
Introduction to Quantum Computing
Lecture notes for the summer term 2025

Jannik Hellenkamp Stefan Stump Dominique Unruh

2025-06-12

Table of contents

Welcome 2

1 Introduction 2
1.1 Double-slit experiment . 2
1.2 What is a quantum computer? . 4

2 Probabilistic systems 6
2.1 Deterministic possibilities . 6
2.2 Probability distribution . 6
2.3 Probabilistic processes . 7

Applying a probabilistic process . 8

3 Quantum systems 9
3.1 Classical possibilities . 9
3.2 Quantum states . 9
3.3 Unitary transformation . 10

4 Observing probabilistic and measuring quantum systems 11
4.1 Observing a probabilistic system . 12
4.2 Measuring a quantum system . 13
4.3 Elitzur–Vaidman bomb tester . 15

5 Partial observing and measuring systems 15
5.1 Partially observing a probabilistic system . 15
5.2 Partially measuring a quantum system . 18

6 Composite Systems 19
6.1 Constructing composite systems . 20
6.2 Measuring composite systems . 22

7 Quantum Circuits 23
7.1 Visual language . 24
7.2 Important gates . 24

7.2.1 Single qubit gates . 24
7.2.2 Controlled-NOT gate . 25

7.3 Teleportation . 26

8 Ket Notation 29
8.1 Teleportation . 30

9 Bernstein-Vazirani Algorithm 33

2

10 Shor’s Algorithm 36
10.1 Discrete Fourier Transformation . 37
10.2 Reducing factoring to period finding . 38
10.3 The quantum algorithm for period finding . 39
10.4 Post processing . 40
10.5 Constructing the DFT . 42

11 Grover’s algorithm 45
11.1 Preparations . 45

11.1.1 Constructing the oracle 𝑉𝑓 . 46
11.1.2 Constructing FLIP∗ . 46

11.2 The algorithm for searching . 48
11.2.1 Understanding the algorithm for searching 48

Welcome

These are the lecture notes for the “Introduction to Quantum Computing” lecture held by
Dominique Unruh at RWTH Aachen in the summer term 2025. They should be viewed as an
addition to the handwritten notes and the lecture recordings.

The lecture notes will be updated progressively throughout the semester, following the pace
of the lectures. Last year’s lecture notes can be found here, but note that they are incomplete
and may differ from this years content.

If you spot an error, please report it to Gitlab. Alternatively, you can send Stefan Stump an
e-mail (stefan.stump@rwth-aachen.de).If you have a question of understanding, please ask it
in the Moodle forum.

These lecture notes are released under the CC BY-NC 4.0 license, which can be found here.

The Jupyter notebooks created during the lectures can be found in the JupyterHub in the
course “[IQC] Introduction to Quantum Computing” or in Moodle. These will be added
shortly after the lectures. If changes are made to the files, they can be easily reset with the
usual git commands using “Git” and then “Open Git Repository in Terminal.

3

https://qis.rwth-aachen.de/teaching/24ss/intro-quantum-computing/script
https://git.rwth-aachen.de/unruh/script-intro-qc/
https://creativecommons.org/licenses/by-nc/4.0/
https://jupyter.rwth-aachen.de/

1 Introduction

1.1 Double-slit experiment

We start by looking at one of the most famous quantum experiments to get an idea of the
surprising nature of quantum behaviour.

Figure 1.1: From xkcd 3076

In the double slit experiment, a light source is placed behind a wall with two narrow, closely
spaced slits. On the other side, a photosensitive plate is positioned.

4

https://xkcd.com/3076/

light
source

wall
with slits

photo
plate

Figure 1.2: Double-slit experiment setup

An interference pattern appears on this photo plate, i.e. alternating light and dark stripes. This
is due to the wave character of light. As the light waves pass through the slits, they overlap
and interfere with each other. In some areas they have the same amplitude and reinforce each
other, creating bright stripes. In other areas, the amplitudes have different signs and the waves
cancel each other out, creating dark stripes.

This behaviour is to be expected. This is because the light travels different distances from the
two slits to the same spot on the photo plate. If the difference is half a wavelength the two
light waves cancel out at that spot.

Now we take individual photons. Here we would expect the interference pattern to disappear,
as each photon can only pass through one of the slits. In that case, no interference can occur
between photons coming from the two slits since they never meet. We would expect just two
overlapping bright areas.

Surprisingly this behaviour does not occur. Even with single photons an interference pattern
continues to appear. The photons do not decide to pass through one specific slit. They are in
“superposition” between these two paths. This means that a single photon has two possibilities
where it came from, both possibilities still happen at the same time and can cause interference
with each other. For this reason, the amplitudes also add up or cancel out at the photo plate,
resulting in the same interference pattern.

In later chapters, the mathematics shown will make this behaviour easier to understand.

5

Figure 1.3: Resulting interference pattern when using single photons

1.2 What is a quantum computer?

To start into the topic of quantum computing and to understand the differences from classical
computers, we first need to look at some of the basics of such classical computers.

In a classical computer the information is stored in bits which can either be in the state 0
or the state 1. These bits can be manipulated through different classical operations and we
can look at these bits and read them, without interfering with the system or changing any
states.

In a quantum computer the information is stored in a qubit which can be in a superposition
between the state 0 and 1. Just as with classical computers, we can construct variables from
these qubits to store bigger numbers. For example a 64-qubit integer would be described by
64 qubits which are in a superposition between 0 and 264 − 1. This can be imagined best as a
variable where the universe has not yet decided on its value and therefore the variable has all
possible values at the same time.

We can now use this superposition and manipulate it with different quantum operations. Con-
trary to a classical computer, in a quantum computer these operations are “applied” at all
possible input values at the same time and the result is a superposition of all possible results
of the operation. We call this effect quantum parallelism.

Example: Quantum parallelism

Let’s say you have a quantum variable 𝑥 in a superposition of numbers between 0 and
264 − 1 (all possible 64-bit values) and some function 𝑓(𝑥). You program a quantum
computer to compute 𝑓(𝑥).

6

The quantum computer would compute 𝑓(𝑥) for 𝑥 = 0, 𝑥 = 1, 𝑥 = 2, ... at the the same
time and the result of this computation is a superposition of all possible values 𝑓(𝑥).

Reading this, one might be tempted to utilize quantum parallelism to run any algorithm on
a quantum computer in order to optimize runtime. Unfortunately there is a big catch with
quantum computers: If we try to look at the state of a qubit (also called measuring), the
universe decides randomly on an outcome and therefore when measuring we only get the
result of one computation and all the rest of the information is lost.

Example (continued): Quantum parallelism

After your quantum computer has calculated a superposition of all possible values 𝑓(𝑥),
you want to get some information on the output and therefore you do a measurement on
the resulting quantum state.
You will receive one random 𝑓(𝑥) and all the other possible solutions are lost.

Due to this restriction, naively running established algorithms on a quantum computer will not
work. Fortunately there are some clever tricks to create some “interference” between different
computations before measuring. This will give us useful information in some cases.

2 Probabilistic systems

To describe a quantum computer mathematically, we can do math similar to the known topic
of probabilistic systems. We therefore first look into describing a probabilistic system.

2.1 Deterministic possibilities

At first we need to define all the different possible outcomes of our system. For example, for
a coin flip this could be heads or tails and for a dice this could be the labels of the different
sides. We call these possibilities deterministic possibilities. Note that we will only be using a
finite number of possibilities.

7

Example: Random 2-bit number

Imagine you have a random number generator, which outputs 2-bit numbers. The deter-
ministic possibilities of this generator are 00, 01, 10 and 11.

We will always assume the deterministic possibilities to be ordered in some way (even if it is
an arbitrary one). In the example above, the deterministic possibilities are 00, 01, 10, 11, not
00, 10, 01, 11. We will need this to know the order of entries in vectors and matrices later.

2.2 Probability distribution

Next, we need to assign each possibility a probability. We write this as Pr[𝑥] = 𝑝 where
𝑝 ∈ [0, 1] is the probability of the deterministic possibility 𝑥.

Example: Coin flip

For a coin flip the probability of heads would be Pr[heads] = 1
2 and the probability for

tails would be Pr[tails] = 1
2 .

If we combine all probabilities for all the possible outcomes and write them as a vector, we get
a probability distribution. Here it comes in handy that we have a ordering on the deterministic
possibilities. If the deterministic possibilities are 𝑥1, … , 𝑥𝑛, their probabilities will be in the
vector in that order.

Definition 2.1 (Probability distribution). A vector 𝑑 ∈ ℝ𝑛 is a valid probability distri-
bution iff ∑ 𝑑𝑖 = 1 and ∀𝑖 𝑑𝑖 ≥ 0.

This vector has 𝑛 entries, where each entry corresponds to a deterministic possibility 𝑥 and
the probability of 𝑥 is Pr[𝑥] = 𝑑𝑖. The sum over all probabilities has to be 1 and each entry
needs to be nonnegative in order to be a valid probability.

Example (continued): Coin flip

For a coin flip the probability distribution would be 𝑑coin ∈ ℝ2 with 𝑑 = (
1
21
2
).

Example (continued): Random 2-bit number

Recall your random 2-bit number generator from above. Imagine your generator outputs
each deterministic possibility with equal probability, except for the possibility 00, which

8

is never generated. The corresponding probability distribution would be

𝑑2-bit =
⎛⎜⎜⎜⎜⎜
⎝

0
1
3
1
3
1
3

⎞⎟⎟⎟⎟⎟
⎠

.

2.3 Probabilistic processes

With a probability distribution, we can only describe the probabilities of possibilities without
any knowledge of a prior state. We therefore add another element to our toolbox of probabilistic
systems called a probabilistic process.

A probabilistic process is a collection of 𝑛 probability distributions, where for each determin-
istic possibility 𝑖 there is a probability distribution 𝑎𝑖. This means that if the system is in
deterministic possibility 𝑖 before the process is applied, the system will afterwards be dis-
tributed according to 𝑎𝑖. We can write this as a matrix, where each column is a probability
distribution 𝑎𝑖.

Definition 2.2 (Probabilistic process). A matrix 𝐴 ∈ ℝ𝑁×𝑁 is a valid probabilistic
process iff for every column 𝑎 of 𝐴, 𝑎 is a valid probability distribution.

From Definition 2.1 we know that a valid probability distribution 𝑎 has the properties ∑ 𝑎𝑖 = 1
and ∀𝑖 𝑎𝑖 ≥ 0, therefore a matrix 𝐴 is a probabilistic process iff 𝐴 ∈ ℝ𝑁×𝑁 with ∑ 𝑎𝑖 = 1 and
∀𝑖 𝑎𝑖 ≥ 0 . Such a matrix is also called a stochastic matrix.

Example (continued): Random 2-bit number

Imagine a second device, which receives a 2-bit number as an input and flips both bits
at the same time with a probability of 1

3 . The probability distributions for each of the
deterministic possibility would then be

𝑎00 =
⎛⎜⎜⎜⎜
⎝

2
3
0
0
1
3

⎞⎟⎟⎟⎟
⎠

, 𝑎01 =
⎛⎜⎜⎜⎜
⎝

0
2
31
3
0

⎞⎟⎟⎟⎟
⎠

, 𝑎10 =
⎛⎜⎜⎜⎜
⎝

0
1
32
3
0

⎞⎟⎟⎟⎟
⎠

and 𝑎11 =
⎛⎜⎜⎜⎜
⎝

1
3
0
0
2
3

⎞⎟⎟⎟⎟
⎠

.

9

From this we can construct the process as a matrix from these processes as follows:

𝐴flip = (𝑎00 𝑎01 𝑎10 𝑎11) =
⎛⎜⎜⎜⎜
⎝

2
3 0 0 1

3
0 2

3
1
3 0

0 1
3

2
3 0

1
3 0 0 2

3

⎞⎟⎟⎟⎟
⎠

.

Applying a probabilistic process

Having defined probability distributions and probabilistic processes, we can now combine these
two elements and apply a probabilistic process on a probability distribution.

Definition 2.3 (Applying a probabilistic process). Given an initial probability distribu-
tion 𝑥 ∈ ℝ𝑛 and a probabilistic process 𝐴 ∈ ℝ𝑁×𝑁 , the result 𝑦 ∈ ℝ𝑛 of applying the
process 𝐴 is defined as

𝑦 = 𝐴𝑥.

Example (continued): Random 2-bit number

Recall the 2-bit number generator and the bit flip from above. Imagine you would first
draw a random 2-bit number from the generator and then run the bit flip device. We
already know that the probability distribution of the generator is 𝑑2-bit. Using 𝐴flip we
can calculate the final probability distribution:

𝐴flip ⋅ 𝑑2-bit =
⎛⎜⎜⎜⎜⎜
⎝

2
3 0 0 1

3
0 2

3
1
3 0

0 1
3

2
3 0

1
3 0 0 2

3

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

0
1
3
1
3
1
3

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

1
9
1
3
1
3
2
9

⎞⎟⎟⎟⎟⎟
⎠

.

3 Quantum systems

With the basics for a probabilistic system defined, we now look into describing a quantum
computer mathematically. In the following table you can see the analogy from the quantum
world to the probabilistic world.

10

Probabilistic world Quantum world
Probability distributions Quantum states
Probabilities Amplitudes
Deterministic possibilities Classical possibilities
Stochastic matrix as process Unitary matrix as process

3.1 Classical possibilities

Like in the probabilistic systems we need to define all outcomes for a quantum system. For ex-
ample, a photon can be in the state up or down. We call these possibilities classical possibilities.
Note that we will only be using a finite number of possibilities.

Example: Random bit

Imagine you have a random bit generator, which outputs one bit. The classical possibili-
ties of this generator are 0 and 1.

We will always assume the classical possibilities to be ordered in some way (even if it is
an arbitrary one), like the deterministic possibilities. In the example above, the classical
possibilities are 0, 1 not 1, 0. We will need this to know the order of entries in vectors and
matrices later.

3.2 Quantum states

One of the most important element of the quantum world is a quantum state. A quantum
state describes the state of a quantum system as a vector. Each entry of the vector represents
a classical possibility (similar to the deterministic possibilities in a probability distribution).
The entries of a quantum state are called amplitude. In contrast to a probabilistic system,
these entries can be negative and are also complex numbers.

These amplitudes tell us the probability of the quantum state being in the corresponding
classical possibility. To calculate the probabilities from the amplitude, we can take the square
of the absolute value of the amplitude.

This means that for the classical possibility 𝑥 and a quantum state 𝜓 the probability for 𝑥
is Pr[𝑥] = |𝜓|2. To have valid probabilities, the sum of all probabilities need to sum up to 1.
From this we get the formal definition of a quantum state:

11

Definition 3.1 (Quantum State). A quantum state is a vector 𝜓 ∈ ℂ𝑛 with
√∑𝑛

𝑖=1 |𝜓𝑖|2 = 1.

Example: Some Quantum states

The following vectors are valid quantum states with the classical possibilities 0 and 1:

|0⟩ ∶= (1
0) , |1⟩ ∶= (0

1) , |+⟩ ∶= (
1√
21√
2
) , |−⟩ ∶= (

1√
2

− 1√
2
) .

Note that the symbol |⟩ is not yet introduced, so just understand it as some label at this
point. The probabilities for each state can be calculated as follows:

|0⟩ ∶ Pr[0] = |1|2 = 1 Pr[1] = |0|2 = 0,
|1⟩ ∶ Pr[0] = |0|2 = 0 Pr[1] = |1|2 = 1,
|+⟩ ∶ Pr[0] = | 1√

2 |2 = 1
2 Pr[1] = | 1√

2 |2 = 1
2 ,

|−⟩ ∶ Pr[0] = | 1√
2 |2 = 1

2 Pr[1] = | −1√
2 |2 = 1

2 .

We can see here that two different quantum states (|+⟩ and |−⟩) can have the same
probabilities for all classical possibilities.

3.3 Unitary transformation

We now have defined quantum states and need a way to describe some processes, which we
want to apply on the quantum states. In the probabilistic world, we have stochastic matrices
for this, but unfortunately we can not use these matrices on quantum states, since the output
of applying these on a quantum state is not guaranteed to be a quantum state again. We
therefore look for a different property of a matrix for which the outcome of applying that
matrix is guaranteed to be a quantum state. The following Lemma is therefore useful.

Lemma 3.1 (Unitary matrix). For a square matrix 𝑈 , the following are equivalent:

• 𝑈 maps every quantum state to a quantum state,
• 𝑈†𝑈 = 𝐼 and 𝑈𝑈† = 𝐼,
• 𝑈†𝑈 = 𝐼,
• all columns are quantum states and mutually orthogonal.

12

Definition 3.2 (Unitary transformation). A matrix 𝑈 is called unitary iff 𝑈†𝑈 = 𝐼 and
𝑈𝑈† = 𝐼 .

Then the evolution of a quantum state is always described by a unitary matrix. So if the
current state is 𝜓 and we apply the transformation matrix 𝑈 , the state is 𝑈𝜓 afterwards.

A unitary matrix is by definition invertible, therefore we can undo all unitary transformations
by applying 𝑈†.

Example: Some Unitary transformations

The following matrices are examples for unitary transformations:

𝑋 = (0 1
1 0) , 𝑌 = (0 −𝑖

𝑖 0) , 𝑍 = (1 0
0 −1) .

These matrices are called Pauli-matrices, we will get to know them later on.
As an example for applying a unitary on a quantum state, we apply the Pauli 𝑋 matrix
on the quantum state |0⟩:

𝑋 |0⟩ = (0 1
1 0) ⋅ (1

0) = (0
1) = |1⟩ .

4 Observing probabilistic and measuring
quantum systems

So far we only talked about the description of a probabilistic and a quantum system. We now
look into observing/measuring those systems.

4.1 Observing a probabilistic system

Observing a probabilistic system is the process of learning the outcome from a probability
distribution. If our probability distribution for example represents a coin flip, observing this
distribution is equivalent to actually flipping the coin. In the probabilistic case, an observation
is just about updating our knowledge or beliefs. This will be different in the quantum case.

13

Definition 4.1 (Observing a probabilistic system). Given a probability distribution
𝑑 ∈ ℝ𝑛, we will get the outcome 𝑖 with a probability 𝑑𝑖. The new distribution is then

𝑒𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
1
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

← 1 at the 𝑖-th position.

The intuition for the new distribution is that we know after observing that 𝑖 is the deterministic
possibility for sure.

When observing a probabilistic system, the observation is just a passive process with no impact
on the system. This means that there is no difference to the end result, whether we observe
during the process or not. We take a look at an example to further understand this.

Example: Random 1-bit number

We use a random 1-bit number example similar to the random 2-bit example from Chap-

ter 2. We have a distribution 𝑑1-bit = (
1
21
2
) which represents the probability distribution of

generating a 1-bit number with equal probability. We also have a process 𝐴flip = (
2
3

1
3

1
3

2
3
)

which flips the bit with a probability of 1
3 .

We look at two different cases: For the first case, we observe only the final distribution
and for the second case we observe after the generation of the 1-bit number and we also
observe the final distribution.

Observing the final distribution
From Section 2.3 we know that the final distribution 𝑑 is

𝑑 = 𝐴flip ⋅ 𝑑1-bit = (
2
3

1
3

1
3

2
3
) (

1
2
1
2
) = (

1
2
1
2
) .

We observe this distribution and will get outcome 0 and the new distribution 𝑑 = 𝑒0 =
(1

0) with a probability of Pr[0] = 𝑑0 = 1
2 . We get the outcome 1 and the new distribution

𝑑 = 𝑒1 = (0
1) with a probability of Pr[1] = 𝑑1 = 1

2 .

14

Observing after generation and the final distribution
We now observe the system after the generation of the 1-bit number and also observe the
final distribution. After the generation, we will get outcome 0 and the new distribution

𝑑 = 𝑒0 = (1
0) with a probability of Pr[0] = 𝑑0 = 1

2 . We get the outcome 1 and the new

distribution 𝑑 = 𝑒1 = (0
1) with a probability of Pr[1] = 𝑑1 = 1

2 .

We now apply in each case the matrix 𝐴flip. This will give us the outcome 𝐴flip ⋅ (1
0) =

(
2
31
3
) for the case of the outcome 0 and the outcome 𝐴flip ⋅ (0

1) = (
1
32
3
) for the case of

the outcome 1. If we observe the distribution (
2
31
3
), we will get the outcome 0 and the

new distribution 𝑑 = 𝑒0 = (1
0) with a probability of Pr[0] = 2

3 and the outcome 1 and

the new distribution 𝑑 = 𝑒1 = (0
1) with a probability of Pr[1] = 1

3 . If we observe the

distribution (
1
32
3
), we will get the outcome 0 and the new distribution 𝑑 = 𝑒0 = (1

0) with

a probability of Pr[0] = 1
3 and the outcome 1 and the new distribution 𝑑 = 𝑒1 = (0

1)
with a probability of Pr[1] = 2

3 .
Combining these probabilities, we get the total probability Pr[0] = 1

2
2
3 + 1

2
1
3 = 1

2 for the
outcome 0 and the probability Pr[1] = 1

2
1
3 + 1

2
2
3 = 1

2 for the outcome 1. This is the same
as observing the final distribution.

4.2 Measuring a quantum system

Unlike in the probabilistic system, the “observation” of a quantum system is called measuring.
The definition is similar to the observation of a probabilistic system, except that we need
to take the absolute square of the amplitude to get the probability and that the state after
measuring is called post-measurement-state (p.m.s.).

Definition 4.2 (Measuring a quantum system). Given a quantum State 𝜓 ∈ ℂ𝑛, we will

15

get the outcome 𝑖 with a probability |𝜓𝑖|2. The post-measurement-state (p.m.s.) is then

𝑒𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
1
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

← 1 at the 𝑖-th position.

This is called a complete measurement in the computational basis.

With this similarity to the probabilistic observation in the definition, one might assume that
measuring a quantum state has also no impact on the system. This is not the case, mea-
suring a quantum state changes the system! We can see this effect with an example:

Example: Measuring a quantum system

Let 𝜓 = (
1√
21√
2
) be a quantum state and 𝐻 = 1√

2 (1 1
1 −1) be a unitary transformation.

We look at two different cases: First we apply 𝐻 immediately and then measure the
system. As a second case, we do a measurement before the application of the 𝐻 unitary
and then a measurement after applying it.

Measure the final state
We first calculate the state after applying 𝐻:

𝐻𝜓 = 1√
2

(1 1
1 −1) (

1√
21√
2
) = (1

0) .

Measuring this state will get the outcome 0 with probability Pr[0] = |𝜓0|2 = 1 and have

the post-measurement-state (1
0). The outcome 1 can never occur, i.e. Pr[1] = |𝜓1|2 = 0

Measure the initial and the final state
Measuring 𝜓 with no further unitary matrices applied can have the outcome 0 or 1. We
will look at the final measurement for each case:
The first measurement will have outcome 0 with probability Pr[0] = |𝜓0|2 = 1

2 and the

post-measurement-state will be (1
0). 𝐻 applied to this post-measurement-state will be

𝐻 (1
0) = (

1√
21√
2
). When measuring this state, we will get the outcome 0 with probability

16

Pr[0] = | 1√
2 |2 = 1

2 and outcome 1 with with probability Pr[1] = | 1√
2 |2 = 1

2 .
The outcome 1 will appear at the initial state with probability Pr[1] = |𝜓1|2 = 1

2 and

the post-measurement-state will be (0
1). 𝐻 applied to this post-measurement-state will

be 𝐻 (0
1) = (

1√
2

− 1√
2
). When measuring this state, we will get the outcome 0 with

probability Pr[0] = | 1√
2 |2 = 1

2 and outcome 1 with with probability Pr[1] = | − 1√
2 |2 = 1

2 .
So independent of the outcome of the first measurement, at the second measurement
the outcome 0 and 1 have a probability of 1

2 . This shows that when measuring before
applying 𝐻, we will receive different probabilities for the second measurement, then when
measuring only at the end. This proves that measurements can change the system.

4.3 Elitzur–Vaidman bomb tester

This section will be updated later on.

5 Partial observing and measuring systems

In the previous chapter, we looked into observing a probabilistic and measuring a quantum
system. In this approach, we alway looked at the full system. This means that we either have
no measurement at all or we know the exact possibility, in which our system is.

For larger systems, this can become quite complicated, as we might not need the full measure-
ment, but only some partial information. For example if we consider a dice throw, we might
not need the final number of the dice, but we are only interested if it is an even or an odd
number. To archive this, we can do a partial observation on a probabilistic system.

5.1 Partially observing a probabilistic system

To perform a partial observation on a probabilistic system, we first decide on which alternatives
we want to distinguish. Each alternative is described by a set 𝐴 of deterministic possibilities.
By performing the partial observation, we will get for each alternative 𝐴 the probability that
the system is in a deterministic state in 𝐴.

17

Definition 5.1 (Partially observing a probabilistic system). Given a probabilistic system
with deterministic possibilities 𝑋 = (𝑥1, … , 𝑥𝑛), a distribution 𝜇 ∈ ℝ𝑁 and a family of
alternatives 𝐴1, … , 𝐴𝑚 with 𝐴𝑖 ∩𝐴𝑗 = ∅ and ⋃𝑖 𝐴𝑖 = 𝑋, the probability of observing the
alternative 𝑘 is given by

Pr[outcome = 𝑘] = ∑
𝑥𝑖∈𝐴𝑘

𝜇(𝑥𝑖).

The distribution 𝑣 after the observation of the outcome 𝑘 is given by the (normalized)
conditional distribution:

𝑣 =
⎛⎜⎜⎜⎜
⎝

𝑣1
𝑣2
⋮

𝑣𝑁

⎞⎟⎟⎟⎟
⎠

with 𝑣𝑖 ∶= {
𝜇𝑖

Pr[outcome=𝑘] if 𝑥𝑖 ∈ 𝐴𝑘
0 if 𝑥𝑖 ∉ 𝐴𝑘

.

Note: In this definition we were careful to distinguish between the names 𝑥𝑖 of the deterministic
possibilities and their number 𝑖 (e.g. when writing 𝜇𝑖). We will often be less precise and simply
pretend the deterministic possibilities are the number 1, … , 𝑁 . That is, we would write the
definition as follows and pretend it means the above:

Definition 5.2 (Partially observing a probabilistic system). Given a distribution 𝜇 ∈ ℝ𝑁

and a family of alternatives 𝐴1, … , 𝐴𝑚 ⊆ {1, … , 𝑁} with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ and ⋃𝑖 𝐴𝑖 =
{1, … , 𝑁}, the probability of observing the alternative 𝑘 is given by

Pr[outcome = 𝑘] = ∑
𝑖∈𝐴𝑘

𝜇𝑖.

The distribution 𝑣 after the observation of the outcome 𝑘 is given by the conditional
distribution:

𝑣 =
⎛⎜⎜⎜⎜
⎝

𝑣1
𝑣2
⋮

𝑣𝑁

⎞⎟⎟⎟⎟
⎠

with 𝑣𝑖 ∶= {
𝜇𝑖

Pr[outcome=𝑘] if 𝑖 ∈ 𝐴𝑘
0 if 𝑖 ∉ 𝐴𝑘

.

Note that similar to the full observation of a probabilistic system a partial observation does
not actually change the system. We only get some new knowledge. In particular, a third
person can never notice wether we observed the system or not.

Example: Partially observing a probabilistic system

A fair dice was rolled and it is only known that it is not a 5. Thus the distribution 𝜇 is
given by

18

𝜇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
5
1
5
1
5
1
5
0
1
5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Now we want to observe whether the number is low (≤ 3) or high (≥ 4). This means
we have two alternatives: 𝐴low = {1, 2, 3} and 𝐴high = {4, 5, 6}. We therefore obtain the
following probabilities for these two alternatives

Pr[outcome = low] = 1
5 + 1

5 + 1
5 = 3

5,

Pr[outcome = hight] = 1
5 + 0 + 1

5 = 2
5.

The conditional distribution after the outcome low is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
5/3

5
1
5/3

5
1
5/3

5
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
3
1
3
1
3
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

That is, we know we have a uniformly random number from , 1, 2, 3, but don’t know
which. And after the outcome high the conditional distribution is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0

1
5/2

5
0/2

5
1
5/2

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
1
2
0
1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

5.2 Partially measuring a quantum system

Similar to the partial observation of a probabilistic system, we can perform a partial measure-
ment on a quantum system.

19

Definition 5.3 (Partially measuring a quantum system). Given a quantum system with
classical possibilities 𝑋 = (𝑥1, … , 𝑥𝑛), a quantum state 𝜇 ∈ ℂ𝑁 and a family of alter-
natives 𝐴1, … , 𝐴𝑚 with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ and ⋃𝑖 𝐴𝑖 = 𝑋, the probability of observing the
alternative 𝑘 is given by

Pr[outcome = 𝑘] = ∑
𝑥𝑖∈𝐴𝑘

|𝜓(𝑥𝑖)|2.

The post-measurement-state of the outcome 𝑘 is computed as follows:

1. Computing the non-normalized post-measurement-state 𝜙(𝑘) denoted by 𝜙(𝑘) ∶=
(𝜙1, … , 𝜙𝑁) with

𝜙𝑖 ∶= {𝜓𝑖 if 𝑥𝑖 ∈ 𝐴𝑘
0 if 𝑥𝑖 ∈ 𝐴𝑘

.

2. Computing the normalized post-measurement-state by calculating:

post-measurement-state ≔ 𝜙(𝑘)

‖𝜙(𝑘)‖ = 𝜙(𝑘)

√Pr[outcome = 𝑘]
.

As in Definition 5.1, we were precise about the difference between the classical possibility 𝑥𝑖
and their numbers but will not always be so precise in the future.

As with the complete measurement for quantum systems, the measurement can change the
system. Note that there exist other types of definitions for a measurement e.g. projective
measurements, generalized measurements, POVMs, … The variant above can best be described
as a “projective measurement in the computational basis”.

There is a slight difference between this definition and Definition 4.2, namely if you compute
the post-measurement-state, you may get a different result. The two post-measurement-states
can differ by a factor 𝑐 ∈ ℂ with |𝑐| = 1, called a “global phase”. Such a global phase makes
no observable physical difference, so this “contradiction” is not a problem.

Example: Partially measuring a quantum system

A photon is in superposition between the 4 paths left, right, top and bottom:

𝜓 =
⎛⎜⎜⎜⎜⎜
⎝

1
10

− 3
10

9
10 𝑖
3

10

⎞⎟⎟⎟⎟⎟
⎠

.

There are two alternatives: 𝐴horizontal, so that the photon is in the left or right path,
and 𝐴vertical, so that the photon is in the top or bottom path. We therefore obtain the

20

following probabilities for these two alternatives

Pr[𝐴horizontal] = ∣ 1
10∣

2
+ ∣− 3

10∣
2

= 1
100 + 9

100 = 1
10,

Pr[𝐴vertical] = ∣ 9
10𝑖∣

2
+ ∣ 3

10∣
2

= 81
100 + 9

100 = 9
10.

The normalized post-measurement-state for the alternative 𝐴horizontal is

⎛⎜⎜⎜⎜⎜
⎝

1
10

− 3
10
0
0

⎞⎟⎟⎟⎟⎟
⎠

/√ 1
10 =

⎛⎜⎜⎜⎜⎜
⎝

1√
10

− 3√
10

0
0

⎞⎟⎟⎟⎟⎟
⎠

For the alternative 𝐴vertical the normalized post-measurement-state is

⎛⎜⎜⎜⎜⎜
⎝

0
0
9

10 𝑖
3

10

⎞⎟⎟⎟⎟⎟
⎠

/√ 9
10 =

⎛⎜⎜⎜⎜⎜⎜
⎝

0
0
3√
10 𝑖
1√
10

⎞⎟⎟⎟⎟⎟⎟
⎠

.

6 Composite Systems

So far our probabilistic and quantum systems consist of only one single distribution/state. In
the real world, quantum computers often have several different registers (variables).

In theory, we could use a single very big distribution/state to model multiple qubits.
For example a 10 qubit system could be modeled with the classical possibilities
0000000000, 0000000001, … , 1111111110, 1111111111.

Unfortunately the vector for these states gets really big, for 10 qubits, the vector would have
the dimension of 1024. Since this is very inconvenient to write down, we need to look at a
different solution. For this, we compose different probabilistic or quantum systems with each
other.

21

6.1 Constructing composite systems

Definition 6.1 (Composite systems / Tensor product). Given two probabilistic or quan-
tum systems 𝐴 and 𝐵 with the possibilities of 𝐴 given by 𝑥1, … , 𝑥𝑁 and a distribu-
tion/state 𝜇𝐴 and with the possibilities of 𝐵 given by 𝑦1, … , 𝑦𝑀 and a distribution/state
𝜇𝐵, the composite system called 𝐴𝐵 has the possibilities

𝑥1𝑦1, 𝑥1𝑦2, … , 𝑥1𝑦𝑀 , 𝑥2𝑦1, 𝑥2𝑦2, … , 𝑥2𝑦𝑀 , … , 𝑥𝑁𝑦1, 𝑥𝑁𝑦2, … , 𝑥𝑁𝑦𝑀

and the distribution/state 𝜇𝐴𝐵 of 𝐴𝐵 is given by the tensor product

𝜇𝐴𝐵 ≔ 𝜇𝐴 ⊗ 𝜇𝐵 = ⎛⎜
⎝

(𝜇𝐴)1 ⋅ 𝜇𝑏
⋮

(𝜇𝐴)𝑁 ⋅ 𝜇𝑏

⎞⎟
⎠

.

This vector has the size 𝑁𝑀 . Here (𝜇𝐴)𝑖 stands for the i-th entry of 𝜇𝐴.

The definition of combining a probabilistic and a quantum system are the same.

Notice that the entry corresponding to the possibility 𝑥𝑖𝑦𝑗 in the composite system is then
(𝜇𝐴𝐵)𝑥𝑖𝑦𝑗

= (𝜇𝐴)𝑥𝑖
(𝜇𝐵)𝑦𝑗

. Here we identify the classical possibility 𝑥𝑖 and 𝑦𝑗 with the indices
1, … , 𝑁 and 1, … , 𝑀 , respectively the classical possibility 𝑥𝑖𝑦𝑗 with the indices 1, … , 𝑁𝑀 . (So
(𝜇𝐴𝐵)𝑥𝑖𝑦𝑗

has just one index, namely 𝑥𝑖𝑦𝑗 ∈ {1, … 𝑁𝑀}.)

Example: Composite system

Let the distributions for the system 𝐴 with the possibilities 1, 2 and the system 𝐵 with
the possibilities 𝑎, 𝑏, 𝑐 be given by

𝜇𝐴 = (
1√
2

− 1√
2
) , 𝜇𝐵 = ⎛⎜⎜

⎝

1
2
0√
3

2

⎞⎟⎟
⎠

.

Then the composite system 𝐴𝐵 has the possibilities 1𝑎, 1𝑏, 1𝑐, 2𝑎, 2𝑏, 2𝑐 and the distribu-
tion

𝜇𝐴𝐵 = 𝜇𝐴 ⊗ 𝜇𝐵 = (
1√
2

− 1√
2
) ⊗ ⎛⎜⎜

⎝

1
2
0√
3

2

⎞⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1√
2 ⋅ 1

2
1√
2 ⋅ 0

1√
2 ⋅

√
3

2
− 1√

2 ⋅ 1
2

− 1√
2 ⋅ 0

− 1√
2 ⋅

√
3

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2

√
2

0
√

3
2

√
2

− 1
2

√
2

0
−

√
3

2
√

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

22

We now need a way to apply operators on these combined systems. For this we can also con-
struct the tensor product of either two probabilistic processes or two unitary transformations
by using the tensor product of two matrices.

Definition 6.2 (Composite matrices / Tensor product). Given two matrices 𝑆 and 𝑇
with 𝑆 of the size 𝑁 × 𝑁 and 𝑇 of the size 𝑀 × 𝑀 . The tensor product 𝑆 ⊗ 𝑇 of is given
by

𝑆 ⊗ 𝑇 = ⎛⎜
⎝

𝑆11𝑇 … 𝑆1𝑁𝑇
⋮ ⋱ ⋮

𝑆𝑁1𝑇 … 𝑆𝑁𝑁𝑇
⎞⎟
⎠

.

Overall we can say: If we apply 𝑆 to the system 𝐴 and 𝑇 to the system 𝐵, we apply 𝑆 ⊗ 𝑇 to
the composite system 𝐴𝐵.

If the distribution 𝑑𝐴𝐵 of a given probabilistic system 𝐴𝐵 can be written as a composite of two
distributions 𝑑𝐴 and 𝑑𝐵, we know that 𝐴 and 𝐵 are independent of each other. If we cannot
write 𝑑𝐴𝐵 as two separate distributions, the probabilities are depended on each other.

If the quantum state 𝜓𝐴𝐵 of a given quantum system 𝐴𝐵 can be written as a composite of two
different quantum states 𝜓𝐴 and 𝜓𝐵, the quantum states of 𝐴 and 𝐵 are independent of each
other. If we can not write 𝜓𝐴𝐵 as a tensor product of two quantum systems, the quantum
states depend on each other. We call this entangled.

Lemma 6.1. For the (unitary) matrices 𝐴, 𝐵, 𝐶 and 𝐷, the vectors (quantum states)
𝜓, 𝜙 and 𝜒 and the constant 𝑐, the following applies

• (𝐴 ⊗ 𝐵)(𝜓 ⊗ 𝜙) = 𝐴𝜓 ⊗ 𝐵𝜙,
• (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷,
• 𝜓 ⊗ (𝜙 + 𝜒) = (𝜓 ⊗ 𝜙) + (𝜙 ⊗ 𝜒),
• (𝜓 + 𝜙) ⊗ 𝜒 = (𝜓 ⊗ 𝜒) + (𝜙 ⊗ 𝜒),
• 𝐴 ⊗ (𝐵 + 𝐶) = (𝐴 ⊗ 𝐵) + (𝐴 ⊗ 𝐶),
• (𝐴 + 𝐵) ⊗ 𝐶 = (𝐴 ⊗ 𝐶) + (𝐵 ⊗ 𝐶),
• 𝑐𝜙 ⊗ 𝜓 = 𝑐(𝜙 ⊗ 𝜓),
• 𝜙 ⊗ 𝑐𝜓 = 𝑐(𝜙 ⊗ 𝜓),
• 𝐴 ⊗ 𝑐𝐵 = 𝑐(𝐴 ⊗ 𝐵) and
• 𝑐𝐴 ⊗ 𝐵 = 𝑐(𝐴 ⊗ 𝐵).

These rules only apply if the dimensions of the matrices and vectors match.

23

6.2 Measuring composite systems

To perform a (partial) observation or (partial) measurement on a composite system 𝐴𝐵, we
can compose two separate measurements on the systems 𝐴 and 𝐵 similar as we constructed
the tensor product.

Definition 6.3 (Composite measurements). Given two systems 𝐴 and 𝐵 with possi-
bilities 1, … , 𝑁 and 1, … , 𝑀 and two partial measurements 𝑀𝐴 and 𝑀𝐵 on systems 𝐴
and 𝐵 with alternatives 𝐴1, … , 𝐴𝑁 ⊆ {𝑥1, … , 𝑥𝑛} and 𝐵1, … , 𝐵𝑀 ⊆ {𝑦1, … , 𝑦𝑀}. The
measurement 𝑀𝐴 ⊗𝑀𝐵 on 𝐴𝐵 is a measurement with the alternatives 𝐶11, 𝐶12, … , 𝐶𝑁𝑀
where 𝐶𝑖𝑗 = 𝐴𝑖 × 𝐵𝑗.
If we only have a set of alternatives for system 𝐴, we can do a measurement 𝑀𝐴 ⊗𝐼 with
alternatives 𝐶1, … , 𝐶𝑁 ∶= 𝐴 ⊗ {𝑦1, … , 𝑦𝑀}.

Example: Composite measurement (quantum)

Let 𝐴 be a system with the states 1, 2, 3 and 𝜇𝐴 a measurement with the two alternatives
𝐴low = {1, 2}, 𝐴high = {3}. The quantum state is

𝜓𝐴 = ⎛⎜⎜
⎝

2
3
1
3

−2
3

⎞⎟⎟
⎠

.

Another system 𝐵 has the states 𝑎, 𝑏, 𝑐. The measurement 𝜇𝐵 the two alternatives
𝐵vocal = {𝑎}, 𝐵consonant = {𝑏, 𝑐}. The quantum state is

𝜓𝐵 = ⎛⎜⎜
⎝

1
2
1
2 𝑖
1√
2

⎞⎟⎟
⎠

.

So the composite system 𝐶 = 𝐴𝐵 has the classical possibilities 1𝑎, 1𝑏, 1𝑐, 2𝑎, 2𝑏, 2𝑐, 3𝑎, 3𝑏
and 3𝑐. The measurement 𝜇𝐶 ≔ 𝜇𝐴 ⊗ 𝜇𝐵 has the alternatives

𝐶low, vocal = {1𝑎, 2𝑎}, 𝐶low, consonant = {1𝑏, 1𝑐, 2𝑏, 2𝑐},
𝐶high, vocal = {3𝑎}, 𝐶high, consonant = {3𝑏, 3𝑐}.

24

The quantum state is

𝜓𝐶 = 𝜓𝐴 ⊗ 𝜓𝐵 = ⎛⎜⎜
⎝

2
3
1
3

−2
3

⎞⎟⎟
⎠

⊗ ⎛⎜⎜
⎝

1
2
1
2 𝑖
1√
2

⎞⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2
6
2
6 𝑖
2

3
√

2
1
6
1
6 𝑖
1

3
√

2
−2

6
−2

6 𝑖
− 2

3
√

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We get for the alternative 𝐶low, vocal the probability

∣26 ∣
2

+ ∣16∣
2

= 4
36 + 1

36 = 5
36

and thus the post-measurement-state is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2
6
0
0
1
6
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/√ 5
36 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2
6
0
0
1
6
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/
√

5
6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2√
5

0
0
1√
5

0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

7 Quantum Circuits

In the previous chapters, we learned the basics on how to construct a quantum computer. We
will now start constructing quantum circuits from these. Note that we will no longer look into
probabilistic systems.

25

The quantum systems which we consider in the following sections consist of qubits, unless
specified otherwise. A qubit is a quantum state 𝜓 with 𝜓 ∈ ℂ2.

7.1 Visual language

So far we have only seen the elements of quantum computers in a mathematical form (i.e.,
as formulas). When constructing quantum circuits, this can get very unreadable very fast.
Therefore we can draw quantum circuits as a picture, which also helps us to get a better
intuition for these circuits. You can see a very simple example here:

|0⟩ X

U

|+⟩ H H

Figure 7.1: A basic quantum circuit

In this circuit we have two qubits |0⟩ and |+⟩, which are drawn as separate wires. Note that
the symbol |⟩ is introduced in the next chapter, so just understand it as a name for some
state at this point. We first apply the unitary 𝑋 on the top wire to |0⟩ and at the same time
we apply the unitary 𝐻 at the bottom wire to |+⟩. Mathematically this can be written as
(𝑋 ⊗ 𝐻)(|0⟩ ⊗ |+⟩). Next we apply the unitary 𝑈 , which operates on both qubits. After this,
we apply a unitary 𝐻 on the bottom wire. Since we do not apply anything on the top wire,
we can write this mathematically as 𝐼 ⊗ 𝐻. Finally we measure the top qubit. This means
a complete measurement in the computational basis of the qubit as described in Section 4.2.
The meaning of the unitaries used is explained in the next section. A wire can contain multiple
qubits, depending on the context.

7.2 Important gates

When working with quantum computers, we encounter some of the same unitaries very often.
We distinguish between single qubit gates (unitary transformations ∈ ℂ2×2) and gates on
multiple qubits.

7.2.1 Single qubit gates

The following gates are relevant single qubit gates:

26

Definition 7.1 (Identity matrix). The identity matrix 𝐼 is defined as

𝐼 = (1 0
0 1) .

This matrix is for example useful if a qubit/wire is to remain unchanged. The identity matrix
also exists in other sizes.

Definition 7.2 (Pauli matrices). The Pauli matrices 𝑋, 𝑌 and 𝑍 are defined as

𝑋 = (0 1
1 0) , 𝑌 = (0 −𝑖

𝑖 0) , 𝑍 = (1 0
0 −1) .

Note that 𝑋 is also called bit-flip.

Definition 7.3 (Hadamard gate). The Hadamard gate 𝐻 is defined as

𝐻 = 1√
2

(1 1
1 −1) .

The Hadamard gate is useful for introducing superpositions as it takes a classical bit (1
0) and

transforms it into a superposition (
1√
21√
2
).

7.2.2 Controlled-NOT gate

The gates introduced above only operate on a single qubit. To connect two different qubits,
we need gates which operate on multiple qubits. For this we introduce the controlled-not:

Definition 7.4 (Controlled-NOT gate). The controlled-NOT gate CNOT ∈ ℂ4×4 is
defined as

CNOT =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟
⎠

.

The CNOT gate flips the qubit of the second qubit if the first qubit is 1. We call the
first wire the controlling wire and the second wire the target wire. It can be drawn in a
quantum circuit as follows:

27

Figure 7.2: Controlled-NOT in a quantum circuit

If the second qubit should be the controlling wire and the first qubit the target wire, we
can use CNOT′ denoted as

CNOT′ =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎟
⎠

.

Accordingly, the quantum circuit is drawn the other way round.

Figure 7.3: Controlled-NOT’ in a quantum circuit

7.3 Teleportation

We are now looking at an example quantum circuit.

Example: Teleportation

Assumed: Alice has a qubit 𝜓 and wants to send it to Bob. But only classic commu-
nication is possible, no quantum communication. However, they can share a state 𝛽00
beforehand.

28

A1

A2

B

ψ H

a

β00

b

X

if b = 1

Z

if a = 1

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

Figure 7.4: Circuit for qubit teleportation

1. Alice has the state 𝜓 = (𝛼
𝛽) and the shared state is 𝛽00 =

⎛⎜⎜⎜⎜
⎝

1/
√

2
0
0

1/
√

2

⎞⎟⎟⎟⎟
⎠

. This means

that the entire state is

𝜙1 = 𝜓 ⊗ 𝛽00 = (𝛼
𝛽) ⊗

⎛⎜⎜⎜⎜
⎝

1
0
0
1

⎞⎟⎟⎟⎟
⎠

/
√

2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛼
0
0
𝛼
𝛽
0
0
𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/
√

2.

2. The CNOT can be extended to CNOT ⊗ I2 using the identity matrix:

𝜙2 = (CNOT ⊗ I2)𝜙1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛼
0
0
𝛼
𝛽
0
0
𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/
√

2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛼
0
0
𝛼
0
𝛽
𝛽
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/
√

2.

29

3. Identical to step 2, the Hadamard gate can be extended with the identity matrix:

𝜙3 = (H ⊗ I4)𝜙2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/
√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛼
0
0
𝛼
0
𝛽
𝛽
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/
√

2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛼
𝛽
𝛽
𝛼
𝛼

−𝛽
−𝛽
𝛼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/2.

4. Here we assume that 𝑎 = 0 and 𝑏 = 1. It applies |𝛼|2 + |𝛽|2 = 1 because 𝜓 is a
quantum state. Therefore the probability for this is

∣𝛽2 ∣
2

+ ∣𝛼2 ∣
2

= |𝛼|2 + |𝛽|2
4 = 1

4
and the post-measurement-state

𝜙4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
𝛽
𝛼
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/2/√1
4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
𝛽
𝛼
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

5. Since 𝑏 = 1, the Pauli-matrix X is used:

𝜙5 = (I4 ⊗ X)𝜙4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
𝛽
𝛼
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
𝛼
𝛽
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

30

6. Since 𝑎 = 0, nothing happens in this step:

𝜙6 = 𝜙5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
𝛼
𝛽
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

0
1
0
0

⎞⎟⎟⎟⎟
⎠

⊗ (𝛼
𝛽) =

⎛⎜⎜⎜⎜
⎝

0
1
0
0

⎞⎟⎟⎟⎟
⎠

⊗ 𝜓.

So now Bob is aware of 𝜓 and Alice has the now useless state (0 1 0 0)𝑇 . Note that
Bob would also have 𝜓 for all other results of 𝑎 and 𝑏.

8 Ket Notation

So far we have only seen vectors as a way to mathematically describe a quantum state. This
can get quite inconvenient if the vector get bigger and also often contains not that much useful
information (e.g. a lot of 0 entries). We therefore introduce a new form of writing quantum
states called the ket notation.

The idea works as follows: We can rewrite a quantum state 𝜓 in the following way

𝜓 =
⎛⎜⎜⎜⎜
⎝

𝜓1
𝜓2
⋮

𝜓𝑁

⎞⎟⎟⎟⎟
⎠

= 𝜓1
⎛⎜⎜⎜⎜
⎝

1
0
⋮
0

⎞⎟⎟⎟⎟
⎠

+ 𝜓2
⎛⎜⎜⎜⎜
⎝

0
1
⋮
0

⎞⎟⎟⎟⎟
⎠

+ ⋯ + 𝜓𝑁
⎛⎜⎜⎜⎜
⎝

0
0
⋮
1

⎞⎟⎟⎟⎟
⎠

=
𝑁

∑
𝑖=1

𝜓𝑖 ⋅ 𝑒𝑖.

The vector 𝑒𝑖 denotes the vector with 0 entries at every position except the 𝑖-th position, where
the entry is 1.

From this notation we already get an advantage, since we can drop out all 0-entries. But we
still have no intuitive mapping from the vector 𝑒𝑖 to the classical possibility represented by
𝑒𝑖. For example, 𝑒123 can represent the classical possibility “red,4,top”. For this we use a |⟩
symbol. More precise this means for a classical possibility 𝑥, which is the 𝑖-th possibility and

31

is represented by 𝑒𝑖, we write

|𝑥⟩ ∶= 𝑒𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
1
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

← 1 at the 𝑖-th position.

In the example, we would therefore write |red,4,top⟩ for 𝑒123.

Example: Ket notation

Given a quantum system with the classical possibilities 00, 01, 10 and 11, the quantum
state 𝜓 = (1√

2 0 0 1√
2)𝑇

can be written as

𝜓 =
⎛⎜⎜⎜⎜
⎝

1√
2

0
0
1√
2

⎞⎟⎟⎟⎟
⎠

= 1√
2

|00⟩ + 1√
2

|11⟩ .

Written like this, we can see at first glance that this is a superposition of the classical
possibilities 00 and 11. Writing 𝜓 = 1√

2𝑒1 + 1√
2𝑒4 would be less obvious.

Note that the ket notation can also be used in a few other ways. We can use it as described
above to the state |𝑥⟩ corresponding to the classical possibility 𝑥, but we also use it to empha-
size that 𝜓 is a quantum state by writing |𝜓⟩ (here 𝜓 is not a classical possibility). We also
have two special cases |+⟩ and |−⟩ which are defined as follows:

|+⟩ ∶= 1√
2

|0⟩ + 1√
2

|1⟩ ,

|−⟩ ∶= 1√
2

|0⟩ − 1√
2

|1⟩ .

Which of the meanings of the symbol |⟩ is meant has to be deduced from the context.

8.1 Teleportation

We take another look at the example from the last chapter with ket notation.

32

Example: Teleportation

Once again, Alice has the qubit 𝜓 and Alice and Bob have shared the state 𝛽00.

A1

A2

B

|ψ⟩ H

a

|β00⟩

b

X

if b = 1

Z

if a = 1

|ϕ1⟩ |ϕ2⟩ |ϕ3⟩ |ϕ4⟩ |ϕ5⟩ |ϕ6⟩

Figure 8.1: Circuit for qubit teleportation

1. Alice has the state |𝜓⟩ = (𝛼
𝛽) = 𝛼 |0⟩ + 𝛽 |1⟩ and the shared state is |𝛽00⟩ =

(1√
2 0 0 1√

2)𝑇 = 1√
2 |00⟩ + 1√

2 |11⟩. This means that the entire state is

|𝜙1⟩ = |𝜓⟩ ⊗ |𝛽00⟩
= (𝛼 |0⟩ + 𝛽 |0⟩) ⊗ (1√

2 |00⟩ + 1√
2 |11⟩)

= 𝛼√
2 |000⟩ + 𝛼√

2 |011⟩ + 𝛽√
2 |100⟩ + 𝛽√

2 |111⟩ .

2. We can now translate each ket notation individually and get the result much simpler:

|𝜙2⟩ = (CNOT ⊗ I2) |𝜙1⟩ 𝑡
= (CNOT ⊗ I2)(𝛼√

2 |000⟩ + 𝛼√
2 |011⟩ + 𝛽√

2 |100⟩ + 𝛽√
2 |111⟩)

= 𝛼√
2 |000⟩ + 𝛼√

2 |011⟩ + 𝛽√
2 |110⟩ + 𝛽√

2 |101⟩ .

33

3. Identical to step 2, we can look at each ket notation individually:

|𝜙3⟩ = (H ⊗ I4) |𝜙2⟩
= (H ⊗ I4)(𝛼√

2 |000⟩ + 𝛼√
2 |011⟩ + 𝛽√

2 |101⟩ + 𝛽√
2 |110⟩)

= 𝛼√
2(𝐻 |0⟩ ⊗ |00⟩) + 𝛼√

2(𝐻 |0⟩ ⊗ |11⟩) + 𝛽√
2(𝐻 |1⟩ ⊗ |01⟩) + 𝛽√

2(𝐻 |1⟩ ⊗ |10⟩)

= 𝛼√
2((1√

2 |0⟩ + 1√
2 |1⟩) ⊗ |00⟩) + 𝛼√

2((1√
2 |0⟩ + 1√

2 |1⟩) ⊗ |11⟩)+

𝛽√
2((1√

2 |0⟩ − 1√
2 |1⟩) ⊗ |01⟩) + 𝛽√

2((1√
2 |0⟩ − 1√

2 |1⟩) ⊗ |10⟩)

= 𝛼
2 |000⟩ + 𝛼

2 |100⟩ + 𝛼
2 |011⟩ + 𝛼

2 |111⟩ + 𝛽
2 |001⟩ − 𝛽

2 |101⟩ + 𝛽
2 |010⟩ − 𝛽

2 |110⟩ .

4. We again assume that 𝑎 = 0 and 𝑏 = 1 and therefore only 𝛼
2 |011⟩ and 𝛽

2 |010⟩ are
relevant. It applies |𝛼|2 + |𝛽|2 = 1 because 𝜓 is a quantum state. Therefore the
probability for this is

∣𝛽2 ∣
2

+ ∣𝛼2 ∣
2

= |𝛼|2 + |𝛽|2
4 = 1

4
and the post-measurement-state

|𝜙4⟩ =
𝛼
2 |011⟩
√1

4

+
𝛽
2 |011⟩
√1

4

= 𝛼 |011⟩ + 𝛽 |011⟩ = |01⟩ ⊗ (𝛼 |1⟩ + 𝛽 |0⟩).

5. Since 𝑏 = 1, the Pauli-matrix X is used:

|𝜙5⟩ = (I4 ⊗ X) |𝜙4⟩
= (I4 ⊗ X)(|01⟩ ⊗ (𝛼 |1⟩ + 𝛽 |0⟩))

= I4 |01⟩ ⊗ (X(𝛼 |1⟩ + 𝛽 |0⟩))
= |01⟩ ⊗ (𝛼 X |1⟩ + 𝛽 X |0⟩)
= |01⟩ ⊗ (𝛼 |0⟩ + 𝛽 |1⟩).

6. Since 𝑎 = 0, nothing happens in this step:

|𝜙6⟩ = |𝜙5⟩ = |01⟩ ⊗ (𝛼 |0⟩ + 𝛽 |1⟩) = |01⟩ ⊗ |𝜓⟩ .

As expected, we get the same result as in the previous chapter.

The ket notation can save a lot of work and sources of error. (Keep in mind that the example
here got a bit lengthy because we wrote out a lot of intermediate steps.)

34

9 Bernstein-Vazirani Algorithm

With all the quantum basics from the previous chapters, we now can start with the first
quantum algorithm. This algorithm is called the Bernstein-Vazirani algorithm.

This algorithm tackles the following problem: Given a secret 𝑠 ∈ {0, 1}𝑛 and the function
𝑓 ∶ {0, 1}𝑛 → {0, 1}, defined as 𝑓(𝑥) ∶= 𝑥 ⋅ 𝑠. ⋅ denotes the inner product of two bitstrings here.
This means that for bitstrings 𝑥 and 𝑦 of length 𝑛, the inner product is 𝑥 ⋅ 𝑦 = 𝑥1𝑦1 + ⋯ +
𝑥𝑛𝑦𝑛 mod 2.

The goal is to find the secret 𝑠 using as little queries of 𝑓 as possible. By “query” we mean
an evaluation of 𝑓 . The word query stems from the fact that we often think of the algorithm
having access to a so-called “oracle” which we can “query” to get 𝑓(𝑥).
Classically we will need at least 𝑛 queries to 𝑓 to get 𝑠 definitely. A classical algorithm with
only 𝑚 ≤ 𝑛 queries will get 𝑠 with a probability of 2𝑚−𝑛 if 𝑠 is uniformly random.

We will now look at a quantum algorithm which will find 𝑠 with only one evaluation of 𝑓 . This
algorithm is sketched in the following circuit:

n|0n⟩ H⊗n

Uf

H⊗n

s

|1⟩ H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩

Figure 9.1: The quantum circuit for Bernstein-Vazirani

Note that 𝑈𝑓 is defined with the explanation below.

We start with 𝑛 qubits on the top wire. All of these qubits are in the state |0⟩, which we write
|0⟩𝑛 = |0⟩ ⊗ ⋯ ⊗ |0⟩. The bottom wire is in the state |1⟩. Both wires composed together can
be written as |𝜓0⟩ = |0𝑛1⟩ = |0⟩𝑛 ⊗ |1⟩, which is the overall starting state of our algorithm.
We now perform the following steps

35

1. First we apply a Hadamard gate on all qubits. This is denoted for the first 𝑛 qubits by
the 𝐻⊗𝑛 gate and for the last qubit by the 𝐻 gate on the bottom wire. The resulting
quantum state is calculated as follows:

|𝜓1⟩ = (𝐻⊗𝑛 ⊗ 𝐻) (|𝜓0⟩)
= (𝐻⊗𝑛 ⊗ 𝐻) (|0⟩𝑛 ⊗ |1⟩)
= (𝐻⊗𝑛 |0⟩𝑛) ⊗ 𝐻 |1⟩
= |+⟩⊗𝑛 ⊗ |−⟩

= (1√
2

|0⟩ + 1√
2

|1⟩)
⊗𝑛

⊗ |−⟩

= 1√
2𝑛 ∑

𝑥∈{0,1}𝑛
|𝑥⟩ ⊗ |−⟩

Roughly speaking, we are now in the superposition over all classical possibilities on the
top wire and in |−⟩ on the bottom wire.

2. Next, we apply the unitary 𝑈𝑓 on both wires. This unitary is defined as

𝑈𝑓 |𝑥, 𝑦⟩ = |𝑥, 𝑦 ⊕ 𝑓(𝑥)⟩

This unitary represents the function 𝑓 and combines the output of 𝑓(𝑥) with the bottom
wire 𝑦. For our quantum states, this means that the state after 𝑈𝑓 can be calculated as
follows:

|𝜓2⟩ = 𝑈𝑓 |𝜓1⟩

= 𝑈𝑓
1√
2𝑛 ∑

𝑥∈{0,1}𝑛
|𝑥⟩ ⊗ |−⟩

= 𝑈𝑓
1√
2𝑛 ∑

𝑥∈{0,1}𝑛
|𝑥⟩ ⊗ |−⟩

= 1√
2𝑛 ∑

𝑥∈{0,1}𝑛
𝑈𝑓(|𝑥⟩ ⊗ |−⟩)

∗= 1√
2𝑛 ∑

𝑥∈{0,1}𝑛
(−1)𝑓(𝑥) |𝑥⟩ ⊗ |−⟩

= ⎛⎜
⎝

1√
2𝑛 ∑

𝑥∈{0,1}𝑛
(−1)𝑓(𝑥) |𝑥⟩⎞⎟

⎠
⊗ |−⟩

36

Note that the ∗ holds since we can rewrite 𝑈𝑓(|𝑥⟩ ⊗ |−⟩) as

𝑈𝑓(|𝑥⟩ ⊗ |−⟩) = 1√
2

𝑈𝑓 |𝑥, 0⟩ − 1√
2

𝑈𝑓 |𝑥, 1⟩

= 1√
2

|𝑥, 𝑓(𝑥)⟩ − 1√
2

|𝑥, 𝑓(𝑥)⟩

= {
1√
2 |𝑥, 0⟩ − 1√

2 |𝑥, 1⟩ 𝑓(𝑥) = 0
1√
2 |𝑥, 1⟩ − 1√

2 |𝑥, 0⟩ 𝑓(𝑥) = 1

= {|𝑥⟩ ⊗ |−⟩ 𝑓(𝑥) = 0
− |𝑥⟩ ⊗ |−⟩ 𝑓(𝑥) = 1

= (−1)𝑓(𝑥) |𝑥⟩ ⊗ |−⟩

The bottom wire has not changed and is still |−⟩. But on the top wire, we now have
𝑓(𝑥) somehow encoded into our quantum state. The phenomenon that the output of
𝑓 is encoded as a −1 in the input register is called phase kickback. Measuring this
quantum state would not give us any advantage, since we would just get one random 𝑥.
We therefore perform one final step before measuring.

3. As the final unitary, we perform another 𝐻⊗𝑛 on the top wire. We hope that the result
of this unitary transformation is the state |𝜓3⟩ = |𝑠⟩ ⊗ |−⟩. To check, whether our hopes
become reality, we can calculate (𝐻⊗𝑛)† |𝑠⟩ ⊗ |−⟩ and check if it is equal to |𝜓2⟩. We do

37

it in this direction, since these calculations are a bit simpler:

((𝐻⊗𝑛)† ⊗ 𝐼) |𝜓3⟩ = (𝐻⊗𝑛)† |𝑠⟩ ⊗ |−⟩
= 𝐻⊗𝑛 |𝑠⟩ ⊗ |−⟩
= 𝐻⊗𝑛(|𝑠1⟩ ⊗ ⋯ ⊗ |𝑠𝑛⟩) ⊗ |−⟩
= 𝐻 |𝑠1⟩ ⊗ ⋯ ⊗ 𝐻 |𝑠𝑛⟩ ⊗ |−⟩

=
𝑛

⨂
𝑖=1

(1√
2

|0⟩ + (−1)𝑠𝑖
1√
2

|1⟩) ⊗ |−⟩

= 1√
2𝑛

𝑛
⨂
𝑖=1

(|0⟩ + (−1)𝑠𝑖 |1⟩) ⊗ |−⟩

= 1√
2𝑛 ∑

𝑥∈{0,1}𝑛
((−1)𝑥1𝑠1(−1)𝑥2𝑠2 … (−1)𝑥𝑛𝑠𝑛 |𝑥⟩) ⊗ |−⟩

= 1√
2𝑛 ∑

𝑥∈{0,1}𝑛
((−1)∑𝑖 𝑥𝑖𝑠𝑖 mod 2 |𝑥⟩) ⊗ |−⟩

= 1√
2𝑛 ∑

𝑥∈{0,1}𝑛
(−1)𝑠⋅𝑥 |𝑥⟩ ⊗ |−⟩

= 1√
2𝑛 ∑

𝑥∈{0,1}𝑛
(−1)𝑓(𝑥) |𝑥⟩ ⊗ |−⟩

= |𝜓2⟩

This calculation shows that we have the quantum state |𝑠⟩⊗|−⟩ before the measurement.

4. We now perform a measurement on the top wire and measure 𝑠 as a result.

This concludes the Bernstein-Vazirani algorithm.

10 Shor’s Algorithm

One of the best known quantum algorithm is Shor’s algorithm for finding the prime factors of
an integer. It was developed by Peter Shor in 1994.

38

10.1 Discrete Fourier Transformation

One of the tools required for Shor’s algorithm is the Discrete Fourier Transformation (DFT).
Generally, a Fourier transformation is a mathematical technique that decomposes a function
into its constituent frequencies. We use the DFT to find the period of a vector.

The DFT is defined as follows:

Definition 10.1 (Discrete Fourier Transformation (DFT)). The discrete Fourier trans-
form (DFT) is a linear transformation on ℂ𝑁 represented by the matrix

DFT𝑁 = 1√
𝑁

(𝜔𝑘𝑙)𝑘𝑙=0,…,𝑁−1 ∈ ℂ𝑁×𝑁

with 𝜔 = 𝑒2𝑖𝜋/𝑁 , which is the 𝑁 -th root of unity.

It applies 𝜔𝑁 = 1 and 𝜔𝑀 ≠ 1 for all 0 < 𝑀 < 𝑁 .

This transformation is best imagined as a process, which takes a periodic vector as an input
and outputs the period of that vector. The DFT has some important properties, which help
us later on.

Theorem 10.1 (Properties of the DFT). Here are some properties of the DFT which
can be used without further proof.

1. The DFT𝑁 is unitary.
2. 𝜔𝑡 = 𝜔𝑡 mod 𝑁 for all 𝑡 ∈ ℤ.
3. Let 𝑡 ∣ 𝑁 and 𝑠 be fix variables and the quantum state 𝜓 ∈ ℂ𝑁 g given by

|𝜓𝑖| = {√ 𝑡
𝑁 if 𝑖 = 𝑎𝑡 + 𝑠 for some 𝑎

0 else.

In other words 𝜓 is 𝑡-periodic. Then for 𝜙 ≔ DFT𝑁 it applies

|𝜙𝑖| = {
1√
𝑡 if 𝑁

𝑡 ∣ 𝑖
0 else.

The first peak of 𝜙 is at 𝑁
𝑡 .

39

10.2 Reducing factoring to period finding

With the DFT, we have seen, that we can use a unitary to find the period of a quantum state.
We now look into using period finding to factor integers. We first look at the definition of
some problems:

Definition 10.2 (Factoring problem). Given integer 𝑁 with two prime factors 𝑝, 𝑞 > 2
such that 𝑝𝑞 = 𝑁 and 𝑝 ≠ 𝑞, find 𝑝 and 𝑞.

Note that this definition of the factoring problem is a simplified version of the factoring problem,
where 𝑁 has only 2 prime factors.

Definition 10.3 (Period finding problem). Given 𝑓 ∶ ℤ → 𝑋 with 𝑓(𝑥) = 𝑓(𝑦) iff
𝑥 ≡ 𝑦 mod 𝑟 for some fixed secret 𝑟, find 𝑟.
We call 𝑟 the period of 𝑓 .

To start the reduction, we need a special case of the period finding problem called order
finding:

Definition 10.4 (Order finding problem). For known 𝑎 and 𝑁 which are relatively prime,
find the period 𝑟 of 𝑓(𝑖) = 𝑎𝑖 mod 𝑁 . We call 𝑟 the order of 𝑎 written 𝑟 = ord 𝑎. (This
is similar to finding the smallest 𝑖 > 0 with 𝑓(𝑖) = 𝑎𝑖 mod 𝑁 = 1).

Since the order finding problem is just the period finding problem for a specific 𝑓(𝑥), we know
that if we can solve the period finding problem within reasonable runtime, we can also solve
the order finding problem within reasonable runtime. We now reduce the factoring problem
to the order finding problem:

We have an integer 𝑁 as an input for the factoring problem.

1. Pick an 𝑎 ∈ {2, … , 𝑁 − 1} relatively prime to 𝑁 .
2. Compute the order of 𝑎, so that 𝑟 ≔ ord mod 𝑎 (using one solver for the order finding

problem).
3. If the order 𝑟 is odd, restart at 1.
4. Calculate 𝑥 ∶= 𝑎 𝑟

2 + 1 mod 𝑁 and 𝑦 ∶= 𝑎 𝑟
2 − 1 mod 𝑁 .

5. If gcd(𝑥, 𝑁) ∈ {1, 𝑁}, we restart at 1.
6. Return 𝑝 = gcd(𝑥, 𝑁) and 𝑞 = 𝑁

gcd(𝑦,𝑁) .

The output of the reduction are 𝑝, 𝑞, such that 𝑝𝑞 = 𝑁 . This holds, since
𝑥𝑦 = (𝑎 𝑟

2 + 1)(𝑎 𝑟
2 − 1) = 𝑎𝑟 − 1 ≡ 1 − 1 = 0 (mod 𝑁).

This means that 𝑁 ∣ 𝑥𝑦 an therefore 𝑝 ∣ 𝑥𝑦 and 𝑞 ∣ 𝑥𝑦. From this it can be concluded that
𝑝 ∣ 𝑥, 𝑞 ∣ 𝑦, 𝑝 ∣ 𝑦 and 𝑞 ∤ 𝑥 which leads to gcd(𝑥, 𝑁) = 𝑝. Or 𝑝 and 𝑞 swapped.

40

Theorem 10.2 (Probability of an abort). If 𝑁 has at least two different prime factors
and 𝑁 is odd, then the probability to restart is ≤ 1

2 .

All in all this reduction shows, that if we have an oracle which can solve the period finding
problem within reasonable runtime, we can also solve the factoring problem within reasonable
runtime (since all other operations are classically fast to compute).

10.3 The quantum algorithm for period finding

We now look into an quantum algorithm that solves the period finding problem within reason-
able runtime.

For the quantum circuit we need an 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 which is 𝑟-periodic with 𝑟 < 2𝑛.

The quantum algorithm for period finding is shown in this figure:

n

m

|0n⟩ H⊗n

Uf

DFT2n

c

|0m⟩

y

|ϕ1⟩ |ϕ2⟩ |ϕ3⟩ |ϕ4⟩ |ϕ5⟩ |ϕ6⟩

Figure 10.1: Shor’s algorithm (quantum part)

The algorithm works as follows:

1. We start with |𝜓1⟩ = |0𝑛⟩ ⊗ |0𝑚⟩.
2. We bring the top wire into the superposition over all entries. The quantum state is then

|𝜓2⟩ = 𝐺 ⋅ ∑𝑥∈{0,…,2𝑛−1} |𝑥⟩ ⊗ |0𝑚⟩ with the constant 𝐺 ≔ 2 −𝑛
2 .

3. We apply 𝑈𝑓 , which is the unitary of 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚. This calculates the superpo-
sition over all possible values 𝑓(𝑥) on the bottom wire. The resulting quantum state is
|𝜓3⟩ = 𝐺 ⋅ ∑𝑥∈{0,…,2𝑛−1} |𝑥, 𝑓(𝑥)⟩.

4. To understand the algorithm better, we measure the bottom wire at this point. This
will give us one random value 𝑦 = 𝑓(𝑥0) for some 𝑥0. The top wire will then contain a
superposition over all values 𝑥 where 𝑓(𝑥) = 𝑓(𝑥0). Since 𝑓 is known to be 𝑟-periodic, we

41

know, that 𝑓(𝑥) = 𝑓(𝑥0) iff 𝑥 ≡ 𝑥0 mod 𝑟. This means, that the resulting quantum state
on the top wire is periodic. So the complete quantum state is |𝜓4⟩ = 𝐶 ⋅∑𝑥≡𝑥0 mod 𝑟 |𝑥⟩⊗
|𝑓(𝑥0)⟩ with the constant 𝐶 =

√𝑟√
2𝑛 .

5. We apply the Discrete Fourier Transform on the top wire. This will “analyze” the
top wire for the period and output a vector with entries at multiples of 2𝑛

𝑟 as seen in
Theorem 10.1.

6. We measure the top wire and get one random multiple of 2𝑛
𝑟 , which we can denote as

𝑐 = 𝑎 ⋅ 2𝑛
𝑟 for some 𝑎.

Since we get a multiple of 2𝑛
𝑟 on each run, we can simply run the algorithm multiple times

to get different multiples and then compute 2𝑛
𝑟 by taking the gcd of those multiples. From

that we compute 𝑟. Unfortunately this only works because we assumed 𝑟 ∣ 2𝑛. Since this does
usually not hold, we only get approximate multiples of 2𝑛

𝑟 (which is not even an integer) and
thus we need a post processing.

10.4 Post processing

So far we have seen the DFT to analyze the period of a quantum state, we have seen a way to
reduce the factoring problem to the period finding and we have seen a quantum algorithm for
finding an approximate multiple of such a period of a function. We just need one final step to
find 𝑟. For this we start with a theorem:

Theorem 10.3. Iff 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 is 𝑟-periodic, the following holds with probabil-
ity Ω(1

log log 𝑟):
−𝑟
2 ≤ 𝑟𝑐 mod 2𝑛 ≤ 𝑟

2
where 𝑐 is the output of the second measurement of the quantum circuit described in
Section 10.3 and 𝑛 is the number of qubits on the upper wire of the quantum circuit.

We assume that the theorem holds for our outcome 𝑐 of the second measurement (if that is
not the case, our result will be wrong and we can just run the quantum algorithm again to get
a different outcome) and 𝑅 is an upper bound on 𝑟:

Then exists an integer 𝑑 such that:

|𝑟𝑐 − 𝑑2𝑛| ≤ 𝑟
2 || divide by 𝑟 ⋅ 2𝑛

⟺ | 𝑐
2𝑛 − 𝑑

𝑟 | ≤ 1
2𝑛+1

The fraction 𝜑 ≔ 𝑐
2𝑛 is known, but the fraction 𝑑

𝑟 is unknown. All we know is that it is a
fraction and that denominator is ≤ 𝑅. The goal is to find a fraction 1

2𝑛+1 -close to 𝑐
2𝑛 .

42

For this we use another theorem:

Theorem 10.4. Under the conditions 𝑟2 ≤ 2𝑛 and 2𝑛 is in the order of 𝑅2, the fraction
𝑑
𝑟 is a convergent of the continued fraction expansion of 𝑐

2𝑛 , where are 𝑐, 𝑑, 𝑟 and 𝑛 are
the variables defined above.

This theorem uses the convergent of a continued fraction expansion. A continued fraction
expansion of a number 𝑡 is the number rewritten as a fraction in the form

𝑡 = 𝑎0 + 1
𝑎1 + 1

𝑎2+ 1
𝑎3+…

where 𝑎𝑖 always has to be the biggest possible integer. We call [𝑎0, 𝑎1, 𝑎2, 𝑎3, …] the continued
expansion of 𝑡. The expansion is finite iff t is rational. For a given continued expansion, a
prefix [𝑎0, … , 𝑎𝑖] is called a convergent. Writing this convergent as a normal fraction will give
us an approximation of the number 𝑡.

Example: Continued expansion of a fraction

The number 2.3 can be written as

2.3 = 2 + 1
3 + 1

3+0

and the continued fraction expansion of 2.3 is [2, 3, 3]. The expansions [2] and [2, 3] are
convergents of the expansion of 2.3 and written as a fraction will give us the approxima-
tions 2 and 2 + 1

3 = 2. ̄3.
The number 0.99 can be written as

0.99 = 0 + 1
1 + 1

99+0

and the continued fraction expansion of 0.99 is [0, 1, 99]. The expansions [0] and [0, 1] are
convergents of the expansion of 0.99 and written as a fraction will give us the approxi-
mations 0 and 0 + 1

1 = 1.

Using Theorem 10.4 (with 𝜑 ∶= 𝑐
2𝑛 and 𝑞 ∶= 2𝑛) we can find 𝑑

𝑟 and from this 𝑟 which is the
period of our function using the following steps:

For each convergent 𝛾 of 𝜑 do the following:

1. Compute 𝛾 as fraction 𝑑
𝑟 .

2. Stop if 𝑟 ≤ 2𝑛 and this 𝑑
𝑟 is 1

2𝑛+1 -close to 𝑐
2𝑛 and return 𝑟.

43

Note: It can happen, that the resulting fraction does not have the right 𝑟 in the denominator,
because 𝑑

𝑟 was simplified (if numerator and denominator shared a common factor). But the
probability of this happening is sufficiently small and already included in the probability in
Theorem 10.3.

This completes the postprocessing of Shor’s algorithm.

10.5 Constructing the DFT

So far we have described everything necessary for Shor’s algorithm, but only described the
matrix representation of the DFT𝑁 . We will now take a closer look into implementing the
DFT𝑀 as a quantum circuit. Since we only use the DFT𝑁 for Shor’s algorithm so far, we will
only look at 𝑁 = 2𝑛, which is the DFT applied on 𝑛 qubits.

To start the circuit, we recall the definition of the DFT𝑁 from Definition 10.1: DFT𝑁 ∶=
1√
2𝑛 (𝜔𝑘𝑙)𝑘𝑙 with 𝜔 ∶= 𝑒2𝜋𝑖/2𝑛 . To apply the DFT𝑁 to a quantum state |𝑗⟩ we calculate

DFT𝑁 |𝑗⟩ = 1√
𝑁

𝑁−1
∑
𝑘=0

𝜔𝑗𝑘 |𝑘⟩

= 1√
𝑁

𝑁−1
∑
𝑘=0

𝑒2𝜋𝑖𝑗𝑘/𝑁 |𝑘⟩

= 1√
𝑁

∑
𝑘1∈{0,1}

… ∑
𝑘𝑛∈{0,1}

𝑒2𝜋𝑖𝑗(∑𝑛
𝑙=1 𝑘𝑙2−𝑙) |𝑘1 … 𝑘𝑛⟩

= 1√
𝑁

∑
𝑘1∈{0,1}

… ∑
𝑘𝑛∈{0,1}

𝑛
⨂
𝑙=1

𝑒2𝜋𝑖𝑗𝑘𝑙2−𝑙 |𝑘𝑙⟩

= 1√
𝑁

𝑛
⨂
𝑙=1

∑
𝑘𝑙∈{0,1}

𝑒2𝜋𝑖𝑗𝑘𝑙2−𝑙 |𝑘𝑙⟩

= 1√
𝑁

𝑛
⨂
𝑙=1

(|0⟩ + 𝑒2𝜋𝑖𝑗2−𝑙 |1⟩)

= 1√
𝑁

𝑛
⨂
𝑙=1

(|0⟩ + 𝑒2𝜋𝑖0.𝑗𝑛−𝑙+1…𝑗𝑛 |1⟩).

The expression 0.𝑗 expresses a binary fraction (e.g. 0.101 = 1
2 + 1

8 = 5
8).

With this we have shown, that we can write DFT𝑁 |𝑗⟩ as the following tensor product of
quantum states

1√
2

(|0⟩ + 𝑒2𝜋𝑖0.𝑗𝑛 |1⟩) ⊗ 1√
2

(|0⟩ + 𝑒2𝜋𝑖0.𝑗𝑛−1𝑗𝑛 |1⟩) ⊗ ⋯ ⊗ 1√
2

(|0⟩ + 𝑒2𝜋𝑖0.𝑗1…𝑗𝑛 |1⟩).

44

From this rewritten tensor product, we can get an idea on how to construct the quantum
circuit for the DFT𝑁 . Namely, we can construct a quantum circuit for each element of the
tensor product and from this build the general circuit.

For this, we segment the tensor product into different elements 𝜓 as follows:

1√
2

(|0⟩ + 𝑒2𝜋𝑖0.𝑗𝑛 |1⟩)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜓1

⊗ 1√
2

(|0⟩ + 𝑒2𝜋𝑖0.𝑗𝑛−1𝑗𝑛 |1⟩)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜓2

⊗ ⋯ ⊗ 1√
2

(|0⟩ + 𝑒2𝜋𝑖0.𝑗1…𝑗𝑛 |1⟩)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜓𝑛

.

We also introduce a new gate 𝑅𝑘 which is defined by the following matrix:

𝑅𝑘 ∶= (1 0
0 𝑒2𝜋𝑖/2𝑘) .

To understand the construction of the circuit from these elements, we will look at an example
for 𝑛 = 3 first:

Example: Construction of the DFT circuit for 𝑛 = 3

We start by building the tensor product for 𝑛 = 3. The input for the DFT circuit is
|𝑗⟩ = |𝑗1𝑗2𝑗3⟩. Using the formula from above, we can write the result of DFT23 |𝑗⟩ as the
following tensor product:

1√
2

(|0⟩ + 𝑒2𝜋𝑖0.𝑗3 |1⟩)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜓1

⊗ 1√
2

(|0⟩ + 𝑒2𝜋𝑖0.𝑗2𝑗3 |1⟩)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜓2

⊗ 1√
2

(|0⟩ + 𝑒2𝜋𝑖0.𝑗1𝑗2𝑗3 |1⟩)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜓3

.

|j1⟩ H R2 R3 ψ1

|j2⟩ H R2 ψ2

|j3⟩ H ψ3

1 2 3

Figure 10.2: The DTF for three qubits

45

1. First we construct the 𝜓3 element. Contrary to the intuition, we use the top wire
containing |𝑗1⟩ for this. We use a Hadamad-gate to bring |𝑗1⟩ into the superposition

1√
2(|0⟩ + (−1)𝑗1 |1⟩) = 1√

2(|0⟩ + 𝑒2𝜋𝑖0.𝑗1 |1⟩). This looks close to 𝜓3 already, we now
need to add the last two decimal places 𝑗2𝑗3 to the state. For this we use 𝑅2 and
𝑅3. We apply 𝑅2 controlled by the wire 𝑗2 and 𝑅3 controlled by the wire 𝑗3. This
means, that we only apply the 𝑅-gate, if the corresponding wire contains a 1. You
can see this written as a quantum circuit at the figure below. After applying 𝑅2
we have the state 1√

2(|0⟩ + 𝑒2𝜋𝑖0.𝑗1𝑗2 |1⟩) and after applying 𝑅3 we have the state
1√
2(|0⟩ + 𝑒2𝜋𝑖0.𝑗1𝑗2𝑗3 |1⟩) on the top wire. This is the same as 𝜓3, so we are done on

the first wire (We are at the first slice in the figure).
2. The next step is to construct the 𝜓2 state on the middle wire. We again use a

Hadamad-gate to bring |𝑗2⟩ into the superposition 1√
2(|0⟩ + 𝑒2𝜋𝑖0.𝑗2 |1⟩). We now

need to include the last decimal point 𝑗3, for which we use 𝑅2 again, this time
controlled by 𝑗3. The resulting superposition is now 1√

2(|0⟩ + 𝑒2𝜋𝑖0.𝑗2𝑗3 |1⟩), which
is 𝜓2. (We are at the second slice in the figure).

3. On the bottom wire, we can just do a Hadamad-gate to bring |𝑗3⟩ into the super-
position 1√

2(|0⟩ + 𝑒2𝜋𝑖0.𝑗3 |1⟩). We then have 𝜓1 on the bottom wire. (We are at the
third slice in the figure).

4. When applying this circuit, we get the state 𝜓3 ⊗ 𝜓2 ⊗ 𝜓1 as a result. This very
close to our desired state 𝜓1 ⊗ 𝜓2 ⊗ 𝜓3, just the order of the wires is flipped. To
solve this, we apply a SWAP onto all wires, which flips the order of the wires an
delivers the correct output for DFT23 .

The more general approach to construct the DFT𝑁 as a quantum circuit with 𝑛 qubits (𝑁 = 2𝑛)
works as follows:

1. Initialize wires with input |𝑗⟩, so that |𝑗1⟩ is on the top wire and |𝑗𝑛⟩ is on the bottom
wire. Note, that this is not part of the circuit yet.

2. Start with the top wire. For each wire 𝑗𝑖 do the following:

1. Apply a Hadamad-gate on the wire 𝑗𝑖.
2. For each wire 𝑗𝑘 below the current wire 𝑗𝑖 (with 𝑖 < 𝑘 ≤ 𝑛), add a 𝑅𝑘−𝑖+1-gate

controlled by 𝑗𝑘. Start with 𝑘 = 𝑖 + 1 (if 𝑖 < 𝑛, else stop).

3. Perform a SWAP to flip all the wires. This means, that the first wire is swapped with
the last wire, the second wire is swapped with the second to last wire and so on.

Note: If the the output of the DFT circuit is measured right after applying it (as in Shor’s
algorithm) or if the rest of the algorithm allows for it, it is more efficient to perform the SWAP
classically, since this is considered to be the cheaper operation.

The more general layout of the quantum circuit for the DFTN with the SWAP is shown in
this figure.

46

. . .

. . .

...
...

...
...

...

. . .

. . .

|j1⟩ H R2 Rn−1 Rn ψ1

|j2⟩ H Rn−2 Rn−1 ψ2

|jn−1⟩ H R2 ψn−1

|jn⟩ H ψn

Figure 10.3: The DTF for 𝑛 qubits

11 Grover’s algorithm

Another well known quantum algorithm is Grover’s algorithm for searching. It was developed
by Lov Grover in 1996.

Grover’s algorithm takes a function 𝑓 ∶ {0, 1}𝑛 → {0, 1}, where exactly one 𝑥0 exists, such
that 𝑓(𝑥0) = 1. The goal is to find 𝑥0.

There are a number of interesting problems, which can be reduced to this general definition.
One of these problems is the breaking of a (symmetric) encryption. The function 𝑓 would take
a key as an input and output a 1, if the decryption is successful. Otherwise it will output a
0.

Classically, finding this 𝑥0 takes approximately 2𝑛 steps (when simply bruteforcing the func-
tion). Using Grover’s algorithm, we can reduce this runtime to approximately

√
2𝑛 steps. As

an example, a 128-bit encryption would only take about 264 steps to break it, instead of about
2128 steps for the classical bruteforce.

11.1 Preparations

To construct Grover’s algorithm, we first need to introduce two new gates 𝑉𝑓 and FLIP∗.

47

11.1.1 Constructing the oracle 𝑉𝑓

In the previous algorithms, we have learned that we can implement a function 𝑓 as a unitary
𝑈𝑓 with 𝑈𝑓 |𝑥, 𝑦⟩ = |𝑥, 𝑦 ⊕ 𝑓(𝑥)⟩. We construct a different unitary called 𝑉𝑓 from this, which
has the following behavior:

𝑉𝑓 |𝑥⟩ = {− |𝑥⟩ if 𝑓(𝑥) = 1
|𝑥⟩ else

We can construct 𝑉𝑓 from 𝑈𝑓 using the following circuit:

|x⟩
Uf

|x⟩ or -|x⟩

|−⟩ |−⟩

Figure 11.1: The circuit for 𝑉𝑓

The bottom wire can be discarded, since it always contains a |−⟩ and thus is not entangled
with the upper wire.

11.1.2 Constructing FLIP∗

As a second ingredient for Grover’s algorithm, we need the unitary FLIP∗. To realize this, we
first need FLIP0, which ist defined by the unitary

FLIP0 |𝑥⟩ = {|0⟩ if 𝑥 = 0
− |𝑥⟩ else.

FLIP0 is implemented by the following quantum circuit:

48

...
...

|x⟩

−Z

−I

Figure 11.2: The circuit for FLIP0

𝑍 is the Pauli matrix from definition Definition 7.2. The empty circles indicates a negative
control wire. So 𝑍 is only applied if the other wires are |0⟩.
Now we can define the unitary called FLIP∗. This unitary does nothing, if it is applied on the
uniform superposition |∗⟩. For any other quantum state |𝜓⟩ orthogonal to |∗⟩ it maps to − |𝜓⟩.
The uniform superposition |∗⟩ simply denotes the superposition over all classical possibilities
|∗⟩ = 1√

2𝑛 ∑𝑥∈{0,1}𝑛 |𝑥⟩. So FLIP∗ is described by:

FLIP∗ |𝜓⟩ = {|∗⟩ if |𝜓⟩ = |∗⟩
− |𝑥⟩ if |𝜓⟩ ⟂ |∗⟩ (orthogonal).

We can construct this FLIP∗ by the following quantum circuit:

...
...

|ψ⟩

H

FLIP0

H

H H

H H

Figure 11.3: The circuit for FLIP∗

49

11.2 The algorithm for searching

The actual algorithm takes a function 𝑓 ∶ {0, 1}𝑛 → {0, 1} and outputs an 𝑥0 with 𝑓(𝑥0) = 1.
For simplicity, we assume that there is only one 𝑥0 for which 𝑓(𝑥0) = 1 holds and for each
other 𝑥 ≠ 𝑥0 it holds that 𝑓(𝑥) = 0.

With the two new unitaries 𝑉𝑓 and FLIP∗ defined, we can construct the circuit for Grover’s
algorithm, which is shown in the following figure:

n|0n⟩ H⊗n Vf FLIP∗

x0
repeat t times

Figure 11.4: The quantum circuit for Grover’s algorithm

The algorithm works as follows:

1. We start with a |0⟩ entry on every qubit.
2. We bring the system into the superposition over all entries by applying 𝐻⊗𝑛. The

quantum state is then 1√
2𝑛 ∑𝑥∈{0,1}𝑛 |𝑥⟩ which we also call |∗⟩.

3. We apply the unitary 𝑉𝑓 .
4. We apply the unitary FLIP∗.
5. We repeat steps 3 and 4 𝑡 times.
6. We do a measurement.

The measurement in step 6 will then give us 𝑥0 with high probability.

11.2.1 Understanding the algorithm for searching

When looking at the quantum circuit, it is not completely intuitive why the algorithm gives
the correct result. We therefore now look into what is happening in each step.

The desired quantum state after the algorithm finishes is |𝑥0⟩. At the beginning of the algo-
rithm, we bring the system into the uniform superposition |∗⟩ = 1√

2𝑛 ∑𝑥∈{0,1}𝑛 |𝑥⟩. We know
that |𝑥0⟩ is part of this superposition, therefore we can rewrite |∗⟩ as follows

|∗⟩ = 1√
2𝑛 ∑

𝑥∈{0,1}𝑛
|𝑥⟩ = 1√

2𝑛 |𝑥0⟩⏟
good

+√2𝑛 − 1
2𝑛 ∑

𝑥≠𝑥0

1√
2𝑛 − 1

|𝑥⟩
⏟⏟⏟⏟⏟⏟⏟

bad

50

So the current state can be seen as a superposition of a “good” state good and a “bad” state
bad.

The geometric interpretation of this superposition can be drawn as follows:

bad

good

|∗⟩

θ

Figure 11.5: Geometric interpretation of |∗⟩

The angel 𝜃 denotes, how “good” the resulting outcome will be. If 𝜃 = 0, the state is completely
bad, if 𝜃 = 𝜋

2 , the state is completely good.

We can calculate cos 𝜃 = |⟨∗|𝑏𝑎𝑑⟩| =
√

2𝑛−1√
2𝑛 . From this we can derivate that the angle 𝜃 is

cos−1 √2𝑛−1
2𝑛 at the beginning, which is approximately √ 1

2𝑛 .

We now apply 𝑉𝑓 on this quantum state. This will negate the amplitude off our desired |𝑥0⟩
and not change the amplitude to the rest of the state.

𝑉𝑓 |∗⟩ = − 1√
2𝑛 |𝑥0⟩⏟

good

+√2𝑛 − 1
2𝑛 ∑

𝑥≠𝑥0

|𝑥⟩
⏟

bad

This looks like this in the geometric interpretation:

51

bad

good

|∗⟩

θ

Vf |∗⟩

θ

Figure 11.6: Geometric interpretation after 𝑉𝑓

We can see that by applying 𝑉𝑓 , we mirror the vector across the bad axis.

After 𝑉𝑓 , we apply the FLIP∗ operation on the quantum state. Since FLIP∗ does nothing on
the |∗⟩ entries and negates the amplitude of any vector orthogonal to it, FLIP∗ mirrors the
vector across |∗⟩. This can be seen in the following figure:

bad

good

|∗⟩

θ

Vf |∗⟩

θ

FLIP* Vf |∗⟩

2θ

Figure 11.7: Geometric interpretation after FLIP∗

All in all, we have seen that by applying 𝑉𝑓 and FLIP∗, we can increase the angle of the
quantum state in relation to the “good” and “bad” states by 2𝜃. Therefore two reflection give
rotation. By repeating this step often enough, we can get the amplitude of |𝑥0⟩ close to 1.

To be more precise: Since we know 𝜃 and we know that we will increase the good-ness of our
quantum state by 2𝜃 each time, we can calculate that only 𝑡 iterations are necessary with

𝑡 ≈
𝜋/2

𝜃 − 1
2 ≈ 𝜋

4𝜃 ≈ 𝜋
4 ⋅

√
2𝑛.

Grover’s algorithm therefore takes 𝑂(
√

2𝑛) steps, where an evaluation of the circuit counts as
one step.

52

	Welcome
	Introduction
	Double-slit experiment
	What is a quantum computer?

	Probabilistic systems
	Deterministic possibilities
	Probability distribution
	Probabilistic processes
	Applying a probabilistic process

	Quantum systems
	Classical possibilities
	Quantum states
	Unitary transformation

	Observing probabilistic and measuring quantum systems
	Observing a probabilistic system
	Measuring a quantum system
	Elitzur–Vaidman bomb tester

	Partial observing and measuring systems
	Partially observing a probabilistic system
	Partially measuring a quantum system

	Composite Systems
	Constructing composite systems
	Measuring composite systems

	Quantum Circuits
	Visual language
	Important gates
	Single qubit gates
	Controlled-NOT gate

	Teleportation

	Ket Notation
	Teleportation

	Bernstein-Vazirani Algorithm
	Shor's Algorithm
	Discrete Fourier Transformation
	Reducing factoring to period finding
	The quantum algorithm for period finding
	Post processing
	Constructing the DFT

	Grover's algorithm
	Preparations
	Constructing the oracle V_f
	Constructing \operatorname{FLIP}_*

	The algorithm for searching
	Understanding the algorithm for searching

