G5{%D=KbrI#(qtA(@x9r|#tG?XHg;n@&wt zx>9FkeatL&_q!PnpRc$(g>y2CZ^fzSSGjrr25q(#G{5`#Q_lH>?T@{d-<TiV@Bg4a z-8w`3cm4VMj?FSpFCOMe`qL3FcIM%Nw({@pvFrbA+wv`RLaD9XpDoLFKi{`o<hTA> z&7uXIZ#6v<n$C4Q=C?iAa^ll8*Q^bBCr*A?c6qm$y7HVD_DSKQIWNVI{irN<+HY?C zN`2Y7%~6&`F}nLZUd@?gn72gy(iYw$i+oO&>K#1wt!~59srBDv>g8%L>mOn$-v397 zXLt3~bDDQnMYBJzzOiag>*D=4Z}-$(G)w*S!ZB{j<X=yw?3uVeB<HX=OZ|`Ci?hz0 z_Vcb}c(&J0G}f~6-x(1N+4WCO*{sp|#npcBjJ_?;v7&ELF6MR;ZBZ7Atot>TKh1i6 zS7!a?51SS(iJRN@nSEyb+WI|jjbn~IJo<y}$s4<K`vVtLop~q}Xl0*&St)gWS<`OW z$2EUk*XXFb@pvdTh%0Wn$eB8M#VwiLsVaB4Jb3<Bd<ftEsy3-c?Q{KHVVC9WxDN<U zcCa?66=|8^WZOB(y2YY<(`(U9o94Ce`WzZuW~&tKDtPVSoxXF$y$80wzioWIUeh6m zwI(ZC==#~spO~NV7hhoV{>*aUvZbNcnB~uG#Up->9CHIp=GfZ({rc!G8~3ywf18vh z>Q*n=m#{nj<K6X!KSbq1zx=4UclEvSsnAEx-#+dvc6x5S>F`SZ^q*WC)=ax{tHkT@ zu9<87<}wBfJcw*|wB+=^zvtG%S<@}Q{(JVRKJ@d$CyUunKmM|q{q=({i`iM~zXYr+ z);qEP@0UqILG{cWf0-BLeQ0i;Kco7=wfk`;Z(dBh86U2*&n&xqwN%dUHzCbIt`RGm z*(b@@mA^g|^yzM2VMWRT`Gkhe&Pn%qBjxR1y_LDYLyK|O@;!{xisyaU#(us%)a*b^ zLj|9gRNIw$G546=(f6ZQ?hSsOqTY0O@xuvE>VH3}xt5>Y`K$5vvBC)();~G=agXjg z^JAs!M8ZT`zJ3&$e&bbuV!e-tZ|$w{Ct=pR&+#zct9`!lN%waxndzS|w^Xa_{LR&s zwBobZ4~OOjQBN&vbp+h?t4r=*{OqMADIpSYs%*--8~?<=FkP)beO~>~%G}-B7q47> zbva(6^iavxwNu5aU)`FzgyWy$H^s8BsyCkhwm0w1PJFt@=C9|Rg8L56*B4LcE=X>% zRamxOqNcs)5a(5kR|jqcw$9OcyFu^ED{Yk-Z@b;Ue-8ZM8f2WZkJWlxds28y)U4Ho z%vrY<7j!kYrrQ2uJN5JbSI_!ewcmCY3Qt@cQq$t}`Ca2Oo)14C%~+bfD(pq9+GiW4 zg8LQgib{RcV=6>WZ46$lcVW(k)AGEgrK!5ye5Wl>YA%U<`(y8cx7*jH$95j5tMh%m za@CfH+0jKiC%tg7Pmnj7`QGok)B4_N@13q!P3l_bZjc{xeV5SY3g=s5zs@}TJE#8E zHP%PQPnzr(<-TnTj<b2T_E3vsE9dWNe?$K6dp|{Xr_G!~^Gz>Pe3I{UX4aISRhST< z<5F<$WH+;Tyx8$CAB{il37ItiNyn4D&G+KhdR+MP_&GNh%iizB(e;)eJ9j(Y%HJ1q z>|H0<?J6?^#hdFhgy*af(Ob&6`sNHrFT*=tMfF)rTDPgk)xP=vseYdM5BA0&kyn#y z-o978!<xADZl*=)7teQ5Q!lSGVgFz-JwC`KdBuk`@oBe2)`#i7h^Tn{TD+#2v2=Qf z>|U?b?rhy<^=G60d`;1{n!>5$aJ!<Et+@48cJ<V7=~+i>T~19~tmVt-GGmg&74MtV zp72Gi2+kI)50fbDx@*aQQ0Cuu`y%@n0@EIax=h_<^4K}R_VaWFi8*V6wwsyi7p(~v za@#6e5oO$SjL}6($|}iE^DsAipvVR8?N=WDwpPiGW_Pc)&SSm!h2x05<hf^+69pUX z)Yc0IHyUPb5cD#$=!#`7G2V1G?{mW85A(Fn{JnH$>jdR{o%N}Wg(ClM`U=FX*rh6Q z?%~No|M2ZBr<P|*e)y0Vx`S0A@$ZLxt-_ffK4%muo~YwJ9bBrn-F5Mt!;c>nUS?WU zR1ouF%cjTbUd&qUtg8}Kue|-eLD9jqZ3k0#4Et*tpT~YO=R=uvwpOPX#5sii4Ymk* z^+@!goWnXvt)&I=jC+pP>wo<mcXeSoU;pH5UY;Kc65OpM7jE7^*FY}9_vHM}coDvs z`M2s6byYO>z7^nj(z<`o#Q7GPcT2>kPk#OCLR&LqyUe=jJ@NcoHfvY9znX60{>{(2 z=IO?^XFs1_u9`PTQDiySyYc{yLu<J=iU!UK|90)>o8sw<oZH!+AF0}1)g@dX_d9sg zlg~?jtj+#v)OxG1NH$b}At;7bQKzo_OH)n5wznH)*-h`pt$uWvTd?9tsLZC<&)P~Q zHJ%?lu=M|=DA~HEU-EVTHDi{A?3vEAH}qRH@9e(wcGj<ic6|AK_r5v@52wtdgO2v+ zz8-gfa<`f7^x1zuLMO@JuW#I6e~sr7!^e8|cSRrP-JUtwK=seVaz?464<^T-|L#=z z$>`;yB>n}{e}B~ex1hVD!)0Q(*KdV}=ehhYzpidDis-3(Z?n2M-SzyobXV(WiF=w` z-0yw<z#jK!v%KHe3(TE!Vg%1k3=hh1O7CD<CL*`ym28!&?Y|G{j?>%Tt?Qb7^ZDHU z0#^FJW9s$4dtI9Qc5AfhJLz5jK72UL>afo%euKNYxb6;yA085)te@}d@p!<#jqykO z{S)G6szvvG@#VF<u;{@&{cnqZJzf1r^7iY)8;?EZp2c%umqTJ=+WNqsS-N{Z``NiG zo$wRZE8(~J_T%5zgvI5X_2aMJF8`$a?Vh{do}xV)l`U@O%GcM|)D&7*m-1|XeVqHf z;R5YPUqi3|UC@xrvb4hf_QW02+w;zxGqTLLnNyw7@oI-sP5ndbcYZs5Kd;|&&Ema5 ziS)VBpygI!>;HCUbbdK_n0<oqa=ALQs)G!N&PdktwDT?7-eb+Uf9~C{d_FyjSEByx zGJSVYC3ty7N&%Bl!eu@F`g$(~+q3hTS1miU*EXg**f*i{b=$F9Jx`|{<K{e=yX58N zM~@`AgYN3>dn?&{KKjCq$D9Uwv+EcG&ZP4xZir43;FC2=__qFi`d8cjx`TPq>5P{m zS{~_c|0J;JkkeM9iZf<AoX@BJQ1)?Xu3z}K<p1IS>;c}4ObiSn3``sh3^GhTr>EcA z&1ekT5jtI952GWP5weFd0=#>)|H=P7*31kHoIKNa?O`+ki+PybWaeaHV6YRN{$mfL zPBdr->Cyf#GyUWk7?j-@82A{FK_w>xWIt(MVi{y3DZ+jZ29Vwj_a^jcNHZ|Zw_sq9 zLe|Rgd3ya`MoqAbR_|q$W(szmyw^!q2i<^aKY~9h2{AA%5(0S(*@StX(*^f2D#?Sa zIqr3N?KD{ihWoY*;7zUwb)TjO?PF8{TT{7@QJQIY<>b8;;?vjeW8?t~?g0s|oIU;K zK1O8)kWp2en<t-9VPMElLpSQ{q3JUFp{fvP&!emQ@_c$cOci1`FS@G9T+<i9R2d71 zo_Qd}z;NFjUDZC-=}-4FDuW%$eSlG#`Jw~k^Z;u{vFY{)pzilOz$nf1IC^^a0jRo( iAc0?H)7Kq<Iu(5bFd}TkCr$r&fKi=o!D&VY1_l7nQ2|c? delta 47344 zcmeyokbPbgJ8ytDGm8iV69)r>k<Y=2yynax%KaXQnykUNzuw5_U<A)C-6U&f28OTP z3=9Gc3=FOTp-%eA`FSO&c_n)J1!-HSoiCnkC2;)xPi>Q`<K_w*I(sD_%iVgpWpC-M zn0u<qN0PFcghZ7#{{QXO#3Ix_?aJr84ZmJ(-hJz8|J(ND&_(P4ywjDAE|gDTX*xNl zyS6Jo->%y5--g|{u1%@Gd)b!f)Y8ydI~RF=bbM{4_~hfqi_a@#e+0cfsl;*3<r=Ho z+6VU0A1e5qJ~uUc8D7av<B97CT)W`GagonHr+%wB+P-!)nzdCmRDJ&IFo(yNcj+BW z-=w6a@1ZV#(#9f7z--$w<4A!$yPYzk8<$yL-O_Dx@@Dad($!w#8Rs~r1k}%bASLum z@#SVOpEva<&QuxL6;0#WsW`9y^6jl&D!HdWw}?thwHLlfeQoebY1-O77EMdVH)%w> zoAf82*!F}q`$6_PZ;1=<u3y^EwKnCRQSK$Ts73E}MR%>e;2wE(t(j_xi@JP5nys78 z@AmTU1i{LKr?{QW4@<Rks*3);CQ{E{e`xpLhb-rpr3(f-Y?XO>Upi;T{S^X#<Z2r? zu@w5RzGYbD*uP<_(>8IRwZVVRYqw+yM>bztE}|XD<i=|~W7g6gi@H>~yjEv_=-XE1 zt&`=Jz`f_UiuSu*!gsl@%H5N^_Gta#qAQ7c=S)_t^3>Y=*5~2pLfgD1-%T-Ur@z)S zFZ^A<srIg^rRbgpx9<h(78c#)Dm(Hbp~-*av@_-VMW4*6`V}%;;cefeo?Fip-Sw}} z4E&QlOJ2FCZ4tk}#^;yv{I^c2C6?__{_0t@yNa)<E$_?9mS+qL4y%jL?d)-@xn`pO zH*@p-&du`#WB1>`y3F?dFNfc*8-m*omZuaxYm#kJsHty$_hx#NxbTCc@$0Hxzb0O~ zS#;>;r~d_Fz82kjv726Ve)zid!Bv)uQq2lm#<+N{KJ^11mp(YlQc<jE!E=wT{ov9E zow8E<(%a9ydfPNz;Lg>g|4&Xeb{hXaXY=idcJVKPbhW>Qc2)<s`{wFN7th}Ojz#{b zQO4tSr=Py*(LSq_Revu`y`ogDFKzDJ1B*9`yWh$;>6V=Jl*iY^x!Bfu^Q?uD=Pw*F zHkoao-In*S_t{gc{7&tizwgZ6{^;`RQzsl}9^aAK_U_bV9_8>KBKI$x*~5|AI78&t zzS#Ra=2chp-<kA}cmM8RtguYT0m_6C)AYMKwlXs?JP~4GsON#@x03v1y}aa#wGpw! zvn@nw&#&L%JTKL*CwI=llUrVvEW3PnUHR<0cJDYQ^rks1n&dIZ?rZ*=`>*v^9uP=A zuD9lmx!scD^On0F#R=Za{lp{JIbq7?)~9_k+#KDNPB*I(|Ni|T$9nDV+t3q_&gM;d zZXx_6YQb`&og3<dmUc<suB)n&Qk`+?xuAIV@7on}K5w&@tbKm#+FMbF8A5YH#D5v7 zb1@&bjEv~)%JZ5PAyB-GBba-&$eU$X`tu%Lm0{0&uqfl%uM_=?HMwex-16SI8_TOZ zIw*0!c|3ztGvt<IsefNc%)^|{>rduQ_bFXwp}zb{MX>LWkY|E|_3mjcW!h#w6@MH; z-J}#;&0c+D4sKFUU9)B30*gP9Ny|>jysM0x;x$|T*4G_UE4c-X{`|1klhUc({A7ye zf|G}`@+Tzc#^<yDX;YrGm7nL)^~rCX7i<XR2|B{PS}J>W*W>-IWvN>{L+8ESvpG6z z|B|=gF8_1dG~@Y^hL|~4eboo*U#ke8f5lRFc4=zy{G@GalJ*9#B^KNHT`%munp*zi zwt@WdzjnJW_%b+K?_F5->+qWrcfCE2Q>O?{kPLM&V-+;H-gy4QcE!rMR}QRTa<hIA zKchD2Y|08L{(Va#{HHZM%-+2JQB}QQVL79xzm#lXr$N?*!0x&_KHuNPCz_W&5UlUZ za9g^_@I?Ab4?W(=nKmXf(+<D+zA8oOR`;Auy8D~FJ+-%W301cJeQdUP*NY7PyDDp& z7Vfgzw>sUUq{4CWr>}NqLZNRK1d88sxmdGe(MLzMOd-RGpOjXsbjC^d_7w!CoR^hc zetJUk+le;E_B{Q!jOpstp!Xjh&1i9EJg)kstNwtm#NMml4=qqTvv1Ay*U8^_3)n@T zeDr=^aPQl9-e|V<^B3{gyG-gho;CBEIOk@TqNY^MRps&eN-0SiDGnFs9T4JnEoA%S zdSPG7=N10ED}VpJvb;3;q-rRO-F(-gG>@W7{zcnfH?8dOUgcxS)+WO)a+kqQh;{y# z%BMZYa`R5q=U+RY&zIksP}QjE{Qp6INP^o#-)+yDR+*STer?rO)6Cerfq8zgUR}+9 z|9QT}A3h$EjgZ`0aQ8@nB=_B{1J&!yEd@U;u$`){_eojvL%mnZ>F-vVN(-)<F$Gl% z`grYs&J*_HV7$wG=T+yga~<!xE^kz;v^J__-hr-7Pp%eT@km*gacIGG1CPQjyv?%= z+@kItj5_{d!lda=&9`fq-+q1iHEeGGm7Tq-EZh#U$u(~^ke?Q_YTN6bJoT}9BDWOz z>@Hs^|EfP}!>_L;)nA2Cv-yQLT{a(N85lBLCQsxPukX7ZHR;*^Dz2^Ez3;NhW_9n_ z^{%vewM*9&mmnccUN+`;zm?vlEN-mqt=wBVX<<?EvblcG*Un;OTVXOs>HH_xITnRU zf{&i$|2Ir|x#;sME3HrW?GMgh=+CWR&Sie8`M$j@{~_6*FYWjJd%3;-QQ4b^d!CCY zPG0)?_uFJc|Ff^}*W0)H2G=nj-1px8`|0zpq74SFfe#9#Kfg@8Aih55ZMd@X_Al>` zD+#zXxJK4TExFdaZ2EoKufH?n<IL`4R89N+)xY~_{><wU-0E9a-O8@}f5q(InI}wt zu1$@e`Th6u1E=?%%IbP``H<$PW2c{QTsn1k>t~Z4owKg|)_Ud}x?}C-Gxb6dCP$re z*Y3&O%o?4NdizY#58fJyirGQtj~@&Fcx%}EDJ8J-<@@>XZoj(ld6s{7nohc&RDOoT z@_Ez6!{+@rVftex@UP}RcU|-Ux@Xtz&&JM|)%NY)7WwD-pG^@dVWKWSV}qx}i*1<x z_iO6nSQFogwp;YYzT1`s?u;u9kIcJLe=S~YzTldw8DHY{H_o?v|L*3F)r;56+4=K4 zd&i}se6NqGjFmT;e)ZT2*0%WB?*F-IMYl<jc>T6HxAz}?p8ECf3N5Zf&l3wQbzW)A zo%;UjjNhhvtsiAJ=JOXV-sQ9Q<LN{Gdmn~pm)PFVx~#tPU;Vae;XU^DXM*p1e7EdU zm`V1Jdga&KkKSVqy?Fljzk|KCtUp+c51;!x+5E7L{*Qedzsp_gcDmr+`iq<CLi($G zg~EEVyZ!55JoRj}Q_f%Uclw@;e_yTt?BCP*Rr_g`!>R7w8TaPx|6@2!KKF|9(&LxE zt?2rY{%7ywUk(3xU!`fx7k$k6aw|iffmnI|>1WGL-rZ0CQg6Pr=Wol2;`8-)zyCXX z`?t#K?I-^`-u>wqec%1RPtA>@U4h@{?unZ@Q+?$V*LQ!v{yzM1^X5kTIlV_0Y3QnF zrTMCCsQ>q(@sG6SFU#Cdjo<wHzh;}(EtK$=?RWdqn)IhiRA2n#y_G+$Pu8w4*>3#z zY4_Wou3uHQeF!wT?~^LOv)=c|riV8ZTz<-^Rg{-SS)6pfuKYe;Y`&fCE|$}tX~OrO zy^DQ1b>7uGWsg37Y!|%W^Tl|peahtfk>^g!*2G*mz3l&S?<$3_O^;Tm?hU#fe(i_u z=1<qO;#>XfGhQujtEsbgs4{tbU(s%Jp|yE;{j9IcR?M>O__M=w?{~xadK1U^dhud` znDg%wr|i0~`ICEb)Za7r>gF`ZbG%~h<@bCgZuj;7xor*qw<X9oFFq_|biKQtIsdHw z+rwwtz9$!$pElQBrQdD8SfaDyTy*p|<`dO>_Fs6YvAHR-^S0LC>-B|ekNqmT&oHg> zL-_4gwlaUezc}({i`=a>O-=LaxBW7F(tq$z{gHcdFB_Jg|IBV&S;=~L`;6$=W|v*7 z0@=f#m&bYY+MVTd@3_bEJvignn`tJsub0fcz5Z(L??27=?@c{kHgB1^xz_z-ozk<a zzt-7zu08BCFK<d;z^T>hZ_ik%e@<vQ=NZh{b42*>3JqtYsG2DAoM44r5^lYHA2}^$ z%+;6ZtVye%w<)i0<pQ;owCHOhUzZB9th_RRO}4b@nREQ1!5-^hF7aNvVEUs<lkJ9^ zd->K(7GP$YwBSwd&bz4(qU<=!ma#KPY@1Va{<{ssow-lvYN~iMOnd58yjYgA|MqLv z`vK>;Zt08qZx9LWJ-h4KNp2nAPkmn5EI~86Jw>!PEe~U6X031Cx}N9EEiF}>cY2Fl zC1m3il7mk9y1mcdusY13im^bv*E{<DmW8ihJf8Y0{M5ak?mg!#?ygzoF|Xz7xu+5{ z70>V3WNWPZB+GSCf1^`#<ke?OHVJL>zRhj?r)1G@2GcF6E!=l2ndLcBV*}2#N!&GM z*q(cIv+G5*8Jn&jn|v<hOnsE)_vMG;6tA5NQCMWQN@h134__$XJj=Z&JbR;_ipDR@ znACfq&^<K3`>nx;9Ca(v?W-oAn78|h8?&MRgR2P=X_01gJw6@(9JItsK)sAjAi$#V zMws{Bj898%%nOR2=wEsEOZJuZ#pkE(Dx8|A?Qe7Gv_)^F?rN(kmlkK%=dC|b?_zO6 zs^_vO_nJc+bc+p2)_j^}x%PBGp?>4(9jAATy^qqd^<{c9`|;AfF&)Y?vu|cf&3?zQ zX1eE;dAm(rQa1&z%+r6d^}zM!f>nm~&KCk4*iNZ#Q<h(PvnctvtYA*KnES2cT60DD zZ)DWnG7)X^*t1CX?ct5@EknzXWy)8q+qJJ=W`Ux7huOP{H|&4@xiJ6w-*wOUHoo!d zNKc=qwM=MYH7nP3h48DNj64~cJ$w83bXHuP7W{gxR*kCgl1)8-OheY5=}HvrzINi< zn+_APFX}}?m77j<PsmX`xY0pfs6!&JTzG!Gtl{Amv&_4vGBXPEtqFX?vRU@-TG>8} zHOrSBEv!Fv(%Ye}tL2*u`~0M6M!^uiFfN%GA*FL$#kPekwg}o<e`jmrRMTs5cXZFE zS16x8cJxvCjl|+DQ;p4dmpIC*-tqR{d4EP(ZfroD2PfOssco+pcyyogJ-Cv6$-Pxd zsfTlux!zf>QeH4$FF~}iz-@({_=j9^nf^T*Z`XV4nK<^;8*dB0_@r#_aiv=IERij{ z^@7)xh#Eeaz*TfM@9DKYjcY$L#-E;5Vke~IH`k_~o&U+HuMfHxcyG#oQINB_^2VEQ z&SAe~m1bK@8453X`KfO6P42g>I$PGH|60AQ=v><CxmTXNdGqL)h2dHzueUpo=h&?3 zj_^5mxMEqW%xwX2w+6-f`<o3?RIYAW$ZT_N>gzIHgPU4`4<#%Xo!%;>*qjvlVO#UE z(6@(8XUe~RbK_0<?o(ney<4s`EjPHKa`<#;SmQ~p)X9&Z>}=0Gwd~fUGaqukTJE(; z+Y;vXTtb`crI2j5<AqsgFC96Zu=_p3$D&)-mHF?3?y&0|yLIr*w%gJnekUdCqn!%w zy}IToJmK?(eQ_S|*2onsHsfzN_V8X|*00SqirTCz=KM`am8}U<e>lUZ>89$%l~P}) zN_pHq7vud!Kz90rZT%4$kuU99=1OGW-}0c9A$|6gX4{9XxmE8AGVDb8I`6HLJpJ!< zeBG-Lb)xqByyW-&+^>HARg~Pj+xd<5zi-u-|Jmf7=zZn?)cAjGU-)0nF+chJTqL^z zQ}7Z)XHO}PQr{H{8COhAZL(&)S9)DMM`2f;#-wR8r%Gxn?7Uz;`_!$DGY2zSw{_f^ zdcZMdp26hRAInxAve_<b{b|*Dk%t-LNy}b{i?h~dO|mlDq}r;=?)kO+^w+xm-)oXq z?aJHsCAMBgP1XBpDZlJ&w~XT764MT;n1n6ey+cv8syL`BN5cR5=Y`%?^;xw7!cA(H zqC74NAw1z5Z^}E(wQyx!AY!roto6<9haNGxBy4oKwD^wK>9=OHI<)zwDA)R^cncJ) z+&*Pzu$TXYNzbzS&K^JgEZXDw`qztDFKWDXTRp8&_~4a4^_L|Q^gJ128j6hODYDPZ z%a!T6G-E;HJxA{F<+7KSY^ahII^cSHvr{8?rRSQz$}fy78QKJSHX6>B-YIh3`FJk- z;`VL-IImmfh`yQr$S6)SZT3!fz8EXB{kN6HtIIVDv(7BO8WgaSv(NI-xtY_1WR~1q z6Y+#=%a$#{*Ljw^iVN4vO{;MH!4@nm6#8Z7-8T&~v;J0Gk~~tV|Lfc&gC^#>$V`R< z@0VN*w!FKnkLN(_1JQFkjm&$k5}G*=&kO%*IUy%Dc6)ol){Ap0xnumlp4_}U_B!9Y zw`aAkp69y!N=a8HtYop+ft5?2GNt+y?QGS|$d2KuJ~Pwe&f3>GuesaaoUE^4@2T`n zesZK#_Ut6XZT@fOCU5d;c%xrDrA&2dgbGg;Ymut!_iClG@H2VK)k>yw8Ltk!nqr`L zX!<-WW51nNYt9r;(-96$alE$HP={41b=p(Yo|o6OYz~|fSb03G{pq!N({c_SK5^~U zrp#`}I8{lOmPeK+)+Oe$XQ_AlNba0bf2JjCee$F=F9MBIm8V+k$a#kdzY@K+)-U+v z$(<7NJqp*|Tvj)<-7cBsJjb(YPfVglpXa-*T{~CgN<U0u=B>CWb@}0<V7sZ;8_#^> zOXp!+E4!XK<$#v6=Dm+XxvPb%?lRZBVDQ<=`@*@_;AE0jeoD$Q%gfpAE`LQQ?mk=? z&se{O&281Z>n^M1qvy+Qo_G5u$A(^Wj)|X~9;PUqS9Y`PQr^*55MvmXs{C}xHQq(S zlUr6KET3@b<5LkyZ<~t?zFs?hw(P_oOTS4Gi$0o{iE@c5x{GfMdX!~Vv6}Hlx@Tbc z$uc92l63#thaR69Bg8vnmZUelo8)|?F}#A;GI~l$y+NGXO|8sXx0o`6Z3`oB|46>% zWFz?cVMEZfuUkS|cs0Y6#pn5#`MfaP<ZhGpLU!|q6U>r3zrML|s=oir2Hq>1owMHl zyV33${L}KTfDprxy|+$?t4CiGRb3sr##i{=4=?w~BJmW<y|13>B&+gs&APZpb$&<3 zyep}NEl2tevuV{!O<UZMVRCog%e#CZJ8ktP)>Jx1X5}j%w|cNA*lxM(whf977c)8! z|GQv#{bbzEH&yB@e+hgnZ0>%nDt%?*^lP$qJz2GW4hGtOPJ3OK*}lt868jy_G)H#L z0oJ#HqT6cj-@9GzcBxMyUNuO7W&i(w!tTG{9Q@~(|5|w6YpeXg7xink<_o_luUX3< zsrT#Ib+P=1f1Ims9iF`Wt6y6q%jV_0&rB+|@Ey0AwXQ5A&PF)5cf!NZ9UHqAb9Ntn zlIY=l<(BC3?}3hUHCnfGDcfFcGBtN{ycO}K&TgjZ%xwV=N(A}24z0`c+os3&*?OHk z=f9$}G3_rj8cr=qn|(!MkFCu0dX-l@RXiJi+dfD+ELULYxJ6X+_N}GIwy!AkS>$}! z?VOtYLJ_^AzQ=rA)fKD+x-Q*PQQjBZCeG=-efrhXE32mJt$HeY?1iVp2@8$A#&&8y zUOfrhS5T_WCtmH~D{0hl&Pqt&-HNnjOkFW2TG(HlaGTX1xU&AN(Yo1N*!*XFWJ#-E zAz~h!y>(+zhyeR;1wFl;v%NM?mwwWfZW1uZUs&_$oZUCmZ*JpU-r{$lq+9>>=Q$fn zLoZmdB*pp!EQ_dVSaG#dW=4bQ#ayfBi;jQIJA68`Ep*xPgPp?Lax_d=toy$Bb)1Ru zi>lPCbGbvVUQXfkJ2^|a|Mfz9&o6UAWA(1v-mIT^vh9xK=BxWnKApHUNpw!+7OOQp z6K=&PbKPv>Q;^rSa_d<0qRP5yr5fY!fMnNs0W0%FK5o41wSS@c^5*KEayG7+rv+}$ z{MuG(d{A<M;?$){eOo^(tXJv3VNuxjZi=?*5}kuuGvBTFvh8l!#{Kc{9#1`KcrEbk z8=-{-vXcYXY1O~Y+S|&nQfT>cy0A6t1_cKv<};Igo|*|VURd}emr-WdmjgG`7iOFP zc3avYa%jS-HBG*WDtG3Hl`3A5FS}V;COV^EEnyGqU+*JY1&jGY)~wRl%e!9Nq$lNt z*138AMb>KM9Tr&qS!7FDoLF7KwO_IaI14#q7s;FqkY2(u&-=`gdd8X>i_6u*w{ipo zRsJl#^)2|e_<}u4gw^w!|C&ifT#EcX!Qfr8vgmA|dCaOM*Mpu%rD~t)Pf86fco4Gd zmPcZC?i%;WY5_-YJlz`n?t+Bm^z2_ES8Y36)z~gDEq?jBa=&xDm{6c0|Mfy;3k|y+ zlUF@h=IhSV65(R&w1S0k-}3s(&F)$owVz&1pSkza^kRNBgHz4T%BQy;SRNMmv^^|o z!LHya&pUljCUiUxV{5aWD>du!+UG5I=Ugt~EK2?vk)mODc6o0G-^mN<b{ac&b4RrA z@QSmZ*LN+o?Vaisrn^p`79{YRH*CGeRCcS>N4-*S|G_e*{-d7_s<yi8Op@M{TEAh^ zfk}C@%@%~I%2kORx>l8IAoiYTHKWkA<jI|>)v>C(jY`+w-n>gucCUf8xWto#OLoe6 z)ztL0Y<GGrHe(aFj%D8!%V{M=4ab~wZlChtjm;LDSkBe>RyNTxY(`ziOv?+gYa7li zPAp;Gq{OsdR(9%4=6fX*yxLX56E(LkIefZ)%OO3XDybK%t1UlinhGA<b4J&od+qD% z*^-U@vzxioulMm@XQ|k@A<;-OEm&5T&1%H~Ltdf#eFsb{>=J5jhOA!s%-m)1L7s`v zL=J!PEBZEd#nttmtNeG~5L>h(IKU;aykXXE-Dr+A95+*qj^@1C_4==v2*Z;*Ok2Hg z&d#lTb-jM!TK%V6?lxQy`C-e>n=V*<w#@4)fAur>`tRR=r5^u$|J!NbkbRFQD;`nf zd=qZ>v+ZO5i~gOjUS?<V&ojRNU_q8)X{WyWrA1%%&d6z+A(9v!dEI^Su6a*`8{};F zES~Xilk}Hj-KwbxqDKs^!WLIdos)fGN}$-Sp2!z(GA+2|j@HX9QnCm;E_BoUz$L3L zkM7cUW-fPqW|m#v^?J|BxhE2}H3Gz*Z_CV$j(Ex9Y%DxkzVeRM`*T4rrB-BYGl_Dn zbBtTR>yV-QistK=3@u#ca`}X#ciU7<<6HM&&XMk2p~p64m3M71Jny9Vdy#&bdZ6K* zT}6y*OFaKf>b)%DJ#&qDeYkGBmC;-w>9u}~Za!W5?#+^E=LBb^7W#O66Mp|mx$1`W zEFDEf!-agYGcTvSz2lqpe%IM!E(Xf23nI?1uCu#*aFau9E=T!?pyZPB+iMp(F5jA$ zxs&~J+MVY9#fvsNKP&smU?IEfQi5L=!#fSLX;Cb4$xVI|x7gDjEasN`;d`n+_pI|( zS&ron(b9`QE?9DH(dKu{np+=P%YK&3_ZP}y`<WHA@X(wE^Fo|>8@f%SVjPYpGOQO; zR@*8%Pi<bFW$0Eui|hh!wOwzR6SC(W@O`4K+uXch%G~Q3v(44(Y@0gWA2UlWdLyXa zGBL(ibn)RO%HCZsml*C%EGU$g-ui5dc>OVp$X`WAL&Muv#H_aIl;d^T+9kN>dZ1kO z+;!I7EjNu@=B9{WUwg)(N-9$S>x+cv+w4*%#|yb_-l=k3@a&z5e&NgypH>RYtKFo% zPW9=Dstq%9x8*;awfd^b+&9&0r|K17IM!piAT)?2``N;B<)C2Jnln4<mR>l^YCorf zA-CJNo<rmLk%_OFxA=MV_wBjU7nY~9R=?fo_OX?^9=CbR7kM9<eyRA*qok)Ro4F>s zcix_N*XdgDoNaexA8_lgj`QbY&R<$L|KSxzr(Ql|r~8I(_d_HXm~WNRlU7Kd9J5*B zr^!o`4ub|)#>rZd>wG&NS2$fTw$1T!*>%lZf49u7+<o<uS=ua7r|;eHa@z1saROU` z5cAhF;fu;|WN4Wdh1k#GlD8IrSy#KYr^%wALV2m8;Od`jvnSMW{?In(IC8f^Wm@YT zS1;2wrw%@QEH^dU`DVp0uBXSM1PoFRr?jt~^z_EBQ(T_*dKbI66?7i_O4z$)CdUe9 z#XC)ME6bw%)V59CSijp~h29k}uIE$EmQVSra>K&e{Npl_LoWrs%kD|^f4kvb#O`a# zbxx60vyZF1`jQ=PkU9IF=ZcyOnXBU^o%&2;G_;>{p67kv@nw>J+e{6^dGB{9^m4Xk zt!X+n<JjD?$W=df*)mSzH#9sT<1^=zafMM6@4=oAKNGBs-K}%q6vwO9hdte*T_C&T zQ%)$q$CLSX?{=r{|4{x*_xQ)e{GVdmlDB?uo%H_6WW9$6U#zdWE_}{@(f=fW|9_`# zB_{{Ug!bmHS5?~7qcgLyV#f)C_p4=+8_JAirz*RvXtG~muRZ(0PWM-_ipb2Z2YG|` zPSczdf4Nq|CsSyGrLe+`%o`U}&i${?*2+GguB>Smca<r&@9~QBF+WT8<lHuFDNM@t zda_YbRDGNAzD;JYkEo{ocjWfup2KrJE^OYsO!cDu7gPT;t$kFJ`7rHO%*xNFj!Dnz zE>^Jp#lG1x^&0EFFFiLnm3YEu&6HYs^~>i|)<;(9cApArd-dC}!$SDr`Y`_f=YLgZ zFxGEs4L`^wB+_{2=mAd|4!M?TFRK*#6U*hci&uIZ?6q6o(wTWGH08TXe<R;XZieGI z8&164ae3#%pK%}0&67WFWV_p@bY;NK{oYMA^$#Y07F@ypl*{mN*x}^56&Zz`>mO#l zO1XF4rTpBs#L4B!F}5qV^nLNY`(caD`Uex|pU>HGte*Rv%8$m2tagG&*6v((;_bpy zHa>SE#e7v3$#3oOxpX>v$1=6EdBW58?lSeA$X+hCZFz-+@}#I<o^0PW-OcOfv&<Kb zNZxv0vp9EgU-XSx85hoc`<B|{eKhRQ(N!T{8)^;8C(V35Yv;9^19wk-c*>&Pb8Oba zr0CbLy;_#0D4${xsGqp@{r2iT^LdYMQEqtMxt+Bp`}G8!ty9a(cs^Imx!&}AQ(Nfs zHJcfhbeb;IeB|P&(|6$dpRQ-q&hERZ;oTv$grWN&ub)!#dx=X${;$^<TV)G4Mm2D9 z-fG$t;MgKIS7Gim&kEgus6z@Hns3(h6$SG*Tz{KqvRd`HT!>#{S)N4wLQ7c}rtL|K zW426KlwN6O^G&95ZcN6`c*gMS41x1!KU)0g!-u6c7M8z0Zn<nGQ7v|K{>?q^)t|l} zd%drH=LO+^r={M{4@tAXCVlt%B91@<?kYp+4QI0QS|4w(ni75gd3JWFZ{hT)$Gz>B zPVN1&y59cRw}%l=d%xEI|9Rv5clq-Ae&+ezf$>w%I6O^uylVT}o*~rr|7WFZxBI8M zIo64r#)a9JoKc#?c<=BVxo2m-%wPDwY)bpArR5EK?)+uwdHnQj@!Qws2K=?}8!h5y z*`3$zw%T>__vy9U?q@AJ_xpABL3=S(#Q@7cTwjhGt$QE1ApX<W1%~;nPOkl*{ZsbS z>Z1Gg<pqm%Dh!KvRIf^GSy2D)>7Dc2z2&w`HeR=B-ox-ikEcRB+wNR{cFdlQQ~0}{ zyQ}`+==Cx3OMmQltzSNme&36HZ|Agc<C`zfue`6WZ!HYpUiS27cfQ#}$@dHQeM@Uj zJCSxR>v`wR*@nAzhkq^?{WE)KrRI|O+^>f}{QmLoWI}EI?OD^O<SXBEu6XdKwkN*m ze?iDS_MP&dxE^Qz5ZBk9ZLalmzo>P+{lWfK^JQ=4Pkp8@6+bn$j{p0yW&f6B{JXtp z`_=~=y{7%i+w<BqY|6F!i}&y0{c`NX|FCw~|M%<7UgmDi|9on7_m<Cju6zGwzpGmz z`af@7a7po@0{OlBQ%k1R`?EgXF0FfXZOo6OZFZZ#2i)KL=is}0@{4|&O#R$gb?1J% zlKC#<lzQ`;$SZ!KOJ2U-nfPQ^+`oNQdpJ1jnB~_k{#zEmt9tjnZ%-91KCF)9+0Jla zb>8%AMXRfC-oBGJ-}T+$!`JUS{doCQ(dg%wuLb#TT>n>2*)@;zV0^vyrB>tJ^%H(& zCP~@)`z*Gu$lEBVKf{(qU6JMBeEGZwwWfQnXd1mYzwk?x?-Sp-`ExIvV%FDf@{hl{ z{CKsGLGQD8*Iz%rNEQ7QQ~7k{R{mF+n>K}C3UZ&W`}S`Aqq|RY)9$BmoHv^9UK_h- z&x-GjM;E*g__sNF%eS@1?0aWf=WFcMI+d1KUq4~t`SUu3-wnE@&peVoW4?0FGmh&1 z#dcessqEOd`Q18xae?QHi*`3uEdF7*Zi4!{9?2}htK8WiIkr|b{pyd;m-r_(`Lz9} z#Pc<8Rv+5-Mx*zYT9Me-i2H{&@V}Ay$j4nj@9nhk)WACaD)ZwRr6tN2UE=;aev8Yw z@4e=z_L}+iZxw&a<v+dLH2Y&({VdDqz308`PTlCAG+XwX_k#I_u6vJP^?Cm8*v+}2 z(_a1vjGLDK{t?fUiqf~WDe{RgY`4AJx%29`=<=uDLgoD`cC}08-OqHz>^piS`qUre zt!?+WOnf1K@pXEq&0T@Il^63T)?A*GRNtcV%cUs&dfe5!DIcTig~HzH8J%Bs`_;Ab zzY59uQmKFX4cct8kH5L9tQ{+Io@Za$%kVXOGM9GRAL9CV<kZ_k-*i(yi~Z8?*q7OH z(%xyxk2vugD~fKd_-T38{H@kk_l!yYCg#QKw(3f~w(VxvpX!qMqW{9;c`pp(rk-b- z%e;QFsq56K?%Y<qU0PX(-Yl>Ga^Gl*!Jl>+`!7ct<ixK2|2O~t>VJK2^w*q^cKg`b zY=1uN>dLgw_0PpOFS@rb>-_6g^80rG+;DW>)1POj+c4?1upc=3Q1rq1CoOwYmFMqV zv&Zt@&YK?hi)JmV+Ht(PyxW+o+^_4??Yk@ZH~)GQyT$#=QR7!{-^<x7(31<SKlMJk zzU<4)`?FWi6z<A8cdY5r;T~J*YtAohZyUVMT%8}kqISy8?K<y_i#Hc$%$svse&X%T zg7?ldbmueJm)jR#_@De@{<*fobMcdYDKb`k{57HKjLx0<d-ba=UVl40z56rQe!FEV z>%+_D>;LI5I=5Kv{FT)vkFQm}o-N$<JKyH}=g+<Ot=WA(aDLJKVt@a+#{H){_df}J zv(*2|_qOhBeN~iA#p&*MmzVsum-tlAfI5rZ)-SYTGpmM`G$YGo2WMH(x~<I#&K_)F z#%j+%AwJLwt`9QT+x27_7-rZ^J~&%svRn*j{qw%ZUeliaujBINWxH+r#z*R6*!}3u zTZA-&ggiZ$Y`G!-<zB};86Jc68xOoYeRi_WQj@8nQ&X2!i$yH>{Ak*d4&nQTg)tll z@Bd3Zamn?0Xlclk{q+s<3;E#_&NBRmn14QuxBL5Wd;J5%g!AXO$%gu8U)SHaZ}APT zV>!6*z5MT|$$_j2K7k?@cQWj31Z%&Xy7sThsL1=jU$=t*qgd+S#EDVn^Wy#$TzP-m zZlCOqk6(1YUzQi^zHhXCqnKYt=+^6h{w>V?6M2I5N2S(wqxawW8>d%Ky()6Gy*2nr z@AUIq!1K*ccU*j5)fPE%G|9ie^sk=Hj`yzG>$IAGY<2%;xm9jjvFFQo{_h*DzU+B+ zc#-7knemT#d0$-Ftd#il=l=SNnwqGH=J}Zqk6SbTn0femxBcJ5c~vEAOmuIheO&+f zaMHxcP=TlXzJYZy2jad>-`-qy(Zuze$-am?>2DSl?R~Xy)14J-?e*jY*HlG)$<N;y zZ&xq>F3ILfVA#1!e_ji_WbQQQ|FNTCPY$DPlD^OUg~8|Z?etzL_1-yZA9e2S{-cjK z{pwoP)%0O1k6yd0?9$E4YaNTPzib!L=i2B0#I1B@)Z^o=^Q#V@F9A<5i?9AyzwESl z)Bd`d(|0^Re71gVM%nZ9i}|PQSitkk-O|5V>mP8R;jupNe~;($st>grzR&yOs`w(j z_m?o+1?8{d8+NoW{{32NZ?DJ;!OG)r?Vq`RKED3L|1Wyi&d+(xsi`lwsIvOsm-)g! zEfsBxtNOO3hquUoly7}4{4ae)bXZMkkN6UO-VeT;Dk|=q-G5qGKkwrGtw!Hu)z%yT zFPr~&_4e;a>%-n}{_p?mocX<9$zR+bO*dXHT^fJ$b+^gqq^WyO?A>1@D|5e__m8HT zSofkWb5_i>op|8i%W&pT>!-Z<z2~I*z5Bec_3!@ZP2S^Uqkhr6?_;s<J*|(6SNxQ| zS^KtR`;31-E`Iy7sLC+<N6w7%D>wDuQLC~3Fw0<3%{!4j?AE$-p44Z)iu~5!%`ZRC zyXmP)F;{-^_l2Ll&S&LWfBf@Ry6e2>uc^1|wbcJR%-wGNW6g!z3;!S2vfWs9_#^k$ zeFeAmH+`(md}^z^KV$B`k5|(9D{J;UR{6b+SKQZC*ggBG{h7Mpklv~0`{((-H+^<_ zyXK3_N$)CN|FrB0`mU{BKRIOe`}(K1<EKARZ>u`|c)HHl$+LdNZ`OTauYcqDvlj;2 z&wPC}|KRNpxBnP)Kdild=j=D%?pKc=$p`kh*gW5>`<v~F`=<RLLG#NuLG#Ox>x<VO z`&A*&aN6cackWfWzJHchhSqD_%~mg1@O=N;I-Z}&2KCAL{Urx3J^$G}bI+cpcgoM| z!>%h#T$gp_;MJcquLm{zZ$2!z$oya}r|<l`la}RAHYxs{UMfHT|A*U~KiQnS{N>rP zr^a)4EZnI-?|t_Tt20kt9(&2LbWhc#b8Cu?_}yO2F%doBVRNy+%SdJM(dDIw%~%(8 zCti6WF@M70!eXaWhq9ijzJ4}?E6XWuTdHqhyp-dFdau7HcWnzi{N_)9Y3r9+e!D`r zsx;@h7fT!8esREx(@;Ty^VGd*w`1AXJ)NA8Ud7Omc>3h`n)A#D?nd65>9mO@A#$CG z`K^f`cI=J&!25K~g1<o@S-b_W-dK}8Z_j~CD(_cpaZ_mBIm2b6QgxQ8K|nyn?^6fX ztPMK!_?=Qz%f*MR^+sw-@1%U$$F@6*b+I@@`NbVuzWPe<>a&YmS-14f*&Qc-_gp`_ zs_Tho#M_v@iISgsv~L?<c3Kyv@=HR)WJYMNpO$vw?k#%_4*RR`;tz0+cH41buK9<? zfNQKrb2=`@G8fzqvxyeTZPKjHwR!1tbj{S_daXC2NpF2vm9iF}+L&E`;6cFC2Qx2s z&$+T9H14Blm)cDZneq_UtylP%&zCI<E?jNZ`DUkgo{7L`mN?$F#A&IQJ5}m!^j%l6 z6eguJFt!S}=We~ytrp+)R`aXq&nee^_PhPH`ku2=I$Uzwrz6UHdoItozG;=SrtPe6 z&%bf`v^1|dXc4>dfELefBX;NGTJ`H^Uf#tc`dw&8&+a|hAJ-kdbXn!VKFhdUr&}#1 z?VL7u*~XWA2dZYeyxbY>9HJ&Y_0_kgIPMx-j^$FH%~^O^Qx?P|S$_(grE6YxNAO@- zYT=UFHJ5IFZ0LQq+&5UU<B0aHi*_=<=LMIh&-vE)eAVmIj8dN(Gak!z{+)cD|8M2p z_w`xt1WvDOsVIB4GD%BtXZV5w-l9-l{mCK*6Rx~?aiB>m*K+H<Rfocj9JNlLh<Cnv zYK?^0#*E&a^L-x4j`d3F6V<!-aGVqqlHo2<YV3GeX8!T#RYBvPRh63~ECmc69*{cf zXK?%C-CGYk4p(JG$t<6<hb3i&M}~jN2hDAw0*+7X6P6x0sH*rVCOgsFv`abk_wiWi zu*l@MNAG^BX*1uH6QfhtE^Fo<ZJB)8LF!82p}kwC{O--XevS2M>y(6m=*%5_U0YV% z5t&ov@M^7Akl7uxWe?^pwqpAAk||7(BfaHSG2{KRgC9?HU;4M}iIeaVi{xri-@NP9 zI+w~9xjF8BZB+l%D_oG7Z>7TZH(_~arEf^df7rUl^SScDM^{dMF8|=LE{1;}$1auM zZG6YgX1AZsvrk!iUvbmU#e&9;v-IAZ&)$0>?ts(js%87Lw4Uc|yXWb9?wnp;kML!! z1y|-(pE<U8SI5yOHa+Q4CpPjHCbCF;vgLMm3-Xn=I`BAVXWn(D$@Oc6MEe?*cg1K6 z8fk>F=38e(UA2pu{Bz^EzO!}PSLZlh@u=1<;A-|Y+7pv1I%7?cnWf*n>KV&&R_UJP zIUhFv^66x^?9`IJjf*DeUEC<avi7Eq?;f6Qzxf38m+zhY{hQv=+5<^zWY6U7-s|{u z%AAd=EYH{G$(k@)^1puF`sCcJdPeiC&kPwd?_`%Rvp+4qDX8JpP5!WJ2h~f3`cA6M zh!vW<DlmR!<CeE)wz}|NEac4l-O)O2>O1Efog2UTa>sELob$B2AslyM+4m;r&npW& zzJ#5P__qJ=%iXN+)BipeKi+=+>-(jfc1>&l{jK`J`mNvCOK&dSp!(|n8oheAU%PeA z)z5zN`q3I@iAK#!GZw1ww(L?15iof*OG?i4Z282mmVN@U_9C9A&z$QKnGo}0wr^^# z%d-btn4(?Yc|A}t@}F_?YQ^r5#Cf;7WGk<RcNJ{mHVppK-Q8qo>M1LEbJC$n%}ajm zep<Evezl!pXsmhqFFm2jla_wk)!yf;yk%!Ck9T6dkksl+v3Dj2?X}djHS1aa`sW4J zz4lw}IyfCC&*5TI63}W}ed7)PLcckSm;$)w+<rFqO>|-*qtb>5rI&$uOP`iW`yLTx zKQ+-#ZIUX-jw{ipY&4gudw3R`9)I>>(@(KWKVSdKa5VASeQ{Ol0~Z6+|0ZlRyoDIV z7tHBNKjFA6TDrb{k%?NyjPeVIu4cBIXs(HCXDPV&ZB4)fr#PYP{~W)3<QfuLoO8}R zbJIKe^+Mt8gD)1Ytv|GtFPioD(j7hFZ8y{2H8M}{JNy3IiKF*oz2-=L&e$pvlGT*l zx1o61QWo}1Gi|Y*OuD*nub3Xrym+*wT{TW%-@z*_E~2%0=GF@B_0O#4m9Q1w>E5?l zrRPCIe3%r&2kXo)A%5FeDl->|SF{$dJL9{U??%F*4bMYs`Bb9AufJ7{$u&v8$8<fo z_S2iZ>sy<vt2cXn-F#@vE)VW@(Yq^H3$ikII!I2A$xGzAB_)1Xu2_w){I%8XUrmbD zM)w$#<1R~B7RI`7PU(3oTwVWs#u_1o->2^^jrCL&<7|#=jPbnqcV5R`(apD4a^78f zNGB`ARI;c0!_wvFdV<&SX@8!hdfG)aazbe~k9VWT%-l-e<Xv02_%|52yxMp*ap%_M zs<S^BY}&dj=T=ffxF;Lq!V11k*%7xJZ=F;McGFWcUU=*E3>EFFD?T?pp7M1cuNS)7 zQq@|z`f^B7k=`+O<r7;4FKR7#Xg2qmK>8#({cwq{<Vm|{<>_VJcH42ofjMr=v63Ax zruaWCRoJ}uu%xp?_VL#Yk{eD1bd~RMx&5jo?mL6L6+>_y^REDTpG`B)NlVTwJon|6 zVqm@NlXnGo!Wq^!PF(fe^x~`I*Onh&^SsQgo+;-suhWt}0Tz-cK6eE6J>poWEEC=n zcGJUhWoh$^BPxnoH#C<N)L6P66Y@97*!#6;v#e45yU8lkGXC_&wmP|<xY)XO%8prl z_p%tiMFw37-87en>+a3qc#BIi46l_Yc7Nfy5L?t?@quf-VtV%^zGJ6VqE&r^qZM*j zsq1A+*Vp?*b*LxV$^@L+GjCeg2F0UUPY!)P*~e+?_O0VM&)#G)xk?4)?ekvme)eR# z+_uIlJ&(0_<$oJwYS}NBc4BJS5ib4nQOfCEi&D0BZOuF+8~;+n`(2aH^6<Mgry@=^ zH>H{6pHx>`q+S{+qqy<$hQ_Y8ry2@UzT4BQwma7(o#$q&&yEY2cI)<ujeHjGr<^~| z7kxuuLB^INiS;jLyiQpkQ?_?<NNvZD9S4tooW%R;g!gMcdAF^0>IySN)fe7Vx-9qI z)Uf-nHsd+gum?@wR&Yh{%YXlK?!+z1$HF^BSPs75U%&jqzOW7ZH{SZy@_N^~YMH9l zr=Bx^;m-n3FTXo4_P+k%pV+WlhrO461<fxPFXerf{2@cOuhJy;?TS4WYPX~m4?h=7 z7IhaE>pppSLfeY1+J5gBH(3R8<%_yitzylVYiZiD@x@;m%=u+wtn<t0)64aAo?k|v zUaluFzg&~>dewqbjw8EfEb!U*gCTJBXA1+y>_xXr?7HQy@8;ECE*Um+9-F$~jZF)$ zEZB9ge_i#(GYei%4K3FT2=$+=YN49lXS1&TpUTD0D_<4ue0Q?X$Lz_u8Jqtto#;Mo z+L{Mv>K9#2Ol`RGPb&C?SP8?=jEja&DX!OV3;LLH-e{N7{?y`Cy11i%ZrCs0y_T|f zlJ^(~oQP?=ac+(In%SJ^7<gCeh!(G(%U-EkdE{89amn%+O~q8su#+Y3OSiw>*8TTy zk^Fj}zKwlZY127cU(e_%3e60Ety`nedAf7|oEw@Atc>+SQVH8qw6=G0H1HkG=YDWu zDf>A)?%3To&9zvU2(*QyiRN%AKYW%PDDLz(ar)fnL5)8%n2tqX*zdB2$^4bW(N$fS zZhzS2bl9V9-J_VF{ujF*nelA2@^{RBp8AkIeeHe5IRfn$R8LLh+3MK!VCNAZnFGh$ zjrW=_Jj*8Nc*uTLZoU21TE<h}R)vquZsad+RGqt(pYySuS<uFlPj&`6mFt$S3*C0; zk49J+E4$y))x9Fyt{tl~$z%%ciH);<%GW!waOX1rz`K(pGLjf{4QB0|_ucwSs-mFi z=K@*trshY@)+@R4Zk4z=bhutoZt)U$P(8~$e2LKRpt#y;H??amzbDi)Ew-_+*c8KE zlO-Bjm!ZnG%6jS4BX2$UIxF&06K-5yxzO@nmEDHfpABQ1?nKy$Np|@cZxKAJDEaFQ zJ8OA4<7<KNli9~FU)*)(!rqps1<@XIB5NM9ZMYV7z;AcoOO^9a&2RWU*jS;qIK29Z z($0g?Y}%YUFSlhfXN5jm=&qQvw*ER>^2c)<q!bcu&1ObyyB@kpJNWx9+tt#SE^==! zZgiCMne}?%k>k((Dzr`V8Z~zxnDp3VZndX6dxp)CZEJh3T-cf>Sh-x_#y!Dl$*nKj zr_GeUdzI^ijg*_Yg0|9!TNeXoT0Zb)Us>W&Bswj~+iH)G_8X;z%NzIYnyx%QNI3CK zeO6xM&79c%ai=+I?#RSg>@LgMp?09Vm3Q(<gW0cM7+i2<?aQ3-ql{(U!Ox73PcMt| zHQlc$#hcb)vRq<W`J~P3UDnq52GyQAx=rBd+$N>2UCdYR<lb~ja6O?nSu-v9dhGk{ z3m6ohi>-(~buZ_1@P5ABTFvEe*;<wzcyF0u(LJL+dt30Te?_Tv>&ol1W6Ny*|J`-R z<tcxbQOgaL#=mRS?i>7*du<rL_m9rogP%{DTdaukiG6gsbBji;zS?XBHP;(q*S=m{ zu`d0m$O3o%_ZrLgzhV0u(;cT8!CKhUcU2=!^|_Qu>XcTqWHGC1slF!njqNKq`mSzt z`Nq3pOP|uEr24tLc>~RZm)+g+&MH4kz32uP*Oa3>bE9sHg;^cEaOTJpce(B7c5e>Z z#ilh&w>NA;{DkYP*A<)*eDz>!36I}I_t}S!T+`#9x3pQ?LjB{Sys3t3Zp~H7J+nFB z#J(5ZcRfRRwy%qE(2f<_pYqt`Xpq|Lv!SOK_W3M7;<kEnMp@-b>w4>zON(35B4vap z{XMe#Plw#MHZ^Y#51$pz;m=GWt;;9h+MT!AQ1Fb0qQ<q)tL7(LMTo6f&HIoqF01EV z-fmNq7hA6B>V8kS)l>bUFvO(ngpHm&!*b_vsWYCu2V{>P3+g_Q>~n$B`S$^ynv#Re z`#pEAtz5B-`JqTgcCv}wlq*s7CD-njYzU}Xo^1E{t*6sjg?L}BkQw|d)Tah8KS=5o z6AvhqII#Lihi7i<^3LVaexYlb&q>{B>eTzqaATHwf$&eS(+?ChQlFcidUm!mzCYp7 z#UBlA8r4U*5>>*3kG?Q?d16wMRi;nAM9iIIZfh;ywi^0P+ZR)Kb*iG)buIrz?)A)p zYm->smrgkzxBT@vrNnPMiRw3xmTDVMnCEuQ+t%vF&b9nEpG<GLn4@>H)Wx`b$>pmK z6_s)=>GR)oWqVp~lFNBE=WX<kXIZAc>c8W%m!7_}#W0yKW2(r(S(PvDc3cTzls8@% zuUS%jkY8QS;dYWR(<#fsC%+ih3SU~RtiOG6{Zwi1*QXbr*;bgveW~p5+!sP0mwu7i zz9XXY)dHs{fseMOZ=dj0WVvoR`wyqntFBKzbRc@={d9}chJeL~doGmsTr>}5d*Qpb z?KInon=03JJnVd}c$Ih(0uL<lnwBm6$YP$r7a#uFLKD}0y>wcyy=-=V+byofYn#ls zO%hmB%dv#9e$EjG+s{*9$ePXa>Xo_5zx>egbFRDM<8>D+@X6fs$n-dpweO&sN<7oQ zQ@l)t<_evuis=)Bcvlx~u)MRlC|g6?KYrnz2yUjfoEdL6gl>|Fj*nD)d0aKBkg<g| zMt;q7GhxP3g_h_G%2)kPpFFb7s7##gYHO6|!<v-OvZ=P5X7%ST`0mkcEwDOL%btHD z*m{liwRK-R<_Ao>_sp=<>hCR4pIghyg|y^LZoLX`n~=;ae(F@^q2j~VN_(GlC#re% zJh#^KNN!pvwR(Zkvcl!D)3o;G`8Paq_Te#L7he8{XI@W&vw?Dr-HdZO7yYDv-wE#w zwS3DJ!@kZY`YN-~&*ky;>tl;!e@MTc_V~w!?KS+jH{Mdy`XoPBJ@!!Z#rap)iO<=8 z{MXTWaj&LV8>ua}SS58k&f6tLGSZ0oW5LA4d*PPH7~ZB>X}R}#1o184|26AjZPb_N zei}yE&C*M%bb~GSFZ*pU<C2O(v6_Ry<qZox=loy4a*gf$-X%9GLb*#U`xe*R6+gZF zaZ~Pbfn%L(H76c#3z>7{+>cYY)(B6Z@tR#%MYq5xraH2+YT4Wqf8D14<=)cud1>qH zmBmZXX-ns4=$&i)@<RU1vni3{6_<^Z)H@7fGSjk_gk3&AtGpvLT5Rf4o~z%J1q#)g z;@8T_o&W7=z?{OpzDZO?gK1}X<75i~n|co2%U>Pj4!^U>)BiLrp{mwSNNt&B_{6)y zwro}^`V2Cg4=Qbc?DxFwdG%52>N=UzUt&I8S?cukpC0F@zm5Lq+!x4A(LTZx&D;NT z;i99ed)ij7oLm_%eD~)T-r0MkAHQ;3TDm0vRon8^O4j~AGMgVt>03;G!0smg!$n~G zvsp^p>)W+H8x*ETnoR7dyP{;|slWc=tXU?zePh18x@O`kcjxAfd5;o%JhDuU)|hV8 z<J(myR1=oad)03FnXSE6d5PJJ9F1?^?l;sEjph_z9i(~i+rc}YY4ft5MSW&0*FHR5 zc#VNnc3W5O+V$Fk(<b$52s^lJ+jsxn$2vce%Y6*%)bG`ceOSBJdDE4!dp8ZwJTAP( zdOnqR^|{D&Mi1d^r{E)<O%XDU>wk)#)tz0tIdGbQst2Q3v-BL7WA_Y~Je_wfGQH%Q zLemxoVWBOol?$6Vbgdk%&QAUiwO~t&V*>l;pE6IE$uX?IeK#Y_yU%vToI`K!7&sMM zb+F_eb=#St=z9KBPJP82%THE2FBI)(TDOjIk)8Qb_oELVdjAwbOfbKHy61V#r|sXs z6U^NIZfD=SzjNl_n)@&6#9cd@ZeHlNY)lQie5X$5clrmr?-jXgS82)xW$!r|5Vdo9 z-KY0gw(}p?%3t*V=kG23-}~Fs4_!aKB0gqj<EiJ|q2(9r_cN~Q`uBT!M1Fmk6zfmt zD;1G{O$=uju>BBB`@SXZ*?+FT*B9H|jr_$pVfya<438@+KUaPKsy$=*PI=G_^S*VU z8Rnb6AHS{If7NB~_v!k)|7$ck8&5q<UvNL}@h>UXUn^t$<vy>Qedn3|)Of}E!n@zu zcLa*<iL|uYa|blTT>tCkt>d??g|>?}Uf<KShw;ZM-XDtBWX_$p(z_S<RQ&AcwUg_s zy+2<4az40Ryf*dY*Ees<_a6dHG5@~vezX1IiWSkjKm9rSe9nii?<M=cO#@9af6IFA zdL!DXYRB%M{IY+FcU5LDnV<Vr_~+jJ)t(Xaw?ET;E`79LV4liv!(;XSOY6C&$~WKf z+;^Zt@&Aj|)X(R9|DB&ccYoXi_p9HVzJ2!nY~CCnv-^+KyScu9&n^9V{`I}@P0yn@ zJqiD^?s`OERDJKiZ@CM~PyBb675n@D&%H(8@9sORy<YFqx!tj^zV4s$Zuag+@oP)F z^6U)m?Ee0J(z#DhoqoRUo%X0K_Q%<_`h6g0SO4_Ax0n5*jPFyKfb+k9pL%kvyzPyA zTYvYhm0c!(i*hA)uABb<hV8vAEc+Y%-_QG7wtrW3_4K!ogNqBQ_g$@DziaP;u<CQQ z?8@K2^Y5K*<@&5P!lKx4Mg9K?Rdc5w>NY!n`^-13^LzJSWZUnvU)Fryv~xZWXD<6w z!m+phR&+$Miupow_W76ZEc#WJyL{hQ`R^D1|M>o2_nB|#j<=IJd^ZN%w&dS_vq^W; zO_$>KPxAl&)yIXm-+S}y+l~iaI;R$Azt-)myxPXSIx^!};@$<i>T`HSo|b>vb#~Lv zbLX<siWyxl96$O{+B5Id)~7WwpYK$jy_3oM@a?*HwL7QRSAJa^5WREvjMxo(KYkO7 zee%_Kqv`sy;@em6*PnF%T8nXRyzA!7&*E%5f44GfouA3SWOLlt$N34B+o!zHfA(kB ziqngBCRT-phSbMRS!q6BDqS;;;pC~$8j)+#?|=Ms<kTtayUu3r#~(kkSzr3>`R~_Z zexIFeX20C_?b_qLLidmCsZZ~@y}PY{dsY4KPxn{v<CI^s`>kAT{>S6#*QT29p8nW& z?GEivo09xa`TjWb!v5di`m@rv&OLo<_Idg7qnoW3UOjtz{|xh$`=VETNH?G5|EO4X zxA)go3q#e5_g36AS*mg8%e{r$Zmw>fSM&1r+}X3|Nw@rNsfj<oiTl}~4XNTUl(*E+ z$eu9$`n~z$wGx&O?|OaXtyYWwlV-dBV@37e&Hp%>{GQ&mUU9Q~v(oza>nrV;uPm^& zd%|at+$3+;y7};bwy62@j#f+CpL@g5I9=@EbitMyS;rIAf=Bl0%uD9@$@SxB>~;1R zf^{x((>^G-*xsx8<!$%kdd-FJKjzHaAXdKSsC>PB^WV(0o^z*f-QK+^^Ghb*Cd+{N zC9CrH8Q1IP3pV~Si+<Lb*4J?JpT6*w&ny+~4D(HYH0pg|?)e}7l1cyH56L&#v0tK@ zpYFV`w)nWd%RK2l{`E8D-_6e#{c-MkwASAATfe!F{TD}_tj&BC`+m0~1H+eKhRs(h z?<;~QX}8VxR0mJe{ytIseWxM=gR2*4lD6JNuOg!)H|J?h`sPO-v)+CGC7R>=_KnZ# z^Aj0&&U$xm!UPtkmWc*UYj1K?=1-Vj^=f}Um&G=}nTF<%+<0U|7o4fd-S^B>>t+1E z-JORVQ&V?NKeB(H`}>LCnYGP?E_ct3zyE&QA=$70_SaW`KV4t2`s249&)D+>TOaJK zmu9$R@xT7--e{4R?h@->|Jo;aPkkoyViVuPzWbm3ExqWjt@~A6+tzriezqZt;zO0Q z_xYXHPR~4AZvE8h+sB^{`j;=AxqpwBZNE#{LSCNm(?zR)e65YV;c$}ikBMmZ#ILWb zk9V#0(Vq0??*WfThq?~l3h6$3q#`1w!ZqV>+71q*UHdbBbJy3%zEc0ZXm4%Pe7m+d z86G3;KVSc*>XhrQuCUj*C2~T0&9a7G8Hq<})Be8x{rk6eBA@+Q*Z2C|57ar=ch*<4 zFMG$U%QJbC#2-F6wq}phGWz?pCw+O$uyxUX8~H1f7kMmt{Uf1Z=Eccpwrtw%W4zbs zzr~K@AKrL<`DyvS{rm22srvGr;!7Q7-(Rm2boPz%gU1XT7cmy~+jH#Q$fvvehsBA> z7mV5KFZBG|fAFtC^;WIVGT#d&XPGtM;dWfIH==ms%h}p;JT=u5Up~!Tu~nYEEW`Bv z=8Ic$*7C^j`SpLMuD(e99|n&z-`4fVpJjen6TH{_+qsjIq~84I&wIn&#-GCwU2kwd zvf=FFgVPV*+I7p?X@Y#|t8x~F?_cZ{9!=_d)*t=FCU`>io8AroCDf13kNf!l^XxtQ z#ACw!3X7gMzWw?6{_;<274E9s-Sk$h>xJ#dwIzE$)hAsIKYIK?#e*-G7~@5{cW<x# z94a|I{lH&e{m1cwpDaHAH2Te-|Gs(sJ+c4g$Li0CU;LH(?)ww|aKFo|<9@z&omu(8 zYtE5t@p0<MuNO7%cy=sd!jf4JMHPfR|Jc`?DE@cs-KRHu*QtM5QTurwr#F5yDAZnb zp6T)LFdOqn(UG71yQ*bNYW?c}tcWg~WV_?+Udv}IL$1w>+;N^=j=N2qc}c?Emx)O% z*H_MdC(r)=e*OKZrZkoXEz>tvPLEu<RP?Xk9lN@Xk5+ovd;Q*>^~wB9<-TU~=6U>o z?af|ly_$JMJZ&$>ZSku=)^7SVZL0o)%i<HOx+nbJ&Uk6<mi>=@tZ<ue-u$1TaB@nk zn7DnMufFZG?fTvq@|hbdia)%mTKH4z#C*}KZ?eCBJ8t@;Z}Gg7Kk60zYnLzom%WYk zU#7vn#>Kh~XMR3V-yvTYC*L4-ZTbVgALc%r`kU>03b;1+Y~S{VTkZa(zmYuE6Q4CG z=xzSs|35XW_1i}yhUFVSi^rbUP5QEVdwO_L?-_N!Lk-u1ZtnbZj&c66zsiq$W-3=C zTWg=2aJpkxNQz6!rkWH1=?`a4*FS9JU;LIY@!7f7mc+iaQwD!k4u7ln)qDKF^~?E7 zxpUHIRO&y?oNJN3L;Sq>qQZA>-Rq`radxWPJiR|Td3_%Lx{cG#1^fgXH%(rmmSJjl zrn_)rLf4C`)~3&lSKmCV*74oKG{L7kRwIW=>yqi(&#%5buz0xUUiR}#+Bc@Y%?nYi zw`rei<jtxo+P`+!mzzts%StoeOfX>8U!%I+$~5LA`#G<z3LMAV=jPs=#(Hq|<D{ir z2L+tOyM4^|ineY${ke0-<zp<7{Hop;R0<!jt~?j4UUE%0tYk)V$B}s<Ml%CUZ8IZ| zcy1{zJFs=>ltph}sboD_s3f$8_mZoi;cJ<7n>g#OtQ=b`KLy9moW3qo<L%6K>X)Lv zPTtX1;d<66|03t)sV6sbPqPxb^y$R34o&sOOIAY6?vawgms}$FN>BH8{GGRQ?nOtr zs+IuR=P#yBS;l$x+{tTmoH8QQ{#baPVwirdXm|LHp1EGftLDED_K998<n*jv=h%5Z zZ-tqTE^fL-o9mM%AC;Wn>*jdHX}9QHMb*8B9xj&C*b<-DlaM&md7W*-D>*y)h-tFR zTvdbqyt5E_DWZ1bDq~Sb(;dCd3nz(u4AA+$P*?X`;kj#<C(b=S&2IHA&lZ23!s9%D zFFb#$vD$6Rqte&Om2Fm+4lLUs?|1CNk<!y9ZL!YY=O+fv(s_H`xW3{=cwwkeXlMIx zKZo3{wo{i2?_8W@d8<4(Fn8fggAa$2O<iAP6rM0k)798{;Cb(c^M%!ZMjg(Umrh={ ztv=FodFQ+EC7b7D$Si%oNq|MpWcu3;8b&;`KTg_ndHe2N&&;|mmSrC|GQWITEb~#D z&R?m|Z}*-x|5_Nez9{dt{u#-%`j->83Lch}j6TV6Hc{`i_+f<>zKDty67J4il{cnd zQ&Cpqo;0a#o~`Sq&RH9ieUejF*+?lhTYsJR%4MF{qa#bbTntQZd|<icemeB{@pR{& z0;}g&Q<4+{+#N0p?sGpb8tlv4cgJt{A{CBX9l;rmDvZgUY!`p-Vo6@yYCJLExk&wl zI-Th&wpprJTWv32ed+8Xr|9n04?lLC6YoCk`8fPX*}lt5mG7BeX}ouqL)%CEYs}T+ zw<eETC#1OV3MmkMbTZD$f5%y|)6=CVUc0y{fc5i>r*a|X>K309Oq9&co_|Pv`lf7; zMfCjkIjav@lt;{Sof>`hn#5}Dz-1G!R!S7D)U5C1YftT1876G}od3s^jE<L1^JL4P z%vkV!+FmE=tfZ(Ho&jmxzZWdnXV-T(X=~o1E9*A2?n*K+J<z4K?)m4f0rMWX^kr?c zJ1u=~hW^^WY8F!3`z_ww3~EY$y75@)q0_?gJbk{^DJ>H7C##1!2;RO_ux6=Q;z5fR zdGF^>LlPEy)^BjE%`lhpQ{~TA(RH3Kddas)`s~Vz>F&Fe_C}@dQaClmPSm3F=x$c4 zIWCeiK8Ff7yw)kcT^cw&+xV(&R_Pg@azW+g_bwivoKp6w%v1Tq(V7)PD>ui4PpG)H zzIVs9aK%Jtsnu&QeB2Zz|6)d*%VQD8$3YjjZEBF6{qm<v;qkNe(=4965}Ras=vJv~ zZOoh%K21i+cQXQ8-<i+dz-{HYmMMS!)>A2u&rF+YHP^6ryY!*cx1^O1`)m}fIiK}< zQH#F{PgW4m^(9ZIJY4$FphhEydFdUO#~<te{#?!bzWT?<qaPox{BK(l7QC4wy1x5o z^7_AS@n)Gd7Mu28pFZE>Z?swc^U4pqEVTvv9$i|~>n6gyvr8w1<C4~=V|Pz(%1yew zSU#a^lW)@`)`LB&CzJx8efF8%{pOlRYvH4r!i~-=EE24PpM5Q9{&Xj3&5F%N6I<ra z>zKG?&Kbd+%Xil-vZ+<;U75CRWBB2hReQJPY&yM)E9BQH;pP&b<CVQ{x|}qUYoFII zb5a+HS~lZIqL{|fxK$sQ-JRcmTWiJJbz2f+3c3>JZ{X;>XgBL;*4|RlqW7v3rU=|I zS|_&cnVR~E=E;g;@5G+w?1-t7tyEjECAI9Jk1$J8ShmoNIjz+$T#tQwn!jB7DHQnQ zbIEeWGaZI|Jx?xbTyW~!zS4rpN{Z(s3%QjJZL8;Ac7^i@ckLv{%H%0CxRL|3dY=bR zZ}Iz7rK8d!u>8rDdk4*=tv9@0c;bfq@%D;m&wY>T&UWtAd26c}{^Lj_|Ivl^mMc<I z@+>PdUi``Go%`jgrs@l`Z)(no&gCo4PpmpKZA(JJ(Hf&;=K@Zi37f5X`s6)N*V&2_ zCwyx>ds1@lmHLfwYZgc_*4nJ#dy=Pn>(~Svi|9ut6BRq+&qie**0kE2toW|QkK<fS zLF{S=E13<CAFJ3~8OPrAIlb0;=4rMYOqXxnxN<SZuef=`wJb3$_fB2WiGtgNm)%gg zurEdIWJl=AheAsyK7Ckn;r5KLcdwfCPuo@y5y8Ev>6S%$!K%lr>boR^?e_6~nYyq~ zl|6bsgO_#iB>hS3X-vhMXRl;mGFN|-wUu**mPo^@xG)zD#YM|!*==&Oy6JZ%S%jy# z*P`usTHj;EC!PnUr(aL^(%q<_dnnD+?k3;#Dsvfjn=ak0TCb*Aq@-?U?(FH1kn<0$ zWIbKo%XQQB(n`kIdAAj27}T#_qsRAf(V@R)vL~JF4z51A&wHn<&ad0e!l!lB(gO~j z)xN3FFLHU_IgLlZMasj@MogLBT5xG0likVItb%)X?=BTPyJk0AoA4>WKgV0-V6LMZ zxqI^VGv5|}mU<M+oOF5V;hfKFy;ScO?mNIRU)k7n#Y9`h<jptN8h1=g%wK%OvOZF4 z_ocL3E1rc}vFZM`bZgr)K|=7%=NpQ-N5$q<u_(%VW!iOX?#yyIyxb%3(04swfy3vl zc{&~3mU(N3omSh#=r^nP<e_=5XKJTBIb_{yeDeIRwWgU1N<~yE#dLNv+eW>NohxBH zf#I@Bgvvv~q*V#83qMHCRXSGWB5ARI!Li8t0Fj++#;?-OyQU^?ckKMIWc`k_9bxBx zFH||BX_#&KeaH3MppP3((>D6%uIO~l)jWU3v3`2*kC4SyQ<~dCUVU9x)~vKSd6`1G zz?18<lM0O%CC<Cp?fdL>th>avkc+n#6)l=EGvvV(!$^}$8c7wo8`W)>-R7Ars}v@4 z??Rk$4r{$n+Kf*p)`ZRQU03<gAk2TU;ofT-W8W2Avtv8X7dvC}h6;_7Z>yp=KKGkH z<MGR^ZGlq#-?^P~`~x><{=B(GX;#@}d1i^eNqZ;gZ_M+(u}R|Rx0x-D&7u~|@8q_q z#!sLA>)g2~vggtdo++FYU;o!@aqXLg|0&zIdR{i^-L7&aO02$_`HOkg+TM(3FV3#l zz4z#I{>{wo{By6}lINSjY_*oT@8H^PcaO%EU)%d7W#!^e4>r}j*%-AcIMDE=j*Rw+ z7(3xJx4d82>VAwW;`qLEL8IdlPVU~w<}+tjZg7!V{HY>BAgprZb<vHC=UX-@|GaEz z#Jg#cqSY+X(+bBgJ}om}>Q+C^GtgvDoU_}NHHyOGF0r#*y=|xdEGoIddT*OV^)Z{g zi2}YyE02_UswQwf>Ds)~tFp$j#NXH^W}e#fuybl%J3P;8oGW2+`{|b@+i9ktR&Bhw zb@R-^mI&wB6PC(6S&_h(xox(`)P#w}k>%ZQj?K$?T#_+=amQ+_oeE6b?jF8apYcpQ zcIDK4TP7PY+b60S8b6=8hX47EnH>@umhY^y#EPHQ$hw|B^p;7j;jpUVnf?a{!czS* zC(I}dddO<4Ce<=e=5|}@u~!+AO`Bij?V9zu+u)G#)kzl*6rA2@t?kwow0&9Sq|oK7 zmU@=@xJj$>v=xZ^SZ0~$zWUq4xO~;+mwW1$X=%*}Ud_DX*Yc!`eKTi1lR3UP$J+A1 zmtSu#-w-leaMUlkrl)7ps%y4W^q6*(J>7U>vh=Pj*F|feT+y5Hvo8DHpR0*2E1bpS zSN^QYacjD$;JagnDns^hzd2`hit>J3%ut=1sVFl!Su?1IceBp)srl>Mv+EZXt=V?l zrK;;<OH;kRTg<dqH%mJ6G(T;5?*F^+`GTef4ptT$Nxf4JEeXxfrgLstdq{V=eCw(? z>$`b*TRHktv!0!q?0ldxIq<2{*D_IA$JGbk1~UBizF}9H%&BX}`!?T9Iql^<b>-{P z3h9C+|Mr?M+-d3U*Ecu#RpG1~=K|M-3#k9lEBchABlXgt-uF|?0yef3;j<GXSD&cq z>omxGZ<cy@YAKU`n@_@zrJLib&dxAeW~Q_y`@cY!>lOxw%q?0kllMuc?|A$3lFGve zdZtgO9a~;Bd%Ko%-;%>x=Xy&_KW!|tNc|QU7rbNjBLU?Nn~Ye0zrDq+D4<$eo%g)S zP)Ta@ZI6~!#&VqrQZwtfpU7x)*rpo2KzZqpncF@+PO3@sJ1)g{L6G14Skgr9niZ;% zdvw!vCWQxC3QyO)%JOJqjKkSkocx;-eGfLqvL62;ne?kWR;agwFGV^sr+HalPJ}_Y zx<z>>Z|S;<W3!iC%&?Wt+%WTu&XJjmSeN*wrr%kswQW|Un*H%`rvBdv^^(Ss$x=s6 zuU(jV=D`%r?n?{RH6KQqn4O#Y=Rnq;i#}2=Gq$;^EPGlhwC2(U8~y&-mZ=(@Q8NQJ zXN0t^o_IiwK`4%^b>@Rhr!I=^+s+tqsY9`?;A85}14U2f^lv=srSx&DBF}A}@NKHx z4ewHzT*aFEo_&Zoa$)7d9<evmG_+Fc5AP6}{!r02<xa5qLI2Gc_a&ZtmU+Cr#9gjo zrZ>lqwX2q2W^H@-ELynt+|?U%Cw=fdJlikzX5}{Hh?L!pWebIG>|*zS_*m@uWu@6A zmiFr0lBp*RmPKweYg(*ZxwMGSX=(RSBf+CnO%5$N%XRBWnx$XM#*P=67k(z+H(CB# zRmY+J#>SSS$=9BrE{XS#jg{0pRK%w|H~G5EB^lQ{A*c23{3%G^_jPyuHht-7f6L<a z_I#1Hl{{F|b!7kb$<=cI`~J>2Ew^vlwt#|9rQ4)$F8BYJ>7Th}lUVc4$H7Xgyf4?3 zpE!5?=sn4|I*S(F{Iw-(O0r(m%mu1X&fQL3TQN^EeYr>d-V;|NO#_epPE(KgQt?{# zoZjuFH+D6&-SRu)wZ~}syAwT2@~-->KK1HUU)Hpy7MHp;t8Z;`S?XnRB5T1XUH^>Z zR|}`jYM;1b+8GV!H!W84MLUzrJzD+Jt<&E}_S`CYeCNr-$2r+t$Kq^qrv<%Ed+Igo z?A65+baF0=t=_94d&Z{TSkcl{^O4Bb*yraLwFb?3DzS3K2JSC`+r+PG`H3c*YR{BN zK9<ZR-c)*gc8&F|b^M=_+IFUx8_n=}Yn7XN&bc=9>~pO)c_)^SQ!Q3I`dJ@NNjcTK z+o|1X^^DV5T_#-0;m&98tg_0^%S}>|3zLwD&rw_~<(o2Pwy3~%VeZ_?^%i2Q54F91 z6}|1@Ug3u~Tu<m;%?-=-RF<4-bxy#~%ilFQsx&&+WsS(4w6&(Lc}hp_vE1}vV88OW z?T*C-&ur6k3u~`CsvkVK{0XNZ+q6ZJk!Gb9YYm03S+AANSo!YZ&U9~8?*kunto+;` z@3`^#vKXIETZY@aj6H{i7cNzcJ*HK!k*bq6DXYcKIGwZbrF_v%4gWWZ>opH^PM;fT zWW2RRKZ@tcQ|UQR)^=?>_Wa$ROBy9LE+76LQW4R$N-%BqZSUHCH90nO(K)}9&W84^ z&&xz+>I(ZwUFu3cZhI?a>YU(P5gO-YuH-~3rv#sqRExM?WNFQK;n+4qm2_kNsaJDz z>#L^h5$rH~^s4iSh<eiQ=L-X8o{9CaVmqdEU+HqgCW-T1rTIy}HowfA?dENNrS)df zxwkV#Hm5(lsLyG*+3YOa!ZPE$N|VX0LP9-h>lC6jj?examvr&znmBisy{>NUT=qM* z6=vj?9(LNQ^*kfW;iE-IDsSW)>()j?u}c{%Zl9?)306P4?QZg7<;!P+bIQ)Ohn3u# zcDmx;lUdwTXW3m}+92~fI{n&#xi511YSf}`@7%L6x^La=+N8(FRbu?l-%?cEE)#gh zY5EuQk23E!RB+rBzFc@Dw3&5Qo2+Y9@dYDh_LuLLo^CeTKILRbcCq7ujh526(}P4F zU;Z4y@v6+?ltn%JLD_X>%be$aU2sS6j%rTeY_GnR4%ZibJXN|$*mma52Pe{`FKrPn zX-eg)pU0KA{p)M4x&7Z$jn^KlT31nHE@gcB#&S0|TT|Al7iV70*>XdxC(NJEsYiUy z?g@Reg7Rx*!_Mbi>^&lxeY1_zct^nv88yGM7q_O?Nab~8?rcvpt3UKhV0S3zt-cHI z9-Q&q=Gq^9l|gFllWl!(c`ZG6hdOCom?@uL*<AVU-|=ek7u^3-?i=w)Z*9x}Xtrh3 zhe<!8pL<T;a^d3ls_V@2>yQ64y=VVLzqtMd-^o1X{?o->oylc}!Lo(bQ499$eRzX; z4f|ccTZJhCMFN{cm+9miFXEk0KVkVZ_H{F#US{?E5WK8xt{#t!R+=nNIKS1U&IkT} z?oU5fa7@}cb!vd9@R1W~=WA}vo0j@|5zEey^egKYs2skoY<KzD<pU~?{}Wmkw0vU^ zmQR}|bh0|jHeBo*=gc1;1C*~^u(*7@(@%uw`SE}qo403e?B616wLWsAkc-IK6jPh} zmZ(7H)7n0#O?&&CrmcH@?W2XL^0}zqZO2R1SMY6fQ9s8bsL~kq^FmyXhn!p6!z~NT z@=9~2FF!gdC7V@-lQ}dtWnSE5Q$A@CeFquq<F=b0eLLRtJo}_o)VBBf5*I$1Id}HG z4SjIrwXVEOdB8o7^p@OdMh`#x9_w%}=}L>;TK^z7(&S*KbZF&eb+g;NixWyGirZ|C z@VPLJ-SV|xXG^f>zC_VRewM<OewkT2&nj_?htE1Tp)sRcb=!g&4{y%BG<VJPMoYWd zmd?S^!WOqD>C6$;v^+j*rOvaHVS(S8Y{ibXpR`(bb)}ur8JFotnGfsz)=&1ib)D(l z{WF&&SLI)=zv|PQ969%tS&E+ci_CtnH8x?fp4XQ>@9a3&v~!1oV!u}I?igWH4UxND zE$6D^#5<O*Q|OMI8R`Cb!Mm~pVoGr*D$07acn@*Ki*+60SMho5k#x#mA}?Z1_f8X+ zjKpUT>}=FE)~xM4oU<cs%EpUQ!4ikPI!Zm=oOQwvwG>@Ztmir${32w*(}tq~%-4Tb z94R$rnLmAX*x9x_6}um*l%?*vr;#S(|3EESU(8fz<?%l^?p~ECedm+1W1d6$XNLZq zb)U;89bCNp%Ph-NdHW|l|M5ekD}Ht5_Nq_kAC=xd<ol%Y|L5#`@jGYM?#?gS*{xK; zSMY^FWP^ux*T2)7=07-nr~dEGE1Q&da&O&sUGZv?_Mfx+*1WsVqx&}W|IgRi@AdP` zx3~6B4~&nQ>3HdO>#FWo@dl?R{dzq;;`em1D!-cNqG40w)f>1OoAW=eS!d$#Px*EI zoYP;=T{4%5-1w6@heuma?)|=fNyT%2iwPg*I_!SS<mBFa_vL@T{u}i$^jdtJRsFv* zO-|=a&#Ha)?>Y8$7Wb#vz3T)&r_K2CdH>S&7W;R+`^~#A?upIfoOg2X43tjP*G>Pn z?|-k0|HFu*%9GQ1;tn?Ce`0!Bv$^m?o2LDXdHT(NPDgk3uiNh%>+~h?$m>Xfa(ktH z7ruOWeMx`w{l|sVr&p!jY+gR=!-@A*`?sxkY^YCVTy(1<V4J>M`E-N-X$|&MXFvD* zbuTP_di;mG&IhY*&3ZoRx9I&x1y|qPw%ND(uW9JMvrjfXVeM~!D!*1k_uh_^|4VNE zG;MsF8t;8;`Rr%s+2Uh%*PMOV>-+cA(x2+Pwl98A<~^-y>%A>pXSqLLzcc^8)QjGy z|0nPE{Cj=9;9lAKZ>e)4D}}<s>Q`Q`TX|Q!{Am0|DNj~D9`P^#!Y)eM#b~^*zc}g3 z_15{hFBVr_|9$tc{;PMYoepM86&B|G{;jcOI(Nji^0UVs^HMw|_AM#3y}ad7e*1A_ zj}P26f8XBJpT2tc-~5|)aR(j$-}zpz{knd^wCH20?6#k;e?P!n80c1CUOD^w-xq%m zF!(C||5}?78rBh4cdqT<H*dbGzlYC!ZI>xGS1T`+d}(`I@dDGDU%4B07RlVPV48d3 zUwdVF`Fp;&hkRVunH1E&_v~R;WzL<D*17Iw+>58J>33E*DBM`!G}E3xi(4X^|Bwo& z!%ZzA17?}0FKs7XWHW!u?k2?ey}n6|yQf6=!}ROPtH0GL920Le`;Zg#-Q;=~$Ew>0 z7}TClE1h{gN!MpiSwi}P+uxb_dtR$BSF#=X)~s*3*XJ((y}iG0C;WYS<iX3Y+uf({ znfFqi@#o#c*&nXGzWHam_P=j2RvIb_PFxS>a=$qf@5wH^bi=3o3DxV<)<5x?(zNqZ zO?|e|gkrG|)lZIw-)6Kqxi|gHKQoE%ftT}-ix-O*E%o3D-+iGe_w=5$1yA=b=G8u5 z{VA5m%KO?r%b)M=%K!UtYFGK{8&WFYQg<&>(P#6&zH!Zku3xWTZ@)R+`pwhxi(Vdj zRd-;IOht#yf@=SIS>`kIF2*K@zpe~bu$}a#?m%{%bv;8;Bd7Vn>yixjg90`j@Y(-M z{qaF>d)wk*>mR}IT;o=x@(X6v9lja&$7W{S(L?j!vqwAJ*S@sAcICIDlk5_8ia$*L zw&AXQ?55@Wzszs^`_i<+I=ud!>FN0u-z%3kuh}|>+lF;#Dxb-Pds_|s^*Xr<K0k;u z{bX0WO+4$Z=BXZ)`rQf9ue<kX-@3lL{A%p>Ust}Z+gYc0{<6xu_b>Q+mVc;z#58B( z7dGjqp=Y=y_wx3aJ_uavt@_GWd&>i_iQmsYHoRdXYa$=e#K!Pxy8mMSC*SwZRXCyK z-TnDqa#W#ay?E>W6BEilEc{tedRIHzzQ(Kg{bBLCmovYrI2>#DfBmMue%5}zI@v#K z<9~1ef7C99r)=x1Mf1}4ZTa?mwWWiTyjbFoQ{o#_W3>|YFYx*8FCTCqV8<?w6U==t z8^3Km*OZ)AvG(5d<WtfUzkR&ByI<a(ude>5H=C}nuI}X|=91NR2N-96Z~pgsdwi~d z#kJ?sXN}L*Gt7T4cRT$2&(GaW3%)qlzrVNlT+(|@>-GC&YM2^7ugsU(_3!tO&;O6f zGcd9CzB;`8&m7VH^{?L66+B6Q5Ry={{>;<!+TOqFe^;$5Ue9;`izCB<iIZHez0TTN zdvW%<sHf9&cD}p(Gxg;<d8rrCikIJCWq%@NlF)9q@Arp?cb6Z~s&lVeYyVP=L397| z>sG%i>l^s&YNZsK{U0cNwD`f<VZ7etMYM^Be{<bbwyN%Dljml#C4B#Vb@q+t=WQo% zciVsH>$~GS@74C_zMqs@bh6^D)P_pwm!2Hoc8P!eImu2zhF!NKy}@kL5uIMS)`nA0 zr!U}`X4qhtVBFBXcai>=%Ka-BE{lHn;E>>j<(v!lOuHRk@5<^j=j!(6_NMBUllxOo zy!jd1thhh#-qjbUB@Y?d+vhwx?l}MciFo#U7S6t=1#gmz3O?R=&|m-N`33KH%GX!c zU6%Xyh4tm-KjKULW9)5n-f~~k|68M4A;aGJY0mxrHT43e-`5M2e)nxEpT3~ti*~`+ zgH<if>!wC-XNtYTkXKc|jn|DKuVQL<{jY-0XLKLuovQ!wx%KkWYjI3I-S@hh_noOz z?R50tGes=GTJ8Y<ivxvqf4TTW_Ql<n6OK>0)9@+#ZPir0)@bP~5B7X)nZ5R)X<EL< zs`dZ2zHVH=61wMIV$l8PmrYpan*G~!`B{I*FJ7IR%!%SlKZP$iw<GfI^W*jBnHxMD zlp3Ee>S6R(cy%r6_ZjWt*KO)@nvF{OQyG4~Xml&Q__%7rt}Qd;UUMJWKSBMY_}b6Y z?)cp_pY`b4wFdXN^_OMNcE4wD?{0bXtKUBG{x{PHm#Z%P|MmV-BSUFWTK^H(Ni9{E zY!oybUY#=k{(iaK*FUeL9{8TP>#aC{zi7RKaKq_+CFig2dMMgDMZfV!``y=5_aC3n zrT>cY@N<59`{om~?#iF}^?Z6%%z{(zn$q^&3ivO#pP@oNv)R63yZdyTDSw}@+tJ4u z@xi(6i<h0kW9jSj*%qiUZ2JE<C999w=XT>OC8i4(j-PtaT(R)w*{=sK?tQWG=HZ)5 z^@aOW`cK!(DHs}@(4WgK_x3MK)*)86x*N9T{Kgg5%c|0<e#=x;7N(}Qvit3}x95Hw zy{yr0T1?i3+jsQ#$bEh}^IW{!yYGtUZyWxQ`fZa|&0oiMZR+8zSv9W5z57G%w`kVy zIV3GoQ^8u8clI5}iF-?Sf39+Rzq)1lc8>fayI9LTOdidS_3NL1OZ9x+yQlSPl(zHx zcZtt}oU{4goM8=8Z(gwe%inUTW;x}Q1#7-mANV5r@1Xbfwoe<P{b&A4W!+P-KkU2R zC%r}N@>lrz1%HK|++S+;#Mohqcz?ZYaNX^XZJb%}`wv`@cbWHhllGdIS9hfxzZ?5s z_Qu=UEB__`-+TRO_QuoyWq4oxN89Vawc_%^-wF&2&fo<ilNDaD*FUZKKIyi{tmpr$ zxYoIC-+lRomV}Vs<yW>13?36$cpaEO{VHR+Cw)kGZ`Y3U9p-z~ce40)hH6bUxx8CY z+VHBP=)|8-pMNsmzeMQo>HVgGH&(CF`9A5#<?1hjmG?I%DI4y+@$*aFW-+-H-~WGm zy*vJ2XEe|C->UbEyERzO-(4>kQ7`p;{=MC<6YE+Y?pi1R`d{)SO9QXVCU;6q-s`)_ zuibKGeqdEv*8EK9GLi32YbR$O<(GcC=gs544(gXLor%BywF<OM<SS&E$d`ROISW$w z{~3v9PyG6FZ}QQwWul(n_NA*7CLV1tyP9Ndn0KT#yye>Zwr+(Vk0Wo_$3Hk7U_MiP z`D^tbr;lIgZjMW9oquos@uKUSy1wsyG=-_M^{U8*iOkM-&TO*ZTVJzB=gdR>EiWF= zWca7_@ad!Y`;9Bzow*M$(W%<s+#aWY$>?~ue3#1K8_sKA=znjn3KH=wk$nI4oN?8p znPJ~1WG)MTCSTnzF)voEcHi^b-+v40!yYSsUnG+8`FE@9s+qAYHE$Hdt~kqmoP9z2 z^@UB{{d;XVZ8v{cKl|d}Yuj&|#Y1L3-{GH<aqCNwKFh>!J<oD3&lWLfj#oF@Ys0(s z^6`1HQD?vBnCM1pAD$ilfA-B!J|CC!Cv;X;y?7M<*})<{^nFil!KNi_zyCE$|L%F% z%bQTo{VbY$L#5FVn}}%fYIcrKi~augF+7?0&)Q|q<%@p`yWbhJRvwAt{M}y|^yfAA zzxukV*S|NtKBVa<XS2b!{@?A8ePT;iFUj5(>nvESa?k5J_kaC0yH@=Wkudi=FZ&^M zV@1VX^ZQc@>)7tZe>M8YtLSe$|NQ3q@89m#eBJe9zhQmZzOHNAciK;~kFoS!U-fW( zdg`-hQ!P5z?%(6nm;aQl@MLeCzNhJ7Z3mS}KmPx?*z(8P^w+kWS4zKUXa2S6dC&CN ztWbARdE>`g?RUKu+S&gW?3nI&{ppwE{ku}tZ=TJ4chxZ7EA{Qn)@u6?AqIOS6j)z7 z@(U~P@QE$`f1~>UzxrE3Cdv$|dwR~cpYhUN`=ad8uaDYY`mVn`Z`}`>eBa=C9s7E= zyZnE}XO{?;s(+jrdH&G1NYlEtYxbl)HGc6WbV;1@laHkhCAx3*E$miaeCqptzQY}r z$c0Cb_J?0C?*IAqwa}MreuaB7HoN08_HlgLy=YeL>U;lou-z}bGPg(mQ~j0ls#o>r zwjHql+7@20g>8c6`@byZhrfSiT#;DI`>vt>u*&Znzb`W^H#l99dwO5er)lrX4d1xV zVs6@T=1~1#@nG#O{m&UKdgtzc5tS#{Jb$n5?g`l`Rz*T=f6h$pJ)JM}A@hc<(YXmX zo8xn`k4hHF1wQZU>F}Ax&y&PDuhQ~P{l~;D_Y}@tvD8nTv3I7CkNL?BcjFg-w)mmA zEB&R_IpZ^1CVy)6n`3lm^YhP(65qLP-ZpuQqf_11so$NGSFbByw{dDXc#X)!C2AI# zH8aEyD;*TM_?3(GIrFNUKHDQ^Ww1sV>6tCuz_r5T`j%^}FVB74GP!ECtoQl^@ol?< zT0hiFY&)eQIwj=J{3|=ppWFNO0>=rqX3dJUvpbJ2eCTCYAhwFt(c)fy?&)nh9C2^b zxkEXA30Tce-Skpd<BN&CT!&_E&xF+YO)S1b;rnJiw<&c{f1BgjZrSGX#!+>$VCdz= zZLV`%qSLHnW_xQ^Maj7I-U)SSn%h(o=5ofUeRWPtJs+PyBHy2o@MTN0rB1!{xUQVJ z@|S0f`<_K<GtIMGFCKbwL(=;#XXd_i?;}$tJ6Ku@K^BR4%=ivkB=UCJ%DD&q-c`2* zyj}ic)|6wMXZ=o2wrsnw>CBJBNmCg0be~=hOEfOidHXtdQNKa%LNAV)?>9-<Tj?~W zun9_TJ>gs56)KiqV<y3Jk@J?$3m(mvtbFgkIxPHKl*(d!`c3h2*=2bTANQr+tcwa! zI-38jcA{TmQ_LHMcC`~<ZC-183VuIYBz@~rj`Z^!Te%yRIWH%_GU@s-Q8jPIKKWmJ zWKyp-gzYKYsox*qEp<cU+u@4>Qakfz9@~(e@zT)9Yx2^+RrO5Y|7xxCTBP-{;5OHa zwe$F%K6J=i5z)8p?aCF`F6@x6c(_kWxy0mls`h5FDKQT|yWM!U!&X)D$U>Qy4_?o+ zO=x==@?HDV%zl%;OXiUrO#HJ>l|_h1w)s|g-h1)dH?~;&sKr+A<3{0+4@+f2SBb1W zYyPz^M!zWU?fEmD^=U6BZWTJrDH(l|;cTMb>GZz}EoBiqR)bcF?7TninufBQ@uW$= z=GnS!nmB8tGia5_9cj=ik!e}3XsbkAPak)Ot`bR62=I1z%(&0BT{O6tw=bsuHguIp z8)TKpuU#z3%`=TB1w5}8fUFX^r7CT;-MkyTN~Ej%UtPan`sTZikHvpf?Yg+s_MX|5 zzI#3#+CJ%DL#`ITHF(fEA%z{bO2l`^RjJd@wIQoSir+t#3)#*NUL_I^UL}%aw#On; z?l)+a$oARtu2ZA0ToVAV5;?k2zG!8=CUljEvhnlsA2TvKKKjgiWBz2qg6-4xI!I@w zM7?kfP&2MxzF?nS&)uYrIiOV{Gj}CGR*5XXyfi=#vP$HX_PH77*1pxcA<e!2M()j^ zCiSQLpsPf_oy|PYVQ8nyzotQH+tP<OI-^=y9}Cp!$UaYQ?5%e@$n|yM*#-8~Y}QQN z!ZSDA!}?UN$?`|Oa=BeklP11w(g^+)@jyi^KRu&fB(=bRtNq}zt!GMayXCI)4JluL z)$sCtm!3IQ)$;z6P9D6i(yJhTd7sykb2X8Uj}mvAJc^2MY2nRWv(2IXbJotq$yH*! z!7RPruF<ENw&fo?&V2N3eRy`#^wrrO&p5I#i+!ytTVTX_swZ`^tLU!St%uYyShsTR z$t??V(@r;9f8}FK<{n@9dDrg=yiD)veGnZMEv8zdkQgvIX@{Eba-Q?N?GK$3Wi_5^ zN%8%Edj5V+#r?zm=ll5Mf8AfZdDbk~8^5y8%&&SYU3+uM$A1U@#l`<S^isZllcj(2 z^s|wT1wzx+mS;E^PFQ`ysZBxMHEySL<Tl@&J>Qvq0<U=nY*Lu9k!7apsghZl!4qSp zmm2uk6sr_)h_dHopV~8TUBJBA-J+!-Zj&}#6gHeRrP;C}ch}sIDa-wrC|>mm`?knF zPH*}&-))hhjb8DUNfY>9TCAVw8_1Emrau2pNJgvEX_3h{e3_Qs@G`wOXWQ|=ySTD; z>*h*`&r!OersI^fr9W+7)cV-gJ5`)2sx0RHt7op=d6MzdgC+f~vm-5Eo_`+aEyt;0 zYdAY$5hs)3N>ffBzeBo8tsk|HIaa-_>D2gBxaXok+JPDOR-{~X2uQ82E-C;o6DcrO zsy}qi7_m%b0(6;3^7IzIPemHwWg<839Wa9|6S*LNY<I<@=e|eJ&W`Op^Hx_e{KtvN zZ%6mp-&&cPvd(fx{)<0Jow8q!DyqH+e$)HwP*+~yeC4k*bTbbg=z5vaA-izWOr5ag zX_NOhcbU~HDZZ7RJz2QkYGv}?2nR!^UljpwPn-?f(rdS~_}Y;~6=#9{Gv=%jUH;-r zTk8&HD<zBKV_Vf(FFkCKedqr3-pm)LvSQZVy%=J4Ky1dfQ_H?RtC=I+vNdFLz)kO* zl^s1B<P48$HEvTi_GVk-_4T<%@0s%UxpiHU_hWlLXXJ73o@uJA^+M!1k6-=Pm{3FK zQ^%(_?lZWu@JYgHW`|67uTQQ;$9od=md>p5{PnCORws-xxRoj3>gg^HRhKUTm#eRN zxWAsbtG}skgHZd23ug*#T5LFfe0uTAXQisx64x6`j=8`77nA?{aD)5ConfwTW!l%| zY*L=cD0uj=p_YC^<?291Ywsx21*act)^oU>@eE7fT@d#0pQh{yC%Z$dFK+YQ8L9K@ z^<3f8>OSWdG|dj%<oHhWS&7A>j`zWL0!@<x=ZPP3Z0Gu+AinBg<?S85{k)>Oym{9x zdiGeFo#2bzxFsc*@1D(VzCQ1ca^4Q#=X{&bUDukr<@ZY-=9+J3ZY*H?*3ok|ZSxrg zx3<0YQ-z+VtjzJ6ZRu*d{eoe}JAXr?C#^?166PH*d+BL&Fu7l0Nvx)?x}j=#Z^jQ1 zO|Ku<mU1q-U$xs#@WhFVyrWq+UCa)6PF9S(5o}xB+B2uJJyGpv<nC>5yjyyjRL(b5 z?q1B!y?3o}GLulk9G1;0cbt7h*VyveElNHzgI|OBd42j71MV)R>j`eLxjR?rya^6a zvU#bUXT0F*<8At!!Cq(l=Ip-z%5LS48$z3JEHk@uWYM)L>CYDIKkZhtB2e~}qqEl6 zs^Hy@6K@&@PY~w#^g7hgS|ZT?{EM4fpPz11<%wREksD?ic&10I;FQE!sZ0UGJ!ZEj z$z5Le>m-|?HeY^5{rZ>lS$xuF6rI-*o8hZhnP?uu->kUz%0}OJ1=q~L3q>Yv*r9#$ zYf<dR<6-hM4}VPB6a-!<Vk5gKt@M%l<E{+9)iv@53Z~?=*7R-lJ~Zv<iS7L=JW^{8 zSUyctJ@a#y&Gqs!rThXrZneJ0HNU>}y8XU#@L$4q@IsO6^`Mm^&CFk<_g-@|DgN;4 zy4d=UKil7Ic^$oc>$csp&l>z*Hza@XjLuJ5Z~H2)YQq)BoyC!M-y(Exu2?Z+i&&p% zik>`Y+Dp|h)23DE-fX=cbK!u(qn6fVI*w`2LL!v<0xNBFIJ)=Tc-3{IA>HZbgg*}@ zX0k<I6p;1ps+{onMNR!)$zbNwOEje7^c0n|rcLPNUZm%{Xy?3BHI_GWnet<KY?Gzt zPZ01unt5a!WTD99jb4>CH_Q2jZRW_k9iKd>SEO*NT;QBc)}BvuuiO$|-XM{C_Ka9x z+A+Z--nCBCiYDxBvRqOb<+_Tcd(P=y*(t_fQlytV|CVr#xq6CKuztgGT^U}rx{K4I zUV2M&8h>C;6A~_-b+W3yOSZG4anj#yOVte1{iX++=-)9*V6vDa{I`amFDLZb6t>Px zcF}nkofkR2xcKkNhI0Y3XPgVf?)HcW*NM4REQ>OdlE||xQ9tSs_-b;dT*}pzS(zbk zCm;0UY__|@mfUx%XLgl!;(_{=uL>;mR(5eMyOPAd>fgc{bKB0i6n{JHxJ~YDLRICL z%p5-H3ptAo?cCfvLto2zi8IFR{uJ=!q-gA1mq#HdSH>D#etYZAkM6q+fxq?k1$=&a zp@(I$<E#QRPljuKb1h~^Jh}2=@j)l6OHLLl?LkW<wA13wY2T0gHvON+(}>*7UG-l? z7IU)B=iQ-mb@NA=*x)CLr{%XDzUIivD9FW8VKirIBga9uv*(2~Vq3HQ?sJD)#)@f6 zaS6(tzH(-!+U^GC<BLwYzWS<kt2wOkb~D4b=NoE2v<XG6k-8PXmhH?P+dj5+=FWXe zFaAX5yA%gclX)Ax{K{jKjdS<L=qvbrh<);){%C~Bg~VA;b~^C#oKTx(yE$ayOA+D3 zOZV2C+NJxNW!~4B2R?YGTYjIVnA(%;VxjvtRzvI}55v-fi<W%<nKk3#w&&i9TbgfQ znc{C^H_iX2XX=T@Ezw7IPSj(wD|^*HbM5r&BJWmN9N}2ArsrVY?r%OEE}pUS{=o+& z1bT0-Q*pXlFWK*6(0j)JL_!m6smR1_pZ?}lr11Tg;=91eZ+<Li8f2-6o;rA`h~RVe zRh&m^Et_Yl3cpJ^EY-}so2&1o@R2X+vsI)7bWfOVieUGZy}2PlkFVgJkoK#Hk3Hso ziw_nVT}UvV8PQ?v#_b_}`rL-tkQ~#EK6Uk7`Ydwa86}OQlBABBhTWI+g)9|u2QL*l zGqvV;)}D(!QZ5qnyF7eOKh}s?vaoW_`|#jX0YY1i7N%WW!4t0B=*ysDBhF=faB1t} zvo-mw8<q$<^E`a?xv1^w2}Aj$&8;qvyq#anH;RdzuEVfvv7ksKkJXGr&VtUz+l=aG zY|LJ?VuI-7pqRGylKF-FZ#nFJ*lxF3&T8kCzofg9IqjU{gKewi`qL$L&0ObeVio3G z?sJHpH$Q4>>hhb%5+;7-y4B*B@LJBM?R)kd|L&YC&;Cr&NtvR0ct+aITO8lEJ(+sS zkYlQu*l8CL@k<Po!?-g<XFoL%Y*Sja-0?MkZT)2#{pTAP5`PPw@{O8*?sBeeS?N-H z?$eq*Tl!*)JvNIM2J7A~_<DHm&s*>RWyG85{QkNxrs5@Hsfe}Q|Bk;iPUppYM{8L8 zw0b@D&1Lrg8<v_xMRpy$@=;Up>e9k}H&c)Q&3VmZCKh-xr#8aml%4omp9?}ok8?Lo zuCJIQ;lA7hvQ(t)cA9d;mx8yd=hSX5xv{C?*DW{DQjzEH4)iQ3yV$q-RMzQfS<j$L zMfSKX^}2B~Yr!Y=c^AHQ|5Y(9XAabz>DYFIv(!dQ=y=`)E?IxGbJsRYY|U)ndGhe@ zlea{A)>cHET{?O8RPIcp(C<!0n_Z*p*KAv~#rX4?mM2%1bU2q}Mb`_Ro$^TIxQA<N z?gIWzYgdF7u9E2XJb6UISVm}vfKK$iC;rV}i`37n&G6pF+<fxNwyR>#Os<GuEm@WH zL(fGZzH_tGlP#D1*_Pee!M#O)bC>1%V;+kQimqNivvt+xXSdYY9_2MQe!MAVwCbRT z+fL7V#zN_h7s5J|H)`eVShp`t`ku8wUu?^rnAr5IvrHyAu6)e%aLJbllVhQ~udy9* zI+%McD(H!p)0@x<yetI{ch{Ym$}GEO@-fRT@2y^F-1s@gM(NOjAQR=&$M}|;rX8wk zU&?&;s;<q~oRuk@67yVse@u`NkFKj}V(wO))o3k|_o3d!B5<);vgj0}G+|Fur};BC zwOD*F-<dOoy=?o{DgQc7_vy@>8MRAPm+jLhQNK@NuF;2+t79@mtnMiPC`%LS5_`L0 z*1==7N26bFTxSxPz5L0#8FEdJGX-X<tI3!y5k20wd;3Z)%Vk>(gXd_jxVg>k#IiZY zJ{#6NEh=JI&}(~iLj4?Hn~<>UTVDo#@>1{<4DVN2W+Cuem!J1k$}6W!b_Qubr6k#> z9IXgjQ>}b?eh>d^lUctP>iIki&O5zihArp!I?s-oTeHGAw$3d0ym#iADH9S*iWzS@ zS;ok27wSHz{?$n7g{jev&>!cv_TD`i7OoSrx~Oj%s|bH{#I*@Gw}nd7OC&4yw%xkw zVq6+zGk4pKg!3ksMP|!<-X|)1?WxT?vz^bJmM-%z)l_Kzb!(<cfwt9Z+xeZ>s<hU> z5O%+Q)@<X)S|PpT?zz(^WcO*PE%g4ix}s})#GUpx6JJ_9T6B=f_wYBRy|*%FHa3@h zzx2~@R@AAC19OWU4{X$wUi&;q<niPB#{nF#g6k&~@-<n<yzTjI_1bZ#@{Zygi^8VL z1UIg8J>2>_g}ut8@ZiL=W=jgSU$C4O`DY?}r|j)@Q7hTJ(`hlhUt>Q0C^JZTw$Y!r zrz(d_Yq4?n$%JiT5^Lq&wn*q(l&igsR=O7{y=LBxMbe$Z*EaDArxhe_ztuY@=lVRc zPxTA;D;;|(HtPn*Yv(snsu|W!x91wG-W1*yznbkrhT{BJH{vEP-V&?Q!X*1Mahmyz z^!)lg<&FD3u>YQxcw@!Y`rhper?yT%l0R47_mUI){nxSPcK<v6X7AYhRlj(5cKOLP zRsPe-U7gNlW`VMWwKEp(+56~*>>BpBZnp}+i$&_gjzLz7Oj!QRdfm(?k0pISBrhwQ zYX)5`Qf_sr3%ppQZa?>=l~cisMGmC(*Hl=YIX$^s=t<1nfZ0uxc;fqi_{{EOp3L&M zS+Ggy);piQ^CP`f@>f0$nR$~v<;n5d-T>#v9`D_)0uAQKJ3l-YxB95rCB7G1(&~?T z2?Ux<zFHuj<;ttG-az-di4|Amu66!>$5%=eUdj5hC4O7etAyf`Cp`j=LMvMNbC0$? zNn9e|C!O^;?DyqA2D2yUtZh(ET(D~MnakOmjwLofV(my?z9T*CPFehi8r{h1)8GC| zGDqE8rGIhbUXD2xJD)ZGWjiJPvSY*97`2*x^(Q4Z_V-;}vo>vyZnv66?qaR{Uq`a` zCW)-k`_z=4wpp<1k>j~t$x07HCgn%CK45m7vpRX!to55u96H*%%rHgaR$S*<jb-&E z$4j(drzY_Ar=7cS<rd4iZ7SU9u3qOhrs;H7ZVH>SHi5tOVcwRW%+fXdJjNGO3y*L3 z{O+{G<ZoN+8$O3mE@^s|U1}KkI3n!$Cf=E!C97^M64K@m4ZpPYW1-5T$q8ELJWee3 zx~(_eg_p~9x5C25)2_27t<ye{6O?xC-i?*Bc{j9nq#Mn9yV$FF!=dS|N*|dyFI!BK z_^jOaTKsg9)>px(85TSE{W-a;uO7?06mN9uf`w$V1bDSbJ#@Lq1trjGkqG!|kpo*z zS>&I0PoDL4=fkR_o^KA7>~%b2G4DWcTbxc-L=gYag}YZ;zPd5Xqu#Qq?-`%mjhNT@ zD$VZvFI9`DoGnxI|M)OYWPj-Abzh(KLsp9%`~Pp&ck{fo`1jIt-!I~r$1HP~nN{af zeb=Jjo8GAZu=!r0vvrM!oYUJYFDGPe6#bVqf93A@wrORn{{P9nb^P=CcI}6kQ?I0l zr%m`$weZ!NU*SEQmi+ssdhMM%x2<~J2QKYX`oafV8xBU>tUfKJ@W1ox{qs+Y(qHnr zh2{KXkUreiy?pn2{TngQ?j<EfB>vc9=3BJ>^Y`QL>Z|sLRZRUl{dwR1IIlw!w)~X4 zyncP*-X~2p;p@GR?2%Ht`)B=2?sMnY{oZ%*diR{&Q_miL%ctD*r~m!B+Bf$mz6i4j z`*`F@-$8DP4{G`o&V@@?ub=U$`Q1;e6Z`iq{qf}2>noNn^Ii7LVJ-Zw{D|9^f4}Zu zo8Pu_{FN)yr``P>BwRo5N9?=nWu_b(bR0sY%~N+LeJSAkY|i}0d*{ybOW(Ksa;iI4 zzP;&dYW6$Ta*_PP9U0%u`rl{OdrsXxbB^b{k2@yTZ&|dZ;;GvI>8H=>i{FU*wsy(i zqRW5sKHS`TditBVn^*E<X8qsv?yJU*dy|&NU6>uVurl%Aq~CvUJFK7ZfBl_$-&g<t zu614CUMra%Hm_ys)!0{C=VyPv8v9W^yLSl_dz*1p{n{5_^2JZ>HjkS0Zr6vqZFVcm zcizAIf7QErlQ~j?xrAQr+VAgVwX-4h?}eH-Pu-@qJp8<MUHYuBKV=nn9Gl`FoZg+j zf6n@MW$!oD?rCU#xAXP?uxookYeg#AZ9msv{_S#p?V4A4o0ml{%HAbjRryeoUy4Ct z;?k$7*UmE9A9a<qeX@Md>!|nDY#FjYmw#Uv8mU-S_mcPT*Xc3}O}EcHE$we#y`p_b z&lkTR3@^A=)V<ZsE2=*K<Xgj?dz0_n3(b44C4Qs5O#i2?&7R;%^VX*Bz4c19u!5;o zk4I<o@|X2@_uf9V)j@@^zG}LM@0)qwx+LDR{yu*19MinD)rpf>7PyIdzCUUGL3}Qk z`N_4j-TL>IzyJ4Txpj6N*RBhUtKLtl_!(JfkRDNaPjl{zySGE0s~+gsWH5<CVJ8p6 zBx|t+RSg?74oE&}GQGd|_m7Xs@4r9)-m=wX>lUAGUIA{w1j+i$hri>>cl=GsPRy&_ zw~q0Ih|j#*Z|Wa@K9oNA@n?HZojKD3l{)9E_t-aopDq5qj(OtCSHIqWdS2ge|L0C_ z=G(@5S54oaQ#3zpUm<_M<>9^uKMwv`{r%y_?QByvhT4l46lUJ3{{HZ=_3QO<?}Oi) z-(}kQtD4ItE$;Kq_Ahn6*M6^$PE~WgS8HXz$bbGk--c<wQ)Az6*SouQjq`^6rAz;n zZ&@Dug|*6#K{wywZLzw{j_-fcuV+rKIbLWVf5t92)7<)xk-k;cgqQ<s{R4~2JmxU$ zn3CnjSoCnuH?i~C;%itYN<Wu9-(9!hVw2;BBVP_2RNCy|^TlCF`RRsMhR|mZa_T=7 zpWl3bXK5Hy%4OXz^Ht_gUV4E^AbNTY;~mE-QN3k#j;sY+POlNZ&g?G9y=9HwW3C1M z(+$rnZ}~0W{5#@JQ}_N4KW|LlZJxMT?$?59*Y`oL_x3U`IvvA2$+~sZdd+uNcPJk` zr?P!#vC?1vfCc9c{=H#Xx^>m&=dKg}ef|ELue|=WeSMv3SKVggvp;12{;~e{Q^xFj z|Mx^@rW;>*#4RjY>)1{_(tH~4FA%`IE}uPq(bJi|&)05u;N*TUIp;g;55t|3#obf* z&z$A6{&LCu%mKUq_x|7c{rsM|@vrl1cg^1`us<tB{aI4{@-Nymx!3$IIR3?1T+-oZ zw2A1~=@PnCZS~WlA8b)kxjFNxB<o!E`hESEz4a~5ACLNRXJ#zJt?N${t_y#-v37s_ zx|??m*DCMW`F9iN-4n+5%lEumJwLxYUc5R}puQ?hfB(V<@B3409_G(f;BHC(_>;lQ zVgoM+?=G>@)6cH|s4=iF(Y$w6R`|`Q)3yK4GPth&emL;2`{9T0{pzRLPe`Bp()x8? zdV}@8uGZyhpRXiL;NR;#wQA|qninyde?==@wZBYd`<S)*71O;v8-6VMDL&J`YQg>M z%zwl5o$Dj`zqHEr$Fsjum48?C(6uA(<E2`*n1g5TPw}*$;P!l8;X9s7!UENu_wVh! z-B7Ii!Xxg_o;7t>qwn80z5ZRiqW;I6(CPNE)l3sUEmwc?{W5FnokkUhsnrw3nG~wt zntYG_EqbFe_)r#)wys`eO!;memQtBrb+<NNEGd|x$yjiDw{TbK=a}m|_AD|v-}|<$ z|6TbvA+zh37^?CLS7*jQcs)0jVUfsnN$po%Zz_-a@2&ThUwr(}$Mf;qU;Q^S_<3wy z{k?=Ixe=DLzdqb<@_pXH;}7q%%l}`T{3ZOo{Xf~=i%wkM`{~J)|8)yK-Cbw=I_Al` zi#H^%sXBi0lCwEH_2btyCAU}3ufBVFQDFJ5w~R|7-L8pRxUGMC{-*xAY4JioW@~&| zKL4D>mmVwqYcapRZLgGCCuSX1cl_!6x?d}q&Da`d?5r<c`$Fsh+cDlq8^`ng^}>5< zR?j-)z!H1tO|RdV=(;mp0e17vm+Zdy{A$GZeMZ|(-{gPnAHV+ZuJeCBtM=^T=Z_ct zW&B#`&Ejc{JS?A#_t(6vXH&d?G&J2NbpB-N13mo742p|R7}+jJtXQqB@M3-C$DDde z0fz4#ujVwTF|obhT>s)%|BB~EY$+ATHqX1jx##6Sl{c2n-ip?*%hx3z70*z;n_2o& zR{VP1-F1083{6gLSX>dQKK}-Dt6iC=**?|-^0(*xU&6rD^+({(3zK^FyS1qoueNQT zx&FG_lPKx<l|39QdK}(}PM*UrdUX5hC++e~?hIKmTGv%28+U9w^Y8wDub=y)&l)RF zI8`O|a_=Fghpc?n&mR^3KJ{viUB?$A(?*NU*K?Du?LP3Pz5Si^2JO`E8-HJW{b%Wo zpZ{6E{%1rvoMZa}E=CP$(1{$|PpdKtKv?%282KTr57CSw5Egqmqm(rGz>Zy4gjdMx zGcf4wo_uh&aJ``+<iw7*wKw}7pO|)|x}J6J=1_j^$=xbmtD>heXDxJj`}<i*e1Z7U z&=}Wiz7Gz4Fk;>xd&7X|#sP_W;{V(JzWdq!TeWXN*;1pWYgX-vt*u^VZLDfkq4elT z=jP)NkMEC`v=Z{@TOIXmx%4Bx{f;WZ8(gl2*xlt}Ka>0JS^fKW^*?^B_j>y%;g+Uy z@%ak}%YU#l_Ro5^eD==gH{}g<cn<G2C{4HIa(nW*GKcl{oi)<66LRL;XRYkoHfM`! zp-p$>w(8~=GH-&7^4tGD*~s56o-kiX{oelu1$o|+j|CFXS+09hyX&K^B#+R+Z`*y& zO|ZMGF-g;MPP(OeN5af`^(jr;%+kB2ZODDIa-QB@?&3KL?<QTWJ92IM1K;c2X7e}v zb&oYQJu>l&zxheiay`#`ypLSXUYwsCCa1O|L8;h%lKtH~ch}07Y^;rbq?g(7w%Vfh z$3OOh*M1L5?tZd;V*H~?f$h1*s>;`q-`HCw^xT(;d!l=ObI;dO7SDGdrYU>XpIdvl zbJhDghj%A>HrKuQDDdsu`&^@*=y1~<gIVXZ1<cf)xPCM|nAG^7d}i))=?lA5s^tZ) zUkVlc$?ezhU$I>C`I4!NwLZrhABt04w~E=zI&1Qomq*2JbI!|GS+#C$@kMr*YfG;# zwd|U7=I1Z5)%S14^s(*x%^)YZIND?X9Ig}fmBu9&H=~bkblUJPT<?wG0bL0Ou{-^$ z3~A;MpCoCleLnlx$Lxt!3z`4u{b!9;xgEHt&aK^=b-(iY34hryf4VpK!2gdrYrKza zZA*#Tt`#v)KHmHZuk)=hTW;n`2dTVUF@4)>sef`JPr9rR-EgvUJ0P4^SS@FM{@cVF z_6z5eEI-%#sPDG!KY3R_?w;<tbLIcNZdE$1)py>1I_|8ctEt7o>w>dyCLP`4^U{3z z?8iIzI<EcB))Zl;zCv!nk(_7i*WH~EZ?Wk4?{jN^*Of)fPyWc5n3JC~;{{`4%)Fxy zRpM@$#^1cFdGVm_--pclC#P+8y<O8h!*(@K=*8LcaW@QkuCmn6YAQMXdfI}u`MJmb zG49-XvxCL&0t5GV-;dWO=5&63;FV)%m$@<h((Ze4M<>V6IQNh%PpzclW$*GW?_Mo9 zzBp5M;#)y;yW?T!&VKSJt#Vo^&9&2dy+UrpZ_Xok4Ib=s{3p6V`t(PO%e&{zRx^6` zPm_C>d&9BUP4A0C#r-?}G_0(*I{)$ZYxe@iK=#_0)|K2wUvKMhf7|X+xLAg_;nW+Y z`tF0L+y5}~I9IK@!}#abw9kw`yGzvEy$<bEt!8?%bff%*4Os<T3Q6}b-v8TsqVi7r z6Q;D;r}8V#O<nP&x-=x?yVIVyKpm++*<af~e+pon-}OOzt;kEwAHf}}mk&<Xo?IWc zzkTzT$IDn(aqpX6{cFb>>1IX0>r<Zy&YIU{=6iT{3FE(2D%TI%bJgYNt(%^?i?90T z_T<+kFJDxD3b;5|x>w?x$&s%`<yU5lwO&jyn8&?1PW<c>jkWeUX5mpsrj}mUt`fVM z{(RN-^Ha9o$%>Glxb0}=gNdumugqLG&A6hk`)d6KIqj}EZudKv!uL8w&ns8&*>~k} z-PyEXX4buGYh4#E<?Cvi7CSM5FWX~nQ1v#gpQ*l?{wgA8Q-U_?oSf8>^fq&`ZQ>RY zFB2(0|B&03N?E$;A-4J<AN*En8pce1tEaXu`rO%$s5=?YOQ#>1-Fj0cJG3Zq-zKdG zT}Mmj6t-p8o8~HIosZD7=F{lzG1>i4vgG(trsYmc(lu0<iJRSD|GPNwh5PB6h|DrI z?$bQIMfHy?vXs-bayN!#h!h2{x;aa%Cgx3Klzq@FlQfHcGqb~Hgmq1S#%3yYap5Gn z??GBeSuR@{o-kV-wlCnkTau`1&3#RA-P6~N&id&~edYFBSbu9yn{xO12{F}|j%<E+ z!_e4!sl&rQ2T7+B)3V~O8_wM{*)Q9zh3|GH`}fapdCZ<}t*d)j&bn5yb7hc;n!0k1 zrJe|v=56j9F_jj+8!M$3Z+dIE>dDGC3!X0dH7$KvME#P}XOEpI;Z8Kw-M#F{^`;d` zDOy6-OM<y;1K&ydO*r?x{^}0nuhTQ;h@Q~ec0t>9i_!ew+d9v(o{N)e(ii*Gy`gQX zSfk{RkO%2s0?!D1QknI0b7a{J<LYA?eR~ob!h&b5@^99fXD*ezT)WNZe(I@rU6MN` zcg|Z{sJh%FojY#o<&ul*K6fju-l7$wd7NKXRzNQ5{mEU=Emb15&8wa340!4f2W{7P zDRiHBB(K!$K=?DQ*ZNLHiv3SMY0U{cye(QvM=GgzN`>>QO;x(tUSYEeHconM7Bs7` z&$CwM0#|$W-jFxmqV20pHtkIFn!0*N@Jx$VrIQ!;&aoGbuv*-*IOfc>;%S*@i|x*F z$f&LGDRcbsc1MmL>$MY4?tVJ5io-%GxIV*luB7162EJ8Jn$|0h&GQeeJh<f|TVCdt zBU~YS9?X`QnWr&TZQ+?MZw|fr$#Pvb`tTlY{@efV7}~5mye;^$W?;U_G2?Z2&hfl* z-e-CC$m%;5_G<zs<(VJ))l$AQa@Uy`H=SnXS1n}-uU-|q-Rmyn%Wb=I=Bd}@AL<Cc z8hX)SUVUO;m!R7=?delC$!i==oVm7i+R95cO{rdwuT7de<<`OwmBS5hpMLyiv~+sT z#*<pAmku8F3=q8g$s%}ZSjg6kt9{#VDovI5ESeqhRBMsTnHhC!75jf5Y0{rny#8*a z<TjZJy`Hnx)TLgsrbVnTm#A-xv{lw=IUToM<x2FW6{~$)>%Se6?&qo#Uj6g3!QtRl z*}4(AySkQ{B&WT)8QG{<5c$X`Wy<SUa%%&)H}A{|o!Jz4an}(h*=503mwBz5HOF}i zlg+vvMh~BzS(weU*KhaR4?MR|e+*rAMJMGE+r(88e9J<=EHdj+EfhHJ_NHj-$(mEG zYICKeO3sHZ@9s&xn)d2KeUzc?`gyYgwq1I~qG2sv%3}QFww3DQn8s}3qhS{$pP#Kc ztZ~aC@mFo$h2#@2SM8ef)a&xQ2C3bX8E<I^UNZQ0C^LCl@vIffC1G;}1s3O>;n_N4 zCd(|VqD6H}S6_)bxFl+E_$!0ftxj7zme1MOlkUd4?(xqXI^B%(Qj!wGf@*B*1uaS< z)7hf#zn41t=>DG{YYyyQVlOw7zxwC)scV$f1C8qWe)wJ6r!f6!joQ>{`X`^-E{R`S zur7P~p`HC{n`Wlz8eOuKn)|)Fr}=T<{_Au3t8F7yR$p#)`}UjJ`!jdL3{UR-h`&{L zAHK>-RQTa@G3Y2)@S);mVI4=~W^Ui@vhzxPQuCcn@tH=>_mX<k>eZGRTFPH<nse&< ztfO~UU7LD)W!Cb`6QAU~VPSmmrSVi&nPL7eMY}IH$IO2|ypxu6?D3p^9=+L7_oYn_ zpV5-iUEb`#{q)B4jXaAhZk^D25NWhuVa`z%nKQp{PRv^9+pV?r%mT&Y;_S9nGo~ti zO+37QX_Rig={Y^kD}65(hCP;OTh$sPd}qx|<vlBB#~L$l6OaG)v92;ww#Z`cGS{t- z#5sCret8nOB;`nqn6Bo_pk|{Jj?LdHxx&A?PE$MObW7;>mI<?;80VGFb4}mtH*urJ zu`QcJD?3iI1|NK;)hI6RTAXuD?46dz*09F{`6rcEiKl3Jsn;J}CN}ls5%VLCoZg%@ zJMSu{*Hotk|2z?*t+{M=f2XVF>DjFI=Q);yuNOI~`s(u5vh7hCU$5M3iCC(kt=-R^ zw{6;Xr^(-Mt>|R7T*vzO&4$CLoV2XN*siR(<b1Jcx0vVMp!w(dxid1|LRL(=p>Z@& z{;A>GfH`4zRt7!(eRq}pjQa3bwv0NB8l_L~gye+AHcqk<c7N|bn|1&BOJ^21RmXD6 z{wz7{C9bwJr2E9<wI6fNxThr==7+~FRyBUyc4YyRiBYW8<Zf?A2l3)=ANR+%4=uS7 za^f6MM&{|5;)7|&OIWpUR$9GD5l>orA+Oxj>Vl*}$kmTLO-Y@RGv<r2>^7=j;j^r5 z+NE7Ng4$hqYKs?V2|p;ZjK5%)?x~SJVXHx~<dUeGIa*n%O*w^)g4>N&Jh^f#(#CgY z#73_#w<7Y7JpJNyxJy0iUcB3^u!W27Eit?%?U*Kb^QGM5FeArQk=sk#PU^8GAARGR za^7)oknIc3o0)xmY2HlnIz>yLx|rOIt3REbX7eg>^E`7wuU98}-agezFKM|{vGl^; zhefUZoq3A)r?eSwecE&BG+)#_?u>(ZnqLmc`V@uPtTp#wNcReFjfq;9;#+9?#zN!n z;VXIfOE%Zlzc^iz(z4Xdf6-dkxo2Lb9uwkO6Qg##?1)=L=+YI>ZscFfPFp9wCL(d- z=}l+r&t%M7z9M8zU+|P`hga*KobyB5nXM{l?ToKatlpoIRKFdN?z((u!K22I$c3`b zn`7Lwk3O#1b@uo|)hh?sRzyV|zO-CJHiLO<i*Bcu-j++2iotnLy850~>a|~-{BA|c zk9jhgc5&zQetizLvXATw@?ADBdF~36`F%fJx9wN3UJ_Ct(R%2}q@w0ITDu(feP<~a z6S8^5)cEA{LxVZl^OR?AnZ9=63#B(zy)zS*#HinYVbvWc6Wnx%=TnSw0MF!gEC)`l zFbO-m#c}%1V;ZY36`H5=7Mf|KhE<kM?ULB!e)->&yzQQrw>6C)KT4UV_srVHvSjKc z6QjnP2aUh#9P9i0W<k9%2iNHt>pPBS?Y{PQ{gqFL7T?H7TeB;0XBh8_&?}|OrP?H~ zbreRY+*$ZUE?ehGsu(lVG)>Ka8%}RIwQ&B2?@nvY&rFeByG-NMa{u!jx8}0^_R7>w zcMTLd_f?>%kCW$xc*@$I;-p_|Za<Ql6TftcY>w($6RCbrR*xvw83zT;CF*Bo?RgSf zt>$~_Uqzh8?5xJkZNg1klQf;HBDZf}@}e*6sr%2gnVXOOI+1EoAQ)cKzt}n<eV66k z<D!ZIrzH+=iOoOq{if&-zpw2#Kjmb0IGLSTT)Ft!RugmQEo_Ig^mIFS#>l-c2{;&0 z8en*ML(S&2Efu@Nzg>R3a2em8MOs(R)^l9voV`}M^#+&3rv7s`qe>?QpRUWYTb=sl z+L}#0Renp)m%UY;xG=fxjIK!Zte}Z*p>B(mjlC~w2Ih2>eRc9XxV$##WLMzz8779? zO!UvN|JbnN+Y_I->C@W+xgO1P&uq<Tk$idUP<QRQc$0SDpc7|2Ca&r%U4DG|t0$9; zGOo<3?|T$;R;Tl8U*eWMm1{0aE!)0giZv@+^aG836I6HJWXXQgeTD0M__B+u7Ko_7 zoW_@PF>!0GzIloAW1l5*3ptDTTdc2qS!dtlQh05)hU1MjEWz4$-@cCG>fV~AX})IN zp}=0Yu&X)S-aKiV6Lx;<@rKvu_qc^D$)01RyKJswYR}Vp>(j3DauS(tNfdo)IwKV( z@JVapcN3jC-@9@wZ=Yos^mcVTKh1WRom9tR*XlXP)K^w6vn_n>dNH9zbl)XuQ|=eH zmL*x4YDSBTx$U|e^GtH@3|+I{eHWHS*J($bm>ZHFICBcuoekL^%w{hCHPda^lN)=2 za|N4Y%FMLRyB&>Cl&EJ*w-HGQ%KstNo#eFd&ZY~F3;4bMOyT@fb^P_SK-u#X&K(JS zbuB`hakIvZ#}60e`ZTUMaUzp9dW%8jGO^h$*JGcG-_4tqcXs;JFEP0fyv02JO^iA@ z{Z(sDs+6`}{;g?ie5w<rbq%{M?Sg$Td3=tri`L5&_H{_jGF@sdyeCe*K2k@Ue|Me4 z?}e?VL0i;xYL;FO3O_n0U}~Y-E1hFjuO)dGXe_;5SNE!{+s`db{A^d~p`_?Hu0MUY zitoJGa&Fn|$J<_Vm09mqSR67{Ze`w#(`VErr=)T1trK1IJtogU>h>I-X@PSEFJ1BK z+3lNk=yH~r`pz}d4_`|4oeJ`25;|FbPUrI^>s*oPUvi|9q$cVmYcIT5Fmuzn$Ue&t z*{pYXXVvxQy6&8M%<nJTu2&a+?NIj!P1xYyFf;D(QP<=Q$xJP_-MX)Nw}fV#kWk*1 zKErzXuAQj?%dW1<U1Gh}q`foD_s~?WhYMr2E*E)R7Qm4;DPmpvEg#Fx3};_>wLd9Z zI<<aEke2D0WwqzSKZ(ws<z2by#kaeKjoRF+PjRKMnwY*}+x|5fxzXa&*Jf^?C;aQ0 zionItWYdM-itA2_Txf~zQIDFL7X46)dn<Q|=Ruduta+I~c`qHEo;NXP%j}yz?g>E? zC%@$X!xT`WEqY}_hEnYDE*;O1*1BDR5&>}y<u5DO)jvu3Qqwi>{3EZlFz^1bFF|v7 zPgmKU>pN%?t>F+Y5Vo3klEgK3r9_?PM|)-+O^Znr_2+8cWh}z=V?j4xsq5rQ(bY+p z9hc=)`>B?l{<`M6GFRl?GvZte7x+G1_UileS@-&VuWgUmcGqX}**xjDvlhi~nW5DE zd7GGi7kA*AvM7oA=1IZwrAKYz^KUNRVD<d>%C>jc4Q;}nY-m}(EXQrmkB#^CMj7Ql zxqJOos^g^dr&Im6#!onDaq{`5nchZ{hklrzdOT@!skb-FhMK94+qa)MFSa?b@AP-; zHDTdmmeU^04lTDRn|Aq_hbO<P)(P=Lk=0k{?^^T3V9r$8RnF>3(@hiWS5|DxI`i|; zkyqmGs}+@>b~9fMYCCs9&022Oqc)wF=}a3<{kz?a^NwFtn2=<DZf%s0u(_C;{lh4` zi##(5^B4J^3Y__9+1t#sV#hPf9$n64pT71^(arp6T+TKMtF|sQ3R11w)YZK%;@GmS zjVCyi%dX{`F5dZg`|Pd1Qcgwi&YW6*GvSEY@kOsYGR}(?Updq9s3Oo<sy6?o@kfQ_ z$ED_%xxG;_c)Rbyx}RG-FCA5ynz+R;M(lK8)dk7#Ql>@odM`7*^?5WSySsF5KKs{S zEoXX4W#Yg1s<Tu_c}8Y#+&*i2XUO^s;?a(x@n2uYO?Y(VV2geS^GvVJkIgvOnX|1B zSW>TTyC~%Ig-a8@?pU|fqm@(b%=14BHfXIj_L^wB_sT4uISCU)*K9eTp5e9eb7<HK zwvP?o!Efu_^gQOqY|DO76kdFZ#~{G{Zceykdd!ijQ~o5a6A;babK<Mkly#o9eg$(@ z1w9H|6dI5&%bM%!77;sjc3tD44YLf_F6&-qt`)BAQ$IN)YwEn^-G_UQy6p6NBl63| zFXPHAVaNCjUzv_>6HDH%{$ul@iX&fxr%u|elOj8Dv-=vC#j9?gO*tJjVS3l;ikr`h zTnf9=-FPRyDn2%YCv(%RSF4%tJ^8JzJnik98>`Q6Nu6SLq~n_Q>NP2|PSt2VXUfie z-s%>=l6jtPaftt$o%JSbOApP9pUt>*t-#ET^D9@n<Qs9gnqGfx6p}LKkk{mIX;%_L z+%E46oxk|(N;Q)^jB!_sgw}egtq(imy4FhihFkW+&pvBI^?NgBPs#pO@-TRfa%p(1 zjrp3XQNb6pzLa)7J7T6~T(@zzj48LvYOyjNE&BtPA1fHoJAKGvlKNeydMUpuy~OGj zkyp;hwVS&Y&Odg7>D1GUJE9-E*qwH}*x}><GW4!mwzs*e<mSfvMz6J}&t7bI{QA#j z({w*EFWq)1DeR@+X+CY<S9|m9w4NTmdSa4su=o3r>343N;`5pke);)L*XwK2lP>uz zEOHGI*|t~7v`=|?&OYmBGK$RGc4uv`KX!K4mGw)!C!RKt+!SZPwsu)!+N#q^i(3P= z-cAv*Sv<vQ>8wZGTCcRu>}mDfnRmgsSn9mw(Qh$@X+OPk`FzYGGs2SFmUC^{zT);7 z8#$dr4J*Xm|E-b|socJP+T)Umc{96XqBvG78858d73*!zRy&JZJNej|ilvo{EqgVK zb$IJfZcy7?+`Lv)B~rl9>Tu8Q$6b$l9<R7Nd+Dx_tMUs?CG~YK97=F{n%dlP+{-q) zqvK_QQiI^u>cEUscXN*R-4?s*KK<#U$Ll;o<zn@BH^lt#+NsK6q`36lK{1Q_!MdMS ztAoyXx%`^+=GLK~rl;0F%Fy0_<f4UK^x?eqFZ6RK>DG%$ZS6e7m&UtDr`)^M@L2Z8 z4VF5orh8j1HP>won3fsFHfw@a;qj%RXV;p23fbw^UaWe}R5e{p#K>6kbH$k^dGq`q zmtRI~el_Xw;zrNF%$*x_USC}E)V;Xr)Hb!PcP^YZZDq}$BD*f`>Jgm@@+OOazR1w| zr0M=jdT-#m;P>WF>LueMXK41#dU43ee(i@T?$gE8R`EYQctl$APS1*VR<neNrh+Qr z+BL;-9BFbB=A169bk=`z*dXZ2rIsbrVmw?f`<?L-+2k5Bh3lNj%$VxNz8j(2dLC-- z-F1rh`9YJcvr=nw6yGpU4w&sD)px4>ra?33PNU{&Twi;%*p^<rqCLI-@G_IBPmV5f zWS)54*YxwUJJ&=u8*5}=R(!Q?miL|wSzlMURzAIu)3rj#PsZd_QNL*8R$re}kD6Zb z?JAkiV|!iua<5x!$Ek$#=T=V%ot1KWwbOjfY@XY*LO$=jcEE56&+TUxR;xE|dNsLM zW^UBE)jxL}|2-=rrb}<`d0v->oRymOsa!eho=;kx)nB^Sald`i6Qy98aI3Vspr@Cc zGCtat`G`kdkW_vqJ|`@yB)hEl0sG{#+@x81J-4baPFn4F#?58(1#Q1)zVlY=Y3l@D zewCx#y~;9v+Fw3VCO5(Dn_m=#Jd<2?^!rD*v*k-x8qDKqPtcok^F`{Mm4XEtFLkSW z((84%sGXd;DP(KRLT}CWkFU<wv^jre${D8B!Inl`t%bT*7yfot6j~+W`70xF-crk$ zS>~R{{Et`6*L&WfHTiue>m&iAnwvh;9|;_twzkZqFlgzc1<_ezw;sj#&fc=fXsK7A zX=LA)LrFU=<lC0sF%tV2vb;&}sNu9}-XD{0h@3idratcdoPPyZ-d#05s(IS(_-C^} zPqM$3MxN^UA@(nE)_3EXH)q!@RuOLv6m7_0F)(QUZ1Y0rceKvV^6g(Nk8jQ^)oV)L zU>SVr{nI6;f0PT%WPbgAe*2zkeV#dQ`N<XTn#Mc!dam$l`^PdNx%IsI#zXaU)@eOk z`^vLz_ddn|4u(A}^~MqQ%)jn8{wvaWJ!h#ngXgjeRtZO=y|M3JbI$m>cX|WIq;>D- zZPg8L{qc|C@^4Fj-X-^Cl<Ou>ae4IZmC%LdnK8=)K6F2h3O*BQ)cF1VTj3M#FZbym z2<3hH;N;b}X6=H<|G#>)x%@*9OO4aSJ+c#+8Pu~5bZ<CNcJGX!rSVkl`iq~ZoS2`c z`7U7p&Z!e#tn0qKyW!osm-il5{QY@v^6u#gcXrvm_b}S@oYT7E^`EE{%?uv=0b4i7 z>ZG`B=bX9U<3V*<amNyG@4b2RUX(|-ZH=FGcwS=nbcHqU-;8>?7suyMo!+S8+n10t zyM6-CZR^P=_xqRG)jEXDeQx&F?(&}p^^XE?J=NS{-2Kbv(w~1jKZk5MIqB@&E#j*E z!KL3tem%@wV0`xfR_pDD>ObFcetz<vx$McUUmTh|_kQ~LV&0Rk`8L`Sj0O@yZ~w|% z_RJMN^{`Wndl|R9&WpT?*MHt!5#BdDM`^?CoDB=jUhjU*@{QY}ZTo8e4sDBR>*VdN z!(9W7>f_b=nWsKb-ey<*&Cv61Yx+&QHB*^?$eyY{*~oq+#?vD#K-B&&gO9b|g5aY? zA^CZC6qp3K-Yu7o<x-jJ(YIOfyL_y|>+R*&*e&zS9rAqdKTwQdVn57q_T5A~hM&jp z|2G$3xIN(D4i1Ks`|@WCC7tXrpDqwrWb0zQ_JYd+tr_+6@)dRmDy-VwzG*+#6bXk0 zwKIEt9d7hxF<fmEwlQGm5a$VEy&XDnj&;k|2@{GLT^lPSwy7x9w3Mi5v?-=s;8Xnc z^UGcLGj<0#95y{@XxqN&skN4k{?meGyTcYZ%ueQ+$k}#6+pxqvr!eGJNt3~AzX=Be z)fp0>XdbdT%_M!Ye&V!!uNq!Dq|7-ect9qnhSBcRx+6Swdz`gS-gJ)bzo&d>-OG<P ziY|N?EE>4<8Rm*^FiXr^<t^Wnd9IS-XcOy`mD&f}Hs$99WLAky;L`KiU*6dE`tX%P zNxpa^*3hE&6E?Q|Shqz^&zRw}w^;e!O_LT!C2d;bp>Xi)U7abl_BZNH!XMshVrS4g zV01d+b;QEoiFdiU-ky!h;a?@Y)HmPg*~H|%HMQFwJ$v)n)98=!cC*Tlw|8^$dVbQq z6S;lSo3|Wll6i~v9JGw;OSz+BY_(|a*|}SN3z*+k_N8ilU;20Rgq{PxVmBYKcRDx0 zX8%&_4%?4kF5YcgKR;@{#T9`a>PPAs{{833Og!CXcXv%`=WKEQo6k0=RjB>EnsdOD zG02EfcjtF`-s|iV23LOD|Jz;vTadZ_;qz<1gtzTGIWytnwY%^8{}gTG{nGnHYuhf? zL*JhLW8~|3ZZ9rh&&2S}|KQ2@)<+UnS8wRgQP5vd;BUdKVpVWBFnsxE?~pC}^W_W* zC)Im?da%8e{{lB#!d$<i+RvAtO?y+o^dtEma~@+|^YZC^<)1u?SZ|xfI!BbJDkhv% z^`FtavAT~xjBVY$<<bVRk*pC_+h3-3f3N@7&U@>6|LX6z@+80HmY-aEHp}LI<I^fn ze*1ORH*Cs8@0c?E`|-WL-e`wyV9vsv0EVc)_y7N@7n$15e79!zw5qxah9D)&cHaKf zdN%E^KW>YC;;d}2_~&C&SJ&Y2|4vnn%RSqOwj~Ajwb#BJm#^opSLSz^Cv)Nc^J~rQ zDU-Xm$kp%g=u%9$bH6G)_u|&*ySA0Nh1#--*Y>EJUs-l<_3o*^p5K3Om*ijmJUpSg z*Rdh)<?{1Oe$^+ej(Gi1Xwg08hcTkhq6NSA8g83?eQWTJ6Uli8KggW^v_RrB<L5pz zBOd0UM?38U_8t6bD|oPT7mMkYwMQN|{7UAW^g8e2qrxbq#_OAcMa`OwGr5l%Ua&vN zt`H&|dc}6)=1!IS9Z@OT$<H4|imwsb<e$Yhx2fGm;lTF4=Tz^q)i=ppv|JGr`Rs1F zQgfpj%hC65>yDVSJ6&rG`u4S`V#B^Yf`{hHzF0en?dfyjh0#+RN>4Y=XPN$OXS>-B zkpm1rTy%wmw=rx~`^_h#UvqAf`H8JxdavtWyioczK)Y$lG0O=z4t#y`Z1#s~>YtqV ze(yW-O>)|2munU7_ZhdbWaj>>uitg>{iT;CF;X1-_dFD&rtN60yfZ`P<m6-il2^k& zubywCAz*gqel<h0qu%DVF2U?6zru9x-7fsG_fN~D&-44z>fgHTRSq=UZLyo#X!Q!l z4WT>dT0U=DzRz;@J<e_W?Tz1_-t{DV`rWdt!8hw7x8LbpnXk8K&h<`>=ZiXSadK-& z)*rG=3CZ7*aPDB$-}UJx+gCsTny@0_b!?c#y^hbZA<w>l`I%)`?8ey|Qqd~L8Np+6 zq;|v0e<8C!?EjN#_VCZw*#*nzGKe1Aa^|*#M~%vZ68Wy!;@tN?cP(eiRi1eGzJ#;% z;hg;SZ_Ex{%h+A@t@H22sy}aHo*nhz&I;?)`u^OYUjBvir%;K<mlp3mxbIrb_IXQQ z@QUT{uZ~w%*IVzm=$5olz}x%tW0&MV%Gz;``@`<LX;1shKb`w^d*;*WXa3%oo&CFd z?fYF5Ywm6FYYP0Zp1HoWVd~3$iE4}@FS1+fwj6PZaNou6Y-6tf%jcWd%Z=xc?5f`{ zyF<OsbNYv<N8-E|_3lp-u9^u;<@`FkSIc?9gKwr;uV&7DD*Jwo@Wh?b@)kKc&Fl4@ zW>xm*Z}{4FV#9)uLaWwoIehZriH&b}$!ot1x6Z9&Z#|rU^}gfYInx^o|3p5BIazB{ zdb^^(|NX@M&v<^DpJ0|bnjTtL<50HeM756zmqMDHz@Hrt^Zqa_OX-rX{~^BDN_wlr z<}ci0_S-mx=eQ`!cz$7xNJ){s7a@N7){5-yvlUK+w<?`jTYBsEmzFnGP3wO2rYBs! ztS4vKwr^GMSuU3~EKjl--b8sCnd|VzG`Z=NyeW<j{t|ip-^59iSXg|tT}n=0y7rLy ze(PdOIWHz1$(Lr=HuI^f6khzgIiX%+!*b^O-)1dBQ5SmHSki0i7dFZMy04Jnp!9ym z-B)=AAFlXsG<#qc@%P`~?Cj$&t9<#H8}paExn&*u{coSR{(g^>+wbe^pF8_?q4#@U zlbx4ezELYw*t!3T-sb7^_0~&mF}YvU`R@n+{~uesTWn@r656>V=>7FIZ)d+3`(3*G z=)Zc)5Bm<k-MV;B$Jx~}PpY+#&(1%5z`Z8U?rG`k32BG6hDJ_3lB@bKUB2SK*|`bk z2~8IcZ1qV{n0P$rLv`Wd_fKv|_3Upf@K$_pbzJKZE9ZB&JMQ-i=kxpD-7rD@Z@c}Q zb^iN0)KALu*=%;O-#X#sd8ybt=YEt<O#fQ9_2@}$=acpALa)4k_w8Hr{`$HryRY^i zP@8z))jsZ9(TV$anm5KSxZ3FOXTE<xf!V81SDb27uN<{hdK>;Im$hfjQvL{cmN%9X z@jG7}@;jvMnZUb7>cN`>R~S$K`n&ty`+ffvomO&M?%uNPj-A)Bzq2~)j~qB|UbyGv z`q@o2lBdti&PcyMM`~TY7jJ`2ck#7rxsMb)`Z645-=2~X#_;IYqy<G*Omjt|?;f+$ zmfp@id(PC`_x`-gd6ZI;zrbk8#PYX?JMGsS8Z_))vpHnHC2!&S#ftBqU;MCt@6~xn zQWLC>d}HAbh!ej0^{=r0#q$06_Zv9t))p<To7q&X7TatsF1+EsPocqnx5D}f_g4ly zd{h@?-ql<gY0|T_rS&h<3ZA@9)8%#C3xA)L41BR--uJS$Yj#r~SX?P_N?sZAs^!?c z{vd}pO6T2j=Q$iIOMbZT#DwC6JxZMVDzf%U;)PZ1d%O>|Kd4v82$fxy7VW-VF^1Wz z<oj8fHtT&w|F3s_pUwNITyaUbl7p*4y#UL9*IDc1&nK1_p3;9@bVPN_--@YrH^Y4$ ztsdwu*HT)rwe@|Ke&$5ayxUQ4r-VMNj$Wbv#ki(%ZM~~i*OV6%v-dC6%4beJIdSWB z10M5+ET-7bVqIg)b1#1^o1Wn<EimU@6nnwB^-nh^lqGIIvS7lzkMo)0KI^>UzrEP< zv9Cq_gx{=3C-7}vtY|oY?!V&5?Xsa49z4!>`F5x8@w?5d`8*@pwEySW9kmmEWROt0 zJ^1CkI;))PRxf_>`zzX6cf4(@vbhxyo-Ov;Wc~RgzjyE6{e5lpqlZO(7os^j%mX_8 za%Fcc-uH9G+3UT(Hg)asf2W&g#9bdb>qYee@%tuSzq0E?Tql;l-qYjqvL)&G&BAk= zKRrCoY?So0x$OS_yR0S(-Xg-Dr$0`6EStySCtmZHcXIakeZTq7OFr9uXQQs<JHNu* z;^W`a4KJw2{K;MOV{^OSy0ZWE4QhX$m&Q%|{9|TKjZ0^*<NwWRVlMZ~49{_1eP3X? zX!+^F>aRsI?|+#`ir2r66Wq4rN7C&FbFO{PI{a?7X2$cj54xdi*c&#Mul~MPzI;{K z>rInNr!hLczv-q~@wsH)+j+nJ#Qt1e>EduC@8iGXqK(UE#>F>Zc#-b>qNw}A3$B)X zvP&PW<Mvo{{y?5`%I<(Dp{YNLJ>+Ztd!LnO;jWI{pwOvalJ{~Ex7sX=jrI2)sT`e` zDs$=AYd`ZjVbMR#X5F4XHQ`5a&(}%YA7nEJ?tU^!+}h?undPpkZEx?X@3!SFT&q^* zc`0A;SE|-+QLO{vh8N|-1aIWNpSR++z1_|-?={ZZd_~;?w^?MFGMeTK$W(3+&K21C z$mK}+#At@oOe#BBJMBK_dNWP%^kkS<|2Q=E>mpy*RZHeC?_|9nr(U=CNsxk5NoR9n z!v&`1si`L?PI3}xxBR}p=SuThOa8D+cR~biub-B_cKRz`zP$HqTIzo+?>~R#hvnhm z_~qAMUn;79(Yfc@oqtam1bMj&XL){XQn_5UUgIEB?d{;6*9pgNea=@BlW5YDy|Veo zH^IL8<qtd49TnbR`^7lNsb~^+r2Gc9;sW7Z{hPNptePpuxMRYpwQD0cb1#}}zmU}~ zU!rqeM0}};c4@@i*O`VkFJh|SSzLSBsrfF(bZ^R3p)Wh*xA2v_GYf~fe+YfQlc{7j zQ>nrIfBw_b|8mX#eX{fTVdKUAucG&6RLU<~^XAIL*uMJj=grg}XZWl?XHfs6XTQ3f zT)mO}B&F$dnCIP(Gya$39e-d8*MUn4+r2IB?y`Gzx#q;;OY2YUEZS7?I)Bw_H7ORI zls8s~me1a8eP)8o)Wa#E(?3{C%YC^$XGQFFN!5ZseE(NVv)o?c^*d_y_w;W!cfYOM zveRX+MaEy}Pr0^D&AaM@E*-qQ@M*@o%ZEDsmF6@YTodd!*+BZnrFI$J$VX>S-TVKv zS*>#Z$K(6&7#TP4syA&FV{m7YcRC=_x7U5o=3b=(Nq0Z|o7Jvb$SSXMe%rOuAT`s( zhXQFq)}JOQuJw*tv$|=fe(!`onYs%3z8Z@1G53GG<??LXTje6Rru68xuk|K%MrFd5 zawaNUU);X#5HtUf{JS?YmHRt?zV591al4!IqPpvqZR#cW?Rr1P@Az7Ne64w(NTT$~ zqWD`?54u)6Elmh^c^V&7JI|Lh?zY(Ma(0y({fFTWnoXkV4Ckv4?TkxWeSYJb?*#_W zcU(EZbX#i0EQVidv#ZX3ujCYK^b^UhXMRx`&@s11^rqbEExHGK%~d9ehzDI^n6`}h zGjlQHf`iPQx;61jHauM#-DGhhV9%xnC$9&c$p3iSWRvxlFK&~b?7SH-+wu49(JN<6 z1K+!pJ1KRtwE2ni&FVeBankmO3cEeyZI5ejxoNJ`@$Iy=&Ck#IYroDsm0fm2_L9B0 z#E*aVek&Zm?f2u^n(*>`eBa$I-kG-XXI{l`JE@;I`_D>#`S>Gezt^ZqDtx&Wd@{Xj zZ|;>t&$k>n`*yG98zpzSF5k=tZ!b!{<62r6{x>W8$E*#n?kR65T`2dn@@q*{|MRmC zO?CHX2=4!Lsq^wp*;P~P|NO0g?&H^=^s;~dfBEAUH<pRk=gCa_{p#xO>rQL_3Q2Eg z2#NjA;wpRH?Ox)+FT#gEX=f`>vY#0q>fUm6=h7t!!k;EOKWpHw-6i<U!tu`92izO} zJ!)mTA$|NRmre0z-h{vN>tpsWXlZU=wy<heh__%u220xi9Svzqwx@o5?sX*2>D%hf zv6G$h8IDd*jyKr<V8)ete&1!X6P;GI=u24}bZ>L{k?!9doqtKqPua_pXL_~q`vV6% zJN|!pZ!gz+DXxFwbveHZ0hiO&qE&uI{nw;44~VLWzq{_N+9^DPIpxuhXL`$~Z<x*z zXH^*Z=E5d12M67@7q{5weV3_we9z#%7XL@<!%8*2yvuWIpLK1h%x``wS3kvwZO!eC zJ++$0wmY7geRcna_w8x|zvksLP1U%lb;Y-Ib?Jeo=`4KHrrqIOV(vZl&$^V0*Ji{{ zx8BU~^7p#=Eo%-2cP{YS7TUC;W%~_>XX`_lUrpVw)cWGC-WJA-N~-zFH?D5}Q+Qaf z=EcpDy>D*^KPdC+I{Z;9LHC2{{etr^F4ez!`oNy0a5wwM(1-uOm?d4al)J8X>VCVZ z|J=n{tK0K^Z)cp>4-dE1yT<jdEoRcEqO&W{Pp)Zv63Te|z&Ul@H}V$V6APwz&eAG3 zdGl8K$)x6$Cx1R(vV%8dJ%fWE`{#*oVm)uZpTAl4RLQ2|!;=$UsV#g{y>i#)(>>NI z@A79WOt1eXyyT#5>9s$vntS3^mz62HJyAH;@n&7z<NJT!nZLA?RJl2;J+m=?N&KJv z|Npw~J8CQX=KhJayRWBhQr*~mp55!rY%3Z0TOV3I-gCTR{K8u=@O;yKLqQAAcbroM zI@kVv=)38Mxz(wE3$DrgUEKWjkDcd1n^QOLBnR&m@4NQywpG3M`Vgb@sgw83SonX} zoe#cOEKmM-n{+40J>oZq=LwE)CzpA4Yu_vUVRp5o_4-G~hf--zZ7t<lO3b)dNJ+o% zXY9RjcJAdl9)U%y?oS(ceVP;euIAc{iT3OEhY1ST$7p>#9y@up^}Sgxw@;n86c)6; zJbcl_NV`8DStKg!>WbdqI9val!F-lU4x2XDKL2^~)*G(xyM074_id?D#tn6?+t=3A zuaYR@>fy~_Q}yn^y8At^kMpzV|6+Z;Gbr{w?<CKw)gMc@D96Qb`WtP$Nj$!H(upUV z-#?4E-+1`<rt+$oknp<iOxZTiwn)dsZxhkaHoff^fBL`PUfriga*5Obf3(k6t$!;0 zxWrubq1P4Jy}Hl%mj@iV%QQFQQGENy;H4$@d)CfNe)r<xNyBZI#f|J@SKhsyxNds% z>*)tnBBmcXE<ee9r_BK=(FS$S6S_*148rw()@dD`(B3XDCzY`9Th_aWk6%wal>DfV zVZycht}kX*a0$#i_~Yf~PNDvOdzJOQH+x?w)k{mN<Zpj;ZC~5=s^06_D_@oJ&E}o7 z&bQXUJT*$iWn)9_`d!wq=T%qx*z7irGf(}f#eX$y)xNVS_Y%za@o}<;)C-C>@yTAl zzmMzEch^Vd?5B9H%n>>(Sagl~`{S_5pK>QQuV4H;<%d%04q2ZF6%Y1T3+6vLH~)t+ zzrB+`{~vDA(lfv1|Jet4GcqwSh%hj5FfbVT9Gt%XG@~(SRsZy-rx_i=49zo)5qw5I z2P1fH=_Xk-GcbJRp5A|k(EuzqO~0#SD>DPb6QSv6&oJu9gVbGk(`EBPmVqI|g@J*O z0U4-HmpIEPs{m5e)-SX|Lz;nMz6Aq=6tWryNA=148Z!I{hjD-%)^L_lnrWfa<a}q@ z>ATJ{@_^lT5+wM>WBRkRj7nf*Kge8f*OO&nm|?@fAc|tFL-b_681d=$=b&2s&VkIU zn4W!(Q5kI3M36xLtm*5{F)D-2LR>J4Zr1IC(?7ygZH1pQiLUDS<H-Uq#HV|ohuRo* zo>7|lD+}ZF4P1<3)B9k;bI&tMGbt!c-*q19kOv?EW9#XE&qEzDH+_=)6DbCU$L8o( xxQ0!4xByjk-29c{D=7wsuNbOg3a2;2R3SEDpqo|MGyT{FMs>E+yBQf67ywhIaJm2h diff --git a/_book/Introduction-to-Quantum-Computing.pdf b/_book/Introduction-to-Quantum-Computing.pdf index 2281941bb415c535f482868b87aa548499ebaf21..624c75b16525a6d7acc4c446016d0e236d3c1aa0 100644 GIT binary patch delta 94925 zcmZ2>kmJKk&IzXVMh13vT*W0tsfoE<6}P5N-0R0|$aB1W-XZ;hgM~@z6IV%3VCdw1 zX?Em7cC`=Bp8rjA`KuI49oA0m{@?d@K5zU3#;?y6C;k)kn_pEO_WQ^8pBoPRoy_i} z?!<GNZO+_+wv)ovM%RD7ZIIY|OER!aN@>&l<qcXFmhp*Z<R+;I>()mwtH{pU-sXKx zT0VM@{ac||lGg?OkI!>7F3NdzB1iv_)qZ{b4?FHOeY_`{W+dVN<jd4c23BWGGA1os zn0<LG%dC8p#MU*O!MZ_pQzmHnwThdpFFCQ{tuY7hhBQ;|ckP#Ks!J~J2)QMBD*jBD z_yKqEMIn2FVgy=GAAKso7PG@IY5T0RzFSx}ZmrL3P0kbh6|(qCc<HOpE|R))^scA& zuwD^e-@EQp(A)zN8fB@g|5ks|b8pjhaaa8+SKs`~`AvD={T$U7*XG5)-^X~1ami<{ z)VvgEV5a7!<R@iunHWqIP^mXGHZnmD=eJR(`?S>s?mpN4#qP79fl1|bxAt9^Q+kui z1I6;rmxe_?`ETCX_UPi4<9DwoXD-P+8<Dp?bA^_lEMIH;e>TH{|LSba|K{^wum8LJ z{@>U0cfY@X?(q8kos1UFEVgs<n+1F_ZDm@Lq|O%9{eFGI@>cz1=Kp%@<}^Qvi9Dw| zhfnC@{i}!SjUG<^I6tAM{L1Y5bFF1hr5=9y{<Ht#@1OG&n~aaoUBP>C8sn*y4ncLz zzLmkzyk>rEXRY2_ht4uy`)u!{r?Hz$?lMcHwaW6j{V0FMpjY=Jy2t-RXy4HznpVoZ z7s@jl3s<MfW>s5doZJ6qYW<Hh-*gxHY}XLhiP={Ciy^i9LHUUT989g}Etb#O9~4@r z$S?8vrg##YT+0u!&q_5b8zvPx=b1EnZMQXNDL>=1&5A`gO5cJ-s!{&ps*{&y`7Plo z^y(DOad$6wwvv20KX^IwjS}S_a<eo~ZQm};!sk?Of1gFESmRmPJI?Q~QZniv-97wD z)}k>*=q``HMVgId;EU}FX@~sXrtY{jRZjVnQlxOgBU{t9u!5X$v9*u3Z<*t(S-zLw z@WVW>=T@i7Q*vE=g!i%gY&kLCsglQWnxV4bifJx$CN^%`uyQ9mSNkE4Pil8eBlb=0 ztSjjLm2q~`H+2m$*2&8(ww>506m^Epx;}JLa<|;EKMHMgHLOf$&pN|AMQ&=q?)?XL zgc+$9=6#vRC-1%9w_xer1MA%k*)0wS9bLbA(@|G7(;1Rqt}W^jd;LLWW9E8)u?NW} z!K*eGv!7kvaHXYEc*2_0Q!gwh=-qB8X`j+{Y3>P5H>G($syv(`znQwd+x7lyMONTK zdHYq0^)Y<x59;!Hv}`pe330Dyn6`oIa+cb0*15~$Shk5CTEDfX{hHf}Ef1Zy#{OVb z2;O$9YVwEOS02@?{jv9Zu=TL_&e#WykIwYZm3_ey_xj}CT%Jn7?QYr`L0-p>*8G^O zYVYg0a_$Vd$oC3f-pkg`P+T>svSRHvwiZdhNq%zOJ*RKh3yZ}~F5}8<cJ#Qd@;2&r zS;k&28{ZjM`{zFhO}72BO4stEmj5BSQ)QPw++?!-xcYwFse~Wj-kQsCe|q5dH}Gx# zA=xEskA6Dw*n4OE$|HY$JC+q)y_?*BoN;=cX2>})(|OtwhCOlbeWu=jVAPsjbm7`@ z<JZfc&3sVj@ggdHKHuE>_?EfHlx%`u9Ln_7e7p3NrKoktHv4KdyF;6gO<QjJnRBhn z(*Cg3vmfmCQfQdM|KyWdyOi*}vJ?6&*FsiH$(CfSN=kK!yBxFg`?Oi6d?wCzuN&?g z8fa>#sjdn2bk|N}6P)_U>D4`rxwbcQW-3p-{^U$UvX#M1t}CtH#s&G8YwFkYyJY{m z+{kdWXYI}NEjx?#QiBZE8%5tS2z?p<BqqJD?QK$w=WFK_>E&Gt*LObfdVOt5<Q}~P z&ysa)A}yvp)-TdaQdwOl9bLQR+NtWxGmUpIh+n>NN}5F14O=mjHR2B)yCSp2CWy3D zxJ=sTYICK1XYE4egv3j}FISj9UX(3azyIy2-(MNCR+ijZF}G6L@WPi$`S>8i?h8AA zga&M7bd+T)xYMBUrCM!g#{zCej@%`u4q3nEvt3-E@+)@9J+9h~M^6{F)>Sgywfv_# z@$%W)|BEM;Pk3yucJ2{V(IGp%!v3BcC(`TtHhkQ`v_H*g<sK8`RDJzgsg_cSn?(#u zWDFv7zX~17x#l_j)%V7$7a#md_x>w&&FEIif!@hsRW&b+jdPCQK3#Z4aiRT>$c6it zCL}y5aOgK!y6S%6otLl9$NytL($5!(rEE2Ul&z-5$Ytx=2=D&KW<2}8hyUR3(Vkd! z<A6dt(_5y!TTiTgk!aKT{fhJN|NNq^LHxHp)r`CEIx2N8`SHgi^+)-JX3zg`1Qh?8 zAO3Bh`BnFC?f#!XPgnl<X>Q#h>C9k1=la207c1@eM3^s<J~w@TTyN*M7PDHVdWpws z$q9zXZhxs=xcBn?=l9#=&+qlIk1#%$woU0Wi$vTX6Db}g6BWlDn=UX!Ug&n7?DwYn zmf>5!8B@c`J$N6fguXC|iINMt78`N$%<T68aXm#zeNWZ%b|+18P>b^uXl;5@U0roj zdc&uss~VU;o?I&G^<>Ydd>{W~rB3=!+?UojZGRQ{{)o;*KemUHLW<>!oy<ye7j0XW z&G7S|M9~|!Ifkq<?(fq$`C?YfRh4fmco_YHZHCOv59gMb<l9BQJd!Pu9{cla%G#4B zRW|Nl#j)GKP-jh8;IBm@>(=~Hi`vBe%EQ;IFVC5OjndAjGU3=cKZP|zf{XZlV$-zN zdZ$M*)VrS(Th-i?9dq%b(Dw2zlVXzcPl{&ub>C!hef!Ktq+EZ`^6VmuV>>=hdeiWu zbY*CGt#iob)oL2cy$@f%v+(4RFPbxNbX5hK$QTL9I5u&uJ&~jPC45`@6Tx4_8`kSR zyZFk=sBDtTs$~=8CNU@l@~;0b*P8!)lA2zf@U$B9L(RMDU5<puhN>*xdP}=>-raeV zg7SO>dK-#V6@`zf<V-U<r}yl~i@db!JjuIXtoZzW&BT*ev!!A=j_OR6TR7p?;Xq;Q zO-m*P%`&JoPxSvdQ>mT1s_S}}r<P?f>%*vs!fWeZS!J>t`AqhA;S<ewSk&>)<ls5U z4LPb)<*p?dHczP1va8>c(!BWgo)<Njk4-Ds(c66Z=d#?YsNI}v7b&f~c6{kCzT$fu z;!Tp=O%yiv1r*PCr#>s$B5h}YRH~m<y|ueb@yXJqLHglc_oVLTHg=T1i=LAFq3FVy z6As}$J_n5-rey?I^9KEz*_Fn6)P}3=L*8B4CG`vPR~uh`x9ai_CjUux_0K{WO+GIX z{uw5nmt4l(=5zI~gr4b3uR>?vkF`!k2N$<iv+B?K=%>f@t(9f%x>a$qCbMD!@{ODg zwM=;@yx(Iw;mXXlWmSysoRw@I<>@<o?#m|{-;t8}xg_`Tp2a)&md|*g82pwg$S;b$ z(XZjdvgZ!6SGe`|Y*)A0bb%xI%e?v<e>YsI(%lu{!LU@KAk=H^hob84$qD6e=dSNN zs}pcLsgCKw=f~&sKRw;Q_;>@ex!dG8X0vmTWxN|^r~ExJ`_N7mwzpwDPmWBx%J<WD zvYg^sVfF)k*E0Q8k8gKo)-&C*bKkVJPu}w0ZEny1U~nkKRP*|;o=dadWLc){nQ)-0 z@ngM%B0p=^!g)_#Ugf@8HjB4>>)RMl#+e?spPYQKIODgRJUioZL#I1M+n8m<oi1sg zuy}Fn;_9UrFP@0KsWhkb`1#$NSI(LE_lClnMS@z>riRZh`^&WS!uJ%h8@>B0*_X6! zsO66BtKjA_mOpEG#iwhNg3zZH)dTB#Gvzl}H_j?#5w5orUeWjYqH@aPuTwhZ!wet( zmpHBQrKijGx!v?t#;+@!Lhj|p8Cx<JeZAsS`GG@R?$qTA`}^ncJ@IehT&X(K|L20o zclclAI!#@d@$1+%MegH*x2_)l^L*X*4<-F&FKpk|^1huW_V!S8f0@N!i!FyWrylw; zQ|XoE?fD+tF21zAQ<gY2K(70#;%}cYegBk)GRHXWr?$#I57+)U)2E1IadEtt3jghG zE7yK<SD*Cxv&GHxDnaKZb7U`Wo@=e}u0Hbs|KCd+=BM?yEwK(;B&)dWr<H?`;YGRq z?^%ESJnsLWx#h`?*2zC5E$WSp3{gtix6z*cDcgDXJrCbg+)%Z+mQjjT*&*k^b~d&X z2R|%aot;%PgL9M2r|-_4i(Fp54BcDiFL1c?c<;MQUO`vX^S1t}o!H$_U-XgdpZMw5 z;Xl4G|Ean6_wVxl)9vq{E;{mR&Zg7HZ!0~`S`+JcX^q{ir;qEuE>~AvV>REW=fm`g zABsf}x&9EmpnP6kccJs$1&mf#Sgm`#=4O8Q`Mlp=um0bT?dCa4dV_27mtT8u``!m( z3*J}4dULm5-oW}L>&4Y`&g+A3OyVe*7-d@XiS5};r~E7ro+XLTn&wa3IPsp(^4KL2 zi#s-5;JmG~JR?jobm3)Ht-Siw`!2m<t+Td#anUhwI?S=2OR)2q!&<NT{#rJo$BKfJ z%qPyDJ$c7d?R7J+@4vWVi{ER@`9hoh0@mw3U;gS}-#7jC<7Pc41UpxKHIe%~OI(Fd z_1y83;eMfZn@?z7oM-ov``tv1?aMrk0;k-Xl@fDP_3exJNqIi}IjbUqZiiNxXVg#I zJt3{K(|YkAk8-W;KZBoX{&%fO|Fy1Ht9YSc=P#X)+(l2<y*={jZKdtHoJ%`Hy@R*D zl?mwDFkQe$Z)REG3-M2#e&5&BSY9@9Pp!Mnc{$>Zdsg7TE5YZr-(UND@7lUQ&jYLf zOy2i$m(@vw*M^^jJFO$9$p4=G#o~DGx;r0KPu16Y?pEu~{B>sQzBz^S*4r+WE>z|= z|5~=PtawJ>vdb~0S3IwVWhYs#b+4Kbc1U`qk<tR2QdhzHr!v>AOOJ~F`W^rD*t=N9 zUZ1Ay>67)Jg(z=~eeiEmS(2{7)gz9J3aU4Y?iFa=E4^{MsLr8lG7Nnjn;V)U{61{S zblrYT<cX<Q{nXhxQ|!t%rJnnHHq%y5BWI=5du~3inC1zy_H*wLUg#GYxOKPZuG#12 zte+S8@5A2bFBa-7VB7P!$t2KxPTSQ&w{~+cCYMuIinji|J?DR@-Q8iq#Uc{4C5iuF zFSlFo`6&0_Aw^k7Olx8%yt=Va<pxjFMBS%8QtHV^vXUg$sdLqrs_|ro3+Bdd-Ob=A zzwF$OtDQGGW^>(pX5MwIfo*<H$(aooy3TOks<H6NFg-kT%CvJcPWV2%RABr%?&8yX zRT?`cr3<`o>3-L>zHHwyk8^s*F8vO0m)nuQLwld=)IVt|U#7QxzHiI!_`PA)le(tq zA+GiZU#vQH=}qGDiPI9*>t5BD?42X<tw;SznsDn5(V5|2L^jE7E3?}2#Yf`pjE5e| zF9Ig$8CU*zz3|7uf4csL=U!dE`za#&QsC|~)(K9pbj!P*1Q_lwoIfRfx3#&(p2MG` z7FJrUeY^K{gM7Nr#(3-KwHDP!CKWzoc$fX$t>(n){jA?_^K3D@D|_epYU6on`VIBW z)-xWSYPIxR^~?IP@`HzME$#gb?`|{lZ7XRop76@*<K)l{JD+S-+<dO2=!1@XM|dFP zk>elBUT<ET7q26;@>-bq>mv;7TX~B3{=f76!2ka8x7=6Xx>irz*PAI|7%6ZsBm2<p z`@(Yr9mT({<ukf#9sX0wkRh7?;I_;8h825dc<bYqn`vE*J)m98$l7lia_i{LupT{* z>4sa|xH^KjntnCD=P@CF%F&MPvk#}AFHozmUV4fxuCV&f>X)_4<Yvvie}&t5+8%dT zH5b($#wF3u=9^7>e{$EFYwu)4oRc0*VRhP6a{A>JhA#EZI|Q;9+TOJ=WEEQ<ww^6v zrc_`;;41^edPnWz$>mwvOqYbJo(o--<SNeRx18q`WXj}p&NGn1tR`Y<b!Etf><x?e zb`*Iws+7O~v2?ye`q!Ez$yTdg|LB^$>Cuue?~k6`<aXSoLq0O}`K@b;iTxHIlo$$Z z4{Tt#{>-9<u{C$Yy5>Kx9-I<xn(4a!qNmI<dsl%!r>`(hSiPyf;aAQV?@zX=9lJR+ zWBcwGc9>Y5NvgcmzrciRieJy8&dh}LhZE-c`Zeh_f05}ptsZn_hnszrBj>9-u`8NO zrzB_HIQr>U>+VwB>(9gw@JV-MuD%u#nd|vEYfk^VplHQQ7F~~5C@uQ+)9v%BS6V{Z zdn0z}HUB)4{morVcCN6&hx(g3nt4;V?u_oVsSA20^s&dTi;r<h&%5Up&98T#ntr`% zdZt`~+#;*l9lgQ4zkdhl_qT`}|6(~mU;0gk{>Mnq$)Pf`exkWoo4WK<Wh7-SCR>Y^ zoDV5^-)0pvbAJ88mlKXhyNl<#cDWUE9GCf6KJl}=ottFoo$IO_PPHBOeyv%rZz^;9 z#l1;;U9{e8)<4bM_N4w|e0x*UC7BK1E~J~<+)ysveqEXI;g9x%+k21S*;DxUT7pxt zJEv?>_nw#2mMT0xc|}9#%j~?oH!`=|n3LF;{wZ=)JPS4x3^-p~Q6OuRGr{k-rp*st zn}F>0jn%I?za5);``U}#$|bWRFWx_J<7EAoEe}3799sHR;nh3iK;{*T%0+G+%j!DN zzSSVUFq!R4uHxr;>b3_jPl`^K2#s0VX{o<AZs`p+u4OlMqg66o_bR{e7B=|tCxhK& zpQ-=JRj<-}`3xeG?-gdRd2%c&Y4)dzuo<DvPrv;VwJLt6qkdkjVtLYr)BC4g>G|Is zI_3P+_4Us$6(4dvy?)Q7V&B7e?|ypcv+>W4KVOXh>^k&B{=xIlDS=Bv${wtZsqLAv z!d>oG(C^RcF1FL_Tle4BxGlw}p~sd}`t;xP8+}=SzxgOPtG_gP5z_MC>Hovmo8Ek@ zefhg>-Q~Ia;sXvC9bL1<XZDkRr==A$J2E*;U6w!e;wpG0BwZiG5Oj=Tp8VNd-SwxF zdgA8x&*J|xY1Y}SIg@I(7;2h7j!D@4CD+3%ZmZdJ-~Aul7Oj0dDI<T$68{ZcXMN?3 z>n*fvkIerzvu$6R=ik)Gf2Tx3ek45D9xl{l!q_g|6!nks)`y4r^YicT-Pe%3r{>@D z|Ex7J2OKzm{F~_AJ*z3Iwf>Wl(ByO8*7<KV^mCJV^<GVop7O~`cKW7E<y(@u1DM{c zdo1DoHR;5LxC3riTv9F`QhsV{Kh^J8z;dQN7guYP+%=F@UbCWP>8h<cR~Tk<Kc0F1 z+N~$S-(Sp{!RNDt`^=qx9=qm$=$#@H`saID!S=GVmoL1S;xFwwb)C)bM+;8L{;%KP z->mkGUFP@t{rim+j|)ATwZvGnYtFTp(v$_RtDeTaka_d!$*Ea6_x9VIP*3}Pch<9L zGwZtRA@ipA*GV_O++G>BVGHxr+RKrW+7Fl}2&dJY{d#it;!g~bws)kSwTB&CG-XE2 zf{hYqt%G?cTn*s(6mEF*lSX?_wN0PWIi}l!YwA-ccz*0&^XYPc8N<|!jo)Xva%@um zGPkev1sCJzE_UHylb^Dh9Fh;;zmQuNc=w^ntCI}tH0|3?$vsh$Tds6v)zl*)ET>&o zJSaC7<dSi`9+YzJ+r7OPA7vb2YTtGyc7Fchdw&fC*SyUL317PC=n^-9=wi07x4bl$ zTmJGj^4wkJRUdZiv*z+l7oT6e`{T=6Sd3m=GL2KW+mkx;T()rd={KJ~J(BUiQqp+( z#&7W*OA>5kR=jMs<$vw8<<^yycjsqjO)gl?@qT*f$(-M!X}udC9!LuL77*C8)qTeH zcX9Ww&DzebEEPASC_*Z&cMaRJrM1tNwq$Gn^e(8r6tVT|%CywP`gIJplUJUowsW$T zS$LB}G4G2p`}Yl1i>*UWJBC<?r7b+7u3H;n{<?|H`dpUnN#QRG<F;~seU~z=%z5wc zsYhxT6#0uUI~p`uUunyF={@ERdzMy6=g3aWDrL*}yX!keAntT%)K$$Yk>l(3&OH+F zpZVHj<5tso@9Xzw<V9*T^7YiKSb6Va^OkRa&t9=Pa7K`gh|F&{?rXIH%hrcox)bqs z<$bZkRlkp{7Vp0I@zHfFrtXS2mp_=cC9U~=AiSny{>&-n7L3JKEPMA{F$(dYR-2Jq zo9NoHrfAFB^Y`8uI!@IOzv4cl+kH~0)u)z($ejYq^B(UwWpR4Sw}h**PFMC;OsSu* zzSG|?)p1|mY7=eu>-$cba2j=+&D#6kBlKL%Qr4yEyR6pVI`qnMx6nch&7-rQ@wGE^ zCVvaLz1XzUVVUv5DW}!G9NxLdiQjnV6#sLTDQ8QC?ay{E-z}3eJB+(~>s;~BX>zv( zTc6FIE53Ew-W{sF&$PvlSG-&``$FomE!+u$Tk1dk{baK3PIzTbThXgX+suf$`S&_Y zRn6bI=y&|Flb*S^e<4@linE-PZ^=yVeYlrPI@~?vhUWd%N>3Gd&9AOFr}_H=592-e ztRq)f2VS%kbd+6l_~67nX)E7)ZvWo*<aN!mEmuoTuTMN2l{I6F+Kab=J>PThUka4o zy|8*--O{O>x4P~77QEm3TZGN8-gV}pYy5LI{BrfzD&Z~P|NnNhe$+Zm4bByB!jo-g zzAn7p_4Dw4#@@2W_Lw6^(-$-{s?{5rnVQ=n&3e3*I^Czd{o}m#FNztye)`KG)+DH4 z_TV-H^OJ-h8<f|YwQm(vZ~s%bs!M0njsA&gVP$E#@7E}lnntck+S@&+ZswOI5B&Wv z9;i2+Ti3Mw{e#b$U+*5zvbBD{-1%DZ1<B`sj4m2TnXkP0?8)-~ejIxL>#wePRs8pB zz<n96bH7|?$mK<SyxE!ctM1oB_a9b=@4SDo`Dm+Q+BZGlbLTycAGbF5W!C?iwWR%5 z_{{3rHqiop^VZCE=BhVXCOkppz23`14;<OKe@%H9FC||$YuVlM`Nzw<!`svE{oR~n z5U_0V)g2smX{OStPDcd4O6pvUtl$u<uXGUenH@UM@A8v5bDhsjW3O?WFgw;@mb;~a z@Kk3H*_RAjuZ8s5J{iqdouK*h$HWVM40eoS^Sb+w_{?nWe|mX-<%`a;r}CG-Yz}Y} zo!tCBV@v;sw>4gAzsx!Q-Q8~&yU()rLc@d0_5bdid3)AmvzeTZ`x~BSr&*i1ZyHrA zX6>)%mC;ylV5%-LjU&P5h;8Yy*A^Gz6dXF|ZuQ&6|EnkE$BF|Il1EYuAE`c7w(s>j zI6-84gX{XHywi<8O3DQEW-MWg;M(V)ef~%i^S0QG7pg8N>XO47J5R?)?!OqjQAynN z-(Jo)mwYALpCu^iP2ruj)gU?GVdMYx(Fe|aIpqF#fBoYXZtjLhEux=q6FR!z*6;nk zuNFG1*DODNdQ#W%&;0MFZj#!wDcEcNlp=qx${%lq4xIg%u(na~o_6X7-ky@@i#r*( zCF^E?n)Bgjk8#2s)?=(c>}2^B<mdcdxJUI*lG&j<!O@F@7=llqI1+N@{s&o}vp+t5 z{QdHMzjoRCN&0&|1?!ogF?iLj?r`+Ge2|%A(rTq7-b0%==2+)t1Z;TgcX+l$mqWl7 zjS2sb*~bb>_hw}UinbT53EMbbD<(uU{gsW_=9StH^QERnPOaEtXQ&p!DD(R6M~A9# zF(HOWM?zXxdPRwDPdcnFZJigk?OR=E*F{Nfoy9rxt*Z1VY!GEwykcqn`+aAF%*>8k zrWDL@)rtH4SW$b%x=o+ho-DSzlG*IR+qLCv&@-QAK0o!4zUFNKW*ZF`+ep7Wv9XB5 z)U{5>+vvub{KDybj;W^{wF?#dRed?tXU*juNq=0|XPAb%ZD47yT`u{zGu(CW3yIl$ zX)C?|Y`YM*HK}pon!fv!X7yEGDXO36zs{@t4^Me1d)Ki|u_56h_e;AUL{7C9Ih&&( zH7TY>^z;FppVn?CxF>u|*|_$J<Xhdgh!3Hq)7hQ`Uz~DNbNdzHdY`a&9EzQx7iZfF zF#4=YyvM6)C#clK@<wGAi(vkfJ9?Ja7VAE~V0Jb_n&Y;|&t16*4`pWO@_0G1@H~sH z_mE1tXqFhT?AtT7@PG@O_AOs`^e)?~_t`3@e^ofnWokcB+YzsN!nVNi+lJebxBO+c zbQO1X+Fo@3R<Xg`jx+qy`~rXPH*OhmS#|6B7O%Qqbosz_S%s;qvs^dHOj(~JJHvea zidC^6+#`Y|6~o<XbUe=KN3aJpbM0N@_|4P8O1XYVb<(>@1w}U753Y|Wlq}VqGcC~D zST|d7zU$=GS8wm>;&XFhPf?z*PIk`HwVcOOj@)*;S6QOH=V{n)U;Uo^M?vRHZ*-}c z@XdS{;@>sx%!aiWuP*6vxOH;bEsjr5d6id3F8>p$_2uZdmT9e*E4q@WC|=dM7Z5LV zIbqEi&mzae(e-`@PhMg0NSTo(`SGw&CAY4K&$XmGmnW6JNZp=1?aA6lDIcA!C$66z zcval}qj~SM*n*tn0&{lCnjd-~eL8sg#+GAl_q~hw43nQOp6|8h)tq9xQ`zjBpSGSf zbSmVEtTc$Ta$`O@qs?edTlInWMp8?+o7!GIdevn5W{vC_Rn3gH^+&w2dH(9A%bRYE z3EHZ~)Wo=|scpuoPzMj0&xyQ?S92L{&oNfrWg2>Lp)Tw4`0&qy#leXVJC=O7(W%3# z<=y(K>V$7%&W2-MU$zCTPOU7QwnpsO_18vIns-;fV$$+k(|bbb^aM|lJ&k`2qW3RZ zcxIhwnc%m+*6l(|uO8D6TePhH!)-4WUdvaT79Y~c_gve(GhAG7M~VPv?}@oF5fLfD z(znh%T2QvNP+M26b&Y3~;KaK6^SZaT*1b)8ePCD1*JkJTnElcA=i2%c^&2`TnI`*W zdX?3k<F4q^tL9vhvd&NR>hn<X##*M=8`MnK1}bzpugVGk^ffWF@ZQ!f@gna`>eq43 zDA?HWIC2W7N#2P|d*g3S+iw^b7L|AU7U#+}mP=1>lDWKR`ZJ4jfxS0sWvwc5!*+@a zd(GZ>vugD_-3xcpDvrjkS#7zgb;Xj~smFy^`hMJa%<cGu)GWJm&zh#Ncs@>b(MXMu z*{XTgZh2UH=*i01)b35$wi7otoGuR9<ttKCuQz=|anD}vLqGX$AK)vqPJh4cwDY5g zH@Q!@yjd#7m2Tm`MDq3A%jWOzBz?ASQ9e6iap<;JyL{Qp1MbZ5lPlrcY?isu@vM`c z^S|N(Lp|n}&F`l>N-kX8*Yoh>zg3=g?~hOGdT>}K=EdI)r?cl|>$y~ZjhZEP&*X6a z<*Pe#=UR8x|7(iO3pwd1VO4RJD^lh1y6v-E6x}WaUOZ)#KJiMymnG&4o=Qh^Z!KG3 zEz!LxFy!*oe%<Kq;&*drEGtvhRyovhXyLBxx6>!Rxp6(ai|5Acu#RSz8#nKNO7n^T zSZAKRhVAs<rf8+P%i>>7J5f7RZ@bHe8<)QEAKP+$^VN6veD*J`Uv21k_T;W3(=D04 zX(`|3)SNEgG_%)y*Zt=i4G$k|cWjTA<-N5&Z3`>Qib)@;cd2}SzU^LF>@miPUQ2Ca zR^4FPcks1QuV3ZdCEWWO4|J*s$42w+c4T{RYT(Liz%_s2CnHzpZ_z?M`<$0NG5_}E z>-5xpUWI$VZ8~#Z=brVw#XHjLV|2f3$cU`e-1lac&(cS?LT5fabUO9(naRI>BWA6b zcdl#MO<v8<vVE-O!i&r`jSs9zu2^^`W=`;<ZQC#Jy`SwGdxO6v>^d_?)T_<6j)xwP zi+Xt=m&q#UmgS>$`T47xGgj2TTJ9ZlqG<9g>GexruFcBK(0@ErV(X^T8+*MEs;3p! z`}1eM<5lTqYdrf%!$am(Zs=3j`m2lf?1@?v{h3v^<*ZWi)gzhhA?LXh9&^+`)?)Ty zy+5=1w&&yY&G`=Y)5EL9UL2BXlAkzJ-|1Sl`mHxX&m5f6Ru^wOx?x_gpYpY6k3HvY z+wUelzh&G0y0><^V#<s?8E^J~sL+>RTNQ6@>R4a4DcoG)&9$o&XIK4n(GB3b)SDBw z{9eMcZ)Q9Are9ig{z=V^7x%37`_oSaTZ^nKbKm#nO#aUs5xW*O{bp^8o}2q%<%<;V zU$grT{Q6ULj`N-7#glv9#EaEj)X^)FIJu>SchXO{UeVZBAG_ke2&}J?J~QvsTh-r! z=JT!cznp$7y1f4Mv`!0V)`aa#Gs3QGn@zKIxM%tLiTn93Z5bc7bMp_mf4MJmD8b+P zt1{P-<uB)O`if=TS;Q{W_^xk3wa@0->910ovZf#3wr8`&yn5gM^7V5g-mkP>-xwWt z&S{g(tw`1rrP=!r<=o-r%ga4_tVz5z<PSsXAs$Vh><jz)|D68MAhEV}*+k5?shQD4 z0o8g_151>qsf=%b^7gm);y<2aUE^`Z+(1Hvbr!=;-CYj+j(m?lTG{4wEwg>{e)<%b zTASCEIqTD{ci()I_vW~IponLnifiT1+`#T5_E{er>Ysl4qiy%M;eVaw&z#(;LdR~U zK3`LCFmV3;X;*Z%MlZQwc;o5!)&uoF*NbejnV$dt)a=+}k#<7M%Efytwk?jSi>do1 zY0r1#JNqB=*{lp4*@qT6vLshLtK{OnTJ}G9*1f6rsb%@am!y^oe++I2uixMq-E8rA zulii|9l?Ie!OH){kG027PyKxN_{Y1iuD(07yFQIgIrUVwYx9N0#!N9^+M<@EYcFB# zuD?HbndTD7ikI2@xhmqslD8Dty;^tEy-6xjX2rU-h8<>B;#&Xs4vDC=@H~BJ_sv0V zRj-4Jxz-ELjRo;lK9^7JePQ@N`~00RmLH$XpZ>JoPj@Llo4u{Z>yMXj2qgUEUv;4T z|G%d{raxD2<*57l-hA7>BVhtuI_sA8x$_(noVw{?{Rfu0;bnX>8u|vBP2E;13=P*+ zR5qOA-;&M|v`8>JVC_YBrNdP#lUNNSdn$Z?TFm!KH(wa{K~_iOeUdESQdYl(iHVc6 z5_JFa=ob40uQ_n4wQFB{$)@=QqUwczjI*s~8ic)Eb0L2Afxg_p;L9%#Ty_x5Xe{TJ z3ayy&f4XkMy!tPvqW<px9_HGXw9(6j)A;?z_3x*@-?#mW&Z!mCz8^Ogea~-i>#<Vw zR=V=is%e+rEZy?sE=x=Eln;M)IO`>AR~$0GaY^Bdj9ht?@Rj-#0@-r)b^jlK+WuYL z<<8N~m6LnI6$+Nd9Ixo^T4!r~&z3DoY2#JTl$GK9Ds2DQev6(KuHTYu>BOL@r?gI) zv*-2%j=5*{I;LN|lzvF$)AH{A2b}X4$8EZ>(Dv~O3Getn?;4JOo=~l}i(gV%Mw0u* zaoLvkMwz*49#Ws~e&6_<J7Sal3uy!IdEToVtD`*DM$ZmDlr}?lm-N2UUkyiQ9J$ZG zb*H<b)#NB|$8Et3w-#J+w70%i|Kh$_qRFY>-(43=H20i7=dz_M<Mfsyr^v$%{ip8- zPM!3n`pMSWTRrA!G0VKoSrr)ZXHo0&b)BEK=<uIOEOoDZ{6F%0$E3N_0$rM;R++e^ zw+d!%adAF4^^3#&tIc1^t~96UZu_dxaG+5yfO$o(TFKcf40AQuo244QM`tZ)`e0Z8 z+R<V$yH_+%)`=AfAqmP_O_u^6s2ytHb<Ox25c?+5c7sNvBX3THE%)!fy<f{`OLpW= z77GcQ<+C(VSg4xSQ%Zn+^0xE&t0u|)3iDjEWLu+Q?6L<xC+9c^UAnS4_!E=mQ9GR# zMsb1nu84lJcbdn>>wJ09-<Bo5`M$?Cba5Ads-H6BOWVeYlO<XMVhz6h(2_gpbMA5Q zdz-|XW3h)l%)6Sdc&roKnbxGNAAi*Q0{`iglf6Ty2aBCv{PZsK^*yPK=Z;Ly>Gy52 z7t5$TJZC}NnX_9?uiWz8H>_h)+=&a@`nEavU5%UBP`&l%oR^#OPW*m)+JRFv&wo*g z$=;w>FV1b&tLNMtKJ#nzDOt&o?8UjhMG~#&x-aX_XK=EXjGDBVsZC>rQ@e_L>oyzK z$L|$<4o07rZJf?$zoti#bymt|z0)$a$*)>xF7EReZF{@ONSDu@VNzpDkxU$;@@9!! z#~+H`V9Ig3ufV+eUc#ft$5hUn-;0|Vvdei!{dL|IM}F>DcV4#soa*(6l{52w`1Y?l zXIOK>Z<>8d{D$(V?)lAjvX$9=e>}d-);VJ%FW<UFH)7K?<<;6u2j*Pfd5ZI}fB1>W zvts5M&%YcIzTGFsz-+wfjkcI(QF*WB>ucu@**JIZm3kK0x>3EXW<s?)W4wz?``+0{ z|N2?H4xE~NvhAk8^TeIT9`!ld;XjUDQ7fPGa@)3kqXia!U%tKC_$$(KrqB*&7x!yB zr~2=I=q3Jtp2EM(Q{MVIR!3W>|5k2uI<@o6RnHSWr#fD3Se!B=Rc@AKT*_7>@9TX@ z1%1bsclB94N?E$3e_`6heL@X+Ntu62el)POPpX_Tx$lMPtS#K0*KJ=`3uP+C*846N zR$pYlT_vyc-geuYvk#Sf^(@Hf?FcIlQhjn^bJq6F&#x<OGf-6zXS%}qyGCGDYWbR5 z9nV|dUb41Qx4pb$@445T_#RxiG*LHZS(xSowbtCoLz8kZ9QS(9QXQ3_xliVpuu1Zn zWWLD8HJ!GzjiM_)qzD;Vsp*+1X*wV1?60fOR4?9`F7y1dK=EwDhx^&IFDzffG@+Pr z!N(7I*<0W89Qzk`Zd0>q>7v8BYJTn0s^=|b+sm*rewnOO@Vr&~B)^yal62Yb@wM1# zzxT_YDVjWuYePOnhq+iQ*525lwEE9d-eyt7%^QsU%DDAE8`_B!%6qY`_^_gYcY1O~ zLhPgM&h=5RxjffQO3QqcXDJ>Ny8ZHRyY1G#yOiQXli%Fg<$mY;VV}FFCS1N6ecvZ6 z-!G}U+30JeZ+6tD3D&C2Wp9da<i=Ia+w528ANfx7?7j`l4c6a0URR#GJjGPD{7vgJ zeM!5>i8WWYJ&nlNQFrxe@p5BHW1iiHMqB3_Ctu^OJkDiY&l7X&<%_Q;7x%3Q_nLXP z^48X4XMX%>pS|s9?YUjM{eSyTof-MC**$&!>xD8$?<`xoRp#yVW!#&z6V}W~co89R z^uoG7o$L}>ON@BqLl@pOKNc64mA18O!@3wN)_rG#Hv6Q<cV6k-cSwe{eVwS1<-^(> zORGA$)c6Kx(V)hylNLAC?_^|K>Hp)Wr)ygLycKo}PrT_Cc`JK)e)-){?^?+`Pl5H? z#YskSS_Z4{t$us%ob~a2J1(A7FKd6cKl=Ml@5|d{7j4%x6>Z)AYVwk8>-;Vo98p%k znwh<>T+y#P=c}(I(~f;f4KH`@aLbIEyKIHk7Ju#Of4099Vt7$pCGqILX}((himBok zcPK7>VIghhADYZ>(h$3<YH^Xqg6H<jR@s(>s(rq*Qt;p^!&<%2vlo=wA6-tI=IE+B zS@EgRVykeA=Njkzw4SL*#d<F-j@x>C?V+95&T_x}W04=D8YZEaT$>n^f8ob$tGvpZ z!aEJ!o^wA~&kM;4{3OK1{^)Xh_!bLsmHKM`LdjM6CG)rbTPppj?&6;CLo@v~SYLKj zE#2_#+~sqLx@(0D>UU&nuWd2^_wI9@_rpC#UMwYo*;BiWcBori)w9qnaa7#(t}VEk zM=pz*e_}dwxu7clrREtE)@!c#f9&3Cr)pRCbqu=I6O#{HetFCKz4t<$-(Efwg$Eo* za^)u0D=_YzDaLMg!b?!%&haMRTM{A1UpO>No%vB+z2Sc=*ZXS)|FZ?Z$ughZop-qA zv}RZK`ss#}^VR=sKmPB_hI{%CK1}AjmC9{U+*)mSQ(O6|^EDGME{<C3=)KMI``^~= z^=-^9*|$!3yV(k*uVJ%ow>eGx=Ogtgm(~2(<0+91B`@onAN`yup_tccn7qfOXQ}4> zq6ft>a+}ttpFDhVt)O3Eiqe9(>=mk#%a?zAX%m0CNbr~l-;2K$C!flw>!}ylepg8i zJypKF@bqHqK>nIV^CZi>JH65l^QvmyxH|utD%YVS$7|<#Uz=}s<!kz#l|CyTsT#Ai z?&geMlm9#0N#J_r>iXHstyUjf$i;fQD|E^&9VPGh?87$GZ%nlj4J@d1(QDwCHs^dO zBg+?8{xuP`vEkky=LYZ3YV^Dq?D{xj$D;LX=dF63^#5oo`&53XW;f-Wf_9$k&p6b@ za_i~?FIN7GF!kiU_$z8^aejbN$VbahyWB;YPhYsOK<kx%lh*84np_t3;yH>twJdfC zF*1a%RDbDo#r=-nB8TT6d@k{AIsP*FPHu*?(UdLBhjL4qb5-8$S{J8rwsSZCac|)^ zUdAUszbA`d=uXaFVtB(}LVAA%^Wht;Umo3fvM|fI&(<?ymFx11$*ezZuFn1&BA(aO zSM~WzSKn1u&PyAM<o}i|G(0C~6H)IiE?c@iWTnh~+l5!VKR!HE^?ULpzxn19pC~-J zHzmD3qgp6mYpK-xqgqveq%@pUodnwQr+Kfx_B(5>O7m<ToddknSwH2aUccU8toMzV zf2x|^MsAyB@9qle*{n<c)>>3hbf)B}N%+(LsWVEtcRtuzaXVhwSUt|~{btpli+sOm z*PE{`Q0w*F)8Nup7}N9P#-8ODwmsRCTbw<Qi6P#<p;1$3<rD8^W;)mFR{P)H<5RNY zI0OG*j=#F8_nyrbzq<X2e3pml=hk^)5tff0itU;`_vU(UyK1Qn!L63z{#NHZ?}u+! zK4Vj1{QQ<Hmx<n|nb&=N_hkE4dYzS*c2*V33}>ph+Sw_qA()l7yK}FZ&$ampC-#2K z{gtyVGwQ_ZR-+C3UT+Bg(#%nEoas!#ZuL9IqPUFP=ec$*e)}XXt>V=6;-q?`+ncNG zKk|Q0m>v33D@gG8>2RqnvG=F#fA*<=|G{_HP78+R$M$&?ODoOenJF4GyZeyyz7CaM zgSy=FX@^W+rqv&rtEAO`&%b=HW9!eI72lH?mmll)Ogehfe~HDin4>%VD%9>8?|hlg z7Z%8-_vOXyCr^%S+;*tC^tWisggS}z+V9IhB;OZV9KQYyyP^E&WfwnBIJ08q^`wgQ zb9?4QADPOs$!TZJ*H<A6Kk+Nwt=W6*{>Libxxu@{zn<^DaCf4NQAq6TT;pK#e`or4 zpZK;k?drG6efkcvmT$9mRSTT-W3iXb@%E6^t~UL8tg}3I%@nKGE(h<$2MON%KW&Qb z->n+kqm0vxS*>>lbtNr$^5<Nm_^|@JOE=FZJof+3oOMI-_vFov7WKv^=7y+UywiOu z+uzPxzoNKdn(JOx9yZ5@6vq2=bS5-EJpAR$mtPyQkDNQWUp^>5bhX@F>&@25>#z5| zOnU7Yq~aPB;=A9^pzsg-WYHh?^X2RxUbg;Iv*X9_@82(%|Gy$!@N8%M%fFRO30|*X zIw-td{(ZUp`+5s=Ir}-qsutox`{yh9T>AX;pTgP$VIMmDkN>zRP~B1dX6c4@n;`F* z$1WHAzx?}sVby)#^Sr`N3Pp)&GRwAXI^(f;#l*C0he`y_RLs3)IrUcQ5sx-|A7AU7 ziuwy}1se+9b7X6BXz%E*5axX~<)h0x(Ot@Wby<xrrn#JE48C=sKKb9WODA;Y*B+A0 zT-LyP*5&a@ljOOb3KKVfKXj@1VfnMoMTM>z)4G1kZ05PHb<V*yQ}^%<qqUPxZ#lMe z4QGrkL&mbTNA*txPF?CG@@u+k%RJ`3<rlNE&zpR|-Cg@RDtLGOp82c1Qa)~*);M*E z)P6rl=_V_mIiByoeEIG2;D>#By^ZbieETKwe1&JesP}wv4qUTUGTi#p%ik}L&;M|q z^Y^~P=i3j?SfRLsFHgwB?!=l06I-mV6#e&}Q|IwtsC510jLy}M<2zn>JYei`xmWe) z{8#?@%Q8Q1@Bf>>c|M=^{=YJkJu?)&9422_{K%&;U34qQ`2z=<kG*#j;{5TZ<>9t3 z_1X=`GlRU0lK1A!s#RH$bc!S6mex|q@5go+)iIxxXkj!q@&CS&Rcy&A9>%9lthNs| zcIw-*ZA#Lw>Y4v*&TKoje}B?v)vZj@)G`0TzLxFm8`j9h_X8OA{eIv6`M#Vy!|wVY z_sy5(8HO4NNR_U97|6D@CMzLMI4+}1hu#0kL$mrvGEuP%?YANriql*(lBNl4%k&aR z?sTpEA$Dnl7NfPFszmy^ikGim+z8CrAiG|PrTx^6v;YOepec?spV)ku6Fjm0`Tn$t zD$$dd>Yuu2ey>g~-#9zn>hIR?@(QJkCLWyOJ6|f{Nr?25*#S3etGdq3wRQb&VLh|= zbjgLViJLw9>g6mek57F3xWGQp$T~14`_BnkyEtRnU(?v1);^cLC*R`jx9rSWPUFc1 zGXhV@{)!jvd{m|DF2%$W9CU666YJECmu*Uv5Bp6}4^MCIx%{h7{%r8CGOJmQ*_xu4 zFD-sj#e8%7mp_iS7w-$ME_`jqw)f&P_m7*EFFi>=o<HsW<uiu$i#%+WM|f6lzs~(W zT%+RAq-wSoM&IXEY|r|ZboIj5>6R)R_<wrdl36C&!I5#?K$%rZg6Y9}?T5!SI-HM1 zz0~{rt8b><*#PBj4idcX&W3`^V((5AGAK~ZTCyX{V8X$pm#rrRrOpv@J}KnP>ZZFk zH>W(cW$Ml9P!rRjjeovJ&Z&PGe`)$_WA?a3QQb!zGvCE_Oc%BnS+)H_&HSI*Uj&c+ zubRH^kJ+p{6QfStd~!1{Yh!M2L-K-`31&^Ak<tRWqH893zG>gmpd>scnCW7gpva^P zNAkU$gsbDVO*%X0%Qj6GH7oPhy|80(@$9RM0xBJ=9|SMhw$y#~mYFGwCtd7PtIukg zW_)I+(c_Oj$`7{fo}%24BGMk&w3D~N&YQtM#kg~=g4+`LDFsh%o$<-@5or~bDH7e= z()8~zXSqnhikC-P4LK#QdTmLt_MD*0d0fGDB8$XChPF!W=+_-He&pROy0-GJSdf_3 znwSl>4{!g=z4=&5YHQ+-i&+uI8+L4t%)e2uFWf6F=c}mwuJ`a=AEV5L#rjO!o2wPq zL>K7?<b{0E`(`QrLhSLq;uW$^VH=*v9dBATqnbCW=|pzy^uk!{fTcQ8B6nAZTot;- zFTS;<=d-R#P8Mfh?vA|J8_aHYOH>7VGp9Gstz_Yjx@Zx1mG`u?L&0)IXYX$}kNTfn zyWEbmKJ|9zGPbl3(=(CG1y^?1%0wsIUgpc)zGdfqCJU`s2M+H4qPgVY0sgi3#eLS9 z1>41!P2F_w**BZy=F8lv;qzy{ni0pkZpNm1yIria+!sH*`LfQpGgZ;XYNycRl~Y)b z>WUPa#Y~A=IN`tvy{l_{T1$Q|=Xz(fP&8)q%+hIWVF8u(xteJv4SeNBX{;IEJGI|l zFuXlI<=?Rf*_Y2Y3ArE2y17*D_=WH(OZK?zU%GN?6VnmXNkT3&Coo)Fba~1|t%jKr zDjBn%>mE3@(Wa*L3zNa4H*aUYG2fN*eATlnSEL;m>VIwu*%w$S^0bdRzkcR?!<GNm z+|EC<ikmC2Rch(g>B7GClKoSrG(-do*1SmW`MpR!_EXU=&!l;a^yk|qRV_1^@aNBq z%HUPf|AXwpTX%I9OJBQ^6ZYl2=G7$?y`GwkQ)>R(1bfUp7TMxcc}t?g-d!pG=Ig4t z+J25-OHb=suyq^hZ*P*?b0Rr7CFE3P(#dX*#K4Fv$-eWiZBi{fH}k!WO#RYp;zunt zOR`QCJXojZS7dK`eo?=HRHyfk)czeYA<~_@w-tHb2`y`RbA0981)OJvkJv3$S(tU4 zd-AR+GyOR`J_Y-FFZm+dzj06AqyH95=cTeQHO+M0w8-qjnjYDbX)K->PIwo4@3MVh zVx6C{S>=GrJGP9b+EYF!+=Ca#E>r2MfB!xsk+pczCCvphT*}`FH|a1h*M9N%Oa7HU zg-f+!%H>Pv_&=IiW7U5suXmxwgL{dEmzK5YdQF`D`Kwu6O!b$9Q#E%bgIah_UzO^M zKjorh_*qTnQS7uCo`K!G%xS&b_%GMJ6j&yD|B8<A);gidlmA>zD67dpEOqndAMW zZ*KL|M7|r$eLM3&0@HS(V+Z5HZ?D*~`23-ZGZe%Z`(FukHkl=*(Ry%)$4!_2FE+2z z;>jy%+r`DI-yX1av#zR-MaqYO-4_-*R)(?doviXby>?}cLn?RMj|GZXzScTTNSid9 zD=J{!ven5uRu#W}Wjrxs(~A>awkr-fWbj6v{eHM%)}4Ckz^IKPqRRcRRbAbEm~w?4 z%dVRlqpCKuOW?{=(+U~ApM^Vmjz64~zvb=pKZ@M*dHiIH^)~j;zZQJ?g)m2<;<uS| z^8?-p#ulUnb*yTrHQKU>e@k+Ovvv1Ho+UoBdt107Z)PX?bDwy8Gp+eV_OdxQZ#=)m z&?l*WYo%~XaaOxVeN^dUwOI=1g;KTTPuKZw3=8ir%|AQwc>c{<_w}wh-!$S<JyM>O zYjbMat!b|>mA1$5hpyrac(UuvUd0<rU(b))aI`gH{mty}$L>y<_{U4o|C+S9>!qro ztq0m>Un=>_m3PWRQOoV9@5&=<c5C`xH-ED147aU{7Q@r4hC0rtlf$*@XZ-S5V1GB) zyDjTsOy{}Nk@>vKvMz}F&%FI6P~6IU=jwS2WsJ7_|K?kzIqx;+)XzqO6DI~%pK^W5 z6=Yd)M*ZH_C0gG^`wy=YI-SuwCFR`h%1q7^Zd%E{3E7Khg&e=&xA04);kxP%R;zdx zcrw_&<$V0;N|trkXPyA#*~extTzISg+r)gilC#b~*EotB95sx+A(QiH#r0(&Sxa&c zEk1i8`*zFDq}da$=LjdgH)CAAug#fh#Wwe<Wrr57-@sHJ9q-t^&+T28VzQ@4udenf zH4V{8uB+a$vp<-mpUWF$)E|8(Y!kORW17{U!<oib5z#-U&%6CX-h^NM!{XY!W98k| zk@Y?ocbaZnT&*UO=N;tTrq*`jUBHxpJ6su^Z?~@IcYP%L=tM^Ikq5_e!|pQkozcE{ zPXA@y>dmu1o5!+$ejoLHLYVWkqWtd`oXqq1V!s`dXb$Rk-frW&z;|BM65HLgv~6Uo zG+PZ*|DC%0^=J0=i+^@k-r}zcNSS@4Ol*bLro$3m^)t`0sa#mbTX15@o0)q$1S5i% zFFMuQki~M1bA|2pkM~RX&x*cVxaXLy$lmH7M(jn_Uax<5yO=0g$uF}0`K2o}@6^<p zFFKwI`)8+>zw@;;Ff?0stXU@})<64<YktcoZ~2nlx9kKLIh~2r<F;WnX;z-;|JX>- z>GiiY@22?wF5<1<yK`mRziXHI1GRtphbJ2(zuxnFmAY)ds;h<H8$I<5({7VT8>WYg zmPpqxah}!mNV9+0@x1>JR`g4}5;FU^NA<XE&=s$+QXO@*r+4=5jl4X^bDGD(=`T+Q zJX<#FLw3@N8t(VYI`eltXb$_8_j1ztrHuy-SaN6no0Pik?3DB2Y1;M9XK%hOoz5Gi zACmv;Ov>@9%i>DEO{dP5TJ>rBspm-^CCM$%7v0<G-XPBPw*FlNLu_tHV_EA2)~MGK zr&)M49)CDqIr*UZws*RExt5^`5{Vg~mK8V7TbOM%&udapV;tj|ouUhK8{-(K9olVF z(^|6T*Wo><A4uo#|FD~9Ua5GOYkkF%SO1QcOKR}MsU8s3H=fY8UEf$j?V;{0spq?< zOXjqh2kbEp*uJY(!T$MEb~b}wTd(i^>rl;h?d(qt`7Fl7eTLE%?3>np<ZdZ*4d|Rv z(fnr8g1LQJFSb5iv1-OATaMJjiT?9rZWTV2kX=x<J)FC`zi@%qcg@4wTYpcP7n%C2 zo_p$H?WHRguiNc@^O$%?be(^5gY?nVd&M%YI(sA!hTJ+FdntB{_kp^+|EWQzo&`R2 zJj}u+GgWA_^HLA5b&0$)mQON&-2PH>i{w{V`KSxJp1Nhaa<R*ICVnisn-I67G<(8} znW5rA-z;O+?R~XXlKGQrp5udU?@g>F_PRQ)TVi0bOL)`6hf@-+?bQ3h_hx#`^kyyb z0xqksJeq5s3MA)qWgq=_(NxXK$n22O(odPI1G_u^KmFf%clyD}>s&4BjVw?%%!8JW z$v~ElH7q>wNLoP5vEfETz7q>*>6r1_iTp(Zs_g&kR(Xh>e3$0`ecjZE!ZlYDmaRTn zWq(3x`T5DSRQ|0z$^38n<+tiJzr^h2&F|-~2|5&E9Xq8|DZ_WNoquMGl!fQQ<PDe4 z3pakQuh&ee)Z2e=s`>PuEj6k>@6S!Fu?Y6N?|c7$L%gxyKQVh{O9qDsVKw=dz<H_X zjZ8v*e`fdDt6lH9Z+%EkFI(5-&rFN{?H7)g)MmK*+57a|)IA!@FRoSk$9=ke{<6&P zcb7lieRcKe=5qTqS?x~=YdbuuwoGHtx-@~O!0Dk(x4&QgWQj<w<b~&QC)_rXT-^FO z@H?};;0=z)4qq4ZYK6ExcXD6aZm7+f%__cVewD)KYbyla_lj0I>DWw{n_N>VX8X*) z`q{$mOIGgpy?ozVeyW|spKlA+9M4a7Zg@HW1#kYpk01XnzrERsMgITS-A(7UC0dxg z4X<qpb-cy#)Zj;i*Yo<RcbmWM5uYJ)&{bB5;Xt;LM1;?6+wYQ1domV=1ms>&PdZZ7 z8I>epe5~X8p7koLdcGNbjl00Sc(cbG%}G~#dS)2SSj%>^!ii1%<m3gsw?slRbsXkO z_k8Jobm#wxfBu$zvbMW_=AW<lF80R6#Oi~K1`}(Y_=^`8ym|k)^_+dQzW&qA^>JOI zsRBAjRv1gWWuLR(KmT4$a%RkwK;QT8rS0yWzrTNKkhaewH?PvkmtvM~`Ei@2<?v<K z>;r<=yg0wGxzGB^X>%y%$o&cPnQhOTFdx5LIOp*D+m~72x@>;W`aR~J&@}Cb%eM1< zRC46BdR#p5eu!7G)ch3<b-Pp)CKi2qS>OKszHfcye!;(|*BsdA*PR{HxcAH*IcDD1 zVcX0im2bX`S|jwL*=qa7h|v4pZ|C0G>@QV)%#O8lUs}h^pT25-Pfo~QI?=Ml(kpdA zx@K?WhDpbM@JlA~_FuFMUU_cXF~M&~ls;yKKD&SVjJ07}ps?79=e?&cIs|vr2H#xo z5<72xJ<E(vgT#*)oHy4^Ht5u~Pu~`kHvi7_7^lZ#T4KzB9VvfPw%G{w=oOydA5lMh z!l`_BweEjgP6|!xWiozsPlEHQ=4G*O)|c09P`$==Y{~qYiqWgyz4h4A%KgNU)tGD2 zy#rfsN?eaKakpjln8dGp@S!8m#UoE_zo-1@{x<E)%S|5jSEn}IH#i+B%5s-ulERdn z$g?UT-!44LTgWwYWB9Hku2syE%aa95!(`Q;PuehZn$qTXpNmdS$xK-`cgnYCvu`|? znWHX}6_6&IbWnHkhEG*K@#ijRbZ-?~#?8^b`oo$xjhCNwo}Ti|aO%;O^Jh3+n=E-( zH+xCjtI{J24?g8z+x@AezPMbOtvMj^Xu|UZ<zqT}i@r1&o?=;8dHtw|eh=sCg6B3i z#arJR8~=T#b7<L#(#Z9`GZgC1EqeZwr*`AyRJ*t*DJviGUs=0E^p=*$eU6ofBG=Bg zU8_Iwag^?lxYy_160H{V?0Z}lAtHKY^1kf~Zu4ZP?^|xSq_N}jqKqG^2cL%5e+=8a z`{3Ea);6}#!2e1byXH(jkPsjFF6C(L&cMlqhnh|?f4%!@(aX;&J#O>=Rt5>Slsn8@ z`LX?&=<Y6w%uD7MmcLxTBhItChqcp6^f6aXV9&n-`B~iN_m26rOnAHcLX20|%=$c6 zhgTEJ-ZLe2O4Jrdb23anc(5&w$sn%bN_)M~mX+!%J0fD5Cz`uIY|b^}De1qm*0ZOb zeHFW8Yhl-l>V=_6GM}9%tZV!xu|8PW*TDN&;B~%GF_vTRm5(ysI-+|bTXW5p<4-D| zb^OviynIau*VK#awcmU8@~N)MD%`TMwbhOLMZjV{*X_Ro7CU!uij(@e>LT-}(q|37 zGJEw3>*IV}_A*)Oy!$D?VlC??^9Y5jO6(#R68SieEcmDYq+#KsY=v;nD833E$Jtd* zOx;|eleeAB_x`q*ck<uT83*E7W7U4A>scS!&z5rb|Eg5>t&5vx2XseN$?sgeVT+>e zC)W=m25A$gUT9$ad^j;|Rj_*|=gsYhSn9jVy6=1aR;a7LeZ`Sse@EHp2VTDqG{3$w zS?*7$g~8X~GRx8hn||Go4eIq-S(xx)WBi1SBYX*b;wrhXk{pZXp5GPN-f(#N#X1?g z+*jI%mn*J#csawKZ+_mZ!XG_c4$c8EIi;GebNjC`eVG5UX5VAxedW8aONiOJyILzh zKk&`g-QjD!%iD_PuYX#&1+yA%KHpRMBrV`p#JM|*z2C}b-Q2P5t&ePH_FMB3BYvxS z8Ln1hZ1NYk#B}a?lq;J%eWI|z>a&{}e{aj}-Pz7CGpo{@*YI6a3dh&SpVkLU=VU~u z?f7(N<Cdw)d5LG&YC9XuSh@4v?y}@*hxXk4wwTLAMWftqWoi9UmmS^bV{4_RsT)=v zKlQ?jA$D@=>b~s!Cv7_=W}WHaX0(6N5^?pM!j9t?qD~&M{+=Sf_b^|Y+1|HTE_>AO zyP~zJYxnLeg@w1*mA~mZD>2Jy`lR%E8Fi+WFFxi}9m)K&==o&J1|84YJD+wsx2bx+ z-IM+D#*V_v)jcm;YW1Al=hpLXd6)iF;f2-hmC;A$ZN5IU%C}?6ys-O$>q{n^Mssq= z*-UGY*iiJq&*kwfCX>73j-9QG*GV_;;@WURwsh68-nLbDUH?jLOPv08&yIykGNRuV z!aWO<`;%KD*{2!hFK2#LlC}AQBctpqhSm1(=Ef~*j_}ityKA?^hx^{F%fAwi)UVZ# z>OQh-a=l;EpSueqZ+pg0S6^at_H6CCGanBZhg-gLmK2TdzFV@~`}aGS=Tf?V7OW2H zf4YMq;#TD0;_I$$sS~5iyW`z6msBi|O7lo_X)M~it9(sP%UfZq-@WE%66S69)oIPO zdtT_u==IEbN%ZohGU=0YtM?mRy?dtRGs}beWy`z0*q*M4S-W<M;H`keE7z{=ImkOX zKU>?Y^+)6MwHwQvo`3w+W%(h><LF;$?b{buO#JIPd1Bq(OJ48KZvDLO#ABX<im!Yc z(yMjFFNj2+(<wfBHrRBH``pCm3*@E+TL0W$5Y%^st9Of-*Z#i3+p^6|ioK?Xg<YR~ zqfK##V{csjgb8o;-*^49Y|W6oW@_u)w!*po%8YrJ4wkmbXDAzQ+pdw8V;jzEKKJow z%Q7K#v*?L>z1yB{^Y;30DrgwGH;VoG6NSHSi`MFWTN%Fcl%dgbzOcV-@06xqb7r%P z{oLKuE4@B!e#bkD<Mxq}{9D|QPj7ow8{I!+(%OD)hw==Gocf(wA?Fj;=a!t?W^(Fl z_tAvwr+EHe{M&shrC|ROpR_QZ`z{<`54l!cHLNvQAHj5S@5)W9_Fmx9nN_OOUUz;~ z`J8Ryr<a`8F=cF8Cv94*X36-b#WFc5Jncl)>#5~yl&`Z&vRpI08NaP!$2O^7YlQ`B zieq?+*ZXWgm>siLfBn_l^}I373}Vs`rY?)ydiXm3FUbkj-r^hFBDQWU*}k{*Li{o7 zO+Q`<9Xz8wO>gyf>9W-8J8#)<k2&^2ti1fotuMTj)}40PFC6p!)lJP?hh807x}?eE zOLXuAr{<e1Zo$(tcRzb<S}hsN8<KZa^u->@;`f<*OsplYU-x+YRN{4D!LGeh^>d!< zpZc*Vc5+<tDrt_X5=n<u-<Chknwa>L>DH@LzS(j*yR6%P_wRADn15)sS99HM@k(*8 z!|sNcf~RM(E&aQvGCXibL9UdM5ufIq!k||_Gna<j?w?vxtnb>i<LeFGuPIm0-Smp! zH@~!pYnAQ%)amV^j~9GBA0@xOtmMh$t+mHAW{7X^)#lyn{n#UNt$9g}uh<r$lI%Z^ z8uT&>uRFiKEB9OeAMYgncatZd46&#;F|a`0GcJQP)1mr`SBK59;YdTio7jniCl)TR zt}c#{E-d=+zWqvc=&IvqzWE%Reem6a-H}xjL|i8-MP6P%d4|P5;mNFj&M!ZG{>SU; zKfm|<`1ASr%ia55c@{j|DSr9*Z55WsY|Dfjx6HSTtN&GhU}xc+)6&nmK3Ln#SyIdq z+Rx$IvE#vaZQF-3>-g1=Hval?qkW##{NEm@cZzX5l$><?q`^9Ojt4tVEuAOuKO?QF zeP_(O)mIO59uhaq)_SbYD?H&Ff5OJOru_eZ{9wNHCVG~mMVd{a?u69`mxbA;TLgza zcWcesk(zU4>4Vl8v$E^+gqN#XaW0cv8QS2`;>O3y$1_1V#`vt_S?v~K=O-+|$Hbph zEprPKysW&u!`kE}+jOC>vqiiCpC@tVmE9-{x@5RKaFNPoE$@(tD$1OeJIz=bKHn4F z^`v##!Snt%OxNtuxc|k};JJ#zAC1M4X-fi4W(e_YnWOSqtxr9_s%2ABz2C`~A-4;A zm6k8%ihg*om6Ju$|Nf#0>gPVTH+1VPQFM8&qt|)fF~#YA@@gS_)hoJcYiF!4nxWef zBDU#7l;i3d^`bf%+>&2)cs@m_{4sJ=b~Sn^QfYjwz3$?+-p$LeHMdSbc6ry;w`_~2 zUh;XlOSN$7inE@YM_Y`ICr(yd7qhJ1?14&jXlP4N+tlVA%Nlntoa@7-zrtAaxwe2p z>2Vj<NRhA#uI(00d)@wRy~Aq}TYP#`UQpUqp@-G0RD-qz=vsVNEqJakzr4z6!Yv23 zc{1q_8vMHAmls&HTuyxCQ*~$8eqWZp|CWzmmjC*eTvgPSysY2gQvcIAH)j=YR-Rus zqrUDJdtJ=N_uqefuQX6wFzv!AU#G=V(|_*iR=Kk9+Hd{BUxt6Zuk7_*q`I!JUU89f zqk3Y>g#$~Pcgx%RUw*Y&|L^9Ti!UGBT<^xFoOZ~|aq<QK4=Xz6vSm5$S4|J&J`l`k z%5qVGb+X^$1<(3e3udY<RWZJHdf83!CM_ESN0Z#C^_P08lVj#CXyW2aJi>GKb8Tj$ z<Z3Hc#n_7r;w`-1dD}B5ZWRC9Q~$L*uZmOV*Kd=*L9D|5&LNXB6fbC=w3)E)w|Uor z^8deTeqVmtbM4NTpZ4!_?xt%SFwXiG{4|Jd>zq>tDsJ41d6>35Rbtrl@YsS%$Fhz! z4fCQUXYF83n7yo?#W3uJRZZiUHC_k$f;o@PbZ&j{>P5!(Cb4agLt7pMNZ#h*QgQ1t z(wIDleO|HFr}y8E>r7dazv++b%j)NE!#|mAF59;H|Mm0<3*MS=CNxaDHE*`&kvoZ* z7dq9XYHpeLA7DHD(dU`mKi;!W*&Vf4^{)IVfA?0+eDiFFNv|`HT*|AzbTj=8X93e( zdHe0Q7kAzIuvSptSUIv~XTL=+=i#N7XUt1^ZTe5C+ptb~zRInQ7hC(xzRx<Ws$%K6 zc6+Cs8Q<p&JHhvY7hm7xtI^)@!sO<$?U&B=PdjG#H1~OQ<O*)xd}s9lBlfgIv9ouS zJ=}L|laC<Re&0)0Hvj*WY^pfN(OmE4Hu3a1?I)+dm{0kzL2vK+iPhV*KUX;GyGj(F z*vt|W;dzDoi+=jLRCCdylWf;FnefQzMC^X`nB%Zb=B!Z1)AP$W{;KngzqajDkw&Lb zazN?cMV~MDRJy-sv_E+Gv+hf_)#9Jz-}#gmDHN1+yI=Y*eOE#C^0|9+-<dzPS{SL+ zQ-9S?`X|eWS?t!TQHL6q^^|e3+J9d=;oPoO56)d!|KQjf{moxCbexJVUig8dh|6A= zBlo1yWxmkIj_R-G9`r9=R`9z}vG+aCYr`+RGaq<=iJldunbFu`Fz<7vTa@R*mj>rE zLQgmeDed^0qP1ny+A|j$r3@uLe%Ic!_5SlmcVDF~uU~eLfwkzuv&Fslb4o;B^fBK* zm304N?Vi_xGJo9{bSu7h=X+vcck|)Ici%3~->CJ|uitQ$<Hhch_q9%W>hJaL{n>8* zt@!+hAHBO8t7klV{p|AX7`-k5?c$29NhXn5cNXM{`Q<5TYi0>02P>+HJkC66&a-jZ zCb8FYxqbH?x=ID>m#i~6`sj*=nD{Mw`%RaQ^;pH1nR=CI9Fbl6xuRn?_oZH^EU{Lm z1#MT_CZ?R<v3aq^cY}g+4m;G3z6cV@G7}KWo_VclpTPvnl;xS0EcV<}W1eiDbTiRy z-jCuhN0%lC9ZU)6cIfAtf0RM^WXq&Q-!k5}vj6Kz?t1e!_`A)@=-Krl%8M_2d8a1& z*z@6yC4V;Ay>#WvlkG{?U@Q5b#woB)R&UvU$%!w@8mFCk=vnUcds^kf4<^jbZcEos zc$c+g=k*n~6Yuz3Y<-<3)M?~3S>l{S;GB5tXM0|%bxzpo>E+*S6ZH2lXY5pqDcsKN zZxy9<zfHLNg>#el;-j0dcR8CR1=rhL+3l&6GTp7+>&k&=suSHFDqdY#y68rHh_+^W z$aMe7B2OAh*;QP<4lgNQyTl_k@WRz~D@<a)yRe#TZ$7ns(WNt+G_|+Bb_jds#Txly z2ggnyuAt~AcN^?aNVMNC_`COhQvV|1fGtjHTN767DO<Yc<u3KqAjvPU7f#)jHqF;? zb$u*<*UX3$H#J(_wQP>B<-Rp@T~`p_dDXdIFQuZ2>`(oEwP4}g2QL-2s>!T<xPsMF z=#S!U#_W{=Zy&luJFb`-qr3R^+)U3m96K&lihVq{BO;i$t7G%;3B3Ks1RfY}Rb5ow zJ&n=k8PAL<GnGS>^imGCJe=B<%Uhze^Vwok-!s*(>ldj^KWeyZ-^IL)$eTB}PV||+ zxpES#qN1eO!pjx4AzS4NerMdt-h5c+hH~o6G?_&vD^s#|?>zZ=jmzRlFW<%`Yn(kc zDd)d_7MWe7dRfm|D_N{JW|PkP-nq|a$Ea)G4t;S!=H>>rYdZ1=b?4>mNWPeU`BsjE zow6mn_?ga4ieaDYU%cp>{@Sd+?-+k&iRQNn{1bBi_b|(*EL%89e(43>M>4CpKfh_U zT;krUI^UBkXM$4PB$0{Rx(+9MUXC;L5nsP$yGnW3MH$t*GVw>5mvk@Q(rx-EK3n!- zYUfF>^9wH(mu;AI)h0gP^UJoipTEbQ6udY|GrOEu?4ivqUbd~>OGD}vcO7>!TU5y= zx+TfWB=)6|Z?1&Sp<upQy}k!K>ZWl-&0bn|^y$N@`+8w73a+L~Zfq;moUhC0eER~| z&eK^8N9SylU478_!S6MByB1Yv98D|QbRhMiNS5BTKYPF3_<WQ{W>@+$apU|6``I(r z$9_M;V`IR(cgEF7v!iQX{<0P~=B#g$yxuvJrFqAj&AVP&iEO@C$<)W~ocW<iM)&57 zJ6C_-32XUxuk7TuhF#880{b<dIIdnOlo8HfRifn}bE)}8h~)LNlN@$eU5MVb+g@$K zzZng7clX>B@h|t_4s#RN-EsECEz!z{Ypb23CVa}aR$OemVKJxnUsw0H7vgul<BAGR zuMfR&O6PXdwUWQF+)<%vtrtW2^Ne?u*(zi_(Pf|gj^#kh39UO_5k5}q7DxS<?)A*O zAwprY;-<o{sq3a0*A!$=ay!8q`C&p5L+Z9Ct8W+ECw)Cue0uK&x1*&Z*E;;a7C3&~ z!<$)Llc~}_N9LBxql^T`897R#XIC0uVztU>ymX^JWy^H$O<}8-iWSZ}HBBbi=V_&e zfZY_gwrauHb*}S@cQYQo-Mh}?b?G73?_Sz5{++i@YrhF@RbMzGq@@0)OAYU?lb4=J zBzZBIsT{J4NsRrqBrzuaWboeb6&XC&pZ`=^uN&3t9T5F|*V@QeAM5J$)BB8eE&0CU z^%sXwkMpNlQ|fQt;t-84ZF%@|Ptlq?E<c?&o;Em^^~T8N?K_#nE4sPt`FD!x)|?hC zYT0_abaC94(1wMvJ0G6;7&R|-)7}Pcjk55W`}8OK$bMRzJ?+Cbv!IVPuczso?9M)9 z;2V6~eRbFKb+5h`U)xc;%i^uk-AU@cS<VvAmNXw|`><r%mzk~-H|k}$EMH$u_1?bL zYD&_y$}bi3ly9vJ<oYn9I?ZkBB)97^rRBPha;m&1SZB@JdS>-yjU9Y~e;3}L>{=(c zyTE*M+_`MK=%-p&9xbxIf0NxNW!KX0OLOmK`}(Fw&dc7fkowU1e4l1g;a{0sUlKcP z<~QD19e?Uu=dI`NS)nWj|85DJ*DIPISzC0<BvSIjjijsXl_g?xvZIPZEo{0bKc5uN zTD4>KuaF5hvW_UQzP)#PvFML^wk%nyeFDFqM+C`ik3GUM@$8SU3s!#K!nO61fX?m@ ztAo1=Pj&3EYuOX$YG)jp=IL`r#WacW*W|1%cCzay@4cDVYv9}QZ^;Mutu7)rQ@qaB zm!-6@ygIbq*=_AC_Q_o*gPStWX7dDn)`>jZQj{tjxwY@rt%Z}4;@19LamD9H=He~t z(YY6swkd!1(yeX17_?SU%=g^BbAL6NqF+CK{BgUG+iv%rRXwV!b~0`a?zlg>EW#%! zPV$OH_LdWqb|>y$t$XTt*wx8~*LU8H%sF@Q=#1q0tD!f;9<2@BXR_5afV02y?55di zr+!bp`(Q>~jqBg4<}2Kx^Y6@j6H@!hC}scBN5ZaG%b&0>y~Lq9<AYOoRIS2_b^X_+ zTA5x5E#cmx-K}vU>S};mhJ$2#{_?#4bJx0i`$qYh8m#Zt&HUvdBPX;^<>mAH#bK-o zvlq-yRDEsNf2W>FO0Cvd^!NLi+O1K4ch9p?t)Ab+b6)$}^*biv1@5c9rdIq6Esiu_ zb*<dz#=fZf%IVkdJf7OJ^`q^*YqIyUO!o`SldK3bwdXi3W;5}5N{+cIS0n$PJ&Jk@ z_GgP1m;d1{WD0P4d;02|YPOIg7v1u1?RI)+eW~nCq7dgY&85FP>W>>~C0|h7G5NmL z@$+9cSy?#fPExE&`Waapr7RULzF@gkT-Cu1i;`_W8vMAkZKwCc*QJWbms(Y6oc`YS zmG8oJ>!imA_(SK<%Hw3Y{#sxCN=EPx>-`54?lRQ<(&h;`Z``MMH~Uvm=_%`9K^8y4 zMLwBZ?46=r8oz3?_E)8l{hI#uUIx8yV+?;bE=rCGeJs^p@FGB@+y3vnw`*D6y#33P zlk?lA;yL4ypZgW{U(H?WZnL7zn^o+S!iNl<V|D?oolRM9(+|uE7rb@zw`9cI-!|aM zw6Z@d%J1#lWL|py@N>C)Q_Os(J_<~oy#2$Bvo@QupT66Dt|!U=!`vrTH<JJQ)~D~O zX8+ukpYpprEHkZOW4g(u)903y`5S#-X;6^&c6HL*-@4iHzs&5*GvD8i)ZIK`oBtKv zV_W<hv(DOI>5<O1d$OJ92)pX^mG!et9{dY9ewejPOpoLD3da-kj=#@!o*c8KChF4> z!?(Vth3e#<d24;jjy@;4Zn=-=lU=)Nr5<tDcjT|lKEb&8$#)jL-de6xUljaTf948T zTWIclc+(Dl{W$gY#gg&o90IRbDLc$h^v~f;soFJnZCh72D{Dp1&*FQxZ~p$c<K3Qf zw!bz-JbRGz`(3w3<J|4LuFZ1!Y4JI-RJT0mi0#isQMMTuQ>I^))0|-Wi0>8u$+MHJ zjdyk0mY10bhU@-bd^1COyZx7WE>%<KGoGGu>bw1`%UX}>f9OxL>->bd3C?`_!bV2b zdP8GlBa}6g5~uTI%-`Hwe_`i=Q%Yai#M}ZGa89_*#8$;obmQ(zEB4(Px18(uFS%!I zoh;qa%#xYY@4iT5-$_ALJ5GVFI>(A7_NwRlO{%@m|GoPAx^>~_V_X47t2iFLQ({=M zNui8qQ{Wxn_ust^zAS4GyL`g8-b=D>!m){A=e~q_RfZd$S?Q1*m*|sUarMn<yEQvj z<X?RMI`7W&*k4AEmc}+Nn30+Ot5@22xs&VNq#Nlz&(3VAkS$%_ApEu@@j=MOpKJFj zJ$=2W==+S9=^WmjuI|RVZ=1xI1(d7JIdJ~;oAhsY^JdybC+c0#h+lT-Lr?kdhwtXr zPjHj`G;i9qkoOy>I&a)`E#k>0HG7@;<yR*ic|GODojsk&5jQk!ExKm9Tw0av{OM9= zx`eui^xO-R{-qvs58aR^n6^Z8H{<EHman(xzL@A8n4z;!k#`Rp-$Q>T*IcgXg-iMl zcGa^sf1W>S)tS>T0>a8>W>l(rwNGR4-&9kyT<CrMk>C7ZW@UViu6h^Vp`>J~)FGha z5^HSu`hsWf`*^`u0d?JV_gCDSCF8R3;nLFo)@u(&t~A`U>t5t>SqtAl(U<CH)cc)s z*4du9F6O;k{hD2x^yG{KMz+&dnol{X=;C&gL3^+2)y!ums~PWk%F1k8%Ud9JNJ4jR zf0aXZ!itH<Cf5Iw&FYz|WhKtWr@W?XVuo44!yg7rt7GPJp1#ZaP%?03b>*y*)4MBX z&9_^>;(5x_`>j8UJN%zEFWm0FVcxxCZ4Hm|yIN-Nf2Y5HPXCv=qTm1jF?e^nr(5Vk zQC_LH=>*eDu9Fu}{b|i##%*;fF2RdUywroiW&O>_jDzQwoEMnnTJPP!Ap5eBbz_`k z&H}9n)jd;c7X}KKT*>Td;M+1O#w9Vt(n!TBU{~i=#cqog4;EDhZE@b+DAmts!rg58 zdy>`k`PpxZb5}dgbN=(Y_})@=tHo~Z^CVrLERmlyhp8&B@%@pTp?_U<f4`ca@PNxH z-e8K~!KlZZZ+$rP<V1TA@13pnQ-Xi2oIfR)-|;Sc<m~gW0?yrEen&QA?t<rUjq48n z*kf!bJ9T>1-g6sYNtdQS@xR=?*E39Lw}-lf*U>jV;#sT1r59wqxie?!G~MkJEV5g; zzD0R=FTZ4EwmsbZyTb#)H`|$4zJGfzU(u*`r-GN_o=Z=TYOMWsWlo^smyO%1t~`EK zf5rZg{FTL3Qb!+8*_N#pc8*)U_DEH*!`}Rsls=i&Sr>bRb|^VGIjq_uH-lsDWFbEr zA!UZ=Gpu=iKV;w0J(2O%>btV!A*Vc@RD&`-mh}P-4;5M`Gk#qrBEG4yP&z0g<_5#` zE9E6JElU;MB3ExU@OnEfXw8=k*1lUrMDxB)T~^OlEcrrJ=0mabj=LpOqIopFYgeq4 z*mmdPlD)wPpNIsVFFd>5Fmm6=zNJoFa}VuQ@wzK}+~k4ubQ@zm_DcU3Uio|88!m5? z-_`O{ZN<ybOG{(?CvZPJ)w(>%rssE^;*@l$?Vt7~o+*m6t=GN$<I2U$rcS1+>&kBh z--}K0Tju3AtG=r+=+N$od2hrsW_~-9dX}m9=j<hgD-J|9UEL75+RJKgkk9_=S=Wr3 zWSr9%b!{o-o@ukvd4k0Bb2-bRT)ey6pZiSv9y>F~S2bYDqmaB+Tc*8ivTBM9<-IJv zRcZb8yjL%F90{=G=x~1N_Mw<<XHBfQ(c??J_q9ce_h>EdNSVDjq0wlSPT=W`X-kWz z`Y+3S*^#)e^Y_*B%#nvyuI|6wCZ@k^o^I#a(D-K>Wh=rt+t1Ga{k-3)qj8Fg+LbvT z$u+&E=UR4X{_+3MxTZ?56iXp%F@1vzqiVf{8FCrBHT-PfZ5y6F_5KgVJG3TF%3*Zm zW4*<+R}^$^vh4cmR}0_Quk`4eG{<81&0PB}Zhw>mo%zz2$ky@aZTLA~+U>;uw*^0^ z&foXs_4B*;`=38NoNnG=YUm_!?)8H?9~F7npP!xaryy>h{Mw@>RzIeEirr9ujVVf6 zasS!yGv|}{)$IH3U1vU@Pr_a5rGG}hk&?yCr+S}GFINA#)Wh(k?T0rNQznY=hxI;B zkDR#g!yMP7a_#>X^|A+M&M>O`pmuZP1OClD*H>(jv;EyQO{s6=!i7^aj&jI+z5J7R zsrSy3pWCP8ty=1=*|B@hg{g-!9`WQ{da|`XX1(~&*wkP0L1lI`Px`4omoQ1Mn3SWD zm)F6p?x&v-7%#qV!kzuiEZ1ghHaUHo+P3_9Rinf2pfZiQizDv0s;Eqk$>j)9u@k8Z zR(&6|YBE>jQrjIZr*DTJTk}XHIP#`_c+{?AkEFhQ)$4t<(l$Kz=9$x1RxR54IpC{R z_o9g%W%a&4r#_yl{pTBxTlOZgkmFZ2UF}{Gt&z8VUi8lDe|(~gIh!}%be#11Vnuse zN!0m(RmcCn-m<yyihAtA+V(THKF5P<mfmBWD6AUM#(9NH`LaX&+up{L9lnpPmabg7 zdv+G1(y`Uq+nwS>Cmy$xGo2jj_F{HnVEwKlg~;#A91fP})ti2g*D%YM-+U%mMYlVs zM(J{zyOZ!9qtH`j4lRqBGF?@S3i7%*Qf|s+F3}cIG*UHkUlY3cpq8<_cKpUSxh(BE z>-VMfKXcg0+wypYBh$8%T%D^sw*ScxSucCYUxoL-j<}j%()zV`C+ITT{!F@lt<Xp= zQQ4@=;rmsidAG~X%GBSGTPr2uCMc==wrt)k{?kT&%a>RuY)!oIFLSqY>4Dc~Kbm5K zjS}w!XWv+1ddDO=;BT76qKLR^ts|#ff*LR63vPQn%RSdbG4cJ%-sAR5wr#lhfv={b z#jtOZ<m?Bk$5=kAEdC~0JyBP;Ou)tCW>EUkTZ^w}9bLX?(bCMI(@x>j>dziATJ*s1 z<V3Cewp08<((X_7YT5Te@YSt?JLe8<og4Sd!{B?n?F$)=`L#!x!tO>#XLla>W$T)h z#q(8R#`fcDZ|(f5vXgnXQ2(pTpV!@5CmF;(*J`RszV34sQ|qH!a?bzSRr~N*uPI;i zE}<FUSX|f4Y5KKQ-MRFTU08YFsl20`>jk?M*5uyopE##rbLZXuz}2z+p%-Sl&-PrO zVtv`%r)ACMw+h#9$4oqRFu}>{wiL_X$30iB95|5Yv^7;V@$RN+YMa<L=H}n{IlXJW z{rnA^W8!SC<km<gobsL0Yk4SRkNj?4^*grV^}pZqFIc1QjadvZSr~#&956SsL@oy2 z%AC$qfvspd`AAxzMZqEIfVndFlY}P=F0Pq#_*Tc{=6d_k8ZpZ^7d@<_^u<0!T_`b) z)EDdi`XJ+XZt(0Q^;w@A{-1vPQM~4tTz#G0@4LsfRC~7GcJvgu$TI88?P<rBHqI8Y zV%z<9pP<G6di_?N^G`4LKRv6cth--mnf!X?%ED!L>TcBi68~rQ@X7m+>8k7u9Ni~$ zl)f)JH81tWif_;LXZ+guNBdLl(xmK|1wX=)(gpcXWrpM*`G4rghtu2M?)z=BZ+4ul z-k#s(VTPNQ?Fn;HvGr126E@B5NxDFk<cA+mOgsZyI4&$JJMnm1J$N0{=f?RQIW2_? zeq<!CnQ(FEffWT24^<R%FF1V`W)Hh&C786g*vY?R>A9uHRpREk_WxXNe|=%Ur~m&u z+v0aOHcjWNkCf~zV#$8=Eq+VO`+uK5UyhfP7xDZ5v;O_5y<s~QL?Z6Q_=NKw`EoT; zVM+fng(FofjgB;xrCoMfS--%fdCp6n=I(P0Hu63S&!?uENOWkgVcNNm%ctwXB0kyu zB5Z3uH6Jr#2@LJi*5I6Vbkzc_3Rj!g+Swmpp1<mFk~K8?%(Nft9?s6#p;d9~dHs)< zOEU5Wv!32rTJU7O{I>W1=GC-x7_EAHIQTI;Q<drVT8qCW>Z&zUf|{rNQ(3yOUjEOU zq<^`h2jB6#dCFvFitO9iXm|hr>%;sW2aA{va-|3UWZk+|vev27zTn7xqshubQt$Y0 zRmrTpTidYP=fd1i8ndRlc}YF}u$H@0WN&Ey%-BP#YiD|H?)!OH$LUyr<)yw24>vEK zuXJk38i|%|%eaLvZP;HcVQO<?{Zhe>@=FHwf|vYbVk&km40^QFsmEuJoI+E<4rx9w z?wB8E&aKdOS)901vTE^rt;JtGZOtl9yzkK1IAx38>)WEy;cJ6u#m@V*%Vk~Cgp{9W zkNNTM>;1ID@WSf{3iG$DcP-K4-~8_JsklI0k1XpA6LWRfB)$&X(x>CNWA$s7*AZ9Q zf5~N>-LtxWg2}RVRbdjsJJ&5WuUy(B$Y`>5#)VrS*3P_^tf<Voa+cZVf{SN@__Tr* zdKB%ivw2NrXG&ALryL|(Q_FnyO#SVaiz{B<FVwa$Q8vjI7htJa)bQ!hmgoMr?JsmM zeQO}J?z7FWD4FRRHeS|21|Ez{L`BjsdMx)@9x(5_#+FJ(<$B)mlnq9w8;aU@u*$@= z9*)#H;574z-$#uHV!|^2eoVEqT_~I5W~Wo|sIZm&-Uhqh7B7`Qs9HUWk~{F*R@nXP zjf6C5`wElu?4JwIKj5#plvvVnXYoCQ31{C_zsQTX*DaTwwLCQSva0N&?$0+TOz>98 zni?s&@^C=Hjm}>u7xDGf2lZQA7GT?XTt}gQ3PYjq;g#?7lcL1!xsLDoU2?mB@#UoI zLd7}GbqB-xgVv^(iE>?E#_Pm?`%38d-74E%t5)h+7v(RjO-{4On0=e0s`A8@``bNj z>UHJy*myVJS>bVH<)Vgd6JJfdcIA!T>F3smr|Z}*bUwRk%|G*%m#;FfTy&}a_(uUR zIZH*4mId}#Z(d!$ed{9T9fFNXN&gmg?tJxN@{)CXBugf8&T^UHt+e{Z)T-n0X;n8r zE`6X7##?r0amHpbPf5=+!9miIQ!Z?5Va&aLJ=9BU^F(&3iRbmVT<UljQ2dGOrNz4~ z>})nSrL@-7p1gd{BBH@^j@RcKmXROK@64_LoR#lxw|Q33<VBORyQ@#>sH){kyh&HA z*_v}U_vB9RZC8HyGP-$qWFCF8B_`8w!O!g%wg+{yN4_``dva&<g%?qC|14_tbo*4+ z>e(~P;q~?K7ZSnwAv5-Dys^{Zr(05eXsf5ql#3_!<{vd?VOgu8xcaDZmz}H|+uE`) z#^i~Moa&FCifr9f6tURgkdgHLfXGj=TlF=)igF7V^qyNCXY9PtP~*sql~>P5J@HAG zw7GIdYRmOQQoW2vLcYD7qI$pd&v6m8{3@%bhg6o`7Ko3W9>Ta)<V@tvHSMXIZihT> z&ZvlW6#D$jLQG}tKC8OJ6STbKcDtD#Kfq~p_3X5(F0P)->g(3cdeQzzJXr7L;Wgra zH@4P<-AlFW=_+5#WbXL<g!t3!#2mTkki@I3z9})G!jkOQUD`f)*f<~CvHhwzpTfr} z9eG?uhDLrdTjr=u_b#2T=^S%bPjUar$~ODesUPMnWBV{=;<ciz=?kWXIG@bC<YoRh zW!<JP;d=7~rH)z!tl+BOG4u4M!=;-|trRn#-RySyG~p-9JlEyw=AvIWw+8He*cueD zcg0nXyM^W70wOLtR(yE;W-iklVZ~b^>Z_J+N|ohm7d&LQPGrF!xwzJ_wz%?EiG#H< z2M+8KFYl{d`!F-Mf_vRo)~c7M{999fpT-=^&~LeN)Z49(+uhaf*M<q<!Sxf(O_Ek> zI34yb6`1~`B*v(LJ6(6rnY&lEnuRpyo$YR4t!ox)-G1`d!jPS*tLK~Fe63!6Chb<2 z+r}AhH%c0s-`f#>G&tm0*uv`?!MsX*yQ0E^7{#wx<SG5mUUg{0GVbSLOSEnm99+)0 zur@w$t5Rz4+1~3?Cv8uE*77d$cIMQq|Jriwl3&6cKlbBI`(LyiXHDUeYw$bRzU)|> z;@9Av+pc#6zf3MvsJ^JZHvEgZ*WWvF@A5UiOw4=DeEHG(unDXF{N-8a?s}_v-TQ;h z-}u;%&E33m-qJlz)BK|&d3JB{)|V)gD_okm+-gT&+uQkGvIdf6tK{EGm>o-cR=K+` z^L9b~=4Gp<GVV=&Fta=^@$`g{60M`^Mv?Mv#fuju$i2+&wMgmxBH?`RtnYKhV<$?w z;x505@-+LoGx^o?uTIA7PaRG)@L4Ug^|L*+@at0LW1Fu`{~T5E(lFbQ@h)r0i3_um z?#kbJwqS*@jv-6$*AJF!!wzuwKeS&|yzKYu=9AA4CBLm#yHadF=eqxS)h$;Vwq0q? z+7kXqv**wjsV9p)M8AAy(h@naT3dC=JI(_NNxC81a}U0g-SSy!N?(>(RGECl;qX%P z@{G!px6VJT;%C^+e`fZt8@`5>=aQGcInUe4-6q*4%{TYyuO>OC|C_d@$4-$sC|ezK z+FG+<mg}sr`QLv|VXH5BJVB~<!GcM4s^1Iq^a5|(yw0|n$D`$F?%`vK=Y%GIiA%6~ z$;#_H>(iB~xw3hGU!2Poa^Ny}GEpV%kfLd`>8)AUWVa+w&e3|8FB&GB-n(t`3Jagw zmHpbHY$bV1COPg7xfP<XbEZxH_~e-6w)HP}e(UnLKIm%l=0v;f`Bv$Z^^fBg*UIX> z$=+ab^r&O|xret}pO?NU(zf+nzIU&N+)oDM9qZb!ZQr&^X1Q3UpRSAkEY(HdZ(L;2 zGT&m*_jBKJxj$QE_;1bpIaBuX->x6UvX?im*{I32C@>=I>V=AHKdxCmHRX1n=-^ZN zH8?ju&75V=+L>0(`z-Wseco$cw*F~sJwM0q7gdHG=kC}{FN#_#R%^93>))JXSF;mL zSLj&G-}|dY-Z|@<d++n)QocA|bM6bv&h6^pJfy90^1SMb_FMca9vOk|FK3?q9ke^M z;<Vz0ITndQX;<^_9OQQot3F{-y_B)=D#!Z$(dpM?E-iWD^Zv-8PsP3~w12NGda?YJ z#Rrpmx4By@PX?`8w$kuZPUO8i<zKY!JDt|KCH7*ft4Bb%)uh9J*`1>T_Q`&oJ3XhY zFSC3@+|%`!n|CFw7p-5s?Vi1=Y<$s7otG!Hk^;`<$)3CNh)caRX4A&!S1$Dg&ONHR z>Yh-|yR@{xFw-{4;H<yVua8SNl)P3E`OU9tq`#dZvbbKl|FBr_@)@)LTz*^^d^2H> zMANTHzNv1X%6wA;oM!#_^-e4KRqw1*=3>_7Q}27cS-)~+j*8oYQ(KNLKluGzK<K`2 z;)Yp03(XZ@f4&gA>cGO6k&S!PZ%!}{So;61$>jT?RldSAvsWIR!mwb*{%wqc5B8Mp z-F=f`@j9(3-_4{ql&aTD|KgJj`Fhr*|9<K3*4f9*ZEJ6Bk2F|Sm3sX~!l6~K-+o%X z@7$ubw&#z8-AyhLxqLmcWao-%IXAzD>3qlZTY{~7A7!|HveW-@t+Pu|T;<HH7iXvc z7W4SN=ULH~-NnAMYCj(G+WWbetK-$0BX-a0bt_+dT>fOb_UpZ8=83OO{=T<ft=sEm z#{SD|CzPFvRnc+?tm;|4|B3yhX|KKKCH=fykZfGek>v4Xx%RB{*Pa?&OWJ$*$kda2 z7R)fXvpoKFIJ=<p{~)34FKbpTod0U+6c;|FAj?w$E7xpgn8xL~XKJwC^i4cvuKiKJ znlFj(SlqB6Uj4wVNbLpYSMo}l>+EOLUgfR-)nn|nFzRcy)@$Z9r$m&uOzUKPGxcWT zy!g$BZTg?j{Q39ZwMYMS&foo>E_(fh@>JC>o&);P-}U<|%ku5dKb(Fb+sgLTlKm5W z*0xth+?gjYy{dYzwQqb8@A=<8hoW^WcI>u`d71Zi!XMj7$<_Nm&3buu-}OB;j(4J_ z@B8zEwYak0?Ni%Mo2<y%W4@Wku1G)qWG=S*$)|kfZ{gEUOH1xa?Ofi~^-lhZiGL?U z$mRT*>8xiI>)ZNvrnmB)Ojk2dnLo2VUu%AS`0K5fwU<SjU0>VyTVFJFpI5r<d1NT3 z#nU;Q$Ar(c%w(Q1Y2VVEf3d6M)%y3pJXzel-z$-~L*Xs=r}~QQKXZ=T>wNyv5IKEr zUgQ1syS?|7O#j5&yZ7BB&+kX$Cf?Kb$y_1-dD5SG?^Iphr}2LLbMO0~y4voL(ph0Q ze>YE_w@+hTVCNO%MbS%sPBss)i`=>A;B%g|eH*4fTtCU8T`h<G)yuHGJv&P5YAfx8 zeNN`9+46BMtyP=8`n7<)cYWt%FS%*clX&bT%<sN-mV31{N-{c1W?E*U&t?4>;dw!| zb*16Dy2U?&eipb|)UT}hcP;Dmp}i05o18Yk`~HL7_1bo`DHqP!AHH3|d9`h>ed~j} z-6?P4&#>Ri=db;4(D`irTYhm@nO!pfzDMfan-F^~NZ~IpOWoy^=aa-2OfI`)-4vdt zVe;eSr0JfTGqR6vJAB~u9@pBE^^p_LuPJ%c{_Fa^nw<}JC_J!pR^oe6X0e~?ao_GU z|6l&Eo5=Wn@{<PhdIe((6VwA0V!ZohwhQii9{$Dhz=az7hJ#8R6C^&I?P!qUkuNLT za>~)@(US-J=WE$@-%TlhpS4t?O{X_~)?JnE(4$o!vvv3DB|ZG$uH$zoexFTk)9UvR zKPP_vd%gU0dA)h}1Dy{F)5_0x3-m<qjM;Fq<>}q}zst3sU$d`Zz3*ldv*q&*rH8^6 z;{G4bek|Y1y!Mr(-KK2?dmhC&t=@b1yRPk0)jp2<H_GaFNGyDqsV=`{_q2aMxZfxL zH*u2;wF!*ssoUXEf0qC5r3W5!zCAU}>3!nmB_p)p&YT~42{E3Ftjx`d?%3)-v9uNH z+_yC_D1DBv){=TH-W8998w1+QPu(@M`gZu=r=0?yK78ISFSe|SDNr-5MDXeiz8!U4 zw*S86W&UE^bnTeVbcGorTwkADS6$_HrMLC)hkH8vb#Ki1S9I)i>A$bZ`-(l2pRKpJ z)E|2KTiTtsC#K6!n_t(q-ula5IXii_WG~IczjYJ)SeJHfTdulg;j{X`+fDw?`2XbU zUpw)&4ptAjb**$iD6L_-$M)m=ck%htQmfu4*XNhM-c<ZPzVo2N%mS|mDixU~m#qpq z{f}fHULqt{7v1XJke$EQXls0KMU>cD(am}qpKiG4v>L7zc@nvn_wm7~_~YujtxXmQ znYx#2m-M!-Fk_x{XT<?+iKSnT)}P+7<_fp|<>j%{-RCRS|J$jv-(>5QzUUuDHV@7? zE)xC0uW_LK|Gy7^rZ0Ej@Z@y+|GMN?g2Af7mkz`!*=YGr@n53LBCTU0aoqL5(M;Wz zSP|hvhx1nPW~VK^c1A~2wo)W|jqoyF|7ecYMajok-Z|Fz-tniIReF@vL#w!@ViK$B z1EOa=61v>w6&zV4S#fsdk^Rr@#izPN2XE1T2{|5tJ3GAk*Z;TmEP3iOH>Ij261X;Y z87NzZF;Dj4i+=K3<i?Z_uBS_TI0VCc*m&(&%X!#571>Nz3taPl)}S@7-HgqyM%X@f ziI{ca>?=j)dCg|C)#LU34PTbdzBm0qcD-DQcjAnIyraUY-dB7%ubByQ8fNrNj#aUm zEc9XpTL_nkwlLFTo|#8Y)}LR(VN#TAvVdi}a;ofv)fXF>MDDJzQkt~fDF3N$`?vEu zB<gZsG9SC$`B*j5!SDF)NKP63Ovhc%a}qr!PCQrCIk7nDge%+e1*uZX_Ayf~t=<u@ zS*%w7PX5F3mpf#+>X%3u+svB0NLKT&1P@yci};Nt>2i9Ek;j;07?^)3UlN-6L$01v z>(K^_8}q{+JDl3guwUelegD(19R{b@TsXbdcKVhWpRJ5<<O0`kG-DBKSz7&&>6w_T zg4~`xVr{Q|nM`H{MBljnkfr+ev)4~o9iJI8@kfY=nnArj|F=Mf&Fie!>U%YtxL7Td z7FAK1x{#asXsG9==9LCto-YhuxMk5oDaOQC4P}StNT1-~UH&!qchpR?sh`Ap+#+&U z{b4Z(el}-Mj)(8|;*{;D79IRMWnEg@4%^#DR-F3LJjL>=YFm#1-wvN6FS^|YGx~yj z6ITRHNKRbkni~CNRsAt*XXE@M2e0`C?_VE$`r?%ZlFL@g?U*ysUh{tbr0;(x)$du6 zB+@Q&$M9{+&B{fbLH9Pju!!e2-p2DiWsh-a_m%wRt0v7`;WcwziIzjEYGat;vgaF~ zeKxzId3{cG*1<(#&n~T5@l?sVJ?)64S+KQ-Xy9A7TfB-(Gx<2V3%hQI)+_q88SvO{ za^zUB?AjV0r-#{}9vQ3>jZ})r_YN=VyApKwz}_u4gqW(NSg-63sS2AjdEV6OOPe2g zRIRK}XFnw|b)C%dDP75$C67v_*Y}8eub4P*%RZs66Dru|m8e^W^(;EeeZIKoXNS-e z&yut!rok6%Z!O$i>R%f1{mkF=m^WVa$J=Ap_`fd{jGgVd`O*jFZEL<*t*;K*rS`eB z=2NA+`>njA2PfY6qLbd?vg_=WJxgVN9WIP0eiQj!XikjLzJ?@+ET)6|n>f^eAJD7m z-v7w&{2%7GpYGnxxc;ama$l(3#trqaSKZRy{ES)nj$Ep2XQWC0#*}Ysf?JyQe5u~% z`_ZpHy<ffYxF)Ckrf(rZD`tMq2ss#@Y&YAPp>mzM3!mRE-~6lTNw?Njm=tL<Mr3Dl z%xs!Id+ovQ%0mon*SLJdPWo8>Y0X=*ZQ&C=F44z=vJF!V4;_8Vvp9x-=E~6df~98< zmE2>i_1rY`#ui_*@Q-gA3??+>Gk&}2@^VX^N1lTGiu!H8zZv~~QGNP&PI7)p{gclI z`z;keCni<hn(JA_{rl?a0wsOH*p#G6cTd#mp54@C?ADpwkg)yydWG#XpNCH{SReG| z@1Iu%iULa9>vngAbUN?ee2BCC_`KZ(x7O=~pP#C1`S!<$5J$#5kJY~z68GzTbNU)8 z^ev@O=iA5DSGT`jtN&?Gp0-E*_=?vh@?mSfCeA(Brgm}KpJ~aTWOAPQm)gbt2;*HJ zveQ}7Kx*=IgFtDq9<A2HADq<6_FiP0!eLakvpQd4s?0k>gX?Q0RAS47`lBZ5Ocz_h zlhXSjYy!`@m<SziGk0r&{4IyGw)j>3<oz}wS@Fo$qGNlb>~xum#M|pzJ1%`G{K>v# zUE#tKrc0s5+}eGcPrNGsr6l*6>m$FwTaooA=U<3DnK_Nm%%L^Rv9fv7O@%o(HBTq$ z`B%I*Y&KqAslU@AWnW0fdfU`}Aro@5Do@m0`f7US{KiAqQ~sszNMhb7q^~OQG=2x~ z?t6Q6y9N4gmqhj*RbIJhz3RjL&+8R*+TxVbzOMZCr2NqKe?JQgo^9}2^J~#T@vZp= ziY0n}hvuZMX<$gYDqSpob)rW8<rV1%a=4o(22Y5v<tdW$El~6LS`a_skkOi3^F^Ml zNLVpr!n>($%$Ma9muWZ7Z97!)*DL90>13fdy6nz|dDp51eL7QR7WzkUiLY98WySvK z^{#g}8Ek(!&$2_TuQ2<mr%!(L#q^lkZ9W<oGksfjo5r0ee8J&ZusNb~`O+f4d7tme zulXw4R2k5d{_xHhmYG|{Qmz|ro6Kdzt{l$J{%e<|iH6#novs@vE}bOBC&m3->vY45 z?t%?-KREE~G(X(eCVk}X#6?v)JNWO;OBVC6@3E{uu+_4)JxPIW0e3Q=tRVB+OtIoE z>on`_imJ2ZiXXhY5zX^t`llmFHtDB!=NZN^n;-p{6m`A0`{u`oM_5xmciudyx<SCq z(ssw5e)T5~LY6z;B)7eJSFxg9&nR5p?Y!x%4<;Nv!8XbdoEJDUtefERP~ppk*szTo zYn)S-F)>Ca)E^6PNt>j3UtqT8jM8^s4P2eBh%=?{`?$&2>ho!x-``ozUt#*TB6Ohw z=hhUzBcD7S-!f|VG#RWZS;H&aw0c`vz@b~WE;N)fT?)zg@tDD6|HiL6E|ZH^ZS!2V zmu-5KL-_@PCFZM`K4&?fUwg?bv1RMVB*xbt)-FxHD$lm)XYcm-ddWpUm&Iu$o2W8B zitoJ0BJIe~se3SMW=(B(>uFJo%lFz!gFEi8eQ|K+s`YBu58ti%HL0)m(?z9uM>2jr z>NA=n_tEvqr9ICK4(B*URQKF0sr|(BazpH9kM}Z_4Jq5FF3<B>C@HR6y`D41Cf+Q( zX=#Ck<+IE0Pc?L9cb<P#73)~faOAmn?S0#8pUU5?F1mO17hnI*M-rPqpJ(Em>~%b6 ziTysiHO?Jj5i>rz9W68$EuZ{>GgCG8;N2a1YtM5fnW=wYHuw1Qz)4DW5`}X$lf#bK zIC~vYp5L4QD!pQP?bAx8rO~T9+V@6n{h)TAzeuUEPHK(vWX1ITuTD-%@o!#vq^Vx_ znV(*ih{=3D?rjg&8X9Wr#;&`rreJG(<Dk*W&61o)8+ur01f_p1dA)~io*92le5?QA zNAeLGJO{ltdfd^vB9g`(-emLf;Vs8NeXW2yQCIhroGV-AA;Pst`>KOf!R{*#lfK?j zSf&+w@xsx-T};_lzh^7z-?DnOs>^JeY|KaF`pP$kVb*6aKkO+xr}{c}*YQhlj-Oa_ z;QM*y$BFUz(S3zw!99ZYf<de8YCEnxl3o(FWbtDKd8MsC^d99l%oj;F)chlG_1Mwq zk69fFN<E*Yk6rCrD>;oRd+yYnQ)P?1eQKKDJ($~jC~$)N!n<XMr*9Vw^1i8jb@!=F z)>SVGnK}aMYXZI=W!_M1oquB9V(a1?woc*_${HRUGo~!d?cm#@*pkKbjboc?lKJjO z6)i7j)NG5cDL%6DKKG%Ef@P~c-ZwwGE_YS#tFm3LHrqm*(5OHbFP?8TIX)Ra+i!mE z)K9tpe%|K;{{5wV7i2#aWHkhOe=F_%csb^&#ww|W8e-ksztl6V5pz_J5!^g$T~*k& z=iJtw^G}^K)V{nY+kHZGy1|59Q~172)Ud9rwe7R5t+l;(x3<>y>--tLK9+{kR{M9! zIkxU?y<xa7s$(*Pzx4gig|F7N+9)dr9@t{Fc~z7Ar!c?AB>}T<GzEMw+L8FNlxcRV z(virO+`nE;Uii64DS6_;`YFm2=56z7`B%Dd$4B|CPMQbS|9)%R$9ShO>Y3T$_s$PO z6Rc$R9~Nc5-I<=qcX-Wr*@}#&<%T_zw*-7nzM4DD;!)N1^`bXLwu)30Kj%uH_GKeS zz*bI<Ii<=kU1#|`?JK@8!Js2gA^*1R*#g;vaz<t|kNms8_e9^Rs#ktFOV_#8*P8vy z7P3tCtSIv@+Eb(=Ww`zPZARuwv!9xW3a$n&*d?~X<Jg4>&+eI++Zwhrduh)UQL&cG zdg`iu!u-RItZC7QT%OH2lRI_iU!Ix8+$&idkMW&so4;)D-KlS{bFIuh+qQff8`lw| z{7KzU(#l`)38-55clvC+=6mgOlA+E0sfzVdFL$Ze&U<F&<t@t1!PXRV;brNm8_Y*% zT#wLRb6z!vVcyo2ntTox4-^>#0~UO1DZg4Ha&UQhK+f}XU3vFU+)gg~Yt`}6jHA|c z*{x#l4V;V-8|%c~>?a0@dR|GJ@;=kO$7yXuMz!o?*UxiH<5s=(+&+2Un;9$LuB=gd zZh7+ArFt9p`8Vs8xdjdcN0jcFdP};-S8ZZO7OT5(Nx`Qb+$rDsU!F1F-@qFG>>lHS zwkZk>t~=$XEj*kl)6Deu`66c(ZN=cT>VZawV+xM#j1bo{uM2-YLtu^2(_MPTvC}y| z>OR=D?)lW`97k68Cm5&qycB2*o)gw{>O{d_ah?ALmozpy-71bbylZjttliTS4WpMu zCZF>>n9Y#RtZO3m|1C48akjgW*>8)rv;V%Vk5dpkg*gpuX*jvyxZ36wNovwemPVT| z)T%KvS(<^x<Qj8Tm@LgFU#L~xylE*DGqa%qMDd*!)1;XV4UDFLU}aR>JnP66CT2qe zv&{v^|Hv{M8kmEHC(k-EWwXXJ2PS4iLy#`@%@be5$}$-mZU4Z^_=kzf5NyYG5l+VM z(oBZt(>J&<9^8ITm64s9$q1}|`#%lF4bn_TM%y>IFrHv$GBTZB<-u57Z(*)rpb(_* zT2bO2T#{Ils$gLO7I4eYE3vWBcQZ0qu&{)P7+EM-nn0PBT$WH#V*>?41E{dEp@N|S zOx#$(&=4kWqF`tU7Pqt04@fL2NiE7#Ff=kzFxZ~u$>_<>WMn>3K$Y3R*l_yY07l7r zXSV`YwpxQXf)8fD*(YgNQd<7=QKMq~m*0I4{M0sUc}pcOTbh$Lf#=w#q{MUIPA@a_ ztiSTC;oqsZf35$16aM?B`ul(T{dw{GX8L*xrUcx6og3`s!F{{6-RDM}{lA}~UayxP zk^Xz&G^=37k(kUc&R$>jmj0_?JRYLh`!aiBSAKn^UZAvVzUp7T&Pmt3r+7?x!R0Dx z`0FXtym&{cu=vX<i$8Ji5RE#%yY7RB(!=yM*~euU{z+4O>wDT|UF;Hlnb*Ih>)!s5 z2`i9)=~5GBCuq#^UjKj9-`n4=U)PEXYA(oF>UZkId2xLctx222#CTUPTiNZhzE|<0 zwDO#7e?FbwUjM%6_v!lW^Ix8y$oKw*P*1?QOI>|(Oli47${$@GORl=}vUhQ@^!f9j zSH8=6)}&y0X7*dw%`;y0Zn$<fc&*l~E}K=e-)=3qx2?xAd%c@FS6ugfsp^t{$N5;k zBwUcIx={H~R;5lmbgFaYa?hnd1lOOj-#azhVmaT1LzSDH9d!5T)k_>GOZ@Zr=8Kch zuGrjODK7tWb<ORXYijSy?!^iD-Y<Nwf8S~U?9Yd+Rl<xWuSrt9Kjqw!#aU|{Zg&W( zMJwpdS-WjPl}bXCx^OPjl6l*T=3IQxGiTM5t>O|j8z;Y>93+><A2e;+UH;jrp&>o_ zU2{!uWqj09%$JfpAL{m1#hfjreoES2H5K{U7xqYZgvFZPJ6toZK4$qX!<P&AxiarR z^1dbhYigeIvs8Np$#|1jH;pgH^>0v`yLJ10gVX9&OG=u39%XS$iybp?TWoMORwT^H z*|D*S@nU2m?_c#BK40C=<?)Cm|4bD=GV@;D-7SJIIQ$MqD9*jVFW-%ucU$kD^xyUD zu2V9?{_>^x1a0<>($sOd#dhX-*J}kE#jmcMER#9bo5ym>wwkXtmXm67);*A7C0y|G z6w`|uS=s8%jN*HLGCA~pE2}>3fAg~VZ$;U-e2=74yDRtKI?H|GiGA-o2ICI-wbJ`+ z9^Vi-Q&Mnr<NbLhZxX*fxUuShUAy+b#LMMn^`%~J>_X{j_fKqZJs`7kzPX6m3nini zLam*v-n~%SP`|24L^Zf6``F3o#BEhAha^=md7QidMMPNXkQ<j9bIEFDt*0m6X|Iw_ z&FEYD_rA%bjXOFF-y7<9c>d9<Qx{D>@Z3pCs)grbO^Bdd#BKkE6uX({G9SFXGx_$! z#b<y2ocf{uX54XJ<F=iAhutg>Z&g%I@p=5bEuvNGT9jq$-6*%RpD(67ZsR<WBYv7a z#Jqz4D({&Ud2O>6u=H-SY2P`+$MCb;a#de>sUHeI4`?eZZLPMKn#gYw+s5Izsp{OD zS6^;iNVK@4aKVD<#%B4bBfWt~A6QM^F+(K(mxXA5L`K)VNA-q>MP5(7Bj;+u>@KML zZV5l@@o%~^yAR0=?r#$9Q&`>|U-`uGkJCzx87-SXo}Ske|10IsrQ|=SED|=yvRdA_ z8u;L#gL~V3kxGt9t(RK4d6p~lKg!$oRr6E9q~%lJ9FWT66|B1K`F=)}Z`=g8b0T(~ zn|^USeV)Ea^|+kY(%ru_>T?h3yvknWz4c<mQ@M?$*DZxl&f(ksx!{qNUd#fE-o6gY z=jWe1zNT9+Csa-Syq1kf!WFY;tk+F$d5P39M@CQN?-pHn>Nk^;Z}#0z<-by{(>byN zEUc9>(qC#H-*jm8oQfws{-;yd9cx{3&uSO51s~H2kyTG)uLpT8->AwE+wWJuuv0yH zZr<7LOFe21Y@NCDSYvkBmgACVjPqkZPEECsj=pj|>VNRWiS7@hl7mdQtvK1JC4Mc$ z%ZcS|M*gzy`{%FZ7r%Y>{#ssL`0m!{&gMb?o?nSepPYF^FJO9(=<Et{ZDm%$<?o-d zSndy*|MO+bO=*Fsmx}lIC4aMcayxtT{i*dDE!}G0&wJ@Hw5#=p2zuS0U!-fdYVs+u zwFjOaF1GI4p0Re>r)8$>hdQ2V+pQ5@7XH|g(`k8D&571TKix+`lcprG9&ZrTmG2ea zbFgE}@8YMXbKcnKE&l(=;n<gx4{y~7IGN4=QF5%N!<EBc$aLkVfaa{bw{M+ixpnV! zN2<`r(E7GRe<sC$Fq~=8INh(p{L^aVx<Ipy2^<s5KC1Jic`VXPV|b8tN-*a49>@A8 zeVHLUZ>_dDzcOO_q0IST)HCcRFI_(MUHVJTB}-MzBSj*2ACWD*ene)*Var!OXRkjD zO4!3-`MTJ7^}ogYH>_Nm`E;#&d*4($OP!nXv!_(w=U!c`QSWh^r&rON^L}o4W=0;% z|6L2OIB6ECFEKi%wIqo7<hmGx+>8~byX=DJzFNU`q$cyD-r;@o99JpM>GZBjY?3VZ zbavl;Wo1a5_nD>k_s%TZXOtq;)h82@S<8D=RD*w_q*e&WnM_v&^T3Ic0$!`kN&@0O zh8z=F^jPTN)Yv<Y%`Nq(6qWbX?AwzRB6(`fvF1ghCtt73`)p^-ux^K4=IZm81-@Rp zxc0-6<RhJ8uD$VPS-O*TwDv6Kd&+6Eyl1lWYfqcwoag(y-1SZ7{xZMXH}BK!vd|av zUq|(A{=IG~U)9~MOUyrCb(Cs6-(<bBRyA7j#)=F3eiX$9pW1Wl#q`wpbxHM!tI8g^ zZg`z_A$y_TipnE5C#*g`G4yuZnF_%Sw_mf4eqOOF@$ov9{e9C)Hg0x(|Fuc|+Sx~J zi4NZ$grAUeZ}0y8;JJpNyWGRth0+CfKjO3%U)tE3|2h?2zE!MLwrbs-S3w3p+OONB z=JDPr>^t}NrKN=UY?<eNz0d#6Yb@eEq*5>2ea?Er8rH15+1BjZ5qc9f0vrl<eB34y zZsC^Exsf%by)VgS!^dSm4+*c?V%*|;pXI`=8v92%j2o+(W%zS8|HxXxyYTMMr6o5% zzMU|W%k{q3sz-r^o!QR(|4ux7Z~wIY|Js5h*;;)Wsb_DdHN1QE^T*_tqoOt^6}O2k zOTBT?r2gCj#oy8|E6!ybw*}cexqUK(qvZR(wRbPwKQ=u_|9;xDH9}>bHwr&4;8B;~ zbv{r3z{DqK>#nU54o~dyGPU~ki78p@C6A9d*VE+gio}A|;!Bq&x3g(C>8+0Z9P>sZ zo!>m}o_)qE)h@=Jd*%lkgvDEne6fDgrCgzVaoL$S)#;V>Uz_hmKKw3t&fsZm594`D zS)R-{?+;4&S!uc}1zzsbyzQ#@dI7I&B9Er~=jAR^OA9XDIVz#QB%Jxkk+iif)#9!9 z&hm-6w|ObPV$7Pq`fHZEuUt&1!-G48J(IUMoV@epm04urwWsw{n08c@ztMP+wE4^L zv_OXK!lzF({@_*LJf;3?)?M{e*)N3y_nh7(AX4)4z&=Tr3wh}?k54@K?XgGKm3M1G zkIOv0uu7CE)a{o$XK3ao6X(_$+q^uEPn<ma;uP2I3z;`+o!Y0&m9^??Pbt5$`r4bb zOLf;f|9sYRHs9d&54E_7Q?iB2SXsRf@*k6X<LJ}%QT^zvU3p98Cz+Rjv##H4@qJF# zX}#9f>x`=x&YBQ#NGCXujlonhTuPId`TMo<l;21CG@lBujE*Yb(K9LQs+#}r_}g0@ zyo1{9QrS<Q;tsJtRmR9PQ&_p_@|57rO|cKU?ehetFJ!*W`bmj7=W$$M*$<1?#)&N{ zIX8VK<?WT*kX)WMEq49M8xea&3(o7++n?1iXUTnLY5Q!p;oIFkx^cEE*2%klJguOk zllS7v+rPeZuhht2n~+~O@2&YWeUnYP-&oV%zOC)KpAsT3zwh*g!`G!$B_%WY_lw+( zUoN&{qr9)Bdy>@TTY3v)zo+sZ-*SKI&U?NwnjOC{)bG67T`BtXU58<6Zf$AwIu;ED zj~n$jueu96?cS~>>ge+;E9j7N;>3{SS`MdUzdi_y^40$GP~z_uH&3~VwUOpAa<dQm zi|(ti*W5aVYni_6Ik9~e{7iGZ=LboyY+*jvd7#*UFZTrpqwUp&b6!ZCESLDcS?S&4 zpcJV^+ixykyzj_cm5o{xH(XvDUn4rl>hjtJFRs75EfU8uH!StfxtbZ_vE4kAg(Nz? zYrOAF<No)F_4l9Fkc`;hSvorli{Iv{J@~kPPKReg-nH%TOO2my)&Kq5tiFH!(Nj14 zzAt?^mr2-W?z}@wSl?aRwNAg`VaCk)|G(6W{$!cFaD_0lp|R2Q4fTww^(F?W*T<sG zH!>s&vUKqNc;@23=f=0&I_jx{<i_F;_x(k?kA`nv?*8eNAy0JN8=l$ytCBWG^sg`f zT^KyOr9O*W>fiL+pWT0a<NdS8{?Fg*+i!=*ul9{hTyy>Q?diUniF0r3d38Ox^zB>y zufNiobEg@p{E%I0^73I)@S(8J2`c}>f~sCTeAxL>E?UR-qtJXO?YfKp1`*TOeMtWJ zoGaI#|9{o*x8JsJR}Rf{7D@@S4GrU->9p{a_B`3^CXQZTd$N<f8>TIgH~D9_>s#eP zyDL&pn)|-4taf&p`6+q5O}D>E-><~(I`;bwruFibac`WbJSbkmBzbzjV-n-9wj1XS z&PA$}X+D{7Bf!ccHSdbPjZkW?Q}oI{_J>t*pS@%rY28ShuQhj8)aE%ty2~a8FOBz& za|zb3pTp?RW`B}<du-Dx$%i_tr9RC&S*7^MGkb!IIk(@}+kJmCZmI2G6q~wc^O^}4 zZeO^Ta%p}={kmPfU!$W>-`(z6nX=>3trLem+TUMU{Q5q3+|B5waPNcDE4AmQpPEp; zv1-=xz^pUnletgLsM6W~W=3r6&A0m>x@|eD;d9IA+sf;Ha;!@Pgu|62=cnC_zUTI4 z<*&~ZkEhn2_X=V8bLqtc|L-}g<kHLzSBUhbbJ~<{(ab7NP+fDf-ey(%iu*h@ky6oX z)wjmo{?_;UvhcFTr+(6wA7aj#eR8YKpR;3I?az<l@yqXh%2HkAXP{AD7B$tcxw4F@ z$MCyiUv5~kzl`|Pof3<8H&30)yVEeuj>YZ#H7_yFsr&Y>D$2emoZPnfcF1j!x0lY> z+}*;xIj+i(Bh&WY9Q(YVR;TK}UsP-LyqIgBf5Yd$x8mvVpI+|%^u%fMwD`(p?_ZrQ zD?T|}`RTW}-~R4@a9xzGp4tAr_~fj$iOG-C_HwvwW_GaIva;{Ee#ftMf3*Mnb-QV{ z!SSW{Mqiz{Ddr0ISpFaVc=~v*b<MZL8Z+BncPhT+3mHyW))csdqs~`K(?qU%%KQ2P zo2iZZ_Y{Ora@5GZK5*;9p4@9v51ox-xAWh~de|Kn8=w8qL!E#AD<)^*ixbkHgvGsg zzJDTQtLlUoZfteUkrg_1XL~Mc{PD7XYh7M@PUzS3ZGSI>1hc<<IDIl_xSv$+9sdQ) z@qeHHJsm$!UX-W)|9$%-ReE8%Q_2b!SZNjp*XyrbcUCp~!EWv#)hFRn8>YKyh&H<a zv+LF}7xT=NjdIWV;JDMO`2GdXl_q>fTDd_k^L=uPy%V<vCr%LBdLYC{(>(QAhh$z- zTIHiiH<g{!?KfL3TA6rOdGBxMRr7U2#a@+6`v2a%|B!J@u=e}>qqjxUSBHA6K5*D* zUz`2M6UFtFJATMWec8C9{>;5=S~YxsqcjiZt*q4L{@i|i>gDB323O|TJ(bgQJoKpl znuyUl|M#bsCz#eXbsRdGJu@f5rXewGS5^Db*U@XUT6?PAXSLnD`bKT?&6A~B@Ap49 z<MX^=c--OoYZKQpy&HOm9L=p3h<63Dnza}PGTx2lJinrvvp&Ssex_}3*3yjU2Mf2k zNGs{HuUoc8;I>D{6!A|xSFkMC)BJQlR*Z2Hht1;YJjqjIDxcr#$~dg{z_NR7LA%V# zIU8R_iD^r#&bg<T%XVjuH=oXv$63=SH8|{#-&k??@}2|!T#36~K1A7mt!Y{NVC{Lk zT^rc?Zk%5*IYC-QPD1)%y+?+@d@ZYob8~&=x78ouJon4~<z{g%%K$yD<Qzq>nR|FV zj9=_vO-!!*w8U|@sg_gf70p_OXnp6)$A!G*j|3$s`@W8ucHECquEP6QZ`i?(kS7n5 zqI^XU?!BqERyt@-B_n^(!4kD!A0>D<UAgzv_~uEW8uf>@7SmIucTak{guPz;!@&d2 z2Qy`7h#Xd2o)^}4zBTd|%i_e1X&qm(1b<{Knag|T=rPOgWaZ@-iZ0AOb#PBmhUZ_) zGt2iq&WJD8ciB|8DEZ7nOSacnPTOsbv#inW<Vcy8JGJ%^58wLt?;`5YyzQx!m1^F0 zuB_>5YRlEXR=<{}CKvZ7Sza`m`c^}1OZ_L8n`(C$&K#Cn|Ln@#SFXnCPPcSh#h>5b zuPI*_bvN9MbLQKaovXh`X8f<Hd(HZx`hnQ&w3nCiUzfBuEe;laSGAzv+S@N@cUYwJ z7JJ`Yn(b*9@^V^BhxDXfJMG^a#Pd|Pzs_-;(Z2ejhu4O+VXLkOTbFoCefxaxlJ%>? z==WiL^<4k!=1Tl+|MYMf|FdPaJrWzTGY>RbnEBPt(%bcq<@L77U$$&Fn6hn7^vd`h zGp9T<)ZV_xhBH<ucT3Ww-(Sjnr&q5C*cDV_aK`Y+-pta+w)2|3?Hbl7bMw_spT2H& z@wDBWJ2%_T$yH2WtsUNHlCl4t#`|+?_hj&=oqTc6Uu$PXy{mJ{CShi)pNls6#I5c1 zu<eXizb>k^D#&Ht?(fW-!^L-s_WfV_>{GP+I<F0rJ^g=KF@De03`%O`bnAAgeKw^? zdD^5aTT>JM&0EE|w!;7Ff{Xbx?9OI?FBN;0zC&-uw3nHuUcEXulfVD$&HI|Y7tQ;b zYQ9~S-petWN3K3`ODs!$!p(D1v1>G@Yt-aV_I@<;_pCDiu%Ayu{snJ6vig9#nxJoY z%_@D<xvtM&SIT-xPxO{{u9|yVBm26v-Y$lZ-&tjEoQT`CyN^%bhWDmwyML5$>V>i= zyJsmZ`t<zVYUa(it=DhJE8M<Xn)_d_!SgzumL9pk0=x$s`)~HQ-VJeZ$*s5glKlF{ zipF^-`}aC18}xtg^$5Fsc!qybAHS?6n-ud?gA0*7FC}(c=&w04n@y=u)i9OkuuH)z zQ`uvBHrE=aNz{s2N1WMZQ5^h_GkD2t*7vbj7j!RXS4mAcu5+W)?ZyPQvLvCfnbtQN zH+t@zD0?qP-zLXJyyLB@bG6{!x1Lk#wL7!t*zTI=!W+0I<lUSjR^RM8cY8icm^yE1 zWn9~b1^N<3rHj&iXYpBk95NT*9A$UYC*XOc_+jSl+*gC9dt0*`*1XuPEuJg$tR%$p zZnoG%28n`6AGWNDT+KFVBa?R1kqsdSC(N~7yUk?6%Xh241<x=Dda#${V$O`;8k={0 z$lG84^x(m7hdNCcDDfS7(;t0A_+9kr4G(kwSzT~Au;8@Nv!kIwpLTw-G!SI7sW;%= z)DSQy`c~GD6%NHBJLD7jgkMbh@Mhu^TkXaL`@UU0&*L^jYu24Z;stB}T|2#eZ4e{x zv7Xj@u}8m5HfNp3Is45HZT;?MjyA=kH}bhHgbqDCTD_@W-^z1g=^V3TM_>Oc3o%$K zc<}n{ns36JBbI+jj^=fWveuB4f7mFSEOX&Xak9*`qC=YIrB9w`MsCyE#kMxjYfjXK z&5pNII8P)UPM;a6FXq(nK<nk@#cXVjFD&MmYBzg4`?F!|!u9319yFa%Z9Z1lX{xVw z@YKQccJs14V{2s;57wW}zhftAAYYPy#ZFw{8AEf_s(24OQ%9c*%eiV-$o+B=;I;AL zdb01$hwvjDy2tc#3cQp25}gk6CH}RW>SD|05S*8JVtt$pZ|mjPDe2!A*&cesvf2K^ z>YT)u)r*!U7oOKUR`o?L&Z6)s>$SDZB$8K#F;<l=ZL4kDvs=aYo6y1f<-7;qhVJsu z?abIb_fg%9J@HE}-;L?doH{Y^!QHPHO0r`UHqO}D8?W*I&!Kf2jbh)XZFnB#k-U57 z?2bDY+m9;WKFWUjh=+L9*F_Iz_ayE6`OoIC%-i=*OCz>kYHSd1wBPSE;cCs_${kJ{ zd2$Y1Nw_#Uy3Z$F`h{b}FY!3V;-ly5k3Hl{Y_Cody7PX;`AU}1VzsX}yF9Mn&lS79 zW8%?wx8C1m3H`V-J$QF{_Irn051V$Z4b<j+7~@yI)55jx%)25*0nOdgvT`4H?5ei5 zwwuRq;m(!Xk~rh~_w?h-XLI{ZEc<LyebB(AqCeznep!3!!YI4W1-0Hv>-KmSSPPsh zdQ@MwLf~Lt+PS4130?;8SVT|QC1qL#tjW`uQTo>Y@>`E;>#Lcf?H4a!@~W7APBt~O zrHr}Qfq`ZBvniG`S(nem)F-t)>Hge2e-HP@@-XYj@~TIsE!zx#*Z0<Fx1Mgi%K0<* z#SU|GzS=#HFSrX{eIZ)>Y16T=mItvbYMkF%-Bi6*uRU$r<|Eg>tKSXJdH0U*<ck!$ z_m2IY!G6L*epMZJIA-o|e_{5~QG$P=cff7cMy9(L43;_yUQ}<}+fwmMS*rH!u4#)m zH~%!8A(zzkY}*}<!(SxYN?&|<_3++~$;Tf#PQJ(&{8x(O@oO2$jrNXHn-+Tg<=%KS zA<4C1zt*-L(VxE7Z#Y^IvDSD#|E9McznpG73QwE8;b?rv+xtS>ZXDDVnry<;RGJ{# zl$8<uW1h+)mdco135AZWr3VgNyVjQU^yhA|We>hL>-=+G@%>>}wdGYaZpOv_3m3Tw z`iO|eyz0?e%e#5QimmPkuN~t`TYGu?G{=zr(j_0|H~pPzcx-(Yb7)WfM#lQ@pAC*( zQwT7+*J!xy%e0pt_Pw7gk*uz?Ece*f1NPhtzn@?9WS4Wu(yoJ3*S=zO|1{NIA!=>$ z6Un@WRbe-ITOGuLlL7)}MErT9UbSDZy3Tut;f`ww3D;+uE4i54h&12N3;!J}pjc{< zKBeny=Vs%mB>}O41x5bc>ozR!{!s6%V{_=#3cjUL@zy<AH3uhLlI93M`{I^esMpJ_ zeEVwrH=cMT&GF8J#m$&0aLrb`>C^4=_zD}=ZIxlsFyIT`b*-^m_=?Q@GZ*$wD4w9} zFjL|7YA=SE&G-1026t@d^0}e(gSWhJYqHvY7yb9ma<5|c<yQ(_y3DgXGF_}l@An>- zdUiLyo+YnYS2JlWv=i0oGdU;U_04AEgr&t3A{t`3pNpF7hU#rBxsn|rdO9Ti$@Yb| zKc_@g#2vo&_YCtJhb#N`=r&$E$+vVam)SF};|xDjd1g-Tt|*_V$yDWRWv`x~@@clv zTo0ZjpX5$wsVf~^$o6@|{K^Qox{H1Nb2bYmR>#%zUgjw~Cpwp_Y@T*VN`uHDpEPEZ z=5;rJeCWNvJe~8_DK&4o**fnc6XJO0txX8u`zm%t{9SW}7?({Y-_O1}DzPxC_T$tC z8;>VGOFxhtT6dkTOg;6%nHRPpz8jvg-0_+@YoD9v<7YyeTeti<|K~aXsWq}8CSq6Q zF9vKq8Fn}3+>LsZWoHU<rv}e@$-;YZ=kis$?z5b}DF;NpdD(rjxym`<*vD0NOV=Ow zex`M_g=^>Xn7t+2r+BPd_~NT$<<(Z#r!^iAwjQ}tJGJ=Kg}akeW3N=@EliZtdv%tp zIJNz!n8w@-2UDiM53{VY<;&r^k$hL>*wrh4)P#0Pc&*b9d@FE_^IQG0IRV;_v*s$4 zoSSvMF6feM#-t911DcEY-e<okER?dTb-MEO`}&Y<E0-%*Hy-0=yR}}j=z++J#`(+| zcNOg?Hyk*nrgiFAbX=RSl48mo$vq0b&(2NqeY#9pe=*-yfx>I%PY!+Fv_*tx-w_3+ z)4Q(fv9(*icDcSbeVuRn2IdHXJ@t%{e74ieJ1v>h?f1W94GNF^BWRN|b*8bx{%b}b zu8CzRcXRviiJYWx?0LtgcIo9|NlNx7zg%aJsG6pzQ`pRL-JC<Px#4is)*AOWAO0Fl zW!&-Ua>yyy-Nyu7v)QMvsy~$ZeR<D`f`*{IFB2HIE>*m9S?=5XvJcg-LRKC1k7bCg zcl@*RzqhGr+2udy!hRcDT={CoHurRNRn_g*jP>tDF0AH0UG5%pjceOoHlF3ylj@GF zIc>|<HNo(3<GyLvgRdJWC$W5ee<y6usVmz**z7NORj%(IeEaK_iYX6*_x+x>)&IyX zmE9*qzwEAAF6?x!V#-h7>;C12Yp$5jP0e>yNI%DvCSfJqzTe=<+_?{qnz=`QpLiuX z^`-Rnh-@u~?|%;|*Ps6PEXn3Kck$Xu{XvT>*F{ch*tB2k>;&Q08`MK5%zt9*Rl9tC zSD;pnx)tA}3AHT?1b3u7bov}2w|Qanq8X11p85Z0K6KPXY5K$%M&Zd58P)2IP0UeF zDtH_1-LDK?;N5U5<s&cX%Df{D`LlH<G*3L7WpYcVtoerJkN3-0{m|NWBj|kETnWED zavo=&Esi+9zU#`T!;8dQ|9=r;_#b}ybb8G%vHy1WYX1HE`{}Iw-9=Ytg<LxQ`}Lx) zS#zWPt~|N)>EEaNzmtQ`X+519#5RRX{Lkj|^|k+H`Fx931g`F8dw#b0%<0c3?KPK& zzLp8g-?MaIVXvL8dPHr}&i$c<W-DVCn|8lge&y-UCAR0*I4#IuxV3ff)dTCr&TN>| z{n_?|*ps4XTfa!(coM!o=JqPreH9gUk_t%=)=a58cx}f2j_iV^+dp>J-#by~v3}F^ z^g6y*GphsYpMA5eU;h2dJK=Br=hd@Kzg{~pIIqY*&i<)?^}>mzyjiB#C0p~OclIr* z{aX1cZUy^VFJmLq-2YqWbN=Mrdg<2GYfjEHl^t$6${d?ltbOss`2(LUT!q@)U0o;M zT(#m~&<W#!j;AksHT{>I2%R}sZ}#^3)SFJ<cnfXBZD$5NUzKAT5Ur)%$y9wVhxv1j zmdWKw#<iCjF9^+2vy?HqXtr5Rc=ooPIU4m9`%8k?r*Ye@jkDhLQ(nxhc-v>!wQ8>0 z|7-~;{ujS?737ln;CWkWKKQ(!b$rL}CwC`i{mlFMZ~c$Lg9q<Fx_|uS5{8CHJr<Sq z5nBtdmOu6Vvh$nzjDWA}{%A}8X?=HlL5qj!pI0`2&cB^)r&#m1_PK3Rj=_ou&i~zy z4?j=6S^GV+W_xAnuFvoCXCC*M#piZe=?e#2?p;TpE2`!aJb`^@<n1%16LdB?GH%(p z_i1Y6nxl-0k~cpJo8G=!bz#%?t$Cp*e`|zI%$-^<GH<Kdbyxe7$GoEBTQlA-xgdNl z==de&_xk;dj{mtnKl{4)vn%n_p1yZ-5A6`MXU-7+aCw(R;!nY?4`<ic?D_ZZY4b5o zyMLem^VpqBh%mMIq&qiyE2oL$+!;Z4m-1&gf4<iE?b0%iV~H7y*cuW%5+0ODtT?ah z(H*(9Z&&#*mzMe+3rezlr*5$NIPF`Z``mz?>ML3IUR)#bT=Mo)(Uq!E%YBqrZ_hDV zXf}QBXSeF?^yp}36W%O?$NG8Cf8Ad7|H<Q3i_%U1f8~6Ct9R}$HU361FNZdL9$C?< z2M5->-YESoUH>hf|L80m4z{EzX(gMN6xv6wDVfsanI3TV!|yqa<@KkV<233GC(A5( zuCMxhN5`2?MT_+LtOwFF{1fWAubt(Mc&^jB-}Zzv*Q$H(e!o7jK7QGbNXxT{nacYO zKNqd;-<K8>nCA51>C6f4uaDZSQ?tCaU`|0?ZaSx68oS<&Ydcf#_%c@<oO9{gGKS<$ zXDnrMj9vJRA0;`Q?o(m>!u)Vry~`b$=ZDvS>D^otCEp?Ys#X2Vi^Mtchq9zzn|!g! z+sd}|qwp;GXSNPcr*Cod$+y>U=<z)EWtso!`GMDT<~1HO6Vbh~VwRwB;iL(^sYf2p z*s@^0^OIA`XS(N4NG;4ex2^Lt$B7QTy==l&mmQ`@EaYX~tyQwDa_V*MK$TT?%{Bh@ z2>~bP9Mk7uZC*E9Gwi(G!JoNG?+!)(<vRaygVn=Bf$tC7c7LCl`upTM$Jvj)<a+Om z%}l$T#S@$tU2%Hz_N1BH7Wo|W|9nb}&2Vm$j@g_!WzpXDCnm*KAJP%uyjSvQ@v1F{ zS6umd?Q4RO<$~QjFBz<#c`x*AdC|VL=&kYfxoe8*wU6x3wDDZq&7NJkv+r5zo+jzJ z&!#!=Qcs_y+38%Olr^ni_D#>-)S0{YO{xCkv@pN*kn^!=*+u3{9qjd4A4#jft`lZ! zGr#gLhtF4C_C))x+)_i?i@805j7<+d_w3IMHI%uYej(7W;{4**Thv1CyUW?SnFw`h zb!Zw~b!(p&P;W1wwSAgw{XI6eEy7P{ThE_m8ND--nfL6G{o5i={yM(6fq``?_ly2w z`}(sPZ(Q<s6x@${tD*CYJ$<`sP>=5mZk-g%UGt?ky+{g_f06$x>dY#Iw+F;lbT3=a z7R?m3anp%?N9=07p6Qlcl>W=LqF&-Y=dKp^3rE?TR-X9s#59?uo-1*g`Q5{Ml{yEq z_P#!ShgIKW(xo-8UNTmEoVS7H7Mr7((wWCP3(fB`>Q`z+nL5Nit$DcrHv=2H!JC8U z&zV2;RLrXt{Z_5qaI)Cu)5@jS8x<yL?qE+4d3ruSu+rz?K{-al8RfqeGj{KCaMv}k zsXb9|ZJ}n+Fva3n+P|Z^$N$&!$}~?fI~KiSVR<1BqeJzTkE<DVPu*ml&}i-8cCeo7 zxQlL~kKN2Ei57C_9w^%!FyyQ4s-1nkH17OGp2@Y>kGf6BSZ1@8*Vf56_aEcgCmW4T z4*!*&HFHCtyrVJi(Ir<^%-#0?G<-g<Df-LbxV9bZdDFfG8Wf*DoZZ?OTHMMaT>r&G zE>4?=Z{PMe7C-EaW?XGKt0Zi(`1=DMpR;$@YtA@%^6mM6<f`!Vf%j?;mh$rmo_M)S z_y480o9?P}WEIT&yJx=d(>vvETmHSg{psoPo2vv(+5VJ;x*t1GE>m!B%hM}8Wrw&v zrb%7b)w_KzgkRWc@v1Enmrm&DzWdN@s&g$mw%$bKSJM?&@i_He9v^NBzc}=Oq0h_0 z>WFFP<=Nk+Y~(#^Af40tKK%NM#3`>o@0CcFbxI3hjkYlNHTkf5bIAX4JsH!0{F40> z7I=KwX3TbTNothw0o4#6_wAy4)@{$ZB(vst$IP}DE9R`%5_9<BoF`dOl+a(b^QP1C zLyPCC*>k<BuhQ07d|_w9l*tEQyg6VyW%9wb8E&mXetL1w&P~kY;`MW8Q@EGFtNf<> zeCg!byRA2~uuP3uuD4qD{hHA4=Tam~gDk}Tgca>hcKa|hiW*65GS>U)dE&vF2^v>d z1if0nv!*_JO8WD{hiAORp0AEc-)M4w&rYA1%jf3G%$n#vy*r{_*Y94>a|>?UPsJ%` zkBe?8K3eL*9NKiu{`fXd)${5`0s=W_Gw<GhAMLwju9EuUtEoR_OS|_q@3S`GdU3(; z*Z!TKIrgz<??^i+R#&UIUpoA~Rk_0gnTsO5TQjmfTRLtlR9WA0S$8nU?QnZmlIx-A zS|2sPa5DXpNiJ{hboZa_R=@v|j+KhCw|VgKrLtYBS+`=><<+DG_^@-Y&D1|+(K~T^ zJDXkTj^{gN4m~?qDEqKx@@(!Id$ydq`Lnl3+WmFW&%pHj;JiBr=jBQBOupy6-DBP_ z&$*8C&in8?i_}%i?7#5#QfZLn{(B8o@1vq`cu#E=nCSV^P_3-tR!Zme6=9zB#(a(j z2_^Zru1>PLve?YEn5X?noAV9>re5LOEH`$Ys8}NQ<wZi%8|B?SZz`&D^|<Q}v0X`M z{rFo@j`?lH`X+t{R`=f%cx#_b-<arr?ACz|e;N6nc!W8aK3_ClC`8|Q?;+lb26l!6 zA2+_;X3|x*;g^f5flrM|NaP+7NtMF5{Q4C_$)!8l*E|-R^it++O42RA_|x}xY+CPf z<%DL2tj&>0cY-PzSVfPV6iu&vQDpdi)yCDw?`{j(y?f5Fy*bIId%x~JvdP-2_=<k& z?v>e_N+!G5Pmo}WxX`TpLV9Pc?7F!ZP4|SFUG>@jEGyvED>mOd6*t1_Q_k-0+M%Rp z{Ml73te)pRzw@-ip*Pm6?{!PRz!sb0oS|!N_JZfP%Nwzahu$zRku|WN%(!})(B7KG z^H^#`%7b%$raD_op8KkE{g6+lq(7Hcll0G+@Ljs5veQGg*%}Qbwk|c8zG%yl8P7Lu zUdZC=ro_ACRrBYk9p;-tompLTzxr}DWI3x#IJ>T#zR;t-`IMF0lsz}5POVZ}TAAs= zK56b>zsBhIzor}%F8FSD!>07S;5pSj4(vDAu9H*sjGM=DElT#h4acVKNA!g5eF;4m z_Hy;Yv+=ur{I)r}gWYV#v8Kgmc>T9$r%zmaV~g#HKU$$OM>1xeyQVXh$7xnb;h*;7 z6Z9*NsC-PDCbZP1?Z$(8^OxbO`%hN;Y%&W!m!<Lgz#p^X%u`c89{;@Z)jo}l(`vry zJi27UfA>$2%k!;Vv%g;T_F5%2bMud%JRHS0j-Q>iV9Lf9hg~K41G%1A*M$Wv{@gz$ zMXcndrT*I2=9T5Qr|##pzQeSB3ddxVzA3MaYWp(6!X8v5t+^VvL!+oRtlhU>b;XyP zoM(RKZq<ul6#jJC4xVYg>wU~b?iYW5;2s|`bAtN~Z~opO&Q<wp%v*S;gxJrE{wAV$ zzQ#q6!zFU^`DMH3pW7VX7}lP~o>I`D`0(1z)xFmzsI!+YYiLUr<v5^Lul+(@ul$>^ z_Ub1uCx%8VpViJ0$&0pjJ?mBXr+0q+-1^5Xr>9T-o&QIJsfztkcxmO;n-6`L=^cL` zb#F!O>wjy+yH>xN7<luj@3P=6E%&Ew@+^0|wq4b{C*}0R)a?n!9N5*jFF)bBP}Jwp zZaxnGt&)#_$L<UMmXMRSd++J8U0G6zg0j+j%w;}D7XLXrcXQozp2fKf?wmgmcUAOu z()IwikowsVAK!b{kg8#pYx^?p)Glf5Q)`(Ru8UP>%%A(JR&HT<n||t~64lh7vf)8D zf1H@QrP6Dm*xr*5>b>_Z`@=g~&HnP4lPNAD{I^SzPM<5fnYQfFBel~e`JaA-exKC$ zNUHQ!+|Ic&w=(>S_+>qF{8Sd)J#};K%;$e?4v0CKs_l1KYb&uXzSP{`T=mexI-w{1 zj&t|DnJU@z<7mdlJ}#NhEC25Oe8Mx4UunL|T$`4w+q^Hd81A`kd+pEJ{S31{CaOZZ zagA(h^+qNJsMmo+o$gcJ&U^Q{_AB;vN?lb<&2bVQJSoqYlsk(3{c!f!<^r>ye`UOu zYORd=I^*3oUiE`#T*FtYbWJ+p9Q5SNXP3#x>}NF{the1;bM*H2AAdiez5iZrx&6PJ zzDq(cbuK&p+hxfX^UJ=oVrI$3|NrNjT`w=M^mzT^_SveHpV;;<G2Q!M{j}##xubse z&7UaNE%tfMR@0^PZGK<>DQkOHyJ}+(_p^g7`lT_;mONeCGqEyf%Kd{j-!Iv7{7vKg z`P$>wtBA_S0mr{id9wSbV7}e@-}3$S2gR0ZYMj4!if`rtt)m8adp@0<D*I@6bd^== z+^?4|Yt?VdGdlGmV3+0b;_Y?kw<Z})-eh=A`rJYt`^|svY%Ja5u<+mV<3IoW|MmCJ zhxHddi#xn#zYVlr$UjT()Mu}J|2PZQRL#5<Gp4uCzWyyo`{s%#e~*_L<(6Gix&P+L z<W!FH{mnb`uT?zN@!!6rXL02>@%ZU~j8|-U{_?(Xqb<9dXKTI3<?AP1rq0xRZ|_?_ zyG}#;@}%|68=PiM|F$UBdCu0&PBxmpQ>@uu-1XYK=Y8P%#X>Jy&fl<HpX2r7`J|cW z1>`km9X!XV)bW@__k;1t7azHmH#xf6+_|<d%AVIFD)otql;w-eJjGLz^Jbl6=ns|t zVV86yLUb;}VxAM+yJt#-G1l*#DPX95bK)`erwX@TD{Z*yqA!us8pzF5mHxXo?BI!i z?FZT=9)w)E;JTivIMnr^Rd)IxQ{#U|rzbyHxcRC24v9TAHy<TsT812a()j(K@If8N z+??*zLjj3%j30kJd3KqC^Y3iN`j@lM9xjf}NY4n0yY`@DGIM;HUF?Lqqdglu>RGt_ zPfz^j^kl)GJjshu^Nk9#OT|`;-Zx;95Rhr;n7zl*_@AtlK-iggv$xsEz0&h2zm~lF zkJ4>XwwszvHy2ohm7Uz<YU}*s;Rb_rQOA}>ADIo8wrnZ6ab?vlBO!+Dwg>5{+6L?j zH=4v>YFb=77Z_Fce1-B}=9so!d~!ME_x$TM^mndmH0&)ie00*!>0HRPvlHe_-pY92 z^m0?Eb8?H`k)Qr^D>?N2UY?MQ&EV13+tt%<Eztb=2oq~k+Ohc$?A}Ov1PN~bW}*D( z6H8&??psW2SlHMsY|k9vUKQocI-M=*^R5RM-yChd$sCh#D@Rbf-cUPWOa3E)RB`ob z@(il4>$8_-Z91%&Gr8?V>isjTGY+TbZkhk0`AwFx{w)cqT$8R98H?>NxN$v7b9{5c zX_mw+r-D6;OtUY~TeZe{q0!e1?XNrn_cTQ8k}CSEvoy1OTB^>Ii>%)xrA|gFzw}YQ zyk_EauFQ3sOKc6kPyag6-d8^V<cg$}2UD-_)fHmdvee;vz3PcWkB<M#dA=-|bCY1v zTRl&KT~hMDBE2r}WU&lf_(9uCpjqa<R{%F-9FO_AHF;YNo%4nL1XMZ{oI=j4DBM$d z|2@Lt{)<1mD{l0+Zt;{AcK^n%XK}o?(%oXg{P$%l?-?g>{Ehw-EoJqCXZ63c+>0M3 z3bw9%S;li+dbPzOj;r-2<vv{6${S=Qf43tyvuxF?SJATqS#RyQs$VBl(OFP-&}Zrt z!&HWi&vQ3SIrit+m7ur-Edsx+xo;$D{Cl)zpRm7@jzsYCm&KPg=eewwxvXmA7{2V@ zyR*K}D<(z!>^hoWkyNj2!x{cj<xf$C(T8lQrlV^PZ@g5ZQ)bS&_Swqdz4h%o_xEHd zS%_VC+Ie(&mm^D|f27A9YvWR7znWLc9@6hQYn(V=>N!sQue)%?&TvbYMH?EsAI9=( zKfWWOFT=C{zsw#3k&E}Y&x)CS?!zGoUdb=vADni1@!UFRWIp#%t08B!*!`#V2gHy6 zOYm;8zdo@b)cwWnsV!EjlF2NO*nEH2FMJbv`Oafyt8Erv>-c}yd)WSEzbec$`^i6( z)yx0SsIuB&zRdXf)|Vl+vNpoSC+B#FuiiO-sma{c%gZn5{rkIW`Pnzm1y3)nI3={G z^O-i2@^sB#sdZA?g4Rb*&Wn|Kd(Ye2%iZaIrF`7FIu$q5)fUb@EjL|RH?S9Rd;jb^ zQEyQ1)%t6NL>1%A*?vb2GE)yNt>$~#<yyY^jPLWL84spR{Jmb_@CVMM4%I-3?uAza zZ(Da;^j)0uMeLmA>0~p;zE7JcetBn5nZod3UpL1?nfE?wjvKdyA9`NX%N`NOG-cx% zYu<NnBc9#2xG<?P>-?u+nHN=W{$1KAy?DWqf*p@0y^yYdrTE1$tS(vkrkQs5=R<uz zUT@6|cfGdpfLe0D5QCIjbJ9zxE$^3W`tH_jNX^+d`P*K#D$o5%Q&axy-+n*&Z7x^C z)*o_37n#cwc3%6m(bs%h3PZ)5;K^S<-9NwIcj=*Nx~qeHy#4spmwvU4pVu!`Vc^bD zko|mdWaZ?D2%*I>7WJFfXDgnb<+0XO;*+X6gZWaGVzJAjzk>7+p0~`jW{Q6PY3<dt z%uP>!&OD>0yP@z(;@Zs;hhE5tXw48wyy~iK5Gycus&V(c>C@&GHI*(fKNX^Uzlv|} z2bC3KC71PAnYO4+cKzRz&L*-mMrp$b9aG^)Y4V@<@V%+%%afUIVIi+ue?GaR&EDnC z$2pH0()~WT#GKwND*kiI)6_dNp87gAY_>gpPX7_>!_7~RsH|8ku$s9vRlxjp#)Nq7 zwXu7rUXJ&Y*Kj|%`X#&Y?)8xq-_<_z6;Tf_XuWbK*yzdc&s!`H-Flvzx1q+;?`~wp zvM<>xmn!%79aydL^0188`9)tZy(<o{kDV6XS2R<!??>g$?;#9sQGa>t<HDmv-z_<y zBtIiUNHbKUV{3^vYyQ#%#=4@CqW8xHHZFaa9o#FZAC~-NY2Tu&9e2flw!D(PCK)j! zV*V1D(@*EctG8!_b<NH?J&$=qAB&3YvZZr=++O&F$5MOixxlDz&m!E69!<~ndlg*U z(_C-xZdbpc-ppFrikxrUv;Dt6VmOg|sP)X2?hfwQ>IM-B!3YccgK2MW3QlUj!gXX_ z`VF7rnvT~u;(v(T{UGx5lV;mn&9L_cH3#zx=H&iYOgy5RVi#%kOkMNXTa{y?DVD;L z$JQ_|%vUz*Q5UN&Q!_ey!+2t%*U_JmuFGaVi%7Xvzj43zM9J>1AFuCto!Tn#sQHmm zkD}0@#UZaGl-{=q%w?W07GAyXmfb3;Rqy`oJIq)AL`}^w`qs`xd)k;c^X7U@jyrn9 zY}r=Rnj5c|g=w~PUsZYaH|tE!-RB9Zv9k*<ebN=a9$Qct-L^NrFZam3XS*yocEoBe zShDK&ZCfMzKM(C$X2;FV0JX+MrpKf)sxX-vO=fJAs#h>EHL*ZG0Q6{dWch8kS+(!u z8{LbatqAySr0$-+XN$1^oGtxtdnRA|$n5H9v|KgNIY=_S?(dyw22ULpRsYK$n^_j@ zJGA{y{z_I?RqjZQ;3FX#@fn@o8a;ijU9DT!1*|N%*BJ1FW0%&VBa`(e9Xl%GwWxnv zYkiPhNXhj#Pq|ZX>WZ9t*m!3TZ>w7I7vl*Mi?w^0;xiTbdJdkEDA=~kKy1xk9iB+{ zn3F+^WObNQW^+t?GyTA&*N3z=^eo$uu#jn8LhgYp4{t8o-|Ued{P5$OX8nZz&VXx& zFFi>SOi4`jVvWBl(4=>bCA@`&<AAwSi}$96Q)UkJ89c4MiXwsns;b-*3QAp#T7!dx zykn9l#ym{$n3(i%4Y%v2Ba;@KJj7ZMDwMC%Kd(aBaSc;eT%&6IcehW+9<k|fzUs`A z=ku`k2=5%$Vg{>}-yE7;e%wa)ZzySSwiU!&VCeb5mi<ywB1<;<!g0rRR`G{zx)rtu zj&sRzU0iHjA0s04CiH{vnXZGHf^i3X^%rrzk?GDzl&*<$$>^8n?O|BL>N0J?L#Yp3 zaowB@TI?HCY?gnR9?~?=j?s=yXwF2Pn@kU$NHks))AV@3@Hn{1v1^ytt7Qx_4lWBa z71-A>NIP{}Sg}l3y6RkecEXfE!xH93XN?SJ1C_^@ghF{^>Nh7EbZnecc(lIvL*RwB z+!E(6K78Aj=47{th-puMzhHlnWCf?z{R;sC<wwGu))jS@v+x-5ZS;{|Uvd2V4QFkq za|{=EwB|0!IxVtwkF%e_{RhD(uPowmj;Q@+Y^u<3OJKQ!p4oCa%ji=)PbMX68l=h= zv9R2;Ome8>Tan&*OSs<D-FN2UuDUCB0ovPG!+KmK4_-2!BDjL_ZS$fpf<Il=EN$DE z8tt|?xPM`^*s*#w=T4R5T1Uzy%VsI&q#SE-)L1xi*;xY_nF${{n3lfUl`7F`bzEby z$7O4`#d#Vkdha5_a`q)VHlN+$y+>L6u+`BY#y)1g^Cg;DuIt1dQ<`K_Z)hUsks)S~ zto(FRcd$;vlSex5PaI{;wV0C0l)Yt<>^xTAi+ty^Ru&1VdMWQ;pxJB1?&h&z%Y+V< zoi0H$G}MeXz06(VzW?LhDaq4!sT@n*W^{48+4Q7E9`_?Nf7pNQ+vv3Z*{S6+$}=<j zo6cGvQ`Q#cY2Q0@Rq>P!zLO7SrIyzB33-`pv6_@sbS|hbasG)t+rP-QOJqlOXH4Dd z@$(Gl1fzK?*PafXblc{AQFPL}pjp>tBu?Bk)<1c&Dr-V1-;o)q7ulYfY`(~LY~|^x z?1c+6r}lnWoF;a|rOr}$sruDRRS(wGo=f`?W_)^1vWem87=>^1DpWIm-YtLn`RLcA zpYQ7PtX2oSN%^>~X6KIB#ebJ-#r*Brbb9vX%b(5`8CHj{J%7qvKW^Il)#qP-x_b7@ zs;ap7c~_^0%lrHPXJUK*f5+-m%eQauF8%rLU(MO&*FWE`pK@O8baz(evB2m$oqCP< zsprp!{QV%Zey{fa_&xDc^yjTvb+c;Uj=$my)dl{F`KMp3=it7xr~A;eIX+D@A2y4w z=si9yds|Vkkl@C5YlSCCrcG`*yk|PoK8r~=ZZ3a$cUKgb>4vaip6ta!YjW;YEbPl( z9iY2WIyqHflCV}X%cE1-x;X{z(^vm45}bah>fGchA2>qv7dsT%8l7sMQ6!gSQ9Id< z<%y~r|HCzwoAy?97_-%9+&FFM&C(-tB4lES&8|C&=fXJo{%g21g-WVAEtn!7`%a;A zPM?6wPK6{3))N{2$NlbYnA%<0<S|J&iraBThay+s`Ewo%4^Mo2>dWI(YF;Ok+aIjC z<f)!yv#tKD!MdCeO6yCO2u=F@w?*N@vlmV5jj6U$pI<y{J;;&LSRU~0M7_gp#tUpo z24517DKag8b53brU+mnw4myjvlnr!5=e$pvr?sKTVpGI@@oWLViIdNWuq@vbv4(4P zU##k3hc)GgZrG>`%~74zk@d81u1lf9H7_;Z={!xBl^)xuF}ysHblG7|lf=2LYtDwZ zOrCI@FGcltQmIqwvrp{j`?TwOj=amL|J?KTf_A%U^U{mUe!beUy>X+&>6wqc<wSUW zVqG6y(r`VvSJ0<2#bV!`gBdNYjSs%{ik~ai>YerS(Z{E^8e@8P#jt7KIGwuFai!1k z>95&}3?-6GXSv58KRVrU>m7?950^588^>4cHkA4<G*kQg>6_^Pc{Ne%--rDVo3=UC zH1>Rb{ra@-*|U$n_0pLZ{`6~2*xhxjLM#6rKlyge7N=>^n{z)YdE_lgJ)b1hkbcfe zCQbg;Yw3U2&%b_uf9>+uUC|y-zElK0_0GF=wS30j6YI6>)Jv6DFTLb8(LVgoxf-9~ zyU(sAxLyc+e?D${T*&m#w|^#BoqsA>?!4Dc^!W*y4G~A`ZH^?z3GKD(b1t*ka^UB3 z!Jq0=rB3`0W4z2aIe+EJ`4KAn7Ojw-!LRb%ymSAws_Ln~{%01ImsW1yW99z*rPSoj zw?DalwRW4n{l5Kb>nnTbtuuJAhI@X_&zh?5&Zhf+wJgs#^?d#^?-Nx)>;9)39^75J zU%0hTfBo|C)rZo&=h;Tr*VtKKTxfA}_a(2_N)}TjFU6f(zglVK+N<{d`Kvy??bomS z`Qc0a{QqCfrmVjf%v0f?zy5;%wD;Gpo~;*Cyc*i8AMmQEZhM^0>3Hd@YXSrQocXD8 z$6e|}&aPEAwjciSv}R}2Wu^l+A0K(|9P;98$@S!5Yt4wM@5T4uIhWqe{bF5l{q?nW zPuqVU{dKu({<KZba_kSfh0bZ|8(x||z593S&K+w{UHwzM^WT;=T8E<l<!`N#NY<9_ zS?W{UQ!D=Xdj0Qy{`K>Oxm3S5y^&`(+TUaQ$iMwSXWr}j6aRA$814NTzrE#8tv**U z%iQRV`}`cdx$4-jyb)Z>v2*@Ig%(e~>MQy6)o%s-_ANBe{du>|x?K3P+LZM_%bAxn zpVD*6k#XsG?dGxNv7nHfl1iOt%N@HXHJeZBC;#3TzG;4ffBe5c-+0gbc{%m9#ebKZ z$NqZS9s4VI;aFVX*2?z^Az2er|E#*jII;FvKuD3wMGMZKOfveXXSZ*(37j3(TAC?; zI!>v!;&c7O<@e)Ks}FNb3$)dm8gpWyq|3jUGfyUL^X!}OeYr1R#bo=XMu(QZKc4SC zQ|w0&|H1NjraB4c|J_YL+CNQaUua$xd^qP#^7^X6KhN%NHutYT@$B2G8+?Bj$cvt6 zI}oMAztcRY^|5%7mD2S-ktGitxthN{h-}{Dn(DQ4-Hto_a`hK0#qU0nz3bn#Zjtrz zmWA;l`kITR%e$pcbDEyvbg+Cj?PiVT?sa+Z)?fd;`?bBCA7A(!6}@LaXBxWP{TQHc z{qNW3+1LH+TOPizlRnM&dqty~nr@Kz6~6an8~6?19{<%C5T3kn-J|IVR(tna#rviI zUvbS_==A58pB`!kF>UyBq25!%xga;8RR2r-|Gz(Pr{7P1?CyNuZdKcC3B#IajyugI z%3QWEmNB=K?w{gq&$m&IJ9;no?Z-NC*XOS~x@p(TcmFi=mMf|7e6pNB<IpA3MO!3T z6_!}O(-L&5|9ksqy`$dldmltvf49w_zI%5QS7^Vy;GC!X%=XWDJhOdX!vxRc^|zXG zEf=avxrS-w8A%^p9IbUglA}7=@RMY5&)+4@(wy~X|8xa%(uG~K;_F=te@^Lr@YCF7 zsexB*=%3QRjehFtA+-;jEQBYrNL<-w-Rgcb;CGvK*xWta{g`rlZvRn}6yS(Zh>|;S zS>ku^e>Q7H{<ZsWKD?hE%)<FD{W8<nUG<q+Qcu=7{@CUD<MQQSPp^NT{j;j{+moY7 zWlY`EUZ0#Co_(xwUX6}rM@fdwY*yh}dcty(Z`+>Y?ALfZ&-44*blX7FDEZxsvR7rY zY=4r+VRL&+a<cj=woR2~!t;u6+5YDAw|+bCa7+5UZRal>x@o9u=5=JA(1n9reHL;h ze)r&gRR3-w*A|hsn){c`{VI5}UFv3Sv3ph)>LDzrq%!;NN(nicH(L&{-YcDzu<rX@ zu^W$^m$N?mvBQ07n9r82zY6O%S_PN3o@uxHeD(FSS>Fn7)oP_ZntMlA{JHvN>vPK6 z-QMjgu)P|_U%_@alX1zyZq@+aSe=IO6$@W@K9StMu<f>Az4&L*wB+aCb$GXKTkYTd z)KgE}I`@0|bHh`8E`Mf+uD;sx{GVCN|9$iCt$UyE7q&)Tc;3uA0h<<ddoPI$xqIyN zOCIADKi^($xqsPuNtB`7rQ7)-?@GdTpLchAu77oNo$cFsHcs0Fi~G%&owoP8cKYSp zS4A85%)EBYZU4(lE0@@))?4Jb%N*OWT=t^G<#}aCQuZD+Gg<j}>BEyx|GcV;?3A2y zZrcsRm3M<x?}{H5c35?<`L&tz%9P({)r<=drx~qWD50@9$YKs}^_BIPwOg#_E?T?( z>$h|}72A}K(wo=3Kb$N2SNZ7)pEF1H2eE$Jxg~pdI$b(zBE8~u?1E=+JJ*?q)X#Fa zy!h4b)HKWUJiJ#|uB=+@eB<SYg)gd_msFYw$G(>}IbXKuwQlpXo4yr772n^e?}}r{ zXU$l8?8}W67q2sUt(azbVWHfL*X}C<*0aBM&sY#872G)O&=mROPmZ5_$1v^fO9Az$ z?L3~svFjg{<ug30QoLgKYvpUzfZri%{Fddj>JuFHwpF;SDEV^w;quqL^J`x1+qdl3 zs_$3Nz5Shc$<}M*)@@gt-Pc>sV)B{0%a`HGiLzk3o|Dbb?wUCymTdQZ)|VD@dY440 zALF;HYj%H_Q`B!-V7Bi*#}eNc=7;<)Z#2HHAot<jHpiZ+>{C*8v(BIWu5nt=M)h9W zoZy?Y;-p)z)+cV7H!nWicm1tX=aeGMKX2<x*jxVTTBP}dm&+vG#8!Vz`(nK_#xLD^ zuXX;5w5;oqKVPKPx#vmnon$|JsVZ)*+OC<ea#?-Pi_e(<BJJ4r@P97mpZ7E0dbzjw zP+5Y!$yz_D;OklcJ}lXHEm-C4t<D=$%5P5j>>Jm*?6ukcbFU%;>VLk@uh$ovcF=IX z|G_ICzy165>v8<KSC!7)ZvvX#GB15{cq=iJ-RN@P=9`l~zg&H2rb@zLjYw;`zjDgA zMK;FCs=KQTuq=MEz(pqf>@Ed^kUq&}&O%kEYZ@}_Hf;}G%lAv{bHk%M7hZjMk+3Lg z&g+-Ov)4@d5M6(z`DfiZW~u%0^*>F#$}~CFA3r&*eTLgfvt`XGk6Y#Xg`eLl*fu9{ zvTuRJ8S|9T@ULQXk2~~8FPG;07JbC|f9?^3XFneAdlGl?$8DXQ=<=I(rb$2NxSgC8 z{d>2D^pVafy3=_Mb(|@$v<|paeK$!is&Scdv3Rteq|tQ87kl~cel9z`u=?aPgPZd8 zDziUI<nOM!zxvb-_7^WVmYE)$u&1ER#M(EDHR^NilBGKip4d`*^PTc;1Fv(-UtZF< zsU-2`$89y1f16UK=okv#5<kW(*?Q}iE#J-dm3A^2zb+Q;Xn(`^`?4%waQ%<B+pND& zi01sp@LBDDz}6<a3G*cGx~=><U8%5S$_5Fka^~0d4LzCBr{}JV?={s^>zgJ!@9~zr zIX<tyTHKsD?WXf4Bd5OUHq2*zrPRHZlkUvEXKLHV?85U?Q&ys-$0N;V`%<xsJ=2Tw zUGIo%SzpX5X?Wds%3<??%^%BZjG6>b^<UTdr}1>cn{xtN(+ffun)XZeywTAqo3e_z zVn*%ZBj28;xYw&E&T8lXw#rO~lkMI${xh03{K@hSF<TFn+@EsjO<Ki_+WjlSUWfiW z`Td*m+uuKb?fUg@)2=;JE=g(D9+`hAzSW-R?Y)QjZTr3L=F9y`d@}pxr1-qA&sN9H z-<!SJnD;dIwz+b@=BEE!HLL#luAeo#YAg2bI6uE@`=Zx#pMQG(>a$h-|3{_!XKtG& zyP`Yq%R$?`RD-j{hxV?$?ZMrkn)9yIcYW#lg<RjhJb16M{l<%JP2U&-dgZryEs5G$ zvtBASG`Z!L#zmWWlfO|4!IhV8q$juRw6Xo6d}iLI{ApL;|J;7`cc8DXYKd~i;t827 z%a`r7vi%Tzz4x&1?T6dm7ThhbSUjsfr};Hs#eQ~|Zz+rav%OfmkN3sR-_v=|nr!h^ z*`lOoKY6{S?T_yBx;xgb{o;{kb(1O7T<*TI&5~oEw`HF&ODWanIyUFx@6HVWi)>l< zuUYjutev%E^44ir^0<p%9Q~B6BU5<#o9*VtI+=gZ$`?d0He2;y{y=c$boenq)2-$) zaxq#?KIp2-Y+`9NeL*Fo5~niT^j*B6PPZ3NKUK*nRev-8yRYqvo8I@Q?UcW=GH=zr z_}kI(Ri$5^@9LZs5?X4>(fa;VP|3xdVvSw-M~|+)`To!8hu6=akLRzv7&G}t;oW`V z{rT&6A6a#3zQxa~_j|lrzu*2-C;KP${+y_-5iVY5>v~$(JJ*NvuU=*Q%m4E3_q9)d z@3LIozTH>u-jnU?s(rtU-{;Zln|3-t&oSy|*uPt%OW$`td$ZWp#?E`|jo$M{pM1Z@ z-?5okW;3<EtIlfPn&XcP=ct}`nC&3u6`Z8Gq?2=PM`njs*o&DFY;QZJZ>VB4ub;P2 z*HCfJg%X2|lVt)?YXqW9&Pmru3NxiP&JnN*uA6^wbBNUf<E6V3-Q2Pk-Qrvr<y~%L zeCFDs%bW`@8$@^eska#Qeiloe)fu@(A}wX+3}L64)3h`$U*b<~^Njve;<RWopI-@A zr{5Nfk37?5^ekhFG>Wx7{(0|sol^Jh{(l#xo4z|U=bSn0bn=<cYSX*y^4A?JU;i$2 zJiJsetp3)eT_5GYdtEOJ4*T(k^}}P{EAZ&b1+nszvbc;53_zFnn4k>Z#ZHRPZZ;4( zdjGFT<sFHm|8F&MglTiUHp}9^oxCbs{ffp)yDzu>i=E`fJRVFhe&<_Me0IwTu8Y2B z{!DTXy>w)j-<3)44(n(qg=bkO-r!rkJL}StYpb3wPF&`0SNCDwjGwhWm*zit`?o@> zN-rn9cv0ED`of(%=M-Bfn3@*Mmsd7)FP=EH|F=u6;;cs3i3exwY$^TjX?Mdrh(Ek4 z_PbrG?<Qg0>YYoL-qL(txF^s*DQTMEajm(%uS1=EzfTNT*_m;&V@>K2om0~VrBz<l z?|Q8C=2po5m~~~=v2Uh{-uUQs&T-;%%_7+hyNu;0uFfjUbF{3Vqi{axNs7YURQ4jl z=?zR7)fdF3G<{Q;tI8}Z^3zO%{UM8Z{s&vvg{)4~1fm*dxAL8Ek6~!Kd{yezqsMO< z{rDXhu4`H9wI+L~SoPaU>61e?PdPn(WmwSJ4gaFmU);=nY_Kjc>mTEjd+V)00bg8F zl$wYX1%?v^RO(I5Op%9AW2fBCyX7F@aR0C9?-{GQKIE1+w@f(D#<ewbvV+}$8{At( za!$`^|5N+cR#{1ubIIm=cP)+O(x$!r6dTN+_3hI3r}ubYg_wuFU-x#c{#>hF#dlc( z*R0wl)AA?3Qgc_rG+Xhz?;kz7^5(;@U!RYk{vLn6KL72~j71+lo}HU7@B05o-3>Rl z(051P9Zr89qO<4p_xaZk#+IF38QSf-;7X27SbY1xVB0mTzP;Gzn_d6w)YsDDF#h*9 z@2!86AN&2G-a5$;37zTxc5&?8wD!(cZLjO%XK%807yQw=nq*x!tucGm|9R1eH$GnZ zC;H3fZyC0E{D)1V>Z?xKNNV&|h&dUGICEOJhS_*4yfbmSGjq*?JC}F7$UMAL<W>=% zm&&fTj=YwRc{Yx1bJ;e%5vfXAK4-SGkmDL%m1|B(YJx|2yqt?pD1Myd{7ADU-RoWQ ztba2FuBGuN&JCI_lC7*VPsrb<bw%E;#ue)XmD*XvdrNn<ZZLC-P_N%p-n;eL-t0AN zC#aQcEj+0>jU(c?%k?W(YWBW-QA!h<MJMqIif65Tsnfhw^ib60NVaV4mh?lvjVshj z8U_88By3D$6FzKls!%IZpV#SfJovJATU7LkF7=OVDjp>r4fc5D$*MbV7FU$bT7h}f z>NZ~5y@!4GB)$FRyXMAhf1Sw`?eYEQpX~lMIs3w1tj&3~yW&@IzeujIe<0h^06xi# zckJCh6EctZZ2o8`bvpWffAcB+0DGq8nW5(I?2>nHo9*}Wy}fX`a|O2K1wC%S7&U!O zzMJ*fK%n*gUy)rong{>S(q(a$vQD`1M$dQi_dXj>-mN(z&z17`Z#y@kRZ8f`l8bX@ zD*NtOd-_({WUl`^4$4#nJwLatZ~fu3l40umO3XThua>0=efqyF|Cqv^ce6i+U*631 zdey4F`uMtc_uKbvEZkDRYWcI(#;YG6*Sogrsd1D2JLT0bJM{R!zdll%d%ihpJ@e8- z-z~qF7L|Y9lG!e7ub;g?_Vl{V;$KVd$o)C>(5x^1&gQuxA|kE+;)|_}x75f=A6~an zobTGjKcZQCXYW@^xLtSqypfFc+_UMAr+xU5%h$h1N6#kLHZx#SlaPQ?DObHy$}YyK z^Pai-ix#CVkUiIUiDgQ&iIQo@2K6lm<r-aLJw)mnTo|Xgu2{-)w4;W#b5{VH6MwOh z{|iN7+mlUso4H!@Of}k@?lmr$aOj{6mq_D+2`4Ny1e8oysa33<Xxx5X%F>e~vgn89 z_DA1a9z<$Q4De7@U!`W@zleRkr^thFJ<qEjCKtG~oacB2!kWJp_ujexm~Z8u{hwaR zFWIx_X{Mg?*BKhc#d&oP>fZf%p|gI^=06f=3niup|NGAWi}~dyY>{gWI#sV8bz?*9 z)YDmy4Mf_$S90lF^Qi9n#iXbZEjBsPN>=UdGHdg|OAe1&)MLNAJ#M#OJxDg=;qTIQ zoBB-Fhm~EGTX*u0fBCI7e@$=7-pYNhzq~*1@#OIR_FIhgCcRB8mhJqP-*>jsY`xs9 z&+nhTnEdl`|Mcni?f2LJ&sx|1?ctWMvA-|G+<*7~*WcsSm+#u!Th3F9-rs!w^7EVO zNl&K6*2k^;w<D{3dCJBaswel9TgR-sn_iT@ZF%_r+zWEM?OrXst6qNo>Z~bWkN^Dh zu7BTNwVZ7+K^A>V=Cz#Di#LCaz5MQP&cR>zjUspa+dk)KnRVpz#kXJQeZE#wpAz@w zSx;w;XNm*s3Z|(F+^ae)bX0XJc{eGruj*7;l;JXQ!<7wZHqB!Z)|{BA;I_2iwClfU zJD=b@?JLbXRcD$$L|V2rOg^KQ%WXLA1bh0z;t4FhXE_%2G~aMAx~_0bFS4gj$|SE- zNh^1Y<0h}gHJgqtJ1z2L(VI&zHFhUePN|Qzl-#=Jj=<$-LASXqr><^xn(t{`7%bAP z)O={+j0FMlv%<|?r8Uenz9??xC=5Cx7#UzP#YW@G>ac}ruCW<sou4pu&3Sf7aZ}ln zC11C!Uo*??TvM-HZcIQxv0Uo(fJOHN)wf@Mvvc;hxD)z&+aIr9emp$6&m?_eT**mR zu`gS4>gOdZ)~NU1J+dHE&@?en;cVNvZhg6nE*iEoJFWyqPP*uM>PkTO1J=2RVt83Q z&RmSt*wVMI$7%V+seuyG>t|ZUtxnk!wo*U4MDWC+rlJ5=EeF*T0+MW68=pCdcI=Bz zeEL=|!oc}@>xryW=_*f!=lnA65)PG8=`@(jwzvCM<AwT(XFFbqblsbBqDdk&P3Ed5 zSA^B7GX|%^jgI(8u3)(6sl~cz3D*;ckVwmC$y=J22ES<hqc!V`gH(!xtIM^3_cB{= z7^yxIbCKL3vFUT&`xibl63<)s=NAX;o;Ah5zwfZxnaPiZx;VO;Cb73p4!Wy$b)(U| zc@J5o<sRJrz5C~jUHboImxRxXyYbM_X3M{C6XyFrKiK{6A7jkn+cntoj0vd8V{C#_ z-A)S3ZZ;4&4r=nek#Joc8ZEH!D%YV~y|?nJx1PMoY07!g?#u1-PY%h68GJbX|J|SG zdUb)*x4uw+RG)EDYKF&k?sbV%_|G=PJiNx;-`4UyrzoY|Y|E+7-Oj7~-ZC7yUn|Q$ z|Ni>?_Q^6)j?GW~?)|L)RJ1O`$)ZG}s!mH`;p1I7^B%J}>sonkI-`8V{_ND_p7tk` zPCpfmJ9BgQvjx?K%H7@<Z%lr+@QN&(fH3DCo9$0Es*)!iUJ=E%OVs?sri3`lldCG9 z%5nVjUoP#lyX?*Kt7>z^iYo+EOw2{z>8=f%wn$*BL}s#PQB>=#TbE9`=G9LKS`(!3 zHb8r#*OI+UXDEewM5sFHf4mjcG0`(YlXqf3_eJlfb3yLWYlIXZ-d8^3eOH!A<+-Zk z^Wxnx@jj2w?D)UztX$Ojx7+g%@m)K!K>Wk^oGBq{r|b5=TDtfHwm>&kFi-%sI6+5i zX6BSk-_Xb?R&Q)zgc1uAZ)Y7g;AwmRS!CZE3Dx$pn{0|3)XtuW*nV*f|ASjzX&E_> zRm5w5TL!&2%3@SAtuDHK!-~^Ut0%VFpX*?AyQZZp%ac~bbc5AuX|qLQP-mf{jqCYb z0WtQx{T2K=cVzAFy?*xbbAgHNb^X`MC6}kx@BaET<f!K43qhY=rZuW^Ur#NTc6*V1 zS87@+WAei3D-%o1w^dDk#>D^m?)J$Kro6lHD#oPZvd^`+h3vMQG)@%P=q-EIGSMJH z??B;Q#|f_Yil&9$`^2#2kNEew3*TJoihuX)OUmQRi#2?UmdIXgTcLDIDOY*P5*06v zZ(dtoOpEXg+Tvc-)v2{e_fm1olcyeEoW0iPteE!P_GQp}R<q3^w%bkDKi<b{X!*Ro z+4}It^TI(=@3OZZJE!%<-mqih7i^(yK7C?4qYaaV+4S@6j4JhO!`3pNTVc`9al)pZ zC50>4W7FgbEs8x{D;BJ1NM>!1S{}80^|9=$-!?CGUHfg@RlnC4&c6O$#<6Ys?_c}A zf2y5%?&i(v^;`daU0?sULnA!gOGT(sCwAK{eWScTJ1!P4KEx~&F2)sih~ddOP8rn? zN{;tjC0;0fDLd+XH+J5R-P`JOk3Zk@B2E9g$47=Pq1JCDd+h4H9o{vcP&d0++wu6& z^mqBeLK8h6-P`?t`~H8^i{Du?23j+Tv$D8pIf--%AM24ef7!g^#gQ8m79_OR9NJMR z>~0yi{Pgp_iTd9@^LGawZEZdASBd#a_wf_cdnfAm2Tfe9_~~Kb#80w~2kRbMKdle6 ze!8#m_0x}qjT;L;Ex57b$BP|;$xrqjR4gnC4au1?XU}oAHuhgfS=mlJR%T{Oe%kfG z;pZXK)wNH#7b%H;TB`W3abjWPr;Cf9e%f)sp>l(h;NN#QHg^43U>La3F}Zw_VPW#& zxy_G`S=E_W9qf9#Z}D`!UkU#{UHyDqLrCP)+`#&cpBfxm<2@?w%<!96^SM=tf7+)- zY=O-y%U4XiB9WzI+BnO@cj2<2%PU@9;dxb?WoFtw%lqtdv7mcbgt9cZ_C)#p4A5Q~ zdL`@B^eE@GORoh>uk^i=mL<J)?x)3N0gNFEqCTww3qvGC{agbALrg@SH8oVHI;aL| zF1jD1F){gRz2uc1y(g2kmoAFy7Fo1@_ma}emqyp0I$!r(#~vGfl<T8@$&8eRPbNIs zH@o|`*mmvMmFtps&wKsss_xF}?eC;_hnKLI%YR>O%l6gdZQ+IFS?<Z_b#32&pY(m# zmuqd?^{VndubKF5qTE~C_21v!W7<5;@=ki~{PVx^-rT;B@3H^*-}>JN6Z@~t;8N|$ z5!<%HWi9tANn@j|E(;lzJwo%n`dqZil-72++@4%1bLE@Y8c$cNUY#m=t!J-Zeu^sD zGsB)uFUi6~UQ&~9TV!bZjsBO9YFErU&UNGD1CCpK2UX?8WY4aCpTFR2p~v*)1)l}9 zu9j7ldY3T$I>7UxNKom#L4aa?BWJ~w#KX^cEd%e(F>+oUdU}(NHt)=sZ3owE+>|C< z`C+;L+|_@k{M})4rJa8o%VQx~IkW$l=H&O;XzaLrWVK4-wI#wa%(Yt<tmr!)x8Eq) zO>u2}$={3b8@FGRut?I$YV)yXF|D?1Zrs4X$AERumy*{m5vLD0oC$xorQp1_UQPWM z54L+2EI$h){MnbTEdP|Nuj<&E$tx3bIq0Z;Vy2+ZqmMj0PA5oxcikvc)~xWt%UfQK z+5BzBKDPhOl1k@q9eKE2QP?JPWwz`G4&y!T1+5bIliDk$zL2UosMY?rTA|ajIYIQ> z%zcU8Rc!2<lbj=$TJM-U_qv_mbXk|<Jb&8ik9}S-rB#4s-}8={RcU-ut+9WTzKgE5 z)R=gqi!aP{)A|cHZtih^o%OZf>0^J&%0#`jo3wq>Hs6?(d+yq+FIBqYYkNXkSKYm` z@Zc|jvYVSWxz*RbZY}v8d-E>S@0Z*$mp}TSwoB!|_G|_J2lgw!%R)8pmbgv6cO>d; z+UCale`j0N>#Lg|Khb*AiQ7pxZ`uTbWDV<_j-rD$b^n@vEIgd5tkr%m_Q2Ww-zUFv z-}Z3D!Uglz>s!Q>RcxPqGUL?N6E-a(UzIC9d0ct$;o!7lpG3dK>pF~Ia$PDe(XgHC zeQ#^!@scuws?x{YpQo?S4^wx&@;Pg^;L}a4$Nt1H=bzEukut6RY5LQ5rygsWyNaAi z|JY&p`6K&}yU%VKZ2Bd9c;f9E-_C;p3ZFC9I-foCF72YR1k?UQ0@JT$RGhT&`+NOW z^_}gTH}1|g>^}WZ`9i8m#{Q;-8|EE%{*|y%ivO6ROj^s`3$xok)Y!1?{#R{cD?R7p zk-rP~e-T%F&ZE4iM)>G~FIN)k<yNaK-<G$bZF7b6p?%WZ751>1eY(`H?tfFt|D$#H z<^Bl_<qF>wH*=@DtlF_8qE)X~wrie!MMGS}>&90lsj87C{W?~^m@01CW;b4JKK=cH zlC0hlM?vN@U1>H=lV^Qg^8MK3z=~U^B@O<)Nd5dUx+Znu)s)GRTiL%<#^m<hn^1qy zYR{Ty*MF}$!Iiw!d!xnLr)|^PYfG-$9nO^79U-}rpKrm^hu3|o<!a8>#ce8D)~Rz( z<UiB58;W~euW;Dtu-tQX*w9<K?eC`^t#`Yfx9wh@YLN3q@{Vjb8|#C@?9<b2dLOj8 zthyJib@=hV7zZYUPZyah+7CB-ep_>8{d}v?^7?O+t*0&Smyd3KR=888Fzt1i->en8 zzkE>Jb@`KsZp@KN4hN4{i^Vs5OBXtrsCQ`VwRt}CF7M8@wR-gJj^y^we)3LwD&ASA z*BqA);_i4qIq|Tj)Rd@?6SYd(zBf$cT6*C)AM+c<vh!&#>|2lc=<T_xl_aHF{k2U% zTRk?vGh|Up{j`Q;@w)c;ih*p47c5X-G3oeul}l^BEtSexxxLu1=;U{v+|}-1zdCC4 z#`7yx*<00pzA&$+#dc1}yiC)VXL1C!G)jN*|K<2sCh=$SbKye`N1`vKC^9EWym<cG zR!&xW`eec52Q4D>GmSz*-@8|vf7~&R&->K3=O05)Uel`m`md&b%k~-8+rFQeH~Ee4 zmw#s>U;K4^$o*OV_h+%S*CriJdu1~7W=)rq;2hP-X{q;ARLmvR>OZskD6Y#<S|{_@ zDPrxXme&{F*1k~tD(017{J20wz4x0i+vTrWxBc?;=1%Al$+YRqmDWAy<95p>a?Ruf z#X14qtJ~_=EL>{$R_}+a(${)BPivWTj~mq3>KzWNWSm-WI(?^SEssg0*!vC6;R1@) zJ+fgpZ2cYcC&lc29Ouo?z4Z`>TKMMh@B?qpIv#T|t8t#CG-3VSJ$mKVuiMp?Z0_za zID9d{u1cNj!U-Xrg`yW@ioWeSqPpqBq|)okJ7=8U{?+$QXhd&<K+j=j!L*;g^(6sZ zo0fjC+_~H9+vzoIiw_?1oPWe5)>ZV4=ZuboUsHeV>T%k)hHs_+hg~tN&mDO-Q#VY` zohP+sE92+q+5K^QGOWtJuhYCR{r67aLlwzVtv^p+yt^za<Y=R`u4rwck?ILYrXx%H z->jI+W~XTKL9W8{IcHSRRX(pJ>GikD9=%Phj}~)TT2K{a`)}TjxdvSmYige!aZl$G zd2Jc<_)F<=UH*ft*KW9)Wt22(PdH(baO@#(NtA$Ns_mwa8y3pevD}Ie(})&d?Q-68 zp2M?voh|!5Pm;}i#Q0N1c-yK2vMTfB4;$#H&n)1*Hfinui!0e4+N;RU$p1gLWKQUg z6L0E_OReh<s(L7$<y?N^jJobqcF&iF*5;phe(l(@&gQ^_!%fyxn1pU~O;imJTj->D zr>JT=*UBk2bq)I64;zYiO*m(5d+Fhv?<x;Iacg{F-MDEB%iA>jh1y*g86VAbe=+q# z$WxWJTgE>7mU!*Y=Wg${OnUg_{w+THf3rXK>Bcqx)8m`{KdJtW-(%~XZyBmODm;61 zi&`p{eZE;8l^t9?L)LNLbLm|g9l!N5yH57|esEqG{j;D|OGo>rZ++jpl$o#V+y1`X zx;Xv3h}LzhL;wEoarL?-{r{VY%Z1BJORvVWxmYV-3R^k-fz-nVKXw>3dF(Wtdv;Zs zpGt_7O2Fl^fH(1l0&f%d*Vi)dFkkRb_~N~Mf!bS%Zx*b5@4md~|MJxT)(d1yQ#Snd z<JQUhn8RXuM){XFU(w6=OXhH#$*<awaCMXGE7jK)_V?HDZcg#;UG2B_(KXq8pM3}a zZGM-PE4co=fl9{q-MZIR_>RWj_;6xR?ZrK=i%qj`aRwY#Z&|9bDRrj&+P`wE>ILUi zoO;-(>%(=(+3lReH~D|9Z_Zo1oM63lGn?fc$^Sb)e3<C0&S@(Xb#ftp!s(b9&E6jz z<@ZSGAJoo!^fQ39wLd{gAkkvYl$i|$0^bg53$ob#Zd+map>Zn5da3sbkxIEyZx%&8 z+HKIjN3*elZQ0q3W5FMLB85Ms*lexT>uIn57=Jras(o+Hnd*!=GQlriKIacSo$s)) z(^z)1!tRDQcH!>@HubeIUTSx8u?^lYymIHyL)*XPl_bp8a-Tl!n5r7<JDGLG-aRL~ zcvd;P?)h@ypjGib#(irumZ@9~+#w_WP$Txng9RPeuBvPi?O%9fVSAgSq~^o5Jp!i> zoDeksC{fQh``<Jz1t~Yrgg@QU1}(>H<nzA@={(-RF5>Jj^-FB+jQ0n4<}GefEo)!# zS|#tiQbect&o#Z=oR6e}xSal-*}y&b<0hX?55KsEoN+2>-*(mTAIJA&Nv=t8byDKt zZD*buotPvdBDc=!=svRtdACoj+FZEk)Ay9AD{gL#5ubBzM*RfCwH?vF3K+k%cuAVr zGH&nQz9VMy#TnY#L5o%NCi-1jxWq+nH~-w$`^OI&-AR_`Ymux_nI4d+5*gq(T}){D zUsLlR6Hh*5ogwi;kh{_4SO1eT?NXK1LN8TJy{;<F)t&mk<XY?<;qX%hk4@e@dwn)F zeW8qsx30_57|Yl^m!(hZZFcOh;&|`8;SBRSr5D=2q<-ykNHP5!uqi&j<6+uG!>U>y zdvBrS3-6!HUHZ-2_Lr~1FR<>XN5z|h*8+~e+z$NHbvV6h!cT$g8{A~V5--W6*)Q*2 z6_7gb+>EGm`u~D>F13fv$eaF9ku6PAYEKpC^J@Q?8S|WZBK?*hQEvTp;adHth<i&k zyDy&#n54%(dC{(otqX3;hc)XTvQ{goKYH^IhiwtZ{p%05b{ZUUQ)K5)ZIPZ^lHc^? zo0<HU?xWe0K0J{$_Wqa>QMWMh{6=M)IPWPT?3y0CEtcljYoslioh-aqdHaTZ<q2}u zeG9~QObdIWGUap7&wmk9X1H0k2R+)AR<D||Ab-={tnYi+YJ(T7@69>reM4!Ey2r7{ z7pjgbiCE0{K6`8GL`7$f<8zKp%@<kzRLb<{8k0jwCQ)Z=E^l16Y4e-4dw!J8HZq#> z@y~|s7Z(UbN(D)7iAh_>I(1|E%Pe<}RjT{%><$S(>-m{4<c)oiZ(IBJnKP`GFFfey z+&nj8U48Z8^L;wI9Zeb+Uzcg>c=y&b>TKXzW`3gzu{lEV`jwR;RVNde`y8Sz=eT;; zznoH*ZdJ5MBu2%6S6=+MsQ4nUZ(4ho^T<B==#i-Yc=9H;?@tQkJKF6`c7*0cx(K{> z>zeXo>E>meOy^BJzbRxVUAa@@ll$z8`P>@WYctndYsu8>Oxsga^QKBKJkMa!-y>&J zk|qXx6`uJ<_e8_?m=-rBk%OhTrXOClW8&0D6`wb)I=yNAJ|nrEC3>ZoBlUJ(S#Um8 zH!ZlcQ~zgF&KYO7$vXb|9lDQRJ^MN1`exw|5vp;9>l07siPqP}2LD=o#Czq`Szc44 z9jjW60?ev5nU%b{qg=n-ykMJ&?5V`frngdb=i7L$IqhP#*5_yOgvjHX`SojVpFd=+ zpLaMS>D}&@jQRJ3P5&@Vt}hULVlZK+NZ|B{Q$Me>NB{YBr-u8_=f0DEGUu$zcH5cN z*-wxAF#m7z%UemMdf_kR(>fBjCrKV^HV<<PIsUOU@%Sda)pz+a&ZXx}uFvH=!F6NX zt{0cm&aJsPYtzk=ShsESt}k7()@!<|U5E3Xb=~S55$BrI^?1rfwlgjLz@%XrFwdom zf6_UzfNc9^LZQDUJ?tB#c^)nOq9%Il$a1eq0Zy)L>T~BN+xje7x#i(HM;_zMH3v8n zKUYOo*O^>e+J3?C9!uN$M8S($%6C82a|OihJQL~qerrv_{(F-y$GLfO%6<`HTdUL> z;y2N2Rhpi1MBnwop!ieQ?Q2p^^6Roz=vcl}d+SwO_8_cIHhN$D>|N8ZZ`rPKDQ*hy zO|KtpC*x8$^d2o?D|PfS@k;;5+2Zdb)3kv%NN(QEyA@6UUvxeFq%1j2TH<9~7R#r3 zpX%rR%KSWe@BF)umrVIpY|>wGuyBh?&Bx6gQnI2~cVGQ`e%{+A;kucVe5(U_*`s|P zZTsbS)NRG|18Hk_q^(~ZE!?(RUi4O@$==$~Mfn|bM0S}Os?9as-E@2L#Ym%w-njX5 z&!(?h{P^#U9Zxnz+pLIIsV_?wo@Zew|1PFvmeZnpH|rP9`kugTyQS{;+&}z*FWqBi z{`C6!j&J_Eo&1TqN(GIH_pM8oE<Rkl>*cK<TJO5~SLeq~JE&r_Bg0VcfvuA9?OBaG zr0NUfW{E1!ygI`><LSSj)hjyoPL$te$ePQ=|K#zaq*6hvt#*#<ukK9E3@n?ZbMfQ{ z`Ag@y!q0v>7iFTCQ{VS>m-+np3(cQcJXm`9vqo;G+q7GM^uDy-{9nQM_crUn{HCYw z{xA4GrA%<2ppo6$W8C8#)K#YadFP!q22M}7zb4tVw$*)@7IAC!k{21do*QSI{CIR+ zTz|`n1IbDO6%ik_d=IGUDQ9~JEc(7v^{<icG8ygJ`CD%J?78y%+&pFV`uq(+Zx=g% zo~F<FC2nJj`qR|i7Phi4%T5|un|vwH&p0P@|IRI6SBpFerKBX4hY#A<PWI?l@+o7x zz2CXpZ)#6ROpon`=pR?-TO{6+PSvx0kg~{ANQUM8I|j`Q2H!bcELQdWnq}an`s%`b zy|<q}_xnwLRC03BgV4`m>EiJZ7JRHftDAoKlETFJ&L2B}$^BZ@+5NJ_=mwupdr4mG zWvgi``&4^97}oZ<+@4f%W}D}=hlW*?cj^6fskd>B(6yT?(mLghl$ENOYc|LJr5_h$ z{EmDRUexfS<#~xK@2?G0+ASV#wYZ*UFoUyh%Uj*48T&Wfa_ta!W@NfiV`lKBx>rwD z@YL5??6Z*3>(bt|Ny~g=VM&orm(s0+a}GIwH`{n){SL9Io4?DZuU79qsp_a>CT<;Z z<?;8u=WPG4%a=VX)1g)!c4?Ky7TsR?8^@NeInQzS#<h6=>{SyD-%0y$D*uuVUVUcb z8>Oh5b{R_ll*)Eg6{pS6>*P88N8{b>*z4+t|JE(PRIe1sB<-}^WwA$#$<7q{%eUe> z|8iw>NZu`qxSsL2Uhu}G{<Ws8>A$2iZhLv>{Csph*Y=m?u{Vit`wZ2&Po8fHe{?4) z#jU<FVf}_{t{rPqJ{1*h{$y#xdhO8d4Gu90&O6g0mv&X8TF;%)HYvEGH|^t+*shZf zUsvB)YNl}`w<N3Hrt7@YiZf3<4Zj}~{$N#D7S^X0EEeC{wKMoj;^LPDs`q*J#y?g} z3f<V7^WAyZ4kpWU$G6;gul=ymD@0$X$mId^GApU2MITFqE}Ea*6ZToJ?_$Mn!Th;* zKfe9;{?0o0)TucM$ufd{Ck<02O>NfX%$~CH%Brm||2khT%Z)wUrd8jyHfvE=37hWf zlUJ6dMv2WR`myCtf9X=4FIL=lzdieC5ZWO!yL-aL#>R{i`Mi7LSGkg7T2gt>Tr3bd z`S7CEM=_}_A6D*Ia3Vu*>RcZ8-4->|)P!sco-2l&J$&1(khyp3kKn?pReqCIKCgC7 zmASL5`&EE*_4yR>d6wt=_G}PeS+D&$(V$YDQ+>t*Yc@84UB^8wBp-&HdCbV6?jWS1 z9Khrs)svJaI&0?B(?>I|K2F<QeC7P=t$R!?UNcn{I+cmu-7x3rDqq(7HOKy4HVbu) zIB<2B+}`ceB0eqoyW)*#g>JUJR`bmZ@wb#hxa^IOTR&Y?zx<!y{j!($`vm5k{N?_< z{`1eXPUg=ok8v%?e0f;v@xxontRFMQ^p0no+P2Ac#fB;N`YWA|MR2G0sv0D+um5y3 z_Q%V)=N?(ToSr^iRd%^Tcx%Md_4TK+AM$<vRR8Mr;g};lhKWz!$V6r_PJCfj)qgPI z^kZ9@`i)<OBEBzV*65n`=*RgpFC^nNb99?0NKI~Ze70-nFSniLuJ7)?y?bEw@7B9w z-3Jp+nMU}qm4BDdG5ge8V?NXOo$WvA7c+IDu#IPf78Fg-n#U-k^lzTkAqSxZCWf=C zI5uNZYG?==`nKBsXddHBPG)06<B0+)({Bnh2~KBT$*9U~Y-kFWuQ#_eLRsuGH;O$* zBz*h)(wnk5D|)g^j-5&9jC~U*+}pKxQIhz}(5gsA!H83vo^JAfUz(_?$I+4Se(%H; zhMlTeCevy<RcFmGe)6eyzd84@A8~&^-TPklQ}@lAyE~u%@&7%)SWr+*ti?lRQ{1+i z(tw8S2Q43y>%*(7PXCQ{J{vCnf%zwYApf*<&UwNg&0>EzCe>|VmAmG=XL-BpZrOX* z0gHahdfTaR1QzK(+<N+hoy{x5h#%QE^ljT_=@;1ADe3GMP+DYtarO)U8V?)Qf0~oJ zs{ZV}DATWCe*UQ3yvB$79tH~M9`B!TW3FMLb>;eP^*d>getfK-d~8Pi^4m9V-qI;7 z{m$LR@%i)CLf$VMB9pQ=-?^6N8qiX3^?I61z=Gb{%llXFpYA(h`dO*-yk?&a&R;N) zet$usvfzeC^lVeReTim*jtlF|4!sZXulK)h;Lk5zxu89Lh3}63<!29V<;%_yV_|K( zt@F9`I}gw2Et1yPj;Wowe7XLZx{b|`$%T&(J-xThapAqkds<8rAOEoyZ|ya%&ws=8 zTQvKaUbId5Kd$zl+a6AQXcp(V&`fUL!*%=qC2p&4{Pwn0)Nvu>x_>Pn5;_`>C?pve zwn(`4s2vkX=8R5~F>IXS;iF`ywoK@9$IBz?N0uK+KcbUlX4t+#`I*q?4%Q=1^+|#o zTOz!4l&1-6cT7E^m1O$RVU6N7q1PR}N8FNxH_j|jnZqf5XljA74Tt}s?hlGJooid< zANsQh9CYCj^lA|<N|F}zbP>GWnW5Cyp?a>fPVleRFJB!AzX~1oX|sJZ99=p*F7n4Z z?fRqiO=!NzXR*mTUaE&xT7xEr_;z{Z*Pkw&b~5&N>E;(<m;N@tOWu|L{$FbUPTN&g z=UzwN`#dc)VLjvCqN?vNa^L*jb$*xK(QCD9Hm{u@{8_U+tNi|fedej}{@T4+{wv`a zd;f3!xBs6u++!AEtMRP9bl)g@#<WIfwtGJVj-E@`FOuF_H9OI)oXwO!&f>?b2k~tz zyg!cz)JLz_oaODHb|d4_c9)J@F~4Un^7uWY$BMQ6?`@Syds2MeOoZ2l9aAa3vG?!s z6}<1PuVu0Sn5_TRVU?;{QSyq7LGvfgUG$jm0K1UGrN<R(R9u$^uX@42E^_AA<X>&8 zGt8TRJ5A#`y)=Q*Ts3S@RN{@irbF)SJlD3GANYH!R9W<Ny}Qknxm=|R;jLPt(V@RD zM--?;2TU$kzWrq5#sXvG+Q!F^8ZNz^diChisXI@WMhETqwd%0t)-w+;%L!ZR7d2Py ztBP!Rnsfic*K;OIe>};2ar7E<HQ%%iQ|4A@O?~aS>`l$T?K1zqtmyHQG`@a4b8__G ziIa896RWJUuZAr$a0q9vztg=V`(JMDDUKte4&m2g3}a841g+J}o%bPvZDWNP&w=0% zK{j0ehh~5DO8A)mpyExC+d<WBMzU2`#4p|S)R^Tv!7Y1&)y(4mH_UQ$nx{XgGhh^J zV&-Y=PmrqN*jymKMrOK6qM>_h-Sg%?v4RCEr?+Z8d{dUW#Z1-tWbB<ycJ=q0C9RH$ zMJK<O&yAmJ5psFc<mmaeIz{H6YyYjjZ}G;&+s#rS&_i@{Z|t)@j*<t@Y~9bFBrtz( z{oZc@Tb!BQ1-tfmEa_Xc_LdokS)QrG<daf6b{9Nbd6zq@UYgxIm48`%@6nxaE>F^) zzHgCy&+g{m8{fwM(OzO+!j->nZ_}4+^%{1`hyVO+4APQev#I*Q&-cBpdehR`%aRPc z?U~kY@ta;aq4i$St7Dgc^<OU({jo0R-mjO=k$2o*tvI>j@dBZ+NmGt~7Q5{_N3=dB z(c(T+I`4z4Nq={hevG|vcPZbeqYw0%vz`>|%zgPtLiFsRP$B+Mk3T0@&-9$V<C}a> z%3)T|`U=O>$JR@{_;=cPLgD40lsKv14(iwHXFtETmFMZxC$SeLjvbw%SZm0em%{0F zQZvQhbnclo3E#|HD#8k;=KZ>w$0QP06nr~k@{23lb`{Ha<mwzbu_@4P4U^{MtvYg( zGK^)rXNXoD*0bO`p73|wXN4*YIezV@NhKb0&x<J4O0w5~Oc6X4up&f5Z{l4G_e&49 zK0J}ZcAI;jA?NOd@*fiZ4Wb5LB?}TXHTDK2w(L^xb-TE3_lAF+Gv>40O}+WiWA1`L zP17~G4<=dYr`=t$*MN1|y-dq_rGc+w&+lA0m2qQ<N1;n;YUagr`e~-MZNGaCv%Ks5 zZ70t-&EdLJf6g^7pZXW3EPKW7*6X&J?wPtqZH<zFfsT&B2BkI2mMvP;cGO(=Uy<(* zv3YxWuk8~%nA9vWCpcyLp;>op7d1IMbu~$IeY(84IO1;40?~7Q)4Z03tzI<wQb^{` z?RkuvN4%trws!g`CA^ofW8A2JB=_~hg*;)&Y-$f8-<QwR3!1^G)6+1u{?3QG2${_H zdpmjiBKBrU7_YhP{^M>+yY$`(aXXaemruF9+bH{#&#uGKBFlo+EHr;~pWJ^m>cILX zQ$Ib?{x$Q&&rZp9%YWjNv}%rrZm_>8@FHmEw1aoq`i~g-*h({A^8Q_ZRchx^6;tUH zu|SW-H_iq5&SswTM6YLZ`O|j>dP^efYj@4eyE1q6&GWNPm0h2k@G82@V&;xHZ#|Ox z=FN2aGROF?`N0s!_l^9ClLg(Rzq%F9=6!O)Y3U6!lRJFp(>^qq%f<idsG0TnyJ33E zqkxwpt^YO3m{j(1ip&%_7Pj_ajAHr}w#JxCb?<Z&Qu7&qd)<0z!kC(nE)aUZwdI<5 z+~oQd-hLM}giYTB%;(gYck{)*&4zQhEn1?aGgeHM`m*B9&s)oP@Nbhb52;vMFUzVD z@s_=ibGroFiGn>MZp-c)ze|csO+Mya;JbCtuC>zxuM{nL!?B{j<EO5H^R)#x-rqdr zHqA9%|8DZn)W;8#*M6DYx%@c)|CGMmDd$!mop`o0o2TA1Z+ncW#nD6-+ZRt4#XEj_ zeE0s1$`3)?ZY6Kt%impne_GDXmA67&=I_5#^!C@%uf;bvmCejK_vY*6<!AO5eD`^~ z^gWA4)!8W_?s7a4iV8L!4nG!f@^SpkeBk`OeY;$nRAR@(tS9x4%}-k;SbYeeu_UBx z-#@jiq*?OHrOfHKyy}BiA78Miif_yJlk+$IH#l(R$J)g=H7DpTbt{{-pk2gGQq~~) zMC8H9lt-#+GivlND=>9mQ|CW&;o3FtYcE2#=lwhWnr-8ZIS=c(?<>p|$(R^$)?wB3 zH<le&sx2;?74@ktZ){%gm~|-j;G{qQE-bA5#WW@4z_FE!lAK?DIMlIfR#W{Yu5HYz zFFxgbiM^50!2j-Cy;#WJvkUq+*nO(GeYk&q^Bcvh+s*fjZ9B2x_ZRUQH{J-neSG#% z)uc^2!PBm(UNyS#`qkq-C8be9?xm^|q*PbmZ0Yb7?3P%?{cxY^;xiMyudEhWwDPX< zqrfDScK*qM8iw}H%l-XRxr?RzYfj4;=hb(fdcw80L{2(WK1Kf7sj8OB)||vQVe<C7 z=Pph=f9=)RTQbYmornnBcz1{CG4)Jt_o-j!7o|=K*sL4>k7Y_E|3RNEozvYr9{eyh ze9wM4b=ku|X`4irx~s1^dsAS3_V=kjoKL1~p7?CT?LSL@JxgBEnrYd0<!ruVwZl2% zlN+MAvg-G(KC)_UP+pUS@c%&fuzx=m?$G6#l&U5ay;Aj^yz*Z2=keZlm$dinSgNw^ zK#0=?p*<`2Dck3-vHpJhF=s`E=5O<tJFn%x?G)sRYqUQmyivQX^<;(6ntgS<KfTfO zo45VAZTm^5nNFPBlxGKB)|-9xNZ!*8zs~&obg0PTY2njr2K6tqRcwBDiHfXzu=t1I zrbRoV`Z>~<&erx$be+3;b=<iddJ!LHZa#Q<M{oCC!L3)@zn%YV;=1A6?Y}X1UhX`9 zy+O3(_tO_=f6Z7dz3S$x($yEZ)UL2DRVl1ndD~}eiI$eWR%-LCSyxrh@Q1IvlhKpM zqx-zf)MSaM@fCKiDUDyE!s-`#g&nzg`|~5N&E7_*B5nAEHzlmS-xpw}XJ~U`?#!OJ zDd9`6h)Gz!nxtgDc~2GpX9iyW=L@{6%WvMQly>KfF8K1J@ow+$FK;4W)^2bJ-r@JJ z{2<G2tK!>+jCIrNmKl69-n{S!*Cxm5#m#FCJg?dnPf&ksDgCn6;y>3WWwAn?dONm_ z^}C;(H&VEIy<Roo;N5uTQrqvx*#a1j7aXjf&havy;~ZmtkbTKcrg`BjUe~Oh@cVlE zqPbCgGADkYcyj-M*wGx_*rPtB+rIZb+wx)al&W8P)f!dOdxUHwW<<VLV!d_#pwXx4 z*~|4}&qVH?b=2_vnu!qyYd6>{pK44pywb3@{tb^_oNLrU`}-pM8u^bF?4PgMGG}33 z^8~x+V$qpl^=%9G9q-}$s(mv0m-(yJqQ*A_Hs@_;xjQSb^o81$+~P+c^BFH@zkXl$ zd&yKICLxpPHD1||Dhxg69y3c5)l1iGU6od$9Vfnb$-cP7caH}Cz5c=e^r}PJ%r&j| zbavRJJYQFTDQoeAJ(fkxOx;@(6wN=}_PKU8VWWsn-9G=^C$_h9&IGCkd&j6N?p1$& z-@(p#qg~8yWy`$9hpnbbt%>P4S5bWBLh?>)ZRsYjW{a$Ocg&B?Tzp|p_Ba0cxc$FM z`DRb*EZLn=r+RZvzaCe}Bb_o+k-GEkr5TU@J$aGe9lcWiV14%Dp7043J(2Cwk!i*^ zCirm%Pg84OyhmW0!d8?0UF&+Zc)7Z|I3nw{UVOPOu4kLJa$jz<?!Cp6HX3`j&-nYG z^!4?%zH6_<+66nD_U`MeE}GHQDzsM5GS+{2ob~j%C*y2xEz<VhXfpBDfe4W!75dkg z9x3>j(rFeg=<R;wh^kus#tMOLlRi9D3H@IeF8Ffc>FDrE*ElQ9orWupDt7hVS=VJ! z@ApF0)HKSsSHNCKu}(?pM`wPPxQWEd(|^|TrG1#F<hJ6_=NT`9vTD>X-t>Iu^wWM* zshXy#(_34)orZG8_glD2|JHw6mXz5(pCc}vkD*ZeDo5H{>y$_TU4z2!)$8w$D0q0^ zec#8h*;yJZ+J598-QRs*_-e&66PC=ylPqMe)bX)@Sgy*Z*xznk@$7cdYPIHxj{`o} z?tZm!wdCZ5FA_wLn=hHL;7_`^XHHa<liB3O=g)YGa^*++dwTsgeR;bg?~l`p^S<+y zOBXj>370Jkk+{dQ`NQRMh0+~wkKA{u-}1cdo#UA~GU~_9T}-VM_^$0)+s*#h^ZTiP zxjDh@_vP>Y-_DcZ*ERQG+*$wiVn#{nFG@lmud7P@9Dc%ZM)rKyN7ri>s+c>@7CQOh z{GaS4tV^SE8N=84U39zjR`oyI4kaU9OV`<}o*ds||5kqb)J10#J_WjQ9+y{Jec@nu zPWrw2YIgNi&+e=5-M%5_r~RRz&+kLbCQoTo|9(ne>Z0(Bggd!g@+w2Vaa7qaijxt~ zcql6=Ves?l5!2a==EOvpFE6-$)8yUfzaASb?%yd|Hs`By;hPD%tGBJc`j#v0d+Ifj znTNQZTx8^w>-O7G%Wkyr7cYx_-W}naCiep;M=V_An(tUI{&(jJw~{9YwM?=)*(v=Y zZ_lkx=ezRLO0;l_>crR6cja^+;PrkoHTQB)TGoR<UOFX@{8Jt@xpUiI6WSxte{}N3 z*#VbwKUPFAcqf?nFsYYi?BfxC%)h)(y7%RKMfsw{8{*~i2PRZnoQ}CC>Q-07zV=?_ zb)Tedrxv{baD9jRyLw};?v{$Fe~qMeIh~(BpL0%n)Uq?uYo}Uo_A7dRptq;H_-12* zUWvTbeFyV}!lJ)#Fo&|A{$}v|+o@QsonGQwPECHdz_VuY%Si_&HSHJr9Q=FcpA(#~ z=D79QJBKO6TI??Qsq*CbkI75Z1D_hMi`A%qwS#lb{GBc~4%IVk`K`QM>fLW|+%2Rx zYt8HUg};A=Klsq~Ywg*l@Kf`8f5_FJcyzt~?bdtoDZ&YAoVE==zOkBbnXfE#%i|zR zv?2G?xv?jmHGQ0#&1QP*#ichHveh+c9?SUqi%aC*(yINL=iP0Oiy6nxeJYrv{nNd5 z@3e&_&u-P;vzpW@r&7P`Hjhzvk6(6u<nOb$*X@;mXIcMBru_V+X9;01t_FK$awxCd z=bp`XT_$zi{P``aO+3s6SGL_Rcj=fnU+}Q)9F@z;cfTo#eP_(Jk6=yC+;E$>>;m_% z4V61RmM=FBsY?CR(mEsRWZr?;M;j`%Y>nB!+jOexyeob8Z&Hq$ZRq@u=Xw>Rb`*2J zNUb*)y->{S(Gqr~?$px?x0OMfS3QD-j@n8WMrAy;&9ph~tq{3)qp7rXyGd5m%vE0J z>%OoCq~Bb8K~?<7_ZNL)dp7^K`*;0Ybiw_nw-=Q1Z*l9WI4QUJ|Etuc6E)h7ZVgaB z>#iy&s1Z~V-v0W;3=a{(z@|@@0{1+V15z?IwN9qjFXYQQ`9~;3>xT<x-1k>q8&4J- zJaAoNt^Zzu9M<1)F47vUi_YrDP3tWZ;k<RELU(uAOQ{EkEZW}f5;+#QmZik{pX`^` zi(lfCj&r(kmsE7Fw6k5^CL27#{vCVUFQ1Q_SlDEqvT@4ZJ!4^$alz-?lsoTFc%?P( z?~X2rOX+Hhj;`<0U3a)l>eGQ|x7Bq--E3MLgA3H!+aHBRE?Ga{>s*e9O+Y|!*!7Y_ z4|Zv}AGrVH*iN@nA1AK$9Y4AD_<eJCwANL(J?_0K`L15wsf5!97Z=#ydH&L1!=77v zwjVq2u=Tyg%nONkru}qfJ$d-XjEMaS?#J?uIxoEVw(je@@a@rR>+6NLeR5wPpV!>n zZ*KqZP(tl1&zrA(*N5AG-09t``or_j^G(L@%s+Ve=)~`6S;}_qn{L0RdB5oQ-CSjs zc~-#}4mEJ-etDoFe)QCf6)QB#KF0jqA-ZMqg;34n&jDeE(f&<eFK2(9sx#GK_o^*x z7PcNUd;9bK=K386j{6kcVK{E}xL#uKt8CY)TUhJ$z1=N0a!r}AB=xyw?INd{zMby% z9S@W8-D7WsY+sgg;BwdO=lPfH6JOfe%sD!Lzwqmj2e&iwcciUbf8FZWefveWvL2f@ zu>QPOynFA&|4LPyMfu-SRxZAGR(-1V%-OExt1NY%tDh8WscmxK5W%zaQqh#`3!8Vn zsh0{lWy8cR`p@G)!2|i!7p1RX|DM9@|DiTz>pxSyvU}YzNf9rS^sMgu?m8DgJ0*IO z)W<zfADT;AExEceE7v84LpEgF;eeboYfZ&%7BbGsZ;D*@S?$M?sFGKgo=;D>scN{s zNpzEV_j@1R)WZ15DV2@KJB`0w6@H$7XgQnBS<Siiq01Cf`6jnt^0K&b>EajF%&mo< zYtCnR`Zh#=c5yqwI+@MaI<MS##_2%W-rc+QYGtMeZJnMP>GAE_+An*0i<h&V^RnL4 z7hCF7>v=n2=2~BuEHyDz*TNeU@AOS7G72iOl+?Mj{F-cft?%?b@<tcFelvcdbl|WS z&n}_5fX>ppiuDE7B6S_J*xp_UFSAKVkI~z`^_uc!)616>(*y5G?%KEMr(KEX><8<U zgN2G(?Djf8ns3eGcWuFrh_JO?{sAj>SKHpbz{eI{saNztlV{bW;;o8TPw6M?tbEOO zb?%FuU)bco&kWw{UoU?0*~+aeKjy2vy|0)V<>lqcx%#qVY+>ip`q%sZ-ZEl4!92e{ zQ|?p7_K)B5uW)td-xD^Jzj`gcEi@=+=}GOt!iAUC-tbMD@``)2-m|As%hK<-RPyZb zZgs0(l){v@E$N-Im7JxlMZ>rB&F&{B|C&5g{l=9~e}4bgV_;tWJDt;VN6)(j{C^&N z+TH(sMkn)`N|7%eS>hGV-2s;MYX4e}a_=?E=}XY|IA~pMF0(cx@R!sL*>@*S?oVo8 zSdboe+48yb<%0M#36gvVmnK-gXYaG(d?f#$@$XJf%}r-B9+%}`vrF(Uve>NiAf|Cr zw^c`;_+|6#cpEL7hH0~JB<XKSoE+I_?)gvTf8&hp`P@^Us-$Qpg?#*&CHDVue0|xZ zClOP6GF-!){OYpGw#{p;|C6WgDXi0U=5XS{r{OuxrD}oAf=2RA%Qn70u+8!hTjY{T zHr7iXI^r9eG=H*|8qCsM=Q1m2olmRC!z}{S_GzRUyw00fvB!md2J?C=HMw_B5~l1w z?X%N6u&z*R_34#Psysb<H@cQTnVmi95Xby_H-|->(_AC|7pY$1*fQ~#?7rrEn=UWR zK4Hl?FRuH-V<j;kgCi~NGc@l!30PTH)o|8h>e4w&eC|J#(tP*TIp*-zSJ~68(tWQV z5Ney|ynVjDglocY7S8kgmLzmXZn8d|$ETV6K4k9Bs_uQpFR#2v-25gz*VN_O3@=_& zcbSWP-!{~*G+p1AX{R|~V0onIqcf~I-$L87bhmaU&QeheoV}!Xxv1odj=So6FYhQ& zk=vng;bv;t#Yp*eb~jUQ_?oj!XKVX;)S~}?qG88@S05iwmknMl?Vo?3DZbt;QvT=H zo9kZ~ezo2&_NL{ZhNZ$u%ewZ|q)SOE=^vC{z77|X;D57IxL!YFg5QqbwHs2-?darl zpRjL*-S(YEt1hVrHgC!LR`j#;nDLp%d*}N+UvYYV-kgnTmfhDMtQBfy$~=@YZ%R-Z zQ|t8EKe(4Q&rR-q$sa%S-lZRTS$F>G_8!;wu&KDRJXxmDTzO5}PrG{ib1ys}IVN<r z&Sv`gf_;M6#$Q2Gwzjvuu1}G@b^qYKv(B%b)o%PgcO%J@z4^UFB=dwTaW;R>@7dWf zXHVtAyCGK(ChJ^f-lx3s**X7wrLQi0{YvSJJ{ml`vhNkQ=^K_wvvj9ie3SdfV)BZX ze!<U~e*zqpeJd82&6$~VZDrtWVL4Crj1Vo>--73khy`c|K3f>#5^lCIDeOXA{gP=c zyO+OUYU%rtwCa+5fAc~K6~mXip4h1An`%dAJhp3?9r@I?Iy#sw;_p0lmHzZ)0m02D zcm4QokahU|DLw&H#(%dMmI)s}zjbM}a^_O2z{M#aSCpCC%<P|<5p4Q0^UFEo6+t&b z-tG-(5Q?4|9(>tvy5jqoa|ZIoZ;L;O#3|Nae6>~b*Y|a{|4Oqqh3m2Rz0IA(ve(Y8 z|K#=5C!9)t&o4ii{O!yCvcMAu`2N_QeEDeaP2V1YGfaL;!Hu3Fcg)=HJiE|2#U?;I zJ?HHAybDr`m@-u_sT|+*xbPYWqekeuu<35$rVE1{`xLW09TL?2dRu4R$kFqiDLg^Y zl2!e?d_D8hNhyl&m;T!r#<2DAJolojbxm8Y{V@0RnPnHq5Hfw<{9}K4c=ZbxyG*=Q z=y|`fF#N~1A03+O;||=gdGNv_$wBRPj9qKc=gOw-0ovEyUS=J#^f^3d?(TB=bt_~N zvNH56GUReHoS3#K`W&!|^;)AKmm0k6WKZw1#gCIGPkr;Lex`B#G?f(PSgY8838AwN z1ywdRv_x$>Yv?MjqqBe3qOJBPY>ykcS1&1yu}!%8Z0f9BC+kJ4O_qij+0XiEZ5qAK z|CIIuUenU&`&0Hy>YWUE;;Q|!rA78&)U=>-K8IDaw#=G)Xa3$#dw)OLmOJ;{!}sfW z(+o1(mh3bza$49Es%cqoBRl=!(E^W2Djd_@rb`BYFQ0LnuhL-0{0-Y?{80)P3_8&$ z{x7iU`sDYimJgq#zj~v_cWu%JF}vw=@@-~Eou09C>FR|)<cvO?Q+qwB`pUokZf%~? zJ8Y-)UC)~I_(o!c_6NCUm#J$#eV1xW2cG=j(c`Ro!u`R+#kX7+YO7{HapbO_W^|?Z zNkNFr$(cdMysagvDTx&=Hf9G_9{qjd=(EeqwIgO6KR+pEjm@kejgHMil0Wx3^`9&k z{Vd<O_ve%q(TB{^b51_U3o`g<s}gCM_Wz`}OQ6m^z0e1mPKlK><1TT;N=)!7%&qqK zY?^Rx(#sh<j#fLgO_!HBN7py6c&V4dRo}asJ7)S_zkP2%i~hbm?Pcq_p1rXhYo(uW zSEzip{L7mwoM$)R@c$OqZ*gYMk7aL;*T%e^x@GqE7nwUZ-ON~+q-mXY{1t=xvE-#6 zmuvVH^4VH?$2+ZcN^F0p8lNsXbJw*Mf~qmwm}hPE(O9|N`gwjPo8XJ+i62C|7Nth( zM>e0=t8brrZr-YtZH5;Vb!SL6>t0W8I(+GWU7FIh<{#&meP~O#yWiel(RYV*#3X)x z**pL5eHM`kSMCmTKf-qL)RYUWSi)qxg&t-2B*jmd;QxM0j9rXu=MDQ~z7Do4jXUDD zH*Np9e0}Kcf7_K!3|}sko1<|t%S6L%1GmSL^Y7p9+^|`(-fqv7(#smni(amsx>5D% z(^l*A>oR8=XKwx7r?JiM&ejrTW3lqP4X*!JFS}R&`KHS!2e&oS?Wgb0z5VcSZqFI# z$pT`Ir;8VNPmWy3c}pwf>m$d@H@kj4S+HvRWyJ+@W;145)~MWQwz^rU@~b`UhLxkx z+N&9YfBUjRe&5$j@7~Q_&$aRYY^V34zt(zaP2S_I@;>a<OKYaT-Cx4ILT-u7?K=Iv z*qJNMK+KZoC;!38IZxA1pNa5TdC$J4_<{DcPbXG6abAsS(z3E^={t2NaEVFzZT<z3 zEK(U_pRE<6%Cb*Bl{B8FGt=<#r%BP<_2T!b9(aC!^ZLZxmKWa4XUt~spOvjonR<Km z9_6G*Q@z3tcy~`wv!A-|?2k{6Sk1N<ADA#_)|we++~u3s7u<@Dj|n|_Xjk3;pVQA& z*ME;<Ic-&5_W1qjbFFX7e?Gpm*Tml1cCPQmmq7xTj;_eqzhvj>X`2gWi`hRj)||VW zzhHLd^Z$Rm!<>%Iyi@sL|C|4NH&6X3f4k~)q)&gMybz0_YlWm=)M?&7ca%8Jc$$0M z%oEFQsw#1{-8Fkx?8`ili!<|QEWG^k{P!1$IoFoIzVx-KHmWMCf8KxArT-T^#WwwJ zK2bn*`kCX5l4|qc|J(EX7z1k$&k+Vq200-vcWmmXPiSYfsW&x2*@n3`lCvT>b(fvu zoQMTttc$<M*s3!rt<dc_rL;&V%xs~~(VzpD_WE8{%baDFd)dTu^YiobOzvJ@R(-j4 zp?0dEwt|L6m-T{h*|~*j??mU??_FO0&NkEWg8Or;;{0DGzL)=;|9S5FzWcxT-VbLp zDpos`P;c<Aw(@zLW17wXlcI^Yk9?H8bL7D6-GBIh$uk{nneXsN<?#8L59?>VjJKHl zqsH3!;r{0I0Pm)mwFiyWlUFvfU;Ofaj)T0D0NV`dihu9oEc7cB|8mXeiIb^#eENa= zgawiu%rkq>xXL-mx%_Jh=$YAb(>^vod6I%+Wpt2H{29^u=j(amH$HlKmML*x$Lv{Z z&(_3je6&)X>3p{3>_e8f9}8D9d7AZ~?tHFZxUIdotgX0=Q{~I<m~%ml^CwT3BQ}5H zA;BdDize|G6m6R9dUH<5L<RR5dv)drPd#?_nFouKT>C#wuX7%K=l%R1J^3(slB-N% zlu`QWf3<;grnA%-K2NRBOER*zo+&JL>|u(!dhw+rNe?%lp59#?beMI~m8Y6t(l<>{ z_o>&Yu6z)4!+YZHMTg?<ZL>_ezOSR8aNdl`N&<zGCLR5Fr{~Rwc(otP@0WAB%={?H z@%O;XJvvTu?(-ZDO(;mQ+$0p)y2fpu>ovvm%K8e@6M9dmJ#kIZ-o#ufd9%LrjpH|^ zz!Qv51ccg;D06y99df-SC^xB-Lr_r3t!Sc+ioB*nijURXFUmZe+zbZ7n&~!&BxV%; z@A+#y=giJC*VEe0{*g1?ux+E=&TIn>-4$imY&UDAP2N1W*yNx;dwu11<MQooGMp37 z$J%UvC-=}c{_bsq_X{hRKi7U&{biq4{kMs~pWmzh(s+jbUQ~hUmU1JLC$$fn*=zqD z7CI&^TyCtsEo}4Y5C^HX<z`YHJ2=H&nM&yf#jFa}Hc=_9{j_<9_@k1{wt&`)Gx!bm zuDs!EvL!;QHuqQ9oiH|=Jkfxe9=)1Z-yDwF78EX8D0$8~QSP*_ZMWB^r-fXWCnis4 z;;z4VH~r<yH<!vEd<zQj4bpego$Zx&F!qD6iOa*U?Uj=C`%ZkReyCK|$+hCCTXJ99 z4fWI2GrQ9pmld(EC^4BVp2(b~%bq437M&3M=}OGni4rFshkh#P@;tk2-hydsr22MT zGL5KS({J<Q-MP0%c4tf1h^CbKzm#kUjQ(`P=IXih`o$j(uQHE1UQ-bEHSkl;;SUk^ zb~glM`FpaO+jtgETE3`J(_Qkzy6X!+<SzTq@h0`Z?x%<pBlGFURqr*vU2!r=k8y@~ za^TCUZj0wdta5tl)@sNfJf-1N;O3~6*H1HSEScoeTb1f$wC&f6Y2P3CSa931$*Zo| zc_nO{hn#pJgZR?=>v57LrQ00DUanw&)-`LvzG?IN<Z4!==<COMoPGFy1|P?_8k;An z2PEGg`0?7O{ub{x-=|?Od)$_GaopY!6yES&oVRy=&aZ`qQ}$diy=K|6yPbzqG^K~_ z2&2!dY1d4zR#*2OEq%Y>-NGAJoU%?{GT-)Bde8e;@!A~%uiig!*Z5IiDCeT+%pm!B zz4OJ{IqSEC9q>NybAFXx#+wgYw+qcb)PJM&k`$w1y}5bwbj5X3Ov-=Uswt_cUvBo~ z&|iC_7oUC9MEW<}PVL>}5-2r4eEFKSD@&qtT^@cmwB}Q1JDC|$I^*7=vXH|&Kjc}o zbNrO~p(bH>?8vp%XF9$9mzl+Uc~f5>kkhp5z$C4VM;498ud{G{Ij~^zL=n52?M0zd zSH)^x_3H(A9x~S1!Tzo}W`^^+mx=G61y5Wpr}|B<#;{Iy-;Ak@I()mA9!XJGd?@d1 z9m^MN{ZIDw<^JTA>?bDNwoo?te5-D9rRcXRA-zxWf99@uzpyJHe&Ghqf8Qq-W$Rfx z*Kf_fyMDr@$aImA$*Pxx>g1N0zv7Wfn#Jv;ALBl`v6M5bx^61ZZPEANzD?n=oOL2D z?DcK2^BO-3rFT3y&=y=(uCqi;ccIcenb@z#Gk-i@F!`^+R<R|*J9T!XJ*f8Pyce$i zWRhY~l!jYP!Hwe<<{w3hm2S;Hx~^F;W3el9(Z`eZ&TE)dPv{pl%qm=<#pbY7TSYTx z(_g=uI|rP;$!`6^+yA1yAYAjq6ftJal_|MQ=Zv%sqP0($FXY{OYS#lT5wRCbtTZzN zq)V%M>@rHDedMG+N{K8|TYWO^@SUOs`bMulZ#~leGw7mJjqPh29oO4)866(#T)V$V zQa|<e=PyZ@H0oWMpP%-<mQ~zvJ7mxG&z<(?*$>;T`fB8I{lU&`pZ|@WKi@RA>}p9> zdR4b>)`_KQ3vM&DOupa{HsN{1Y_;^0<yyifI~T@;29{{8JF_`N<3w0=Wi9Wsv-%Ue zTqbR~(Rk;b^k0LeryaGKTI-Ij(qg>2Wt!N8*O9peqPO0b%ztxeZv9raOv#xmr>1&u zn3I*7>g?>RF8Im0kN;H7Kld7*A2-C$aEj|BTbFK2QfglP{OHlBM+KpRvfZ=$j-J$7 zZ6tO2MAY8P8iz{`ED#c~)aLE-aSRBGnPMYZpY%4`pk$An-B-<&N%cE^v_ItkD8E~- ze%6^wpT5l4#B$?>PgrE<<^b{f6HD%PF(!9TV#o?uqY!tmBd+Uquw-*Er%3;)g-@;+ zo6EIv|Nn5WpqzW=+fU1O6}I1ew{61W0{N(P^XWW~QuCtrWJ+DiY_;C=uaz-yQFr>c z(>W(T<h!pGHCY$@NJo72535D4YB_y}SI)c=dnM@A!%*eubu#iV^mSE>!%ruh?5t<X zd-3pyOF)NsD#P{(YYL}b3rkErI&aM%p2(o2@_$?9?J8a~^DDMq+>-Y`O1|~IdCdd4 z+}6!m?k9qIo1ORmki4EHx^nu$;M})!_{&&syh`?SxsdD2t5V%?nYH0^l%vC)`_0=d z=bkhF7$v@<Z1veJBTL8mQ)VQ19x`>^KV?>I{S?Nfvm(+LJezOv#k-d4!~W&>FWtVr z{{2zelIy!ggBt!keR8|RxY>72Zpc}Co08>zvG%dG-?jybGCD8p6Ij)9`rCt@$GSeX zO>#@OjV#_Ie@^DOUH2!sJF})uo9VcRy}fREQJ}Z_eurMR#Y_oY;R}~<TXQN`k?n!o z?CWvapWAlT@A7%}YTJTsvl`9sA7nqfai?{EKygZEiePyBoNn1nKiR*_nDsVa3@w*) zo0nF@_tvL^S1xJx+p_hd+#>dluA5cZ0+uNAO6ATI(=KYtVshJPV-}FLF!QSEUEa9w z@6!&gw|x^NI^hiqpE*NcCdckflQ-+UD{?t?)w~uc3qStKS<hKGjU`5Re%RtZF)3c= zwIV8CAEemNTBjA3d$hRQao?fD0+uT)_SZYyZ@12PEtC-(yz=kFceUT=%2nq6YcJVR zzHHihA-jF-;U|53dsE-0-hEQ}gDL7#Qd!l8>yxB|4(+&Nl)K>2DW7LW+85tt{YjH4 z-@Wxw4r}~e_q27MkzJ?iCzWz>P79e|@aT5gj~P>EoX`BUd}B8E-kCOWZ2HTMwl7_K z_Ig?H@;~*wEtAT4m(5-1e6la8{_%WY<@B{W$K8zBzv<StR)yG>+9s^pBAjpbWv+Fj z`HbREOMlr!S<BB)SuB;zR{C8nCYr(P(@DSWE4h89PHu^xAXXi7t@P`qsoM2&R%{*q zE&sg)Ci`pc5q`6{C;z-b;_tIA8Kw@a)vqX-EK<;q`>@{B<<&h;+pH^@s;xJ)V>K7s zn)>plx`d|xtmGDBn(kY@zw;+!mVeA&+bjFFEq_+va%Q6P%p<CyThzt+ZD#z_nr^e~ z*|uX3R|*v_n{vim=N9XR%p9LM>5qO}>z~iy&u6JQTC&b8Ks~Ve*ov#kT<M9vnNtrx zR`~VcvUz1(8P5#w?B-)pY{&E;9)94kFyO4Y$mH8AH`PD8kS}`t_hp&+lUC-dh20bR zS7O_Ld~3>ssHjj8y~W)&i3MIo8<U!EEl^q^IoW!JN4;p&O2b)2g|F_-KQr;MNC4x4 z>)M|6SqD=l>u4=~5$e3cEAfo}w%4*L+3iQKUt9UzH}YN3R!_forqWW{2HYE>wK-3G zo9=Y)$@YweXHzte-woUKc+!N&_R*F9wk$m=lBH=HI#F>>X3d}AA3xUri+dSatzopj z<466GCl&^wTUoA7=a2pQKtAhy$qvTlF~9gO=eOH^lP|B2ulhCZZS0?C=T?7^JJH6S zDKB^Nbl>U7Gu<kSey}I;Kl0SvcRIOu!p*WSo7=XxZgtCN+ijZ7v+&_8?ZhAR7e4jy z)Sl558j@fnI?+<Bccskc*|BQch3>i*reVFuGIXX0pV#jT`25u|YL^_BK^4=cFqzHe zeF9hBc-ox`UODA;VZG?;gs6{epB$Kwnotm7U*SC??&CrAWuN6d&&&7C{(Su4ju5^1 z64Q@Q>-u+nNmfIMu7c*Zlr>t;OZ|=7#4b0_xV5Zwg0JqhXWRN1v`;My2`OW^;r*u1 zEnD>_>+}VzeQhnm7AXfT3p8Wg?isFm6Bt(>_2PEPB;^ABTMuo%f6TV8mk)X2sARxu zFk`=!BTLL-|L?BRc^S)l54&X<{|@8f+k7@f{eknp#^^(fj9!bb%w*EMsC537%@<?) zyZ7(jxZ>k=ZFa*GOV>Gp+Yd{GxTF_%eb1dc?b|oK+S^xTCrLlNVgGo8qo>}VSC6@@ zzMjrluJQSN>iiq;{OUDL)!e=2gs9Y4Uiz<Ux7{jgPTC`;H4eJV6i@t<*>1`l$vbn| zh0ia{UYyEa^KI&PA;mc|_m6a?vDuUe$}QY{nX~(*?yG-m%$%M~j-HosZgc96EzcD4 zTpgqBzujz)kNdx^^7JvC#Zl9pB~oAHZZBt2yZ7+h7PrNVW^~+b-#7QmBG0DF9Y!zS z?_N~DcYP1H=k9x}S6+~vtZNbY;!5~a_MNHk=7i)N{pB8>cjH3o;&azh3We3IU+J+) z?Nki-axuin>vzdsxyv_7%GyuHJW{!{v^Q5Z)$#Z4^WvAT%w(S_(EK^WX^Q5a_4Q1L z_4_V1w9jw*9GCt}zR7>n{)qUw50qHGg*;~ni?9ATd0Bm4>ZI8ZUWPcSF54h}CERox zACLN%yv1p%HgbReutsiflL+C{{GM#{aMw}G>YU?Cj}%Hvu*_J#LML2DqvNjWykB}X zYuMX(gcX$!JYSxXytgvRFJZ}<l<kLfON<)cE@Pdklj!+HA>R4jvTX~t+<BF;Ihac) zOnXBF$L5<UTA4ge_5A%N*PYDn9bCn1we?m&&IOibv-wQc?uhs)qBmFXPEdk!|NJd7 z_Jv;cHU{^v?3lV>f=-I3@tLZago{z9GnX!%E5~S9zkKo4%(7WdXV0kxwBBDa`R$U^ zfjeiLXfQE~utub83yIG7SL>=Bv4Y>t`vun$>5c!dMR4`})Or+9_o%IY?+yWz5I=pF zd+o_DO2el9ewMSf?<()~dm9x6HH$NkOj@!0Lg-~hcDHB#5wlm??UH}J#7JkE?Z+eg z<>w2XlhNPv#@hY2&wHDS6<=@6lzDGGeQ)|Rag9Go6)kTs?)~nhUbwjU&ujh-uW$FS zUH(iba);L0!|&h8y_5N@QB%|#w)$fIY#uRQ#yOjudQJ;}P?hrkdOW`VckK6!e`zZx z-SS<ldSuPd#~zM`Cqk_pMQ@(@)FVCbtbUx7tY;DH`mUspGiF@-&ikZc-J0D@t3yJ% z_$8D+Z|`x7TW)Fko?XJn{b%1{ZtuMtrl(!G6(;efwfkP`rP`dYYj4J`QWi?_jNbmJ zNu_>ysFzjn<QT~vi*6*COh}%;|N8sYd`%DIYijv68CG2X75sYT((IKt-U?OUxp3S) zvB1ByFg@^rAH#*2JT0+#x|5RsOldDaId$7J?(heB5|`|iVw`P1eR;KXcV|RmO<7Gz zz>%z@-ItvLvdk{G?YtRz_iER6Q*SP*6Mx*|{p9)H*Gsj{zEfhWv*YI6Y4g`woc+@O z|8VT})EoV?-m1-JEncmqGBa!6DTkazZCidG2#68UI`KGN?qG5^`|b1F>aP||EV*{; zl<kd(UHW=9y-}-n=6ctjTV~Iev(ipGT62o(#7MzN>BSqDAOE@BuWZY<Yr?-*vzyGD zpR1CWdqAS#=*>@;>kF<;_t}3*{>-~6zkei6jEH#>aQmuD?X=eE-JE>EVXxNx?b`V5 z<2L<Sdcxbhs*k?!Qc9kx^2uP^Bb)!cKkgX(S?{LgQvG?B|2$pm+P^w?{-_owJ<pFZ zow$92LSx6dhpKzJj(hy>-{tf5o#Q8s8osU7-oMra|9rH%wPfG7pvo0d^$BODCU*6h zu6Jqpe%jA;-}~P^1r<5__0LJXa-5)gWQSi~vYBFr^ri5JxpPyGN1vS1W%p3}$IQil z-*20=R=hg#ho@EkN3Q&*?jIISFZ?7Wvv{`q!`z0YQI8}OeS&QC1gFhgQO<8+eS+_Y zK-Ho>FSiQbxx|n%HD!^IO7r}xgCA|{m;PDtrMc4Uk<U5D<s9`T_Fo%*O#8ik;(YVD zFWw%Gws~|U=jXvkB0+nY?&_V574Lk#*|C!G=BpCZkc8fy-;^e5nA^TwQBkpF@A9o( zH=>JuE_T${%Osha$d<D#`@!3|=lt)}nGVH8|H}U@|MJHEH|LcU^Z!ki${O)=C3gP) ze{5%cVtj3+q~luOdlf2d_A0M8GETmks8qY{(lW0#VXw}qKfC?Jb5`xezjv<Z)%^V% zFSTseiOTW?&+a~#eE!FK#=j1Su%{0C=C8U-Tzvj1=E>+yw2Behq!XMs^+A-VL6&Fx z=4}giO4>1r>sBP!d|?)MV_vwhaYA;--j}XXn)BA{WY(Wi)_%%bYEzROGh@k(#DZzF z&MY;%^g1W=#j)&Fp<eotH{P*{RwO!ZbkbUSEnv0yn{KNuft{MM2i`4n-Y&HDsjsu` zj_WH0LMKl;)nz09@2+M=y{+f#mq(apo!@-!F!%Erb&4^E-~C_4zV466>&u6JYkqrH z+O8R<QfOe)cWaN(>3Rkc&W+pmy>0K0QINZT%x;cwv4Yg|qgQLb+!VFARXKCdrP@=s z8^4#QzPlmeSbEgfvF*+7y*Gbdu-<yJ>W@^-8>yJ0Udu$DH{1KJ96fqGec2Piot&>i z1WW4$RFk(J7LT2J?$m-J_vqIWaTgcqf0@8#yWb!=%kpZ-^IYl9bvNB@>rX^)^K|nN zTYQ@-d*91#f;YO(>fMSGSv$EkEj#66ro{;+*Q-a)Z%=Ax|7^9M|1kT5PhpRA_VhSO zW^;eto0EKy&$Vnt(Cl5W8T2MboaR1hHT(EwgHj)ja}Q-Drhki(s$YEH+oUIKj*ev| z=e>vzFH7PV`<nl>S^a8OSYWMg#)c#HwR`xtn>79L3R-jaw6O2d*!wSDF4}uJ#OdDb zSM$2<GG}_7G*9=7*>Ah`&#nt~4DtLI?lKx|ml6?}(iQrb_t)}So6HkA?%6C7H=W?# z<@l&1wQBb2>U9B|8#}me&2X{RQTcTE!rSf9uPv{6UvaVesxfP+UX|)sbKx&n6=Im= zGu7(P9oQaN@uROyMxuZDk{LTRk2cnSy!-fg^K_dQg%ibJE;oNabNb^i^WBNtc3wKI zly<&Hh~+%f!Qwre{m*}l$~f;{|1~V~?ZJb#p<lAwciu_){3E;h{Wt6PvnwY3wfEUN zJr~Q!uaP0*B)ExEQqz6!G74%=5SS2dR%fW5e5hG}^*ja!^?Pi8u<13PKCzwAs@~Ap z(A>h#j;pu?e3EX(t+h4m2_m82^A8!#_U4|H`cr3vw4;FQtOX^G0Rbx;1)?+*Z58)! z_uZCq`{un(FK>RC=fKp+aA~)O!h!`FT1r~?+m$NR?_B-<PGwQu*V_00<u>2EyVJP% zz2)<HpRM<AE@t=d|M%C{#@2RzjMx+z$@<+kdMYM{Wt9O%M~+-w_)ycjNoZ$s{$}Ny zfd&yrx@;mgs=vP7Upwu%-Oc$de9uaG-u=&hdxE{$oo}yw(FxhKDedjge=hv8_x{a9 z<@Q>G3X{LTs?I!kzGK?r=HpcrUq65NBJs@dkn<D6gP$$WTh2TEuW-+G=SSPx_sI%L z&6b%tr(RHC)(jCz@z>U+m)3-*>2`IW_vqp2_xM&@dFsk^b-yL=FV`M^Bvf0i`u(l& z-RZASmoNRFbpNg7K5q4&`-DYgWT#IPk^MR8{VLCW*^`8goy%F$(_DVD9c?SnU9Hrd zRNeo(Z~5aK{$7q-g3qMIpS_mfb<bS2lkdIsJc;Q-^S>ObSBd}MaYE((mK{ej;(yJQ z*rjZup=ol&Ty+}X>)A4buXd-rm8!pgv~c6eeW#V0os%a!)vEh_@#W(E+Uw!hH{Z6h zsL1Qbk{w4roJ{;OWywkFU*|k$oryIo{CG<ApYZg(dtaOt&AvBh%A9$3R)>3J6a_r# zTjKdYE$yFYF8{CmhT{(P{RicoZQ81A9N)fqtoT9V-A9wH+ioPUJDx4qC^y@7Tg8&f zkT0|E<k#-k{VP=Q(?)%LNBM;EN#Awf%e_ymzw&?iKl|_hr@lP?VMgN_fn&2JPuU#& zVZfATp`0==WnR*}G&iHg5{8dY+nnx6oR@ygxLeXbjdycjXX++N&dH}eBw6bxpVyES zU7Tjp(|6I>?bxaRN3#{HvJc#1WMqzF+rnpI_TWcDFtZ=Oh4F(o4aLm&q(3}7@Q^v3 zr>6G7qQ-pQ7(;`y2kFf6ye0fj&1^igOfo(#xZ%jp_Fei6kDS4hyc6>j-`hPj)k%wZ zXYkVCroq<@-z%>yeX(DsU+3J;U%{%@^|l?)YtEmY=lZwhFVpYXXG_1yU#d_2|K*?T z-~Fl6j5*JU{*(Bp9+$kgZ&Bomj04%s@AzVDKAd*k*Sw2uy>w09i7$%T?SEd)H7a>5 zTwnR<&j$WlEmnQ5b$s=;75xTPE$2JV?cekD$(-fWY;FI%)SrJ+(y~USCrVjL-AXy` zq4k;i?SF5+x|r?uURt^S-1nW$$>F`TP4nJ=zJC1r-VG01+4YzC%rH)T*}|<~>R*$U zbnA$}`q}v*#y7J+&7OSSUvEZD>8JAGW4@NgUuUjd?|awis@d0Tr@7<#s&}T|T9j$; zGu{9Huc?{qJ>q`83f&*R{>%(Z<=SKX#=>dy=1;Y{U0hawcg~-k($BumzV5KDVseLk z--i#rO2SQ!$roN6kBRPKX7qQTUw!dAx5bC$*;RY*F|ZkE`g&bxa9e$GQk}8;WCw-M z7kTu5{cB)(RA>A(YF8tt&zIJW{Si*q?~W)sty}(caiPM??=#)p%>$Yy?Q>Wg{@T?3 z?Ct|!P4;eI{<7Qi!HoJ!sa`kUtObW>I`CJ`jcfm1`>kPemffdgGiB%LTt4`k^Dx^& z=d{zp6KgBv=l`CjKDn?uWxn`#-ScY29fo%w7vGmLo9*24a%S8e^Nr>|IpnGyZI89t z6RK`Ae}}e;mad`RKAVM+Aq;+t@1|XNUFz`v<<<$z>)qG%be%fA_|)o&hw7IYS=#-S z;1~G%_2W@zxo`G5Yy4Mr_4;~s^{(|=wSN7oRpOQX*4wz}-#(iBw<_uPlPQf(E2k-c zdc6K$&$Kev-H%n6r6YXUv=7<aeM&E>%F3|)BscxhtIA7HcfK~x`P*|m@9^~251pST zcWBSvKR;B4MLRL^&^OPE-BUj&@aY)%)xVvyKmFU&EzAvl2i!$t@0-RN#5TXqNNW@j zJ1}X_(wq8g`))ERZdhgY`1hXR54>|)iVN;lE#cwcm9?7f3eR)nQ^#&!KTs3l*52l} zZSO_l<M9tS8oQaeRr`io-#Yq+bG_CD_3ml<bJ;F7lvPZ<9LIN6p?qTa4y*E28ddE3 zuYORiFS+p6J0rCCZcUH8&5wl_pFd#U^R+B#>jTE!V)`O#pQajit-X}f`X|?e(dAxK z`*%sk?&S#=S1K3qC;q$Q-(j8@H~-J4S<ML=nYu65oLtc<aMJQ|w)TDNOLa_nhv(fi z;C_}f<Mn<S!Fr*iU(WdoCGGujrKnUsQLb(sTlL?9Ww+|n&ENfh)n9SW{PTP68#ZOe z^YmM!Pp|7;>A>`;aPhYzu35{aFZcOMnAbo3qY++Jo4j-NzXXMpZYlmb<=Y(9Wqcb~ zPFVfX`-aqJ&7ip}re;qz;hK;w8Z}{&4fm9eT|b!0@AZCD)t@l2J9&H8_Jd86Iwr3@ z<tF~dCHLdgjh+`RqwAO7sg$nn+VK7DZTl`u&fEKb?wM5E=k@)o_5BAE*0c7nNHK4@ z;kw7JBJv5pwDGpwoBLEPJN)D&zg^|tVLzws+})|_0b9f;_S}4<eyU~buODJ6KX#su zioY}?WXdE_W$wz?C%(;2(m8UkLZwg4|DT(M@u#Dii*#=ASf5imxVWdxqMn2O0Y^#r zmg{nNUgoscUXY30v{d2N4j!}12dY*v`@j0Iq_A}T`S|*WpX>V<%h~NW&+~BjUtfJ@ z_jBGknmQYuLYIl|T>sEY?czkqxT)<o_AWW#`+vrgJ(E6Uu^(;g?^yWwqPMKwjDGjY z7iF7f-*7Yf?Is#C<Lis1(lrNt*ZHq=t@qhefA-kDKgSDy-(IR`V>M%Uftn$Qe5&w! z`=q#nhsW0IpIv18=iVdRK8aN~1l~REOg{Iy?S9Jhzyq5#e7jixvGa9qILPgnbL)H9 z(chxKzaQju`OYtETW~eWC~`-!n}6i?02iLPx_|$;MZA_eB?d*Ull%Jp@h!1?ao-!P z`<<EVZB{h5FAsE;`&s?B&wc-|>c4&V|GoISl4^@&Y!99+tUR^wVtvoXLRoXRA8+sf zse2W@a<*Bs{G#8l|Cs;NJKlV|U9b51T#KqNS@UHq`WIcA&j0cCoo;g*x%Gd=U$o42 z`xBmfZ~aDP`(ryZ?JQnCHeK5^dyV{VkBmU`wvHeLw|VtzIwq!PK8cE5xb9xvscq-C zNUxf}d&}8LF+{H^C3r*b;@YKpVbdqCJa4KJb;;-AwiE}&SF&84mJ5B~G_hqbU3xHT z&GuJYW=3`9RDTl+a9|LMVR)3OSj=^D^RAfYQ=DR5ld9B(?&uuypZU?{fdApd4Jq{s zudi5bRaKqERJwIhO#Mxj)ht)i))jW`wQtnBcJXPaf8F8a`?43e9()~HVA6FnZ#|o- zOXs}^uZjt58pYY1`-Scq&spJ?xAi*TiR!Q|iQ4~Hd=#6r;I^*CDyMt%my|sE9#!zs zZ@&MB3z=7vjpffBVrGfoRIWMaU~j89=YBTMcaIM4o@LjR{NmV+%SYOI>Sg!mWj#1| zXVb4;U1owI&#tx3{{Cin>WYTb1sXil8sc9}x%jg%YO0yzY<Ke$ZZpd?MCU%|epg>y z_4UWb)7SRtoMSfPxF-L~MBF53^S0xmuCB+Iu=O5fHh(x#$>#I%{db>U`7>|rn@>A? z*&p1R-(1H1ZbSTot%nr$S;g+M@zy#&zn<}?NXqrk=jC@4y$N9#`t#xI%=7*SoLkx_ zD^5Ql@#)NuO8qsjCy8D&n_AYjKzCtH`@+2Uoo(MA>eakr*FV6sf9d+Y%^kB?jDu#1 zZQ&9*+*TDh+vNL~>~DMO_~Z8;PyX+9`Eq+hwx^;dOVI8NMFDZWBdraw(_PPB*4e_6 zmcHJnzM{~t%%J5UPx>Q%OZP3)AF#zVavwdu+W!BJ6#fO;1r}TWoIUi_KsZeC{fjNj z<l^?8pBTKc{o}pE8<(>jk7S>x-tt-T_@Af?pUm7oeB3&hefLAAUDod|bT7Go#Z|vk z;eu%7tgu;GfpdEtnxeBO9b4aevE##r>qTe86A${&PvYNL|KPFYkNiW^=ig;gVwmce z=#p~6Rc)chI<Z?9Z=QZD-?c9G#*em$g4L&NeRd?IJ<y)~eBK_#CT;ir`WrPmQT*4L z1AV_8oN+(p&quks#eCfRzF1c0XG?FZQ~xpZ>f^IcXZCy&u5{WWdhKa0uj`HTuVX!# zMVJry$Nk=QVxfV?(UP3{fR&R|7&F&9%dot-zjE5FD^v0mIG?0;o~&E%b3#|_ro-~> z;%_XgZr$QqzMyQfXPi_jAFKU>$H#MgdG1f!B6z|2Ls;~qO0EyqS5vPBbbo7!RNcUM z&2O)vD8Jalhdch4-*A5;%bQzKF`NJ2qi1`vo49j$=V|6B+mvk$XN?GQ*;yYVm&vCz zfA@Ar3+KeG)nfKSMd{s-4*&e&syuH&)3%C)G-t=|A8peg9NJ^1sL2>}=v%Ud^@9mk z-}Fm%?Th~;d+z_dWmW9c&y_5>KRu;EgG)?1e0^sR7vI8_Q#k5obg&;#-|)QPY21`& zt|ciMFTA?c7=Qh6lX9Eu=FEK~pmdpby_%Y`ZrRC?3wA5nu-Q9r*ZBBDz9r>IQ|W0J zMS*8Mx7%6xC*4jomsz^;R^a`>tG8kbIqtQ#y?E4eOX2Wrfkun9H(#0g=lq;<{8� z_tz@9IcJl;#jcO))$`j@a#Q4OnZv^=x8}4jE<KU^v5V>C=S2alz9c2DPg}EruRZYW zzqZu+`?@bL=gb!1K33~3I-5C~IcVDf-qTa(E|2b$$+TzZy`ZSy@6KcvIC&Q5MvaXs zOBXKOvge=6g@qrVSbnmpoa8c@>5VP__r*C69?Jd^-}vBQiy)I&m~%jlN03X&FE^`l z#jh)4Z}NU>F1hr6-i}|KzE^rBuO_b03K4fPW>CN8>Q!GjZ|%{oAx39r7t81GvHqWa zus>wS_11#im!_B2Pny)sZe1SNdilk#DU(~=E7q@@EBw+cKSO8z8ezxUsH1$f+1FX! zt>3h6)-;f9Dl$`l)4|nyIVV6pOT+cL(uAx}ML7XVc8A2j#8_{;Hr-~U#u<MZp35?h z>bt-8rLA!A^_*&5|LBp?cK<(_ta3_+9=(5m=W)ziwSB)o_{~0lvpu5Dd{b+bZ~uKk zw@+6!FNF$qd94rh>pfxgui1KS>GEAGcdnbWr+{srbH$0x;U@|{9qD;F`TG07TdQAr z-|`Y&``V><x?Mr(VOt9m{<Onio^~%jEO=7gh|6=zx1)+>T=Q=&S;v00zEW;iZ*>0W z2=#vf96RPe`Sq;Z`kU_i8P4vf*@8A_2u>)P)4Q2*dcDTHM<Rz_f7q20d25QQ=D{gy zYghR0o>;s|e7fFYcUO1qb@Nxhc;fMO;fkRBkGAe|HJDp8UFksFydC!69zERh_|P_q z@S2dM8lMVhuiWC&T;{X;^&OP?a#GCemsM_ibaKzU3q=c^xr8njF?8>eTl*qW!q-y5 zSdlxVt434FeusT((|xX!H&>mzdWzwa;{7FCoODg3UM-ke^is_sO?`@GidCyc<ouM@ zEDZzeHLcT_WNR7(54r8L+d83VNsCF^Tq|97uFT3-hDClil3y%QpC20Bm#^1QWEj~! zwccqGV+HfSo{wtl9g_Rg7pu>{Z|oZ}fn7_mGRSwHkpUOy+k<SWyR#KzeO{aNy0x7! zerM(;wrtut)+suRk8>YTI96}?VENUatqiBQo=i|Ww?KXQ%iynC$`%J!ZGWZ9VSm=l zV4GR<U#kUL+EY6BMlQ?0;r`Y3vgPTNONl=@7qs4~FM0B<WWRmC?dcWTrV||0b4BcJ z`7agchLovK$>QE}RBE%-iWN~?t;7WzZ=dmKHeQ^*dScL`vlC`s4J#DhA~kCv>#Zwi z8+`mU%AYhk?TMNm&NnsT;!GaC7WYlNOFtadm+P?$cNZ;exS6;~p{(Y-fb0arcilZE zF3QWh(u$hDYt{d1X<Ya$r2Lzo>rQ93mx+Y|T5QTMe3x?AUtPWAUY%%ws`?u9d!J@c z;t3Txptw*&VqssCM~8t6<EisY#kMqu*2KK_SXw$EYVz7p<xBV9x(nSfa*JDaHE^EG zyl2Z#{#tgZL@Xug)0W*&H}3mcd8;I<>mPURTcg-{H~jU>9e*a**3VB_EtzbW;S<#I z^_{+i_cF)i#aYdb!uO`z9=c)eC2eo05Zu^z?n3XBWApZ#RPC$py}tPO<{uM7{%ok% z{}*!Uu*;<7o!7rS&pZ}?n>GGI%e6-@oXT%5uUcCy8PL16-04b^QH*a3o7=qW%jJDL zL<1ISUcIqJq4Ce21%Fbe80E6oGr9@7Yx3~My}zAr$MA;v2j>}+$Lbe#dnBvVGY`KH zdc4JM^7oq05ziz#g5EFaQNAL;_j611sUIS0TV1m+n+4rym}Ap9$Libal!rWfJYS|9 zhzZ(uJLCGz(f}sbom(94^WDDUIDz9dZ|8pPw<7bIHeZ?6^ughh%OOvx$?LCVeV$q` z&CIm<+G^EWL7oZEmz-R1^8&})4c>RJiPwLNk?ly`C0n(k`O%_BOzOV`t84yVm+!bU z<#2<It+C70<x6$6g`Zj-&^TnrwoJ;e_+s`$B_FP$kI`1Wikq1Q73~h!6ntcqyAl!} zzjgDgDF;_>W}Kq<{<xdLg&EtldW!;?j;wmz=vP0#aoXFTLLTQgXZud8@?9liG+8*r ztE*?poG*vjXZ~?A2w)2;Wq8wCX61W@N$JtzG`ZLMKV$0`pPAP2A)u)F;!55UGe=pU zxWF`zKU-f}MorOs&#Yh=%D^9P9P;B{$HL+{Tr)-FK79>f5Q|>Dl4<LsbjjeE=MuIm zt~qSY%{{ZNzU|pGejh%+xj|2AnWJvROWS@tl@;e-aelRvG^@nKYBPJz6=yF`w6E;G zs9`y~SWW*y7fbiO4Z{33C35}?YqHsP^#46%u;5hKX&sZeo2q}bF1$RG`a;Mrp~S7Z z)op`k>a<3lEn2Rx!i<V8D}9pU-TU)^++vTl#;<%6-0pRMim89&GClpcYD`JzajlOM z3uE2RDlZLRS!{IwWW-k4M~<=1&gYhH51L+Hd$+At(p&b$O9s`Q-+Vlp-iVZXxmD-9 z6}$D9;S)<L^J6u++TXKw$nZ(|$8KWV>h`uhY{eR#Jgv;)d8~Z@Hq00JWco8o^_Igm z<5N5rQquFj-k&Gx?&)-{KJW%B`|J-FPSy6Rf8SPqpgO>U`%`Aytl7^G>Bg7tu(4kM zV28C$*~9Zr#rss_k0@5|t9e)Ph;!!#o=5xvbr&P+wm<cG{Bd!0Ul7ktP0b$nNE6HF zPf}8|jT{>%d3`?hDtomRAIrA=j`I}#FHU-RbEW#Te=Wyr{%vr0V!QjgjzvzrdHT%w ztc*u*XWkdDzWHI2&g5xrKfNX>a6NGS{grE_$J}j`JZAovR%S>~f3ey4m$h^FOWk8a zQ`#^8Q&+2Mo27BD_4y8)@3kG?v;Oz?K5KkaoYBM-n|v{|WJWxH_!o9<J+m2pPKvL% z-p2T3UTqOSxoD&M^M6~<E6mO?wQuuje_Oxk?Vs2mOMknXHtfnyRz7;~%N2$2m%3*A z1pD`fzWQYIhxcE@v}Np7^90`Aj@cP2!g<;#>Dcq-tCo5mVb`sj^ZnG3=ZTHcXHxde zuuPSG`l53}+^+Kp+09BJGXp2g6PPWuYpM3i;1UrlziIDstfD*HU+BCL+4qCh;AxD& z<v&{UPS%&txsWBJ-Xq#N{S522O_LUJy_#woFl}R~YVU%r=|!1&k-mGgm!Ft@<5ybA z5#9N}cAW~Y_RHNdH&DBx<#x41Vx?bUQB93gO;uvr)D@c+ZgSN5arBvAtqkXau(WiY z?x>A&D<0p-+_ctAJZzrZZaD+iuM4(ck2>w!DzfmK+xGk!^%7pkPAy@bviL@3YqHk5 zzuOisWL+atrYIF8x>9SUO(M5r<n1M#lQcYB8+8SLyWZdSc%xaChkcgE?eH}V!#z%# z^YZ?9x;Z<ayDoA5Qln{4r>LkNS2?~!G%d6%D?2;uXjA-QkGUTz0$#UmTrJ=4^;&E0 z)-}Jr?7Qr~P{1oxfaPTUE1OWYSuf-cEIEIFOBL@~@tYG8vo~Cj)NwyrnfkGF<I0Bz zWi@}hia$K}@YVi>`57;hwU$qpp734fmGAOA%bgA%4(6u+xo=;Xp3S?K)%Q(6qI1z_ zu|S!eY5KE-C8dO9X7$!3r5o=xoW#TZl+(m5<L~^B&m|O-?@pHt<$JpA=Y;y0bz2&R zyK<f}P0rPi%UhQhc>hGxc1Oq8?wUehGKx%hP7z%Dio?#u*e`eE>b<*87yglFQqN8N z^lPn&zNgFuHq~QZ$%eZ8J*ro@-+Z{Y=~uXH?^0jisiD95-`_4~IJ1Cx?>2|U%-MFA zE-#8-e{;#SRtLRPMN6)CtyuhK(amiO`RfH=zrLxxyz5-)^-ooKe;d2z=%=u|?0@)w zxBiV)IqNn#?>6M`J6wHmw>U!-!|UyBtQm7(P1~{RNLNO%(po-qy|X@Ha{O60oNiWB zb?7jsx_E>YW{DJV6`pvjwKHVj{$8=mu0<TJA*J(DWIriK_E=fl&)jsr$0<_KS8r*U z_fEh1_zSt~mU*0+5t}xBrI01Rk!x>ze!aW4T(rd5j?ONNN}ev|j)`rVpHl-@nM6K$ ztS5CaCO3Cc<COCfbJ{;9yy2`qAjtV}gH^|e%S<VrTBl+H60%*)zn(4(o4EbkM%xb$ z?W#A(|JiGMX`0L0n?JsPv)Cj3eet)7`sm|I4*N6fbLy)fKZ|?2R5Eg+<?0=~{_sBy zod50VmFg8t|NU?2-}h)s&z-EAz4H5?$bNAT2j#kz;nR;*{dwUmr+skkq5Saq^Yw2r z%s#Z(X^H!`(3Zbu_L37PO|7@L-R~K})OzR77gy2a*^-q@+%}2^=p8k+JRY6BaNqWQ znGavhj+>{~I)`_PSbfLB1oL@`E6a{ubKT=zY;oxD2a7*@Dgvhqgt-c?@40Zo+}ySG zqQHb2w_4Ey85$1kAF7T8MMsB6UAYyJui41AqU%B3V#Ue-1C}?Zz5Dt`X<=Y)SjQ&? z3kzejryd@LOI=eGB)yJJ-l#t(rY>?1ds*n#tqXNiIF<V+ufCQsu_dfNL}u}C@vW^Q zo6NqR%DFiEtJ#+RyFQyI+II%8-t_pIPAs#w<5xq|WB;n&L~h#s@zlb*b7S~s`5Lb_ zue>;~E59c8!fRve%vp8avPwC<c@g?m?A!8u`X|5V&FA`~|Mt&(8^`>dgUY>2S8(<x z^qkxEPHXzrp!m)0kLnBc9D0mYIqQY0ly`4ix2ZRcfwlC>aw*&M^PWCDe`97$>omn# z$MO#^*1R?I_l_Q^M_V>=h&V0tWl{6>G8SF>_0jqt-5$HOCMVszHFu$VosHk!lX}ZT zRhNckrQX|S$mlt73WL|&l1smfzKibpe|w*a>bJhL#g_RG6}T4JeZ9YC#j)@EBZGYf zx72sZ>ey^qWf1g)U666-$<F83ZzVJKM*6mN&M`a^X7J+cwrTCpS4S`4iAsIIZf$g* zOL<@9Y2~JEML#%K`gKjZsus?AW#KK6>@uGur!UW%Gh-KhzEE~CL60Mw+miLgze1fg z&lZL1F!y>b?)VftNrYE%!c~{&v)u%qmgrW9B(Gap|L2*~j0Id;Dk4sgr(||cxYFLe zZrP>2`=9>2TVJ;O#>`B!Ro-(S`5m!5uDR#SoCgmR!w&U{PkVM_lcq|_)6<(wy?*kA zvU$zk-1;dZ^xHP``)yw*TzAcGt5r>p+Nbr-#46*P;GeGs(@o;Je)D@82hLjH!Cz;V zY|3)zbb7KM(=FC|UDeXkNu@ibo0)}_oRiIiqqZNNuygf{w8@8<RCd(g$lGk4>6F)F z?lpPwCbPU3T-M6F_`m00Ph_h-|I6T*)2TS!6Vm(VT|dMXZ6jZEcHOPhuOl1g3yY;) zsyxeZ>fI)zIDd}L1y@7XbvLC=tX;lS?Cr5)$>7$#b8oG537W+sIiY@vcE9&}&fG}1 z<hPNJyxk^VOkS_IOMM^Xb3YN0DS0-tc1>@~$xU@FKD+MF;gSHMhWjFUYO7a-I!vA@ zCblK-I9o?UgV7J3Z=tpswp(7m*nM@k=Crq+`f;AgnH-`M-+ZpA5az#i`tXnUu4k&$ zGlNeg3(8uxAMD%EargFeg{g+p^_#YI@JuzF8PyvGI>2D(m13jr%%XhO)wdQh&04(k zzI5A;$&#h>+}wP3eoDC^`Rc@0*U+<H=ejQ6A;oC^{np9nW!LA;zVUD7pU>aFbIE-* zv7M$mdD){sU%pJ8eLZ(k+)52L@eql(X5yubC-v3N;CFxMb>QCg1TLM={Wn(aF<h=v z&vW7P#uTF`BF&yLOjVmNMwTr4bR_T9M6pwo72Ks}&2I==rndjg6ZL1gOB3e@X=yeq z6-3HjUGYZha?^aqz4u<M`77`{Dc^!Y^y7xsv<=TEg)1LaPF)w|lzq08{jh&mon4oE zNcUd-TfsLab?0sWURu*-UH9zkkEHD%PG!7y3lyqf`(pZ;)3$HI_X;X0nrSPlD0*z_ z>zfgKq><?b&$O(Nnq67(zyCY#NYdDP)4L}ud-6(|(0fTdS5kRgS1jl@oMs}MwJv*Y z_LeO{Pj2!1&b+-TQChdzh<nnk*HNo>x!lV!+p=-T+2WM{Pv&VJS`^delcHij?OM~M zk|%Nx>*{T)yXph4HR!edx+zgNizTRt>wv1>GMD8c!Rsz&YbY`Wtk@*@u`pXQGNtT^ zjOirrEh`tC))X;6ke4jn`&M|BR@eJ0eSV#OYH_QUM?{_w?V4itaQTfY**|aU4oDb% z5lQAg_-ccNfc56~<(DU=-%a1?qCTHpLs>ki!Ef#k9xdLd4d-6f&#>CDWEFGDGFkCw zPP1nGc2shnf9CF|?aen6uFu>#KWmjl^zM6AtO2dUT1W1sUa|^{d0zP|_}k36wQ~+> zE}Wy(zB>GIvH8;VTum$iI~Is}t;wAxrT6&u?b5X9%{!MZm|eA9`|v#1NcW<=x|pou zl(TACGasg~^d5R1SCjuy{E>3~hW#6p!*8Avz9i+vyE=Ah@4DD?j}u%{*y6NUx>}-4 zxm2_zU1PkWymtA>$?WAlq_Brg@8H9#JL@+k-&cPxcJ-jE#%%x2mhT~%vg`I;4tQSq z%y`Y8dB;z^=RRxH9y7)Nwbss>dnrZ@hYl)r*fFFp*e6gew`;@a0}FRGU+Md8dbPe# z!^Ym4FDRg<b<35jQG5P3SEgp4>~`^Sartv<W#$ylGrRw7cbZsUw?6R0w|B?Oer`x# zcVWq<r(Ks4mf1`!dL^T~R=S95VS>HJ6QzKRPo_p&W-T%PZ|=r$?#hMqtS{x;^e*4# z@oPEyCedxVxk%B`UoxLQ|345HeR7-Cw`Q|7E9*b+sS&TQoqqh^1!I>T`N?0aE{5Hh zA+cXk*Jq#VR0Wgm=jYB1(Avjz`Ho?ak!tZjwO41isOY>Xk-DY9veT%0(&OYw&f81W zWklvSulvlpZrgY5j{&ueR&D41OnnxmUTVvk(xLuQd*gv!=cDqAc51E4&@T;`wmWta z-}0-4UY=#C^|{Wf;k<b-HgEpW=U<-v_i5Yd)%&Jzy_EGKIVw~1`L0Kgl7*9u=dRqk z=+`Z)sLa1X&Z`d|zc+LJDerlkORG7)7OKjMYU!qmyq;xe*}&R!Fi(TQ`W4^3m-cnW zk~1|IhE7=_utQ!ud*6$!?ByDXlP_D@TiRO}T1L6WC58y4>K(0Lb)fIU;ziZ55g{(d zZwt<q#DDQ(zyJ75e^}x6^l3pCy;MX$Zv0sIF_KlYbkVI}v#K^W@GAEnTHLrhOz2*a z(z%zi8ycL~E_x;0er`@f)`rweCbO2Gyr^}NWqZTP7?}s#xl|^sK5u+YBw}^O!Pu$q zd~Qz^keA)1{c*|*kq3;qy*KKmYkTDl+1lrY<)66iGq?V`torjAc0YbiRlV+i@9r(P z$TODLyl>38BBv0=`+D1YejcvATN`bK|Mtp$p8c8O`K}N0vD?L?rbup)VK||8;z`Yg z$h@+bz11J2j~(*vdVKQ0!Hq$OueO+EYOO5ZTc}j^|1O)2pxpV+pqcY_>;CKQy;8sB zQx>0LhTqDCKi$(8Y+b;dH}PPrW81Gw-=0lcRQ_H5jh$QJjg{NHwrgf2PPzM9e9<ko z>v>t#ty|WmJ8XYGbM=kQz3t_HYrkmLg&+J_u4VIZnqk&Tv;L+JmmXVx3to`B;o6(E z8TvLq-B)CO(o~$3;}O5BmuuyUWzQ{mQt#y7sITWT%`eN6*C>0xYG+Te{^L2Pcdd4h zuIxAa!zo++H~;pxgjro7tpSWv)zV+yYdUtWy`X2;^>-Vpro8OY<yqpo{Qs&K3O~=9 zckPTmpMC8(i?-gHqTJ;()hpXoB$u{4U9;@i6PdOok<uBr7EMlNFT2>2;JHv}+37<X zCQE#J)ef)huYaZ<Bpc+l)a0b&#>*+jH#26f{;`;&xa8H^uX9Uf@3yZy#Cc)ua?#2~ zQIj^au}<9CvuXXGKmOC-GuBonUv6wZzCKWuXSO0|Sf28pH4FAwOzm-VcL=|-d+$NT zPjw&EnLU54xorGy|CV!iuX`~u{N1ek@21F$|Lb-C%{5v-vBAvdU;TEIj??cxM`&Be zXM{zjPH|^<UFPb2dhs{izwAEte0Ou#8HxBEGqn5{^|na&)Y--<HIwh?<+YV1b3fJG z9opNFb7enQv4Xj(9M_RMkF0|^%P+5*c~P=7&0yj4W1N{GPqRZsu1+^T<#WMflam?y zvGzaGA@#gVPW<L|*RpOmw*Ob(^UOi|c6`N&{YiT>WOF?4?oxdGg{xX<ua%*tww|TR z@%Qq%RlC;w{-1GKNn?BD>91+-;<}%*H?l7_4zF8l9ynPpXH`)|_UZ2dUV&?Mr@Ndk zdYs{U>}XzU@y)!hm!DT;^JISBQ#|#!-NAiIOI|7je-Ya9_+!txCFX@bn#&D()9R<b z@o{ZZy127mJF?^0r^~;0gsl8w9pU;(W9j79W|p;95_K}4&n3mDuTOs36sCN>Cwg05 zul;d`xh6Aj^@>(m{}L$w!{H-&mO1JDySVFLZq|SQYWA)3{og27`OWhKm}R4*gmi8( z91PT4C^>hw^tB5w-|U~l)BDgzxvc42Mp0ONz4h+r4DP#(6NHyM&70u5$it{>qMO^= zSbtt&=9R4;1+V>g8t9p6<{aMmgn3czg~<55yR{x<xUnm|DV5@1{g_3pc*crTzOj3X z?n*7#7{G14a9Nj_!=6w5-^0v<SLC*J$*BDJ;U6Yam?l!a`~NAsoG)`u+KHG=iZ83E z+?*`4GNS(C!<(BoHGj_#G~+n9#z^z)>eJiGTHg0&d%vAjnw?YBE%M1hZE=3oT(&JI z<N|hXv^*giKKaUowz`dfGJWT^%1@p)VTzEr=#)KyQVx=OwtMq;u8>_Lw)gC{*o&dp z+ira;E0xhVe%ZUXTvP7srKOKL_n!XYW~5#(tQ7y>?dGR*TkG#em$#N4mk*2l)cfhU z(~8m(=g`^GO;Lw0uGjw*eOsz5{Ox7Qk~>B5d92bW6yse_`a48CxHe&H<LT}DC-!|Z z)l${%|J3WX`B~7fnQz^hc01i-&Svi6lA37JeIw_AL&Akix|#83-gTILdEr{;QsEPD zDQ#`kY27z(Ll1MMExs63U%g}R?(FLm-x<%Herm!_|K96vEX(peIXd0;pZcNb8=b{; zde`Z1*WP3~^{4!ay;v>0>vHBnbGH9aS^7mMM>`o5ot}2`!TR(>&IJ3G_UeoM(h*JU z^>=p{-Q-AHsyRP8|Mc1zF&~BI4we&XT;g$Gm@nJv%s8MMXLcdz*p+OLTYKwYv+&n9 zg>zKzzU{-7$SGKJUN=50`03O+tRZ(krP@@y;$3IGf8V=5X@Z=RHe1VCH+SuxnEy<n zHTs~=4>|rvEKkCs?3#o3Kl-}o+v^f5$E?Yx9F#tm7|o02e4}tgN&i>lOSxrh-I^P@ zSju*Wo?0t$X@#lEM5D6`-?Iw(o${*I)mMuwtDdn<%EXQLd-J-hUOPo)Tju^1?cX{_ z_}e#&E|!g}J(cDyzP9>{)~v>-MZc!y2S{DDnB;T(@m=kMwky^jcWiklcxzSAYD?Fp zVLRtWU0h-Q!tgEQ<#`$HB^^<BJ}9q$e#gTom_ux<<$aGeH|Fm-TE-~d7-1@F#&p@% zC;F^geY2#_g9*1jYux*)738>0pto9nhw7b2))0r!QBr&5S!VrJ#foe7kBP_Y%olBU z=DfJ!w+HLJLoXdY`8;+`2$J}8Rx3yK-w)k#@g2&)ta=nm`Y&9onQA33G9i7sRfg-8 z)$9-l-Qf^jIj?qA$QR9|1zl^FcD-RV6H2T<9FZrOw!Y?W$iB1tPp3CG*~gyclRc<) zeAm>t`ga8?#UUp&b$_KV?R@B-_wc3ttry$neov9R`M>SM#~%|z=GunL-TL!YTxrqU zP4+7{&s=r+Z@X3P^vzz1qA%S4&A;vTh3{AVt%-bZdi#4+7Bwrg|CIldGJmnv%BttL z7jE$8b@@{Nj=O^C!NL{pZik;#8cF!8B(G2UC3R-)rJ8-~YhT2FWYMX*p10wGWb2_j zO)~H18M-nX<+ILoh+{Nj{OjbevN%q~xT9ik$l3=>PHy&io23(1KmE*t_Fv~_G`##- zajz?`W})Wh1q@s}+j;rkKYFOf_c3Ef=GTrj36mwahUWcZeqG<drhn-49mAG?h1?%Z z>m4R;EoZbV@Ac!adN+;l`;3F~{StppKRx$EdC$Y`U;lsEQy*vLZMW;2fc?+gk~*Ky zrwc^>uiwX||ES9L+w!lw*Z*66@BeGoJ+^<lTf(?4o`$(J6}~?f&{A+pmuq#)B8J?j zX1BDK|K{2m!zi>`=HY{VW%X^3T8^yRaAK}Vc)<OyTdsP2*A4p;uUl2uFYBB8^5W+? z7vf~&rc7^%TOv^@6n8+#ElPCSTMrj|p;>o7=xp!Um=e;wRpjB!H6F{8&AeJtRCfBg zJ$l{q{R!W<cE0m@@8(|L+%o&s&%%5*Hib=`-}8LR9q!IHkhg8W+>#=^{o=O6^>@Wz z+cot+NV@aT!R3<2eMPko1$SI;{R+H$^xff(+OvOW87O=>yW^*U{Jk~YFWmOtefa)W z%Z+}YC30`ww|6f2KKY&Rk-Cz_Z*TZN`J1t&`p(XYf9F28sekqNL2rs!!KR6vt52@* zOrB6J@|{P<deTngXBLu2Ev+KY?^7=6FX=D3T+e*Qzx>0B$1xliudldj@9Xq#``s@F zwkLdkWtz%etxh;pX!Giv|BC0A^ryEZt4$1CeUjxt+~U6eoy|M`&6K;p*XfN~^~bnJ z%WlVA`tAAsTax+R4C}IPIsK2vqstzZmlyh9@cHwWbJpns9{)qC2mWk)5yyW+`u?Ji z4ksJ-_4Ax?s9$&GgypQ-`8Awp<oR#Lw3(&|Y5pvpEZ1Sa^Xu<oy|75f{24D-^79`5 z{&9M(bLZaM7M&Ig+wQ;NOb-8hexA*bet*>oj#qw9ixJ)R{Sni&e}<ubXSN-&d9u&# z)eIj?m8mBLPuH$Lr=96tq`)3|L%sF)X8WpS``^X++#i4cKU>UK|7N?(7x`UQ``0o* zFVH{lZ@tr<(a!&0uGzIuCxabq-g|%KIP&XbHlx)e#+`qEl-V#<-#hLf$hUji|KlMS zKgX-qFTB0_NvMzg$JLMS_jT{R>3gI=gnh}^Bc&B~r!H{`|Lo+x7xghKXIfFAQ02UD zR{S4qzm*<KdY$U!wpQ<c+X>V9GSk=GJkOZVg~X_62b%6_Qr#cJq87LMu40<)-KeI! z-jX|~_-){NdUHX@mEwu-?|$BC{owS(zx8+gf2NyAI=XX9etskLNObb58pXyRmmj`k z%ud^%suN~4r}Oty=S25+8|EdxiL<(Mxxo7PGE1fZMxTGRy;{S+ZOfTu%##&&q^i{4 z<nu8~J@~5Tl)~l4Tf3f3=O~}}Tixx{-!T4KrJgtOZo#o-=O6mTo!|b{sr}A0?`)y1 zO7`MApZ|H~D0bN*B+@j^b$#%uCmDa3UTuofT^h!<c-8b(jc2>~-X4;^>n%~-7x%g$ z>4LPbYX@)57q;Z07bSN#=f0WYp18ZR-^X_Puli#X8oZV*k$d{*t4U{ysLPw^DWxwt z{K~Hz_Aa=5^R&Qi(@phS$%Wrkr+?OzwLM=_A@}yjs^;TKHe1(=&#L>pW!9V{EeD<^ zYAgRST`9nMaN7p0S99ZZ*TweDEf9W}XZ>f9XWAq&2CWUZ-aehI`9)8?``8546v@c1 z4SO2JA3eSQpg!|y()T9w*30{rFK}A@+l^VS@N@K&y~0)>{_(|JeE3sRR_guI#q~jY zOFl0+uj`on@$=)45p4Zh|6VZFv>ME>n6Jbn*!j$Tb;!je^KV^dt7f^B|MX>Z-Yg;i z>jL-j3EVxV)BO}Lyx10eP4dh$4t3%43pOsgx#LmrzuGq&bGv5TsV{NoTE6l7zDL#b z+xfo5wX1iZZhb0w=hXSz2dXyN8%$&BGIG0e``Nh%>C2s>qF6;bKVE<Et>piK6;r*U zIu+LW9!dM)?X@uG&Hcl|yKL`#Ph)(2@Luwsj{+6_f3H5h9ICtXyj^{Kkgml&WA6Q@ zYzwC?@S3Kox%o<wy+iSjbIHBG>%Y%i9vb_7={fEK*+j!iw(shnPcVHFc{n*xX~ylH zJAU`B+dkXO^7@6(e;sl|#S{<vRxaJ-7TGJbaOSa_B?&QXD+CT7m5o=Ozj*J`c^$j? z!UgB`{jM$e{ky&UgovO{$9#EfZEKAxEgiR&Y%4?_X4br)sq_Ev9+UZ(ylR$8*+;6@ zd!$?6h;*vfYv@?5d!?&XpVeO8#_#ruzZy^Ugx>gC$<`zo>bAG<^^CivxV14h$HZ{= z2JvrKEO&f)pwOM5w<aJ>>r#-|F##6N3F$!>MEJv|C#$debEodkjTPmu=DMX{zJKna zxYaskZ^y>&TeqWUzD`o#y}|J8=L6N|F%{>lZR)=%=?NYB+K}IIqp$CwiL)Ye!uh9R zyH<wI+`E0oNfXt|dCn^)ez<gW=Z)ybN$N&B8!rXC<J;<*{pgQpy1|RD&$OHsZ*|5e ze9%_25wmChk?At&qshbKcPGzy9bOc+gT3N|_zm&>4_vNHbT!H4t7+{~)PJ_<_nVYw z%2z+0HQ=q3ub;B>2B%(**XNb%t*h>pcm+4w-&X#yG+m>+<@h6RV_{+8AQuJ0=eM8q z?Rmv=gT?#$*)ERx-#!I#EDx|;ovyRJum4(ELimd*cV<cSYB5i|xqr`rGuvCY9j?@9 zpQU``dPIU|W6>A={B3pD1ONX%dyOS?kxG*A$AxX@TBfhd{ck5<fAX;7WZ?!Dm$}o; zq<5%WR=vL(tx+NI<=LzIZ!Yk~AKY$V{%-Y)A`^w^t*^abINcMil;6~Rxn@qU#mkxl ziF5Y3e`xsIn8jx56~4{*zK;0`1#y+1K`VV$oq0TC*TkajuSA~nbvR5|J#|I#<mEqn z=W%B%WG#O)Ve`3r37Hpee=*al&zpE@BC|(<x$Kh8Qz9xA3ilUwT|DNt_O8eyer<(^ z3UgYEoR^*qEm`&U#<|06d0Q6?e*IUH81Q;$)Lb#Ctki$su6BBFp62O1RZ)O(^XuvL zEH89qUfrrZwsBAC>)#)Q=Nvu6X2W9nO+==J?@6u2`y<B||M)C?<t+cTJ68R7OPeC< zztul{d?;ISxmd@EhzL)nut}vy7T26L{2}m4t8jm?_!_fW4J)=p_egCvd1q==*2JMU zFaAfd5|=`;<W!f_wia`OrsY3>mnHdTD%<LnJH`6ln!;vZTco?t*mm}$87qIJ7RGc< zFmUmZJh9{+yZckCDXXta9(j7BIrGTj^|kff7h3CYZJmAO-h1nyn~d^5HZ1mIsZ-u@ z^RtSzU&Q<ajTZ#|m32(c<@EC4i}ddFUnji7^sUw2o8R6YHGaTUGHZYHmuPRcV{6V# z_XxhKwbsjdGe?SON~jaN#ka89-g60(ax6aIPEFA?m|ne1_l8KmpXR*>A)?NzA)yYU z5vIp#tXrpjssGmVxPbZ8g2f+%4julnwB(aaSV)GsNHJ&o@AD$_66Q<V<V|UBKmPj8 z|6YZ!FEypl{R^G(C`o+kgNTAFA5WIeot}|U|9{6pW}RmCLk}EfnPbf+UyMjF;+MN) zxZ-e3hRMucx6L<`WNcX2s{iMQHwBlWZ3SXY%HlFMn!d1+QMKOC*Z_GWQ1*$x3(p)l zaDeql4G&KbkHUom4oVFf*+~fn3M;0xHYPH5Brz4rL~=x^9Z6ZR@A+HT1yX8l4gv?? z)`vBSOy77wf~zG&=!=OoSMVqHGqN%d7&sVy&1>XzW$svhuz<nCNV#(X10S0xI~&`j z=GmQ{jjCP^6SrJQ@o8uk7G|i|<=c(sRIp3UA-k5042;Z>-C7&Q9U}5v^k4hkxs0*m zDG_UTTNt~^buosi<X$xs68+F9!6;fP8XzX-D0Xw|awW#F#>i`nm_EAj>I*VPR(iSj zT$Hl)s=DGNl-nb>cI(RHGHX}vU2Jdrc8$uss!Nk+8keWN`@idc`TpPY=Q|WxD%Eow zvdwbs$&3zqmJ|EHDcEh(Wl_zl?%+yQWh0Li&WXi>%TK!KTYd{ZrKkOLG3$>WbIF&w z_m|D+5}5e--In8OP0K&&zC8Uk-b;S@<Bm(>fqESd>oS;vlzD$yGco<$aH9I;va@YV zPqz7Z&r-El@mS6sn{w*Zc|UK{s2u`x^UmF__p_cJEpbHG`_`nqQ>M$87kbV-d1sSC zo~wX(?y0GJGVkyNt8KrT;B(63p^s+F9L0IJ6U|a)@4S+8xliZw83ny_Gt!<F`QCgv z=gT>>6p2Y^+EVh|(>5v2-Ymfz^W@bH3%x^AG9NCwv`xb3ESsLegvV#tnA5jJY<kAZ z9$mJCZRV!>;O5{ZcF!L4Z1j7U@O;OCj;R+58w0(?TiuVhu}6N=iRsdu?QIq@>5|bI z$NZvSzxX|;n{zoSX6QvVh%NHiBD2<EbpTJ7d*_LcOBceX^nJRhH`8TKNu{E`dTUXN zGk<5rqaEBYg&qg#&Q{udqV0)X(cC>=b?%12g}ps$)f(|H>H|9KH&|`s-0+Eo#mXl7 z0Pm#6C0`%iR4Yvuj6dRX`v<?Y=>$L9h(DI|B%4F4pR1HS+qz}z_3v{}SjWU24Ux~^ zel>Id8=t5H%L2PkfBYx(X7$4E^hWo8U)Q(Z+sD?%clv>O-T66+_Uj(cj@TopVS3k4 zdxwT~o%i!h2Z5p&Yvu;l?^UUEtWgknz<=*i%7^KDfAIWU)utoEkhN!?Wb6udlV1$V zdv|oSlnOAs+c5R$KQmLcvh|+#kGSN`2$ooTwC)k}2j%}2>iRVk-uBoFNG=KN^t~q6 z@v5PcZ;|YtS#ph^Ci>_wntz>WQ|Iq^be@y;W<_<i+L>bht6MbZZzyQYSyBHm`qmod z*XK6%O)+&>+G1gHh28(iEOo{Yd@Wz>?a%Dvl`_>+UA-%}_N(kV+v8QQqP9K=YgL!d zUE?M5j8%c9FjkMTym3nB-N`Ks3Ub_xk78CWeN?_|&Z$##cT4{1zqpjk_Dd4e>914v zzE-@y{_W25)5|wmhzebqq2AcOn(HceRQ)2iXAPlE|C-b%T$-!#G{fb{<Q9$<i~sH1 zb-O<7kJe$nWkUN@UmmyE6S8pmx;M`!-@Le4u!_s(?Ssg56Mji)D7@p1vyGg;x#3`M zvM-mY#o}76vwzbsRMs(DtzmL8Zx;E?b#eY8{YS0me(G61KO8=%Ii!sBZ};m*!KM2* z8XI2BsQ2-CWAg2LdD%DPRpQ=p=^u4>=$wf2X%pKzuSY}ofTBgvYvojT?FmmgXFRx` zE&QiqcVq3`>(WzRrJmtm*mKZFs(R0!mj|bRK7PQi`~BC8Yh$+;T7S;X+i-UQZ|_Z! zspps$y|``h#`N7ri~9#^>pz@2*><Nq{_($=%M6eGSLai|Tfa8{!d^ACI_t+VU!R>{ z|0{Ug(ZuY2kNuOB-mvR?N>5nH=KCS|kM^JJx%%^(Z2vvt|NPMW`}`*B=Dk^07uvYZ zIA+5C;vd8RlMg4KS-H6OYxAvr`<#-Qqvszxo_k@>q&XR)Z7N6KwtbwmPn~myu=@(O zeQDK&tnp!oj_i4T_<2V0*LwNM^06Ca_a5n!JG5rWuFL0tI=+2Syzh_6>ky_F9k&-u zKFGfPpMTlWGxC|0d>!neiYs17CT-COuiv$+H224}(m*jb5fR&_=YLy7T(1knze{Kh zh;X@^!FE-+?Y#DhD>-@Rb8~aozn{3|vbN$5Re@TjDV~osrydDbbX!q;VAYTB_0}nT z+q77OMA)<Qn)|;!d!Z|{LjCP?$7AuA;wI(%tPDHQ_-O5VjTv#q@{>)2M2~ru{+DM= zDz=@^xKcb}j)T3J?Lp_iEA8fW`IyfR`{>-uv!!W%!(W9k|IlCS=Nm4*V;bu8fj3Wa z=WpwOU#=cFD#-bxps?PWMejvh!@I;8x31Q|{b{<P@qpTa5V>WSd}iF>@V+8$^gi*v z*|Vy@CyrLnn$5lLL1x9D{ORZYb56gK%E+_-dh^w-y=KoUp1)+yy=DFFX>_;N$0skt z%8FfGpU(5T&ab6yw;?N||Ir_*e;m%`3ook({5ex$``)_t_pMrWvkkKBvu9VEeyKE> zaBtd#lr!~R^Z!<;u8^GNEMWQR$-~vT>}rQxXIxXQh+|nMC1L%e;J}6Uqs|j_rzTeB zo%|G=y6)N|gM9(re?1rej`{D<uKic&#BS$9%De%W_fKe=C$J;w+wb%;v#sAv=GadE za`9ZPPjGhlTIcHb-zO#tww?HJ^paZNWD(chKf7Xl?OdmKzOSFSrF*hUd&H|9uN2r+ za-Umnt>tOE+ONG(Bzogkq3LJlBpz-}Xx*fxQK6K%+fVlN>r>Z^9Ct4&%e}npm|2g= zM%Cv(-s@+y{XEY<Ct2>w-4&Ua=Dj-WZE;G@@8R;ZS9?OA89(G+&~L@z**byAL#<AI z>N1P&L)~kqR*T;FZ~f`r*7|k(w_ba%nU%t|CXzMU<mB4hvdg1pSD#nqNfdw6SUYK> z^keyD|Ap*}PhGyt_ilaGH%Xm^vsP6qcdzgLDXR7S<1yzeT7Q=qbNyPHa_3m3*!8aW z@-4n!O}DBT`^lvT?fQ7?;~@)$<K;Krnnho=yZ!I4y1w>Qr_%fFSGRs+{=F*et;{LT z|ExL(jM}g@5x^H+g08F7c#x0~R1hNKnUV41zyl@*@p|U1STq<zue&VdWpZR=Ha3P` zcWKUKZZJJ2jZuQf+(O?iv#7X4!OYBTGGn9Eq)?W6Bjo1C)~M)yVRzx$|8=hWSw(c; z{eCL!6qU#6*}&rAVKkF{^SoFc-EXJ9xqWzFylVCFJZb(LI%`r&{o_}y_M5wI-Mq-R zizhf$t8WQ$V%J^cVk_~m$8}|k|CbzBo)D{rAqyJgG*+(=YAL$6K!~+!g(|10Zj@5J z+!D_f84I^^u2^t2$yIi94oA<I&oBCeBv$UZpvSp5NyJTJZKlyGtIUO446X$;vsp;D zx;7U(M(FpL&yZ|3aP)ep;}y|lC%jTwGf~KD&r&1Kj0B-4uT)OP=q5}Iy~Q~rQ}oGU zjn#7n15Qb?9^JUlbOSqE1ouy?#3jLjF8x81>owS26`~!}Uz?t7oS@Li)v(2JvRr_b z7Xw>B&Y2=ZTeVqy2Tx8cjkEB)z`b1L2<LMfo)($siIW+5^cYQ<*VuHLNwp>FXodZF zkZAIS^WLJP2evR|@8!67Fym$7Bt|EtNwXL13q2rfUy?kb<D$fm;3F;)n%a{#g#~0X zEb>*doKesAze7aDz;UL{6U~K7SXc@qvs}2;0}I=>xE^H>5}7mc;v)V98k{vY&op^k zdFs3bzuJT*^zW!H|B|(9*PD0q%AY?EveHbw5L9)=cIv7r1#9dd8%g}h$#jmrJf}+T z)*kK0*S=OS4qo%M=*!_hS8Kj}xVFhU+V}Zp>tB64Yv12{QU9@IV@zVRO3q~Q#qr0k z9&Y~mHAmI&%8TnC7tLP#NpI1&c=5aYD>%LsyubH<-!#Q5Vc#7m%ztC};LY0~Syy%6 zy@;xfUoD^g^=wq_^sKL?brsk4#y>UKa9`|&T+GIW$$OnHX0P4+^k3X_#{*|&U8TO? z`Y>xRQ<?+gaqjdBzgkV0r`C&ZV0{zk_-R-AhvMH$g7id}mo#&|vgI<0alFs4FnLeZ z<VoVXaj6|u>t8Xh-z62YJ3c*n#?E_6A>UaQn5^I2jB+>FdHm4rPd1umtBv-p`FXJ_ zUfMf)cQN<!+)q0n&fTLHlfO9W_U2gjM?a2M$YigV-gf=kw_l8LGm<X1)Xq1bSijP2 ze)8Ts8>@aM?%no7YF|$O%{ce7GG}UCpF7Syw83xRHBG*RugiYy`EjL;RlnNdz{}E( z!&WU(?IsJF?|oRuUzc4kqL-QQq~>B~%)=#Sji#^TD}3)nv!B2Be&PnX4T`+C1+=9n zWWL>gFz=Dax4HKo-1>a>8{^)4>PzSS{9($^Sg*RhUo&ja_M{gg8d1OJ%}nzb(TMx7 zcltT@vf7ugl{c(kYqx%phiqn!Zu$+Qy~mBp!qzY+$yoJP8|^sEwC%snO0D2?=6ru| zrOi&<{8~rjmj4{)=d=HQy}9Kx!_+q$yq1NXtW^sMzilUPzfS3fT~g@1#cSQ8Pv1;5 zy}MzSbHdC`^<MAKACS7IaY7?9)wOli98p7u+OQ{VN`aydzgr@&Ii;w&Xv+Oq6n$>J zc=}zT>9g+qeRVjL{ipa{wg~~x&W2UQnN`jdyDU9*uEvz-N(F*DPaG~NedbiSaOZ={ zTSX6dBxufBnlWurWLKhQ+fs>XNf9WF(0kkJudiZ$yS4ITS&7x`v*D*}rl!x4&i;0? zwEfgp>mu#{xkoIE7g#K>-Y*dT`{C(F`MYNxXa9fx^2tq_|B`KTHEUFtUpmbHV&aoN zxxDu^`FwNUUoSJ6^ZfmT)8?0)S$^i$Oup5gKcT(L`}pJ6GiLYQeDSkWf1Ny|2pi+2 z+g&Vs>-X8$m;9?^FZ^MV@~`giX~oY!f6CnKW1f_6)FfPUuyXN(hHo2{oTUwB%DTQ$ zn^gGa=E7NzG)fvYjwY^FimoqE@F@BaB(t|{y1}yxsupiTy?2}yTBoz|I+t-q>;2fI z>s=e-7P%ahy%;91HS2J$>aKl7ZzegsUo^pUf!B)gXOp8ZzD=zcP?u4fwt1C|j_Y~F zK&=l?gmQi_xKO++e7&sgTeZs{|Ni{l_RE$j%VQTu?S>b}R{vb&pLxzAu|)NA`Nk!> zb;Y0K)Z4H2&NALmefwqLDxsjgo(lF}{a##KXP3*DJYJJ`>fqaDF&-)F!t>3K^=dCY zz4i2d%|l*((~K8y4tl@C{(QY=_YCvdd)CI+>`hp;>EpjyaZlEKKGYGCXE;A*erb2~ zd-eZ*>(!pWzt>%#m$`E77NbAKzs-KLoV<Vd<Eq_XKm6Z$T6^iFi|1<fzm^BpmCwHW z{m-h|bD#N4^!Hv8w%Tm+lb1D@dh6oL&aV%jep%AubIu>WYA5S^d9|O_yp@yIdd{rh z`7L3ORQx&pjOLdYSdK6)kImKz-<!2IugT;~+1{=DI6Jhiyh?Fie=4!+b<X3LYc0#{ z<aTPBhE!Zm&=FeH5XY)p^Ey~~Pi}Ko%#&#kW_2*S7R-}VU4Qrzi>`lc*yZhAH;&zq zczIi8_E(jux1Ma8$CfU<GI?v>!{y7uJw44h`RZ?Qe9PfUNH131n{Cd?yYC?LsS``5 z_43YR&1Ao8D{vvQSM0!1HfhDf$;yt&z1guRdgVSSW?0O=e|!5q^Do;jdR}I0GT7o6 z?A_+b*xMj{dt2be6i22-XLUWFUOZ{8=9D~>eZiU49h+FDJpMLquV<N4ZSt%J<;nXN zS}6F*xk}~KuRZ&o@5S_q3)Wq!_|dv6LusejP5Ih)3OO&t3$_J{-<+EG<%4cp#Z*?y z)XWMqzIUHy?JGTMc0*0ka(TbfUmYQ*zGa@SX1a4(FHP6{z}t83)Kq!SEe%~ZyqhFl z4%k>lek++cN!IONTdzvyT1$PN<*(Mvp7f=%J;UkVGAmw&{hR8yOENwb*s{>HdhQlA zM$L)07_=KjtzNt2C^&O}@HoBEHtMld%%7<26%2Zc|Cv4ozfxWFgX_tKT^t9e?W<3% ziR5}GD%keJ=8*9BnI@_4A8eY;Ugf*y<ZPi$ou(ll3MRCtG}+t`GZDG1VCZq``TFR; zHmVy-eNQM{6j{1J)=VccrM{SRUGrZ_<(Z#s)^phfFn(LU?7Msli(16$n6lKTi?^;f zd2f0+Mj>JEnTV=3lb3I98Ochi%vo~bg7DFt*D=p@)J_If=`9qT${BsM@(6pznWfK! zq)n#Zm=x0Fv}%1zP~fr<p7V}<Vp7hGOxtrG*@rT8EcLqL>!c;Gx^SY$%oxLZUzY6} zw-z$~S#*-KxM;~yvE#Ce?^BrbCGOnOshx49ODah?af|w5UZ*LG4RT&uYkp-4d|b>b zr!1DH*cZ?;`vR+dAa_&2l8#1=J3kymUo2DE$-YsbT-H<c{29+aIgKjj1aFxMU(Q~2 z=$!D~!eAqZibBIx$@)8do(*hAdzW#A)jJA=C@y1@6`aDh;DeE&n`Lq|Z<dMJoMY>+ znzihi{qZn!nMkeN@%2{?w%6bIyHNO<`pQ5@9>sN;{bEY}YR9wJwFDWuxcE<vIL5L} zqE70MTX@K%-AZf1wun9m*u6}pHu}DeO2M_?4Cks230Vv7KBIKlg~LtPM8xQU{n2gG z-4p7k9#_7fY4fAm>x{10okbp34{h91Ef|`^@Q-ujjU>C;17CMaN8hx*9rZjTP3Jk^ z4gcqUJy!B3tuE|*+#qnrkGt`X0>|9#c2Awv7)vxfYDM%K)O(j%IHqfuS#D(C<FJlp z6YItP1(RF7r>iGdx|mP5*rmvHYr=e+2p-dybC_pp)H}FN_cygVrEsVq=Ty4*BIQ=T zTX`8_A{?J?UVVPBf8wtGxVZh1PhFm#bgo*)XSvHhu59P`_0#Qb|9<}ZeZNhu<viV~ zHaqS2&$)16y8N`&@9s{%`P1gUnBKC}S05c-d->!a-}34&HHI(6F5f)5R$W--<>jmG zw<DgudbO$A-E#L5^ZJAde>X(W(_I$sG3PU*hvenM*T3*(f3f;6eem1e#Oh-&N-Etp zE&8II_4d>Ew<+%W3$MzTcso5R{hDmPx8iiO-~YW8wsY6qW6GYLdUtuqzm~pU;a$ut zC)j^X{@pWAA#wJ+x##rstQFn+^^c2t|2nm1PRkd5kF)QU&d)wO{ch~d|Mjjrzm~6$ z@VNP?j%DTdk6$*OJ}wl$xFK`<q2yc1KW=%lS3F<B{`bl8i;HjGtYLERS!LFiZPdo} z`Ol^1_2%oJ?LWUv;_ky^pFKsteSUI&`Eve$R;_CK&)y$1Uh03K^Y!VEkE9Eh?m2p= z!1d+qf}^_~SIr0rW>x>qxi`_ZVf&Z+3W@dhp??&-@2E!@b;KVPS-Ne;qBDX%l9TFn zq95r+7c|<;(_LTp`|Wf2y4Y;x{i@M#^rHXt-k8L8Gb#A2*ktDJCG~dP@pE;Xe_YKe zyq&}8z9H4)-^QFo*=;Wu^({X=*}Y%x??3mYe9Av{ZwQs&SoGBQ#-p}=Md|Eq3em~i zF4(f<)EC~)u?+my=TbGpr=-=wu}-kKZNZw($=f;>UllweDNwJIpYv;m`LBw5Hvd1q z-#`EFm%sXtua>y2FB03l{PES>`4Txl9*6tNR}24&uym1+k<|XBF#pI+my<@zTz=&T z-_hykF#oAK+oXBPPo6%}@+~)?^;tJr&yRZ=!Dac?u=Py+N0D9sf8D%n|8EV)-(I1F zy|Wo!&sIHfiZAH+3#(5G_vTzEXLB_VP&x2ywfceIifcSK&t-g_Z1iC7q5fy5<`pFG zZ_w7S`}OeT>A2}XcpvxN^ld!b8}z`S#^<Q+rX4<Fy-U<uZI53$J872U53OZ0-tyd# znas%FVgGB_7WH*s0^iw7y0P5Ygsn4YGF@MmNy5?6EX~Z&)HF54!YtJ?F)hW&%+S)@ z$iUn%E!85$#LUFbhJcFc9kNXF%*Mv1(^ttdsnnaBn<IDlbg#PmggS~G`)C<{%2^;p zM?*oYqbbORkyTV$t7-3dJu{aL-|vZ5zu)_P-3?aLV=i}RP1s>@uvL0`-j{p-=bY7# z-)H<i_1^BumB%DLzn`D1a%IcWkTtI*gmZpP+PqP@?4Vzg&kVyghDzezd*6Kfn$c2! zhqpLGW=&(=i+)Cl4m+Mhvm|;HBe<Ond9ssbx9sM1-`)P}27`1Gi<yw}?~>=eHy6eV zYpPv{|E*E=JH&3MdfD-NGqlxG_OI(-R%pL7aG{xR#+&E2?{DD$cDTl{aN#baHnpxh zAwE$PzMXxs_~?_6%*%7s+<fY^bCWXfEI;ORsa~yb*~}T8_qS#`UXD3)W&f=smydML z{2w}dn#so}VKW+X4Fb>n;`pvRd-CPd+H9YLDu(H&_GG56@tbVO8+^1z=fg7l=F(eY zmp9Ixku|@(j)|%CmYj7$o5zIt=DqiqUG_P1tWSwEdQav%)wyYj;%`(Yg+KCL{`G2R z`WeBQk^ZyS)hnqso7~=<wZFRjjpC+F5zD{5Ri9M6ak|IN{JFP2C)BUDQ#x*+F~2>! zz-Zoa?g~Nf4?=Orv@1l{KNNY>9$YBpcid@Cqwz-jbBB~_I*K<+Jb%a_)1eyC^|_Ey z@5pQmj_D6QW4g~5n%z5ga0j#cL)ksu-#^	TeRm6#h`trgwFHp$6aKrxxt|53KGq z94=JOJ9Ku3==O(YGL7sX1>}w?SBUgK^swnu-@sG;Fz-(D;sTR*M{9S;Uw=?l(~|tb z(C*;!A3WzDM9OqO|G;+d(A*sy;*Tw2n!G<+O?%8-)A+cM$?wSYIqB8w_Z<uW!FT^b z^fiv1Oxl@mPS)$6o5J|3|3Q5_-!+GNo&yeF5(Tauxdn^-U<0PZ8|`lGHWzx!JG1AT z+LrQIA+?0;iO1dd?0)o8{ro4T^Ws<Mt*@)t=lyX_#p?SS-cM?mJu{iOD&_3lyL+OG zttY-}pLMtTS@@1;-yZ!)%Xs(j+4)(Qk7j=IE!Hng3NlUaFg~)}^8DF&8I$xb<82F{ tF`4UMxZ^nIWc{7HR;uszf39zho_%F{tpbxQkC}mip(&TDs;j>n7XVW3w)_A9 delta 73421 zcmezHl5^QXjtQpqh8A{qT*W0tsfoE<6}P5N-0R0|$aB1Wo|1mS!Hvo46IbzhG#qIw zkxqKC)mDw|Uj4yy?Bxoj4r`}&|K0w0{@Z;q1q=2+5PBtl=Vx&K`7HVWcJgWE|3ze) z#2w2%zp|))_-0wdn~O2iw=+BNWQj9qW-%OiXd#%v5MG+WFkP%Cqux<?wZo-_m8)Ym z-TQIn%fmg|E7D`y<ox$Gg*~~kXz`}h3q>{a<L^AK;Z|dbpK&pPY0-6^rHLOV6kbr# zZH~VDmDAvU#v!>)YC2h7KRW|fS%}6R*mFrS^KQ6+Ov2eL(Hs0rE5E&1v@7J6=TrT( zqsroomTQQv7x7<Iu=9tH$%Bm9K6$3IXTK0WaqZt$TbW|xSHZoPHov;kFPvsz8Mi&P zhxLl6e($<ZNplZGXnZ*l^_yRyrtghfmz?)2+kb3VU0#&m+b5a-_UG4k(zm6S{F%P- zD5Ef=`E<j3j4JhphL$GCLHl;*$-c*C0&VXrx%M_lZi=|WaJZepv*8ZY53wf+Hy2wz zo$!5sOLXDIOSxNbA7scqW1@3fC^YoXtMrW~f2=zif7d4&Jox|l;jjMx-**51z3=DG z)0IDdnj12tM>R{GyR5+CytJ*^Vc8bRbKCd#&B?B=FM42qbZYU0Ig6jh9D1p+^;`PX z5BGh3r2R3MxGcHn=kJ&u>*TU6{?`6W{_%BBYR7{!h3ZkxQ&JbCnjPtwEOOjtMXsEg zTXR~oKD+DDnTLL^`1NU7<SJQ4p3R5&*p>gN^D>D4|DkzQ{fE}^tfZcE9{dq}8I6VA zn;ECt%8ERX|K?Hu=ft<Qfy=5+v2eHlowLvRrq&-nV}qszA0(e&_^F)p$@}wx8Rz#2 z7=I9W6@9AvgEEuq<GwpD<bF-OBXGx%`{*lyEh&2+2&Ay=Q(e7i>DoCSlJjN=tKV2B zJD2xm%7y#w%b9P~DE*Mrb3V2GHfIyt&)a67eKXF^5i8b?=luRA<;A1=y+>a0&T%kW zdACR1R%~9+icis<oqt4D9hus9WyT5bB;Nx|iY?k!Ke(}8hwJkCEpv`e*`24%b}#tl zokO3*Bdt4M9#X$s_gCbFWK+<w9+d@NlM2*WwOV~w+Xk45xM}4did_79z0v9Zd%?9| z(ma1Nc3y4r43>?)8o_D1`JmsKr#I?XwQJgYBrbM&e)^H>XNITIs$1Tz*H}08jHj*n zuc>_Vwb#cMEWNvMJ=;uX+vJrOukYS;R8`e<m&S`L!EW89J0@Q#iJZUYL9&Q*%#EK- z&mt8{6YsH3+RD>AtGVPR`=vIGt6t_^!aXWBFW<)sYNf`fKUw{*+Roor^wr;J(U!vx z8S3x6?`8ZvS1CN{q5c7(u*9gdPj&=7e>gc|_u>z)b?X;y6`pBVBlTUpj$ziq+->(l ze#G8-R3G-EKCbb)ecUNs_ICwG_+JKGk(wd%uu`=(>b|7i>5dl@);~{~(fIf4I=gEQ z2VEXtOtXHsO=11h*Zy+<=O=tutWvqL?+VAy=xO^l#nyW$et9HxTjyXbS7^z(ZF?{L zUiNh2fjYk%Rq67avp-u`r>;8md_(KDjJwXy#YEp~ZMYG)M`-@T(Dc*Fah?upt?QIZ zwzshCH}toABBM}VZh3k3hY7|RGYuo$7x^t(l$*5h!>s2g0-c{W=N>t#Y@fGhB9F?} zz7Nq4S9@-<5Z1NWQh%OzrB&dssslN5rDr+ntT%G%72G{><L}_o%?GTGR^AhAIrpW# z=>gAWKa*Gk;b&)d&aphW<yea0%RB$7CMD0cyxo`kUhG13nD>$w{%@03TspE~sivAx z{%onGrfdAg`nE3hsZ%w{uwIqBYt`HzD=w+spDC?!`^^5p_h0wzIkmU;X?>jdURAGr zg(qJxMr=P6@FGs7?aCC7jQC!i?Yxam5h72;)muA`PJMaZb@Q59*}(6-!m;UjTW*yn z=S^0f7|F{mzMm_=`oT-4C*tkDUrwCnnR)%iP669nYPoB&itoQ}4iTMnZ(UZdbKI^+ zFMTr4sjO&y9N#Gw;?o}X<<_0|3davSrmu}uRL{Av>D`GVZZ8*ECq2F!cg=RP=8}{c z9iPgro9iSFiS@krxb9W{HohNAFP?a~z_z;M?CdqY3;+FjX>TSwee&c+Mqx%nXklh- zgi=pzjqvV&Y{s+id-xCjBU3$Wa}p*vH<mTti+U3FMWFw9^{a({|F?H3t!#g*vN>90 zce9Jo(dWn8jsDo)IJl&~tYgBz*$@A&-|}nHzkPOp{=78%^P^k#K#yXBeBSMZw=ed{ z>s{-8(RTaS@!5tK<1Q}qXQ@xVlft8OtYY>){VnBxKYx4u;q%((FWIw?-8>UkF^l2w zQUApU6?~kNTBMD6CrHN1%qmH`f4MKS{Lq>$yPUHw_y)E59lmu>G4<{#uV=d>+wL9J zP=7Y3epjx!kIac9U%3J`I`(hB?tQPJw{;a0-x2lf(^F1VK7H@wf2`Ce{L|u~gY|o> zu2~y;@0jekL*?q7=W{0b-kr4~_mz~xG<oN~yB)^M8Xmv6t8=iie^vXbb7Fcrtttne zoM<bzQ{DM9WwG%3#5tu;x3Au+*6f+|f1%EsLq|4jh;n@ysu>gcGj>Y~`<01YUVVAa z{A-kUMwJQ2&iN^<84_H??;~q8_1aQn-v;CKdhV;7kEFs&wv^nqj^dnlBU&lxbfMwy z1uO3MI2V3DRJ}{BJ-NqP|0G{W{PbC+SIu2a_i8#w>Yd%|*4EVdQh3IVE-eiyK1stq z1;^HDsoTV=Ccc%dZ22c6v$^|yM%i3RYtD{UnoHUl94uBn41E{*gHJE>(WCOjlbZzN zo~SDAds)9KEGTOA-bv4IzU7>vWH>d0MPy>gOaryF%}WZ)43E2)e=c>Exb5mbcYk`X z&$+nEFPuWp1icCr4XU=tN^*Y|qOi2#<nEQ<MCNBcEpYVzxcHjN(>W`f?nFftUR(Fd zDwEyFXR?0_ziPh2qK<!72M<bacw;$L?%I_kJ*QVIe_WarTQ7U}@uJVZ($T99=gP>O z<IlZ(`Ic{n=+;MBb!)Dc&nP@xcd=vc#fBqRPDc$+s?Yjdbf#vZ$tfPI{}RfJb|%EG zymET#qU~<wx1EkypVvKQxMPlqvC#!l<=_uK6%x0u#5FIeTec|DF<Xw+`Q5v_vP<e0 z<Zm{<EVt?MkDz%hcF&@?>ofLE_InbYyQBAJu3^e5zoZE57hXlqtv>`O%=wV<F!E4$ z+Mdai8)_9DSFc_b9xmnUw_^91fS9SX*iIP9^Qx4lt)3g#wYbGb+~a%74xjt+SJNs? zEIxVOK33_zv9@H!73XDEEKBBW;bWT1@NnI82iYs$u@(9L6)6h^m%Xsv_&c$F<<F>+ zg%cROj2<kTGV7shRkZp+xm(uVeP?w7ZYR|-UHJU?yZ)!A^EV%FU^aJ~9LH>S?y-z_ zgY<^FXTA?(lA6oTyBTcUpVj_no@f7rXPwLm?yt8jpY-_lLdNM*x8}s3p7%M<>HC93 zPC2(3YnqBypVv5hQg6ERI&q;0{Zt#Bl124P&F;MB41BaCWOt^S&DCwis;ntWxs%nK z`xm{fu90P#bBv>~esitK3+wLV^R_L0^H=87j}W)rm#u$BUh!L7lU}(tcVqD}L7yLT z*1KoFT@WSoPr9T`zJEiNi_jqxzi;~$Pdaz2+~WQB-%;q7!L66o6RzCn*;ckT=lP!R zCH6Ism)EzwPj0LaGWV;K@;rQE#+NHy&dFzN_P>13`Zu5T&%L@o(FeOH73oCfbtOv~ zcYTnG3Ui8o7b!Pwn^q%#z;BnlTaNJz7f)Wf`{<PEde?1lr0d>ny!=A>oz$k+#<IU6 zN+sNK(zYAb7uJ>fb~b)^<al?%;&~rd@4Ke1FW90KZ+v>KM`^}g<@XKila$SbV`e&> z_MG>rE9_}!n8``u*tn<97p&a6#H?WD;^5Wm7unrAU+`C@`eNS%r83S52G6{N?#XZb z@wUC5aY1WRF{n(PZg7uLwcgm&7`1sQb8?-`_K)+{zbJ0VERJVL6kzG#{h{XIz}LqA ze(y&OcFhw-C*ChVku=fOta_Pyl~>BmY3!eO?Fbd^K6<NaTD@M8;0J%bxP$+bDt~hL z+aGxT_ucpT_jT{r>WgQF<<5z^7b~tAp8U3GQc|y(-g~`z`@MpPw0^KC-ue79C5feD zy3>o*0-snHe5|>2j`@m%{qh%{`!2+PlYAilCRZ<$#cp=`tAz{Nr*bmgXNwNjpPMGa zP;L4D&%5JK_1{-rc{}NYNTAr2#IH|Nu4paNU$MJ@&uXDUqNbvd%fl;@rGXd3H!aB5 zOP?y>WqV0t>dCV!Vub6hu87|jylLWR8|>Yb<-hvtlI=USf9||4_p?LrOnADw*sAQM z>O!TG>$$g@KP&9I9kFwvc5>0t(7(ab>$$}^y?vwS9M6v5<}PHqDInSD;f6!}pH@5& z_>{KJDoem*Z<KRWnLp1ZpI1z;Gp4o#DB2r;<JeiyC2aDx_Su3%{>yBg>$UH1@Ynb) zdrC~o-8b}D;fySeM~7zRSIynE$<%pD-W!Fm9eXcwak5Wz`n1mF-n5O+g*o+-_10E4 z%oN-1q@%7Hw$|q+yYl8OhXRA1Do8Kwf14v&TwOS;-<V4=^pS0!f5)u!TP!)-Wy_Y7 zoa$LM*LTw0EzfJd`FtwBU%k#|N~uD9Kbu9MO5pUF$@660OJ2F146TY}uV`H&k~-n3 zN4%wV7njD0jH_Z7!q3gP6E7YpV`=<+j?~wvXC()%%DgT$mZfBPTRuK^QexvQiMGd` zK64G7qb}^+cJ7vJ!vg-~^gFLya!&Y4=6~jOt#xSfH`}%5m8808e9aA?hFOXJTrI`2 z^^VVWzC5c_?K<tXW{1!ECxR~4FI}g9Ew?<@ac*7T(%%ce*%aI>2;I}I^~>Vrw+jWo zcE488KQ5B>==aH;p$C0;UA-7OW$De!bKRnrS$|wP`RgX<8%FN}q<tkG1)b2kQnhmG z)(tx^FI$>@C?niY%|3IBX2<lIF@H*fYktp;KWedReto%ja_f?{Wp6nY+O9;M6ZyFC z)gQN7p?Pm#-C6K~?|U}uhYiuUi?3_e$rxV!d+TP_k(<iXdW_k>>?_N=!e9B#{Y#y6 z<FRGC7k>Zwrf1nr-UkP`(yEqDxUEuL#aUsY`0$--!|O6GcE!1eBm+uif1lL4A@hmr z#1i9~DLS)PR)~tOsQ+OxFRymnq_qB4rK<_0oBDVQqE9G1e|6t>$-jqnx9<7gjVd&~ zwB63v)km$x`qr!uKWZ0k4!hu5b8<#W$-9`P*;g1jY?o}CTX*Ea*CLaOxwkq(${F-~ zUso<mI-sm7Szfp;)Loo+dg&^+H>+3950~=!yCz@dgZZhXBe%~!+njAtzj(iGP%7j4 z9k%bTez6JW?mbuj%J{NQW$&t)0oqTSC;HE<-@LKL|61zCvgZqCsIhr@$LDjEpMIwh z&M~pZOfZuBL&>8fAsZ{UR+(x{TPesYwv<m;c#Dwv&gI*56f_rB>m|+&P0V{6%Gb2+ zZBXfxIU<b-ciSU(&30$q%VvG6`$WCCg!0|BZ>QHSvReIIS$1+@?C)?}&DHbHd^mq; za%x{+MuPpMRp&&nWgd!qe4v-1>vbO=cR^0yYJ&qCO0R9594{+Vc_|_7Vs^<5@Bc!L z@BM>+$FDopbSZ!C{7KI>o$p-jzr^UeDtLk$ds@Nu*%7}2ReRqo`D?T)_Wj&i=ODA2 z?DbY$mx@he=6Ucumin8)tm^taPs?hCyQNyoSuKCvx;>X>wQ0sNuGtW1kb6x^WAy|R zz3#*%Hy<c$l~nq=Sffu%XVv*|sc_bC!RXf;4^_^b<i8~?f61eZI~kbgp6z>N7Ad{^ z>50GGspkaGe^`7&Kx4|qpEBq3_lExb67^olS5SOweecVhN2Y$JXU{L#=(#S>?F*-# zy?MmNxJOGTv8}e)HCyYJ7HjD4DRn7D4?NxlU9b$kSi5b};h8`GiO=EtxqEB*#IPe7 zCT$ze3+9V!?th**CGNOwY*5(EoQf>nr}Nr!rRPR(n�``z@t%$Amrlzg`D;_{?J7 zCReqlt-Wf=yKB4Zk1M>XH~+Hj<Mi43>*RS=P12`qac(=2%~_$wa-zh@l#ToCGHGe+ z?b}{58U{1{TPO74%;FrK1=DW7I#~KDaq-J7^H;I&59DWgTk_^!P1D`Nr&~;GUjJQ{ z9p$>eY31a?%!SV#xy4U7uHEhL!aKj~o^J;C>XmGEI;}rDq>W$P5i_WNpLt2RwkzOl zNl4)owPSm}R838iR-3VGTh7A;qF;L!sQY#ueC}<%;N{$@NeWw5O*h@OKcTns_}Yz= zB(i_npL+OGp(y0rQ)QE9M<UP7(Jk;lnlSyp4rkAQ=i{GZ{#8Xs`B`NCJY~Fht>uo{ z-uGlQr^!#BU)Q#to97>+-Fx-PT1)FU{my&(DtSqb+NBH2Zpqs_zRLX>{^GaS$!i-N z3k?%iX@8%sY`yC1*G@Mk|4W$@R&xAr{rB+krZ?MaU)*k6cDZ-ke#Pe0u87Q;Vki5Z zmS)WCSjo+}=yHJy>yDC69!-bfV+?ijy}1*nry9DgKj(hdy3QkEv($2x_qjf&&RB@w z(5koP2|T$utRV6WGrLe;?$nlQXI0ySIwoeeX}=0Ws*d<qFI%TSGq^r>+J0k3Q9Fqr z-@KY8swEUV2b|vTAhqxJ@!zlK$IUyS8+Y&j?{YTzbb|z@b@fl~C<O$p4v2G8x>T9@ z`~cr)CgJRYz;>R1Q?Iwgp7Of?uutFs%RB!E9<RUDD=tjj+tAA4l5z2f@-tgoQGd4p zbtah?p(4BVW^5Bo3)z))RYBU&p+M2*^34Uk_NBdiM^X|F#VS1e<v!`}lKUPf0*~z9 z+PiyO^1NMc%WI-ER+T)tDaao9?!|vIvsoSTUvB*W`){gev5w-pPV33HHfA0SZD)&G z67`Pt+`)Bz>(<nteD?S9+?=Fs_t$3bOWpjq+&48$&h7sCWP{qd)vUqRx$<|kQ?D~z z^E~<W*Q}S5!`+WEZmQa0dSd>C^gu5k-GKO>XLB{#PH1Vc{9HXFVdr$mW2W!i1=9=P za$Ga|u;hnp*w0K2X_2WJ6Ti=L=Gf%?#aQ<Bg{h3sB>9&u&G?Y6qEMgGvVZaJ*)FB+ zlUJxSSNT@n|NXvPNbpmgn$y}S&oeF_)4Bo<zF(#!Qqi<7^~9RDcdHj4y*PojEVpyF z-QBjezYCRS+zwp7&cn6avs1yTnCa^!EzRYczkKyPckl8IyY*S~d8UgG6W@J*Yab@L zlAluRg=Oz;a(TXV<7(Biuf~_R)}QY^bnE*!PCZKre(Nl`Rd1doE(n{v(>_hh|Ik{c z8oSM2X}8xKWcBc|i!I&M-j%e*)@e`a_D|cc*_`Xis7O4Om^Z_8lhll9KW0uBTDSIz zzUH0D$5yS4&k7Se#wB1fGi%Rt+behFW_=ZS<TZb175{4UU6->hd$Nw7(s}ZO<q~^Y z{brqv4Nulwo9yE#|0Z;H!h65GO!FJN<2~=RYkf~ijM7>9b#|dm+k~&$Efcm&<R4yp zIAra)2M?dzb>VopFJ@`z+y(B1Z*JW76#2@1qd#AB!^dymswIl6b$5x1Fg%PDGK=_S zu}A*FS+@kQj{ybwQF~-w+i6@6*UntG=G&G0?!>+IwTD-Wci;K===v?@?us|FADXr$ zt^0i-ea~upV=ew2jKwxAv3pr0SE--2GTC02=Gw8QXv^92dT$L~r}BqiaqsAMzf@}V zX-dM(oeIm>CGYpLI6d{-sa3aIR#bn}u=g*XKj&0W&CRgPur9sYshLSBX}KnscQN_R zT)ji#yHEJ@P{sN+a$B?oyCw(ii9D5gqu*ee|5n?mN$e3;!d_c*g6b@$iN8qHnl5z8 za^jku8ILaSDcj}kv@LP#x`^AAzNwiTWrH&I-K_M@j_i)Ul(Da<tS5clFV5I3pWPGg zORl~rdap<KXXv|G3uje@`ALO6pIx04>)B_0(O4<|yj$A;<URA+>tD?=Sb5IyrqsRF z8w<C(hgv_~t2K#lQbF+AS97-TpA~qJtKuHBPfBdAxZst8UNUb^uAX*lR!LR<hJAhM zLD6%=izPMJEN%15X}b6B=nAgyy0Tk0O7D98Qh4p0wO_Z+|8sZa@kbZUcgbl*%)gOP z@gZ{I>t2_2TdPEs{^<+v%sF}8yZ(vPZnmE<ciOgH7Wc~7XLNPOg)3>L2md}h;dg99 z{olL)W*O}aT;rwjT=V=4r~HFz>|0bGE{ciuHhdI3J<lOvdX!6mH}^G9Yk_sYbyIWe z)1R$%iQlxgr+e4w`@W6wiEY~+o#c3Q`)tBJF7?+%8)}W3Jc9yPH55J;JXKsK8nH8= ze))5OZQq60)m5c^3*VVIf7Z;urTHJU(|*Q%RXeIP|NCmQXB&0o7Z&O(NBb6@j+c>M z#PCG(`gP+j_iv%ki@x_RTVFg~{>;-uevDF@t<&nZu|D=YuX_AQvb$T}rfqwk=CzzU zp)9DSe7xN1OhoPKdHH+H^IyF#ajUBfxK(m)Y2e~|>5jMUuVziG?Pp!GI9~R2cTJQ- zRIJ7h!AT`N?~QjBJKF~8@O*ys`-RxnZSkEOo7LlQ9iMM1$iIK8u1>wY=Zv%OPv1}! zx)l11d-u;$>EbW7OKi%5XHPhuyl2^2{||d#bfguYfA?LY<>ldhtGUu931vAll`dA< z*M0l7^TwpLW%ufzt=CtSG*p@*v~SjC7i}>O*+)u?S`WV1?s+RaS2r!VuJD<WTfjEP zO_}Ec+D&KpdwB0M&<(FpIMe+8_E-CDM!o@ez5K2w3;lZI_WiZg+wf)=al>1^KWZAg z-#J`*`OkInmYB&)OPQ<-Oxx;$y^qHp`Trq)55GVRS885LaY<3?<SrhAdLuJSbCf9p z>C=76JKxS*zoM8STjf<KlT@#QLs{cqQzHkyZrh%>-=16$PMLi8U!8{6lodr&-@YrH zH1F<QN&npuLPxiIc-j87nd$jB-q`g(eU(+s!R7Bie*XF9`Fwjn`F)=!U(|Y;vaEmk zNr|U>=9fu6x%}nhkNU^W*FLN%waChSSjb-I=HU@ltvvsYXEytfxyP39T&;9#n<Dtr zvcI9W^4$Hs2j_Q4_E~7(YX6kN_cZrPzkocKnEB)44DDA=6Cd+WnO}BZ`N=6s`5R4# zLo1e<_csb(_FjEX(tTm~%iKF}XYTIVA8_xv*^hkzZa4Z`>mJz!-(1mLzsv2|%h*cq z*H6Bh^mheVo-R4RC+yke7vBB$wSN+CY0lQsI-~VIB2iGTu~WtDgMB~89My|0$0d*4 zc8gP;&6zkc`f=+d?#`nUYdS*<WQF9q8fNab(=+yEid$i3eCPU$v>>;XTg)c}Z+@_H zGu!O<(^c!t$xS;;o|?>C^kn@kwX^ldD*G}Sx>seGP2-Xht8AOP(uXbNe8>E0CuTBS zdfX+oeN9W`R5=%=O&e77i;q;PNk$ZH+B-oq<Ve)6z^&rXjT%3{xW{_@k_ETPd70Sh zC%N1$ciWUoo%|;?&8>Zb-Q}8dKP(m}=Fh6XGn4(K<s0kkGD;IJuW8s{BlCFCOo!D1 z2kQ9?1$&x!lvr7hybmh#%IBV1c~vGW>O`aA8-uSIcdez9mYTNxo945)WtQoxX&0rA zD~29i$#Nj%Z2#uk6?II@W+@b(wsQ_C2|nq(&~4MFw^1sqSFCs0)a0$z-+Ury;hI@V z0U}izK2P@^Y+7q~t!LHRxR=6f#EzZ6o|=(x`EEID{Zxf(ZYrHigYSM|>pT4B@1!=P z-6s}nRUbb5Sws4!t4G~>(?w|?Uc0HtTFz1md^jcDu~s|fh?LSPuCs5S&0^o8Yp7$h zX(n&yW|kGc*)ryzn%a3L?Gybd(!XzhhuPly7OApT(?8T1c(UH!Yk&S2e}Tw}&PlC> z{+VuNdqh}m-s;uw(RAK^(fHY`D@q4$JGGd5?7FVy7VT;NdsFm8wY~9|*YkV#e_od+ zzvuYVJ1cv#xzu9TJg9i`(PrIm^M2Wy)Ax78hed6=P&IF}$Ss|TmpY_orJUHbXStx^ zS=r;3y99UVI$P&I(Al2k<SDUkQ#`Y3x|7H~rn9+y;fGo;=Lzba5U*b}Epa-t|CwXL z^IzY4A+gEl?D3na*VlF}`B>zB!lmYiUf(qn?fGe2wmJn|ons!lJ+izpov)0;^X#oH zolWPT3W>eFvb}N6`wjd#3ELyq?J!%J!+B=9TxztX?k1B%4;ntZ%qrBgEZ+P??9h9G zdzo!AYd3{n&o$f8_~=+kQTnq5JoRU|xwGVoq(04`+g-TR(PE~)>2h7kg?G#vj{jb* zS83U&%X^SrG$z9<S7pD}j%7|$uIDe!6!aCYYtK98Tk`HesARV@*QzH9JhF?jT6HF6 zHWlUF=Q3>SYYUrZ*|nst+`p<hY@brpnyt)IM=x0{TCq%9K6{^7XqPY3**9Kc9xe5P zt<I(4-`-Dqb7OmS*PRX3tDDU;x;r<Rt9`ero0k#3B)9O=jOw#>zfw;<_~fr0JOB0e z<-gLxCtQ<ndATxogZT747Qz1ZKKB1w?E5T!R{yDqbL3)JBA$JroOyd57r*S)Z+}D= z&3kqK)P3vJ+l!inL}QNqdv@cSTjb++=gJZVyX&3TM1~x)|NP@a>MXPSdwbrCtuGV5 z_jhlHgs1VvS$jO{c%sf;yU0*wvf{-H!=41Yxs@CX4m3BKt!L!B{A5n3qMCNw-jo%= zGv-ShUb9?Z!j<@rn<GHAQNU=z^y-NYYOB^y$b1*_ME%I2;?K$-L(`rf|Mc>_%@>DH zKX04-b(UDxS8u#bPpe6>(Zc?`!C&s&2Z!zL=l?7D(IWZh%g_7!yT8tgU`$@-UM^&m zG{ISE>pWp&iA5h@A87o<b+}OR=1c~L2$zME4$QW=5U1eL89GCCw%rTW$qyHst!$j3 z<F;o>&6DL9H6?_)@)dfNj9spWIUnHZ*dKU>Veu!)s7N(F=?$Fq3m3i@Sou?QrV{sZ z`%QD7a~xxfJ@fPWvUS1bFKtX%Po(yEO}HDq!&vIWf&bgr#HCdVuKf4jdiBY`q@sv5 z=L+94<otfneR9RuwL1fL$QQ-;2Hl*jV_E%rr`f!s-bK}M+Pl)tpPcJv<Nv?MKkSR$ z)wUJBJnKVdtM@-%bmYsm^`ffvN%qo*in^A>WL36J3tGFa<ZJT!O+F9$80T6)y;L0f z@XNPtlRDaN)!Jt~nl<hB)jQ3)fAeEkyHrc{A78OLcbcx=%})Ne40%_DGT-s4bjLON zJ__-e^M0-9i=$0n7hT#Dwf%bCkK402SATsLX}^4Kcx;%%d*|)bDm1$;2Z&_r7#h~= zZR4AAa{g5@rrNi$y^p1KEpYmvZ1h7bWp8g%!epZ_DeT$4TTI(}nT-1*@)bYsxm$O9 z!nY%xUoStK+Wy+NZh7&f-7h}w|FlHkHtKJ{Y%@o*t>^WeZ@gRaDCG0BZFP#*n!0v) zhHtm}5@%ex%dlieW!#oIbNID;Yo0&#^sUT#ez^YXdyQ#wKXvCToDK*n*ng-ndjqeH zDf`W)f6Fd!u-h+FnN%_B<%GCxM%?>2x~*juW=>n^Xmo$Y#zl#?6-~Wz-&fxg+|2$~ zF<zzO+@a-aGPTaD_E@gn*}<&Cv|HcRVt3}oO>g*${ZrHI-LCC9#3xj=kN>=7-DR;h zBVN<KjF9;Y>y?+k+2rw9%J$~YDuow<pWhgS%sG8`jRxPl)fXe@T-m?$?(VCRI_+)Y zIt99?B7J5!TW@pNyY8g6Mu9ftJDZ$JhBLe0{@-M)Ic-mJwNT-%^%)VIi~f1n?y}w- zdwcQ%g<1DyZp(Gs`{cem`)zlYf10^}#NQ(2v)UzP_kU-|xeAolzo|80>)C4NeB4gT z+4b_8N8$p@9)w?=_a}DE_O0r3jgFnqdsDua@qTjkq?c3vYA>u{oV{_K|K7%@pYL@| zTxz;OV#AfXMm}C0wr^#ki>C`L{4Kh&&b9edbjXd_(o^nlX?lO-^{&_NqN-x=U8rpe z|GH~N&-E=D4=+F37qIin_4nL&>lbR=_shSx{0*<ht7-eazFBEzTz{c6eQvaQcixVr ztgE-z#Ki`$y(9ZbDk$d6s@H|)5B{i4j@y57OYGlg)vbP0?7wXYQ;b}?HujEG^iD&w zB)%EN9h-hx-p@2#I_KF#!LJfAnFm(NIEXH}#j~;f0=MB)9j!mpPcD*6pSwx!GwY0o zdd0J|7W9<Melhwh`nJ=@LGQxyS!aCLte*2nYQJaYpQO+;#o_Cg%(T|3EzB)Qzvwb~ zbuHum+TL~79?ssj;ZJH)SX}<CLp)sKvkX#A!q+k`n=7%s@^t>il%=oV3E6+Ocr-0= zM&!|oyIMV8BVGhdI4Jtzv^a~ZXl#3qMC%O67i(VDPYSFsS$|ON-DU2(dh6GHb<%IK zOo>1L$)fd;SJTtCTTTA)IaC_QJjq+!mfiC5+3$C!uhlg@Ej`Dw`Ud-duY%9D4_UU~ z5r5acDLDM$9COL(Pp)iUl;S#h;zv`PN8cC!5P$Zhal+;9*Eh45>(uNB^pi>aY^C6G z^U0&?Z*Nbj9BZg^I9Tp#E7Da{6FvR+n=J~99`2Ox<386bzGmUx%J$B+MS7b=w(Whx z|DVzH-d$%{!!<D%#L7>~;xaRs4qoVDY;IzJ(u$Qi-KVl0+=^|OsQQYRht07eh4KCz zoe9kk4}bac<=F<aq~{Or^J{iig{)pCe|z)H*!9<&*CoAl3=(k-nlde3e5=Qw<zoCl z_Q%YtJGQ<2$M=UXwoeW9lE|KJ&Fo~o>eK5<UQ3g@MXcC%|Jf&CQU71RRp<TFm+haP z>X}E@1$o=gx%{yE>yuA^KRx#UvHAF__aE}zm>D>-4>5VIIFORg6y<&UYQMp+g@3e{ z?Dgz2?enP-?J_PcKb4u1edPb4AD=#N%BlNpQ5RjitNP*X{l?{jhEKOH@_TXBL$G&S zo7a+ZRU3=m^M1mtoeYvSYr`4q{ZA+Lh@Er4EBf0bK)Hwc>QvKXT#|FSxBlfjB(a1| z^3>hhH;tkzZ#g^dOmfV>!F7G<b(gSpuIqoU-&=ff`H}hcx~KJh)ed^M+lRTmvTQOf z{K<R#|L*@a7Jr_;3{3pW|Nrl?E5Saj3lBW<c~x;_!90J_wx^4n!WJL<7^KRusIj9y zYhg&hE=IRB!z~8f2g+SJAMM$+_9vTUL}&x^axR~)2aEXDmTK}uJY|nd<uE&X!$@P| z49z5g$!B=iTTcC1{=>LiWu?@#eLB_mD}HzGNxio2*_Z#79|KKhuSonqsq^FY@2AV_ z!&jC}3DkYhFDlNV^kDk;-}3L5wxnyCdc6D|Bvt?GaJu;C^`R`)J1$>L^xW?3alpRf z$IHLpZ|r(2{XNj5TSoV6RCm3U_Q^Xu4>nhw+J9vW=bfv}6*})_%aTnLOEluSl&&!C z4ffq0uiU<W-Ga?ZV%O8$qoxXSt-NvnUcZb~2E&A=E5A-CZdJa*qo`@T>4^S~)DR9{ zb#AVW`Mj;B^%@B*YcAd3IZ?f{_&k5Pz{Z7t&t2`3W4}7HrB(P`mB`~4URMRuW%>_E z9@#ooJ105kYH<7Zt=}sdW_&Dou>RVeq8UEVScN){t#<x1MQn?iSmta#rEM!0K6o#` ze9xCdixgujc3RJ1H%W_m_R5f5^pq0ceOV51-Om@!+;R=m-dysue#xSPA6-_@I%V0_ zF<Er-nM<`v&zDqAadcqbC{lOFUinbtimTBpl0Qe?E)KkI`^sACQq!(k3)ju*__tK@ z;Qs9!66-bj^<Sy)4)WLVJw2D#Lz274nej@y-<G+xl}bsRLRqVvlOHD>vzBiu+UR@s z@08e#yDzQkgX1+;t-K%ipmb(Ei$l^I&mP++|1OJr?r)i@ox9}aR_!11TKgtnyPV?v zMW}bCU7q3h%tASb9r>pwq@^YYr*W6h`{J0_H?f=7bF=p6a{F_ymuQ#WId);8_R$FI ze2pH?|E3X*$5Lb&Eae%l$lS~IHJxG;!et>kx$WW0*&bFR^IjM9R$ca)|IPSLbG^92 z*UT%5CO21Jntl6Pv^QH-iiIPq(n+W9Q>u1so)qU{+IqlC>xZuDqPY|7ax^9~`ag*| z;dR7hZ9)2+H_PJEQupXH`+eG&ouk!rm{amy<g6drvH6Emn=kt7yxTqd!qT-`cVAk+ zP?}j~_1IA<J2bei_^Dj0QKDMG($g>htc_Qz|7^~=>Kj}8)%DYyvLeNeUT^U|ouKTq zo<n;<%C{+!@w0D={u6m;DtdGMy2`azzx&P&iB<S{`sBOGN}m3++gx9LI5boI%LWZu zebZB!59j`x6S!&J>Dxz7npo)yt>c$2_1GJ<;?1#?=?Rh?j~~nT<#c<`Ej3sFt=q~u zSJbY;<ePWB%W2C`+kLq+Eu)NmpC^PL5b#`aL2*gwLS3y;>lY3^hoiYg7UglX)!S-( zd8NXa<#77Jo`8qu$L7iEm}IP3&Eb3}gR91wahdWH>!x1|*BiK>Tey1f!`<IE9)13! zR^~U;o5jUEt9c$wlTMKM%4u(}`0a-(-_?b_8Cp`Z6|*1xGpXOX`()1{>kI#v^1bDC zo^Ku-TKwViqe(1<V*lo}iL#k=CAXTbG(TE&H#K@{&ZRWHV3x^$-`(4!pH{M|^X|Tz z@5Ov$9ZuhP^5I7EN=u2m|8}<QJ)`TSf1B;%Z5dP1*6pt*yY=p6>HE55V%9$o+4Z{X z%Juw;bH9cLGVQPki~ZPmr`~T-()`=`ahEmSuW2#XzUg9SSfLWd!jS97@63>JcDCo` zQ{5SN1cFLrc;~jS+Q_DLKrdu1f7!Ee_AP&o2W)MB_U3ivn=2g&S0(JGuX4+n==`zJ zzI(x<DJLf^>fCsux31{yY7w`^I{)@%xEGcQ8FsI_d_idG-mLZV)9V+_P(LYCpR65o zcA@X`uO8;-gtUD=q<`)HHobrC{ZCb!;`4)YGLOD*EEoHGMr41>p~fFS{&Yz_?<sg+ z7#)=<_~m)Yv*`ZqpP%j(I#=Vw<#G7s)S6qjh33Xaxlc;{m*Aqkw#EG4wUGU)_HmM` zOt;!hO<g5pcw#o~+U&pV!nc+eDc*jW6Asp!<UTm~H0Qy&sZac>1e8CSR(`&Jqk5+Q z`i%9W3tDwI1zWW5vt7SW@z&)lryZD?zB$}^CdVmsp(m3sp?M8U<H5bcHx~3dZtdqY z={VT4|9bV$_!kdiUq7$cZLW3Z|1_<;pitrBwtQ*z=av&#yU#!VdfRz_c0|<8(DjqI z-AMhceX)N28tJN~%lGV@RpnW?AisK*xxsz&x9iL;Z%MsfclwxAz?;2K4sL6orf})K zi*w7HBm90At-=bE>OKAb<OnF{@h0Vcoa3nDnz=d5`SzZtdcSR^-I@DMS8w9PhUz}Q zD<M6PZGUX(UY{v`e}&Gg5Z7``Ih9ZPg^y}X7Ot1})>vvYz5a`|rCR2f+b<foUo_so z?xfGjm>o*StgC-Lj&R8|*jPB-^W>w;yLQ#YTc@&LE%Rh|Ow7yDy|#W|cb;R+@m1^8 zN~g6rXL4>+U8%8kro}Y5?1MhuZ;a-i3MlY%IakFo?ajH;Ys_C}^65m>+J$$&-m6j< z`hU`b<tE1rV_oBCnT9^EKl-kln^Q}^g>A2bazQ1}bT&41soYr($|AXs`d3a05!kvu z)batF>K^g=O6RMm7;fO<<z2OCp3~WxsiHxLGJ`&9re`Vc(z38(W(?R|epSV-V-?5r zZVidenG5)~xWBsi^xCD4lslJxF@=Sna9go1)TO2ANx<FD3;6|iZLSK7W2u*JU&s9- z<$i-kl<C{s^RI3{78=@DD}LeRzL$w_Duot=bo=?K^*_8El2R6IXu+J-w_x!Jn|<?K zOWkZrd@j4cj>-74j{We}Q(I16Rnt_xzuWyvx#7L}Gh^$g9C`Wq*F>M@nAwM3eb2Rg z^mR$f{kdmmstYdPF@;ZI$!D2+;jdM<s@3-$4BaLApldN><-$#K>&|v-+$j%xxbM*s z$<oH(SN6IdT6t{ic{_c+zOt!$3dK|3MNGW7Z)@?luKjsuWF#&2Zk={aeCtCi%Z&wU zUp@CUw6qn@ss3?+XZZ!O$9ocrGu0Ry{FM(J5RqG%;=0VpX5C+<`C=6_KLqeIzWXgF zb@(>Z{d%4i`%;qrD6U`G<9~Xw%<YFlyB42&b4_!eEuTrJ)Y+?T=S)6+&njq{`8Mxa zjJ0>eG0%H9Z<kuE>?mKWG5Lzl#*3bh6yF-zZ5H}|c%59Uy|1<Zgo0X+m8T@{v#)-4 zKE&sm{MHHCkFS5ZU2@r^Fq}Izp>|8-w^J9cP0Wy;`Ov_BM}6Pc2xC6e(;9udCU?(# zs5}2y=U=y+^RMn6F*-9hS8dT_A@wzOwH=PzW3OnR`}ITnOP(!X;@4}19WJ*Yyh%Bs zbMV%jr;?v`Dw~|``5wGIS;lAbIj1`(W`4@}Si&w9G9$ma-7L0ms`%m~O_T3?6!=)y z6yAI=vt-i~r}mUr@ef@3>-Pz&tE+7ly|?;wpUjPSCmap3if%3ckbIqGvH1ENc0>8k zi!OeiaAn0x_QZ<Rb9?4wAGykr(pdC!$yI@aD>&8uz4~nOukCqeM*gL_BK9RRyO<|B zXJqZoN_)fBd~EmTka(@I(D~0VGlooDymp!O*9li#K3qPx?U=^)Q*OSt36El5)@vU< zvuk0(V|~w#H-6Di4odUvyy9V>8nIqO_F}Qo>(<g_r>jpdUoW_u$KxS$RHi1~_e@)a z)t9WVyy^=rXSG~=Id$&Ry-~MM%`3IKJon{WO$oj?p?o`{)Yi7XJXx|lY{y;^8SkWx zl{56N&Rr)e7p9%lckJ7a^@hnmT3?xZv;LY=KdmpScX^C`<kMRkzwRtwyK!ID3iI<f zBHm6q_(Ae=(JsCG3UOW|hnKG>n_4Z2({z7&EM>Z}*?Q-1(z_?K{dK$_KYvlubZ5uk zb1p0o2s!ZUS{IM(djG^11+`vT^*iiTlRt#s_59qs^7&oQ;Gb9SFHQRWw`SK%mv6U! zif%{?Yg_lO-uL8zhtou?bDs9E`8Dg^lAp(JpRZIu>l?nHO1rn{-KpwK9j*VnVvDXF zHMut1&TQXotGf={d1C7f&ss$ZoagwPbKgywc~;`|ShvLv5^JyL1d2}I`POEu+U2AJ zduKO0pS!s8?UZ}-=RJG*cNUY6;nMG`t3-QiOwLD#Ut(A)^=r<H`t@Pf`y^kAob~XJ zPCxF;bDiDp{gxi5lRJz~v?qQx-X8k8?7vT?^rGNdwta=Gt8V<9TP+)0K39*0<M_9~ zuZ)<Kt#{t-V_p`szOH2XLiMY6-5G!PN~g}TW!5y_d7UZleO$w8vupXKd(Uojthvf+ zzSFn+a!T!zOpi~Vf**`U5>)Fa1pGU``_qTpYd$-Cc3N*0AN#U2X>tEK-c_O8e~(E$ z+3@|MnxOEOzAKJ5<sK~8U3qe={?u8Aj`)`y_2jp%&x%`6HGSV*(JQfGMwjOOn6l#S z%aw@^*R)pG?zw4d;@9#Z-8|{!&)x`6?S033Bg)yBW}08tJtCfWEa;s4{T|nt8I$WB zZd)+gojx0(d+_BP*<*92O#Qy?u<PrhBZei<TAnTI{&&aa>AI@DS=QX=Zl61qk{fq! znMUyC)d%-^+|fJEe)yShx#J9rxRURSN*!;SJnKqs$xoc7@M+s^o!ZK>p7Q9AQ(nF6 zZx&DMyjUR0sh)oF)vMilU)Q~<>c6hkt9J0%nitVJ`qyI(Le^+V<SFe+>W+%Entxry z_&md{*maTmp^@jmEs39Vwrs2Hy}M!Ca_fA2YS*&toKVi!epkY8QDNETrk|JpGyHz- za1+$61<lMLb#RTL9b8i*W3&!#p0wqseeoBcvmW{Imw_kQ@W45SVs5hoa%{yNI@-k^ zVw3M4{_`(vqK;iuNV)ekVQWtr=T}*FuZ|{#ZhZ0bvx*v@eNvIozt1lp3fuf;+Ar^C zmmRG*!z}HVr|Jw2IqTYaNxN?pJn~`9U$$S3rGEMUIUoPb*}wN}ep%*)KZ5R6yK_$+ zomca#^w-<+9~KVJ;~$i}v`?8N`8KiOu+GGJ9xIgRzPCH@GWXxfCwl`{iJnmRY06%9 z_q+Rck;X{nJiqcqh3adVwsL(q|DAvSvX^gm_y65}bM@UryX}Sg8BHHfIpFyr@YI1h z;g^yoa|Fzh%&y<rqP}_p&l0DiJg1k@iu{+CY)!hxde!VtM?!#<w(ISv?86lsu9<H( z+0f)AGxdPU%j04mJFZ3weDC72JE(C*Twb|$rMTU)`@ejA<&~EIv-SO-Su(|X{lm+i zi83`=kN3{`$9?O=v-AAN>uvUk8ysl=|2N@78JoA-63&HB#Tr$<*Pro77YWRqYmmM` z_MPOhncE$Ia!k0SDKf+4Q0WbIjt7fo2*h1+lNS_xyn}<)rQ_m(;ycw{T8ngj*NTZK zobb?8Jl(=kaPCD@2;-S63eLt?C!SzhBeVFS_LA@h!Su!nkMDbazPM{*mpbeJZ%4}3 zoR*o*#(m<^@*}GEbqWKX_A#%ok3Zw`<4jxa*SFydt~Q*#-X!ql#Q8rj?|ylf-u#w{ zKdGwR=HTPI54T&No62x_t))2soY%Gz9zWLE9(elKPm@!(=V8nv>5P^9-!CzqVf&$X zdGqn-%-<Ty+%wW2etuZT?sVwhahq?7`;P{GvoPDY)j-eZgri-djr0rOnJ)!yACFv8 zzw5rMf?w*-zwh7I&HeZDUCWo-6|wrkkGS@%JALGBLTBWpZDO9MGz7P*OQvO77q;hr zkUn+yl+I<P>M06)T_YbwAHS?|Lu;Fz19!i!%s2Z>w^e*gmsC1<o_g_P<>QF&p?j2j z+-?co&$&45j)<p!^X18QQxc7=3j`kols2t8#8Oz_zp^$b`dIhmM{iCT#;C3;T9Y7a zz2MU#Ck>8SPGbH?bkAkJTVc(4JZ<6yr`!cwB&=6VF5T7AqI>2@zF_`50oN-9F;0TK z4rv8X7Hn=2-WH~(^#9p&1Ir7Zs~7KLJt*>qEuqO-&D}O4YSDc4WuhzI$0sDJe%A7_ z=Fi*CzroPsUHyy(hUp6O%j*x`>fpNT7huh{Z10I+8#!aWx$mSOtZbNjIPv<4$j9%? z)ifv0FaB!fcVf-0X)a#ejuYRd{5|1)eA>?`r(Yf9Ryn;jUX6FZzbVtodz}s6?w{Gx zF)b}e*EsELQvSws-IIOx=4~}MS6*~(lk?K6^At8dSKQjut-5b*NB#4sV!1VuIy2=& zDwJIXwzLE=nF$>`7}|N{;0NZX#vAT(Z`gi@ZSt+mcOT15)=cnO)Ep>X{82)>>7)sh zutZODyg+<wyMuP9b4D`9EA0>#+m=<m0Y1|U93MQq#Z=DrB{KSh@1}e5XJ1|tl8QBc z&^$rL<I09@EJw7uZgW{}-Z86w-89R*=c`vIKj@RZ6LFzli$^56T8-^WK>i1N@i#6< zPb|vUvQ9F}m@4slhEdkU897=>9_~gJ5?wX+B0uXi?ucgSfBL?pMr&8enag=+6PI#i zpU<?dVhNhJ!gk|l(N(q!wD-(4S)g^)Og1Wle@8Nl^jhUSR;~A@ULhwA#Z9his@L*N zuHt2S!kgommpc74^MjVVS0p!CZ4KnfxiMAyqFXK7f8jUpuZL&XZjAbVO{U_{thGPC zX4ziRUG3=XwEUV`gWt>2y?U|cFTNIdUS;fxo4zw#WOvEmb)wPpG`>yR`)&OlU&)v2 znZ%VXuI|$0daC(n)$B_pf4TBbWjKcPbj=Q`?~E)9p0#fM3E!EnQP!;744YqBYt9Vl z+vN4_-s;^_VK4vM2wf0)eB7g9QTwdYNx#)B{4XBb$Ga@+LhD7geXDma)+^|nAob{J zNAo4VZO)6Iuzd>lbbG65w!U!Q<u787cg_ni<*p3UV!i*OG-cMG;|!Wya>**s9xG@H zovwX)*rT?-DOp3AciMEL`d=Pt>^Wsuz4)U;w*`t=U-vnF!LRWftL0YN1AcFpFt2Iy z^mc3T6i90_IJdsFaQ5OI2UymeS@uzN;X}*W)n6BQ%bl9cX4|aU^YZbt2S)DA8)v>u zoz0P8eCCo_;`}X&Iyu6h*e<TwBKLuPKU481r(-@7CvUjf##L|iIx8SNz)xG8S9`^> z3%gE>9xU4+9P_c*n)ycrW598r>G8Lox1?`7Y%gcpth}SG{^icTf9F0_{IR?BEG?&e z!_=32uN80aO$^fB@?0rPe8b&lwZ?6t7c943U*|B7*Y?qY3~8nt;(6kGne`$rY?>>d zRHwE#dhY(0Rx|1+-$@SRt&cd>>}_`_Y?|IO8}9go|I;p&>YQB=IxXv<OyqgiX?(R) z4ox?zPks66&(_x&|IX^XWxt!b#iz)YJ>>evZwWHF=}bl$S6L(!F8oU0!kF0kb;~4f z#;a^P!U0uz2lf~8-MwJB#lMJIe2()?>-O`-65pr2^0_x}?XuT>2Ol*&s5<ek{>o*o z5B|EH=JQJ~WiH=*Hd10&!8Vy`5z~bp2a1RFb3V%~&GxTio-)5`f$=w8nfq*f=cXvR z|2AACdDp|LOIgXG^j7mOX4$VxkL)qIKBxAIp}y^J58K<tTeuBoY%IN3e6imzeUi~U z)oq1rGu}ncnb_9L-f(oap33{~X8HRfBK-9xvm~wmE^ZLEd}VC)a!2bSIn|dx=AQff z%eg$7X~{d6O)Ok{gXX&#T`%~(NI)x`GsgVm$(5IOEoz*(@AcHPKeF1Ni@8;HG$@4q zYckz-cFOkE8$&lfc=Kz~X||Q=T4s9<Z?3%YW#)-G&#lYEluF-~Eb#L9kbK~gckn3| zMu7w66PDH|GnTXlvfc`H6wA;}(h)XMIP`Go)frxAejfaGyt)5rdPd;(&>8;{USB(P zX<9HVn_`<|`K(o+85TGns9F*;H=Ln3Pc<WYZg|7eSL=A<6=he)B{)7QeLCO1qS|xg zOJ1!HdAqoma@oYZN_?5--{pAZM0t3`%mptw0_?uc+c~ZHe7z(y$2{))JQkj1Gn&g2 zvTSbfXq6gCKavjIW4v&EDR=9wM=i4_rM-(xQoMF~UDDg@&I$oyYIEj)4&1x`Y4g8z znnpsa)_&-2DKib2IpfBm`9fPR2KMf~CKEc>XrI7W>yG1BJ#8*{)(SjY%>0CVdr!%C zYu&~Lduz|!=c~3p5u7l!e)F~s7B6p{_+fBK@yDu(8<)n4$1~(b#%>V_Uv+xVbBivC z)bs<dH%~3I*?z-qx6p<2-?x1J{_CR-e~iui{Fx0C7hfwXTQ<dGA=kBz%5@c+6KBk4 zoSj%BD)(ZRS<&PVAN0<O9$LJ~QRvPl(-U9Lba5Xn?RfqrR&LAW`L|W<pFZBnUq4^o z`s`-uxED#hzb+pv*6ev#lT%@$I`gnj_U;=>zeUZT&N=12<k75Mj(o3cIyO!_Y$bcT zVdDj_x|11OXMQTXsFf2SHMb@E@HV!U>0M#@K4o2D2QN-?tSwJTp1JJHvu7pymuSRF zG&2M~@=VkbzObBa3dhF}Yu%=ZUb6fodgthrdeJ*ax>Bc!xvi-2Hg~Ew_;G26>|K?D zRa;-`3-&G4fA5yzx@GCgt4(4OI&zH{dNfSWHm_1FZk?0i#I)V9xHXJzs-;!HVm9S} zaq}fAmLA&uE$+p3r8m-PT6w!fm;12p+JEfF>2=&fa`t)cdQ}Pf!H=fj=WF%tvh+@! z{VYO1by@uyk8?dU4D?s)RIU_eJi6_+Udl1Y5X)z4u3ueoV^hrJ?&dQ0d7O=6OK&W5 zR^66)O1yaX<R)M5z@p+><MfJIbAt9bYdpPWddp;G?)t+IkJP=K6yw5u_;$nvEpMep z{&n9}|4m_jGM8&<m|~sszqxBxekoJg^uVlJ=Y}A2^IUFazWSY>TO|LwZP|RW=$~Gn z2kU;$BCFMVr6*on>5x_Y?3dB08^^R_)!*&iGh6=QY%}X;*+Lpx=Qr+^U-dRq)3LsL z^Sy6d58vJw|0phN=IT4fvX3`;PTIKCZa&APIh+Bhr<yrUwH(YgTtCM(f!)g5?|$ON z_}d$Ie*GPwzxmmg>kQ7k@9Oz~x%#i0@J`V9fy+uhL#;mxVrD<vAf90#|2CGlCS3G= z@!4uKC6%tIk9ASZ{x>&IdRKRCSI<7R<d~^?I}*9N!*5IPdmUpQ{rXaCdG5`x)xDnH zCJ)j>_|06`oO-Kfxw^WxYF_e<iqog9UU`OB<drYCSWwT<V;*$;_saPUEZn{IySc2& zdAFB@3b>xppKa^S`D{an$eslLxB_QJxkDc7!ZcUJng<kws+L9U*(WvQSoRq=OEH!> z-APRA&)wv*s_vY!D@iV??)o}S=`in}$qK@^ef#V6yJvrWx$=3&x7V*WOn;x1t9wK* z$52U3XsgWG1)+UX3bl2S*#|Bzbm`PDt^alC;?$Sk=MTO)AKMlyzR5IUxobMJQN~p^ ziw(_xykm|^812(};^erM@wCX5b<!F;K24ifb?NTj*3&D!n6l!_ukZYLH@*F}Yq{IW z%x4E})<`YARGKpN)7|vlneTShoW7%ddV87dn)|x-{tI{lM0cFoyXe5u*KVwJg1@?N z+TD&_S6^5A@5+xLi3%aTE%!QvDp=juS1E7Je%||rKU#E$WP_Oh-0I4YSJs8=&9icd zv?+b}^yuZ1*m#@A-WDcMe(>(H?)3VKi`V{FZki_^b2w7t;UW9OUDNNaJ<>5<s6TAJ z>!1Ap>|H%I6<B(Klevsk>n%-D<~a9;@9dK{<azs9^fPmqO3-l*gBTVMrX}1D^gJF$ zt`A;%;=j3|XW*qDH@;f23nlAyR@L<PU-H|pW`6V2d0);`_13n3b^Pa_et-Pz>-N82 z{!N~JV3vfU&+p4m=6qE2k$&!bs_vHj{@k^_?RSqok9l`!VZDv)+EV{(zlwSz=l$Ju zJHf|9Y>jW=x-X)Q`!0Qc_xs=JFNOcv1Po`taAs}X*|^~v(<vd5eQVN!e^v?v+&I9p z-+A{`!GkAtn*74$Y)^+Cykz^~&5pO8hddt#Ds54!eQ4?4X}iY9v&q;{{Lcg5Z7Uz~ zpZ>q(+|QgntWWdu?kqHTR6nomg_iLwOXb<7)lXlSPLqH1QvM0gHEE6&uF@vy79M6I z+e41D2`?AlvLc_`+~b|T6W2|P+ci(#e-~{0HnnWU(!~+-j!k^Nd|fPo6MqCeJ?pz? z`6<73OxHdoaP{-Akx4g>-ny|qZxc`JQJJ2a>rNj-=Bex6Ty*+QWZ*j+lf!!TNtr4O zW4G5`{&9q7za=w&Mp8#siq_3*Ju9L#-ffs?UHJ8nq?VhoTDmv)$-GuIwcs~vGqkE> z_WNl|Pqur>_19YDZQ{MKPoY)pDt=QESk(eFRi-uWyVcF7rX1G#I%L_rcUMES1zzsi zRi^%_$3?EXKE%h$>Hd<%-<EIYQ+XXHP%rZ5!rEycxsN{kn>?|yYe{<GNp-{AmxnT( zf>&MI=Gd~9>7~jfi5(^GELk_@GMB6tQrx6s<Q}!!t$FeppRj#NckgiUZQb*2Qnd-Y zR;q%OJFn0N|1gg;N^!3i2kr^uu%Br9XY(I}VxjA&Zuvf~XtX;Nac$w7S()dwCkL|Z z%GZ5dzw`a|HI1?tvzQNSs3k8seD3n6#OPy{(@WWNawWFZ{d(si`k_jCPwsVr11TQY z-$;d(@rqxSxN?BCKVq8r{MDa~76u6%vpvL@^m)ZpO_evgyFdQe{YETIZ6A~TyNNxE zMNXzwcp4qFIlbcbq`ex`C&{u125k$8+9>*RXY9v-+>$r-%R-`Fgx45v?$@X|Q?yL0 zynLx}=*{+^P6HwNg==|lf7P-1`uMa2=d_Po*qynxmdC$jRKFWjo!NQ#n6GP67Ei9z zhBfD-*B0Fl{KS>xWs|iyZr!c7F^ahhKR=jsFXpwQ=kB>lR_pwK@2Y>eN;X@Dtu)PG zEoava6V}`t^Q=}0fA!k9_4$fdW;WW3ISz$Qdn|F1Gko`rw-UW?%hok5to$<bi`O^f z+QUvKtPYD6?K>a)?ep!w{1+rWBK~zXr|j|n`=nC&$o2C5j5~{!^(UXPx2QKZM_YLt z<J~WFoOj>z@Gq7Jw!Hq!Al9wmkaWOYnW@O2=ElvNQ~5Uus<Z$9J7JCZ>RnZ7Wv1HP zhrFbG&3DJ8Y>aqv{8eOK{1c@I>tpsb)hAW{5q-C>{rvH>-|yS&-2Z!7FKA7m%g&mL zxFs>I!KWEL&Gh8!{p{~@K5P>BC29BS--4}7T~$ri?fw%MH71GNSy{Av#TJ2oEdG8k zqim-y|1@#>)i@6Ag)tuT+V7{b?^-Ul@ZRIU=jH1n{(Vf$TyxN%cdLO<YFNI^ryswa zas=bMBT9M7ekMB>{ZbE``2O?N{+}lmO=s<2u~dF_%ek`3ZObC+BI@dYN$&Ft_*wm< zW{%0KDN$=VyIYU#)eN3mk>UIH`h1>O$N!jr{yufn+Qg<u(HrMR*mx{=+#~p}<=?aG zsW)rCt*ke*v6@r)&0ENj$G1v%qwp@#qODO;IuqYrU9~h&?%f<Wy$M3T9IL`|ryNg( z?7!izbJ`Ty8$4;c*|Bv>R^s&$`g5kaJN1TTz56VzK5gMvzk(OJDi!Q&r|hcmezP>H zVz%AeeIm6gmVc`w>$164?J4+>>Uw0};!SFL|5<&1yt9{||Nq+$2C>YaKlYbDjMI+U z>Xn*UXc!qPG&y|n%FrJfJOOLOjRMzPI;T@L)yU(lhV)F;qG>aO=83ya`h01VUA;sn z_ZoqndyIV79CVe9`kiEY%Im(TPT+!-Mvt77+=QcBLnQQh`#*UF)%?p23@~wY6`!oO z&-;g(kRFrVwV(6%S$oDr-`G;}Zqauav!>ntCUV@TFWr7)H*xckIf_M7lYXfke_m2= z5ai(5z4Sq+tGUO-+r~fA53W1c^r86jwPnxheLqg^`=A?CeuK3#M{KX=+jq=Wc{dhX zFAa+5_Tticdg8M8(hr(dnHDiQ+ka$)yq;mZqp|ghlVsp0zK8c7s&6*p&~6KjzC45T z=*8RL{kIxCSkUHpXl}FDn?=l3#tV<Eb?8~JQ7$B8b@SDN2~|gHwR@L~hZoM;zG$ZP z`A-`!Iak$(#bgNW*6>e%yen(bin4v)!ooXyraD|*?^RayVe6Fksf=mtT$MMr$x1Z8 zNYP5W``ITk(bYnuB0=?aO2lC`wQkuqmwWZIRtT8}oLN{L^MI@M)Ri4AEXN}BCcpHZ zwTj`HX4RZcq1lJ8r*WlhvspBq>)3mSV41fkQe_US8O&L;pnigXNWd}CJM0-D?BVlP zh+SCY*1Y8Zf~^V*-zhfPFG+L{yu_?1a%lO}_=IB_wnqwimsWB0ij{uQ$hqIx$Ty`y zlG&V%TWaMlIib|`-BH5kQyz3FwD|pLT<7qV;b`qM{#Pd#sC_!JX@hLRQcga*I<=tv zZ8ui;R?OJK87-DmbyuYR?e@;;UFR=dw7n}o<$HA$pVFp-Jy~@Qi$5mJ`&ROgVfS4v z){d~~8`HW%4>WAMQD+;feB)@-)XIkw1^BgoEb%co!*JKzI5>p;pTl;kubWvFB{bz1 zE;}f8<X*<YU}mXnol&92jm_6?&RCTk)wpZj$$JGGzgi@oJ6Mr8VbS&Zi3atBy_=>n zYDX^(owi4zf#FEdnX)HrzQ3)e<!xR&P5H%3x8QyG!ZrV<>Blkdme?Wicw5-gH+HAr zSRYRBd3Ru$TA-M)&!du5e=Xma$@}>y1}<aMnlkyl*W099uVWsn#aIVM9^PZMJaOHP zibq$Ts?XI4YHzc8GN<EE)yutG=Vw=4yj8Evt|-R2ZCmv<H_b%`9cP6*c}=sf7M8G{ z(wTT7=gB#@Ctr)>Ll)h>K4(Xh^*yt-jqBzv;a$46_FQJF%$lIZ-mYJ*&h+0}pSyjc zc&+uPS*}yH#Fy^2+F5$}c$?F5d*Nr@Y1!+%&&|EO)GF?iA(LsBv0B^9MJHDnsEg@% zul&_=roQ^ovXpFvEgx4m#(v~(n!M)p?Z(NB-y+t=_g~uRxL44kGI^V@#ZR}K`p^d| zZ%!_Faxa{Lm&4JU=M-1NvqM=j7Hp#S+AVS`G_J_mYKO3OUX`ngk~(J2;=8Z=o9Y3T z>0;`)UhK))A!)$tr})E1)O_`n-ZMfw51-ZA`Y>^8f8UXMmv3(!CciiOSA5{)?00^g zb6N_bkA^2r_L^bJwzu)ztY|kop^8(-j=Xm8?0B8b?-f<M^*@_lsK}l2-l8v!okkAn z!7hPGJuCGUyY_L{r^dAMFOK;VT>5j(4)4bXM)yJm@)q>X)Bg~D_eO|W_n}k9lRR=o zJ(rm6P!Vdae$;vCcl}<`IEHx%(>wACiVhkt3%oKz&2ibTk5e?(xlGrx^(<_=?;vTj zOq0*XZ3$~ou8c^8>6004X}eCT_i7c^KYcPYlsTH6^%|o~(6ZRr@aSeip|mx&jFWet zQ2(GY>)joOH|o5OdmgsNM6}G#`ci*q?cIl3R%_yZ?)%2a@cf#9?m?G&R;}5G0s?rX zbDkRgd-DC()CH*trRluPJEw9#h%hgBKI2)G?fJ&-53;frD2CT<$hg>&w}6*JbF#A+ zpK!Z^e4NjZs~w-)Zb>#OMc6EEzHsX04-;typE+CgP0Ul**)}aKT_?ZpT7;AJ?o+=M zneQ%gdciL1(&+x;l-%T5VHY&gw$|HD6YA5>zr*}dMMCJ#X)PDch5L*m!=hH%s)VwB zVEki~c)?#Q=LGWy>y3Gp7b<1_*s??tua^2fU8C>4LfT#0oq2Ad*rHN}plSNd<xJ*B z4qr2rOlVp8rIBBNCG-6eXVH{q4|iU!RlQMj)1r-LFujhR*&W%(vvBt2$UY7w-w*XW zGcVi6PtUcyy0=MeVRrY21$&uw`>baN-}JF`aZ{6QonkV3-MOr7Mc1><T23p49sPFx z#g-N4IL?UPUjIpIuiN&Du1%+Hd6yq7mykB}*$~_|KOnXC#nrQ7zDms#&cq9Oe%(Il z0hgXn`P}`kwzG92R>f{enfz|M?#q=qQ(|q;7}W20XZY>X%T4hYOy2nHXm8Y(T-&_i zXv0ARH`Ac$^OAnb&oFCWDJHtXN#pnVOf&Wk_nU9834iaCzv<%9m_%N_T^VxTlNRn^ zPUK$gR}@tE^^?(c#>1s0Cl<%9-EhDp=EVgLYn^ru=Oa^AF`RU%pO(Dm%C_X43D-*( zZg|X5%FStczJ8X(y0$fyTR!ETxm_f3yI<;R&7m}r%SQHQcU6L`bZmdGO)EU+pd0hx z_l1&uf(Mgte?B-tdV}X0mF4el#Kg{v30yvLY2vfWSN?~33pKwkU!oN||HPu4P}XHZ z{V%<ZzXoauo)kXwZOYv#(`0+pZC^T{4y|mK&OTfH+I{;~ch=Px>KDd6oWwOn=~~j& zRe@z9n?kQ-PpF&LdToKl6;?gRnO#;Z&i?k8a@WqwSEFD2xl9DJV}I-axodVl{`ra_ zJ7)&-g0eRfIT?0waTi`R9$r3qLG#_H6Q`B7Oq{kaOmLfU@wDALtb~6|s#_76qrKUd zSvW=Z*`kE<Nv7he-&q*TtUhtn$Mrc%bN>vv>u7J>xQl;6yw`$n8po9`E@wO6(kNpk zVYE<JK}Vp?IYBvS#^0DtGf%Q;&U?DVW#M@@?(5awQ}1RMUf**#Y}XvoMZ7a!C3UP; zf0v@POh>Er^72RSWw~)SysCw_S=Jg}YVs3#ap?5BIgD?FXD?9-v{>L|*0&;V>X&+j zAg5BtBCgmw=^D$o%{FhyI<QeSGwtQ^x!<l%bQD~9md(Z?+H}&&^Un^NJ)hDt=a;pi ze62QTWolJu$;(i|-G*Q7GOQ1T{Jo&H@*e-%f9`(Hx2&39#zaXa7XLccE$C5N{<XAo zT8OCz%gfh#_uD3IIcNB=?3DK3(xeILSGI16udkl1KVN2!zq@BwNy?8Ir*3cKlis+) zW>QdJ$eT$KtMpFwb}RjTa&+p=$g?_Y7I7zgmk2N{Uaz=W=JF}Wzx+pi{hu>Mu9Gf1 z{3>BGbKOH$i5t%aSpQG5OuP2<ZP6JorwWny`8lc0Rf}al_ullgd}f~XJNuNO^atK% z6I1@I2RjefGpC#0?I<kIusm6GUv)Ou#?y^rN#2Rqj!CZk^8f9VY4=^LeEnv6ue_un z67=HJ^fe0(K0bMCYf8H6mrYtB^IokvGHcD6v*upvtMb*R|IxdxKgW6B%Xh)?1&rHY zP4!F>Zb<*zBp$P6>uraeY2IwshI<|?`n>V(T4~E2^G}M~KlXiFzob`r(UecF?-!ns zxGr!=p<`O-&h>RA-C5_XcU!wJyV)&a?Y`{b>5#y@2j2{Tt={PT*^bpdGm<ZJ+lq{L zyWXqDsIV^9eXO)FpDUJy!y&1FXR^I)eGBXLv^g<9gUf4-mA5qBlHdEvyF=!X*E0F3 zp2?n(VrARv^x|c&N!*I|(y4!L{F-;o6rR{}tt2tWmP@B&xK1f`9ocO4l;PjYochKE zde`oM3E0c^tCZ&qdv^HJzcasnk}}D-KehI1;jb@Ja%ml<Hyl4towZQJcB{gXE+N_L zF6}GpI{B`u?VL34{aW3;^FeoOtHW-+I^MCu<(cEh#n<2F8lCt1xO$F8Qu}My)%7<k zF2#2&pLO15%jPd-9?a7N&wZ|tx?jaRJy-44ghdBqC#|)<A1kc*a_OYxTD#4&zCPD^ z7WVm1X5s6@T5JDJnrQR-Q`<xvkI1@X8#B#Tn0GzNKU3EC<bK=R^*WQxl`2jj@{?5E zw?3@NW+z+g$s1DTVuxOQP|uRD6w4B?TE@5QLcMYC!`WTW?jNnnb%|F!nsL$Ue6ydy z*@?&Jl-PH5bvPgKG?9x7Iz8t=%NO0FpWX-kH46OWTRt!Pk54P}&93P!AFur|?5Us8 z_K|Usp0y0;{`u<DYy9+<ZkDV*sp_15JWlYgH%I1=#2wj(s%@qSd`#!A;{5pI-u54L zbxT6F*{$7D|D9dkW}oRg$Br3Bhm@DTJS9DK{hAqa&kh^21ip3sv033<BiHS9<yJ}h zN<MR!o4*Wh7x}Yn-ESww^z%nb%4D~kcS;gEdH9P(&%(zB8;hSLay)HV+hMB3cX@?H z&|72owsw#B_O}zy#~Hq4>75}f?x#PaKYznDg*&r9mcQ|Owfld4<HVo*{3k-K>l1VS z7KTWd)rlS4E&lPwy^G;CH|1_UN|fo%|4_c%MJ7V#U$yQsS?=5Orp|TJ?5g8ylsCR< zd3WgnH|uo=jCEtSe){`T&slKB>WJG5rBCm0sx4VRbK-dxt8cb{v-|hX*&JPQjr&pB z@()WYe!B8~-eUb>{~!4q_p}&aO&0UEU^X@}njGjYTW`YV*l?sFzgq{qLjTOUXB)DQ zoIJQ+K1k^6im=eq{&e%UjoYMck6vn4(%g6Zw0?J#%D>fO{6FT$%(HuZ`TLKb6<_~? z*NJcMo}_eY#kBAG-9b)P5q>P23M>Erc^v5_F4uG{f3=+7G4>{gx<yl7aqd_B8+%_N zWd8$pEtgC6lczKUeDAqG-R2a-+K&4y)pZt;sRdiw**~Pu^RK^HJ!}5;2ccJk`@2o~ z)j6IUy_h7f{>0}&B8%?}r+yj51%J&x9X?btsi&0DtmIFz<q2=ONfY*M3H_9Ei`OJ^ zs<=s}%bN|0&Hrp$>-RasZjXTyzy03-iGo&HDO1I+8LWO*@u2>5@T`y9zk5&Sf3kIB znWd|$L*}H(@zYeKJk7*9PqXj-vrE9@zj~|A`KRm4pPtoRAGz<6*ZWmd-oD*o9jIro zWB;!u{=CKa>OVDe)^IXZ{M*nV9+*AtTTRQhE8qTP&$&0X{`AYb`R&(E%>B{IH<!O6 z$WJ*}`JeEy_VcGV{d{-%M_&EcS6e>6i=TO*W9Fx*i)vpodJWXP76`t)$#p^N!F|8W zf*&j`mgmk5XN2uE;Qj3q5OcZl)iJ5$)}C{%yXx2zc`h~aJbi2T)xmAmTL%quofn+p z4|jf<(Kj{yV)DN&>2klOy!d=R_2<q`)ryxNPM`9yc305-ATQGJ{@>q^^-uNv`&XQt z-v9rv+ZE+SO#ulX^-4{W0{oZri7oEtW4z`q`m*4d##1rfDO?q^wGw>S@aP_4`fxX( z$zpv@^uG3zC0Yj>gILujz6)&Mwo8O<%_ruyMl92lawMnp&G0{>U}vPiXIaRy`={qe zs(4=C@Fn%;Z@1g`J)+g#zViFO|80N$qSr3k*01?weU^sFr8ym!RGFlk$6a%xk9W5| z+ci6-s+g0~TTHm_M-)v;D#{Ae%VBsZs2w?No0$ElQ}tGjf!1}>5;wly7I=2*+3Uxd zj0d;8WwwsH?Pso`J>{GBtc>Gv<^3B9B|X15PM-fp_!8^X8|$+ImjrC!QrdB9O2nZP zR`qJt3p%AXvoiYfIm8CMy4l3VdiT{XrG?A6a~}r9{1&(BvDyBi@y}bILO!vMOD}T; zne;7nPQ2ff++@)2^U(X#9Aig6fxQkVmi7NBxO8mopSs*Xx^@3s?BsN(t$o61y1d+A zZqBn8$(zI`Ui^K`=63;?i28{R{))Pv9W%VF_Wuf~|Cc4x*M0o;OCH@N%0&_Z$_sCu z&So`sKEt{EOi|Y3O%qo8COT}r?tT4pO<;CTy{MmB#G{5Pj)JtR-K&43Z(I0rh2(qX z_b0;4`IpRiID1Wj#<x>4cNTX9<+HC$U#O@eq%>PRlzrjc*ZyUfywb1vZF4$REzBl) z%6--;!A<gy7(dmARjgObQM&rlY4-uXPg^e?<m_xK-4m92#4}qX&@$fha(u?39oJf| zOBR2+JWVMtSzFzB$(p@<vx?J_ytrOp<j(!&&ALsqOC;!=md{eI#X4Nus@@r;fBjP= zA-F~=FMrDF+tJ(p1#EA-c}+vw%;9nG>`0M+b(2rLfBxxstmWb@OX??8xY~Yr8r(av zKy%IHqO)gMX2zZVk`}D<Y0um}UUGr0M)ou3G-){nnY>_`e|XLL+X>5Sjo(W;Wv+Ev zx^~Mnf0nsgLhp}GyOFrTBguSnUWu0VUDuTsx_7li*$w^X_Ae4p>RP#3yY)cH*)o~% z(p3d5MtMJ1-dA>BrCO2Jk*sb||E12M_IC04mA7|1Pw21qlP%OgFaL#Mec(r}c|6Z$ zEU$W=&$W%yRt*%k`&skmdx;!x-xu?so~etp+4ZZ>y!4QnGPATS&0_EUT?=>5^sk-q zQ|I&c6&5P}{3|2e-v>_gnSFNmH#v`{HBWZUsh+my-8bnMBBy%&cEsK|P<rp>+9@yV zEsSE8<>)46@h|7ub#T+WRtwe48mEH?9<bc4=WWYP@ZaAOwC`nWoknb8#q2Lpw>Es( z{z-l5H+|>0>ZRA5M7(w_-k~hKx<4gmd-cSXe9c8)o-dkxX||($zJ;85;g1Ph%v)RC zemHoE=9;>0Im+5_J8kjv2M6QNUQ5<VyVK=nyt%&VT<+&pC)>}QJAE|t`BA%x%+2Yp zN~@PFd*c1wGhljU`K5+sPbT^>xJ`a;bKcMPu7e}zAGZD3heORbv99>eGG}JMb;jqX z7SB~^v*D<<D39J!vbm*Ui__^<d-cD2p0JRX>z=mvi}{i(M-GKf)p1>F{Pgm@9G4vx z$%p4I^wbhgJ6j*96MZlBY37+l$2;D=6R@3Uu<K^u#-@%_`%-&a{WeWXJK?oa-RcUr zxrWX5yFM>BT#8i=?fbDM`Dn2i>q<tye!W9=S#SJ4UTr9!<l9}nC%C5l<}#6z?N`3L zX_n5lJ}fL<JR_%IW8s$8{V`hl@6vvTd^WZy2>sfmCoFMriO)O5`b8U+qRyT?T%j)5 zesc-)jdq{1ca<R%q?VQIbWEFmAUo>Jk;NBd=iE+TsdKD1BZ7lhv&My0BKBkXg~u7J z*_Zs%eu}=IAa1y9vzKCXoSi<`VsZUs=Gv%#jR&)>GWI)~U*%|5_uK8T)jC<ppT*Z! z;Kln5cc=KDjqzPyE@Jgdji>(mlXH1x8D&A6Mb4IQ;TJi4b9N?wkgSlr$;;Olgyl_+ z&1U24yzg7f`;k5V;cEf=MZe0|8y^+ht9sH?K=$39w!?1%r!O_@JN<0q9*<PbY2kc7 z*{^#q-C>tL|4<*ZdEb2N^m#!?t9+zu0{^y2KT0tZ`j&P`t3)Aevu4#r=B|R9^<S#e zG!tXitZrHIC$S|r--+w$Q~vLgE9We@^0&8V&QhMO0T1F=T4;O-%=)ZSak)csy}jqD zo%41(Jp5qsr0b;ic8SnV;YqjVuMl>7d28jh+tmq$+GqCg{dm*3z2MI7W6GKbax>>w z{=3P!^s0jC%BO2DGCf<TY<18#dFt$G!d9v0>z{AjVfKt;+uWp8?d77YTPDPMI~vLs z+paV$+F&q^ug5ZeDsM#VUK4$@i6T`;FaAEHdfv$K*AkmJb*)zm(>54|lrJ`}j*YTi zdS`jsdG7WV^1oy<ZtYoiN@5e^N2U3Pm#k}KyY<QP))g5?`I)wR-xgnZd&8RN*z|(K ziA^F_KOP#?A5<{C`Z4j=mD_xqlMh=9hgdw_ermdh)1D`_Uq4muTj(-n*Q=*5j75so zlXZ6s@O-I>Io$cmamAdVsSbX#d6j~eeiq@2;Wu^>4WE^NYwpU4j(nXTMQ<DL*1f;M zKA7|Q-`CNi)=TyUG(VG;-(8YXH#7PFyeO02L)NcKp5!?(A6i{M#qQxbTb0(UFWNpH z;gZ<3L#rf1ea(eyf)VDR{X_E0JwHoF=I361qZyj0;A4;xwDTh$qhQn3t(NPV+_DU} z<g2bZaEm`;dj5pQkop;BXY;rGJ(W8vKdaSiz8Z(izp1seRw(aUc0?>;tH-{7lUxt2 za=aY7tTOn^{kc-oCSPax)~|bdH>mbx>inRXC0;!*>-Q{P`=+}_?cFn(ZNJPeuC;x4 z`%ChNo`)NvC!csT#inKU6~lJZse(aUU+iToSa~Ste5`q^`uUAl_G>d{rF%<xKmU4% zdBU;cy8HImzLd{e?S1F!Gr!X@nZ0YdG`6=lnrTW&a^GmL<hUxt9lhmZ=H1mj^}El? za{W|sK6Lk&;u?LXr1e?fw}n3WtQ9FBzs4$`Gg<J+CTG4Q!gF&o9;H83sI}Rby)3%h z<G}8yr5~8&)eI*pS@+%wbkMoDzOE>CLwZ1H(4lEb>hn#wR{HyMMsK+$GQ%*X<LfQ9 zyJs4zCYV=lG+q|*WTR8)tGPG#Sgp?txLsCX6MuD~+e!N?0Z*C=H+jTn?bm!Kc0TsK zXUFq}@?V!E-`^Rgs(<}vo~MxOyO*adCtTZe)^frc+x1n;wBkH3E)8vC$zJz2_iNmi z;w!-$O+N9ilQl_wTe-jNUiu4@TPwY<ZT~BKdbj-dG}oQ+{XR$c1#Xuqzm;1id2)Bv z)>khM$LZErUR^!)gM^00^1V?-+n?uNa$K4B)@x#WZEnzB(Y4ELePkaV5`CC;?3!P2 zqv`ouv8Tc=z746#zPHdkoawrGrNO(rh<WuBCn(mquPSBTC!74aFi+s6b;~N<d0VWv zS2=H#aXy>4y=C1A_X`q9U*l#K8cJTcrW{hc!TpNv%Iac|zWU{Ave8+)b7lvx|7HB$ z;#c1ttB1cAJgt0_<Ns-*+wNP<2Np|s>0HPvdM<46J^9ya>-jG)-Ti&nivORa#`(rg z&0>E3yRK}ii!J{txw2b4bZS6S_u}xhOY5f1@>}xmN>-he=gnirmb)#d&M6LhR(ri| zfy4G&4zB{+mi71C{OEt<a{aB@_KE)a<@JZ=J<ng!+f=#S%;)FNsw{08(<8UHRIqIo z`~F4wx3b*JU-n!Etsz@~F5Gps@UGeng)48)9p!bm*C=?i>A3XHxNDjroBr<G^l`@Z z+1p+wPLXMnytO~r@Y%(H>vK(Go`u%VzjvY5JmucWrP9IgFDnVPIUG4=c22tDY<<~^ z6FsuqxHmuen6gFO!IxdjbocrCG_f|X8{2m08qE9dUTbIeSKlz}iemrz5Z5K<QGdEO z-)er<Ccn9-F0sE#+bHhm{H+JW#T!@ddvSRhzun3W&K`5y)!F4{K44eg^zzjIm-Tz> zsvlskEikuKFi^;!ZhDVVezR?}rZkg<0eH#z=AL;>%#$w`t8U)But0^$!W1Ivd5oEv z(E@aStjgx1lQX56EFsFL>#;FT+kE1w0~4d=bi*TzDx39Q+>~XqglOBY$HsUKBx7)o zQDwUpCu5>4lL18I_Kj+cH<+dy9AQ-5zD|?zmo$?BRL?nA#wE<t_3tsNZlCVSxJ8=D z5TaxHIakKH+xgNM*_oLPji-xeG8WgHn<^M61nIk0l(+|%B$lKqn45tG-175EY;5%1 zjLa3x%^@O2777+dP^Kl91yt17K*16!YHX-r2@^F|Ff@P(n<y9>fW__X^aB!0N>YpR z6buc)vfH_{7~R>K48bl}W3n)tUQ@^@S+AtLgULyrC7P*bvaR{y_I2y@;%x+;bl2S% zymK-oES1-7#><x?#vW|Rl^YGV{@u6I_mccp%LV(3e*f_L|CRgipXVRU&kFLby^@($ zx36MhVD3SVF9%L<Svpnd){M7{6gVE+?*H@f`TC;Yuk&xO|ML81oqerh(PmA}CZ4R{ zMfXJ{>KD#gDq1QaboSfRZ|miks@N@I`&B#j(!Ce%myGws3QW8wRrQ$Z@3%jHzP;D4 zzyI&s(=%y(-zFI3v&nxJ>Rx$|Bm1t+Rjo&_{bE*}SiI}9{kBgl?Our3%~c9M5`1$) z+RJR)i3{h~T(fxnjqTlWmy^kzLNkKYx#GI-OI4TrV{Z>^s^76>^M!>MT8qTy@9-*W zoBpGG!jH8fp?s-x)kI4=`@)~eFTNCWT>G$PX@l6g$+Asf4t)x+VZ7b?@qGGX_1VFn zbC%z$d9waf?&rwadu~@&dz#c9-&_B~^2=^Z{XNb}s>Ua^!al{m^s!lWjB87;MB*ma zM~7}^ack|<ElOQKp>x{&diPtWHu~hBKe5tF(xE}GXw!A^r8Z~emgwm2mNz?n$$Z<k zPs?sZF76due}ntfiHdbbtJHT+?7b+xIZk*||HoMmtRG%&%(xo*IA45f`HD~duS2ZW zWVfWA+IMvN7X2^UciqmMu5&QjmvLot`m(+A5?!sb^Y<rC^Z(-Ul5OUZt72w4^*xC_ zZiyw0+^thD1O!}|_HxaJwtt*@f_o>gmu@~9R(GGpaM^Zyv$F>t-!N<9*id`7M@%Y5 z_Q(5g{#@!8m;HLWRXk|3qte9axn_)?cP3eK$WN#c<B(jtzC4z5?uHZGE(Rtotx*jp zOVl1*>Sw+1(8{VTm053>QMBdU@Bik_-!!{k|C_Vbu6qG2v&%o%ZJph3SDabG-r)Er zgX^ZqbuF%ak8X;b7070(sK2<m{bqCe>Zac^>wmQ8-oJU(({rVV(%A{=PkuXP^!YTH ztL)J8`jn;0Cw%qpMb8BGP*$y^8;=x<&pK4<p9z~DU~$+*YNu+&rQm=L0clMMz6)#n zR!mVoUB7-q-js!w)4tVT_h5UhbfV_S4h7YZtAET5;bEH3otYtE#G@v1P0eNAmB<N~ z56s>vZa(>t-|nANpWIAne{0mRlkb3=<l(Icl~NoYKW7VXmAWQn$$BTsE$`=pDfinr zkLHM<VD~Wp!EuTA%!GL_o_7RJdoCevteJN2#g-*6A2Z3T)XP_-IxH!A@6P<GaoK4B zMUSxcGw;rki+*J&lP8cN!}#VVzwVu56Osz%y2bc#nbl6{a@R3&_5U~{k?V_R-uXi_ z8y6Rdm0w!?VAjV;h0%#8l=K@5qDuoccl&gC%_?4JZ}#LybB>k<$9)a0l^x$w6FR)+ zwlBEQl{|eq6Bp0pyE^rvnyuy@_nvtD__cXa(6`*#YgJDijOshY+3CP+(p{-KtwLyi zxoR=*@?_3OdE35fPAj;#Z0ef_;_uF$uWt5uKO@R_+g!JESByG0RWUk!ZrY^kF09qJ zdy;zYL7i9Gi@cwni`XHz@#}@BLMP`u-1fOZ&q^<b!K}B>!eaT6Cp)j{UZ|fLs-`|e z$3|qwWiz*5*;2Wo?E4$ntUb|ww9EQwZDZTAt?!OZtn2OdE;oAPsjOEvZC{a&_8zHV zPTlE}GsNZ@t+tyQ(X6BB{b6lV@zH&!GIKb!uP+YHcyuysdGzO8%{_7jxoPVPAIuVc zTiEvEOmw(^>do`l#J+C5_CLh@N#Kra^&Y{!x>-dFPHi=MIw3^%R%k@sQnlHy4gYVD z`@FkKXOG;(i9uG&zj@8hIb8N}yUKzaPj*L0YQC`eYjEZHl)&0&%Z1DG8=9urWq+?Y z^e*_RVtdN@C-WjWKNe(s&RCi9@vr9fM~iR7Zp(1hmY)~xv&S`CeyaJ}2mH!&*8h0$ zXF>SmddE=5<ykc+S`*cNpKcCV-4j&*K*Dg*%f*FF<`Ta3_3QSuO`dx?^+&wSi5Yg! zqi6Fwop>fZ|J)4zjT{fF52;<{&I(vt9shf#!|iIxjXp~IP6f<}|HK`#=v8pT%a(HG z{Z`BpONF`H7&3+H4<)qeyh>tYS+`8);#Pl|FS_N9i%->GjeA<@cXXGC|L+*P#LqLI zSg-wJ@zYO3S9Rw}t|iZFWD2j(kePAV@{JGg)rA-1kG43Mem(NM?OU}U_hpZ@7TWo? zRwZk`+)VWRe{0E|^KlWfS2>sDwz+w62FZR%6mM<2;-p!mex+t%(#k6io3!24BHH=7 zdh=F^pL-hh+qtcFay{?Ljsi73&j<cy)^8@Y^_8s*?(O-vadl=?@VN<|8dgOCOC1eL z{y0>2oC#QZs8u3p+hdIb2F40gLULa$czrxrGPt8JyCtBkklmMmReR5eOZ#Ht4Oj7$ zhCOz?*rl?rdy$ciKF_)x`wl4vI$w!)-+pLvpP+h_h-ux;+O0mHoF3PIWSKYlh~<{L zWUGP@+p2{tTYgV_B)C?DtNX}>{nt8V(!ck5$bQ)+=$ZfQb%P1heAe=!aIbA%8v+;B zetyce>`LX<O8wLOVvZdOdG}%0T8|T{{x1~&c5GIR>{ni$$20Sz(uJNcroGPtOOGFm z^{kWCeVKH)>)vZt|24CZu07E3=3xE$3ATOTQiG%<7rDq(wta8SJMi;C_1cytpTFFB zp`CxXH1bO6i=9QQyZ1eqA9r`kPSb?rmR99+o+rfQ6wR^zI_dXo=2N;HlP!+4xNlg) zn)R;5nq50$ovuC?2cNm0zUu;k|D~6OlKEHg$sX-+SZQpu$okj@1Lqqh=l!!^?R$SU zufFwhW3E_y?-s=^)qAGs30sSu$tl=(HRR~hM^e|><o`T9WM6lZ|9>=N=k*X-L!Qd6 zpcT7+KY9F~N9_A6m7O<YW=u=;zihF%?alg`j~&;amGb&JVZBVS>V?>6+uFSAkH%fv zTjM(Ove%8&q~lkc7tK1Nb$9u8@dp8)^6ay3cCNN?tKTXmTU)AWIJJcBSa#E=zb<>& zc3j_m{_?_R6*vBfHwX8KSslB1Sa#ZX|5;U?Nep`L(*=5tUgu-^%eUhZN1XQtP2=D9 zBIEupC=dHl%VzBJQy}R;u@}3u*l(7k4}wPu&aIS4YFhrrLT&enP}waDl{*-{YJa>| z@Qqx5@txw43tn;cyd1)_w+hL{{;f3M9V{cs)w+UxMeVw4t7T1hz7wAKz2KF_A~D?n zA@jYvl*8tf{0tZQ!0~uzS@|1{DPN*8J^qQY7FciWk?FW!p!a%aPs;5-RhqR<J1U$@ z6%}4wsJzd;Xw}^_M*YgoZ<}=+t?cG*dbQ)!!cgr6>HPP#3$%Eq6x9cLu9@g9ueVMl zJmucDh0GhZR()XN?%}fisgg6PE@Se&71_CSTc$0{G<fwxEpEaT@5#}5vvrQx&9J)B zTp^O|Ulo0Qt+FjcljZM+H@dslp6$+_uI>0+LqnCbCQ!@P$MaA^)UDFHOyBQqPyW58 zPxGyI<?L<7OS1Q8OnUxz{o9}g^{FeICvRd-=?a|I^Ua#kD8OhL&u)9kHQVNVW(+u} zwUJkLhMvZ@oNZOk{KxE#<LqzgB}_k=aXX&x#!AzrcXJ{OTTCT)uL|9F^Wk#Ir&SBi z+AKdlXKm%})a;M<7P8z-oUYfutHJ2d+e^XU%<WUM)J^VB{}<#?{=R<GZ3)RuYZM>U z-<#{8A+_PA-EXcfX20_uZx=uMKKbAF-AO)+Rc$l3ygK-N!Gps!2csSwzc=g9G1m=# zGL!G<9gH>4GMzo|_py*~m1^FJwr}>Ach3D9dc(Ut%G+>hVeQu2YIkl`-kuw}e#W$k zQ!I<!&VJxm)LEx+fQ_*%@69<c*E>hkw**J4T6&h%=igmWmBTkXoIzCncyYE1$G2)# z&r?tH&zL;VUJ}{$JmhF8v-`z4`+q%{ZK~|}AlRj(itBmW{JFn`PE6jj%I3|Iw<bpQ z-)H~2V#;&>)tQx<jTc^q9MeD9Ub(dJo>R@`=;ib8s{2pfcuuG2^s`%cJr6Ma(5#rO z(R)T$)%gCer&imIO5fdP-}!UfgIn7fe$A`z-+uJS4Ug}wkD7~wZFX`z+|8O-zT@BQ z&xilBKfJ#GkNnK}TW(HISjH#<>fNZ-n;4qeAze%NHp+Xw^me{`-^0)BY7p(bB5Yx? zV~2zEg56u#Uo3j@=!eC**d<4EcfYu=ui05unKPeF^Ooymi^mT=9yzOgo%s0e^s_m$ z{>{>5_<Q;GY5$V%)9mEe#r^-iW$({hImfiN$ZcExIjv{Yxm@<ep+%Y1R)0U#FWAbw z)_GC(6{*XQ4=y_rQsZ(qeDT)hg7fAr`0lguY3KDnQ&!Y4yU*e&)u`2}_j9qf`}gC^ z*>6`b>rA~J!7}%Z##Gj&!7G9)l~)`4^F+-Se|B<;!xV=81K}-Z&(0)snZ9uEc)PM% z!zuCajmc{s1<wpWX2^Q)vh2!di`Se^?o#<vKWAye(N9x##4>U^9&>%3bv3D7%g<0c zx_$Z?7mL$A+f3Wetvsv#xawi0mXwkBvYW}1g}F>`Yl@~Fm?iZi=bM&M@3-fo6=@&3 z_g36C-6^G&e)MX@cb#iHIpX)Uxt6SccxK02n{_(3--hp9eXcZ2W|CX-%~?9X0<UG= zzVXgV|NE|b-&4kiSAIy7O|$&-K<@C5iyw~NGum_0v?g}@$;$JRpEL^nZO(-W@7*1H z<5=pEchh3S#b@n$ESv9gzh~8wwZ;95%TMVDE!8O0Qu=&3r&{~=3FWgA@|AJlzQ1v~ zdf>TUdrkG(WrwyH`F*}=5vNlilVaTZOv5|kjMc2;9Q>2xww<ZZy}3ESzqUI4-_y<$ z3T67zmM>$HXP0Ux=exw*-}mRo+3T5S_9TR~xJ>?(z`l%c)}_tCQ+iT;F5XBp|K|Gm zl?}U#1e3P4bawL&HpWA<)|PAykhR{mD&X@x1;2&2W2IM@AMBPf|9c>(Jx;|}Mt;uz zoS!DAj$d3Ry6nZa`{ruX>+7RlR>kk%yV{>G^=#Ei?Y-ITw{`o>)nC1x{kC2HWznLY z`7b{wru#B1$nBk7s<mM1<NYfxOy6bqKWJI`*ZiyR=C3rl^lr(1kC%%c9IQ~et@ca! z`Rw`I-oD!0|9SJ%iw}=&{x8ZrIYn(jqFT-D7xqkX^W3le?r@0k*Y02Ayol2-U_<?> zBW@Kp&9Vc3PAHK0HgV;&yaPPRx{*QZ?~~IFCU)^ux-R6}->)3F<dsgu3q7{`7qyJ0 z=Wk9*6}vypfB*D_`Zt~K=ifem*HAITUwpZ6vEPB0Z^Mfk&Hw)|_;>#F=7lfi>waHf z^ZhK>sRr-NEt4j=dGne~cUn{}zQuEmernq0h4n^iQaRsOuQb{i#ij72(dWa#9os&6 zNc4nsPVUv}ee+uQ*uHIHVskhrPvvTzCgj;VWvccm4$mo5Tf?PAPtV;iQvSq8d0zOR zck!$1HiaHt;jQxj?(@Ef0=Fg^+1=IJ;@z10Eh{ovC^K*AyUyzhryn0=)N|cYf6gF# zeIB3kdXbQV`VF5pv7UOjz}9*BgtopX9F>w%YdH7Mj=3o<_P%zu)CrC~IuBje+stGN zRZ@xAkmR#lr^jf@9R9;65;#BKY!Zn-f060w#SP~Tbz~a<WIoZjQS5J56w5xn!F)}_ z_Sq+2@ob&DZ;jHN$``GIQx%t_-C^8d_A+eYv{J9BQO}<L63cF^7y0d@wW9p{1x*!= zkR`@34q0=%6npPAzfTC=vT(I<_SWJlwh|iFJQp>LE@y0XUgz@V^SitNJINWmp=SJc z5pQ2q#$<`Cbl7=@bFmBKv{{#rM%hh&xOE}}@Avh`K8YL`>6s|x%-f%yq;`AWYL?WA zPJh3jW$_A}rF^~WROq}-7U}gO{=(8PAAgfgog~v?JpaMwXxX06TdX&}N;TN57|ZPP zDOY;6fP00%Xa+};zZb)~15?j_uDY=&>TLYVXBwf&@-a8h7d|bj+9iKtV!}0%5S`*{ zZIe0{vKqEocBo}Hm2>g*TvHKn_f)yFJ#GH(^s`4F^0BZ<wtUR+x~`F`|D{E{-m!hR zB%>qmySrtH-?CN-ZhgBuz&l#{y5FSUOUF*P)~^bz*Ls>OslT?(sBGTb=>N+*d@PU7 zTxffMx7p~F-0u}JPS?{ow6o=^9D7V_xaz-i{VT4|e5X6r@(#zw=EQ~PHW++rEPl`N zT+lSX=-%qvfuGYauPoW)wTz+lNtO5S3qAGAB6l19J@7>N&+YABPp_|bU+&wrpEF}e zPRsA-zn`y9Z%DZAs>heNvu;|`*XO^Us;Lxqe|B3J=P3Q@(KT_Y+o1-Pf+y-u2OIzJ z%)Gz$%IU&tkL5i(eD1&Xl$hn2aLnVBNJJ8Mmf0ND+_ihMg}gq$wKyJHsby$<{EC$S zrBcz`mi5;QuKQMRT_)k7ZSXqSXhV_S8a{ik{Myp$iEB-N<VNMD9=?#9Z!NW2=Ni9; zYI5I=Ysaq{$g+E7@11+ZY|Yuc>Wgo-<q24ncYdDHy)Q#}TS-*vou!}3qwjyay7s-A zeOJwfPv`WxKgpgtz4l7_yRv9j?zZQBqDPY#Rq)*Vmi+5oz4QW04WAPmR||aW>eMlG z^8Ilsefqtu_xoqX);!@9KT`MYp&XOvsh^A&-hREaeBb&n-`6V`=?NG_uho9yCma5W zvxY(1IB0P`gR9Y^*k%)n5EHxPS+ge`TPcy9c}XH%;@Sb;gK}DRl6Qa1esN5|#)!vG z=;gt=P72XU1#?Se@1CfSv9e>C+LhFP;P1H_y_G2oZB)L@b6v}{$Z&Fl=%zDFSvnEi zFJw56w6dtwxEu{vj}_f;*0;~+>HCGAr{6NPoBR6DnsruahB0p|_Y4!3eD%@-ciAgi z33IMEYI!p6bCT6c@Y&F9wQ21Zk4?%Z`@e9ms#O*hZ0@PL{)8oLZ|UTodPOacccMny zcFs>LI%T9U75^vh&m?ClSN32}B{BU;9^MKIpRE2^`<iK8n&+NyMWtNrC0!R|E9x_6 z9H?`DbFm;_V`8k5sOgfF#Xe~-Uw`kM*FEtJ<N0--lXM>%&r&{m$IT(m+xJmfv1F|& z$Ly2pZ+o74&)O2__w?7JO^ebkde_&l{d91{o-Uy-8LPKjV<XESUE&iz@{{-O(benh z_o{#KiTv~;Gx(hKJ*mlFhJCx4PHG)*KRY+KafztIobN}EUjFwmF~fCLeYJYdQP-QR zybq^kG2c9S^vG%TT!EEIErF6H3zS-RpZYR${-b2ecMC)xZ(i@Z%0MmrbZYRM{VNV$ zRV=H&;{Is<yEX|mFO$M9!`01R74|3ER?gQxWmEZJP3787zB4^j_I9O5P3S$ab+35d zfqi#Q&i?z4dFjh`_OHDEzid`%lHm7t&#ZcUXF<WTa{)VYu4E?gJb${~%$ec(1>d#I zg{Fxo-ZM(<E{%QqTwCZ%vSiWTLwj`oX#{YlTsZltkx#%<y3Oml{Ccrf@qZWvHPzZc zO*0E7V~fd!^Q7xd%q>yQLpd80S$zB0tlItinfkB!NWQ6^>9z9M>C#7?lV5L|>{%3A zw?Nh7S&Vnc#1gfc@%GP4nq8O`G;SrnJJZawV0ymg{Y%=quBuuqR|{yr)KdNMVQSdI zNehjRg&Boiiwp_TTM!rK_`o|f@Zmyj%?oZby}at%qfEkco@!;@I1_$pk>E<p#agb9 z{KBMUoCT&%Q;=7_(P;1^(<D^t4X;P^l*wC;PgY_5#X6yd!>wV-k;y81SLk?fwl8Np z`9Qnu>ZOpB)RHxG7*`5tv0svNTG-8(@aUo)TWn>tB<HSs4>JShe)NPgaOZw_`*F)E zr{H7-^AHoc`cEvOGX-i{FNHb0)X?U3)#_Tn5OYO<^N?$JB)8?FL&EZcZ#COlc%>Pw zGb|Jvx-JMv6?i<<T7J3vP<Nu}6LUG$ga<M%Q<(O~q;TG1xwQCP<6ei$uHKtjGPpkp zv3=qCACT>R`4MNOYR)s>lF0^b?Ijh33`|<y2VUE5n8+r;T7Sb+Dxg~~#nGyRV`W2C zK*OYG{A?0l4Kg~GPS+;9aJV+%2zQCGz~q8$8a!+H3vPtEahLGO1~8eiJ3H^rP~6Z| z?DqVn65EM`$GjF5s;GT&mI}DExW%EFM{aIVR@L$bU)86=E#8L~e_*qpWOeZU3jKv4 zF7j%Jr1xH0X0-gp@tXQ()uoD}zVYg%3w0+J)+}ae`_l77dZom+ZEvzW7O?szCWd&f zXk{%ws-HM{)swX36A#s89=BX+EoPar_2juJVHIw3)ouNmt3Q2cZ1k#PoHl*S1db^k zWde=ooHP>*uWgE5^3P;?$C6i<q%~P~P4u|NRiiBQMR<ba?kBllR6Si%>Mv<uI;)c8 zST*fp+@!SWUCZ2lJn9uvEKuQLwPbpk>6^D?x$Mq~T#E$rr}g>p2&7jucYDshr_e6+ zBr&l<^~T{#@*cu!hs`%O8l7?0RKI9<#?8nwiA&Ib%gl)idKDA+k1U-ZxKAOYHpsK^ zNJWFhk7fD?@?XAOllqIfa$lgCJ7>MphTsm@2hAHMf64D~TXQ0?Wy;%*T}!@{#Jf!s zdgD0Tu=K#vl?#_{>Ctwr);h|gb2FTE+QfNmo4l5COgnR8$)kj5Hp?%}tgbv;5*97n zGD~iGN8_~(YnAkFRb4Y`s(E$#M8}3HN_uS?TF0gt_PDsU753%#^f=g-eEJbG&Bkt% zPW?~I$_uC0Je+VqW3yaxx6-Q<O`6Az8!x;M<ZGEZy;Hv+pzYtfm*zDa1(bFQ?@-=( zIaxL!;E06fgr75Kvb$~4Oj<BIY09n!p2G%(XX3jYJFlHs@+FKV)AjJrDbbS3XCluy zRTy!5?b?zcsBQY`N_hO)dAjy`;rZ{MPv<RKx#HfL`Z%5UW*YU4G4u9M)csjhXIH&9 zDsEq{nfT`G=i|@RWz^k16L;@i{;c$$A5HAz_F3Ei=jQnH;diZZby4~DJ7@0IRqcOx zef811_G$jpSFcVhJy;mEXLhY|wPkgg;^*VSCDqoyt9~9X`u6AIuAO&urj`E>T5Y_c zu6cd;g6w9OM>#9%eWh5E&VDGmcjdy*D>YyH@_R}r$gI!N4La0g`bjP)eD(srBi}w9 z{!@2(O_t@Qu!+82S*FYQCG28#{a0t}a&L=HZC%g0JRs_NLEiF^-YfM*`?5}4cU#fR zvue*8L9PkPS5Ek;yH!33me}#?1n2AvTipwk|6aTHLiqLSV;0fb*?#pRJ?m|Q)_+~p zXEbNddx>=AgC0i9uVy+u&wl&p<j=k)j!u!D6XH`(9AJ=q`ti!a*JU*mzr60y$zHlL zxa<4EX9?XhG1~P>`!6}~H<}n@q3E#gkU~Q1T4xURv~0JWxvHxo<c~;wPCWBEwbm&A zUeQ+Nbsse6in$b&tW#UFda-?JTYZW0HlZAgvmN`Mv79=vb&bu|ZFMKY+?TlU9c1Kd z-MPzgnb5Z@GqrkdSh46VpLFgjS23f{^=zF0zcXfiH<bJYch4!gGUsfPV{~#}>8p$W zJwHxGaG!g*QcY;dwPj_?&-DlO2pcc^cEt24cel&ZsWuBMxz8=WvgScVMEXO?tW%8Z z>&4!Esc~O9bC#4({MMqaPg}&C4W}_Lf1cwuN4CgBeAWet<U|MIjbC51tFMUJ@$aT_ zh>n!j&Z{quo9qAl{^D?2@&13?Z@wwIdd9pve)j37Z{L2(i`5S|-`wAQ`dQxHHR<o` z>ubs_jknHtyX6?u;%_rLqJ5q+g)I@|JX5T*MM8LK{qM`7|6k|NUVlID+3dF8YD-FN zR^Q~-@w>GtLh}FfP49QSWBK{`&Hok3@ut_icOT8LJO0zse9wlSb(fQ_ByT<7D&3YK z{^q%}f4xN0{;QH#rHYSo=KPanv(!21_oIGM_P^je8;rf!9iC50*7#@7@ileQo%=EO z*XP|^{IRBa;m^Ep^?QDbTE0Dd-M_f`&a0DBnR&rGGt$mK`+nb~dp5sx-mP=<YG<rJ z@cLrT=liFPznpz5=WSB+v9NCQI-g5VUS58hFWx_Oy_|NQZXx%TXcw8+aXNNpQ~Ryg z?w^0(Y_s`&yZ;}TtN;J?X196Ww<2TrS+zyw&1Fg7$}Zper+(`>Lppm=eXQ;~^V3(~ zJP$Kjtje-~1E2Sg@{k8FYwm8y?f=kyG;8ldwi)aBH44q=GVPsJuDdO>rRV9J_NV>j z-KU?12D46__3p{czgu?Ps);C8wv&8f!7%@P!kU|=$EM%>`ss4kwmsQtuaD+$KHDC8 zS>WEy|0b*34b2uEjYu%Oa@=Bu-Ldum>c7d`@2zpuSaO4VlQmz;!OcDG|2NpJa(*8_ z|DUPc>ucZc$1rWw?$6xz?3ul{Y?_9Hcfz#?1{I4~uf4U~dil(8iKv@O-^)%FRqtDy ze>&*?G^_HkOHFrDf7P<TTzILngVULxbJu&tgFe+Ab3X`tx0EaTKH=k6vwd46Z`Mh~ z`^VMP|9@t><<GmNZ*TtFXtMU}VvA$H7*Di0c1+!3&9YR6HBy2_a<)&Rg!&?#y09s+ z=kw%`ecX8GnWjFw#W6>ozh8bWe_vNQv*fF=1zTl^NaXxImkz(4`?%`>$K_+K{<ll4 ze(v&fcPz<!*tYJr@G^$D6^b7M>)AdCpOdyfUAcee-yaI~Z=!OGr*k^rVgL90*W1h2 z{r7pU;+quCz9-z>a)a6mx8z@JKYViqPfT?4&{VEkBRTQmMlDyVq*o6oZs^yXd*ce< zwSY|JiN|MTN$}J<S}*>w(U<L@z?&tW6YhM!-IBi9c`?HY&BZZ#VbkSj-}aX`@BZDt z-(E&+Ta`?%-5y7-u-5w8giZSz|NZ*=I^2I>>%IK?nOr=@S3U@B@ae1dsovskFYk1! zv+Dl&ql`XpMV7rQHkf<=?w<Iw`u{KHgsqvgcm8_0c@nM+r-hy68msfG5AfOizj}ZE z-pXI4L3NitpAB3Y-QM76%zLz1al`RNEI0ZD<(3sZT&6fJI8WPpyY1Omx%HnHMy{K6 z``@(wE$hq*lGX~mu{rSNj@{Ez?llkZTnzp^|Npmt`yKi=f4*H}b?4mf{wUkO@^jaJ zEpJjOl3TwdLitsRP|nBRg=d)*WUp#|<LA1%yY%$*busc$OEw(bAAc@Y_d}iK`Um%N z1EUpoHQjo;=+@l%&(EzF+unWl*Q1M{pFXWmezE)39NVg$3*VpETyA_UW_{mx{sm6A zpY(Xod>1_Dqrv{)X|+sGV&{jh3)NM=`tfGihd=w37oV@-Uhvy2eGm7A+S|tWIBwJ~ z-Ypg!Q+oOe?~JB)y%0w3*bFAVTP5?~^-K>^v-q*OXz}**N9TX!JKg7J@z{0R-E^DB zxngx?&zIEiIekf+@tE7Yhp{u(AOCmz=+$3M=4}^LV<k@cPoMAhR`Kdwd9mdR)~>sv zW->3f5TA7OV7IdLy=|J_4Jmy+ob%rGMEm!@4?q3A|M_>BY3@CZ`(7SqiO7{#Q^-zT z&+_0_&I88Udoq%zH)oe@jY!t0{@<CYa(dgp4KcQUKbKF=t*<Yhsl0#nQTyp<t7?z! zHoV>C^6r(?!l}V2;T5*~k0@;3vD@<T-DPp1Y3En#{dV>5eK-4RQe|n_yQfQQU(UOd z>K&(<byGz4L5ts8&30ysy~}0t9-Nt1WYN62{cf&KW?8)OrrlAK=lgB(-yZ+J==G<I zUmrcYylSQX!PeA$%j<7W+FrknEot?VR2gw+&-t-=F7r+=+ZgiQ<HZy;+wLjXr+t<a zTlv(VWvBU3^Vhi_c^B?^z3=DC<rS}{EtmeVgl*$u#@A2g&iT`6aaP*m_BoqZa~?GG zgx^ViS<EQ2@B&MrB$uneluF?R$_$~+@5LSW?g^<oaKTn_)8mS%vPZY`O)1yClv;nx zaPOlapUPwVf>*4VUU~PfDC52rzg!y(^i8~zjAmt?d)ehxf6gdn-mDWhn04<OJluLP zE|Tlco>i~pkDS~y>&@ptCz(mz2XD*|?PE=rj_c9RysYQ-!f~cmaOJ@(yPX$)5?XTJ zt+Q4!&LnWk>utWtr@y96PcCQrCbiloS)co)W&O6+?PrdtH1_O>G<j`2RsF4O|Igp5 z$0DXKe<Qr6a^Z&!)xMo`_L{x7TvEOD=gZH*)09JJOGdYs?d&}B+vVlG+}mH2(zo6` zzyHtPu4QfiY-S!ddH3$}@&5PULX#!?k61;%RT8?i&FcBCkh$kJX|GQ1P0ZgE6&a^J zdzG2tm1hp68|qDu{X3bZzj4vbb=&s2&6^YCvv8O4y!0g3eBDspva4ktcUA^8WwBq4 z>pW>S-7IZ+mac;17N0QbSa18t+zqF$Uf$c=X1Q#&Y0N_7;~a*oYxkbNvNJ5Xma{*1 z_0liRRrj`W?|yfUXVu;#O~>R{9Lu`q6Q+H1cD(h?Gbd!$m9UzAsV`LIj&NJ&;Q!Jm z=+{iIBf2q(;trNh-*-D{UZ1y4HSPB+{s6g~T*6(q-lt5<x)Iua$lpzB^Q~VeUzKdL zm$lk6W9hQ$;?>)Q&#nv%=~i0xHSx%m!~>5mF1r<+%P)OP&TN^rPLyQz?^TC4?uq{2 z?z+n)=Xj>X#^vg(O(*TR@LMFi{<71Wza<3|cUTALI^`Zt+4^xKANwlBS(heXz13Ru zLo)Pme|L(NU&bnr$i-V07#5W6ESvH{MrhvrbJO_v&Cf;`*4I|uIQpjM|AyN_?j5Cz zFV9QSK7BBE&WovfpC4|B(hS^PtDJuOHj}uq<vT68M{lO)&Jl2L=17ySlM-e3zmr-o z=F>IL{PkI@zc(_rr~f^i^m*gYSG#uZ6FZcl7;|9$k@#l&e*5nI-hX00|Ne8q_UHA_ zqT4tAjPBd}B-hh#yUO~Avbq<y>Tf0a?H9fIPW8RrJYD;xwV(S++1~$tw%zyF)f085 zzR%ujc4s|3XdTyj{cZV?-6vDmd~P_Je?N5H`AzBdEB090SFEkmPMDUdy}*hgB)fgC zfFbwvd#T!Ma;8p*R=o9o^|n|>qt<lU+c{G&Tz}5~{t16e-QKJ^-~H!r_Gjs|1n53q z>#!?T=Juy&e-7x&M>VIrtvzTQ65YId;la%rH$QHB@QV4GJi|nto2T}(R;lN6S8e)N z8om7XuC?kSa+B-#d4|uI|HF8IFD91DR&ZvR$bwbZ9#zlyeIx4L7txzL*J$lYI3>{> z&%?u#yZ6A9pxvA+QeT%Vd3(MrGx*)8FTeO<OJv#KFJiwkf83tW`esT|J;R6dLeCx7 zUs(G7_oeTD|D{|v@37sdWOX|`{Q9%06PfnTznpW_eCdyMBJuC}@7C4F&5?4DJ5fGg zx48bstCN?zPgy*?ue;3p@u$1JwST;8tIhfHk2kz+P`>@`X+p>+Yg4~8spUpbvkc!h zd!~iH(AfOWt7L~w%VY7!A9wz`m06p-a=nc~zt*w4Z#Qg|R=Rbv?QhJ^J4<4A^~kT? zr&D((%<U@Q&218q%ThjFHaZ!!Y-Rn!AGPK(>XNg>^e>;Smz!hOk|`OY**tTCqiAqr zT0;M|=^_T3)=kZfd!VvA(|OYVudhwY_r3dLc=7R^cdz~&SfBgtb-**FTz;SIsCch! z!GAOTCY>!6z8^bh%lnh^zVXXlPK#E>$R<vH_&#%+R_ej+Q9n5ObC>F=_bt}B5S3`Y zvVPCJj$hmI%qz9G?$g`kF*DQ0^ZB0-?@QTcZ9P`BbXG9)&1;fxCJO&#pSvpH=`Q0J zE3aO=oHd<WUzWdz`Fd=Ptwo}hlZvtKC6OPuL*I#M++Vw9pGDQ@{%f~h`oCtb{I$5+ zJJeY4k!#wmb>+^UN5ou~oZ-E1^7`rWtEq>hGwxnpS%3ZW?6l)5_gfwI@8;ciU3_=( zUhbW?l9~Ptx10BWo3X?;B9q_ylk$AgXPtpl(<?%&3zhsoYF(8(lA=|)V$G)$AzQ<> zi|p1Fd9B`bEA-mBQyccaUOjDXMN8IA=KD`y2fY5WUpK`=|C8)Q#=9}KEO)<IdAe_x zIk9c;^|hJ1Zsw-Vs_$PIwIcfJ>CIRD<g7EDj3=Zo+HbdM|6SRAv0J_?|7!W9+OEv; zG@6ao;M?ZL%>L(}*s@d4#-06?+gZ!Bv(cfdzP>)Ee*5<Q;>W+~>lUjpRSIuC72P$J z`?u<hEo<L<Kd`=i>RZQW{r}uo|JA2quGutVGBpG*$7D9Ku$X>$2cr_l=EBTdL8=#4 zPk*<AQL5fDhu_zB#m)2kbc^j*1m6wWyMNpEeP3R^IA1EPx^mU4A_1=ZPnW(}bo1HL z7yHD;*QcG2FFzk&SO4$ZB=NJRo$}Y;R)78RZI}O=Rew4sum65-b;yqmXWw5x7|(Zh zWoWnSk}GenNBpq*QvP+rs#}Zyo9z94F?`?p*_*2>Za;bGTladGZ+ZR4vkM+&?BsbW zv}9`T)Ag}|zxHLEvx_?Ncymbi-yb^4_e1_4?NxqTq4i(nZ;4H0|MABb-qRY*8g-^D zI}+p}EF2|xSs--Hg}w;3x1H0k>|`{rFS{^phJas&mBf~mY7X5n4qd6|y!(1M8#g)l zam>}+fBr$Fmh6R@m+l%UE1L$sZ3$Sr)Owy|TK2`4Ef+FptaV*3>@@ROWw+7UBRWw$ z#+!W3a4z)m7M+s$vc0*_Gdj@CSN&9ri{#z8J6iPl;$`+(Y}p~I@?Y*xiIL&&_wy&b zS?+Mh#P3;RYfAXC)LD5A{oD)oeEqv)(!*ICr|sUR-u=-(dr9_gP3@Y0Oss-j_prp6 z>GZ-{M%8*_6O>8i*h&7~%?1KT-`91??ABTOZ#%1C)LMltcb9If_Af1Il~R4R@P3`C z{+A7nEOnKi)lR0E6;4Z8Bzf~$beXH4@@lC-FR5LgVn^gc%nxnI2{Svo!gH<b>FQ+R z`IYq#b<e(gQ}oNSe%`t3>z*FkbUl34a`pP@uYc=qtqBWieQ|rWdRq3mNq<axuB0t` z6(J$jlbaT8-1F&Z*zZl%7mjcGuIfFhcg4+Da?i8W=l}ZWsoObmrklvh60vpRC91r( z`W{7rlLcpe?ueLiPT9y~%Kwtvjc)@*_s8fx46|vUy)56A`=-0=y45E(F05QISIIrw zs)*Z5u%5HX*R_o4Qe>F|`##$f?PUzPj)pH7E=3Am2%MPS7$o3V@PX}osK^Y36wU=d zcSI&M+x(~zP?BA{P*3jOyT@M`L|%B!SaoFAH1Cbm^(xIh4LvREXJ)Bh<vG3IwCUd6 zYvq3*1%2ih=wI)PEeebkrW@U3RIWEQF-M-+kDU^m{m4PY;r?II&o@#v)n=aYVHM0- zv}VIyz23i!hLU$3e4Vba|NpC2tfw0iVDY*1{GFZmDz}|3&n*u9yx%!o^xvvJ-)R1S zm+rQmTHS1K`c}s;<Zej#!Vl4NPuH29k303xzw%pF+?(#}Z?2!eub*FkcW2Jy7az~g z&y#=p;m5xF$HK1uJMrr8-tSt1_nsd8TlDpLZ1tNfMV7%?c6r%)*B`EvyH;BM!G77s z>kGd*U!Hg6aCKPA#7Eb@%l~_Gdv#aZ>QD<kxAm{G>R+Bd#h+UJX>+PcU0BvmS^L#9 z^IzwG_S^inV9md&hqu_&$xU|;lv>YJpW3K1<;WS=04CK5X-hB6vg9pXCi=){Z`&t_ z#|aB~e+Olpw)5~VVHUj0B^Yb(IBlv}(HfDeq@{179fTa$$f{g(N>UR%!sDg<Zi4fp zoef8VInGbn-G7~@*eT+6I>+lNdzM5*D}J0(@krC9>@u%Q*;;|}3p*s%T-I&bDtajD z^SgSs?8CdI*UX*p@LkHGf_4|Bgt-ED6LO#UteHFEN{fs7?zX5+6;_HiyjxQ~mN?DG zj60LGtg^hj`{7dE_wQN^E*Ej7MLkMPTOsakC;Q|`4~O5Gj(10VJc`_=$)vUESQb5N z`A~ADW%4hT>v_6U|3seE`!6-|@9g!0t5j!eY0mt&&O`ZVw5-Ot1tO;uxpkdZPnc(5 z+Pm_0t=aBZW<1HSIdu(9wyykdviAR*S+&>wcOUw0KS$Hb5nFl!t#encH!-q6NllaQ zW<53#Xnp@zWLHjP*MC!87H2cR0~<WOC)qV9`v*DeN*~>M;`aKr#!CX6ndX}qr<W|@ z3=fUGSr+oJ{q@;K_tL!F$3Je}pOaYn$UD2)BG5P6P4R#Jt}2d0SGUQPl^)l!S+{-n z<9FxxzuosfOWM6&|7t}2_GeE&@95l`^`qy(<JyF&9N|wN*2(T%{bpx)x9ftC9rLr| z-OI!MPcO6o_<7H_cT#0*_pVre{_4T?GI@tToRz&D=;|2wqsVZVaqZ#j3(ekSRX<D+ z^o?IAHv6SE)3&qg|LQp2dYQ8?%e?*gYE7H2l9)47mMmcTB0i-_V5VNZ<I?4s7cbum zp4Mn~f_W*Y279JUmO!F^MyD-P=dKAFdzxGrr?|dY%5t=$hPiXs1#OPl^hFAl7V+EI z9@a=rS-k9CLx6E>dgZfDB>@qklg&(uL5uyHc1xKS?^qo;xg|igy*c=Eoj-@(QX$UP zkgP@7P1jYb3Z}a-)=etmW#`-;=v2_Tz;8!pQ&rdJi$QsB3bRB0t=aR_U44CaUESv! zHp`CPnKN5%<9uCvxzFBty7tHNU$k4E{{N5JQS3<owpazP;a90Qvp|_(ik*5oZ?S<$ z+xJSYX|lbmel+d$2vlkQxZ={5VAHp6Gz){4v?(}=)&6e$Y;4G?IdR{8JM-T+;-2$A zTe$Lf!rwb{SI>Rj?0ol)b-88y?o+Jq-$j^f>owKJeigo0U#fNcs#U$t?d6}IG=04v zuYZ2MzkPlE^xC^N^S-akmOK6L@xP<8>*uGI|NoX%De~qnquKiSwcJOJ@TYw*eR=og zLd!YLXVXMkULRbu@5|lrg5}?zmw!*b@~@=%`Yubh^8BBDQ|@lfwZD7PwDv&QZQY%Z zJvK=N?bwp~bk`=!U02(9@0;DY@$mM#n9cD$>Km%;L*!H4H(ySyH%nH!DU=z&b;?ol zL_?8MoPa0urUgwNhx`uuB`q_Wa$Y3z&-ug4dBtOtxNKIQ6plG^^9hsNB;78-B(LWF zV@aDPHEBFkFq`BPxPqtCXo}j(oSE*%`kM|go#Zfao!}C7R;fj2rYpzW7e`fsX37ML zOg2}260jv)NaL9HmYOc(_4OhFlV&ec(zwUfy{@HSRB>9z-bD*4>;?a5?EJEL&(uvz zT*@L{V}4ljbj@FEp#Cs!V!)wP(ay+YUT-#ah19J+WIiRvY|5jgJA6m48d;mH7TP?8 z=g`Gtt5v=-pZwm}EiNnGo-A-M_*H{SPbbgY@>N&fWGvO1CA&6c_Rkr5&yp=G>nE;c zR9zr5rO9Z5+9jSTiD#OM1it!YJ$cKLJLB2oTirVrR73^Y99+pJTeK*qQAKc9eEW&Z zM_d9OlbgN;OA9QH*|PMEi<hynm86pk&y=PNcVoug8Z40luIHC=^n__{R{W&0dyeJ= zwxz~KQoj$ZP@3%Oa;M>hx_GjU-I@~-6R!k4_9}Sy`&yC4zI@&30WIMt*w5$x&5tyD zfAZrm+4%n3j{{?O=j}N1vUB0{#62fpAG;g3@Y|ifurI&ay<X3Z!<Meiz%9mlV<Quk z;%ZW0ev^T~@%ukTYD*${L_|y!RkSv3IFl<_dm}lQ-(4v;_`|_``&-#H5yG?nRQ=!m zZ)f(7)u*G%lsWhJKH}|J@^*=V!HV4v9rOy`rZ^-kS=m(;S-+pjcj#{8OaE)koU`X| z|L*(qSE0qKd7e^dx4)`ad-gooHCSnZ>&ur58;{I;y{VE%`ODTE(UYGWCVa36m2>;7 zu(>xtykcW|yj#P|CsWUy+kI@VN%`9R3(Yc~A|kEY?iZ!Qnb^)+NT{tBcye(I*QD^v zT1*oj#m`BbQI`2r-#AR}y?UjHu2}0*m9i;%6R-6N$*(rpR<z~ADbq`0D>GcQCVuOi zCbH7$(4H2hwK7Ln_$a$a_OxtNy*F>s^fQ;)R;zeaR5w-5ESFWR)Yq(<8};b_U9;nT zUn~Rb%+s<q&fYCO?`^UA!=ENwE}5OKt@mo47m6*k&B38P{nb%M!TQ|nW>5(K*8H?7 zSw#NUO<tE5Tlf~<_1Y@0;OnP;Ma8A|V*dUL_1cZi+<%I``@cJQ{?wk3yC?o^zPhMs zqUqd8Vr;gNjBnU-m+vu1+9dqgsiJG1^!f9CcWOS%&4{nR`uo+7Dx27n^H+cWVtQNh zysUO@w?Ueal-D|WwumhSGsElq6I=F$^rm?}GJIwoY2NegU|99a{0~O=|3+|b3)YQ} z-OQE0>f{XTFALnnDl)syw}#BUAjEc<HDX=Vhe-z_Pfa=$`Koc!|3~YLr`(nLc>3)e zx!jm4fg^!kUp%)cYISV$xXqw>s#B?}RzP=`>NH{53HO{9HDz>f;hr!@rn9c&rNdO- ztDCGR=#|Y&H1@t)9R1m9-fe-&Tk|Y-7|Z;&S?G7Lc&*#)$ku=Co;xNnVGGOY=Q)^c zn9Yq0rdJ$iRH@Hh8^t~+us}|5LM0#P36W(JQq&bWoh4EO90M7TbMbBU+v*qIdwq58 zd|lmJS@F?(Wv?xqef|AgfgJtsUu)k#{cSXN^XBhy|D#^V|Gy;|xNhAP50y_58!uhA z*Q)!p<RkYYWhUA1X&iBf1fHDZlu`Yl<ap0n;+4{u@}tUkW9RMIU0?R*$n(7~!t}3e zd=%&sYW-Te$FA1d;oadA>eEW)AMW@d|1LjBXrjlXd-Wf-@BcHs_}$OOi@Teqv9Y;o zI*ED)tNF|_dHeUpj3qlRJP>HDIkm(y__$?U`e|{W3HqP;Ir_tnwzr@9yO`<eX|)sK zeiPPrg-u+&@YBVMfuCX>75@qDu77%Q_tQE@>8G3@9Sc8xda&a~%Zwj}!cXcH7k(@X zEs5DNXU}m~SC*g0*;!8sFJfwb^rUNo!p}*i`|3U&y%@;#v+F{`f)zg$e*XAaR9O=+ z!Nz4_M`iUR7gwhbEiZOF=-hpB#*a?HbB-T{W%o<(ulTC9|D*P_efu+}zF)-I<<eSH zUSBfD#=zsDyp*8*Lg`8C_Xj*V7!-HKAj{&bnCY}x4!%p41q82@yyBB3W;%P8^IrF} zi=PE^uW-F0bZT~#-`WLXL8~?7vv{{o`?U1Wiqb1pS;|{y-g3%aS{7ifS)U~?>cJYQ z7@{HS)*3u9#6;BjXb_i|r)rRA$f_6N;$BZ8zUS7zdMo#2vi8zNah)QI)>ke0Uh#0# zfv3#ZGuO4p+&;?n@qEdSl+Gs`o;1$xzHPRBwe8Az!qxNMKfS8Gw0!-&+124+*~;a= zXV<oU^?Y4?B6*s7@%`Ld`7e{d@BVXanYmu&yANw7^G%R@y??|1d;et5L_Pb?xRQBg z<7@VN5=-Pt82c*fw;T`COw3um!B;gaKIZg{iGjgq9wt0o`lG~4BxqxBW~j)mnTH-f z=$oG8D|IO|#qf6^=XH<pD~p9y{}dJo9#;JIBBHS4>?*6%buQE2xNo%yJCMibeyNN@ z^Y4Nm5p|Cfm~;Ewch$7cZVy<y?eOW_izXW|JZqTVEl@hGQH#^(;NyCp+1v6?^?rLc zWv0~HsA;*8$tNBa@uc-mHJyE;*}nK!%~$m|?x~4(H61D}(_ej9;X3_!eeIXThj+!| zR5`b+&3`iMMRMy=UYl>fT4x&YW&TZ;>aXSBv-R8o!Q?>gl$(k>u6~x}Y5n`4RrA5p z^jpghRk5`t?W@|}`g_@{NA3No59)iJC)&4vEh*SlWq$volTgf*dq*5~bwmHihKU>w zk~`m6&9m&IgUInjbB?xoTfST@EV$hF{Pl<XGXy`q(Uqwa-gIE{v|VNl{RW4tIl?<X z=9YN`bgpX_UsHM`p7Z3HNS5r4=im6=HZrpGm@0El@AlER@AiG;-1SGmD(`{0X}m*f zy-thL2W$T`SByVjw0QGMe*1oxvyLl|gw?EAHnX-<?c8JATeVm1xm4{ZEp^+u<@7qE z$hAq{eU|R4FTdUz(_`c%x~wd?z4e9j&8ga_XEXnJD{lPed&+mNx9NICy6SeC|66QB z=C8IpAs_Poe(>Uw%aXoT!r7*?&$89MU;pUOojo!2%Hnz4+B}<gL^?V5CcarAc<Lzk zPuFf?x4vn;E9ENl4Y$AeXCG?6$@e%<Yi~{R!-=1itMB@_1<!MRrnqF4{Nc&R7pbwc z-9BgRy7TO=q;pHO&z!iru!l!4_58Ki%{L#uczX8y+4w!XLTAg|Jh3|0ZOU;mDeg}^ zdkpt~*c2HyVea;N_4%vs2}SPcIGU`cbLjo!?a|K<-niAz>;C>j=~6c5g=ZG;W!%bD z9qoEPf#naAa?Gvd2dtknZ`J?0_k7>n_Pe>KBVzvL_vtNn{H@y4(rY7U$k2VY!h-Lq zf%2Qye<m&>4>)gpjo<t7=94dKay-pT?YVcROFlfBt<RRar1e9Ds%8D&+R3I(N38|E z-QL6duyn)B>2_A7x31O9x*t2KaEiqa?IL-@>VUK<UEY1cFD~7j_+oZD|Ha}0+lbi< z*Qj+ro9uc#o<)Cmx~)M~!B4rEC5u}tG}0O(?{*z82r{1c?Ocit-}x#-b~X9kNp?lE z*XwPXm1DH}+XB1!tIuDRHi~3FRi9P2`24Fk1!23Gx-Z|(%c{KLfBlX5oQE5`r%wF! zz#&Si@NUS@58B^0Uow3^>%=2n&hrZ|@d@TGN_&vV`9Y7VN%qX<x#7>Q6x^5HcGp_D zIq>oMNB1I3bOijP;y3=uR54fb`g)E_a^9DtNsk&f_RAlNmXY(@l-^tS_{_{*#q#&J z*310<5}f_PNv~h!oXy=?nZc#g<?lL`-=4Qf)!UMvk;Ak0hs?GAE;bgYTzA~NH~nP! zqT3gjpU%H;@we<?r{WXGt|j~KR4vk6J0W2{(`>)X3$AqaUt6$w5Bru-%~r-Ti6s85 z)!Pm|kUWxJ^su)~@UqU$<>oC>mM`7BrwA?Gpknc@{=xPimO`l<Tzqz2t1AEaD4l&5 zv#N7im9@C?^grh=ZF9SFL!#%>&t8Q^{0oG)^M$9Wg%t%=PP@9qc=OQ}8_smf{}N<+ zWAMlQym|{GXVfJTMd2h#i6`G}<>bZZ&z3xYQ00b3rs0(<at^<@eb_ON&;K0fgO8>s zze&};ZDiWAzQwwJ-}{WGn%~5#-rwE%VsE0LH<umn1Kp^#s<Y2t%G^}+BcxSHC0gz5 zxm~Uvc@{qZe-+PgT#%y}&{wbbW0lQAwl7uuRi1lWgKnI%Xn3^5@ZX_=U4gl`&+0A^ z4xXSi_jsY~<D-$99<x=ti-mMlcor|cb*{g3%a!HAP4iWQ-Un}CE~uAd-)8WmR%)4} zx8vTOcYI$ZFF3iWV!CWq6UWWuw;OJ~tCadR`N=E!|6WxtE5wf(RL-j1<&+n%XQZ}K zaP}op$C|&_cq^?V>up3I-eh#0-PiijaChJWw`m!itGgZs6`85%PIsM>w?pvg(YT$9 z^Ap!M>Nh1CaPqs(c)I<<!IdYb)t`F)?5(D)!e*%+Hg5G=q1#2gp&OScXf@po7nU;W z{_%-ziQUQ9pVn9j&(7Z#Q7L0N>EmTKy{IL&WiKba{IR!snS%Yh<$RovdoxAk6x_c@ zy$a-I&)X96<>$&P3GAE#9`d&X)p=`tG9Ji&n4~ANWyvbpNgn6_79T%p?w%VhGxt>e zOV6)AvXjc&0@plQy;|MgCVIt<6A!J_uf=Y+VG)l=7r(jSChIyUp~oD?eEEwmH+zPd zDM|CswmRJ3@=ZMS)VEZvi{>i+3a|aeZr!Loxz6Nc1JfkV+o2EmgwFRTh)kR8vxD#T z$!qoR!<s+5pR{hq`#*C_CWY=e@}}0dRQ;f;*P{9}oy$+2S*|16?(x#l+WZp_+m0>k zEl)g9ZnB=jD0I7Pf~tSmQm2)7w5s~KR!*_0>sa6Ma6$2|3-7FLZ?T@U7Ap8DDe_}c zL}Xakw@vbwLsefWI6gD1(zFS+>|FRyCs<+S#rOA*B_^+nu=qNC+u{EINqdsJuP1Kk zKK#sHa`){YdiAqyZ*g*SI=}Cb(W|@u^Ns!Ly-P2j<x|)H!W}Jjrgpl`;V0+Sel6bc zwx-2Nbl%)Y%k2HjH=p@>|L(spzcv=9cTagOoA<x|o|5WY(|xt9f?rBA<9{z_H1z8) z33;u$!_Pv+Zefo~P@Yry=B&BGoLAX6uawFNv4_YyO?|U{J@dQL`hfp}7w@fC{?&8% zM&j-J-JXyC`Jevxy`k*N#E0K@=WbYYcC+M@4HI7ITb@|De`1l6!TwhVn?kjxubQ6! z;LqPp=4Yp_HCSi6ciQcOMV3$1et&Pv{(5we-Q@`@?!MgSHQ7YydxG+!Pv4J!5bM3R z;-!iM?|g}Qt4>Tzt=;jjdWCDjC(Ziy_HBkMIr=56*>BeW@K32f=IMS%ceeEz#<WA} zhZY~_o2&ArFhjN7t|6B@!A|dJd(8&@xW4fFhq@QAb;%tLQ8-i(B5BO}FyT$}bp?*9 zZ>E9C516wB;;e5T+~jg=%T3p>EV~QZ_h`1Vu%(^NJZk)L&d%TuB{rK&8GYJL#@|e= z7i-^}bH+Mjl1%W6m+Achx7Rx?T>0KA&9RK}X6?GWswuLp&P)1RPPi>AG!H87ZpnYS z_r(Lg&~<vYbG^OzZrMgXpC&R}R`gCoSLMrt&b-h5G}pL)+&#&}{b5l|OL9rz<YuK? zwVm0k?OKJ}<)m1jE@|0r>?FgSeEiNKVT+t!-u0^*BqY=uPoB>|%pv!gdC%3;8+#7R z1u)fSN<{3bny8%ip+;3_yR}QKd0{o*L8(1g(rarn46aX!lKAD`7W+m{Ut4wdxfmx^ zotBc!Xj$Qgf_j}Wm8arMia$O*5u@0g<C%DI;;hSWw3**+ZC+!=udZ3|9oQKqd;04E z$sSJ0%iZ-mMf=5^<5x^`JS|+XyJYrhW9i<?O-ZI+&nCT4k@fO>wDI?eoj+`4ln&Q^ zd#o^{`FK%hsM{n~(UM5P#y9789-QyPcmCiJhxry9N|)+&wui4&j-2YEzB+K0*vp*E zKkCKrAMV=`)iygl(cC^?PhI+{Qe>2%)?=*~T*_Lj9~}Jqv|hP_-zi0|fcK!o#c+cQ ztc$W{x=&)Ra@H}Q-gotN^3R=<BAWj(eDAPJFpw!|dCv1xyua07c0-@QlJ%@_;@L7P zd5z?s&AQfkc(u<h<u~aig}kfIU6;J9^&>UD!|~S%uFY?aYz`e*<8ZikdU4(Nqpp%W zk4y+H$zlpx!Jogr<FRl3tWOndc~oB)8EUSYecPjiy+Qwn;+|}-@5|?(?Z24Z{-KsN zE}FwRN37_hhue;uzTefn-o5$YSRJuPPtt$>=RC=Ie5>`$LgnmFJ^t$ASvs+4OMCDy zzBVDZU8Z`PYFX01)tFv>6z2HVm>n6Km&B?+RldX7^W~Ca4dn}4wH%q5>x18f?S5V= zF@uXaH-$Uykl90~&J-KY+z=gC$L<|l-q_BZY1C45_GQe`w8E-+fx!p7ly%(}Up=#3 zCSTM3_`P%fH#Vpm2hTjvUnR`TJ$0$_RL9e)Pa^{?tNYfK?pP4^>GR*yyj$m({7<;r zxcGW%MM-;SW`UH{BNLM&lBaps|GZg0G1a_Nt>DWnWr2%(Ydu$6uB&~a$acQ<@+0Y` z`hAY}k~xPaW>~jx&U|_P?xlA*;eJyZyIIm63P1WWNh#!P++yw17Zv6DMazusR=zHX z=i_f+k#J~^zPfFxO441Ai9-7eu9-MKm?`F|x=GDd|HOeSVSe?ePhNj`_vfzFhYlK@ z?5_9kzklMf7LQv=!vP;PF;3I}DwFpz&iv5UeZi+iX~(%=Ng=%E+oI+q#6=dnetSCo z*y8Eum*-j@UphtdOXZrQIa;P4m&SMY{ydQ}>FI0U!lN;Vo#a2em2u5mab&f)S?=xC zkMwggPFBn*v0NJ!ytYXD%!(kklgIq8x1EhC_;N<=T>Z3l&O3AZ+-5I&8oaEtG}2@F zRLy!Wv)2|+=k}MdM^wE2DLcdCOzmuex0in}S|*?Hi(juvrp;)&vh<`=I~tA&bl2~j z9iQm%ukhwc<)6pjn;cV>d0@o#e{a1`bo`=okGq%-@os!mrsG`k<Jqedw<`82{;BvT zy7ji>+14|%o7OhotZ%fg>DJGGdPZukX8YL-sn1?i#%BGx#S?kyaK(|gJ4+_9oM!!S zrukyuqp%es^O#lHPfhlCpLnT~DNFuH$l|Da=9laRlO6Xo-CN`o{lmo5$ZO51CrdsT zt#$7(nQC^|xZ`20l(vD>jXi<aX3C!}xtUlp$Gq{Oc7)fKTM^s;I8BMKS1b;@_&fLg z?fflI%ccbeIknriCT4poP7Pi%Y1K?^j<AQkbFTD%;_iqLK0JHA)GBZP9iG)e|1BzZ zFKAqAvB3BC@ocMTkxctjZ8=M8Ca1_7wTKi4HSaPoV@uueL*<bA@;-+fY%BZEz00*b zSzmFr=;=nD)4V+;@}_K+=PTU*ZmIuza$o(O=S!yiGTt&_!2^pZA-n&cENA<=Ufq57 z&;5MaMajCzNxHuSWZ7@~JnB1^choIo%7L)8JM!i)juv)XEiZnv(PS@k=%V$Vb404P z8K})QUEa0&$_t&DYuwhKKlyO;6+_N{IW=BCbLFn&PO{&%QPY2pq5Q*`l4(wh?%iEF zOS^t!tK7{UpYsl~uXy9U?oQ3tq<ryZQ~4G4__F93ysB<rS5mUWe|yaQn8UUI9N(_h zHk#4aF0OyrdC&2brxC`2;o=JC{I@HqY?k`WvDRisfxPHubM8ZC%NOYiI@Z*b%+U*4 zeog(=R;%qfx~Dv+sai_@WBwI+@z&0JH@($c&u_o?q5c`S(bu*Z_llQaY`o&vO<cNl zA1`y_z5Dwb56*3R5PtB}V)ZX<m0Ty3JEw1TdKP(1P1Cu0Dr-z!nT6sf)hfezj)xU0 zoORxYN7by^x8;bhRME@D-r~1Y9vF&h*l4A!RV(10K69_G#mV1)J~>8;1+SZ`YY>&I z7Wb-n`==KxXRisV|NY~`q0rOKd&2dfdsg1mJa@ujm+huCdc1${%3B52#!4&~DqZO^ z-EZQJtJW+fb8AvOrnRk!eK9+@XkzoT>)Yq#x=wbfGySyu*6$am#q_q_{u!J8!-6I6 z_pWc9KDjcP;!K&TBDW@<N#5qXiP8VU>?^#Q>g<mto7Vp*DKZJ#^!i2p6$_EYiaJxy zH7|OszOnwLW6;_C3s=9oz@BPzgnRvwO0(vJK6}=@&8cx=XNebA42n2#<>*2YKhNK* zgBKb9y!hi%#txNrr_Qarcj(w<%|eY?Ar-}1{ClmBB>kUM6>`w7U{1q4Eyd|98*jus zdSKOm|C{CaKePAM+7uhKy@~W(z35_nUrAjC`}AFg#yZ8v6KvP6bUpTCy`gH4WJ%0g zBlnHonW@hgto-qL$HiA`BOmTcG17T`_{aM1cV_VMv(5GEck0a1m@C!1NZ`_wiM3~5 zRcL<GU!^>y@OEPC=HCC23EuXbu8Gc*%~_C}ty3s^I<EAK<P(YDlec7({X{3u=hQ!1 zsak)c=buZ${0;Y9J65HAD*n8Q+rozV+Tqz7B4RR}E7Kykb}iU6+0V;ebLAel%{jN^ zj+QK73w;|XE%JuXN|#YJW%7-ak33I)Jr?|dt<bM*otpQwfL^a1m%j)ue(7O)pX+b@ zL&2ob&fc8w%)6FwS^90<a^t`E!-ZZ~G;~TU9@H)~t7ltU$XQ|(sHnLo?6X<l)r#GM zTh6`xRrb6*&wSBlZ}W{C`S_1No3*J|O72>T&*`A7tG9X%CcdoRwm$i=h-#SWMLnzL zX;)J+FK^cA_T5=ib<lm6k=U=f&2hg!RnE|K={$S%#EXtbi7yO!wgOkVg=1Q#`kvXy zA#(KLN2`x!Qd>UMckbA5BSUZU+%AV|i<&+)C##I_i6N&C&vq*m?%n!BxX^8u-(;Q7 z>)oHq+*#Ny9T1$Jo-97k($8Yg2JyuIt_E}VR11F0YkDss;p8Ey{#c~tvO#~l!W@p1 z6Pg@2Z8BNBW^8?NH^*KtZ1p^o{<-V_EekvC?Yv2U(R20G>lb`aTh_0;7V_h({f+&% z(^h$`+ZAQLsQj9+_q-ChjJ+)Dr_N=MGU)&EG1qD92jSvH(RyqpuMd5Zo&JC6#d5XR z@9+9w+|IRk&T`(>jmwtyzv^*+)i0*DBzi~8V$I{H#1=0y`q#9CP4cnM9MirQPV1Vr z^6w6we^-`t%{SF%x6(_i)jQOVXx7*NbY|f$pDF%7m{tCv((?|^{AW*2UE=DTu<hbh zwr1V=-wXb5Uh_}5>&~}OBdhIk{MycWoL3KhE8<vdESa%x`s(;C)&5WJ-M+`Yrz-wV z_C^VwWj4)6QwqxeA52ref1-Ty%_sMs?`QnBh+#gK!Dut^!W##ree<jiIS3^%F`SX& zSdC4c@$?HEOjg^^-eY{p$!uf>o>f$xZXd%WI{ottMg?XgGjp(tdUJC_L*yBmxl!yD z!q+#&DSBrgkocg)v^(Ycl>lG<2@We3mM5<&e7~2|Jm<9Qwk66Z_lDmrax~j!XtwwJ zGZqd{4Mr!YlinJQEoZEbf3M9?6`u6_(BAbCHAeSeWt=}#pZ08i{WYaShnfUBUCgw@ z*Yfj~@XoTytUpxcpI_OKJ>%!Aq&klOcAJtar#-L~%)i|%ul1}w@<CwOqrG8bbGbk4 zQxy98KH`&|V@J?$uJ^WW-=0srYVfdLd1{#Q8F9AgUKO2c0i{Le7yBh#_W0YV{!^UP zwdUWQjD7AKW<NLLKfi$Ee#Z;VvdL<`(GoI3vd><>6;8BHy|ko$<>RyOH|L1oxT#lO z`klXz=ll1qrM#au#O9^%K6S3Fv|vfW)$3&?1ryfJUf!SGFg<s}^tWv1&u;rvaDGEU z^!p77l^#DNtZ(z$?R&Uw;=#m!+YY@qIM3jJy}+M8x^hB$`i$I`{^f6l*njhG>uzpV z$_f9qtD3E~`j+2}gly?|FEi_33kwQ<x_G2huqc1`1B3USaffDo=w!UxeMo)Qe)GhS zv#v_3t%=$8;qujQ^KZGjxZbE@ZNFJn;kM%!Tg&agytlTChq1S_?qU--#P7_b*d}zi z<KdBrBpJhbGaPOR3U{77B9f%_QPHq@hUXb2J0&|cJH=;0pF4gYVM<cm*b(8QQ?EEp z=ya#(5w9fCjk6-W*C<~T{&s}zP~#1c9JOsiw>jJo%`8xi;WR(g{6VFLBmPkT2X&?n z2c;Gc)k7T|PJV9`7IkDOwRI>z>ioPY-erGRoiMk%+8-VDX|wsyH+6_iTqIxB^6iJ~ z8&x~iXS&Oxrg*z~b}dy}*(EaZ-ZWv|;Oct5H>np_ulZiR_xSg|mw#KYI<1~%*ZnKx z+s<6sE9C|E_tb^`?fDz`{r-*pSC;MfU3a$lRq(0WhPMnVlTX^oTVy}@{GIFG@8b$j z6(shQe8{bmt(_=&T7)Oke#z&*&TnGA8RuDq=j^`s?c#+83uhkw#p5kq#wxYOdeQ{W zZ8Ltnow%r;?|S31j3VEdu;!-2jIu(Wj;pM+r*(#EJ`S>cbMI&Jm$dJ5`DPtteBy08 zL94U#j!@c~YuUwHt==i@QD;=KZB+Nzl4+GHC7aRjbb}%2ehKf}#19N7CMNC_(RncK z$gFTp9z!*ax{@0S!S%v-*55M-`dIVC`Q}T5>Y~^gK@X>w)hjf!x^Lp$T4BCfS1!71 zyWwUrYdvnA{*~)=b=RNs&%LqksZ@5~ldHz==PG<2?m2OGm4B!<v+nbsZMj9uG>^Lb zAJ*F{f2Vpy&r-1+%dhW{OVZL4sXP3zzyGAh+aIm_{G#tl_0P-N&A!<v@^zn4D`S<^ zgSscSpYvy5c2ii#v<r0G+{>(O6SK-+erP#v)N#Bx(O_O*_=AlVTKC$nGj-cD9)CQ2 zbC=%ct1}a>M)*8mwjjdHQ);!_s*rPkop*oW<caHJKa>)|^vyuV?T}A}{If@L5tfFj zpN#sreqUpk)qdpQ8J4w0FsH{PZ1LHkqUqc6wZ0^{^=v<EcH^1*?r?Sf`s-WYJ~DeM z*MIA9P5h5n=6u#?rv`p=G4blYeQ;gLy)`{4V(Tgyk_6^g7cBl)u%=enU9hW3V@cPt zwbo|b>38xP#3u6=e1GufGOPXyW?7jv6Kc(0YwMg#pFb^j?;q8_caQ9@P`G_ld4X3| z@bVAOtX6yEZ+#?eX44?Av{WhK!{YY({|6t|6~u2#dd;Jg_R-^lhjd9~d&CR%rFnL_ ze+rbtTi>4)%bjJ~boB4izE^A5_*NzAdPdshZ;n0{`B`10jXSsC979~L+4|el?=s)D zeI*dj#b~tPn9cD^mU?{`H|oSFf8=OYY1lJu?xv}){~Yu%i=E;kvNiYTq{e&uZI~s^ zgX^_F2d(EUN@6an_+@D@W%}gu&|(Ym@WwAoO?FI7^_U%gW?r7<)Yzjk8C+l2JX&@4 z%j>%=8hf5B>*G|r_%giagkIrsmX66!7p<va4N}XBu(7#WCMIUM`s1^^1w4I+m)#Y2 z_);Jw7kcjK%L%I{XuAF4;uAV4G-auWw=?I-H`9Jjs#jZo*8R9)MX!K#@J8;kcK(kk z5xmCp7}=*aUCtJD%c!`NBl311`|NogKUZFeo;JH9#PgNO(pg)%qvkz0nlon?|FXk9 zyK~ix^fLEITbfTbGMLAw+q-71p8n0RKkrQQFZka%<G|k!4bK-J6nas$;Z*9{gDr8+ zAF?ktUr)MmAo}#H`a`RmnhqUqZd!Hd^{Z8@UPaWLew2T`CI4Zi^?`?5Ii^V-d9Y?` zEMI=<_f9@eUR};iEv++W&L)>`ZVtD$j?$Vc<tsIJ(!^;K>wlX~a9Wq55Zr!3h3VVD ziQ)qPo$hSplslDRo0ecS@Atb0FBMyF9ypW{ak|z(pnLJPiu_b(rR(eKrH}T!>JzNv zzbWdbzeIffDRJ4y-`1X;Y1jU)ORV+f7EV9Tk4an^n*~2;XD_$;xvEj^)8!{?lx6;N zdy4*74Jlx_De@%f?SThzhmR#lE}PfO_VOw7?$^C{j3&)uH|ow<5_V)m$mwkk>N~j~ zKZ)I|K8HIubZ+L-*`?24^KDqxWy@QyKJ(bNxqfPT`fMxD-ZXYUG4Jy-cC{IbKWv{U z=9nI`SbR_8-G)}1$QdHHTU~Vye3r2J;d^Adz0&+=KkH9OE;RA6iWM}NHkU^;U&vLh zmD5z(ApDHv(t`@qOXk&cM;whluy0BkyKe%kjzLG(d&i*PvsZXtTdKBl>dCCKmh&l7 zPSocV-oGkykX6p@t*^-yZ{Dhqk9QtwzU$Xj?-RK9GX6Ld=QVbRm}9!l2aV=vv>ML* z-n)Bd_|6$01)PFa*S~#{EwWX1tp(Sr#YuJ6XQr8I@>Oix7$~}Nr}np~x{EbWDy;ve zoSNw=Ut@A#FY5V~XD6PinzTzM>s)8`-7fFTU%T^5efWew74OZ<1ouo?`~AkYW9>)( zzVq1j-s^U(Q~ZugWq*%7_2s_V<u^0u-yYx1%k=kDywCajG@n)D*SU#T++?|8bQNqu z9DYpT<m399dBXX7`*!&@$;2HKv!2yI-hOgdg4K`m8B3;w-LK%@YOuC{;;K&LpA)bA z`nY1jMCP;1pO)XTujfl}TXf%|%qqoerQu!o1l87!Zq;YRimw&$&8+C;Tz2=oS;v7z ze@~Vty?F6LJNsMKjUO-DrQ0{nm?K*teP3m+NXE(oX$n`pzsWhR+B+wc-7<de^&<zv z6-*z_OYp3#|M8)&R?tf`N%+#D$A@2ZJUTIJ*P>5a+qhF-e9XCHdn2i#{`<SyUphO= z+8yOHi@*HrYnQiUzv-OiV1JKs+vx@0*ND%!@l5FT<Fkj<CT&_1FwK0)72^xvZ#{1E z33cOg|Ee;9Yw4;ROHQnv=q<U5{oy{_)rTf}Ut6x|5?t-3zUWB=pS<GYz@o%ye)DIZ z6MJqt|4*A`-W|EQXGN=D+HAXEm*KmkUi-D+JJDTpBRBjzvQwgOmbw4p>)D@Xv<W4L zhW1?4Kc}8*?H<ZAtFCm-ft%Cx>zPiyX)o~E(mCC|>%oyy!}t7~Q<m}n$W5_4)#Dp9 zbG4$~{g>LD4VyBbInO%(j$^{B=>ElK%igjCZQaNE*1Bk-XIp4cz(-rvYqD31gpbVp zF)_A2^ylIBM|}kzQ)hbQtev!@zT?Zi7zf**9_v3m3Y&0)DcJMi>5tcrt^2iS>BB$y z{pyeTPu;8!p7;8%tY2T+hpaz}^O|BeYWo}xPW;<zef4=+@u#M}?<#%xPKjw$Fy5Rr zukh#_wX)SMU(@+R#KM_Y`K;K|xH4Yxp{c`~1s<&OXZ!1?O;x#4?P8^UHztxxTPh~@ zYtga1kB|K4@Xk9X8}sK}hP}Mif&-UDPOj_xSYEhX-0nWZwF|GOCvTT}+?Ts9HQRih z^Xi!f;!AuV{<&N}<JHTOkjS8OY}>c2IyFOnUEJQAGPh;IPQJ~{I;D}i;=70j_e;|? zO1hyF9gd5rh&-Q`8d|@pLQpM5QR@HP#2lw0mkrj&yn9!yxp+-n((=_NCHvi*%Je_W z{!(aamYcgbm9KkSkL1=LH#(cEXMKNtv-lEwLgTXHyMOPy3cq=`F84U=k65-@hfeyR zVLuu^(RbIL**Q}^SACk<ZzFlW(&PPM){u#@J3AhKEbREd-TU7X#+Ca%de<)$z4KW# z$h4?FhrzW#MtpB^XTZPKCo+GQeR1wz{h)H{u7lUPx7G(s+*<nZz`U9UA4cCC&pGiw zt<u^)OTCZqW48BRxxD_ZoYy_I^)CEk&(@W$WRiW5p!)Ol*UQuOpIWX-FT4|f&120& z#x<7Or<#KduN;)R85y&yZ%bSK9>sl%_54RaBrMRJGG}d7^8~y1X3@E2_1hloJN`!R z`|6Xof0@5qEwcG$z~=nztoNhx%73bT*tYWn%a+C$ThDIaUwg$*l96+suJ`GThZTmN za}RDy6JPg4gEh=}kLmjMxJx%yTzm6ug`@P3`KhLYR~z>=$#Jjbxx01uo@*K``Sb2H z95}?NQ~!jmuKnaPQJt`cqv!co=<Z2xUu(HKMXU35$dd0*m}Z?w*SOdIx<o}iZ{z(F zL5HV!Ux>`_lPa{S4=)Was5Efbo%H*dWwFSt`r5OHr<<><oq9ZL^Ta&!v+Gr(xi6|N zoNCb?%X{?x=ZCTLcGz2fyS=IGmHUTVN{>ZV<nq5gOzZnuFOlQ9e924gAmso@jp!+H zaS_hp?$g=X-QC;rtYmARt?r&Kzxhf-U!vIif|EC5mpGp-{IKiq>TlD^UdheZUGP-Z zUERjg=b%uh+w@s0mtS5#|NPlBec9~Gp&7cqOSClPSdH(kF1cl)*PwIxiPoc+Cw8<v z5fS4*dQHf#X^GT*S*>~{+b<Q;TI)}oUan%^zU`*_<v_#Cz-Q+<_byrIw|JfKCwHYM z{wXT<PkGB7Cr{jU=>EG`JZ@T#Sj6IvoS76fd6)Fu*e7`*Ka_7LObS{YdT;Us>Bol8 zeRl<z|Es<qqV={*Sn<^vPKCVXvktx~o$mXme$thz<+t_3oPK;a%wKeMn^=8Umf}b0 zkMAFqr<l%D=5?L*LWGaKeBSZKKa!n}D;^8-%=<hoFEoXtNG5S#zQ64klVl?%*;NmJ zsOfT^s{b<KNP3FOQ=`gXZ}yZlR#^Y?*fRI}()`ame-<~+kG6AOmBzSIfA_h-#EQvh z4((@jUZE_j{@>TF`dGpJqi4?-Cy80?s$awPtWI@h{)Y?pxA%6{&%AwQVtM-a|Ld4$ zbSIT>y8dZ%R%_RdxmLEJJC?`Y_#;}x^U&(~q#vg7Iw$=vWh|EX<LNMW%ZixAnvb+X zqkKi~Mt;+8&{i}K+B&O5)qdaSmkU~C)~a=Dx<sbR)VHj0Y>(S`xAeWfMPTXwT`%^w zK7IASUTE5``lp+AdS+G??f*1M(6;g9F<ZCU+uTL_7u;8Vb(C|V?jCJsW;Ofyn-a6P zOy++5Oyr?e|FOUO<(b9Aqi&xI+w@PRPkvu*Y)^AuImd4M-Rq8s#HsZ2`h1G0y7V@B z0_PiZmOnc?{Zou<kNc&vx^>^}(_<~Tc=p8$!Cxv?As6e<$gRB@eBp#l&WBR1hZ^2W z_w8$+mMt{bnH*kz#$;AB^Yic|$4>i+jofnT8Ec+aaL#L3o@m~9>Fo!V2%gi4GCr*8 zWiAVOra$_g?jzIw^8G@APl;Eaf8W>qu)Cmd<~>ojx}fmry|3r(?EE<SU;}^LW4j&y zBXop5g?>A2@q)9quD(v~i;eN-)O#l!-<`2KIk$P6f!;Y$cIO=%{=RS$zT4y%_BNgW zn#`&jr{COHFJJj=RqO>T|6QwnAI<ii-m0hh#M{t5dBMr~bJm>7e)eN?is&WR4ccM8 zuK#=(BJ21<<)2%z{t8z0N&9<N<fH7Z({KK+>sH#8a(rIaj+9NAHLY?l>f;;#YQNgf z#~r6xZT74Bk6m~C|Jdxkvr{G~@NtGY)O>D|HoPFnX%u9^WPipfb-PxjM(fIq7h%Rv zAN8t9<Ue4a{iw%m{d%X5wyW+-SK58E+&1I!E1mw7+b8WMzEw@TH1qYBN@)+VstJE2 z^ERK9F)~|x_TlU8t7;YAeSX>V^WD7qr)w40EV#P$sY%P^D-Fq|?yvd`&Gmea3LR`a zXi;_iy|uFI`SV>5?ffRboT#^~<>=po$K<aaWRVhk)5v;3{MTmIpB~GXZ@%>9)RB|k z23x1y?WtBt_{dY`C-<(H%RA!E_dm@~clxC5vU{y>-WKujT<(JDcY_?}^C}1~IWg;H zxR7LhYSgTt)+?zO?`*!9&Z7C=^YP9&r^#3OZ*Ta>>9Kav)R&nvclO({zmlouse01< z!|tx?!QEfKckVx(uUPZ(Sa^7^Zd*6ozH=GHzgipg-qZ_bFA(YC`|lE|cPdyVbCR&> zn&wNU7g`H>Zr57QS$vE0Md_nx35Lfn_Pg#D?h%%{@w9%~u`_e5%4z~19+8)LC4BU> zkwi_8v{uFjOU{ZH7cAdo?)-mo>zQW^;@c-QX{?=9tZ`h-T%oOvX~W-VoZhX%{)s0_ z=A3;fxFc5V>FfDw>1OKkI;&P^WLRbv#7<XNNUIU%OWvI(el+}Ojp#j%-_1?uPI#X8 zoOG*VySKdYjiMV7^)>?E>#ewS)^B~c+PI+NWc(qg3oPX+|1KW<RA8oe&;H27$PK?1 zD)?5%@BaRD?zT+n*0oF*UQf4vaN%)ozrFd5IdwrFt6snU>R<CNP?)1m>;KF*YkvFM zunDi8rjx!>@pFy#W398z2bkAs^w}m_MPE7Az@hu`frj|eTQ^?3$SAv6@AUJ?)h&}3 zG*9`-s<C`ZuFAn@FTWnkn&vetJUH&+6}RNu=MI(6jcB>xIP*aZV_$i?T$Sm8Sz50- ze#TAf{PajvL(}!JUeGU>cEjk&{eK0HAHCnXZ_n05=bI0fhi=!qv#9>irQbi8#p=IJ zf3u|N-m~<}rN+u}?}OIVKS@`ckWwgJ|0(y$w~ECLOTQF7x%cX1(D6Od{+i{6+r8dh zD~dShKUJ6SKSzJsMu|^Lr)u0^kY2j8bj6%X7O~8VB@GWJ*mpcG{r#GKimv~Mzo}mt zOZB+-Oy6~6<AuXM!gqFOJbJ(BTHg{k`~2!3rPKH_OV)S^&lK=t4}W7aMe6hGvm&Y< z+x&g&4X&3QWRbtx<rn|&jnSGtI?paAY<+Wd({AHakv0cZB14}Pe$uIZ`=mAc!$!vQ zC8tuRMlCs$%oX4!$$ooxN>rEI<Ozp<t(ks>b=OwE#FjU6txBGCvTk?Uv1dy%=k=tl zpt7Y`sv^T$p8fiHv3r}&96=NF$0yv%?s{HL^_`r$PEE3Y<&26cLT3}*jo6kxNzE*+ zjMTZb+<Z<#t?%@`@<tavpEG`;c;K)W&n~07jG4ZN6AP?m3TMpXoNM4vrc@B_WcND! z{lvGkax>>|-||4`Zp7VR3{@#Ud>1y}T4LiESswYPc>2MWSyKegueu~O`BKQVt@H9S z)SK7ZPQUeAg#G%7oxkcYL_HNRoOXrR`PSVVtzXjQzgrsbIbS1vRBVOG%g%fq*(<4; zZDG-2$6l3qgh!>l-1Wa<Srg-@2kG%MjvLLA{nI@AtJBJ;FD_@?%Xua}G|}7^CO&0p zVPcT|8#P0(uSYGXbA8e^-ki6PiS5qPCX;zeGkYZM&-5-4o_P6S^9u*P>iQm=rS?;6 zC;6_|soC&f$zVfWKwp5V_6xm3&)Y-qRqwg(^VQ&g;0NVZ!3kC33$OYA<m{eak$X?< zWY|Qfl5g2oVON)ZG2LK&cVe)^RX^vC>*h@Re6BtH5#x-5MlxNe4;EeImnr2sV*ihw z=aE`=>g@~DB=XCAAAGyQk(T=4r;@68eJ#gb&87KQ_g93}2&^^QxHK-~bJ%B>u#Q_- ztrHe|UP)<r(>@_r#$ZXZ-Tp|iRJlJ5CS0dk%M+^-1DSi0y;e`On!eh@xr-y}gigGO zc~7Z%zhvB^<}(MwW0Tp+izKw}<i0CD9hjJDwfgjG$5fsk?N5g<bDwotU~uU8#0fb~ zQ|l+1?T_I#X3AYs*Pg#{{u`egY(;eomR}G0vZIAnn8*C#!)N<4qh^E{YhNhynYDDz z5}*5ztTf;Kc6Pe__15d@yV-579~5#6aauoLU&=M%I}7J}#w85TV{YD^y1gxYLwWYO zxZS?@=T=qSS+O(w*)PdOuY8`i?ONQIp<aFDO5BAbTk7Xc^7ji^&t3YAY5UJrhfJo; zdQwozHF=HaMU_ikIw6PNO~02LXT-)IDf8rw(fTKI_^;2%GJ3Ocw$rKRLw_I7QUAMv z$0gzKkB_I<1)e>-+&uB)di&WqegA&F3I8(V*WB_3)+P;4UY|n0JDD@*Y~nd7xhLe; zuc<6*jMe|1a7!(j{JuURTW6+yVb|ZlCHk3X^4IpQ`{o&@+}pJ`sB+U!ozE5b-8Wmj zI(0lcEkEMuBi<YSivko%EzV93%4)n|e%kks>*a;-A`h);U+<G&{X9<V&hOm!J@FGN zZrtcUZv80EE#myAzyJU8EadNOZ&DS@<9f1K-XZGHtJ8t!;-vB>@V;;euRonLPek7A z;J*E5xTckFJsVq`#4zbryZw*NUv$-$=SFWzaJ#keu}&)M{YfF&-<NNnkj2%0d{XfR z6^Z()`nN}|%8WeE3ePYoXSctoqV@Rkks3C8rw<;of=fCRmd&iqy7t7?<)Y`SEheni zLg~reE2e932Usmy9UY*lU7;W3>2#-l>n;b!wm7eFHjx4Yre+nr;OS8ZM3y{%!gcGV z?T)Fzk(<`XTHpBfok{Wk{F#S*eAQ-Ox_@}(+5OtP9YWaIGMHxO$=F|>^4s;ISLmjw zlaDse&8v`-*T1-AwXyMw*z~}y8&;mG?qpEiX10D=+Pswx_kPZK7<{Jm-0{nmtuBkN zr@XAczw_IX@Ruv&e#%&sm3d71^6LoGvViHK3NtLa&o}g28UKH|D8S|I&)<`bm;Nq_ zmQb9@I>%+1(&QCelK1U6yiZ!Qa)R5r8#CYEU1I3Me$i`*UvIkl!#Nk30y2L}#j?d- zZaT$k-L_h#(ebW@src&0#XEUY;}XKIl+3Zpu$kf=)LMUO>c8Vrj91oG%bgAX$$jnC zgZnCllD|?I17gz>*}fZ_>^*W;$hGRaYOVM&+lR9+Ene2-#+dv$WMTHYejl@+d!_|_ zWOdpSkS)8Yv{X=LS>nHSw$*(hq5Nj1Tg7CJ{DrS9Y@8LKR<PJlT7QQ7&9D`lA1A-O zapXsc>h7#_bLOjh*6;L~?kO(%bV_#QDhGoJ0iI<RS*41HK4nLpo#lL|Sf@Cq`AXkw z_Vu^7h3$2|z_2T8^0rw&FWxZ;{`}<ElqRKH0oMy2a({cxuX3}iDMEGblr6?Chl5tV zTj}iE?Y6i3ckqIH^$PE9T$Ghzd^bygZE~7NRQF;f(NjN6RNK=Za_!-%=kpF?d2IB8 zEBROBy2o)1HWD@g5z$_C^VV|cK0CnuU*q8H6Xj-Ff=|>}-4WxH@hE6GuOdF{{L<^j z&%Rx_8c-!KS&=^3_h#*@1NV&&FVXDdTr6z*>IzGl$Tg0&-Hwx{t@iU@zIt}x&HB?l zhf_~1pU}K<?xGD_C-HuIa8z63Ra#a(i&pO=pO-h=l6G0GvQP?=lYepLS?!mg*E5Yn zb#xv*_tFcMzbwZ6Y>lg1U4z1#AM=vxRMr^U&w4p^%VEiAqaD*leD+LLQ9mzZ&w5g0 z)=~2%TsE-^)27c%J$s><aiz%h@^2GWIG^fF?K>^Brnx$(IMcj@$EYLfo#VCzVzCd} z-qicOlAW)AbN;sTT4kx%bU3yaKmH@W{M^qO^QPPFEY<scai8==_ZgGp!~g7<zk2_y z!q;ZD#_?wSx`AsFj=ztQe{rN@jp;v;vzq4?t3Q8ndPVGmv=_18Li;9WX7tO&9(#Ig z@lI{lvVE6rznn7YaJb*sGTotTnrv;Vuifsq*R86TEv?^l*72L9;+cw^ot(ll)Bb&K z=GrKCq+V;|>_adA{ce|7!ug%a`_sdR&g}Po3NWi*IhhnX@#DcQLDFH9kF0tW7{t`; z`G#BQ)62WtwB557U$}jfHGqHinOKb;5uW9KrM4ShU*ky<x~<}wWSYgh$TZ8eOZXg{ zO3<p$Kb!Z8mz%1()lb=+mz7$e^EO;IJ}feF&+9vF+kTeq_@1Vd^j}?m`2_aOkM3H; z{PbVE!QRKq_~dS%PkGDd{X4qgzslaJlT3QUrXLgiwOf(Zn5X+q`~Uums{fbMh3xC* z@%)}C`||tY>+JheH2ddBO$j-zy7Z`8+og*)t-YtD>Hd)2(&fOrHmOd${>Z63{ryJO z-#$IvoE{%p_xsya?d_~Tm@2-RTDWxWGdN(={Bz>Ey=$zN9kVvl3tXAPy2pfLCHLi* zzt-sM#io4T{WL$TYE{y+m^<0NQ!np3c4=0Ym>J)n{q-mJeBZv_b;G9Wbn}0WZ)$!p zPPd=OHC_B!TH2<lxqjUf^z?ea`A6=kFA|-7VQJUd{`SxBYI*mbvHpL5zlugiUDWr- zFQ)!~KX>if`mC${>1*8f`U@N>`7G}*dg}!5pF=_%r%s!A+>8^GZdzNVwEEt%xbSM} zEmog-H<wubW!2VBUTqgVedYDn#zvRd{`w={X7IWI+bp%E0(eXO^nMN|DfPMe|MpZL zV_@y!Il`dHz`KU?D;6#0hM;L{>w05DBjj1@wUL|^!Ku6K4Ce$a5My0j&^J%mL6C)O z(P5=W5gRvgrfN=On)WVtmYL_}Et#{^vcLVgd3o8(X=Zn4zvGV8?2d?Z4-gR*zhG@; z_4v%*@REOD=G~iFeQD8x{&S_z?tRIerS@}v&GWza-v7P#o|}25A#-BAfyDRyd$Q*% zXgB_UGAs1<QO=onmOPleo0*?oj&Y$&g9DR_@`0V|8#*K-Y?^<Rup57Tzwmp2xAV-} zg~n=+S2VU??D;>-LEce-ZHDxo|DWnC^h*r?a_pA-mGPl-_QHNe#qSC{DP~6El^m54 zKZTtP(+tx7f2b5Z*>q&e+mo6#hV|hw8_a6X&RV{mqlHx|FKX9}&1Gk2Ee~URZ(bC~ z@%)X4$0JS^OB+4)#`$M%3ZA<udhVv~gbU}3EKjr4_$7H&Ii+d2PdL@-XL;h}Sx>>I z1(#f!ViM1ND)1|@GH+KF?5L3WwO&KjSXEJ7b>`&L{(gdmM_y{qS<C*-y*N(j!_hhQ z(|3Am{+T0kZdIs^pPv_(daRC^-R7#T7UsG!3SQB3z4oi8mp=P4yC{tP{Mstbtnx3b zrf<*hytCKdC}xiSvn5<EbDoG4GMO8z|5?uP|HJ>hMh$I6;f4A9%H9)1Pk5z>3iYjV zyQcJd!q*eVC)A!;KG}Zavj@v3rcJyzJNNXwajO5O^m{_a6NMs)PIsXRE-JDQl_WX% zPdc@9a0n__de{Xuh$tDU@mkhKH?HAmvS;3CEM^$e6Wp`^Zt#hiqhHQclpfojVgGvR z%<l9!-kHKmb6d}8%{V)|`Rq=CuJ&8+diR*C=9JAye5YNke=mL4{L1>*d#?Qaeontm z;Zx)L8&mn~-_>t;zwo+vg_?MqW^H4r-Ld)l#>{p*T4GnRNwuDwvRd`q=}+;`9^G89 z@(!og+_O(oZ#3LG)p)e;s@Sbi8{Y7ACALqMQ*GuX1#MnA^~$Bv!xOLXV$1ITKC%7I z-O9NY<+;uKo7TM3wB|O*%C?)m{N7g|lRB5bZm(y^pIc?;HZQwgLhki(cIhOc2G8Ux zlM+Ktg_sz8m0&(sBg=I^g{|*U+_(6}eeO#OK3Bv%(!J3)Ywfh4hN&5Avzkw(7zv!d zvf|JZlc&k2f&%QaF0SBVlT?`IJ88wq1ztV}ugTy3#W#mB{h<1T$1JAPZygiUe5B0( zXi?9t>}J)ux)WTjUN<gXq*lLV{nF)&+2ytF9`_aqD*j=;oVm&NdV38|#rbH1hib+X z>bi5ocVDfV?737e%yrFG@ki_~&X1SR+LtS%s$be$%J=Y{Vsa9z<Z9NB43l>)E%p7n zZ{FjNcdb|c)-c;TBWl;1-nakR<bOQ5uiatrD*u7C#*aKX7e!|V$<O&t7g@LY*GFkT zNKHvi2^Tjj`*AzEv;P768>`ITh8g?YXP-PR67Dt2`cH11)t>!<=bs;BzHj*AvyYlc z|AyPCy?aywt>%X>U$u5+$?Z2T7mGJq_p7vOyjb(fusQVcnzrJHdkgpkziEE(H~7=j znLFP=U5nZJM!`wr|DGE;UkQ1yV)@A>{^3{sY=?!65?_rb9a8@tur6x#y)OT~5lmX1 z71LP1ANo6iyZ9up?Hk(~t*pC`kL+{SSIaphpPI_F`f{SKskMg(%drdRgqH7={XgsL z#jh5x6ph~a%@dqenY;hQ9xiuV&gm?A|4*%Xzx2t9{T?@_e0c4#Q@4Na%6ofXrhB|x zWz4ziWKd?kroFuJj4y7whG$t9^5-o&d0-b)sja<to9wCW)zx0@b9__uSAX?gT|Q;c zJvKedjSsKfo7=ro)qCX$b@%Ik3$6Zsyl^zmC6`6gMUFd9;>WS5uJ2blcc#n``SGwr zp6|EhbM<*ien(g~-7GZ_%H5LXC}&qWBXk85Ymxd2N%mJs4E0xjDNQ=0cKiLge(8vl z`;xEidnkBVATEe)PwG(zuT>HH4AYOZ>1^Zr#I$Ac{0(|jML4;?2JM|<lI2sy>?Xfu z=i0ROb1Qhc0ym${*`A!oYH-50jY;-nQe(&##`|Y>ah$$T7H+VxK<xGUeP^Z@@%&^n z%$&67;OD1l(OXqd<Z2y!UjNr%!u$5sb}PObx|l!sDShU^!Oov=8jtKc@>J=S<GQvJ zi{CkJXXjL3C>-fHFMY3prT0efsVmM#p9npje5oLG-&QBjZMROp&Nhg5Tp6M=X~}Wk zC#CmawXclzixSlMk{lMQx#HUjN5!2pud-cVcvtWHO1(Rw*;A@c=*-n|Z+aTGx?W3K zD$A;KLw@n!fM@(R&(aU5+a>!=ap1qbbi26l%ot{UyK_?gtDlzW<XMS{pAJqnsyq?Z zd|Ku3mjf%r1a@Zkp3-sjD5}|_#2UZzV|l^D3fr1j$|qF*7yRTu{QmL%(zO+{&RqM* zGh>y=jZBr*IY%s4@GHICka!?ul~Mznh<0cFbma@$AFH*K3$-Rb3fwuR>DSq{t_2_E z?@7MPQ!MtX$;`WxS-4~E6OB9l*DQ6GHt#sjyQ+DT%VDnaUrgQ2i(JIdznOk>g5ZtD zTUsyn_;qe}TJ!96r`XI5mU7F}0*qItURhMC9KC+7#0!0G<<Hl&leShey*s4r>A8So zdOFkg32W*Lr(O+9oR^ee=D1A9a^>y^$F{%!`_5KhvDI)(-urtpz48Y8p3CL7Zq9N) zahbQ-dGC*#lfGtMQgA+eZ|Tjdd;Hc-IbV&{l~&)B<DKw^b)67H%r-8jM~!k@&OR-Q zJ&^6~ur)gQ;snjkwkJzmvW?bF{U4H57VI`9D`{@)t@=k7{OiAJp7=knE;~Pd|3dNd zX&2w@kPVvf=joH#CC1IZYu<*OwYMqR?swNFxb|IN(8<P)9{wCx4?V5^XcO#O>72QE z^}IEfSNYR>lI7ih^W}Q`pFgE?uhDsb(9RX9ljko~TkOeckm@;c`?cVw+k}`64!tYB za;uixd)Jw1ueMFtHmi|4zy4wKv>kh5-B(&}QVBX|D)KzhefDLy{cjphzb&~M+Y*>A zG2e+@_+CT%O|kaF>4%$+`Ue>5bPAsMx+HM*>FbF_;w#h=OipLBr-sc6i@kjJ!Pf(F zYJU!$)(d7nsrR6S`N15&MDw}4?k7d}Y?~q`EP7$GCuiG{BNf?7>jHgN2fB0D&*fEK zE28rCLyG;Zg?eH6hd*~YHeSjsVY|9wfBk_A?bfyjq;q0}FVwkz-^YHgXOG$cTB|#| z7d~Cxs{QRz*36wNFJ6B4QceHR{Y6W4#iol_>n>F+6`dZnjyr6|@f^+Vf^SuO<NF@x zZTFkA_(}GslWTZao(_oYiqkwe>9w$b-BrH&`5Od3TlzMZl;uv;?>>I|$<wfBTeoce zdAno7N%g7wIKLSl3s0Z9;cpp_mF@*ej$V#loiqLdf3o*>?5e-iFzbtzr{FiQ@K+iB zzQN7yD_-gB&p3MM!KcjIriS(>R(1N<@vhE$v({2bvieJgSfQ)z<KDxI`BL|sQti*) zvG!xdESLH@s;ZwSKiSP_#@l@}UH#swZ*t!s_cpAbBK0Y=vwogctJGGtxs1WPy0T8K zniHpfk$wI?U&Hf-37V^UC9@?Z_BZi2H@iCV-jDEkx4`EAnT7F>p6<T<WmZs!zWTL$ z*Y5Bz_aEPy_Q-12f~l&@ggz~~sCx2nSFhCKSqt9HyyNN0x~l$y*V>bF+JnFUf8af5 zd7~6Vv!iPex7zHKiz`2c_i|tL3U=Ih_<>5a^_qX%{F>#<FQ~>WGt@p&E0&zhn#Rf( zt;%?_(dfkNKU}(-X7@hbaof$@TBwNWxt9LCjoW63N1Z+snj(>IW#72+4~yN;t)crr z7KH4Z^P~RENzR0IS)42N>*aTSyJxTS`(;71+SWI^X$KhpzOjF|^V65_eV;FK@3w3F z?r0X{6aC;sTv^S##d|cAX4M<K6PP#W)qbmM95Zv5pDez+c<tUFAD=C*K4D-LTddl1 zAU{Jj;Nqi&X(zeQrdiI+zB=o)Vf)e}Im+)=u};6X?CLBZSFT4p-IYyioICo~)wetO z1hVCb9+#b~%wk$SssGcJtgC4;XSL>tMN3;6q{vFhnDNxD=Uo5e;i=3!i!)xo-;?{7 z|LF3<pGS5mt@HV^ziAa~P;bMMh{=Voe6}jy+_E8p@snxU+{rmv8_l+tvP3?dDP(Zd z@qtFEg>>%J6!DlYF)L{y|3?!TpC3pqu&k`VK4(LC>E+a=`j=h%4(!cnfBom{^*S5n z3vzZD2PDtTH+_Gw?eF2zi+SQ!FXqWQ<|fw5H(yRNx90fak?^28F)*6v)RvOQDH(w& z<#PWfPJR16FDFY)b@o|@Piu_sExDh`HSuzW-^YDxFW<U%FEwNKE+-?VzQ4xL#HKtu zcz%8Og$woi%YA3*7)-A%YPWv8bjytx%|fr4Z_fUh{^QQ8oWjTs?+r{_XSFN*4!(1b zC&e^n*QEoCtphyklDF>PGo9n{lV9rBOpG5qJpDnV*H2w1ZF|PA&9^xw#wW(!oRfcE z=VGMO4$;=!zc-G*|Nrk<_}OUXO}<jKdWn-3miJuqoKZ6U;-&hTKBtnD^6Y=5ed<o* z^h=-O`2Sqb$Gt{+Dza?zw>j0vY<rM0@pM3_z@uq9i!X05oh={#`_Jdt?XTYWhM6ap zEqIr-AXK8+Ro;2&f-SCQ5(aBy-xti%U8;8|_S%iGSDcm?YBzQ)J7;sEMPiP-@S(+D z_Wo1k*>B^fZu5s{&UY*05A_^1lm6a(_Ued`(*uuU-h{7Pr`zYe3RB(9IWJB(B+<(~ zu{JdM=7EBw_hngOkGf_&*E>0D>yZUn9;FPAIn8Zn?Y>^;<TYnQvtvW$(|I-<7Z~Jy zuef#lL#LdCnNLeELw&;{+qcs?Ee~eub>HRMekp<B_uF^&k*6j}I5bYX<DBbSpSknu zWxK^Z5xHgwTZP2BZ^qn`U=r^&x$b0k@8Bxts@`J}KIfl&Nx0a!Ok8~RyhBSbw??zQ zdD0ntO<3Ju+K<J(TWUL($V6A2%w<O#xYt-kTdv)*<)o5=*o%^FyL9wEJ9V$-40*Wy zRm$!cMImn$dru`Wd{XGvxt67UcK`WI*68{d?S?|Tm|nWc{HRl6S;k~qxI^LP&)OXV zCLw<BmF~4Bzwiy4`ukhN=FY3U)9-GbBe3$*iyqZr|AnuYIrI6gmfy53pti*Rns;hM zPW7de|1Atv=j^nrxLQANTgAT04+XD3Zr-_X`?_D}&gqA+9r>Vfdv*Qu?Q@T;J@--n z-r>A=7W?XF&e~k^aaW1{{@v9(iqEY6qP@jx?zIH7sI4poC%X*v{0~ge*n9Q*{vWSi zzq{C^8zj25{gy{Z<mclP4<$`lUeu_yY35T|bGzVxJvwS#Pq^Ylk3QVEaqWAllZ<<p z?`B#Z64u2pwU}#LpWEFfmZtBcCA{2!PP@#0x@N=lv@6HLBwp1wd*4gDRGahnd-CQG zf0a{{w&xyZJ*hW)O36~y=_!v+B`rSb(O3J+Z~uNPmbUtDM=MVpdvNCLa`WKRW<iD4 zDt$i|zCNCi;a^&~+@?a6;l)|ELkl;Y6qT?qy_nZ}>R!!DsXNSvf4R3vuQ)z0ZhsEH zpt{cq&koMcnDsS<Q5>gq#OiOYHru^wchtviX`YG9kr!T^e|z}hnZzGWv)8q=Zr^?R zRk3LLjK+`kJJNP>{SNFtoU=VCue4Rg`*65)r}zrRSVjY})8bs8enz@~-0|q(x8k?+ z&12MJw|*<qH=FjbpWlD^w9NMwPWxBC?00m}IB_nJGxcOjSxT7;&$llY|G%v4tG{-w z>XF0OhHJkUrylrzTAeMXc-<eKIbW;O97H)%%eDU0Z1m8XW^KyH8#q7r>C?m}<te?h zDjh7Z+1>jVc{%h@+{+a|LIYFQO?HtzcrE71e#ZH-ZU66jw7kr#e>VBKO?uwE=IFZf zb8dX)o<HkIbj%EoBTqgF#UD*x`uDiknXm60>pw}<h?V~E`kfP8@zK;tYJF{p-73Ku zpHgNR6(81~_#pQD%VXt#<%Rv$|Gj=x(%Y72Q>(=Fqq%1kS#q7*wDzpMT)b$i&)OHl z`x@ulUi)9BeY0w(c-#C%h28<bwCo$E*Y*UPKajX<)AddzVwG~8a*way0o6mBCVzd$ z7|wo^QQooMf13GTv!-b2hBcFXf*M6WIO|(%+}<NUw@@SAb<SDaCqfVV<rl~a`LlAJ znOgSg^0LW$Yb(0L=S*2_5i-ZC>-qxgC6%)m6*%*0=&MA>s`83PB+ql!6MCAeA}`F} zzwP^$Fu~thecI9=^Zgvwv@Lsl?g7K!8iDVX^_I*Te&_yM)qj}M`1d(O<1E=}^9}M@ zo@P&4^zF}m3-dSYzgKW%C3_vY81ZMrn&W(D#Fo$ea{Kfwt&LGDcQ?$)4_C?le*8;u z{O+$u&FeE~WGRW?Jvgg8K4lKSPAZ#H^9rp7$3&wOUtMwzCg$1bO|<e>S)%TpIQfB< zsliK+<*T<X+$m|tHeIKpKDp-0UZEbpmT7)1PTp@$Pk6ngqH)z0!})7MM6P}O(D5U5 zQquB^p=sNu-1MBkdg(&x^((_x*Q5mQmJWH~+IrM$<&;|vYvVWA|0-zV3ZBZ)KAZ2Z z+m&hNyk8&KO%Dq3_0rP*^!La0<qw;`s;pfu%$;F(eiw)S+;p~<0_NTSPs{D7|E9dg zpIv^*jc7C3g%N>A7JjJ6Ivu4W9H4Tf?t7?x%^RVON!GtT^4=Vjm?Iwl`QY*E4>F#I zev0~@8P9(2{?x6;N|Ro7#e25B-M=}c>c08bkf=gtyFzBYy$9zQu!eiPzkVbvv?=Iw z=N=c|SshgdEt59hdf2Txb=|26Md{J6CF1HYCTV<{<i)&Sqc}_dO33qU>CTlm{cX=g z|7+@*VAGYypLb)~ZMOnN)98J^a*L<yp1F7`=~CeY-X~X&^os|%vwgPC=R4f~;8oZo znLS-jlG)l{dvz8SEH_GD=rw)YZw0-HH%@h*u-bk7wn3?n#<{1mGSk1sNY*dD?{3l) zHb=|0w4U`|)Q5{D@r!-Uf6A<W)#evjtDLgoO6?;4?Pg6)UO{V4pBMK%8hii6+eLdX zizvMJDLt<$zs<+-)6<)i&ENaz+Usw5fAD&9NjcM*wT!JSOVdK@JO8abR?OJ;@T@Xh zAamsw2^HV)W$SnDdM;%u-LYaqM@rVj2^tZt?{-{{I=?xtevz8disKh^djCw_63_DD zv*QjCyK6pkTJsluI1&5S!a~m9)37kQt2sX5uJ{4x>2^&DCpI5kzv!Ql{&n#ikJ>D! zdC7OruvLx{u;Okx_wlTq@$vMfw(@^3N2eCIw0#S?*gtn#(dN6-D|q*sKd4H0<oWGC zgUv)%ZTNsFPcDd=pOnRAWNtj&@E)V;^j~sJ0-6s5CWM>S8K@^8YSv#pkAXq$9NQC+ z%Hoou)I=mbrqe;&gX%3UEY0ogxS+BXx7Jp3Rs>(&R_|=_lFiG}D`5Qu5dle-Ms7Zz zMT;7yZwxpU(srqG!RHy<GL20xpSt4X`+V7FmuQcLTN=(NXmD|8D0PG%Vcer3erNfc z7vH~S&VBbe_Ws}f@9$5ZGiUSW^S83s?!A`3cIw{KpQS7=bRU0QZ@bY(#nh_K)hVK) z=ug*#D=RXy4=G=M<TPpL`+F(wo0AW?AL-f?Vc7pw{y^W;&Hg+p2kmOMpFc4FmAm~1 zN!vI7UM!3^Oy0An;(6P}&kU!N7t2@QPnX#{XX5M6Cf65zp84RZ?Sby+UuRs`(4TmH z^Pc6EpDRxP|6Q@ZP4x{&y|Io>y`8C*skVlVrK*+Uz4~Xx#q;KG)=)ImwzM+Ry83^; zaoWGqTP9WW-pWs$@aF#Uo%Qyw|H<h74{hxJTb}ZB|F=2+?>jjq3mXL`Enfa>ecieG z+^kJ1HhLkGL|@Ab$sgOgrjM`l{qKAALbB=Z6(JrmE%i<<^$9=N{%;Yn+EbrW<WwJ( zbn40TKg^341^+P?nw0$aWqMIXOofM6#f<tW8`*32rdoIEPwv{<_^(^|QSjgC?(J>I zm$&@(pZ#pUklZ`@sk3HTl>hp2Wy^`@LX(u2yI;`Ly!`mr?<GFZ<z{cIxO(b9=IQ$} zUyhyHnr}0G*34V#;Sm*C9wjlSivOpj{ZrT`{<mKGiRq2g$Fo;lH(38L<h=5pKP#3U zjr+Ve?i<&)TaUJu9{9o-&93s%`$zka<v-#-zyB!D=fYf{@Z(HEnuhTl$%8)(l_eEF zvlzDt8vi>Jk!E8&apsXVsn?7-d#0RBPU)ExXqe@8I75;-Icd$k^$S&-ukmt8ZOIO} zz2I{5J-L#!3-vc0-}6+JUtn)`=c_CHu)0~CH_p<c?nCdv{<Z~*&22X3DZeKCP~@+X znD6K;-S$rU*R_K8$3MwUwpFWtV{2#1`)m8zZ0U3rX3fKM<65>)*xnj$<Y1vtaX|H- z#y_WhE%yxzo*bCYHjQ`B*__0CLN<yoMDBdQw&>)Fnh6O3zaQ+VSA1Nf_A^FmSAoX2 zUOBUx8}lAcIzG+r+fR;@9q<3{a(~sjy5+w_=>Hw(ABWHLs4V(1d2jv6npG(!Pi8PC zi!3sCec!qJkNeN%zv5-B>(`{LNqn>Waa)gY|81Lh%RjC@zPx99pZ(`AN0v{w&7EnG zd8je{n2qr7Gy6LIeXscKvCe!|zvR|QVYSoCd}bE?ySZ)Ur_9MGQ{#oc-VL<d=lR6R zAged(@Q>Bqg$569z6j2*vg>dDUwJjbK;j@r+SEwas0**QSQ$N7TBss%!s*K*b6b0b zgB1t7*<@`G@TC26nxZ!?=+ImXpA&&m7JTfJ8O^s;RW)#hd|{PpKDOZR^QO--OK;ZK zPD#^OJNQ^UV`~&|Mgw0u8?(e0He0!Z$Bf6XIz8!D&67L5<L6$%8yY1ia(^ma>fOzH zCv;!Txw{kd^51FQS1a!@+$&rV&Nut4;-M|e&C6B4smdR6maDsb^!V*Bhl)>DA4)Qs zBrK#oIm*@bfyvEWw`NEFFXtCD$5fbRh5Go^)!T{2HBU*~db9AYvW>?T|Hqr#Yh)^1 zZp;W0mY+XKNIrh@r5h2!mo+}sKKmi}=bW6K^abhr=a<V&(duQI_`aSirDTeT>hVH0 zvkfzP!&>&&i=24D8*-8D$#0)otG{!K=bz`z*?Ta3`(tmX9m{r!l~$gfYq?Z$16Q2) zt&cHplCCn<&tP9aBdtvDj`{bXV~!5)4-c<emmhU*_WDD|Uo2Hp+{5JkY5G&2*v-Y- zEeBuST4Vil`9p6D*7pZ2Uti?1dD693EI@nC=~XjQ;<>pKEoG%<-Rw(~^V@SKJznOj z%xl}=$1emntMAP|FhMJ7V~*GnrmoNHmW1$KSM={JU!s=3Ov9|+??T!i>m4sYmS<cp zNU=M_FIRKj=FtV_J#Wj3*4}3>ldbcep%d^nByaLl4bgljDTPfUa`)2zMA$HQ`^mRf zb8x4{Der5kEd3RKU5+U^GCD9lHY|3E$3e~b@W1aa_DwF3{&u$2(jfowp97*DER!Ub z<>v(nyw?42)PL8<;ygLi`u^&_S^onSeq5EQVr|;@Qr(gH|J(9?d)Fs-ZaBkbDy01> z<|wbvCTF3@$^AF}E;-?R-^Z&iGG%S^tRL-1UeuXfwPoV|U}1FbZMpF6jwSUW`#%@U z`R>*Gu>0i2Cs9X^d|xi}M*GLnKXr9iT93CD@$Yl#Ipl76<h%Lhuh#W{m#-|Y*JzE8 zu9>fROv<dM`s0Ul#eXK6-(<a#udB8B)6@ga?XEXo@T!}a>#wa^|H{F9j?0&SA2v3J z>!fXNeQlg~?ALXdBQInHBz|-SEe+B-t95#6awB8R?d<K>?H~Lqbn9*3@v}lq^hw}? z@9Xov27|~i_8%SRZk*qrtZr$ich<tD{@r#%v$fBUH8e0s-}8>2wXc$!MWJfHUBTt` zH8wkHe+YfQb29n(x-Xv#d3Qy)i}TO_HR=35(^c7vzeg09bl;SFuf}_%BQD<U#{@=? zO>2Duc;8F;UsLKoX3h8Mc$Zn8u#EBDrpaG+upYnC5wz=YSb6V`UiOE-<ek3#sy$lQ zcAc}{nPryG&90o8iypY1SlG71vEbc<r;nH4J@J0G{<)eeAvq<RNj!T!j!j;!raNQL zKJU1g`$6|Ko4zeMWs!XN-(=tS2V;MzFsL2wW;`ADPg+Sz=+ucPRu?oc`kCFi{XHrw z`+Y;$z2o0MOs%f@7X9jwJi|Kmqe~<_{w})Su%p0GkL^wUE|pmxwxyhB&PGl(NsaT< za5>O@?#cV2{#Sa3N_X%)_x8V1_bc$Gox}8p9u-fek4isKjp(gOUMSn2Bj0Ghd*_2y z_ba#Y?N`ZBuPN&-7mc{&Qn`RFQcr1q)i!4pXWcdFeF{>ao^=T+vsQF*+OKZ==92Kt z>7w4p()|6Oxo@>Dsplz>v~Kv=dp6@>BJZ2Wy~=&}B0ur!?QouZy>UJF#(6wHtR+>t z8jr3r&0d`BbT~mxVE_AN4;>45zsat=*Kf3^a~=<OysB5Tf^(Abr`@+RjovXyubR4} z?A@7D9q~m<Pu6ktANRkg>}K=QT2b=rsb5bQ8FUn=l_>9LUn#pmyzgTD$zt<e*|(xr z^Bs=9AQC+*L_Vp8dC{*WY1y|cZ+zmMf7f!A?VV~Ri|C_oqVIi;s%^@+`AKq@Y=e?! z#N6g&-V@0m`xsxk1X_qzZCvSZ6n3LQc}2?q1E2DzeevEF+wpha&skh%{M%TU=C;0` zc6#^yd!=78j$2<~$#YFr`jk9*>&tqf4)>F(nZCYHr}nBl^Z6_JPwsreDdgR?;XRX$ zLrblEU8}tKZ`+EpDe~Oe3Mz&=s#<2n!Z|G)j(u4-NA0Mh1#h{3+)lQ;7v_XYH)b9B zs(3}xVw+xqom_PPYt8f-_V4ZPm6Si^ue%@oEKc;$)zt8l4OvgVA8x+8d;NjiFCI(Q zFXx#5AwI%f|JKx-S7IXXDl{GIS!LlIeZA71{Z0GkOap1BqU|b2kG801m}gDeYVzWh zz=<tCcbaJk%ZvW_8fUxj+<cyR5kUpM*2umI!M1Gf+93<4O?kDWh2>;l=Kq+^_O1;- z&V_$J67tgg<K6c7t^F3i1+?F}y<Ze%{9r%lV%GXuCO5M*zb>4fImIPq=YxacxxCA( zSM1W8Z&lB>&#~ggjngSAlK&pPc`5yE<r~x9)VEJhZTq_DS@-+hRS)E3;uwk(zjYnm zII%-Sz_L_<>j`JaT*U=enJ-*<_Z;3{cstkb^$~dvM*azPd!9PQeCPUZV->|WVV7%n zL&zhUIm|mgG1q_OSuPOQ8ou<jahi@NcdPD(O?Ho~-mSFL-^C(7O=k74A9Gjv>G{a@ zY4U5tE{|u~oatsLIjgY1c(-Qr^|s}os}F0p@=1EQYBT7}a@(?Ldg7L;36mVmR!n6z za@qH}=1_|s@9DeCPF_CAXteOanoUl&CeqRirn2o9b7=KjQE=jGy;tEX#iLwX143SG z5R2~m^1;rHV>V0Mmn0*pl#J(9zHaMyj6QWUy3E~h{)VUZ{Hqrh#6+-6P1?k_x<!Ti zgIi7W$D`2;cTT^4ruxX2b7D*uORfkmHZc_74Ll~{z*;$_Pj<~CVJmkl-gQ#BeSXa+ z9Q+wPle8sVclyouy82Drv8{ei*%rsvpE@UwKGB~S+oKaAWF6kj^{I5G$^MO9(F@Mr z;M%<)_A=LrH!WVfW9IAg8EC`=aEk4{`NH7`=eB8vq7Bz{oNqk%*|X83Cra9aq32mq z%io)ed+x^Gt2x_o#`PE1#`j;hJiB*%cIErnr{7=IpRY4XwSRPfv;E{RMi-yxAE~eY z=E61c^{xlTv!=W)Dp|Pu&E%f7cN6xrtT@LtwXfzv$4L)fK`BYsy8Sgt4O$wPr)B3_ zO>lCo^KjJin!R-r!(yKWGyLBk|Nc#ypP`?@M#gyU56%+q<YV_D?|sp}Zm~H2>E8H% zhd%ptTs#uk!DsH~#Hi}Mc*3PM8(-w?O3T_gp?<c0=n28f#y#JZ?yV^@3Wx~Xcs=F% z?XLlBu9YUQZ!_LDRh+=1-E(q3*ISYKZB8?Fc^@8J(&{paXPLv&%c3jHSXtBaFL?Z3 z%cF4L^W%!EH+W<>xL>}Pul&u%w&Uq93uY6COwY`T!nOT-_x<>0y~yCX(Sj3GT2_88 zHPP`5n8)l>uVi!R#Faz0=d?z4Em-8i#`Q61?=_7=Wu+tOGrsHF9B_`3lFBZ-KF7@J zt62lrlieEkkNOpVydz$C($#MDp~tOdmKiQa7gn0?oU}i6?LEfM1uGYCduSB#^3INZ z8OQ(iENx7CucmQ&v$q0k(Iu12NZF5HqgQhBDIL}<vNL{rV|IA`(WwO|N`5UeU84Jp zVT)sFX{LAN?$0_G;*tv*1h}@aT8ZBBFf&-CbK#lCHr971{1!CKs^<B2V4;}Jnq9kp zUirsozK8p0@qz}m)X$$|E3QA!6JP(?$nQtj`F-D-H*7c%q_Ajf_cjN^dZCAoaysot znnk*;wco$9x?J<<#=hh$H_Ge1yM+VISU26d^G0SZ%M^{JHv1QC+;^<jV8`RqPa>6* z)R>dg=gs-=Z}abRyQ|XuowZp91*<L3{)upRTveX9f8vt^Av;}GFEHi^nv&i;iJ5Jw z&ytf7t|@2!cMCOKHvaNj@^AN|Y#y;-$y3KA|BH*-x`s}9ap-f*o_G8Ok+1h(yjagP zp`J@OU`f7SrL?S|$)VK43s-UbJ_`=$*>%WT{IbB8HzJ!d4z2uo|C@G-u`ko{$u~DR zZ*kth?!Pxah<(L!JG)uScGn0!(%OGi&FnGf_EWKYl;a<L&x|YIP`+bBwf9%PKogzw zw=7pG#439$Dql!)OtVXQRw!4)7x%Ga<{HgO^^&hM?I!cge0tX{+Iq@@S8EoXS@L7c zhqbYqa~CB)unXO{`)Q7;+^X#hF8?@`ejwzQrp5^er8>_C7Ar4X`OR9@r7tFSQ|px1 zsuiKv99^%OZPno_3dpLAbB$e`ZGN^k_ph<lt7{#{+Fo7$?U%o2Zs_~(9OYk(4xPGl z>B^BKOOBjLs`u<&v1{cn&o|!}pPl@#TfM<;>g269X;0Y}v?aG^t<cq3S10|p@_>kG z)4{m>wI<@h;kV>(Z!C<mn5i&bH1NRo=6eZxYyaQ6yM=p=h<rxs)O9}Lr$s!YIZxfw z^PY6f!HVmiXsN@OQucWX!oOervfa2*P~I~3lb^rs{M!HK`A;h9Pecf9F1x(m=0;Y| zx-RAFj|>)!?{mxbnM{PubSE!a)%QN*p3~#xv>7_u)>h@F)3wD4pRrZdF65pXyT;~% zU+)=3)>92?@w?<$C*-(I4xZq3`rDeMN=^~SomYcanu~lDxfWEP&K29LS8Q4&m*h38 z|IWX*XA0XmetqcjO-cDyR$sYFkN;C(L39ZJ)W?#mPm~*RW*rOuosyY%q~Gqr=Ab)j zf2z*zY+cm5!O}?0r>vwp)J4Ai)0#CIFSX9`{yUH;DWa_)6J+``%QJpKvdG1#r)Cb7 zSL#G!6jrw%+qYm(H}|O+g~e(UcMIy68H&6;svng#_akp$KI0({`?mQ9g^$*E?`qj# z)mD+->b`%Yr5e*cmY2L5OPFW(xV})hcOc@`Yw1(ow`NJ}rf#{mw)2ruq0wLS!aE|0 z<{P?O)O;5PP2pd-aMF)0ixZb_NmFY+X<*dpGovQ!sOm?%8^M?F^=+G^+N0#SFmAPT z&@8qBf&a%Jcvqggcjx%#qX8Kk7Uq?4f35%JFlj;HbCor*+r+{ee<`o(VeXv~zHR%@ zPY?IbowNS@QjTZd%Who$_*K8_S5BIF>*1wu0urNhF0);{pKyEG8J45}PE337Kj3_Q z8YkOjJ)2u0eNi7Yjy=hFv9d5yx3~27iuqHYF}?{|y3|4FR9Q;U+tBU7{=q@cb(?0E zf76k_pHLtFNNAnTMIA?Lx%72QUcKv<l=8T6a&dsfOjF(&Jd&;~QqPah=N6mDx0Pkn zg<W?ay6?AlJbQ8-!&VPIt6r`8-#->i$?#yGIoYqu-YxDJ`@VPW%p3D-_MNWeZogBs z%gv;2=O(fH|BG_h-sjKZeXVS>XO~5k2t%M_<;s)KuibpiSl=7(+;Vb`(UC9%DV}Yy z{O7N}YvRh7?96b)bDEpL|2Lw6inlYQCUCv<dvZNGyDZd^d6oa>XK#G`y6zTfEcPzp zyQMF|-K})%upjfTdM55{%Y4zxHsNbSkNwd1>})kSk+<-(uWiS%bFmdX!4ctqpRyV_ z^M-h4UYoz*lt<eXySMe7F}hFR&Hq^P{&{um8*fQ7E$`+}t5=lEEdRKv{EwVm;?g%N ziIwYg+nt=s8g1NH2OU|tIpElywJDm5&)xiYZ1x7mPrEaOF2<InU4OoGt{QuY(*FGZ zf(It1kNgj4MowFDhDUbxR<@>x>(k5UF>PTln`&y}as7EN7q3?rU;lll!}ZU@7N_`Y zS}feb@$;^I()OE~dOfp*eK%d1@y1trx6-+ecZdJp=AGeKenYTl<%~2=v01I#pS@3N z-R*Yg-K}!r+xZ%HwfXz+FTN-CXUm2Nr{&>J$q9~W&sOQaHV@9#_CClOs<!*A>($_A z?~XA=8O8D4vKLJ|@ae#c+*PkXpHgD*t?yC4thim|%p)TMky&$8)mQt!TRLl7z?{~Y z$O=axuh}zyg)dXEtd}-@zNILWbxOnOS1Vja!)M0+&@_<nIrocygZ;PG=76aj(TTn% zF0ag<a9=reo|o6;RbShc{5$I`+T5>p)#~54d{eyqV_x}g`-AV~f9(BtLwS$Qxm})9 zoPw{{t8#zpW4V&I=w@C`Sx`h!M~SVh;qn&avJ29>TUUH}JL_HF|JI#B8ryH4_6f`G z-YFD%KdDFc+udVAAy<yhI2FaW-E51gN%XB1?s5%cC%?(u@Vl(x8R(ULc-<_$iTZYq z-syMFRg2uP4vtu{=~Tu)*@b<}c1AX6vQE%qzqG_}u5bOF#oDJAE(}{3ocT%cVdXR- z?&xD0r?zZSKYNO0W{}5e-6pL<(H$kBSy6!%Q4*CqQl2yM20eRa^l5EY_YP4jpWQ1M z=Z9Qp*mV2s(xa7Inj-QRGz9n@UVk&B>x0L&w(r&Z64%^Rn>+W^wRp>po6bG8<(aQd znT@8uSbb!laVqbQZ}qE}vE7>~9Z}kTUh5q<_fx*sj%#vJtw{$<j5szW2p*AZF}@Jd zQ`vt0y<NqQhXS(C8@8D-x{5tfagg#_GimDXTVDKo_Af}1o#}MM#pTHP`SV;8>kl6P zuOaqR?1WTAA@jY9hpT@Je_MIC=3Dc<pH7=^O;bPBFkR%N$;{JNFDA^1uIF)OcUURV z7!<u=>S9xs$)5SW>u&pm8c*s`N<Mix_+IRvnLjjSGRoesj3^BXV}Bd)S}VWoZQ;BH zldPAD+$dUUsx2IN@7bBFiW6A8#MjDc^O!B3Ec~BivAIO|PM!+6pN<?NY8kR3K4BME zsp=~02Cw7jz3az4;e^!=4tJ@K4O#W&-?wh}l6t@tqO&CMTDkPidk6O2@7v0|$GiNa zc=^va<$Il5@6OIL@7Q*5*^?u^l7d}pU$QLx*~F8lH8((SAJ1kRYst`ADG$@Q{+XQD zdQ~EId!fKi71foU*1?Cje^Zea+RGgKyesDI`_RXUZAv9F^M6ibS}h!NH0Xqoz50q{ zb@kWsvKQZcx@y(J5UB-9`RyUjr&XqeO$&~_A98kSg!J#PI)AcU{G%T)UFN;|{fXNd zU0(%#H+p@J;q3hA`B5mnYVV4T`xeey7Ex+)^ihb~A}#HJ=gZIC-lp7h%u`fWbd|2C z2t(95*&}s57xQ$OtY2~7m9@y^meidn)*KkZ6SFd^{(EG2HM^<)>?XDID_Jd1YF{Y& zWV3kMs!uDJ*>@lA?|fI97}$AZ`-G@l_twvuBieI7K0fZ#$CbNp-^#41X#Xm<ZCMFR z=d}aBWTl&&osu7wd0eo+@zMUgNI@A>eU^I4n&&#x=daFuKSznv{NcG%PSX!=;oqO9 zwQq&ZL@pVH6<dtzrQEMrele2YTW9p`z+E*P-nzgBuc<S)+kX7&8^Y(RyY#@qC|OsB zy%$5=wBJV`S#ELUM#Q~~QDL91H9FfK*A%ia4ZB&k)MnPRop)3^Ud@iF&ioT_N~((e z>xXkO2ltfO-TS<L*}6ZWEXVhE7~D}#H!+H})Ag7(x5L_D@9vXP+xOS6TKwZme%V^x z1q<DF85Z9xJGErfv~PtH+B@cR*QH<I_vVb9@`JB$R_<>3toQJa_b=_^w|?}SU5fb@ zuU7rLFMzA<RZ`UP@Y!>p{_dV-Eq|!cYI?P@)Wjo_@iIKdiUp-P9gm*9UV7*JqHOaw zJfZXA-!5`BTXM`ZbFciw-ECTvjoItDI7BjDd;5jT+;L7kG0DyH%oO(kd!N~o-flt7 z8Xn7xmP|dZamH!o<s9SN8W+O;PP=Di#e418Ikxii548(~zDQ>T&Ra9_**aIn6uZTz z7DR>pefjwJfq<KLiauQETphykSgdRL>TSYxWgc}+QGULLE3}`jweuGFY4>Ap(~`fp zUe?z>v%hlg?)1}541WW~>qA(7{a@W(uYTrrUrCvqI?q1GhqsUMiOBJ-xup=rAANay z?wP9UrM9hyB8#%hoU$VF4%9#Y@V0B-|EY(CR&0sX=56iMi|V<OtnU^d@wfG$kEG3& zpvN1og}+<;GiU9(ASvzh-V0_bKj*x<R<v4EMt4D1z1*#Hzh809mpx~vzr;gL(6^P( zrt{)#-n6XiPj?=b6cH#^Ii-@i>GJ`zPg1i!cys88*E6s7wBx<_$s_8;dOMLyrqAb- z>eKI=JZ<z_JwZk1{syxN-7oy4*xxMEYL=~SxO<;D*iq5v&F#zP7nS+$)NY+CTc^I@ z?0e;JQlS?<rl!^}+#<x)>&boo)tyUQrm;0Qo<6Z*?wqV6eivq+Id^My`ghqSk$JUZ zIc+_AdOu}|_#QLZ^kPP-^opc1rz*owyT4jX_;>hs-l(wox?qL0m2~#^Yb>&-i!Pr! z{yX<i1oQC?Gn^$#<9<B~eSMv2>zb+?yrrflfse!Mw(Q?Fl_^|1<Y~Rq{{Fh<u7b<m zHtJj7o7gusFYdjT`TvVbIU-IAZ>=#}v+~BXzB}_T%)6)h{^BhWG07**F@FA5d&Npl z$c5}(X?kR8!1PN~8tb<F$<sWibYtekDU+rN2v6GODaK+Y`}W@ch%ENiM-w)G4JkF< zviRHI*muIBY0W2nT$lK~xcqU;zN_{7-39GG2P9PNO>%v{YhG@(Qk78u3SCyUqxv=( zU%oh)M$dA(r8F_UdBNJfnfbok@2z-#ZP(6H{Q!r?S#2*DbUesSeBBiOrovWOG~=q) ztoPzGLRxQi&rC0q;eE&TnqwWmktX-mFs_4U(iQ>|rC&T=-rH%uN_L|(OW;In=b&vb z>P@WjLU;RfX^YJAnf6Or);6}f@7tW0dm<XSelM-43@LbaZOMj+CoctBw&twmUiV_< zjri@$SvSfy*>3zjxymTh*IdrNZqoU#le&sCc9>Q_`g~MIhgHU*SS$Zmp{)1D^WwFq zzo}`2%;es2G%fGuz4wtuEgp?I3r}{L|2^=9@3(FJ>9u#HGu5)*T~=0oZ*}tc^$%W& z@;h}?IHn2hx4v_0ZyVS8M<xrNU3<6j{F&D>I~(eX7>hfm{5bO_dS7_4eV2Gq_su(> z_THDZX-O{NKKpt8p_lVNSI7U$G@Gl?8=0$evBGTTk#$UE97z+w7G4gUe9=RaY4;(m z#b2&O^-fc%zdT3d$YwU1<O%KHzV;ma!go1r@wFwUh1U|7Ml#5@%>8XSf9oFQH;XOW zS~g^R7|mO5xPmuJYM%&Km6pLOA1N8%w8x(FLLW$8@-O6ASl+U2m8q0pz|7FZ<xwV* zJ#0Rj30|E-OPsHSFa2C_`TL)H<*Ql}E{cdrbc(K5_P$wrz^z_6XU+lL%Bm$1uU{Sv zP2oPiU}jXuT{hSK)w5*Hx<Y+Ftk_fUUtm()6L#cV&BRslue3Hz&9J>YMM~+|`<<zA zW?cHIyEllki_Pk3t^F$e-D33;k^PdkA9j71{&Dfip!0S~s;{|BW-$dg&6_)G{?7P0 zT6<WtZ^|Vs{r|~gwNOyozIyRL`*K6>F9=$cy4zFq-l>-p(=-$w+eBsRXoMtda~|=w zjeXGh=vrCr$BP$TN;1AoIN)saEmLc9l}V*12j9}zG?hi$)gGra@;mP>%8C>2<e%rJ z7IW~6>-r4m`rjM!KW>irGVN~0#^9}@&qbdGX)m)|qRbsODgESUhk35{m-<rb&xm|d z63m~FIYq|&r`XKc=A+W@CW*fc|7$z%=ob694V%vEXQpUsH6`V>pPFb}bLWsEt7-6D z#)(sNv=(pFI<r5KC1A08#m;o~h532c+rF8LZ~ON4)`NK$r89W5-`t=5>Gr-U{|k#5 ze+uOPsl3eb_WSWz<tK+%^M4e!|DG_@{+mMmr^fo4Rpkkt7qS?aAL{bZcxNr~iqo&v zHFIiE_VTrN9HT|Q#H|d_aLfu-khyjLTtNMVsHtMDlYjBQs-L$l>gC>}UH=yAGQQvR zc*UEzz5d*9w@y_3shPobv?<s?(pxgp*QHNcvesXt<FTcjVDiaTtlDe8#3i{_*>3jK zQdxZRczue=zZoCrzDwI*{JCm}@&0m7b5m~NdmMaDDaP-tXUtpBW}cu}C6&%`GVR@h zT=yzHlNt{BL#-{!2Rl+G{98ZcfikCf#_M)o@v1(BZ>i@`A6oFhTuAJYQ^jJ%73^Op z9=>nFQOGdUP1m47?y|>y^}Vy(m|r;FE^K%)-Bz{Yb>5%)YjSzdFK(G%E*IPM_=jZ- z+nM~`HarcrA9b^YO!_2#J?@YZ(OTQIn*aUe{mh?lKU?CxVVaHmsk-|q43E6?{_e6r zp{4(7vkCLuX%m0g{j2^TkaWMSPq}a9MDuFp8(05tU#nNYi?@wuq42IJT^BaXi*NjL z_KJnd+mk;}6i+oV5Mr%gGDTD1bnNwK)3+|Sn9#iE+WFS!$MUb-klw%in^fI<`<oGm z>wI16onGB3Ge7q<ZjZm!&b{jMm;JMme$Dd4Q(@0<BO9)bj7?Px<w^?v4F~$%6Ytgj zQ8`<7jk9jH)~)}npDb+S6!a5*b;b+)|6_YL!%X<Gq0E$vvmG{f=FBySoKXMg)TOEV zN77e|EuYXi<rUL`?>E9FyVvTUm{szNNm?oVrs*1cg9wI*MSC2=7DiRbdDrh@@LA+1 zuAWvYCwp*SYLAnfdPMK1+yK2-dmSd4E&uMJzW@7cuZ7Nzr#IMK(BS?wA^o0zT#BLf ztib54t*7joCum<-624;RixLwhE#FuB>N&X0w5|5A=YP^k<SOR1Vqe?Oqvp+-)GWXE z+zi<&+wJoGvi~)b^#4!X`90~sL{Px#&=Rw`_IrI7MXCz^o}LnK(`9VS>tp=l>o=|= zWxaAU&PB}md!tP6?A_l}W|yD&yL0yWB%96ixm^F(%r!H&)U0qlvTB7xu9b`P3f)C* zQEm0#^{&eu&)dOSzFmH1(zMyBt_@vl%Br81bg5{cSoAT4Gtw{2USa*?>mR!GKd$lG z_<X8)%jS0sa?aYb(v;;&KW9JLEq&)lgLL@LO7j;ND(q$dMlGGtX5btrIjce4?~t&B z&9X0tKYy@1#Pq0o){jn)H40&C`$VfZl&|r;tF%iyqux*|`sj}j?Ds0vEzd`MKI3Jr z+qbrCmQKs2orhkwh#NVYh=<oI?dadT?YzL`+4C|U>U_KRoauh?gS7WMD|Ob1gr!}4 z)o_Px+VQ&M5nU_VX9vX3R`;GTnNLzOG(hQCd_(*5pM4isgqSqC#LVtED>P-Q^HPfq z)AhepRK7dQc&&SH{qY}<7JktCJvrMYeC-!I>yP`kTzl{GUgi(ec5gk;xmx~#so5fo z4bM2|9G}hq#@@a7{k-nE&mSg7`AuH_!C_Ow9;bOKOh#@jpRL8e@45Fi?R47ns9W|7 zCSjqRpLVZY5q5QDR-n<AAnEzMJ*PQBlXeJvuY6@aCF<A7mi~uahc<t#Z}^^nzj8;% z8G(b^o!pO~KWRB~uH~r4U5=|tHr@|bpDNyXIrhesgVsOZm5Sf{t~Y;ggLlh^!VA+~ za@>y>wr!ljxZ!zW_aUjROY)~SoC%uPImf%NZKe3L<akxDxyPQco<6kGm96{S8Q(?s zGE5}6vU`qZn9n=&;Q84KraG<<@dBRpM>n_lS1&VO-P3*Rfn37;^Be5vy>Yox<>I8! zJYW6s$tgA^^XHzcSz))4HBIrpbCLM(HQcj}-Av46tkdn*u03S_?dRVc);+F=9(Nv{ z^yJAB6G0Dd?i?=nx?G{Pv!|_{FDz>Ldi`mINlAz2+~e%Im$IPJ;KtM{(e3Y6g{CVS zeLr4*@{Ch-1^b+4uNBr^e|=r28Le>n|M>mW`#YrT|L(Q%oTk%z%g4<@$Rpv^RoQZ` z2}(j+b~>Ku&-i5gEXda3e^Ga9)tZX|5x+OfSv@HJ@vHsZyH$Gb!kez{`o|Z0V!PIV z=4<N7Et@5m&*8ReGXDP4HevtbNse<*O?|AR5hC$)0(<=>rkOr^!B2~C&g?w)|CUL* zjEmxl%buo{D~*|!op0YNusOQ!#?6HMO(v2#Y|^RQU7ns`eNt{NoN{uN$&>F6g3Ir% z?Cy`;ZmA;>=5$HXf_v(*tj(*Rl>Gj9*S$w=otay0=)Az>2d|`N#bkxBT3=JqKOLvX z9p36Fawa$CqvC?i^#wb!ze^tP+LrtNp#4J~F|&sYPi$QOLSV<l_tkwRWfy)c-!N2f z-v4Fy&EG7)do~z$7Oz;?Bs)RjzSN{CQrr62F4(BEMzUWmSon4=clrU=7rBlyk{kMX z?(JOVpyhpiMQN6<tIG+!Q|s8wExui^X*`!;DaYh<Zq*h^1NonG+XIU0lM<s|x-H)& zvTETnuB-#AOhs?3oSjmZGPmJ%0OPwy-5mC68q2K;BLX+xjX2e){{1}b;hW2A=1D$& z`t+;T_x((*%2nEKo9=U6j(M}lNQS?Ujq&Ef?_#`i5;GncpLk>}QPZ}AeRodU<dr94 zUOav*_ef92Y-Z-o@Q4h<pFFJc_y0>Vt<Ik9ifw%y<o?WhLqn8Xc(YIZJ#gm0fdi~Z zYIvS7xfz^1a^QhOPZp~}S|Za%nMer<sSlc|Ndf^kFINe!aT7@4-~2t0anqa?4pYQG zFq(;|J?5WbZE;{1^9%*WhDQ|>wz4;<7*FEhdXSJ%sGz=M<_w7yEE1j}^BBI%GQ?cx z3g!|{%}ar<%}dQofvole-9~9$Z)jnPa%y*N7=M6pxKzFOB;G8Z8LCyjCFLtUCYUKk zRh6HL-5Rk#>jKw`fM6Dt2^?w;OpYJyT@<-L{$akhGD_gpQ<ly@Q*S4&?AyBdj_+H? z^;PMwUsUd$=j`5Z{XDw%&Yj#P&#%1ny?<`s-M{y$?|-k}|NZy9`e-K4r5y?#6P`>l z`8_S>w$fs|dvSB*4OBUcTPx=@iDjr5v>agLd?=*o)1@pr$zSBsNv%HzV~jG_m2~IG zIk~ucEXbS7s&(}9qv#EOf`SGzp*jwq6kHZ0m<X?&$o5y3v2h>wr>uRp=l2-h&nb?Y z8!ax~bL@ubw@GVLuQ_#3j;+rz+4m)BLENEZ(l<hP&hC1n=RR@j*{x4Euja|=YV_T@ z+hz6C-c7e}*lbqazN2BQ_y);mKHKgj>J@KjP5t&s=(rQ}?8J>$5!3gs=@6Zt`Yfq< z-QhXsr``T^Hg(PAq_oM`mZfj#ESo*qcUzv(ZJD&N_34rAH_t@PIX7vkq2aktPR;du z*BC5wc=NbJbKa{b9h^Ov)%Q)Dwa`Cqr;?(n?ZF3YN;a{6GcvpX=FC<xYo7B(zrJvH z9&Hd?tePR&<-R(QE2{ZYfZ8cXu@u+Yfr7WXwt2f;I<m-V6+>;%l-_lMJR6&LNKFwd zaZ{SQW=e$W^rgj1DmNwEw7Y3BlXvc^<0{9w%j+wdN({nhFk78m-2ZTWmd3%03y$Sq zocvMEVRE^l5vR7tiKYyW#<M)vOjj6gERGE{o4e)V(pMq6eIoCiRDS+muO-|zW8E2N zPqyBmjN<Q3Md~_Vg=Gb<mGO&wS2-j%W0_st$+v4)-H(2|%sga?=-Nw<3ixflD>93p zyr%Z<O6K>7`fHWP;y1jjSR{7*nA?NMh+=!GxVEFr{QZXdO>Vu}Cyvc)`#0^}gL~hr z`+saPSSxsbqltl6;*`gY4_bA^8Mik~;jrEOGehCn&y2**KOukDzY&!?ziqC`zvEB5 zW^(>AXk4ncbNlb?JcrxW?W<oW6)5I}B=@oKtvfZPUt^+Fr~I}056il>6pm`Mdt~_> z*!<JQLh1kYTXJ`~XJ(&yx`ln8;>yA~0m{ZF*ULQlH1p)=PBqIFdlsyk+*y0JNFk3u z*7kDH#-3y9%V(u{aV)4+`1Ma%A~e29P@6IEtwNHYU`f#{p+5c}yJbGKuV-P?+-vko z{dx=gD@N~dzrLfBCSOjKl&F94N@~H>{>%G5o3<L4zv7$i&1>5?+sS(3P4UE-`CrR4 z|MqGh%f5DOS*p6YVZ)OvzI*;?epu;no?*Xn$y1-zuct0QP`@OzYt#FO93P%mx2-SD zoVm0_;ni39{$I|!S^~@0JJ?<nl4&t0EIhc3&G!uRALBp8kD30+@cr%Pd-OoOyk5?M zqxbNvs~ct9W*ib>e{oLX`@@aKUv3Kj)pfr0?_ZX;_T{9fMrIlFGTaJ2D=$hZJH!*X zU~}aeuH;W)>sFS8+lKFM_p4TIT76-c&-;n*<8mwtXU??gk_<F^E?4AyYhioLT}!nM zQxa72ngW@2=l_}iR50iN;-`uVd{eG2ShA?4KE!d=zl^o{wTG6iNm1uDvNUa*{;xqK z@;gWP^YkAP5sLrU$WHm5xo*>`WhY-3{H&4H-Mi&e;Czc_X`74Zopo*aP4_$r+&f{# zI)?3U?(0t$y`lTqbAoK%E>6K)uP2*txaU%(-_Wvq&0d{rrQ#BDuUn<#PbAg_%c#vh zV&Ww({N29ZX36dlVTV~2GtLD+ZsKyfDnHZcsi!O7Z>hW|D!g_bPYP9*%zh$wH##t| z^kC~Fo_$A_dwlczDZfu*kBORJP04i!_7~H?I+UE(IP>~l;9p4zTLbAtIrh&QRXYoW z;=<#%+&#waclmnMF}=IjV&cnK+aF8rkCB~TylYAIhP{v99Iwxw{oVA!{&!a8FSdNs ze*fyMwN1sj8uQ8F@$YZG=DhcI<^8wU0v7JxW>$DSbCvX5<;DkMX|r~)e)hip{{LCF zWuFVGtLL}vYGCX3%RjSqN{XITJ@XZlqe>o9yZ?WkT+5txP?h8Tv(V`cb_`p@l_D0b zOg<E-5j^{Z)%AH-Z)Z2(-CaMe_-fP|<)8B&HXb~e@XBz)cDEnZQWMVqk72P5p1<kE zS^jNXOTTQJCx5QC{C3^0v)Avwxqk0o?xjyI#X*O%dFrH}pDKIv<W=mfwMDDKDyA-J zVp93pD)m3q-cTcJx6y*P-xEV@-!)3TIhMzNZ?nNF#_(q8Ea`=>_N{oU{Ho+!#P0fe zW;y=%_PIvSxM#Jk`KIxizn>SSP5FIyVdAfM6VK1OwI%(xmifGdKGA}Q-X_5_Ef3c7 zUE#D>TqVH8;MtOY^omH_gvZzK%&Rq8^LyH!ubJQP*XUN4&snnij%w&^lb`#7{zt}F z-~Vt-P^QJX(8X?^+v{nw|8=M{ed77(bYk+HxeYnjpXRb#a5vk}-E?|N<NwA0$JHGo z{H0$mA7GSUe(S2vo=S;L(X(cGR_!u5yl%!Z&9o1f8|Pen`PIzC<Xyf+#fLNMT&(pA z{?BDTd(Zi|^z6M|Gyk)8|39+<OH;rCeB*|ynGy0j`RoJ+CN)-f)`=}`ZTviX4C4IE zYq05s-omjlhRKnQ*~kKM3x~jTtz;%OH4{q(0|ijMZeyb#Qdy9y@1K+vT#~Err(kTV z@0M9qT%urPVKBLHo^-vDk+CVV6ShXg`b(b_s=Xh7F`qlCaQS}wFpka^l?~=9feDkV zO|AL)<T_M0Ow0{?c>jL!uH$KEwr+mCLE+fl%dw%cv8AhaRW*qQWvIJ`IIUEeBy@{y zVUt_8<m47Hx9Ei~95X&I;9=Bt3t?*PcajWhbY|^bS^uEbi|^0G%OXO$ZgU0a#Wp`( zWDsQeP(iZkL)s)}-LRqv6%Jw1BS}_`-qreRE_rHbuW2mlu3x^vVZw{!4d#i$^@|E7 zt!C4fIhv?`E;0Pv<NJZ00WOOTwf6L6EdC(Ho%v<&!MYfMd(!&fzOU|on^R=IHzWPV z%J!*tVb8yB&;44TSa5WHruDq^;KD~wQ*4g^UK2K<wQ-r1OuzbPNe-p^{CstXLf)C# zukE__DZkrq^`g0NT$~?Fs%2}l-Y}cpGPSY3ziqSBG1qvO+0wse3z>HW>@vuV-mztC z?CagzHiR#KTVPUQ_%p0nmH&9l66=Nf%ikv0&3qTXZTj?}Tilv^C)Hny+`^YTCCFQ| z`FOQf@z2<4`|>|d5ZiN4Cgl0zpQXDeOg&X|pyq-s@9(}XsWzwg=#)g}sdv{dw~D$t z`SAC|ncJ5=mKCeD*gnN`?;*$13iJQJHtcltf4NQh&n3?8)WiQ4RmZr0Ui$c@m?3x7 z?+rhS9JeGc-16G&;>m@KpDJut*wy=}AKu+vw(E25kLNGSDk?ww{@J)#wICt&M{@c0 zA1Nl1^1RR9p1Zid@|5>dfn&%1D}6m5^lwk}o$vp)$;!t~*kLB=y59Y>TJw_<qny?E z)8GEy{qt)E&zU{acNos?>Yj4cfQ_ric*C@WGZEF6Gx*o3hxhQxzDnRpx@LN8+Pd)G ztM#Q5*aGKDy?#9*N3L{JnU`Wy>f@ZZ7h7-D=sK@Vd+f^_m1tAc>3FMX-^Z1F_skrx z>P?&Y;1x%cUqM>`rZvG!IQ7nJu2!C}cI=kNeU(W4nITz|PFG2#IIK$En)hIN)xt@W zQoRcrDkQu^HZ)#6UA9!jYgP+m{A1Q!owd`p^6oRJ&t$)AtFvIU6fci>Hj9&4f3Hce z>AFHi{;C=06FggVFXcS0JuCBeNhXu8#H<CDlg=(k=nZJz(%E&UiD}VUWzW=CPqLS! zX3XQf@GR72JIfU9$G#uczH@%<UCCUOH{rzY4HmYmCQe&>cI6EInxJJtZy$>LO`N#S z_1$r^&AC5XUVN$-`9AgRi-*w@4sctpe_XL3bcf~HE$=MuutcjT7&H|fbX6=dnQ3)1 z#)`YAlV8^N*_FVHe>aH8@~)Y=gu8Il(TlDgg(lnF6}^|9p7mk*xh&1j`3@}?F20$} zaN$&+-t6asp>upwPtFng+R!U>V8LcR7RFE=1qT<CV^^;+bGPyO2-bfRF1S)S?ZyY& z-EGHQIgU<z)$LhmV7!ip|M?4JR>n(5Ir-N6JTw)Y#4O;{DPYFa?XVy~qM=DZK~rIV zSExws(xXlKhwr!Kh;Gtg-6}B0r0cA10q>IZ#V4lx-1Dl3Np!=@5d9if$%PFo1J_-% zU9TsT+$Ejqq`&!UjbYrSo0YQl{*PnW6gz4%H_F^z;`m(h#lkHes@n?oMU^;R4_x+o z#-YUlO9j@ya0zxl>B|six7#97<+q(6kBZ-oigPVGxix&wsR@qBvep;+9gIDs`&Mq8 z;v`eB_2W+F(?Uu!1v3qd(k8NJ%in11pVXqU<j<p{Q{rcsKIHSR_c+Zb<HVx4qke;W zH%FVfPSPF8lY9<oCe{KyXBI16V9`F|w%G4wRe@hFqq+@mSL=jkcK_x}tX-_?*KB4S ziJNrgg@VV+gtvxH&oixDru)6HQY#BySRvNWHf@7P$R;1x-0A<WUwqv@eaXWNc?N+8 zPM!&}7JR0YSgj6J-fQ33@!O|$)<U<bC;aNqD2wH#oiM+~Hp4)%H*!NI`;MY3mY1F? zxOVjgKELeEzAU4C?;-ms>=p;}dp5HKJ2LVaok<XyWVo;5oPtHuS;p2XrgQvBjtAdF zM@^r(QQ=afx2mi{?2QTcZ6-X)vEzPF!B$pc`PumH<(;a_itF615>E);ln67JdirN= zp!Pnu`qZeocWY-pKm6xO$NM=Gu67?>b9VFb{d=wIKF^Q8H*X&AF=N&5aX#zXRcv?9 zKYM%j<d08P#1DrrzFAYXzu00<O=kJ(@0Sy;Wqa3``L$^zxPSf~yQZkR`tH3A^QN-1 zS3X@_R%R%BchQbB-#NoX-RD<6Ut#w=`czito>PIc=kzqR>%HO&r~I{@np4WQ*6yL* z<G?w0<hCzfy}tFuhx4n?FMjw(J12MZ8gZTS?=#ZBmpm%%EL_x+yGmHZbaD6Lk5@~z zQ@;MHDlmO~*3FXh<#&zv?}6OC>YK~r_5Ll2`Dy*4>_k`AURKNBRV8;nX-z$)%V?Gx z_@;Vm+GB6^zr63?==SWZFOS(P74Oql;Br-3`<WEqf&(qvh2qySJfD33xN^Yu3omwS ztvP<OeR6re{amNX{gY=OjCg6A@aSEYK`q;w2O(80qQ6DfRBRX2Qv0&7Nw~1zJZVWn z+}w%G*PM>#yLA5M^D?`&zFj0gY~rJB4yV+9-d?2o&pztQw+u^b`|AInDpuC_*7$At zaXh2b-^u${huG|28HSb{8Fa<AzP9h3*8A=CV%0T^RC61r`F`5&diqhcm%LtD^^Q6F zt!m5vty}K5@rm&Q)f4U+oWC?P3TO8#O8?F{_%r;%p+mA6g{w1e27ikeni^wtvGf4v zr}hb(PfoFYFvZ`;`vJ>l)&jGR`(oy0XX_WHY(IW>xw*W3!0dxHCeNPtz5G#P@c&oO z$z?UuULQVg&uSNz*Tlar%J#>Cc}H#@5t7iEct4>~`L@#CC;Wkza#+sB-`LnMyS;1f z2G+8D`%hgHh$;@+DQ~gz-|uJJ4=<KmFn=WjUqAPQA6u9rZuVX<+%>;)LjHuxIRSfg zK5;*?kE>@`Z=NV`vRbs@&N8Mr?V9K{J4|05`+vaj>$5)}-n@01{-dW-%}%fJ@no+D z8-C8{(oQIp)RA)a<;w0`xm?tA_L=L>UNLJM9-E1NVEY)Ioa!4FnX>agqurXNoY)#p zW@zoA2+yF@G<{E(Xq&VY3zOs|^Atlf<D^7O<3tO?6eIIQb8{mLO9L}ga}zs4DyC-_ zGRZR=S(s1nEo4%uH#0XuZdU1Di45>7lsNwJfAN<6OFc6E6&16;*=~AoebR4ROTeTM zmzFob*Dac$ded2Brs3mLyvLSG8XwcW9D46_?flv2|2+F?TYPTjciZRrJ%+lv(+tlZ zW4=4r>P)cAK^2DRWQA>l$$xqik9RCtno-wx$j@L~a(z;wc8T-#SepyNdoM`WUTEC+ zqJ8Z}dFBng+m1Sv+%@EAK6;|CcH6ffLe57jL|)m5#6R?yXDM<!nWe3>@XzJH1~s~B zXBJK_Sd(rnrEDl>eZj5c<rm-Y${**>IAS%|<zcm<XRlS~F*d{G*QJkkontpF-uGIi z?e*>=ow6eqZ&cFiT^m2&H>{jry4<+zs9qA+zgxLS6>}dOGVbnNxn}F_HlN(x$@*^; zmuVi(t6!FVTljZUzTy6BxAI$m%jf=1sP_^1_$zn&+}bT~+nWm-JpPF9_FZ?aOo2~q z=7hDA6_t#$O!%LQ7wnBa>=Jak#7<`W;~1TT&K6w!j|Fv(F1FyGTu^VPcc67f)8azG zWsj0#x}F#Cs694{>C-My?K>K}L+Ww?uiWv%9gN=}i^epm7ucjd^t5SR{*lM;K<A7; z=|bVO2P$U{>+TTU{xEM&&(Da4)*bB2AH?Y#s-4kmU7+Q6SmsXW&K=y#AE%u;^0|Uh z{}IogmZKF6{EwpMbiOXIl{<X8zCtYhVa}Z9@Q<8v$Fn2)%s23?-oTWfq<Zhr?F#ny zNv8J>|Ng-s|JZrWLHCH$((kN{Uw@F?cVPPuHtCxsb2s`XZ7rUA{_MGa&!SCl^0l_# zG1I?kw*S_)536!78s7e!xa+-sP|T{E!B0*}oXwrP(`oZ`kEiNq9hE{q&f4ob>y&A` zNk`3>Yj2c4Df<=gFc!}&>v$Tr$kI#ayUN*pNk8kZ$|z5Zw?A8##A>y_cB7JT&rkka aPuFTqKVHHl%VTU|YGS~ps_N?R#svV#>a(H% diff --git a/_book/index.html b/_book/index.html index 17ca231..f1230b9 100644 --- a/_book/index.html +++ b/_book/index.html @@ -8,7 +8,7 @@ <meta name="author" content="Jannik Hellenkamp"> <meta name="author" content="Dominique Unruh"> -<meta name="dcterms.date" content="2024-06-01"> +<meta name="dcterms.date" content="2024-06-11"> <title>Introduction to Quantum Computing</title> <style> @@ -251,7 +251,7 @@ ul.task-list li input[type="checkbox"] { <div> <div class="quarto-title-meta-heading">Published</div> <div class="quarto-title-meta-contents"> - <p class="date">June 1, 2024</p> + <p class="date">June 11, 2024</p> </div> </div> @@ -271,6 +271,15 @@ ul.task-list li input[type="checkbox"] { <p>These lecture notes are released under the CC BY-NC 4.0 license, which can be found <a href="https://creativecommons.org/licenses/by-nc/4.0/">here</a>.</p> <section id="changelog" class="level2 unnumbered"> <h2 class="unnumbered anchored" data-anchor-id="changelog">Changelog</h2> +<section id="version-0.1.3-11.06.2024" class="level4"> +<h4 class="anchored" data-anchor-id="version-0.1.3-11.06.2024">Version 0.1.3 (11.06.2024)</h4> +<ul> +<li>added/extended 9.4 + 9.5 (Post processing and Beginning of DFT circuit)</li> +<li>updated 9.3</li> +<li>added chapter 3 (Quantum systems)</li> +<li>error correction in chapter 9</li> +</ul> +</section> <section id="version-0.1.2-31.05.2024" class="level4"> <h4 class="anchored" data-anchor-id="version-0.1.2-31.05.2024">Version 0.1.2 (31.05.2024)</h4> <ul> diff --git a/_book/observingSystems.html b/_book/observingSystems.html index e9b9fe0..3f35bbc 100644 --- a/_book/observingSystems.html +++ b/_book/observingSystems.html @@ -261,7 +261,7 @@ When observing a probabilistic system, the observation is just a passive process ## Example: Random 1-bit number -We usa a the random 1-bit number example to the random 2-bit example from @sec-prob. +We usa a the random 1-bit number example similar to the random 2-bit example from @sec-prob. We have a distribution $d_{\text{1-bit}} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ which represents the probability distribution of generating a 1-bit number with equal probability. We also have a process $A_{\text{flip}} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ which flips the bit with a probability of $\frac{1}{3}$. We look at two different cases: For the first case, we observe only the final distribution and for the second case we observe after the generation of the 1-bit number and we also observe the final distribution. @@ -272,11 +272,13 @@ From @sec-prob-apply we know that the final distribution $d$ is $$ d = A_{\text{flip}} \cdot d_{\text{1-bit}} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} $$ -We observe this distribution and will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $d_1 = \frac{1}{2}$. +We observe this distribution and will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $\Pr[0] = d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $\Pr[1] = d_1 = \frac{1}{2}$. ##### Observing after generation {.unnumbered} -We now observe the system after the generation of the 1-bit number and also observe the final distribution +We now observe the system after the generation of the 1-bit number and also observe the final distribution. After the generation, we will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $\Pr[0] = d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $\Pr[1] = d_1 = \frac{1}{2}$. + +We now apply in each case the matrix $A_\text{flip}$. This will give us the outcome $A_\text{flip} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ::: @@ -310,7 +312,18 @@ $$ H\psi = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} $$ -Measuring this state will get the outcome $0$ with probability $|\psi_0|^2 = 1$ and have the post measurement state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. +Measuring this state will get the outcome $0$ with probability $\Pr[0] = |\psi_0|^2 = 1$ and have the post measurement state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. + +##### Measure the initial and the final state {.unnumbered} + +Measuring $\psi$ with no further unitary matrices applied can have the outcome $0$ or $1$. We will look at the final measurement for each case: + + +The first measurement will have outcome $0$ with probability $\Pr[0] = |\psi_0|^2 = \frac{1}{2}$ and the post measurement state will be $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. $H$ applied to this post measurement state will be $H\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$. When measuring this state, we will get the outcome $0$ with probability $\Pr[0] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$ and outcome $1$ with with probability $\Pr[1] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$. + +The outcome $1$ will appear at the initial state with probability $\Pr[1] = |\psi_1|^2 = \frac{1}{2}$ and the post measurement state will be $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. $H$ applied to this post measurement state will be $H\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$. When measuring this state, we will get the outcome $0$ with probability $\Pr[0] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$ and outcome $1$ with with probability $\Pr[1] = |-\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$. + +So no independent of the outcome of the first measurement, at the second measurement the outcome $0$ and $1$ have a probability of $\frac{1}{2}$. This shows, that when measuring before applying $H$, we will receive different probabilities, then when measuring only at the end. This proves, that measurements can change the system. ::: diff --git a/_book/quantumSystems.html b/_book/quantumSystems.html index 0cb5b29..6cbdc24 100644 --- a/_book/quantumSystems.html +++ b/_book/quantumSystems.html @@ -69,6 +69,35 @@ ul.task-list li input[type="checkbox"] { } }</script> + <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> + <script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script> + +<script type="text/javascript"> +const typesetMath = (el) => { + if (window.MathJax) { + // MathJax Typeset + window.MathJax.typeset([el]); + } else if (window.katex) { + // KaTeX Render + var mathElements = el.getElementsByClassName("math"); + var macros = []; + for (var i = 0; i < mathElements.length; i++) { + var texText = mathElements[i].firstChild; + if (mathElements[i].tagName == "SPAN") { + window.katex.render(texText.data, mathElements[i], { + displayMode: mathElements[i].classList.contains('display'), + throwOnError: false, + macros: macros, + fleqn: false + }); + } + } + } +} +window.Quarto = { + typesetMath +}; +</script> </head> @@ -214,7 +243,14 @@ ul.task-list li input[type="checkbox"] { <div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div> <!-- margin-sidebar --> <div id="quarto-margin-sidebar" class="sidebar margin-sidebar"> - + <nav id="TOC" role="doc-toc" class="toc-active"> + <h2 id="toc-title">Table of contents</h2> + + <ul> + <li><a href="#quantum-states" id="toc-quantum-states" class="nav-link active" data-scroll-target="#quantum-states"><span class="header-section-number">3.1</span> Quantum states</a></li> + <li><a href="#unitary-transformation" id="toc-unitary-transformation" class="nav-link" data-scroll-target="#unitary-transformation"><span class="header-section-number">3.2</span> Unitary transformation</a></li> + </ul> +</nav> </div> <!-- main --> <main class="content" id="quarto-document-content"> @@ -238,94 +274,126 @@ ul.task-list li input[type="checkbox"] { </header> -<!-- -With the basics for a probabilistic system defined, we now look into describing a quantum computer mathematically. In the following table you can see the analogy from the quantum world to the probabilistic world. - -| Probabilistic world | Quantum world | -| --------- | ----------- | -| Probability distributions | Quantum states | -| Probabilities | Amplitudes | -| Deterministic possibilities | Classical possibilities | -| Stochastic matrix as process | Unitary matrix as process | - -## Quantum states -One of the most important element of the quantum world is a quantum state. A quantum state describes the state of a quantum system as a vector. Each entry of the vector represents a *classical* possibility (similar to the deterministic possibilities in a probability distribution). The entries of a quantum state called *amplitude*. In contrast to a probabilistic system, these entries can be negative and are also complex numbers. - -These amplitudes correlate to the probability of the quantum state being in the corresponding classical probability. To calculate the probabilities from the amplitude, we can take the square of the absolute value of the amplitude. - -This means, that for the classical possibility $x$ and a quantum state $\psi$ the probability for $x$ is $\Pr[x] = |\psi|^2$. To have valid probabilities, the sum of all probabilities need to sum up to $1$. From this we get the formal definition of a quantum state: - -::: {.callout-note appearance="minimal" icon=false} -::: {.definition #def-quantum-state} - -## Quantum State - -A quantum state is a vector $\psi \in \mathbb{C}^n$ with $\sqrt{\sum |\psi|^2} = 1$. -::: -::: - -::: {.callout-tip icon=false} - -## Example: Some Quantum states -The following vectors are valid quantum states with the classical possibilities $0$ and $1$: -$$ -\ket{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\quad -\ket{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\quad -\ket{+} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}\quad -\ket{-} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} -$$ -Note that the symbol $\ket{}$ is not yet introduced, so just understand it as some label at this point. The probabilities for each state can be calculated as follows: -$$ +<p>With the basics for a probabilistic system defined, we now look into describing a quantum computer mathematically. In the following table you can see the analogy from the quantum world to the probabilistic world.</p> +<table class="table"> +<thead> +<tr class="header"> +<th>Probabilistic world</th> +<th>Quantum world</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td>Probability distributions</td> +<td>Quantum states</td> +</tr> +<tr class="even"> +<td>Probabilities</td> +<td>Amplitudes</td> +</tr> +<tr class="odd"> +<td>Deterministic possibilities</td> +<td>Classical possibilities</td> +</tr> +<tr class="even"> +<td>Stochastic matrix as process</td> +<td>Unitary matrix as process</td> +</tr> +</tbody> +</table> +<section id="quantum-states" class="level2" data-number="3.1"> +<h2 data-number="3.1" class="anchored" data-anchor-id="quantum-states"><span class="header-section-number">3.1</span> Quantum states</h2> +<p>One of the most important element of the quantum world is a quantum state. A quantum state describes the state of a quantum system as a vector. Each entry of the vector represents a <em>classical</em> possibility (similar to the deterministic possibilities in a probability distribution). The entries of a quantum state are called <em>amplitude</em>. In contrast to a probabilistic system, these entries can be negative and are also complex numbers.</p> +<p>These amplitudes tell us the probability of the quantum state being in the corresponding classical possibility. To calculate the probabilities from the amplitude, we can take the square of the absolute value of the amplitude.</p> +<p>This means, that for the classical possibility <span class="math inline">\(x\)</span> and a quantum state <span class="math inline">\(\psi\)</span> the probability for <span class="math inline">\(x\)</span> is <span class="math inline">\(\Pr[x] = |\psi|^2\)</span>. To have valid probabilities, the sum of all probabilities need to sum up to <span class="math inline">\(1\)</span>. From this we get the formal definition of a quantum state:</p> +<div class="callout callout-style-simple callout-note no-icon"> +<div class="callout-body d-flex"> +<div class="callout-icon-container"> +<i class="callout-icon no-icon"></i> +</div> +<div class="callout-body-container"> +<div id="def-quantum-state" class="definition theorem"> +<p><span class="theorem-title"><strong>Definition 3.1 (Quantum State)</strong></span> A quantum state is a vector <span class="math inline">\(\psi \in \mathbb{C}^n\)</span> with <span class="math inline">\(\sqrt{\sum |\psi|^2} = 1\)</span>.</p> +</div> +</div> +</div> +</div> +<div class="callout callout-style-simple callout-tip no-icon callout-titled"> +<div class="callout-header d-flex align-content-center"> +<div class="callout-icon-container"> +<i class="callout-icon no-icon"></i> +</div> +<div class="callout-title-container flex-fill"> +Example: Some Quantum states +</div> +</div> +<div class="callout-body-container callout-body"> +<p>The following vectors are valid quantum states with the classical possibilities <span class="math inline">\(0\)</span> and <span class="math inline">\(1\)</span>: <span class="math display">\[ +\ket{0} := \begin{pmatrix} 1 \\ 0 \end{pmatrix}\quad +\ket{1} := \begin{pmatrix} 0 \\ 1 \end{pmatrix}\quad +\ket{+} := \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}\quad +\ket{-} := \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} +\]</span> Note that the symbol <span class="math inline">\(\ket{}\)</span> is not yet introduced, so just understand it as some label at this point. The probabilities for each state can be calculated as follows: <span class="math display">\[ \begin{aligned} -\ket{0}: \Pr[0] &= |1|^2 = 1 \quad &&\Pr[1] = |0|^2 = 0 \\ -\ket{1}: \Pr[0] &= |0|^2 = 0 \quad &&\Pr[1] = |1|^2 = 1 \\ -\ket{+}: \Pr[0] &= |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} &&\Pr[1] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} \\ -\ket{-}: \Pr[0] &= |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} &&\Pr[1] = |\frac{-1}{\sqrt{2}}|^2 = \frac{1}{2} +\ket{0}:&& \Pr[0] &= |1|^2 = 1 \quad &&\Pr[1] = |0|^2 = 0 \\ +\ket{1}:&& \Pr[0] &= |0|^2 = 0 \quad &&\Pr[1] = |1|^2 = 1 \\ +\ket{+}:&& \Pr[0] &= \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} &&\Pr[1] = \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} \\ +\ket{-}:&& \Pr[0] &= \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} &&\Pr[1] = \lvert\tfrac{-1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} \end{aligned} -$$ -We can see here, that two different quantum states ($\ket{+}$ and $\ket{-}$) can have the same probabilities for all classical possibilities. -::: - -## Unitary transformation -We now have defined quantum states and need a way to describe some processes, which we want to apply on the quantum states. In the probabilistic world, we have stochastic matrices for this, but unfortunately we can not use these matrices on quantum states, since the output of applying these on a quantum state is not guaranteed to be a quantum state again. We therefore make a new addition to our quantum toolbox called a *unitary transformation*. - -::: {.callout-note appearance="minimal" icon=false} -::: {.definition #def-unitary-transformation} - -## Unitary transformation -Given a quantum state $\psi \in \mathbb{C}^n$ and a unitary matrix $U \in \mathbb{C}^{n\times n}$, the state after the transformation is $U\psi$. -::: -::: - -::: {.callout-note appearance="minimal" icon=false} -::: {.lemma #lem-unitary-matrix} - -## Unitary matrix -A matrix $U \in \mathbb{C}^{n\times n}$ is called *unitary* iff $U^\dagger U = I$ where $I$ is the identity matrix and $U^\dagger$ is the complex conjugate transpose of $U$. -::: -::: - -A unitary transformation is by definition invertible, therefore we can undo all unitary transformations by applying $U^\dagger$. - -::: {.callout-tip icon=false} - -## Example: Some Unitary transformations -The following matrices are examples for unitary transformations: -$$ -X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} -$$ -These matrices are called Pauli-matrices, we will get to know them later on. - -As an example for applying a unitary on a quantum state, we apply the Pauli $X$ matrix on the quantum state $\ket{0}$: - -$$ -X\ket{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \ket{1} -$$ -::: - ---> +\]</span> We can see here, that two different quantum states (<span class="math inline">\(\ket{+}\)</span> and <span class="math inline">\(\ket{-}\)</span>) can have the same probabilities for all classical possibilities.</p> +</div> +</div> +</section> +<section id="unitary-transformation" class="level2" data-number="3.2"> +<h2 data-number="3.2" class="anchored" data-anchor-id="unitary-transformation"><span class="header-section-number">3.2</span> Unitary transformation</h2> +<p>We now have defined quantum states and need a way to describe some processes, which we want to apply on the quantum states. In the probabilistic world, we have stochastic matrices for this, but unfortunately we can not use these matrices on quantum states, since the output of applying these on a quantum state is not guaranteed to be a quantum state again. We therefore look for a different property of a matrix for which the outcome of applying that matrix is guaranteed to be a quantum state. We get this property with <em>unitary</em> matrices.</p> +<div class="callout callout-style-simple callout-note no-icon"> +<div class="callout-body d-flex"> +<div class="callout-icon-container"> +<i class="callout-icon no-icon"></i> +</div> +<div class="callout-body-container"> +<div id="def-unitary-transformation" class="definition theorem"> +<p><span class="theorem-title"><strong>Definition 3.2 (Unitary transformation)</strong></span> Given a quantum state <span class="math inline">\(\psi \in \mathbb{C}^n\)</span> and a unitary matrix <span class="math inline">\(U \in \mathbb{C}^{n\times n}\)</span>, the state after the transformation is a quantum state <span class="math inline">\(U\psi\)</span>.</p> +</div> +</div> +</div> +</div> +<div class="callout callout-style-simple callout-note no-icon"> +<div class="callout-body d-flex"> +<div class="callout-icon-container"> +<i class="callout-icon no-icon"></i> +</div> +<div class="callout-body-container"> +<div id="lem-unitary-matrix" class="lemma theorem"> +<p><span class="theorem-title"><strong>Lemma 3.1 (Unitary matrix)</strong></span> A matrix <span class="math inline">\(U \in \mathbb{C}^{n\times n}\)</span> is called <em>unitary</em> iff <span class="math inline">\(U^\dagger U = I\)</span> where <span class="math inline">\(I\)</span> is the identity matrix and <span class="math inline">\(U^\dagger\)</span> is the complex conjugate transpose of <span class="math inline">\(U\)</span>.</p> +</div> +</div> +</div> +</div> +<p>A unitary matrix is by this lemma invertible, therefore we can undo all unitary transformations by applying <span class="math inline">\(U^\dagger\)</span>.</p> +<div class="callout callout-style-simple callout-tip no-icon callout-titled"> +<div class="callout-header d-flex align-content-center"> +<div class="callout-icon-container"> +<i class="callout-icon no-icon"></i> +</div> +<div class="callout-title-container flex-fill"> +Example: Some Unitary transformations +</div> +</div> +<div class="callout-body-container callout-body"> +<p>The following matrices are examples for unitary transformations: <span class="math display">\[ +X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} +\]</span> These matrices are called Pauli-matrices, we will get to know them later on.</p> +<p>As an example for applying a unitary on a quantum state, we apply the Pauli <span class="math inline">\(X\)</span> matrix on the quantum state <span class="math inline">\(\ket{0}\)</span>:</p> +<p><span class="math display">\[ +X\ket{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \ket{1} +\]</span></p> +</div> +</div> +</section> </main> <!-- /main --> <script id="quarto-html-after-body" type="application/javascript"> diff --git a/_book/search.json b/_book/search.json index 6e466e2..568eb4b 100644 --- a/_book/search.json +++ b/_book/search.json @@ -14,7 +14,7 @@ "href": "index.html#changelog", "title": "Introduction to Quantum Computing", "section": "Changelog", - "text": "Changelog\n\nVersion 0.1.2 (31.05.2024)\n\nminor changes to chapter 2\nadded chapter 9\n\n\n\nVersion 0.1.1 (16.05.2024)\n\nStarted the lecture notes.", + "text": "Changelog\n\nVersion 0.1.3 (11.06.2024)\n\nadded/extended 9.4 + 9.5 (Post processing and Beginning of DFT circuit)\nupdated 9.3\nadded chapter 3 (Quantum systems)\nerror correction in chapter 9\n\n\n\nVersion 0.1.2 (31.05.2024)\n\nminor changes to chapter 2\nadded chapter 9\n\n\n\nVersion 0.1.1 (16.05.2024)\n\nStarted the lecture notes.", "crumbs": [ "Welcome" ] @@ -85,6 +85,39 @@ "<span class='chapter-number'>2</span> <span class='chapter-title'>Probabilistic systems</span>" ] }, + { + "objectID": "quantumSystems.html", + "href": "quantumSystems.html", + "title": "3 Quantum systems", + "section": "", + "text": "3.1 Quantum states\nOne of the most important element of the quantum world is a quantum state. A quantum state describes the state of a quantum system as a vector. Each entry of the vector represents a classical possibility (similar to the deterministic possibilities in a probability distribution). The entries of a quantum state are called amplitude. In contrast to a probabilistic system, these entries can be negative and are also complex numbers.\nThese amplitudes tell us the probability of the quantum state being in the corresponding classical possibility. To calculate the probabilities from the amplitude, we can take the square of the absolute value of the amplitude.\nThis means, that for the classical possibility \\(x\\) and a quantum state \\(\\psi\\) the probability for \\(x\\) is \\(\\Pr[x] = |\\psi|^2\\). To have valid probabilities, the sum of all probabilities need to sum up to \\(1\\). From this we get the formal definition of a quantum state:", + "crumbs": [ + "Quantum Basics", + "<span class='chapter-number'>3</span> <span class='chapter-title'>Quantum systems</span>" + ] + }, + { + "objectID": "quantumSystems.html#quantum-states", + "href": "quantumSystems.html#quantum-states", + "title": "3 Quantum systems", + "section": "", + "text": "Definition 3.1 (Quantum State) A quantum state is a vector \\(\\psi \\in \\mathbb{C}^n\\) with \\(\\sqrt{\\sum |\\psi|^2} = 1\\).\n\n\n\n\n\n\n\n\n\n\nExample: Some Quantum states\n\n\n\nThe following vectors are valid quantum states with the classical possibilities \\(0\\) and \\(1\\): \\[\n\\ket{0} := \\begin{pmatrix} 1 \\\\ 0 \\end{pmatrix}\\quad\n\\ket{1} := \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix}\\quad\n\\ket{+} := \\begin{pmatrix} \\frac{1}{\\sqrt{2}} \\\\ \\frac{1}{\\sqrt{2}} \\end{pmatrix}\\quad\n\\ket{-} := \\begin{pmatrix} \\frac{1}{\\sqrt{2}} \\\\ -\\frac{1}{\\sqrt{2}} \\end{pmatrix}\n\\] Note that the symbol \\(\\ket{}\\) is not yet introduced, so just understand it as some label at this point. The probabilities for each state can be calculated as follows: \\[\n\\begin{aligned}\n\\ket{0}:&& \\Pr[0] &= |1|^2 = 1 \\quad &&\\Pr[1] = |0|^2 = 0 \\\\\n\\ket{1}:&& \\Pr[0] &= |0|^2 = 0 \\quad &&\\Pr[1] = |1|^2 = 1 \\\\\n\\ket{+}:&& \\Pr[0] &= \\lvert\\tfrac{1}{\\sqrt{2}}\\rvert^2 = \\tfrac{1}{2} &&\\Pr[1] = \\lvert\\tfrac{1}{\\sqrt{2}}\\rvert^2 = \\tfrac{1}{2} \\\\\n\\ket{-}:&& \\Pr[0] &= \\lvert\\tfrac{1}{\\sqrt{2}}\\rvert^2 = \\tfrac{1}{2} &&\\Pr[1] = \\lvert\\tfrac{-1}{\\sqrt{2}}\\rvert^2 = \\tfrac{1}{2}\n\\end{aligned}\n\\] We can see here, that two different quantum states (\\(\\ket{+}\\) and \\(\\ket{-}\\)) can have the same probabilities for all classical possibilities.", + "crumbs": [ + "Quantum Basics", + "<span class='chapter-number'>3</span> <span class='chapter-title'>Quantum systems</span>" + ] + }, + { + "objectID": "quantumSystems.html#unitary-transformation", + "href": "quantumSystems.html#unitary-transformation", + "title": "3 Quantum systems", + "section": "3.2 Unitary transformation", + "text": "3.2 Unitary transformation\nWe now have defined quantum states and need a way to describe some processes, which we want to apply on the quantum states. In the probabilistic world, we have stochastic matrices for this, but unfortunately we can not use these matrices on quantum states, since the output of applying these on a quantum state is not guaranteed to be a quantum state again. We therefore look for a different property of a matrix for which the outcome of applying that matrix is guaranteed to be a quantum state. We get this property with unitary matrices.\n\n\n\n\n\n\n\nDefinition 3.2 (Unitary transformation) Given a quantum state \\(\\psi \\in \\mathbb{C}^n\\) and a unitary matrix \\(U \\in \\mathbb{C}^{n\\times n}\\), the state after the transformation is a quantum state \\(U\\psi\\).\n\n\n\n\n\n\n\n\n\n\n\nLemma 3.1 (Unitary matrix) A matrix \\(U \\in \\mathbb{C}^{n\\times n}\\) is called unitary iff \\(U^\\dagger U = I\\) where \\(I\\) is the identity matrix and \\(U^\\dagger\\) is the complex conjugate transpose of \\(U\\).\n\n\n\n\nA unitary matrix is by this lemma invertible, therefore we can undo all unitary transformations by applying \\(U^\\dagger\\).\n\n\n\n\n\n\nExample: Some Unitary transformations\n\n\n\nThe following matrices are examples for unitary transformations: \\[\nX = \\begin{pmatrix} 0 & 1 \\\\ 1 & 0 \\end{pmatrix} \\quad Y = \\begin{pmatrix} 0 & -i \\\\ i & 0 \\end{pmatrix} \\quad Z = \\begin{pmatrix} 1 & 0 \\\\ 0 & -1 \\end{pmatrix} \n\\] These matrices are called Pauli-matrices, we will get to know them later on.\nAs an example for applying a unitary on a quantum state, we apply the Pauli \\(X\\) matrix on the quantum state \\(\\ket{0}\\):\n\\[\nX\\ket{0} = \\begin{pmatrix} 0 & 1 \\\\ 1 & 0 \\end{pmatrix} \\cdot \\begin{pmatrix} 1 \\\\ 0 \\end{pmatrix} = \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix} = \\ket{1}\n\\]", + "crumbs": [ + "Quantum Basics", + "<span class='chapter-number'>3</span> <span class='chapter-title'>Quantum systems</span>" + ] + }, { "objectID": "quantumCircutsKetNotation.html", "href": "quantumCircutsKetNotation.html", @@ -112,7 +145,7 @@ "href": "shorsAlgorithm.html#discrete-fourier-transformation", "title": "9 Shor’s Algorithm", "section": "", - "text": "Definition 9.1 (Discrete Fourier Transformation (DFT)) The discrete Fourier transform (DFT) is a linear transformation on \\(\\mathbb{C}^N\\) represented by the matrix \\[\n\\operatorname{DFT}_N = \\frac{1}{\\sqrt{N}} (\\omega^{kl})_{kl} \\in \\mathbb{C}^{N\\times N}\n\\] with \\(\\omega = e^{2i\\pi/N}\\), which is the \\(N\\)-th root of unity.\n\n\n\n\n\n\n\n\n\n\n\n\nTheorem 9.1 (Properties of the DFT) Here are some properties of the DFT which can be used without further proof.\n\nThe DFT is unitary.\n\\(\\omega^t = \\omega^{t\\mod N}\\) for all \\(t \\in \\mathbb{Z}\\).\nGiven a quantum state \\(\\psi \\in \\mathbb{C}^N\\) which is \\(r\\)-periodic and where \\(r\\mid N\\), \\(\\operatorname{DFT}_N \\psi\\) will compute a quantum state \\(\\phi \\in \\mathbb{C}^N\\), which has non-zero values on the multiples of \\(\\frac{N}{r}\\). Note that \\(\\frac{N}{r}\\) intuitively represents the frequency of \\(\\psi\\). This means, that \\[\n|\\phi_i| = \\begin{cases} \\frac{1}{\\sqrt{t}}, & \\text{if}\\ \\frac{N}{t}\\mid i \\\\ 0, & \\text{otherwise} \\end{cases}\n\\]", + "text": "Definition 9.1 (Discrete Fourier Transformation (DFT)) The discrete Fourier transform (DFT) is a linear transformation on \\(\\mathbb{C}^M\\) represented by the matrix \\[\n\\operatorname{DFT}_M = \\frac{1}{\\sqrt{M}} (\\omega^{kl})_{kl} \\in \\mathbb{C}^{M\\times M}\n\\] with \\(\\omega = e^{2i\\pi/M}\\), which is the \\(M\\)-th root of unity.\n\n\n\n\n\n\n\n\n\n\n\n\nTheorem 9.1 (Properties of the DFT) Here are some properties of the DFT which can be used without further proof.\n\nThe DFT is unitary.\n\\(\\omega^t = \\omega^{t\\mod M}\\) for all \\(t \\in \\mathbb{Z}\\).\nGiven a quantum state \\(\\psi \\in \\mathbb{C}^M\\) which is \\(r\\)-periodic and where \\(r\\mid M\\), \\(\\operatorname{DFT}_M \\psi\\) will compute a quantum state \\(\\phi \\in \\mathbb{C}^M\\), which has non-zero values on the multiples of \\(\\frac{M}{r}\\). Note that \\(\\frac{M}{r}\\) intuitively represents the frequency of \\(\\psi\\). This means, that \\[\n|\\phi_i| = \\begin{cases} \\frac{1}{\\sqrt{r}}, & \\text{if}\\ \\frac{M}{r}\\mid i \\\\ 0, & \\text{otherwise} \\end{cases}\n\\]", "crumbs": [ "Quantum Algorithms", "<span class='chapter-number'>9</span> <span class='chapter-title'>Shor's Algorithm</span>" @@ -123,7 +156,7 @@ "href": "shorsAlgorithm.html#reducing-factoring-to-period-finding", "title": "9 Shor’s Algorithm", "section": "9.2 Reducing factoring to period finding", - "text": "9.2 Reducing factoring to period finding\nWith the DFT, we have seen, that we can use a unitary to find the period of a quantum state. We now look into using period finding to factor integers. We first look at the definition of the two problems:\n\n\n\n\n\n\n\nDefinition 9.2 (Factoring problem) Given integer \\(N\\) with two prime factors \\(p,q\\) such that \\(pq=N\\) and \\(p \\neq q\\), find \\(p\\) and \\(q\\).\n\n\n\n\nNote that this definition of the factoring problem is a simplified version of the factoring problem, where \\(N\\) has only 2 prime factors.\n\n\n\n\n\n\n\nDefinition 9.3 (Period finding problem) Given \\(f: \\mathbb{Z} \\to X\\) with \\(f(x) = f(y)\\) iff \\(x \\equiv y \\bmod r\\) for some fixed secret \\(r\\). \\(r\\) is called the period of \\(f\\). Find \\(r\\).\n\n\n\n\nTo start the reduction, we need a special case of the period finding problem called order finding:\n\n\n\n\n\n\n\nDefinition 9.4 (Order finding problem) For known \\(a\\) and \\(N\\) which are relatively prime, find the period \\(r\\) of \\(f(i) = a^i \\bmod n\\). We call \\(r\\) the order of \\(a\\) written \\(r = \\text{ ord } a\\). (This is similar to finding the smallest \\(i > 0\\) with \\(f(i) = 1\\)).\n\n\n\n\nSince the order finding problem is just the period finding problem for a specific \\(f(x)\\), we know that if we can solve the period finding problem within reasonable runtime, we can also solve the order finding problem within reasonable runtime. We now reduce the factoring problem to the order finding problem:\nWe have a integer \\(N\\) as an input for the factoring problem.\n\nPick an \\(a \\in \\{1,...,N-1\\}\\) with \\(a\\) relatively prime to \\(n\\).\nCompute the order of \\(a\\), so that \\(r = \\text{ ord } a\\) (using the solver for the order finding problem).\nIf the order \\(r\\) is odd, we abort.\nCalculate \\(x:= a^{\\frac{r}{2}}+1 \\bmod N\\) and \\(y:= a^{\\frac{r}{2}}-1 \\bmod N\\).\nIf \\(\\gcd(x,N) \\in \\{1,N\\}\\), we abort.\nWe compute \\(p = \\gcd(x,N)\\) and \\(q = \\gcd(y,N)\\).\n\nThe output of the reduction are \\(p,q\\), such that \\(pq = N\\). This holds, since \\[\nxy = (a^{\\frac{r}{2}}+1) (a^{\\frac{r}{2}}-1) = a^r - 1 \\equiv 1-1 = 0 \\pmod N\n\\]\n\n\n\n\n\n\n\nTheorem 9.2 (Probability of an abort) If \\(N\\) has at least two different prime factors and \\(N\\) is odd, then the probability to abort is \\(\\leq \\frac{1}{2}\\).\n\n\n\n\nAll in all this reduction shows, that if we have an oracle which can solve the period finding problem within reasonable runtime, we can also solve the factoring problem within reasonable runtime (since all other operations are classically fast to compute).", + "text": "9.2 Reducing factoring to period finding\nWith the DFT, we have seen, that we can use a unitary to find the period of a quantum state. We now look into using period finding to factor integers. We first look at the definition of the two problems:\n\n\n\n\n\n\n\nDefinition 9.2 (Factoring problem) Given integer \\(N\\) with two prime factors \\(p,q\\) such that \\(pq=N\\) and \\(p \\neq q\\), find \\(p\\) and \\(q\\).\n\n\n\n\nNote that this definition of the factoring problem is a simplified version of the factoring problem, where \\(N\\) has only 2 prime factors.\n\n\n\n\n\n\n\nDefinition 9.3 (Period finding problem) Given \\(f: \\mathbb{Z} \\to X\\) with \\(f(x) = f(y)\\) iff \\(x \\equiv y \\bmod r\\) for some fixed secret \\(r\\). \\(r\\) is called the period of \\(f\\). Find \\(r\\).\n\n\n\n\nTo start the reduction, we need a special case of the period finding problem called order finding:\n\n\n\n\n\n\n\nDefinition 9.4 (Order finding problem) For known \\(a\\) and \\(N\\) which are relatively prime, find the period \\(r\\) of \\(f(i) = a^i \\bmod N\\). We call \\(r\\) the order of \\(a\\) written \\(r = \\text{ ord } a\\). (This is similar to finding the smallest \\(i > 0\\) with \\(f(i) = 1\\)).\n\n\n\n\nSince the order finding problem is just the period finding problem for a specific \\(f(x)\\), we know that if we can solve the period finding problem within reasonable runtime, we can also solve the order finding problem within reasonable runtime. We now reduce the factoring problem to the order finding problem:\nWe have a integer \\(N\\) as an input for the factoring problem.\n\nPick an \\(a \\in \\{1,\\dots,N-1\\}\\) with \\(a\\) relatively prime to \\(N\\).\nCompute the order of \\(a\\), so that \\(r = \\text{ ord } a\\) (using the solver for the order finding problem).\nIf the order \\(r\\) is odd, we abort.\nCalculate \\(x:= a^{\\frac{r}{2}}+1 \\bmod N\\) and \\(y:= a^{\\frac{r}{2}}-1 \\bmod N\\).\nIf \\(\\gcd(x,N) \\in \\{1,N\\}\\), we abort.\nWe compute \\(p = \\gcd(x,N)\\) and \\(q = \\gcd(y,N)\\).\n\nThe output of the reduction are \\(p,q\\), such that \\(pq = N\\). This holds, since \\[\nxy = (a^{\\frac{r}{2}}+1) (a^{\\frac{r}{2}}-1) = a^r - 1 \\equiv 1-1 = 0 \\pmod N\n\\]\n\n\n\n\n\n\n\nTheorem 9.2 (Probability of an abort) If \\(N\\) has at least two different prime factors and \\(N\\) is odd, then the probability to abort is \\(\\leq \\frac{1}{2}\\).\n\n\n\n\nAll in all this reduction shows, that if we have an oracle which can solve the period finding problem within reasonable runtime, we can also solve the factoring problem within reasonable runtime (since all other operations are classically fast to compute).", "crumbs": [ "Quantum Algorithms", "<span class='chapter-number'>9</span> <span class='chapter-title'>Shor's Algorithm</span>" @@ -134,7 +167,7 @@ "href": "shorsAlgorithm.html#sec-shor-algo", "title": "9 Shor’s Algorithm", "section": "9.3 The quantum algorithm for period finding", - "text": "9.3 The quantum algorithm for period finding\nWe now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor’s algorithm requires a \\(f:\\{0,1\\}^n\\rightarrow\\{0,1\\}^m\\) which is \\(r\\)-periodic and is show in this figure:\n\n\n\nShor’s algorithm (quantum part)\n\n\nThe algorithm works as follows:\n\nWe start with a \\(\\ket{0}\\) entry on every wire.\nWe bring the top wire into the superposition over all entries. The quantum state is then \\(2^\\frac{-n}{2}\\sum_x \\ket{x} \\otimes \\ket{0^m}\\).\nWe apply \\(U_f\\), which is the unitary of \\(f:\\{0,1\\}^n\\rightarrow\\{0,1\\}^m\\). This calculates the superposition over all possible values \\(f(x)\\) on the bottom wire. The resulting quantum state is \\(\\frac{-n}{2}\\sum_x \\ket{x,f(x)}\\).\nTo understand the algorithm better, we measure the bottom wire at this point. This will give us one random value \\(f(x_0)\\) for some \\(x_0\\). The top wire will then contain a superposition over all values \\(x\\) where \\(f(x) = f(x_0)\\). Since \\(f\\) is know to be \\(r\\)-periodic, we know, that \\(f(x) = f(x_0)\\) iff \\(x \\equiv x_0 \\bmod r\\). This means, that on the resulting quantum state on the top wire is periodic and can be written as \\(\\frac{1}{\\sqrt{2^\\frac{n}{r}}} \\sum_{x\\equiv x_0 \\bmod r} \\ket{x} \\otimes \\ket{f(x_0)}\\).\nWe apply the Discrete Fourier Transform on the top wire. This will “analyze” the top wire for the period and output a vector with entries at multiples of \\(\\frac{2^n}{r}\\) as seen in Theorem 9.1. For simplicity we assume, that \\(r \\mid 2^n\\) holds.\nWe measure the top wire and get one random multiple of \\(\\frac{2^n}{r}\\), which we can denote as \\(a\\cdot\\frac{2^n}{r}\\)\n\nSince we get a multiple of \\(\\frac{2^n}{r}\\) on each run, we can simply run the algorithm multiple times to get different multiples and then compute \\(\\frac{2^n}{r}\\) by taking the gcd of those multiples. From that we compute \\(r\\).\nUnfortunately this only works because we assumed \\(r \\mid 2^n\\). Since this does usually not hold, we only get approximate multiples of \\(\\frac{2^n}{r}\\) (which is not even an integer) and thus post processing is a bit more complex.", + "text": "9.3 The quantum algorithm for period finding\nWe now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor’s algorithm requires a \\(f:\\mathbb{Z}\\rightarrow X\\) which is \\(r\\)-periodic. We choose a number \\(m\\) which needs to be big enough to encode the values of \\(X\\) and choose a number \\(n\\) under the condition of \\(n\\geq 2 \\log_2(r)\\) for the post processing to work. Note that when using this algorithm for factoring, we choose \\(n\\) to be \\(n:=2\\lvert N \\rvert\\), since \\(r \\leq N\\). \\(\\lvert N\\rvert\\) denotes the number of bits needed to encode \\(N\\) here.\nThe quantum algorithm for period finding is shown in this figure:\n\n\n\nShor’s algorithm (quantum part)\n\n\nThe algorithm works as follows:\n\nWe start with a \\(\\ket{0}\\) entry on every wire.\nWe bring the top wire into the superposition over all entries. The quantum state is then \\(2^\\frac{-n}{2}\\sum_x \\ket{x} \\otimes \\ket{0^m}\\).\nWe apply \\(U_f\\), which is the unitary of \\(f:\\{0,1\\}^n\\rightarrow\\{0,1\\}^m\\). This calculates the superposition over all possible values \\(f(x)\\) on the bottom wire. The resulting quantum state is \\(2^\\frac{-n}{2}\\sum_x \\ket{x,f(x)}\\).\nTo understand the algorithm better, we measure the bottom wire at this point. This will give us one random value \\(f(x_0)\\) for some \\(x_0\\). The top wire will then contain a superposition over all values \\(x\\) where \\(f(x) = f(x_0)\\). Since \\(f\\) is know to be \\(r\\)-periodic, we know, that \\(f(x) = f(x_0)\\) iff \\(x \\equiv x_0 \\bmod r\\). This means, that on the resulting quantum state on the top wire is periodic and can be written as \\(\\frac{1}{\\sqrt{2^\\frac{n}{r}}} \\sum_{x\\equiv x_0 \\bmod r} \\ket{x} \\otimes \\ket{f(x_0)}\\).\nWe apply the Discrete Fourier Transform on the top wire. This will “analyze” the top wire for the period and output a vector with entries at multiples of \\(\\frac{2^n}{r}\\) as seen in Theorem 9.1. For simplicity we assume, that \\(r \\mid 2^n\\) holds.\nWe measure the top wire and get one random multiple of \\(\\frac{2^n}{r}\\), which we can denote as \\(a\\cdot\\frac{2^n}{r}\\)\n\nSince we get a multiple of \\(\\frac{2^n}{r}\\) on each run, we can simply run the algorithm multiple times to get different multiples and then compute \\(\\frac{2^n}{r}\\) by taking the gcd of those multiples. From that we compute \\(r\\). Unfortunately this only works because we assumed \\(r \\mid 2^n\\). Since this does usually not hold, we only get approximate multiples of \\(\\frac{2^n}{r}\\) (which is not even an integer) and thus post processing is a bit more complex.", "crumbs": [ "Quantum Algorithms", "<span class='chapter-number'>9</span> <span class='chapter-title'>Shor's Algorithm</span>" @@ -145,7 +178,18 @@ "href": "shorsAlgorithm.html#post-processing", "title": "9 Shor’s Algorithm", "section": "9.4 Post processing", - "text": "9.4 Post processing\nSo far we have seen the DFT to analyze the period of a quantum state, we have seen a way to reduce the factoring problem to the period finding and we have seen a quantum algorithm for finding an approximate multiple of such a period of a function. We just need one final step to find \\(r\\). For this we start with a theorem:\n\n\n\n\n\n\n\nTheorem 9.3 If \\(\\{0,1\\}^n \\rightarrow \\{0,1\\}^n\\) is \\(r\\)-periodic with probability \\(\\Omega(1/\\log\\log r)\\) the following holds: \\[\n\\frac{-r}{2} \\leq rc\\bmod 2^n \\leq \\frac{r}{2}\n\\] where \\(c\\) is the output of the second measurement of the quantum circuit described in Section 9.3.\n\n\n\n\nWe assume that the theorem holds for our outcome of the second measurement (If that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome):\nThen exists a \\(d\\) such that: \\[\n\\begin{aligned}\n&\\lvert rc - d2^n\\rvert \\leq \\frac{r}{2} \\\\\n\\Leftrightarrow&\\lvert \\frac{c}{2^n} - \\frac{d}{r}\\rvert \\leq \\frac{1}{2^{n+1}}\n\\end{aligned}\n\\] The fraction \\(\\frac{c}{2^n}\\) is known, so the goal is to find a fraction \\(\\frac{d}{r}\\) that is \\(\\frac{1}{2^{n+1}}\\) close to \\(\\frac{c}{2^n}\\).\nThe rest of postprocessing will be updated after the next lecture.", + "text": "9.4 Post processing\nSo far we have seen the DFT to analyze the period of a quantum state, we have seen a way to reduce the factoring problem to the period finding and we have seen a quantum algorithm for finding an approximate multiple of such a period of a function. We just need one final step to find \\(r\\). For this we start with a theorem:\n\n\n\n\n\n\n\nTheorem 9.3 Iff \\(f: \\mathbb{Z} \\rightarrow X\\) is \\(r\\)-periodic, the following holds with probability \\(\\Omega(1/\\log\\log r)\\): \\[\n\\frac{-r}{2} \\leq rc\\bmod 2^n \\leq \\frac{r}{2}\n\\] where \\(c\\) is the output of the second measurement of the quantum circuit described in Section 9.3 and \\(n\\) is the number of qubits on the upper wire of the quantum circuit.\n\n\n\n\nWe assume that the theorem holds for our outcome \\(c\\) of the second measurement (if that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome):\nThen exists an integer \\(d\\) such that: \\[\n\\begin{aligned}\n&\\lvert rc - d2^n\\rvert \\leq \\frac{r}{2} \\\\\n\\iff&\\lvert \\frac{c}{2^n} - \\frac{d}{r}\\rvert \\leq \\frac{1}{2^{n+1}} && |\\text{ division by } r\\cdot 2^n\n\\end{aligned}\n\\] The fraction \\(\\frac{c}{2^n}\\) is known, so the goal is to find a fraction \\(\\frac{d}{r}\\) that is \\(\\frac{1}{2^{n+1}}\\)-close to \\(\\frac{c}{2^n}\\).\nSince \\(n\\) is the number of qubits used in the quantum circuit and was chosen, such that \\(n \\geq 2\\log_2(r)\\) and thus \\(2^{n} \\geq 2 r^2\\) holds and from this we know that \\(\\frac{1}{2^{n+1}} \\leq \\frac{1}{2r^2}\\) holds as well.\nSo if Theorem 9.3 holds, we now \\(\\lvert \\frac{c}{2^n} - \\frac{d}{r} \\rvert \\leq \\frac{1}{2r^2}\\) also holds. Our task is now rewritten to find \\(\\frac{d}{r}\\) under this condition. For this we use another theorem:\n\n\n\n\n\n\n\nTheorem 9.4 For a given real number \\(\\varphi \\geq 0\\) and integer \\(q > 0\\) there is at most one fraction \\(\\frac{d}{r}\\) with \\(r \\leq q\\) and \\(\\lvert \\varphi - \\frac{d}{r} \\rvert \\leq \\frac{1}{2q}\\). In this case, this \\(\\frac{d}{r}\\) is a convergent of the continued fraction expansion of \\(\\varphi\\).\n\n\n\n\nThis theorem uses the convergent of a continued fraction expansion. A continued fraction expansion of a number \\(t\\) is the number rewritten as a fraction in the form\n\\[\nt = a_0 + \\frac{1}{a_1 + \\frac{1}{a_2 + \\frac{1}{a_3 + \\dots}}}\n\\]\nwhere \\(a_i\\) always has to be the biggest possible integer. We call \\([a_0,a_1,a_2,a_3,\\dots]\\) the continued expansion of \\(t\\). The expansion is finite iff t is rational. For a given continued expansion, a prefix \\([a_0,\\dots,a_i]\\) is called a convergent. Writing this convergent as a normal fraction will give us an approximation of the number \\(t\\).\n\n\n\n\n\n\nExample: continued expansion of a fraction\n\n\n\nThe number \\(2.3\\) can be written as \\[\n2.3 = 2 + \\frac{1}{3 + \\frac{1}{3 + 0}}\n\\] and the continued fraction expansion of \\(2.3\\) is \\([2,3,3]\\). The expansions \\([2]\\) and \\([2,3]\\) are convergents of the expansion of \\(2.3\\) and written as a fraction will give us the approximations \\(2\\) and \\(2+\\frac{1}{3} = 2.\\bar{3}\\).\nThe number \\(0.99\\) can be written as\n\\[\n0.99 = 0 + \\frac{1}{1 + \\frac{1}{99 + 0}}\n\\] and the continued fraction expansion of \\(0.99\\) is \\([0,1,99]\\). The expansions \\([0]\\) and \\([0,1]\\) are convergents of the expansion of \\(0.99\\) and written as a fraction will give us the approximations \\(0\\) and \\(0+\\frac{1}{1} = 1\\).\n\n\nUsing Theorem 9.4 (with \\(\\varphi:= \\frac{c}{2^n}\\) and \\(q:=2^n\\)) we can find \\(\\frac{d}{r}\\) and from this \\(r\\) which is the period of our function using the following steps:\nFor each convergent \\(\\gamma\\) of \\(\\varphi\\) do the following:\n\nCompute \\(\\gamma\\) as fraction \\(\\frac{d}{r}\\).\nStop if \\(r \\leq 2^n\\) and \\(\\varphi\\) is \\(\\frac{1}{2^{n+1}}\\)-close to \\(\\frac{c}{2^n}\\) and return \\(r\\).\n\nNote: It can happen, that the resulting fraction does not have the right \\(r\\) in the denominator, because \\(\\frac{d}{r}\\) was simplified (if numerator and denominator shared a common factor). But the probability of this happening is sufficiently small and already included in the probability in Theorem 9.3.\nThis completes the postprocessing of Shor’s algorithm.", + "crumbs": [ + "Quantum Algorithms", + "<span class='chapter-number'>9</span> <span class='chapter-title'>Shor's Algorithm</span>" + ] + }, + { + "objectID": "shorsAlgorithm.html#constructing-the-dft", + "href": "shorsAlgorithm.html#constructing-the-dft", + "title": "9 Shor’s Algorithm", + "section": "9.5 Constructing the DFT", + "text": "9.5 Constructing the DFT\nSo far we have described everything necessary for Shor’s algorithm, but only described the matrix representation of the \\(\\operatorname{DFT}_M\\). We will now take a closer look into implementing the \\(\\operatorname{DFT}_M\\) as a quantum circuit. Since we only use the \\(\\operatorname{DFT}_M\\) for Shor’s algorithm so far, we will only look at \\(M=2^n\\), which is the \\(\\operatorname{DFT}\\) applied on \\(n\\) qubits.\nTo start the circuit, we recall the definition of the \\(\\operatorname{DFT}_{2^n}\\) from Definition 9.1: \\(\\operatorname{DFT}_{2^n} := \\frac{1}{\\sqrt{{2^n}}} (\\omega^{kl})_{kl}\\) with \\(\\omega:= e^{2\\pi i / 2^n}\\). To apply the \\(\\operatorname{DFT}_{2^n}\\) to a quantum state \\(\\ket{j}\\) we calculate \\[\n\\operatorname{DFT}_{2^n}\\ket{j} = \\frac{1}{\\sqrt{{2^n}}} \\sum_k e^{2\\pi i j k 2^{-n}} \\ket{k}\n\\] We can rewrite this as follows: \\[\n\\begin{aligned}\n\\operatorname{DFT}_{2^n}\\ket{j} =& \\frac{1}{\\sqrt{{2^n}}} \\sum_k e^{2\\pi i j k 2^{-n}} \\ket{k}\\\\\n=& \\frac{1}{\\sqrt{{2^n}}} \\sum_{k_1} \\dots \\sum_{k_n} e^{2\\pi i j (\\sum_l k_l 2^{-l})} \\ket{k_1 \\dots k_n}\\\\\n=& \\frac{1}{\\sqrt{{2^n}}} \\sum_{k_1} \\dots \\sum_{k_n} \\bigotimes^n_{l=1} e^{2\\pi i j (k_l 2^{-l})} \\ket{k_l}\\\\\n=& \\frac{1}{\\sqrt{{2^n}}} \\bigotimes_{l=1}^n \\sum_{k_l} e^{2\\pi i j (k_l 2^{-l})} \\ket{k_l}\\\\\n=& \\frac{1}{\\sqrt{{2^n}}} \\bigotimes_{l=1}^n (\\ket{0} + e^{2\\pi i j 2^{-l}} \\ket{1})\\\\\n=& \\frac{1}{\\sqrt{{2^n}}} \\bigotimes_{l=1}^n (\\ket{0} + e^{2\\pi i 0.j_{n-(l-1)} \\dots j_{n}} \\ket{1})\\\\\n=& \\bigotimes_{l=1}^n \\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2\\pi i 0.j_{n-(l-1)} \\dots j_{n}} \\ket{1})\n\\end{aligned}\n\\] The expression \\(0.j\\) expresses a binary fraction (e.g. \\(0.101 = \\frac{1}{2} + \\frac{1}{8} = \\frac{5}{8}\\)).\nWith this we have shown, that we can write \\(\\operatorname{DFT}_{2^n}\\ket{j}\\) as the following tensor product of quantum states\n\\[\n\\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2\\pi i 0.j_n} \\ket{1}) \\otimes \\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2\\pi i 0.j_{n-1}j_n} \\ket{1}) \\otimes \\dots \\otimes \\frac{1}{\\sqrt{2}}(\\ket{0} + e^{2\\pi i 0.j_1\\dots j_n} \\ket{1})\n\\]\nThe rest of this section will be updated after the next lecture.", "crumbs": [ "Quantum Algorithms", "<span class='chapter-number'>9</span> <span class='chapter-title'>Shor's Algorithm</span>" diff --git a/_book/shorsAlgorithm.html b/_book/shorsAlgorithm.html index 3e16d3c..eb5f325 100644 --- a/_book/shorsAlgorithm.html +++ b/_book/shorsAlgorithm.html @@ -250,6 +250,7 @@ window.Quarto = { <li><a href="#reducing-factoring-to-period-finding" id="toc-reducing-factoring-to-period-finding" class="nav-link" data-scroll-target="#reducing-factoring-to-period-finding"><span class="header-section-number">9.2</span> Reducing factoring to period finding</a></li> <li><a href="#sec-shor-algo" id="toc-sec-shor-algo" class="nav-link" data-scroll-target="#sec-shor-algo"><span class="header-section-number">9.3</span> The quantum algorithm for period finding</a></li> <li><a href="#post-processing" id="toc-post-processing" class="nav-link" data-scroll-target="#post-processing"><span class="header-section-number">9.4</span> Post processing</a></li> + <li><a href="#constructing-the-dft" id="toc-constructing-the-dft" class="nav-link" data-scroll-target="#constructing-the-dft"><span class="header-section-number">9.5</span> Constructing the DFT</a></li> </ul> </nav> </div> @@ -287,9 +288,9 @@ window.Quarto = { </div> <div class="callout-body-container"> <div id="def-shor-dft" class="definition theorem"> -<p><span class="theorem-title"><strong>Definition 9.1 (Discrete Fourier Transformation (DFT))</strong></span> The discrete Fourier transform (DFT) is a linear transformation on <span class="math inline">\(\mathbb{C}^N\)</span> represented by the matrix <span class="math display">\[ -\operatorname{DFT}_N = \frac{1}{\sqrt{N}} (\omega^{kl})_{kl} \in \mathbb{C}^{N\times N} -\]</span> with <span class="math inline">\(\omega = e^{2i\pi/N}\)</span>, which is the <span class="math inline">\(N\)</span>-th root of unity.</p> +<p><span class="theorem-title"><strong>Definition 9.1 (Discrete Fourier Transformation (DFT))</strong></span> The discrete Fourier transform (DFT) is a linear transformation on <span class="math inline">\(\mathbb{C}^M\)</span> represented by the matrix <span class="math display">\[ +\operatorname{DFT}_M = \frac{1}{\sqrt{M}} (\omega^{kl})_{kl} \in \mathbb{C}^{M\times M} +\]</span> with <span class="math inline">\(\omega = e^{2i\pi/M}\)</span>, which is the <span class="math inline">\(M\)</span>-th root of unity.</p> </div> </div> </div> @@ -305,9 +306,9 @@ window.Quarto = { <p><span class="theorem-title"><strong>Theorem 9.1 (Properties of the DFT)</strong></span> Here are some properties of the DFT which can be used without further proof.</p> <ol type="1"> <li>The DFT is unitary.</li> -<li><span class="math inline">\(\omega^t = \omega^{t\mod N}\)</span> for all <span class="math inline">\(t \in \mathbb{Z}\)</span>.</li> -<li>Given a quantum state <span class="math inline">\(\psi \in \mathbb{C}^N\)</span> which is <span class="math inline">\(r\)</span>-periodic and where <span class="math inline">\(r\mid N\)</span>, <span class="math inline">\(\operatorname{DFT}_N \psi\)</span> will compute a quantum state <span class="math inline">\(\phi \in \mathbb{C}^N\)</span>, which has non-zero values on the multiples of <span class="math inline">\(\frac{N}{r}\)</span>. Note that <span class="math inline">\(\frac{N}{r}\)</span> intuitively represents the frequency of <span class="math inline">\(\psi\)</span>. This means, that <span class="math display">\[ -|\phi_i| = \begin{cases} \frac{1}{\sqrt{t}}, & \text{if}\ \frac{N}{t}\mid i \\ 0, & \text{otherwise} \end{cases} +<li><span class="math inline">\(\omega^t = \omega^{t\mod M}\)</span> for all <span class="math inline">\(t \in \mathbb{Z}\)</span>.</li> +<li>Given a quantum state <span class="math inline">\(\psi \in \mathbb{C}^M\)</span> which is <span class="math inline">\(r\)</span>-periodic and where <span class="math inline">\(r\mid M\)</span>, <span class="math inline">\(\operatorname{DFT}_M \psi\)</span> will compute a quantum state <span class="math inline">\(\phi \in \mathbb{C}^M\)</span>, which has non-zero values on the multiples of <span class="math inline">\(\frac{M}{r}\)</span>. Note that <span class="math inline">\(\frac{M}{r}\)</span> intuitively represents the frequency of <span class="math inline">\(\psi\)</span>. This means, that <span class="math display">\[ +|\phi_i| = \begin{cases} \frac{1}{\sqrt{r}}, & \text{if}\ \frac{M}{r}\mid i \\ 0, & \text{otherwise} \end{cases} \]</span></li> </ol> </div> @@ -351,7 +352,7 @@ window.Quarto = { </div> <div class="callout-body-container"> <div id="def-shor-order" class="definition theorem"> -<p><span class="theorem-title"><strong>Definition 9.4 (Order finding problem)</strong></span> For known <span class="math inline">\(a\)</span> and <span class="math inline">\(N\)</span> which are relatively prime, find the period <span class="math inline">\(r\)</span> of <span class="math inline">\(f(i) = a^i \bmod n\)</span>. We call <span class="math inline">\(r\)</span> the order of <span class="math inline">\(a\)</span> written <span class="math inline">\(r = \text{ ord } a\)</span>. (This is similar to finding the smallest <span class="math inline">\(i > 0\)</span> with <span class="math inline">\(f(i) = 1\)</span>).</p> +<p><span class="theorem-title"><strong>Definition 9.4 (Order finding problem)</strong></span> For known <span class="math inline">\(a\)</span> and <span class="math inline">\(N\)</span> which are relatively prime, find the period <span class="math inline">\(r\)</span> of <span class="math inline">\(f(i) = a^i \bmod N\)</span>. We call <span class="math inline">\(r\)</span> the order of <span class="math inline">\(a\)</span> written <span class="math inline">\(r = \text{ ord } a\)</span>. (This is similar to finding the smallest <span class="math inline">\(i > 0\)</span> with <span class="math inline">\(f(i) = 1\)</span>).</p> </div> </div> </div> @@ -359,7 +360,7 @@ window.Quarto = { <p>Since the order finding problem is just the period finding problem for a specific <span class="math inline">\(f(x)\)</span>, we know that if we can solve the period finding problem within reasonable runtime, we can also solve the order finding problem within reasonable runtime. We now reduce the factoring problem to the order finding problem:</p> <p>We have a integer <span class="math inline">\(N\)</span> as an input for the factoring problem.</p> <ol type="1"> -<li>Pick an <span class="math inline">\(a \in \{1,...,N-1\}\)</span> with <span class="math inline">\(a\)</span> relatively prime to <span class="math inline">\(n\)</span>.</li> +<li>Pick an <span class="math inline">\(a \in \{1,\dots,N-1\}\)</span> with <span class="math inline">\(a\)</span> relatively prime to <span class="math inline">\(N\)</span>.</li> <li>Compute the order of <span class="math inline">\(a\)</span>, so that <span class="math inline">\(r = \text{ ord } a\)</span> (using the solver for the order finding problem).</li> <li>If the order <span class="math inline">\(r\)</span> is odd, we abort.</li> <li>Calculate <span class="math inline">\(x:= a^{\frac{r}{2}}+1 \bmod N\)</span> and <span class="math inline">\(y:= a^{\frac{r}{2}}-1 \bmod N\)</span>.</li> @@ -385,7 +386,8 @@ xy = (a^{\frac{r}{2}}+1) (a^{\frac{r}{2}}-1) = a^r - 1 \equiv 1-1 = 0 \pmod N </section> <section id="sec-shor-algo" class="level2" data-number="9.3"> <h2 data-number="9.3" class="anchored" data-anchor-id="sec-shor-algo"><span class="header-section-number">9.3</span> The quantum algorithm for period finding</h2> -<p>We now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor’s algorithm requires a <span class="math inline">\(f:\{0,1\}^n\rightarrow\{0,1\}^m\)</span> which is <span class="math inline">\(r\)</span>-periodic and is show in this figure:</p> +<p>We now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor’s algorithm requires a <span class="math inline">\(f:\mathbb{Z}\rightarrow X\)</span> which is <span class="math inline">\(r\)</span>-periodic. We choose a number <span class="math inline">\(m\)</span> which needs to be big enough to encode the values of <span class="math inline">\(X\)</span> and choose a number <span class="math inline">\(n\)</span> under the condition of <span class="math inline">\(n\geq 2 \log_2(r)\)</span> for the post processing to work. Note that when using this algorithm for factoring, we choose <span class="math inline">\(n\)</span> to be <span class="math inline">\(n:=2\lvert N \rvert\)</span>, since <span class="math inline">\(r \leq N\)</span>. <span class="math inline">\(\lvert N\rvert\)</span> denotes the number of bits needed to encode <span class="math inline">\(N\)</span> here.</p> +<p>The quantum algorithm for period finding is shown in this figure:</p> <div class="quarto-figure quarto-figure-center"> <figure class="figure"> <p><img src="shor.svg" class="img-fluid figure-img" style="width:100.0%"></p> @@ -396,13 +398,12 @@ xy = (a^{\frac{r}{2}}+1) (a^{\frac{r}{2}}-1) = a^r - 1 \equiv 1-1 = 0 \pmod N <ol type="1"> <li>We start with a <span class="math inline">\(\ket{0}\)</span> entry on every wire.</li> <li>We bring the top wire into the superposition over all entries. The quantum state is then <span class="math inline">\(2^\frac{-n}{2}\sum_x \ket{x} \otimes \ket{0^m}\)</span>.</li> -<li>We apply <span class="math inline">\(U_f\)</span>, which is the unitary of <span class="math inline">\(f:\{0,1\}^n\rightarrow\{0,1\}^m\)</span>. This calculates the superposition over all possible values <span class="math inline">\(f(x)\)</span> on the bottom wire. The resulting quantum state is <span class="math inline">\(\frac{-n}{2}\sum_x \ket{x,f(x)}\)</span>.</li> +<li>We apply <span class="math inline">\(U_f\)</span>, which is the unitary of <span class="math inline">\(f:\{0,1\}^n\rightarrow\{0,1\}^m\)</span>. This calculates the superposition over all possible values <span class="math inline">\(f(x)\)</span> on the bottom wire. The resulting quantum state is <span class="math inline">\(2^\frac{-n}{2}\sum_x \ket{x,f(x)}\)</span>.</li> <li>To understand the algorithm better, we measure the bottom wire at this point. This will give us one random value <span class="math inline">\(f(x_0)\)</span> for some <span class="math inline">\(x_0\)</span>. The top wire will then contain a superposition over all values <span class="math inline">\(x\)</span> where <span class="math inline">\(f(x) = f(x_0)\)</span>. Since <span class="math inline">\(f\)</span> is know to be <span class="math inline">\(r\)</span>-periodic, we know, that <span class="math inline">\(f(x) = f(x_0)\)</span> iff <span class="math inline">\(x \equiv x_0 \bmod r\)</span>. This means, that on the resulting quantum state on the top wire is periodic and can be written as <span class="math inline">\(\frac{1}{\sqrt{2^\frac{n}{r}}} \sum_{x\equiv x_0 \bmod r} \ket{x} \otimes \ket{f(x_0)}\)</span>.</li> <li>We apply the Discrete Fourier Transform on the top wire. This will “analyze” the top wire for the period and output a vector with entries at multiples of <span class="math inline">\(\frac{2^n}{r}\)</span> as seen in <a href="#thm-dft-properties" class="quarto-xref">Theorem <span>9.1</span></a>. For simplicity we assume, that <span class="math inline">\(r \mid 2^n\)</span> holds.</li> <li>We measure the top wire and get one random multiple of <span class="math inline">\(\frac{2^n}{r}\)</span>, which we can denote as <span class="math inline">\(a\cdot\frac{2^n}{r}\)</span></li> </ol> -<p>Since we get a multiple of <span class="math inline">\(\frac{2^n}{r}\)</span> on each run, we can simply run the algorithm multiple times to get different multiples and then compute <span class="math inline">\(\frac{2^n}{r}\)</span> by taking the gcd of those multiples. From that we compute <span class="math inline">\(r\)</span>.</p> -<p>Unfortunately this only works because we assumed <span class="math inline">\(r \mid 2^n\)</span>. Since this does usually not hold, we only get approximate multiples of <span class="math inline">\(\frac{2^n}{r}\)</span> (which is not even an integer) and thus post processing is a bit more complex.</p> +<p>Since we get a multiple of <span class="math inline">\(\frac{2^n}{r}\)</span> on each run, we can simply run the algorithm multiple times to get different multiples and then compute <span class="math inline">\(\frac{2^n}{r}\)</span> by taking the gcd of those multiples. From that we compute <span class="math inline">\(r\)</span>. Unfortunately this only works because we assumed <span class="math inline">\(r \mid 2^n\)</span>. Since this does usually not hold, we only get approximate multiples of <span class="math inline">\(\frac{2^n}{r}\)</span> (which is not even an integer) and thus post processing is a bit more complex.</p> </section> <section id="post-processing" class="level2" data-number="9.4"> <h2 data-number="9.4" class="anchored" data-anchor-id="post-processing"><span class="header-section-number">9.4</span> Post processing</h2> @@ -414,21 +415,88 @@ xy = (a^{\frac{r}{2}}+1) (a^{\frac{r}{2}}-1) = a^r - 1 \equiv 1-1 = 0 \pmod N </div> <div class="callout-body-container"> <div id="thm-shor-post-process" class="therorem theorem"> -<p><span class="theorem-title"><strong>Theorem 9.3</strong></span> If <span class="math inline">\(\{0,1\}^n \rightarrow \{0,1\}^n\)</span> is <span class="math inline">\(r\)</span>-periodic with probability <span class="math inline">\(\Omega(1/\log\log r)\)</span> the following holds: <span class="math display">\[ +<p><span class="theorem-title"><strong>Theorem 9.3</strong></span> Iff <span class="math inline">\(f: \mathbb{Z} \rightarrow X\)</span> is <span class="math inline">\(r\)</span>-periodic, the following holds with probability <span class="math inline">\(\Omega(1/\log\log r)\)</span>: <span class="math display">\[ \frac{-r}{2} \leq rc\bmod 2^n \leq \frac{r}{2} -\]</span> where <span class="math inline">\(c\)</span> is the output of the second measurement of the quantum circuit described in <a href="#sec-shor-algo" class="quarto-xref"><span>Section 9.3</span></a>.</p> +\]</span> where <span class="math inline">\(c\)</span> is the output of the second measurement of the quantum circuit described in <a href="#sec-shor-algo" class="quarto-xref"><span>Section 9.3</span></a> and <span class="math inline">\(n\)</span> is the number of qubits on the upper wire of the quantum circuit.</p> </div> </div> </div> </div> -<p>We assume that the theorem holds for our outcome of the second measurement (If that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome):</p> -<p>Then exists a <span class="math inline">\(d\)</span> such that: <span class="math display">\[ +<p>We assume that the theorem holds for our outcome <span class="math inline">\(c\)</span> of the second measurement (if that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome):</p> +<p>Then exists an integer <span class="math inline">\(d\)</span> such that: <span class="math display">\[ \begin{aligned} &\lvert rc - d2^n\rvert \leq \frac{r}{2} \\ -\Leftrightarrow&\lvert \frac{c}{2^n} - \frac{d}{r}\rvert \leq \frac{1}{2^{n+1}} +\iff&\lvert \frac{c}{2^n} - \frac{d}{r}\rvert \leq \frac{1}{2^{n+1}} && |\text{ division by } r\cdot 2^n \end{aligned} -\]</span> The fraction <span class="math inline">\(\frac{c}{2^n}\)</span> is known, so the goal is to find a fraction <span class="math inline">\(\frac{d}{r}\)</span> that is <span class="math inline">\(\frac{1}{2^{n+1}}\)</span> close to <span class="math inline">\(\frac{c}{2^n}\)</span>.</p> -<p>The rest of postprocessing will be updated after the next lecture.</p> +\]</span> The fraction <span class="math inline">\(\frac{c}{2^n}\)</span> is known, so the goal is to find a fraction <span class="math inline">\(\frac{d}{r}\)</span> that is <span class="math inline">\(\frac{1}{2^{n+1}}\)</span>-close to <span class="math inline">\(\frac{c}{2^n}\)</span>.</p> +<p>Since <span class="math inline">\(n\)</span> is the number of qubits used in the quantum circuit and was chosen, such that <span class="math inline">\(n \geq 2\log_2(r)\)</span> and thus <span class="math inline">\(2^{n} \geq 2 r^2\)</span> holds and from this we know that <span class="math inline">\(\frac{1}{2^{n+1}} \leq \frac{1}{2r^2}\)</span> holds as well.</p> +<p>So if <a href="#thm-shor-post-process" class="quarto-xref">Theorem <span>9.3</span></a> holds, we now <span class="math inline">\(\lvert \frac{c}{2^n} - \frac{d}{r} \rvert \leq \frac{1}{2r^2}\)</span> also holds. Our task is now rewritten to find <span class="math inline">\(\frac{d}{r}\)</span> under this condition. For this we use another theorem:</p> +<div class="callout callout-style-simple callout-note no-icon"> +<div class="callout-body d-flex"> +<div class="callout-icon-container"> +<i class="callout-icon no-icon"></i> +</div> +<div class="callout-body-container"> +<div id="thm-shor-post-process-frac" class="theorem"> +<p><span class="theorem-title"><strong>Theorem 9.4</strong></span> For a given real number <span class="math inline">\(\varphi \geq 0\)</span> and integer <span class="math inline">\(q > 0\)</span> there is at most one fraction <span class="math inline">\(\frac{d}{r}\)</span> with <span class="math inline">\(r \leq q\)</span> and <span class="math inline">\(\lvert \varphi - \frac{d}{r} \rvert \leq \frac{1}{2q}\)</span>. In this case, this <span class="math inline">\(\frac{d}{r}\)</span> is a convergent of the continued fraction expansion of <span class="math inline">\(\varphi\)</span>.</p> +</div> +</div> +</div> +</div> +<p>This theorem uses the convergent of a continued fraction expansion. A continued fraction expansion of a number <span class="math inline">\(t\)</span> is the number rewritten as a fraction in the form</p> +<p><span class="math display">\[ +t = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}} +\]</span></p> +<p>where <span class="math inline">\(a_i\)</span> always has to be the biggest possible integer. We call <span class="math inline">\([a_0,a_1,a_2,a_3,\dots]\)</span> the continued expansion of <span class="math inline">\(t\)</span>. The expansion is finite iff t is rational. For a given continued expansion, a prefix <span class="math inline">\([a_0,\dots,a_i]\)</span> is called a convergent. Writing this convergent as a normal fraction will give us an approximation of the number <span class="math inline">\(t\)</span>.</p> +<div class="callout callout-style-simple callout-tip no-icon callout-titled"> +<div class="callout-header d-flex align-content-center"> +<div class="callout-icon-container"> +<i class="callout-icon no-icon"></i> +</div> +<div class="callout-title-container flex-fill"> +Example: continued expansion of a fraction +</div> +</div> +<div class="callout-body-container callout-body"> +<p>The number <span class="math inline">\(2.3\)</span> can be written as <span class="math display">\[ +2.3 = 2 + \frac{1}{3 + \frac{1}{3 + 0}} +\]</span> and the continued fraction expansion of <span class="math inline">\(2.3\)</span> is <span class="math inline">\([2,3,3]\)</span>. The expansions <span class="math inline">\([2]\)</span> and <span class="math inline">\([2,3]\)</span> are convergents of the expansion of <span class="math inline">\(2.3\)</span> and written as a fraction will give us the approximations <span class="math inline">\(2\)</span> and <span class="math inline">\(2+\frac{1}{3} = 2.\bar{3}\)</span>.</p> +<p>The number <span class="math inline">\(0.99\)</span> can be written as</p> +<p><span class="math display">\[ +0.99 = 0 + \frac{1}{1 + \frac{1}{99 + 0}} +\]</span> and the continued fraction expansion of <span class="math inline">\(0.99\)</span> is <span class="math inline">\([0,1,99]\)</span>. The expansions <span class="math inline">\([0]\)</span> and <span class="math inline">\([0,1]\)</span> are convergents of the expansion of <span class="math inline">\(0.99\)</span> and written as a fraction will give us the approximations <span class="math inline">\(0\)</span> and <span class="math inline">\(0+\frac{1}{1} = 1\)</span>.</p> +</div> +</div> +<p>Using <a href="#thm-shor-post-process-frac" class="quarto-xref">Theorem <span>9.4</span></a> (with <span class="math inline">\(\varphi:= \frac{c}{2^n}\)</span> and <span class="math inline">\(q:=2^n\)</span>) we can find <span class="math inline">\(\frac{d}{r}\)</span> and from this <span class="math inline">\(r\)</span> which is the period of our function using the following steps:</p> +<p>For each convergent <span class="math inline">\(\gamma\)</span> of <span class="math inline">\(\varphi\)</span> do the following:</p> +<ol type="1"> +<li>Compute <span class="math inline">\(\gamma\)</span> as fraction <span class="math inline">\(\frac{d}{r}\)</span>.</li> +<li>Stop if <span class="math inline">\(r \leq 2^n\)</span> and <span class="math inline">\(\varphi\)</span> is <span class="math inline">\(\frac{1}{2^{n+1}}\)</span>-close to <span class="math inline">\(\frac{c}{2^n}\)</span> and return <span class="math inline">\(r\)</span>.</li> +</ol> +<p>Note: It can happen, that the resulting fraction does not have the right <span class="math inline">\(r\)</span> in the denominator, because <span class="math inline">\(\frac{d}{r}\)</span> was simplified (if numerator and denominator shared a common factor). But the probability of this happening is sufficiently small and already included in the probability in <a href="#thm-shor-post-process" class="quarto-xref">Theorem <span>9.3</span></a>.</p> +<p>This completes the postprocessing of Shor’s algorithm.</p> +</section> +<section id="constructing-the-dft" class="level2" data-number="9.5"> +<h2 data-number="9.5" class="anchored" data-anchor-id="constructing-the-dft"><span class="header-section-number">9.5</span> Constructing the DFT</h2> +<p>So far we have described everything necessary for Shor’s algorithm, but only described the matrix representation of the <span class="math inline">\(\operatorname{DFT}_M\)</span>. We will now take a closer look into implementing the <span class="math inline">\(\operatorname{DFT}_M\)</span> as a quantum circuit. Since we only use the <span class="math inline">\(\operatorname{DFT}_M\)</span> for Shor’s algorithm so far, we will only look at <span class="math inline">\(M=2^n\)</span>, which is the <span class="math inline">\(\operatorname{DFT}\)</span> applied on <span class="math inline">\(n\)</span> qubits.</p> +<p>To start the circuit, we recall the definition of the <span class="math inline">\(\operatorname{DFT}_{2^n}\)</span> from <a href="#def-shor-dft" class="quarto-xref">Definition <span>9.1</span></a>: <span class="math inline">\(\operatorname{DFT}_{2^n} := \frac{1}{\sqrt{{2^n}}} (\omega^{kl})_{kl}\)</span> with <span class="math inline">\(\omega:= e^{2\pi i / 2^n}\)</span>. To apply the <span class="math inline">\(\operatorname{DFT}_{2^n}\)</span> to a quantum state <span class="math inline">\(\ket{j}\)</span> we calculate <span class="math display">\[ +\operatorname{DFT}_{2^n}\ket{j} = \frac{1}{\sqrt{{2^n}}} \sum_k e^{2\pi i j k 2^{-n}} \ket{k} +\]</span> We can rewrite this as follows: <span class="math display">\[ +\begin{aligned} +\operatorname{DFT}_{2^n}\ket{j} =& \frac{1}{\sqrt{{2^n}}} \sum_k e^{2\pi i j k 2^{-n}} \ket{k}\\ +=& \frac{1}{\sqrt{{2^n}}} \sum_{k_1} \dots \sum_{k_n} e^{2\pi i j (\sum_l k_l 2^{-l})} \ket{k_1 \dots k_n}\\ +=& \frac{1}{\sqrt{{2^n}}} \sum_{k_1} \dots \sum_{k_n} \bigotimes^n_{l=1} e^{2\pi i j (k_l 2^{-l})} \ket{k_l}\\ +=& \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n \sum_{k_l} e^{2\pi i j (k_l 2^{-l})} \ket{k_l}\\ +=& \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n (\ket{0} + e^{2\pi i j 2^{-l}} \ket{1})\\ +=& \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n (\ket{0} + e^{2\pi i 0.j_{n-(l-1)} \dots j_{n}} \ket{1})\\ +=& \bigotimes_{l=1}^n \frac{1}{\sqrt{2}}(\ket{0} + e^{2\pi i 0.j_{n-(l-1)} \dots j_{n}} \ket{1}) +\end{aligned} +\]</span> The expression <span class="math inline">\(0.j\)</span> expresses a binary fraction (e.g. <span class="math inline">\(0.101 = \frac{1}{2} + \frac{1}{8} = \frac{5}{8}\)</span>).</p> +<p>With this we have shown, that we can write <span class="math inline">\(\operatorname{DFT}_{2^n}\ket{j}\)</span> as the following tensor product of quantum states</p> +<p><span class="math display">\[ +\frac{1}{\sqrt{2}}(\ket{0} + e^{2\pi i 0.j_n} \ket{1}) \otimes \frac{1}{\sqrt{2}}(\ket{0} + e^{2\pi i 0.j_{n-1}j_n} \ket{1}) \otimes \dots \otimes \frac{1}{\sqrt{2}}(\ket{0} + e^{2\pi i 0.j_1\dots j_n} \ket{1}) +\]</span></p> +<p>The rest of this section will be updated after the next lecture.</p> </section> diff --git a/_book/sitemap.xml b/_book/sitemap.xml index b28a67e..b6f92a7 100644 --- a/_book/sitemap.xml +++ b/_book/sitemap.xml @@ -2,7 +2,7 @@ <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <url> <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/index.html</loc> - <lastmod>2024-05-31T13:16:17.782Z</lastmod> + <lastmod>2024-06-11T17:32:07.892Z</lastmod> </url> <url> <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/quantumBasics.html</loc> @@ -18,11 +18,11 @@ </url> <url> <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/quantumSystems.html</loc> - <lastmod>2024-05-31T17:19:26.978Z</lastmod> + <lastmod>2024-06-11T10:58:17.042Z</lastmod> </url> <url> <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/observingSystems.html</loc> - <lastmod>2024-05-31T17:18:58.860Z</lastmod> + <lastmod>2024-06-11T17:30:13.951Z</lastmod> </url> <url> <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/partialObserving.html</loc> @@ -46,14 +46,14 @@ </url> <url> <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/shorsAlgorithm.html</loc> - <lastmod>2024-06-01T09:32:38.929Z</lastmod> + <lastmod>2024-06-11T17:28:37.603Z</lastmod> </url> <url> <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/Introduction-to-Quantum-Computing.pdf</loc> - <lastmod>2024-06-01T09:33:36.308Z</lastmod> + <lastmod>2024-06-11T17:32:55.904Z</lastmod> </url> <url> <loc>https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/Introduction-to-Quantum-Computing.epub</loc> - <lastmod>2024-06-01T09:33:37.814Z</lastmod> + <lastmod>2024-06-11T17:32:57.519Z</lastmod> </url> </urlset> diff --git a/_quarto.yml b/_quarto.yml index b7faca1..c70b227 100644 --- a/_quarto.yml +++ b/_quarto.yml @@ -8,7 +8,7 @@ book: - name: Jannik Hellenkamp - name: Dominique Unruh downloads: [pdf, epub] - version: 0.1.2 + version: 0.1.3 search: true page-navigation: true site-url: https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script/ diff --git a/index.qmd b/index.qmd index 736859e..9958abc 100644 --- a/index.qmd +++ b/index.qmd @@ -12,6 +12,11 @@ These lecture notes are released under the CC BY-NC 4.0 license, which can be fo ## Changelog {.unnumbered} +#### Version 0.1.3 (11.06.2024) +- added/extended 9.4 + 9.5 (Post processing and Beginning of DFT circuit) +- updated 9.3 +- added chapter 3 (Quantum systems) +- error correction in chapter 9 #### Version 0.1.2 (31.05.2024) - minor changes to chapter 2 diff --git a/observingSystems.qmd b/observingSystems.qmd index b1e0c82..afe207e 100644 --- a/observingSystems.qmd +++ b/observingSystems.qmd @@ -1,5 +1,4 @@ # Observing probabilistic and measuring quantum systems - <!-- So far we only talked about the description of a probabilistic and a quantum system. We now look into observing/measuring those systems. @@ -23,7 +22,7 @@ When observing a probabilistic system, the observation is just a passive process ## Example: Random 1-bit number -We usa a the random 1-bit number example to the random 2-bit example from @sec-prob. +We usa a the random 1-bit number example similar to the random 2-bit example from @sec-prob. We have a distribution $d_{\text{1-bit}} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ which represents the probability distribution of generating a 1-bit number with equal probability. We also have a process $A_{\text{flip}} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ which flips the bit with a probability of $\frac{1}{3}$. We look at two different cases: For the first case, we observe only the final distribution and for the second case we observe after the generation of the 1-bit number and we also observe the final distribution. @@ -34,11 +33,13 @@ From @sec-prob-apply we know that the final distribution $d$ is $$ d = A_{\text{flip}} \cdot d_{\text{1-bit}} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} $$ -We observe this distribution and will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $d_1 = \frac{1}{2}$. +We observe this distribution and will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $\Pr[0] = d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $\Pr[1] = d_1 = \frac{1}{2}$. ##### Observing after generation {.unnumbered} -We now observe the system after the generation of the 1-bit number and also observe the final distribution +We now observe the system after the generation of the 1-bit number and also observe the final distribution. After the generation, we will get outcome $0$ and the new distribution $d = e_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with a probability of $\Pr[0] = d_0 = \frac{1}{2}$ and the outcome $1$ and the new distribution $d = e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with a probability of $\Pr[1] = d_1 = \frac{1}{2}$. + +We now apply in each case the matrix $A_\text{flip}$. This will give us the outcome $A_\text{flip} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ::: @@ -72,7 +73,18 @@ $$ H\psi = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} $$ -Measuring this state will get the outcome $0$ with probability $|\psi_0|^2 = 1$ and have the post measurement state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. +Measuring this state will get the outcome $0$ with probability $\Pr[0] = |\psi_0|^2 = 1$ and have the post measurement state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. + +##### Measure the initial and the final state {.unnumbered} + +Measuring $\psi$ with no further unitary matrices applied can have the outcome $0$ or $1$. We will look at the final measurement for each case: + + +The first measurement will have outcome $0$ with probability $\Pr[0] = |\psi_0|^2 = \frac{1}{2}$ and the post measurement state will be $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. $H$ applied to this post measurement state will be $H\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$. When measuring this state, we will get the outcome $0$ with probability $\Pr[0] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$ and outcome $1$ with with probability $\Pr[1] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$. + +The outcome $1$ will appear at the initial state with probability $\Pr[1] = |\psi_1|^2 = \frac{1}{2}$ and the post measurement state will be $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. $H$ applied to this post measurement state will be $H\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$. When measuring this state, we will get the outcome $0$ with probability $\Pr[0] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$ and outcome $1$ with with probability $\Pr[1] = |-\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$. + +So no independent of the outcome of the first measurement, at the second measurement the outcome $0$ and $1$ have a probability of $\frac{1}{2}$. This shows, that when measuring before applying $H$, we will receive different probabilities, then when measuring only at the end. This proves, that measurements can change the system. ::: diff --git a/quantumSystems.qmd b/quantumSystems.qmd index 3d08c9c..9c7283e 100644 --- a/quantumSystems.qmd +++ b/quantumSystems.qmd @@ -1,6 +1,5 @@ # Quantum systems -<!-- With the basics for a probabilistic system defined, we now look into describing a quantum computer mathematically. In the following table you can see the analogy from the quantum world to the probabilistic world. | Probabilistic world | Quantum world | @@ -11,9 +10,9 @@ With the basics for a probabilistic system defined, we now look into describing | Stochastic matrix as process | Unitary matrix as process | ## Quantum states -One of the most important element of the quantum world is a quantum state. A quantum state describes the state of a quantum system as a vector. Each entry of the vector represents a *classical* possibility (similar to the deterministic possibilities in a probability distribution). The entries of a quantum state called *amplitude*. In contrast to a probabilistic system, these entries can be negative and are also complex numbers. +One of the most important element of the quantum world is a quantum state. A quantum state describes the state of a quantum system as a vector. Each entry of the vector represents a *classical* possibility (similar to the deterministic possibilities in a probability distribution). The entries of a quantum state are called *amplitude*. In contrast to a probabilistic system, these entries can be negative and are also complex numbers. -These amplitudes correlate to the probability of the quantum state being in the corresponding classical probability. To calculate the probabilities from the amplitude, we can take the square of the absolute value of the amplitude. +These amplitudes tell us the probability of the quantum state being in the corresponding classical possibility. To calculate the probabilities from the amplitude, we can take the square of the absolute value of the amplitude. This means, that for the classical possibility $x$ and a quantum state $\psi$ the probability for $x$ is $\Pr[x] = |\psi|^2$. To have valid probabilities, the sum of all probabilities need to sum up to $1$. From this we get the formal definition of a quantum state: @@ -31,31 +30,32 @@ A quantum state is a vector $\psi \in \mathbb{C}^n$ with $\sqrt{\sum |\psi|^2} = ## Example: Some Quantum states The following vectors are valid quantum states with the classical possibilities $0$ and $1$: $$ -\ket{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\quad -\ket{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\quad -\ket{+} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}\quad -\ket{-} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} +\ket{0} := \begin{pmatrix} 1 \\ 0 \end{pmatrix}\quad +\ket{1} := \begin{pmatrix} 0 \\ 1 \end{pmatrix}\quad +\ket{+} := \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}\quad +\ket{-} := \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} $$ Note that the symbol $\ket{}$ is not yet introduced, so just understand it as some label at this point. The probabilities for each state can be calculated as follows: $$ \begin{aligned} -\ket{0}: \Pr[0] &= |1|^2 = 1 \quad &&\Pr[1] = |0|^2 = 0 \\ -\ket{1}: \Pr[0] &= |0|^2 = 0 \quad &&\Pr[1] = |1|^2 = 1 \\ -\ket{+}: \Pr[0] &= |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} &&\Pr[1] = |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} \\ -\ket{-}: \Pr[0] &= |\frac{1}{\sqrt{2}}|^2 = \frac{1}{2} &&\Pr[1] = |\frac{-1}{\sqrt{2}}|^2 = \frac{1}{2} +\ket{0}:&& \Pr[0] &= |1|^2 = 1 \quad &&\Pr[1] = |0|^2 = 0 \\ +\ket{1}:&& \Pr[0] &= |0|^2 = 0 \quad &&\Pr[1] = |1|^2 = 1 \\ +\ket{+}:&& \Pr[0] &= \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} &&\Pr[1] = \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} \\ +\ket{-}:&& \Pr[0] &= \lvert\tfrac{1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} &&\Pr[1] = \lvert\tfrac{-1}{\sqrt{2}}\rvert^2 = \tfrac{1}{2} \end{aligned} $$ We can see here, that two different quantum states ($\ket{+}$ and $\ket{-}$) can have the same probabilities for all classical possibilities. ::: ## Unitary transformation -We now have defined quantum states and need a way to describe some processes, which we want to apply on the quantum states. In the probabilistic world, we have stochastic matrices for this, but unfortunately we can not use these matrices on quantum states, since the output of applying these on a quantum state is not guaranteed to be a quantum state again. We therefore make a new addition to our quantum toolbox called a *unitary transformation*. +We now have defined quantum states and need a way to describe some processes, which we want to apply on the quantum states. In the probabilistic world, we have stochastic matrices for this, but unfortunately we can not use these matrices on quantum states, since the output of applying these on a quantum state is not guaranteed to be a quantum state again. We therefore look for a different property of a matrix for which the outcome of applying that matrix is guaranteed to be a quantum state. We get this property with *unitary* matrices. + ::: {.callout-note appearance="minimal" icon=false} ::: {.definition #def-unitary-transformation} ## Unitary transformation -Given a quantum state $\psi \in \mathbb{C}^n$ and a unitary matrix $U \in \mathbb{C}^{n\times n}$, the state after the transformation is $U\psi$. +Given a quantum state $\psi \in \mathbb{C}^n$ and a unitary matrix $U \in \mathbb{C}^{n\times n}$, the state after the transformation is a quantum state $U\psi$. ::: ::: @@ -67,7 +67,7 @@ A matrix $U \in \mathbb{C}^{n\times n}$ is called *unitary* iff $U^\dagger U = I ::: ::: -A unitary transformation is by definition invertible, therefore we can undo all unitary transformations by applying $U^\dagger$. +A unitary matrix is by this lemma invertible, therefore we can undo all unitary transformations by applying $U^\dagger$. ::: {.callout-tip icon=false} @@ -85,4 +85,4 @@ X\ket{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 $$ ::: ---> + diff --git a/shorsAlgorithm.qmd b/shorsAlgorithm.qmd index a1cbe2d..8b412cc 100644 --- a/shorsAlgorithm.qmd +++ b/shorsAlgorithm.qmd @@ -13,11 +13,11 @@ The DFT is defined as follows: ## Discrete Fourier Transformation (DFT) -The discrete Fourier transform (DFT) is a linear transformation on $\mathbb{C}^N$ represented by the matrix +The discrete Fourier transform (DFT) is a linear transformation on $\mathbb{C}^M$ represented by the matrix $$ -\operatorname{DFT}_N = \frac{1}{\sqrt{N}} (\omega^{kl})_{kl} \in \mathbb{C}^{N\times N} +\operatorname{DFT}_M = \frac{1}{\sqrt{M}} (\omega^{kl})_{kl} \in \mathbb{C}^{M\times M} $$ -with $\omega = e^{2i\pi/N}$, which is the $N$-th root of unity. +with $\omega = e^{2i\pi/M}$, which is the $M$-th root of unity. ::: ::: @@ -31,10 +31,10 @@ This transformation is best imagined as a process, which takes a periodic vector Here are some properties of the DFT which can be used without further proof. 1. The DFT is unitary. -2. $\omega^t = \omega^{t\mod N}$ for all $t \in \mathbb{Z}$. -3. Given a quantum state $\psi \in \mathbb{C}^N$ which is $r$-periodic and where $r\mid N$, $\operatorname{DFT}_N \psi$ will compute a quantum state $\phi \in \mathbb{C}^N$, which has non-zero values on the multiples of $\frac{N}{r}$. Note that $\frac{N}{r}$ intuitively represents the frequency of $\psi$. This means, that +2. $\omega^t = \omega^{t\mod M}$ for all $t \in \mathbb{Z}$. +3. Given a quantum state $\psi \in \mathbb{C}^M$ which is $r$-periodic and where $r\mid M$, $\operatorname{DFT}_M \psi$ will compute a quantum state $\phi \in \mathbb{C}^M$, which has non-zero values on the multiples of $\frac{M}{r}$. Note that $\frac{M}{r}$ intuitively represents the frequency of $\psi$. This means, that $$ -|\phi_i| = \begin{cases} \frac{1}{\sqrt{t}}, & \text{if}\ \frac{N}{t}\mid i \\ 0, & \text{otherwise} \end{cases} +|\phi_i| = \begin{cases} \frac{1}{\sqrt{r}}, & \text{if}\ \frac{M}{r}\mid i \\ 0, & \text{otherwise} \end{cases} $$ ::: ::: @@ -72,7 +72,7 @@ To start the reduction, we need a special case of the period finding problem cal ## Order finding problem -For known $a$ and $N$ which are relatively prime, find the period $r$ of $f(i) = a^i \bmod n$. We call $r$ the order of $a$ written $r = \text{ ord } a$. (This is similar to finding the smallest $i > 0$ with $f(i) = 1$). +For known $a$ and $N$ which are relatively prime, find the period $r$ of $f(i) = a^i \bmod N$. We call $r$ the order of $a$ written $r = \text{ ord } a$. (This is similar to finding the smallest $i > 0$ with $f(i) = 1$). ::: ::: @@ -80,7 +80,7 @@ Since the order finding problem is just the period finding problem for a specifi We have a integer $N$ as an input for the factoring problem. -1. Pick an $a \in \{1,...,N-1\}$ with $a$ relatively prime to $n$. +1. Pick an $a \in \{1,\dots,N-1\}$ with $a$ relatively prime to $N$. 2. Compute the order of $a$, so that $r = \text{ ord } a$ (using the solver for the order finding problem). 3. If the order $r$ is odd, we abort. 4. Calculate $x:= a^{\frac{r}{2}}+1 \bmod N$ and $y:= a^{\frac{r}{2}}-1 \bmod N$. @@ -105,7 +105,9 @@ All in all this reduction shows, that if we have an oracle which can solve the p ## The quantum algorithm for period finding {#sec-shor-algo} -We now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor's algorithm requires a $f:\{0,1\}^n\rightarrow\{0,1\}^m$ which is $r$-periodic and is show in this figure: +We now look into an quantum algorithm that solves the period finding problem within reasonable runtime. The quantum circuit for Shor's algorithm requires a $f:\mathbb{Z}\rightarrow X$ which is $r$-periodic. We choose a number $m$ which needs to be big enough to encode the values of $X$ and choose a number $n$ under the condition of $n\geq 2 \log_2(r)$ for the post processing to work. Note that when using this algorithm for factoring, we choose $n$ to be $n:=2\lvert N \rvert$, since $r \leq N$. $\lvert N\rvert$ denotes the number of bits needed to encode $N$ here. + +The quantum algorithm for period finding is shown in this figure: {width=100%} @@ -113,15 +115,13 @@ The algorithm works as follows: 1. We start with a $\ket{0}$ entry on every wire. 2. We bring the top wire into the superposition over all entries. The quantum state is then $2^\frac{-n}{2}\sum_x \ket{x} \otimes \ket{0^m}$. -3. We apply $U_f$, which is the unitary of $f:\{0,1\}^n\rightarrow\{0,1\}^m$. This calculates the superposition over all possible values $f(x)$ on the bottom wire. The resulting quantum state is $\frac{-n}{2}\sum_x \ket{x,f(x)}$. +3. We apply $U_f$, which is the unitary of $f:\{0,1\}^n\rightarrow\{0,1\}^m$. This calculates the superposition over all possible values $f(x)$ on the bottom wire. The resulting quantum state is $2^\frac{-n}{2}\sum_x \ket{x,f(x)}$. 4. To understand the algorithm better, we measure the bottom wire at this point. This will give us one random value $f(x_0)$ for some $x_0$. The top wire will then contain a superposition over all values $x$ where $f(x) = f(x_0)$. Since $f$ is know to be $r$-periodic, we know, that $f(x) = f(x_0)$ iff $x \equiv x_0 \bmod r$. This means, that on the resulting quantum state on the top wire is periodic and can be written as $\frac{1}{\sqrt{2^\frac{n}{r}}} \sum_{x\equiv x_0 \bmod r} \ket{x} \otimes \ket{f(x_0)}$. 5. We apply the Discrete Fourier Transform on the top wire. This will "analyze" the top wire for the period and output a vector with entries at multiples of $\frac{2^n}{r}$ as seen in @thm-dft-properties. For simplicity we assume, that $r \mid 2^n$ holds. 6. We measure the top wire and get one random multiple of $\frac{2^n}{r}$, which we can denote as $a\cdot\frac{2^n}{r}$ -Since we get a multiple of $\frac{2^n}{r}$ on each run, we can simply run the algorithm multiple times to get different multiples and then compute $\frac{2^n}{r}$ by taking the gcd of those multiples. From that we compute $r$. - -Unfortunately this only works because we assumed $r \mid 2^n$. Since this does usually not hold, we only get approximate multiples of $\frac{2^n}{r}$ (which is not even an integer) and thus post processing is a bit more complex. +Since we get a multiple of $\frac{2^n}{r}$ on each run, we can simply run the algorithm multiple times to get different multiples and then compute $\frac{2^n}{r}$ by taking the gcd of those multiples. From that we compute $r$. Unfortunately this only works because we assumed $r \mid 2^n$. Since this does usually not hold, we only get approximate multiples of $\frac{2^n}{r}$ (which is not even an integer) and thus post processing is a bit more complex. ## Post processing @@ -131,27 +131,109 @@ So far we have seen the DFT to analyze the period of a quantum state, we have se ::: {.therorem #thm-shor-post-process} ## -If $\{0,1\}^n \rightarrow \{0,1\}^n$ is $r$-periodic with probability $\Omega(1/\log\log r)$ the following holds: +Iff $f: \mathbb{Z} \rightarrow X$ is $r$-periodic, the following holds with probability $\Omega(1/\log\log r)$: $$ \frac{-r}{2} \leq rc\bmod 2^n \leq \frac{r}{2} $$ -where $c$ is the output of the second measurement of the quantum circuit described in @sec-shor-algo. +where $c$ is the output of the second measurement of the quantum circuit described in @sec-shor-algo and $n$ is the number of qubits on the upper wire of the quantum circuit. ::: ::: -We assume that the theorem holds for our outcome of the second measurement (If that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome): +We assume that the theorem holds for our outcome $c$ of the second measurement (if that is not the case, our result will be wrong and we can just run the quantum algorithm again to get a different outcome): -Then exists a $d$ such that: +Then exists an integer $d$ such that: $$ \begin{aligned} &\lvert rc - d2^n\rvert \leq \frac{r}{2} \\ -\Leftrightarrow&\lvert \frac{c}{2^n} - \frac{d}{r}\rvert \leq \frac{1}{2^{n+1}} +\iff&\lvert \frac{c}{2^n} - \frac{d}{r}\rvert \leq \frac{1}{2^{n+1}} && |\text{ division by } r\cdot 2^n +\end{aligned} +$$ +The fraction $\frac{c}{2^n}$ is known, so the goal is to find a fraction $\frac{d}{r}$ that is $\frac{1}{2^{n+1}}$-close to $\frac{c}{2^n}$. + +Since $n$ is the number of qubits used in the quantum circuit and was chosen, such that $n \geq 2\log_2(r)$ and thus $2^{n} \geq 2 r^2$ holds and from this we know that $\frac{1}{2^{n+1}} \leq \frac{1}{2r^2}$ holds as well. + +So if @thm-shor-post-process holds, we now $\lvert \frac{c}{2^n} - \frac{d}{r} \rvert \leq \frac{1}{2r^2}$ also holds. Our task is now rewritten to find $\frac{d}{r}$ under this condition. For this we use another theorem: + +::: {.callout-note appearance="minimal" icon=false} +::: {.theorem #thm-shor-post-process-frac} + +For a given real number $\varphi \geq 0$ and integer $q > 0$ there is at most one fraction $\frac{d}{r}$ with $r \leq q$ and $\lvert \varphi - \frac{d}{r} \rvert \leq \frac{1}{2q}$. In this case, this $\frac{d}{r}$ is a convergent of the continued fraction expansion of $\varphi$. + +::: +::: +This theorem uses the convergent of a continued fraction expansion. A continued fraction expansion of a number $t$ is the number rewritten as a fraction in the form + +$$ +t = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}} +$$ + +where $a_i$ always has to be the biggest possible integer. +We call $[a_0,a_1,a_2,a_3,\dots]$ the continued expansion of $t$. +The expansion is finite iff t is rational. +For a given continued expansion, a prefix $[a_0,\dots,a_i]$ is called a convergent. Writing this convergent as a normal fraction will give us an approximation of the number $t$. + +::: {.callout-tip icon=false} + +## Example: continued expansion of a fraction + +The number $2.3$ can be written as +$$ +2.3 = 2 + \frac{1}{3 + \frac{1}{3 + 0}} +$$ +and the continued fraction expansion of $2.3$ is $[2,3,3]$. The expansions $[2]$ and $[2,3]$ are convergents of the expansion of $2.3$ and written as a fraction will give us the approximations $2$ and $2+\frac{1}{3} = 2.\bar{3}$. + +The number $0.99$ can be written as + +$$ +0.99 = 0 + \frac{1}{1 + \frac{1}{99 + 0}} +$$ +and the continued fraction expansion of $0.99$ is $[0,1,99]$. +The expansions $[0]$ and $[0,1]$ are convergents of the expansion of $0.99$ and written as a fraction will give us the approximations $0$ and $0+\frac{1}{1} = 1$. + +::: + +Using @thm-shor-post-process-frac (with $\varphi:= \frac{c}{2^n}$ and $q:=2^n$) we can find $\frac{d}{r}$ and from this $r$ which is the period of our function using the following steps: + +For each convergent $\gamma$ of $\varphi$ do the following: + +1. Compute $\gamma$ as fraction $\frac{d}{r}$. +2. Stop if $r \leq 2^n$ and $\varphi$ is $\frac{1}{2^{n+1}}$-close to $\frac{c}{2^n}$ and return $r$. + +Note: It can happen, that the resulting fraction does not have the right $r$ in the denominator, because $\frac{d}{r}$ was simplified (if numerator and denominator shared a common factor). But the probability of this happening is sufficiently small and already included in the probability in @thm-shor-post-process. + + +This completes the postprocessing of Shor's algorithm. + + +## Constructing the DFT + +So far we have described everything necessary for Shor's algorithm, but only described the matrix representation of the $\operatorname{DFT}_M$. We will now take a closer look into implementing the $\operatorname{DFT}_M$ as a quantum circuit. Since we only use the $\operatorname{DFT}_M$ for Shor's algorithm so far, we will only look at $M=2^n$, which is the $\operatorname{DFT}$ applied on $n$ qubits. + +To start the circuit, we recall the definition of the $\operatorname{DFT}_{2^n}$ from @def-shor-dft: $\operatorname{DFT}_{2^n} := \frac{1}{\sqrt{{2^n}}} (\omega^{kl})_{kl}$ with $\omega:= e^{2\pi i / 2^n}$. To apply the $\operatorname{DFT}_{2^n}$ to a quantum state $\ket{j}$ we calculate +$$ +\operatorname{DFT}_{2^n}\ket{j} = \frac{1}{\sqrt{{2^n}}} \sum_k e^{2\pi i j k 2^{-n}} \ket{k} +$$ +We can rewrite this as follows: +$$ +\begin{aligned} +\operatorname{DFT}_{2^n}\ket{j} =& \frac{1}{\sqrt{{2^n}}} \sum_k e^{2\pi i j k 2^{-n}} \ket{k}\\ +=& \frac{1}{\sqrt{{2^n}}} \sum_{k_1} \dots \sum_{k_n} e^{2\pi i j (\sum_l k_l 2^{-l})} \ket{k_1 \dots k_n}\\ +=& \frac{1}{\sqrt{{2^n}}} \sum_{k_1} \dots \sum_{k_n} \bigotimes^n_{l=1} e^{2\pi i j (k_l 2^{-l})} \ket{k_l}\\ +=& \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n \sum_{k_l} e^{2\pi i j (k_l 2^{-l})} \ket{k_l}\\ +=& \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n (\ket{0} + e^{2\pi i j 2^{-l}} \ket{1})\\ +=& \frac{1}{\sqrt{{2^n}}} \bigotimes_{l=1}^n (\ket{0} + e^{2\pi i 0.j_{n-(l-1)} \dots j_{n}} \ket{1})\\ +=& \bigotimes_{l=1}^n \frac{1}{\sqrt{2}}(\ket{0} + e^{2\pi i 0.j_{n-(l-1)} \dots j_{n}} \ket{1}) \end{aligned} $$ -The fraction $\frac{c}{2^n}$ is known, so the goal is to find a fraction $\frac{d}{r}$ that is $\frac{1}{2^{n+1}}$ close to $\frac{c}{2^n}$. +The expression $0.j$ expresses a binary fraction (e.g. $0.101 = \frac{1}{2} + \frac{1}{8} = \frac{5}{8}$). + +With this we have shown, that we can write $\operatorname{DFT}_{2^n}\ket{j}$ as the following tensor product of quantum states -The rest of postprocessing will be updated after the next lecture. +$$ +\frac{1}{\sqrt{2}}(\ket{0} + e^{2\pi i 0.j_n} \ket{1}) \otimes \frac{1}{\sqrt{2}}(\ket{0} + e^{2\pi i 0.j_{n-1}j_n} \ket{1}) \otimes \dots \otimes \frac{1}{\sqrt{2}}(\ket{0} + e^{2\pi i 0.j_1\dots j_n} \ket{1}) +$$ +The rest of this section will be updated after the next lecture. -- GitLab