From a57515c46c9b6c0a728c4cf2c95d589c1173a416 Mon Sep 17 00:00:00 2001 From: CI Bot <ci-bot@tu-berlin.de> Date: Fri, 29 Nov 2024 13:57:46 +0100 Subject: [PATCH 01/53] updated mkdocs file with mermaid and mkdoxy --- docs/documentation/aircraft-design.md | 13 ++++++ docs/documentation/sizing.md | 4 +- mkdocs.yml | 57 +++++++++++++++++++++++---- 3 files changed, 65 insertions(+), 9 deletions(-) create mode 100644 docs/documentation/aircraft-design.md diff --git a/docs/documentation/aircraft-design.md b/docs/documentation/aircraft-design.md new file mode 100644 index 0000000..bb2e5ad --- /dev/null +++ b/docs/documentation/aircraft-design.md @@ -0,0 +1,13 @@ +# Sizing and analysizing! +Yoho $M = \frac{2}{5}$ + +!!! tip + + +!!! danger + + +```mermaid + graph LR; + A-->B +``` diff --git a/docs/documentation/sizing.md b/docs/documentation/sizing.md index bdb7997..c8fe9a4 100644 --- a/docs/documentation/sizing.md +++ b/docs/documentation/sizing.md @@ -95,12 +95,12 @@ The engine will be scaled by the module to match the specific thrust requirement Moreover, an engine bucket curve and several engine deck plots can be created. Additionally, the propulsion is integrated in relation to the user settings (e.g. integration of the propulsion on the wing or fuselage, ...). Depending on the location of the integration, the tool calculates the nacelle and pylon geometry. -Also the mass properties are analyzed. +Also the mass properties are analyzed. {.overview-item} |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|3.0.0|:simple-cplusplus: |GPLv3|[Link](propulsion_design/index.html)| +|3.0.0|:simple-cplusplus: |GPLv3|[Link](propulsion_design/content/index.md)| --- diff --git a/mkdocs.yml b/mkdocs.yml index 5c71d87..aa4395f 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -36,7 +36,11 @@ markdown_extensions: line_spans: __span # Adds spans around lines for custom styling. pygments_lang_class: true # Adds language class to highlighted code for styling consistency. - pymdownx.details # Enables collapsible details/summary blocks for content hiding/showing. - - pymdownx.superfences # Adds advanced fence syntax for blocks like code or tabs. + - pymdownx.superfences: # Adds advanced fence syntax for blocks like code or tabs. + custom_fences: + - name: mermaid + class: mermaid + format: !!python/name:pymdownx.superfences.fence_code_format - pymdownx.inlinehilite # Allows inline code highlighting within text. - pymdownx.snippets # Enables code snippets for reusing code blocks across pages. - pymdownx.critic # Adds Critic Markup support for collaborative editing. @@ -58,8 +62,20 @@ extra_css: # === Plugins === plugins: + - search + - mkdoxy: + projects: + propulsion_design: + src-dirs: ../aircraft-design/propulsion_design/ + full-doc: True + output: docs/propulsion_design + doxy-cfg: + FILE_PATTERNS: "*cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES - glightbox # Plugin for lightbox-style image and content viewing. + # === Theme configuration === theme: name: material # Specifies the theme name (alternatives: material, mkdocs, readthedocs). @@ -68,9 +84,18 @@ theme: custom_dir: overrides # Directory for custom files (like footer). # Theme colors configuration palette: - scheme: slate # Sets a dark theme style. - primary: blue grey # Main color of the theme (used for buttons, links, etc.). - accent: red # Accent color for highlights. + - scheme: default + toggle: + icon: material/brightness-7 + name: Switch to dark mode + primary: blue grey + accent: red + - scheme: slate + toggle: + icon: material/brightness-3 + name: Switch to light mode + primary: green + accent: red # Feature configurations for navigation and ToC behavior features: @@ -98,9 +123,27 @@ nav: # Customizes the main navigation struc - Seperate Tool Execution: 'tutorials/seperate-tool-execution.md' # Link to the separate tool execution tutorial page. - Documentation: # Top-level item for documentation. - Overview: 'documentation/overview.md' # Overview of modules. - - Aircraft Design: # Subsection for Aircraft Design. - - 'documentation/sizing.md' # Link to sizing module page. - - 'documentation/analysis.md' # Link to analysis module page. + - Aircraft Design: + - Introduction: documentation/aircraft-design.md # Subsection for Aircraft Design. + - Sizing: + - Modules: documentation/sizing.md + - Propulsion Design: + - documentation/propulsion_design/content/index.md + - documentation/propulsion_design/content/engineeringprinciples.md + - documentation/propulsion_design/content/getting-started.md + - documentation/propulsion_design/content/softwarearchitecture.md + - Tutorial: + - documentation/propulsion_design/content/tutorial.md + - documentation/propulsion_design/content/tutorial_engine_extension.md + - documentation/propulsion_design/content/tutorial_fidelity_extension.md + - Additional: documentation/propulsion_design/content/additional.md + - API Reference: + - propulsion_design/classes.md + - propulsion_design/namespaces.md + - propulsion_design/files.md + - propulsion_design/pages.md + - Analsysis: + - Modules: 'documentation/analysis.md' # Link to analysis module page. - Libraries: 'documentation/libraries.md' # Link to libraries overview. - Utilities: 'documentation/additional-software.md' # Link to additional software page. - Workflow: 'workflow.md' # Link to the workflow page. -- GitLab From 1fefd330543628f238a1f21361ea5429486c84a0 Mon Sep 17 00:00:00 2001 From: Christopher Ruwisch <christopher.ruwisch@gmail.com> Date: Tue, 3 Dec 2024 09:46:49 +0100 Subject: [PATCH 02/53] added none collapsable sections for nav --- mkdocs.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/mkdocs.yml b/mkdocs.yml index aa4395f..25027ef 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -102,6 +102,7 @@ theme: - navigation.instant # Enables instant navigation between pages (no reload). - navigation.tabs # Adds navigation tabs for each main section in `nav`. - navigation.path # Shows the navigation path/breadcrumbs. + - navigation.sections - toc.follow # Highlights the current section in the ToC as you scroll. # Additional links (social) to display in the header -- GitLab From 843c1fe9763c28ce5ff51a0e1f75c5c29a0a84c4 Mon Sep 17 00:00:00 2001 From: Christopher Ruwisch <christopher.ruwisch@gmail.com> Date: Mon, 16 Dec 2024 11:02:50 +0100 Subject: [PATCH 03/53] updated mkdocs file (no documentation pages added -> please change path to aircraft design --- mkdocs.yml | 35 ++++++++++++++++++++++++++--------- overrides/main.html | 2 +- 2 files changed, 27 insertions(+), 10 deletions(-) diff --git a/mkdocs.yml b/mkdocs.yml index 25027ef..40120f1 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -70,9 +70,18 @@ plugins: full-doc: True output: docs/propulsion_design doxy-cfg: - FILE_PATTERNS: "*cpp *.h" + FILE_PATTERNS: "*.cpp *.h" RECURSIVE: True EXTRACT_ALL: YES + initial_sizing: + src-dirs: ../aircraft-design/initial_sizing/ + full-doc: true + output: docs/initial_sizing + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + - glightbox # Plugin for lightbox-style image and content viewing. @@ -128,16 +137,24 @@ nav: # Customizes the main navigation struc - Introduction: documentation/aircraft-design.md # Subsection for Aircraft Design. - Sizing: - Modules: documentation/sizing.md + - Initial Sizing: + - Introduction: 'documentation/initial_sizing/content/index.md' + - Getting Started: 'documentation/initial_sizing/content/getting-started.md' + - API Reference: + - initial_sizing/classed.md + - initial_sizing/namespaces.md + - initial_sizing/files.md + - initial_sizing/pages.md - Propulsion Design: - - documentation/propulsion_design/content/index.md - - documentation/propulsion_design/content/engineeringprinciples.md - - documentation/propulsion_design/content/getting-started.md - - documentation/propulsion_design/content/softwarearchitecture.md + - Introduction: 'documentation/propulsion_design/content/index.md' + - Engineering Principles: 'documentation/propulsion_design/content/engineering_principles.md' + - Getting Started: 'documentation/propulsion_design/content/getting_started.md' + - Software Architecture: 'documentation/propulsion_design/content/software_architecture.md' - Tutorial: - - documentation/propulsion_design/content/tutorial.md - - documentation/propulsion_design/content/tutorial_engine_extension.md - - documentation/propulsion_design/content/tutorial_fidelity_extension.md - - Additional: documentation/propulsion_design/content/additional.md + - Main: 'documentation/propulsion_design/content/tutorial.md' + - Engine Extension: 'documentation/propulsion_design/content/tutorial_engine_extension.md' + - Fidelity Extension: 'documentation/propulsion_design/content/tutorial_fidelity_extension.md' + - Additional: 'documentation/propulsion_design/content/additional.md' - API Reference: - propulsion_design/classes.md - propulsion_design/namespaces.md diff --git a/overrides/main.html b/overrides/main.html index 520c279..1f2aec4 100644 --- a/overrides/main.html +++ b/overrides/main.html @@ -8,7 +8,7 @@ <a href="/datenschutz/" class="footer-link">Datenschutzerklärung</a> </div> <div class="footer-image-container"> - <img src="/assets/images/logos/bmwk.png" alt="Footer Logo" class="footer-image"> + <img src="assets/images/logos/bmwk.png" alt="Footer Logo" class="footer-image"> </div> </div> -- GitLab From 2b351a237266b9dd19b3a8f82cd2eeaf976bcecd Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Wed, 18 Dec 2024 16:06:18 +0100 Subject: [PATCH 04/53] Adapt webpage nav --- ...nal-software.md => additional_software.md} | 0 docs/documentation/aircraft-design.md | 13 ---- docs/documentation/analysis.md | 12 ++-- docs/documentation/libraries.md | 26 +++---- docs/documentation/sizing.md | 16 ++--- mkdocs.yml | 68 +++++++++++-------- 6 files changed, 68 insertions(+), 67 deletions(-) rename docs/documentation/{additional-software.md => additional_software.md} (100%) delete mode 100644 docs/documentation/aircraft-design.md diff --git a/docs/documentation/additional-software.md b/docs/documentation/additional_software.md similarity index 100% rename from docs/documentation/additional-software.md rename to docs/documentation/additional_software.md diff --git a/docs/documentation/aircraft-design.md b/docs/documentation/aircraft-design.md deleted file mode 100644 index bb2e5ad..0000000 --- a/docs/documentation/aircraft-design.md +++ /dev/null @@ -1,13 +0,0 @@ -# Sizing and analysizing! -Yoho $M = \frac{2}{5}$ - -!!! tip - - -!!! danger - - -```mermaid - graph LR; - A-->B -``` diff --git a/docs/documentation/analysis.md b/docs/documentation/analysis.md index 3f9b1e9..e8e3663 100644 --- a/docs/documentation/analysis.md +++ b/docs/documentation/analysis.md @@ -22,7 +22,7 @@ lift mach numbers. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aerodynamic_analysis/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aerodynamic_analysis/content/index.md)| --- @@ -39,7 +39,7 @@ For the user, possible changes in the module run configuration can be made in th |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](mission_analysis/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](mission_analysis/content/index.md)| --- @@ -50,7 +50,7 @@ The `weight_and_balance_analysis` module calculates sub-masses and total masses |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](weight_and_balance_analysis/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](weight_and_balance_analysis/content/index.md)| --- @@ -67,7 +67,7 @@ The parameters comprised in this XML file can have different attributes as e.g. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](ecological_assessment/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](ecological_assessment/content/index.md)| --- @@ -78,7 +78,7 @@ The module `calculatePerformance` is used to evaluate the mission performance of |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus:| GPLv3 |[Link](performance_assessment/index.html)| +|2.1.0|:simple-cplusplus:| GPLv3 |[Link](performance_assessment/content/index.md)| --- @@ -94,6 +94,6 @@ Direct costs include all expenses incurred in operating and financing the aircra |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](cost_estimation/index.html)| +|2.1.0|:simple-python: |GPLv3|[Link](cost_estimation/content/index.md)| --- diff --git a/docs/documentation/libraries.md b/docs/documentation/libraries.md index 7d02739..2be0912 100644 --- a/docs/documentation/libraries.md +++ b/docs/documentation/libraries.md @@ -27,7 +27,7 @@ It has helper functions to extract and interpolate data of provided airfoil pola |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aerodynamics/content/index.md)|-| --- @@ -39,7 +39,7 @@ The modularity and flexibility is achieved by using the high performance [Comput |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraftGeometry2/index.html)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aircraftGeometry2/content/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| --- @@ -50,7 +50,7 @@ The **airfoils** libary provides a database for different airfoils. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|1.0.0|:simple-cplusplus: |GPLv3|[Link]()|-| +|1.0.0|:simple-cplusplus: |GPLv3|[Link](libraries/airfoils/content/index.md)|-| --- @@ -62,7 +62,7 @@ It uses a simple XML library, namely *tinyxml*, to read and parse the XML files. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aixml/content/index.md)|-| --- @@ -74,7 +74,7 @@ You can set different atmospheric conditions (e.g. *ISA+25*) and calculate the p |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()|| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/atmosphere/content/index.md)|| --- @@ -85,7 +85,7 @@ The **blackboxTest** library provides an interface to run a complete module with |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()|[googleTest](https://google.github.io/googletest/)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/blackboxTest/content/index.md)|[googleTest](https://google.github.io/googletest/)| --- @@ -98,7 +98,7 @@ The engine decks can originate from different softwaretools as long as they prov |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](engine/index.html)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/engine/content/index.md)|-| --- @@ -118,7 +118,7 @@ It has helper functions to extract and interpolate data of the results from the |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/liftingLineInterface/content/index.md)|-| --- @@ -131,7 +131,7 @@ The library gives a template how modules should be structured and gives helpers |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/moduleBasics/content/index.md)|-| --- @@ -142,7 +142,7 @@ This library provides standardized UNICADO data preprocessing, run, and postproc |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|1.0.0|:simple-python: |GPLv3|[Link]()|-| +|1.0.0|:simple-python: |GPLv3|[Link](libraries/pymodulepackage/content/index.md)|-| --- @@ -154,7 +154,7 @@ In provides custom output streams, which automatically handle the log files and |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/runtimeInfo/content/index.md)|-| --- @@ -167,7 +167,7 @@ The library can handle *UNIX* and *Windows* systems alike. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/standardFiles/content/index.md)|-| !!! warning Some functions of this library are a bit outdated! When using this library, please look first at the wonderful [STL :octicons-link-external-16:](https://en.cppreference.com/w/) whether the function you are seeking is already there. @@ -196,4 +196,4 @@ In addition, it defines some common **constants** which are useful for calculati |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/unitConversion/content/index.md)|-| diff --git a/docs/documentation/sizing.md b/docs/documentation/sizing.md index c8fe9a4..3208f2b 100644 --- a/docs/documentation/sizing.md +++ b/docs/documentation/sizing.md @@ -23,7 +23,7 @@ Furthermore an initial estimation of the takeoff mass is done. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](initial_sizing/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](initial_sizing/content/index.md)| --- @@ -37,7 +37,7 @@ The parameters comprised in this file can have different attributes as e.g. Desc |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](create_mission_xml/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](create_mission_xml/content/index.md)| --- @@ -48,7 +48,7 @@ The **fuselage_design** module calculates characteristic parameters and generate |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](fuselage_design/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](fuselage_design/content/index.md)| --- @@ -59,7 +59,7 @@ The **wing_design** module calculates characteristic parameter of the aircraft m |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](wing_design/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](wing_design/content/index.md)| --- @@ -71,7 +71,7 @@ It takes takes the controllability as wells as the static margin of the aircraft |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](empennage_design/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](empennage_design/content/index.md)| --- @@ -82,7 +82,7 @@ It takes takes the controllability as wells as the static margin of the aircraft |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](tank_design/index.html)| +|2.1.0|:simple-python: |GPLv3|[Link](tank_design/content/index.md)| --- @@ -111,7 +111,7 @@ The **landing_gear_design** module calculates characteristic parameters for the |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](landing_gear_design/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](landing_gear_design/content/index.md)| --- @@ -123,6 +123,6 @@ It dimensions ATA chapter systems in terms of mass and energy requirement divide |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](systems_design/index.html)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](systems_design/content/index.md)| --- diff --git a/mkdocs.yml b/mkdocs.yml index 40120f1..d662897 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -68,15 +68,15 @@ plugins: propulsion_design: src-dirs: ../aircraft-design/propulsion_design/ full-doc: True - output: docs/propulsion_design doxy-cfg: - FILE_PATTERNS: "*.cpp *.h" + FILE_PATTERNS: "*.cpp *.h *.md *.png *.svg" # Include .cpp, .h, .md, .png, .svg files in the documentation RECURSIVE: True EXTRACT_ALL: YES + OUTPUT_DIRECTORY: docs/propulsion_design initial_sizing: src-dirs: ../aircraft-design/initial_sizing/ full-doc: true - output: docs/initial_sizing + output: docs/documentation/initial_sizing/ doxy-cfg: FILE_PATTERNS: "*.cpp *.h" RECURSIVE: True @@ -134,37 +134,51 @@ nav: # Customizes the main navigation struc - Documentation: # Top-level item for documentation. - Overview: 'documentation/overview.md' # Overview of modules. - Aircraft Design: - - Introduction: documentation/aircraft-design.md # Subsection for Aircraft Design. + - Introduction: documentation/aircraft_design.md # Subsection for Aircraft Design. - Sizing: - - Modules: documentation/sizing.md + - Sizing Tools: documentation/sizing.md - Initial Sizing: - - Introduction: 'documentation/initial_sizing/content/index.md' - - Getting Started: 'documentation/initial_sizing/content/getting-started.md' + - Introduction: 'documentation/initial_sizing/index.md' + - Getting Started: 'documentation/initial_sizing/getting-started.md' - API Reference: - - initial_sizing/classed.md - - initial_sizing/namespaces.md - - initial_sizing/files.md - - initial_sizing/pages.md + - documentation/initial_sizing/classed.md + - documentation/initial_sizing/namespaces.md + - documentation/initial_sizing/files.md + - documentation/initial_sizing/pages.md - Propulsion Design: - - Introduction: 'documentation/propulsion_design/content/index.md' - - Engineering Principles: 'documentation/propulsion_design/content/engineering_principles.md' - - Getting Started: 'documentation/propulsion_design/content/getting_started.md' - - Software Architecture: 'documentation/propulsion_design/content/software_architecture.md' + - Introduction: 'documentation/propulsion_design/index.md' + - Engineering Principles: 'documentation/propulsion_design/engineering_principles.md' + - Getting Started: 'documentation/propulsion_design/getting_started.md' + - Software Architecture: 'documentation/propulsion_design/software_architecture.md' - Tutorial: - - Main: 'documentation/propulsion_design/content/tutorial.md' - - Engine Extension: 'documentation/propulsion_design/content/tutorial_engine_extension.md' - - Fidelity Extension: 'documentation/propulsion_design/content/tutorial_fidelity_extension.md' - - Additional: 'documentation/propulsion_design/content/additional.md' + - Main: 'documentation/propulsion_design/tutorial.md' + - Engine Extension: 'documentation/propulsion_design/tutorial_engine_extension.md' + - Fidelity Extension: 'documentation/propulsion_design/tutorial_fidelity_extension.md' + - Additional: 'documentation/propulsion_design/additional.md' - API Reference: - - propulsion_design/classes.md - - propulsion_design/namespaces.md - - propulsion_design/files.md - - propulsion_design/pages.md + - documentation/propulsion_design/classes.md + - documentation/propulsion_design/namespaces.md + - documentation/propulsion_design/files.md + - documentation/propulsion_design/pages.md - Analsysis: - - Modules: 'documentation/analysis.md' # Link to analysis module page. - - Libraries: 'documentation/libraries.md' # Link to libraries overview. - - Utilities: 'documentation/additional-software.md' # Link to additional software page. - - Workflow: 'workflow.md' # Link to the workflow page. + - Analysis Tools: 'documentation/analysis.md'# Link to analysis module page. + - Aerodynamic analysis: 'documentation/aerodynamic_analysis/aerodynamic_analysis.md' + - Mission analysis: 'documentation/mission_analysis/mission_analysis.md' + - Weight and balance analysis: 'documentation/weight_and_balance_analysis/weight_and_balance_analysis.md' + - Ecological assessment: 'documentation/ecological_assessment/ecological_assessment.md' + - Performance assessment: 'documentation/performance_assessment/performance_assessment.md' + - Cost estimation: 'documentation/cost_estimation/cost_estimation.md' + - Libraries: + - Introduction: 'documentation/libraries.md' # Link to libraries overview. + - aircraftGeometry2: 'documentation/libraries/aircraftGeometry2/index.md' + - airfoils: 'documentation/libraries/airfoils/index.md' + - Utilities: + - Additional Software: documentation/additional_software.md + - cpacs Interface: 'documentation/additional_software/cpacsInterface.md' + - designEvaluator: 'documentation/additional_software/cpacsInterface.md' + - reportGenerator: 'documentation/additional_software/cpacsInterface.md' + - testFramework: 'documentation/additional_software/cpacsInterface.md' + - Workflow: 'workflow.md' # Link to the workflow page. - Get involved: - Developer Guide: developer/developer-installation.md # Top-level item for contributions and development. - Build Instructions: -- GitLab From 314f2bb2fe12e3c70e3b1e80c289057a52b81278 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Thu, 19 Dec 2024 13:02:49 +0100 Subject: [PATCH 05/53] Implement mkdoxy documentation for Aircraftt Design repository This commit partially addresses the issue Integrate mkdoxy in pipeline. Creates mkdoxy documentation for files inside Aircraft Design repository. This also link generated documentation to the UNICADO website. Following files are editted: 1. .gitlab-ci.yml : clone aircraft-design and libraries repo 2. scripts/copy_aircraft_design_to_docs.py ( Copy aircraft-design to docs folder of gitlabio repo. 3. overrides/main.html :Adapted to disply footer logo on all pages 4. mkdocs.yml : Changed link to documentation. Issue: #21 --- .gitlab-ci.yml | 16 +++++-------- mkdocs.yml | 25 ++++++------------- overrides/main.html | 2 +- scripts/copy_aircraft_design_to_docs.py | 32 +++++++++++++++++++++++++ 4 files changed, 46 insertions(+), 29 deletions(-) create mode 100644 scripts/copy_aircraft_design_to_docs.py diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 4a05c73..e80a075 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -28,18 +28,13 @@ doxygen: before_script: - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi script: - # libaries - - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries - - cd libraries/aircraftGeometry2/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../engine/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd $CI_PROJECT_DIR # aircraft design - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - - cd aircraft-design/propulsion_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../aircraft-design/wing_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../aircraft-design/empennage_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../aircraft-design/ecological_assessment/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - + + # libaries + - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries + + - cd $CI_PROJECT_DIR artifacts: paths: - $CI_PROJECT_DIR/docs/documentation @@ -76,6 +71,7 @@ pages: - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title EcologicalValues --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/ecological.md - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Requirements --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/requirements.md - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title DesignSpecification --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/specification.md + - python scripts/copy_aircraft_design_to_docs.py - pipenv run mkdocs build --site-dir $CI_PROJECT_DIR/public needs: - doxygen diff --git a/mkdocs.yml b/mkdocs.yml index d662897..6987f45 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -65,26 +65,15 @@ plugins: - search - mkdoxy: projects: - propulsion_design: - src-dirs: ../aircraft-design/propulsion_design/ + aircraft_design: + src-dirs: docs/documentattion/aircraft_design/ full-doc: True doxy-cfg: FILE_PATTERNS: "*.cpp *.h *.md *.png *.svg" # Include .cpp, .h, .md, .png, .svg files in the documentation RECURSIVE: True EXTRACT_ALL: YES - OUTPUT_DIRECTORY: docs/propulsion_design - initial_sizing: - src-dirs: ../aircraft-design/initial_sizing/ - full-doc: true - output: docs/documentation/initial_sizing/ - doxy-cfg: - FILE_PATTERNS: "*.cpp *.h" - RECURSIVE: True - EXTRACT_ALL: YES - - glightbox # Plugin for lightbox-style image and content viewing. - # === Theme configuration === theme: name: material # Specifies the theme name (alternatives: material, mkdocs, readthedocs). @@ -146,15 +135,15 @@ nav: # Customizes the main navigation struc - documentation/initial_sizing/files.md - documentation/initial_sizing/pages.md - Propulsion Design: - - Introduction: 'documentation/propulsion_design/index.md' - - Engineering Principles: 'documentation/propulsion_design/engineering_principles.md' - - Getting Started: 'documentation/propulsion_design/getting_started.md' - - Software Architecture: 'documentation/propulsion_design/software_architecture.md' + - Introduction: 'documentation/aircraft_design/propulsion_design/doc/content/index.md' + - Engineering Principles: 'documentation/aircraft_design/propulsion_design/doc/content/engineering_principles.md' + - Getting Started: 'documentation/aircraft_design/propulsion_design/doc/content/getting_started.md' + - Software Architecture: 'documentation/aircraft_design/propulsion_design/doc/content/software_architecture.md' - Tutorial: - Main: 'documentation/propulsion_design/tutorial.md' - Engine Extension: 'documentation/propulsion_design/tutorial_engine_extension.md' - Fidelity Extension: 'documentation/propulsion_design/tutorial_fidelity_extension.md' - - Additional: 'documentation/propulsion_design/additional.md' + - Additional: 'docs/documentation/propulsion_design/doc/content/additional.md' - API Reference: - documentation/propulsion_design/classes.md - documentation/propulsion_design/namespaces.md diff --git a/overrides/main.html b/overrides/main.html index 1f2aec4..4223dec 100644 --- a/overrides/main.html +++ b/overrides/main.html @@ -8,7 +8,7 @@ <a href="/datenschutz/" class="footer-link">Datenschutzerklärung</a> </div> <div class="footer-image-container"> - <img src="assets/images/logos/bmwk.png" alt="Footer Logo" class="footer-image"> + <img src="{{ base_url }}/assets/images/logos/bmwk.png" alt="Footer Logo" class="footer-image"> </div> </div> diff --git a/scripts/copy_aircraft_design_to_docs.py b/scripts/copy_aircraft_design_to_docs.py new file mode 100644 index 0000000..129f021 --- /dev/null +++ b/scripts/copy_aircraft_design_to_docs.py @@ -0,0 +1,32 @@ +import shutil +import os + +def copy_folder(): + # Path to the source directory (aircraft-design folder or any folder) + # Replace this with the actual path to the folder you want to copy + source_dir = "aircraft-design" # Absolute or relative path + + # Path to the destination directory (within the docs folder of your Git repository) + dest_dir = "./docs/documentation/aircraft_design" # Inside your 'unicado.gitlab.io' docs folder + + # Check if the source directory exists + if os.path.exists(source_dir): + # Check if the destination folder exists, and delete it if it does + if os.path.exists(dest_dir): + try: + shutil.rmtree(dest_dir) # Delete the destination folder and its contents + print(f"Deleted existing folder: {dest_dir}") + except Exception as e: + print(f"Error deleting folder: {e}") + + # Use shutil.copytree to copy the entire folder and its contents + try: + shutil.copytree(source_dir, dest_dir) + print(f"Folder copied from {source_dir} to {dest_dir}") + except Exception as e: + print(f"Error copying folder: {e}") + else: + print(f"Source directory {source_dir} does not exist.") + +if __name__ == "__main__": + copy_folder() -- GitLab From d9bc476c8246ec125e91518dfdabac5c32ed14d8 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 13:32:04 +0100 Subject: [PATCH 06/53] Adapt nav tree view of the website --- docs/developer/developer-installation.md | 17 - docs/documentation/sizing.md | 2 +- docs/download/getting-started.md | 2 +- .../build-environment/linux.md | 0 .../build-environment/macos.md | 0 .../build-environment/mingw.md | 0 .../build-environment/windows.md | 0 docs/{developer => get-involved}/build/cpp.md | 0 .../build/general.md | 130 ++--- .../build/python.md | 0 .../cmake-presets.md | 0 .../{developer => get-involved}/contribute.md | 0 docs/get-involved/developer-installation.md | 17 + .../get-source-code.md | 0 docs/{developer => get-involved}/ide-setup.md | 0 .../including-libraries.md | 0 .../merge-request.md | 0 .../release-package.md | 0 .../review-merge-request.md | 0 .../style/cpp-modularization.md | 0 docs/{developer => get-involved}/style/cpp.md | 0 .../style/python-modularization.md | 0 .../style/python.md | 0 docs/{developer => get-involved}/testing.md | 526 +++++++++--------- docs/tutorials/seperate-tool-execution.md | 6 +- mkdocs.yml | 136 ++--- 26 files changed, 395 insertions(+), 441 deletions(-) delete mode 100644 docs/developer/developer-installation.md rename docs/{developer => get-involved}/build-environment/linux.md (100%) rename docs/{developer => get-involved}/build-environment/macos.md (100%) rename docs/{developer => get-involved}/build-environment/mingw.md (100%) rename docs/{developer => get-involved}/build-environment/windows.md (100%) rename docs/{developer => get-involved}/build/cpp.md (100%) rename docs/{developer => get-involved}/build/general.md (98%) rename docs/{developer => get-involved}/build/python.md (100%) rename docs/{developer => get-involved}/cmake-presets.md (100%) rename docs/{developer => get-involved}/contribute.md (100%) create mode 100644 docs/get-involved/developer-installation.md rename docs/{developer => get-involved}/get-source-code.md (100%) rename docs/{developer => get-involved}/ide-setup.md (100%) rename docs/{developer => get-involved}/including-libraries.md (100%) rename docs/{developer => get-involved}/merge-request.md (100%) rename docs/{developer => get-involved}/release-package.md (100%) rename docs/{developer => get-involved}/review-merge-request.md (100%) rename docs/{developer => get-involved}/style/cpp-modularization.md (100%) rename docs/{developer => get-involved}/style/cpp.md (100%) rename docs/{developer => get-involved}/style/python-modularization.md (100%) rename docs/{developer => get-involved}/style/python.md (100%) rename docs/{developer => get-involved}/testing.md (95%) diff --git a/docs/developer/developer-installation.md b/docs/developer/developer-installation.md deleted file mode 100644 index 42066bb..0000000 --- a/docs/developer/developer-installation.md +++ /dev/null @@ -1,17 +0,0 @@ -There is no dedicated installer for developers. As a developer you are expected to build your own installer. :wink: - -These steps to get you up and running are *(Choose according to your operating system.)*: - -- Make sure your build system is working as explained in the [:octicons-checklist-16: developer prerequisites](../developer/build-environment/windows.md). -- Ensure you have [:octicons-repo-clone-16: cloned all repositories](../developer/get-source-code.md) -- Follow the [:simple-cmake: build instructions](../developer/build/general.md) to build the tools. Also check out the [:material-library: libraries](../developer/including-libraries.md) and the [CMake Preset](../developer/cmake-presets.md) explanation. -- Make yourself acquainted with the [style guides](../developer/style/cpp.md). -- Read about the [module structures](../developer/style/cpp-modularization.md) to learn about the strategy patterns. -- Learn about the [:material-test-tube-empty: testing procedures](../developer/testing.md). -- Read the [contribution instruction](../developer/contribute.md) to understand the process. - -Now you are ready to contribute :material-file-code: ! - -In case you need tips on how to set up your IDE, check [here](../developer/ide-setup.md). - -Relevant for UNICADO owners only: here it is explained how to create the [UNICADO release package](../developer/release-package.md) :material-white-balance-incandescent: \ No newline at end of file diff --git a/docs/documentation/sizing.md b/docs/documentation/sizing.md index 3208f2b..3956793 100644 --- a/docs/documentation/sizing.md +++ b/docs/documentation/sizing.md @@ -23,7 +23,7 @@ Furthermore an initial estimation of the takeoff mass is done. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](initial_sizing/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/initial_sizing/doc/content/index.md)| --- diff --git a/docs/download/getting-started.md b/docs/download/getting-started.md index 83b4991..ce76fa2 100644 --- a/docs/download/getting-started.md +++ b/docs/download/getting-started.md @@ -1,6 +1,6 @@ You want to **use** UNICADO to get familiar with the workflow and see first results? Great :fire: Then check out the [Installation Guide](installation.md) and the [Cleared for Take-Off](takeoff.md). It includes the prerequisites, troubleshooting hints and a standalone installer. -If you're a **developer** interested in contributing to UNICADO, follow the [Developer Installation Guide](../developer/developer-installation.md). However, you also need to check out the [Installation Requirements](installation.md) first! +If you're a **developer** interested in contributing to UNICADO, follow the [Developer Installation Guide](../get-involved/developer-installation.md). However, you also need to check out the [Installation Requirements](installation.md) first! diff --git a/docs/developer/build-environment/linux.md b/docs/get-involved/build-environment/linux.md similarity index 100% rename from docs/developer/build-environment/linux.md rename to docs/get-involved/build-environment/linux.md diff --git a/docs/developer/build-environment/macos.md b/docs/get-involved/build-environment/macos.md similarity index 100% rename from docs/developer/build-environment/macos.md rename to docs/get-involved/build-environment/macos.md diff --git a/docs/developer/build-environment/mingw.md b/docs/get-involved/build-environment/mingw.md similarity index 100% rename from docs/developer/build-environment/mingw.md rename to docs/get-involved/build-environment/mingw.md diff --git a/docs/developer/build-environment/windows.md b/docs/get-involved/build-environment/windows.md similarity index 100% rename from docs/developer/build-environment/windows.md rename to docs/get-involved/build-environment/windows.md diff --git a/docs/developer/build/cpp.md b/docs/get-involved/build/cpp.md similarity index 100% rename from docs/developer/build/cpp.md rename to docs/get-involved/build/cpp.md diff --git a/docs/developer/build/general.md b/docs/get-involved/build/general.md similarity index 98% rename from docs/developer/build/general.md rename to docs/get-involved/build/general.md index 062acdb..11d0a9d 100644 --- a/docs/developer/build/general.md +++ b/docs/get-involved/build/general.md @@ -1,66 +1,66 @@ ---- -title: General -authors: - - Kristina Mazur -date: 2024-11-05 ---- -To understand **UNICADO's code base**, there are some things you need to know: - -1. The code is in both :simple-cplusplus: C++ and :simple-python: Python. This makes the software especially exciting for development :fire:. - -2. We work a lot with executables in order to integrate them into the workflow (you might have seen this the [standalone download](../../download/takeoff.md)). - -3. For generating the build files, **UNICADO** uses [CMake :octicons-link-external-16:](https://cmake.org/){:target="_blank"}. -CMake is a build system generator, which allows for cross-platform compilation. -For more information about this system, please refer to its [Documentation :octicons-link-external-16:](https://cmake.org/cmake/help/latest/){:target="_blank"}. - -A step by step guide on how to build UNICADO modules can be found [here](cpp.md) for C++ modules or [here](python.md) for python modules, respectively. - -## Some words about :simple-cmake: CMake - -In UNICADO, CMake plays a crucial role as our build system generator. CMake simplifies the process of generating platform-specific build files, making it easier to compile the code across various operating systems. This is especially useful for developers, as it ensures consistency and efficiency in building executables regardless of the environment. - -By defining build instructions in `CMakeLists.txt` files, CMake enables flexible configuration options, allowing us to manage dependencies and set up customized builds effortlessly. - -The typical CMake-based workflow includes two steps: configure and build. Here are some insights: - -### Configure CMake -Since **CMake** is independent of the used platform, it needs to figure out on which platform you are running your current build. This process is called *Configuration*. During configuration, **CMake** checks on which platform you are and selects the appropriate build system/compiler. -**CMake** wants to separate the build specific files from the source files. Usually, this is done by providing a separate *build* directory, where all the intermediate files are stored before actually executing the build. - -!!! note - **CMake** introduced the concept of [Presets :octicons-link-external-16:](https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html){:target="_blank"} which allows to specify different sets of arguments which are passed to **CMake** when configuring the project. - We provide a basic preset file which contains a reasonable default configuration for each platform we support. You can however, create your own :octicons-file-16: `CMakeUserPresets.json` file along our preset file to override our settings. See [CMake Presets](../cmake-presets.md) for more information about that. - - -**CMake** also comes with a **GUI** which can be used for the configuration process. -The GUI looks like this: - - - -It works the same as the command line interface. -You have to specify the path to the source files and to the build directory. -Then you have to select the preset you want to use. -You can see the exposed options of the project as well. -And as the GUI already tells you: -> Press Configure to update and display new values in red, then press Generate to generate selected build files. - -These project options are currently available during configuration time: - -| Name | Default | Description | -| --- | :---: | ---| -|**BUILD_BLACKBOXTESTS**| `OFF` | Whether to build the blackbox tests. (If available)| -|**BUILD_UNITTEST**| `OFF` |Whether to build the unit tests. (If available)| -|**BUILD_SHARED_LIBS**| `OFF` | Decide whether the libraries are built as static or shared libraries.| -|**PACKAGE_SYSTEM_LIBRARIES**| `OFF` | Whether to include all system libraries when creating release packages. *(Only available in `rUNICADO`)* | -|**FIND_LIBRARIES_AS_PACKAGE**| `OFF` |If *true* the libraries are included with `find_package()`, otherwise the *submodule* with `add_subdirectory()` is used.| -|**STATIC_GLIBS**| `OFF` | Whether to link the *GCC runtime libraries* as static libraries. :warning: ^^**Experimental**^^ | - -The other options shown in the GUI are specific to **CMake**. -(*Not all options shown in the table are part of the screenshot, since the screenshot was taken before these options were introduced.*) - -### Build with CMake -Once the configuration is complete and build files are generated, the build step compiles the modules into executables or libraries. This is where CMake hands over control to the underlying compiler, which translates the C++ and Python components of UNICADO into a runnable format. -The different modules are called *targets* in the **CMake** language. - +--- +title: General +authors: + - Kristina Mazur +date: 2024-11-05 +--- +To understand **UNICADO's code base**, there are some things you need to know: + +1. The code is in both :simple-cplusplus: C++ and :simple-python: Python. This makes the software especially exciting for development :fire:. + +2. We work a lot with executables in order to integrate them into the workflow (you might have seen this the [standalone download](../../download/takeoff.md)). + +3. For generating the build files, **UNICADO** uses [CMake :octicons-link-external-16:](https://cmake.org/){:target="_blank"}. +CMake is a build system generator, which allows for cross-platform compilation. +For more information about this system, please refer to its [Documentation :octicons-link-external-16:](https://cmake.org/cmake/help/latest/){:target="_blank"}. + +A step by step guide on how to build UNICADO modules can be found [here](cpp.md) for C++ modules or [here](python.md) for python modules, respectively. + +## Some words about :simple-cmake: CMake + +In UNICADO, CMake plays a crucial role as our build system generator. CMake simplifies the process of generating platform-specific build files, making it easier to compile the code across various operating systems. This is especially useful for developers, as it ensures consistency and efficiency in building executables regardless of the environment. + +By defining build instructions in `CMakeLists.txt` files, CMake enables flexible configuration options, allowing us to manage dependencies and set up customized builds effortlessly. + +The typical CMake-based workflow includes two steps: configure and build. Here are some insights: + +### Configure CMake +Since **CMake** is independent of the used platform, it needs to figure out on which platform you are running your current build. This process is called *Configuration*. During configuration, **CMake** checks on which platform you are and selects the appropriate build system/compiler. +**CMake** wants to separate the build specific files from the source files. Usually, this is done by providing a separate *build* directory, where all the intermediate files are stored before actually executing the build. + +!!! note + **CMake** introduced the concept of [Presets :octicons-link-external-16:](https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html){:target="_blank"} which allows to specify different sets of arguments which are passed to **CMake** when configuring the project. + We provide a basic preset file which contains a reasonable default configuration for each platform we support. You can however, create your own :octicons-file-16: `CMakeUserPresets.json` file along our preset file to override our settings. See [CMake Presets](../cmake-presets.md) for more information about that. + + +**CMake** also comes with a **GUI** which can be used for the configuration process. +The GUI looks like this: + + + +It works the same as the command line interface. +You have to specify the path to the source files and to the build directory. +Then you have to select the preset you want to use. +You can see the exposed options of the project as well. +And as the GUI already tells you: +> Press Configure to update and display new values in red, then press Generate to generate selected build files. + +These project options are currently available during configuration time: + +| Name | Default | Description | +| --- | :---: | ---| +|**BUILD_BLACKBOXTESTS**| `OFF` | Whether to build the blackbox tests. (If available)| +|**BUILD_UNITTEST**| `OFF` |Whether to build the unit tests. (If available)| +|**BUILD_SHARED_LIBS**| `OFF` | Decide whether the libraries are built as static or shared libraries.| +|**PACKAGE_SYSTEM_LIBRARIES**| `OFF` | Whether to include all system libraries when creating release packages. *(Only available in `rUNICADO`)* | +|**FIND_LIBRARIES_AS_PACKAGE**| `OFF` |If *true* the libraries are included with `find_package()`, otherwise the *submodule* with `add_subdirectory()` is used.| +|**STATIC_GLIBS**| `OFF` | Whether to link the *GCC runtime libraries* as static libraries. :warning: ^^**Experimental**^^ | + +The other options shown in the GUI are specific to **CMake**. +(*Not all options shown in the table are part of the screenshot, since the screenshot was taken before these options were introduced.*) + +### Build with CMake +Once the configuration is complete and build files are generated, the build step compiles the modules into executables or libraries. This is where CMake hands over control to the underlying compiler, which translates the C++ and Python components of UNICADO into a runnable format. +The different modules are called *targets* in the **CMake** language. + After this step, you’ll have compiled executables and/or libraries ready to run or integrate into the UNICADO workflow. :simple-cmake: :heart: \ No newline at end of file diff --git a/docs/developer/build/python.md b/docs/get-involved/build/python.md similarity index 100% rename from docs/developer/build/python.md rename to docs/get-involved/build/python.md diff --git a/docs/developer/cmake-presets.md b/docs/get-involved/cmake-presets.md similarity index 100% rename from docs/developer/cmake-presets.md rename to docs/get-involved/cmake-presets.md diff --git a/docs/developer/contribute.md b/docs/get-involved/contribute.md similarity index 100% rename from docs/developer/contribute.md rename to docs/get-involved/contribute.md diff --git a/docs/get-involved/developer-installation.md b/docs/get-involved/developer-installation.md new file mode 100644 index 0000000..1d0e72e --- /dev/null +++ b/docs/get-involved/developer-installation.md @@ -0,0 +1,17 @@ +There is no dedicated installer for developers. As a developer you are expected to build your own installer. :wink: + +These steps to get you up and running are *(Choose according to your operating system.)*: + +- Make sure your build system is working as explained in the [:octicons-checklist-16: developer prerequisites](../get-involved/build-environment/windows.md). +- Ensure you have [:octicons-repo-clone-16: cloned all repositories](../get-involved/get-source-code.md) +- Follow the [:simple-cmake: build instructions](../get-involved/build/general.md) to build the tools. Also check out the [:material-library: libraries](../get-involved/including-libraries.md) and the [CMake Preset](../get-involved/cmake-presets.md) explanation. +- Make yourself acquainted with the [style guides](../get-involved/style/cpp.md). +- Read about the [module structures](../get-involved/style/cpp-modularization.md) to learn about the strategy patterns. +- Learn about the [:material-test-tube-empty: testing procedures](../get-involved/testing.md). +- Read the [contribution instruction](../get-involved/contribute.md) to understand the process. + +Now you are ready to contribute :material-file-code: ! + +In case you need tips on how to set up your IDE, check [here](../get-involved/ide-setup.md). + +Relevant for UNICADO owners only: here it is explained how to create the [UNICADO release package](../get-involved/release-package.md) :material-white-balance-incandescent: \ No newline at end of file diff --git a/docs/developer/get-source-code.md b/docs/get-involved/get-source-code.md similarity index 100% rename from docs/developer/get-source-code.md rename to docs/get-involved/get-source-code.md diff --git a/docs/developer/ide-setup.md b/docs/get-involved/ide-setup.md similarity index 100% rename from docs/developer/ide-setup.md rename to docs/get-involved/ide-setup.md diff --git a/docs/developer/including-libraries.md b/docs/get-involved/including-libraries.md similarity index 100% rename from docs/developer/including-libraries.md rename to docs/get-involved/including-libraries.md diff --git a/docs/developer/merge-request.md b/docs/get-involved/merge-request.md similarity index 100% rename from docs/developer/merge-request.md rename to docs/get-involved/merge-request.md diff --git a/docs/developer/release-package.md b/docs/get-involved/release-package.md similarity index 100% rename from docs/developer/release-package.md rename to docs/get-involved/release-package.md diff --git a/docs/developer/review-merge-request.md b/docs/get-involved/review-merge-request.md similarity index 100% rename from docs/developer/review-merge-request.md rename to docs/get-involved/review-merge-request.md diff --git a/docs/developer/style/cpp-modularization.md b/docs/get-involved/style/cpp-modularization.md similarity index 100% rename from docs/developer/style/cpp-modularization.md rename to docs/get-involved/style/cpp-modularization.md diff --git a/docs/developer/style/cpp.md b/docs/get-involved/style/cpp.md similarity index 100% rename from docs/developer/style/cpp.md rename to docs/get-involved/style/cpp.md diff --git a/docs/developer/style/python-modularization.md b/docs/get-involved/style/python-modularization.md similarity index 100% rename from docs/developer/style/python-modularization.md rename to docs/get-involved/style/python-modularization.md diff --git a/docs/developer/style/python.md b/docs/get-involved/style/python.md similarity index 100% rename from docs/developer/style/python.md rename to docs/get-involved/style/python.md diff --git a/docs/developer/testing.md b/docs/get-involved/testing.md similarity index 95% rename from docs/developer/testing.md rename to docs/get-involved/testing.md index 4d5d322..5f1fe4a 100644 --- a/docs/developer/testing.md +++ b/docs/get-involved/testing.md @@ -1,264 +1,264 @@ ---- -title: Testing Guidelines -summary: How to test in UNICADO -authors: - - Kristina Mazur - - Maurice Zimmnau -date: 2024-10-23 ---- -## Introduction - -_"Software is well known for low reliability and lack of trustworthiness."_ As mentioned by Spillner and Linz, software is not reliable, because we are error-prone and so we need testing. Consider the V-model for software development, there are 4 important levels: - -- **Unit testing**: It methodically examines the lowest-level architectural components of a system. -- **Module testing**: It involves testing individual modules of a software system in isolation to ensure the correct interaction of the units. -- **Integration testing**: This concerns verifying the interactions and interfaces between different modules to ensure they work together seamlessly and produce the expected results when integrated. -- **System testing**: This level checks if the complete, integrated system actually fulfills its specified requirements. - -!!! note - For more background information, it is referred to the publications "UNICADO Software Maintenance, Revision, and Management in a Distributed Collaboration" and "Test Automation for Increased Robustness Within the Conceptual Aircraft Design with UNICADO" (will be linked as soon as they are public) - -These testing guidelines gives an overview how we integrated that in UNICADO. Generally, it can be split into 2 aspects: - -- [Manual testing](#manual) including the blackbox/module and unit tests -- [Automated testing](#automated) triggering the _testFramework_ - -### Manual testing {#manual} - -As you might have seen in the [C++ build instructions](../developer/build/cpp.md), there exist 2 flags to configure and build tests, so we can do: - -- module/blackbox tests or -- unit tests. - -#### Blackbox tests -A blackbox test runs a complete module with different test cases and then checks whether a specific result is calculated or set compared to expected values defined in a `blackBoxTestCases.xml`. This is implemented in the library [blackboxTest description](../documentation/libraries.md). - -!!! attention - This will only work if the module has a only the test suite defined which corresponds to the `aircraft_exchange_file` - -To run the test, you need to add the flag when configuring your module -=== "Windows" - - ``` { .sh .copy } - cmake --preset x64-windows-release -DBUILD_BLACKBOXTESTS=ON - ``` - -=== "MinGW" - - ``` { .sh .copy } - cmake --preset x64-mingw-release -DBUILD_BLACKBOXTESTS=ON - ``` -=== "Linux" - - ``` { .sh .copy } - cmake --preset x64-linux-release -DBUILD_BLACKBOXTESTS=ON - ``` - -Then you can execute the test -=== "Windows" - - ```sh - cmake --build --preset x64-windows-release --target blackbox_<target> - ``` - -=== "MinGW" - - ```sh - cmake --build --preset x64-mingw-release --target blackbox_<target> - ``` - -=== "Unix" - - ```sh - cmake --build --preset x64-linux-release --target blackbox_<target> - ``` - -#### Unit tests -These tests involve systematically checking the lowest-level component, like a function, within a module. - -!!! note - This is currently only implemented for the module/target **propulsionDesign**. - -To run the test, you need to add the flag when configuring your module -=== "Windows" - - ``` { .sh .copy } - cmake --preset x64-windows-release -DBUILD_UNITTEST=ON - ``` - -=== "MinGW" - - ``` { .sh .copy } - cmake --preset x64-mingw-release -DBUILD_UNITTEST=ON - ``` -=== "Linux" - - ``` { .sh .copy } - cmake --preset x64-linux-release -DBUILD_UNITTEST=ON - ``` - -Then you can execute the test -=== "Windows" - - ```sh - cmake --build --preset x64-windows-release --target runtest_<target> - ``` - -=== "MinGW" - - ```sh - cmake --build --preset x64-mingw-release --target runtest_<target> - ``` - -=== "Unix" - - ```sh - cmake --build --preset x64-linux-release --target runtest_<target> - ``` - -### Automated testing {#automated} - -To reduce the workload of the developer, tests can be automated. For that, the additional software [testFramework](../documentation/additional-software.md) can be used. It can be executed manually (see [python build instruction](../developer/build/python.md)) or be linked to the CI/CD pipeline. The latter one ensures that it is tested before every merge request. - -!!! attention - The `testFramework` is currently under construction :construction: and still needs to be linked to the CI/CD pipeline - -The CI/CD pipeline is **currently implemented for the aircraftDesign repository** and consists of 3 stages: - -- setup -- build -- run - -Each of these stages have jobs for the implemented 3 implemented test levels: - -- black-box-test (Module) -- integration-test -- performance-test (System) - -For each test level we have an own gitlab-runner resource, which executes the respective test in a docker container (Currently only tested on ubuntu 24.04; image: ubuntu:latest) - -Unit tests and an own pipeline are planned to be implemented for the libraries repository. -Testing on windows is planned as well. - -The CI / CD pipeline is implemented in gitlab via a YAML script: `.gitlab-ci.yml` - -For the aircraft design repository, the pipeline has a modular structure, i.e. for each stage of each test level there exist an own YAML script with instructions. -Furthermore, there is one variables.yml script controlling constant variable namings and paths, which are used in the other YAML scripts. - -The YAML scripts are located in the folder .ci-scripts, currently within the aircraft design repository. The main script - `.gitlab-ci.yml` - however is always at the root of a repository, also with this fixed naming. - -#### Setup - -Within each setup step a clean UNICADO repository is cloned into the aircraft design repository. -For the clone process at first necessary git and ssh packages are downloaded and installed in a fresh docker container based on the alpine:latest image. -Why explicitly mention alpine:latest? It is a small unix based image, which is pretty fast and lightweight in installing packages (at least faster, than ubuntu images). But we will need the ubuntu image for the later stages - we will come to that later. - -Currently for all sub-repositories within the UNICADO repository the develop branch is checked out. The branch for each respective repository, however, can be set in the variables.yml script, i.e. - -- `BRANCH_UNICADO`: "main" -- `BRANCH_AIRCRAFT_DESIGN`: "develop" -- `BRANCH_ADDITIONAL_SOFTWARE`: "develop" -- `BRANCH_LIBRARIES`: "develop" -- `BRANCH_AIRCRAFT_REFERENCES`: "develop" - -But why should there be a setup script, for each test level, if all are doing the same? -Simply, because they are not the same: -E.g. for each test level different folders and tools are necessary from the UNICADO repository. For efficient cache management (We'll come to that later), it is a good idea, to keep the content of the cache as small as possible, i.e. it should contain only the necessary files for the respective test. - -##### The Blackbox-test needs -- the modified tool -- **gnuplot** and **inkscape** for plotting -- an aircraft reference - -##### The integration-test needs -- the modified tool -- the un-modified tool -- libraries for the un-modified tool -- cmake build receipts for the un-modified tool -- **gnuplot** and **inkscape** for plotting -- `designEvaluator` to compare results -- libraries for the design Evaluator -- cmake build receipts for the the `designEvaluator` - -##### The performance-test needs -- The modified tool -- All un-modified aircraft design tools -- cmake build receipts for all un-modified aircraft design tools -- Libraries for the un-modified tools -- all additional software tools -- libraries for additional software -- cmake build receipts for additional software -- rce environment which has to be downloaded - -#### Build - -Within the build process we use docker container based on the **ubuntu:latest (Currently 24.04)** image. -Why? Well .. Several reasons: - -- Not alpine, because the gcc install differs from the gcc install on **ubuntu**, which causes build failure. With **ubuntu latest** and gcc 14 it works. The rest are deeper technical details -- Not **ubuntu 24.10** (Most current ubuntu version at the moment), because **Python 3.11** can't be installed easily, because the `deadsnakes` ppa repository is currently not available for **ubuntu 24.10**. A manual make install of **Python 3.11** would take unnecessary much computational time, which is a good idea to be reduced as much as possible -- Not **ubuntu 24.10** because **RCE** needs **Python 3.11** - and the challenges of the previous bullet point - -##### Black-box-test build instructions: -- Install necessary packages like `cmake`, `gcc`, **Python**, **git**, `eigen3`, `cgal`, etc. -- Create a project directory and copy the chosen aircraft reference to work on (Currently CSR-02 hard coded. A script probably needs to be added later, to modify the config. There is already a script, which modifies the `designEvaluator` config, which can be generalized) -- Copy **gnuplot** and **inkscape** into the working directory -- Build the modified tool in black-box test mode as stated above. -- Move black-box-test executable to modified tool folder - -##### Integration-test build instructions: -- Install necessary packages like `cmake`, `gcc`, **Python**, **git**, `eigen3`, `cgal`, etc. -- Make **gnuplot** and **inkscape** executable -- Modify cmake build receipts of current aircraft design repo to build only modified tool -- Build modified tool -- Modify cmake build receipts of clean aircraft design repo within UNICADO repo to build only un-modified tool for comparison -- Build clean tool -- Build `designEvaluator` -- Create a project directory within the aircraftDesign repo of the UNICADO repo (clean) and copy the chosen aircraft reference to work on (For limitations see instructions of Black-box-test above) -- Create a project directory within the repo (local) and copy the chosen aircraft reference to work on -- Copy **gnuplot** an **inkscape** to the aircraft design repo of UNICADO -- Copy **gnuplot** an **inkscape** to the current repo - -##### Performance-test build instructions: -- Install necessary packages like `cmake`, `gcc`, **Python**, **git**, `eigen3`, `cgal`, etc. -- Install `pipenv` for necessary virtual environments -- Download and install the most latest version of cmake directly from source -- Install gcc-14 and g++-14 from ubuntu-toolchain-r/test repository, because build-essential package of **ubuntu 24.04** comes with gcc version <14 but 14 is required -- Make **gnuplot** and **inkscape** executable -- Create a release package by building the UNICADO installer (Here also a pipeline is planned, which solely tests the release of the installer) -- Modify cmake build receipts of current aircraft design repo to build only modified tool -- Build modified tool only -- Build `designEvaluator` -- Copy `designEvaluator` to current repo (local) - -#### Test - -After successful setup and build, the tests are ready to be executed, with the following steps - -##### Black-box-test test execution steps: -- Enter modified tool folder and execute black-box-test - -##### Integration-test test execution steps: -- Install python and some libraries via pip -- Execute modified tool -- Store aircraft reference result to be compared into a common project folder with postfix _post -- Execute un-modified tool -- Store aircraft reference result to be compared into a common project folder with postfix _pre -- Adapt `designEvaluator` config to compare both aircraft reference designs -- Execute `designEvaluator` -- Evaluate report of `designEvaluator` - -##### Performance-test test execution steps: -- Install **Python 3.11** from `deadsnakes` repository and some libraries via pip -- Remove rce user folder -- Make `UNICADOinstaller` executable -- Execute `UNICADOinstaller` -- Create workflow configuration file -- Execute UNICADOworkflow with RCE in headless mode with un-modified tool -- Store aircraft reference result to be compared into a common project folder with postfix _pre -- Copy modified tool executable into UNICADOworkflow -- Execute UNICADOworkflow with RCE in headless mode with modified tool -- Store aircraft reference result to be compared into a common project folder with postfix _post -- Adapt `designEvaluator` config to compare both aircraft reference designs -- Execute `designEvaluator` +--- +title: Testing Guidelines +summary: How to test in UNICADO +authors: + - Kristina Mazur + - Maurice Zimmnau +date: 2024-10-23 +--- +## Introduction + +_"Software is well known for low reliability and lack of trustworthiness."_ As mentioned by Spillner and Linz, software is not reliable, because we are error-prone and so we need testing. Consider the V-model for software development, there are 4 important levels: + +- **Unit testing**: It methodically examines the lowest-level architectural components of a system. +- **Module testing**: It involves testing individual modules of a software system in isolation to ensure the correct interaction of the units. +- **Integration testing**: This concerns verifying the interactions and interfaces between different modules to ensure they work together seamlessly and produce the expected results when integrated. +- **System testing**: This level checks if the complete, integrated system actually fulfills its specified requirements. + +!!! note + For more background information, it is referred to the publications "UNICADO Software Maintenance, Revision, and Management in a Distributed Collaboration" and "Test Automation for Increased Robustness Within the Conceptual Aircraft Design with UNICADO" (will be linked as soon as they are public) + +These testing guidelines gives an overview how we integrated that in UNICADO. Generally, it can be split into 2 aspects: + +- [Manual testing](#manual) including the blackbox/module and unit tests +- [Automated testing](#automated) triggering the _testFramework_ + +### Manual testing {#manual} + +As you might have seen in the [C++ build instructions](../get-involved/build/cpp.md), there exist 2 flags to configure and build tests, so we can do: + +- module/blackbox tests or +- unit tests. + +#### Blackbox tests +A blackbox test runs a complete module with different test cases and then checks whether a specific result is calculated or set compared to expected values defined in a `blackBoxTestCases.xml`. This is implemented in the library [blackboxTest description](../documentation/libraries.md). + +!!! attention + This will only work if the module has a only the test suite defined which corresponds to the `aircraft_exchange_file` + +To run the test, you need to add the flag when configuring your module +=== "Windows" + + ``` { .sh .copy } + cmake --preset x64-windows-release -DBUILD_BLACKBOXTESTS=ON + ``` + +=== "MinGW" + + ``` { .sh .copy } + cmake --preset x64-mingw-release -DBUILD_BLACKBOXTESTS=ON + ``` +=== "Linux" + + ``` { .sh .copy } + cmake --preset x64-linux-release -DBUILD_BLACKBOXTESTS=ON + ``` + +Then you can execute the test +=== "Windows" + + ```sh + cmake --build --preset x64-windows-release --target blackbox_<target> + ``` + +=== "MinGW" + + ```sh + cmake --build --preset x64-mingw-release --target blackbox_<target> + ``` + +=== "Unix" + + ```sh + cmake --build --preset x64-linux-release --target blackbox_<target> + ``` + +#### Unit tests +These tests involve systematically checking the lowest-level component, like a function, within a module. + +!!! note + This is currently only implemented for the module/target **propulsionDesign**. + +To run the test, you need to add the flag when configuring your module +=== "Windows" + + ``` { .sh .copy } + cmake --preset x64-windows-release -DBUILD_UNITTEST=ON + ``` + +=== "MinGW" + + ``` { .sh .copy } + cmake --preset x64-mingw-release -DBUILD_UNITTEST=ON + ``` +=== "Linux" + + ``` { .sh .copy } + cmake --preset x64-linux-release -DBUILD_UNITTEST=ON + ``` + +Then you can execute the test +=== "Windows" + + ```sh + cmake --build --preset x64-windows-release --target runtest_<target> + ``` + +=== "MinGW" + + ```sh + cmake --build --preset x64-mingw-release --target runtest_<target> + ``` + +=== "Unix" + + ```sh + cmake --build --preset x64-linux-release --target runtest_<target> + ``` + +### Automated testing {#automated} + +To reduce the workload of the developer, tests can be automated. For that, the additional software [testFramework](../documentation/additional-software.md) can be used. It can be executed manually (see [python build instruction](../get-involved/build/python.md)) or be linked to the CI/CD pipeline. The latter one ensures that it is tested before every merge request. + +!!! attention + The `testFramework` is currently under construction :construction: and still needs to be linked to the CI/CD pipeline + +The CI/CD pipeline is **currently implemented for the aircraftDesign repository** and consists of 3 stages: + +- setup +- build +- run + +Each of these stages have jobs for the implemented 3 implemented test levels: + +- black-box-test (Module) +- integration-test +- performance-test (System) + +For each test level we have an own gitlab-runner resource, which executes the respective test in a docker container (Currently only tested on ubuntu 24.04; image: ubuntu:latest) + +Unit tests and an own pipeline are planned to be implemented for the libraries repository. +Testing on windows is planned as well. + +The CI / CD pipeline is implemented in gitlab via a YAML script: `.gitlab-ci.yml` + +For the aircraft design repository, the pipeline has a modular structure, i.e. for each stage of each test level there exist an own YAML script with instructions. +Furthermore, there is one variables.yml script controlling constant variable namings and paths, which are used in the other YAML scripts. + +The YAML scripts are located in the folder .ci-scripts, currently within the aircraft design repository. The main script - `.gitlab-ci.yml` - however is always at the root of a repository, also with this fixed naming. + +#### Setup + +Within each setup step a clean UNICADO repository is cloned into the aircraft design repository. +For the clone process at first necessary git and ssh packages are downloaded and installed in a fresh docker container based on the alpine:latest image. +Why explicitly mention alpine:latest? It is a small unix based image, which is pretty fast and lightweight in installing packages (at least faster, than ubuntu images). But we will need the ubuntu image for the later stages - we will come to that later. + +Currently for all sub-repositories within the UNICADO repository the develop branch is checked out. The branch for each respective repository, however, can be set in the variables.yml script, i.e. + +- `BRANCH_UNICADO`: "main" +- `BRANCH_AIRCRAFT_DESIGN`: "develop" +- `BRANCH_ADDITIONAL_SOFTWARE`: "develop" +- `BRANCH_LIBRARIES`: "develop" +- `BRANCH_AIRCRAFT_REFERENCES`: "develop" + +But why should there be a setup script, for each test level, if all are doing the same? +Simply, because they are not the same: +E.g. for each test level different folders and tools are necessary from the UNICADO repository. For efficient cache management (We'll come to that later), it is a good idea, to keep the content of the cache as small as possible, i.e. it should contain only the necessary files for the respective test. + +##### The Blackbox-test needs +- the modified tool +- **gnuplot** and **inkscape** for plotting +- an aircraft reference + +##### The integration-test needs +- the modified tool +- the un-modified tool +- libraries for the un-modified tool +- cmake build receipts for the un-modified tool +- **gnuplot** and **inkscape** for plotting +- `designEvaluator` to compare results +- libraries for the design Evaluator +- cmake build receipts for the the `designEvaluator` + +##### The performance-test needs +- The modified tool +- All un-modified aircraft design tools +- cmake build receipts for all un-modified aircraft design tools +- Libraries for the un-modified tools +- all additional software tools +- libraries for additional software +- cmake build receipts for additional software +- rce environment which has to be downloaded + +#### Build + +Within the build process we use docker container based on the **ubuntu:latest (Currently 24.04)** image. +Why? Well .. Several reasons: + +- Not alpine, because the gcc install differs from the gcc install on **ubuntu**, which causes build failure. With **ubuntu latest** and gcc 14 it works. The rest are deeper technical details +- Not **ubuntu 24.10** (Most current ubuntu version at the moment), because **Python 3.11** can't be installed easily, because the `deadsnakes` ppa repository is currently not available for **ubuntu 24.10**. A manual make install of **Python 3.11** would take unnecessary much computational time, which is a good idea to be reduced as much as possible +- Not **ubuntu 24.10** because **RCE** needs **Python 3.11** - and the challenges of the previous bullet point + +##### Black-box-test build instructions: +- Install necessary packages like `cmake`, `gcc`, **Python**, **git**, `eigen3`, `cgal`, etc. +- Create a project directory and copy the chosen aircraft reference to work on (Currently CSR-02 hard coded. A script probably needs to be added later, to modify the config. There is already a script, which modifies the `designEvaluator` config, which can be generalized) +- Copy **gnuplot** and **inkscape** into the working directory +- Build the modified tool in black-box test mode as stated above. +- Move black-box-test executable to modified tool folder + +##### Integration-test build instructions: +- Install necessary packages like `cmake`, `gcc`, **Python**, **git**, `eigen3`, `cgal`, etc. +- Make **gnuplot** and **inkscape** executable +- Modify cmake build receipts of current aircraft design repo to build only modified tool +- Build modified tool +- Modify cmake build receipts of clean aircraft design repo within UNICADO repo to build only un-modified tool for comparison +- Build clean tool +- Build `designEvaluator` +- Create a project directory within the aircraftDesign repo of the UNICADO repo (clean) and copy the chosen aircraft reference to work on (For limitations see instructions of Black-box-test above) +- Create a project directory within the repo (local) and copy the chosen aircraft reference to work on +- Copy **gnuplot** an **inkscape** to the aircraft design repo of UNICADO +- Copy **gnuplot** an **inkscape** to the current repo + +##### Performance-test build instructions: +- Install necessary packages like `cmake`, `gcc`, **Python**, **git**, `eigen3`, `cgal`, etc. +- Install `pipenv` for necessary virtual environments +- Download and install the most latest version of cmake directly from source +- Install gcc-14 and g++-14 from ubuntu-toolchain-r/test repository, because build-essential package of **ubuntu 24.04** comes with gcc version <14 but 14 is required +- Make **gnuplot** and **inkscape** executable +- Create a release package by building the UNICADO installer (Here also a pipeline is planned, which solely tests the release of the installer) +- Modify cmake build receipts of current aircraft design repo to build only modified tool +- Build modified tool only +- Build `designEvaluator` +- Copy `designEvaluator` to current repo (local) + +#### Test + +After successful setup and build, the tests are ready to be executed, with the following steps + +##### Black-box-test test execution steps: +- Enter modified tool folder and execute black-box-test + +##### Integration-test test execution steps: +- Install python and some libraries via pip +- Execute modified tool +- Store aircraft reference result to be compared into a common project folder with postfix _post +- Execute un-modified tool +- Store aircraft reference result to be compared into a common project folder with postfix _pre +- Adapt `designEvaluator` config to compare both aircraft reference designs +- Execute `designEvaluator` +- Evaluate report of `designEvaluator` + +##### Performance-test test execution steps: +- Install **Python 3.11** from `deadsnakes` repository and some libraries via pip +- Remove rce user folder +- Make `UNICADOinstaller` executable +- Execute `UNICADOinstaller` +- Create workflow configuration file +- Execute UNICADOworkflow with RCE in headless mode with un-modified tool +- Store aircraft reference result to be compared into a common project folder with postfix _pre +- Copy modified tool executable into UNICADOworkflow +- Execute UNICADOworkflow with RCE in headless mode with modified tool +- Store aircraft reference result to be compared into a common project folder with postfix _post +- Adapt `designEvaluator` config to compare both aircraft reference designs +- Execute `designEvaluator` - Evaluate report of `designEvaluator` \ No newline at end of file diff --git a/docs/tutorials/seperate-tool-execution.md b/docs/tutorials/seperate-tool-execution.md index bb6f34d..c2c190b 100644 --- a/docs/tutorials/seperate-tool-execution.md +++ b/docs/tutorials/seperate-tool-execution.md @@ -10,7 +10,7 @@ Ensure that you have cloned the following repositories: - **Aircraft References** - aircraft reference designs - **Engines** - engine data -If you haven't yet, don't worry: just follow [these](../developer/get-source-code.md) instructions before continuing. +If you haven't yet, don't worry: just follow [these](../get-involved/get-source-code.md) instructions before continuing. Ensure, that you have checked out the same branch (e.g. `develop`) for both **Aircraft Design** and **Engines**, as they are synchronized on remote and a running couple. For testing purposes you most probably will choose the CSMR-2020 aircraft reference. Therefore, checkout the *CSMR-2020* branch from the **Aircraft References** repo. @@ -108,7 +108,7 @@ Therefore the tools can be executed based on their dependencies in the following ## Tool execution Finally we want to execute the tool. But what if we have noticed, that there are no executables in the tool folders? 🔥 -Then the executables have first to be build inside the working copy e.g. of the **Aircraft Design** repo. Please follow the [build instructions](../developer/build/general.md). +Then the executables have first to be build inside the working copy e.g. of the **Aircraft Design** repo. Please follow the [build instructions](../get-involved/build/general.md). If this is already done and an executable is present, then you can execute the respective tool from within the tool folder either on windows directly via double click or via a terminal e.g. @@ -137,6 +137,6 @@ The module throws an error? - Read the error message carefully. - "Node not existing" / "File not found" or similar: Most probably either a file is missing in your project environment or some content within an file is lacking. Double check the description of the project environment and tool dependencies. - "Can't open ...": If the file exist, make sure it is currently not used by another application. -- "ModuleNotFoundError: No Module named 'runmodule'": you try to execute a python tool which was not built correctly. Make sure to intall the python_packages before building the modudule. Go back to [build/python](../developer/build/python.md), follow the instruction and keep an eye on error messages during the build process. +- "ModuleNotFoundError: No Module named 'runmodule'": you try to execute a python tool which was not built correctly. Make sure to intall the python_packages before building the modudule. Go back to [build/python](../get-involved/build/python.md), follow the instruction and keep an eye on error messages during the build process. ## Video tutorial \ No newline at end of file diff --git a/mkdocs.yml b/mkdocs.yml index 6987f45..2d983eb 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -97,11 +97,10 @@ theme: # Feature configurations for navigation and ToC behavior features: - - navigation.instant # Enables instant navigation between pages (no reload). - - navigation.tabs # Adds navigation tabs for each main section in `nav`. - - navigation.path # Shows the navigation path/breadcrumbs. - - navigation.sections - - toc.follow # Highlights the current section in the ToC as you scroll. + - navigation.instant + - navigation.top + - navigation.tabs + - toc.integrate # This integrates the table of contents into the sidebar # Additional links (social) to display in the header extra: @@ -111,94 +110,49 @@ theme: name: "Unicado Repository" # Name displayed when hovering over the repository icon. # === Navigation Menu === + nav: # Customizes the main navigation structure of the site. - - Home: 'index.md' # Main page of the site. + - Home: index.md # Main page of the site. - Download: # Top-level navigation item for "Download". - - Getting Started: 'download/getting-started.md' # Link to the getting started page. - - Installation: 'download/installation.md' # Link to the installation page. - - Cleared for Take-Off: 'download/takeoff.md' # Link to the takeoff/getting started page. + - Getting Started: download/getting-started.md # Link to the getting started page. + - Installation: download/installation.md # Link to the installation page. + - Cleared for Take-Off: download/takeoff.md # Link to the takeoff/getting started page. - Tutorials: - - Standalone Workflow: 'tutorials/standalone.md' # Link to the standalone tutorial page. - - Seperate Tool Execution: 'tutorials/seperate-tool-execution.md' # Link to the separate tool execution tutorial page. + - Standalone Workflow: tutorials/standalone.md # Link to the standalone tutorial page. + - Separate Tool Execution: tutorials/separate-tool-execution.md # Link to the separate tool execution tutorial page. - Documentation: # Top-level item for documentation. - - Overview: 'documentation/overview.md' # Overview of modules. - - Aircraft Design: - - Introduction: documentation/aircraft_design.md # Subsection for Aircraft Design. - - Sizing: - - Sizing Tools: documentation/sizing.md - - Initial Sizing: - - Introduction: 'documentation/initial_sizing/index.md' - - Getting Started: 'documentation/initial_sizing/getting-started.md' - - API Reference: - - documentation/initial_sizing/classed.md - - documentation/initial_sizing/namespaces.md - - documentation/initial_sizing/files.md - - documentation/initial_sizing/pages.md - - Propulsion Design: - - Introduction: 'documentation/aircraft_design/propulsion_design/doc/content/index.md' - - Engineering Principles: 'documentation/aircraft_design/propulsion_design/doc/content/engineering_principles.md' - - Getting Started: 'documentation/aircraft_design/propulsion_design/doc/content/getting_started.md' - - Software Architecture: 'documentation/aircraft_design/propulsion_design/doc/content/software_architecture.md' - - Tutorial: - - Main: 'documentation/propulsion_design/tutorial.md' - - Engine Extension: 'documentation/propulsion_design/tutorial_engine_extension.md' - - Fidelity Extension: 'documentation/propulsion_design/tutorial_fidelity_extension.md' - - Additional: 'docs/documentation/propulsion_design/doc/content/additional.md' - - API Reference: - - documentation/propulsion_design/classes.md - - documentation/propulsion_design/namespaces.md - - documentation/propulsion_design/files.md - - documentation/propulsion_design/pages.md - - Analsysis: - - Analysis Tools: 'documentation/analysis.md'# Link to analysis module page. - - Aerodynamic analysis: 'documentation/aerodynamic_analysis/aerodynamic_analysis.md' - - Mission analysis: 'documentation/mission_analysis/mission_analysis.md' - - Weight and balance analysis: 'documentation/weight_and_balance_analysis/weight_and_balance_analysis.md' - - Ecological assessment: 'documentation/ecological_assessment/ecological_assessment.md' - - Performance assessment: 'documentation/performance_assessment/performance_assessment.md' - - Cost estimation: 'documentation/cost_estimation/cost_estimation.md' - - Libraries: - - Introduction: 'documentation/libraries.md' # Link to libraries overview. - - aircraftGeometry2: 'documentation/libraries/aircraftGeometry2/index.md' - - airfoils: 'documentation/libraries/airfoils/index.md' - - Utilities: - - Additional Software: documentation/additional_software.md - - cpacs Interface: 'documentation/additional_software/cpacsInterface.md' - - designEvaluator: 'documentation/additional_software/cpacsInterface.md' - - reportGenerator: 'documentation/additional_software/cpacsInterface.md' - - testFramework: 'documentation/additional_software/cpacsInterface.md' - - Workflow: 'workflow.md' # Link to the workflow page. - - Get involved: - - Developer Guide: developer/developer-installation.md # Top-level item for contributions and development. - - Build Instructions: - - Prerequisites: - - Windows: 'developer/build-environment/windows.md' - - Linux: 'developer/build-environment/linux.md' - - MacOS: 'developer/build-environment/macos.md' - - MSYS2/MinGW (deprecated): 'developer/build-environment/mingw.md' - - Get Source Code: 'developer/get-source-code.md' - - Build: - - General: 'developer/build/general.md' - - C++: 'developer/build/cpp.md' - - Python: 'developer/build/python.md' - - Include libraries: 'developer/including-libraries.md' - - CMake Presets: 'developer/cmake-presets.md' - - Module Development: - - Module Stucture in cpp: 'developer/style/cpp-modularization.md' - - Module Stucture in python: 'developer/style/python-modularization.md' - - Style Guide: - - C++: 'developer/style/cpp.md' - - Python: 'developer/style/python.md' - - Testing Guidelines: 'developer/testing.md' - - How to Contribute: # Subsection for contribution guidelines. - - Basics: 'developer/contribute.md' - - Merge Requests: 'developer/merge-request.md' - - Review Merge Requests: 'developer/review-merge-request.md' - - IDE Setup: 'developer/ide-setup.md' - - Release Package: 'developer/release-package.md' + - Overview: documentation/overview.md # Overview of modules. + - Aircraft Design: + - Sizing: documentation/sizing.md # Link to aircraft sizing documentation. + - Analysis: documentation/analysis.md # Link to analysis module page. + - Libraries: documentation/libraries.md # Link to libraries overview. + - Utilities: documentation/additional_software.md + - Workflow: 'workflow.md' # Link to the workflow page. + - Get Involved: + - Developer Guide: get-involved/developer-installation.md # Top-level item for contributions and development. + - Build Instructions: + - Prerequisites: + - Windows: get-involved/build-environment/windows.md + - Linux: get-involved/build-environment/linux.md + - MacOS: get-involved/build-environment/macos.md + - MSYS2/MinGW (deprecated): get-involved/build-environment/mingw.md + - Get Source Code: get-involved/get-source-code.md + - Build: + - General: get-involved/general.md + - C++: get-involved/cpp.md + - Python: get-involved/python.md + - Include Libraries: get-involved/including-libraries.md + - CMake Presets: get-involved/cmake-presets.md + - Module Development: + - Module Structure in c++: get-involved/style/cpp-modularization.md + - Module Structure in Python: get-involved/style/python-modularization.md + - Style Guide: + - C++: get-involved/style/cpp.md + - Python: get-involved/style/python.md + - Testing Guidelines: get-involved/testing.md + - How to Contribute: get-involved/contribute.md + - IDE Setup: get-involved/ide-setup.md + - Release Package: get-involved/release-package.md + + - - About: # Top-level item for general site information. - - About us: 'about.md' # Link to the about page. - - License: 'license.md' # Link to license information. - - Contact: 'contact.md' # Link to contact page. - - Partners: 'partners.md' # Link to partners page. -- GitLab From 405ad1d5418bd9c3b51a630553972b76368a45d3 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 13:49:15 +0100 Subject: [PATCH 07/53] Remove clone libraries --- .gitlab-ci.yml | 4 ---- 1 file changed, 4 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index e80a075..4b108c1 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -30,10 +30,6 @@ doxygen: script: # aircraft design - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - - # libaries - - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries - - cd $CI_PROJECT_DIR artifacts: paths: -- GitLab From 87bcf1003f94b21787bba2d97c396f18cac74837 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 14:01:19 +0100 Subject: [PATCH 08/53] Install openssh on CI --- .gitlab-ci.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 4b108c1..ba7222a 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -26,7 +26,7 @@ doxygen: tags: - documentation before_script: - - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi + - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi openssh script: # aircraft design - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design -- GitLab From 664e2feab59fa63decbf51a5700992ead7747fdb Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 14:16:42 +0100 Subject: [PATCH 09/53] Add debugging comments in config file --- .gitlab-ci.yml | 72 ++++++++++++++++++++++++++------------------------ 1 file changed, 38 insertions(+), 34 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index ba7222a..4810e22 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -15,69 +15,73 @@ # along with this program. If not, see <https://www.gnu.org/licenses/>. # === Configure pipeline === +# This section defines the stages of the pipeline: build and deploy stages: - - build - - deploy + - build # The 'build' stage is where documentation is generated. + - deploy # The 'deploy' stage deploys the generated documentation. # === Build the doxygen documentation === doxygen: image: alpine:latest - stage: build + stage: build # This job is part of the build stage tags: - - documentation + - documentation # Label for the job to be picked up by appropriate runners before_script: + # Install necessary packages, including git, doxygen, and other dependencies - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi openssh script: - # aircraft design + # Debugging: Output the current working directory to help troubleshoot path issues + - echo "Current working directory: $(pwd)" + # Clone the aircraft-design repository, including its submodules - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - - cd $CI_PROJECT_DIR + # Change to the project directory (useful for multi-directory repositories) + - cd $CI_PROJECT_DIR artifacts: + # Save the generated documentation as artifacts so they can be accessed later in the pipeline paths: - $CI_PROJECT_DIR/docs/documentation rules: - - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' - when: on_success - - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' - when: manual - - if: '$CI_PIPELINE_SOURCE == "trigger"' - when: on_success + - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch + when: on_success # Only run if the previous jobs are successful + - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' # Allow manual triggers on non-default branches + when: manual # Run only when triggered manually + - if: '$CI_PIPELINE_SOURCE == "trigger"' # Triggered by another pipeline + when: on_success # Run if the source pipeline was successful # === Build and deploy the website === pages: image: python:latest - stage: deploy + stage: deploy # This job is part of the deploy stage tags: - - documentation + - documentation # Label for the job to be picked up by appropriate runners before_script: + # Install pipenv to manage Python dependencies - pip install pipenv - - pipenv install + - pipenv install # Install the dependencies from the Pipfile script: + # Debugging: Output the contents of the project directory before starting the documentation generation + - echo "Project directory contents: $(ls -la $CI_PROJECT_DIR)" + # Create the folder where the generated markdown files will be stored - mkdir $CI_PROJECT_DIR/docs/aircraft-xml + # Generate markdown documentation for different sections of the aircraft design - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title General --level 1 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/general.md - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MassesAndLoadings --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/masses.md + # Repeat for other titles (structure, propulsion, etc.) - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Geometry --level 6 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/geometry.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Structure --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/structure.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Accommodation --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/accommodation.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Propulsion --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/propulsion.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Systems --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/systems.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Aerodynamics --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/aerodynamics.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title StabilityAndControlCharacteristics --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/stability.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Performance --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/performance.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MonetaryValues --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/monetary.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title EcologicalValues --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/ecological.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Requirements --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/requirements.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title DesignSpecification --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/specification.md - - python scripts/copy_aircraft_design_to_docs.py + # Add additional python scripts for other sections as necessary + - python scripts/copy_aircraft_design_to_docs.py # Copy other documentation resources + # Build the MkDocs documentation site - pipenv run mkdocs build --site-dir $CI_PROJECT_DIR/public needs: - - doxygen + - doxygen # This job depends on the successful completion of the doxygen job artifacts: + # Save the generated static website files as artifacts paths: - $CI_PROJECT_DIR/public rules: - - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' - when: on_success - - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' - when: manual - - if: '$CI_PIPELINE_SOURCE == "trigger"' - when: on_success + - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch + when: on_success # Only run if the previous jobs are successful + - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' # Allow manual triggers on non-default branches + when: manual # Run only when triggered manually + - if: '$CI_PIPELINE_SOURCE == "trigger"' # Triggered by another pipeline + when: on_success # Run if the source pipeline was successful -- GitLab From c7794ea25b65c2aa764a54a07303cbcf66afe702 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 14:25:40 +0100 Subject: [PATCH 10/53] Add debug comments --- .gitlab-ci.yml | 10 ++++++++-- 1 file changed, 8 insertions(+), 2 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 4b108c1..2304072 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -26,11 +26,17 @@ doxygen: tags: - documentation before_script: + # Install necessary packages, including git, doxygen, and other dependencies - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi script: - # aircraft design + + # Debugging: Output the current working directory to help troubleshoot path issues + - echo "Current working directory: $(pwd)" + # Clone the aircraft-design repository, including its submodules - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - - cd $CI_PROJECT_DIR + # Change to the project directory (useful for multi-directory repositories) + - cd $CI_PROJECT_DIR + artifacts: paths: - $CI_PROJECT_DIR/docs/documentation -- GitLab From d10e2609238c1ad44e8d82d59ebc987dc11158d1 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 15:07:06 +0100 Subject: [PATCH 11/53] Fix config files issues --- .gitlab-ci.yml | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 977989e..963e40a 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -34,7 +34,9 @@ doxygen: # Debugging: Output the current working directory to help troubleshoot path issues - echo "Current working directory: %cd%" # Clone the aircraft-design repository, including its submodules - - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design + - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design + - cd aircraft-design + - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries libs/ # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR -- GitLab From 98d1d2aa6e60077a1cd178bc6cd1776c581ee197 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 15:07:06 +0100 Subject: [PATCH 12/53] Fix config files issues --- .gitlab-ci.yml | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 977989e..737ad50 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -31,10 +31,10 @@ doxygen: - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi script: - # Debugging: Output the current working directory to help troubleshoot path issues - - echo "Current working directory: %cd%" # Clone the aircraft-design repository, including its submodules - - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design + - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design + - cd aircraft-design + - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries libs/ # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR -- GitLab From 26fc8a170c532ac7cf453c51bd64fbcea69e96b4 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 15:34:56 +0100 Subject: [PATCH 13/53] Install mkdoxy --- .gitlab-ci.yml | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 737ad50..8acc48a 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -33,7 +33,7 @@ doxygen: # Clone the aircraft-design repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - - cd aircraft-design + - cd aircraft-design || { echo "Directory not found! Exiting..."; exit 1; } - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries libs/ # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR @@ -60,6 +60,7 @@ pages: # Install pipenv to manage Python dependencies - pip install pipenv - pipenv install # Install the dependencies from the Pipfile + - pipenv install mkdoxy # Install the mkdoxy plugin script: # Create the folder where the generated markdown files will be stored - mkdir $CI_PROJECT_DIR/docs/aircraft-xml @@ -68,8 +69,8 @@ pages: - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MassesAndLoadings --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/masses.md # Repeat for other titles (structure, propulsion, etc.) - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Geometry --level 6 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/geometry.md - # Add additional python scripts for other sections as necessary - - python scripts/copy_aircraft_design_to_docs.py # Copy other documentation resources + # Copy other documentation resources + - python $CI_PROJECT_DIR/scripts/copy_aircraft_design_to_docs.py # Build the MkDocs documentation site - pipenv run mkdocs build --site-dir $CI_PROJECT_DIR/public needs: -- GitLab From cd3bd85816bbb07f17601b1eed704dd2e7223ffc Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 15:46:55 +0100 Subject: [PATCH 14/53] Install Doxygen --- .gitlab-ci.yml | 1 + scripts/copy_aircraft_design_to_docs.py | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 8acc48a..b4d5e51 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -58,6 +58,7 @@ pages: - documentation # Label for the job to be picked up by appropriate runners before_script: # Install pipenv to manage Python dependencies + - apk update && apk --no-cache add doxygen graphviz - pip install pipenv - pipenv install # Install the dependencies from the Pipfile - pipenv install mkdoxy # Install the mkdoxy plugin diff --git a/scripts/copy_aircraft_design_to_docs.py b/scripts/copy_aircraft_design_to_docs.py index 129f021..138c5ec 100644 --- a/scripts/copy_aircraft_design_to_docs.py +++ b/scripts/copy_aircraft_design_to_docs.py @@ -4,7 +4,7 @@ import os def copy_folder(): # Path to the source directory (aircraft-design folder or any folder) # Replace this with the actual path to the folder you want to copy - source_dir = "aircraft-design" # Absolute or relative path + source_dir = "./aircraft-design" # Absolute or relative path # Path to the destination directory (within the docs folder of your Git repository) dest_dir = "./docs/documentation/aircraft_design" # Inside your 'unicado.gitlab.io' docs folder -- GitLab From d1c35a551c905aa884b3bb2e23438d3f30ef76e3 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 15:57:52 +0100 Subject: [PATCH 15/53] Add aircraft-design to artifacts --- .gitlab-ci.yml | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index b4d5e51..8cf613f 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -41,6 +41,7 @@ doxygen: artifacts: # Save the generated documentation as artifacts so they can be accessed later in the pipeline paths: + - $CI_PROJECT_DIR/aircraft-design - $CI_PROJECT_DIR/docs/documentation rules: - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch @@ -70,8 +71,8 @@ pages: - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MassesAndLoadings --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/masses.md # Repeat for other titles (structure, propulsion, etc.) - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Geometry --level 6 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/geometry.md - # Copy other documentation resources - - python $CI_PROJECT_DIR/scripts/copy_aircraft_design_to_docs.py + # Use the persisted content from the previous stage (aircraft-design) + - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/ # Copy content to the docs folder # Build the MkDocs documentation site - pipenv run mkdocs build --site-dir $CI_PROJECT_DIR/public needs: -- GitLab From 8011e52008c9f5f4e8c6faf0f526f5b2b4f5ea1c Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 16:13:03 +0100 Subject: [PATCH 16/53] Debugging issues --- .gitlab-ci.yml | 15 ++++++++++++--- Pipfile | 1 + 2 files changed, 13 insertions(+), 3 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 8cf613f..8289ad8 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -62,7 +62,13 @@ pages: - apk update && apk --no-cache add doxygen graphviz - pip install pipenv - pipenv install # Install the dependencies from the Pipfile - - pipenv install mkdoxy # Install the mkdoxy plugin + - pipenv run pip install mkdoxy # Install the mkdoxy plugin if needed + - echo "MkDocs version:" + - pipenv run mkdocs --version + - echo "Listing files in the project directory:" + - ls -la $CI_PROJECT_DIR + - echo "Listing files in docs directory:" + - ls -la $CI_PROJECT_DIR/docs script: # Create the folder where the generated markdown files will be stored - mkdir $CI_PROJECT_DIR/docs/aircraft-xml @@ -72,9 +78,12 @@ pages: # Repeat for other titles (structure, propulsion, etc.) - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Geometry --level 6 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/geometry.md # Use the persisted content from the previous stage (aircraft-design) - - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/ # Copy content to the docs folder + - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/ # Copy content to the docs folder + - echo "Listing files:" + - ls -la # Build the MkDocs documentation site - - pipenv run mkdocs build --site-dir $CI_PROJECT_DIR/public + - pipenv run mkdocs build --verbose --site-dir $CI_PROJECT_DIR/public + needs: - doxygen # This job depends on the successful completion of the doxygen job artifacts: diff --git a/Pipfile b/Pipfile index 49fa86b..e2b42ec 100644 --- a/Pipfile +++ b/Pipfile @@ -9,6 +9,7 @@ mkdocs-material = "*" mkdocs-glightbox = "*" [dev-packages] +mkdocs = "*" [requires] python_version = "3.11" -- GitLab From a56ebd2821b0faf8b9a3b245270077e0ce6604f8 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 16:27:31 +0100 Subject: [PATCH 17/53] Fix error in mkdocs.yml --- .gitlab-ci.yml | 6 ++++++ mkdocs.yml | 3 ++- 2 files changed, 8 insertions(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 8289ad8..b9a76a1 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -65,10 +65,16 @@ pages: - pipenv run pip install mkdoxy # Install the mkdoxy plugin if needed - echo "MkDocs version:" - pipenv run mkdocs --version + - apt-get update + - apt-get install -y doxygen + - export DOXYGEN_BIN=/usr/bin/doxygen + - pipenv install --dev # Install all necessary dependencies - echo "Listing files in the project directory:" - ls -la $CI_PROJECT_DIR - echo "Listing files in docs directory:" - ls -la $CI_PROJECT_DIR/docs + - which doxygen # Verifies that Doxygen is available in the path + script: # Create the folder where the generated markdown files will be stored - mkdir $CI_PROJECT_DIR/docs/aircraft-xml diff --git a/mkdocs.yml b/mkdocs.yml index 2d983eb..414020e 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -66,7 +66,8 @@ plugins: - mkdoxy: projects: aircraft_design: - src-dirs: docs/documentattion/aircraft_design/ + doxygen_bin: "/path/to/doxygen" # Update with the correct path + src-dirs: docs/documentation/aircraft_design/ full-doc: True doxy-cfg: FILE_PATTERNS: "*.cpp *.h *.md *.png *.svg" # Include .cpp, .h, .md, .png, .svg files in the documentation -- GitLab From a3a1079f334bf1bc818c8086baa6dba5942cbed0 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 16:41:15 +0100 Subject: [PATCH 18/53] Try deploying --- .gitlab-ci.yml | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index b9a76a1..7f08456 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -103,3 +103,15 @@ pages: when: manual # Run only when triggered manually - if: '$CI_PIPELINE_SOURCE == "trigger"' # Triggered by another pipeline when: on_success # Run if the source pipeline was successful +# Deploy to GitLab Pages +deploy_gitlab_pages: + stage: deploy to gitlab + script: + - mv $CI_PROJECT_DIR/public $CI_PROJECT_DIR/public # Ensure the output is in the public folder + rules: + - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch + when: on_success # Only run if the previous jobs are successful + - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' # Allow manual triggers on non-default branches + when: manual # Run only when triggered manually + - if: '$CI_PIPELINE_SOURCE == "trigger"' # Triggered by another pipeline + when: on_success # Run if the source pipeline was successful \ No newline at end of file -- GitLab From 0f5aaadcb00c528868418aa5fdfa9a7a62a4d006 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Fri, 20 Dec 2024 16:41:15 +0100 Subject: [PATCH 19/53] Try deploying --- .gitlab-ci.yml | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index b9a76a1..bb9310c 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -103,3 +103,15 @@ pages: when: manual # Run only when triggered manually - if: '$CI_PIPELINE_SOURCE == "trigger"' # Triggered by another pipeline when: on_success # Run if the source pipeline was successful +# Deploy to GitLab Pages +deploy_gitlab_pages: + stage: .post + script: + - mv $CI_PROJECT_DIR/public $CI_PROJECT_DIR/public # Ensure the output is in the public folder + rules: + - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch + when: on_success # Only run if the previous jobs are successful + - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' # Allow manual triggers on non-default branches + when: manual # Run only when triggered manually + - if: '$CI_PIPELINE_SOURCE == "trigger"' # Triggered by another pipeline + when: on_success # Run if the source pipeline was successful \ No newline at end of file -- GitLab From 0692727acda99e0bbec0809eec46b45abc7f3b3d Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Thu, 2 Jan 2025 11:06:59 +0100 Subject: [PATCH 20/53] Fix build issues --- .gitlab-ci.yml | 16 +--------------- 1 file changed, 1 insertion(+), 15 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index f6f32ba..f446026 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -63,18 +63,10 @@ pages: - pip install pipenv - pipenv install # Install the dependencies from the Pipfile - pipenv run pip install mkdoxy # Install the mkdoxy plugin if needed - - echo "MkDocs version:" - - pipenv run mkdocs --version - apt-get update - apt-get install -y doxygen - export DOXYGEN_BIN=/usr/bin/doxygen - pipenv install --dev # Install all necessary dependencies - - echo "Listing files in the project directory:" - - ls -la $CI_PROJECT_DIR - - echo "Listing files in docs directory:" - - ls -la $CI_PROJECT_DIR/docs - - which doxygen # Verifies that Doxygen is available in the path - script: # Create the folder where the generated markdown files will be stored - mkdir $CI_PROJECT_DIR/docs/aircraft-xml @@ -84,9 +76,7 @@ pages: # Repeat for other titles (structure, propulsion, etc.) - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Geometry --level 6 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/geometry.md # Use the persisted content from the previous stage (aircraft-design) - - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/ # Copy content to the docs folder - - echo "Listing files:" - - ls -la + - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/ # Copy content to the docs folder # Build the MkDocs documentation site - pipenv run mkdocs build --verbose --site-dir $CI_PROJECT_DIR/public @@ -105,11 +95,7 @@ pages: when: on_success # Run if the source pipeline was successful # Deploy to GitLab Pages deploy_gitlab_pages: -<<<<<<< HEAD - stage: .post -======= stage: deploy to gitlab ->>>>>>> a3a1079f334bf1bc818c8086baa6dba5942cbed0 script: - mv $CI_PROJECT_DIR/public $CI_PROJECT_DIR/public # Ensure the output is in the public folder rules: -- GitLab From 8ff061846081b9d0f08691740efca3b436636317 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Thu, 2 Jan 2025 11:38:25 +0100 Subject: [PATCH 21/53] Fix build issues --- .gitlab-ci.yml | 14 +------------- 1 file changed, 1 insertion(+), 13 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index f446026..f9978d0 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -76,7 +76,7 @@ pages: # Repeat for other titles (structure, propulsion, etc.) - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Geometry --level 6 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/geometry.md # Use the persisted content from the previous stage (aircraft-design) - - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/ # Copy content to the docs folder + - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder # Build the MkDocs documentation site - pipenv run mkdocs build --verbose --site-dir $CI_PROJECT_DIR/public @@ -86,18 +86,6 @@ pages: # Save the generated static website files as artifacts paths: - $CI_PROJECT_DIR/public - rules: - - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch - when: on_success # Only run if the previous jobs are successful - - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' # Allow manual triggers on non-default branches - when: manual # Run only when triggered manually - - if: '$CI_PIPELINE_SOURCE == "trigger"' # Triggered by another pipeline - when: on_success # Run if the source pipeline was successful -# Deploy to GitLab Pages -deploy_gitlab_pages: - stage: deploy to gitlab - script: - - mv $CI_PROJECT_DIR/public $CI_PROJECT_DIR/public # Ensure the output is in the public folder rules: - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch when: on_success # Only run if the previous jobs are successful -- GitLab From 888023554a9e4c3ce4cbdc190b88264fdd80794d Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Thu, 2 Jan 2025 12:00:23 +0100 Subject: [PATCH 22/53] Rename stage : doxygen --- .gitlab-ci.yml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index f9978d0..596710b 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -17,11 +17,11 @@ # === Configure pipeline === # This section defines the stages of the pipeline: build and deploy stages: - - build # The 'build' stage is where documentation is generated. - - deploy # The 'deploy' stage deploys the generated documentation. + - build # The 'build' stage is where documents are copied to the PROJECT_DIR + - deploy # The 'deploy' stage generates and deploys the generated documentation. -# === Build the doxygen documentation === -doxygen: +# === Clone the repositories / copy documentation to the PROJECT_DIR === +clone: image: alpine:latest stage: build # This job is part of the build stage tags: -- GitLab From 10d1429959853f6cb27de28c9924ba09079019ec Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Thu, 2 Jan 2025 12:02:56 +0100 Subject: [PATCH 23/53] Fix buils issues --- .gitlab-ci.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 596710b..02e99e0 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -81,7 +81,7 @@ pages: - pipenv run mkdocs build --verbose --site-dir $CI_PROJECT_DIR/public needs: - - doxygen # This job depends on the successful completion of the doxygen job + - clone # This job depends on the successful completion of the clone job artifacts: # Save the generated static website files as artifacts paths: -- GitLab From 918b42d1cad01534cb70a8ba5a23e431c66c4fb3 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 7 Jan 2025 10:11:51 +0100 Subject: [PATCH 24/53] Fix CI issues --- .gitlab-ci.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 02e99e0..606fb1f 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -59,7 +59,7 @@ pages: - documentation # Label for the job to be picked up by appropriate runners before_script: # Install pipenv to manage Python dependencies - - apk update && apk --no-cache add doxygen graphviz + - apk update && apk --no-cache add graphviz - pip install pipenv - pipenv install # Install the dependencies from the Pipfile - pipenv run pip install mkdoxy # Install the mkdoxy plugin if needed -- GitLab From c56458b32b737e4577b87cc0b55f8c4ad6871256 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Mon, 13 Jan 2025 14:27:59 +0100 Subject: [PATCH 25/53] Fix header issue in subpages In the previously built UNICADO website, many pages had inconsistent headers. This commit aims to address the issue by leveraging mkdoxy documentation. Initially, only propulsion_design-related files have been modified to test this approach. If successful, the solution can be extended to all other subpages to resolve the header inconsistency problem. Issue: #22 --- docs/documentation/analysis.md | 12 ++++++------ docs/documentation/sizing.md | 16 ++++++++-------- mkdocs.yml | 18 +++++++++++++++++- 3 files changed, 31 insertions(+), 15 deletions(-) diff --git a/docs/documentation/analysis.md b/docs/documentation/analysis.md index e8e3663..a8d3966 100644 --- a/docs/documentation/analysis.md +++ b/docs/documentation/analysis.md @@ -22,7 +22,7 @@ lift mach numbers. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aerodynamic_analysis/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/aerodynamic_analysis/doc/content/index.md)| --- @@ -39,7 +39,7 @@ For the user, possible changes in the module run configuration can be made in th |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](mission_analysis/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/mission_analysis/doc/content/index.md)| --- @@ -50,7 +50,7 @@ The `weight_and_balance_analysis` module calculates sub-masses and total masses |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](weight_and_balance_analysis/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/weight_and_balance_analysis/doc/content/index.md)| --- @@ -67,7 +67,7 @@ The parameters comprised in this XML file can have different attributes as e.g. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](ecological_assessment/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/ecological_assessment/doc/content/index.md)| --- @@ -78,7 +78,7 @@ The module `calculatePerformance` is used to evaluate the mission performance of |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus:| GPLv3 |[Link](performance_assessment/content/index.md)| +|2.1.0|:simple-cplusplus:| GPLv3 |[Link](aircraft-design/performance_assessment/doc/content/index.md)| --- @@ -94,6 +94,6 @@ Direct costs include all expenses incurred in operating and financing the aircra |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](cost_estimation/content/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](aircraft-design/cost_estimation/doc/content/index.md)| --- diff --git a/docs/documentation/sizing.md b/docs/documentation/sizing.md index 3956793..0a1bf73 100644 --- a/docs/documentation/sizing.md +++ b/docs/documentation/sizing.md @@ -37,7 +37,7 @@ The parameters comprised in this file can have different attributes as e.g. Desc |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](create_mission_xml/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/create_mission_xml/doc/content/index.md)| --- @@ -48,7 +48,7 @@ The **fuselage_design** module calculates characteristic parameters and generate |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](fuselage_design/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/fuselage_design/doc/content/index.md)| --- @@ -59,7 +59,7 @@ The **wing_design** module calculates characteristic parameter of the aircraft m |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](wing_design/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/wing_design/doc/content/index.md)| --- @@ -71,7 +71,7 @@ It takes takes the controllability as wells as the static margin of the aircraft |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](empennage_design/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/empennage_design/doc/content/index.md)| --- @@ -82,7 +82,7 @@ It takes takes the controllability as wells as the static margin of the aircraft |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](tank_design/content/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](aircraft-design/tank_design/doc/content/index.md)| --- @@ -100,7 +100,7 @@ Also the mass properties are analyzed. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|3.0.0|:simple-cplusplus: |GPLv3|[Link](propulsion_design/content/index.md)| +|3.0.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/propulsion_design/doc/content/index.md)| --- @@ -111,7 +111,7 @@ The **landing_gear_design** module calculates characteristic parameters for the |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](landing_gear_design/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/landing_gear_design/doc/content/index.md)| --- @@ -123,6 +123,6 @@ It dimensions ATA chapter systems in terms of mass and energy requirement divide |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](systems_design/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/systems_design/doc/content/index.md)| --- diff --git a/mkdocs.yml b/mkdocs.yml index 414020e..5f2c785 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -124,7 +124,23 @@ nav: # Customizes the main navigation struc - Documentation: # Top-level item for documentation. - Overview: documentation/overview.md # Overview of modules. - Aircraft Design: - - Sizing: documentation/sizing.md # Link to aircraft sizing documentation. + - Sizing: + - Overview: documentation/sizing.md # Link to aircraft sizing documentation. + - Initial Sizing: documentation/aircraft-design/initial_sizing/doc/content/index.md + - Create Mission XML: documentation/aircraft-design/create_mission_xml/doc/content/index.md + - Fuselage Design: documentation/aircraft-design/fuselage_design/doc/content/index.md + - Wing Design: documentation/aircraft-design/wing_design/doc/content/index.md + - Empennage Design: documentation/aircraft-design/empennage_design/doc/content/index.md + - Tank Design: documentation/aircraft-design/tank_design/doc/content/index.md + - Propulsion Design: + - Introduction: documentation/aircraft-design/propulsion_design/doc/content/index.md + - Getting Started: documentation/aircraft-design/propulsion_design/doc/content/getting_started.md + - Engineering Principles: documentation/aircraft-design/propulsion_design/doc/content/engineering_principles.md + - Software Architecture: documentation/aircraft-design/propulsion_design/doc/content/software_architecture.md + - Changelog: documentation/aircraft-design/propulsion_design/doc/content/changelog.md + - Additional: documentation/aircraft-design/propulsion_design/doc/content/additional.md + - Landing Gear Design: documentation/aircraft-design/landing_gear_design/doc/content/index.md + - Systems Design: documentation/aircraft-design/systems_design/doc/content/index.md - Analysis: documentation/analysis.md # Link to analysis module page. - Libraries: documentation/libraries.md # Link to libraries overview. - Utilities: documentation/additional_software.md -- GitLab From 363705dfaf3973be3c2ca3f9c0e70bc6db63cf09 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 11:32:53 +0100 Subject: [PATCH 26/53] Fix missing API interface section in documentation --- docs/contact.md | 2 +- ...nal_software.md => additional-software.md} | 0 docs/documentation/analysis.md | 12 +- docs/documentation/libraries.md | 26 +-- docs/documentation/overview.md | 4 +- docs/get-involved/testing.md | 3 +- docs/index.md | 2 +- mkdocs.yml | 186 +++++++++++++++--- 8 files changed, 184 insertions(+), 51 deletions(-) rename docs/documentation/{additional_software.md => additional-software.md} (100%) diff --git a/docs/contact.md b/docs/contact.md index 6db7a6c..c36684a 100644 --- a/docs/contact.md +++ b/docs/contact.md @@ -2,4 +2,4 @@ You want to get in touch with us to clarify your questions or share your feedback about UNICADO? Awesome! Feel free to write us a mail, and we'll respond to your inquiry as soon as possible. -:email: **E-Mail:** [contact@unicado.io](mailto:contact@unicado.io) +:email: **E-Mail:** [contacts@unicado.io](mailto:contacts@unicado.io) diff --git a/docs/documentation/additional_software.md b/docs/documentation/additional-software.md similarity index 100% rename from docs/documentation/additional_software.md rename to docs/documentation/additional-software.md diff --git a/docs/documentation/analysis.md b/docs/documentation/analysis.md index a8d3966..8d8f46d 100644 --- a/docs/documentation/analysis.md +++ b/docs/documentation/analysis.md @@ -22,7 +22,7 @@ lift mach numbers. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/aerodynamic_analysis/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/aerodynamic_analysis/doc/content/index.md)| --- @@ -39,7 +39,7 @@ For the user, possible changes in the module run configuration can be made in th |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/mission_analysis/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/mission_analysis/doc/content/index.md)| --- @@ -50,7 +50,7 @@ The `weight_and_balance_analysis` module calculates sub-masses and total masses |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/weight_and_balance_analysis/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/weight_and_balance_analysis/doc/content/index.md)| --- @@ -67,7 +67,7 @@ The parameters comprised in this XML file can have different attributes as e.g. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/ecological_assessment/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/ecological_assessment/doc/content/index.md)| --- @@ -78,7 +78,7 @@ The module `calculatePerformance` is used to evaluate the mission performance of |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus:| GPLv3 |[Link](aircraft-design/performance_assessment/doc/content/index.md)| +|2.1.0|:simple-cplusplus:| GPLv3 |[Link](../documentation/aircraft-design/performance_assessment/doc/content/index.md)| --- @@ -94,6 +94,6 @@ Direct costs include all expenses incurred in operating and financing the aircra |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](aircraft-design/cost_estimation/doc/content/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](../documentation/aircraft-design/cost_estimation/doc/content/index.md)| --- diff --git a/docs/documentation/libraries.md b/docs/documentation/libraries.md index 2be0912..c26d397 100644 --- a/docs/documentation/libraries.md +++ b/docs/documentation/libraries.md @@ -27,7 +27,7 @@ It has helper functions to extract and interpolate data of provided airfoil pola |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aerodynamics/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](documentation/libraries/aerodynamics/doc/content/index.md)|-| --- @@ -39,7 +39,7 @@ The modularity and flexibility is achieved by using the high performance [Comput |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aircraftGeometry2/content/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aircraftGeometry2/doc/content/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| --- @@ -50,7 +50,7 @@ The **airfoils** libary provides a database for different airfoils. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|1.0.0|:simple-cplusplus: |GPLv3|[Link](libraries/airfoils/content/index.md)|-| +|1.0.0|:simple-cplusplus: |GPLv3|[Link](libraries/airfoils/doc/content/index.md)|-| --- @@ -62,7 +62,7 @@ It uses a simple XML library, namely *tinyxml*, to read and parse the XML files. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aixml/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aixml/doc/content/index.md)|-| --- @@ -74,7 +74,7 @@ You can set different atmospheric conditions (e.g. *ISA+25*) and calculate the p |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/atmosphere/content/index.md)|| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/atmosphere/doc/content/index.md)|| --- @@ -85,7 +85,7 @@ The **blackboxTest** library provides an interface to run a complete module with |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/blackboxTest/content/index.md)|[googleTest](https://google.github.io/googletest/)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/blackboxTest/doc/content/index.md)|[googleTest](https://google.github.io/googletest/)| --- @@ -98,7 +98,7 @@ The engine decks can originate from different softwaretools as long as they prov |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/engine/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/engine/doc/content/index.md)|-| --- @@ -118,7 +118,7 @@ It has helper functions to extract and interpolate data of the results from the |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/liftingLineInterface/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/liftingLineInterface/doc/content/index.md)|-| --- @@ -131,7 +131,7 @@ The library gives a template how modules should be structured and gives helpers |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/moduleBasics/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/moduleBasics/doc/content/index.md)|-| --- @@ -142,7 +142,7 @@ This library provides standardized UNICADO data preprocessing, run, and postproc |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|1.0.0|:simple-python: |GPLv3|[Link](libraries/pymodulepackage/content/index.md)|-| +|1.0.0|:simple-python: |GPLv3|[Link](libraries/pymodulepackage/doc/content/index.md)|-| --- @@ -154,7 +154,7 @@ In provides custom output streams, which automatically handle the log files and |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/runtimeInfo/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/runtimeInfo/doc/content/index.md)|-| --- @@ -167,7 +167,7 @@ The library can handle *UNIX* and *Windows* systems alike. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/standardFiles/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/standardFiles/doc/content/index.md)|-| !!! warning Some functions of this library are a bit outdated! When using this library, please look first at the wonderful [STL :octicons-link-external-16:](https://en.cppreference.com/w/) whether the function you are seeking is already there. @@ -196,4 +196,4 @@ In addition, it defines some common **constants** which are useful for calculati |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/unitConversion/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/unitConversion/doc/content/index.md)|-| diff --git a/docs/documentation/overview.md b/docs/documentation/overview.md index 4365e8a..6baf4fe 100644 --- a/docs/documentation/overview.md +++ b/docs/documentation/overview.md @@ -25,8 +25,8 @@ glightbox: false Here you can found different designed aircraft. The designs are made using the **UNICADO** workflow and are generally in a *valid* and *converged* state. -!!! note - This repository will be translated to a actual database in the future! +🔔 This repository will be translated to a actual database in the future! + - [:simple-gitlab: Engines :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/engines): diff --git a/docs/get-involved/testing.md b/docs/get-involved/testing.md index 5f1fe4a..0b010da 100644 --- a/docs/get-involved/testing.md +++ b/docs/get-involved/testing.md @@ -76,8 +76,7 @@ Then you can execute the test #### Unit tests These tests involve systematically checking the lowest-level component, like a function, within a module. -!!! note - This is currently only implemented for the module/target **propulsionDesign**. +🔔 This is currently only implemented for the module/target **propulsionDesign**. To run the test, you need to add the flag when configuring your module === "Windows" diff --git a/docs/index.md b/docs/index.md index fad3ff0..f527d9b 100644 --- a/docs/index.md +++ b/docs/index.md @@ -61,7 +61,7 @@ Get an overview of the tools and libraries. Get insights on how to contribute and develop. -[:octicons-arrow-right-24: Get involved](developer/developer-installation.md) +[:octicons-arrow-right-24: Get involved](get-involved/developer-installation.md) </div> <div class="grid-item card" markdown="1"> diff --git a/mkdocs.yml b/mkdocs.yml index 5f2c785..73de85c 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -24,8 +24,6 @@ markdown_extensions: - attr_list # Allows adding HTML attributes to Markdown elements (like classes). - admonition # Enables note/warning/admonition boxes with custom styling. - md_in_html # Allows writing Markdown inside HTML tags for flexibility. - - toc: # Adds a table of contents (ToC) for each page. - permalink: '#' # Adds a clickable '#' for each ToC heading, allowing direct links. - pymdownx.tabbed: # Enables tabbed content blocks, allowing content to be organized in tabs. alternate_style: true # Uses an alternate style for tabbed blocks. - pymdownx.emoji: # Adds support for emojis using the Material theme’s emoji set. @@ -65,12 +63,76 @@ plugins: - search - mkdoxy: projects: - aircraft_design: - doxygen_bin: "/path/to/doxygen" # Update with the correct path - src-dirs: docs/documentation/aircraft_design/ + propulsion_design: + src-dirs: ../aircraft-design/propulsion_design/ full-doc: True + output: docs/propulsion_design doxy-cfg: - FILE_PATTERNS: "*.cpp *.h *.md *.png *.svg" # Include .cpp, .h, .md, .png, .svg files in the documentation + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + initial_sizing: + src-dirs: ../aircraft-design/initial_sizing/ + full-doc: true + output: docs/initial_sizing + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + create_mission_xml: + src-dirs: ../aircraft-design/create_mission_xml/ + full-doc: True + output: docs/create_mission_xml + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + fuselage_design: + src-dirs: ../aircraft-design/fuselage_design/ + full-doc: true + output: docs/fuselage_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + wing_design: + src-dirs: ../aircraft-design/wing_design/ + full-doc: True + output: docs/wing_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + empennage_design: + src-dirs: ../aircraft-design/empennage_design/ + full-doc: true + output: docs/empennage_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + tank_design: + src-dirs: ../aircraft-design/tank_design/ + full-doc: true + output: docs/tank_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + landing_gear_design: + src-dirs: ../aircraft-design/landing_gear_design/ + full-doc: true + output: docs/landing_gear_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + systems_design: + src-dirs: ../aircraft-design/systems_design/ + full-doc: true + output: docs/systems_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" RECURSIVE: True EXTRACT_ALL: YES - glightbox # Plugin for lightbox-style image and content viewing. @@ -83,16 +145,7 @@ theme: custom_dir: overrides # Directory for custom files (like footer). # Theme colors configuration palette: - - scheme: default - toggle: - icon: material/brightness-7 - name: Switch to dark mode - primary: blue grey - accent: red - scheme: slate - toggle: - icon: material/brightness-3 - name: Switch to light mode primary: green accent: red @@ -101,7 +154,6 @@ theme: - navigation.instant - navigation.top - navigation.tabs - - toc.integrate # This integrates the table of contents into the sidebar # Additional links (social) to display in the header extra: @@ -120,27 +172,102 @@ nav: # Customizes the main navigation struc - Cleared for Take-Off: download/takeoff.md # Link to the takeoff/getting started page. - Tutorials: - Standalone Workflow: tutorials/standalone.md # Link to the standalone tutorial page. - - Separate Tool Execution: tutorials/separate-tool-execution.md # Link to the separate tool execution tutorial page. + - Separate Tool Execution: tutorials/seperate-tool-execution.md # Link to the separate tool execution tutorial page. + - Changing Design Specifications: tutorials/changing-design-specifications.md - Documentation: # Top-level item for documentation. - Overview: documentation/overview.md # Overview of modules. - Aircraft Design: - Sizing: - - Overview: documentation/sizing.md # Link to aircraft sizing documentation. - - Initial Sizing: documentation/aircraft-design/initial_sizing/doc/content/index.md - - Create Mission XML: documentation/aircraft-design/create_mission_xml/doc/content/index.md - - Fuselage Design: documentation/aircraft-design/fuselage_design/doc/content/index.md - - Wing Design: documentation/aircraft-design/wing_design/doc/content/index.md - - Empennage Design: documentation/aircraft-design/empennage_design/doc/content/index.md - - Tank Design: documentation/aircraft-design/tank_design/doc/content/index.md + - Modules: documentation/sizing.md # Link to aircraft sizing documentation. + - Initial Sizing: + - Introduction: documentation/aircraft-design/initial_sizing/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/initial_sizing/doc/content/getting-started.md + - API Reference: + - initial_sizing/classes.md + - initial_sizing/namespaces.md + - initial_sizing/files.md + - initial_sizing/functions.md + - initial_sizing/pages.md + - Create Mission XML: + - Introduction: documentation/aircraft-design/create_mission_xml/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/create_mission_xml/doc/content/getting-started.md + - API Reference: + - create_mission_xml/classes.md + - create_mission_xml/namespaces.md + - create_mission_xml/files.md + - create_mission_xml/functions.md + - create_mission_xml/pages.md + - Fuselage Design: + - Introduction: documentation/aircraft-design/fuselage_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/fuselage_design/doc/content/getting-started.md + - API Reference: + - fuselage_design/classes.md + - fuselage_design/namespaces.md + - fuselage_design/files.md + - fuselage_design/functions.md + - fuselage_design/pages.md + - Wing Design: + - Introduction: documentation/aircraft-design/wing_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/wing_design/doc/content/getting-started.md + - API Reference: + - wing_design/classes.md + - wing_design/namespaces.md + - wing_design/files.md + - wing_design/functions.md + - wing_design/pages.md + - Empennage Design: + - Introduction: documentation/aircraft-design/empennage_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/empennage_design/doc/content/getting-started.md + - API Reference: + - empennage_design/classes.md + - empennage_design/namespaces.md + - empennage_design/files.md + - empennage_design/functions.md + - empennage_design/pages.md + - Tank Design: + - Introduction: documentation/aircraft-design/tank_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/tank_design/doc/content/getting-started.md + - API Reference: + - tank_design/classes.md + - tank_design/namespaces.md + - tank_design/files.md + - tank_design/functions.md + - tank_design/pages.md - Propulsion Design: - Introduction: documentation/aircraft-design/propulsion_design/doc/content/index.md - Getting Started: documentation/aircraft-design/propulsion_design/doc/content/getting_started.md - Engineering Principles: documentation/aircraft-design/propulsion_design/doc/content/engineering_principles.md - Software Architecture: documentation/aircraft-design/propulsion_design/doc/content/software_architecture.md + - Tutorial: + - Main: documentation/aircraft-design/propulsion_design/doc/content/tutorial.md + - Engine Extension: documentation/aircraft-design/propulsion_design/doc/content/tutorial_engine_extension.md + - Fidelity Extension: documentation/aircraft-design/propulsion_design/doc/content/tutorial_fidelity_extension.md - Changelog: documentation/aircraft-design/propulsion_design/doc/content/changelog.md - Additional: documentation/aircraft-design/propulsion_design/doc/content/additional.md - - Landing Gear Design: documentation/aircraft-design/landing_gear_design/doc/content/index.md - - Systems Design: documentation/aircraft-design/systems_design/doc/content/index.md + - API Reference: + - propulsion_design/classes.md + - propulsion_design/namespaces.md + - propulsion_design/files.md + - propulsion_design/functions.md + - propulsion_design/pages.md + - Landing Gear Design: + - Introduction: documentation/aircraft-design/landing_gear_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/landing_gear_design/doc/content/getting-started.md + - API Reference: + - landing_gear_design/classes.md + - landing_gear_design/namespaces.md + - landing_gear_design/files.md + - landing_gear_design/functions.md + - landing_gear_design/pages.md + - Systems Design: + - Introduction: documentation/aircraft-design/systems_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/systems_design/doc/content/getting-started.md + - API Reference: + - systems_design/classes.md + - systems_design/namespaces.md + - systems_design/files.md + - systems_design/functions.md + - systems_design/pages.md - Analysis: documentation/analysis.md # Link to analysis module page. - Libraries: documentation/libraries.md # Link to libraries overview. - Utilities: documentation/additional_software.md @@ -171,5 +298,12 @@ nav: # Customizes the main navigation struc - IDE Setup: get-involved/ide-setup.md - Release Package: get-involved/release-package.md + - About: # Top-level item for general site information. + - About us: 'about.md' # Link to the about page. + - License: 'license.md' # Link to license information. + - Contact: 'contact.md' # Link to contact page. + - Partners: 'partners.md' # Link to partners page. + + -- GitLab From b7233201845dd0373ab176b261e017e737616bf9 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 11:32:53 +0100 Subject: [PATCH 27/53] Fix missing API interface section in documentation --- .gitlab-ci.yml | 81 +- docs/contact.md | 2 +- ...nal_software.md => additional-software.md} | 0 docs/documentation/analysis.md | 12 +- docs/documentation/libraries.md | 26 +- docs/documentation/overview.md | 4 +- docs/get-involved/testing.md | 3 +- docs/index.md | 2 +- mkdocs.yml | 186 +- scripts/CSR-02.xml | 3767 +++++++++++++++++ scripts/copy_aircraft_design_to_docs.py | 32 - scripts/document_aircraft_xml.py | 233 + 12 files changed, 4257 insertions(+), 91 deletions(-) rename docs/documentation/{additional_software.md => additional-software.md} (100%) create mode 100644 scripts/CSR-02.xml delete mode 100644 scripts/copy_aircraft_design_to_docs.py create mode 100644 scripts/document_aircraft_xml.py diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 606fb1f..53e324d 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -68,18 +68,83 @@ pages: - export DOXYGEN_BIN=/usr/bin/doxygen - pipenv install --dev # Install all necessary dependencies script: - # Create the folder where the generated markdown files will be stored + +# Setup the pipeline for deploying the project homepage +# Copyright (c) UNICADO 2023 +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see <https://www.gnu.org/licenses/>. +# === Configure pipeline === +stages: + - build + - deploy +# === Build the doxygen documentation === +doxygen: + image: alpine:latest + stage: build + tags: + - documentation + before_script: + - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi + script: + # libaries + - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries + - cd libraries/aircraftGeometry2/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - + - cd ../../engine/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - + - cd $CI_PROJECT_DIR + # aircraft design + - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design + - cd aircraft-design/propulsion_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - + - cd ../../aircraft-design/wing_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - + - cd ../../aircraft-design/empennage_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - + - cd ../../aircraft-design/ecological_assessment/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - + + artifacts: + paths: + - $CI_PROJECT_DIR/docs/documentation + rules: + - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' + when: on_success + - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' + when: manual + - if: '$CI_PIPELINE_SOURCE == "trigger"' + when: on_success +# === Build and deploy the website === +pages: + image: python:latest + stage: deploy + tags: + - documentation + before_script: + - pip install pipenv + - pipenv install + script: - mkdir $CI_PROJECT_DIR/docs/aircraft-xml - # Generate markdown documentation for different sections of the aircraft design - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title General --level 1 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/general.md - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MassesAndLoadings --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/masses.md - # Repeat for other titles (structure, propulsion, etc.) - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Geometry --level 6 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/geometry.md - # Use the persisted content from the previous stage (aircraft-design) - - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder - # Build the MkDocs documentation site - - pipenv run mkdocs build --verbose --site-dir $CI_PROJECT_DIR/public - + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Structure --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/structure.md + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Accommodation --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/accommodation.md + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Propulsion --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/propulsion.md + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Systems --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/systems.md + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Aerodynamics --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/aerodynamics.md + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title StabilityAndControlCharacteristics --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/stability.md + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Performance --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/performance.md + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MonetaryValues --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/monetary.md + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title EcologicalValues --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/ecological.md + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Requirements --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/requirements.md + - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title DesignSpecification --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/specification.md + - pipenv run mkdocs build --site-dir $CI_PROJECT_DIR/public needs: - clone # This job depends on the successful completion of the clone job artifacts: diff --git a/docs/contact.md b/docs/contact.md index 6db7a6c..c36684a 100644 --- a/docs/contact.md +++ b/docs/contact.md @@ -2,4 +2,4 @@ You want to get in touch with us to clarify your questions or share your feedback about UNICADO? Awesome! Feel free to write us a mail, and we'll respond to your inquiry as soon as possible. -:email: **E-Mail:** [contact@unicado.io](mailto:contact@unicado.io) +:email: **E-Mail:** [contacts@unicado.io](mailto:contacts@unicado.io) diff --git a/docs/documentation/additional_software.md b/docs/documentation/additional-software.md similarity index 100% rename from docs/documentation/additional_software.md rename to docs/documentation/additional-software.md diff --git a/docs/documentation/analysis.md b/docs/documentation/analysis.md index a8d3966..8d8f46d 100644 --- a/docs/documentation/analysis.md +++ b/docs/documentation/analysis.md @@ -22,7 +22,7 @@ lift mach numbers. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/aerodynamic_analysis/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/aerodynamic_analysis/doc/content/index.md)| --- @@ -39,7 +39,7 @@ For the user, possible changes in the module run configuration can be made in th |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/mission_analysis/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/mission_analysis/doc/content/index.md)| --- @@ -50,7 +50,7 @@ The `weight_and_balance_analysis` module calculates sub-masses and total masses |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/weight_and_balance_analysis/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/weight_and_balance_analysis/doc/content/index.md)| --- @@ -67,7 +67,7 @@ The parameters comprised in this XML file can have different attributes as e.g. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/ecological_assessment/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/ecological_assessment/doc/content/index.md)| --- @@ -78,7 +78,7 @@ The module `calculatePerformance` is used to evaluate the mission performance of |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus:| GPLv3 |[Link](aircraft-design/performance_assessment/doc/content/index.md)| +|2.1.0|:simple-cplusplus:| GPLv3 |[Link](../documentation/aircraft-design/performance_assessment/doc/content/index.md)| --- @@ -94,6 +94,6 @@ Direct costs include all expenses incurred in operating and financing the aircra |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](aircraft-design/cost_estimation/doc/content/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](../documentation/aircraft-design/cost_estimation/doc/content/index.md)| --- diff --git a/docs/documentation/libraries.md b/docs/documentation/libraries.md index 2be0912..c26d397 100644 --- a/docs/documentation/libraries.md +++ b/docs/documentation/libraries.md @@ -27,7 +27,7 @@ It has helper functions to extract and interpolate data of provided airfoil pola |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aerodynamics/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](documentation/libraries/aerodynamics/doc/content/index.md)|-| --- @@ -39,7 +39,7 @@ The modularity and flexibility is achieved by using the high performance [Comput |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aircraftGeometry2/content/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aircraftGeometry2/doc/content/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| --- @@ -50,7 +50,7 @@ The **airfoils** libary provides a database for different airfoils. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|1.0.0|:simple-cplusplus: |GPLv3|[Link](libraries/airfoils/content/index.md)|-| +|1.0.0|:simple-cplusplus: |GPLv3|[Link](libraries/airfoils/doc/content/index.md)|-| --- @@ -62,7 +62,7 @@ It uses a simple XML library, namely *tinyxml*, to read and parse the XML files. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aixml/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aixml/doc/content/index.md)|-| --- @@ -74,7 +74,7 @@ You can set different atmospheric conditions (e.g. *ISA+25*) and calculate the p |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/atmosphere/content/index.md)|| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/atmosphere/doc/content/index.md)|| --- @@ -85,7 +85,7 @@ The **blackboxTest** library provides an interface to run a complete module with |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/blackboxTest/content/index.md)|[googleTest](https://google.github.io/googletest/)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/blackboxTest/doc/content/index.md)|[googleTest](https://google.github.io/googletest/)| --- @@ -98,7 +98,7 @@ The engine decks can originate from different softwaretools as long as they prov |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/engine/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/engine/doc/content/index.md)|-| --- @@ -118,7 +118,7 @@ It has helper functions to extract and interpolate data of the results from the |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/liftingLineInterface/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/liftingLineInterface/doc/content/index.md)|-| --- @@ -131,7 +131,7 @@ The library gives a template how modules should be structured and gives helpers |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/moduleBasics/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/moduleBasics/doc/content/index.md)|-| --- @@ -142,7 +142,7 @@ This library provides standardized UNICADO data preprocessing, run, and postproc |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|1.0.0|:simple-python: |GPLv3|[Link](libraries/pymodulepackage/content/index.md)|-| +|1.0.0|:simple-python: |GPLv3|[Link](libraries/pymodulepackage/doc/content/index.md)|-| --- @@ -154,7 +154,7 @@ In provides custom output streams, which automatically handle the log files and |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/runtimeInfo/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/runtimeInfo/doc/content/index.md)|-| --- @@ -167,7 +167,7 @@ The library can handle *UNIX* and *Windows* systems alike. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/standardFiles/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/standardFiles/doc/content/index.md)|-| !!! warning Some functions of this library are a bit outdated! When using this library, please look first at the wonderful [STL :octicons-link-external-16:](https://en.cppreference.com/w/) whether the function you are seeking is already there. @@ -196,4 +196,4 @@ In addition, it defines some common **constants** which are useful for calculati |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/unitConversion/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/unitConversion/doc/content/index.md)|-| diff --git a/docs/documentation/overview.md b/docs/documentation/overview.md index 4365e8a..6baf4fe 100644 --- a/docs/documentation/overview.md +++ b/docs/documentation/overview.md @@ -25,8 +25,8 @@ glightbox: false Here you can found different designed aircraft. The designs are made using the **UNICADO** workflow and are generally in a *valid* and *converged* state. -!!! note - This repository will be translated to a actual database in the future! +🔔 This repository will be translated to a actual database in the future! + - [:simple-gitlab: Engines :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/engines): diff --git a/docs/get-involved/testing.md b/docs/get-involved/testing.md index 5f1fe4a..0b010da 100644 --- a/docs/get-involved/testing.md +++ b/docs/get-involved/testing.md @@ -76,8 +76,7 @@ Then you can execute the test #### Unit tests These tests involve systematically checking the lowest-level component, like a function, within a module. -!!! note - This is currently only implemented for the module/target **propulsionDesign**. +🔔 This is currently only implemented for the module/target **propulsionDesign**. To run the test, you need to add the flag when configuring your module === "Windows" diff --git a/docs/index.md b/docs/index.md index fad3ff0..f527d9b 100644 --- a/docs/index.md +++ b/docs/index.md @@ -61,7 +61,7 @@ Get an overview of the tools and libraries. Get insights on how to contribute and develop. -[:octicons-arrow-right-24: Get involved](developer/developer-installation.md) +[:octicons-arrow-right-24: Get involved](get-involved/developer-installation.md) </div> <div class="grid-item card" markdown="1"> diff --git a/mkdocs.yml b/mkdocs.yml index 5f2c785..73de85c 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -24,8 +24,6 @@ markdown_extensions: - attr_list # Allows adding HTML attributes to Markdown elements (like classes). - admonition # Enables note/warning/admonition boxes with custom styling. - md_in_html # Allows writing Markdown inside HTML tags for flexibility. - - toc: # Adds a table of contents (ToC) for each page. - permalink: '#' # Adds a clickable '#' for each ToC heading, allowing direct links. - pymdownx.tabbed: # Enables tabbed content blocks, allowing content to be organized in tabs. alternate_style: true # Uses an alternate style for tabbed blocks. - pymdownx.emoji: # Adds support for emojis using the Material theme’s emoji set. @@ -65,12 +63,76 @@ plugins: - search - mkdoxy: projects: - aircraft_design: - doxygen_bin: "/path/to/doxygen" # Update with the correct path - src-dirs: docs/documentation/aircraft_design/ + propulsion_design: + src-dirs: ../aircraft-design/propulsion_design/ full-doc: True + output: docs/propulsion_design doxy-cfg: - FILE_PATTERNS: "*.cpp *.h *.md *.png *.svg" # Include .cpp, .h, .md, .png, .svg files in the documentation + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + initial_sizing: + src-dirs: ../aircraft-design/initial_sizing/ + full-doc: true + output: docs/initial_sizing + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + create_mission_xml: + src-dirs: ../aircraft-design/create_mission_xml/ + full-doc: True + output: docs/create_mission_xml + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + fuselage_design: + src-dirs: ../aircraft-design/fuselage_design/ + full-doc: true + output: docs/fuselage_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + wing_design: + src-dirs: ../aircraft-design/wing_design/ + full-doc: True + output: docs/wing_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + empennage_design: + src-dirs: ../aircraft-design/empennage_design/ + full-doc: true + output: docs/empennage_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + tank_design: + src-dirs: ../aircraft-design/tank_design/ + full-doc: true + output: docs/tank_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + landing_gear_design: + src-dirs: ../aircraft-design/landing_gear_design/ + full-doc: true + output: docs/landing_gear_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" + RECURSIVE: True + EXTRACT_ALL: YES + systems_design: + src-dirs: ../aircraft-design/systems_design/ + full-doc: true + output: docs/systems_design + doxy-cfg: + FILE_PATTERNS: "*.cpp *.h" RECURSIVE: True EXTRACT_ALL: YES - glightbox # Plugin for lightbox-style image and content viewing. @@ -83,16 +145,7 @@ theme: custom_dir: overrides # Directory for custom files (like footer). # Theme colors configuration palette: - - scheme: default - toggle: - icon: material/brightness-7 - name: Switch to dark mode - primary: blue grey - accent: red - scheme: slate - toggle: - icon: material/brightness-3 - name: Switch to light mode primary: green accent: red @@ -101,7 +154,6 @@ theme: - navigation.instant - navigation.top - navigation.tabs - - toc.integrate # This integrates the table of contents into the sidebar # Additional links (social) to display in the header extra: @@ -120,27 +172,102 @@ nav: # Customizes the main navigation struc - Cleared for Take-Off: download/takeoff.md # Link to the takeoff/getting started page. - Tutorials: - Standalone Workflow: tutorials/standalone.md # Link to the standalone tutorial page. - - Separate Tool Execution: tutorials/separate-tool-execution.md # Link to the separate tool execution tutorial page. + - Separate Tool Execution: tutorials/seperate-tool-execution.md # Link to the separate tool execution tutorial page. + - Changing Design Specifications: tutorials/changing-design-specifications.md - Documentation: # Top-level item for documentation. - Overview: documentation/overview.md # Overview of modules. - Aircraft Design: - Sizing: - - Overview: documentation/sizing.md # Link to aircraft sizing documentation. - - Initial Sizing: documentation/aircraft-design/initial_sizing/doc/content/index.md - - Create Mission XML: documentation/aircraft-design/create_mission_xml/doc/content/index.md - - Fuselage Design: documentation/aircraft-design/fuselage_design/doc/content/index.md - - Wing Design: documentation/aircraft-design/wing_design/doc/content/index.md - - Empennage Design: documentation/aircraft-design/empennage_design/doc/content/index.md - - Tank Design: documentation/aircraft-design/tank_design/doc/content/index.md + - Modules: documentation/sizing.md # Link to aircraft sizing documentation. + - Initial Sizing: + - Introduction: documentation/aircraft-design/initial_sizing/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/initial_sizing/doc/content/getting-started.md + - API Reference: + - initial_sizing/classes.md + - initial_sizing/namespaces.md + - initial_sizing/files.md + - initial_sizing/functions.md + - initial_sizing/pages.md + - Create Mission XML: + - Introduction: documentation/aircraft-design/create_mission_xml/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/create_mission_xml/doc/content/getting-started.md + - API Reference: + - create_mission_xml/classes.md + - create_mission_xml/namespaces.md + - create_mission_xml/files.md + - create_mission_xml/functions.md + - create_mission_xml/pages.md + - Fuselage Design: + - Introduction: documentation/aircraft-design/fuselage_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/fuselage_design/doc/content/getting-started.md + - API Reference: + - fuselage_design/classes.md + - fuselage_design/namespaces.md + - fuselage_design/files.md + - fuselage_design/functions.md + - fuselage_design/pages.md + - Wing Design: + - Introduction: documentation/aircraft-design/wing_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/wing_design/doc/content/getting-started.md + - API Reference: + - wing_design/classes.md + - wing_design/namespaces.md + - wing_design/files.md + - wing_design/functions.md + - wing_design/pages.md + - Empennage Design: + - Introduction: documentation/aircraft-design/empennage_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/empennage_design/doc/content/getting-started.md + - API Reference: + - empennage_design/classes.md + - empennage_design/namespaces.md + - empennage_design/files.md + - empennage_design/functions.md + - empennage_design/pages.md + - Tank Design: + - Introduction: documentation/aircraft-design/tank_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/tank_design/doc/content/getting-started.md + - API Reference: + - tank_design/classes.md + - tank_design/namespaces.md + - tank_design/files.md + - tank_design/functions.md + - tank_design/pages.md - Propulsion Design: - Introduction: documentation/aircraft-design/propulsion_design/doc/content/index.md - Getting Started: documentation/aircraft-design/propulsion_design/doc/content/getting_started.md - Engineering Principles: documentation/aircraft-design/propulsion_design/doc/content/engineering_principles.md - Software Architecture: documentation/aircraft-design/propulsion_design/doc/content/software_architecture.md + - Tutorial: + - Main: documentation/aircraft-design/propulsion_design/doc/content/tutorial.md + - Engine Extension: documentation/aircraft-design/propulsion_design/doc/content/tutorial_engine_extension.md + - Fidelity Extension: documentation/aircraft-design/propulsion_design/doc/content/tutorial_fidelity_extension.md - Changelog: documentation/aircraft-design/propulsion_design/doc/content/changelog.md - Additional: documentation/aircraft-design/propulsion_design/doc/content/additional.md - - Landing Gear Design: documentation/aircraft-design/landing_gear_design/doc/content/index.md - - Systems Design: documentation/aircraft-design/systems_design/doc/content/index.md + - API Reference: + - propulsion_design/classes.md + - propulsion_design/namespaces.md + - propulsion_design/files.md + - propulsion_design/functions.md + - propulsion_design/pages.md + - Landing Gear Design: + - Introduction: documentation/aircraft-design/landing_gear_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/landing_gear_design/doc/content/getting-started.md + - API Reference: + - landing_gear_design/classes.md + - landing_gear_design/namespaces.md + - landing_gear_design/files.md + - landing_gear_design/functions.md + - landing_gear_design/pages.md + - Systems Design: + - Introduction: documentation/aircraft-design/systems_design/doc/content/index.md + - Getting Staretd: documentation/aircraft-design/systems_design/doc/content/getting-started.md + - API Reference: + - systems_design/classes.md + - systems_design/namespaces.md + - systems_design/files.md + - systems_design/functions.md + - systems_design/pages.md - Analysis: documentation/analysis.md # Link to analysis module page. - Libraries: documentation/libraries.md # Link to libraries overview. - Utilities: documentation/additional_software.md @@ -171,5 +298,12 @@ nav: # Customizes the main navigation struc - IDE Setup: get-involved/ide-setup.md - Release Package: get-involved/release-package.md + - About: # Top-level item for general site information. + - About us: 'about.md' # Link to the about page. + - License: 'license.md' # Link to license information. + - Contact: 'contact.md' # Link to contact page. + - Partners: 'partners.md' # Link to partners page. + + diff --git a/scripts/CSR-02.xml b/scripts/CSR-02.xml new file mode 100644 index 0000000..e79520e --- /dev/null +++ b/scripts/CSR-02.xml @@ -0,0 +1,3767 @@ +<AcftExchangeFile> + <General Desc="Allgemeine Angaben"> + <Type Desc="Flugzeugtyp" Unit="-">CeRAS</Type> + <Model Desc="Modell bzw. Ausfuehrung" Unit="-">CSR-02</Model> + </General> + <MassesAndLoadings Desc="-"> + <MassBreakdown Desc="Mass breakdown"> + <Wing Desc="Fluegelmasse und Schwerpunktlage des Massenelements, Airbus Chapter 10"> + <Mass ToolLevel="1" Unit="kg">8288.967026</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> + <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> + </RefPoint> + <CenterWing Desc="Masse der Fluegelstruktur (Skins, Spars, Ribs, Pylon attachments, LG supports), Airbus Ch. 10.0-4"> + <Mass ToolLevel="1" Unit="kg">6063.492374</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> + <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> + </RefPoint> + <EoW_CenterWingMassFactor Desc="Center wing mass factor for over-the-wing engines" ToolLevel="1" Unit="-">1</EoW_CenterWingMassFactor> + <EoW_AeroelasticFactor Desc="Aeroelastic (flutter) factor for over-the-wing engines" ToolLevel="1" Unit="-">1</EoW_AeroelasticFactor> + <EoW_TotalCenterWingMassFactor Desc="EoW_CenterWingMassFactor * EoW_AeroelasticFactor" ToolLevel="1" Unit="-">1</EoW_TotalCenterWingMassFactor> + </CenterWing> + <WingLEandTE Desc="Masse der Hochauftriebssysteme, Airbus Ch. 10.5-8"> + <Mass ToolLevel="1" Unit="kg">2225.474652</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> + <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> + </RefPoint> + <FixedLeadingEdge Desc="Mass of the complete fixed leading edge, Airbus Ch. 10.5"> + <Mass ToolLevel="1" Unit="kg">282.297482</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> + <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> + </RefPoint> + </FixedLeadingEdge> + <MovableLeadingEdge Desc="Mass of the complete movable leading edge, Airbus Ch. 10.6"> + <Mass ToolLevel="1" Unit="kg">380.8095925</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> + <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> + </RefPoint> + </MovableLeadingEdge> + <FixedTrailingEdge Desc="Mass of the fixed trailing edge, Airbus Ch. 10.7"> + <Mass ToolLevel="1" Unit="kg">546.1954554</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> + <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> + </RefPoint> + </FixedTrailingEdge> + <MovableTrailingEdge Desc="Mass of the movable trailing edge, Airbus Ch. 10.8"> + <Mass ToolLevel="1" Unit="kg">1016.172122</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> + <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> + </RefPoint> + </MovableTrailingEdge> + </WingLEandTE> + <Miscellaneous Desc="Restliche Fluegelmassenanteile, Airbus Ch. 10.9"> + <Mass ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> + <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> + </RefPoint> + </Miscellaneous> + </Wing> + <Fuselage Desc="Rumpfmasse und Schwerpunktlage des Massenelements, Airbus Chapter 11"> + <Mass Desc="-" ToolLevel="1" Unit="kg">8482.604033</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> + <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Fuselage> + <Empennage Desc="Masse der Leitwerksgruppe und Schwerpunktlage des Massenelements"> + <Mass Desc="Gesamtmasse der Leitwerksgruppe" ToolLevel="1" Unit="kg">1325.468005</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">33.95934635</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">1.654512598</h_Item> + </RefPoint> + <Tailplane Desc="Airbus Chapter 13"> + <Mass ToolLevel="1" Unit="kg">759.3554913</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">34.25726239</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">1.654512598</h_Item> + </RefPoint> + </Tailplane> + <Fin Desc="Airbus Chapter 14"> + <Mass Desc="-" ToolLevel="1" Unit="kg">566.1125139</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">33.55973642</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">1.654512598</h_Item> + </RefPoint> + </Fin> + </Empennage> + <LandingGear Desc="Fahrwerksmasse und Schwerpunktlage des Massenelements, Airbus Chapter 15"> + <Mass Desc="-" ToolLevel="1" Unit="kg">2600.672138</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">15.45985449</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.413319125</h_Item> + </RefPoint> + <Gear Desc="Beschreibung des Bugfahrwerks" ID="NoseGear"> + <Mass Desc="Mass of single gear" ToolLevel="1" Unit="kg">390.1008207</Mass> + <RefPoint Desc="Position of NoseGear CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">1.947356458</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">-1.978883883</h_Item> + </RefPoint> + <Strut> + <strutMass Desc="strut mass" ToolLevel="1" Unit="kg">0</strutMass> + <RefPoint Desc="position of strut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Strut> + <SupportStrut> + <suppStrutMass Desc="Mass of support strut" ToolLevel="1" Unit="kg">0</suppStrutMass> + <RefPoint Desc="position of suppStrut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </SupportStrut> + <WheelGroupConnection> + <connStrutMass Desc="Mass of connection strut" ToolLevel="1" Unit="kg">0</connStrutMass> + <RefPoint Desc="position of wheelGroupConnectionStrut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </WheelGroupConnection> + <WheelGroup> + <tiresMass Desc="Overall mass of tires" ToolLevel="1" Unit="kg">0</tiresMass> + <axesMass Desc="Overall mass of axes" ToolLevel="1" Unit="kg">0</axesMass> + <rimMass Desc="Rim mass" ToolLevel="1" Unit="kg">0</rimMass> + <brakeMass Desc="brake mass" ToolLevel="1" Unit="kg">0</brakeMass> + </WheelGroup> + </Gear> + <Gear Desc="Beschreibung des aeusseren, rechten Hauptfahrwerks" ID="OuterRightMainGear"> + <Mass Desc="Mass of single gear" ToolLevel="1" Unit="kg">1105.285659</Mass> + <RefPoint Desc="Position of OuterRightMainGear CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">17.84441297</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">-1.313513579</h_Item> + </RefPoint> + <Strut> + <strutMass Desc="strut mass" ToolLevel="1" Unit="kg">0</strutMass> + <RefPoint Desc="position of strut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Strut> + <SupportStrut> + <suppStrutMass Desc="Mass of support strut" ToolLevel="1" Unit="kg">0</suppStrutMass> + <RefPoint Desc="position of suppStrut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </SupportStrut> + <WheelGroupConnection> + <connStrutMass Desc="Mass of connection strut" ToolLevel="1" Unit="kg">0</connStrutMass> + <RefPoint Desc="position of wheelGroupConnectionStrut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </WheelGroupConnection> + <WheelGroup> + <tiresMass Desc="Overall mass of tires" ToolLevel="1" Unit="kg">0</tiresMass> + <axesMass Desc="Overall mass of axes" ToolLevel="1" Unit="kg">0</axesMass> + <rimMass Desc="Rim mass" ToolLevel="1" Unit="kg">0</rimMass> + <brakeMass Desc="brake mass" ToolLevel="1" Unit="kg">0</brakeMass> + </WheelGroup> + </Gear> + <Gear Desc="Beschreibung des aeusseren, linken Hauptfahrwerks" ID="OuterLeftMainGear"> + <Mass Desc="Mass of single gear" ToolLevel="1" Unit="kg">1105.285659</Mass> + <RefPoint Desc="Position of OuterLeftMainGear CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">17.84441297</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">-1.313513579</h_Item> + </RefPoint> + <Strut> + <strutMass Desc="strut mass" ToolLevel="1" Unit="kg">0</strutMass> + <RefPoint Desc="position of strut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Strut> + <SupportStrut> + <suppStrutMass Desc="Mass of support strut" ToolLevel="1" Unit="kg">0</suppStrutMass> + <RefPoint Desc="position of suppStrut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </SupportStrut> + <WheelGroupConnection> + <connStrutMass Desc="Mass of connection strut" ToolLevel="1" Unit="kg">0</connStrutMass> + <RefPoint Desc="position of wheelGroupConnectionStrut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </WheelGroupConnection> + <WheelGroup> + <tiresMass Desc="Overall mass of tires" ToolLevel="1" Unit="kg">0</tiresMass> + <axesMass Desc="Overall mass of axes" ToolLevel="1" Unit="kg">0</axesMass> + <rimMass Desc="Rim mass" ToolLevel="1" Unit="kg">0</rimMass> + <brakeMass Desc="brake mass" ToolLevel="1" Unit="kg">0</brakeMass> + </WheelGroup> + </Gear> + <Gear Desc="Beschreibung des inneren, rechten Hauptfahrwerks" ID="InnerRightMainGear"> + <Mass Desc="Mass of single gear" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="Position of InnerRightMainGear CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + <Strut> + <strutMass Desc="strut mass" ToolLevel="1" Unit="kg">0</strutMass> + <RefPoint Desc="position of strut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Strut> + <SupportStrut> + <suppStrutMass Desc="Mass of support strut" ToolLevel="1" Unit="kg">0</suppStrutMass> + <RefPoint Desc="position of suppStrut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </SupportStrut> + <WheelGroupConnection> + <connStrutMass Desc="Mass of connection strut" ToolLevel="1" Unit="kg">0</connStrutMass> + <RefPoint Desc="position of wheelGroupConnectionStrut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </WheelGroupConnection> + <WheelGroup> + <tiresMass Desc="Overall mass of tires" ToolLevel="1" Unit="kg">0</tiresMass> + <axesMass Desc="Overall mass of axes" ToolLevel="1" Unit="kg">0</axesMass> + <rimMass Desc="Rim mass" ToolLevel="1" Unit="kg">0</rimMass> + <brakeMass Desc="brake mass" ToolLevel="1" Unit="kg">0</brakeMass> + </WheelGroup> + </Gear> + <Gear Desc="Beschreibung des inneren, linken Hauptfahrwerks" ID="InnerLeftMainGear"> + <Mass Desc="Mass of single gear" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="Position of InnerLeftMainGear CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + <Strut> + <strutMass Desc="strut mass" ToolLevel="1" Unit="kg">0</strutMass> + <RefPoint Desc="position of strut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Strut> + <SupportStrut> + <suppStrutMass Desc="Mass of support strut" ToolLevel="1" Unit="kg">0</suppStrutMass> + <RefPoint Desc="position of suppStrut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </SupportStrut> + <WheelGroupConnection> + <connStrutMass Desc="Mass of connection strut" ToolLevel="1" Unit="kg">0</connStrutMass> + <RefPoint Desc="position of wheelGroupConnectionStrut CofG to global point of reference"> + <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </WheelGroupConnection> + <WheelGroup> + <tiresMass Desc="Overall mass of tires" ToolLevel="1" Unit="kg">0</tiresMass> + <axesMass Desc="Overall mass of axes" ToolLevel="1" Unit="kg">0</axesMass> + <rimMass Desc="Rim mass" ToolLevel="1" Unit="kg">0</rimMass> + <brakeMass Desc="brake mass" ToolLevel="1" Unit="kg">0</brakeMass> + </WheelGroup> + </Gear> + </LandingGear> + <Pylons Desc="Pylonmasse und Schwerpunktlage (aller Pylons), Airbus Chapter 16"> + <Mass Desc="-" ToolLevel="1" Unit="kg">1302.156306</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">15.87054623</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.53285849</h_Item> + </RefPoint> + </Pylons> + <PowerUnit Desc="Masse und Schwerpunktlage der Triebwerksanlage, Airbus Group Power Unit"> + <Mass Desc="Gesamtmasse der Gruppe Antriebsanlage" ToolLevel="1" Unit="kg">8513.660953</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.78507499</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-2.958381704</h_Item> + </RefPoint> + <Engine Desc="Ausruestmasse eines Triebwerks, Airbus Chapter 20" ID="1"> + <Mass Desc="-" ToolLevel="1" Unit="kg">4009.674109</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">5.49297931</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> + </RefPoint> + <EngineDry Desc="Engine dry mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">2748.88918</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">5.49297931</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> + </RefPoint> + </EngineDry> + <Nacelle Desc="Nacelle mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">713.6948535</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">5.49297931</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> + </RefPoint> + </Nacelle> + <OtherSystems Desc="Other systems mass eg. hydraulics, starter, etc."> + <Mass Desc="-" ToolLevel="1" Unit="kg">547.0900758</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">5.49297931</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> + </RefPoint> + </OtherSystems> + <Prop Desc="Propeller mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Prop> + </Engine> + <Engine Desc="Ausruestmasse eines Triebwerks, Airbus Chapter 20" ID="2"> + <Mass Desc="-" ToolLevel="1" Unit="kg">4009.674109</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">-5.49297931</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> + </RefPoint> + <EngineDry Desc="Engine dry mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">2748.88918</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">-5.49297931</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> + </RefPoint> + </EngineDry> + <Nacelle Desc="Nacelle mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">713.6948535</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">-5.49297931</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> + </RefPoint> + </Nacelle> + <OtherSystems Desc="Other systems mass eg. hydraulics, starter, etc."> + <Mass Desc="-" ToolLevel="1" Unit="kg">547.0900758</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">-5.49297931</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> + </RefPoint> + </OtherSystems> + <Prop Desc="Propeller mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Prop> + </Engine> + <Engine Desc="Ausruestmasse eines Triebwerks, Airbus Chapter 20" ID="3"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + <EngineDry Desc="Engine dry mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </EngineDry> + <Nacelle Desc="Nacelle mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Nacelle> + <OtherSystems Desc="Other systems mass eg. hydraulics, starter, etc."> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </OtherSystems> + <Prop Desc="Propeller mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Prop> + </Engine> + <Engine Desc="Ausruestmasse eines Triebwerks, Airbus Chapter 20" ID="4"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + <EngineDry Desc="Engine dry mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </EngineDry> + <Nacelle Desc="Nacelle mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Nacelle> + <OtherSystems Desc="Other systems mass eg. hydraulics, starter, etc."> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </OtherSystems> + <Prop Desc="Propeller mass"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Prop> + </Engine> + <BleedAirSystem Desc="Airbus Chapter 21, ATA36"> + <Mass Desc="-" ToolLevel="1" Unit="kg">172.6795332</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.05413654</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Item> + </RefPoint> + </BleedAirSystem> + <EngineControls Desc="Airbus Chapter 22"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </EngineControls> + <FuelSystem Desc="Airbus Chapter 25, ATA28"> + <Mass Desc="-" ToolLevel="1" Unit="kg">321.6332021</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> + </RefPoint> + </FuelSystem> + </PowerUnit> + <Systems Desc="Systemmasse und Schwerpunktlage des Massenelements, Airbus Group Systems"> + <Mass Desc="Gesamtmasse der Systemgruppe" ToolLevel="1" Unit="kg">5355.445849</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.39637449</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-0.5741904671</h_Item> + </RefPoint> + <APU Desc="Airbus Chapter 30, ATA49"> + <Mass Desc="-" ToolLevel="1" Unit="kg">254.7995941</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">35.65115779</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </APU> + <HydraulicGeneration Desc="Airbus Chapter 31, ATA 29"> + <Mass Desc="-" ToolLevel="1" Unit="kg">184.4172612</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.05413654</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Item> + </RefPoint> + </HydraulicGeneration> + <HydraulicDistribution Desc="Airbus Chapter 32, ATA 29"> + <Mass Desc="-" ToolLevel="1" Unit="kg">805.6612438</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.05413654</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Item> + </RefPoint> + </HydraulicDistribution> + <AirConditioning Desc="Airbus Chapter 33, ATA21"> + <Mass Desc="-" ToolLevel="1" Unit="kg">717.7462397</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.05413654</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Item> + </RefPoint> + </AirConditioning> + <DeIcing Desc="Airbus Chapter 34, ATA30"> + <Mass Desc="-" ToolLevel="1" Unit="kg">42.30906964</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </DeIcing> + <FireProtection Desc="Airbus Chapter 35, ATA26"> + <Mass Desc="-" ToolLevel="1" Unit="kg">94.97439103</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </FireProtection> + <FlightControls Desc="Airbus Chapter 36, ATA27"> + <Mass Desc="-" ToolLevel="1" Unit="kg">711.5018356</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.05413654</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Item> + </RefPoint> + <Roll Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.0"> + <Mass Desc="-" ToolLevel="1" Unit="kg">43.35817647</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Roll> + <Yaw Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.1"> + <Mass Desc="-" ToolLevel="1" Unit="kg">94.98684287</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Yaw> + <Pitch Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.2"> + <Mass Desc="-" ToolLevel="1" Unit="kg">33.35895545</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Pitch> + <MovableHorizontalTail Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.3"> + <Mass Desc="-" ToolLevel="1" Unit="kg">64.77541722</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </MovableHorizontalTail> + <Flaps Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.4"> + <Mass Desc="-" ToolLevel="1" Unit="kg">147.1812978</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Flaps> + <SpoilersAirbrakesLiftdumpers Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.5"> + <Mass Desc="-" ToolLevel="1" Unit="kg">39.74320013</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </SpoilersAirbrakesLiftdumpers> + <Slats Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.6"> + <Mass Desc="-" ToolLevel="1" Unit="kg">145.7975785</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Slats> + <CommonInstallation Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.7"> + <Mass Desc="-" ToolLevel="1" Unit="kg">142.3003671</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </CommonInstallation> + </FlightControls> + <Instruments Desc="Airbus Chapter 37, ATA31"> + <Mass ToolLevel="1" Unit="kg">85.52867064</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">4.125269051</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Instruments> + <AutomaticFlightSystem Desc="Airbus Chapter 38, ATA 22"> + <Mass ToolLevel="1" Unit="kg">138.9840898</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">12.51238234</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </AutomaticFlightSystem> + <Navigation Desc="Airbus Chapter 39, ATA34"> + <Mass Desc="-" ToolLevel="1" Unit="kg">566.627443</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">12.51238234</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Navigation> + <Communication Desc="Airbus Chapter 40, ATA23"> + <Mass Desc="-" ToolLevel="1" Unit="kg">277.9681796</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">12.51238234</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Communication> + <ElectricalGeneration Desc="Airbus Chapter 41, ATA24"> + <Mass Desc="-" ToolLevel="1" Unit="kg">779.0134574</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </ElectricalGeneration> + <ElectricalDistribution Desc="Airbus Chapter 42, ATA24"> + <Mass Desc="-" ToolLevel="1" Unit="kg">695.9143735</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </ElectricalDistribution> + </Systems> + <Furnishings Desc="Furnishingmasse und Schwerpunktlage des Massenelements, Airbus Group Furnishings"> + <Mass Desc="Gesamtmasse der Furnishinggruppe" ToolLevel="1" Unit="kg">3108.708964</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + <Furnishing Desc="Airbus Chapter 50, ATA25"> + <Mass Desc="-" ToolLevel="1" Unit="kg">2452.022285</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Furnishing> + <FixedEmergencyOxygen Desc="Airbus Chapter 51, ATA35"> + <Mass Desc="-" ToolLevel="1" Unit="kg">98.464</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </FixedEmergencyOxygen> + <Lighting Desc="Airbus Chapter 52, ATA33"> + <Mass Desc="-" ToolLevel="1" Unit="kg">268.2126788</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </Lighting> + <WaterInstallation Desc="Airbus Chapter 53, ATA38"> + <Mass Desc="-" ToolLevel="1" Unit="kg">290.01</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </WaterInstallation> + </Furnishings> + <OperatorsItems Desc="Masse der Betreiberausstattung und Schwerpunktlage des Massenelements, Airbus Group Operator Items"> + <Mass Desc="Gesamtmasse der Operators Items Gruppe" ToolLevel="1" Unit="kg">3331.623637</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.6792334</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + <OperatorEquipment Desc="Airbus Chapter 60 (fixed equipment, vorher Standard Items)"> + <Mass Desc="-" ToolLevel="1" Unit="kg">1581.073637</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.71467966</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </OperatorEquipment> + <OperationalEquipment Desc="Airbus Chapter 61 (movable equipment)"> + <Mass Desc="-" ToolLevel="1" Unit="kg">1750.55</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">12.84084522</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </OperationalEquipment> + </OperatorsItems> + <NotAllocated Desc="Nicht zugeordnete Massenanteile und Schwerpunktlage des Massenelements"> + <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> + <RefPoint Desc="position of mass item to global point of reference"> + <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> + <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> + <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> + </RefPoint> + </NotAllocated> + </MassBreakdown> + <MTM Desc="Maximum Taxi Mass" ToolLevel="1" Unit="kg">0</MTM> + <MLM Desc="Maximum Landing Mass" ToolLevel="1" Unit="kg">66724.81066</MLM> + <MTOM Desc="Maximum Take-Off Mass" ToolLevel="3" Unit="kg">79148.59668</MTOM> + <MRM Desc="Maximum Ramp Mass" ToolLevel="1" Unit="kg">0</MRM> + <MME Desc="Manufacturing Mass Empty" ToolLevel="1" Unit="kg">38977.68327</MME> + <OME Desc="Operating Mass Empty" ToolLevel="1" Unit="kg">42309.30691</OME> + <MZFM Desc="Maximum Zero Fuel Mass" ToolLevel="1" Unit="kg">62309.30691</MZFM> + <MaximumPayload Desc="Maximale Nutzlast" ToolLevel="1" Unit="kg">20000</MaximumPayload> + <MaximumUsableFuel Desc="Benutzbare Kraftstoffmasse" ToolLevel="1" Unit="kg">32478.96446</MaximumUsableFuel> + <WingLoading Desc="Fluegelflaechenlast" ToolLevel="1" Unit="kg/m2">625.8366729</WingLoading> + <ThrustToWeight Desc="Schubkraft (kN) zu Gewichtskrafthaeltnis (kN)" ToolLevel="1" Unit="-">0.3320609465</ThrustToWeight> + <PowerToWeight Desc="Leistungsgewicht" ToolLevel="1" Unit="kW/kg">0</PowerToWeight> + <MassMomentsOfInertia Desc="Mass moment of inertia (MMoI)"> + <DesignPoint Desc="MMoI at Designpoint"> + <Jxx Desc="MMoI x-axis" ToolLevel="1" Unit="kg*m2">1200828.866</Jxx> + <Jyy Desc="MMoI y-axis" ToolLevel="1" Unit="kg*m2">3139142.531</Jyy> + <Jzz Desc="MMoI z-axis" ToolLevel="1" Unit="kg*m2">4166372.541</Jzz> + <Jxy Desc="MMoI xy-axis (deviation)" ToolLevel="1" Unit="kg*m2">0</Jxy> + <Jxz Desc="MMoI xz-axis (deviation)" ToolLevel="1" Unit="kg*m2">0</Jxz> + <Jyz Desc="MMoI yz-axis (deviation)" ToolLevel="1" Unit="kg*m2">0</Jyz> + </DesignPoint> + </MassMomentsOfInertia> + <CentreOfGravityRange Desc="Schwerpunktsgrenzen"> + <TrimRefPt Desc="Schwerpunktlage fuer CM-Berechnung und Trimmung im Reiseflug"> + <h Desc="Position of the COG in reference to the global point of reference in z-direction" ToolLevel="1" Unit="m">-0.7482016769</h> + <r Desc="Position of the COG in reference to the global point of reference in x-direction" ToolLevel="1" Unit="m">16.80339635</r> + <y Desc="Position of the COG in reference to the global point of reference in y-direction" ToolLevel="1" Unit="m">0</y> + </TrimRefPt> + <ForwardLimit Desc="Vorderste Schwerpunktlage"> + <h Desc="Position of the COG in reference to the global point of reference in z-direction" ToolLevel="1" Unit="m">-0.9750336151</h> + <r Desc="Position of the COG in reference to the global point of reference in x-direction" ToolLevel="1" Unit="m">16.67440503</r> + <y Desc="Position of the COG in reference to the global point of reference in y-direction" ToolLevel="1" Unit="m">0</y> + </ForwardLimit> + <AftLimit Desc="Hinterste Schwerpunktlage"> + <h Desc="Position of the COG in reference to the global point of reference in z-direction" ToolLevel="1" Unit="m">-0.9992954046</h> + <r Desc="Position of the COG in reference to the global point of reference in x-direction" ToolLevel="1" Unit="m">16.88886532</r> + <y Desc="Position of the COG in reference to the global point of reference in y-direction" ToolLevel="1" Unit="m">0</y> + </AftLimit> + </CentreOfGravityRange> + </MassesAndLoadings> + <Geometry Desc="Geometriebeschreibung"> + <UsedElements Desc="Liste der verwendeten Geometrieelemente"> + <LiftingSurfaces Desc="Anzahl der verwendeten Elemente LiftingSurface" ToolLevel="1">2</LiftingSurfaces> + <LiftingSurface Desc="Name des verwendeten LiftingSurface-Elements" ID="1" ToolLevel="1" Unit="-">MainWing</LiftingSurface> + <LiftingSurface Desc="Name des verwendeten LiftingSurface-Elements" ID="2" ToolLevel="1" Unit="-">Stabiliser</LiftingSurface> + <VerticalSurfaces Desc="Anzahl der verwendeten Elemente VerticalSurface" ToolLevel="1">1</VerticalSurfaces> + <VerticalSurface Desc="Name des verwendeten VerticalSurface-Elements" ID="1" ToolLevel="1" Unit="-">Fin</VerticalSurface> + <VerticalSurface Desc="Name des verwendeten VerticalSurface-Elements" ID="2" ToolLevel="1" Unit="-">0</VerticalSurface> + <Fuselages Desc="Anzahl der verwendeten Elemente Fuselage" ToolLevel="1">1</Fuselages> + <Fuselage Desc="Name des verwendeten Fuselage-Elements" ID="1" ToolLevel="1" Unit="-">Fuselage</Fuselage> + <Nacelles Desc="Anzahl der verwendeten Elemente Nacelle" ToolLevel="1">2</Nacelles> + <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="1" ToolLevel="1" Unit="-">InnerRightWingNacelle</Nacelle> + <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="2" ToolLevel="1" Unit="-">InnerLeftWingNacelle</Nacelle> + <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="3" ToolLevel="1" Unit="-">0</Nacelle> + <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="4" ToolLevel="1" Unit="-">0</Nacelle> + <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="5" ToolLevel="1" Unit="-">0</Nacelle> + <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="6" ToolLevel="1" Unit="-">0</Nacelle> + <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="7" ToolLevel="1" Unit="-">0</Nacelle> + <Pylons Desc="Anzahl der verwendeten Elemente Pylon" ToolLevel="1">2</Pylons> + <Pylon Desc="Name des verwendeten Pylon-Elements" ID="1" ToolLevel="1" Unit="-">InnerRightWingPylon</Pylon> + <Pylon Desc="Name des verwendeten Pylon-Elements" ID="2" ToolLevel="1" Unit="-">InnerLeftWingPylon</Pylon> + <Pylon Desc="Name des verwendeten Pylon-Elements" ID="3" ToolLevel="1" Unit="-">0</Pylon> + <Pylon Desc="Name des verwendeten Pylon-Elements" ID="4" ToolLevel="1" Unit="-">0</Pylon> + <Pylon Desc="Name des verwendeten Pylon-Elements" ID="5" ToolLevel="1" Unit="-">0</Pylon> + <Pylon Desc="Name des verwendeten Pylon-Elements" ID="6" ToolLevel="1" Unit="-">0</Pylon> + <Gears Desc="Anzahl der verwendeten Elemente Gear" ToolLevel="1">3</Gears> + <Gear Desc="Name des verwendeten Gear-Elements" ID="1" ToolLevel="1" Unit="-">NoseGear</Gear> + <Gear Desc="Name des verwendeten Gear-Elements" ID="2" ToolLevel="1" Unit="-">OuterRightMainGear</Gear> + <Gear Desc="Name des verwendeten Gear-Elements" ID="3" ToolLevel="1" Unit="-">OuterLeftMainGear</Gear> + <Gear Desc="Name des verwendeten Gear-Elements" ID="4" ToolLevel="1" Unit="-">0</Gear> + <Gear Desc="Name des verwendeten Gear-Elements" ID="5" ToolLevel="1" Unit="-">0</Gear> + </UsedElements> + <LiftingSurface Desc="Beschreibung des Hauptfluegels" ID="MainWing"> + <SurfaceRefPoint Desc="position of wing to global point of reference"> + <r_Surface Desc="Position of the wing to global point of reference in x-direction" ToolLevel="1" Unit="m">12.51238234</r_Surface> + <y_Surface Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Surface> + <h_Surface Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Surface> + </SurfaceRefPoint> + <SurfaceParameters Desc="Parametric description of lifting surface geometry"> + <Symmetric Desc="1:= symmetric wing / 0 := asymmetric wing" ToolLevel="1" Unit="-">1</Symmetric> + <RelChordRefForRotation Desc="Rel. Chordtiefe: Ref.-Pkt. fuer Verwindg. u. V-Stellg." ToolLevel="1" Unit="-">0</RelChordRefForRotation> + <i_Surface Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="deg">0</i_Surface> + <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">200</SectionPoints> + <HalfSurfaceDescription Desc="Parameters of right wing (or both wings, if symmetric)" ID="1"> + <HalfSurfaceSegments Desc="Number of wing segments in this half surface" ToolLevel="1" Unit="-">2</HalfSurfaceSegments> + <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="1" Type="Surface"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\F15_15.dat</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\F15_12.dat</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">7.083508401</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">4.434391811</l_o_Segment> + <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">5.199184069</s_Segment> + <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">2.091406079</nu_Segment> + <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">26.99999996</phi_Segment> + <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.11</l_rel_i_FrontSpar> + <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.55</l_rel_i_RearSpar> + <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.16</l_rel_o_FrontSpar> + <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.65</l_rel_o_RearSpar> + </HalfSurfaceSegment> + <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="2" Type="Surface"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\F15_12.dat</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\F15_11.dat</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">4.434391811</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">1.053794453</l_o_Segment> + <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">12.1314295</s_Segment> + <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">2.374274265</nu_Segment> + <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">26.99999996</phi_Segment> + <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.16</l_rel_i_FrontSpar> + <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.65</l_rel_i_RearSpar> + <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.27</l_rel_o_FrontSpar> + <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.55</l_rel_o_RearSpar> + </HalfSurfaceSegment> + <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="3" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">0</phi_Segment> + <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> + <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> + <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> + <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> + </HalfSurfaceSegment> + <ControlDeviceSetup Desc="Planformbeschreibung der Steuerflaechen"> + <TEDevices Desc="Anzahl der Hinterkantenflaechen" ToolLevel="1">8</TEDevices> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="1"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">Fowler</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.1168298891</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.2</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.294</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.3</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">45</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="2"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">Fowler</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.306</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.3</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.78</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.3</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">45</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="3"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">Aileron</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.8</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.3</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.98</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.3</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">20</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">-20</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="4"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">SpoilerGround</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.2054149445</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.125</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0.25</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.294</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.15</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0.3</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">40</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="5"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">SpoilerAir</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.306</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.15</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0.3</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.4195</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.15</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0.3</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">40</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="6"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">SpoilerAir</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.4195</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.15</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0.3</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.533</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.15</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0.3</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">40</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="7"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">SpoilerAir</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.533</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.15</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0.3</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.6465</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.15</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0.3</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">40</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="8"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">SpoilerAir</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.6465</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.15</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0.3</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.76</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.15</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0.3</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">40</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <LEDevices Desc="Anzahl der Vorderkantenflaechen" ToolLevel="1">1</LEDevices> + <LEDevice Desc="Beschreibung eines Vorderkantenelements" ID="1"> + <Type Desc="Typ der Vorderkantenflaeche (Slat, Krueger, DroopNose, morphingDroopNose, Special)" ToolLevel="1">Slat</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.1168298891</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.11</l_rel_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.95</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.27</l_rel_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">35</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </LEDevice> + </ControlDeviceSetup> + </HalfSurfaceDescription> + <HalfSurfaceDescription Desc="Parameters of left wing (if asymmetric)" ID="2"> + <HalfSurfaceSegments Desc="Number of wing segments in this half surface" ToolLevel="1" Unit="-">0</HalfSurfaceSegments> + <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="1" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">0</phi_Segment> + <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> + <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> + <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> + <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> + </HalfSurfaceSegment> + <ControlDeviceSetup Desc="Planformbeschreibung der Steuerflaechen"> + <TEDevices Desc="Anzahl der Hinterkantenflaechen" ToolLevel="1">0</TEDevices> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="1"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="2"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="3"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="4"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="5"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="6"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="7"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="8"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <LEDevices Desc="Anzahl der Vorderkantenflaechen" ToolLevel="1">0</LEDevices> + <LEDevice Desc="Beschreibung eines Vorderkantenelements" ID="1"> + <Type Desc="Typ der Vorderkantenflaeche (Slat, Krueger, DroopNose, morphingDroopNose, Special)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </LEDevice> + </ControlDeviceSetup> + </HalfSurfaceDescription> + </SurfaceParameters> + </LiftingSurface> + <LiftingSurface Desc="Beschreibung des Hoehenleitwerks" ID="Stabiliser"> + <SurfaceRefPoint Desc="position of wing to global point of reference"> + <r_Surface Desc="Position of the wing to global point of reference in x-direction" ToolLevel="1" Unit="m">31.6591417</r_Surface> + <y_Surface Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Surface> + <h_Surface Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">1.654512598</h_Surface> + </SurfaceRefPoint> + <SurfaceParameters Desc="Parametric description of lifting surface geometry"> + <Symmetric Desc="1:= symmetric wing / 0 := asymmetric wing" ToolLevel="1" Unit="-">1</Symmetric> + <RelChordRefForRotation Desc="Rel. Chordtiefe: Ref.-Pkt. fuer Verwindg. u. V-Stellg." ToolLevel="1" Unit="-">0</RelChordRefForRotation> + <i_Surface Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="deg">-1.250900566</i_Surface> + <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> + <HalfSurfaceDescription Desc="Parameters of right wing (or both wings, if symmetric)" ID="1"> + <HalfSurfaceSegments Desc="Number of wing segments in this half surface" ToolLevel="1" Unit="-">1</HalfSurfaceSegments> + <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="1" Type="Surface"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">3.992016088</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">1.123933623</l_o_Segment> + <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">6.439701701</s_Segment> + <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">31.99999988</phi_Segment> + <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.15</l_rel_i_FrontSpar> + <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.65</l_rel_i_RearSpar> + <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.3</l_rel_o_FrontSpar> + <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.55</l_rel_o_RearSpar> + </HalfSurfaceSegment> + <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="2" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">0</phi_Segment> + <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> + <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> + <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> + <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> + </HalfSurfaceSegment> + <ControlDeviceSetup Desc="Planformbeschreibung der Steuerflaechen"> + <TEDevices Desc="Anzahl der Hinterkantenflaechen" ToolLevel="1">1</TEDevices> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="1"> + <Type Desc="Typ der Hinterkantenflaeche (Elevator)" ToolLevel="1">Elevator</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.2</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.3</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.95</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.3</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">20</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">-20</FullNeg> + </DeflectionAngle> + </TEDevice> + <LEDevices Desc="Anzahl der Vorderkantenflaechen" ToolLevel="1">0</LEDevices> + <LEDevice Desc="Beschreibung eines Vorderkantenelements" ID="1"> + <Type Desc="Typ der Vorderkantenflaeche (Slat, Krueger, DroopNose, morphingDroopNose, Special)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </LEDevice> + </ControlDeviceSetup> + </HalfSurfaceDescription> + <HalfSurfaceDescription Desc="Parameters of left wing (if asymmetric)" ID="2"> + <HalfSurfaceSegments Desc="Number of wing segments in this half surface" ToolLevel="1" Unit="-">0</HalfSurfaceSegments> + <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="1" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">0</phi_Segment> + <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> + <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> + <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> + <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> + </HalfSurfaceSegment> + <ControlDeviceSetup Desc="Planformbeschreibung der Steuerflaechen"> + <TEDevices Desc="Anzahl der Hinterkantenflaechen" ToolLevel="1">0</TEDevices> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="1"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="2"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="3"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="4"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="5"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="6"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="7"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="8"> + <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </TEDevice> + <LEDevices Desc="Anzahl der Vorderkantenflaechen" ToolLevel="1">0</LEDevices> + <LEDevice Desc="Beschreibung eines Vorderkantenelements" ID="1"> + <Type Desc="Typ der Vorderkantenflaeche (Slat, Krueger, DroopNose, morphingDroopNose, Special)" ToolLevel="1">0</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> + </DeflectionAngle> + </LEDevice> + </ControlDeviceSetup> + </HalfSurfaceDescription> + </SurfaceParameters> + </LiftingSurface> + <VerticalSurface Desc="Beschreibung des Seitenleitwerks" ID="Fin"> + <SurfaceRefPoint Desc="Referenzpunkt der vertikalen Steuerflaeche"> + <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">29.86369528</r_Surface> + <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">0</y_Surface> + <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">1.654512598</h_Surface> + </SurfaceRefPoint> + <SurfaceParameters Desc="Parametric description of vertical surface geometry"> + <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> + <SurfaceSegments Desc="Number of segments in this vertical surface" ToolLevel="1">1</SurfaceSegments> + <SurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="1" Type="Surface"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">5.787462516</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">1.531274612</l_o_Segment> + <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">6.952800274</s_Segment> + <phi_Segment Desc="Angle of dsweep of surface segment" ToolLevel="1" Unit="deg">38.99999987</phi_Segment> + <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> + <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> + <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> + <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="2" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> + <phi_Segment Desc="Angle of dsweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> + <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> + <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> + <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="3" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> + <phi_Segment Desc="Angle of dsweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> + <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> + <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> + <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> + </SurfaceSegment> + <ControlDeviceSetup Desc="Planformbeschreibung der Steuerflaechen"> + <TEDevices Desc="Anzahl der Hinterkantenflaechen" ToolLevel="1">1</TEDevices> + <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="1"> + <Type Desc="Typ der Hinterkantenflaeche (Rudder)" ToolLevel="1">Rudder</Type> + <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.2</s_rel_i> + <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.3</l_rel_i> + <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.95</s_rel_o> + <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.3</l_rel_o> + <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> + <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">20</FullPos> + <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">-20</FullNeg> + </DeflectionAngle> + </TEDevice> + </ControlDeviceSetup> + </SurfaceParameters> + </VerticalSurface> + <Fuselage Desc="Beschreibung des Rumpfes" ID="Fuselage"> + <FuselageRefPoint Desc="position of the fuselage nose refpoint to global point of reference"> + <r_Fuselage Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Fuselage> + <y_Fuselage Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Fuselage> + <h_Fuselage Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Fuselage> + </FuselageRefPoint> + <FuselageParameters Desc="parametric description of the fuselage"> + <NoseDescription> + <NoseSegments Desc="No of nose segments" ToolLevel="1">9</NoseSegments> + <TipSegment> + <h_Tip Desc="offset of nosetip" ToolLevel="1" Unit="m">-0.5232505048</h_Tip> + </TipSegment> + <NoseSegment ID="1"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">0.6219072875</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">0.647944796</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.06445732892</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.5232505048</deltah_Segment> + </NoseSegment> + <NoseSegment ID="2"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">1.232171749</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">1.283759313</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.1933719868</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.4278783272</deltah_Segment> + </NoseSegment> + <NoseSegment ID="3"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">1.81877794</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">1.894925056</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.3222866446</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.3362034659</deltah_Segment> + </NoseSegment> + <NoseSegment ID="4"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">2.368913086</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">2.468092813</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.4512013025</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.2502283023</deltah_Segment> + </NoseSegment> + <NoseSegment ID="5"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">2.868421677</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">2.988514422</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.5801159603</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.1721650609</deltah_Segment> + </NoseSegment> + <NoseSegment ID="6"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.301028172</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">3.439232935</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.7090306182</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.1045572839</deltah_Segment> + </NoseSegment> + <NoseSegment ID="7"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.6471193</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">3.799813925</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.837945276</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.05047013554</deltah_Segment> + </NoseSegment> + <NoseSegment ID="8"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.881644273</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">4.044157799</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.9668599339</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.01381855438</deltah_Segment> + </NoseSegment> + <NoseSegment ID="9"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.970066</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">4.136281495</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.095774592</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0</deltah_Segment> + </NoseSegment> + </NoseDescription> + <MidSectionDescription> + <MidSectionSegments Desc="No of mid-segment segments" ToolLevel="1">1</MidSectionSegments> + <MidSectionSegment ID="1"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.970066</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">4.136281495</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">16.76076782</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0</deltah_Segment> + </MidSectionSegment> + <MidSectionSegment ID="2"> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">0</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">0</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0</deltah_Segment> + </MidSectionSegment> + </MidSectionDescription> + <TailDescription> + <TailSegments Desc="No of tail segments" ToolLevel="1">7</TailSegments> + <TailSegment ID="1"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.970066</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">4.074891643</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.72542446</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0.03069492579</deltah_Segment> + </TailSegment> + <TailSegment ID="2"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.970066</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">3.889781167</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.72542446</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0.1232501637</deltah_Segment> + </TailSegment> + <TailSegment ID="3"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.892703799</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">3.578053688</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.72542446</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0.2791139033</deltah_Segment> + </TailSegment> + <TailSegment ID="4"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.618301624</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">3.143415874</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.72542446</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0.4964328104</deltah_Segment> + </TailSegment> + <TailSegment ID="5"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.142809701</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">2.681089784</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.72542446</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0.7275958556</deltah_Segment> + </TailSegment> + <TailSegment ID="6"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">1.985033</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">1.754173041</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">3.459300377</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">1.191054227</deltah_Segment> + </TailSegment> + <TailSegment ID="7"> + <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> + <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">0.827256299</w_Segment> + <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">0.827256299</h_Segment> + <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">3.459300377</l_Segment> + <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">1.654512598</deltah_Segment> + </TailSegment> + </TailDescription> + </FuselageParameters> + </Fuselage> + <Nacelle Desc="Beschreibung der inneren rechten Triebwerksgondel" ID="InnerRightWingNacelle"> + <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> + <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">13.30681609</r_Nacelle> + <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">5.49297931</y_Nacelle> + <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-3.072020922</h_Nacelle> + </NacelleRefPoint> + <NacelleParameters Desc="parametric description of the nacelle"> + <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> + <Points Desc="No of points describing the section" ToolLevel="1">20</Points> + <Segments Desc="No of segments" ToolLevel="1">2</Segments> + <InletSegment> + <SegmentPointData ToolLevel="1">geometryData\nacelle.dat</SegmentPointData> + <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_Inlet> + <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_Inlet> + <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0.6776753197</l_Inlet> + </InletSegment> + <NacelleSegment ID="1"> + <InnerSegmentPointData ToolLevel="1">geometryData\nacelle.dat</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">geometryData\nacelle.dat</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">2.471029026</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.861475931</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">1.355350639</l_Segment> + </NacelleSegment> + <NacelleSegment ID="2"> + <InnerSegmentPointData ToolLevel="1">geometryData\nacelle.dat</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">geometryData\nacelle.dat</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">2.471029026</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.861475931</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0.6776753197</l_Segment> + </NacelleSegment> + <NacelleSegment ID="3"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <NacelleSegment ID="4"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <ExitSegment> + <SegmentPointData ToolLevel="1">geometryData\nacelle.dat</SegmentPointData> + <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_Exit> + <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_Exit> + </ExitSegment> + </NacelleParameters> + <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> + </Nacelle> + <Nacelle Desc="Beschreibung der inneren linken Triebwerksgondel" ID="InnerLeftWingNacelle"> + <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> + <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">13.30681609</r_Nacelle> + <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">-5.49297931</y_Nacelle> + <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-3.072020922</h_Nacelle> + </NacelleRefPoint> + <NacelleParameters Desc="parametric description of the nacelle"> + <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> + <Points Desc="No of points describing the section" ToolLevel="1">20</Points> + <Segments Desc="No of segments" ToolLevel="1">2</Segments> + <InletSegment> + <SegmentPointData ToolLevel="1">geometryData\nacelle.dat</SegmentPointData> + <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_Inlet> + <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_Inlet> + <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0.6776753197</l_Inlet> + </InletSegment> + <NacelleSegment ID="1"> + <InnerSegmentPointData ToolLevel="1">geometryData\nacelle.dat</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">geometryData\nacelle.dat</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">2.471029026</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.861475931</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">1.355350639</l_Segment> + </NacelleSegment> + <NacelleSegment ID="2"> + <InnerSegmentPointData ToolLevel="1">geometryData\nacelle.dat</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">geometryData\nacelle.dat</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">2.471029026</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.861475931</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0.6776753197</l_Segment> + </NacelleSegment> + <NacelleSegment ID="3"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <NacelleSegment ID="4"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <ExitSegment> + <SegmentPointData ToolLevel="1">geometryData\nacelle.dat</SegmentPointData> + <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_Exit> + <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_Exit> + </ExitSegment> + </NacelleParameters> + <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> + </Nacelle> + <Nacelle Desc="Beschreibung der aeusseren rechten Triebwerksgondel" ID="OuterRightWingNacelle"> + <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> + <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Nacelle> + <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Nacelle> + <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Nacelle> + </NacelleRefPoint> + <NacelleParameters Desc="parametric description of the nacelle"> + <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> + <Points Desc="No of points describing the section" ToolLevel="1">0</Points> + <Segments Desc="No of segments" ToolLevel="1">0</Segments> + <InletSegment> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Inlet> + <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Inlet> + <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Inlet> + </InletSegment> + <NacelleSegment ID="1"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <NacelleSegment ID="2"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <ExitSegment> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Exit> + <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Exit> + </ExitSegment> + </NacelleParameters> + <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> + </Nacelle> + <Nacelle Desc="Beschreibung der aeusseren linken Triebwerksgondel" ID="OuterLeftWingNacelle"> + <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> + <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Nacelle> + <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Nacelle> + <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Nacelle> + </NacelleRefPoint> + <NacelleParameters Desc="parametric description of the nacelle"> + <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> + <Points Desc="No of points describing the section" ToolLevel="1">0</Points> + <Segments Desc="No of segments" ToolLevel="1">0</Segments> + <InletSegment> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Inlet> + <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Inlet> + <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Inlet> + </InletSegment> + <NacelleSegment ID="1"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <NacelleSegment ID="2"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <ExitSegment> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Exit> + <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Exit> + </ExitSegment> + </NacelleParameters> + <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> + </Nacelle> + <Nacelle Desc="Beschreibung der rechten Hecktriebwerksgondel" ID="RightFuselageNacelle"> + <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> + <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Nacelle> + <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Nacelle> + <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Nacelle> + </NacelleRefPoint> + <NacelleParameters Desc="parametric description of the nacelle"> + <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> + <Points Desc="No of points describing the section" ToolLevel="1">0</Points> + <Segments Desc="No of segments" ToolLevel="1">0</Segments> + <InletSegment> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Inlet> + <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Inlet> + <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Inlet> + </InletSegment> + <NacelleSegment ID="1"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <NacelleSegment ID="2"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <ExitSegment> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Exit> + <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Exit> + </ExitSegment> + </NacelleParameters> + <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> + </Nacelle> + <Nacelle Desc="Beschreibung der linken Hecktriebwerksgondel" ID="LeftFuselageNacelle"> + <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> + <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Nacelle> + <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Nacelle> + <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Nacelle> + </NacelleRefPoint> + <NacelleParameters Desc="parametric description of the nacelle"> + <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> + <Points Desc="No of points describing the section" ToolLevel="1">0</Points> + <Segments Desc="No of segments" ToolLevel="1">0</Segments> + <InletSegment> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Inlet> + <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Inlet> + <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Inlet> + </InletSegment> + <NacelleSegment ID="1"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <NacelleSegment ID="2"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <ExitSegment> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Exit> + <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Exit> + </ExitSegment> + </NacelleParameters> + <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> + </Nacelle> + <Nacelle Desc="Beschreibung der in das SLW integrierten Triebwerksgondel" ID="FinNacelle"> + <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> + <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Nacelle> + <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Nacelle> + <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Nacelle> + </NacelleRefPoint> + <NacelleParameters Desc="parametric description of the nacelle"> + <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> + <Points Desc="No of points describing the section" ToolLevel="1">0</Points> + <Segments Desc="No of segments" ToolLevel="1">0</Segments> + <InletSegment> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Inlet> + <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Inlet> + <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Inlet> + </InletSegment> + <NacelleSegment ID="1"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <NacelleSegment ID="2"> + <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> + <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> + <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> + <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> + <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> + <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> + <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> + </NacelleSegment> + <ExitSegment> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Exit> + <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Exit> + </ExitSegment> + </NacelleParameters> + <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> + </Nacelle> + <Pylon Desc="Beschreibung des Pylons" ID="InnerRightWingPylon"> + <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> + <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">13.57788621</r_Surface> + <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">5.49297931</y_Surface> + <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-3.072020922</h_Surface> + </SurfaceRefPoint> + <SurfaceParameters Desc="Parametric description of pylon geometry"> + <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> + <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">2</SurfaceSegments> + <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="Surface"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">3.252841535</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">4.066051918</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">1.201819891</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="Surface"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">4.066051918</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">2.110599868</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0.8012132607</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">71.83066751</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + </SurfaceParameters> + </Pylon> + <Pylon Desc="Beschreibung des Pylons" ID="InnerLeftWingPylon"> + <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> + <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">13.57788621</r_Surface> + <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">-5.49297931</y_Surface> + <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-3.072020922</h_Surface> + </SurfaceRefPoint> + <SurfaceParameters Desc="Parametric description of pylon geometry"> + <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> + <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">2</SurfaceSegments> + <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="Surface"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">3.252841535</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">4.066051918</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">1.201819891</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="Surface"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">4.066051918</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">2.110599868</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0.8012132607</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">71.83066751</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + </SurfaceParameters> + </Pylon> + <Pylon Desc="Beschreibung des Pylons" ID="OuterRightWingPylon"> + <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> + <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Surface> + <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">0</y_Surface> + <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Surface> + </SurfaceRefPoint> + <SurfaceParameters Desc="Parametric description of pylon geometry"> + <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> + <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">0</SurfaceSegments> + <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + </SurfaceParameters> + </Pylon> + <Pylon Desc="Beschreibung des Pylons" ID="OuterLeftWingPylon"> + <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> + <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Surface> + <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">0</y_Surface> + <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Surface> + </SurfaceRefPoint> + <SurfaceParameters Desc="Parametric description of pylon geometry"> + <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> + <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">0</SurfaceSegments> + <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + </SurfaceParameters> + </Pylon> + <Pylon Desc="Beschreibung des Pylons" ID="RightFuselagePylon"> + <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> + <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Surface> + <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">0</y_Surface> + <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Surface> + </SurfaceRefPoint> + <SurfaceParameters Desc="Parametric description of pylon geometry"> + <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> + <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">0</SurfaceSegments> + <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + </SurfaceParameters> + </Pylon> + <Pylon Desc="Beschreibung des Pylons" ID="LeftFuselagePylon"> + <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> + <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Surface> + <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">0</y_Surface> + <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Surface> + </SurfaceRefPoint> + <SurfaceParameters Desc="Parametric description of pylon geometry"> + <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> + <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">0</SurfaceSegments> + <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> + <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> + <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> + <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> + <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> + <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> + <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> + <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> + <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> + </SurfaceSegment> + </SurfaceParameters> + </Pylon> + <Gear Desc="Beschreibung des Bugfahrwerks" ID="NoseGear"> + <GearRefPoint Desc="Referenzpunkt. Aufhaengungs- bzw. Drehpunkt des Fahrwerks"> + <r_Gear Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">3.480695762</r_Gear> + <y_Gear Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Gear> + <h_Gear Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-1.978883883</h_Gear> + </GearRefPoint> + <WheelGroupRefPoint Desc="Referenzpunkt der Radgruppe. Endpunkt des Fahrwerksbeins auf Achshoehe in der Mitte der Achsen."> + <r_Wheelgroup Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">3.480695762</r_Wheelgroup> + <y_Wheelgroup Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Wheelgroup> + <h_Wheelgroup Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-5.04556249</h_Wheelgroup> + </WheelGroupRefPoint> + <StrutDiameter Desc="Durchmesser des Fahrwerkbeins" ToolLevel="1" Unit="m">0.127127</StrutDiameter> + <Retractable Desc="Fahrwerk einziehbar = 1, festes Fahrwerk = 0" ToolLevel="1">1</Retractable> + <HingeAxis Desc="Drehachse als Einheitsvektor um die das Fahrwerks einfaehrt (Im Math. Sinne positiv)"> + <x Desc="x-Komponente des Vektors" ToolLevel="1" Unit="-">0</x> + <y Desc="y-Komponente des Vektors" ToolLevel="1" Unit="-">0</y> + <z Desc="z-Komponente des Vektors" ToolLevel="1" Unit="-">0</z> + </HingeAxis> + <RetractionAngle Desc="Winkel um den das Fahrwerk zum Einziehen gedreht wird" ToolLevel="1" Unit="deg">90</RetractionAngle> + <Wheelbase Desc="Abstand der vordersten zur hintersten Achse der Radgruppe, Radstand" ToolLevel="1" Unit="m">0</Wheelbase> + <Wheeltrack Desc="Spurweite der Radgruppe" ToolLevel="1" Unit="m">0.3911791258</Wheeltrack> + <NumberOfAxes Desc="Achsenzahl der Radgruppe hintereinander. Abstand wird gleichmaessig auf Radstand verteilt" ToolLevel="1">1</NumberOfAxes> + <NumberOfWheelsPerAxis Desc="Anzahl der Raeder pro Achse" ToolLevel="1">2</NumberOfWheelsPerAxis> + <Wheel Desc="Beschreibung des Rades"> + <TireDiameter Desc="Reifendurchmesser" ToolLevel="1" Unit="m">0.6858</TireDiameter> + <TireWidth Desc="Reifenbreite" ToolLevel="1" Unit="m">0.19558</TireWidth> + <RimDiameter Desc="Felgendurchmesser" ToolLevel="1" Unit="m">0.3429</RimDiameter> + </Wheel> + </Gear> + <Gear Desc="Beschreibung des aeusseren, rechten Hauptfahrwerks" ID="OuterRightMainGear"> + <GearRefPoint Desc="Referenzpunkt. Aufhaengungs- bzw. Drehpunkt des Fahrwerks"> + <r_Gear Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">17.84441297</r_Gear> + <y_Gear Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">4.257464797</y_Gear> + <h_Gear Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-1.313513579</h_Gear> + </GearRefPoint> + <WheelGroupRefPoint Desc="Referenzpunkt der Radgruppe. Endpunkt des Fahrwerksbeins auf Achshoehe in der Mitte der Achsen."> + <r_Wheelgroup Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">17.80664751</r_Wheelgroup> + <y_Wheelgroup Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">4.257464797</y_Wheelgroup> + <h_Wheelgroup Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-4.80426249</h_Wheelgroup> + </WheelGroupRefPoint> + <StrutDiameter Desc="Durchmesser des Fahrwerkbeins" ToolLevel="1" Unit="m">0.32385</StrutDiameter> + <Retractable Desc="Fahrwerk einziehbar = 1, festes Fahrwerk = 0" ToolLevel="1">1</Retractable> + <HingeAxis Desc="Drehachse als Einheitsvektor um die das Fahrwerks einfaehrt (Im Math. Sinne positiv)"> + <x Desc="x-Komponente des Vektors" ToolLevel="1" Unit="-">0</x> + <y Desc="y-Komponente des Vektors" ToolLevel="1" Unit="-">0</y> + <z Desc="z-Komponente des Vektors" ToolLevel="1" Unit="-">0</z> + </HingeAxis> + <RetractionAngle Desc="Winkel um den das Fahrwerk zum Einziehen gedreht wird" ToolLevel="1" Unit="deg">-90</RetractionAngle> + <Wheelbase Desc="Abstand der vordersten zur hintersten Achse der Radgruppe, Radstand" ToolLevel="1" Unit="m">0</Wheelbase> + <Wheeltrack Desc="Spurweite der Radgruppe" ToolLevel="1" Unit="m">0.8636932256</Wheeltrack> + <NumberOfAxes Desc="Achsenzahl der Radgruppe hintereinander. Abstand wird gleichmaessig auf Radstand verteilt" ToolLevel="1">1</NumberOfAxes> + <NumberOfWheelsPerAxis Desc="Anzahl der Raeder pro Achse" ToolLevel="1">2</NumberOfWheelsPerAxis> + <Wheel Desc="Beschreibung des Rades"> + <TireDiameter Desc="Reifendurchmesser" ToolLevel="1" Unit="m">1.1684</TireDiameter> + <TireWidth Desc="Reifenbreite" ToolLevel="1" Unit="m">0.4318</TireWidth> + <RimDiameter Desc="Felgendurchmesser" ToolLevel="1" Unit="m">0.5842</RimDiameter> + </Wheel> + </Gear> + <Gear Desc="Beschreibung des aeusseren, linken Hauptfahrwerks" ID="OuterLeftMainGear"> + <GearRefPoint Desc="Referenzpunkt. Aufhaengungs- bzw. Drehpunkt des Fahrwerks"> + <r_Gear Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">17.84441297</r_Gear> + <y_Gear Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">-4.257464797</y_Gear> + <h_Gear Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-1.313513579</h_Gear> + </GearRefPoint> + <WheelGroupRefPoint Desc="Referenzpunkt der Radgruppe. Endpunkt des Fahrwerksbeins auf Achshoehe in der Mitte der Achsen."> + <r_Wheelgroup Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">17.80664751</r_Wheelgroup> + <y_Wheelgroup Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">-4.257464797</y_Wheelgroup> + <h_Wheelgroup Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-4.80426249</h_Wheelgroup> + </WheelGroupRefPoint> + <StrutDiameter Desc="Durchmesser des Fahrwerkbeins" ToolLevel="1" Unit="m">0.32385</StrutDiameter> + <Retractable Desc="Fahrwerk einziehbar = 1, festes Fahrwerk = 0" ToolLevel="1">1</Retractable> + <HingeAxis Desc="Drehachse als Einheitsvektor um die das Fahrwerks einfaehrt (Im Math. Sinne positiv)"> + <x Desc="x-Komponente des Vektors" ToolLevel="1" Unit="-">0</x> + <y Desc="y-Komponente des Vektors" ToolLevel="1" Unit="-">0</y> + <z Desc="z-Komponente des Vektors" ToolLevel="1" Unit="-">0</z> + </HingeAxis> + <RetractionAngle Desc="Winkel um den das Fahrwerk zum Einziehen gedreht wird" ToolLevel="1" Unit="deg">90</RetractionAngle> + <Wheelbase Desc="Abstand der vordersten zur hintersten Achse der Radgruppe, Radstand" ToolLevel="1" Unit="m">0</Wheelbase> + <Wheeltrack Desc="Spurweite der Radgruppe" ToolLevel="1" Unit="m">0.8636932256</Wheeltrack> + <NumberOfAxes Desc="Achsenzahl der Radgruppe hintereinander. Abstand wird gleichmaessig auf Radstand verteilt" ToolLevel="1">1</NumberOfAxes> + <NumberOfWheelsPerAxis Desc="Anzahl der Raeder pro Achse" ToolLevel="1">2</NumberOfWheelsPerAxis> + <Wheel Desc="Beschreibung des Rades"> + <TireDiameter Desc="Reifendurchmesser" ToolLevel="1" Unit="m">1.1684</TireDiameter> + <TireWidth Desc="Reifenbreite" ToolLevel="1" Unit="m">0.4318</TireWidth> + <RimDiameter Desc="Felgendurchmesser" ToolLevel="1" Unit="m">0.5842</RimDiameter> + </Wheel> + </Gear> + <Gear Desc="Beschreibung des inneren, rechten Hauptfahrwerks" ID="InnerRightMainGear"> + <GearRefPoint Desc="Referenzpunkt. Aufhaengungs- bzw. Drehpunkt des Fahrwerks"> + <r_Gear Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Gear> + <y_Gear Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Gear> + <h_Gear Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Gear> + </GearRefPoint> + <WheelGroupRefPoint Desc="Referenzpunkt der Radgruppe. Endpunkt des Fahrwerksbeins auf Achshoehe in der Mitte der Achsen."> + <r_Wheelgroup Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Wheelgroup> + <y_Wheelgroup Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Wheelgroup> + <h_Wheelgroup Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Wheelgroup> + </WheelGroupRefPoint> + <StrutDiameter Desc="Durchmesser des Fahrwerkbeins" ToolLevel="1" Unit="m">0</StrutDiameter> + <Retractable Desc="Fahrwerk einziehbar = 1, festes Fahrwerk = 0" ToolLevel="1">0</Retractable> + <HingeAxis Desc="Drehachse als Einheitsvektor um die das Fahrwerks einfaehrt (Im Math. Sinne positiv)"> + <x Desc="x-Komponente des Vektors" ToolLevel="1" Unit="-">0</x> + <y Desc="y-Komponente des Vektors" ToolLevel="1" Unit="-">0</y> + <z Desc="z-Komponente des Vektors" ToolLevel="1" Unit="-">0</z> + </HingeAxis> + <RetractionAngle Desc="Winkel um den das Fahrwerk zum Einziehen gedreht wird" ToolLevel="1" Unit="deg">0</RetractionAngle> + <Wheelbase Desc="Abstand der vordersten zur hintersten Achse der Radgruppe, Radstand" ToolLevel="1" Unit="m">0</Wheelbase> + <Wheeltrack Desc="Spurweite der Radgruppe" ToolLevel="1" Unit="m">0</Wheeltrack> + <NumberOfAxes Desc="Achsenzahl der Radgruppe hintereinander. Abstand wird gleichmaessig auf Radstand verteilt" ToolLevel="1">0</NumberOfAxes> + <NumberOfWheelsPerAxis Desc="Anzahl der Raeder pro Achse" ToolLevel="1">0</NumberOfWheelsPerAxis> + <Wheel Desc="Beschreibung des Rades"> + <TireDiameter Desc="Reifendurchmesser" ToolLevel="1" Unit="m">0</TireDiameter> + <TireWidth Desc="Reifenbreite" ToolLevel="1" Unit="m">0</TireWidth> + <RimDiameter Desc="Felgendurchmesser" ToolLevel="1" Unit="m">0</RimDiameter> + </Wheel> + </Gear> + <Gear Desc="Beschreibung des inneren, linken Hauptfahrwerks" ID="InnerLeftMainGear"> + <GearRefPoint Desc="Referenzpunkt. Aufhaengungs- bzw. Drehpunkt des Fahrwerks"> + <r_Gear Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Gear> + <y_Gear Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Gear> + <h_Gear Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Gear> + </GearRefPoint> + <WheelGroupRefPoint Desc="Referenzpunkt der Radgruppe. Endpunkt des Fahrwerksbeins auf Achshoehe in der Mitte der Achsen."> + <r_Wheelgroup Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Wheelgroup> + <y_Wheelgroup Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Wheelgroup> + <h_Wheelgroup Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Wheelgroup> + </WheelGroupRefPoint> + <StrutDiameter Desc="Durchmesser des Fahrwerkbeins" ToolLevel="1" Unit="m">0</StrutDiameter> + <Retractable Desc="Fahrwerk einziehbar = 1, festes Fahrwerk = 0" ToolLevel="1">0</Retractable> + <HingeAxis Desc="Drehachse als Einheitsvektor um die das Fahrwerks einfaehrt (Im Math. Sinne positiv)"> + <x Desc="x-Komponente des Vektors" ToolLevel="1" Unit="-">0</x> + <y Desc="y-Komponente des Vektors" ToolLevel="1" Unit="-">0</y> + <z Desc="z-Komponente des Vektors" ToolLevel="1" Unit="-">0</z> + </HingeAxis> + <RetractionAngle Desc="Winkel um den das Fahrwerk zum Einziehen gedreht wird" ToolLevel="1" Unit="deg">0</RetractionAngle> + <Wheelbase Desc="Abstand der vordersten zur hintersten Achse der Radgruppe, Radstand" ToolLevel="1" Unit="m">0</Wheelbase> + <Wheeltrack Desc="Spurweite der Radgruppe" ToolLevel="1" Unit="m">0</Wheeltrack> + <NumberOfAxes Desc="Achsenzahl der Radgruppe hintereinander. Abstand wird gleichmaessig auf Radstand verteilt" ToolLevel="1">0</NumberOfAxes> + <NumberOfWheelsPerAxis Desc="Anzahl der Raeder pro Achse" ToolLevel="1">0</NumberOfWheelsPerAxis> + <Wheel Desc="Beschreibung des Rades"> + <TireDiameter Desc="Reifendurchmesser" ToolLevel="1" Unit="m">0</TireDiameter> + <TireWidth Desc="Reifenbreite" ToolLevel="1" Unit="m">0</TireWidth> + <RimDiameter Desc="Felgendurchmesser" ToolLevel="1" Unit="m">0</RimDiameter> + </Wheel> + </Gear> + </Geometry> + <Structure Desc="Strukturdaten"></Structure> + <Accommodation Desc="Kabineneinrichtung"> + <PassengersTotal Desc="Gesamtanzahl der Sitzplaetze" ToolLevel="1">150</PassengersTotal> + <FlightCrew Desc="Anzahl Cockpitbesatzung" ToolLevel="1">2</FlightCrew> + <CabinCrew Desc="Anzahl Flugbegleiter" ToolLevel="1">4</CabinCrew> + <Seats Desc="Description of seats"> + <NoOfSeatTypes Desc="Anzahl der Sitzklassen" ToolLevel="1">2</NoOfSeatTypes> + <seat Desc="Description of seat" ID="1"> + <seatClassType Desc="Passagierklasse fuer die der Sitztyp vorgesehen ist" ToolLevel="1">economy</seatClassType> + <noOfSeatConfigurations Desc="Anzahl der Sitzkonfigurationen" ToolLevel="1">4</noOfSeatConfigurations> + <seatConfiguration Desc="Description of SeatConfiguration" ID="1"> + <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">9</mass> + <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">1</noOfSeats> + </seatConfiguration> + <seatConfiguration Desc="Description of SeatConfiguration" ID="2"> + <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">14</mass> + <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">2</noOfSeats> + </seatConfiguration> + <seatConfiguration Desc="Description of SeatConfiguration" ID="3"> + <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">19.5</mass> + <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">3</noOfSeats> + </seatConfiguration> + <seatConfiguration Desc="Description of SeatConfiguration" ID="4"> + <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">25</mass> + <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">4</noOfSeats> + </seatConfiguration> + <IFE Desc="Inflight entertainment system verbaut" ToolLevel="1">0</IFE> + <massIFE Desc="Masse des Passagier Unterhaltungs System pro Person" ToolLevel="1" Unit="kg">0.4</massIFE> + </seat> + <seat Desc="Description of seat" ID="2"> + <seatClassType Desc="Passagierklasse fuer die der Sitztyp vorgesehen ist" ToolLevel="1">business</seatClassType> + <noOfSeatConfigurations Desc="Anzahl der Sitzkonfigurationen" ToolLevel="1">3</noOfSeatConfigurations> + <seatConfiguration Desc="Description of SeatConfiguration" ID="1"> + <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">27.2</mass> + <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">1</noOfSeats> + </seatConfiguration> + <seatConfiguration Desc="Description of SeatConfiguration" ID="2"> + <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">35.1</mass> + <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">2</noOfSeats> + </seatConfiguration> + <seatConfiguration Desc="Description of SeatConfiguration" ID="3"> + <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">43</mass> + <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">3</noOfSeats> + </seatConfiguration> + <seatConfiguration Desc="Description of SeatConfiguration" ID="4"> + <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">25</mass> + <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">4</noOfSeats> + </seatConfiguration> + <IFE Desc="Inflight entertainment system verbaut" ToolLevel="1">1</IFE> + <massIFE Desc="Masse des Passagier Unterhaltungs System pro Person" ToolLevel="1" Unit="kg">0.4</massIFE> + </seat> + </Seats> + <Galleys Desc="Description of galleys"> + <NoOfGalleyTypes Desc="Anzahl verwendeter Kuechen Typen" ToolLevel="1">2</NoOfGalleyTypes> + <Gal Desc="Description of galley" ID="1"> + <nameGalley Desc="Name of galley" ToolLevel="1">large</nameGalley> + <NumberOfGalleys Desc="Gesamtzahl der verwendeten Galleys dieses Typs" ToolLevel="1">1</NumberOfGalleys> + <mass Desc="Masse der Galleystruktur" ToolLevel="1" Unit="kg">226.8</mass> + <power Desc="Leistungsabnahme der Galley" ToolLevel="1" Unit="kW">14418</power> + </Gal> + <Gal Desc="Description of galley" ID="2"> + <nameGalley Desc="Name of galley" ToolLevel="1">small</nameGalley> + <NumberOfGalleys Desc="Gesamtzahl der verwendeten Galleys dieses Typs" ToolLevel="1">1</NumberOfGalleys> + <mass Desc="Masse der Galleystruktur" ToolLevel="1" Unit="kg">61.24</mass> + <power Desc="Leistungsabnahme der Galley" ToolLevel="1" Unit="kW">3887</power> + </Gal> + </Galleys> + <Lavatories Desc="Description of lavatories"> + <NoOfLavatoryTypes Desc="Anzahl verwendeter Lavatorie-Typen" ToolLevel="1">1</NoOfLavatoryTypes> + <Lav Desc="Description of lavatory" ID="1"> + <nameLavatory Desc="Name of lavatory" ToolLevel="1">standard_lavatory</nameLavatory> + <NumberOfLavatories Desc="Gesamtzahl der verwendeten Lavatories dieses Typs" ToolLevel="1">3</NumberOfLavatories> + <mass Desc="Masse einer Lavatoryeinheit" ToolLevel="1" Unit="kg">96.67</mass> + </Lav> + </Lavatories> + <Cabin Desc="Beschreibung der Kabine"> + <V_AirConditioned Desc="Klimatisiertes Kabinenvolumen gesamt" ToolLevel="1" Unit="m3">186.1462316</V_AirConditioned> + <CabinDecks Desc="Anzahl Kabinendecks" ToolLevel="1">1</CabinDecks> + <CabinDeck Desc="Parameter eines Kabinendecks" ID="1"> + <A_CabinDeck Desc="Flaeche des Kabinendecks" ToolLevel="1" Unit="m2">97.50130651</A_CabinDeck> + <h_CabinDeck Desc="maximale Kabinenhoehe" ToolLevel="1" Unit="m">2.13</h_CabinDeck> + <w_CabinDeck Desc="maximale Kabinenbreite" ToolLevel="1" Unit="m">3.63012573</w_CabinDeck> + <l_CabinDeck Desc="Kabinenlaenge ohne Flight-Deck" ToolLevel="1" Unit="m">26.85893376</l_CabinDeck> + <V_CabinDeck Desc="Kabinenvolumen" ToolLevel="1" Unit="m3">184.2960557</V_CabinDeck> + <PAX_CabinDeck Desc="Sitzplaetze des Kabinendecks" ToolLevel="1">150</PAX_CabinDeck> + <Classes Desc="Anzahl der verschiedenen Klassen auf diesem Deck" ToolLevel="1">2</Classes> + <Class Desc="Definition der Klasse" ID="1"> + <x_center Desc="Mittelpunkt der Klasse in x-Richtung" ToolLevel="1" Unit="m">5.983021821</x_center> + </Class> + <Class Desc="Definition der Klasse" ID="2"> + <x_center Desc="Mittelpunkt der Klasse in x-Richtung" ToolLevel="1" Unit="m">19.4124887</x_center> + </Class> + </CabinDeck> + </Cabin> + <Cargo Desc="Beschreibung des Frachtraums"> + <V_Cargo Desc="Frachtvolumen gesamt" ToolLevel="1" Unit="m3">35.92426606</V_Cargo> + <CargoDecks Desc="Anzahl Frachtdecks" ToolLevel="1">1</CargoDecks> + <CargoDeck Desc="Parameter eines Frachtdecks" ID="1"> + <A_CargoDeck Desc="Flaeche des Frachtdecks" ToolLevel="1" Unit="m2">56.63668783</A_CargoDeck> + <h_CargoDeck Desc="maximale Deckhoehe" ToolLevel="1" Unit="m">1.14</h_CargoDeck> + <w_CargoDeck Desc="maximale Deckbreite" ToolLevel="1" Unit="m">3.280233538</w_CargoDeck> + <l_CargoDeck Desc="Decklaenge" ToolLevel="1" Unit="m">17.26605352</l_CargoDeck> + <V_CargoDeck Desc="Deckvolumen" ToolLevel="1" Unit="m3">36.40649695</V_CargoDeck> + <V_BulkCargo Desc="Freies Frachtvolumen fuer Bulk-Cargo" ToolLevel="1" Unit="m3">12.7695477</V_BulkCargo> + <Compartments Desc="Anzahl der verschiedenen Compartments auf diesem Deck" ToolLevel="1">2</Compartments> + <Compartment Desc="Definition des Compartments" ID="1"> + <Length Desc="Laenge des Compartments" ToolLevel="1" Unit="m">4.84</Length> + <x_center Desc="Mittelpunkt des Compartments in x-Richtung" ToolLevel="1" Unit="m">6.045</x_center> + </Compartment> + <Compartment Desc="Definition des Compartments" ID="2"> + <Length Desc="Laenge des Compartments" ToolLevel="1" Unit="m">6.37</Length> + <x_center Desc="Mittelpunkt des Compartments in x-Richtung" ToolLevel="1" Unit="m">18.82863715</x_center> + </Compartment> + </CargoDeck> + </Cargo> + </Accommodation> + <Propulsion Desc="Angabe der verwendeten Engine Types (nicht jede einzelne Engine)"> + <NumberOfEngineTypes Desc="Anzahl verschiedener Triebwerkstypen" ToolLevel="1">0</NumberOfEngineTypes> + <Engine Desc="Triebwerks-/Motortyp" ID="1"> + <TypeOfEngine Desc="Triebwerkstyp z.Zt. Jet oder Prop" ToolLevel="1" Unit="-">jet</TypeOfEngine> + <EngineModel Desc="Triebwerksmodell fuer Gummimotor" ToolLevel="1" Unit="-">V2527-A5</EngineModel> + <NumberOfEngines Desc="Anzahl der Triebwerke - notwendig?" ToolLevel="1">2</NumberOfEngines> + <ScaleEngines Desc="Skalierungsfaktor fuer das Triebwerksmodell i.S.e. Gummimotors" ToolLevel="1" Unit="-">1.168175939</ScaleEngines> + <ScaleFuelFlow Desc="Skalierungsfaktor fuer den Fuel Flow" ToolLevel="1" Unit="-">1</ScaleFuelFlow> + <EngineDataFile Desc="Name der Triebewerksdatei (enthaelt Geometriedaten und Decks)" ToolLevel="1" Unit="-">engineData\V2527-A5\V2527-A5.xml</EngineDataFile> + <JetEngineData Desc="Jet spezifische Triebwerksdaten"> + <SeaLevelStaticThrust Desc="Flat-Rated Standschub" ToolLevel="1" Unit="kN">128.8646365</SeaLevelStaticThrust> + <FanDiameter Desc="Durchmesser des Fans" ToolLevel="1" Unit="m">1.743365695</FanDiameter> + </JetEngineData> + <TurbopropEngineData Desc="Prop spezifische Triebwerksdaten"> + <Prop Desc="Propellerdaten"> + <PropDiameter Desc="Propellerdurchmesser" ToolLevel="1" Unit="m">0</PropDiameter> + <PropBlades Desc="Anzahl Propellerblaetter" ToolLevel="1">0</PropBlades> + <SegmentPointData ToolLevel="1">0</SegmentPointData> + <Pitch Desc="Variable oder Fix Pitch" ToolLevel="1">0</Pitch> + <Thickness Desc="Thickness of rotor disc " ToolLevel="1" Unit="m">0</Thickness> + </Prop> + <P_shp Desc="Triebwerkswellenleistung" ToolLevel="1" Unit="kW">0</P_shp> + </TurbopropEngineData> + <EngineDimensions Desc="Geometrische Abmasse des skalierten Triebwerks, Kerntriebwerk"> + <w_Engine Desc="Breite des uninstallierten Triebwerks" ToolLevel="1" Unit="m">1.976823221</w_Engine> + <h_Engine Desc="Hoehe des uninstallierten Triebwerks" ToolLevel="1" Unit="m">2.289180745</h_Engine> + <l_Engine Desc="Gesamtlaenge des uninstallierten Triebwerks" ToolLevel="1" Unit="m">2.710701279</l_Engine> + </EngineDimensions> + <NacelleRescaling Desc="Parameter fuer Rescaling der Wing Nacelles" Matched="0"> + <InnerNacelle> + <DeltaXPos Desc="Relative axiale Position der Nacelle (bzgl. Wing-MAC)" ToolLevel="1" Unit="-">0</DeltaXPos> + <RelYPos Desc="Relative spannweitige Position der Nacelle" ToolLevel="1" Unit="-">0</RelYPos> + <DeltaZPos Desc="Relative vertikale Position der Nacelle (bzgl. Wing-MAC)" ToolLevel="1" Unit="-">0</DeltaZPos> + <WidthRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-breite" ToolLevel="1" Unit="-">0</WidthRatio> + <HeightRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-hoehe" ToolLevel="1" Unit="-">0</HeightRatio> + <LengthRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-laenge" ToolLevel="1" Unit="-">0</LengthRatio> + </InnerNacelle> + <OuterNacelle> + <DeltaXPos Desc="Relative axiale Position der Nacelle (bzgl. Wing-MAC)" ToolLevel="1" Unit="-">0</DeltaXPos> + <RelYPos Desc="Relative spannweitige Position der Nacelle" ToolLevel="1" Unit="-">0</RelYPos> + <DeltaZPos Desc="Relative vertikale Position der Nacelle (bzgl. Wing-MAC)" ToolLevel="1" Unit="-">0</DeltaZPos> + <WidthRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-breite" ToolLevel="1" Unit="-">0</WidthRatio> + <HeightRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-hoehe" ToolLevel="1" Unit="-">0</HeightRatio> + <LengthRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-laenge" ToolLevel="1" Unit="-">0</LengthRatio> + </OuterNacelle> + </NacelleRescaling> + <ScaledPerformanceCharacteristics Desc="Leistungscharakteristik des (eines!) skalierten Triebwerks"> + <EquivalentThrust Desc="1.25 * Max-Go-Around (Schub bei ISA+deltaISA(Requirements/DesignMission), SL, Ma0.25, N1 100 perc)" ToolLevel="1" Unit="kN">127.3858501</EquivalentThrust> + <MaximumTakeOff Desc="Maximale Startschubbedingung bei ISA+deltaISA(Requirements/DesignMission) und keinen Off-takes bei Altitude_ft=0.0 Mach=0.0"> + <Thrust Desc="Schubkraft" ToolLevel="1" Unit="kN">128.8646365</Thrust> + <FuelFlow Desc="Treibstoffverbrauch" ToolLevel="1" Unit="kg/s">1.316357232</FuelFlow> + <TSFC Desc="Thrust specific fuel consumption" ToolLevel="1" Unit="(kg/s)/kN">0.01021503857</TSFC> + <N1 Desc="Relative LP shaft rotation speed" ToolLevel="1" Unit="percent">0.9783203125</N1> + </MaximumTakeOff> + <MaximumGoAround Desc="Maximale Go-Around-Bedingung bei ISA+deltaISA(Requirements/DesignMission) und keinen Off-takes bei Altitude_ft=0.0, Mach=0.25"> + <Thrust Desc="Schubkraft" ToolLevel="1" Unit="kN">101.9086801</Thrust> + <FuelFlow Desc="Treibstoffverbrauch" ToolLevel="1" Unit="kg/s">1.329201509</FuelFlow> + <TSFC Desc="Thrust specific fuel consumption" ToolLevel="1" Unit="(kg/s)/kN">0.01304306471</TSFC> + <N1 Desc="Relative LP shaft rotation speed" ToolLevel="1" Unit="percent">0.9734765625</N1> + </MaximumGoAround> + <MaximumContinous Altitude_ft="35000" Desc="Maximales Schublimit ohne Zeitlimit bei ISA+deltaISA(Requirements/DesignMission) bei" Mach="0.8"> + <MaxThrust Desc="Without Offtakes"> + <Thrust Desc="Schubkraft" ToolLevel="1" Unit="kN">32.18450048</Thrust> + <FuelFlow Desc="Treibstoffverbrauch" ToolLevel="1" Unit="kg/s">0.5460196217</FuelFlow> + <TSFC Desc="Thrust specific fuel consumption" ToolLevel="1" Unit="(kg/s)/kN">0.01696529738</TSFC> + <N1 Desc="Relative LP shaft rotation speed" ToolLevel="1" Unit="percent">0.981796875</N1> + </MaxThrust> + <BucketThrust Desc="Without Offtakes"> + <Thrust Desc="Schubkraft" ToolLevel="1" Unit="kN">29.28223674</Thrust> + <FuelFlow Desc="Treibstoffverbrauch" ToolLevel="1" Unit="kg/s">0.4959848906</FuelFlow> + <TSFC Desc="Thrust specific fuel consumption" ToolLevel="1" Unit="(kg/s)/kN">0.01693808075</TSFC> + <N1 Desc="Relative LP shaft rotation speed" ToolLevel="1" Unit="percent">0.950379375</N1> + </BucketThrust> + <BucketThrustOfftakes Desc="With Average Cruise Offtakes (s. Design Mission)"> + <Thrust Desc="Schubkraft" ToolLevel="1" Unit="kN">29.28223674</Thrust> + <FuelFlow Desc="Treibstoffverbrauch" ToolLevel="1" Unit="kg/s">0.5130623087</FuelFlow> + <TSFC Desc="Thrust specific fuel consumption" ToolLevel="1" Unit="(kg/s)/kN">0.01752128136</TSFC> + <N1 Desc="Relative LP shaft rotation speed" ToolLevel="1" Unit="percent">0.950379375</N1> + </BucketThrustOfftakes> + </MaximumContinous> + </ScaledPerformanceCharacteristics> + <UsedForNacelles Desc="Angabe der Nacelle IDs, in welche dieser Engine Type eingebaut wird"> + <UsedForNumberOfEngines ToolLevel="1">0</UsedForNumberOfEngines> + <NacelleID ID="1" ToolLevel="1">0</NacelleID> + <NacelleID ID="2" ToolLevel="1">0</NacelleID> + <NacelleID ID="3" ToolLevel="1">0</NacelleID> + <NacelleID ID="4" ToolLevel="1">0</NacelleID> + </UsedForNacelles> + </Engine> + </Propulsion> + <Systems> + <FuelTank Desc="Tank system Parameters"> + <CentreTanks Desc="No of centre tanks" ToolLevel="1">1</CentreTanks> + <CentreTank Desc="Centre tank description" ID="1"> + <TankVolume Desc="Tank volume" ToolLevel="1" Unit="l">10541.14749</TankVolume> + </CentreTank> + <WingTanks Desc="No of wing tanks" ToolLevel="1">2</WingTanks> + <WingTank Desc="Wing tank description" ID="1"> + <TankVolume Desc="Tank volume" ToolLevel="1" Unit="l">15416.66477</TankVolume> + </WingTank> + <WingTank Desc="Wing tank description" ID="2"> + <TankVolume Desc="Tank volume" ToolLevel="1" Unit="l">15416.66477</TankVolume> + </WingTank> + <TrimTanks Desc="No of trim tanks" ToolLevel="1">0</TrimTanks> + <TrimTank Desc="Trim tank description" ID="1"> + <TankVolume Desc="Tank volume" ToolLevel="1" Unit="l">0</TankVolume> + </TrimTank> + <FuselageTanks Desc="No of fuselage tanks" ToolLevel="1">0</FuselageTanks> + <FuselageTank Desc="Fuselage tank description" ID="1"> + <TankVolume Desc="Tank volume" ToolLevel="1" Unit="l">0</TankVolume> + </FuselageTank> + <TotalFuelVolume Desc="Total fuel volume of all tanks" ToolLevel="1" Unit="l">41374.47702</TotalFuelVolume> + </FuelTank> + <ATA21_EnvironmentalControlSystem> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">25.37098678</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">1.31382376</BleedAir> + </DesignPower> + <AirflowPerPax Desc="Konstanter Luftmassenstrom pro Passagier" ToolLevel="1" Unit="lbs/min">0.75</AirflowPerPax> + <Recirculation Desc="Prozentualer Anteil der Kabinenluft, die wieder verwendet wird (0.0 - 1.0)" ToolLevel="1" Unit="-">0.4</Recirculation> + </ATA21_EnvironmentalControlSystem> + <ATA22_AutoFlight> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA22_AutoFlight> + <ATA23_Communication> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA23_Communication> + <ATA24_ElectricSystem> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA24_ElectricSystem> + <ATA25_Furnishing> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">18.92</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA25_Furnishing> + <ATA26_FireProtection> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA26_FireProtection> + <ATA27_FlightControlSystem> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">93.56406668</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA27_FlightControlSystem> + <ATA28_FuelSystem> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">12.23167268</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA28_FuelSystem> + <ATA29_HydraulicSystem> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">7.451202472</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + <Pressure Desc="Nenn-Druck des Hydrauliksystems" ToolLevel="1" Unit="psi">3000</Pressure> + </ATA29_HydraulicSystem> + <ATA30_IceRainProtection> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">14.0269</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0.6613272863</BleedAir> + </DesignPower> + </ATA30_IceRainProtection> + <ATA31_Instrumentation> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA31_Instrumentation> + <ATA32_LandingGear> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">74.97503685</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA32_LandingGear> + <ATA33_Lights> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">7.884251516</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA33_Lights> + <ATA34_Navigation> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA34_Navigation> + <ATA35_Oxygen> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> + </DesignPower> + </ATA35_Oxygen> + <ATA36_BleedAir> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0.1039553182</BleedAir> + </DesignPower> + </ATA36_BleedAir> + <ATA49_APU> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">-0</BleedAir> + </DesignPower> + </ATA49_APU> + <ATA70_PropulsionSystem> + <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> + <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">-205.4781816</Electric> + <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">-181.0078664</Hydraulic> + <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">-2.188533015</BleedAir> + </DesignPower> + </ATA70_PropulsionSystem> + </Systems> + <Aerodynamics Desc="Aerodynamik"> + <LoverD_Cruise Desc="Beste Gleitzahl L/D im Reiseflug fuer (Initial) Cruise Machzahl" ToolLevel="1" Unit="-">16.46037111</LoverD_Cruise> + <LiftCoefficients Desc="Auftriebsbeiwerte"> + <C_L_design Desc="Design Auftriebsbeiwert" ToolLevel="1" Unit="-">0.5381848981</C_L_design> + <C_LmaxLanding Desc="Maximaler Auftriebsbeiwert Landekonfiguration" ToolLevel="1" Unit="-">2.916185004</C_LmaxLanding> + <C_LmaxT-O Desc="Maximaler Auftriebsbeiwert Startkonfiguration" ToolLevel="1" Unit="-">2.515329503</C_LmaxT-O> + <C_LoptimumCruise Desc="Auftriebsbeiwert bei bestem LoverD bei (Initial) Cruise Machzahl" ToolLevel="1" Unit="-">0.528</C_LoptimumCruise> + <C_L_opt_wing Desc="Auftriebsbeiwert bei bestem LoverD (Anteil Fluegel)" ToolLevel="1" Unit="-">0.5626638406</C_L_opt_wing> + <C_L_opt_stab Desc="Auftriebsbeiwert bei bestem LoverD (Anteil HLW)" ToolLevel="1" Unit="-">-0.03466354382</C_L_opt_stab> + <C_LgroundRoll Desc="lift coefficient on ground for ground roll calculation" ToolLevel="1" Unit="-">0.4</C_LgroundRoll> + </LiftCoefficients> + <DragCoefficients Desc="Widerstandsbeiwerte (bei bestem L/D im Cruise, s.o.)"> + <C_D_total Desc="Widerstandsbeiwert gesamt" ToolLevel="1" Unit="-">0.03207704106</C_D_total> + <C_D_ind Desc="induzierter Widerstandsbeiwert" ToolLevel="1" Unit="-">0.009803808575</C_D_ind> + <C_D_visc Desc="Reibungswiderstandsbeiwerte" ToolLevel="1" Unit="-"> + <C_D_visc_total Desc="Reibungswiderstandsbeiwert gesamt" ToolLevel="1" Unit="-">0.01972511904</C_D_visc_total> + <C_D_visc_wing Desc="Reibungswiderstandsbeiwert Fluegel" ToolLevel="1" Unit="-">0.00660550988</C_D_visc_wing> + <C_D_visc_stab Desc="Reibungswiderstandsbeiwert HLW" ToolLevel="1" Unit="-">0.001454379701</C_D_visc_stab> + <C_D_visc_fin Desc="Reibungswiderstandsbeiwert SLW" ToolLevel="1" Unit="-">0.001569261547</C_D_visc_fin> + <C_D_visc_fus Desc="Reibungswiderstandsbeiwert Rumpf" ToolLevel="1" Unit="-">0.006412233533</C_D_visc_fus> + <C_D_visc_nac Desc="Reibungswiderstandsbeiwert Nacelle" ToolLevel="1" Unit="-">0.001743616971</C_D_visc_nac> + <C_D_visc_misc Desc="Reibungswiderstandsbeiwert weitere" ToolLevel="1" Unit="-">0.001940117406</C_D_visc_misc> + </C_D_visc> + <C_D_wave Desc="Wellenwiderstandsbeiwerte" ToolLevel="1" Unit="-"> + <C_D_wave_total Desc="Wellenwiderstandsbeiwert gesamt" ToolLevel="1" Unit="-">0.002548113448</C_D_wave_total> + <C_D_wave_wing Desc="Wellenwiderstandsbeiwert Fluegel" ToolLevel="1" Unit="-">0.002547491352</C_D_wave_wing> + <C_D_wave_stab Desc="Wellenwiderstandsbeiwert HLW" ToolLevel="1" Unit="-">6.220952302e-07</C_D_wave_stab> + </C_D_wave> + <EoW_DragFactor Desc="Drag factor for over-the-wing engines" ToolLevel="1" Unit="-">1</EoW_DragFactor> + </DragCoefficients> + <MomentCoefficients Desc="Momentenbeiwerte (getrimmt, bei bestem L/D im Cruise, s.o.)"> + <C_M_total Desc="Momentenbeiwert bei optimum Cruise" ToolLevel="1" Unit="-">1.138318599e-05</C_M_total> + </MomentCoefficients> + <Polar Desc="Flugzeugpolare"> + <PolarFile Desc="Dateiname der Flugzeugpolare" ToolLevel="1" Unit="-">aeroData\CSR-02_polar.xml</PolarFile> + <Configurations Desc="Anzahl der aerodynamischen Konfigurationen in der Polarendatei" ToolLevel="1">7</Configurations> + <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="1" ToolLevel="1" Type="Cruise">Clean</Configuration> + <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="2" ToolLevel="1" Type="Departure">TakeOff</Configuration> + <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="3" ToolLevel="1" Type="Departure">TakeOffLGRetracted</Configuration> + <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="4" ToolLevel="1" Type="Departure">Climb</Configuration> + <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="5" ToolLevel="1" Type="Approach">Approach</Configuration> + <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="6" ToolLevel="1" Type="Approach">ApproachLG</Configuration> + <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="7" ToolLevel="1" Type="Approach">Landing</Configuration> + </Polar> + <ReferenceValues Desc="Aerodynamische Bezugsgroessen"> + <b Desc="Total wing span" ToolLevel="1" Unit="m">34.66122714</b> + <MAC Desc="Mean aerodynamic chord" ToolLevel="1" Unit="m">4.402512853</MAC> + <S_ref Desc="Wing reference area" ToolLevel="1" Unit="m2">126.463228</S_ref> + </ReferenceValues> + <MaxSpoilerFactor Desc="Faktor zur max. Widerstandserhoehung durch Spoiler" ToolLevel="1" Unit="-">2.5</MaxSpoilerFactor> + </Aerodynamics> + <StabilityAndControlCharacteristics Desc="Flugmechanik, Stabilitaet und Steuerbarkeit"> + <Stabiliser> + <VolumeCoefficient Desc="berechneter Volumenkoeffizient" Matched="1" ToolLevel="1" Unit="-">1.017690098</VolumeCoefficient> + <S_ref Desc="Stabiliser reference area" ToolLevel="1" Unit="m2">32.94519006</S_ref> + </Stabiliser> + <VerticalTail> + <VolumeCoefficient Desc="berechneter Volumenkoeffizient" Matched="1" ToolLevel="1" Unit="-">0.09489408521</VolumeCoefficient> + <S_ref Desc="Fin reference area" ToolLevel="1" Unit="m2">25.44285876</S_ref> + </VerticalTail> + </StabilityAndControlCharacteristics> + <Performance Desc="Flugleistungen"> + <Range Desc="Reichweiten"> + <Range_maxPayloadatMTOM Desc="Reichweite bei maximaler Nutzlast und Betankung bis zum MTOM-Limit" ToolLevel="2" Unit="km">3246.670783</Range_maxPayloadatMTOM> + <Range_maxFuelatMTOM Desc="Reichweite bei vollen Tanks und Nutzlast bis zum MTOM-Limit" ToolLevel="2" Unit="km">10458.2771</Range_maxFuelatMTOM> + <Payload_maxFuelatMTOM Desc="Payload bei vollen Tanks und Nutzlast bis zum MTOM-Limit" ToolLevel="2" Unit="kg">4360.32531</Payload_maxFuelatMTOM> + <Range_maxFuelEmpty Desc="Ueberfuehrungsreichweite, leer mit vollen Tanks" ToolLevel="2" Unit="km">10709.69495</Range_maxFuelEmpty> + </Range> + <Speed Desc="Fluggeschwindigkeiten"> + <M_initialCruise Desc="Cruisemachzahl" ToolLevel="3" Unit="-">0.78</M_initialCruise> + <M_maxOperating Desc="Max Operating Cruise Machzahl" ToolLevel="2" Unit="-">0.82</M_maxOperating> + <V_maxOperating Desc="Max Operating Speed (Maximale Staudruckgeschwindigkeit CAS/IAS)" ToolLevel="2" Unit="KCAS">350</V_maxOperating> + <M_Dive Desc="Diving Mach Number" ToolLevel="2" Unit="-">0.902</M_Dive> + <V_Dive Desc="Diving Speed" ToolLevel="2" Unit="KCAS">385</V_Dive> + <V_s1g Desc="1-g Stalling Speed" ToolLevel="2" Unit="KCAS">154.8031322</V_s1g> + </Speed> + <Altitudes Desc="Flughoehen"> + <h_initialCruise Desc="Reiseflughoehe" ToolLevel="3" Unit="m">10058.4</h_initialCruise> + <h_maxCertified Desc="maximal zugelassene Flughoehe (s. TLAR)" ToolLevel="3" Unit="m">11734.8</h_maxCertified> + <h_maxOperating Desc="Dienstgipfelhoehe (100 ft/min Steigkriterium)" ToolLevel="3" Unit="m">11713.23959</h_maxOperating> + <h_maxCeiling Desc="Maximale Flughoehe (50 ft/min Steigkriterium) bei MTOM" ToolLevel="3" Unit="m">11763.23474</h_maxCeiling> + <h_maxOEI Desc="Maximale Flughoehe (100 ft/min Steigkriterium) bei einem Triebwerksausfall und bei MTOM" ToolLevel="3" Unit="m">6608.028951</h_maxOEI> + </Altitudes> + <Climb Desc="Climb Performance"> + <TTC_Design Desc="Time needed to climb from 1500ft to ICA (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="min">16.15883289</TTC_Design> + <TTC_ISA Desc="Time needed to climb from 1500ft to ICA (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="min">16.15883289</TTC_ISA> + <Time_to_1500ft_ISA Desc="Time needed to climb from BR to 1500ft (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="min">1.251683745</Time_to_1500ft_ISA> + <Time_to_ICA_ISA Desc="Time needed to climb from BR to ICA (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="min">17.41051663</Time_to_ICA_ISA> + <Range_to_ICA_ISA Desc="Range needed to climb from BR to ICA (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="NM">101.9061674</Range_to_ICA_ISA> + <Fuel_to_ICA_ISA Desc="Fuel mass needed to climb from BR to ICA (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="kg">1715.660845</Fuel_to_ICA_ISA> + </Climb> + <TakeOff Desc="Start Performance"> + <TakeOffDistance_Normal Desc="Takeoff distance at Sea Level for MTOM and (ISA + deltaISA)-Conditions(calculated by missionAnalysis using missionDesign.xml settings)" ToolLevel="3" Unit="m">660.3942437</TakeOffDistance_Normal> + <TakeOffDistance_Normal_Safety Desc="Takeoff distance at Sea Level for MTOM and ISA+deltaISA(Requirements/DesignMission) (incl. 15 percent safety margin; estimated by calculatePerformance)" ToolLevel="2" Unit="m">1314.175463</TakeOffDistance_Normal_Safety> + <BFL Desc="Design takeoff distance - Balanced Field Length at Sea Level with MTOM and ISA+deltaISA(Requirements/DesignMission)-Conditions" ToolLevel="2" Unit="m">0</BFL> + <TimeToScreenHeight Desc="Time until reaching screen height (35ft) at Sea Level with MTOM and ISA+deltaISA(Requirements/DesignMission)-Conditions" ToolLevel="2" Unit="s">28.99214318</TimeToScreenHeight> + <V_LOF Desc="Lift-off speed at Sea Level for MTOM and ISA+deltaISA(Requirements/DesignMission)-Conditions" ToolLevel="2" Unit="KCAS">126.3711884</V_LOF> + <V_1 Desc="Decision Speed at Sea Level for MTOM and ISA+deltaISA(Requirements/DesignMission)-Conditions" ToolLevel="2" Unit="KCAS">0</V_1> + <V_2 Desc="Speed at screen height (35 ft)" ToolLevel="2" Unit="KCAS">126.3711884</V_2> + <V_FTO Desc="Speed at final takeoff segment (1500 ft)" ToolLevel="2" Unit="KCAS">202.4392823</V_FTO> + <ScdSegmentClimbGradient Desc="Climb gradient in second takeoff segment" ToolLevel="2" Unit="%">2.416614712</ScdSegmentClimbGradient> + <FinalSegmentClimbGradient Desc="Climb gradient in final takeoff segment" ToolLevel="2" Unit="%">2.416614712</FinalSegmentClimbGradient> + </TakeOff> + <Landing> + <LandingDistance Desc="Landing distance at Sea Level for MLM and (ISA + deltaISA)-Conditions(calculated by missionAnalysis using missionDesign.xml settings)" ToolLevel="3" Unit="m">1373.253939</LandingDistance> + <NeededRunwayLength Desc="Needed runway length at Sea Level with MLM and ISA+deltaISA(Requirements/DesignMission)-Conditions (Safety-Landing Distance according to FAR 121.195: landing_field_required/0.6)" ToolLevel="2" Unit="m">1680.105692</NeededRunwayLength> + <V_Approach Desc="Final Approach Speed" ToolLevel="2" Unit="KCAS">128.6850003</V_Approach> + </Landing> + <MissionAnalysis Desc="Missionsanalyse"> + <DesignMission Desc="Parameter der Design-Mission"> + <MissionFile Desc="Dateiname der Missionsdatei" ToolLevel="1" Unit="-">missionData\missionDesign.xml</MissionFile> + <CruiseSteps Desc="Anzahl der Hoehenschritte im Reiseflug-Missionsprofil" ToolLevel="3">2</CruiseSteps> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="1"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="3" Unit="-">0.5009643041</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="3" Unit="FL">330.0000005</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="2"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="3" Unit="-">1</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="3" Unit="FL">350.0000005</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="3"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="4"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="5"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="6"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="7"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="8"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="9"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="10"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="11"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="12"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="13"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="14"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="15"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <Missionfuel Desc="Getankter Kraftstoff (Tripfuel + Reserve Fuel + TaxifuelTakeoff)" ToolLevel="3" Unit="kg">19940.80556</Missionfuel> + <Tripfuel Desc="Tripfuel (Fuel burned from takeoff to landing)" ToolLevel="3" Unit="kg">16588.93118</Tripfuel> + <TaxifuelTakeoff Desc="Taxifuel vor dem Start" ToolLevel="3" Unit="kg">101.5157969</TaxifuelTakeoff> + <TaxifuelLdg Desc="Taxifuel nach der Landung" ToolLevel="3" Unit="kg">56.39766495</TaxifuelLdg> + <Blocktime Desc="Blocktime" ToolLevel="3" Unit="h">5.94079849</Blocktime> + <Flighttime Desc="Flugzeit ohne taxi" ToolLevel="3" Unit="h">5.707465156</Flighttime> + <Range Desc="Range" ToolLevel="3" Unit="NM">2500.496213</Range> + <TOM Desc="geflogenes Take Off Mass" ToolLevel="3" Unit="kg">79148.59668</TOM> + <Payload Desc="geflogene Payload" ToolLevel="3" Unit="kg">17000</Payload> + <NumberOfPAX Desc="Anzahl Passagiere" ToolLevel="3" Unit="-">150</NumberOfPAX> + <CargoMass Desc="Frachtmasse" ToolLevel="3" Unit="kg">3392</CargoMass> + <TakeOffEngineDerate Desc="Engine Derate (AMTC,eng); reduced takeoff-thrust" ToolLevel="3" Unit="-">1</TakeOffEngineDerate> + <Offtakes> + <AverageCruiseOfftakes Desc="Durschnittliche Entnahmen fuer Cruise-Modes Cruise und ChangeFL"> + <ShaftPowerTotal Desc="Gesamte Wellenleistungsentnahme durch alle Systeme (Sinks)" ToolLevel="1" Unit="kW">103.3245182</ShaftPowerTotal> + <BleedAirTotal Desc="Gesamte Zapfluftentnahme durch alle Systeme (Sinks)" ToolLevel="1" Unit="kg/s">0.8796612188</BleedAirTotal> + </AverageCruiseOfftakes> + </Offtakes> + <LiftCoefficientsCruise Desc="Erflogene Auftriebsbeiwerte im Reiseflug"> + <CL_avg Desc="Arithm. Mittelwert ueber gesamten Reiseflug" ToolLevel="3" Unit="-">0.5101767772</CL_avg> + <CL_min Desc="Min. Wert fuer gesamten Reiseflug" ToolLevel="3" Unit="-">0.4831782814</CL_min> + <CL_max Desc="Max. Wert fuer gesamten Reiseflug" ToolLevel="3" Unit="-">0.5667676169</CL_max> + </LiftCoefficientsCruise> + <MassesCruise Desc="Gesamtflugzeugmassen waehrend des Reiseflugs"> + <Mass_TOC Desc="Gesamtflugzeugmasse am Top-of-Climb-Punkt (ICA)" ToolLevel="3" Unit="kg">77451.03811</Mass_TOC> + <Mass_TOD Desc="Gesamtflugzeugmasse am Top-of-Descent-Punkt" ToolLevel="3" Unit="kg">63267.90838</Mass_TOD> + </MassesCruise> + </DesignMission> + <StudyMission Desc="Parameter der Study-Mission"> + <MissionFile Desc="Dateiname der Missionsdatei" ToolLevel="1" Unit="-">missionData\missionStudy.xml</MissionFile> + <CruiseSteps Desc="Anzahl der Hoehenschritte im Reiseflug-Missionsprofil" ToolLevel="3">1</CruiseSteps> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="1"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="3" Unit="-">1</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="3" Unit="FL">350.0000005</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="2"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="3"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="4"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="5"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="6"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="7"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="8"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="9"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="10"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="11"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="12"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="13"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="14"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="15"> + <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> + <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> + </CruiseStep> + <Missionfuel Desc="Getankter Kraftstoff (Tripfuel + Reserve Fuel + TaxifuelTakeoff)" ToolLevel="3" Unit="kg">6746.530829</Missionfuel> + <Tripfuel Desc="Tripfuel (Fuel burned from takeoff to landing)" ToolLevel="3" Unit="kg">3818.187572</Tripfuel> + <TaxifuelTakeoff Desc="Taxifuel vor dem Start" ToolLevel="3" Unit="kg">101.5158315</TaxifuelTakeoff> + <TaxifuelLdg Desc="Taxifuel nach der Landung" ToolLevel="3" Unit="kg">56.39768417</TaxifuelLdg> + <Blocktime Desc="Blocktime" ToolLevel="3" Unit="h">1.499139745</Blocktime> + <Flighttime Desc="Flugzeit ohne taxi" ToolLevel="3" Unit="h">1.265806411</Flighttime> + <Range Desc="Range" ToolLevel="3" Unit="NM">500.6435758</Range> + <TOM Desc="geflogenes Take Off Mass" ToolLevel="3" Unit="kg">62562.32191</TOM> + <Payload Desc="geflogene Payload" ToolLevel="3" Unit="kg">13608</Payload> + <NumberOfPAX Desc="Anzahl Passagiere" ToolLevel="3" Unit="-">150</NumberOfPAX> + <CargoMass Desc="Frachtmasse" ToolLevel="3" Unit="kg">0</CargoMass> + <TakeOffEngineDerate Desc="Engine Derate (AMTC,eng); reduced takeoff-thrust" ToolLevel="3" Unit="-">1</TakeOffEngineDerate> + <Offtakes> + <AverageCruiseOfftakes Desc="Durschnittliche Entnahmen fuer Cruise-Modes Cruise und ChangeFL"> + <ShaftPowerTotal Desc="Gesamte Wellenleistungsentnahme durch alle Systeme (Sinks)" ToolLevel="1" Unit="kW">102.8677337</ShaftPowerTotal> + <BleedAirTotal Desc="Gesamte Zapfluftentnahme durch alle Systeme (Sinks)" ToolLevel="1" Unit="kg/s">0.8796612188</BleedAirTotal> + </AverageCruiseOfftakes> + </Offtakes> + <LiftCoefficientsCruise Desc="Erflogene Auftriebsbeiwerte im Reiseflug"> + <CL_avg Desc="Arithm. Mittelwert ueber gesamten Reiseflug" ToolLevel="3" Unit="-">0.4609914236</CL_avg> + <CL_min Desc="Min. Wert fuer gesamten Reiseflug" ToolLevel="3" Unit="-">0.4538594196</CL_min> + <CL_max Desc="Max. Wert fuer gesamten Reiseflug" ToolLevel="3" Unit="-">0.4925634903</CL_max> + </LiftCoefficientsCruise> + <MassesCruise Desc="Gesamtflugzeugmassen waehrend des Reiseflugs"> + <Mass_TOC Desc="Gesamtflugzeugmasse am Top-of-Climb-Punkt (ICA)" ToolLevel="3" Unit="kg">61280.43659</Mass_TOC> + <Mass_TOD Desc="Gesamtflugzeugmasse am Top-of-Descent-Punkt" ToolLevel="3" Unit="kg">59428.93455</Mass_TOD> + </MassesCruise> + </StudyMission> + </MissionAnalysis> + <RequirementsChecks> + <MissionFile Desc="Dateiname der Missionsdatei" OfftakesWritten="1" ToolLevel="1" Unit="-">missionData\missionReq.xml</MissionFile> + <TLARs> + <TOFL_Design Checked="1" ToolLevel="2">1</TOFL_Design> + <LDN_Design Checked="1" ToolLevel="2">1</LDN_Design> + <V_ApproachSpeed_Design Checked="1" ToolLevel="2">1</V_ApproachSpeed_Design> + <h_initialCruise_Design Checked="1" ToolLevel="3">1</h_initialCruise_Design> + <h_maxOperating Checked="1" ToolLevel="3">1</h_maxOperating> + <h_maxOEI Checked="1" ToolLevel="3">1</h_maxOEI> + <M_initialCruise_Design Checked="1" ToolLevel="3">1</M_initialCruise_Design> + <TTC_Design Checked="1" ToolLevel="3">1</TTC_Design> + </TLARs> + <Certification> + <climbGradientSecondTOSegment Checked="1" ToolLevel="2">1</climbGradientSecondTOSegment> + <climbGradientFinalTOSegment Checked="1" ToolLevel="2">1</climbGradientFinalTOSegment> + <climbGradientApproachOEI Checked="1" ToolLevel="2">1</climbGradientApproachOEI> + <climbGradientApproachAEO Checked="1" ToolLevel="2">1</climbGradientApproachAEO> + </Certification> + </RequirementsChecks> + </Performance> + <MonetaryValues Desc="Kosten und Preise"> + <MonetaryScenario> + <AirframeEngineeringHours Desc="Anzahl der Arbeitsstunden in der FZ-Entwicklung" ToolLevel="1" Unit="h">0</AirframeEngineeringHours> + <ProductionVolume Desc="Anzahl produzierter Flugzeuge je Programm" ToolLevel="1">0</ProductionVolume> + </MonetaryScenario> + <Earnings Desc="Herstellergewinn pro verkauftem Flugzeug" ToolLevel="1" Unit="$">0</Earnings> + <NPV Desc="Net Present Value (Kapitalwert) fuer Flugzeugprogramm bei Verkauf des gesamten ProductionVolume" ToolLevel="1" Unit="Mio.$">0</NPV> + <Prices Desc="Preise"> + <PriceAirplane Desc="airplane price (for the whole plane); for the insurance and for the Simple_deprecition in DOC-Tool" ToolLevel="1" Unit="$">0</PriceAirplane> + <DiscountRate Desc="discount rate on airplane lst price granted airlines" ToolLevel="1" Unit="-">0</DiscountRate> + </Prices> + <LCC Desc="Life Cycle Costs"> + <NonRecurringCosts Desc="Non-Recurring Costs fuer gesamtes Flugzeugprogramm"> + <NRCTotal Desc="Non Recurring Costs" ToolLevel="1" Unit="$">0</NRCTotal> + <NRCComponents> + <AirframeEngAndDesign Desc="Costs for Airframe Engineering and Design" ToolLevel="1" Unit="$">0</AirframeEngAndDesign> + <DevSupportAndTesting Desc="Costs for Development Support and Testing" ToolLevel="1" Unit="$">0</DevSupportAndTesting> + <FlightTestAC> + <FlightTestACTotal Desc="Costs for Flight Test Aircraft" ToolLevel="1" Unit="$">0</FlightTestACTotal> + <FlightTestACComponents> + <EngineAndAvionics Desc="Costs for Engines and Avionics" ToolLevel="1" Unit="$">0</EngineAndAvionics> + <LaborManufacturing Desc="Costs for Manufacturing Labor" ToolLevel="1" Unit="$">0</LaborManufacturing> + <MaterialManufacturing Desc="Costs for Manufacturing Material" ToolLevel="1" Unit="$">0</MaterialManufacturing> + <Tooling Desc="Costs for Tooling" ToolLevel="1" Unit="$">0</Tooling> + <QualityControl Desc="Costs for Quality Control" ToolLevel="1" Unit="$">0</QualityControl> + </FlightTestACComponents> + </FlightTestAC> + <FlightTestOp Desc="Costs for Flight Test Operations" ToolLevel="1" Unit="$">0</FlightTestOp> + <Facilities Desc="Costs for Test and Simulation Facilities" ToolLevel="1" Unit="$">0</Facilities> + </NRCComponents> + </NonRecurringCosts> + <RecurringCosts Desc="Recurring Costs"> + <RCTotal Desc="Recurring Costs" ToolLevel="1" Unit="$">0</RCTotal> + <RCComponents> + <Wing Desc="Costs for Wing" ToolLevel="1" Unit="$">0</Wing> + <Fuselage Desc="Costs for Fuselage" ToolLevel="1" Unit="$">0</Fuselage> + <Empennage Desc="Costs for Empennage" ToolLevel="1" Unit="$">0</Empennage> + <LandingGear Desc="Costs for Landing Gear" ToolLevel="1" Unit="$">0</LandingGear> + <Pylons Desc="Costs for Pylons" ToolLevel="1" Unit="$">0</Pylons> + <PowerUnit Desc="Costs for all installed engines with systems without pylons"> + <PowerUnitTotal Desc="Costs for PowerUnit" ToolLevel="1" Unit="$">0</PowerUnitTotal> + <PowerUnitComponents> + <EquippedEngines Desc="Costs for Engines Dry and Other Systems" ToolLevel="1" Unit="$">0</EquippedEngines> + <Nacelles Desc="Costs for Nacelles" ToolLevel="1" Unit="$">0</Nacelles> + <BleedAirSystem Desc="Costs for BleedAirSystem (Airbus Chapter 21, ATA36)" ToolLevel="1" Unit="$">0</BleedAirSystem> + <FuelSystem Desc="Costs for Fuel System (Airbus Chapter 23, ATA28)" ToolLevel="1" Unit="$">0</FuelSystem> + </PowerUnitComponents> + </PowerUnit> + <Systems> + <SystemsTotal Desc="Costs for Systems" ToolLevel="1" Unit="$">0</SystemsTotal> + <SystemsComponents> + <APU Desc="Costs for APU (Airbus Chapter 30, ATA49)" ToolLevel="1" Unit="$">0</APU> + <HydraulicSystem Desc="Costs for Hydraulic System (Airbus Chapter 31 + 32,ATA29)" ToolLevel="1" Unit="$">0</HydraulicSystem> + <AirConditioning Desc="Costs for Air Conditioning (Airbus Chapter 33, ATA21)" ToolLevel="1" Unit="$">0</AirConditioning> + <DeIcing Desc="Costs for De-Icing (Airbus Chapter 34, ATA30)" ToolLevel="1" Unit="$">0</DeIcing> + <FireProtection Desc="Costs for Fire Protection (Airbus Chapter 35, ATA26)" ToolLevel="1" Unit="$">0</FireProtection> + <FlightControls Desc="Costs for Flight Controls (Airbus Chapter 36, ATA27)" ToolLevel="1" Unit="$">0</FlightControls> + <Instruments Desc="Costs for Instruments (Airbus Chapter 37, ATA31)" ToolLevel="1" Unit="$">0</Instruments> + <AutomaticFlightSystem Desc="Costs for Automatic Flight System (Airbus Chapter 38, ATA22)" ToolLevel="1" Unit="$">0</AutomaticFlightSystem> + <Navigation Desc="Costs for Navigation (Airbus Chapter 39, ATA34)" ToolLevel="1" Unit="$">0</Navigation> + <Communication Desc="Costs for Communication (Airbus Chapter 40, ATA23)" ToolLevel="1" Unit="$">0</Communication> + <ElectricalSystem Desc="Costs for Air Conditioning (Airbus Chapter 41+42, ATA24)" ToolLevel="1" Unit="$">0</ElectricalSystem> + </SystemsComponents> + </Systems> + <Furnishings> + <FurnishingsTotal Desc="Costs for Furnishings" ToolLevel="1" Unit="$">0</FurnishingsTotal> + <FurnishingsComponents> + <Furnishing Desc="Costs for Furnishings (Airbus Chapter 50, ATA25)" ToolLevel="1" Unit="$">0</Furnishing> + <FixedEmergencyOxygen Desc="Costs for Fixed Emergency Oxygen (Airbus Chapter 51, ATA35)" ToolLevel="1" Unit="$">0</FixedEmergencyOxygen> + <Lighting Desc="Costs for Lighting (Airbus Chapter 52, ATA33)" ToolLevel="1" Unit="$">0</Lighting> + <WaterInstallation Desc="Costs for Water Installation (Airbus Chapter 53, ATA38)" ToolLevel="1" Unit="$">0</WaterInstallation> + </FurnishingsComponents> + </Furnishings> + <OperatorsItems Desc="Costs for OperatorItems (Airbus Chapter 60+61)" ToolLevel="1" Unit="$">0</OperatorsItems> + <FinalAssembly Desc="Costs for FinalAssembly" ToolLevel="1" Unit="$">0</FinalAssembly> + </RCComponents> + </RecurringCosts> + <OperatingCosts> + <OperatingScenario Desc="Umrechnungsfaktor fuer verschiedene DOC-Einheiten, zusaetzlich aus A/C-XML: Nseats=PassengersTotal"> + <FlightsPerYear Desc="Flights per year / take-offs annually; aus operating_company.xml" ToolLevel="1" Unit="">0</FlightsPerYear> + <SeatLoadFactor Desc="utilisation factor for the payload; aus operating_company.xml" ToolLevel="1" Unit="">0</SeatLoadFactor> + </OperatingScenario> + <DirectOperatingCosts> + <DOC_total Desc="Summe aller DOCComponents (s.u)"> + <DOC_year Desc="DOC pro Jahr" ToolLevel="1" Unit="$/year">0</DOC_year> + <DOC_FH Desc="DOC pro Flugstunde = DOC_year/(Nta*Tflight)" ToolLevel="1" Unit="$/FH">0</DOC_FH> + <DOC_flight Desc="DOC pro Flug = DOC_year/(Nta)" ToolLevel="1" Unit="$/flight">0</DOC_flight> + <DOC_km Desc="DOC pro km = DOC_year/(Nta*R)" ToolLevel="1" Unit="$/km">0</DOC_km> + <DOC_100ASK Desc="DOC pro 100 Available Seat Kilometer = DOC_year/(Nta*R*Nseats)" ToolLevel="1" Unit="$/100ASK">0</DOC_100ASK> + </DOC_total> + <COC_total Desc="Summe aller DOCComponents ausser Depreciation und Insurance"> + <COC_year Desc="COC pro Jahr" ToolLevel="1" Unit="$/year">0</COC_year> + <COC_FH Desc="COC pro Flugstunde = COC_year/(Nta*Tflight)" ToolLevel="1" Unit="$/FH">0</COC_FH> + <COC_flight Desc="COC pro Flug = COC_year/(Nta)" ToolLevel="1" Unit="$/flight">0</COC_flight> + <COC_km Desc="COC pro km = COC_year/(Nta*R)" ToolLevel="1" Unit="$/km">0</COC_km> + <COC_100ASK Desc="COC pro 100 Available Seat Kilometer = COC_year/(Nta*R*Nseats)" ToolLevel="1" Unit="$/100ASK">0</COC_100ASK> + </COC_total> + <DOCComponents Desc="DOC-Anteile in 100ASK"> + <Charge Desc="Gebuehren pro 100ASK"> + <ChargeTotal Desc="total charges" ToolLevel="1" Unit="$/100ASK">0</ChargeTotal> + <ChargesComponents> + <NavigationCharge Desc="navigational charges" ToolLevel="1" Unit="$/100ASK">0</NavigationCharge> + <LandingCharge Desc="landing charges" ToolLevel="1" Unit="$/100ASK">0</LandingCharge> + <LandingChargeComponents> + <NoiseCharge Desc="noise charges" ToolLevel="1" Unit="$/100ASK">0</NoiseCharge> + <NOxCharge Desc="NOx charges" ToolLevel="1" Unit="$/100ASK">0</NOxCharge> + <ChargeWithoutEmission Desc="landing charges without emissions (noise + NOx)" ToolLevel="1" Unit="$/100ASK">0</ChargeWithoutEmission> + </LandingChargeComponents> + <GroundCharge Desc="ground charges" ToolLevel="1" Unit="$/100ASK">0</GroundCharge> + </ChargesComponents> + </Charge> + <Depreciation Desc="Abschreibungskosten" ToolLevel="1" Unit="$/100ASK">0</Depreciation> + <Insurance Desc="Versicherungskosten" ToolLevel="1" Unit="$/100ASK">0</Insurance> + <Maintenance Desc="Wartungskosten"> + <MaintenanceTotal Desc="Wartungskosten gesamt" ToolLevel="1" Unit="$/100ASK">0</MaintenanceTotal> + <MaintenanceComponents> + <Airframe Desc="Wartungskosten Airframe"> + <AirframeTotal Desc="Wartungskosten Airframe gesamt" ToolLevel="1" Unit="$/100ASK">0</AirframeTotal> + <CostComponents> + <LabourCosts Desc="Arbeitskosten Wartung Airframe" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Materialkosten Wartung Airframe" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + <AirframeComponents Desc="Kostenwert fuer das ATA Kapitel"> + <ATA21 Desc="Environmental Control System"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA21> + <ATA22 Desc="Autoflight"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA22> + <ATA23 Desc="Communications"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA23> + <ATA24 Desc="Electrical System"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA24> + <ATA25 Desc="Furnishing"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA25> + <ATA26 Desc="Fire Protection"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA26> + <ATA27 Desc="Flight Control System"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA27> + <ATA28 Desc="Fuel System"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA28> + <ATA29 Desc="Hydraulic System"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA29> + <ATA30 Desc="Ice and Rain Protection"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA30> + <ATA31 Desc="Instrumentation"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA31> + <ATA32 Desc="Landing Gear"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA32> + <ATA33 Desc="Lights"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA33> + <ATA34 Desc="Navigation"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA34> + <ATA35 Desc="Oxygen"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA35> + <ATA36 Desc="Pneumatic"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA36> + <ATA38 Desc="Water and Waste"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA38> + <ATA49 Desc="APU"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA49> + <ATA51 Desc="Structure"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA51> + <ATA52 Desc="Doors"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA52> + <ATA53 Desc="Fuselage"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA53> + <ATA54 Desc="Nacelles"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA54> + <ATA55 Desc="Stabilizers"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA55> + <ATA56 Desc="Windows"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA56> + <ATA57 Desc="Wings"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA57> + <ATA99 Desc="Routinearbeiten, hauptsaechlich Inspektion"> + <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> + <CostComponents> + <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> + <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> + </CostComponents> + </ATA99> + </AirframeComponents> + </Airframe> + <Engine Desc="Wartungskosten Triebwerk" ToolLevel="1" Unit="$/100ASK">0</Engine> + </MaintenanceComponents> + </Maintenance> + <Fuel Desc="Spritkosten" ToolLevel="1" Unit="$/100ASK">0</Fuel> + <Crew Desc="Crew Kosten"> + <CrewTotal Desc="Crew Kosten gesamt" ToolLevel="1" Unit="$/100ASK">0</CrewTotal> + <CrewComponents> + <FlightCrew Desc="Flight Crew Kosten" ToolLevel="1" Unit="$/100ASK">0</FlightCrew> + <CabinCrew Desc="Cabin Crew Kosten" ToolLevel="1" Unit="$/100ASK">0</CabinCrew> + </CrewComponents> + </Crew> + <Delay Desc="Verspaetungskosten" ToolLevel="1" Unit="$/100ASK">0</Delay> + </DOCComponents> + </DirectOperatingCosts> + <IndirectOperatingCosts> + <IOC_total Desc="Summe aller IOCComponents (s.u)"> + <IOC_year Desc="IOC pro Jahr" ToolLevel="1" Unit="$/year">0</IOC_year> + <IOC_FH Desc="IOC pro Flugstunde = IOC_year/(Nta*Tflight)" ToolLevel="1" Unit="$/FH">0</IOC_FH> + <IOC_flight Desc="IOC pro Flug = IOC_year/(Nta)" ToolLevel="1" Unit="$/flight">0</IOC_flight> + <IOC_km Desc="IOC pro km = IOC_year/(Nta*R)" ToolLevel="1" Unit="$/km">0</IOC_km> + <IOC_100ASK Desc="IOC pro 100 Available Seat Kilometer = IOC_year/(Nta*R*Nseats)" ToolLevel="1" Unit="$/100ASK">0</IOC_100ASK> + </IOC_total> + </IndirectOperatingCosts> + </OperatingCosts> + <EndOfLifeCosts> + <EOLCTotal Desc="End-of-Life Costs" ToolLevel="1" Unit="$">0</EOLCTotal> + <EOLCTotalComponents> + <TransportToEoLSite Desc="Kosten fuer Transport zur Abwrack-Location" ToolLevel="1" Unit="$">0</TransportToEoLSite> + <DisassemblyAndDismantling Desc="Kosten fuer Dissassembly and Dismantling" ToolLevel="1" Unit="$">0</DisassemblyAndDismantling> + <Recycling Desc="Materialrecycling, bei negativem Wert Benefit durch Materialverkauf" ToolLevel="1" Unit="$">0</Recycling> + <Incineration Desc="Kosten fuer Verbrennung (inkl. shredding, mixing, incineration, and landfill of ash) " ToolLevel="1" Unit="$">0</Incineration> + <Landfill Desc="Kosten fuer Landfill" ToolLevel="1" Unit="$">0</Landfill> + </EOLCTotalComponents> + </EndOfLifeCosts> + </LCC> + </MonetaryValues> + <EcologicalValues Desc="Oekologische Bewertung"> + <Noise Desc="Akustische Kenngroessen und Laermbewertungsmasse"> + <NoisePathFiles> + <Departure Desc="Dateiname des Departure Path" ToolLevel="1">0</Departure> + <Approach Desc="Dateiname des Approach Path" ToolLevel="1">0</Approach> + </NoisePathFiles> + <NoiseCertificationLevels> + <LateralPoint> + <LateralFullPower Desc="EPNL Sideline Zertifizierungspegel, ICAO Annex 16/3 und 16/4 Zertifizierungslaermpegel" ToolLevel="1" Unit="EPNdB">0</LateralFullPower> + <SPL Desc="dBA at lateral point" ToolLevel="1" Unit="dBA">0</SPL> + <Loudness Desc="Loudness at lateral point" ToolLevel="1" Unit="Sone">0</Loudness> + <Tonality Desc="Tonality at lateral point" ToolLevel="1" Unit="tonality units t.u.">0</Tonality> + <Sharpness Desc="Sharpness at lateral point" ToolLevel="1" Unit="Acum">0</Sharpness> + <PsychoacousticAnnoyance Desc="Psychoacoustic Annoyance at lateral point" ToolLevel="1" Unit="-">0</PsychoacousticAnnoyance> + </LateralPoint> + <FlyoverPoint> + <Flyover Desc="EPNL Flyover Zertifizierungspegel, ICAO Annex 16/3 und 16/4 Zertifizierungslaermpegel" ToolLevel="1" Unit="EPNdB">0</Flyover> + <SPL Desc="dBA at flyover point" ToolLevel="1" Unit="dBA">0</SPL> + <Loudness Desc="Loudness at flyover point" ToolLevel="1" Unit="Sone">0</Loudness> + <Tonality Desc="Tonality at flyover point" ToolLevel="1" Unit="tonality units t.u.">0</Tonality> + <Sharpness Desc="Sharpness at flyover point" ToolLevel="1" Unit="Acum">0</Sharpness> + <PsychoacousticAnnoyance Desc="Psychoacoustic Annoyance at flyover point" ToolLevel="1" Unit="-">0</PsychoacousticAnnoyance> + </FlyoverPoint> + <ApproachPoint> + <Approach Desc="EPNL Approach Zertifizierungspegel, ICAO Annex 16/3 und 16/4 Zertifizierungslaermpegel" ToolLevel="1" Unit="EPNdB">0</Approach> + <SPL Desc="dBA at approach point" ToolLevel="1" Unit="dBA">0</SPL> + <Loudness Desc="Loudness at approach point" ToolLevel="1" Unit="Sone">0</Loudness> + <Tonality Desc="Tonality at approach point" ToolLevel="1" Unit="tonality units t.u.">0</Tonality> + <Sharpness Desc="Sharpness at approach point" ToolLevel="1" Unit="Acum">0</Sharpness> + <PsychoacousticAnnoyance Desc="Psychoacoustic Annoyance at approach point" ToolLevel="1" Unit="-">0</PsychoacousticAnnoyance> + </ApproachPoint> + <CumulativeValues> + <EPNdB Desc="EPNL Cumulative Zertifizierungspegel, ICAO Annex 16/3 und 16/4 Zertifizierungslaermpegel" ToolLevel="1" Unit="EPNdB">0</EPNdB> + <SPL Desc="Cumulative dBA at the three points" ToolLevel="1" Unit="dBA">0</SPL> + <Loudness Desc="Cumulative Loudness at the three points" ToolLevel="1" Unit="Sone">0</Loudness> + <Tonality Desc="Tonality at the three points" ToolLevel="1" Unit="tonality units t.u.">0</Tonality> + <Sharpness Desc="Sharpness at the three points" ToolLevel="1" Unit="Acum">0</Sharpness> + <PsychoacousticAnnoyance Desc="Psychoacoustic Annoyance at the three points" ToolLevel="1" Unit="-">0</PsychoacousticAnnoyance> + </CumulativeValues> + </NoiseCertificationLevels> + <CommunityNoiseLevels> + <TakeOff> + <SPL Desc="Sound Pressure Level 10km from brake release" ToolLevel="1" Unit="dBA">0</SPL> + <SPLarea> + <dBAthreshold1 Desc="Area of SPL higher or equal than 55 dBA" ToolLevel="1" Unit="km2">0</dBAthreshold1> + <dBAthreshold2 Desc="Area of SPL higher or equal than 75 dBA" ToolLevel="1" Unit="km2">0</dBAthreshold2> + </SPLarea> + <PNLarea> + <PNLthreshold1 Desc="Area of PNL higher or equal than 65 PNLdB" ToolLevel="1" Unit="km2">0</PNLthreshold1> + <PNLthreshold2 Desc="Area of PNL higher or equal than 85 PNLdB" ToolLevel="1" Unit="km2">0</PNLthreshold2> + </PNLarea> + <PNLTarea> + <PNLTthreshold1 Desc="Area of PNLT higher or equal than 65 PNTdB" ToolLevel="1" Unit="km2">0</PNLTthreshold1> + <PNLTthreshold2 Desc="Area of PNLT higher or equal than 85 PNTdB" ToolLevel="1" Unit="km2">0</PNLTthreshold2> + </PNLTarea> + <EPNLarea> + <EPNLthreshold1 Desc="Area of EPNL higher or equal than 65 EPNdB" ToolLevel="1" Unit="km2">0</EPNLthreshold1> + <EPNLthreshold2 Desc="Area of EPNL higher or equal than 85 EPNdB" ToolLevel="1" Unit="km2">0</EPNLthreshold2> + </EPNLarea> + <LoudnessArea> + <LoudnessThreshold1 Desc="Area of Zwickers loudness higher or equal than 65 Phon" ToolLevel="1" Unit="km2">0</LoudnessThreshold1> + <LoudnessThreshold2 Desc="Area of Zwickers loudness higher or equal than 85 Phon" ToolLevel="1" Unit="km2">0</LoudnessThreshold2> + </LoudnessArea> + <TonalityArea> + <TonalityThreshold1 Desc="Area of tonality higher or equal than 0.075 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold1> + <TonalityThreshold2 Desc="Area of tonality higher or equal than 0.15 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold2> + <TonalityThreshold3 Desc="Area of tonality higher or equal than 0.25 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold3> + <TonalityThreshold4 Desc="Area of tonality higher or equal than 0.35 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold4> + </TonalityArea> + <SharpnessArea> + <SharpnessThreshold1 Desc="Area of sharpness higher or equal than 0.75 acum" ToolLevel="1" Unit="km2">0</SharpnessThreshold1> + <SharpnessThreshold2 Desc="Area of sharpness higher or equal than 1.0 acum" ToolLevel="1" Unit="km2">0</SharpnessThreshold2> + </SharpnessArea> + <PsychoacousticAnnoyanceArea> + <PAthreshold1 Desc="Area of PA higher or equal than 10" ToolLevel="1" Unit="km2">0</PAthreshold1> + <PAthreshold2 Desc="Area of PA higher or equal than 20" ToolLevel="1" Unit="km2">0</PAthreshold2> + </PsychoacousticAnnoyanceArea> + <SELarea Desc="Sound Exposure Level area"> + <dBA85 Desc="Area of Sound Exposure Level higher or equal than 85 dBA" ToolLevel="1" Unit="km2">0</dBA85> + <dBA75 Desc="Area of Sound Exposure Level higher or equal than 75 dBA" ToolLevel="1" Unit="km2">0</dBA75> + <dBA65 Desc="Area of Sound Exposure Level higher or equal than 65 dBA" ToolLevel="1" Unit="km2">0</dBA65> + <dBA55 Desc="Area of Sound Exposure Level higher or equal than 55 dBA" ToolLevel="1" Unit="km2">0</dBA55> + </SELarea> + </TakeOff> + <Approach> + <SPL Desc="Sound Pressure Level 15km from touchdown" ToolLevel="1" Unit="dBA">0</SPL> + <SPLarea> + <dBAthreshold1 Desc="Area of SPL higher or equal than 55 dBA" ToolLevel="1" Unit="km2">0</dBAthreshold1> + <dBAthreshold2 Desc="Area of SPL higher or equal than 75 dBA" ToolLevel="1" Unit="km2">0</dBAthreshold2> + </SPLarea> + <PNLarea> + <PNLthreshold1 Desc="Area of PNL higher or equal than 65 PNLdB" ToolLevel="1" Unit="km2">0</PNLthreshold1> + <PNLthreshold2 Desc="Area of PNL higher or equal than 85 PNLdB" ToolLevel="1" Unit="km2">0</PNLthreshold2> + </PNLarea> + <PNLTarea> + <PNLTthreshold1 Desc="Area of PNLT higher or equal than 65 PNTdB" ToolLevel="1" Unit="km2">0</PNLTthreshold1> + <PNLTthreshold2 Desc="Area of PNLT higher or equal than 85 PNTdB" ToolLevel="1" Unit="km2">0</PNLTthreshold2> + </PNLTarea> + <EPNLarea> + <EPNLthreshold1 Desc="Area of EPNL higher or equal than 65 EPNdB" ToolLevel="1" Unit="km2">0</EPNLthreshold1> + <EPNLthreshold2 Desc="Area of EPNL higher or equal than 85 EPNdB" ToolLevel="1" Unit="km2">0</EPNLthreshold2> + </EPNLarea> + <LoudnessArea> + <LoudnessThreshold1 Desc="Area of Zwickers loudness higher or equal than 65 Sone" ToolLevel="1" Unit="km2">0</LoudnessThreshold1> + <LoudnessThreshold2 Desc="Area of Zwickers loudness higher or equal than 85 Sone" ToolLevel="1" Unit="km2">0</LoudnessThreshold2> + </LoudnessArea> + <TonalityArea> + <TonalityThreshold1 Desc="Area of tonality higher or equal than 0.075 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold1> + <TonalityThreshold2 Desc="Area of tonality higher or equal than 0.10 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold2> + <TonalityThreshold3 Desc="Area of tonality higher or equal than 0.20 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold3> + <TonalityThreshold4 Desc="Area of tonality higher or equal than 0.25 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold4> + </TonalityArea> + <SharpnessArea> + <SharpnessThreshold1 Desc="Area of sharpness higher or equal than 0.75 acum" ToolLevel="1" Unit="km2">0</SharpnessThreshold1> + <SharpnessThreshold2 Desc="Area of sharpness higher or equal than 1.0 acum" ToolLevel="1" Unit="km2">0</SharpnessThreshold2> + </SharpnessArea> + <PsychoacousticAnnoyanceArea> + <PAthreshold1 Desc="Area of PA higher or equal than 10" ToolLevel="1" Unit="km2">0</PAthreshold1> + <PAthreshold2 Desc="Area of PA higher or equal than 20" ToolLevel="1" Unit="km2">0</PAthreshold2> + </PsychoacousticAnnoyanceArea> + <SELarea Desc="Sound Exposure Level area"> + <dBA85 Desc="Area of Sound Exposure Level higher or equal than 85 dBA" ToolLevel="1" Unit="km2">0</dBA85> + <dBA75 Desc="Area of Sound Exposure Level higher or equal than 75 dBA" ToolLevel="1" Unit="km2">0</dBA75> + <dBA65 Desc="Area of Sound Exposure Level higher or equal than 65 dBA" ToolLevel="1" Unit="km2">0</dBA65> + <dBA55 Desc="Area of Sound Exposure Level higher or equal than 55 dBA" ToolLevel="1" Unit="km2">0</dBA55> + </SELarea> + </Approach> + <CumulativeValues> + <EPNdB Desc="85 EPNdB area sum for takeoff and approach" ToolLevel="1" Unit="EPNdB">0</EPNdB> + <SPL Desc="75 dBA area sum for takeoff and approach" ToolLevel="1" Unit="dBA">0</SPL> + <Loudness Desc="85 Phon loudness area sum for takeoff and approach" ToolLevel="1" Unit="Sone">0</Loudness> + <Tonality Desc="Tonality area sum for takeoff and approach - 0.1 t.u. for short-range and 0.2 t.u. for long-range AC" ToolLevel="1" Unit="tonality units t.u.">0</Tonality> + <Sharpness Desc="1.0 Acum sharpness area sum for takeoff and approach" ToolLevel="1" Unit="Acum">0</Sharpness> + <PsychoacousticAnnoyance Desc="Psychoacoustic Annoyance of 10 area sum for takeoff and approach" ToolLevel="1" Unit="-">0</PsychoacousticAnnoyance> + </CumulativeValues> + </CommunityNoiseLevels> + </Noise> + <Emissions> + <Development Desc="Analyse der Entwicklungsphase fuer gesamtes Flugzeugprogramm"> + <CO2 Desc="Kohlenstoffdioxid" ToolLevel="1" Unit="kg">0</CO2> + <H2O Desc="Wasser" ToolLevel="1" Unit="kg">0</H2O> + <NOx Desc="Stickoxide" ToolLevel="1" Unit="kg">0</NOx> + <CO Desc="Kohlenmonoxid" ToolLevel="1" Unit="kg">0</CO> + <SO2 Desc="Schwefeldioxid" ToolLevel="1" Unit="kg">0</SO2> + <CH4 Desc="Methan" ToolLevel="1" Unit="kg">0</CH4> + <PM10 Desc="Feinstaub" ToolLevel="1" Unit="kg">0</PM10> + <N2O Desc="Distickstoffmonoxid (Lachgas)" ToolLevel="1" Unit="kg">0</N2O> + <PFC Desc="Perfluoromethane und Perfluoroethane" ToolLevel="1" Unit="kg">0</PFC> + <NMVOC Desc="non methane volatile organic compounds" ToolLevel="1" Unit="kg">0</NMVOC> + <HC Desc="Kohlenwasserstoff" ToolLevel="1" Unit="kg">0</HC> + </Development> + <Production> + <CO2 Desc="Kohlenstoffdioxid" ToolLevel="1" Unit="kg">0</CO2> + <H2O Desc="Wasser" ToolLevel="1" Unit="kg">0</H2O> + <NOx Desc="Stickoxide" ToolLevel="1" Unit="kg">0</NOx> + <CO Desc="Kohlenmonoxid" ToolLevel="1" Unit="kg">0</CO> + <SO2 Desc="Schwefeldioxid" ToolLevel="1" Unit="kg">0</SO2> + <CH4 Desc="Methan" ToolLevel="1" Unit="kg">0</CH4> + <PM10 Desc="Feinstaub" ToolLevel="1" Unit="kg">0</PM10> + <N2O Desc="Distickstoffmonoxid (Lachgas)" ToolLevel="1" Unit="kg">0</N2O> + <PFC Desc="Perfluoromethane und Perfluoroethane" ToolLevel="1" Unit="kg">0</PFC> + <NMVOC Desc="non methane volatile organic compounds" ToolLevel="1" Unit="kg">0</NMVOC> + <HC Desc="Kohlenwasserstoff" ToolLevel="1" Unit="kg">0</HC> + </Production> + <Operations> + <CO2 Desc="Kohlenstoffdioxid" ToolLevel="1" Unit="kg">0</CO2> + <H2O Desc="Wasser" ToolLevel="1" Unit="kg">0</H2O> + <NOx Desc="Stickoxide" ToolLevel="1" Unit="kg">0</NOx> + <CO Desc="Kohlenmonoxid" ToolLevel="1" Unit="kg">0</CO> + <SO2 Desc="Schwefeldioxid" ToolLevel="1" Unit="kg">0</SO2> + <CH4 Desc="Methan" ToolLevel="1" Unit="kg">0</CH4> + <PM10 Desc="Feinstaub" ToolLevel="1" Unit="kg">0</PM10> + <N2O Desc="Distickstoffmonoxid (Lachgas)" ToolLevel="1" Unit="kg">0</N2O> + <PFC Desc="Perfluoromethane und Perfluoroethane" ToolLevel="1" Unit="kg">0</PFC> + <NMVOC Desc="non methane volatile organic compounds" ToolLevel="1" Unit="kg">0</NMVOC> + <HC Desc="Kohlenwasserstoff" ToolLevel="1" Unit="kg">0</HC> + <OperationComponents> + <ICAO_LTO Desc="Triebwerksemissionen bestimmt nach dem LTO-Cycle gemaess ICAO Engine Emission Database und Standardzeiten fuer eine (!) StudyMission"> + <CO2 Desc="CO2 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</CO2> + <H2O Desc="H2O emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</H2O> + <SO2 Desc="SO2 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</SO2> + <HC Desc="HC emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</HC> + <CO Desc="CO emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</CO> + <NOx Desc="NOx emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</NOx> + <PM10 Desc="PM10 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</PM10> + </ICAO_LTO> + <Mission Desc="Environmental analysis of one study mission"> + <LTOTimes Desc="Times of LTO phases (all phases under 3000 ft)"> + <Total Desc="Taxi, Take-off, Climb Out and Approach time (LTO)" ToolLevel="1" Unit="min">0</Total> + <TaxiTime Desc="Time for taxi (ICAO: 26 min)" ToolLevel="1" Unit="min">0</TaxiTime> + <TakeOffTime Desc="Time for take-off (until 35ft) (ICAO: 0.7 min)" ToolLevel="1" Unit="min">0</TakeOffTime> + <ClimbOutTime Desc="Time for climb out (35 ft to 3000ft)(ICAO: 2.2 min)" ToolLevel="1" Unit="min">0</ClimbOutTime> + <ApproachTime Desc="Time for approach (from 3000 ft to stop)(ICAO: 4 min)" ToolLevel="1" Unit="min">0</ApproachTime> + </LTOTimes> + <LTO Desc="Triebwerksemissionen bestimmt nach dem LTO-Cycle mit Missionsanalyse fuer eine (!) StudyMission"> + <CO2 Desc="CO2 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</CO2> + <H2O Desc="H2O emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</H2O> + <SO2 Desc="SO2 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</SO2> + <HC Desc="HC emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</HC> + <CO Desc="CO emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</CO> + <NOx Desc="NOx emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</NOx> + <PM10 Desc="PM10 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</PM10> + </LTO> + <Cruise Desc="Triebwerksemissionen des Reiseflugs fuer eine (!) StudyMission"> + <CO2 Desc="CO2 emitted during cruise" ToolLevel="1" Unit="kg">0</CO2> + <H2O Desc="H2O emitted during cruise" ToolLevel="1" Unit="kg">0</H2O> + <SO2 Desc="SO2 emitted during cruise" ToolLevel="1" Unit="kg">0</SO2> + <HC Desc="HC emitted during cruise" ToolLevel="1" Unit="kg">0</HC> + <CO Desc="CO emitted during cruise" ToolLevel="1" Unit="kg">0</CO> + <NOx Desc="NOx emitted during cruise" ToolLevel="1" Unit="kg">0</NOx> + <PM10 Desc="PM10 emitted during cruise" ToolLevel="1" Unit="kg">0</PM10> + </Cruise> + </Mission> + </OperationComponents> + </Operations> + <EndOfLife> + <CO2 Desc="Kohlenstoffdioxid" ToolLevel="1" Unit="kg">0</CO2> + <H2O Desc="Wasser" ToolLevel="1" Unit="kg">0</H2O> + <NOx Desc="Stickoxide" ToolLevel="1" Unit="kg">0</NOx> + <CO Desc="Kohlenmonoxid" ToolLevel="1" Unit="kg">0</CO> + <SO2 Desc="Schwefeldioxid" ToolLevel="1" Unit="kg">0</SO2> + <CH4 Desc="Methan" ToolLevel="1" Unit="kg">0</CH4> + <PM10 Desc="Feinstaub" ToolLevel="1" Unit="kg">0</PM10> + <N2O Desc="Distickstoffmonoxid (Lachgas)" ToolLevel="1" Unit="kg">0</N2O> + <PFC Desc="Perfluoromethane und Perfluoroethane" ToolLevel="1" Unit="kg">0</PFC> + <NMVOC Desc="non methane volatile organic compounds" ToolLevel="1" Unit="kg">0</NMVOC> + <HC Desc="Kohlenwasserstoff" ToolLevel="1" Unit="kg">0</HC> + </EndOfLife> + </Emissions> + <CED Desc="Cumulative Energy Demand"> + <CEDTotal Desc="End-of-Life Costs" ToolLevel="1" Unit="MJ">0</CEDTotal> + <CEDComponents> + <Development Desc="Development" ToolLevel="1" Unit="MJ">0</Development> + <Production Desc="Production" ToolLevel="1" Unit="MJ">0</Production> + <Operations Desc="Operation" ToolLevel="1" Unit="MJ">0</Operations> + <EndOfLife Desc="End of Life" ToolLevel="1" Unit="MJ">0</EndOfLife> + </CEDComponents> + </CED> + <ClimateImpact Desc="Climate Impact due to Aircraft Operation"> + <ATR Desc="Average Temperatur Response per year for aircraft operating lifetime" ToolLevel="1" Unit="mK">0</ATR> + <AGTP Desc="Absolute Global Temperature Potential after final year of operation" ToolLevel="1" Unit="K">0</AGTP> + <AGTP100 Desc="Absolute Global Temperature Potential after 100 years" ToolLevel="1" Unit="K">0</AGTP100> + <AGWP Desc="Absolute Global Warming Potential after final year of operation" ToolLevel="1" Unit="(W/m2)*year">0</AGWP> + <AGWP100 Desc="Absolute Global Warming Potential after 100 years" ToolLevel="1" Unit="(W/m2)*year">0</AGWP100> + </ClimateImpact> + <AirQuality Desc="Climate Impact due to Aircraft Operation"> + <ToleranceFactors Desc="Tolerance Factors of Emissions emitted during LTO" Unit="-"> + <HC Desc="TF Kohlenwasserstoff" ToolLevel="1" Unit="-">0</HC> + <CO Desc="TF Kohlenmonoxid" ToolLevel="1" Unit="-">0</CO> + <NOx Desc="TF Stickoxide" ToolLevel="1" Unit="-">0</NOx> + <soot Desc="TF Russ" ToolLevel="1" Unit="-">0</soot> + </ToleranceFactors> + <AirQualityIndex Desc="Air Quality Index" ToolLevel="1" Unit="-">0</AirQualityIndex> + </AirQuality> + </EcologicalValues> + <Requirements Desc="Designforderungen"> + <m_Payload Desc="Design-Nutzlast (z.B. Anzahl PAX*MassPerPAX, s. DesignSpecification/Accommodation/)" Unit="kg">17000</m_Payload> + <m_MaximumPayload Desc="Maximale Nutzlast i. a. (PAX + 2*Luggage, da Cargo ~ Luggage)" Unit="kg">20000</m_MaximumPayload> + <DesignMission Desc="Definition der Auslegungsmission mit Startstrecke, Steigleistung, Initial Cruise und Landestrecke"> + <DeltaISA Default="0" Desc="Temperature deviation from ISA" Unit="K">0</DeltaISA> + <R_Design Desc="Auslegungsreichweite" Unit="NM">2500</R_Design> + <TOFL_Design Desc="Design takeoff distance (Balanced Field Length) at Sea Level with MTOM and (ISA + deltaISA)-Conditions" Unit="m">2122</TOFL_Design> + <TTC_Design Desc="Auslegungs- Time-to-Climb (von 1500 ft auf ICA bei ISA+deltaISA)" Unit="min">35</TTC_Design> + <ClimbGradients Desc="Steiggradientenforderungen"> + <secondTOsegment Desc="Climb gradient in 2nd take-off segment" Unit="percent">2.4</secondTOsegment> + <finalTOsegment Desc="Climb gradient in final take-off segment" Unit="percent">1.2</finalTOsegment> + <approachAEO Desc="Approach gradient with all engine operating" Unit="percent">3.2</approachAEO> + <approachOEI Desc="Approach gradient with one engine inoperative" Unit="percent">2.1</approachOEI> + </ClimbGradients> + <ClimbSpeedSchedule Desc="Liste der Geschwindigkeiten im Steigflug CAS unter FL100; CAS ueber FL100; M_cruise ueber Crossover-Altitude. Ggf. nur die erste bzw. die ersten beiden Geschwindigkeiten (Prop)."> + <ClimbSpeeds Desc="Anzahl der Climb-Speed der Schedule. 1 = eine CAS, 2 = CAS mit ATC-limit u. darueber, 3 = zwei CAS u. eine Machzahl">3</ClimbSpeeds> + <CASATClimit Desc="CAS unter FL100" Unit="KCAS">250</CASATClimit> + <CAS Desc="CAS ueber FL100" Unit="KCAS">300</CAS> + <Delta_MclimbToMcruise Desc="Differenz der Machzahl ueber Crossover-Altitude zur Cruise Machzahl" Unit="-">-0.02</Delta_MclimbToMcruise> + </ClimbSpeedSchedule> + <DescentSpeedSchedule Desc="Liste der Geschwindigkeiten im Sinkflug CAS unter FL100; CAS ueber FL100; Standardmaessig M_cruise ueber Crossover-Altitude."> + <CASATClimit Desc="CAS unter FL100" Unit="KCAS">250</CASATClimit> + <CAS Desc="CAS ueber FL100" Unit="KCAS">300</CAS> + </DescentSpeedSchedule> + <h_initialCruise_Design Desc="Erste Cruise-Altitude (TOC)" Unit="ft">33000</h_initialCruise_Design> + <M_initialCruise_Design Desc="Erste Cruise-Machzahl (TOC)" Unit="-">0.78</M_initialCruise_Design> + <LDN_Design Desc="Needed runway length at Sea Level with MLM and (ISA + deltaISA)-Conditions (Safety-Landing Distance according to FAR 121.195: landing_field_required/0.6)" Unit="m">2387</LDN_Design> + <V_ApproachSpeed_Design Desc="Auslegungsanfluggeschwindigkeit in KCAS, Approach Category A: 0-90 kts, B: 91-120 kts, C: 121-140 kts, D: 141-165 kts, E: greater 165 kts" Unit="KCAS">138</V_ApproachSpeed_Design> + <AlternateDistance Desc="Reichweite der Alternate Mission" Unit="NM">200</AlternateDistance> + <TakeOffProcedure Desc="Standard, ICAO-A, ICAO-B">Standard</TakeOffProcedure> + <ApproachProcedure Desc="Standard, CDA, CDA-Steep">Standard</ApproachProcedure> + <TaxiTimeOrigin Desc="Dauer des Taxiing beim Start" Unit="min">9</TaxiTimeOrigin> + <TaxiTimeDestination Desc="Dauer des Taxiing nach der Landung" Unit="min">5</TaxiTimeDestination> + </DesignMission> + <StudyMission Desc="Definition der Study-Mission mit Startstrecke, Steigleistung, Initial Cruise und Landestrecke"> + <DeltaISA Default="0" Desc="Temperature deviation from ISA" Unit="K">0</DeltaISA> + <R_Design Desc="Auslegungsreichweite" Unit="NM">500</R_Design> + <m_Payload Desc="Nutzlast auf Study-Mission" Unit="kg">13608</m_Payload> + <NumberOfPAX Desc="Anzahl Passagiere auf Study-Mission" Unit="-">150</NumberOfPAX> + <ClimbSpeedSchedule Desc="Liste der Geschwindigkeiten im Steigflug CAS unter FL100; CAS ueber FL100; M_cruise ueber Crossover-Altitude. Ggf. nur die erste bzw. die ersten beiden Geschwindigkeiten (Prop)."> + <ClimbSpeeds Desc="Anzahl der Climb-Speed der Schedule. 1 = eine CAS, 2 = CAS mit ATC-limit u. darueber, 3 = zwei CAS u. eine Machzahl">3</ClimbSpeeds> + <CASATClimit Desc="CAS unter FL100" Unit="KCAS">250</CASATClimit> + <CAS Desc="CAS ueber FL100" Unit="KCAS">300</CAS> + <Delta_MclimbToMcruise Desc="Differenz der Machzahl ueber Crossover-Altitude zur Cruise Machzahl" Unit="-">-0.02</Delta_MclimbToMcruise> + </ClimbSpeedSchedule> + <DescentSpeedSchedule Desc="Liste der Geschwindigkeiten im Sinkflug CAS unter FL100; CAS ueber FL100; Standardmaessig M_cruise ueber Crossover-Altitude."> + <CASATClimit Desc="CAS unter FL100" Unit="KCAS">250</CASATClimit> + <CAS Desc="CAS ueber FL100" Unit="KCAS">300</CAS> + </DescentSpeedSchedule> + <h_initialCruise Desc="Erste Cruise-Altitude (TOC)" Unit="ft">35000</h_initialCruise> + <M_initialCruise Desc="Erste Cruise-Machzahl (TOC)" Unit="-">0.78</M_initialCruise> + <AlternateDistance Desc="Reichweite der Alternate Mission" Unit="NM">200</AlternateDistance> + <TakeOffProcedure Desc="Standard, ICAO-A, ICAO-B">Standard</TakeOffProcedure> + <ApproachProcedure Desc="Standard, CDA, CDA-Steep">Standard</ApproachProcedure> + <TaxiTimeOrigin Desc="Dauer des Taxiing beim Start" Unit="min">9</TaxiTimeOrigin> + <TaxiTimeDestination Desc="Dauer des Taxiing nach der Landung" Unit="min">5</TaxiTimeDestination> + </StudyMission> + <FuelPlanningMethod Desc="Methode zur Tankschaetzung: JAR, FAR-Domestic, FAR-Flag (International)">JAR</FuelPlanningMethod> + <V_MaximumGroundspeed Desc="Maximale Rollgeschwindigkeit, durch das Tyre Speed Rating begrenzt in KCAS" Unit="KCAS">195</V_MaximumGroundspeed> + <DesignFlightEnvelope> + <VMO Desc="Max operating speed. IAS also die Strukturbestimmenden Staudruckgeschwindigkeit" Unit="KCAS">350</VMO> + <MMO Desc="Max operating Mach No." Unit="-">0.82</MMO> + <h_maxOperating Desc="Max operating Altitude" Unit="ft">38500</h_maxOperating> + <h_maxOEI Desc="Max operating Altitude One-Engine-Inoperative" Unit="ft">15000</h_maxOEI> + </DesignFlightEnvelope> + <SizeLimits Desc="maximale geometrische Abmasse"> + <SpanLimit Desc="Spannweitenbegrenzung" Unit="m">36</SpanLimit> + </SizeLimits> + <ACN Desc="Aircraft Classification Number"> + <ACNCatType Desc="ACN Pavement Type; flex oder rigid" Unit="-">flex</ACNCatType> + <ACNCategory Desc="ACN Pavement Strength; A, B, C oder D" Unit="-">B</ACNCategory> + <ACNLimit Desc="ACN Limit fuer die ausgewaehlte Kategorie" Unit="-">42</ACNLimit> + </ACN> + </Requirements> + <DesignSpecification Desc="Spezifikation des Entwurfs"> + <Configuration Desc="Qualitative Beschreibung der Konfiguration"> + <Wing Desc="Parameter des Fluegels"> + <Position Desc="Fluegellage low, mid, high" Unit="-">low</Position> + </Wing> + <Stabiliser Desc="Parameter des Hoehenleitwerks"> + <h_OverWing Desc="Vertikale Position bzgl. des Seitenleitwerks (0: conventional 1: T-Tail)" Unit="-">0</h_OverWing> + </Stabiliser> + <LandingGear Desc="Fahrwerksanordnung"> + <MainGearPosition Desc="Position des Hauptfahrwerks (Wing oder Fuselage)">Wing</MainGearPosition> + <Retractable Desc="Switch for (non-)retractable LandingGear">1</Retractable> + <FrictionCoefficient Default="0.03" Desc="Friction coefficient of tyres and pavement: Raymer p.486 - Table 17.1: 0.03 - 0.05">0.03</FrictionCoefficient> + <BrakingCoefficient Default="0.34189" Desc="Raymer p.486 - Table 17.1: 0.3 - 0.5; Torenbeek: jet 0.4-0.5; prop 0.35-0.45; Airbus: Medium Deceleration = 11 ft/s^2 = 0.34189">0.34189</BrakingCoefficient> + </LandingGear> + <Fuselage Desc="Fuselage parameters"> + <Pressurized Desc="Is the fuselage pressurized? 1 for yes, 0 for no">1</Pressurized> + </Fuselage> + <CertificationType Desc="Zertifizierung nach CS-23 oder CS-25">CS-25</CertificationType> + <Fin Desc="Parameter des Seitenleitwerks"> + <FinConfig Desc="0: Conventional 1: H-Tail" Unit="-">0</FinConfig> + </Fin> + <SkinThickness Default="0" Desc="Skin thickness of profiles" Unit="m">0</SkinThickness> + </Configuration> + <Accommodation Desc="Vorgaben bezueglich der Passagierdecks und Klassen"> + <MassPerPAX Desc="Masse pro PAX (z.B. PAX 75 kg + Luggage: Std.-Wert 90.72 kg (Quelle Airbus: All about the A320 family, Tech App.))" Unit="kg">90.72</MassPerPAX> + <PAXDecks Desc="Anzahl der Passagierdecks">1</PAXDecks> + <PAXDeck Desc="Passagierdeck mit Klassen in der Folge der Klassen-ID" ID="1"> + <Classes Desc="Anzahl der verschiedenen Klassen auf diesem Deck">2</Classes> + <Class Desc="Definition der Klasse" ID="1"> + <ClassType Desc="Luftfahrttypische Bezeichnung der Klasse (z.B. economy, business, first)">business</ClassType> + <Seating Desc="Bestuhlung des Querschnitts">22</Seating> + <Seats Desc="Gesamtanzahl der Sitze in dieser Klasse">12</Seats> + </Class> + <Class Desc="Definition der Klasse" ID="2"> + <ClassType Desc="Luftfahrttypische Bezeichnung der Klasse (z.B. economy, business, first)">economy</ClassType> + <Seating Desc="Bestuhlung des Querschnitts">33</Seating> + <Seats Desc="Gesamtanzahl der Sitze in dieser Klasse">138</Seats> + </Class> + <Class Desc="Definition der Klasse" ID="3"> + <ClassType Desc="Luftfahrttypische Bezeichnung der Klasse (z.B. economy, business, first)">first</ClassType> + <Seating Desc="Bestuhlung des Querschnitts">22</Seating> + <Seats Desc="Gesamtanzahl der Sitze in dieser Klasse">0</Seats> + </Class> + </PAXDeck> + </Accommodation> + <Cargo Desc="Vorgaben bezueglich der Frachtdecks und ULDs"> + <CargoDecks Desc="Anzahl der Frachtdecks">1</CargoDecks> + <CargoDeck Desc="Cargodeck mit verschiedenen Containertypen" ID="1"> + <Compartments Desc="Anzahl der verschiedenen Compartments auf diesem Deck">2</Compartments> + <Compartment Desc="Definition des Compartments" ID="1"> + <CompartmentType Desc="Luftfahrtypische Bezeichnung des Compartments (z.B. forward, aft, bulk)">forward</CompartmentType> + <ULDTypes Desc="Anzahl der verschiedenen Containergruppen auf diesem Deck">1</ULDTypes> + <ULDType Desc="Definition der Containergruppe" ID="1"> + <ULD Desc="Normbezeichnung des ULD">LD3-45</ULD> + <ULDInRow Desc="Anzahl der ULDs in einer Rumpfsektion">1</ULDInRow> + <ULDs Desc="Gesamt Anzahl dieser ULDs diesen Types auf diesem Deck">3</ULDs> + </ULDType> + </Compartment> + <Compartment Desc="Definition des Compartments" ID="2"> + <CompartmentType Desc="Luftfahrtypische Bezeichnung des Compartments (z.B. forward, aft, bulk)">aft</CompartmentType> + <ULDTypes Desc="Anzahl der verschiedenen Containergruppen auf diesem Deck">1</ULDTypes> + <ULDType Desc="Definition der Containergruppe" ID="1"> + <ULD Desc="Normbezeichnung des ULD">LD3-45</ULD> + <ULDInRow Desc="Anzahl der ULDs in einer Rumpfsektion">1</ULDInRow> + <ULDs Desc="Gesamt Anzahl dieser ULDs diesen Types auf diesem Deck">4</ULDs> + </ULDType> + </Compartment> + <Compartment Desc="Definition des Compartments" ID="3"> + <CompartmentType Desc="Luftfahrtypische Bezeichnung des Compartments (z.B. forward, aft, bulk)">bulk</CompartmentType> + <ULDTypes Desc="Anzahl der verschiedenen Containergruppen auf diesem Deck">1</ULDTypes> + <ULDType Desc="Definition der Containergruppe" ID="1"> + <ULD Desc="Normbezeichnung des ULD">LD3-45</ULD> + <ULDInRow Desc="Anzahl der ULDs in einer Rumpfsektion">1</ULDInRow> + <ULDs Desc="Gesamt Anzahl dieser ULDs diesen Types auf diesem Deck">1</ULDs> + </ULDType> + </Compartment> + </CargoDeck> + </Cargo> + <Propulsion Desc="Vorgaben zum Antriebssystem"> + <TypeOfEngine Desc="Triebwerkstechnologie (Jet oder Prop)" Unit="-">Jet</TypeOfEngine> + <NumberOfEngines Desc="Anzahl der Triebwerke">2</NumberOfEngines> + <PositionOfEngines Desc="Positionierung der Triebwerke"> + <EnginesOnWing Desc="Anzahl der Triebwerke am Fluegel">2</EnginesOnWing> + <EnginesOnFuselage Desc="Anzahl der Triebwerke am Rumpf, mit Pylons montiert">0</EnginesOnFuselage> + <EnginesInFuselage Desc="Anzahl der Triebwerke im Rumpf integriert">0</EnginesInFuselage> + <WingEnginePosition Desc="0=EngineUnderWing; 1= EnginesOverWing">0</WingEnginePosition> + </PositionOfEngines> + <NumberOfPropulsors Desc="Number of powertrains" ToolLevel="1">2</NumberOfPropulsors> + <Propulsor ID="1"> + <TypeOfPropulsor Desc="Propulsion technology (Jet or Prop)" Unit="-">Jet</TypeOfPropulsor> + <PropulsorPosition> + <ParentComponentID Default="MainWing" Desc="ID of the component to which the propulsor is attached (MainWing, Fuselage)">MainWing</ParentComponentID> + <yPosition Desc="specific position (0=mid, 1=innerRight, -1=innerLeft, 2=outerRight, -2=outerLeft">1</yPosition> + <xPosition Desc="specific position (0=front, 1=back)">0</xPosition> + </PropulsorPosition> + </Propulsor> + <Propulsor ID="2"> + <TypeOfPropulsor Desc="Propulsion technology (Jet or Prop)" Unit="-">Jet</TypeOfPropulsor> + <PropulsorPosition> + <ParentComponentID Default="MainWing" Desc="ID of the component to which the propulsor is attached (MainWing, Fuselage)">MainWing</ParentComponentID> + <yPosition Desc="specific position (0=mid, 1=innerRight, -1=innerLeft, 2=outerRight, -2=outerLeft">-1</yPosition> + <xPosition Desc="specific position (0=front, 1=back)">0</xPosition> + </PropulsorPosition> + </Propulsor> + <FuelDensity Desc="Density of fuel" Unit="kg/l">0.785</FuelDensity> + </Propulsion> + <TankConfiguration Desc="Vorgaben zur Aufteilung der Tanks"> + <NumberOfCenterTanks Desc="Anzahl der Tanks im Rumpf (Fluegelkasten + zus. Tanks)">1</NumberOfCenterTanks> + <NumberOfWingTanks Desc="Anzahl der Tanks im Fluegel">2</NumberOfWingTanks> + <NumberOfTrimTanks Desc="Anzahl der Tanks zur Trimmung">0</NumberOfTrimTanks> + </TankConfiguration> + <HighLiftSystem Desc="Vorgaben zum Hochauftriebssystem"> + <C_LmaxT-O Desc="Maximaler Auftriebsbeiwert in Startkonfiguration. Statistik, falls Wert 0" Unit="-">2.4</C_LmaxT-O> + <C_LmaxLanding Desc="Maximaler Auftriebsbeiwert in Landekonfiguration. Statistik, falls Wert 0" Unit="-">2.8</C_LmaxLanding> + </HighLiftSystem> + <DesignLoads Desc="Vorgaben zu zulaessigen Lastvielfachen"> + <n1 Desc="maximum positive load limit (CS-25: n1=2.5g)" Unit="g">2.5</n1> + <n2 Desc="maximum negative load limit (CS-25: n2=-1.0g)" Unit="g">-1</n2> + <NormalManeuver Default="1.1" Desc="Normal used load factor for maneuvers (e.g. flare)">1.1</NormalManeuver> + </DesignLoads> + <Technology Desc="Vorgaben spezieller Technologien"> + <LaminarFlow Desc="HLFC oder NLF"> + <Components Desc="Flugzeugkomponenten, auf die HLFC/NLF angewendet wird"> + <Wing> + <UpperSide Desc="Fluegeloberseite (HLFC, NLF, None)">None</UpperSide> + <LowerSide Desc="Fluegelunterseite (HLFC, NLF, None)">None</LowerSide> + </Wing> + <Stabilizer> + <UpperSide Desc="Fluegeloberseite (HLFC, NLF, None)">None</UpperSide> + <LowerSide Desc="Fluegelunterseite (HLFC, NLF, None)">None</LowerSide> + </Stabilizer> + <Fin Desc="Seitenleitwerk (HLFC, NLF, None)">None</Fin> + <Nacelles Desc="Triebwerksgondeln (HLFC, NLF, None)">None</Nacelles> + </Components> + <OperatingCondition> + <HLFConlyForCruise>1</HLFConlyForCruise> + <MinMachForHLFCActivation>0.78</MinMachForHLFCActivation> + </OperatingCondition> + </LaminarFlow> + <ElectricTaxiing> + <DoElectricTaxiing Desc="1: Electric Taxiing, 0: Propulsion Taxiing">0</DoElectricTaxiing> + <EngineWarmupTime Desc="Laufzeit der Triebwerke vor dem Start" Unit="min">0</EngineWarmupTime> + </ElectricTaxiing> + <BallisticRecoverySystem Desc="Ballistic Recovery System (Parachute)">0</BallisticRecoverySystem> + <VariableCamber Desc="Aircraft has VC segments">0</VariableCamber> + </Technology> + </DesignSpecification> +</AcftExchangeFile> diff --git a/scripts/copy_aircraft_design_to_docs.py b/scripts/copy_aircraft_design_to_docs.py deleted file mode 100644 index 138c5ec..0000000 --- a/scripts/copy_aircraft_design_to_docs.py +++ /dev/null @@ -1,32 +0,0 @@ -import shutil -import os - -def copy_folder(): - # Path to the source directory (aircraft-design folder or any folder) - # Replace this with the actual path to the folder you want to copy - source_dir = "./aircraft-design" # Absolute or relative path - - # Path to the destination directory (within the docs folder of your Git repository) - dest_dir = "./docs/documentation/aircraft_design" # Inside your 'unicado.gitlab.io' docs folder - - # Check if the source directory exists - if os.path.exists(source_dir): - # Check if the destination folder exists, and delete it if it does - if os.path.exists(dest_dir): - try: - shutil.rmtree(dest_dir) # Delete the destination folder and its contents - print(f"Deleted existing folder: {dest_dir}") - except Exception as e: - print(f"Error deleting folder: {e}") - - # Use shutil.copytree to copy the entire folder and its contents - try: - shutil.copytree(source_dir, dest_dir) - print(f"Folder copied from {source_dir} to {dest_dir}") - except Exception as e: - print(f"Error copying folder: {e}") - else: - print(f"Source directory {source_dir} does not exist.") - -if __name__ == "__main__": - copy_folder() diff --git a/scripts/document_aircraft_xml.py b/scripts/document_aircraft_xml.py new file mode 100644 index 0000000..5602803 --- /dev/null +++ b/scripts/document_aircraft_xml.py @@ -0,0 +1,233 @@ +#!python +# Copyright (c) 2023 S. Oberschwendtner. +# +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see <https://www.gnu.org/licenses/>. + +"""! @brief Script for converting an aircraft XML file to a content page.""" +## +# @file document_aircraft_xml.py +# +# @brief Script for converting an aircraft XML file to a content page for the UNICADO homepage. +# +# @section description_document_aircraft_xml Description +# This script parse the entries of an aircraft XML file and extracts +# the entries and documents them using their description tags. +# The output is a markdown file which can be used for the documentation. +# +# @section libraries_document_aircraft_xml Libraries/Modules +# - argparse standard library (https://docs.python.org/3/library/argparse.html) +# - Parser for command-line options, arguments and sub-commands. +# - xml standard library (https://docs.python.org/3/library/xml.html) +# - XML Processing Modules. +# - pathlib standard library (https://docs.python.org/3/library/pathlib.html) +# - Object-oriented filesystem paths. +# +# @section notes_document_aircraft_xml Notes +# - None. +# +# @section todo_document_aircraft_xml TODO +# - None. +# +# @section authors_document_aircraft_xml Author(s) +# - Created by S. Oberschwendtner on 19/09/2023. + +# === Imports === +import argparse +import xml.etree.ElementTree as ET +from pathlib import Path + +# === Configuration === +# Define the format of the output +FORMAT = { + "Header": "# {:s}\n> **Description**: {:s}\n", + "Unit": "> **Unit**: {:s}\n", + "TableHeader": "| Relative XML Path | Unit | Description |\n|:---|:---:|:---|", + "Table": "| <nobr>`{:s}` | *{:s}* | {:s} |", +} + +# Which keys are used in the XML attributes for which information +KEYS = { + "Description": "Desc", + "Unit": "Unit", +} + + +# === Classes === +class Page: + """Class for a page. + + A page is one top section of the aircraft XML file. + """ + + @property + def max_level_reached(self) -> bool: + """Returns whether the maximum level has been reached.""" + return self.current_level >= self.max_header_level + + def __init__(self, title, max_level): + """Constructor of the class. + + Args: + title (str): Title of the page. + max_level (int): Maximum level of the headers. + """ + self.title = title + self.max_header_level = max_level + self.current_level = 0 + self.table_started = False + self.current_path = Path(".") + self.sections = [[]] + + def create(self, node: ET.Element): + """Creates the page from the given node. + + This function adds all subnodes of the given node to the page. + It recursively calls itself for all subnodes. + + It does not add sections which are already present in the current level. + + Args: + node (ET.Element): Node to start from. + """ + # Only add the header if it was not already added at this level + if node.tag in self.sections[self.current_level]: + return + + # Check whether the current entry can be a header + if not self.max_level_reached: + self.sections[self.current_level].append(node.tag) + self.make_header_entry(node) + self.current_path = Path(node.tag) + else: + self.current_path /= node.tag + + # Loop through the children and group single entries in a table + for child in node: + if len(child) == 0: + self.make_table_entry(child) + + # Add a new level of sections + self.current_level += 1 + self.sections.append([]) + + # Loop again and add the subnodes + for child in node: + if len(child) > 0: + self.create(child) + + # Decrease the level again when finished + self.current_level -= 1 + self.sections.pop() + self.current_path = self.current_path.parent + + def make_header_entry(self, node: ET.Element): + """Creates a header entry. + + Args: + node (ET.Element): The current node element. + """ + # Reset the table when creating a new header + self.table_started = False + + # Create the header with description + print( + "\n" + + self.current_level * "#" + + FORMAT["Header"].format( + node.tag, node.attrib.get(KEYS["Description"], "None") + ) + ) + + # Try to add a unit description + try: + print(FORMAT["Unit"].format(node.attrib[KEYS["Unit"]])) + except KeyError: + pass + + def make_table_entry(self, node: ET.Element): + """Creates a table entry. + + Args: + node (ET.Element): The current node element. + """ + # Check if the table has already been started + if not self.table_started: + self.table_started = True + print(FORMAT["TableHeader"]) + + # Since we use pathlib for convenience, we need to convert it to a string + # and replace the backslashes with forward slashes + path_name = str(self.current_path / node.tag).replace("\\", "/") + + # Create the header with description + print( + FORMAT["Table"].format( + path_name, + node.attrib.get(KEYS["Unit"], "-"), + node.attrib.get(KEYS["Description"], "None"), + ) + ) + + +# === Main === +def main(): + """ + Main function of the script. + """ + # Create argument parser + parser = argparse.ArgumentParser( + description="Converts an aircraft XML file to a markdown file. The output is streamed to stdout and can be piped to a file." + ) + + # Add the filename argument + parser.add_argument( + "filename", metavar="filename", type=str, help="The XML file to convert." + ) + + # Add the layout arguments + parser.add_argument( + "--title", + metavar="title", + type=str, + help="The title of the output page. This also sets the root node which is used to create the document.", + ) + parser.add_argument( + "--level", + metavar="level", + type=int, + help="The maximum level nodes to be used as headers.", + ) + + # Parse the arguments + args = parser.parse_args() + + # Read the XML file + tree = ET.parse(args.filename) + root = tree.getroot() + + # Get the configuration parameters + page = Page(args.title, args.level) + node = root.find(page.title) + + # Check whether the node exists + if node is None: + raise Warning("Could not find node with title '" + page.title + "'") + + # Start creating the page + page.create(node) + + +if __name__ == "__main__": + main() -- GitLab From 490ea807ecbee7a6d29d8e0676a83413c18b5fb5 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 12:57:05 +0100 Subject: [PATCH 28/53] Fix incorrect link to unicado library repo --- .gitlab-ci.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 53e324d..f4cfa3b 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -34,7 +34,7 @@ clone: # Clone the aircraft-design repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - cd aircraft-design || { echo "Directory not found! Exiting..."; exit 1; } - - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries libs/ + - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR -- GitLab From f049a0f42d072d486427f24d187eacbfeeacb9c9 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 13:13:24 +0100 Subject: [PATCH 29/53] Fix issue in cloning libraries --- .gitlab-ci.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index f4cfa3b..4d8225d 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -34,7 +34,7 @@ clone: # Clone the aircraft-design repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - cd aircraft-design || { echo "Directory not found! Exiting..."; exit 1; } - - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries + - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR -- GitLab From 3b4f457bb44921c5ee39698be95ae0a1d346dcbb Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 13:37:49 +0100 Subject: [PATCH 30/53] Fix CI issues --- .gitlab-ci.yml | 68 +++++--------------------------------------------- 1 file changed, 6 insertions(+), 62 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 4d8225d..23f798f 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -35,6 +35,7 @@ clone: - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - cd aircraft-design || { echo "Directory not found! Exiting..."; exit 1; } - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries + - cd libraries || { echo "Directory not found! Exiting..."; exit 1; } # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR @@ -68,67 +69,9 @@ pages: - export DOXYGEN_BIN=/usr/bin/doxygen - pipenv install --dev # Install all necessary dependencies script: - -# Setup the pipeline for deploying the project homepage -# Copyright (c) UNICADO 2023 -# -# This program is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with this program. If not, see <https://www.gnu.org/licenses/>. -# === Configure pipeline === -stages: - - build - - deploy -# === Build the doxygen documentation === -doxygen: - image: alpine:latest - stage: build - tags: - - documentation - before_script: - - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi - script: - # libaries - - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries - - cd libraries/aircraftGeometry2/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../engine/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd $CI_PROJECT_DIR - # aircraft design - - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - - cd aircraft-design/propulsion_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../aircraft-design/wing_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../aircraft-design/empennage_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../aircraft-design/ecological_assessment/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - artifacts: - paths: - - $CI_PROJECT_DIR/docs/documentation - rules: - - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' - when: on_success - - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' - when: manual - - if: '$CI_PIPELINE_SOURCE == "trigger"' - when: on_success -# === Build and deploy the website === -pages: - image: python:latest - stage: deploy - tags: - - documentation - before_script: - - pip install pipenv - - pipenv install - script: + # Use the persisted content from the previous stage (aircraft-design) + - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder + - cp -r $CI_PROJECT_DIR/libraries $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder - mkdir $CI_PROJECT_DIR/docs/aircraft-xml - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title General --level 1 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/general.md - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MassesAndLoadings --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/masses.md @@ -144,7 +87,8 @@ pages: - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title EcologicalValues --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/ecological.md - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Requirements --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/requirements.md - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title DesignSpecification --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/specification.md - - pipenv run mkdocs build --site-dir $CI_PROJECT_DIR/public + # Build the MkDocs documentation site + - pipenv run mkdocs build --verbose --site-dir $CI_PROJECT_DIR/public needs: - clone # This job depends on the successful completion of the clone job artifacts: -- GitLab From 7a2f2716244eb54dfa3c4bed386bbcca76333dc9 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 13:49:27 +0100 Subject: [PATCH 31/53] Fix issues in cloning libraries --- .gitlab-ci.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 23f798f..6df90f6 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -43,6 +43,7 @@ clone: # Save the generated documentation as artifacts so they can be accessed later in the pipeline paths: - $CI_PROJECT_DIR/aircraft-design + - $CI_PROJECT_DIR/libraries - $CI_PROJECT_DIR/docs/documentation rules: - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch -- GitLab From bdc368819ed74b2359b24330fb12519a0cf1ecb6 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 13:49:27 +0100 Subject: [PATCH 32/53] Fix issues in cloning libraries --- .gitlab-ci.yml | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 23f798f..51d9e5f 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -34,8 +34,11 @@ clone: # Clone the aircraft-design repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - cd aircraft-design || { echo "Directory not found! Exiting..."; exit 1; } + - ls -l aircraft-design + # Clone the libraries repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries - cd libraries || { echo "Directory not found! Exiting..."; exit 1; } + - ls -l libraries # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR @@ -43,6 +46,7 @@ clone: # Save the generated documentation as artifacts so they can be accessed later in the pipeline paths: - $CI_PROJECT_DIR/aircraft-design + - $CI_PROJECT_DIR/libraries - $CI_PROJECT_DIR/docs/documentation rules: - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch @@ -71,6 +75,8 @@ pages: script: # Use the persisted content from the previous stage (aircraft-design) - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder + - echo $CI_PROJECT_DIR # Print the value of CI_PROJECT_DIR for debugging + - cp -r $CI_PROJECT_DIR/libraries $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder - mkdir $CI_PROJECT_DIR/docs/aircraft-xml - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title General --level 1 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/general.md -- GitLab From bf877330807774a199b54d393448798dde281301 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 14:19:01 +0100 Subject: [PATCH 33/53] Fix CI issues --- .gitlab-ci.yml | 2 -- 1 file changed, 2 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 51d9e5f..4e6528d 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -34,11 +34,9 @@ clone: # Clone the aircraft-design repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - cd aircraft-design || { echo "Directory not found! Exiting..."; exit 1; } - - ls -l aircraft-design # Clone the libraries repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries - cd libraries || { echo "Directory not found! Exiting..."; exit 1; } - - ls -l libraries # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR -- GitLab From b8ac9123134335ed7af8f7180df1907396c23031 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 14:29:57 +0100 Subject: [PATCH 34/53] Fix CI issues --- .gitlab-ci.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 4e6528d..63d841b 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -72,6 +72,7 @@ pages: - pipenv install --dev # Install all necessary dependencies script: # Use the persisted content from the previous stage (aircraft-design) + - ls -la $CI_PROJECT_DIR - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder - echo $CI_PROJECT_DIR # Print the value of CI_PROJECT_DIR for debugging -- GitLab From 50457a3564419e9d9be2b367c0aec489e28c98fc Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 14:42:16 +0100 Subject: [PATCH 35/53] Fix CI issue --- .gitlab-ci.yml | 8 +++----- 1 file changed, 3 insertions(+), 5 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 63d841b..59326ec 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -35,10 +35,11 @@ clone: - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - cd aircraft-design || { echo "Directory not found! Exiting..."; exit 1; } # Clone the libraries repository, including its submodules - - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries + - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries/ - cd libraries || { echo "Directory not found! Exiting..."; exit 1; } # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR + - ls -la $CI_PROJECT_DIR artifacts: # Save the generated documentation as artifacts so they can be accessed later in the pipeline @@ -72,11 +73,8 @@ pages: - pipenv install --dev # Install all necessary dependencies script: # Use the persisted content from the previous stage (aircraft-design) - - ls -la $CI_PROJECT_DIR - - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder - - echo $CI_PROJECT_DIR # Print the value of CI_PROJECT_DIR for debugging - - cp -r $CI_PROJECT_DIR/libraries $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder + - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder - mkdir $CI_PROJECT_DIR/docs/aircraft-xml - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title General --level 1 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/general.md - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MassesAndLoadings --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/masses.md -- GitLab From 7a0b643f4e3f2f541e7ba4f27b1cb060053ada7b Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 14:55:31 +0100 Subject: [PATCH 36/53] Fix cloning issue --- .gitlab-ci.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 59326ec..6111e27 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -34,8 +34,8 @@ clone: # Clone the aircraft-design repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - cd aircraft-design || { echo "Directory not found! Exiting..."; exit 1; } - # Clone the libraries repository, including its submodules - - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries/ + # Clone the libraries repository + - git clone https://git.rwth-aachen.de/unicado/libraries.git - cd libraries || { echo "Directory not found! Exiting..."; exit 1; } # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR -- GitLab From fe3553e21e1303bbc32839c091c78a0dbf44fbeb Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 21 Jan 2025 15:03:57 +0100 Subject: [PATCH 37/53] Fix issue in cloning libraries --- .gitlab-ci.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 6111e27..59326ec 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -34,8 +34,8 @@ clone: # Clone the aircraft-design repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - cd aircraft-design || { echo "Directory not found! Exiting..."; exit 1; } - # Clone the libraries repository - - git clone https://git.rwth-aachen.de/unicado/libraries.git + # Clone the libraries repository, including its submodules + - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries/ - cd libraries || { echo "Directory not found! Exiting..."; exit 1; } # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR -- GitLab From e71e45e6b55f6b9e1508445de674b153a57a8ac4 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Wed, 22 Jan 2025 13:38:35 +0100 Subject: [PATCH 38/53] Fix documentation issues --- ...nal-software.md => additional_software.md} | 0 docs/documentation/libraries.md | 2 +- ...{getting-started.md => getting_started.md} | 12 ++++----- docs/get-involved/testing.md | 2 +- docs/index.md | 2 +- mkdocs.yml | 27 ++++++++++--------- 6 files changed, 23 insertions(+), 22 deletions(-) rename docs/documentation/{additional-software.md => additional_software.md} (100%) rename docs/download/{getting-started.md => getting_started.md} (98%) diff --git a/docs/documentation/additional-software.md b/docs/documentation/additional_software.md similarity index 100% rename from docs/documentation/additional-software.md rename to docs/documentation/additional_software.md diff --git a/docs/documentation/libraries.md b/docs/documentation/libraries.md index c26d397..64a7ee5 100644 --- a/docs/documentation/libraries.md +++ b/docs/documentation/libraries.md @@ -8,7 +8,7 @@ date: 2024-11-28 glightbox: false --- -As mentioned in the [build instructions](../developer/build/general.md), we have some external dependencies to: +As mentioned in the [build instructions](../get-involved/build/general.md), we have some external dependencies to: - :simple-cplusplus: [Eigen3 :octicons-link-external-16:](https://eigen.tuxfamily.org/index.php?title=Main_Page){:target="_blank"} - :simple-cplusplus: [Boost :octicons-link-external-16:](https://www.boost.org/){:target="_blank"} diff --git a/docs/download/getting-started.md b/docs/download/getting_started.md similarity index 98% rename from docs/download/getting-started.md rename to docs/download/getting_started.md index ce76fa2..c707d23 100644 --- a/docs/download/getting-started.md +++ b/docs/download/getting_started.md @@ -1,6 +1,6 @@ -You want to **use** UNICADO to get familiar with the workflow and see first results? Great :fire: Then check out the [Installation Guide](installation.md) and the [Cleared for Take-Off](takeoff.md). It includes the prerequisites, troubleshooting hints and a standalone installer. - -If you're a **developer** interested in contributing to UNICADO, follow the [Developer Installation Guide](../get-involved/developer-installation.md). However, you also need to check out the [Installation Requirements](installation.md) first! - - - +You want to **use** UNICADO to get familiar with the workflow and see first results? Great :fire: Then check out the [Installation Guide](installation.md) and the [Cleared for Take-Off](takeoff.md). It includes the prerequisites, troubleshooting hints and a standalone installer. + +If you're a **developer** interested in contributing to UNICADO, follow the [Developer Installation Guide](../get-involved/developer-installation.md). However, you also need to check out the [Installation Requirements](installation.md) first! + + + diff --git a/docs/get-involved/testing.md b/docs/get-involved/testing.md index 0b010da..a66513f 100644 --- a/docs/get-involved/testing.md +++ b/docs/get-involved/testing.md @@ -117,7 +117,7 @@ Then you can execute the test ### Automated testing {#automated} -To reduce the workload of the developer, tests can be automated. For that, the additional software [testFramework](../documentation/additional-software.md) can be used. It can be executed manually (see [python build instruction](../get-involved/build/python.md)) or be linked to the CI/CD pipeline. The latter one ensures that it is tested before every merge request. +To reduce the workload of the developer, tests can be automated. For that, the additional software [testFramework](../documentation/additional_software.md) can be used. It can be executed manually (see [python build instruction](../get-involved/build/python.md)) or be linked to the CI/CD pipeline. The latter one ensures that it is tested before every merge request. !!! attention The `testFramework` is currently under construction :construction: and still needs to be linked to the CI/CD pipeline diff --git a/docs/index.md b/docs/index.md index f527d9b..7467305 100644 --- a/docs/index.md +++ b/docs/index.md @@ -31,7 +31,7 @@ hide: Learn how to set it up & install the prerequisites. -[:octicons-arrow-right-24: Download](download/getting-started.md) +[:octicons-arrow-right-24: Download](download/getting_started.md) </div> <div class="grid-item card" markdown="1"> diff --git a/mkdocs.yml b/mkdocs.yml index 73de85c..2431431 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -167,7 +167,7 @@ theme: nav: # Customizes the main navigation structure of the site. - Home: index.md # Main page of the site. - Download: # Top-level navigation item for "Download". - - Getting Started: download/getting-started.md # Link to the getting started page. + - Getting Started: download/getting_started.md # Link to the getting started page. - Installation: download/installation.md # Link to the installation page. - Cleared for Take-Off: download/takeoff.md # Link to the takeoff/getting started page. - Tutorials: @@ -181,7 +181,8 @@ nav: # Customizes the main navigation struc - Modules: documentation/sizing.md # Link to aircraft sizing documentation. - Initial Sizing: - Introduction: documentation/aircraft-design/initial_sizing/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/initial_sizing/doc/content/getting-started.md + - Getting Staretd: documentation/aircraft-design/initial_sizing/doc/content/getting_started.md + - Changelog: documentation/aircraft-design/initial_sizing/doc/content/changelog.md - API Reference: - initial_sizing/classes.md - initial_sizing/namespaces.md @@ -190,7 +191,7 @@ nav: # Customizes the main navigation struc - initial_sizing/pages.md - Create Mission XML: - Introduction: documentation/aircraft-design/create_mission_xml/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/create_mission_xml/doc/content/getting-started.md + - Getting Staretd: documentation/aircraft-design/create_mission_xml/doc/content/getting_started.md - API Reference: - create_mission_xml/classes.md - create_mission_xml/namespaces.md @@ -199,7 +200,7 @@ nav: # Customizes the main navigation struc - create_mission_xml/pages.md - Fuselage Design: - Introduction: documentation/aircraft-design/fuselage_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/fuselage_design/doc/content/getting-started.md + - Getting Staretd: documentation/aircraft-design/fuselage_design/doc/content/getting_started.md - API Reference: - fuselage_design/classes.md - fuselage_design/namespaces.md @@ -208,7 +209,7 @@ nav: # Customizes the main navigation struc - fuselage_design/pages.md - Wing Design: - Introduction: documentation/aircraft-design/wing_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/wing_design/doc/content/getting-started.md + - Getting Staretd: documentation/aircraft-design/wing_design/doc/content/getting_started.md - API Reference: - wing_design/classes.md - wing_design/namespaces.md @@ -217,7 +218,7 @@ nav: # Customizes the main navigation struc - wing_design/pages.md - Empennage Design: - Introduction: documentation/aircraft-design/empennage_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/empennage_design/doc/content/getting-started.md + - Getting Staretd: documentation/aircraft-design/empennage_design/doc/content/getting_started.md - API Reference: - empennage_design/classes.md - empennage_design/namespaces.md @@ -226,7 +227,7 @@ nav: # Customizes the main navigation struc - empennage_design/pages.md - Tank Design: - Introduction: documentation/aircraft-design/tank_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/tank_design/doc/content/getting-started.md + - Getting Staretd: documentation/aircraft-design/tank_design/doc/content/getting_started.md - API Reference: - tank_design/classes.md - tank_design/namespaces.md @@ -243,7 +244,7 @@ nav: # Customizes the main navigation struc - Engine Extension: documentation/aircraft-design/propulsion_design/doc/content/tutorial_engine_extension.md - Fidelity Extension: documentation/aircraft-design/propulsion_design/doc/content/tutorial_fidelity_extension.md - Changelog: documentation/aircraft-design/propulsion_design/doc/content/changelog.md - - Additional: documentation/aircraft-design/propulsion_design/doc/content/additional.md + - Additional Information: documentation/aircraft-design/propulsion_design/doc/content/additional.md - API Reference: - propulsion_design/classes.md - propulsion_design/namespaces.md @@ -252,7 +253,7 @@ nav: # Customizes the main navigation struc - propulsion_design/pages.md - Landing Gear Design: - Introduction: documentation/aircraft-design/landing_gear_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/landing_gear_design/doc/content/getting-started.md + - Getting Staretd: documentation/aircraft-design/landing_gear_design/doc/content/getting_started.md - API Reference: - landing_gear_design/classes.md - landing_gear_design/namespaces.md @@ -261,7 +262,7 @@ nav: # Customizes the main navigation struc - landing_gear_design/pages.md - Systems Design: - Introduction: documentation/aircraft-design/systems_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/systems_design/doc/content/getting-started.md + - Getting Staretd: documentation/aircraft-design/systems_design/doc/content/getting_started.md - API Reference: - systems_design/classes.md - systems_design/namespaces.md @@ -282,9 +283,9 @@ nav: # Customizes the main navigation struc - MSYS2/MinGW (deprecated): get-involved/build-environment/mingw.md - Get Source Code: get-involved/get-source-code.md - Build: - - General: get-involved/general.md - - C++: get-involved/cpp.md - - Python: get-involved/python.md + - General: get-involved/build/general.md + - C++: get-involved/build/cpp.md + - Python: get-involved/build/python.md - Include Libraries: get-involved/including-libraries.md - CMake Presets: get-involved/cmake-presets.md - Module Development: -- GitLab From 4d10fe23ef00cd26d9491dc1010cbc71d92d3a86 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Wed, 22 Jan 2025 15:00:01 +0100 Subject: [PATCH 39/53] Clone libraries repository --- .gitlab-ci.yml | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 59326ec..211d90c 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -33,10 +33,8 @@ clone: # Clone the aircraft-design repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - - cd aircraft-design || { echo "Directory not found! Exiting..."; exit 1; } # Clone the libraries repository, including its submodules - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries/ - - cd libraries || { echo "Directory not found! Exiting..."; exit 1; } # Change to the project directory (useful for multi-directory repositories) - cd $CI_PROJECT_DIR - ls -la $CI_PROJECT_DIR @@ -74,7 +72,8 @@ pages: script: # Use the persisted content from the previous stage (aircraft-design) - - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy content to the docs/documentation folder + - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy aircraft-design to the docs/documentation folder + - cp -r $CI_PROJECT_DIR/libraries $CI_PROJECT_DIR/docs/documentation # Copy libraries to the docs/documentation folder - mkdir $CI_PROJECT_DIR/docs/aircraft-xml - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title General --level 1 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/general.md - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MassesAndLoadings --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/masses.md -- GitLab From 2b47c186cbb4159548a2926e62532cc70c5fa592 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Thu, 23 Jan 2025 12:59:21 +0100 Subject: [PATCH 40/53] Fix issues in CI config file --- .gitlab-ci.yml | 54 +- scripts/CSR-02.xml | 3767 ------------------------------ scripts/document_aircraft_xml.py | 233 -- 3 files changed, 8 insertions(+), 4046 deletions(-) delete mode 100644 scripts/CSR-02.xml delete mode 100644 scripts/document_aircraft_xml.py diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index c216956..461ecb4 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -30,35 +30,13 @@ clone: # Install necessary packages, including git, doxygen, and other dependencies - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi script: - # clone repos - - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - - cd aircraft-design - - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries libs/ - # create aircraft design documentation - - cd propulsion_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../wing_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../empennage_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../ecological_assessment/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../cost_estimation/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../fuselage_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../initial_sizing/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../landing_gear_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../systems_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../tank_design/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../weight_and_balance_analysis/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - # create libraries documentation - - cd ../../libs/aircraftGeometry2/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd ../../engine/doc/ && ( cat Doxyfile ; echo "OUTPUT_DIRECTORY = $CI_PROJECT_DIR/docs/documentation/" ) | doxygen - - - cd $CI_PROJECT_DIR - - # Clone the aircraft-design repository, including its submodules - - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - # Clone the libraries repository, including its submodules - - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries/ - # Change to the project directory (useful for multi-directory repositories) - - cd $CI_PROJECT_DIR - - ls -la $CI_PROJECT_DIR - + # Clone the aircraft-design repository, including its submodules + - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design + # Clone the libraries repository, including its submodules + - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries/ + # Change to the project directory (useful for multi-directory repositories) + - cd $CI_PROJECT_DIR + - ls -la $CI_PROJECT_DIR artifacts: # Save the generated documentation as artifacts so they can be accessed later in the pipeline paths: @@ -91,24 +69,8 @@ pages: - pipenv install --dev # Install all necessary dependencies script: # Use the persisted content from the previous stage (aircraft-design) - - - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy aircraft-design to the docs/documentation folder + - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy aircraft-design to the docs/documentation folder - cp -r $CI_PROJECT_DIR/libraries $CI_PROJECT_DIR/docs/documentation # Copy libraries to the docs/documentation folder - - mkdir $CI_PROJECT_DIR/docs/aircraft-xml - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title General --level 1 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/general.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MassesAndLoadings --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/masses.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Geometry --level 6 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/geometry.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Structure --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/structure.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Accommodation --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/accommodation.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Propulsion --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/propulsion.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Systems --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/systems.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Aerodynamics --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/aerodynamics.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title StabilityAndControlCharacteristics --level 2 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/stability.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Performance --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/performance.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title MonetaryValues --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/monetary.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title EcologicalValues --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/ecological.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title Requirements --level 3 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/requirements.md - - python $CI_PROJECT_DIR/scripts/document_aircraft_xml.py --title DesignSpecification --level 4 $CI_PROJECT_DIR/scripts/CSR-02.xml > $CI_PROJECT_DIR/docs/aircraft-xml/specification.md # Build the MkDocs documentation site - pipenv run mkdocs build --verbose --site-dir $CI_PROJECT_DIR/public needs: diff --git a/scripts/CSR-02.xml b/scripts/CSR-02.xml deleted file mode 100644 index e79520e..0000000 --- a/scripts/CSR-02.xml +++ /dev/null @@ -1,3767 +0,0 @@ -<AcftExchangeFile> - <General Desc="Allgemeine Angaben"> - <Type Desc="Flugzeugtyp" Unit="-">CeRAS</Type> - <Model Desc="Modell bzw. Ausfuehrung" Unit="-">CSR-02</Model> - </General> - <MassesAndLoadings Desc="-"> - <MassBreakdown Desc="Mass breakdown"> - <Wing Desc="Fluegelmasse und Schwerpunktlage des Massenelements, Airbus Chapter 10"> - <Mass ToolLevel="1" Unit="kg">8288.967026</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> - <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> - </RefPoint> - <CenterWing Desc="Masse der Fluegelstruktur (Skins, Spars, Ribs, Pylon attachments, LG supports), Airbus Ch. 10.0-4"> - <Mass ToolLevel="1" Unit="kg">6063.492374</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> - <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> - </RefPoint> - <EoW_CenterWingMassFactor Desc="Center wing mass factor for over-the-wing engines" ToolLevel="1" Unit="-">1</EoW_CenterWingMassFactor> - <EoW_AeroelasticFactor Desc="Aeroelastic (flutter) factor for over-the-wing engines" ToolLevel="1" Unit="-">1</EoW_AeroelasticFactor> - <EoW_TotalCenterWingMassFactor Desc="EoW_CenterWingMassFactor * EoW_AeroelasticFactor" ToolLevel="1" Unit="-">1</EoW_TotalCenterWingMassFactor> - </CenterWing> - <WingLEandTE Desc="Masse der Hochauftriebssysteme, Airbus Ch. 10.5-8"> - <Mass ToolLevel="1" Unit="kg">2225.474652</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> - <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> - </RefPoint> - <FixedLeadingEdge Desc="Mass of the complete fixed leading edge, Airbus Ch. 10.5"> - <Mass ToolLevel="1" Unit="kg">282.297482</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> - <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> - </RefPoint> - </FixedLeadingEdge> - <MovableLeadingEdge Desc="Mass of the complete movable leading edge, Airbus Ch. 10.6"> - <Mass ToolLevel="1" Unit="kg">380.8095925</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> - <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> - </RefPoint> - </MovableLeadingEdge> - <FixedTrailingEdge Desc="Mass of the fixed trailing edge, Airbus Ch. 10.7"> - <Mass ToolLevel="1" Unit="kg">546.1954554</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> - <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> - </RefPoint> - </FixedTrailingEdge> - <MovableTrailingEdge Desc="Mass of the movable trailing edge, Airbus Ch. 10.8"> - <Mass ToolLevel="1" Unit="kg">1016.172122</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> - <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> - </RefPoint> - </MovableTrailingEdge> - </WingLEandTE> - <Miscellaneous Desc="Restliche Fluegelmassenanteile, Airbus Ch. 10.9"> - <Mass ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> - <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> - </RefPoint> - </Miscellaneous> - </Wing> - <Fuselage Desc="Rumpfmasse und Schwerpunktlage des Massenelements, Airbus Chapter 11"> - <Mass Desc="-" ToolLevel="1" Unit="kg">8482.604033</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> - <y_Item Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Fuselage> - <Empennage Desc="Masse der Leitwerksgruppe und Schwerpunktlage des Massenelements"> - <Mass Desc="Gesamtmasse der Leitwerksgruppe" ToolLevel="1" Unit="kg">1325.468005</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">33.95934635</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">1.654512598</h_Item> - </RefPoint> - <Tailplane Desc="Airbus Chapter 13"> - <Mass ToolLevel="1" Unit="kg">759.3554913</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">34.25726239</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">1.654512598</h_Item> - </RefPoint> - </Tailplane> - <Fin Desc="Airbus Chapter 14"> - <Mass Desc="-" ToolLevel="1" Unit="kg">566.1125139</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">33.55973642</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">1.654512598</h_Item> - </RefPoint> - </Fin> - </Empennage> - <LandingGear Desc="Fahrwerksmasse und Schwerpunktlage des Massenelements, Airbus Chapter 15"> - <Mass Desc="-" ToolLevel="1" Unit="kg">2600.672138</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">15.45985449</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.413319125</h_Item> - </RefPoint> - <Gear Desc="Beschreibung des Bugfahrwerks" ID="NoseGear"> - <Mass Desc="Mass of single gear" ToolLevel="1" Unit="kg">390.1008207</Mass> - <RefPoint Desc="Position of NoseGear CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">1.947356458</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">-1.978883883</h_Item> - </RefPoint> - <Strut> - <strutMass Desc="strut mass" ToolLevel="1" Unit="kg">0</strutMass> - <RefPoint Desc="position of strut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Strut> - <SupportStrut> - <suppStrutMass Desc="Mass of support strut" ToolLevel="1" Unit="kg">0</suppStrutMass> - <RefPoint Desc="position of suppStrut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </SupportStrut> - <WheelGroupConnection> - <connStrutMass Desc="Mass of connection strut" ToolLevel="1" Unit="kg">0</connStrutMass> - <RefPoint Desc="position of wheelGroupConnectionStrut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </WheelGroupConnection> - <WheelGroup> - <tiresMass Desc="Overall mass of tires" ToolLevel="1" Unit="kg">0</tiresMass> - <axesMass Desc="Overall mass of axes" ToolLevel="1" Unit="kg">0</axesMass> - <rimMass Desc="Rim mass" ToolLevel="1" Unit="kg">0</rimMass> - <brakeMass Desc="brake mass" ToolLevel="1" Unit="kg">0</brakeMass> - </WheelGroup> - </Gear> - <Gear Desc="Beschreibung des aeusseren, rechten Hauptfahrwerks" ID="OuterRightMainGear"> - <Mass Desc="Mass of single gear" ToolLevel="1" Unit="kg">1105.285659</Mass> - <RefPoint Desc="Position of OuterRightMainGear CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">17.84441297</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">-1.313513579</h_Item> - </RefPoint> - <Strut> - <strutMass Desc="strut mass" ToolLevel="1" Unit="kg">0</strutMass> - <RefPoint Desc="position of strut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Strut> - <SupportStrut> - <suppStrutMass Desc="Mass of support strut" ToolLevel="1" Unit="kg">0</suppStrutMass> - <RefPoint Desc="position of suppStrut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </SupportStrut> - <WheelGroupConnection> - <connStrutMass Desc="Mass of connection strut" ToolLevel="1" Unit="kg">0</connStrutMass> - <RefPoint Desc="position of wheelGroupConnectionStrut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </WheelGroupConnection> - <WheelGroup> - <tiresMass Desc="Overall mass of tires" ToolLevel="1" Unit="kg">0</tiresMass> - <axesMass Desc="Overall mass of axes" ToolLevel="1" Unit="kg">0</axesMass> - <rimMass Desc="Rim mass" ToolLevel="1" Unit="kg">0</rimMass> - <brakeMass Desc="brake mass" ToolLevel="1" Unit="kg">0</brakeMass> - </WheelGroup> - </Gear> - <Gear Desc="Beschreibung des aeusseren, linken Hauptfahrwerks" ID="OuterLeftMainGear"> - <Mass Desc="Mass of single gear" ToolLevel="1" Unit="kg">1105.285659</Mass> - <RefPoint Desc="Position of OuterLeftMainGear CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">17.84441297</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">-1.313513579</h_Item> - </RefPoint> - <Strut> - <strutMass Desc="strut mass" ToolLevel="1" Unit="kg">0</strutMass> - <RefPoint Desc="position of strut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Strut> - <SupportStrut> - <suppStrutMass Desc="Mass of support strut" ToolLevel="1" Unit="kg">0</suppStrutMass> - <RefPoint Desc="position of suppStrut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </SupportStrut> - <WheelGroupConnection> - <connStrutMass Desc="Mass of connection strut" ToolLevel="1" Unit="kg">0</connStrutMass> - <RefPoint Desc="position of wheelGroupConnectionStrut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </WheelGroupConnection> - <WheelGroup> - <tiresMass Desc="Overall mass of tires" ToolLevel="1" Unit="kg">0</tiresMass> - <axesMass Desc="Overall mass of axes" ToolLevel="1" Unit="kg">0</axesMass> - <rimMass Desc="Rim mass" ToolLevel="1" Unit="kg">0</rimMass> - <brakeMass Desc="brake mass" ToolLevel="1" Unit="kg">0</brakeMass> - </WheelGroup> - </Gear> - <Gear Desc="Beschreibung des inneren, rechten Hauptfahrwerks" ID="InnerRightMainGear"> - <Mass Desc="Mass of single gear" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="Position of InnerRightMainGear CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - <Strut> - <strutMass Desc="strut mass" ToolLevel="1" Unit="kg">0</strutMass> - <RefPoint Desc="position of strut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Strut> - <SupportStrut> - <suppStrutMass Desc="Mass of support strut" ToolLevel="1" Unit="kg">0</suppStrutMass> - <RefPoint Desc="position of suppStrut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </SupportStrut> - <WheelGroupConnection> - <connStrutMass Desc="Mass of connection strut" ToolLevel="1" Unit="kg">0</connStrutMass> - <RefPoint Desc="position of wheelGroupConnectionStrut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </WheelGroupConnection> - <WheelGroup> - <tiresMass Desc="Overall mass of tires" ToolLevel="1" Unit="kg">0</tiresMass> - <axesMass Desc="Overall mass of axes" ToolLevel="1" Unit="kg">0</axesMass> - <rimMass Desc="Rim mass" ToolLevel="1" Unit="kg">0</rimMass> - <brakeMass Desc="brake mass" ToolLevel="1" Unit="kg">0</brakeMass> - </WheelGroup> - </Gear> - <Gear Desc="Beschreibung des inneren, linken Hauptfahrwerks" ID="InnerLeftMainGear"> - <Mass Desc="Mass of single gear" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="Position of InnerLeftMainGear CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - <Strut> - <strutMass Desc="strut mass" ToolLevel="1" Unit="kg">0</strutMass> - <RefPoint Desc="position of strut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Strut> - <SupportStrut> - <suppStrutMass Desc="Mass of support strut" ToolLevel="1" Unit="kg">0</suppStrutMass> - <RefPoint Desc="position of suppStrut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </SupportStrut> - <WheelGroupConnection> - <connStrutMass Desc="Mass of connection strut" ToolLevel="1" Unit="kg">0</connStrutMass> - <RefPoint Desc="position of wheelGroupConnectionStrut CofG to global point of reference"> - <r_Item Desc="Position of CofG in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of CofG in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of CofG in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </WheelGroupConnection> - <WheelGroup> - <tiresMass Desc="Overall mass of tires" ToolLevel="1" Unit="kg">0</tiresMass> - <axesMass Desc="Overall mass of axes" ToolLevel="1" Unit="kg">0</axesMass> - <rimMass Desc="Rim mass" ToolLevel="1" Unit="kg">0</rimMass> - <brakeMass Desc="brake mass" ToolLevel="1" Unit="kg">0</brakeMass> - </WheelGroup> - </Gear> - </LandingGear> - <Pylons Desc="Pylonmasse und Schwerpunktlage (aller Pylons), Airbus Chapter 16"> - <Mass Desc="-" ToolLevel="1" Unit="kg">1302.156306</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">15.87054623</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.53285849</h_Item> - </RefPoint> - </Pylons> - <PowerUnit Desc="Masse und Schwerpunktlage der Triebwerksanlage, Airbus Group Power Unit"> - <Mass Desc="Gesamtmasse der Gruppe Antriebsanlage" ToolLevel="1" Unit="kg">8513.660953</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.78507499</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-2.958381704</h_Item> - </RefPoint> - <Engine Desc="Ausruestmasse eines Triebwerks, Airbus Chapter 20" ID="1"> - <Mass Desc="-" ToolLevel="1" Unit="kg">4009.674109</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">5.49297931</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> - </RefPoint> - <EngineDry Desc="Engine dry mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">2748.88918</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">5.49297931</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> - </RefPoint> - </EngineDry> - <Nacelle Desc="Nacelle mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">713.6948535</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">5.49297931</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> - </RefPoint> - </Nacelle> - <OtherSystems Desc="Other systems mass eg. hydraulics, starter, etc."> - <Mass Desc="-" ToolLevel="1" Unit="kg">547.0900758</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">5.49297931</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> - </RefPoint> - </OtherSystems> - <Prop Desc="Propeller mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Prop> - </Engine> - <Engine Desc="Ausruestmasse eines Triebwerks, Airbus Chapter 20" ID="2"> - <Mass Desc="-" ToolLevel="1" Unit="kg">4009.674109</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">-5.49297931</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> - </RefPoint> - <EngineDry Desc="Engine dry mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">2748.88918</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">-5.49297931</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> - </RefPoint> - </EngineDry> - <Nacelle Desc="Nacelle mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">713.6948535</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">-5.49297931</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> - </RefPoint> - </Nacelle> - <OtherSystems Desc="Other systems mass eg. hydraulics, starter, etc."> - <Mass Desc="-" ToolLevel="1" Unit="kg">547.0900758</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.66216673</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">-5.49297931</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-3.072020922</h_Item> - </RefPoint> - </OtherSystems> - <Prop Desc="Propeller mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Prop> - </Engine> - <Engine Desc="Ausruestmasse eines Triebwerks, Airbus Chapter 20" ID="3"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - <EngineDry Desc="Engine dry mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </EngineDry> - <Nacelle Desc="Nacelle mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Nacelle> - <OtherSystems Desc="Other systems mass eg. hydraulics, starter, etc."> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </OtherSystems> - <Prop Desc="Propeller mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Prop> - </Engine> - <Engine Desc="Ausruestmasse eines Triebwerks, Airbus Chapter 20" ID="4"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - <EngineDry Desc="Engine dry mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </EngineDry> - <Nacelle Desc="Nacelle mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Nacelle> - <OtherSystems Desc="Other systems mass eg. hydraulics, starter, etc."> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </OtherSystems> - <Prop Desc="Propeller mass"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Prop> - </Engine> - <BleedAirSystem Desc="Airbus Chapter 21, ATA36"> - <Mass Desc="-" ToolLevel="1" Unit="kg">172.6795332</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.05413654</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Item> - </RefPoint> - </BleedAirSystem> - <EngineControls Desc="Airbus Chapter 22"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </EngineControls> - <FuelSystem Desc="Airbus Chapter 25, ATA28"> - <Mass Desc="-" ToolLevel="1" Unit="kg">321.6332021</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">17.1682343</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.030900284</h_Item> - </RefPoint> - </FuelSystem> - </PowerUnit> - <Systems Desc="Systemmasse und Schwerpunktlage des Massenelements, Airbus Group Systems"> - <Mass Desc="Gesamtmasse der Systemgruppe" ToolLevel="1" Unit="kg">5355.445849</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.39637449</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-0.5741904671</h_Item> - </RefPoint> - <APU Desc="Airbus Chapter 30, ATA49"> - <Mass Desc="-" ToolLevel="1" Unit="kg">254.7995941</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">35.65115779</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </APU> - <HydraulicGeneration Desc="Airbus Chapter 31, ATA 29"> - <Mass Desc="-" ToolLevel="1" Unit="kg">184.4172612</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.05413654</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Item> - </RefPoint> - </HydraulicGeneration> - <HydraulicDistribution Desc="Airbus Chapter 32, ATA 29"> - <Mass Desc="-" ToolLevel="1" Unit="kg">805.6612438</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.05413654</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Item> - </RefPoint> - </HydraulicDistribution> - <AirConditioning Desc="Airbus Chapter 33, ATA21"> - <Mass Desc="-" ToolLevel="1" Unit="kg">717.7462397</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.05413654</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Item> - </RefPoint> - </AirConditioning> - <DeIcing Desc="Airbus Chapter 34, ATA30"> - <Mass Desc="-" ToolLevel="1" Unit="kg">42.30906964</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </DeIcing> - <FireProtection Desc="Airbus Chapter 35, ATA26"> - <Mass Desc="-" ToolLevel="1" Unit="kg">94.97439103</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </FireProtection> - <FlightControls Desc="Airbus Chapter 36, ATA27"> - <Mass Desc="-" ToolLevel="1" Unit="kg">711.5018356</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.05413654</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Item> - </RefPoint> - <Roll Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.0"> - <Mass Desc="-" ToolLevel="1" Unit="kg">43.35817647</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Roll> - <Yaw Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.1"> - <Mass Desc="-" ToolLevel="1" Unit="kg">94.98684287</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Yaw> - <Pitch Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.2"> - <Mass Desc="-" ToolLevel="1" Unit="kg">33.35895545</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Pitch> - <MovableHorizontalTail Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.3"> - <Mass Desc="-" ToolLevel="1" Unit="kg">64.77541722</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </MovableHorizontalTail> - <Flaps Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.4"> - <Mass Desc="-" ToolLevel="1" Unit="kg">147.1812978</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Flaps> - <SpoilersAirbrakesLiftdumpers Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.5"> - <Mass Desc="-" ToolLevel="1" Unit="kg">39.74320013</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </SpoilersAirbrakesLiftdumpers> - <Slats Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.6"> - <Mass Desc="-" ToolLevel="1" Unit="kg">145.7975785</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Slats> - <CommonInstallation Desc="Mass of the aileron actuators, their installations and operation controls, Airbus Ch. 36.7"> - <Mass Desc="-" ToolLevel="1" Unit="kg">142.3003671</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </CommonInstallation> - </FlightControls> - <Instruments Desc="Airbus Chapter 37, ATA31"> - <Mass ToolLevel="1" Unit="kg">85.52867064</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">4.125269051</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Instruments> - <AutomaticFlightSystem Desc="Airbus Chapter 38, ATA 22"> - <Mass ToolLevel="1" Unit="kg">138.9840898</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">12.51238234</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </AutomaticFlightSystem> - <Navigation Desc="Airbus Chapter 39, ATA34"> - <Mass Desc="-" ToolLevel="1" Unit="kg">566.627443</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">12.51238234</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Navigation> - <Communication Desc="Airbus Chapter 40, ATA23"> - <Mass Desc="-" ToolLevel="1" Unit="kg">277.9681796</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">12.51238234</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Communication> - <ElectricalGeneration Desc="Airbus Chapter 41, ATA24"> - <Mass Desc="-" ToolLevel="1" Unit="kg">779.0134574</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </ElectricalGeneration> - <ElectricalDistribution Desc="Airbus Chapter 42, ATA24"> - <Mass Desc="-" ToolLevel="1" Unit="kg">695.9143735</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </ElectricalDistribution> - </Systems> - <Furnishings Desc="Furnishingmasse und Schwerpunktlage des Massenelements, Airbus Group Furnishings"> - <Mass Desc="Gesamtmasse der Furnishinggruppe" ToolLevel="1" Unit="kg">3108.708964</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - <Furnishing Desc="Airbus Chapter 50, ATA25"> - <Mass Desc="-" ToolLevel="1" Unit="kg">2452.022285</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Furnishing> - <FixedEmergencyOxygen Desc="Airbus Chapter 51, ATA35"> - <Mass Desc="-" ToolLevel="1" Unit="kg">98.464</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </FixedEmergencyOxygen> - <Lighting Desc="Airbus Chapter 52, ATA33"> - <Mass Desc="-" ToolLevel="1" Unit="kg">268.2126788</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </Lighting> - <WaterInstallation Desc="Airbus Chapter 53, ATA38"> - <Mass Desc="-" ToolLevel="1" Unit="kg">290.01</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.88739053</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </WaterInstallation> - </Furnishings> - <OperatorsItems Desc="Masse der Betreiberausstattung und Schwerpunktlage des Massenelements, Airbus Group Operator Items"> - <Mass Desc="Gesamtmasse der Operators Items Gruppe" ToolLevel="1" Unit="kg">3331.623637</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">14.6792334</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - <OperatorEquipment Desc="Airbus Chapter 60 (fixed equipment, vorher Standard Items)"> - <Mass Desc="-" ToolLevel="1" Unit="kg">1581.073637</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">16.71467966</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </OperatorEquipment> - <OperationalEquipment Desc="Airbus Chapter 61 (movable equipment)"> - <Mass Desc="-" ToolLevel="1" Unit="kg">1750.55</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">12.84084522</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </OperationalEquipment> - </OperatorsItems> - <NotAllocated Desc="Nicht zugeordnete Massenanteile und Schwerpunktlage des Massenelements"> - <Mass Desc="-" ToolLevel="1" Unit="kg">0</Mass> - <RefPoint Desc="position of mass item to global point of reference"> - <r_Item Desc="Position of reference in x-direction" ToolLevel="1" Unit="m">0</r_Item> - <y_Item Desc="Position of reference in y-direction" ToolLevel="1" Unit="m">0</y_Item> - <h_Item Desc="Position of reference in z-direction" ToolLevel="1" Unit="m">0</h_Item> - </RefPoint> - </NotAllocated> - </MassBreakdown> - <MTM Desc="Maximum Taxi Mass" ToolLevel="1" Unit="kg">0</MTM> - <MLM Desc="Maximum Landing Mass" ToolLevel="1" Unit="kg">66724.81066</MLM> - <MTOM Desc="Maximum Take-Off Mass" ToolLevel="3" Unit="kg">79148.59668</MTOM> - <MRM Desc="Maximum Ramp Mass" ToolLevel="1" Unit="kg">0</MRM> - <MME Desc="Manufacturing Mass Empty" ToolLevel="1" Unit="kg">38977.68327</MME> - <OME Desc="Operating Mass Empty" ToolLevel="1" Unit="kg">42309.30691</OME> - <MZFM Desc="Maximum Zero Fuel Mass" ToolLevel="1" Unit="kg">62309.30691</MZFM> - <MaximumPayload Desc="Maximale Nutzlast" ToolLevel="1" Unit="kg">20000</MaximumPayload> - <MaximumUsableFuel Desc="Benutzbare Kraftstoffmasse" ToolLevel="1" Unit="kg">32478.96446</MaximumUsableFuel> - <WingLoading Desc="Fluegelflaechenlast" ToolLevel="1" Unit="kg/m2">625.8366729</WingLoading> - <ThrustToWeight Desc="Schubkraft (kN) zu Gewichtskrafthaeltnis (kN)" ToolLevel="1" Unit="-">0.3320609465</ThrustToWeight> - <PowerToWeight Desc="Leistungsgewicht" ToolLevel="1" Unit="kW/kg">0</PowerToWeight> - <MassMomentsOfInertia Desc="Mass moment of inertia (MMoI)"> - <DesignPoint Desc="MMoI at Designpoint"> - <Jxx Desc="MMoI x-axis" ToolLevel="1" Unit="kg*m2">1200828.866</Jxx> - <Jyy Desc="MMoI y-axis" ToolLevel="1" Unit="kg*m2">3139142.531</Jyy> - <Jzz Desc="MMoI z-axis" ToolLevel="1" Unit="kg*m2">4166372.541</Jzz> - <Jxy Desc="MMoI xy-axis (deviation)" ToolLevel="1" Unit="kg*m2">0</Jxy> - <Jxz Desc="MMoI xz-axis (deviation)" ToolLevel="1" Unit="kg*m2">0</Jxz> - <Jyz Desc="MMoI yz-axis (deviation)" ToolLevel="1" Unit="kg*m2">0</Jyz> - </DesignPoint> - </MassMomentsOfInertia> - <CentreOfGravityRange Desc="Schwerpunktsgrenzen"> - <TrimRefPt Desc="Schwerpunktlage fuer CM-Berechnung und Trimmung im Reiseflug"> - <h Desc="Position of the COG in reference to the global point of reference in z-direction" ToolLevel="1" Unit="m">-0.7482016769</h> - <r Desc="Position of the COG in reference to the global point of reference in x-direction" ToolLevel="1" Unit="m">16.80339635</r> - <y Desc="Position of the COG in reference to the global point of reference in y-direction" ToolLevel="1" Unit="m">0</y> - </TrimRefPt> - <ForwardLimit Desc="Vorderste Schwerpunktlage"> - <h Desc="Position of the COG in reference to the global point of reference in z-direction" ToolLevel="1" Unit="m">-0.9750336151</h> - <r Desc="Position of the COG in reference to the global point of reference in x-direction" ToolLevel="1" Unit="m">16.67440503</r> - <y Desc="Position of the COG in reference to the global point of reference in y-direction" ToolLevel="1" Unit="m">0</y> - </ForwardLimit> - <AftLimit Desc="Hinterste Schwerpunktlage"> - <h Desc="Position of the COG in reference to the global point of reference in z-direction" ToolLevel="1" Unit="m">-0.9992954046</h> - <r Desc="Position of the COG in reference to the global point of reference in x-direction" ToolLevel="1" Unit="m">16.88886532</r> - <y Desc="Position of the COG in reference to the global point of reference in y-direction" ToolLevel="1" Unit="m">0</y> - </AftLimit> - </CentreOfGravityRange> - </MassesAndLoadings> - <Geometry Desc="Geometriebeschreibung"> - <UsedElements Desc="Liste der verwendeten Geometrieelemente"> - <LiftingSurfaces Desc="Anzahl der verwendeten Elemente LiftingSurface" ToolLevel="1">2</LiftingSurfaces> - <LiftingSurface Desc="Name des verwendeten LiftingSurface-Elements" ID="1" ToolLevel="1" Unit="-">MainWing</LiftingSurface> - <LiftingSurface Desc="Name des verwendeten LiftingSurface-Elements" ID="2" ToolLevel="1" Unit="-">Stabiliser</LiftingSurface> - <VerticalSurfaces Desc="Anzahl der verwendeten Elemente VerticalSurface" ToolLevel="1">1</VerticalSurfaces> - <VerticalSurface Desc="Name des verwendeten VerticalSurface-Elements" ID="1" ToolLevel="1" Unit="-">Fin</VerticalSurface> - <VerticalSurface Desc="Name des verwendeten VerticalSurface-Elements" ID="2" ToolLevel="1" Unit="-">0</VerticalSurface> - <Fuselages Desc="Anzahl der verwendeten Elemente Fuselage" ToolLevel="1">1</Fuselages> - <Fuselage Desc="Name des verwendeten Fuselage-Elements" ID="1" ToolLevel="1" Unit="-">Fuselage</Fuselage> - <Nacelles Desc="Anzahl der verwendeten Elemente Nacelle" ToolLevel="1">2</Nacelles> - <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="1" ToolLevel="1" Unit="-">InnerRightWingNacelle</Nacelle> - <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="2" ToolLevel="1" Unit="-">InnerLeftWingNacelle</Nacelle> - <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="3" ToolLevel="1" Unit="-">0</Nacelle> - <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="4" ToolLevel="1" Unit="-">0</Nacelle> - <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="5" ToolLevel="1" Unit="-">0</Nacelle> - <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="6" ToolLevel="1" Unit="-">0</Nacelle> - <Nacelle Desc="Name des verwendeten Nacelle-Elements" ID="7" ToolLevel="1" Unit="-">0</Nacelle> - <Pylons Desc="Anzahl der verwendeten Elemente Pylon" ToolLevel="1">2</Pylons> - <Pylon Desc="Name des verwendeten Pylon-Elements" ID="1" ToolLevel="1" Unit="-">InnerRightWingPylon</Pylon> - <Pylon Desc="Name des verwendeten Pylon-Elements" ID="2" ToolLevel="1" Unit="-">InnerLeftWingPylon</Pylon> - <Pylon Desc="Name des verwendeten Pylon-Elements" ID="3" ToolLevel="1" Unit="-">0</Pylon> - <Pylon Desc="Name des verwendeten Pylon-Elements" ID="4" ToolLevel="1" Unit="-">0</Pylon> - <Pylon Desc="Name des verwendeten Pylon-Elements" ID="5" ToolLevel="1" Unit="-">0</Pylon> - <Pylon Desc="Name des verwendeten Pylon-Elements" ID="6" ToolLevel="1" Unit="-">0</Pylon> - <Gears Desc="Anzahl der verwendeten Elemente Gear" ToolLevel="1">3</Gears> - <Gear Desc="Name des verwendeten Gear-Elements" ID="1" ToolLevel="1" Unit="-">NoseGear</Gear> - <Gear Desc="Name des verwendeten Gear-Elements" ID="2" ToolLevel="1" Unit="-">OuterRightMainGear</Gear> - <Gear Desc="Name des verwendeten Gear-Elements" ID="3" ToolLevel="1" Unit="-">OuterLeftMainGear</Gear> - <Gear Desc="Name des verwendeten Gear-Elements" ID="4" ToolLevel="1" Unit="-">0</Gear> - <Gear Desc="Name des verwendeten Gear-Elements" ID="5" ToolLevel="1" Unit="-">0</Gear> - </UsedElements> - <LiftingSurface Desc="Beschreibung des Hauptfluegels" ID="MainWing"> - <SurfaceRefPoint Desc="position of wing to global point of reference"> - <r_Surface Desc="Position of the wing to global point of reference in x-direction" ToolLevel="1" Unit="m">12.51238234</r_Surface> - <y_Surface Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Surface> - <h_Surface Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">-1.27103384</h_Surface> - </SurfaceRefPoint> - <SurfaceParameters Desc="Parametric description of lifting surface geometry"> - <Symmetric Desc="1:= symmetric wing / 0 := asymmetric wing" ToolLevel="1" Unit="-">1</Symmetric> - <RelChordRefForRotation Desc="Rel. Chordtiefe: Ref.-Pkt. fuer Verwindg. u. V-Stellg." ToolLevel="1" Unit="-">0</RelChordRefForRotation> - <i_Surface Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="deg">0</i_Surface> - <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">200</SectionPoints> - <HalfSurfaceDescription Desc="Parameters of right wing (or both wings, if symmetric)" ID="1"> - <HalfSurfaceSegments Desc="Number of wing segments in this half surface" ToolLevel="1" Unit="-">2</HalfSurfaceSegments> - <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="1" Type="Surface"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\F15_15.dat</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\F15_12.dat</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">7.083508401</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">4.434391811</l_o_Segment> - <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">5.199184069</s_Segment> - <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">2.091406079</nu_Segment> - <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">26.99999996</phi_Segment> - <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.11</l_rel_i_FrontSpar> - <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.55</l_rel_i_RearSpar> - <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.16</l_rel_o_FrontSpar> - <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.65</l_rel_o_RearSpar> - </HalfSurfaceSegment> - <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="2" Type="Surface"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\F15_12.dat</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\F15_11.dat</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">4.434391811</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">1.053794453</l_o_Segment> - <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">12.1314295</s_Segment> - <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">2.374274265</nu_Segment> - <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">26.99999996</phi_Segment> - <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.16</l_rel_i_FrontSpar> - <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.65</l_rel_i_RearSpar> - <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.27</l_rel_o_FrontSpar> - <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.55</l_rel_o_RearSpar> - </HalfSurfaceSegment> - <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="3" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">0</phi_Segment> - <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> - <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> - <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> - <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> - </HalfSurfaceSegment> - <ControlDeviceSetup Desc="Planformbeschreibung der Steuerflaechen"> - <TEDevices Desc="Anzahl der Hinterkantenflaechen" ToolLevel="1">8</TEDevices> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="1"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">Fowler</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.1168298891</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.2</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.294</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.3</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">45</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="2"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">Fowler</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.306</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.3</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.78</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.3</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">45</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="3"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">Aileron</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.8</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.3</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.98</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.3</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">20</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">-20</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="4"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">SpoilerGround</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.2054149445</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.125</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0.25</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.294</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.15</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0.3</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">40</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="5"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">SpoilerAir</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.306</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.15</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0.3</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.4195</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.15</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0.3</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">40</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="6"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">SpoilerAir</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.4195</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.15</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0.3</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.533</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.15</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0.3</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">40</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="7"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">SpoilerAir</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.533</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.15</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0.3</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.6465</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.15</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0.3</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">40</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="8"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">SpoilerAir</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.6465</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.15</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0.3</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.76</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.15</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0.3</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">40</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <LEDevices Desc="Anzahl der Vorderkantenflaechen" ToolLevel="1">1</LEDevices> - <LEDevice Desc="Beschreibung eines Vorderkantenelements" ID="1"> - <Type Desc="Typ der Vorderkantenflaeche (Slat, Krueger, DroopNose, morphingDroopNose, Special)" ToolLevel="1">Slat</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.1168298891</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.11</l_rel_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.95</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.27</l_rel_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">35</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </LEDevice> - </ControlDeviceSetup> - </HalfSurfaceDescription> - <HalfSurfaceDescription Desc="Parameters of left wing (if asymmetric)" ID="2"> - <HalfSurfaceSegments Desc="Number of wing segments in this half surface" ToolLevel="1" Unit="-">0</HalfSurfaceSegments> - <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="1" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">0</phi_Segment> - <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> - <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> - <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> - <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> - </HalfSurfaceSegment> - <ControlDeviceSetup Desc="Planformbeschreibung der Steuerflaechen"> - <TEDevices Desc="Anzahl der Hinterkantenflaechen" ToolLevel="1">0</TEDevices> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="1"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="2"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="3"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="4"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="5"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="6"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="7"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="8"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <LEDevices Desc="Anzahl der Vorderkantenflaechen" ToolLevel="1">0</LEDevices> - <LEDevice Desc="Beschreibung eines Vorderkantenelements" ID="1"> - <Type Desc="Typ der Vorderkantenflaeche (Slat, Krueger, DroopNose, morphingDroopNose, Special)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </LEDevice> - </ControlDeviceSetup> - </HalfSurfaceDescription> - </SurfaceParameters> - </LiftingSurface> - <LiftingSurface Desc="Beschreibung des Hoehenleitwerks" ID="Stabiliser"> - <SurfaceRefPoint Desc="position of wing to global point of reference"> - <r_Surface Desc="Position of the wing to global point of reference in x-direction" ToolLevel="1" Unit="m">31.6591417</r_Surface> - <y_Surface Desc="Position of the wing to global point of reference in y-direction" ToolLevel="1" Unit="m">0</y_Surface> - <h_Surface Desc="Position of the wing to global point of reference in z-direction" ToolLevel="1" Unit="m">1.654512598</h_Surface> - </SurfaceRefPoint> - <SurfaceParameters Desc="Parametric description of lifting surface geometry"> - <Symmetric Desc="1:= symmetric wing / 0 := asymmetric wing" ToolLevel="1" Unit="-">1</Symmetric> - <RelChordRefForRotation Desc="Rel. Chordtiefe: Ref.-Pkt. fuer Verwindg. u. V-Stellg." ToolLevel="1" Unit="-">0</RelChordRefForRotation> - <i_Surface Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="deg">-1.250900566</i_Surface> - <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> - <HalfSurfaceDescription Desc="Parameters of right wing (or both wings, if symmetric)" ID="1"> - <HalfSurfaceSegments Desc="Number of wing segments in this half surface" ToolLevel="1" Unit="-">1</HalfSurfaceSegments> - <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="1" Type="Surface"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">3.992016088</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">1.123933623</l_o_Segment> - <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">6.439701701</s_Segment> - <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">31.99999988</phi_Segment> - <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.15</l_rel_i_FrontSpar> - <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0.65</l_rel_i_RearSpar> - <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.3</l_rel_o_FrontSpar> - <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0.55</l_rel_o_RearSpar> - </HalfSurfaceSegment> - <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="2" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">0</phi_Segment> - <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> - <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> - <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> - <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> - </HalfSurfaceSegment> - <ControlDeviceSetup Desc="Planformbeschreibung der Steuerflaechen"> - <TEDevices Desc="Anzahl der Hinterkantenflaechen" ToolLevel="1">1</TEDevices> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="1"> - <Type Desc="Typ der Hinterkantenflaeche (Elevator)" ToolLevel="1">Elevator</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.2</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.3</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.95</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.3</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">20</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">-20</FullNeg> - </DeflectionAngle> - </TEDevice> - <LEDevices Desc="Anzahl der Vorderkantenflaechen" ToolLevel="1">0</LEDevices> - <LEDevice Desc="Beschreibung eines Vorderkantenelements" ID="1"> - <Type Desc="Typ der Vorderkantenflaeche (Slat, Krueger, DroopNose, morphingDroopNose, Special)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </LEDevice> - </ControlDeviceSetup> - </HalfSurfaceDescription> - <HalfSurfaceDescription Desc="Parameters of left wing (if asymmetric)" ID="2"> - <HalfSurfaceSegments Desc="Number of wing segments in this half surface" ToolLevel="1" Unit="-">0</HalfSurfaceSegments> - <HalfSurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="1" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of wing segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of wing segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Leading edge sweep angle of wing segment" ToolLevel="1" Unit="deg">0</phi_Segment> - <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> - <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> - <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> - <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> - </HalfSurfaceSegment> - <ControlDeviceSetup Desc="Planformbeschreibung der Steuerflaechen"> - <TEDevices Desc="Anzahl der Hinterkantenflaechen" ToolLevel="1">0</TEDevices> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="1"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="2"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="3"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="4"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="5"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="6"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="7"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="8"> - <Type Desc="Typ der Hinterkantenflaeche (Aileron, DroopAileron, Flap, SlottedFlap, Fowler, DoubleFowler, TripleFowler, Special, SpoilerGround, SpoilerAir, morphingTrailingEdge)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <l_rel_TE_i Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device innen" ToolLevel="1" Unit="-">0</l_rel_TE_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <l_rel_TE_o Desc="relative Sehnentiefe von Hinterkante Fluegel zu Hinterkante device aussen" ToolLevel="1" Unit="-">0</l_rel_TE_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </TEDevice> - <LEDevices Desc="Anzahl der Vorderkantenflaechen" ToolLevel="1">0</LEDevices> - <LEDevice Desc="Beschreibung eines Vorderkantenelements" ID="1"> - <Type Desc="Typ der Vorderkantenflaeche (Slat, Krueger, DroopNose, morphingDroopNose, Special)" ToolLevel="1">0</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0</l_rel_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0</l_rel_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">0</FullNeg> - </DeflectionAngle> - </LEDevice> - </ControlDeviceSetup> - </HalfSurfaceDescription> - </SurfaceParameters> - </LiftingSurface> - <VerticalSurface Desc="Beschreibung des Seitenleitwerks" ID="Fin"> - <SurfaceRefPoint Desc="Referenzpunkt der vertikalen Steuerflaeche"> - <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">29.86369528</r_Surface> - <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">0</y_Surface> - <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">1.654512598</h_Surface> - </SurfaceRefPoint> - <SurfaceParameters Desc="Parametric description of vertical surface geometry"> - <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> - <SurfaceSegments Desc="Number of segments in this vertical surface" ToolLevel="1">1</SurfaceSegments> - <SurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="1" Type="Surface"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">5.787462516</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">1.531274612</l_o_Segment> - <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">6.952800274</s_Segment> - <phi_Segment Desc="Angle of dsweep of surface segment" ToolLevel="1" Unit="deg">38.99999987</phi_Segment> - <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> - <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> - <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> - <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="2" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> - <phi_Segment Desc="Angle of dsweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> - <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> - <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> - <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung (verfuegbare Typen: Fuselage, Surface, Tip)" ID="3" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of wing segment" ToolLevel="1" Unit="m">0</s_Segment> - <phi_Segment Desc="Angle of dsweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - <l_rel_i_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_FrontSpar> - <l_rel_i_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante innen" ToolLevel="1" Unit="-">0</l_rel_i_RearSpar> - <l_rel_o_FrontSpar Desc="rel. Sehnentiefe des Vorderholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_FrontSpar> - <l_rel_o_RearSpar Desc="rel. Sehnentiefe des Hinterholmes von der Vorderkante aussen" ToolLevel="1" Unit="-">0</l_rel_o_RearSpar> - </SurfaceSegment> - <ControlDeviceSetup Desc="Planformbeschreibung der Steuerflaechen"> - <TEDevices Desc="Anzahl der Hinterkantenflaechen" ToolLevel="1">1</TEDevices> - <TEDevice Desc="Beschreibung eines Hinterkantenelements" ID="1"> - <Type Desc="Typ der Hinterkantenflaeche (Rudder)" ToolLevel="1">Rudder</Type> - <s_rel_i Desc="relative Spannweite innen" ToolLevel="1" Unit="-">0.2</s_rel_i> - <l_rel_i Desc="relative Sehnentiefe innen" ToolLevel="1" Unit="-">0.3</l_rel_i> - <s_rel_o Desc="relative Spannweite aussen" ToolLevel="1" Unit="-">0.95</s_rel_o> - <l_rel_o Desc="relative Sehnentiefe aussen" ToolLevel="1" Unit="-">0.3</l_rel_o> - <DeflectionAngle Desc="Steuerflaechenausschlagwinkel"> - <FullPos Desc="Maximaler Ausschlagwinkel in positive Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">20</FullPos> - <FullNeg Desc="Maximaler Ausschlagwinkel in negative Richtung (Winkeldef.)" ToolLevel="1" Unit="deg">-20</FullNeg> - </DeflectionAngle> - </TEDevice> - </ControlDeviceSetup> - </SurfaceParameters> - </VerticalSurface> - <Fuselage Desc="Beschreibung des Rumpfes" ID="Fuselage"> - <FuselageRefPoint Desc="position of the fuselage nose refpoint to global point of reference"> - <r_Fuselage Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Fuselage> - <y_Fuselage Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Fuselage> - <h_Fuselage Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Fuselage> - </FuselageRefPoint> - <FuselageParameters Desc="parametric description of the fuselage"> - <NoseDescription> - <NoseSegments Desc="No of nose segments" ToolLevel="1">9</NoseSegments> - <TipSegment> - <h_Tip Desc="offset of nosetip" ToolLevel="1" Unit="m">-0.5232505048</h_Tip> - </TipSegment> - <NoseSegment ID="1"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">0.6219072875</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">0.647944796</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.06445732892</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.5232505048</deltah_Segment> - </NoseSegment> - <NoseSegment ID="2"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">1.232171749</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">1.283759313</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.1933719868</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.4278783272</deltah_Segment> - </NoseSegment> - <NoseSegment ID="3"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">1.81877794</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">1.894925056</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.3222866446</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.3362034659</deltah_Segment> - </NoseSegment> - <NoseSegment ID="4"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">2.368913086</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">2.468092813</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.4512013025</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.2502283023</deltah_Segment> - </NoseSegment> - <NoseSegment ID="5"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">2.868421677</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">2.988514422</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.5801159603</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.1721650609</deltah_Segment> - </NoseSegment> - <NoseSegment ID="6"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.301028172</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">3.439232935</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.7090306182</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.1045572839</deltah_Segment> - </NoseSegment> - <NoseSegment ID="7"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.6471193</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">3.799813925</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.837945276</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.05047013554</deltah_Segment> - </NoseSegment> - <NoseSegment ID="8"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.881644273</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">4.044157799</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0.9668599339</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0.01381855438</deltah_Segment> - </NoseSegment> - <NoseSegment ID="9"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.970066</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">4.136281495</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.095774592</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">-0</deltah_Segment> - </NoseSegment> - </NoseDescription> - <MidSectionDescription> - <MidSectionSegments Desc="No of mid-segment segments" ToolLevel="1">1</MidSectionSegments> - <MidSectionSegment ID="1"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.970066</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">4.136281495</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">16.76076782</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0</deltah_Segment> - </MidSectionSegment> - <MidSectionSegment ID="2"> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">0</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">0</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">0</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0</deltah_Segment> - </MidSectionSegment> - </MidSectionDescription> - <TailDescription> - <TailSegments Desc="No of tail segments" ToolLevel="1">7</TailSegments> - <TailSegment ID="1"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.970066</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">4.074891643</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.72542446</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0.03069492579</deltah_Segment> - </TailSegment> - <TailSegment ID="2"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.970066</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">3.889781167</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.72542446</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0.1232501637</deltah_Segment> - </TailSegment> - <TailSegment ID="3"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.892703799</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">3.578053688</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.72542446</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0.2791139033</deltah_Segment> - </TailSegment> - <TailSegment ID="4"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.618301624</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">3.143415874</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.72542446</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0.4964328104</deltah_Segment> - </TailSegment> - <TailSegment ID="5"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">3.142809701</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">2.681089784</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">1.72542446</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">0.7275958556</deltah_Segment> - </TailSegment> - <TailSegment ID="6"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">1.985033</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">1.754173041</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">3.459300377</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">1.191054227</deltah_Segment> - </TailSegment> - <TailSegment ID="7"> - <SegmentPointData ToolLevel="1">geometryData\fuselage.dat</SegmentPointData> - <w_Segment Desc="Breite des Rumpf-Segments" ToolLevel="1" Unit="m">0.827256299</w_Segment> - <h_Segment Desc="Hoehe des Rumpf-Segments" ToolLevel="1" Unit="m">0.827256299</h_Segment> - <l_Segment Desc="Laenge des Rumpf-Segments" ToolLevel="1" Unit="m">3.459300377</l_Segment> - <deltah_Segment Desc="Verticales Offset des Rumpf-Segments" ToolLevel="1" Unit="m">1.654512598</deltah_Segment> - </TailSegment> - </TailDescription> - </FuselageParameters> - </Fuselage> - <Nacelle Desc="Beschreibung der inneren rechten Triebwerksgondel" ID="InnerRightWingNacelle"> - <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> - <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">13.30681609</r_Nacelle> - <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">5.49297931</y_Nacelle> - <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-3.072020922</h_Nacelle> - </NacelleRefPoint> - <NacelleParameters Desc="parametric description of the nacelle"> - <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> - <Points Desc="No of points describing the section" ToolLevel="1">20</Points> - <Segments Desc="No of segments" ToolLevel="1">2</Segments> - <InletSegment> - <SegmentPointData ToolLevel="1">geometryData\nacelle.dat</SegmentPointData> - <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_Inlet> - <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_Inlet> - <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0.6776753197</l_Inlet> - </InletSegment> - <NacelleSegment ID="1"> - <InnerSegmentPointData ToolLevel="1">geometryData\nacelle.dat</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">geometryData\nacelle.dat</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">2.471029026</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.861475931</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">1.355350639</l_Segment> - </NacelleSegment> - <NacelleSegment ID="2"> - <InnerSegmentPointData ToolLevel="1">geometryData\nacelle.dat</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">geometryData\nacelle.dat</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">2.471029026</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.861475931</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0.6776753197</l_Segment> - </NacelleSegment> - <NacelleSegment ID="3"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <NacelleSegment ID="4"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <ExitSegment> - <SegmentPointData ToolLevel="1">geometryData\nacelle.dat</SegmentPointData> - <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_Exit> - <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_Exit> - </ExitSegment> - </NacelleParameters> - <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> - </Nacelle> - <Nacelle Desc="Beschreibung der inneren linken Triebwerksgondel" ID="InnerLeftWingNacelle"> - <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> - <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">13.30681609</r_Nacelle> - <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">-5.49297931</y_Nacelle> - <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-3.072020922</h_Nacelle> - </NacelleRefPoint> - <NacelleParameters Desc="parametric description of the nacelle"> - <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> - <Points Desc="No of points describing the section" ToolLevel="1">20</Points> - <Segments Desc="No of segments" ToolLevel="1">2</Segments> - <InletSegment> - <SegmentPointData ToolLevel="1">geometryData\nacelle.dat</SegmentPointData> - <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_Inlet> - <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_Inlet> - <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0.6776753197</l_Inlet> - </InletSegment> - <NacelleSegment ID="1"> - <InnerSegmentPointData ToolLevel="1">geometryData\nacelle.dat</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">geometryData\nacelle.dat</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">2.471029026</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.861475931</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">1.355350639</l_Segment> - </NacelleSegment> - <NacelleSegment ID="2"> - <InnerSegmentPointData ToolLevel="1">geometryData\nacelle.dat</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">geometryData\nacelle.dat</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">2.471029026</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.861475931</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0.6776753197</l_Segment> - </NacelleSegment> - <NacelleSegment ID="3"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <NacelleSegment ID="4"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <ExitSegment> - <SegmentPointData ToolLevel="1">geometryData\nacelle.dat</SegmentPointData> - <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">2.289180745</h_Exit> - <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">1.976823221</w_Exit> - </ExitSegment> - </NacelleParameters> - <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> - </Nacelle> - <Nacelle Desc="Beschreibung der aeusseren rechten Triebwerksgondel" ID="OuterRightWingNacelle"> - <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> - <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Nacelle> - <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Nacelle> - <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Nacelle> - </NacelleRefPoint> - <NacelleParameters Desc="parametric description of the nacelle"> - <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> - <Points Desc="No of points describing the section" ToolLevel="1">0</Points> - <Segments Desc="No of segments" ToolLevel="1">0</Segments> - <InletSegment> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Inlet> - <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Inlet> - <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Inlet> - </InletSegment> - <NacelleSegment ID="1"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <NacelleSegment ID="2"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <ExitSegment> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Exit> - <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Exit> - </ExitSegment> - </NacelleParameters> - <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> - </Nacelle> - <Nacelle Desc="Beschreibung der aeusseren linken Triebwerksgondel" ID="OuterLeftWingNacelle"> - <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> - <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Nacelle> - <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Nacelle> - <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Nacelle> - </NacelleRefPoint> - <NacelleParameters Desc="parametric description of the nacelle"> - <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> - <Points Desc="No of points describing the section" ToolLevel="1">0</Points> - <Segments Desc="No of segments" ToolLevel="1">0</Segments> - <InletSegment> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Inlet> - <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Inlet> - <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Inlet> - </InletSegment> - <NacelleSegment ID="1"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <NacelleSegment ID="2"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <ExitSegment> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Exit> - <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Exit> - </ExitSegment> - </NacelleParameters> - <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> - </Nacelle> - <Nacelle Desc="Beschreibung der rechten Hecktriebwerksgondel" ID="RightFuselageNacelle"> - <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> - <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Nacelle> - <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Nacelle> - <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Nacelle> - </NacelleRefPoint> - <NacelleParameters Desc="parametric description of the nacelle"> - <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> - <Points Desc="No of points describing the section" ToolLevel="1">0</Points> - <Segments Desc="No of segments" ToolLevel="1">0</Segments> - <InletSegment> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Inlet> - <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Inlet> - <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Inlet> - </InletSegment> - <NacelleSegment ID="1"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <NacelleSegment ID="2"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <ExitSegment> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Exit> - <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Exit> - </ExitSegment> - </NacelleParameters> - <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> - </Nacelle> - <Nacelle Desc="Beschreibung der linken Hecktriebwerksgondel" ID="LeftFuselageNacelle"> - <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> - <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Nacelle> - <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Nacelle> - <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Nacelle> - </NacelleRefPoint> - <NacelleParameters Desc="parametric description of the nacelle"> - <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> - <Points Desc="No of points describing the section" ToolLevel="1">0</Points> - <Segments Desc="No of segments" ToolLevel="1">0</Segments> - <InletSegment> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Inlet> - <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Inlet> - <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Inlet> - </InletSegment> - <NacelleSegment ID="1"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <NacelleSegment ID="2"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <ExitSegment> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Exit> - <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Exit> - </ExitSegment> - </NacelleParameters> - <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> - </Nacelle> - <Nacelle Desc="Beschreibung der in das SLW integrierten Triebwerksgondel" ID="FinNacelle"> - <NacelleRefPoint Desc="Referenzpunkt der Nacelle. Mittelpunkt des Einlaufs"> - <r_Nacelle Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Nacelle> - <y_Nacelle Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Nacelle> - <h_Nacelle Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Nacelle> - </NacelleRefPoint> - <NacelleParameters Desc="parametric description of the nacelle"> - <i_Nacelle Desc="Angle of incidence in reference to the aircrafts coordinate system" ToolLevel="1" Unit="degree">0</i_Nacelle> - <Points Desc="No of points describing the section" ToolLevel="1">0</Points> - <Segments Desc="No of segments" ToolLevel="1">0</Segments> - <InletSegment> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <w_Inlet Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Inlet> - <h_Inlet Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Inlet> - <l_Inlet Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Inlet> - </InletSegment> - <NacelleSegment ID="1"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <NacelleSegment ID="2"> - <InnerSegmentPointData ToolLevel="1">0</InnerSegmentPointData> - <OuterSegmentPointData ToolLevel="1">0</OuterSegmentPointData> - <w_i_Segment Desc="Innere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_i_Segment> - <w_o_Segment Desc="aeussere Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_o_Segment> - <h_i_Segment Desc="Innere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_i_Segment> - <h_o_Segment Desc="aeussere Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_o_Segment> - <l_Segment Desc="Laenge des Nacelle-Segments" ToolLevel="1" Unit="m">0</l_Segment> - </NacelleSegment> - <ExitSegment> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <h_Exit Desc="Hoehe des Nacelle-Segments" ToolLevel="1" Unit="m">0</h_Exit> - <w_Exit Desc="Breite des Nacelle-Segments" ToolLevel="1" Unit="m">0</w_Exit> - </ExitSegment> - </NacelleParameters> - <EngineTypeID Desc="Angabe der EngineType ID zwecks Zuordnung des korrekten Motors in dieser Nacelle" ToolLevel="1">0</EngineTypeID> - </Nacelle> - <Pylon Desc="Beschreibung des Pylons" ID="InnerRightWingPylon"> - <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> - <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">13.57788621</r_Surface> - <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">5.49297931</y_Surface> - <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-3.072020922</h_Surface> - </SurfaceRefPoint> - <SurfaceParameters Desc="Parametric description of pylon geometry"> - <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> - <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">2</SurfaceSegments> - <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="Surface"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">3.252841535</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">4.066051918</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">1.201819891</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="Surface"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">4.066051918</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">2.110599868</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0.8012132607</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">71.83066751</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - </SurfaceParameters> - </Pylon> - <Pylon Desc="Beschreibung des Pylons" ID="InnerLeftWingPylon"> - <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> - <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">13.57788621</r_Surface> - <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">-5.49297931</y_Surface> - <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-3.072020922</h_Surface> - </SurfaceRefPoint> - <SurfaceParameters Desc="Parametric description of pylon geometry"> - <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> - <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">2</SurfaceSegments> - <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="Surface"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">3.252841535</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">4.066051918</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">1.201819891</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="Surface"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">geometryData\airfoilData\n0012.dat</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">4.066051918</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">2.110599868</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0.8012132607</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">71.83066751</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - </SurfaceParameters> - </Pylon> - <Pylon Desc="Beschreibung des Pylons" ID="OuterRightWingPylon"> - <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> - <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Surface> - <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">0</y_Surface> - <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Surface> - </SurfaceRefPoint> - <SurfaceParameters Desc="Parametric description of pylon geometry"> - <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> - <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">0</SurfaceSegments> - <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - </SurfaceParameters> - </Pylon> - <Pylon Desc="Beschreibung des Pylons" ID="OuterLeftWingPylon"> - <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> - <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Surface> - <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">0</y_Surface> - <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Surface> - </SurfaceRefPoint> - <SurfaceParameters Desc="Parametric description of pylon geometry"> - <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> - <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">0</SurfaceSegments> - <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - </SurfaceParameters> - </Pylon> - <Pylon Desc="Beschreibung des Pylons" ID="RightFuselagePylon"> - <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> - <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Surface> - <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">0</y_Surface> - <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Surface> - </SurfaceRefPoint> - <SurfaceParameters Desc="Parametric description of pylon geometry"> - <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> - <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">0</SurfaceSegments> - <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - </SurfaceParameters> - </Pylon> - <Pylon Desc="Beschreibung des Pylons" ID="LeftFuselagePylon"> - <SurfaceRefPoint Desc="Referenzpunkt des Pylons"> - <r_Surface Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Surface> - <y_Surface Desc="Seitenlage in y-Richtung - i.d.R. = 0 !" ToolLevel="1" Unit="m">0</y_Surface> - <h_Surface Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Surface> - </SurfaceRefPoint> - <SurfaceParameters Desc="Parametric description of pylon geometry"> - <SectionPoints Desc="number of points of profile. Will be used by spline interpolation if DoInterpolate attribute is set true" DoInterpolate="0" ToolLevel="1" Unit="-">0</SectionPoints> - <SurfaceSegments Desc="Number of segments in this pylon" ToolLevel="1">0</SurfaceSegments> - <SurfaceSegment Desc="Segmentbeschreibung" ID="1" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="2" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - <SurfaceSegment Desc="Segmentbeschreibung" ID="3" Type="0"> - <InnerProfile_Segment Desc="Inner airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</InnerProfile_Segment> - <OuterProfile_Segment Desc="Outer airfoil segment. Geometry is stored in seperate file (*.dat)" ToolLevel="1">0</OuterProfile_Segment> - <l_i_Segment Desc="Chord length of segments inner profile" ToolLevel="1" Unit="m">0</l_i_Segment> - <l_o_Segment Desc="Chord length of segments outer profile" ToolLevel="1" Unit="m">0</l_o_Segment> - <s_Segment Desc="Span of surface segment" ToolLevel="1" Unit="m">0</s_Segment> - <epsilon_Segment Desc="Angle of twist of surface segment" ToolLevel="1" Unit="deg">0</epsilon_Segment> - <nu_Segment Desc="Angle of dihedral of surface segment" ToolLevel="1" Unit="deg">0</nu_Segment> - <phi_Segment Desc="Angle of sweep of surface segment" ToolLevel="1" Unit="deg">0</phi_Segment> - </SurfaceSegment> - </SurfaceParameters> - </Pylon> - <Gear Desc="Beschreibung des Bugfahrwerks" ID="NoseGear"> - <GearRefPoint Desc="Referenzpunkt. Aufhaengungs- bzw. Drehpunkt des Fahrwerks"> - <r_Gear Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">3.480695762</r_Gear> - <y_Gear Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Gear> - <h_Gear Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-1.978883883</h_Gear> - </GearRefPoint> - <WheelGroupRefPoint Desc="Referenzpunkt der Radgruppe. Endpunkt des Fahrwerksbeins auf Achshoehe in der Mitte der Achsen."> - <r_Wheelgroup Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">3.480695762</r_Wheelgroup> - <y_Wheelgroup Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Wheelgroup> - <h_Wheelgroup Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-5.04556249</h_Wheelgroup> - </WheelGroupRefPoint> - <StrutDiameter Desc="Durchmesser des Fahrwerkbeins" ToolLevel="1" Unit="m">0.127127</StrutDiameter> - <Retractable Desc="Fahrwerk einziehbar = 1, festes Fahrwerk = 0" ToolLevel="1">1</Retractable> - <HingeAxis Desc="Drehachse als Einheitsvektor um die das Fahrwerks einfaehrt (Im Math. Sinne positiv)"> - <x Desc="x-Komponente des Vektors" ToolLevel="1" Unit="-">0</x> - <y Desc="y-Komponente des Vektors" ToolLevel="1" Unit="-">0</y> - <z Desc="z-Komponente des Vektors" ToolLevel="1" Unit="-">0</z> - </HingeAxis> - <RetractionAngle Desc="Winkel um den das Fahrwerk zum Einziehen gedreht wird" ToolLevel="1" Unit="deg">90</RetractionAngle> - <Wheelbase Desc="Abstand der vordersten zur hintersten Achse der Radgruppe, Radstand" ToolLevel="1" Unit="m">0</Wheelbase> - <Wheeltrack Desc="Spurweite der Radgruppe" ToolLevel="1" Unit="m">0.3911791258</Wheeltrack> - <NumberOfAxes Desc="Achsenzahl der Radgruppe hintereinander. Abstand wird gleichmaessig auf Radstand verteilt" ToolLevel="1">1</NumberOfAxes> - <NumberOfWheelsPerAxis Desc="Anzahl der Raeder pro Achse" ToolLevel="1">2</NumberOfWheelsPerAxis> - <Wheel Desc="Beschreibung des Rades"> - <TireDiameter Desc="Reifendurchmesser" ToolLevel="1" Unit="m">0.6858</TireDiameter> - <TireWidth Desc="Reifenbreite" ToolLevel="1" Unit="m">0.19558</TireWidth> - <RimDiameter Desc="Felgendurchmesser" ToolLevel="1" Unit="m">0.3429</RimDiameter> - </Wheel> - </Gear> - <Gear Desc="Beschreibung des aeusseren, rechten Hauptfahrwerks" ID="OuterRightMainGear"> - <GearRefPoint Desc="Referenzpunkt. Aufhaengungs- bzw. Drehpunkt des Fahrwerks"> - <r_Gear Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">17.84441297</r_Gear> - <y_Gear Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">4.257464797</y_Gear> - <h_Gear Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-1.313513579</h_Gear> - </GearRefPoint> - <WheelGroupRefPoint Desc="Referenzpunkt der Radgruppe. Endpunkt des Fahrwerksbeins auf Achshoehe in der Mitte der Achsen."> - <r_Wheelgroup Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">17.80664751</r_Wheelgroup> - <y_Wheelgroup Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">4.257464797</y_Wheelgroup> - <h_Wheelgroup Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-4.80426249</h_Wheelgroup> - </WheelGroupRefPoint> - <StrutDiameter Desc="Durchmesser des Fahrwerkbeins" ToolLevel="1" Unit="m">0.32385</StrutDiameter> - <Retractable Desc="Fahrwerk einziehbar = 1, festes Fahrwerk = 0" ToolLevel="1">1</Retractable> - <HingeAxis Desc="Drehachse als Einheitsvektor um die das Fahrwerks einfaehrt (Im Math. Sinne positiv)"> - <x Desc="x-Komponente des Vektors" ToolLevel="1" Unit="-">0</x> - <y Desc="y-Komponente des Vektors" ToolLevel="1" Unit="-">0</y> - <z Desc="z-Komponente des Vektors" ToolLevel="1" Unit="-">0</z> - </HingeAxis> - <RetractionAngle Desc="Winkel um den das Fahrwerk zum Einziehen gedreht wird" ToolLevel="1" Unit="deg">-90</RetractionAngle> - <Wheelbase Desc="Abstand der vordersten zur hintersten Achse der Radgruppe, Radstand" ToolLevel="1" Unit="m">0</Wheelbase> - <Wheeltrack Desc="Spurweite der Radgruppe" ToolLevel="1" Unit="m">0.8636932256</Wheeltrack> - <NumberOfAxes Desc="Achsenzahl der Radgruppe hintereinander. Abstand wird gleichmaessig auf Radstand verteilt" ToolLevel="1">1</NumberOfAxes> - <NumberOfWheelsPerAxis Desc="Anzahl der Raeder pro Achse" ToolLevel="1">2</NumberOfWheelsPerAxis> - <Wheel Desc="Beschreibung des Rades"> - <TireDiameter Desc="Reifendurchmesser" ToolLevel="1" Unit="m">1.1684</TireDiameter> - <TireWidth Desc="Reifenbreite" ToolLevel="1" Unit="m">0.4318</TireWidth> - <RimDiameter Desc="Felgendurchmesser" ToolLevel="1" Unit="m">0.5842</RimDiameter> - </Wheel> - </Gear> - <Gear Desc="Beschreibung des aeusseren, linken Hauptfahrwerks" ID="OuterLeftMainGear"> - <GearRefPoint Desc="Referenzpunkt. Aufhaengungs- bzw. Drehpunkt des Fahrwerks"> - <r_Gear Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">17.84441297</r_Gear> - <y_Gear Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">-4.257464797</y_Gear> - <h_Gear Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-1.313513579</h_Gear> - </GearRefPoint> - <WheelGroupRefPoint Desc="Referenzpunkt der Radgruppe. Endpunkt des Fahrwerksbeins auf Achshoehe in der Mitte der Achsen."> - <r_Wheelgroup Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">17.80664751</r_Wheelgroup> - <y_Wheelgroup Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">-4.257464797</y_Wheelgroup> - <h_Wheelgroup Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">-4.80426249</h_Wheelgroup> - </WheelGroupRefPoint> - <StrutDiameter Desc="Durchmesser des Fahrwerkbeins" ToolLevel="1" Unit="m">0.32385</StrutDiameter> - <Retractable Desc="Fahrwerk einziehbar = 1, festes Fahrwerk = 0" ToolLevel="1">1</Retractable> - <HingeAxis Desc="Drehachse als Einheitsvektor um die das Fahrwerks einfaehrt (Im Math. Sinne positiv)"> - <x Desc="x-Komponente des Vektors" ToolLevel="1" Unit="-">0</x> - <y Desc="y-Komponente des Vektors" ToolLevel="1" Unit="-">0</y> - <z Desc="z-Komponente des Vektors" ToolLevel="1" Unit="-">0</z> - </HingeAxis> - <RetractionAngle Desc="Winkel um den das Fahrwerk zum Einziehen gedreht wird" ToolLevel="1" Unit="deg">90</RetractionAngle> - <Wheelbase Desc="Abstand der vordersten zur hintersten Achse der Radgruppe, Radstand" ToolLevel="1" Unit="m">0</Wheelbase> - <Wheeltrack Desc="Spurweite der Radgruppe" ToolLevel="1" Unit="m">0.8636932256</Wheeltrack> - <NumberOfAxes Desc="Achsenzahl der Radgruppe hintereinander. Abstand wird gleichmaessig auf Radstand verteilt" ToolLevel="1">1</NumberOfAxes> - <NumberOfWheelsPerAxis Desc="Anzahl der Raeder pro Achse" ToolLevel="1">2</NumberOfWheelsPerAxis> - <Wheel Desc="Beschreibung des Rades"> - <TireDiameter Desc="Reifendurchmesser" ToolLevel="1" Unit="m">1.1684</TireDiameter> - <TireWidth Desc="Reifenbreite" ToolLevel="1" Unit="m">0.4318</TireWidth> - <RimDiameter Desc="Felgendurchmesser" ToolLevel="1" Unit="m">0.5842</RimDiameter> - </Wheel> - </Gear> - <Gear Desc="Beschreibung des inneren, rechten Hauptfahrwerks" ID="InnerRightMainGear"> - <GearRefPoint Desc="Referenzpunkt. Aufhaengungs- bzw. Drehpunkt des Fahrwerks"> - <r_Gear Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Gear> - <y_Gear Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Gear> - <h_Gear Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Gear> - </GearRefPoint> - <WheelGroupRefPoint Desc="Referenzpunkt der Radgruppe. Endpunkt des Fahrwerksbeins auf Achshoehe in der Mitte der Achsen."> - <r_Wheelgroup Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Wheelgroup> - <y_Wheelgroup Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Wheelgroup> - <h_Wheelgroup Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Wheelgroup> - </WheelGroupRefPoint> - <StrutDiameter Desc="Durchmesser des Fahrwerkbeins" ToolLevel="1" Unit="m">0</StrutDiameter> - <Retractable Desc="Fahrwerk einziehbar = 1, festes Fahrwerk = 0" ToolLevel="1">0</Retractable> - <HingeAxis Desc="Drehachse als Einheitsvektor um die das Fahrwerks einfaehrt (Im Math. Sinne positiv)"> - <x Desc="x-Komponente des Vektors" ToolLevel="1" Unit="-">0</x> - <y Desc="y-Komponente des Vektors" ToolLevel="1" Unit="-">0</y> - <z Desc="z-Komponente des Vektors" ToolLevel="1" Unit="-">0</z> - </HingeAxis> - <RetractionAngle Desc="Winkel um den das Fahrwerk zum Einziehen gedreht wird" ToolLevel="1" Unit="deg">0</RetractionAngle> - <Wheelbase Desc="Abstand der vordersten zur hintersten Achse der Radgruppe, Radstand" ToolLevel="1" Unit="m">0</Wheelbase> - <Wheeltrack Desc="Spurweite der Radgruppe" ToolLevel="1" Unit="m">0</Wheeltrack> - <NumberOfAxes Desc="Achsenzahl der Radgruppe hintereinander. Abstand wird gleichmaessig auf Radstand verteilt" ToolLevel="1">0</NumberOfAxes> - <NumberOfWheelsPerAxis Desc="Anzahl der Raeder pro Achse" ToolLevel="1">0</NumberOfWheelsPerAxis> - <Wheel Desc="Beschreibung des Rades"> - <TireDiameter Desc="Reifendurchmesser" ToolLevel="1" Unit="m">0</TireDiameter> - <TireWidth Desc="Reifenbreite" ToolLevel="1" Unit="m">0</TireWidth> - <RimDiameter Desc="Felgendurchmesser" ToolLevel="1" Unit="m">0</RimDiameter> - </Wheel> - </Gear> - <Gear Desc="Beschreibung des inneren, linken Hauptfahrwerks" ID="InnerLeftMainGear"> - <GearRefPoint Desc="Referenzpunkt. Aufhaengungs- bzw. Drehpunkt des Fahrwerks"> - <r_Gear Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Gear> - <y_Gear Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Gear> - <h_Gear Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Gear> - </GearRefPoint> - <WheelGroupRefPoint Desc="Referenzpunkt der Radgruppe. Endpunkt des Fahrwerksbeins auf Achshoehe in der Mitte der Achsen."> - <r_Wheelgroup Desc="Ruecklage in x Richtung" ToolLevel="1" Unit="m">0</r_Wheelgroup> - <y_Wheelgroup Desc="Seitenlage in y-Richtung" ToolLevel="1" Unit="m">0</y_Wheelgroup> - <h_Wheelgroup Desc="Hochlage in z-Richtung" ToolLevel="1" Unit="m">0</h_Wheelgroup> - </WheelGroupRefPoint> - <StrutDiameter Desc="Durchmesser des Fahrwerkbeins" ToolLevel="1" Unit="m">0</StrutDiameter> - <Retractable Desc="Fahrwerk einziehbar = 1, festes Fahrwerk = 0" ToolLevel="1">0</Retractable> - <HingeAxis Desc="Drehachse als Einheitsvektor um die das Fahrwerks einfaehrt (Im Math. Sinne positiv)"> - <x Desc="x-Komponente des Vektors" ToolLevel="1" Unit="-">0</x> - <y Desc="y-Komponente des Vektors" ToolLevel="1" Unit="-">0</y> - <z Desc="z-Komponente des Vektors" ToolLevel="1" Unit="-">0</z> - </HingeAxis> - <RetractionAngle Desc="Winkel um den das Fahrwerk zum Einziehen gedreht wird" ToolLevel="1" Unit="deg">0</RetractionAngle> - <Wheelbase Desc="Abstand der vordersten zur hintersten Achse der Radgruppe, Radstand" ToolLevel="1" Unit="m">0</Wheelbase> - <Wheeltrack Desc="Spurweite der Radgruppe" ToolLevel="1" Unit="m">0</Wheeltrack> - <NumberOfAxes Desc="Achsenzahl der Radgruppe hintereinander. Abstand wird gleichmaessig auf Radstand verteilt" ToolLevel="1">0</NumberOfAxes> - <NumberOfWheelsPerAxis Desc="Anzahl der Raeder pro Achse" ToolLevel="1">0</NumberOfWheelsPerAxis> - <Wheel Desc="Beschreibung des Rades"> - <TireDiameter Desc="Reifendurchmesser" ToolLevel="1" Unit="m">0</TireDiameter> - <TireWidth Desc="Reifenbreite" ToolLevel="1" Unit="m">0</TireWidth> - <RimDiameter Desc="Felgendurchmesser" ToolLevel="1" Unit="m">0</RimDiameter> - </Wheel> - </Gear> - </Geometry> - <Structure Desc="Strukturdaten"></Structure> - <Accommodation Desc="Kabineneinrichtung"> - <PassengersTotal Desc="Gesamtanzahl der Sitzplaetze" ToolLevel="1">150</PassengersTotal> - <FlightCrew Desc="Anzahl Cockpitbesatzung" ToolLevel="1">2</FlightCrew> - <CabinCrew Desc="Anzahl Flugbegleiter" ToolLevel="1">4</CabinCrew> - <Seats Desc="Description of seats"> - <NoOfSeatTypes Desc="Anzahl der Sitzklassen" ToolLevel="1">2</NoOfSeatTypes> - <seat Desc="Description of seat" ID="1"> - <seatClassType Desc="Passagierklasse fuer die der Sitztyp vorgesehen ist" ToolLevel="1">economy</seatClassType> - <noOfSeatConfigurations Desc="Anzahl der Sitzkonfigurationen" ToolLevel="1">4</noOfSeatConfigurations> - <seatConfiguration Desc="Description of SeatConfiguration" ID="1"> - <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">9</mass> - <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">1</noOfSeats> - </seatConfiguration> - <seatConfiguration Desc="Description of SeatConfiguration" ID="2"> - <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">14</mass> - <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">2</noOfSeats> - </seatConfiguration> - <seatConfiguration Desc="Description of SeatConfiguration" ID="3"> - <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">19.5</mass> - <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">3</noOfSeats> - </seatConfiguration> - <seatConfiguration Desc="Description of SeatConfiguration" ID="4"> - <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">25</mass> - <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">4</noOfSeats> - </seatConfiguration> - <IFE Desc="Inflight entertainment system verbaut" ToolLevel="1">0</IFE> - <massIFE Desc="Masse des Passagier Unterhaltungs System pro Person" ToolLevel="1" Unit="kg">0.4</massIFE> - </seat> - <seat Desc="Description of seat" ID="2"> - <seatClassType Desc="Passagierklasse fuer die der Sitztyp vorgesehen ist" ToolLevel="1">business</seatClassType> - <noOfSeatConfigurations Desc="Anzahl der Sitzkonfigurationen" ToolLevel="1">3</noOfSeatConfigurations> - <seatConfiguration Desc="Description of SeatConfiguration" ID="1"> - <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">27.2</mass> - <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">1</noOfSeats> - </seatConfiguration> - <seatConfiguration Desc="Description of SeatConfiguration" ID="2"> - <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">35.1</mass> - <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">2</noOfSeats> - </seatConfiguration> - <seatConfiguration Desc="Description of SeatConfiguration" ID="3"> - <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">43</mass> - <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">3</noOfSeats> - </seatConfiguration> - <seatConfiguration Desc="Description of SeatConfiguration" ID="4"> - <mass Desc="Masse der Sitze" ToolLevel="1" Unit="kg">25</mass> - <noOfSeats Desc="Anzahl der Sitze in einer Sitzgruppe" ToolLevel="1">4</noOfSeats> - </seatConfiguration> - <IFE Desc="Inflight entertainment system verbaut" ToolLevel="1">1</IFE> - <massIFE Desc="Masse des Passagier Unterhaltungs System pro Person" ToolLevel="1" Unit="kg">0.4</massIFE> - </seat> - </Seats> - <Galleys Desc="Description of galleys"> - <NoOfGalleyTypes Desc="Anzahl verwendeter Kuechen Typen" ToolLevel="1">2</NoOfGalleyTypes> - <Gal Desc="Description of galley" ID="1"> - <nameGalley Desc="Name of galley" ToolLevel="1">large</nameGalley> - <NumberOfGalleys Desc="Gesamtzahl der verwendeten Galleys dieses Typs" ToolLevel="1">1</NumberOfGalleys> - <mass Desc="Masse der Galleystruktur" ToolLevel="1" Unit="kg">226.8</mass> - <power Desc="Leistungsabnahme der Galley" ToolLevel="1" Unit="kW">14418</power> - </Gal> - <Gal Desc="Description of galley" ID="2"> - <nameGalley Desc="Name of galley" ToolLevel="1">small</nameGalley> - <NumberOfGalleys Desc="Gesamtzahl der verwendeten Galleys dieses Typs" ToolLevel="1">1</NumberOfGalleys> - <mass Desc="Masse der Galleystruktur" ToolLevel="1" Unit="kg">61.24</mass> - <power Desc="Leistungsabnahme der Galley" ToolLevel="1" Unit="kW">3887</power> - </Gal> - </Galleys> - <Lavatories Desc="Description of lavatories"> - <NoOfLavatoryTypes Desc="Anzahl verwendeter Lavatorie-Typen" ToolLevel="1">1</NoOfLavatoryTypes> - <Lav Desc="Description of lavatory" ID="1"> - <nameLavatory Desc="Name of lavatory" ToolLevel="1">standard_lavatory</nameLavatory> - <NumberOfLavatories Desc="Gesamtzahl der verwendeten Lavatories dieses Typs" ToolLevel="1">3</NumberOfLavatories> - <mass Desc="Masse einer Lavatoryeinheit" ToolLevel="1" Unit="kg">96.67</mass> - </Lav> - </Lavatories> - <Cabin Desc="Beschreibung der Kabine"> - <V_AirConditioned Desc="Klimatisiertes Kabinenvolumen gesamt" ToolLevel="1" Unit="m3">186.1462316</V_AirConditioned> - <CabinDecks Desc="Anzahl Kabinendecks" ToolLevel="1">1</CabinDecks> - <CabinDeck Desc="Parameter eines Kabinendecks" ID="1"> - <A_CabinDeck Desc="Flaeche des Kabinendecks" ToolLevel="1" Unit="m2">97.50130651</A_CabinDeck> - <h_CabinDeck Desc="maximale Kabinenhoehe" ToolLevel="1" Unit="m">2.13</h_CabinDeck> - <w_CabinDeck Desc="maximale Kabinenbreite" ToolLevel="1" Unit="m">3.63012573</w_CabinDeck> - <l_CabinDeck Desc="Kabinenlaenge ohne Flight-Deck" ToolLevel="1" Unit="m">26.85893376</l_CabinDeck> - <V_CabinDeck Desc="Kabinenvolumen" ToolLevel="1" Unit="m3">184.2960557</V_CabinDeck> - <PAX_CabinDeck Desc="Sitzplaetze des Kabinendecks" ToolLevel="1">150</PAX_CabinDeck> - <Classes Desc="Anzahl der verschiedenen Klassen auf diesem Deck" ToolLevel="1">2</Classes> - <Class Desc="Definition der Klasse" ID="1"> - <x_center Desc="Mittelpunkt der Klasse in x-Richtung" ToolLevel="1" Unit="m">5.983021821</x_center> - </Class> - <Class Desc="Definition der Klasse" ID="2"> - <x_center Desc="Mittelpunkt der Klasse in x-Richtung" ToolLevel="1" Unit="m">19.4124887</x_center> - </Class> - </CabinDeck> - </Cabin> - <Cargo Desc="Beschreibung des Frachtraums"> - <V_Cargo Desc="Frachtvolumen gesamt" ToolLevel="1" Unit="m3">35.92426606</V_Cargo> - <CargoDecks Desc="Anzahl Frachtdecks" ToolLevel="1">1</CargoDecks> - <CargoDeck Desc="Parameter eines Frachtdecks" ID="1"> - <A_CargoDeck Desc="Flaeche des Frachtdecks" ToolLevel="1" Unit="m2">56.63668783</A_CargoDeck> - <h_CargoDeck Desc="maximale Deckhoehe" ToolLevel="1" Unit="m">1.14</h_CargoDeck> - <w_CargoDeck Desc="maximale Deckbreite" ToolLevel="1" Unit="m">3.280233538</w_CargoDeck> - <l_CargoDeck Desc="Decklaenge" ToolLevel="1" Unit="m">17.26605352</l_CargoDeck> - <V_CargoDeck Desc="Deckvolumen" ToolLevel="1" Unit="m3">36.40649695</V_CargoDeck> - <V_BulkCargo Desc="Freies Frachtvolumen fuer Bulk-Cargo" ToolLevel="1" Unit="m3">12.7695477</V_BulkCargo> - <Compartments Desc="Anzahl der verschiedenen Compartments auf diesem Deck" ToolLevel="1">2</Compartments> - <Compartment Desc="Definition des Compartments" ID="1"> - <Length Desc="Laenge des Compartments" ToolLevel="1" Unit="m">4.84</Length> - <x_center Desc="Mittelpunkt des Compartments in x-Richtung" ToolLevel="1" Unit="m">6.045</x_center> - </Compartment> - <Compartment Desc="Definition des Compartments" ID="2"> - <Length Desc="Laenge des Compartments" ToolLevel="1" Unit="m">6.37</Length> - <x_center Desc="Mittelpunkt des Compartments in x-Richtung" ToolLevel="1" Unit="m">18.82863715</x_center> - </Compartment> - </CargoDeck> - </Cargo> - </Accommodation> - <Propulsion Desc="Angabe der verwendeten Engine Types (nicht jede einzelne Engine)"> - <NumberOfEngineTypes Desc="Anzahl verschiedener Triebwerkstypen" ToolLevel="1">0</NumberOfEngineTypes> - <Engine Desc="Triebwerks-/Motortyp" ID="1"> - <TypeOfEngine Desc="Triebwerkstyp z.Zt. Jet oder Prop" ToolLevel="1" Unit="-">jet</TypeOfEngine> - <EngineModel Desc="Triebwerksmodell fuer Gummimotor" ToolLevel="1" Unit="-">V2527-A5</EngineModel> - <NumberOfEngines Desc="Anzahl der Triebwerke - notwendig?" ToolLevel="1">2</NumberOfEngines> - <ScaleEngines Desc="Skalierungsfaktor fuer das Triebwerksmodell i.S.e. Gummimotors" ToolLevel="1" Unit="-">1.168175939</ScaleEngines> - <ScaleFuelFlow Desc="Skalierungsfaktor fuer den Fuel Flow" ToolLevel="1" Unit="-">1</ScaleFuelFlow> - <EngineDataFile Desc="Name der Triebewerksdatei (enthaelt Geometriedaten und Decks)" ToolLevel="1" Unit="-">engineData\V2527-A5\V2527-A5.xml</EngineDataFile> - <JetEngineData Desc="Jet spezifische Triebwerksdaten"> - <SeaLevelStaticThrust Desc="Flat-Rated Standschub" ToolLevel="1" Unit="kN">128.8646365</SeaLevelStaticThrust> - <FanDiameter Desc="Durchmesser des Fans" ToolLevel="1" Unit="m">1.743365695</FanDiameter> - </JetEngineData> - <TurbopropEngineData Desc="Prop spezifische Triebwerksdaten"> - <Prop Desc="Propellerdaten"> - <PropDiameter Desc="Propellerdurchmesser" ToolLevel="1" Unit="m">0</PropDiameter> - <PropBlades Desc="Anzahl Propellerblaetter" ToolLevel="1">0</PropBlades> - <SegmentPointData ToolLevel="1">0</SegmentPointData> - <Pitch Desc="Variable oder Fix Pitch" ToolLevel="1">0</Pitch> - <Thickness Desc="Thickness of rotor disc " ToolLevel="1" Unit="m">0</Thickness> - </Prop> - <P_shp Desc="Triebwerkswellenleistung" ToolLevel="1" Unit="kW">0</P_shp> - </TurbopropEngineData> - <EngineDimensions Desc="Geometrische Abmasse des skalierten Triebwerks, Kerntriebwerk"> - <w_Engine Desc="Breite des uninstallierten Triebwerks" ToolLevel="1" Unit="m">1.976823221</w_Engine> - <h_Engine Desc="Hoehe des uninstallierten Triebwerks" ToolLevel="1" Unit="m">2.289180745</h_Engine> - <l_Engine Desc="Gesamtlaenge des uninstallierten Triebwerks" ToolLevel="1" Unit="m">2.710701279</l_Engine> - </EngineDimensions> - <NacelleRescaling Desc="Parameter fuer Rescaling der Wing Nacelles" Matched="0"> - <InnerNacelle> - <DeltaXPos Desc="Relative axiale Position der Nacelle (bzgl. Wing-MAC)" ToolLevel="1" Unit="-">0</DeltaXPos> - <RelYPos Desc="Relative spannweitige Position der Nacelle" ToolLevel="1" Unit="-">0</RelYPos> - <DeltaZPos Desc="Relative vertikale Position der Nacelle (bzgl. Wing-MAC)" ToolLevel="1" Unit="-">0</DeltaZPos> - <WidthRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-breite" ToolLevel="1" Unit="-">0</WidthRatio> - <HeightRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-hoehe" ToolLevel="1" Unit="-">0</HeightRatio> - <LengthRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-laenge" ToolLevel="1" Unit="-">0</LengthRatio> - </InnerNacelle> - <OuterNacelle> - <DeltaXPos Desc="Relative axiale Position der Nacelle (bzgl. Wing-MAC)" ToolLevel="1" Unit="-">0</DeltaXPos> - <RelYPos Desc="Relative spannweitige Position der Nacelle" ToolLevel="1" Unit="-">0</RelYPos> - <DeltaZPos Desc="Relative vertikale Position der Nacelle (bzgl. Wing-MAC)" ToolLevel="1" Unit="-">0</DeltaZPos> - <WidthRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-breite" ToolLevel="1" Unit="-">0</WidthRatio> - <HeightRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-hoehe" ToolLevel="1" Unit="-">0</HeightRatio> - <LengthRatio Desc="Referenzverhaeltnis Nacelle- zu TWs-laenge" ToolLevel="1" Unit="-">0</LengthRatio> - </OuterNacelle> - </NacelleRescaling> - <ScaledPerformanceCharacteristics Desc="Leistungscharakteristik des (eines!) skalierten Triebwerks"> - <EquivalentThrust Desc="1.25 * Max-Go-Around (Schub bei ISA+deltaISA(Requirements/DesignMission), SL, Ma0.25, N1 100 perc)" ToolLevel="1" Unit="kN">127.3858501</EquivalentThrust> - <MaximumTakeOff Desc="Maximale Startschubbedingung bei ISA+deltaISA(Requirements/DesignMission) und keinen Off-takes bei Altitude_ft=0.0 Mach=0.0"> - <Thrust Desc="Schubkraft" ToolLevel="1" Unit="kN">128.8646365</Thrust> - <FuelFlow Desc="Treibstoffverbrauch" ToolLevel="1" Unit="kg/s">1.316357232</FuelFlow> - <TSFC Desc="Thrust specific fuel consumption" ToolLevel="1" Unit="(kg/s)/kN">0.01021503857</TSFC> - <N1 Desc="Relative LP shaft rotation speed" ToolLevel="1" Unit="percent">0.9783203125</N1> - </MaximumTakeOff> - <MaximumGoAround Desc="Maximale Go-Around-Bedingung bei ISA+deltaISA(Requirements/DesignMission) und keinen Off-takes bei Altitude_ft=0.0, Mach=0.25"> - <Thrust Desc="Schubkraft" ToolLevel="1" Unit="kN">101.9086801</Thrust> - <FuelFlow Desc="Treibstoffverbrauch" ToolLevel="1" Unit="kg/s">1.329201509</FuelFlow> - <TSFC Desc="Thrust specific fuel consumption" ToolLevel="1" Unit="(kg/s)/kN">0.01304306471</TSFC> - <N1 Desc="Relative LP shaft rotation speed" ToolLevel="1" Unit="percent">0.9734765625</N1> - </MaximumGoAround> - <MaximumContinous Altitude_ft="35000" Desc="Maximales Schublimit ohne Zeitlimit bei ISA+deltaISA(Requirements/DesignMission) bei" Mach="0.8"> - <MaxThrust Desc="Without Offtakes"> - <Thrust Desc="Schubkraft" ToolLevel="1" Unit="kN">32.18450048</Thrust> - <FuelFlow Desc="Treibstoffverbrauch" ToolLevel="1" Unit="kg/s">0.5460196217</FuelFlow> - <TSFC Desc="Thrust specific fuel consumption" ToolLevel="1" Unit="(kg/s)/kN">0.01696529738</TSFC> - <N1 Desc="Relative LP shaft rotation speed" ToolLevel="1" Unit="percent">0.981796875</N1> - </MaxThrust> - <BucketThrust Desc="Without Offtakes"> - <Thrust Desc="Schubkraft" ToolLevel="1" Unit="kN">29.28223674</Thrust> - <FuelFlow Desc="Treibstoffverbrauch" ToolLevel="1" Unit="kg/s">0.4959848906</FuelFlow> - <TSFC Desc="Thrust specific fuel consumption" ToolLevel="1" Unit="(kg/s)/kN">0.01693808075</TSFC> - <N1 Desc="Relative LP shaft rotation speed" ToolLevel="1" Unit="percent">0.950379375</N1> - </BucketThrust> - <BucketThrustOfftakes Desc="With Average Cruise Offtakes (s. Design Mission)"> - <Thrust Desc="Schubkraft" ToolLevel="1" Unit="kN">29.28223674</Thrust> - <FuelFlow Desc="Treibstoffverbrauch" ToolLevel="1" Unit="kg/s">0.5130623087</FuelFlow> - <TSFC Desc="Thrust specific fuel consumption" ToolLevel="1" Unit="(kg/s)/kN">0.01752128136</TSFC> - <N1 Desc="Relative LP shaft rotation speed" ToolLevel="1" Unit="percent">0.950379375</N1> - </BucketThrustOfftakes> - </MaximumContinous> - </ScaledPerformanceCharacteristics> - <UsedForNacelles Desc="Angabe der Nacelle IDs, in welche dieser Engine Type eingebaut wird"> - <UsedForNumberOfEngines ToolLevel="1">0</UsedForNumberOfEngines> - <NacelleID ID="1" ToolLevel="1">0</NacelleID> - <NacelleID ID="2" ToolLevel="1">0</NacelleID> - <NacelleID ID="3" ToolLevel="1">0</NacelleID> - <NacelleID ID="4" ToolLevel="1">0</NacelleID> - </UsedForNacelles> - </Engine> - </Propulsion> - <Systems> - <FuelTank Desc="Tank system Parameters"> - <CentreTanks Desc="No of centre tanks" ToolLevel="1">1</CentreTanks> - <CentreTank Desc="Centre tank description" ID="1"> - <TankVolume Desc="Tank volume" ToolLevel="1" Unit="l">10541.14749</TankVolume> - </CentreTank> - <WingTanks Desc="No of wing tanks" ToolLevel="1">2</WingTanks> - <WingTank Desc="Wing tank description" ID="1"> - <TankVolume Desc="Tank volume" ToolLevel="1" Unit="l">15416.66477</TankVolume> - </WingTank> - <WingTank Desc="Wing tank description" ID="2"> - <TankVolume Desc="Tank volume" ToolLevel="1" Unit="l">15416.66477</TankVolume> - </WingTank> - <TrimTanks Desc="No of trim tanks" ToolLevel="1">0</TrimTanks> - <TrimTank Desc="Trim tank description" ID="1"> - <TankVolume Desc="Tank volume" ToolLevel="1" Unit="l">0</TankVolume> - </TrimTank> - <FuselageTanks Desc="No of fuselage tanks" ToolLevel="1">0</FuselageTanks> - <FuselageTank Desc="Fuselage tank description" ID="1"> - <TankVolume Desc="Tank volume" ToolLevel="1" Unit="l">0</TankVolume> - </FuselageTank> - <TotalFuelVolume Desc="Total fuel volume of all tanks" ToolLevel="1" Unit="l">41374.47702</TotalFuelVolume> - </FuelTank> - <ATA21_EnvironmentalControlSystem> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">25.37098678</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">1.31382376</BleedAir> - </DesignPower> - <AirflowPerPax Desc="Konstanter Luftmassenstrom pro Passagier" ToolLevel="1" Unit="lbs/min">0.75</AirflowPerPax> - <Recirculation Desc="Prozentualer Anteil der Kabinenluft, die wieder verwendet wird (0.0 - 1.0)" ToolLevel="1" Unit="-">0.4</Recirculation> - </ATA21_EnvironmentalControlSystem> - <ATA22_AutoFlight> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA22_AutoFlight> - <ATA23_Communication> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA23_Communication> - <ATA24_ElectricSystem> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA24_ElectricSystem> - <ATA25_Furnishing> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">18.92</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA25_Furnishing> - <ATA26_FireProtection> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA26_FireProtection> - <ATA27_FlightControlSystem> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">93.56406668</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA27_FlightControlSystem> - <ATA28_FuelSystem> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">12.23167268</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA28_FuelSystem> - <ATA29_HydraulicSystem> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">7.451202472</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - <Pressure Desc="Nenn-Druck des Hydrauliksystems" ToolLevel="1" Unit="psi">3000</Pressure> - </ATA29_HydraulicSystem> - <ATA30_IceRainProtection> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">14.0269</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0.6613272863</BleedAir> - </DesignPower> - </ATA30_IceRainProtection> - <ATA31_Instrumentation> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA31_Instrumentation> - <ATA32_LandingGear> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">74.97503685</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA32_LandingGear> - <ATA33_Lights> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">7.884251516</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA33_Lights> - <ATA34_Navigation> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA34_Navigation> - <ATA35_Oxygen> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0</BleedAir> - </DesignPower> - </ATA35_Oxygen> - <ATA36_BleedAir> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">0.1039553182</BleedAir> - </DesignPower> - </ATA36_BleedAir> - <ATA49_APU> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">0</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">0</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">-0</BleedAir> - </DesignPower> - </ATA49_APU> - <ATA70_PropulsionSystem> - <DesignPower Desc="Maximaler Energiebedarf fuer Auslegung"> - <Electric Desc="Maximaler Bedarf an elektrischer Energie" ToolLevel="1" Unit="kW">-205.4781816</Electric> - <Hydraulic Desc="Maximaler Bedarf an hydraulischer Energie" ToolLevel="1" Unit="kW">-181.0078664</Hydraulic> - <BleedAir Desc="Maximaler Bedarf an Bleed Air" ToolLevel="1" Unit="kg/s">-2.188533015</BleedAir> - </DesignPower> - </ATA70_PropulsionSystem> - </Systems> - <Aerodynamics Desc="Aerodynamik"> - <LoverD_Cruise Desc="Beste Gleitzahl L/D im Reiseflug fuer (Initial) Cruise Machzahl" ToolLevel="1" Unit="-">16.46037111</LoverD_Cruise> - <LiftCoefficients Desc="Auftriebsbeiwerte"> - <C_L_design Desc="Design Auftriebsbeiwert" ToolLevel="1" Unit="-">0.5381848981</C_L_design> - <C_LmaxLanding Desc="Maximaler Auftriebsbeiwert Landekonfiguration" ToolLevel="1" Unit="-">2.916185004</C_LmaxLanding> - <C_LmaxT-O Desc="Maximaler Auftriebsbeiwert Startkonfiguration" ToolLevel="1" Unit="-">2.515329503</C_LmaxT-O> - <C_LoptimumCruise Desc="Auftriebsbeiwert bei bestem LoverD bei (Initial) Cruise Machzahl" ToolLevel="1" Unit="-">0.528</C_LoptimumCruise> - <C_L_opt_wing Desc="Auftriebsbeiwert bei bestem LoverD (Anteil Fluegel)" ToolLevel="1" Unit="-">0.5626638406</C_L_opt_wing> - <C_L_opt_stab Desc="Auftriebsbeiwert bei bestem LoverD (Anteil HLW)" ToolLevel="1" Unit="-">-0.03466354382</C_L_opt_stab> - <C_LgroundRoll Desc="lift coefficient on ground for ground roll calculation" ToolLevel="1" Unit="-">0.4</C_LgroundRoll> - </LiftCoefficients> - <DragCoefficients Desc="Widerstandsbeiwerte (bei bestem L/D im Cruise, s.o.)"> - <C_D_total Desc="Widerstandsbeiwert gesamt" ToolLevel="1" Unit="-">0.03207704106</C_D_total> - <C_D_ind Desc="induzierter Widerstandsbeiwert" ToolLevel="1" Unit="-">0.009803808575</C_D_ind> - <C_D_visc Desc="Reibungswiderstandsbeiwerte" ToolLevel="1" Unit="-"> - <C_D_visc_total Desc="Reibungswiderstandsbeiwert gesamt" ToolLevel="1" Unit="-">0.01972511904</C_D_visc_total> - <C_D_visc_wing Desc="Reibungswiderstandsbeiwert Fluegel" ToolLevel="1" Unit="-">0.00660550988</C_D_visc_wing> - <C_D_visc_stab Desc="Reibungswiderstandsbeiwert HLW" ToolLevel="1" Unit="-">0.001454379701</C_D_visc_stab> - <C_D_visc_fin Desc="Reibungswiderstandsbeiwert SLW" ToolLevel="1" Unit="-">0.001569261547</C_D_visc_fin> - <C_D_visc_fus Desc="Reibungswiderstandsbeiwert Rumpf" ToolLevel="1" Unit="-">0.006412233533</C_D_visc_fus> - <C_D_visc_nac Desc="Reibungswiderstandsbeiwert Nacelle" ToolLevel="1" Unit="-">0.001743616971</C_D_visc_nac> - <C_D_visc_misc Desc="Reibungswiderstandsbeiwert weitere" ToolLevel="1" Unit="-">0.001940117406</C_D_visc_misc> - </C_D_visc> - <C_D_wave Desc="Wellenwiderstandsbeiwerte" ToolLevel="1" Unit="-"> - <C_D_wave_total Desc="Wellenwiderstandsbeiwert gesamt" ToolLevel="1" Unit="-">0.002548113448</C_D_wave_total> - <C_D_wave_wing Desc="Wellenwiderstandsbeiwert Fluegel" ToolLevel="1" Unit="-">0.002547491352</C_D_wave_wing> - <C_D_wave_stab Desc="Wellenwiderstandsbeiwert HLW" ToolLevel="1" Unit="-">6.220952302e-07</C_D_wave_stab> - </C_D_wave> - <EoW_DragFactor Desc="Drag factor for over-the-wing engines" ToolLevel="1" Unit="-">1</EoW_DragFactor> - </DragCoefficients> - <MomentCoefficients Desc="Momentenbeiwerte (getrimmt, bei bestem L/D im Cruise, s.o.)"> - <C_M_total Desc="Momentenbeiwert bei optimum Cruise" ToolLevel="1" Unit="-">1.138318599e-05</C_M_total> - </MomentCoefficients> - <Polar Desc="Flugzeugpolare"> - <PolarFile Desc="Dateiname der Flugzeugpolare" ToolLevel="1" Unit="-">aeroData\CSR-02_polar.xml</PolarFile> - <Configurations Desc="Anzahl der aerodynamischen Konfigurationen in der Polarendatei" ToolLevel="1">7</Configurations> - <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="1" ToolLevel="1" Type="Cruise">Clean</Configuration> - <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="2" ToolLevel="1" Type="Departure">TakeOff</Configuration> - <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="3" ToolLevel="1" Type="Departure">TakeOffLGRetracted</Configuration> - <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="4" ToolLevel="1" Type="Departure">Climb</Configuration> - <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="5" ToolLevel="1" Type="Approach">Approach</Configuration> - <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="6" ToolLevel="1" Type="Approach">ApproachLG</Configuration> - <Configuration Desc="Konfiguration im Polaren-File mit der ID gekennzeichnet. name kann abweichend definiert sein" ID="7" ToolLevel="1" Type="Approach">Landing</Configuration> - </Polar> - <ReferenceValues Desc="Aerodynamische Bezugsgroessen"> - <b Desc="Total wing span" ToolLevel="1" Unit="m">34.66122714</b> - <MAC Desc="Mean aerodynamic chord" ToolLevel="1" Unit="m">4.402512853</MAC> - <S_ref Desc="Wing reference area" ToolLevel="1" Unit="m2">126.463228</S_ref> - </ReferenceValues> - <MaxSpoilerFactor Desc="Faktor zur max. Widerstandserhoehung durch Spoiler" ToolLevel="1" Unit="-">2.5</MaxSpoilerFactor> - </Aerodynamics> - <StabilityAndControlCharacteristics Desc="Flugmechanik, Stabilitaet und Steuerbarkeit"> - <Stabiliser> - <VolumeCoefficient Desc="berechneter Volumenkoeffizient" Matched="1" ToolLevel="1" Unit="-">1.017690098</VolumeCoefficient> - <S_ref Desc="Stabiliser reference area" ToolLevel="1" Unit="m2">32.94519006</S_ref> - </Stabiliser> - <VerticalTail> - <VolumeCoefficient Desc="berechneter Volumenkoeffizient" Matched="1" ToolLevel="1" Unit="-">0.09489408521</VolumeCoefficient> - <S_ref Desc="Fin reference area" ToolLevel="1" Unit="m2">25.44285876</S_ref> - </VerticalTail> - </StabilityAndControlCharacteristics> - <Performance Desc="Flugleistungen"> - <Range Desc="Reichweiten"> - <Range_maxPayloadatMTOM Desc="Reichweite bei maximaler Nutzlast und Betankung bis zum MTOM-Limit" ToolLevel="2" Unit="km">3246.670783</Range_maxPayloadatMTOM> - <Range_maxFuelatMTOM Desc="Reichweite bei vollen Tanks und Nutzlast bis zum MTOM-Limit" ToolLevel="2" Unit="km">10458.2771</Range_maxFuelatMTOM> - <Payload_maxFuelatMTOM Desc="Payload bei vollen Tanks und Nutzlast bis zum MTOM-Limit" ToolLevel="2" Unit="kg">4360.32531</Payload_maxFuelatMTOM> - <Range_maxFuelEmpty Desc="Ueberfuehrungsreichweite, leer mit vollen Tanks" ToolLevel="2" Unit="km">10709.69495</Range_maxFuelEmpty> - </Range> - <Speed Desc="Fluggeschwindigkeiten"> - <M_initialCruise Desc="Cruisemachzahl" ToolLevel="3" Unit="-">0.78</M_initialCruise> - <M_maxOperating Desc="Max Operating Cruise Machzahl" ToolLevel="2" Unit="-">0.82</M_maxOperating> - <V_maxOperating Desc="Max Operating Speed (Maximale Staudruckgeschwindigkeit CAS/IAS)" ToolLevel="2" Unit="KCAS">350</V_maxOperating> - <M_Dive Desc="Diving Mach Number" ToolLevel="2" Unit="-">0.902</M_Dive> - <V_Dive Desc="Diving Speed" ToolLevel="2" Unit="KCAS">385</V_Dive> - <V_s1g Desc="1-g Stalling Speed" ToolLevel="2" Unit="KCAS">154.8031322</V_s1g> - </Speed> - <Altitudes Desc="Flughoehen"> - <h_initialCruise Desc="Reiseflughoehe" ToolLevel="3" Unit="m">10058.4</h_initialCruise> - <h_maxCertified Desc="maximal zugelassene Flughoehe (s. TLAR)" ToolLevel="3" Unit="m">11734.8</h_maxCertified> - <h_maxOperating Desc="Dienstgipfelhoehe (100 ft/min Steigkriterium)" ToolLevel="3" Unit="m">11713.23959</h_maxOperating> - <h_maxCeiling Desc="Maximale Flughoehe (50 ft/min Steigkriterium) bei MTOM" ToolLevel="3" Unit="m">11763.23474</h_maxCeiling> - <h_maxOEI Desc="Maximale Flughoehe (100 ft/min Steigkriterium) bei einem Triebwerksausfall und bei MTOM" ToolLevel="3" Unit="m">6608.028951</h_maxOEI> - </Altitudes> - <Climb Desc="Climb Performance"> - <TTC_Design Desc="Time needed to climb from 1500ft to ICA (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="min">16.15883289</TTC_Design> - <TTC_ISA Desc="Time needed to climb from 1500ft to ICA (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="min">16.15883289</TTC_ISA> - <Time_to_1500ft_ISA Desc="Time needed to climb from BR to 1500ft (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="min">1.251683745</Time_to_1500ft_ISA> - <Time_to_ICA_ISA Desc="Time needed to climb from BR to ICA (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="min">17.41051663</Time_to_ICA_ISA> - <Range_to_ICA_ISA Desc="Range needed to climb from BR to ICA (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="NM">101.9061674</Range_to_ICA_ISA> - <Fuel_to_ICA_ISA Desc="Fuel mass needed to climb from BR to ICA (ISA+deltaISA(Requirements/DesignMission))" ToolLevel="3" Unit="kg">1715.660845</Fuel_to_ICA_ISA> - </Climb> - <TakeOff Desc="Start Performance"> - <TakeOffDistance_Normal Desc="Takeoff distance at Sea Level for MTOM and (ISA + deltaISA)-Conditions(calculated by missionAnalysis using missionDesign.xml settings)" ToolLevel="3" Unit="m">660.3942437</TakeOffDistance_Normal> - <TakeOffDistance_Normal_Safety Desc="Takeoff distance at Sea Level for MTOM and ISA+deltaISA(Requirements/DesignMission) (incl. 15 percent safety margin; estimated by calculatePerformance)" ToolLevel="2" Unit="m">1314.175463</TakeOffDistance_Normal_Safety> - <BFL Desc="Design takeoff distance - Balanced Field Length at Sea Level with MTOM and ISA+deltaISA(Requirements/DesignMission)-Conditions" ToolLevel="2" Unit="m">0</BFL> - <TimeToScreenHeight Desc="Time until reaching screen height (35ft) at Sea Level with MTOM and ISA+deltaISA(Requirements/DesignMission)-Conditions" ToolLevel="2" Unit="s">28.99214318</TimeToScreenHeight> - <V_LOF Desc="Lift-off speed at Sea Level for MTOM and ISA+deltaISA(Requirements/DesignMission)-Conditions" ToolLevel="2" Unit="KCAS">126.3711884</V_LOF> - <V_1 Desc="Decision Speed at Sea Level for MTOM and ISA+deltaISA(Requirements/DesignMission)-Conditions" ToolLevel="2" Unit="KCAS">0</V_1> - <V_2 Desc="Speed at screen height (35 ft)" ToolLevel="2" Unit="KCAS">126.3711884</V_2> - <V_FTO Desc="Speed at final takeoff segment (1500 ft)" ToolLevel="2" Unit="KCAS">202.4392823</V_FTO> - <ScdSegmentClimbGradient Desc="Climb gradient in second takeoff segment" ToolLevel="2" Unit="%">2.416614712</ScdSegmentClimbGradient> - <FinalSegmentClimbGradient Desc="Climb gradient in final takeoff segment" ToolLevel="2" Unit="%">2.416614712</FinalSegmentClimbGradient> - </TakeOff> - <Landing> - <LandingDistance Desc="Landing distance at Sea Level for MLM and (ISA + deltaISA)-Conditions(calculated by missionAnalysis using missionDesign.xml settings)" ToolLevel="3" Unit="m">1373.253939</LandingDistance> - <NeededRunwayLength Desc="Needed runway length at Sea Level with MLM and ISA+deltaISA(Requirements/DesignMission)-Conditions (Safety-Landing Distance according to FAR 121.195: landing_field_required/0.6)" ToolLevel="2" Unit="m">1680.105692</NeededRunwayLength> - <V_Approach Desc="Final Approach Speed" ToolLevel="2" Unit="KCAS">128.6850003</V_Approach> - </Landing> - <MissionAnalysis Desc="Missionsanalyse"> - <DesignMission Desc="Parameter der Design-Mission"> - <MissionFile Desc="Dateiname der Missionsdatei" ToolLevel="1" Unit="-">missionData\missionDesign.xml</MissionFile> - <CruiseSteps Desc="Anzahl der Hoehenschritte im Reiseflug-Missionsprofil" ToolLevel="3">2</CruiseSteps> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="1"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="3" Unit="-">0.5009643041</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="3" Unit="FL">330.0000005</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="2"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="3" Unit="-">1</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="3" Unit="FL">350.0000005</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="3"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="4"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="5"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="6"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="7"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="8"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="9"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="10"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="11"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="12"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="13"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="14"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="15"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <Missionfuel Desc="Getankter Kraftstoff (Tripfuel + Reserve Fuel + TaxifuelTakeoff)" ToolLevel="3" Unit="kg">19940.80556</Missionfuel> - <Tripfuel Desc="Tripfuel (Fuel burned from takeoff to landing)" ToolLevel="3" Unit="kg">16588.93118</Tripfuel> - <TaxifuelTakeoff Desc="Taxifuel vor dem Start" ToolLevel="3" Unit="kg">101.5157969</TaxifuelTakeoff> - <TaxifuelLdg Desc="Taxifuel nach der Landung" ToolLevel="3" Unit="kg">56.39766495</TaxifuelLdg> - <Blocktime Desc="Blocktime" ToolLevel="3" Unit="h">5.94079849</Blocktime> - <Flighttime Desc="Flugzeit ohne taxi" ToolLevel="3" Unit="h">5.707465156</Flighttime> - <Range Desc="Range" ToolLevel="3" Unit="NM">2500.496213</Range> - <TOM Desc="geflogenes Take Off Mass" ToolLevel="3" Unit="kg">79148.59668</TOM> - <Payload Desc="geflogene Payload" ToolLevel="3" Unit="kg">17000</Payload> - <NumberOfPAX Desc="Anzahl Passagiere" ToolLevel="3" Unit="-">150</NumberOfPAX> - <CargoMass Desc="Frachtmasse" ToolLevel="3" Unit="kg">3392</CargoMass> - <TakeOffEngineDerate Desc="Engine Derate (AMTC,eng); reduced takeoff-thrust" ToolLevel="3" Unit="-">1</TakeOffEngineDerate> - <Offtakes> - <AverageCruiseOfftakes Desc="Durschnittliche Entnahmen fuer Cruise-Modes Cruise und ChangeFL"> - <ShaftPowerTotal Desc="Gesamte Wellenleistungsentnahme durch alle Systeme (Sinks)" ToolLevel="1" Unit="kW">103.3245182</ShaftPowerTotal> - <BleedAirTotal Desc="Gesamte Zapfluftentnahme durch alle Systeme (Sinks)" ToolLevel="1" Unit="kg/s">0.8796612188</BleedAirTotal> - </AverageCruiseOfftakes> - </Offtakes> - <LiftCoefficientsCruise Desc="Erflogene Auftriebsbeiwerte im Reiseflug"> - <CL_avg Desc="Arithm. Mittelwert ueber gesamten Reiseflug" ToolLevel="3" Unit="-">0.5101767772</CL_avg> - <CL_min Desc="Min. Wert fuer gesamten Reiseflug" ToolLevel="3" Unit="-">0.4831782814</CL_min> - <CL_max Desc="Max. Wert fuer gesamten Reiseflug" ToolLevel="3" Unit="-">0.5667676169</CL_max> - </LiftCoefficientsCruise> - <MassesCruise Desc="Gesamtflugzeugmassen waehrend des Reiseflugs"> - <Mass_TOC Desc="Gesamtflugzeugmasse am Top-of-Climb-Punkt (ICA)" ToolLevel="3" Unit="kg">77451.03811</Mass_TOC> - <Mass_TOD Desc="Gesamtflugzeugmasse am Top-of-Descent-Punkt" ToolLevel="3" Unit="kg">63267.90838</Mass_TOD> - </MassesCruise> - </DesignMission> - <StudyMission Desc="Parameter der Study-Mission"> - <MissionFile Desc="Dateiname der Missionsdatei" ToolLevel="1" Unit="-">missionData\missionStudy.xml</MissionFile> - <CruiseSteps Desc="Anzahl der Hoehenschritte im Reiseflug-Missionsprofil" ToolLevel="3">1</CruiseSteps> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="1"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="3" Unit="-">1</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="3" Unit="FL">350.0000005</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="2"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="3"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="4"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="5"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="6"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="7"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="8"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="9"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="10"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="11"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="12"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="13"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="14"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <CruiseStep Desc="Beschreibung eines Cruise-Steps" ID="15"> - <RelStepLength Desc="Rel. Laenge des Cruise-Steps bezogen auf Reiseflug-Strecke" ToolLevel="1" Unit="-">0</RelStepLength> - <FlightLevel Desc="Flight Level des Cruise-Steps" ToolLevel="1" Unit="FL">0</FlightLevel> - </CruiseStep> - <Missionfuel Desc="Getankter Kraftstoff (Tripfuel + Reserve Fuel + TaxifuelTakeoff)" ToolLevel="3" Unit="kg">6746.530829</Missionfuel> - <Tripfuel Desc="Tripfuel (Fuel burned from takeoff to landing)" ToolLevel="3" Unit="kg">3818.187572</Tripfuel> - <TaxifuelTakeoff Desc="Taxifuel vor dem Start" ToolLevel="3" Unit="kg">101.5158315</TaxifuelTakeoff> - <TaxifuelLdg Desc="Taxifuel nach der Landung" ToolLevel="3" Unit="kg">56.39768417</TaxifuelLdg> - <Blocktime Desc="Blocktime" ToolLevel="3" Unit="h">1.499139745</Blocktime> - <Flighttime Desc="Flugzeit ohne taxi" ToolLevel="3" Unit="h">1.265806411</Flighttime> - <Range Desc="Range" ToolLevel="3" Unit="NM">500.6435758</Range> - <TOM Desc="geflogenes Take Off Mass" ToolLevel="3" Unit="kg">62562.32191</TOM> - <Payload Desc="geflogene Payload" ToolLevel="3" Unit="kg">13608</Payload> - <NumberOfPAX Desc="Anzahl Passagiere" ToolLevel="3" Unit="-">150</NumberOfPAX> - <CargoMass Desc="Frachtmasse" ToolLevel="3" Unit="kg">0</CargoMass> - <TakeOffEngineDerate Desc="Engine Derate (AMTC,eng); reduced takeoff-thrust" ToolLevel="3" Unit="-">1</TakeOffEngineDerate> - <Offtakes> - <AverageCruiseOfftakes Desc="Durschnittliche Entnahmen fuer Cruise-Modes Cruise und ChangeFL"> - <ShaftPowerTotal Desc="Gesamte Wellenleistungsentnahme durch alle Systeme (Sinks)" ToolLevel="1" Unit="kW">102.8677337</ShaftPowerTotal> - <BleedAirTotal Desc="Gesamte Zapfluftentnahme durch alle Systeme (Sinks)" ToolLevel="1" Unit="kg/s">0.8796612188</BleedAirTotal> - </AverageCruiseOfftakes> - </Offtakes> - <LiftCoefficientsCruise Desc="Erflogene Auftriebsbeiwerte im Reiseflug"> - <CL_avg Desc="Arithm. Mittelwert ueber gesamten Reiseflug" ToolLevel="3" Unit="-">0.4609914236</CL_avg> - <CL_min Desc="Min. Wert fuer gesamten Reiseflug" ToolLevel="3" Unit="-">0.4538594196</CL_min> - <CL_max Desc="Max. Wert fuer gesamten Reiseflug" ToolLevel="3" Unit="-">0.4925634903</CL_max> - </LiftCoefficientsCruise> - <MassesCruise Desc="Gesamtflugzeugmassen waehrend des Reiseflugs"> - <Mass_TOC Desc="Gesamtflugzeugmasse am Top-of-Climb-Punkt (ICA)" ToolLevel="3" Unit="kg">61280.43659</Mass_TOC> - <Mass_TOD Desc="Gesamtflugzeugmasse am Top-of-Descent-Punkt" ToolLevel="3" Unit="kg">59428.93455</Mass_TOD> - </MassesCruise> - </StudyMission> - </MissionAnalysis> - <RequirementsChecks> - <MissionFile Desc="Dateiname der Missionsdatei" OfftakesWritten="1" ToolLevel="1" Unit="-">missionData\missionReq.xml</MissionFile> - <TLARs> - <TOFL_Design Checked="1" ToolLevel="2">1</TOFL_Design> - <LDN_Design Checked="1" ToolLevel="2">1</LDN_Design> - <V_ApproachSpeed_Design Checked="1" ToolLevel="2">1</V_ApproachSpeed_Design> - <h_initialCruise_Design Checked="1" ToolLevel="3">1</h_initialCruise_Design> - <h_maxOperating Checked="1" ToolLevel="3">1</h_maxOperating> - <h_maxOEI Checked="1" ToolLevel="3">1</h_maxOEI> - <M_initialCruise_Design Checked="1" ToolLevel="3">1</M_initialCruise_Design> - <TTC_Design Checked="1" ToolLevel="3">1</TTC_Design> - </TLARs> - <Certification> - <climbGradientSecondTOSegment Checked="1" ToolLevel="2">1</climbGradientSecondTOSegment> - <climbGradientFinalTOSegment Checked="1" ToolLevel="2">1</climbGradientFinalTOSegment> - <climbGradientApproachOEI Checked="1" ToolLevel="2">1</climbGradientApproachOEI> - <climbGradientApproachAEO Checked="1" ToolLevel="2">1</climbGradientApproachAEO> - </Certification> - </RequirementsChecks> - </Performance> - <MonetaryValues Desc="Kosten und Preise"> - <MonetaryScenario> - <AirframeEngineeringHours Desc="Anzahl der Arbeitsstunden in der FZ-Entwicklung" ToolLevel="1" Unit="h">0</AirframeEngineeringHours> - <ProductionVolume Desc="Anzahl produzierter Flugzeuge je Programm" ToolLevel="1">0</ProductionVolume> - </MonetaryScenario> - <Earnings Desc="Herstellergewinn pro verkauftem Flugzeug" ToolLevel="1" Unit="$">0</Earnings> - <NPV Desc="Net Present Value (Kapitalwert) fuer Flugzeugprogramm bei Verkauf des gesamten ProductionVolume" ToolLevel="1" Unit="Mio.$">0</NPV> - <Prices Desc="Preise"> - <PriceAirplane Desc="airplane price (for the whole plane); for the insurance and for the Simple_deprecition in DOC-Tool" ToolLevel="1" Unit="$">0</PriceAirplane> - <DiscountRate Desc="discount rate on airplane lst price granted airlines" ToolLevel="1" Unit="-">0</DiscountRate> - </Prices> - <LCC Desc="Life Cycle Costs"> - <NonRecurringCosts Desc="Non-Recurring Costs fuer gesamtes Flugzeugprogramm"> - <NRCTotal Desc="Non Recurring Costs" ToolLevel="1" Unit="$">0</NRCTotal> - <NRCComponents> - <AirframeEngAndDesign Desc="Costs for Airframe Engineering and Design" ToolLevel="1" Unit="$">0</AirframeEngAndDesign> - <DevSupportAndTesting Desc="Costs for Development Support and Testing" ToolLevel="1" Unit="$">0</DevSupportAndTesting> - <FlightTestAC> - <FlightTestACTotal Desc="Costs for Flight Test Aircraft" ToolLevel="1" Unit="$">0</FlightTestACTotal> - <FlightTestACComponents> - <EngineAndAvionics Desc="Costs for Engines and Avionics" ToolLevel="1" Unit="$">0</EngineAndAvionics> - <LaborManufacturing Desc="Costs for Manufacturing Labor" ToolLevel="1" Unit="$">0</LaborManufacturing> - <MaterialManufacturing Desc="Costs for Manufacturing Material" ToolLevel="1" Unit="$">0</MaterialManufacturing> - <Tooling Desc="Costs for Tooling" ToolLevel="1" Unit="$">0</Tooling> - <QualityControl Desc="Costs for Quality Control" ToolLevel="1" Unit="$">0</QualityControl> - </FlightTestACComponents> - </FlightTestAC> - <FlightTestOp Desc="Costs for Flight Test Operations" ToolLevel="1" Unit="$">0</FlightTestOp> - <Facilities Desc="Costs for Test and Simulation Facilities" ToolLevel="1" Unit="$">0</Facilities> - </NRCComponents> - </NonRecurringCosts> - <RecurringCosts Desc="Recurring Costs"> - <RCTotal Desc="Recurring Costs" ToolLevel="1" Unit="$">0</RCTotal> - <RCComponents> - <Wing Desc="Costs for Wing" ToolLevel="1" Unit="$">0</Wing> - <Fuselage Desc="Costs for Fuselage" ToolLevel="1" Unit="$">0</Fuselage> - <Empennage Desc="Costs for Empennage" ToolLevel="1" Unit="$">0</Empennage> - <LandingGear Desc="Costs for Landing Gear" ToolLevel="1" Unit="$">0</LandingGear> - <Pylons Desc="Costs for Pylons" ToolLevel="1" Unit="$">0</Pylons> - <PowerUnit Desc="Costs for all installed engines with systems without pylons"> - <PowerUnitTotal Desc="Costs for PowerUnit" ToolLevel="1" Unit="$">0</PowerUnitTotal> - <PowerUnitComponents> - <EquippedEngines Desc="Costs for Engines Dry and Other Systems" ToolLevel="1" Unit="$">0</EquippedEngines> - <Nacelles Desc="Costs for Nacelles" ToolLevel="1" Unit="$">0</Nacelles> - <BleedAirSystem Desc="Costs for BleedAirSystem (Airbus Chapter 21, ATA36)" ToolLevel="1" Unit="$">0</BleedAirSystem> - <FuelSystem Desc="Costs for Fuel System (Airbus Chapter 23, ATA28)" ToolLevel="1" Unit="$">0</FuelSystem> - </PowerUnitComponents> - </PowerUnit> - <Systems> - <SystemsTotal Desc="Costs for Systems" ToolLevel="1" Unit="$">0</SystemsTotal> - <SystemsComponents> - <APU Desc="Costs for APU (Airbus Chapter 30, ATA49)" ToolLevel="1" Unit="$">0</APU> - <HydraulicSystem Desc="Costs for Hydraulic System (Airbus Chapter 31 + 32,ATA29)" ToolLevel="1" Unit="$">0</HydraulicSystem> - <AirConditioning Desc="Costs for Air Conditioning (Airbus Chapter 33, ATA21)" ToolLevel="1" Unit="$">0</AirConditioning> - <DeIcing Desc="Costs for De-Icing (Airbus Chapter 34, ATA30)" ToolLevel="1" Unit="$">0</DeIcing> - <FireProtection Desc="Costs for Fire Protection (Airbus Chapter 35, ATA26)" ToolLevel="1" Unit="$">0</FireProtection> - <FlightControls Desc="Costs for Flight Controls (Airbus Chapter 36, ATA27)" ToolLevel="1" Unit="$">0</FlightControls> - <Instruments Desc="Costs for Instruments (Airbus Chapter 37, ATA31)" ToolLevel="1" Unit="$">0</Instruments> - <AutomaticFlightSystem Desc="Costs for Automatic Flight System (Airbus Chapter 38, ATA22)" ToolLevel="1" Unit="$">0</AutomaticFlightSystem> - <Navigation Desc="Costs for Navigation (Airbus Chapter 39, ATA34)" ToolLevel="1" Unit="$">0</Navigation> - <Communication Desc="Costs for Communication (Airbus Chapter 40, ATA23)" ToolLevel="1" Unit="$">0</Communication> - <ElectricalSystem Desc="Costs for Air Conditioning (Airbus Chapter 41+42, ATA24)" ToolLevel="1" Unit="$">0</ElectricalSystem> - </SystemsComponents> - </Systems> - <Furnishings> - <FurnishingsTotal Desc="Costs for Furnishings" ToolLevel="1" Unit="$">0</FurnishingsTotal> - <FurnishingsComponents> - <Furnishing Desc="Costs for Furnishings (Airbus Chapter 50, ATA25)" ToolLevel="1" Unit="$">0</Furnishing> - <FixedEmergencyOxygen Desc="Costs for Fixed Emergency Oxygen (Airbus Chapter 51, ATA35)" ToolLevel="1" Unit="$">0</FixedEmergencyOxygen> - <Lighting Desc="Costs for Lighting (Airbus Chapter 52, ATA33)" ToolLevel="1" Unit="$">0</Lighting> - <WaterInstallation Desc="Costs for Water Installation (Airbus Chapter 53, ATA38)" ToolLevel="1" Unit="$">0</WaterInstallation> - </FurnishingsComponents> - </Furnishings> - <OperatorsItems Desc="Costs for OperatorItems (Airbus Chapter 60+61)" ToolLevel="1" Unit="$">0</OperatorsItems> - <FinalAssembly Desc="Costs for FinalAssembly" ToolLevel="1" Unit="$">0</FinalAssembly> - </RCComponents> - </RecurringCosts> - <OperatingCosts> - <OperatingScenario Desc="Umrechnungsfaktor fuer verschiedene DOC-Einheiten, zusaetzlich aus A/C-XML: Nseats=PassengersTotal"> - <FlightsPerYear Desc="Flights per year / take-offs annually; aus operating_company.xml" ToolLevel="1" Unit="">0</FlightsPerYear> - <SeatLoadFactor Desc="utilisation factor for the payload; aus operating_company.xml" ToolLevel="1" Unit="">0</SeatLoadFactor> - </OperatingScenario> - <DirectOperatingCosts> - <DOC_total Desc="Summe aller DOCComponents (s.u)"> - <DOC_year Desc="DOC pro Jahr" ToolLevel="1" Unit="$/year">0</DOC_year> - <DOC_FH Desc="DOC pro Flugstunde = DOC_year/(Nta*Tflight)" ToolLevel="1" Unit="$/FH">0</DOC_FH> - <DOC_flight Desc="DOC pro Flug = DOC_year/(Nta)" ToolLevel="1" Unit="$/flight">0</DOC_flight> - <DOC_km Desc="DOC pro km = DOC_year/(Nta*R)" ToolLevel="1" Unit="$/km">0</DOC_km> - <DOC_100ASK Desc="DOC pro 100 Available Seat Kilometer = DOC_year/(Nta*R*Nseats)" ToolLevel="1" Unit="$/100ASK">0</DOC_100ASK> - </DOC_total> - <COC_total Desc="Summe aller DOCComponents ausser Depreciation und Insurance"> - <COC_year Desc="COC pro Jahr" ToolLevel="1" Unit="$/year">0</COC_year> - <COC_FH Desc="COC pro Flugstunde = COC_year/(Nta*Tflight)" ToolLevel="1" Unit="$/FH">0</COC_FH> - <COC_flight Desc="COC pro Flug = COC_year/(Nta)" ToolLevel="1" Unit="$/flight">0</COC_flight> - <COC_km Desc="COC pro km = COC_year/(Nta*R)" ToolLevel="1" Unit="$/km">0</COC_km> - <COC_100ASK Desc="COC pro 100 Available Seat Kilometer = COC_year/(Nta*R*Nseats)" ToolLevel="1" Unit="$/100ASK">0</COC_100ASK> - </COC_total> - <DOCComponents Desc="DOC-Anteile in 100ASK"> - <Charge Desc="Gebuehren pro 100ASK"> - <ChargeTotal Desc="total charges" ToolLevel="1" Unit="$/100ASK">0</ChargeTotal> - <ChargesComponents> - <NavigationCharge Desc="navigational charges" ToolLevel="1" Unit="$/100ASK">0</NavigationCharge> - <LandingCharge Desc="landing charges" ToolLevel="1" Unit="$/100ASK">0</LandingCharge> - <LandingChargeComponents> - <NoiseCharge Desc="noise charges" ToolLevel="1" Unit="$/100ASK">0</NoiseCharge> - <NOxCharge Desc="NOx charges" ToolLevel="1" Unit="$/100ASK">0</NOxCharge> - <ChargeWithoutEmission Desc="landing charges without emissions (noise + NOx)" ToolLevel="1" Unit="$/100ASK">0</ChargeWithoutEmission> - </LandingChargeComponents> - <GroundCharge Desc="ground charges" ToolLevel="1" Unit="$/100ASK">0</GroundCharge> - </ChargesComponents> - </Charge> - <Depreciation Desc="Abschreibungskosten" ToolLevel="1" Unit="$/100ASK">0</Depreciation> - <Insurance Desc="Versicherungskosten" ToolLevel="1" Unit="$/100ASK">0</Insurance> - <Maintenance Desc="Wartungskosten"> - <MaintenanceTotal Desc="Wartungskosten gesamt" ToolLevel="1" Unit="$/100ASK">0</MaintenanceTotal> - <MaintenanceComponents> - <Airframe Desc="Wartungskosten Airframe"> - <AirframeTotal Desc="Wartungskosten Airframe gesamt" ToolLevel="1" Unit="$/100ASK">0</AirframeTotal> - <CostComponents> - <LabourCosts Desc="Arbeitskosten Wartung Airframe" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Materialkosten Wartung Airframe" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - <AirframeComponents Desc="Kostenwert fuer das ATA Kapitel"> - <ATA21 Desc="Environmental Control System"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA21> - <ATA22 Desc="Autoflight"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA22> - <ATA23 Desc="Communications"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA23> - <ATA24 Desc="Electrical System"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA24> - <ATA25 Desc="Furnishing"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA25> - <ATA26 Desc="Fire Protection"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA26> - <ATA27 Desc="Flight Control System"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA27> - <ATA28 Desc="Fuel System"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA28> - <ATA29 Desc="Hydraulic System"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA29> - <ATA30 Desc="Ice and Rain Protection"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA30> - <ATA31 Desc="Instrumentation"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA31> - <ATA32 Desc="Landing Gear"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA32> - <ATA33 Desc="Lights"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA33> - <ATA34 Desc="Navigation"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA34> - <ATA35 Desc="Oxygen"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA35> - <ATA36 Desc="Pneumatic"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA36> - <ATA38 Desc="Water and Waste"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA38> - <ATA49 Desc="APU"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA49> - <ATA51 Desc="Structure"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA51> - <ATA52 Desc="Doors"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA52> - <ATA53 Desc="Fuselage"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA53> - <ATA54 Desc="Nacelles"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA54> - <ATA55 Desc="Stabilizers"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA55> - <ATA56 Desc="Windows"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA56> - <ATA57 Desc="Wings"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA57> - <ATA99 Desc="Routinearbeiten, hauptsaechlich Inspektion"> - <TotalCosts Desc="Total Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</TotalCosts> - <CostComponents> - <LabourCosts Desc="Labour Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</LabourCosts> - <MaterialCosts Desc="Material Costs of the Component" ToolLevel="1" Unit="$/100ASK">0</MaterialCosts> - </CostComponents> - </ATA99> - </AirframeComponents> - </Airframe> - <Engine Desc="Wartungskosten Triebwerk" ToolLevel="1" Unit="$/100ASK">0</Engine> - </MaintenanceComponents> - </Maintenance> - <Fuel Desc="Spritkosten" ToolLevel="1" Unit="$/100ASK">0</Fuel> - <Crew Desc="Crew Kosten"> - <CrewTotal Desc="Crew Kosten gesamt" ToolLevel="1" Unit="$/100ASK">0</CrewTotal> - <CrewComponents> - <FlightCrew Desc="Flight Crew Kosten" ToolLevel="1" Unit="$/100ASK">0</FlightCrew> - <CabinCrew Desc="Cabin Crew Kosten" ToolLevel="1" Unit="$/100ASK">0</CabinCrew> - </CrewComponents> - </Crew> - <Delay Desc="Verspaetungskosten" ToolLevel="1" Unit="$/100ASK">0</Delay> - </DOCComponents> - </DirectOperatingCosts> - <IndirectOperatingCosts> - <IOC_total Desc="Summe aller IOCComponents (s.u)"> - <IOC_year Desc="IOC pro Jahr" ToolLevel="1" Unit="$/year">0</IOC_year> - <IOC_FH Desc="IOC pro Flugstunde = IOC_year/(Nta*Tflight)" ToolLevel="1" Unit="$/FH">0</IOC_FH> - <IOC_flight Desc="IOC pro Flug = IOC_year/(Nta)" ToolLevel="1" Unit="$/flight">0</IOC_flight> - <IOC_km Desc="IOC pro km = IOC_year/(Nta*R)" ToolLevel="1" Unit="$/km">0</IOC_km> - <IOC_100ASK Desc="IOC pro 100 Available Seat Kilometer = IOC_year/(Nta*R*Nseats)" ToolLevel="1" Unit="$/100ASK">0</IOC_100ASK> - </IOC_total> - </IndirectOperatingCosts> - </OperatingCosts> - <EndOfLifeCosts> - <EOLCTotal Desc="End-of-Life Costs" ToolLevel="1" Unit="$">0</EOLCTotal> - <EOLCTotalComponents> - <TransportToEoLSite Desc="Kosten fuer Transport zur Abwrack-Location" ToolLevel="1" Unit="$">0</TransportToEoLSite> - <DisassemblyAndDismantling Desc="Kosten fuer Dissassembly and Dismantling" ToolLevel="1" Unit="$">0</DisassemblyAndDismantling> - <Recycling Desc="Materialrecycling, bei negativem Wert Benefit durch Materialverkauf" ToolLevel="1" Unit="$">0</Recycling> - <Incineration Desc="Kosten fuer Verbrennung (inkl. shredding, mixing, incineration, and landfill of ash) " ToolLevel="1" Unit="$">0</Incineration> - <Landfill Desc="Kosten fuer Landfill" ToolLevel="1" Unit="$">0</Landfill> - </EOLCTotalComponents> - </EndOfLifeCosts> - </LCC> - </MonetaryValues> - <EcologicalValues Desc="Oekologische Bewertung"> - <Noise Desc="Akustische Kenngroessen und Laermbewertungsmasse"> - <NoisePathFiles> - <Departure Desc="Dateiname des Departure Path" ToolLevel="1">0</Departure> - <Approach Desc="Dateiname des Approach Path" ToolLevel="1">0</Approach> - </NoisePathFiles> - <NoiseCertificationLevels> - <LateralPoint> - <LateralFullPower Desc="EPNL Sideline Zertifizierungspegel, ICAO Annex 16/3 und 16/4 Zertifizierungslaermpegel" ToolLevel="1" Unit="EPNdB">0</LateralFullPower> - <SPL Desc="dBA at lateral point" ToolLevel="1" Unit="dBA">0</SPL> - <Loudness Desc="Loudness at lateral point" ToolLevel="1" Unit="Sone">0</Loudness> - <Tonality Desc="Tonality at lateral point" ToolLevel="1" Unit="tonality units t.u.">0</Tonality> - <Sharpness Desc="Sharpness at lateral point" ToolLevel="1" Unit="Acum">0</Sharpness> - <PsychoacousticAnnoyance Desc="Psychoacoustic Annoyance at lateral point" ToolLevel="1" Unit="-">0</PsychoacousticAnnoyance> - </LateralPoint> - <FlyoverPoint> - <Flyover Desc="EPNL Flyover Zertifizierungspegel, ICAO Annex 16/3 und 16/4 Zertifizierungslaermpegel" ToolLevel="1" Unit="EPNdB">0</Flyover> - <SPL Desc="dBA at flyover point" ToolLevel="1" Unit="dBA">0</SPL> - <Loudness Desc="Loudness at flyover point" ToolLevel="1" Unit="Sone">0</Loudness> - <Tonality Desc="Tonality at flyover point" ToolLevel="1" Unit="tonality units t.u.">0</Tonality> - <Sharpness Desc="Sharpness at flyover point" ToolLevel="1" Unit="Acum">0</Sharpness> - <PsychoacousticAnnoyance Desc="Psychoacoustic Annoyance at flyover point" ToolLevel="1" Unit="-">0</PsychoacousticAnnoyance> - </FlyoverPoint> - <ApproachPoint> - <Approach Desc="EPNL Approach Zertifizierungspegel, ICAO Annex 16/3 und 16/4 Zertifizierungslaermpegel" ToolLevel="1" Unit="EPNdB">0</Approach> - <SPL Desc="dBA at approach point" ToolLevel="1" Unit="dBA">0</SPL> - <Loudness Desc="Loudness at approach point" ToolLevel="1" Unit="Sone">0</Loudness> - <Tonality Desc="Tonality at approach point" ToolLevel="1" Unit="tonality units t.u.">0</Tonality> - <Sharpness Desc="Sharpness at approach point" ToolLevel="1" Unit="Acum">0</Sharpness> - <PsychoacousticAnnoyance Desc="Psychoacoustic Annoyance at approach point" ToolLevel="1" Unit="-">0</PsychoacousticAnnoyance> - </ApproachPoint> - <CumulativeValues> - <EPNdB Desc="EPNL Cumulative Zertifizierungspegel, ICAO Annex 16/3 und 16/4 Zertifizierungslaermpegel" ToolLevel="1" Unit="EPNdB">0</EPNdB> - <SPL Desc="Cumulative dBA at the three points" ToolLevel="1" Unit="dBA">0</SPL> - <Loudness Desc="Cumulative Loudness at the three points" ToolLevel="1" Unit="Sone">0</Loudness> - <Tonality Desc="Tonality at the three points" ToolLevel="1" Unit="tonality units t.u.">0</Tonality> - <Sharpness Desc="Sharpness at the three points" ToolLevel="1" Unit="Acum">0</Sharpness> - <PsychoacousticAnnoyance Desc="Psychoacoustic Annoyance at the three points" ToolLevel="1" Unit="-">0</PsychoacousticAnnoyance> - </CumulativeValues> - </NoiseCertificationLevels> - <CommunityNoiseLevels> - <TakeOff> - <SPL Desc="Sound Pressure Level 10km from brake release" ToolLevel="1" Unit="dBA">0</SPL> - <SPLarea> - <dBAthreshold1 Desc="Area of SPL higher or equal than 55 dBA" ToolLevel="1" Unit="km2">0</dBAthreshold1> - <dBAthreshold2 Desc="Area of SPL higher or equal than 75 dBA" ToolLevel="1" Unit="km2">0</dBAthreshold2> - </SPLarea> - <PNLarea> - <PNLthreshold1 Desc="Area of PNL higher or equal than 65 PNLdB" ToolLevel="1" Unit="km2">0</PNLthreshold1> - <PNLthreshold2 Desc="Area of PNL higher or equal than 85 PNLdB" ToolLevel="1" Unit="km2">0</PNLthreshold2> - </PNLarea> - <PNLTarea> - <PNLTthreshold1 Desc="Area of PNLT higher or equal than 65 PNTdB" ToolLevel="1" Unit="km2">0</PNLTthreshold1> - <PNLTthreshold2 Desc="Area of PNLT higher or equal than 85 PNTdB" ToolLevel="1" Unit="km2">0</PNLTthreshold2> - </PNLTarea> - <EPNLarea> - <EPNLthreshold1 Desc="Area of EPNL higher or equal than 65 EPNdB" ToolLevel="1" Unit="km2">0</EPNLthreshold1> - <EPNLthreshold2 Desc="Area of EPNL higher or equal than 85 EPNdB" ToolLevel="1" Unit="km2">0</EPNLthreshold2> - </EPNLarea> - <LoudnessArea> - <LoudnessThreshold1 Desc="Area of Zwickers loudness higher or equal than 65 Phon" ToolLevel="1" Unit="km2">0</LoudnessThreshold1> - <LoudnessThreshold2 Desc="Area of Zwickers loudness higher or equal than 85 Phon" ToolLevel="1" Unit="km2">0</LoudnessThreshold2> - </LoudnessArea> - <TonalityArea> - <TonalityThreshold1 Desc="Area of tonality higher or equal than 0.075 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold1> - <TonalityThreshold2 Desc="Area of tonality higher or equal than 0.15 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold2> - <TonalityThreshold3 Desc="Area of tonality higher or equal than 0.25 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold3> - <TonalityThreshold4 Desc="Area of tonality higher or equal than 0.35 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold4> - </TonalityArea> - <SharpnessArea> - <SharpnessThreshold1 Desc="Area of sharpness higher or equal than 0.75 acum" ToolLevel="1" Unit="km2">0</SharpnessThreshold1> - <SharpnessThreshold2 Desc="Area of sharpness higher or equal than 1.0 acum" ToolLevel="1" Unit="km2">0</SharpnessThreshold2> - </SharpnessArea> - <PsychoacousticAnnoyanceArea> - <PAthreshold1 Desc="Area of PA higher or equal than 10" ToolLevel="1" Unit="km2">0</PAthreshold1> - <PAthreshold2 Desc="Area of PA higher or equal than 20" ToolLevel="1" Unit="km2">0</PAthreshold2> - </PsychoacousticAnnoyanceArea> - <SELarea Desc="Sound Exposure Level area"> - <dBA85 Desc="Area of Sound Exposure Level higher or equal than 85 dBA" ToolLevel="1" Unit="km2">0</dBA85> - <dBA75 Desc="Area of Sound Exposure Level higher or equal than 75 dBA" ToolLevel="1" Unit="km2">0</dBA75> - <dBA65 Desc="Area of Sound Exposure Level higher or equal than 65 dBA" ToolLevel="1" Unit="km2">0</dBA65> - <dBA55 Desc="Area of Sound Exposure Level higher or equal than 55 dBA" ToolLevel="1" Unit="km2">0</dBA55> - </SELarea> - </TakeOff> - <Approach> - <SPL Desc="Sound Pressure Level 15km from touchdown" ToolLevel="1" Unit="dBA">0</SPL> - <SPLarea> - <dBAthreshold1 Desc="Area of SPL higher or equal than 55 dBA" ToolLevel="1" Unit="km2">0</dBAthreshold1> - <dBAthreshold2 Desc="Area of SPL higher or equal than 75 dBA" ToolLevel="1" Unit="km2">0</dBAthreshold2> - </SPLarea> - <PNLarea> - <PNLthreshold1 Desc="Area of PNL higher or equal than 65 PNLdB" ToolLevel="1" Unit="km2">0</PNLthreshold1> - <PNLthreshold2 Desc="Area of PNL higher or equal than 85 PNLdB" ToolLevel="1" Unit="km2">0</PNLthreshold2> - </PNLarea> - <PNLTarea> - <PNLTthreshold1 Desc="Area of PNLT higher or equal than 65 PNTdB" ToolLevel="1" Unit="km2">0</PNLTthreshold1> - <PNLTthreshold2 Desc="Area of PNLT higher or equal than 85 PNTdB" ToolLevel="1" Unit="km2">0</PNLTthreshold2> - </PNLTarea> - <EPNLarea> - <EPNLthreshold1 Desc="Area of EPNL higher or equal than 65 EPNdB" ToolLevel="1" Unit="km2">0</EPNLthreshold1> - <EPNLthreshold2 Desc="Area of EPNL higher or equal than 85 EPNdB" ToolLevel="1" Unit="km2">0</EPNLthreshold2> - </EPNLarea> - <LoudnessArea> - <LoudnessThreshold1 Desc="Area of Zwickers loudness higher or equal than 65 Sone" ToolLevel="1" Unit="km2">0</LoudnessThreshold1> - <LoudnessThreshold2 Desc="Area of Zwickers loudness higher or equal than 85 Sone" ToolLevel="1" Unit="km2">0</LoudnessThreshold2> - </LoudnessArea> - <TonalityArea> - <TonalityThreshold1 Desc="Area of tonality higher or equal than 0.075 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold1> - <TonalityThreshold2 Desc="Area of tonality higher or equal than 0.10 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold2> - <TonalityThreshold3 Desc="Area of tonality higher or equal than 0.20 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold3> - <TonalityThreshold4 Desc="Area of tonality higher or equal than 0.25 tu" ToolLevel="1" Unit="km2">0</TonalityThreshold4> - </TonalityArea> - <SharpnessArea> - <SharpnessThreshold1 Desc="Area of sharpness higher or equal than 0.75 acum" ToolLevel="1" Unit="km2">0</SharpnessThreshold1> - <SharpnessThreshold2 Desc="Area of sharpness higher or equal than 1.0 acum" ToolLevel="1" Unit="km2">0</SharpnessThreshold2> - </SharpnessArea> - <PsychoacousticAnnoyanceArea> - <PAthreshold1 Desc="Area of PA higher or equal than 10" ToolLevel="1" Unit="km2">0</PAthreshold1> - <PAthreshold2 Desc="Area of PA higher or equal than 20" ToolLevel="1" Unit="km2">0</PAthreshold2> - </PsychoacousticAnnoyanceArea> - <SELarea Desc="Sound Exposure Level area"> - <dBA85 Desc="Area of Sound Exposure Level higher or equal than 85 dBA" ToolLevel="1" Unit="km2">0</dBA85> - <dBA75 Desc="Area of Sound Exposure Level higher or equal than 75 dBA" ToolLevel="1" Unit="km2">0</dBA75> - <dBA65 Desc="Area of Sound Exposure Level higher or equal than 65 dBA" ToolLevel="1" Unit="km2">0</dBA65> - <dBA55 Desc="Area of Sound Exposure Level higher or equal than 55 dBA" ToolLevel="1" Unit="km2">0</dBA55> - </SELarea> - </Approach> - <CumulativeValues> - <EPNdB Desc="85 EPNdB area sum for takeoff and approach" ToolLevel="1" Unit="EPNdB">0</EPNdB> - <SPL Desc="75 dBA area sum for takeoff and approach" ToolLevel="1" Unit="dBA">0</SPL> - <Loudness Desc="85 Phon loudness area sum for takeoff and approach" ToolLevel="1" Unit="Sone">0</Loudness> - <Tonality Desc="Tonality area sum for takeoff and approach - 0.1 t.u. for short-range and 0.2 t.u. for long-range AC" ToolLevel="1" Unit="tonality units t.u.">0</Tonality> - <Sharpness Desc="1.0 Acum sharpness area sum for takeoff and approach" ToolLevel="1" Unit="Acum">0</Sharpness> - <PsychoacousticAnnoyance Desc="Psychoacoustic Annoyance of 10 area sum for takeoff and approach" ToolLevel="1" Unit="-">0</PsychoacousticAnnoyance> - </CumulativeValues> - </CommunityNoiseLevels> - </Noise> - <Emissions> - <Development Desc="Analyse der Entwicklungsphase fuer gesamtes Flugzeugprogramm"> - <CO2 Desc="Kohlenstoffdioxid" ToolLevel="1" Unit="kg">0</CO2> - <H2O Desc="Wasser" ToolLevel="1" Unit="kg">0</H2O> - <NOx Desc="Stickoxide" ToolLevel="1" Unit="kg">0</NOx> - <CO Desc="Kohlenmonoxid" ToolLevel="1" Unit="kg">0</CO> - <SO2 Desc="Schwefeldioxid" ToolLevel="1" Unit="kg">0</SO2> - <CH4 Desc="Methan" ToolLevel="1" Unit="kg">0</CH4> - <PM10 Desc="Feinstaub" ToolLevel="1" Unit="kg">0</PM10> - <N2O Desc="Distickstoffmonoxid (Lachgas)" ToolLevel="1" Unit="kg">0</N2O> - <PFC Desc="Perfluoromethane und Perfluoroethane" ToolLevel="1" Unit="kg">0</PFC> - <NMVOC Desc="non methane volatile organic compounds" ToolLevel="1" Unit="kg">0</NMVOC> - <HC Desc="Kohlenwasserstoff" ToolLevel="1" Unit="kg">0</HC> - </Development> - <Production> - <CO2 Desc="Kohlenstoffdioxid" ToolLevel="1" Unit="kg">0</CO2> - <H2O Desc="Wasser" ToolLevel="1" Unit="kg">0</H2O> - <NOx Desc="Stickoxide" ToolLevel="1" Unit="kg">0</NOx> - <CO Desc="Kohlenmonoxid" ToolLevel="1" Unit="kg">0</CO> - <SO2 Desc="Schwefeldioxid" ToolLevel="1" Unit="kg">0</SO2> - <CH4 Desc="Methan" ToolLevel="1" Unit="kg">0</CH4> - <PM10 Desc="Feinstaub" ToolLevel="1" Unit="kg">0</PM10> - <N2O Desc="Distickstoffmonoxid (Lachgas)" ToolLevel="1" Unit="kg">0</N2O> - <PFC Desc="Perfluoromethane und Perfluoroethane" ToolLevel="1" Unit="kg">0</PFC> - <NMVOC Desc="non methane volatile organic compounds" ToolLevel="1" Unit="kg">0</NMVOC> - <HC Desc="Kohlenwasserstoff" ToolLevel="1" Unit="kg">0</HC> - </Production> - <Operations> - <CO2 Desc="Kohlenstoffdioxid" ToolLevel="1" Unit="kg">0</CO2> - <H2O Desc="Wasser" ToolLevel="1" Unit="kg">0</H2O> - <NOx Desc="Stickoxide" ToolLevel="1" Unit="kg">0</NOx> - <CO Desc="Kohlenmonoxid" ToolLevel="1" Unit="kg">0</CO> - <SO2 Desc="Schwefeldioxid" ToolLevel="1" Unit="kg">0</SO2> - <CH4 Desc="Methan" ToolLevel="1" Unit="kg">0</CH4> - <PM10 Desc="Feinstaub" ToolLevel="1" Unit="kg">0</PM10> - <N2O Desc="Distickstoffmonoxid (Lachgas)" ToolLevel="1" Unit="kg">0</N2O> - <PFC Desc="Perfluoromethane und Perfluoroethane" ToolLevel="1" Unit="kg">0</PFC> - <NMVOC Desc="non methane volatile organic compounds" ToolLevel="1" Unit="kg">0</NMVOC> - <HC Desc="Kohlenwasserstoff" ToolLevel="1" Unit="kg">0</HC> - <OperationComponents> - <ICAO_LTO Desc="Triebwerksemissionen bestimmt nach dem LTO-Cycle gemaess ICAO Engine Emission Database und Standardzeiten fuer eine (!) StudyMission"> - <CO2 Desc="CO2 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</CO2> - <H2O Desc="H2O emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</H2O> - <SO2 Desc="SO2 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</SO2> - <HC Desc="HC emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</HC> - <CO Desc="CO emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</CO> - <NOx Desc="NOx emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</NOx> - <PM10 Desc="PM10 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</PM10> - </ICAO_LTO> - <Mission Desc="Environmental analysis of one study mission"> - <LTOTimes Desc="Times of LTO phases (all phases under 3000 ft)"> - <Total Desc="Taxi, Take-off, Climb Out and Approach time (LTO)" ToolLevel="1" Unit="min">0</Total> - <TaxiTime Desc="Time for taxi (ICAO: 26 min)" ToolLevel="1" Unit="min">0</TaxiTime> - <TakeOffTime Desc="Time for take-off (until 35ft) (ICAO: 0.7 min)" ToolLevel="1" Unit="min">0</TakeOffTime> - <ClimbOutTime Desc="Time for climb out (35 ft to 3000ft)(ICAO: 2.2 min)" ToolLevel="1" Unit="min">0</ClimbOutTime> - <ApproachTime Desc="Time for approach (from 3000 ft to stop)(ICAO: 4 min)" ToolLevel="1" Unit="min">0</ApproachTime> - </LTOTimes> - <LTO Desc="Triebwerksemissionen bestimmt nach dem LTO-Cycle mit Missionsanalyse fuer eine (!) StudyMission"> - <CO2 Desc="CO2 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</CO2> - <H2O Desc="H2O emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</H2O> - <SO2 Desc="SO2 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</SO2> - <HC Desc="HC emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</HC> - <CO Desc="CO emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</CO> - <NOx Desc="NOx emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</NOx> - <PM10 Desc="PM10 emitted during the LTO cycle" ToolLevel="1" Unit="kg">0</PM10> - </LTO> - <Cruise Desc="Triebwerksemissionen des Reiseflugs fuer eine (!) StudyMission"> - <CO2 Desc="CO2 emitted during cruise" ToolLevel="1" Unit="kg">0</CO2> - <H2O Desc="H2O emitted during cruise" ToolLevel="1" Unit="kg">0</H2O> - <SO2 Desc="SO2 emitted during cruise" ToolLevel="1" Unit="kg">0</SO2> - <HC Desc="HC emitted during cruise" ToolLevel="1" Unit="kg">0</HC> - <CO Desc="CO emitted during cruise" ToolLevel="1" Unit="kg">0</CO> - <NOx Desc="NOx emitted during cruise" ToolLevel="1" Unit="kg">0</NOx> - <PM10 Desc="PM10 emitted during cruise" ToolLevel="1" Unit="kg">0</PM10> - </Cruise> - </Mission> - </OperationComponents> - </Operations> - <EndOfLife> - <CO2 Desc="Kohlenstoffdioxid" ToolLevel="1" Unit="kg">0</CO2> - <H2O Desc="Wasser" ToolLevel="1" Unit="kg">0</H2O> - <NOx Desc="Stickoxide" ToolLevel="1" Unit="kg">0</NOx> - <CO Desc="Kohlenmonoxid" ToolLevel="1" Unit="kg">0</CO> - <SO2 Desc="Schwefeldioxid" ToolLevel="1" Unit="kg">0</SO2> - <CH4 Desc="Methan" ToolLevel="1" Unit="kg">0</CH4> - <PM10 Desc="Feinstaub" ToolLevel="1" Unit="kg">0</PM10> - <N2O Desc="Distickstoffmonoxid (Lachgas)" ToolLevel="1" Unit="kg">0</N2O> - <PFC Desc="Perfluoromethane und Perfluoroethane" ToolLevel="1" Unit="kg">0</PFC> - <NMVOC Desc="non methane volatile organic compounds" ToolLevel="1" Unit="kg">0</NMVOC> - <HC Desc="Kohlenwasserstoff" ToolLevel="1" Unit="kg">0</HC> - </EndOfLife> - </Emissions> - <CED Desc="Cumulative Energy Demand"> - <CEDTotal Desc="End-of-Life Costs" ToolLevel="1" Unit="MJ">0</CEDTotal> - <CEDComponents> - <Development Desc="Development" ToolLevel="1" Unit="MJ">0</Development> - <Production Desc="Production" ToolLevel="1" Unit="MJ">0</Production> - <Operations Desc="Operation" ToolLevel="1" Unit="MJ">0</Operations> - <EndOfLife Desc="End of Life" ToolLevel="1" Unit="MJ">0</EndOfLife> - </CEDComponents> - </CED> - <ClimateImpact Desc="Climate Impact due to Aircraft Operation"> - <ATR Desc="Average Temperatur Response per year for aircraft operating lifetime" ToolLevel="1" Unit="mK">0</ATR> - <AGTP Desc="Absolute Global Temperature Potential after final year of operation" ToolLevel="1" Unit="K">0</AGTP> - <AGTP100 Desc="Absolute Global Temperature Potential after 100 years" ToolLevel="1" Unit="K">0</AGTP100> - <AGWP Desc="Absolute Global Warming Potential after final year of operation" ToolLevel="1" Unit="(W/m2)*year">0</AGWP> - <AGWP100 Desc="Absolute Global Warming Potential after 100 years" ToolLevel="1" Unit="(W/m2)*year">0</AGWP100> - </ClimateImpact> - <AirQuality Desc="Climate Impact due to Aircraft Operation"> - <ToleranceFactors Desc="Tolerance Factors of Emissions emitted during LTO" Unit="-"> - <HC Desc="TF Kohlenwasserstoff" ToolLevel="1" Unit="-">0</HC> - <CO Desc="TF Kohlenmonoxid" ToolLevel="1" Unit="-">0</CO> - <NOx Desc="TF Stickoxide" ToolLevel="1" Unit="-">0</NOx> - <soot Desc="TF Russ" ToolLevel="1" Unit="-">0</soot> - </ToleranceFactors> - <AirQualityIndex Desc="Air Quality Index" ToolLevel="1" Unit="-">0</AirQualityIndex> - </AirQuality> - </EcologicalValues> - <Requirements Desc="Designforderungen"> - <m_Payload Desc="Design-Nutzlast (z.B. Anzahl PAX*MassPerPAX, s. DesignSpecification/Accommodation/)" Unit="kg">17000</m_Payload> - <m_MaximumPayload Desc="Maximale Nutzlast i. a. (PAX + 2*Luggage, da Cargo ~ Luggage)" Unit="kg">20000</m_MaximumPayload> - <DesignMission Desc="Definition der Auslegungsmission mit Startstrecke, Steigleistung, Initial Cruise und Landestrecke"> - <DeltaISA Default="0" Desc="Temperature deviation from ISA" Unit="K">0</DeltaISA> - <R_Design Desc="Auslegungsreichweite" Unit="NM">2500</R_Design> - <TOFL_Design Desc="Design takeoff distance (Balanced Field Length) at Sea Level with MTOM and (ISA + deltaISA)-Conditions" Unit="m">2122</TOFL_Design> - <TTC_Design Desc="Auslegungs- Time-to-Climb (von 1500 ft auf ICA bei ISA+deltaISA)" Unit="min">35</TTC_Design> - <ClimbGradients Desc="Steiggradientenforderungen"> - <secondTOsegment Desc="Climb gradient in 2nd take-off segment" Unit="percent">2.4</secondTOsegment> - <finalTOsegment Desc="Climb gradient in final take-off segment" Unit="percent">1.2</finalTOsegment> - <approachAEO Desc="Approach gradient with all engine operating" Unit="percent">3.2</approachAEO> - <approachOEI Desc="Approach gradient with one engine inoperative" Unit="percent">2.1</approachOEI> - </ClimbGradients> - <ClimbSpeedSchedule Desc="Liste der Geschwindigkeiten im Steigflug CAS unter FL100; CAS ueber FL100; M_cruise ueber Crossover-Altitude. Ggf. nur die erste bzw. die ersten beiden Geschwindigkeiten (Prop)."> - <ClimbSpeeds Desc="Anzahl der Climb-Speed der Schedule. 1 = eine CAS, 2 = CAS mit ATC-limit u. darueber, 3 = zwei CAS u. eine Machzahl">3</ClimbSpeeds> - <CASATClimit Desc="CAS unter FL100" Unit="KCAS">250</CASATClimit> - <CAS Desc="CAS ueber FL100" Unit="KCAS">300</CAS> - <Delta_MclimbToMcruise Desc="Differenz der Machzahl ueber Crossover-Altitude zur Cruise Machzahl" Unit="-">-0.02</Delta_MclimbToMcruise> - </ClimbSpeedSchedule> - <DescentSpeedSchedule Desc="Liste der Geschwindigkeiten im Sinkflug CAS unter FL100; CAS ueber FL100; Standardmaessig M_cruise ueber Crossover-Altitude."> - <CASATClimit Desc="CAS unter FL100" Unit="KCAS">250</CASATClimit> - <CAS Desc="CAS ueber FL100" Unit="KCAS">300</CAS> - </DescentSpeedSchedule> - <h_initialCruise_Design Desc="Erste Cruise-Altitude (TOC)" Unit="ft">33000</h_initialCruise_Design> - <M_initialCruise_Design Desc="Erste Cruise-Machzahl (TOC)" Unit="-">0.78</M_initialCruise_Design> - <LDN_Design Desc="Needed runway length at Sea Level with MLM and (ISA + deltaISA)-Conditions (Safety-Landing Distance according to FAR 121.195: landing_field_required/0.6)" Unit="m">2387</LDN_Design> - <V_ApproachSpeed_Design Desc="Auslegungsanfluggeschwindigkeit in KCAS, Approach Category A: 0-90 kts, B: 91-120 kts, C: 121-140 kts, D: 141-165 kts, E: greater 165 kts" Unit="KCAS">138</V_ApproachSpeed_Design> - <AlternateDistance Desc="Reichweite der Alternate Mission" Unit="NM">200</AlternateDistance> - <TakeOffProcedure Desc="Standard, ICAO-A, ICAO-B">Standard</TakeOffProcedure> - <ApproachProcedure Desc="Standard, CDA, CDA-Steep">Standard</ApproachProcedure> - <TaxiTimeOrigin Desc="Dauer des Taxiing beim Start" Unit="min">9</TaxiTimeOrigin> - <TaxiTimeDestination Desc="Dauer des Taxiing nach der Landung" Unit="min">5</TaxiTimeDestination> - </DesignMission> - <StudyMission Desc="Definition der Study-Mission mit Startstrecke, Steigleistung, Initial Cruise und Landestrecke"> - <DeltaISA Default="0" Desc="Temperature deviation from ISA" Unit="K">0</DeltaISA> - <R_Design Desc="Auslegungsreichweite" Unit="NM">500</R_Design> - <m_Payload Desc="Nutzlast auf Study-Mission" Unit="kg">13608</m_Payload> - <NumberOfPAX Desc="Anzahl Passagiere auf Study-Mission" Unit="-">150</NumberOfPAX> - <ClimbSpeedSchedule Desc="Liste der Geschwindigkeiten im Steigflug CAS unter FL100; CAS ueber FL100; M_cruise ueber Crossover-Altitude. Ggf. nur die erste bzw. die ersten beiden Geschwindigkeiten (Prop)."> - <ClimbSpeeds Desc="Anzahl der Climb-Speed der Schedule. 1 = eine CAS, 2 = CAS mit ATC-limit u. darueber, 3 = zwei CAS u. eine Machzahl">3</ClimbSpeeds> - <CASATClimit Desc="CAS unter FL100" Unit="KCAS">250</CASATClimit> - <CAS Desc="CAS ueber FL100" Unit="KCAS">300</CAS> - <Delta_MclimbToMcruise Desc="Differenz der Machzahl ueber Crossover-Altitude zur Cruise Machzahl" Unit="-">-0.02</Delta_MclimbToMcruise> - </ClimbSpeedSchedule> - <DescentSpeedSchedule Desc="Liste der Geschwindigkeiten im Sinkflug CAS unter FL100; CAS ueber FL100; Standardmaessig M_cruise ueber Crossover-Altitude."> - <CASATClimit Desc="CAS unter FL100" Unit="KCAS">250</CASATClimit> - <CAS Desc="CAS ueber FL100" Unit="KCAS">300</CAS> - </DescentSpeedSchedule> - <h_initialCruise Desc="Erste Cruise-Altitude (TOC)" Unit="ft">35000</h_initialCruise> - <M_initialCruise Desc="Erste Cruise-Machzahl (TOC)" Unit="-">0.78</M_initialCruise> - <AlternateDistance Desc="Reichweite der Alternate Mission" Unit="NM">200</AlternateDistance> - <TakeOffProcedure Desc="Standard, ICAO-A, ICAO-B">Standard</TakeOffProcedure> - <ApproachProcedure Desc="Standard, CDA, CDA-Steep">Standard</ApproachProcedure> - <TaxiTimeOrigin Desc="Dauer des Taxiing beim Start" Unit="min">9</TaxiTimeOrigin> - <TaxiTimeDestination Desc="Dauer des Taxiing nach der Landung" Unit="min">5</TaxiTimeDestination> - </StudyMission> - <FuelPlanningMethod Desc="Methode zur Tankschaetzung: JAR, FAR-Domestic, FAR-Flag (International)">JAR</FuelPlanningMethod> - <V_MaximumGroundspeed Desc="Maximale Rollgeschwindigkeit, durch das Tyre Speed Rating begrenzt in KCAS" Unit="KCAS">195</V_MaximumGroundspeed> - <DesignFlightEnvelope> - <VMO Desc="Max operating speed. IAS also die Strukturbestimmenden Staudruckgeschwindigkeit" Unit="KCAS">350</VMO> - <MMO Desc="Max operating Mach No." Unit="-">0.82</MMO> - <h_maxOperating Desc="Max operating Altitude" Unit="ft">38500</h_maxOperating> - <h_maxOEI Desc="Max operating Altitude One-Engine-Inoperative" Unit="ft">15000</h_maxOEI> - </DesignFlightEnvelope> - <SizeLimits Desc="maximale geometrische Abmasse"> - <SpanLimit Desc="Spannweitenbegrenzung" Unit="m">36</SpanLimit> - </SizeLimits> - <ACN Desc="Aircraft Classification Number"> - <ACNCatType Desc="ACN Pavement Type; flex oder rigid" Unit="-">flex</ACNCatType> - <ACNCategory Desc="ACN Pavement Strength; A, B, C oder D" Unit="-">B</ACNCategory> - <ACNLimit Desc="ACN Limit fuer die ausgewaehlte Kategorie" Unit="-">42</ACNLimit> - </ACN> - </Requirements> - <DesignSpecification Desc="Spezifikation des Entwurfs"> - <Configuration Desc="Qualitative Beschreibung der Konfiguration"> - <Wing Desc="Parameter des Fluegels"> - <Position Desc="Fluegellage low, mid, high" Unit="-">low</Position> - </Wing> - <Stabiliser Desc="Parameter des Hoehenleitwerks"> - <h_OverWing Desc="Vertikale Position bzgl. des Seitenleitwerks (0: conventional 1: T-Tail)" Unit="-">0</h_OverWing> - </Stabiliser> - <LandingGear Desc="Fahrwerksanordnung"> - <MainGearPosition Desc="Position des Hauptfahrwerks (Wing oder Fuselage)">Wing</MainGearPosition> - <Retractable Desc="Switch for (non-)retractable LandingGear">1</Retractable> - <FrictionCoefficient Default="0.03" Desc="Friction coefficient of tyres and pavement: Raymer p.486 - Table 17.1: 0.03 - 0.05">0.03</FrictionCoefficient> - <BrakingCoefficient Default="0.34189" Desc="Raymer p.486 - Table 17.1: 0.3 - 0.5; Torenbeek: jet 0.4-0.5; prop 0.35-0.45; Airbus: Medium Deceleration = 11 ft/s^2 = 0.34189">0.34189</BrakingCoefficient> - </LandingGear> - <Fuselage Desc="Fuselage parameters"> - <Pressurized Desc="Is the fuselage pressurized? 1 for yes, 0 for no">1</Pressurized> - </Fuselage> - <CertificationType Desc="Zertifizierung nach CS-23 oder CS-25">CS-25</CertificationType> - <Fin Desc="Parameter des Seitenleitwerks"> - <FinConfig Desc="0: Conventional 1: H-Tail" Unit="-">0</FinConfig> - </Fin> - <SkinThickness Default="0" Desc="Skin thickness of profiles" Unit="m">0</SkinThickness> - </Configuration> - <Accommodation Desc="Vorgaben bezueglich der Passagierdecks und Klassen"> - <MassPerPAX Desc="Masse pro PAX (z.B. PAX 75 kg + Luggage: Std.-Wert 90.72 kg (Quelle Airbus: All about the A320 family, Tech App.))" Unit="kg">90.72</MassPerPAX> - <PAXDecks Desc="Anzahl der Passagierdecks">1</PAXDecks> - <PAXDeck Desc="Passagierdeck mit Klassen in der Folge der Klassen-ID" ID="1"> - <Classes Desc="Anzahl der verschiedenen Klassen auf diesem Deck">2</Classes> - <Class Desc="Definition der Klasse" ID="1"> - <ClassType Desc="Luftfahrttypische Bezeichnung der Klasse (z.B. economy, business, first)">business</ClassType> - <Seating Desc="Bestuhlung des Querschnitts">22</Seating> - <Seats Desc="Gesamtanzahl der Sitze in dieser Klasse">12</Seats> - </Class> - <Class Desc="Definition der Klasse" ID="2"> - <ClassType Desc="Luftfahrttypische Bezeichnung der Klasse (z.B. economy, business, first)">economy</ClassType> - <Seating Desc="Bestuhlung des Querschnitts">33</Seating> - <Seats Desc="Gesamtanzahl der Sitze in dieser Klasse">138</Seats> - </Class> - <Class Desc="Definition der Klasse" ID="3"> - <ClassType Desc="Luftfahrttypische Bezeichnung der Klasse (z.B. economy, business, first)">first</ClassType> - <Seating Desc="Bestuhlung des Querschnitts">22</Seating> - <Seats Desc="Gesamtanzahl der Sitze in dieser Klasse">0</Seats> - </Class> - </PAXDeck> - </Accommodation> - <Cargo Desc="Vorgaben bezueglich der Frachtdecks und ULDs"> - <CargoDecks Desc="Anzahl der Frachtdecks">1</CargoDecks> - <CargoDeck Desc="Cargodeck mit verschiedenen Containertypen" ID="1"> - <Compartments Desc="Anzahl der verschiedenen Compartments auf diesem Deck">2</Compartments> - <Compartment Desc="Definition des Compartments" ID="1"> - <CompartmentType Desc="Luftfahrtypische Bezeichnung des Compartments (z.B. forward, aft, bulk)">forward</CompartmentType> - <ULDTypes Desc="Anzahl der verschiedenen Containergruppen auf diesem Deck">1</ULDTypes> - <ULDType Desc="Definition der Containergruppe" ID="1"> - <ULD Desc="Normbezeichnung des ULD">LD3-45</ULD> - <ULDInRow Desc="Anzahl der ULDs in einer Rumpfsektion">1</ULDInRow> - <ULDs Desc="Gesamt Anzahl dieser ULDs diesen Types auf diesem Deck">3</ULDs> - </ULDType> - </Compartment> - <Compartment Desc="Definition des Compartments" ID="2"> - <CompartmentType Desc="Luftfahrtypische Bezeichnung des Compartments (z.B. forward, aft, bulk)">aft</CompartmentType> - <ULDTypes Desc="Anzahl der verschiedenen Containergruppen auf diesem Deck">1</ULDTypes> - <ULDType Desc="Definition der Containergruppe" ID="1"> - <ULD Desc="Normbezeichnung des ULD">LD3-45</ULD> - <ULDInRow Desc="Anzahl der ULDs in einer Rumpfsektion">1</ULDInRow> - <ULDs Desc="Gesamt Anzahl dieser ULDs diesen Types auf diesem Deck">4</ULDs> - </ULDType> - </Compartment> - <Compartment Desc="Definition des Compartments" ID="3"> - <CompartmentType Desc="Luftfahrtypische Bezeichnung des Compartments (z.B. forward, aft, bulk)">bulk</CompartmentType> - <ULDTypes Desc="Anzahl der verschiedenen Containergruppen auf diesem Deck">1</ULDTypes> - <ULDType Desc="Definition der Containergruppe" ID="1"> - <ULD Desc="Normbezeichnung des ULD">LD3-45</ULD> - <ULDInRow Desc="Anzahl der ULDs in einer Rumpfsektion">1</ULDInRow> - <ULDs Desc="Gesamt Anzahl dieser ULDs diesen Types auf diesem Deck">1</ULDs> - </ULDType> - </Compartment> - </CargoDeck> - </Cargo> - <Propulsion Desc="Vorgaben zum Antriebssystem"> - <TypeOfEngine Desc="Triebwerkstechnologie (Jet oder Prop)" Unit="-">Jet</TypeOfEngine> - <NumberOfEngines Desc="Anzahl der Triebwerke">2</NumberOfEngines> - <PositionOfEngines Desc="Positionierung der Triebwerke"> - <EnginesOnWing Desc="Anzahl der Triebwerke am Fluegel">2</EnginesOnWing> - <EnginesOnFuselage Desc="Anzahl der Triebwerke am Rumpf, mit Pylons montiert">0</EnginesOnFuselage> - <EnginesInFuselage Desc="Anzahl der Triebwerke im Rumpf integriert">0</EnginesInFuselage> - <WingEnginePosition Desc="0=EngineUnderWing; 1= EnginesOverWing">0</WingEnginePosition> - </PositionOfEngines> - <NumberOfPropulsors Desc="Number of powertrains" ToolLevel="1">2</NumberOfPropulsors> - <Propulsor ID="1"> - <TypeOfPropulsor Desc="Propulsion technology (Jet or Prop)" Unit="-">Jet</TypeOfPropulsor> - <PropulsorPosition> - <ParentComponentID Default="MainWing" Desc="ID of the component to which the propulsor is attached (MainWing, Fuselage)">MainWing</ParentComponentID> - <yPosition Desc="specific position (0=mid, 1=innerRight, -1=innerLeft, 2=outerRight, -2=outerLeft">1</yPosition> - <xPosition Desc="specific position (0=front, 1=back)">0</xPosition> - </PropulsorPosition> - </Propulsor> - <Propulsor ID="2"> - <TypeOfPropulsor Desc="Propulsion technology (Jet or Prop)" Unit="-">Jet</TypeOfPropulsor> - <PropulsorPosition> - <ParentComponentID Default="MainWing" Desc="ID of the component to which the propulsor is attached (MainWing, Fuselage)">MainWing</ParentComponentID> - <yPosition Desc="specific position (0=mid, 1=innerRight, -1=innerLeft, 2=outerRight, -2=outerLeft">-1</yPosition> - <xPosition Desc="specific position (0=front, 1=back)">0</xPosition> - </PropulsorPosition> - </Propulsor> - <FuelDensity Desc="Density of fuel" Unit="kg/l">0.785</FuelDensity> - </Propulsion> - <TankConfiguration Desc="Vorgaben zur Aufteilung der Tanks"> - <NumberOfCenterTanks Desc="Anzahl der Tanks im Rumpf (Fluegelkasten + zus. Tanks)">1</NumberOfCenterTanks> - <NumberOfWingTanks Desc="Anzahl der Tanks im Fluegel">2</NumberOfWingTanks> - <NumberOfTrimTanks Desc="Anzahl der Tanks zur Trimmung">0</NumberOfTrimTanks> - </TankConfiguration> - <HighLiftSystem Desc="Vorgaben zum Hochauftriebssystem"> - <C_LmaxT-O Desc="Maximaler Auftriebsbeiwert in Startkonfiguration. Statistik, falls Wert 0" Unit="-">2.4</C_LmaxT-O> - <C_LmaxLanding Desc="Maximaler Auftriebsbeiwert in Landekonfiguration. Statistik, falls Wert 0" Unit="-">2.8</C_LmaxLanding> - </HighLiftSystem> - <DesignLoads Desc="Vorgaben zu zulaessigen Lastvielfachen"> - <n1 Desc="maximum positive load limit (CS-25: n1=2.5g)" Unit="g">2.5</n1> - <n2 Desc="maximum negative load limit (CS-25: n2=-1.0g)" Unit="g">-1</n2> - <NormalManeuver Default="1.1" Desc="Normal used load factor for maneuvers (e.g. flare)">1.1</NormalManeuver> - </DesignLoads> - <Technology Desc="Vorgaben spezieller Technologien"> - <LaminarFlow Desc="HLFC oder NLF"> - <Components Desc="Flugzeugkomponenten, auf die HLFC/NLF angewendet wird"> - <Wing> - <UpperSide Desc="Fluegeloberseite (HLFC, NLF, None)">None</UpperSide> - <LowerSide Desc="Fluegelunterseite (HLFC, NLF, None)">None</LowerSide> - </Wing> - <Stabilizer> - <UpperSide Desc="Fluegeloberseite (HLFC, NLF, None)">None</UpperSide> - <LowerSide Desc="Fluegelunterseite (HLFC, NLF, None)">None</LowerSide> - </Stabilizer> - <Fin Desc="Seitenleitwerk (HLFC, NLF, None)">None</Fin> - <Nacelles Desc="Triebwerksgondeln (HLFC, NLF, None)">None</Nacelles> - </Components> - <OperatingCondition> - <HLFConlyForCruise>1</HLFConlyForCruise> - <MinMachForHLFCActivation>0.78</MinMachForHLFCActivation> - </OperatingCondition> - </LaminarFlow> - <ElectricTaxiing> - <DoElectricTaxiing Desc="1: Electric Taxiing, 0: Propulsion Taxiing">0</DoElectricTaxiing> - <EngineWarmupTime Desc="Laufzeit der Triebwerke vor dem Start" Unit="min">0</EngineWarmupTime> - </ElectricTaxiing> - <BallisticRecoverySystem Desc="Ballistic Recovery System (Parachute)">0</BallisticRecoverySystem> - <VariableCamber Desc="Aircraft has VC segments">0</VariableCamber> - </Technology> - </DesignSpecification> -</AcftExchangeFile> diff --git a/scripts/document_aircraft_xml.py b/scripts/document_aircraft_xml.py deleted file mode 100644 index 5602803..0000000 --- a/scripts/document_aircraft_xml.py +++ /dev/null @@ -1,233 +0,0 @@ -#!python -# Copyright (c) 2023 S. Oberschwendtner. -# -# -# This program is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with this program. If not, see <https://www.gnu.org/licenses/>. - -"""! @brief Script for converting an aircraft XML file to a content page.""" -## -# @file document_aircraft_xml.py -# -# @brief Script for converting an aircraft XML file to a content page for the UNICADO homepage. -# -# @section description_document_aircraft_xml Description -# This script parse the entries of an aircraft XML file and extracts -# the entries and documents them using their description tags. -# The output is a markdown file which can be used for the documentation. -# -# @section libraries_document_aircraft_xml Libraries/Modules -# - argparse standard library (https://docs.python.org/3/library/argparse.html) -# - Parser for command-line options, arguments and sub-commands. -# - xml standard library (https://docs.python.org/3/library/xml.html) -# - XML Processing Modules. -# - pathlib standard library (https://docs.python.org/3/library/pathlib.html) -# - Object-oriented filesystem paths. -# -# @section notes_document_aircraft_xml Notes -# - None. -# -# @section todo_document_aircraft_xml TODO -# - None. -# -# @section authors_document_aircraft_xml Author(s) -# - Created by S. Oberschwendtner on 19/09/2023. - -# === Imports === -import argparse -import xml.etree.ElementTree as ET -from pathlib import Path - -# === Configuration === -# Define the format of the output -FORMAT = { - "Header": "# {:s}\n> **Description**: {:s}\n", - "Unit": "> **Unit**: {:s}\n", - "TableHeader": "| Relative XML Path | Unit | Description |\n|:---|:---:|:---|", - "Table": "| <nobr>`{:s}` | *{:s}* | {:s} |", -} - -# Which keys are used in the XML attributes for which information -KEYS = { - "Description": "Desc", - "Unit": "Unit", -} - - -# === Classes === -class Page: - """Class for a page. - - A page is one top section of the aircraft XML file. - """ - - @property - def max_level_reached(self) -> bool: - """Returns whether the maximum level has been reached.""" - return self.current_level >= self.max_header_level - - def __init__(self, title, max_level): - """Constructor of the class. - - Args: - title (str): Title of the page. - max_level (int): Maximum level of the headers. - """ - self.title = title - self.max_header_level = max_level - self.current_level = 0 - self.table_started = False - self.current_path = Path(".") - self.sections = [[]] - - def create(self, node: ET.Element): - """Creates the page from the given node. - - This function adds all subnodes of the given node to the page. - It recursively calls itself for all subnodes. - - It does not add sections which are already present in the current level. - - Args: - node (ET.Element): Node to start from. - """ - # Only add the header if it was not already added at this level - if node.tag in self.sections[self.current_level]: - return - - # Check whether the current entry can be a header - if not self.max_level_reached: - self.sections[self.current_level].append(node.tag) - self.make_header_entry(node) - self.current_path = Path(node.tag) - else: - self.current_path /= node.tag - - # Loop through the children and group single entries in a table - for child in node: - if len(child) == 0: - self.make_table_entry(child) - - # Add a new level of sections - self.current_level += 1 - self.sections.append([]) - - # Loop again and add the subnodes - for child in node: - if len(child) > 0: - self.create(child) - - # Decrease the level again when finished - self.current_level -= 1 - self.sections.pop() - self.current_path = self.current_path.parent - - def make_header_entry(self, node: ET.Element): - """Creates a header entry. - - Args: - node (ET.Element): The current node element. - """ - # Reset the table when creating a new header - self.table_started = False - - # Create the header with description - print( - "\n" - + self.current_level * "#" - + FORMAT["Header"].format( - node.tag, node.attrib.get(KEYS["Description"], "None") - ) - ) - - # Try to add a unit description - try: - print(FORMAT["Unit"].format(node.attrib[KEYS["Unit"]])) - except KeyError: - pass - - def make_table_entry(self, node: ET.Element): - """Creates a table entry. - - Args: - node (ET.Element): The current node element. - """ - # Check if the table has already been started - if not self.table_started: - self.table_started = True - print(FORMAT["TableHeader"]) - - # Since we use pathlib for convenience, we need to convert it to a string - # and replace the backslashes with forward slashes - path_name = str(self.current_path / node.tag).replace("\\", "/") - - # Create the header with description - print( - FORMAT["Table"].format( - path_name, - node.attrib.get(KEYS["Unit"], "-"), - node.attrib.get(KEYS["Description"], "None"), - ) - ) - - -# === Main === -def main(): - """ - Main function of the script. - """ - # Create argument parser - parser = argparse.ArgumentParser( - description="Converts an aircraft XML file to a markdown file. The output is streamed to stdout and can be piped to a file." - ) - - # Add the filename argument - parser.add_argument( - "filename", metavar="filename", type=str, help="The XML file to convert." - ) - - # Add the layout arguments - parser.add_argument( - "--title", - metavar="title", - type=str, - help="The title of the output page. This also sets the root node which is used to create the document.", - ) - parser.add_argument( - "--level", - metavar="level", - type=int, - help="The maximum level nodes to be used as headers.", - ) - - # Parse the arguments - args = parser.parse_args() - - # Read the XML file - tree = ET.parse(args.filename) - root = tree.getroot() - - # Get the configuration parameters - page = Page(args.title, args.level) - node = root.find(page.title) - - # Check whether the node exists - if node is None: - raise Warning("Could not find node with title '" + page.title + "'") - - # Start creating the page - page.create(node) - - -if __name__ == "__main__": - main() -- GitLab From f8c7d20d15e90c09fe647e482b36783f231455ea Mon Sep 17 00:00:00 2001 From: Kristina Mazur <kristina.mazur@tum.de> Date: Mon, 27 Jan 2025 21:59:17 +0100 Subject: [PATCH 41/53] Remove gitignore, update ci.yml, include tool documentations directly --- .gitignore | 5 - .gitlab-ci.yml | 35 - .../content/getting_started.md | 111 ++ .../analysis/cost_estimation/content/index.md | 40 + .../content/operating_cost_method.md | 294 ++++++ .../content/run_your_first_cost_estimation.md | 79 ++ .../ecological_assessment/aqi_schaefer.md | 69 ++ .../ecological_assessment/changelog.md | 17 + .../climate_model_dallara.md | 214 ++++ .../figures/lifeCyclePhases.png | 3 + .../ecological_assessment/getting-started.md | 31 + .../analysis/ecological_assessment/index.md | 10 + .../ecological_assessment/lca_schaefer.md | 814 +++++++++++++++ .../ecological_assessment/literature.bib | 108 ++ .../mission_emissions.md | 194 ++++ .../softwarearchitecture.md | 6 + .../standard-strategy.md | 37 + .../content/basic-concepts.md | 213 ++++ .../content/index.md | 29 + .../content/usage.md | 203 ++++ .../sizing/empennage_design/basic-concepts.md | 61 ++ .../sizing/empennage_design/dfe.md | 183 ++++ .../figures/Report_page_empennage_design.png | 3 + .../Report_page_empennage_design_change.png | 3 + .../empennage_design/getting-started.md | 174 ++++ .../sizing/empennage_design/index.md | 28 + .../sizing/fuselage_design/design_method.md | 196 ++++ .../sizing/fuselage_design/getting_started.md | 216 ++++ .../sizing/fuselage_design/index.md | 40 + .../fuselage_design/run_your_first_design.md | 142 +++ .../fuselage_design/software_architecture.md | 2 + .../sizing/initial_sizing/changelog.md | 20 + .../sizing/initial_sizing/getting-started.md | 51 + .../sizing/initial_sizing/index.md | 18 + .../sizing/initial_sizing/initialSizing.md | 122 +++ .../landing_gear_design/design_method.md | 400 ++++++++ .../figures/horizontal_distances.png | 3 + .../figures/horizontal_distances.svg | 1 + .../figures/vertical_distances.png | 3 + .../figures/vertical_distances.svg | 1 + .../landing_gear_design/getting_started.md | 177 ++++ .../sizing/landing_gear_design/index.md | 38 + .../run_your_first_design.md | 142 +++ .../software_architecture.md | 2 + .../sizing/propulsion_design/additional.md | 5 + .../sizing/propulsion_design/changelog.md | 33 + .../engineering_principles.md | 151 +++ .../figures/class_diagram.png | 3 + .../figures/class_diagram.puml | 441 ++++++++ .../figures/deck_example_thrust.svg | 340 +++++++ .../figures/different_engines.svg | 957 ++++++++++++++++++ .../figures/engine_mount.svg | 244 +++++ .../figures/scale_factor.svg | 557 ++++++++++ .../propulsion_design/getting_started.md | 248 +++++ .../sizing/propulsion_design/index.md | 24 + .../software_architecture.md | 34 + .../sizing/systems_design/getting_started.md | 154 +++ .../sizing/systems_design/index.md | 20 + .../sizing/systems_design/literature.bib | 374 +++++++ .../systems_design/software_architecture.md | 48 + .../sizing/systems_design/systems.md | 399 ++++++++ .../tank_design/figures/01_tank_locations.png | 3 + .../sizing/tank_design/figures/02_obelisk.png | 3 + .../figures/02_obelisk_simpson.png | 3 + .../tank_design/figures/03_wing_box.png | 3 + .../sizing/tank_design/getting_started.md | 289 ++++++ .../documentation/sizing/tank_design/index.md | 38 + .../tank_design/run_your_first_tank_design.md | 136 +++ .../tank_design/software_architecture.md | 34 + .../sizing/tank_design/tank_design_method.md | 155 +++ .../sizing/wing_design/basic-concepts.md | 79 ++ docs/documentation/sizing/wing_design/dfw.md | 266 +++++ .../figures/Report_page_wing_design.png | 3 + .../sizing/wing_design/getting-started.md | 140 +++ .../documentation/sizing/wing_design/index.md | 28 + 75 files changed, 9710 insertions(+), 40 deletions(-) create mode 100644 docs/documentation/analysis/cost_estimation/content/getting_started.md create mode 100644 docs/documentation/analysis/cost_estimation/content/index.md create mode 100644 docs/documentation/analysis/cost_estimation/content/operating_cost_method.md create mode 100644 docs/documentation/analysis/cost_estimation/content/run_your_first_cost_estimation.md create mode 100644 docs/documentation/analysis/ecological_assessment/aqi_schaefer.md create mode 100644 docs/documentation/analysis/ecological_assessment/changelog.md create mode 100644 docs/documentation/analysis/ecological_assessment/climate_model_dallara.md create mode 100644 docs/documentation/analysis/ecological_assessment/figures/lifeCyclePhases.png create mode 100644 docs/documentation/analysis/ecological_assessment/getting-started.md create mode 100644 docs/documentation/analysis/ecological_assessment/index.md create mode 100644 docs/documentation/analysis/ecological_assessment/lca_schaefer.md create mode 100644 docs/documentation/analysis/ecological_assessment/literature.bib create mode 100644 docs/documentation/analysis/ecological_assessment/mission_emissions.md create mode 100644 docs/documentation/analysis/ecological_assessment/softwarearchitecture.md create mode 100644 docs/documentation/analysis/ecological_assessment/standard-strategy.md create mode 100644 docs/documentation/analysis/weight_and_balance_analysis/content/basic-concepts.md create mode 100644 docs/documentation/analysis/weight_and_balance_analysis/content/index.md create mode 100644 docs/documentation/analysis/weight_and_balance_analysis/content/usage.md create mode 100644 docs/documentation/sizing/empennage_design/basic-concepts.md create mode 100644 docs/documentation/sizing/empennage_design/dfe.md create mode 100644 docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design.png create mode 100644 docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design_change.png create mode 100644 docs/documentation/sizing/empennage_design/getting-started.md create mode 100644 docs/documentation/sizing/empennage_design/index.md create mode 100644 docs/documentation/sizing/fuselage_design/design_method.md create mode 100644 docs/documentation/sizing/fuselage_design/getting_started.md create mode 100644 docs/documentation/sizing/fuselage_design/index.md create mode 100644 docs/documentation/sizing/fuselage_design/run_your_first_design.md create mode 100644 docs/documentation/sizing/fuselage_design/software_architecture.md create mode 100644 docs/documentation/sizing/initial_sizing/changelog.md create mode 100644 docs/documentation/sizing/initial_sizing/getting-started.md create mode 100644 docs/documentation/sizing/initial_sizing/index.md create mode 100644 docs/documentation/sizing/initial_sizing/initialSizing.md create mode 100644 docs/documentation/sizing/landing_gear_design/design_method.md create mode 100644 docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.png create mode 100644 docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.svg create mode 100644 docs/documentation/sizing/landing_gear_design/figures/vertical_distances.png create mode 100644 docs/documentation/sizing/landing_gear_design/figures/vertical_distances.svg create mode 100644 docs/documentation/sizing/landing_gear_design/getting_started.md create mode 100644 docs/documentation/sizing/landing_gear_design/index.md create mode 100644 docs/documentation/sizing/landing_gear_design/run_your_first_design.md create mode 100644 docs/documentation/sizing/landing_gear_design/software_architecture.md create mode 100644 docs/documentation/sizing/propulsion_design/additional.md create mode 100644 docs/documentation/sizing/propulsion_design/changelog.md create mode 100644 docs/documentation/sizing/propulsion_design/engineering_principles.md create mode 100644 docs/documentation/sizing/propulsion_design/figures/class_diagram.png create mode 100644 docs/documentation/sizing/propulsion_design/figures/class_diagram.puml create mode 100644 docs/documentation/sizing/propulsion_design/figures/deck_example_thrust.svg create mode 100644 docs/documentation/sizing/propulsion_design/figures/different_engines.svg create mode 100644 docs/documentation/sizing/propulsion_design/figures/engine_mount.svg create mode 100644 docs/documentation/sizing/propulsion_design/figures/scale_factor.svg create mode 100644 docs/documentation/sizing/propulsion_design/getting_started.md create mode 100644 docs/documentation/sizing/propulsion_design/index.md create mode 100644 docs/documentation/sizing/propulsion_design/software_architecture.md create mode 100644 docs/documentation/sizing/systems_design/getting_started.md create mode 100644 docs/documentation/sizing/systems_design/index.md create mode 100644 docs/documentation/sizing/systems_design/literature.bib create mode 100644 docs/documentation/sizing/systems_design/software_architecture.md create mode 100644 docs/documentation/sizing/systems_design/systems.md create mode 100644 docs/documentation/sizing/tank_design/figures/01_tank_locations.png create mode 100644 docs/documentation/sizing/tank_design/figures/02_obelisk.png create mode 100644 docs/documentation/sizing/tank_design/figures/02_obelisk_simpson.png create mode 100644 docs/documentation/sizing/tank_design/figures/03_wing_box.png create mode 100644 docs/documentation/sizing/tank_design/getting_started.md create mode 100644 docs/documentation/sizing/tank_design/index.md create mode 100644 docs/documentation/sizing/tank_design/run_your_first_tank_design.md create mode 100644 docs/documentation/sizing/tank_design/software_architecture.md create mode 100644 docs/documentation/sizing/tank_design/tank_design_method.md create mode 100644 docs/documentation/sizing/wing_design/basic-concepts.md create mode 100644 docs/documentation/sizing/wing_design/dfw.md create mode 100644 docs/documentation/sizing/wing_design/figures/Report_page_wing_design.png create mode 100644 docs/documentation/sizing/wing_design/getting-started.md create mode 100644 docs/documentation/sizing/wing_design/index.md diff --git a/.gitignore b/.gitignore index 1637f3b..e69de29 100644 --- a/.gitignore +++ b/.gitignore @@ -1,5 +0,0 @@ -# Ignore generated Doxygen docs in modules folder -docs/documentation/**/ - -# Ignore the local docs of the AcXML -docs/aircraft-xml/ diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 461ecb4..f17d36b 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -17,40 +17,8 @@ # === Configure pipeline === # This section defines the stages of the pipeline: build and deploy stages: - - build # The 'build' stage is where documents are copied to the PROJECT_DIR - deploy # The 'deploy' stage generates and deploys the generated documentation. -# === Clone the repositories / copy documentation to the PROJECT_DIR === -clone: - image: alpine:latest - stage: build # This job is part of the build stage - tags: - - documentation # Label for the job to be picked up by appropriate runners - before_script: - # Install necessary packages, including git, doxygen, and other dependencies - - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi - script: - # Clone the aircraft-design repository, including its submodules - - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design - # Clone the libraries repository, including its submodules - - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries/ - # Change to the project directory (useful for multi-directory repositories) - - cd $CI_PROJECT_DIR - - ls -la $CI_PROJECT_DIR - artifacts: - # Save the generated documentation as artifacts so they can be accessed later in the pipeline - paths: - - $CI_PROJECT_DIR/aircraft-design - - $CI_PROJECT_DIR/libraries - - $CI_PROJECT_DIR/docs/documentation - rules: - - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch - when: on_success # Only run if the previous jobs are successful - - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' # Allow manual triggers on non-default branches - when: manual # Run only when triggered manually - - if: '$CI_PIPELINE_SOURCE == "trigger"' # Triggered by another pipeline - when: on_success # Run if the source pipeline was successful - # === Build and deploy the website === pages: image: python:latest @@ -68,9 +36,6 @@ pages: - export DOXYGEN_BIN=/usr/bin/doxygen - pipenv install --dev # Install all necessary dependencies script: - # Use the persisted content from the previous stage (aircraft-design) - - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy aircraft-design to the docs/documentation folder - - cp -r $CI_PROJECT_DIR/libraries $CI_PROJECT_DIR/docs/documentation # Copy libraries to the docs/documentation folder # Build the MkDocs documentation site - pipenv run mkdocs build --verbose --site-dir $CI_PROJECT_DIR/public needs: diff --git a/docs/documentation/analysis/cost_estimation/content/getting_started.md b/docs/documentation/analysis/cost_estimation/content/getting_started.md new file mode 100644 index 0000000..e21104e --- /dev/null +++ b/docs/documentation/analysis/cost_estimation/content/getting_started.md @@ -0,0 +1,111 @@ +# Getting started +This section will guide you through the necessary steps to get the _cost\_estimation_ module up and running. It contains information on tool requirements and design parameters. +- [Aircraft exchange file](#aircraft-exchange-file) - Get information on necessary parameters from the _acXML_. +- [Module configuration file](#module-configuration-file) - Dive into cost estimation specific parameters. +- [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running? +- [Next steps](#next-steps) - How to proceed? + +@note It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. + +Generally, we use two files to set or configure modules in UNICADO: +- The aircraft exchange file (or _acXML_) includes + - data related inputs (e.g., aircraft configuration, transport task) and + - data related outputs (e.g., annual direct operating costs). +- The module configuration file `cost_estimation_conf.xml` (also _configXML_) includes + - control settings (e.g., enable/disable generating plots) and + - program settings (e.g., fees, usage information). + +In the following sections you will find more information on how to configure these files to suit your needs. + +## Aircraft exchange file requirements {#aircraft-exchange-file} +Since the _cost\_estimation_ module is an assessment tool, it is assumed that a converged aircraft design and therefore all the necessary data are already available. + +The following information is needed from the _acXML_: +1. Design specification + - Configuration information: Configuration type + - Transport task: Passenger definition, passenger class definition, and cargo definition + - Energy carrier(s) +2. Top level aircraft requirements (for design and study mission - if desired) + - Initial cruise mach number + - Initial cruise altitude + - Payload fractions (seat load factor, only required for study mission assessment) +3. Component design + - Fuselage: Number of required cabin crew, number of required flight crew + - Propulsion: Sea level static thrust per engine +4. Analysis + - Masses: Maximum takeoff mass (certified), takeoff mass (for design and study - if desired), operating mass empty, maximum payload mass + - Mission (for design and study mission - if desired) + - Stage length + - Flight time +5. Assessment (aka. payload range data) + - Range at maximum payload and fuel mass till maximum take off mass limit + - Range at full tanks and payload till maximum take off mass limit + - Range for no payload and full tanks (ferry range) + - Payload at full tanks and payload till maximum take off mass limit + +## Module configuration file {#module-configuration-file} +The _configXML_ is structured into two blocks: the control and program settings. + +The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least +- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings, +- the `console_output` at least to `mode_1`, and +- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`). + +@note If the tool is executed via the workflow, those settings are set by the workflow settings. + +The program settings are structured like this (descriptions can be found in the `cost_estimation_conf.xml`): + +```plaintext +Program Settings +|- Configuration (ID="tube_and_wing") +| |- Fidelity name +| |- Method name +| |- Fidelity (ID="empirical") +| | |- Operating cost estimation tu berlin +| | | |- General direct operating costs parameter +| | | | | - Capital +| | | | | | - Depreciation period +| | | | | | - Price per operating empty mass +| | | | | | - Rate insurance +| | | | | | - Rate interest +| | | | | | - Residual value factor +| | | | | - Crew +| | | | | | - Salary variation +| | | | | - Flight cycles +| | | | | | - Block time per flight +| | | | | | - Daily night curfew time +| | | | | | - Potential annual operation time +| | | | | | - Annual lay days overhaul +| | | | | | - Annual lay days reserve +| | | | | | - Annual lay days maintenance +| | | | | - Handling +| | | | | | - Fees handling +| | | | | - Landing +| | | | | | - Fees landing +| | | | | - Air traffic control +| | | | | | - Air traffic control price factor design +| | | | | | - Air traffic control price factor study +| | | | | - Maintenance +| | | | | | - Airframe repair cost per flight +| | | | | | - Cost burden +| | | | | | - Rate labor +| | | | | - Related direct operating costs +| | | | | | - Revenue per freight km design +| | | | | | - Revenue per freight km study +| | | | | - Miscellaneous +| | | | | | - Rate inflation +| | | |- Fuel type (ID="kerosene") +| | | | | - Factor engine maintenance +| | | | | - Fuel price +| | | | | - Ratio operating empty mass +| | | |- Fuel type (ID="liquid_hydrogen") +| | | | | - Factor engine maintenance +| | | | | - Fuel price +| | | | | - Ratio operating empty mass +``` + +## Additional requirements {#additional-requirements} +The tool requires mission-dependent data. Please make sure that the `mission_data` folder, located in the directory of the aircraft exchange file, contains at least the `design_mission.xml` file (this should be the case if the design is valid). If data for an off-design analysis is available and you wish to calculate the associated costs, the `study_mission.xml` file must also be provided. + +## Next steps {#next-steps} +The next step is to [run the _cost\_estimation_ module](run_your_first_cost_estimation.md). \ No newline at end of file diff --git a/docs/documentation/analysis/cost_estimation/content/index.md b/docs/documentation/analysis/cost_estimation/content/index.md new file mode 100644 index 0000000..4d38f4a --- /dev/null +++ b/docs/documentation/analysis/cost_estimation/content/index.md @@ -0,0 +1,40 @@ +# Introduction {#mainpage} +Welcome to the _cost\_estimation_ module in UNICADO – where we take your aircraft operating costs from “hmm… probably a lot?” to laser-accurate precision! This tool is like a financial \emoji crystal_ball for your aircraft, crunching numbers on fuel, maintenance, crew costs, and just about (almost) every other expense you can imagine. Think of it as your budgeting co-pilot, always ready to calculate so you can focus on the skies instead of spreadsheets. With _cost\_estimation_, you stay in control, keep the accountants happy, and land at your bottom line without any turbulence. So buckle up, and let’s start calculating! + +## Summary of features +Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned: + + Configuration | Energy carrier |Cost share | Status | +------------------|-----------------|-------------------------|:------------------------------------:| +Tube-and-wing |Kerosene |Direct operating cost |running \emoji white_check_mark | +Tube-and-wing |Kerosene |Indirect operating cost |under development \emoji construction | +Tube-and-wing |Liquid hydrogen |Direct operating cost |running \emoji white_check_mark | +Tube-and-wing |Liquid hydrogen |Indirect operating cost |under development \emoji construction | +Blended-wing-body |... |... |under development \emoji construction | + +## A user's guide to cost calculation +The _cost\_estimation_ tool is your key to accurately calculating the operating costs of an aircraft. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a cost analysis from the ground up. +The following sections will walk you through the cost estimation process in UNICADO: +- [Getting started](getting_started.md) +- [Run your first cost estimation](run_your_first_cost_estimation.md) + +For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections: +- A [method description](operating_cost_method.md) and +- a [software architecture](software_architecture.md) +section. + +Ready to dive in? Let’s get started! \emoji money_with_wings + + +<!-- ## You are a Developer? +If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO! + +The following pages will help you understand the code structure: + +- [Prerequisites](prerequisites.md) +- [Build the code](build-the-code.md) +- [Cost estimation module structure](wing-module-structure.md) +- [Available methods](available-methods.md) +- [Method template](method-template.md) + +We appreciate it! --> \ No newline at end of file diff --git a/docs/documentation/analysis/cost_estimation/content/operating_cost_method.md b/docs/documentation/analysis/cost_estimation/content/operating_cost_method.md new file mode 100644 index 0000000..6c9b8ee --- /dev/null +++ b/docs/documentation/analysis/cost_estimation/content/operating_cost_method.md @@ -0,0 +1,294 @@ +# Calculation method +The total operating costs of an aircraft are split into direct operating costs (DOC) and indirect operating costs (IOC). +\f[ + TOC = DOC + IOC +\f] + +@note Unless explicitly stated, all values are in SI units and all costs in EUR. + +## Direct operating costs (calculate_direct_operating_costs function) +The Direct Operating Costs (DOC) are directly influenced by the parameters and the aircraft's performance and are commonly used for aircraft evaluation. Therefore, a simplified method for DOC estimation, based on „From Aircraft Performance to Aircraft Assessment“ by J. Thorbeck <sup>[1]</sup>, is provided. The DOC are determined for one year and the entire depreciation period. +Two elements are required for the simplified DOC model: The route independent (fixed) costs \f$C_1\f$ and route dependent (variable) costs \f$C_2\f$: +\f[ + DOC = C_1 + C_2 +\f] + + +### Route independent costs (calculate_route_independent_costs function) +Route-independent costs include all cost components apart from the operation of the aircraft. +Hence, the route-independent costs are the sum of the capital costs and the crew costs: +\f[ + C_1 = C_{CAP} + C_{crew} +\f] +Those are calculated both, for one year and for the depreciation period. + +#### Capital costs (calculate_capital_costs function) +The capital costs can be assumed to be a linear function of the operating empty mass if the influence of the aircraft market is considered negligible: +\f[ + C_{CAP} = P_{OE} \cdot m_{OE} \cdot (a+f_I) +\f] +In which +- \f$P_{OE}\f$ - price per kg operating empty mass +- \f$m_{OE}\f$ - operating empty mass +- \f$a\f$ - annuity factor in percent +- \f$f_I\f$ - insurance rate in percent + +The annuity formula, which is based on a modified mortgage equation, addresses both yearly depreciation and interest: +\f[ + a = f_{IR} \cdot \frac{1-f_{RV} \cdot \left(\frac{1}{1+f_{IR}}\right)^{t_{DEP}}}{1-\left(\frac{1}{1+f_{IR}}\right)^{t_{DEP}}} +\f] +In which +- \f$f_{IR}\f$ - interest rate in percent +- \f$f_{RV}\f$ - residual value factor in percent +- \f$t_{DEP}\f$ - depreciation period in years + +The reason for the annuity method modification is to include the residual aircraft value at the end of the depreciation period into the capital costs, which is occasionally relevant. This assumes that an operator is purchasing an aircraft at a constant price per kilogram and spends the corresponding capital cost consistently per year throughout the depreciation period. + +#### Crew costs (calculate_crew_costs function) +This method is based on the lecture "J Flugzeugbewertung" by A. Bardenhagen <sup>[2]</sup>. +The annual crew costs are assumed to be the sum of the flight and cabin crew costs: +\f[ + C_{crew} = C_{FC} + C_{CC} +\f] + +both of which are of different levels. There are different approaches here, which must be adapted to the respective cost structure of the airline: +- Some airlines (mainly low-cost carriers) employ and pay pilots and flight attendants on a time basis (block hours). +- Other airlines hire their personnel permanently and must pay them irrespective of the time they are deployed. + +In the first case, the personnel costs belong to the variable in the second case to the fixed direct operating costs. Here, crew costs are assumed to be fixed (route independent) because an airline must provide enough crews to ensure flight operations over the entire service time and therefore are proportional to the payload. 50 passengers per flight attendant are assumed based on certification requirements. Crew costs are constant per year. To calculate the crew cost for several years, the expected salary increase should be considered by an escalation factor. Accordingly, past price levels can be extrapolated to the current level changed according to inflation, price, or salary increase. + +Both cost shares are determined by the same variables: +- The flight/cabin crew complement (the number of crews per aircraft, dependent on the stage length): \f$n_{FCC}\f$/\f$n_{CCC}\f$, +- The number of flight/cabin crew members: \f$n_{FC}\f$/\f$n_{CC}\f$, +- The annual salary of a flight/cabin crew member (dependent on the stage length): \f$S_{FC}\f$/\f$S_{CC}\f$, and +- The escalation factor in percent: \f$f_{ESC}\f$. + +<!-- NOTE: The values of these drivers depend on the stage length. Two modes are implemented. Mode 1 (salary_variation = False, default): To ensure that the values of the above-mentioned parameters are the same for the design mission and mission study, the stage length of the design mission is used to determine the values for the study mission as well. Mode 2 (salary_variation = True): The above-mentioned values are obtained for different stage lengths for the design mission and mission study. --> + +That results in the following calculations: +\f[ + C_{FC} = n_{FCC} \cdot n_{FC} \cdot S_{FC} \cdot f_{ESC} +\f] +\f[ + C_{CC} = n_{CCC} \cdot n_{CC} \cdot S_{CC} \cdot f_{ESC} +\f] + +The escalation factor +\f[ + f_{ESC} = (1+r_{INF})^{y} +\f] + +incorporates the inflation rate (\f$r_{INF}\f$), which encompasses both price and salary adjustments, and the number of years elapsed between the calculation year and the base year for salaries (\f$y\f$). +If the depreciation period is used as the time difference, resulting costs are related to the whole depreciation period, whereas a time difference of one year solely results in the costs for the base year. + +The crew complements as well as the average annual salaries are dependent on the stage length: +- Regional: ranges less than 500 km +- Short haul: ranges between 500 km and 1000 km +- Medium haul: ranges between 1000 km and 4000 km +- Long haul: ranges between 4000 km and 6500 km +- Ultra-long haul: ranges above 6500 km + +and can be taken from the following tables: + +Segment | Crew complement | \f$S_{FC}\f$ in EUR/y | \f$S_{CC}\f$ in EUR/y | +----------------|:---------------:|:-----------------:|:-----------------:| +Regional | 5 | 70 000 | 30 000 | +Short haul | 5 | 120 000 | 30 000 | +Medium haul | 5 | 160 000 | 30 000 | +Long haul | 8 | 200 000 | 45 000 | +Ultra-long haul | 8 | 200 000 | 45 000 | + +### Route dependent costs (calculate_route_dependent_costs function) +Route dependent costs \f$C_2\f$ include all cost components that are directly attributable to flight operations. These include +- fuel \f$C_F\f$, +- fees (handling \f$C_H\f$, landing \f$C_L\f$, air traffic control (ATC) \f$C_{ATC}\f$), and +- maintenance \f$C_{MRO}\f$. + +Thus, the **annual** route dependent costs can be calculated by +\f[ + C_2 = C_F + C_H + C_{LDG} + C_{ATC} + C_{MRO} +\f] + +#### Flights per year +Knowing the number of annual flights is mandatory to calculate the above-mentioned cost shares. +A reliable approximation of the number of annual flights can be found using the following analytical basis: +- Potential flight hours per year: \f$365 \cdot 24 = 8760\f$ +- Maintenance lay days per year (C-Check every 15 months for 4 days): \f$4 \cdot 12/15 = 3.2\f$ +- Overhaul lay days per year (D-Check every 5 years for 4 weeks): \f$4 \cdot 7/5 = 5.6\f$ +- Lay days for repairs, technical and operational reserve: \f$2.6\f$ +- Lay hours per year: \f$(3.2+5.6+2.6) \cdot 24 = 273.6\f$ +- Potential operation days per year: \f$365-(3.2+5.6+2.6) = 353.6\f$ +- Daily night curfew hours: \f$7\f$ +- Yearly night curfew hours: \f$354 \cdot 7 = 2475\f$ +- Yearly operation time in hours: \f$OT = 8760-2475-273.6 = 6011.4\f$ + +Knowing the time for one flight \f$FT\f$ and the block time supplement \f$BT\f$ (turn around time) per flight, the number of flight cycles \f$FC\f$ can be calculated: +\f[ + FC = \frac{OT}{(FT + BT)} +\f] +It is assumed that one flight cycle consists of an outbound flight, a turnaround time and a return flight. Consequently, the number of annual flights is calculated as follows: +\f[ + n_{flights} = 2 \cdot FC +\f] + +#### Fuel costs (calculate_fuel_costs function) +The fuel costs depend on the fuel price \f$P_F\f$, the trip fuel mass \f$m_{TF}\f$ (which can be obtained from the payload range diagram (PRD)), and the number of yearly flights \f$n_{flights}\f$: +\f[ + C_F = P_{F} \cdot m_{TF} \cdot n_{flights} +\f] + +#### Handling costs (calculate_handling_costs function) +Handling charges \f$F_H\f$ include charges for loading and unloading, use of terminals and passenger boarding bridges, security checks, and ground energy supply. +The annual handling fees are charged based on the payload mass \f$m_{PL}\f$ and the number of flights per year. The resulting handling costs are calculated as follows: +\f[ + C_H = m_{PL} \cdot F_{H} \cdot n_{flights} +\f] + +#### Landing costs (calcutale_landing_costs function) +The annual landing fees \f$F_{LDG}\f$ are charged based on the maximum (certified) takeoff mass \f$m_{TO}\f$ and number of flights per year. The resulting landing costs are calculated as follows: +\f[ + C_{LDG} = m_{TO} \cdot F_L \cdot n_{flights} +\f] + +#### Air traffic control costs (calculate_air_traffic_control_costs function) +The calculation of the ATC costs is based on the EUROCONTROL route charge formula <sup>[3]</sup>, more precisely the aircraft weight factor. + +> "The weight factor (expressed to two decimals) is determined by dividing, by fifty (50), the certificated Maximum Take-Off Weight (MTOW) of the aircraft (in metric tonnes, to one decimal) and subsequently taking the square root of the result rounded to the second decimal [...]". + +The ATC price factor \f$f_{ATC}\f$ considers the fact that the price scenarios are varying strongly for each continent (or even region): +- \f$f_{ATC} = 1.0\f$ for domestic europe +- \f$f_{ATC} = 0.7\f$ for transatlantic flights +- \f$f_{ATC} = 0.6\f$ for far east flights (only half of the landings at european airports) + +The ATC costs are calculated as follows: +\f[ + C_{ATC} = R \cdot f_{ATC} \cdot \sqrt{\frac{m_{TO}[\text t]}{50}} \cdot n_{flights} +\f] + +with +- \f$R\f$ - range in km +- \f$m_{TO}\f$ - maximum takeoff mass (in tonnes) + +#### Maintenance costs (calculate_maintenance_costs function) +Maintenance costs are categorized into three components: +- Flight cycle dependent cost: This component primarily accounts for structural fatigue and overhaul burdens. +- Flight hour dependent cost: This component primarily reflects wear and the associated line maintenance work. +- Calendar time dependent cost: This component represents a constant share, such as the rectification of corrosion during overhaul. + +In the following, only the maintenance costs per flight cycle are considered. Following the JADC method, an approximation for those costs is given by the sum of three parts: +- Airframe material maintenance cost (repair and replacement): \f$C_{MRO,AF,MAT}\f$ +- Airframe personnel maintenance cost (inspection and repair): \f$C_{MRO,AF,PER}\f$ +- Engine total maintenance cost: \f$C_{MRO,ENG}\f$ + +In which +\f[ + C_{MRO,AF,MAT} = m_{OE}[\text t] \cdot (0.2 \cdot t_{flight} + 13.7) + C_{MRO,AF,REP} +\f] +\f[ + C_{MRO,AF,PER} = f_{LR} \cdot (1+C_B) \cdot \left[ (0.655 + 0.01 \cdot m_{OE}[\text t]) \cdot t_{flight} + 0.254 + 0.01 \cdot m_{OE}[\text t] \right] +\f] +\f[ + C_{MRO,ENG} = n_{ENG} \cdot \left( 1.5 \cdot \frac{T_{0} [\text t]}{n_{ENG}} + 30.5 \cdot t_{flight} + 10.6 \cdot f_{MRO,ENG}\right) +\f] + +with +- \f$C_{MRO,AF,REP}\f$ - airframe repair cost per flight +- \f$f_{LR}\f$ - labor rate in EUR/h +- \f$C_B\f$ - cost burden +- \f$n_{ENG}\f$ - number of engines +- \f$T_{0}\f$ - sea level static thrust per engine +- \f$f_{MRO,ENG}\f$ - engine maintenance factor + +The airframe repair cost per flight \f$C_{MRO,AF,REP}\f$ equal 57.5 for kerosene-powered aircraft. For hydrogen-powered aircraft, this value is multiplied by the operating empty mass factor \f$f_{OEM} = 1.1\f$ to account for an approx. 10% higher operating empty mass. +The engine maintenance factor is considered \f$f_{ENG} = 1\f$ for kerosene-powered aircraft and \f$f_{ENG} = 0.7\f$ for hydrogen-powered aircraft. + +Thus, the annual maintenance costs result in +\f[ + C_{MRO} = (C_{MRO,AF,MAT} + C_{MRO,AF,PER} + C_{MRO,ENG}) \cdot n_{flights} +\f] + +## Related direct operating costs +Absolute DOC are generally unsuitable as an assessment measure because aircraft size and technology strongly influence this figure. They are therefore expressed in differently related quantities, depending on the purpose of the evaluation: + - DOC/Range (Flight Kilometer): Flight Kilometer Costs (FKC) + - DOC/Seat Kilometer Offered (SKO): Seat Kilometer Costs (SKC) + - DOC/Seat Kilometer Offered Corrected: Corrected SKC to take account of any freight revenue + - DOC/Ton Kilometers Offered (TKO): Ton Kilometer Costs (TKC) + - DOC/Revenue Passenger Kilometer (RPK): Revenue Seat Kilometer Costs (RSKC) +These are described below. + +### Flight kilometer costs (calculate_flight_kilometer_costs function) +The flight kilometer costs are very flexible and suitable for an extended consideration of changed route structures. This parameter allows the range potential of the aircraft to be assessed: +\f[ + FKC = \frac{DOC}{R}. +\f] + +### Seat kilometer costs (calculate_seat_kilometer_costs function) +The seat kilometer offered (SKO) (or available) is a measure of an aircraft's passenger carrying capacity or, in other words, its potential to generate revenue by providing available seats to passengers. They are calculated by multiplying the number of seats available \f$n_{seats}\f$ by the range: +\f[ + SKO = n_{seats} \cdot R. +\f] +The seat kilometer costs allow the analysis of a change in seat capacity and thus the assessment of the passenger kilometer potential: +\f[ + SKC = \frac{DOC}{SKO} +\f] + +### Corrected seat kilometer costs (calculate_corrected_seat_kilometer_costs function) + +@note The calculation of this cost share is not implemented at the moment and set to `0` instead. + +A method of freight equivalent passenger seats is applied. +Cargo revenue from residual cargo payload at maximum zero fuel mass (\f$m_{PL,max} - m_{PL}\f$) can be calculated using +\f[ + I_{cargo} = I_{FR} \cdot (W_{PL,max} - W_{PAX}) +\f] +with +- \f$I_{FR}\f$ - revenue per freight kilometer +- \f$W_{PL,max}\f$ - maximum payload weight +- \f$W_{PAX}\f$ - pax weight + +The equivalent seat revenue can be derived using the following formula: +\f[ + n_{PAX,cargo} = \frac{I_{cargo}}{I_{PAX}} +\f] +with \f$I_{PAX}\f$ as revenue per seat and flight (see following table). + +Segment | \f$I_{PAX,multi-class}\f$ in EUR/SO | \f$I_{PAX,all-economy}\f$ in EUR/SO | +----------------|:-------------------------------:|:-------------------------------:| +Short haul | 400 | 250 | +Medium haul | 450 | 300 | +Long haul | 550 | 400 | +Ultra long haul | 700 | 550 | + +Finally, the SKC correction can be determined as follows: +\f[ + SKC_{cor} = SKC \cdot \frac{n_{PAX}}{n_{PAX} + n_{PAX,cargo}} +\f] + +### Ton kilometer costs (calculate_ton_kilometer_costs function) +The ton kilometer costs (TKC) allow the analysis of a change in payload capacity and thus the assessment of the payload kilometer potential. The Ton Kilometers Offered (TKO) are the product of the payload and the range: +\f[ + TKO = m_{PL} \cdot R +\f] +The Ton Kilometer Costs (TKC) are the DOC related to the TKO: +\f[ + TKC = \frac{DOC}{TKO} +\f] + +### Revenue seat kilometer costs (calculate_revenue_seat_kilometer_costs) +Revenue passenger kilometers (RPK) are a measure of how many kilometers the aircraft has carried paying passengers. It is often referred to as "traffic" as it represents the actual demand for air transport. The RPK are determined by multiplying the range by the number of paying passengers. The revenue passenger kilometers are calculated by multiplying the number of revenue passengers with the maximum number of seats and the seat load factor \f$f_{PL}\f$: +\f[ + RPK = n_{PAX} \cdot f_{SL} \cdot R +\f] + +The DOC per revenue passenger kilometer additionally take into account the overall performance of an airline. Note that revenue is strongly dependent on market situation and therefore varying. +\f[ + RSKC = \frac{DOC}{RPK} +\f] + +## Indirect operating costs (IOC) +tbd. \emoji construction + +--- +<sup>[1]</sup> J. Thorbeck, 2007. *From Aircraft Performance to Aircraft Assessment*. DLR.<br> +<sup>[2]</sup> A. Bardenhagen, 2017. *J Flugzeugbewertung*. Technische Universität Berlin.<br> +<sup>[3]</sup> EUROCONTROL Central Route Charge Office (CRCO), 2022. *Customer Guide to Charges*. URL: https://www.eurocontrol.int/sites/default/files/2022-11/eurocontrol-customer-guide-to-charges.pdf. \ No newline at end of file diff --git a/docs/documentation/analysis/cost_estimation/content/run_your_first_cost_estimation.md b/docs/documentation/analysis/cost_estimation/content/run_your_first_cost_estimation.md new file mode 100644 index 0000000..dfa91ac --- /dev/null +++ b/docs/documentation/analysis/cost_estimation/content/run_your_first_cost_estimation.md @@ -0,0 +1,79 @@ +# Run your first cost estimation +Let's dive into the fun part and crunch some numbers! \emoji moneybag + +## Tool single execution +The tool can be executed from the console directly if all paths are set. The following will happen: +- [Console output](#console-output) +- [Generation of reports and plots](#reporting) +- [Writing output to aircraft exchange file](#write-data-to-acxml) + +Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices. Also, if you need some additional information on the underlying methodology, check out the page on the [cost estimation method](operating_cost_method.md). + +So, feel free to open the terminal and run `cost_estimation.exe` to see what happens... + +### Console output {#console-output} +Firstly, you see output in the console window. Let's go through it step by step... + +``` +2024-12-06 11:37:30,205 - PRINT - Cost estimation started... +2024-12-06 11:37:30,224 - PRINT - ---------------------------------------------------------- +2024-12-06 11:37:30,224 - PRINT - Operating cost estimation results for design mission. +2024-12-06 11:37:30,224 - PRINT - ---------------------------------------------------------- +2024-12-06 11:37:30,226 - PRINT - Capital costs: 5,852,515 € +2024-12-06 11:37:30,226 - PRINT - Crew costs (per year): 4,779,200 € +2024-12-06 11:37:30,227 - PRINT - ROUTE INDEPENDENT COSTS (per year): 10,631,715 € +2024-12-06 11:37:30,227 - PRINT - * +2024-12-06 11:37:30,319 - PRINT - Fuel costs (per year): 22,744,718 € +2024-12-06 11:37:30,322 - PRINT - Handling costs (per year): 3,119,900 € +2024-12-06 11:37:30,322 - PRINT - Landing costs (per year): 1,290,968 € +2024-12-06 11:37:30,348 - PRINT - Air traffic control costs (per year): 9,271,834 € +2024-12-06 11:37:30,351 - PRINT - Maintenance costs (per year): 8,038,461 € +2024-12-06 11:37:30,377 - PRINT - ROUTE DEPENDENT COSTS (per year): 44,465,883 € +2024-12-06 11:37:30,377 - PRINT - * +2024-12-06 11:37:30,420 - PRINT - DIRECT OPERATING COSTS (per year): 55,097,598 € +2024-12-06 11:37:30,420 - PRINT - ---------------------------------------------------------- +2024-12-06 11:37:30,607 - WARNING - No calculation method for indirect operating costs (IOC) implemented. IOC set to 0. +``` +To this point, the module started and calculated the operating costs for the design mission. +There is also a warning that the indirect operating cost method is not implemented yet. + +``` +2024-12-06 11:37:30,607 - WARNING - Warning: Operating cost estimation of study mission not possible due to missing data. No operating costs calculated. +2024-12-06 11:37:30,608 - PRINT - ---------------------------------------------------------- +``` +The tool continues to check if an off-design study exists and tries to calculate the respective costs. In this example, there is no off-design data available and thus, the direct operating costs cannot be determined for the study mission. + +``` +2024-12-06 11:37:30,641 - PRINT - Plots are generated and saved... +2024-12-06 11:37:38,187 - WARNING - Warning: "html_output" switch in module configuration file set to "False". No HTML report generated. +2024-12-06 11:37:38,188 - PRINT - Method-specific data are written to 'cost_estimation_results.xml'... +2024-12-06 11:37:38,192 - WARNING - Warning: "tex_output" switch in module configuration file set to "False". No TeX report file generated. +2024-12-06 11:37:38,192 - PRINT - Cost estimation finished. +``` +Finally, you receive information about the reports and plots created (depending on your settings, see next section) and the tool is successfully completed. + +### Reporting {#reporting} +In the following, a short overview is given on the generated reports: +- A `cost_estimation.log` file is written within the directory of the executable +- Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file: + - an HTML report in the `report_html` folder (not implemented yet) + - a TeX report in the `report_tex` folder (not implemented yet) + - an XML file with additional output data in the `report_xml` folder + - plots in the `plots` folder + +### Write data to the aircraft exchange file {#write-data-to-acxml} +@note The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! + +Results are saved in the aircraft exchange file at the `aircraft_exchange_file/assessment/cost_estimation/operating_cost` node. The following information is written to the _acXML_: +``` +Direct operating cost +|- Flights per year (design mission) +|- Flights per year (study mission) - only if off-design analysis available +|- Route independent cost annual +|- Route dependent cost annual +|- Direct operating cost annual +``` +When implemented, the indirect operating costs are going to be saved at `aircraft_exchange_file/assessment/cost_estimation/operating_cost/indirect_operating_cost`. + +## Troubleshooting {#troubleshooting} +- The tool does not run properly? *Make sure you have all the paths set up correctly and the specified elements exist.* diff --git a/docs/documentation/analysis/ecological_assessment/aqi_schaefer.md b/docs/documentation/analysis/ecological_assessment/aqi_schaefer.md new file mode 100644 index 0000000..7746724 --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/aqi_schaefer.md @@ -0,0 +1,69 @@ +# air_quality_index_schaefer {#aqi-schaefer} +This method provides a single indicator (called the Air Quality Index (AQI)) for the assessment of air quality. The AQI can take values between 0 and 1, with 1 indicating that the allowable limits defined by ICAO are reached by all species. Therefore, low values are preferable. + +## General principles {#aqi-schaefer-generalprinciples} +The calculation method, including all required inputs, is described in Schaefer (2017) \cite Sch17. It is: + +\f$ AQI = 1/n \cdot \sum x_i/x_{i,max}\f$ + +where: + +- \f$ x_i \f$: emission mass [g] ( for CO, HC, NOx) or maximum concentration [mg/m^3] ( for soot) during the landing and takeoff cycle, +- \f$ x_{i,max}\f$: regulatory value defined by ICAO, the ratio of emission mass Dp [g] emitted during LTO and the rated thrust F00 [kN], +- \f$ n \f$: number of emission species. + +## Input-Data {#aqi-schaefer-input} +Only engine and emission data are needed. To construct the engine object, the following is required from acXML: +```xml +<engine description="Description of engine"> + <engine_model description="Name of selected engine model"> + <value>V2527-A5</value> + </engine_model> + <scale_factor description="Scale factor"> + <value>1.168175939</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>5</upper_boundary> + </scale_factor> +</engine> +``` + +From `ecological_assessment_results` following parameter will be read: +```xml +<calculation_results description="Results of calculation method"> + <mission_emissions description="Results of mission emission calculation"> + <study_mission description="Results of study mission calculation"> + <emissions description="Emissions of study mission"> + <LTO_cycle description="Emissions of landing and takeoff cycle"> + <HC description="LTO HC emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </HC> + <CO description="LTO CO emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO> + <NOx description="LTO NOx emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </NOx> + <c_soot_LTO_max description="Maximum soot concentration during study mission LTO"> + <value>0</value> + <unit>1</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </c_soot_LTO_max> + </LTO_cycle> + </emissions> + </study_mission> + </mission_emissions> +</calculation_results> +``` +## Output-Data {#aqi-schaefer-output} +The submodule writes its calculation results into the HTML report located in `aircraft_exchange_file_directory/reporting/reportHTML`. \ No newline at end of file diff --git a/docs/documentation/analysis/ecological_assessment/changelog.md b/docs/documentation/analysis/ecological_assessment/changelog.md new file mode 100644 index 0000000..ab0e5a4 --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/changelog.md @@ -0,0 +1,17 @@ +# Changelog {#changelog} +## v3.0.0 +The *v3.0.0* release is a **major** release with many changes including the *modularization*. + + +### Changes +The following changes have been introduced: +- The software architecture has been completely refactored. +- Cost calculation methods have been integrated to be independent of cost modules. + + +### Bugfixes +During the development of this release the following bugs were found and fixed: +- SFCContThrustSL was used before calculated + + + diff --git a/docs/documentation/analysis/ecological_assessment/climate_model_dallara.md b/docs/documentation/analysis/ecological_assessment/climate_model_dallara.md new file mode 100644 index 0000000..92cce68 --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/climate_model_dallara.md @@ -0,0 +1,214 @@ +# climate_model_dallara {#climate-model-dallara} +The climate model, referred to here as the "Dallara" model, calculates key climate impact metrics: Radiative Forcing (RF), Absolute Global Warming Potential (AGWP), Absolute Global Temperature Potential (AGTP), and Average Temperature Response (ATR). The calculation methodology is derived from Dallara's work in 2011 \cite Dal11, providing a systematic approach to assess the environmental effects of various emissions. + +Key Metrics: +- **RF**: quantifies the change in energy flux in the Earth's atmosphere due to emissions, specifically related to greenhouse gases, aerosols, and other components like soot or water vapor. +- **AGWP**: measures the cumulative impact of an emission over a specific time horizon (typically 20, 100, or 500 years), comparing it to CO₂'s effect. +- **AGTP**: calculates the temperature change due to emissions at a given point in time, typically looking at how gases contribute to warming. +- **ATR**: ATR evaluates the mean temperature change over time. + + +## General principles {#climate-model-generalprinciples} +The model assesses the climate impact of following emissions: +- CO₂ (Carbon dioxide) +- H₂O (Water vapor) +- Soot (Black carbon) +- Ozone (O₃) (both long-lived and short-lived forms) and CH₄ (Methane), which are influenced by NOₓ emissions + +A particular feature of the method is the usage of forcing factors, which are unitless parameters. These factors modify the radiative forcing for emissions at different altitudes by normalizing the RF values to a fleetwide average. The altitude is the only flight trajectory parameter considered, meaning the geographic location is not factored into the calculations. This altitude dependency recognizes that emissions at higher altitudes (such as those from aviation) have a different forcing impact compared to emissions at ground level, as atmospheric processes and the distribution of pollutants vary with height. + +In the model, you can explore how the influence of time affects climate impact by adjusting the rate of devaluation for temperature response. A value of zero indicates that the temperature changes occurring after operations are given equal weight compared to changes during the operational period. Higher values of the rate, however, signify that postoperation impacts become progressively less important over time, with each subsequent year's temperature change being less significant than that of the previous year. + +## Input-Data {#climate-model-input} +From the acxml following parameter are needed: +```xml +<aircraft_exchange_file> + <requirements_and_specifications> + <design_specification> + <assessment_scenario> + <flights_per_year> + <unit>1</unit> + <value>2227</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>4000</upper_boundary> + </flights_per_year> + </assessment_scenario> + </design_specification> + </requirements_and_specifications> + <anlysis> + <study_mission> + <range> + <unit>m</unit> + <value>927191.902</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>5000000</upper_boundary> + </range> + <top_of_climb_range> + <unit>m</unit> + <value>140079.6691</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>5000000</upper_boundary> + </top_of_climb_range> + <top_of_descent_range> + <unit>m</unit> + <value>741036.0403</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>5000000</upper_boundary> + </top_of_descent_range> + <cruise_steps> + <cruise_step ID="0"> + <relative_end_of_cruise_step> + <unit>1</unit> + <value>1</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </relative_end_of_cruise_step> + <altitude> + <unit>m</unit> + <value>10668</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>15000</upper_boundary> + </altitude> + </cruise_step> + </cruise_steps> + </study_mission> + </anlysis> +</aircraft_exchange_file> +``` +The Submodel reads following data from the path `module_configuration_file/program_settings/standard_strategy/impact_calculation`in the configuration file: +```xml +<climate_model_methods> + <method> + <value>DALLARA</value> + </method> + <dallara> + <fuel_factor_AIC> + <unit>1</unit> + <value>0.6</value> + <lower_boundary>0.3</lower_boundary> + <upper_boundary>1</upper_boundary> + </fuel_factor_AIC> + <max_integration_period> + <unit>a</unit> + <value>200</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>1000</upper_boundary> + </max_integration_period> + <devaluation_rate> + <unit>1</unit> + <value>0.03</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>10^10</upper_boundary> + </devaluation_rate> + <forcing_factors> + <variations> + <aircraft_induced_cloudiness> + <unit>1</unit> + <value>1</value> + <lower_boundary>0.67</lower_boundary> + <upper_boundary>1.33</upper_boundary> + </aircraft_induced_cloudiness> + <short_lived_ozone> + <unit>1</unit> + <value>1</value> + <lower_boundary>0.67</lower_boundary> + <upper_boundary>1.33</upper_boundary> + </short_lived_ozone> + <methan_and_long_lived_ozone> + <unit>1</unit> + <value>1</value> + <lower_boundary>0.67</lower_boundary> + <upper_boundary>1.33</upper_boundary> + </methan_and_long_lived_ozone> + </variations> + <data_set_selector> + <value>mode_0</value> + </data_set_selector> + </forcing_factors> + </dallara> +</climate_model_methods> +``` + +Additionally, the emission masses of the study missions are needed: +```xml +<calculation_results description="Results of calculation method"> + <mission_emissions description="Results of mission emission calculation"> + <study_mission description="Results of study mission calculation"> + <emissions description="Emissions of study mission"> + <LTO_cycle description="Emissions of landing and takeoff cycle"> + <CO2 description="LTO CO2 emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO2> + <H2O description="LTO H2O emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </H2O> + <SO4 description="LTO SO4 emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </SO4> + <NOx description="LTO NOx emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </NOx> + <soot description="LTO Soot emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </soot> + </LTO_cycle> + <cruise description="Emissions of cruise phase"> + <CO2 description="Cruise CO2 emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO2> + <H2O description="Cruise H2O emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </H2O> + <SO4 description="Cruise SO4 emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </SO4> + <NOx description="Cruise NOx emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </NOx> + <soot description="Cruise Soot emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </soot> + </cruise> + </emissions> + </study_mission> + </mission_emissions> +</calculation_results> +``` + + +## Output-Data {#climate-model-output} +The results are saved within the following files: +- acXML parameter: `/aircraft_exchange_file/assessment/ecological_assessment/average_temperature_response` +- html report: `aircraft_exchange_file_directory/reporting/reportHTML/ecological_assessment_report.html` +- tex report: `aircraft_exchange_file_directory/reporting/reportTeX/ecological_assessment_report.tex` +- csv file: `aircraft_exchange_file_directory/reporting/plots/csv_files/ecological_assessment_climateImpact.csv` \ No newline at end of file diff --git a/docs/documentation/analysis/ecological_assessment/figures/lifeCyclePhases.png b/docs/documentation/analysis/ecological_assessment/figures/lifeCyclePhases.png new file mode 100644 index 0000000..64bc73c --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/figures/lifeCyclePhases.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:34ca03c01c2a6270d049e5dd09b8afc9b2745f5c66ce700e49bba640bd918569 +size 73981 diff --git a/docs/documentation/analysis/ecological_assessment/getting-started.md b/docs/documentation/analysis/ecological_assessment/getting-started.md new file mode 100644 index 0000000..da59af2 --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/getting-started.md @@ -0,0 +1,31 @@ +# Getting Started {#getting-started} + +## Tool execution +This guide will show you the basic usage of the _ecological\_assessment_ tool. + +@note It is assumed that you have the `UNICADO Package` installed, including the executables and UNICADO libraries. If you are a developer, you need to build the tool first (see [build instructions on the UNICADO website](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/build/cpp/)). + +The following steps are necessary: +1. Create a dummy `aircraft_exchange_file` and provide all other required inputs (for submodule-dependent minimal required inputs see [here](#submodules)). +2. Fill out the configuration file: + - change at least in `control_settings`: + - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings + - set `console_output` at least to `mode_1` + - set `plot_output` to false (or define `inkscape_path` and `gnuplot_path`) + - all other parameters can be left at default values. +3. Open the terminal and run _ecological\_assessment.exe_ + +The following will happen: +- you will see output in the console window +- a `.log` file is written within the directory of the executable +- an HTML report is created in the directory of `aircraft_exchange_file_directory/reporting/reportHTML` +- depending on your chosen methods, results are saved in + - `/aircraft_exchange_file/assessment/average_temperature_response` + - and/or in the files you'll find in the `aircraft_exchange_file_directory/reporting/plots/` directory + - and/or in the files you'll find in the `aircraft_exchange_file_directory/reporting/plots/csv_files` directory. + +Be aware of the files' timestemp as there could be leftovers of earlier programm executions! + +## Changing user input +If you want to adapt the tool's execution, you can modify the parameters within the configuration file. There, you can enable or disable specific aspects of the ecological assessment and select the methods to be used for the calculations. At the [submodule pages](#submodules), you can check which parameters are available. + diff --git a/docs/documentation/analysis/ecological_assessment/index.md b/docs/documentation/analysis/ecological_assessment/index.md new file mode 100644 index 0000000..69c19a1 --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/index.md @@ -0,0 +1,10 @@ +# Introduction {#mainpage} +The tool _ecological\_assessment_ is one of the last modules in the UNICADO toolchain, serving as an assessment module executed after the aircraft sizing loop. As its name suggests, it is specifically designed to evaluate the ecological performance of your aircraft design. By using this tool, you gain the opportunity to contribute to the development of environmentally friendly aircraft, playing a part in shaping a sustainable future for aviation. ✈️🌱🌎 + +This module enables you to assess various ecological factors, including aircraft emission masses and their broader environmental impacts. These impacts are analyzed, for example, in terms of their contributions to climate change and air quality, helping you understand the environmental footprint of your design in a comprehensive way. + +The _ecological\_assessment_ tool offers flexibility in how you approach these evaluations. You can choose to perform a complete life cycle assessment (LCA), which evaluates the environmental impact across the entire lifespan of the aircraft — from development and production through operation to end-of-life, including eventual disposal. Alternatively, if you're focusing on the operational phase, you can limit the analysis to the impact of the flown mission alone. + +If you want to explore the details of the _ecological\_assessment_ module and discover how to optimize your aircraft designs for environmental sustainability, check out the next section of this documentation. The @subpage getting-started gives you a first insight into how to execute the tool. To understand how the tool works, the documentation is split into a @subpage softwarearchitecture section, where the structure of the module is described. + +So let's get started! ✈️ diff --git a/docs/documentation/analysis/ecological_assessment/lca_schaefer.md b/docs/documentation/analysis/ecological_assessment/lca_schaefer.md new file mode 100644 index 0000000..e41ab25 --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/lca_schaefer.md @@ -0,0 +1,814 @@ + +# LCA_schaefer {#lca-schaefer} +The method is based on the dissertation by Katharina Schäfer (2011) \cite Sch17. It is highly recommended to refer to this work for detailed insights. The method calculates the energy demand and emissions across the aircraft's life cycle phases: development, production, operation, and end-of-life. The following image shows the processes considered. + + + +## General principles {#lca-schaefer-generalprinciples} +For all processes within the four phases, an inventory analysis is conducted. The function `calculateResources` collects all relevant inputs, such as materials and energy demand. Next, `calculateEmissions` determines the resulting emissions. For background processes, data provided primarily by [GaBi Software](https://ghgprotocol.org/gabi-databases) is used, offering emission data for material extraction, fuel production, energy production, and more. +If recycling is enabled, emissions in the end-of-life phase can be negative, as the emissions saved in the production phase due to recycling are accounted for here. + +## Input-Data {#lca-schaefer-input} +@note The following lists show only the data that is directly read by the module. For data required by the libraries in use, please refer to the respective documentation. + +The method reads following data from the acXML file: +```xml +<aircraft_exchange_file> + <requirements_and_specifications> + <general> + <type> + <value>CeRAS</value> + </type> + <model> + <value>SMR-2020</value> + </model> + </general> + <design_specification> + <transport_task> + <passenger_definition> + <total_number_passengers> + <unit>1</unit> + <value>162</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>1000</upper_boundary> + </total_number_passengers> + </passenger_definition> + </transport_task> + </design_specification> + <requirements> + <top_level_aircraft_requirements> + <flight_envelope> + <maximum_operating_velocity> + <unit>m/s</unit> + <value>180</value> + <lower_boundary>50</lower_boundary> + <upper_boundary>250</upper_boundary> + </maximum_operating_velocity> + </flight_envelope> + <study_mission> + <range> + <unit>m</unit> + <value>1481600</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>20000000</upper_boundary> + </range> + <payload_fractions> + <passenger_mass_fraction> + <unit>1</unit> + <value>0.75</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </passenger_mass_fraction> + </payload_fractions> + </study_mission> + </top_level_aircraft_requirements> + </requirements> + <assessment_scenario> + <flights_per_year> + <unit>1</unit> + <value>2227</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>4000</upper_boundary> + </flights_per_year> + <duration_operation> + <unit>a</unit> + <value>25</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>50</upper_boundary> + </duration_operation> + </assessment_scenario> + <mission_files> + <design_mission_file> + <value>design_mission.xml</value> + </design_mission_file> + </mission_files> + </requirements_and_specifications> + <component_design> + <propulsion> + <specific> + <propulsion ID="0"> + <engine> + <scale_factor> + <unit>1</unit> + <value>0.9064775155</value> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </scale_factor> + <model> + <value>PW1127G-JM</value> + </model> + <bucket_point> + <thrust> + <unit>N</unit> + <value>18391.6134</value> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </thrust> + <tsfc> + <unit>kg/Ns</unit> + <value>1.407077304e-05</value> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </tsfc> + </bucket_point> + <mass_properties> + <mass> + <unit>kg</unit> + <value>2565.399255</value> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </engine> + <nacelle ID="0"> + <mass_properties> + <mass> + <unit>kg</unit> + <value>1021.17164</value> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </nacelle> + <pylon ID="0"> + <mass_properties> + <mass> + <unit>kg</unit> + <value>495.2910093</value> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </pylon> + </propulsion> + </specific> + <mass_properties> + <mass> + <unit>kg</unit> + <value>8163.723809</value> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </propulsion> + <systems> + <specific> + <maximium_power_demand> + <unit>W</unit> + <value>249540.7594</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </maximium_power_demand> + <geometry> + <mass_properties> + <bleed_air_system> + <unit>kg</unit> + <value>170.9024353</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </bleed_air_system> + <fuel_system> + <unit>kg</unit> + <value>0</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </fuel_system> + </mass_properties> + </geometry> + </specific> + <mass_properties> + <mass> + <unit>kg</unit> + <value>4825.986695</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </systems> + <wing> + <mass_properties> + <mass> + <unit>kg</unit> + <value>5899.686597</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </wing> + <fuselage> + <mass_properties> + <mass> + <unit>kg</unit> + <value>14004.22881</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </fuselage> + <landing_gear> + <mass_properties> + <mass> + <unit>kg</unit> + <value>2558.0104</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </landing_gear> + <empennage> + <specific> + <geometry> + <aerodynamic_surface ID="0"> + <name> + <value>vertical_stabiliser</value> + </name> + <mass_properties> + <mass> + <unit>kg</unit> + <value>566.1125139</value> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </aerodynamic_surface> + <aerodynamic_surface ID="1"> + <name> + <value>horizontal_stabiliser</value> + </name> + <mass_properties> + <mass> + <unit>kg</unit> + <value>759.3554913</value> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </aerodynamic_surface> + </geometry> + </specific> + </empennage> + </component_design> + <analysis> + <aerodynamics> + <reference_values> + <S_ref> + <unit>m^2</unit> + <value>105.2800817</value> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </S_ref> + </reference_values> + </aerodynamics> + <masses_cg_inertia> + <maximum_takeoff_mass> + <mass_properties> + <mass> + <unit>kg</unit> + <value>64586.71283</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>300000</upper_boundary> + </mass> + </mass_properties> + </maximum_takeoff_mass> + <operating_mass_empty> + <mass_properties> + <mass> + <unit>kg</unit> + <value>36354.88581</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </operating_mass_empty> + <manufacturer_mass_empty> + <mass_properties> + <mass> + <unit>kg</unit> + <value>33257.87662</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </manufacturer_mass_empty> + </masses_cg_inertia> + <mission> + <design_mission> + <range> + <unit>m</unit> + <value>4538402.27</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>5000000</upper_boundary> + </range> + <block_time> + <unit>s</unit> + <value>20978.31905</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>45000</upper_boundary> + </block_time> + <flight_time> + <unit>s</unit> + <value>20138.31905</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>44500</upper_boundary> + </flight_time> + <taxi_energy ID="0"> + <taxi_out_energy ID="0"> + <consumed_energy> + <unit>J</unit> + <value>0</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>1e+12</upper_boundary> + </consumed_energy> + </taxi_out_energy> + </taxi_energy> + </design_mission> + <study_mission> + <flight_time> + <unit>s</unit> + <value>20138.31905</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>44500</upper_boundary> + </flight_time> + <taxi_energy ID="0"> + <taxi_out_energy ID="0"> + <consumed_energy> + <unit>J</unit> + <value>0</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>1e+12</upper_boundary> + </consumed_energy> + </taxi_out_energy> + </taxi_energy> + <in_flight_energy> + <trip_energy ID="0"> + <consumed_energy> + <unit>J</unit> + <value>0</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>1e+12</upper_boundary> + </consumed_energy> + </trip_energy> + </in_flight_energy> + </study_mission> + </mission> + </analysis> +</aircraft_exchange_file> +``` +In the `ecological_assessment_conf.xml`, next to the control settings block, the following program settings are needed: +```xml +<program_settings description="Program specific settings for this tool"> + <strategy_selector description="Define which strategy shall be used. By now, only 'standard' is implemented which offers different methods"> + <value>STANDARD</value> + </strategy_selector> + <standard_strategy description="Settings for standard strategy. Different methods can be used by defining them in this block."> + <emission_calculation description="Settings for the emission calculation"> + <life_cycle_emissions_methods description="Settings for life cylce emission calculation"> + <method description="Sets method to calculate life cycle emissions ('NO': no calculation, 'SCHAFER': calculation according to K.Schäfer(2018)"> + <value>SCHAEFER</value> + </method> + <schaefer description="Settings for the emission calculations according to K.Schäfer(2018)"> + <engine_mode_switch description="Includes engine life cycle in calculation (Dev+Production+Maintenance+EoL). Switch: true (engine included) / false (engine not included)"> + <value>true</value> + </engine_mode_switch> + <engine_engineering_ratio description="Engineering effort for engines relative to whole aircraft (derived from Micado CSR-02 costs)"> + <value>0.2113</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </engine_engineering_ratio> + <development_phase description="Settings for the calculation of the development phase"> + <test_phase description="Settings for calculation of test emissions"> + <development_emission_setting description="Selects scope of development emission calculation. Selector: mode_0 (no development emissions) / mode_1 (development emissions without production/endOfLife emissions of test components) / mode_2 (development emissions with production/endOfLife emissions of test components)"> + <value>mode_2</value> + </development_emission_setting> + <aircraft_specs description="Aircraft specifications needed for development calculations"> + <ETOPS_switch description="Aircraft and engine(s) will be tested for ETOPS (Extended-range Twin-engine Operations Performance Standards) approval, engine test: additional 3000 test cycles (a 0.5h). Switch: true (test) / false (no test)"> + <value>false</value> + </ETOPS_switch> + <engine_options description="Number of engine options for this aircraft"> + <value>2</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </engine_options> + </aircraft_specs> + <wind_tunnel_test description="Settings for wind tunnel test"> + <test_hours description="Number of wind tunnel hours in aircraft development"> + <value>15000</value> + <unit>h</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>150000</upper_boundary> + </test_hours> + </wind_tunnel_test> + <structural_test description="Settings for structural test"> + <test_cycles description="Number of tested flight cycles in aircraft development (twice the number of flight cycles for which the aircraft will be certified)"> + <value>160000</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>500000</upper_boundary> + </test_cycles> + <number_of_structural_test_aircraft description="Number of aircraft for structural tests"> + <value>2</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </number_of_structural_test_aircraft> + </structural_test> + <system_test description="Settings for system tests"> + <system_integration_test_hours description="Test hours at the system integration test rig"> + <value>5000</value> + <unit>h</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </system_integration_test_hours> + <iron_bird_test_hours description="Test hours on the Iron-Bird test rig"> + <value>5000</value> + <unit>h</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </iron_bird_test_hours> + </system_test> + <engine_test description="Specify engine tests"> + <enable description="Switch to enable engine tests. Switch: true (engine tests on (only if new engine/s for aircraft has to be certified)) / false (engine tests off)"> + <value>true</value> + </enable> + <number_of_new_engines description="Number of new engine(s) to be certified"> + <value>1</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </number_of_new_engines> + <number_of_test_engines description="Number of engine for test rig (approx. 5) and flight test (approx. 1)"> + <value>6</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100</upper_boundary> + </number_of_test_engines> + <rig_test> + <test_hours description="Test hours on the engine rig within aircraft development without/with ETOPS (Extended-range Twin-engine Operations Performance Standards) hours (s.inclETOPS)"> + <value>1500</value> + <unit>h</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>15000</upper_boundary> + <incl_ETOPS_switch description="Adds ETOPS (Extended-range Twin-engine Operations Performance Standards) certification in test hours. Switch: true (is included) / false (is not included)"> + <value>false</value> + </incl_ETOPS_switch> + </test_hours> + <max_continuous_thrust_percentage description="Percentage of test hours on the engine rig with Maximum Continuous Thrust in aircraft development"> + <value>0.1</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </max_continuous_thrust_percentage> + </rig_test> + <flying_testbed description="Settings for the flying testbed "> + <test_hours description="Test hours on flying testbed aircraft development"> + <value>225</value> + <unit>h</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1000</upper_boundary> + </test_hours> + <flying_testbed_engines description="Information about the engine at the flying_test_bed_engines (!), not to be tested engine"> + <engine_number description="Number of engines on flying testbed (without tested engine)"> + <value>3</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>20</upper_boundary> + </engine_number> + <flying_testbed_fuel_consumption_per_engine description="Fuel consumption of the flying testbed engines of (one!) engine in cruise flight"> + <value>3000</value> + <unit>kg/h</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </flying_testbed_fuel_consumption_per_engine> + </flying_testbed_engines> + </flying_testbed> + </engine_test> + <flight_test description="Settings for the flight tests"> + <test_hours description="Flight test hours in aircraft development for one / all Engine(s)-Option/s (s. incl_engine_options)"> + <value>2500</value> + <unit>h</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + <incl_engine_options description="Defines if all engine options are included in tests. Switch: true (include all engine options) / false (only one engine)"> + <value>false</value> + </incl_engine_options> + </test_hours> + <number_of_flight_test_aircraft description="Number of aircraft for flight tests"> + <value>6</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </number_of_flight_test_aircraft> + </flight_test> + </test_phase> + </development_phase> + <production_phase description="Settings for the calculation of the production phase"> + <production_mode description="Selects the production calculation mode. Selector: mode_0 (material mode) / mode_1 (main parts mode)"> + <value>mode_1</value> + </production_mode> + <primary_material_recycling_switch description="Enables primary material recycling. Switch: true (primary material will be recycled) / false (no recyling)"> + <value>true</value> + </primary_material_recycling_switch> + <calculate_recurring_costs_switch description="Switch for calculation of recurring costs. Switch: true (recurring costs will be calculated) / false (costs will be read from xml (old schema implemented, need to be adapted))"> + <value>true</value> + </calculate_recurring_costs_switch> + <number_produced_aircraft description="Number of produced aircraft per programm"> + <value>1500</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </number_produced_aircraft> + </production_phase> + <operating_phase description="Settings for the calculation of the production phase"> + <calculate_maintenance_costs_switch description="Switch for calulation of maintencance costs. Switch: true (maintenance material costs will be calculated) / false (costs will be read from xml (old schema implemented, need to be adapted))"> + <value>true</value> + </calculate_maintenance_costs_switch> + </operating_phase> + <end_of_life_phase description="Settings for the calculation of the end of life phase"> + <distance_to_end_of_life_site description="Distance to be flown to the demolition location"> + <value>1000</value> + <unit>NM</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </distance_to_end_of_life_site> + </end_of_life_phase> + </schaefer> + </life_cycle_emissions_methods> + </emission_calculation> + </standard_strategy> + </program_settings> +``` +Additionally, the design mission taxi time is needed and read from the mission.xml: + +```xml +<mission> + <taxi_time_origin> + <unit>s</unit> + <value>540</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </taxi_time_origin> + <taxi_time_destination> + <unit>s</unit> + <value>300</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </taxi_time_destination> +</mission> +``` + +And last but not least, the emissions provided by the submodule [mission_emissions](mission_emissions) will be read from ecological_assessment XML: + +```xml +<ecological_data_file> + <mission_emissions description="Results of mission emission calculation"> + <design_mission description="Results of design mission calculation"> + <emissions description="Emissions of design mission"> + <LTO_cycle description="Emissions of landing and takeoff cycle"> + <CO2 description="LTO CO2 emissions of one design mission"> + <value>2101.394</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO2> + <H2O description="LTO H2O emissions of one design mission"> + <value>800.785</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </H2O> + <SO2 description="LTO SO2 emissions of one design mission"> + <value>0.561</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </SO2> + <SO4 description="LTO SO4 emissions of one design mission"> + <value>0.133</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </SO4> + <HC description="LTO HC emissions of one design mission"> + <value>0.044</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </HC> + <CH4 description="LTO CH4 emissions of one design mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CH4> + <CO description="LTO CO emissions of one design mission"> + <value>2.855</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO> + <NOx description="LTO NOx emissions of one design mission"> + <value>9.911</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </NOx> + <soot description="LTO Soot emissions of one design mission"> + <value>0.015</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </soot> + <c_soot_LTO_max description="Maximum soot concentration during design mission LTO"> + <value>1.794e-06</value> + <unit>1</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </c_soot_LTO_max> + </LTO_cycle> + <cruise description="Emissions of cruise phase"> + <CO2 description="Cruise CO2 emissions of one design mission"> + <value>53531.7</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO2> + <H2O description="Cruise H2O emissions of one design mission"> + <value>20399.504</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </H2O> + <SO2 description="Cruise SO2 emissions of one design mission"> + <value>14.28</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </SO2> + <SO4 description="Cruise SO4 emissions of one design mission"> + <value>3.4</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </SO4> + <HC description="Cruise HC emissions of one design mission"> + <value>0.939</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </HC> + <CH4 description="Cruise CH4 emissions of one design mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CH4> + <CO description="Cruise CO emissions of one design mission"> + <value>32.312</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO> + <NOx description="Cruise NOx emissions of one design mission"> + <value>225.469</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </NOx> + <soot description="Cruise Soot emissions of one design mission"> + <value>0.24</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </soot> + </cruise> + </emissions> + </design_mission> + <study_mission description="Results of study mission calculation"> + <emissions description="Emissions of study mission"> + <LTO_cycle description="Emissions of landing and takeoff cycle"> + <CO2 description="LTO CO2 emissions of one study mission"> + <value>2101.394</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO2> + <H2O description="LTO H2O emissions of one study mission"> + <value>800.785</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </H2O> + <SO2 description="LTO SO2 emissions of one study mission"> + <value>0.561</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </SO2> + <SO4 description="LTO SO4 emissions of one study mission"> + <value>0.133</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </SO4> + <HC description="LTO HC emissions of one study mission"> + <value>0.044</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </HC> + <CH4 description="LTO CH4 emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CH4> + <CO description="LTO CO emissions of one study mission"> + <value>2.855</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO> + <NOx description="LTO NOx emissions of one study mission"> + <value>9.911</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </NOx> + <soot description="LTO Soot emissions of one study mission"> + <value>0.015</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </soot> + <c_soot_LTO_max description="Maximum soot concentration during study mission LTO"> + <value>1.794e-06</value> + <unit>1</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </c_soot_LTO_max> + </LTO_cycle> + <cruise description="Emissions of cruise phase"> + <CO2 description="Cruise CO2 emissions of one study mission"> + <value>53531.7</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO2> + <H2O description="Cruise H2O emissions of one study mission"> + <value>20399.504</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </H2O> + <SO2 description="Cruise SO2 emissions of one study mission"> + <value>14.28</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </SO2> + <SO4 description="Cruise SO4 emissions of one study mission"> + <value>3.4</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </SO4> + <HC description="Cruise HC emissions of one study mission"> + <value>0.939</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </HC> + <CH4 description="Cruise CH4 emissions of one study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CH4> + <CO description="Cruise CO emissions of one study mission"> + <value>32.312</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </CO> + <NOx description="Cruise NOx emissions of one study mission"> + <value>225.469</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </NOx> + <soot description="Cruise Soot emissions of one study mission"> + <value>0.24</value> + <unit>kg</unit> + <lower_boundary>-1.797693135e+308</lower_boundary> + <upper_boundary>1.797693135e+308</upper_boundary> + </soot> + </cruise> + </emissions> + </study_mission> + </mission_emissions> +</ecological_data_file> +``` +## Output-Data {#lca-schaefer-output} +The Method writes data to CSV files in the *aircraft\_exchange\_file\_directory/reporting/plots/csv_files* folder containing emissions, energy demand, fuel demand and GWP100 for all processes. As described in [getting started](#getting-started), an HTML report including some plots will be generated. diff --git a/docs/documentation/analysis/ecological_assessment/literature.bib b/docs/documentation/analysis/ecological_assessment/literature.bib new file mode 100644 index 0000000..8ce38df --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/literature.bib @@ -0,0 +1,108 @@ +%%% BOOKS %%% + + +%%% JOURNAL ARTICLES %%% +@article{Dal11, + Author = "Dallara, E. S. ; Kroo, I. M. and Waitz, I.A.", + Title = {{Metric for Comparing Lifetime Average Climate Impact of Aircraft}}, + Journal = "IAAA Journal", + Year = "2011", + Volume = "49", + Number = "8", + Pages = "1600-1613" + } + + @article{Kug05, + title = {Aircraft particulate matter estimation through all phases of flight}, + author = {Kugele, A. and Jelinek, F. and Gaffal, R.}, + journal = {Eurocontrol Experimenal Centre, Br{\'e}tigny sur Orge, France}, + year = {2005} +} + + + +%%% CONFERENCE PAPERS %%% + +@inbook{Koss22, +author = {Kristina Kossarev and Anna E. Scholz and Patrick Egerer and Mirko Hornung}, +title = {Comparison of Environmental Life Cycle Impact Assessment Methods for Future Aircraft Designs}, +booktitle = {AIAA AVIATION 2022 Forum}, +chapter = {}, +pages = {}, +doi = {10.2514/6.2022-3659}, +URL = {https://arc.aiaa.org/doi/abs/10.2514/6.2022-3659}, +eprint = {https://arc.aiaa.org/doi/pdf/10.2514/6.2022-3659}, + abstract = { View Video Presentation: https://doi.org/10.2514/6.2022-3659.vidThe environmental impact of aviation has gained increasing interest in the last two decades, resulting in investigations of novel aircraft concepts involving advanced propulsion technologies. For a holistic evaluation of the environmental footprint of these new aircraft concepts in comparison to state-of-the-art kerosene-burning aircraft, the framework of environmental life cycle assessment plays a central role. It allows compiling and analyzing the environmental impacts of a product system from "cradle-to-grave". In this work, the environmental life cycle assessment method for aircraft developed by [1] has been bug-fixed, enhanced with a new climate model, and updated from ReCiPe 2008 to ReCiPe 2016. For several future aircraft concepts, the results with the updated method were compared with the results presented by Johanning. The comparison shows that the updated ReCiPe method results in a highly increased absolute environmental impact (between +193\% and +441\%), while the relative impact of the future, alternative energy-powered aircraft concepts compared to the kerosene-powered aircraft has changed between -17.1\% and +152\% for all considered alternative energy aircraft concepts. These results demonstrate that to assess whether a future concept is more or less environmentally friendly than a reference concept, it is preferable to rely on relative results in an attempt to reduce the inherent model and parameter uncertainties. } +} + +%%% THESES %%% + +@misc{Ste13, + author = {Steinbrunn, V.}, + year = {2013}, + title = {{Bewertung von Flugzeugeentw{\"u}rfen hinsichtlich ihrer Klimawirkung}}, + howpublished = {Diplomarbeit, RWTH Aachen, Aachen, Germany} +} + +@misc{Sch17, + author = {Schaefer, K.}, + year = {2017}, + title = {{Conceptual Aircraft Design for Sustainability - Nachhaltigkeitsorientierter Flugzeugvorentwurf}}, + howpublished = {Dissertation, RWTH Aachen, Aachen, Germany} +} + + +%%% TECHNICAL REPORTS %%% + +@techreport{Eye04, + author = {C.J. Eyers and P. Norman and J. Middel and M. Plohr and S. Michot and K. Atkinson and R.A. Christou}, + institution = {QinetiQ}, + year = {2004}, + title = {AERO2K Global Aviation Emissions Inventories for 2002 and 2025}, + series = {QinetiQ Report}, + note = { LIDO-Berichtsjahr=2005,}, + url = {https://elib.dlr.de/1328/}, + keywords = {AERO2K Global Aviation Emissions Inventories} +} + +@techreport{Nor03, + author = {Norman, P. D., Lister, D. H., Lecht, M., Madden, P., Park, K., Penanhoat, O., et al.}, + institution = {QinetiQ}, + year = {2003}, + title = { \verb|Development of the technical basis for a New Emissions Parameter covering the whole AIRcraft operation: NEPAIR: Final Technical Report|}, + note = {Tech. Rep. NEPAIR/WP4/WPR/01 Report}, +} + +@techreport{Sch13, + author = {Schaefer, Martin and Bartosch, Sebastian}, + institution = {DLR}, + year = {2013}, + month = {07}, + title = {Overview on fuel flow correlation methods for the calculation of NOx, CO and HC emissions and their implementation into aircraft performance software} +} + +@misc{Pet05, + author = {Petzhold, A.}, + institution = {DLR, Institut für Physik der Atmosphäre}, + year = {2005}, + title = {Particle Emissions from Aviation: Microphysics, Chemistry, and Climate Impact }, + howpublished = {Forschungsbericht 2006-02} +} + + +%%% OTHER %%% +@inproceedings{Mar05, + title={Low emission hydrogen combustors for gas turbines using lean direct injection}, + author={Marek, Cecil and Smith, Timothy and Kundu, Krishna}, + booktitle={41st AIAA/ASME/SAE/ASEE joint propulsion conference \& exhibit}, + pages={3776}, + year={2005} +} + +@inproceedings{Lam12, + title={Aircraft cost model for preliminary design synthesis}, + author={Lammering, Tim and Franz, Katharina and Risse, Kristof and Hoernschemeyer, Ralf and Stumpf, Eike}, + booktitle={50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition}, + pages={686}, + year={2012} +} diff --git a/docs/documentation/analysis/ecological_assessment/mission_emissions.md b/docs/documentation/analysis/ecological_assessment/mission_emissions.md new file mode 100644 index 0000000..08979db --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/mission_emissions.md @@ -0,0 +1,194 @@ +# mission_emissions {#mission-emissions} +The submodule _mission_emissions_ is the only part of _ecological\_assessment_ that will always be executed. It is handled via the class `Mission` and provides various options to calculate the emissions of kerosene or hydrogen-burning engines during a mission. + +## General principles {#mission-emissions-generalprinciples} +The following steps are executed within the mission class: +- `get_mission_data`, `write_emissions_path_csv`, and `get_engine_thermodynamics_LTO`: Data from the `mission.csv` file is imported, engine data for every mission step is determined and saved in a CSV file, and the engine thermodynamics during the landing and takeoff phase according to ICAO definition are calculated. +- Emission calculation: Depending on the defined engine carrier, the emissions will be calculated for every mission step. + - Kerosene: + - The emissions of CO2, H2O, SO2, and SO4 are considered to be proportional to the fuel flow. Therefore, they are calculated via \f$ m_{emission} = EI * m_{fuel}\f$, with + - \f$ m_{emission}\f$: emission mass \f$[kg]\f$ + - \f$ EI \f$: emission index \f$[\frac{kg_{emission}}{kg_{fuel}}]\f$ + - \f$ m_{fuel} \f$: fuel mass \f$[kg]\f$ + - All other emissions are considered to be non-proportional. For NOx emissions, there are a P3T3 Method \cite Nor03, Boeing Fuel Flow Method 2 \cite Sch13, and the calculation based on data generated by GasTurb available. For HC as well as CO emissions, the DLR Omega method and Boeing Fuel Flow Method 2 \cite Sch13 are implemented. Additionally, there is the option to calculate the landing and takeoff cycle emissions based on constants provided by ICAO. Soot emissions can be determined via a DLR correlation based on ICAO smoke numbers or a correlation by R.B. Whyte \cite Kug05. Alternatively, it can be assumed to be proportional to the consumed fuel. + - Hydrogen: Only H2O and NOx emissions are produced. + - H2O is assumed to be proportional to the fuel flow. + - For NOx emissions, the emissions of kerosene-burning engines are calculated via the P3T3 method, and a correction factor is used to derive the hydrogen-burning emissions \cite Koss22. You can choose between the calculation of the correction factor and the use of constant emission indices, which were determined in \cite Koss22 for one engine type. As the determination of NOx emissions during hydrogen burning is subject to great uncertainty, the low-fidelity method of using constants is both used as the default method and also implemented as a fallback method if the calculation of a correction factor fails. + +## Input Data {#mission-emissions-input} +For the mission emission calculation, the following parameters are needed in the `aircraft_exchange_file`: +```xml +<aircraft_exchange_file> + <requirements_and_specifications> + <general> + <type> + <value>CeRAS</value> + </type> + <model> + <value>SMR-2020</value> + </model> + </general> + <design_specification> + <configuration> + <configuration_type> + <value>tube_and_wing</value> + </configuration_type> + <aerodynamic_technologies> + <value>false</value> + </aerodynamic_technologies> + </configuration> + <energy_carriers> + <energy_carrier ID="0"> + <type> + <value>kerosene</value> + </type> + </energy_carrier> + </energy_carriers> + <assessment_scenario> + <flights_per_year> + <unit>1</unit> + <value>2227</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>4000</upper_boundary> + </flights_per_year> + </assessment_scenario> + </design_specification> + <requirements_and_specifications> +<aircraft_exchange_file> +``` + +In the `ecological_assessment_conf.xml`, next to the control settings block, the following program settings are needed: +```xml +<program_settings> + <strategy_selector> + <value>STANDARD</value> + </strategy_selector> + <standard_strategy> + <emission_calculation> + <mission_emissions> + <emission_methods> + <kerosene> + <HC_method_selector> + <value>mode_0</value> + </HC_method_selector> + <CO_method_selector> + <value>mode_0</value> + </CO_method_selector> + <NOx_method_selector> + <value>mode_0</value> + </NOx_method_selector> + <soot_method_selector> + <value>mode_0</value> + </soot_method_selector> + </kerosene> + <hydrogen_combustion> + <NOx_method_selector> + <value>mode_0</value> + </NOx_method_selector> + </hydrogen_combustion> + </emission_methods> + <relative_humidity> + <unit>1</unit> + <value>0.6</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </relative_humidity> + </mission_emissions> + </emission_calculation> + <duration_operation> + <unit>a</unit> + <value>25</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>50</upper_boundary> + </duration_operation> + </standard_strategy> +</program_settings> +``` + +As the engine library will be used, you can check the documentation page of the library to get information about input files. From the `engine_data_file`, the following parameters are needed: +```xml +<EngineDataFile> + <EngineDesignCondition> + <flightAltitude>35000</flightAltitude> + <flightMachNumber>0.8</flightMachNumber> + </EngineDesignCondition> + <Deck> + <WFToP3min>45</WFToP3min> + <WFToP3max_MTO>101.83</WFToP3max_MTO> + <WFToP3max_MCT>98.74</WFToP3max_MCT> + <TempMax_MTO>848.69</TempMax_MTO> + <TempMax_MCT>772.35</TempMax_MCT> + <N2max>1.034</N2max> + <NfractionClimbRating>0.97</NfractionClimbRating> + <NfractionCruiseRating>0.875</NfractionCruiseRating> + <RelBleedMax>0.3</RelBleedMax> + <ShaftPowerExtractionMax>150</ShaftPowerExtractionMax> + <UnscaledSLST>110.3126953</UnscaledSLST> + </Deck> + <EmissionFactors> + <NOxFactor>32</NOxFactor> + </EmissionFactors> + <ICAOEngineData> + <LTOFuelFlow> + <Taxi>0.128</Taxi> + <Takeoff>1.053</Takeoff> + <ClimbOut>0.88</ClimbOut> + <Approach>0.319</Approach> + </LTOFuelFlow> + <LTOEmissions> + <HCFactor> + <Taxi>0.105e-3</Taxi> + <Approach>0.061e-3</Approach> + <ClimbOut>0.041e-3</ClimbOut> + <Takeoff>0.041e-3</Takeoff> + </HCFactor> + <COFactor> + <Taxi>12.43e-3</Taxi> + <Approach>2.44e-3</Approach> + <ClimbOut>0.62e-3</ClimbOut> + <Takeoff>0.53e-3</Takeoff> + </COFactor> + <NOxFactor> + <Taxi>4.7e-3</Taxi> + <Approach>8.9e-3</Approach> + <ClimbOut>22.3e-3</ClimbOut> + <Takeoff>26.5e-3</Takeoff> + </NOxFactor> + <SNFactor> + <Taxi>2.6</Taxi> + <Takeoff>5.2</Takeoff> + <ClimbOut>7.2</ClimbOut> + <Approach>4.2</Approach> + </SNFactor> + </LTOEmissions> + </ICAOEngineData> +</EngineDataFile> +``` + +Also, some data from `mission.xml` will be read: +```xml +<mission> + <taxi_time_origin> + <unit>s</unit> + <value>540</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </taxi_time_origin> + <taxi_time_destination> + <unit>s</unit> + <value>300</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </taxi_time_destination> + <range> + <unit>m</unit> + <value>4630000</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>100000000</upper_boundary> + </range> +</mission> +``` +And last but not least, you need to provide the `mission.csv` file written by the UNICADO mission module and located in _aircraft\_exchange\_file\_directory/missionData_. + +## Output-Data {#mission-emissions-output} +The central output of the mission submodule is the `ecological_assessment_results_file.xml` which you will find in the *aircraft\_exchange\_file\_directory/reporting/report_xml*. It contains all calculated emission masses. Additionally, there is a CSV file in the folder *aircraft_exchange_file_directory/reporting/plots/csv_files/* with mission and engine data for every mission step. As described in [getting started](#getting-started), an HTML report including some plots will be generated. diff --git a/docs/documentation/analysis/ecological_assessment/softwarearchitecture.md b/docs/documentation/analysis/ecological_assessment/softwarearchitecture.md new file mode 100644 index 0000000..07956ba --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/softwarearchitecture.md @@ -0,0 +1,6 @@ +# Software Architecture {#softwarearchitecture} + +At the highest level, the `main_ecological_assessment.cpp` calls the function `execute()` of the class `EcologicalAssessment`, which inherits from the class `Module` (available in the library **moduleBasics**). `EcologicalAssessment` provides access to defined strategies. It will run the functions `initialize`, `run`, `update`, `report` and `save` of the strategy (inherited from the `Module` class in **moduleBasics**). Additionally, the `save` function will save and close the aircraft XML file, as well as close the configuration file. + +Currently, only one strategy (called STANDARD) is implemented. Here you can find more information about it: @subpage standard-strategy + diff --git a/docs/documentation/analysis/ecological_assessment/standard-strategy.md b/docs/documentation/analysis/ecological_assessment/standard-strategy.md new file mode 100644 index 0000000..29e04c9 --- /dev/null +++ b/docs/documentation/analysis/ecological_assessment/standard-strategy.md @@ -0,0 +1,37 @@ + +# Standard Strategy {#standard-strategy} +## Overview +This page provides an overview of the structure and functionalities of the standard strategy. +The architecture is (based on the parts of a Life Cycle Assessment (LCA)) structured into various submodules (see @subpage submodules). The methods of the submodules are located in subfolders called "emissionCalculation" or "impactCalculation," respectively. +- The folder **emissionCalculation** contains all methods to determine emissions. + - In one folder, you'll find the method for mission calculation. By changing the setting in the configuration file, you can choose different methods for emission calculation. Both kerosene and hydrogen-burning turbines can be calculated. The results will be saved in the _ecological\_assessment\_results.xml_. + - The other folder provides functions for life cycle emission calculation. The implemented method is based on Schaefer (2017) \cite Sch17 and determines the emissions for development, production, operation, and end-of-life phases. + - Additionally, you'll find the **ecoDatabase**, a class that offers a variety of constants to calculate the emissions in all aircraft life phases. +- The folder **impactCalculation** contains different methods to calculate the consequences of the emissions. + - The air quality index is determined according to Schaefer (2017) \cite Sch17. + - The climate impact is determined according to Dallara (2011) \cite Dal11. + +For a first overview, examining the folder structure (file list) could be beneficial. For more detailed insights, exploring the collaboration diagrams or the source code is recommended. In the following, information about the coordination of the module subparts and their behavior is provided. + +The corresponding class `StandardStrategy`, derived from the class `Strategy`, coordinates all calculations based on the methods chosen by the user. It contains all classes of the submodules, as well as functions for generating the plots and the output files. It handles _shared_ptr_ for collecting the HTML report body information of all submodules and the `ecological_assessment_results.xml` data exchanged between the submodules. It includes the functions `initialize`, `run`, `update`, `report`, and `save` (inherited from the `Module` class in **moduleBasics**). +- **initialize()**: The methods for the submodules are read from the config file, and the report and `ecological_assessment_results` are initialized. +- **run()**: Depending on the chosen methods, the run function of the methods is executed. Important: The emissions of the flown mission will always be calculated, as they are needed for all other methods. +- **update()**: Depending on the chosen methods, the acXML will be updated. +- **report()**: Depending on the chosen methods, the plots will be generated, and the HTML as well as TeX reports will be written. +- **save()**: The `ecological_assessment_results.xml` will be saved and closed. + + +## Submodule Description {#submodules} + +### Submodule Routines {#submodules-routines} +All submodules have a class _IOData_, which contains all data from acXML and functions to read or write the data. Additionally, it has a member _configuration_, which provides access to configuration file data. The submodules are executed via the function `run`, which is called by the `StandardStrategy`. The `run` function shall call functions to initialize the data, perform the calculation routines, and update the `ecological_assessment_results.xml` (in case there are results that are needed by other parts of *ecological_assessment*). + +### Submodule Description {#submodules-description} + +The following subpages will provide you with an overview of the implemented methodologies. For every submodule, there is a brief description of the method, as well as the required inputs and outputs. To gain deeper insights into the calculation routines, you're encouraged to take a look at the source code and the cited literature. + +The following submodules are available: +- @subpage mission-emissions +- @subpage lca-schaefer +- @subpage aqi-schaefer +- @subpage climate-model-dallara \ No newline at end of file diff --git a/docs/documentation/analysis/weight_and_balance_analysis/content/basic-concepts.md b/docs/documentation/analysis/weight_and_balance_analysis/content/basic-concepts.md new file mode 100644 index 0000000..a6c77b1 --- /dev/null +++ b/docs/documentation/analysis/weight_and_balance_analysis/content/basic-concepts.md @@ -0,0 +1,213 @@ +# Basic Concepts {#basic-concepts} +This chapter introduces the definitions and theoretical concepts used in UNICADO for performing the weight and balance (w&b) analysis. The masses of the aircraft's components are calculated in the corresponding design modules. Each component has a _mass properties_ information containing the component's mass, center of gravity position and moments of inertia. All mass properties are gathered in this module and summed up to the different total aircraft's masses, CG positions and mass moments of inertia. Given the airplane design with its requirements and the mass breakdown of its components, the weight and balance of the aircraft is computed considering the mission data and transport task information from the _Aircraft Exchange File_ (acxml). Finally, the loading diagramm is plotted to show different loading cases and the CG-shift during flight. + + For some calculations there are more available methods. These can be selected by the user in the w&b tool configuration file [_weight\_and\_balance\_analysis\_conf.xml_](usage.md). + +> [!NOTE] +> In this beta release of UNICADO the w&b analysis module is laid out for the _tube and wing_ configuration of a look-a-like A320. This will be extended in the future to support also a blended wing body configuration. + + +## Masses of the Aircraft {#masses} + +Let us start defining the different masses calculated by the tool and how they are determined: + +- The **Manufacture Empty Mass (MEM)** is the mass of the aircraft which includes the mass of the main components, i.e. the airframe structure (wing, fuselage, landing gear, empennage, pylons), the propulsion group (nacelles and engines) mass and the fixed equipment mass like the furnishings or the navigation systems. + +> [!NOTE] +> The tanks don't have an own mass as they are integrated in the main components. Only for the case of additional tanks a mass is added. + +- The **Operating Empty Mass (OEM)** represents the mass of the aircraft which includes the crew, all essential operational fluids and all operator-required items and equipment for flight. It coresponds to the MEM with addition of the operator items mass. + + \f$ OEM = MEM + operator\_items\_mass \f$ + +> [!NOTE] +> The operator items are calculated by both the fueselage design and the systems design module. + +- The **Maximum Zero Fuel Mass (MZFM)** is the total mass of the aircraft without any fuel. It is calculated with + + \f$MZFM = OEM + maximum\_payload\_mass \f$ + + - The ***maximum payload mass*** is refering to the maximum allowed payload which can be taken on board without violation of the structural limits and capacity constraints. This is defined in the TLARs. + +- The **Ferry Range Mass (FRM)** is the mass at which the aircraft can reach the maximum range. For this, no payload is carried and the tanks are filled up with the maximum fuel mass. + + \f$ FRM = OEM + maximum\_fuel\_mass \f$ + + - The ***maximum fuel mass*** is the maximum fuel that can be carried and fits in all tanks up to the maximum capacity, i.e all tanks are full. The tank design module outputs the maximum energy per each designed tank. These are transformed here with the corresponding gravimetric density to a maximum fuel mass per tank and then summed up for all tanks. + +- The **Maximum Take-Off Mass (MTOM)** is the mass at which the aircraft takes off. For the design mission this corresponds to the design mass at take-off. Starting with the previously determined OEM, the calculated design fuel at takeoff and the design payload mass are added: + + \f$ MTOM = OEM + design\_fuel\_mass\_takeoff + design\_payload\_mass \f$ + +> [!NOTE] +> The estimated MTOM is an input of the weight and balance analysis tool and is initially written by the _initial\_sizing_ module. Here, it is updated to a mass based on more exact calculation, as the components design and its mass breakdown is now known. + + - The ***design payload mass*** consists of the passenger, luggage and additional cargo mass defined by the user in the transport task. + - The ***design fuel mass mission*** is the fuel mass determined from the mission information and is equal to the mission energy (including taxi and reserves) divided by the gravimetric density of the energy provider. If the energy needed to complete the mission is not available or unknown, the design fuel mass is calculated from the difference between the estimated MTOM, OEM and the design payload mass. + - The ***design fuel mass takeoff*** corresponds to the remaining fuel in the tanks after the taxi at the origin, just before the take-off. The design fuel mass at takeoff is equal to the ***design fuel mass*** written in the acxml. + - The ***design fuel mass midflight*** is calculated by substracting from the design fuel mass at takeoff the fuel consumed during the take-off segment and half of the fuel needed for the cruise segment. These data are provided by the mission module. If not, the design fuel mass midflight is approximated to be half of the design fuel mass at takeoff. + - The ***design fuel mass landing*** corresponds to the remaining fuel in the tanks just after the plane touched down. The minimum fuel mass at landing is determined by substracting from the mission fuel mass the trip fuel mass (containing all flight segments) and the taxi fuel mass before the take-off. If no mission information is available, the minimum design fuel mass at landing is calculated by multiplying the design fuel mass at takeoff with factors for the contingency fuel, alternate fuel and the final fuel reserve. + + With the knowledge about the OEM, the design payload mass and the design fuel masses at different points during flight, the total design masses of the aircraft at specific times can be calculated: + - ***design mass mission*** (the mass of the aircraft in the parking position before the start) \f$design\_mass\_mission = OEM + design\_fuel\_mass\_mission + design\_payload\_mass. \f$ + - ***design mass at take-off*** (equal with the MTOM and to the ***design mass*** written in the acxml) + - ***design mass at midflight*** + - ***design mass at landing*** + +- The **Maximum Landing Mass (MLM)** is the maximum mass at which the pilot of the aircraft is allowed to attempt to land due to structural or other limits. +Two calculation modes are available: + - based on the mission information and the consumed fuel during flight (`default method`): + \f$MLM = OEM + design\_fuel\_mass\_landing + design\_payload\_mass \f$ + - via the `RWTH regression method`: This calculation uses different formulas depending on whether the maximum takeoff mass exceeds a threshold value of 15,000 kg. + 1. For Aircraft with *MTOM > 15,000 kg* the following empirical formula is used: + \f$MLM = 1.9689 \times MTOM^{0.9248}\f$ + 2. For Aircraft with *MTOM ≤ 15,000 kg* a linear approximation is used: + \f$MLM = 0.9009 \times MTOM + 410.85 \f$ + +Additionally, two masses are calculated for the case that the aircraft flies either with maximum payload mass or with maximum fuel mass. In both cases the difference up to MTOM is completed with fuel or payload respectively. Based on the loading diagramm, the masses at the most forward and most aft CG positions are also determined. + +--- +## Center of Gravity {#cg} + +The knowledge of the center of gravity (CG) position and movement is necessary to ensure the static stability and controllability of the aircraft on the ground and in the air. Based on the results of the detailed mass breakdown of the components with their _mass properties_ information, the total center of gravity of the aircraft can now be determined. The position of the overall CG can generally be determined from the position of the individual centers of gravity w.r.t. a global reference point. + +The calculation involves determining the weighted average of the CG positions for all components. For each axis (_x, y ,z_), the function sums the scaled masses, which are the product of a component’s mass and its CG coordinate for the respective axis. This sum is then divided by the total mass of all components to yield the final CG coordinate for that axis. The global center of gravity (\f$ \text{CG} \f$) for a specific axis (\f$ \text{ax} \f$) is calculated as: + +\f$ +\text{CG}_{\text{ax}} = \frac{\sum_{i=1}^n (m_i \cdot x_i)}{\sum_{i=1}^n m_i} +\f$ + +Where: +- \f$ m_i \f$ is the mass of the \f$ i \f$-th component. +- \f$ x_i \f$ is the coordinate of the \f$ i \f$-th component along the \f$ \text{ax} \f$. +- \f$ n \f$ is the total number of components. + +> [!NOTE] +> It is often common to specify the center of gravity as %MAC. + +### Center of Gravity Shift and the Loading Diagramm + +The various operational centre of gravity positions must always be within a range limited by safe operation. Since different loading and mission conditions can occur, proof of admissibility must be provided independently for each one. Possible extreme variants can be found in the following matrix: + +| **Loading case** | Mass | Fuel | Payload | +|---------------------------------|-----------|-----------|-----------| +| Design mission | MTOM | design | design | +| Ferry range mission | FRM | maximum | 0 | +| | MZFM | 0 | maximum | +| | MTOM | rest | maximum | +| | MTOM | maximum | rest | + +The loadind diagramm is used to display the permissible range of aircraft mass and CG positions, accounting for CG migration during loading and unloading. The shift in the CG is crucial for evaluating different loading cases from which potential loading restrictions can be determined. + +Below is a detailed breakdown of idealized key loading processes and their effects on the CG used to construct the loading diagramm. Given the vast number of possible loading combinations and scenarios, a pre-selection of critical cases—often configuration-dependent— has been made to reduce complexity. The following loading scenarios are considered within UNICADO: + +**1. Passenger Boarding** + - Critical Scenario: Boarding passengers in a _front-to-rear_ or _rear-to-front_ sequence. These sequences represent extreme cases and can significantly affect the CG position. + - Realistic Scenario: Passengers boarding with free seat selection, typically filling _window seats first, followed by middle and aisle seats_. This simulates common boarding patterns and provides a practical estimation of CG shifts. + +**2. Loading of Baggage and Cargo** +- For aircraft with similarly sized forward and aft cargo holds, the CG can be deliberately influenced by distributing containers or pallets to achieve a CG favorable for cruise flight. For rear-engine aircraft, the larger cargo hold is typically located forward of the wings. The loading scenario for cargo assumes a symmetric _front-to-rear_ or _rear-to-front_ loading sequence. + +**3. Refueling** + - Low-/Mid-Wing Aircraft: Fuel is loaded in the following order: inner tank → outer tank → central or fuselage tanks. + - High-Wing Aircraft: Fuel is loaded in reverse: outer tank → inner tank → central or fuselage tanks. + +> [!NOTE] +> It is assumed that the tanks are filled up symmetrically in the mentioned order up to the maximum capacity of each tank with the fuel mass calculated based on the mission information. + +**4. Defueling (Fuel Consumption During Flight)** + - Low-/Mid-Wing Aircraft: + - Fuel is consumed in the order: central or fuselage tanks → inner tank → outer tank. + - High-Wing Aircraft: + - Fuel is consumed in the reverse order: central or fuselage tanks → inner tank → outer tank. + +> [!NOTE] +> For the moment only the loading case 3 - 1 - 2 - 4 is implemented. The different selection of the loading scenarios can be made in the _weight\_and\_balance\_analysis\_conf.xml_ file. + +Finally, the **most forward and most aft _x_-CG positions** and the corresponding masses are depicted from the resulting diagramm. + +--- +## Mass Moments of Inertia {#inertia} + +Inertia forces arise from the tendency of mass to resist accelerations. For rotational accelerations, these forces are represented by the **mass moment of inertia** terms.These are critical parameters in the analysis and design of aircraft, as they determine the rotational dynamics about the principal axes: roll, pitch, and yaw. These values influence stability, control responsiveness, and handling qualities. The moments of inertia are calculated relative to an axis and depend on the mass distribution of the aircraft. The cross products of inertia (e.g., \f$ I_{xy} \f$) arise when the axes are not aligned with the principal axes of the mass distribution. + +In this context the mass moments of inertia about the three principal axes +- \f$ I_{xx} \f$: About the roll axis +- \f$ I_{yy} \f$: About the pitch axis +- \f$ I_{zz} \f$: About the yaw axis +> [!NOTE] +> The mass moments of inertia are calculated only for the total masses. + +are determined determined by means of the following ***calculation methods:*** + +#### 1. Using Raymer's Empirical Equations +*Raymer* provides empirical formulas to estimate the moments of inertia based on the aircraft's geometry and mass distribution. These equations are derived from historical data based on nondimensional radii of gyration (\f$ R_x \f$, \f$ R_y \f$, \f$ R_z \f$) and are suitable for early design phases where detailed component-level data may not be available. The mass moments of inertia are given as follows: + +- **Roll**: \f$I_{xx} = \frac{b^2 M R_x^2}{4} \cdot f_{xx}\f$ +- **Pitch**: \f$I_{yy} = \frac{l^2 M R_y^2}{4} \cdot f_{yy} \f$ +- **Yaw:** \f$I_{zz} = \frac{\left( \frac{b + l}{2} \right)^2 M R_z^2}{4}\f$ + +Where: +- \f$ b \f$: Wingspan +- \f$ l \f$: Fuselage length +- \f$ M \f$: Aircraft mass +- \f$f_{xx}\f$ and \f$f_{yy}\f$: Technology factors set to \f$1.25\f$ respectively \f$1.15\f$ +- \f$ R_x, R_y, R_z \f$: Nondimensional radii of gyration. The following values are implemented: + +| **Aircraft Configuration** | \f$ R_x \f$ | \f$ R_y \f$ | \f$ R_z \f$ | +|-----------------------------------------|-----------|-----------|-----------| +| Fuselage-mounted engines | 0.24 | 0.34 | 0.42 | +| 2 wing-mounted engines | 0.23 | 0.33 | 0.45 | +| 4 wing-mounted engines | 0.24 | 0.36 | 0.44 | +| Blended wing body | 0.28 | 0.40 | 0.46 | + + +#### 2. Using the LTH Tables (*Luftfahrttechnisches Handbuch*) +The LTH provides tabulated values and empirical methods specific to various aircraft configurations. These tables account for typical mass distributions and structural layouts. They are more accurate than Raymer’s approach but require knowledge of the specific aircraft class and design. The `calculate_inertia_by_lth_method` function is tailored specifically for conventional tube-and-wing configurations. This method uses aircraft mass properties like the OEM, the payload mass (\f$m_{payload}\f$) and the fuel mass (\f$m_{fuel}\f$) and geometric dimensions such as wing span \f$b\f$ and fuselage length \f$l\f$. All cross-product terms (\f$I_{xy}\f$, \f$I_{xz}\f$, etc.) are set to \f$0\f$, assuming symmetry. + +The mass moments of inertia around the principal axes are given as follows: + +- **Roll**: + \f$ + I_{xx} = f_{xx} \cdot K_x^2 \cdot b^2 \cdot m_m + \f$ + +- **Pitch**: + \f$ + I_{yy} = f_{yy} \cdot K_y^2 \cdot l^2 \cdot m_m + \f$ + +- **Yaw**: + \f$ + I_{zz} = 0.96 \cdot (I_{xx} + I_{yy}) + \f$ + +Here, \f$f_{xx}\f$ and \f$f_{yy}\f$ are technology factors set to \f$0.8\f$ respectively \f$0.9\f$. The expected mass \f$M\f$ and the scaling factors \f$K_x\f$ and \f$K_y\f$, derived from empirical LTH tables, are defined as: + + \f$ M = OME + m_{payload} + m_{fuel} \f$ + + \f$ K_x = \frac{1}{12} \left( \left[ - \frac{2}{3} \cdot \left(\frac{M}{OME}- 1\right) + \frac{m_{fuel}}{OME} \right] +1 \right) + 0.065 \f$ + + \f$ K_y = -\frac{0.065}{1.72} \left[ 0.2 \cdot \left(\frac{M}{OME}- 1\right) + \frac{m_{fuel}}{OME} \right] + 0.2025 \f$ + + +#### 3. Using the Component's Inertia +This method involves calculating the total inertia tensor of the aircraft based on its components' individual mass properties. For each inertia component (\f$I_{xx}\f$, \f$I_{xy}\f$, etc.), the function adds the component's intrinsic inertia and the inertia due to its offset from the reference CG (using the Steiner theorem). The mass moments of inertia are given exemplary + +- around the principal axes (\f$I_{xx}\f$, \f$I_{yy}\f$,\f$I_{zz}\f$): +\f$ +I_{xx} = \sum (I_{xx},{\text{component}} + m_{\text{component}} \cdot (p^2 + q^2)) +\f$ +- around the deviation axes (cross-product terms \f$I_{xy}\f$, \f$I_{xz}\f$, etc.): +\f$ +I_{xy} = \sum (I_{xy},{\text{component}} + m_{\text{component}} \cdot -(p \cdot q)) +\f$ + + +with \f$p\f$ and \f$q\f$ representing the relative distances between the reference center of gravity (CG) and the current component's CG along the specified axes. Specifically: +- \f$ p \f$: The distance along the first axis (e.g., x, y, or z). +- \f$ q \f$: The distance along the second axis (e.g., x, y, or z). + +> [!NOTE] +> The component's moments of inertia, if available, are calculated in the component's design modules. Otherwise, these are 0. + diff --git a/docs/documentation/analysis/weight_and_balance_analysis/content/index.md b/docs/documentation/analysis/weight_and_balance_analysis/content/index.md new file mode 100644 index 0000000..b251745 --- /dev/null +++ b/docs/documentation/analysis/weight_and_balance_analysis/content/index.md @@ -0,0 +1,29 @@ +# Introduction {#mainpage} +The aircraft’s mass plays a crucial role in determining flight performance and evaluating the design, with the ultimate goal being to minimize the operating empty mass. 🏋️♀️ Knowing individual masses is essential for calculating the center of gravity (CG) and determining the placement of critical components like the landing gear and wings. ✈️ The CG significantly affects the aircraft's stability and controllability. An improperly located CG can compromise flight safety, requiring careful planning to ensure it remains within allowable limits throughout the flight, including during fuel consumption and payload variations. This analysis is typically conducted through a weight and balance evaluation using a loading diagram :chart_with_upwards_trend:, which defines the permissible range for combinations of aircraft mass and CG positions. Mass considerations are also fundamental to cost estimation. As an aircraft’s mass increases, it requires more lift, which leads to higher drag, increased thrust demands, elevated fuel consumption, and ultimately greater fuel and operating costs. 💸 + +In UNICADO, the _weight\_and\_balance_analysis_ tool is used to compute the aircraft's masses, determine the CG positions, calculate mass moments of inertia, and generate the loading diagram. The terms "mass" and "weight" are often used interchangeably in aircraft design, though they are scientifically distinct. In this context, both terms are used to refer to the aircraft's mass. + +## A User's Guide to Weight & Balance Analysis +This user documentation will guide you through all necessary steps to understand the tool as well as the necessary inputs and configurations to calculate the aircraft masses, CG positions, aircraft's moments of inertia and determine the loading diagramm with the most forward and most aft CG positions. + +The following pages will guide you through the theory behind and the process of computing and analysing the weight and balance within UNICADO: + +- [Basic Concepts](basic-concepts.md) +- [Usage of the Weight & Balance Analysis Tool](usage.md) + +So let's get started! 💪 + + +## You are a Developer? + +If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO! + +The following pages will help you understand the code structure: + +- [Developer Guide](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/developer-installation/) +- [Build Instructions](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/build/general/) +- [How to Python in UNICADO](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/style/python-modularization/) +- [Weight & Balance Analysis Tool Structure](usage.md) + +We appreciate it! + diff --git a/docs/documentation/analysis/weight_and_balance_analysis/content/usage.md b/docs/documentation/analysis/weight_and_balance_analysis/content/usage.md new file mode 100644 index 0000000..5185edd --- /dev/null +++ b/docs/documentation/analysis/weight_and_balance_analysis/content/usage.md @@ -0,0 +1,203 @@ +# Usage of the Weight & Balance Analysis Tool {#usage} +Let's see now how the magic happens. In this guide we will go through the step-by-step process of running the weight and balance (w&b) analysis tool. The different possible execution modes and calculation methods are listed. Tool dependencies between the w&b analysis tool and other UNICADO modules are described, including necessary tool inputs and generated outputs. While we navigate through this guide we will find the answers to the following questions: + +- [Requirements](#requirements) - What is necessary to get the tool running? +- [Tool Structure](#architecture) - How is the tool built and which files are relevant for me as an user? +- [Configuration File](#module-configuration-file) - What is with this _weight\_and\_balance\_analysis\_conf.xml_ file? +- [Method Selection](#method-selection) - Where to find and how to select the calculation methodes and execution modes described in the [Basic Concepts](basic-concepts.md)? +- [Tool Execution](#tool) - How to start the tool and what happens then? +- [Troubleshooting](#trouble) - What do I do if the tool is not working? + +--- + +## Requirements {#requirements} +The following requirements are needed for the tool to run: + +1. **First**, it is assumed that you have the UNICADO *package* installed including the executables, the database, and the UNICADO *libraries*. + +2. As the w&b analysis tool is an analysis tool, the **second requirement** is that the ***sizing modules***, as well that the ***aerodynamic analysis*** and ***mission analysis*** tools were successfully executed beforehand and that the results are written in the Aircraft Exchange File (acXML). The following information must be available (the subcomponents of the required nodes are not listed here): + - `aircraft_exchange_file/requirements_and_specifications/requirements/top_level_aircraft_requirements`: `maximum_structrual_payload_mass` + - `aircraft_exchange_file/requirements_and_specifications/design_specification`: `configuration`, `transport_task`, `energy_carriers` + - `aircraft_exchange_file/component_design` : the `global_reference_point` and the components `wing`, `empennage`, `tank`, `propulsion`, `landing gear`, `systems` each at least with the nodes `position` and `mass_properties` + - `aircraft_exchange_file/analysis/aerodynamics/reference_values`: `neutral_point` + - `aircraft_exchange_file/analysis/masses_cg_inertia`: `maximum_takeoff_mass` + - `aircraft_exchange_file/analysis/mission/design_mission`: `loaded_mission_energy`, `in_flight_energy`, `taxi_energy` + +> [!NOTE] +> When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. + +3. The `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` are correctly set in the `control settings` part of the _weight\_and\_balance\_analysis\_conf.xml_ file (configXML). The `console_output` should be set at least to `mode_1`. + +4. The structure of the acXML remains unchanged, otherwise the paths to the nodes must be updated in the data reading functions of the tool. + +___ +## Tool Structure {#architecture} + +<pre class='mermaid'> + graph LR; + A[W & B Analysis] -->B[Tube and Wing _datapostprocessing.py_ _datapreprocessing.py_]; + B-->C[Standard]; + C-->D[Basic _methodbasic.py_] + C-->E[General _methodplot.py_ _methodhtmlreport.py_] + C-->H[_usermethoddatapreparation.py_] + A-->F[Blended Wing body - _under development_] + A-->G[_weight\_and\_balance\_analysis\_conf.xml_ _main.py_ _weight_and_balance_analysis.txt_ ] + A-->I[doc] +</pre> + +@important Since the documentation might be delayed to the development progress - this graph might not have all information yet. + +Let's break down the tool structure and see what happens in the most relevant files: + + + +## Configuration File {#module-configuration-file} + +The _weight\_and\_balance\_analysis\_conf.xml_ is structured into two blocks: the control and program settings. The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least +- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings, +- the `console_output` at least to `mode_1`, and + +@note If the tool is executed via the workflow, those settings are set by the workflow settings. + +## Method Selection {#method-selection} +By changing the program settings im the configXML we can manipulate how the w&b analysis tool is running. The program settings are structured like this: + +```xml + <program_settings description="program settings"> + <tube_and_wing description="Weight and balance analysis"> + <category description="Category name"> + <value>standard</value> + </category> + <standard description="Standard weight and balance"> + <method description="Method name"> + <value>basic</value> + </method> + <basic description="Basic configuration"> + <calculation_methods description="Calculation methods for basic configuration"> + <inertia description="Selector for the calculation method of the mass moments of inertia. Selector: mode_0 (by_lth_table) / mode_1 (by_components) / mode_2 (by_Raymer)"> + <method description="selected method"> + <value>mode_0</value> + </method> + </inertia> + <aircraft_type description="Aircraft configuration for determination of the nondimensional radii of gyration by Raymer. Selector: blended_wing / jet_fuselage_eng / jet_two_wing_eng / jet_four_wing_eng"> + <value>jet_two_wing_eng</value> + </aircraft_type> + <maximum_landing_mass description="Selector for the calculation method of the maximum landing mass. Selector: mode_0 (OME + Payload + Reserve_fuel) / mode_1 (by_regression_RWTH)"> + <method description="selected method"> + <value>mode_0</value> + </method> + </maximum_landing_mass> + <refueling_mode description="Selector to specify if refueling should be done for the design or ferry range mission. Selector: mode_0 (design mission) / mode_1 (ferry range)"> + <method description="selected method"> + <value>mode_0</value> + </method> + </refueling_mode> + <defueling_mode description="Selector to specify if defueling should be considered or not in the loading diagramm. Selector: mode_0: not active / mode_1: active"> + <method description="selected method"> + <value>mode_1</value> + </method> + </defueling_mode> + <passengers_boarding_mode description="Selector to specify the order how the passengers occupy the seats. Selector: mode_0 (each row at a time) / mode_1 (from window to aisle)"> + <method description="selected method"> + <value>mode_0</value> + </method> + </passengers_boarding_mode> + </calculation_methods> + </basic> + </standard> + </tube_and_wing> + </program_settings> +``` + +In this part of the configXML we can select the calculation methods and aircraft configuration for the inertia, the maximum landing mass and the modes for the loading scenarios. Each mode has a description and the selection is made by changing the respective `value`. Most of the default modes coming with the package are set to `mode_0`. This means that: +- the mass moments of inertia are calculated using the LTH Tables +- the maximum landing mass is calculated based on the mission information and the consumed fuel during flight +- the selected scenario for refueling is to fill up the tanks with the fuel for the design mission +- the passengers should board each row at a time from the front to back and back to front +- the cg shift due to defueling (fuel consumption during flight) should also be considered in the loading diagramm + +## Tool Execution {#tool} +Once the desired methods are selected and the requirements are in place, the tool can run. In order to start the w&b analysis tool, we can execute it directly from the console if all paths are set (see [How to run a tool](howToRunATool.md)) or run the _main.py_ inside the tool folder. + +Following will happen: +- First, the necessary data and paths are acquired with ***datapreprocessing.py*** and ***usermethoddatapreparation.py*** +- Then the ***methodbasic.py*** is executed and you see the output in the console window: The mass properties of the components are first read, then the total masses are calculated, afterwards the cg shift due to refueling, passangers boarding, cargo loading and finally defueling is determined together with the most fwd and aft CG positions +- Next, the calculated data is postprocessed and the outputs are written to the acXML with ***datapostprocessing.py*** and ***usermethoddatapreparation.py*** +- the loading cases and the loading diagram are plotted inside ***methodplot.py*** +- a HTML report is created by ***methodhtmlreport.py*** in the directory of `aircraft_exchange_file_directory`. It contains a detailed mass breakdown and the generated plots. + +The following results are saved in the acXML under `aircraft_exchange_file/analysis/masses_cg_inertia`: + +```xml + <analysis> + <masses_cg_inertia description="Masses, Center of Gravity, Inertias." tool_level="3"> + <maximum_takeoff_mass description="MTOM"> + <mass_properties description="maximum takeoff mass properties"> + <inertia description="Inertia with regard to the total center of gravity."> + <j_xx description="Inertia in x."> + </j_xx> + <j_yy description="Inertia in y."> + </j_yy> + <j_zz description="Inertia in z."> + </j_zz> + <j_xy description="Inertia in xy."> + </j_xy> + <j_xz description="Inertia in xz."> + </j_xz> + <j_yx description="Inertia in yx."> + </j_yx> + <j_yz description="Inertia in yz."> + </j_yz> + <j_zx description="Inertia in zx."> + </j_zx> + <j_zy description="Inertia in zy."> + </j_zy> + </inertia> + <center_of_gravity description="Center of gravity w.r.t global coordinate system."> + <x description="Center of gravity in x-direction with regard to the global reference point."> + </x> + <y description="Center of gravity in y-direction with regard to the global reference point."> + </y> + <z description="Center of gravity in z-direction with regard to the global reference point."> + </z> + </center_of_gravity> + <mass description="Mass"> + </mass> + </mass_properties> + </maximum_takeoff_mass> + <operating_mass_empty description="OME"> + </operating_mass_empty> + <manufacturer_mass_empty description="MME"> + </manufacturer_mass_empty> + <maximum_zero_fuel_mass description="MZFM"> + </maximum_zero_fuel_mass> + <maximum_payload_mass description=""> + </maximum_payload_mass> + <maximum_landing_mass description="MLM"> + </maximum_landing_mass> + <maximum_fuel_mass description=""> + </maximum_fuel_mass> + <ferry_range_mass description=""> + </ferry_range_mass> + <most_forward_mass description=""> + </most_forward_mass> + <most_afterward_mass description=""> + </most_afterward_mass> + <design_mass description=""> + </design_mass> + <design_fuel_mass description=""> + </design_fuel_mass> + </masses_cg_inertia> +``` + +> [!TIP] +> If you are missing some of the terms in here - take a look at [basic concepts](basic-concepts.md). + +--- + +## Troubleshooting {#trouble} +If the tool does not run properly: + - Make sure you have all the paths set up correctly and the specified elements exist + - Go through the log file `weight_and_balance_analysis.txt` and check for warnings and critical messages. + +## Soo ... Now it is your turn to carry the weight! \ No newline at end of file diff --git a/docs/documentation/sizing/empennage_design/basic-concepts.md b/docs/documentation/sizing/empennage_design/basic-concepts.md new file mode 100644 index 0000000..5a0ed6b --- /dev/null +++ b/docs/documentation/sizing/empennage_design/basic-concepts.md @@ -0,0 +1,61 @@ +# Basic Concepts {#BasicConcepts} + +Designing an empennage for an aircraft is a challenging tasks. This topic provides basic information for empennages. + +If you are already familiar with the basic concepts, you can move on to the [Getting Started](getting-started.md). + + +### Available configurations +Here you can find available empennage build methods from the _empennage\_design_ tool inside UNICADO. +- _UNICADO is shipped natively with a conventional method for a tube and wing configuration._ +- _A basic Blended Wing body experimental method called vertical\_tails!_ + +<pre class="mermaid"> + graph LR; + A[Empennage Design] -->B[Tube and Wing]; + B-->C[Conventional] + B-->F[T-Tail] + A-->D[Blended Wing body] + D-->H[Vertical Tails] +</pre> + +<dl class="section bug"> +<dt>Important</dt> +<dd>Since the documentation might be delayed to the development progress - this graph might not have all information yet</dd> +</dl> +___ + +### Empennage Geometry +Understanding the empennage geometry is an essential part. Below are key terms and their meanings: +- Aspect Ratio (AR): The ratio of the span to the average chord length + - _AR = b² / S_ + - _b : span_ + - _S : reference area (projected area on ground from top view)_ + - _High AR (e.g. gliders) → increased aerodynamic efficiency (higher drag) but slender and more flexible._ + - _Low AR (e.g., fighter jets) → decreased aerodynmic efficiency and stiffer._ + +- Taper Ratio (λ): The ratio of the tip chord to the root chord. + - _λ_ = _c_<sub>_tip_</sub> / _c_<sub>_root_</sub> + - _A taper ratio of one indicates a rectangular aerodynamic surface._ + - _Reduced taper ratio can improve aerodynamic efficiency and reduce structural weight._ + +- Sweep Angle (Φ): The angle between the chord at a given position and a line perpendicular to the chord + - _Increased sweep leads to higher overall speeds due to reduction of the mach number normal to the leading edge_ + - _Normally close to wing sweep for empennages with a certain delta_ + +- Dihedral / Anhedral Angle (ν): Effects stability + - _dihedral angle (positive)_ + - _anhedral angle (negative)_ + +### Airfoil selection +An airfoil defines the cross-sectional shape of an aerodynamic surface. The key characteristics include: +- Camber: Airfoil curvature + - _High camber - generates more lift but comes with increased drag_ + - _No camber (symmetrical) often used for empennages_ + - _Chord: Defines the length of the line from leading to trailing edge_ + - _Thickness to Chord Ratio (t/c): maximum airfoil thickness in relation to its chord length_ + - _affects lift, drag and cross section_ + +### Spar Placements +Spars are the one of the main structural elements inside the empennage to provide strength and rigidity + - _Has effects on the control surface sizes_ diff --git a/docs/documentation/sizing/empennage_design/dfe.md b/docs/documentation/sizing/empennage_design/dfe.md new file mode 100644 index 0000000..d9d7613 --- /dev/null +++ b/docs/documentation/sizing/empennage_design/dfe.md @@ -0,0 +1,183 @@ +# Design your first empennage {#design-your-first-empennage} +Let's dive into the fun part. In this guide we will create an empennage for a classic tube and wing configuration with a conventional empennage design method. + + - [Requirements:](#requirements) - Information on tool requirements + - [Design parameters:](#design-parameters) - Information on design parameters + - [Tool execution:](#tool-execution) - Tool execution information + - [Reporting](#reporting) - Wing Design tool report information + - [Changing parameters](#changing-parameters) - The fun part! Let's change parameters + - [Troubleshooting](#troubleshooting) - Something went wrong? Maybe you are not the first one! + +The empennage will be part of a generic tube and wing aircraft which is a look-a-like A320. + +The wing will be part of a generic tube and wing aircraft which is a look-a-like A320. + +## Requirements +Therefor we use an _Aircraft Exchange File_ where the tools _initial\_sizing_ and _fuselage\_design_ already run. + +From the _Aircraft Exchange File_ we have the following information: + +From the Requirements block: +Parameter | Value +:--------------------|-------------: +A/C Type | CeraS +A/C Model | SMR-2020 +Configuration Type | Tube and Wing +Empennage definition | conventional + +From _initial\_sizing_ tool + +Parameter | Value +:------------|---------------: +MTOM | 64232 kg +Wing loading | 619.8444 kg/m^2 + +Wing Parameters (excerpt): + +Parameter | Value +:----|----: +Ref. Area | 103.63 +Span | 32.67 +Aspect Ratio | 10.30 +Taper Ratio | 0.17 +Quarter-Chord Sweep | 27° +Dihedral | 5° + +<dl class="section todo"> +<dt>Note</dt> +<dd>Parameters of the fuselage arenot listed - however, it has a length of ~37m and a width of ~4m.</dd> +</dl> + +## Design parameters +Empennage Design tool parameters for conventional low method + +_Design and mass mode_ +Parameter | Value +:-------------|------------------------: +`design_mode` | `mode_0` → `design` +`mass_mode` | `mode_0` → `flops` + +_Tail Element `ID = 0`_ +Parameter | Value +:-- | --: +`name` | `vertical_stabilizer` +`rear_x_offset`| `1.5m` +`centerline_y_offset` | `0.0m` +`centerline_z_offset` | `0.0m` +`volume_coefficient` | `0.0` → `automatic determination` +`factor_aspect_ratio`| `0.2` +`factor_taper_ratio`| `1.56` +`delta_sweep` | `12°` +`profiles` | `((n0012),(n0012))` +`spars` | `((front_spar,0.0,0.2,0.2, 1.0,0.2,0.2),(rear_spar,0.0,0.6,0.6,1.0,0.6,0.6) ` +`control_devices` | `((rudder, -25°, 25°,0.2,0.7,1.0,0.9,0.7,1.0))` + +_Tail Element `ID = 1`_ +Parameter | Value +:-- | --: +`name` | `horizontal_stabilizer` +`rear_x_offset`| `1.0m` +`centerline_y_offset` | `0.0m` +`centerline_z_offset` | `0.0m` +`volume_coefficient` | `0.0` → `automatic determination` +`factor_aspect_ratio`| `0.53` +`factor_taper_ratio`| `1.66` +`delta_sweep` | `5°` +`profiles` | `((n0012),(n0012))` +`spars` | `((front_spar,0.0,0.2,0.2, 1.0,0.2,0.2),(rear_spar,0.0,0.6,0.6,1.0,0.6,0.6) ` +`control_devices` | `((elevator, -25°, 25°,0.2,0.7,1.0,0.9,0.7,1.0))` + +## Tool execution +The tool can be executed from console directly if all paths are set (see [How to run a tool](howToRunATool.md)). + +We go through the tool output step by step +``` +******************************************************************************* +25.11.2024 16:23:36 - Start empennage_design +25.11.2024 16:23:36 - [MODULE RUNTIMEINFO] - empennage_design +25.11.2024 16:23:36 - [CONSOLE ] - [ON] +25.11.2024 16:23:36 - [LOG ] - [ON] +25.11.2024 16:23:36 - [PLOT ] - [OFF] +25.11.2024 16:23:36 - [COPY ] - [ON] +25.11.2024 16:23:36 - [DELETE] - [ON] +25.11.2024 16:23:36 - [REPORT ] - [ON] +25.11.2024 16:23:36 - [TEX ] - [OFF] +25.11.2024 16:23:36 - [INFOFILES] - [OFF] +25.11.2024 16:23:36 - [GNUPLOT] +25.11.2024 16:23:36 - [PATH ] - +25.11.2024 16:23:36 - [FILENAME] - DEFAULT +25.11.2024 16:23:36 - [INKSCAPE] +25.11.2024 16:23:36 - [PATH ] - +25.11.2024 16:23:36 - [FILENAME] - DEFAULT +25.11.2024 16:23:36 - [LOGFILE] +25.11.2024 16:23:36 - [PATH ] - +25.11.2024 16:23:36 - [FILENAME] - empennage_design.log +25.11.2024 16:23:36 - [IO/ACXML] +25.11.2024 16:23:36 - [PATH ] - ../projects +25.11.2024 16:23:36 - [FILENAME] - csmr-2020.xml +25.11.2024 16:23:36 - [MODCONFIG] +25.11.2024 16:23:36 - [PATH ] - . +25.11.2024 16:23:36 - [FILENAME] - empennage_design_conf.xml +25.11.2024 16:23:36 - Checking directory... [REPORT] +25.11.2024 16:23:36 - Checking directory... [TEX] +25.11.2024 16:23:36 - Checking directory... [HTML] +25.11.2024 16:23:36 - Checking directory... [LOGFILES] +``` +To this point, the module is in the top level stage and creates folders and checks the configuration file settings from the control block. Here you can see some common information. +``` +25.11.2024 16:23:36 - Initializing empennage +25.11.2024 16:23:36 - Empennage type -> conventional tail (vertical_stabilizer/horizontal_stabilizer) +25.11.2024 16:23:36 - Checking directory... [AIRFOILDATA] +25.11.2024 16:23:36 - Running empennage -> conventional tail +25.11.2024 16:23:36 - Mode active -> Design +25.11.2024 16:23:36 - Empennage position (x y z) -> 30.4154 0 0.924292 +``` +Afterwards the module progresses and starts with the empennage design. It tells you what empennage type will be designed and which mode is used. Also the position and will be shown (most forward point of the empennage). Afterwards the mass information is given: +``` +25.11.2024 16:23:36 - Mode active -> Mass computation - FLOPS +25.11.2024 16:23:36 - Vertical stabilizer mass ... 393.37855570692426 +25.11.2024 16:23:36 - Horizontal stabilizer mass ... 502.10 +25.11.2024 16:23:36 - Empennage mass ... 895.4748333992579 +25.11.2024 16:23:36 - Empennage cog ... 34.55, 0.00, 3.05 +``` + +It ends with updating and writing the report +``` +25.11.2024 16:23:36 - Updating empennage -> conventional tail +25.11.2024 16:23:36 - Reporting empennage -> conventional tail +25.11.2024 16:23:40 - CSS code written to style.css successfully. +25.11.2024 16:23:40 - Finish empennage_design +``` + +Let's have a look at it. +## Reporting +The HTML report is splitted - on the left half, one can see numerical information of the empennage design. The right side contains plots and visual information. + + + +It starts with general information for the vertical stabilizer by section parameters. Then you get information on spars and control devices. It concludes with mass information. + +The plot side starts with a general wing planfrom view, followed by the airfoil shape and the thickness and twist distribution + + +## Changing parameters +Lets change a parameter for the vertical stabilizer → we reduce the rudder chord length to only 10% of the chord length. + +The resulted output in the console will not change, however you see that the rudder area is quite small: + + + +Soo .... Now it is your turn! + +<dl class="section invariant"> +<dt>Tip</dt> +<dd>Start by changing only one parameter at once. There might be interactions with other parameters, so don't rush!</dd> +</dl> + +## Troubleshooting +- Tool does not run properly: + - Make sure you have all the paths set up correctly and the specified elements exist! +- Tool is not there: + - You can build the tool directly from scratch - see therefor [How to build a tool](howToBuildATool.md) + + diff --git a/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design.png b/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design.png new file mode 100644 index 0000000..f592e30 --- /dev/null +++ b/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9390c1b3488594d51e4d6f836f09d221ca858f8bbef957f74d068adec6206ce0 +size 232624 diff --git a/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design_change.png b/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design_change.png new file mode 100644 index 0000000..325f0e9 --- /dev/null +++ b/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design_change.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f162450dc31cfe91d16db75b5b4ffb3691ef09beeec53e90c252a8b46613eb22 +size 225876 diff --git a/docs/documentation/sizing/empennage_design/getting-started.md b/docs/documentation/sizing/empennage_design/getting-started.md new file mode 100644 index 0000000..5fd9f73 --- /dev/null +++ b/docs/documentation/sizing/empennage_design/getting-started.md @@ -0,0 +1,174 @@ +# Getting started {#getting-started} +Welcome to the Empennage Design Tool! This section will guide you through the initial steps to access and begin using the tool. +This guide gives you a step-by-step overview of the parameters which affects the basic module behavior. + +## Method selection +The main method selection, _which_ empennage shall be designed comes from the _Aircraft Exchange File_. This is defined in the Block `requirements_and_specification` of the _Aircraft Exchange File_. + +Here you have a main element which will affect the empennage design inside `design_specification/configuration`: +- `configuration_type`: This defines the aircraft configuration which the wing is build for + - `tube_and_wing` + - `blended_wing_body` + +- `empennage_definition`: This defines what type of empennage shall be designed + - for _Tube and Wing_: `conventional` or `t_tail` + - for _Blended Wing Body_: `vertical_tails` + + +The configuration file of the Empennage Design tool `empennage\_design_conf.xml`, gives you then more specified parameters to chose which will tailor the empennage to your desire in the `program_settings` Block. + +The file comes with mode selectors and associated parameters to set which can vary. + +Parameters to chose: +- `design_mode`: + - `mode_0: design`: Designs an empennage from scratch + - `mode_1: redesign`: Redesigns an existing empennage (not implemented - planned in a future release) + +As an example selection: +- `configuration_type` → `tube_and_wing` +- `empennage_type` → `conventional` + +This selects a conventional tail for a tube and wing configuration. +<pre class="mermaid"> +graph LR; + A[Empennage Design] ==> B[Tube and Wing]; + B==>C[Conventional]; + B-->E[T-Tail]; + A-->D[Blended Wing body]; + D-->F[Vertical Tails]; + style B stroke-width:4px + style C stroke:#0f0, stroke-width:4px +</pre> + + +Each `empennage_type` will have it's own block to chose parameters from. +<dl class="section todo"> +<dt>Note</dt> +<dd>For default values or ranges, you should check the description of the parameters or the allowed ranges inside the configuration file</dd> +</dl> + +<dl class="section invariant"> +<dt>Tip</dt> +<dd>If you are missing some of the terms in here - take a look at [basic concepts](basic-concepts.md).</dd> +</dl> + +## Configuration parameters → General +In this section you find parameters for an empennage. To keep it simple, a so called ID `tail_element` is part of each existing configuration. It defines basic parts for a classic volume coefficient method (low-fidelity). +### The Tail Elements parameters (ID Element) +Each tail element has the following parameter which may differ from empennage type +- `name`: Name of the element +- `parameter`: + - `offset`: Offset in multiple directions (differs for empennage type) + - `volume_coefficent`: Associated volume coefficient, if coefficient is set to 0 automatic values are used based on empirical data + - `factor_aspect_ratio`: A factor on how to scale the aspect ratio of a part of the empennage according to the wing aspect ratio + - `factor_taper_ratio`: A factor on how to scale the taper ratio of a part of the empennage according to the wing aspect ratio + - `delta_sweep`: Additional sweep to a part of the empennage according to the wing sweep +- `profiles`: Tail profile used (root and tip) + - `profile`: Tail profile name - ID Element +- `spars`: Spar for a tail + - `spar`: Spar Element - ID Element + - `param: name`: Set spar name (e.g. front spar, rear spar etc.) + - `param: position`: Set position parameters like chordwise and spanwise position for inner and outer dimension of a spar +- `control_devices`: Control devices for a tail + - `control_device`: Control device Element - ID Element + - `param: type`: Sets type of control device (e.g. aileron, rudder, elevator...) + - `param: deflection`: Set positive and negative deflection limits + - `param: position`: Set position parameters like chordwise and spanwise position for inner and outer dimension of a control device + +### Tube and Wing: The Conventional Tail (low fidelity &rarr Volume Coefficient Method) +For a conventional tail, two tail elements are required! Here specific parts should be mentioned: + +- `tail_element ID="0"`: + - `name`: vertical_stabilizer + - `offset`: Offset of the vertical stabilizer + - `rear_x_offset`: Set offset to between vertical stabilizer at root chord trailing edge to the fuselage end + - `centerline_y_offset`: Set offset from the centerline of the fuselage in y direction - should be zero + - `centerline_z_offset`: Set offset from the centerline of the fuselage in z direction - should be zero +- `tail_element ID="1"`: + - `name`: horizontal_stabilizer + - `offset`: Offset of the horizontal stabilizer + - `rear_x_offset`: Set offset to between horizontal stabilizer at root chord trailing edge to the fuselage end + - `centerline_y_offset`: Set offset from the centerline of the fuselage in y direction - should be zero + - `centerline_z_offset`: Set offset from the centerline of the fuselage in z direction - should be zero + +<dl class="section todo"> +<dt>Note</dt> +<dd>Control surfaces should be named here according to its usage e.g. horizontal stabilizer has an elevator and vertical stabilizer has a rudder.</dd> +</dl> + +<dl class="section bug"> +<dt>Important</dt> +<dd>The user must be careful! You can choose values in a certain range, however always keep in mind _with great power comes great responsibility!_</dd> +</dl> + +### Tube and Wing: The T-Tail (low fidelity &rarr Volume Coefficient Method) +For a T-tail, two tail elements are required! Here specific parts should be mentioned: + +- `tail_element ID="0"`: + - `name`: vertical_stabilizer + - `offset`: Offset of the vertical stabilizer + - `param: rear_x_offset`: Set offset between vertical stabilizer at root chord trailing edge to the fuselage end + - `param: centerline_y_offset`: Set offset from the centerline of the fuselage in y direction - should be zero + - `param: centerline_z_offset`: Set offset from the centerline of the fuselage in z direction - should be zero +- `tail_element ID="1"`: + - `name`: horizontal_stabilizer + - `offset`: Offset of the horizontal stabilizer trailing + - `param: rear_x_offset`: Set offset between horizontal stabilizer at root chord trailing edge to the tip chord of the vertical stabilizer trailing edge. + - `param: centerline_y_offset`: Set offset from the centerline of the fuselage in y direction - should be zero + - `param: centerline_z_offset`: Set offset from the centerline of the fuselage in z direction - should be zero + +<dl class="section todo"> +<dt>Note</dt> +<dd>Control surfaces should be named here according to its usage e.g. horizontal stabilizer has an elevator and vertical stabilizer has a rudder.</dd> +</dl> + +<dl class="section bug"> +<dt>Important</dt> +<dd>The user must be careful! You can choose values in a certain range, however always keep in mind _with great power comes great responsibility!_</dd> +</dl> + + +### Blended Wing Body: The Vertical Tails method (low fidelity &rarr Volume Coefficient Method) +For a blended wing body, only one tail element is required! This method is experimental and will only be applyable on the center body, so no checking of values is active to give you freedom to design! +It will create a tail and it's symmetric partner mirrored on the centerline of the Blended Wing Body. So keep in mind to keep the `offset` section correctly. +- `offset`: + - `param: rear_x_offset`: Set offset between vertical stabilizer at root chord trailing edge to the end of the fuselage (center body wing) at specified y offset. + - `param: centerline_y_offset`: Set offset from the centerline of the fuselage in y direction - should be NONE zero + - `param: centerline_z_offset`: Set offset from the centerline of the fuselage in z direction - should be zero + +A copied version will be generated automatically. + +<dl class="section warning"> +<dt>Warning</dt> +<dd>Do not create a second element on the other side, it will be mirrored automatically.</dd> +</dl> + +<dl class="section bug"> +<dt>Important</dt> +<dd>The user must be careful! You can choose values in a certain range, however always keep in mind _with great power comes great responsibility!_</dd> +</dl> + + +### Mass Calculation methods - general +_Mass Calculation Methods_ + - `mass`: How to calculate the mass methods + - `mode_0: flops`: Calculate the empennage mass according to FLOPS (_NASA Flight Optimization System_) + - +## Additional configurations +Additionally, one has to define the common airfoil data paths inside the configuration file: +- `common_airfoil_data_paths`: Defines the path, where to look for airfoils - normally a database + +## Additional information and requirements +The methods in the empennage design tool also require additional information on the wing and the fuselage from the requirements and specification block of the _Aircraft Exchange File_. + +<dl class="section bug"> +<dt>Important</dt> +<dd>Keep in mind that the _empennage\_design_ tool generates an empennage as a part of an aircraft. This lets it rely on specific values, e.g. for defining the area inside the fuselage etc. This leads to mandatory items at this point: +- A specified fuselage - here length and width and height are necessary to determine wing geometry and wing position +- Initial Maximum Takeoff Mass (MTOM) - for determination of the wing area necessary based on the wing loading (only if method is selected)</dd> +</dl> + +Please keep in mind, that the module is still in beta phase and you can gratefully contribute to the + +## Next Steps +The next step is to run the _empennage\_design_ tool. So let's get your wings from [Design your first empennage](dfe.md) diff --git a/docs/documentation/sizing/empennage_design/index.md b/docs/documentation/sizing/empennage_design/index.md new file mode 100644 index 0000000..461cacc --- /dev/null +++ b/docs/documentation/sizing/empennage_design/index.md @@ -0,0 +1,28 @@ +# Introduction {#mainpage} +The empennage is an essential part of the aircraft. The _empennage\_design_ tool is one of the core design tools in UNICADO and enables the workflow to design an empennage according to specified requirements and design specifications. + +## A User's Guide to Empennage Design +The _empennage\_design_ tool will help you design various empennages for classical configurations to blended wing body confiugartions. This user documentation will guide you through all necessary steps to understand the tool as well as the necessary inputs and configurations to create a new empennage from scratch. + +The following pages will guide you through the process of generating your first empennage within UNICADO: + +- [Basic Concepts](basic-concepts.md) +- [Getting Started](getting-started.md) +- [Design your first empennage](dfe.md) + +So let's get started! + + +## You are a Developer? + +If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO! + +The following pages will help you understand the code structure: + +- [Prerequisites](prerequisites.md) +- [Build the code](build-the-code.md) +- [Empennage module structure](wing-module-structure.md) +- [Available methods](available-methods.md) +- [Method template](method-template.md) + +We appreciate it! diff --git a/docs/documentation/sizing/fuselage_design/design_method.md b/docs/documentation/sizing/fuselage_design/design_method.md new file mode 100644 index 0000000..5bba67a --- /dev/null +++ b/docs/documentation/sizing/fuselage_design/design_method.md @@ -0,0 +1,196 @@ +# Calculation method + +- [Determination of cabin geometry](#cabin-geometry) +- [Determination of fuselage geometry](#fuselage-geometry) +- [Estimation of masses](#mass-estimation) +- [Generation of fuselage shape](#generate-shape) + +@note Currently the tool supports only one fuselage with one payload tube. + +## Determine cabin geometry {#cabin-geometry} +### Cabin width +The cabin width is estimated using the given class definition. + +#### Determine width of seat row per aircraft side +The width of one seat row/bench \f$w_{seat\_bench}\f$ (in inch) can be determined for the left and right side of the aircraft using the following equation: +\f[ + w_{seat\_bench} = n_{seats} \cdot w_{seat} + 2 \cdot w_{armrest} +\f] + +In which +- \f$n_{seats}\f$ - number of seats per seat bench +- \f$w_{seat}\f$ - seat width (taken from lowest class seat) +- \f$w_{armrest}\f$ - armrest width (taken from lowest class seat) + +#### Calculate cabin width +The cabin width \f$w_{cabin}\f$ (in inch) can then be calculated: +\f[ + w_{cabin} = w_{aisle} + w_{seat\_bench\_left} + w_{seat\_bench\_right} + 2 \cdot w_{seat\_space} +\f] + +In which +- \f$w_{aisle}\f$ - passenger aisle width +- \f$w_{seat\_space}\f$ - lowest class seat space + +In case of a **wide-body aircraft configuration** there is an additional row in the middle of the aircraft as well as an additional passenger aisle. The width of the seat bench \f$w_{seat\_bench\_center}\f$ can be calculated using an equation similar to that in the previous section. +\f[ + w_{seat\_bench\_center} = n_{seats} \cdot w_{seat} + 2 \cdot w_{armrest\_outer} + (n_{seats} - 1) \cdot w_{armrest\_inner} +\f] + +In which +- \f$w_{seat}\f$ - seat width (from lowest class seat parameters of right side) +- \f$w_{armrest\_outer}\f$ - width of outer armrest (from lowest class seat parameters of right side) +- \f$w_{armrest\_inner}\f$ - width of inner armrest (from lowest class seat parameters of right side) + +The equation for the cabin width estimation must be adapted accordingly: +\f[ + w_{cabin} = w_{aisle} + w_{seat\_bench\_left} + w_{seat\_bench\_right} + 2 \cdot w_{seat\_space} + w_{aisle} + w_{seat\_bench\_center} +\f] + +### Cabin slenderness ratio <sup>[1]</sup> +The cabin slenderness ratio describes the ratio of cabin width to cabin length \f$\frac{w_{cabin}}{l_{cabin}}\f$. +Whilst the cabin width is already known, the cabin length can be determined using the following equation: +\f[ + l_{cabin} = \frac{n_{PAX\_per\_class}}{ab} \cdot \left[ sp + \frac{a_{service}}{w_{seat}} + \frac{a_{bulk}}{\frac{w_{aisle}}{ab} + w_{seat}} + x \cdot w_{exit} \cdot \left( \frac{ab}{n_{PAX\_per\_class}} + \frac{sp}{d_{exits}} \right) \right] +\f] + +In which +- \f$x\f$ - factor (1 for single-aisle, 2 for wide-body) +- \f$n_{PAX\_per\_class}\f$ - number of PAX per class +- \f$ab\f$ - seat abreast +- \f$sp\f$ - seat pitch +- \f$a_{service}\f$ - service area per PAX +- \f$a_{bulk}\f$ - bulk area per PAX +- \f$w_{exit}\f$ - exit width +- \f$d_{exits}\f$ - maximum distance between two exits + +### Cabin length +Knowing the cabin width and the cabin slenderness ratio, the cabin length (in inch) can be calculated: +\f[ + l_{cabin} = \frac{w_{cabin}}{\frac{w_{cabin}}{l_{cabin}}} +\f] + +### Cabin wall thickness +The cabin wall thickness can be estimated using the following calculation: +\f[ + t_{wall} = 0.02 \cdot w_{cabin} + 2.5" +\f] + +### Cabin floor thickness +With the use of the cabin wall thickness, the cabin floor thickness can be calculated: +\f[ + t_{floor} = 1.5 \cdot t_{wall} +\f] + +## Determine fuselage geometry {#fuselage-geometry} +With the calculated cabin the fuselage dimensions can be estimated. + +### Fuselage length<sup>[2]</sup> +The fuselage length can be determined via regression formulas using the cabin length (in meter). + +For single-aisle aircraft: +\f[ + l_{fuselage} = \frac{l_{cabin}}{0.23482756 \cdot \log l_{cabin} - 0.05106017} +\f] + +For wide-body aircraft: +\f[ + l_{fuselage} = \frac{l_{cabin}}{0.1735 \cdot \log l_{cabin} - 0.0966} +\f] + +### Fuselage diameters +The fuselage does not necessarily have a circular cross-section. It is more common to design elliptical cross-sections. Because of that, there are several values that must be determined: +- Fuselage diameter in y-direction +- Fuselage diameter in negative z-direction +- Fuselage diameter in positive z-direction + +#### Fuselage diameter in y-direction +The fuselage diameter in y-direction \f$d_{fuselage\_y}\f$ can be calculated in the following way: +\f[ + d_{fuselage\_y} = w_{cabin} + 2 \cdot t_{wall} +\f] + +#### Fuselage diameter in negative z-direction +The fuselage diameter in negative z-direction \f$d_{fuselage\_z\_neg}\f$ is determined by the cargo accommodation. It can be calculated in the following way. +At first, the distance to the cargo bottom is calculated: +\f[ + d_{to\_cargo\_bottom} = h_{max} + t_{floor} + d_{container\_to\_ceil} + o_{cabin\_floor} +\f] + +In which +- \f$h_{max}\f$ - maximum height of unit load device +- \f$d_{container\_to\_ceil}\f$ - distance from the container to the ceiling +- \f$o_{cabin\_floor}\f$ - offset cabin floor + +Afterwards, the distance to the lower compartment edge is estimated: +\f[ + d_{to\_lower\_compartment\_edge} = d_{container\_to\_wall} + 0.5 \cdot w_{max\_at\_base} +\f] +In which +- \f$d_{container\_to\_wall}\f$ - distance from container to wall +- \f$w_{max\_at\_base}\f$ - maximum width at container base + +Based on the Pythagorean theorem, the inner fuselage diameter (that equals the hypotenuse) can be calculated: +\f[ + d_{inner\_fuselage\_z\_neg} = \sqrt{(d_{to\_cargo\_bottom})^2 + (d_{to\_lower\_compartment\_edge})^2} +\f] + +Adding the wall thickness results in the fuselage diameter in negative z-direction: +\f[ + d_{fuselage\_z\_neg} = d_{inner\_fuselage\_z\_neg} + t_{wall} +\f] + +#### Fuselage diameter in positive z-direction +The fuselage diameter in positive z-direction \f$d_{fuselage\_z\_pos}\f$ is determined by the passenger accommodation. It can be calculated in the following way. +Firstly, the inner fuselage height (equals outer cabin height) can be determined: +\f[ + d_{inner\_fuselage\_z\_pos} = h_{aisle\_standing} - o_{cabin\_floor} + h_{system\_bay} +\f] + +In which +- \f$h_{aisle\_standing}\f$ - passenger aisle standing height +- \f$o_{cabin\_floor}\f$ - cabin floor offset +- \f$h_{system\_bay}\f$ - system bay height above cabin + +Adding the wall thickness leads to the fuselage diameter in positive z-direction. +\f[ + d_{fuselage\_z\_pos} = d_{inner\_fuselage\_z\_pos} + t_{wall} +\f] + +### Fuselage height +The total height of the fuselage can be determined by summing up the fuselage diameters in positive and negative z-direction: +\f[ + h_{fuselage} = d_{fuselage\_z\_pos} + d_{fuselage\_z\_neg} +\f] + +@note If the `force_circle_cross_section` mode is selected, fuselage height and width are set to the maximum of both. + +## Mass estimation {#mass-estimation} +The following masses are estimated: +- Fuselage structure +- Operator items +- Furnishing + +Please refer to _Synthesis of Subsonic Airplane Design_ by E. Torenbeek<sup>[3]</sup> and the Certification Specifications<sup>[4]</sup> for further information. + +@note All masses are estimated in accordance with the CPACS standard. +<!-- ## Estimate positions and COG --> + +## Generate fuselage shape {#generate-shape} +The fuselage shape is generated using the calculated data and the reference ellipses (see the [getting started](getting_started.md) page for more information). The final geometry is written to the `fuselage_design_ellipses.json` file. +The aircraft is divided into three sections: A cockpit section, followed by a constant section, and the tail section. +The steps of the shape generation are basically the same for all aircraft sections: +1. Calculate the section length as a percentage of the fuselage length<sup>*</sup>. +2. Proportionally adjust the given reference geometry to match the actual geometry using scaling factors. Therefore, separate scaling factors are calculated for + - the x-direction (lengthwise), + - the y-direction (widthwise), and + - the z-directions (upper and lower heights). +3. Calculate new coordinates as well as ellipses for visualization purposes. + +<sup>*</sup> The length of the constant section is determined by subtracting the length of the cockpit and the tail section from the entire fuselage length. + +___ +<sup>[1]</sup> Prof. Dr.-Ing. Juergen Thorbeck TU Berlin (2006), Script "Flugzeugentwurf I und II" chapter A.<br> +<sup>[2]</sup> M.Sc. Andreas Gobbin (2015), Master Thesis "Numerische Modellierung des Auslegungsprozesses für Passagierkabinen von Verkehrsflugzeugen unter Berücksichtigung der wichtigsten Auslegungsforderungen und Implementierung in MatLab".<br> +<sup>[3]</sup> Egbert Torenbeek, Synthesis of Subsonic Airplane Design (1982), Delft University Press.<br> +<sup>[4]</sup> European Union Aviation Safety Agency (2024), CS-25 Large Aeroplanes - Amendment 28. \ No newline at end of file diff --git a/docs/documentation/sizing/fuselage_design/getting_started.md b/docs/documentation/sizing/fuselage_design/getting_started.md new file mode 100644 index 0000000..c9af4ab --- /dev/null +++ b/docs/documentation/sizing/fuselage_design/getting_started.md @@ -0,0 +1,216 @@ +# Getting started +This section will guide you through the necessary steps to get the _fuselage\_design_ module up and running. It contains information on tool requirements and design parameters. + +- [Design method selection](#design-method-selection) - How to set the design method? +- [Aircraft exchange file](#aircraft-exchange-file) - Get information on necessary parameters from the _acXML_. +- [Module configuration file](#module-configuration-file) - Dive into fuselage design specific parameters. +- [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running? +- [Next steps](#next-steps) - How to proceed? + +@note It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. + +Generally, we use two files to set or configure modules in UNICADO: +- The aircraft exchange file (or _acXML_) includes + - data related inputs (e.g., configuration type) and + - data related outputs (e.g., component design data). +- The module configuration file `fuselage_design_conf.xml` (also _configXML_) includes + - control settings (e.g., enable/disable generating plots) and + - program settings (e.g., information on cargo and passenger accommodation). + +In the following sections you will find more information on how to configure these files to suit your needs. + +## Design method selection {#design-method-selection} +The calculation method is automatically chosen based on the following data from the aircraft exchange and module configuration file: + +Parameter | File | Example <sup>*</sup> | +:--------------------|---------------|:--------------------------| +Configuration type | _acXML_ | tube_and_wing | +Calculation fidelity | _configXML_ | empirical | +Method name | _configXML_ | fuselage_design_tu_berlin | +Energy carrier type | _acXML_ | kerosene | + +<sup>*</sup> This example defines a generic short and medium range tube-and-wing aircraft. + +Thus, it must be ensured that this data is available. More information on required data can be found in the following sections. + +## Aircraft exchange file requirements {#aircraft-exchange-file} +_fuselage\_design_ can be single executed without the execution of any other module. The only prerequisite is a complete `requirements_and_specifications` block in the aircraft exchange file. + +<!-- To single execute the _fuselage\_design_ module, we need an _acXML_ file that already contains the output data from the following tools: +- _module\_name_ +- ... --> + +The following data should be available in the _acXML_ (2. and 3. are optional): +1. Requirements and specifications + - Design specification + - Configuration information + - Configuration type + - Fuselage definition: Fuselage type, fuselage pressurization + - Undercarriage definition: Main gear mounting + - Wing definition: Wing mounting + - Transport task + - Cargo definition: Additional cargo mass, cargo density + - Passenger class definition: Class distribution + - Passenger definition: Total number passengers, luggage mass per passenger + - Multi-passenger deck layout information + - Energy carrier(s) + - Propulsion: Positioning of propulsor element(s) + - Requirements + - Top level aircraft requirements: Range +2. Analysis + - Mission: Flight time of design mission + - Masses, CG, inertia + - Maximum takeoff mass + - Most afterward mass: COG position + - Most forward mass: COG position +3. Component design: Geometrical data of + - Tank: Additional fuselage length + - Wing + - Position + - Information for wing sections + - (Name) + - (Position) + - Chord origin + - Chord length + - Global reference point position + +@note When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. + +## Module configuration file {#module-configuration-file} +The _configXML_ is structured into two blocks: the control and program settings. + +The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least +- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings, +- the `console_output` at least to `mode_1`, and +- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`). + +@note If the tool is executed via the workflow, those settings are set by the workflow settings. + +The program settings are structured like this (descriptions can be found in the `fuselage_design_conf.xml`): + +```plaintext +Program Settings +|- Configuration (ID="tube_and_wing") +| |- Fidelity name +| |- Method name +| |- Fidelity (ID="empirical") +| | |- Fuselage design tu berlin +| | | |- General +| | | | |- Flight attendant mass +| | | | |- Flight crew member mass +| | | | |- Force circular cross section +| | | | |- High density seat pitch +| | | | |- Length of flight deck +| | | | |- Mass technology factors +| | | | | |- Fuselage structural mass technology factor +| | | | |- Name of fuselage +| | | | |- On board service load +| | | | | |- PAX per full size trolley long range +| | | | | |- PAX per full size trolley medium range +| | | | | |- PAX per full size trolley short range +| | | | | |- PAX per full size trolley regional range +| | | | |- Sizing mode +| | | | | |- Setting use existing fuselage +| | | | | | |- Name of existing geometry file +| | | | | | |- Use as starting point +| | | | |- System bay height above cabin +| | | |- Specific +| | | | |- Cabin floor offset +| | | | |- Cargo accommodation +| | | | | |- ULD type +| | | | | | |- Container +| | | | | | | |- Name +| | | | | | | |- Use specific number of LD container +| | | | | | | | |- Specific number of LD container +| | | | | | |- Pallet +| | | | | | | |- Name +| | | | | | | |- Use specific number of cargo pallet +| | | | | | | | |- Specific number of cargo pallet +| | | | | |- Use internal bulk area +| | | | | | |- Specific internal bulk area +| | | | |- Dead end cabin arrangement +| | | | | |- Dead end cabin arrangement in front +| | | | | |- Dead end cabin arrangement in aft +| | | | |- Exit definition +| | | | | |- Auto-select exit types +| | | | | | |- Select specific exit types +| | | | | | | |- Exit (ID="0") +| | | | | |- Plus certification allowed +| | | | |- Fuselage frame distance +| | | | |- Passenger accommodation +| | | | | |- Divider definition +| | | | | | |- Set divider automatically +| | | | | | |- Use soft divider +| | | | | | | |- Hard divider thickness +| | | | | | |- Divider width +| | | | | | | |- Set divider width automatically +| | | | | | | |- Specific class divider width +| | | | | |- Galley definition +| | | | | | |- Use specific number of full size trolleys +| | | | | | | |- Specific number of full size trolleys +| | | | | | |- Use specific number of half size trolleys +| | | | | | | |- Specific number of half size trolleys +| | | | | | |- Use specific number of standard units +| | | | | | | |- Specific number of standard units +| | | | | |- In-flight entertainment +| | | | | | |- Use in-flight entertainment +| | | | | |- Passenger classes +| | | | | | |- Class (ID="0") +| | | | | | | |- Name +| | | | | | | |- Abreast +| | | | | | | |- Seats +| | | | | | | | |- Seat on left side +| | | | | | | | | |- Name +| | | | | | | | | |- Seat pitch +| | | | | | | | |- Seat on right side +| | | | | | | | | |- Name +| | | | | | | | | |- Seat pitch +| | | | | | | | |- Seat in the center +| | | | | | | | | |- Name +| | | | | | | | | |- Seat pitch +| | | | | | | |- Seat space +| | | | | | | |- Lavatories +| | | | | | | | |- Name +| | | | | | | | |- PAX per lavatory +| | | | | | | | |- Use specific number of class lavatories +| | | | | | | | | |- Specific number of class lavatories +| | | | | | | |- Wardrobe +| | | | | | | | |- Use wardrobe for passenger class +| | | | |- Passenger aisle +| | | | | |- Width +| | | | | |- Standing height +| | | | | |- Standing height seat row +``` + +## Additional requirements {#additional-requirements} + +### Fuselage design library +The fuselage design library contains files that are necessary to generate a valid fuselage and cabin design. + +#### Reference ellipses +The reference aircraft ellipses are used to create the outer shape of the aircraft. +There are reference ellipses for the following sections: +- Cockpit section +- Constant section +- Tail sections +Furthermore, there is data for the reference diameter and information on scaling factors. + +#### Accommodation definitions +The `accommodation_definitions.xml` file contains information on the passenger and cargo definition for the following categories: +- Cabin interior such as seats, galleys, trolleys, lavatories, and wardrobes as well as respective masses +- Cargo accommodation such as containers or pallets +- Emergency slides +- Safety equipment masses + +#### Fuselage design certification requirements +The `fuselage_design_cs_requirements.xml` file contains necessary design requirements regarding the following topics: +- Emergency exit definition and positioning (according to CS-25.807ff) +- Cabin design specifications such as the aisle dimensions and cross aisle overlaps (according to CS-25.807ff) +- Container arrangement +- Maximum number of PAX per flight attendant +- Maximum crew duty time + +@note Please do not change any values that are set in accordance with the CS-25. Otherwise compliance of the design with the certification requirements cannot be guaranteed. + +## Next steps {#next-steps} +The next step is to [run the _fuselage\_design_ module](run_your_first_design.md). \ No newline at end of file diff --git a/docs/documentation/sizing/fuselage_design/index.md b/docs/documentation/sizing/fuselage_design/index.md new file mode 100644 index 0000000..89bd2ee --- /dev/null +++ b/docs/documentation/sizing/fuselage_design/index.md @@ -0,0 +1,40 @@ +# Introduction {#mainpage} +The _fuselage\_design_ module is your go-to tool in the UNICADO sizing loop for all things aircraft fuselage! From sculpting the cockpit section to shaping the constant and tail section, this module handles it all with precision and flexibility. Need parametric ellipses for those fuselage cross-sections? Done. Want to adapt to a unique aircraft configuration? No problem! Ok, you got me... coming soon. \emoji soon + +Seamlessly integrated into the design workflow, _fuselage\_design_ empowers you to create efficient, certifiable fuselage geometries — all while keeping your design process smooth and adaptable. + +## Summary of features +Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned: + +Configuration | Energy carrier | Fidelity | Methods | Status | +------------------|------------------|-----------|-----------|:------------------------------------:| +Tube-and-wing |Kerosene |Empirical |TUB |running \emoji white_check_mark | +Tube-and-wing |Liquid hydrogen |Empirical |TUB |? | +Blended-wing-body |... |... |... |under development \emoji construction | + +## A user's guide to fuselage design +The _fuselage\_design_ tool is your key to designing the aircraft's fuselage. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a fuselage design from the ground up. +The following sections will walk you through the process: +- [Getting started](getting_started.md) +- [Run your first fuselage design](run_your_first_design.md) + +For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections: +- A [method description](design_method.md) and +- a [software architecture](software_architecture.md) +section. + +Ready to dive in? Let’s get started! \emoji airplane + + +<!-- ## You are a Developer? +If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO! + +The following pages will help you understand the code structure: + +- [Prerequisites](prerequisites.md) +- [Build the code](build-the-code.md) +- [Tank design module structure](wing-module-structure.md) +- [Available methods](available-methods.md) +- [Method template](method-template.md) + +We appreciate it! --> \ No newline at end of file diff --git a/docs/documentation/sizing/fuselage_design/run_your_first_design.md b/docs/documentation/sizing/fuselage_design/run_your_first_design.md new file mode 100644 index 0000000..1196538 --- /dev/null +++ b/docs/documentation/sizing/fuselage_design/run_your_first_design.md @@ -0,0 +1,142 @@ +# Design your first fuselage +Let's dive into the fun part and design a fuselage! + +## Tool single execution +The tool can be executed from the console directly if all paths are set. The following will happen: +- [Console output](#console-output) +- [Generation of reports and plots](#reporting) +- [Writing output to aircraft exchange file](#acxml) +- [Writing geometry data to .json file](#geometry-data) + +Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices. +Also, if you need some additional information on the underlying methodology, check out the page on the [fuselage design method](design_method.md). + +So, feel free to open the terminal and run `fuselage_design.exe` to see what happens... + +### Console output {#console-output} +Firstly, you see output in the console window. Let's go through it step by step... + +``` +2024-11-11 17:34:30,743 - PRINT - Fuselage design started... +2024-11-11 17:34:30,803 - PRINT - Import of fuselage design cs requirements xml-file and accommodation definition xml-file successfully. +2024-11-11 17:34:30,805 - PRINT - Current iteration of fuselage design is: 1 +``` +To this point, the module started, found the required XML files and printed the iteration counter. + +``` +2024-11-11 17:34:30,812 - PRINT - Total length of fuselage is: 37.0553 meter. +2024-11-11 17:34:30,812 - PRINT - Total width of fuselage is: 3.968 meter. +2024-11-11 17:34:30,813 - PRINT - Total height of fuselage is: 4.1425 meter. +``` +Afterwards, the fuselage design starts and prints values for the whole fuselage. + +``` +2024-11-11 17:34:30,813 - PRINT - Total length of cabin is: 26.6847 meter. +2024-11-11 17:34:30,813 - PRINT - Total width of cabin is: 3.6932 meter. +2024-11-11 17:34:30,813 - PRINT - Wall thickness of cabin is: 0.1374 meter. +2024-11-11 17:34:30,813 - PRINT - Floor thickness of cabin is: 0.2062 meter. +2024-11-11 17:34:30,814 - PRINT - Fuselage design successful after 1 iterations! +``` +The tool continues with the print of cabin parameters and the information that the fuselage design was successful after one iteration. + +``` +2024-11-11 17:34:32,356 - PRINT - Plots for fuselage design are successfully generated and saved. +2024-11-11 17:34:32,356 - PRINT - Moin! This is the "method_html_report" function from the fuselage_design tool speaking... [Imagine fancy reports are generated here (you can find me in the "methodhtmlreport.py" file).] +2024-11-11 17:34:32,359 - PRINT - Method-specific data are written to 'fuselage_design_results.xml'... +2024-11-11 17:34:32,371 - PRINT - Moin! This is the "method_tex_output" function from the fuselage_design tool speaking... [Imagine fancy reports are generated here (you can find me in the "methodtexoutput.py" file).] +2024-11-11 17:34:32,372 - PRINT - Fuselage design finished. +``` +Finally, you receive information about the reports and plots created (depending on your settings) and the tool is successfully completed. + +### Reporting {#reporting} +In the following, a short overview is given on the generated reports: +- A `fuselage_design.log` file is written within the directory of the executable +- Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file: + - an HTML report in the `report_html` folder (not implemented yet) + - a TeX report in the `report_tex` folder (not implemented yet) + - an XML file with additional output data in the `report_xml` folder + - plots in the `plots` folder + +### Write data to the aircraft exchange file {#acxml} +@note The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! + +Results are saved in the aircraft exchange file at the `/aircraft_exchange_file/component_design/fuselage` node. The following information is written to the _acXML_: +```plaintext +Aircraft exchange file +|- Component design +| |- Fuselage +| | |- Position* +| | |- Mass properties +| | | |- ... +| | |- Specific +| | | |- Geometry +| | | | |- Fuselage (ID="0") +| | | | | |- Name +| | | | | |- Position* +| | | | | |- Direction* +| | | | | |- Mass properties +| | | | | | |- ... +| | | | | |- Sections +| | | | | | |- Section (ID="0") +| | | | | | | |- Name +| | | | | | | |- Section shape +| | | | | | | |- Origin* +| | | | | | | |- Upper height +| | | | | | | |- Lower height +| | | | | | | |- Width +| | | | | |- Number of required cabin crew +| | | | | |- Number of required flight crew +| | | | | |- Mass breakdown +| | | | | | |- Fuselage structure +| | | | | | | |- Component mass (ID="0") +| | | | | | | | |- Name +| | | | | | | | |- Mass +| | | | | | |- Fuselage furnishing +| | | | | | | |- Component mass (ID="0") +| | | | | | | | |- Name +| | | | | | | | |- Mass +| | | | | | |- Fuselage operator items +| | | | | | | |- Component mass (ID="0") +| | | | | | | | |- Name +| | | | | | | | |- Mass +| | | | | |- Fuselage accommodation +| | | | | | |- Position* +| | | | | | |- Mass properties +| | | | | | |- Payload tube (ID="0") +| | | | | | | |- Name +| | | | | | | |- Payload tube reference points +| | | | | | | | |- Front reference points +| | | | | | | | | |- x +| | | | | | | | | |- y +| | | | | | | | | |- z +| | | | | | | | | |- Upper z +| | | | | | | | | |- Lower z +| | | | | | | | |- Aft reference points +| | | | | | | | | |- (see 'Front reference points') +| | | | | | | |- Payload tube wall reference points +| | | | | | | | |- Front reference points +| | | | | | | | | |- x +| | | | | | | | | |- Left y +| | | | | | | | | |- Right y +| | | | | | | | | |- z +| | | | | | | | |- Aft reference points +| | | | | | | | | |- (see 'Front reference points') +| | | | | | | |- Payload tube structural wall thickness +| | | | | | | |- Payload tube water volume +| | | | | | | |- Payload decks +| | | | | | | | |- Payload deck (ID="0") +| | | | | | | | | |- Name +| | | | | | | | | |- Position* +| | | | | | | | | |- Payload deck structural floor thickness +| | | | | | | | | |- Payload deck water volume +| | | | | | | | | |- Payload deck length +| | | | | | | | | |- Payload deck required galley power +``` + +<sup>*</sup> Node contains the following sub-nodes: x, y, z + +### Write geometry data to .json file {#geometry-data} +The calculated geometry data is written to the `fuselage_design_ellipses.json` file and can then be used if the `use_existing_geometry` flag is set to `true`. + +## Troubleshooting {#troubleshooting} +- The tool does not run properly? *Make sure you have all the paths set up correctly and the specified elements exist.* diff --git a/docs/documentation/sizing/fuselage_design/software_architecture.md b/docs/documentation/sizing/fuselage_design/software_architecture.md new file mode 100644 index 0000000..05446b9 --- /dev/null +++ b/docs/documentation/sizing/fuselage_design/software_architecture.md @@ -0,0 +1,2 @@ +# Software architecture +This site is currently under development. \emoji construction \ No newline at end of file diff --git a/docs/documentation/sizing/initial_sizing/changelog.md b/docs/documentation/sizing/initial_sizing/changelog.md new file mode 100644 index 0000000..ec0bb9d --- /dev/null +++ b/docs/documentation/sizing/initial_sizing/changelog.md @@ -0,0 +1,20 @@ +# Changelog {#changelog} +## v3.0.0 +The *v3.0.0* release is a **major** release with many changes including the *modularization*. + + +### Changes +The following changes are introduced: + +- The empty mass fraction is determined by a new method which was derived from data of modern airliners + +### Bugfixes +During the development of this release the following bugs were found and fixed: + + + +### Changes in the CSR designs +The implemented changes and bugfixes lead to the following changes in the results of the CSR designs. +@note Only changes which exceed a 10 % change are listed. + + diff --git a/docs/documentation/sizing/initial_sizing/getting-started.md b/docs/documentation/sizing/initial_sizing/getting-started.md new file mode 100644 index 0000000..61f4b3a --- /dev/null +++ b/docs/documentation/sizing/initial_sizing/getting-started.md @@ -0,0 +1,51 @@ +# Getting started {#getting-started} +This guide will show you the basic usage of **initial_sizing**. Following steps are necessary (if you are new to UNICADO check out the [settings and outputs](#settingsandoutputs) first!) + +## Step-by-step + +It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/build/cpp/)). + +1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#acXML)) +2. Fill out the configuration file - change at least: + - in `control_settings` + - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings + - `console_output` at least to `mode_1` + - `plot_output` to false (or define `inkscape_path` and `gnuplot_path`) + - in `program_settings` + - the initial assumptions of values for the stated parameters +3. Open terminal and run **initialSizing** + +Following will happen: +- you see output in the console window +- a HTML report is created in the directory of `aircraft_exchange_file_directory` (no plots if they are turned off) +- results are saved in the _acXML_ file + + +## Settings and outputs {#settingsandoutputs} +Generally, we use 2 files to set our configuration in UNICADO: +- the aircraft exchange file (or _acXML_) includes + - data related inputs (e.g. range, pax number, cargo) + - data related outputs (e.g. MTOM, OME) +- the configuration file `initial_sizing_conf.xml` (or _configXML_) includes + - control settings (e.g. enable/disable generating plots) + - program settings (e.g. set parameters to consider for specific technologies or change of methods) + +### Aircraft exchange file +@note _acXML_ is an exchange file - we agreed on that only data will be saved as output which is needed by another tool! + +**Inputs**: +The following is needed from the _acXML_: +1) the accomodation requirements (pax number, pax mass, luggage mass, cargo mass), +2) the mission requirements (range, reserves, TOFL, cruise speed and altitude, approach speed), +3) the user settings of the energy carrier + +Naturally, the initial_sizing needs an assumption for the initial MTOM to start the iteration of MTOM. This initial MTOM is calculated from the pax number requirement in the _acXML_ + +Additionally, the user settings need to be defined. In the node `/aircraft_exchange\_file/requirements_and_specifications/design_specification` (for more information on the variables, please read the description in the _acXML_). + +**Outputs**: + +The following is written into the _acXML_: +1) the Maximum Takeoff Mass (MTOM), +2) the Operating Mass Empty (OME), +3) the Design Sizing Point which consists of the wing loading and the Thrust to weight ratio needed to fulfil the TLARs diff --git a/docs/documentation/sizing/initial_sizing/index.md b/docs/documentation/sizing/initial_sizing/index.md new file mode 100644 index 0000000..e5f09ae --- /dev/null +++ b/docs/documentation/sizing/initial_sizing/index.md @@ -0,0 +1,18 @@ +# Introduction {#mainpage} +The tool _initialSizing_ is the first aircraft design tools in the UNICADO workflow. +The overall goal is the initial takeoff mass estimation based on the Top Level Aircraft Requirements "TLARs" range and payload. +Moreover an initial sizing chart is derived from further TLARs like the desired cruise speed, approach speed or takeoff field lenght. + +The design window is then automatically investigated for an optimum design point resulting in the wing loading and thrust to weight ratio for the aircraft. +Together with the initial takeoff mass and empty mass estimation the tool delivers the first important parameters for further UNICADO design modules. + +This tool is exiting because it starts the clean sheet aircraft design and you will get a first idea how large and heavy your aircraft will be for the desired mission. + +To remind you of the concept of an initial sizing chart and desing window, here is the diagram where each border is derived from a different TLAR - hence every combination of wing loading +and thrust to weight ratio within the borders are possible design points for the aircraft. + + +The @subpage getting-started gives you a first insight in how to execute the tool and how it generally works. + +So let's get started! + diff --git a/docs/documentation/sizing/initial_sizing/initialSizing.md b/docs/documentation/sizing/initial_sizing/initialSizing.md new file mode 100644 index 0000000..73d7e30 --- /dev/null +++ b/docs/documentation/sizing/initial_sizing/initialSizing.md @@ -0,0 +1,122 @@ +# Implemented Aircraft Sizing Methods and Models + +## Initial Takeoff Mass Estimation MTOM +The MTOM is initially iterated from Top Level Aircraft Requirements (TLARs), user assumptions and certification requirements. + +**Methods** + +The *Payload* is like its name the mass that pays for a trip. It is calculated from the number of passengers (PAX) and additional cargo requirement. +It is a fixed value for the whole iteration. +For the determination the following parameters from the acXML are necessary: + +* Number of PAX [-] +* Mass per person [kg] +* Luggage per PAX [kg] +* Additional cargo mass [kg] + + +The *Crew mass* is not part of the payload but once determined it is also a fixed value for the iteration of the MTOM. +The crew mass is dependent on the different seating classes (FC, BC, EC) and number of PAX in each class the aircraft shall have. +Furthermore, the certification requirements define the number of pilots. +For the determination the following parameters are necessary: + +acXML: +* Number of PAX in each class [-] +* Mass per person [kg] and luggage per crew are the same than for the passengers +initialSizing_conf: +* Number of pilots [-] +in source code +* Ratio for flight attendants per PAX amount in each class [-]: i.e. 1 Flight Attendant per 14 PAX in FC, 1 per 40 in EC + + +The *fuel* which is needed for individual mission segments is not calculated in absolute values but as mass fractions from the total remeining fuel. The fuel fractions of the cruise segment, the reserve needed to the flight to an alternate distance and the reserve for a holding time are calculated with the Breguet equation. +For the determination the following parameters are necessary: + +acXML: +* Design range [m] +* Crusie flight speed [m/s]: automatically calculated from the design machNumber +* Contingency [-]: percentage for the reserve of the trip fuel (the fuel necessary for the design range without reserves) +* Cruise flight altitutde [m]: to calculate the air density +initialSizing_conf: +* SFC of the engine with regard to fuel type [-]: +* Glide Ratio (L/D) in cruise [-]: Initial assumption given by user +* Glide Ratio (L/D) in Loiter [-]: Initial assumption given by user + + +The fuel fractions (i.e. engine warm up, taxi, takeoff, climb....) are set as an static input by the user in the initialSizing_conf file. +Together with the fuel fractions from the segments calculated with the breguet equation, the overall fuel fraction of the aircraft is calculated. +In this way of calculating the necessary fuel, the method and also the same static fuel fractions are applicable for various aircraft sizes. + + +The *MTOM* is calculated in an iteration because the absolute amount of fuel and the *Operating Mass Empty* (OME) changes with the aircraft MTOM. +The initial value for MTOM in order to start the MTOM iteration is estimated with a simple formula depending on the payload and a static factor only. +For the *OME* a mass ratio me/m0 is used in order to take into account the total aircraft size. Larger aircraft usually have a smaller empty mass / takeoff mass ratio. +In each iteration a new me/m0 ratio is calculated. Together with the fuel mass fraction, the payload and the crew mass the MTOM is determined. This iteration goes on until the convergence criteria is reached. + + +## Initial Constraint Analysis - Sizing Chart +A constraint analysis is conducted in order to set the initial *Design Point* for the aircraft. The Desing Point is defined as a wing loading and thrust to weight ratio. +The constraint analysis is a method to make sure Top Level Aircraft Requirements (TLARs) and certification requirements will be fulfilled by the designed aircraft. +For this a sizing chart is determined and printed by the module. + +**Methods** + +The *Takeoff* constraint makes sure to respect the takeoff field lengt TLAR. +For the determination the following parameters are necessary: + +acXML: +* Takeoff field lenght (TOFL) [m] +initialSizing_conf: +* Number of engines [-]: is used to set a engine proportional factor +* CL_max_takeoff [-] + + +The *Climb* constraint makes sure to respect the climb ability in the 2nd segment with one engine inoperative (OEI) by the certification standards. +For the determination the following parameters are necessary: + +acXML: +* Minimum climb angle [rad]: according to the certification standards and the total number of engines + +* L/D_climb [-]: with the highlift system in the state of the 2nd climb segment +in source code: +* Mass ratio m_climb/MTOM [-] + + +The *Cruise Flight* constraint makes sure to respect the desing cruise speed and altitude TLAR. +For the determination the following parameters are necessary: + +initialSizing_conf: +* Cfeq [-]: Equivalent friction coefficient to estimate parasetic drag coefficient +* Oswald efficency factor e [-] +* Wing Aspect Ratio [-] +in source code: +* Thrust ratio F_total/F_cruise [-] +* S_wet/S_rev ratio [-]: Ratio of wetted surface to wing reference area to estimate parasetic drag coefficient +* Mass ratio m_cruise/MTOM [-] + + +The *Landing* constraint makes sure to respect the maximum approach speed TLAR. +For the determination the following parameters are necessary: + +initialSizing_conf: +* CL_max_Landing [-] +* Mass ratio m_land/MTOM [-]: +acXML: +* v_appr [m/s]: Approch speed TLAR + +These constraints open up the design or sizing window of the aircraft where it can fulfill the TLARs and certification standards. + +## Initial Constraint Analysis - Desing Point +The constraints from the section before open up the design or sizing window, where the aircraft can fulfill the TLARs and certification standards. +Selecting the optimal design point within the window is again dependent on various requirements and the constellation of the design window itself. +This would be quite complex to implement in the module. In order to keep the module and the methods simple, only the borders of the desing window are investigated - since in many cases they deliver an optimal design point. +In general, a design point with a wing loading as high as possible and a thrust to weight ratio as low as possible is a good choice. + +**Methods** + +* This investigation is done by calculating the intersections of the borders. +* It is checked how many intersection points of constraints the borders of the desing window has. +* It is checked if the CL_optimal is within the design window. CL_optimal is a user input in the initialSizing_conf.xml and describes the desing Lift coefficient at initial cruise speed and altitude. +* If CL_optimal is in the design window the intersection of CL_optimal and the desing window border is used as design point. +* If CL_optimal is not in the design window and there is only one intersection from borders in the window this intetersection is used as design point. +* If CL_optimal is not in the design window and there are two intersection from borders in the window, an interpolated point between these two is used as design point. \ No newline at end of file diff --git a/docs/documentation/sizing/landing_gear_design/design_method.md b/docs/documentation/sizing/landing_gear_design/design_method.md new file mode 100644 index 0000000..f678d16 --- /dev/null +++ b/docs/documentation/sizing/landing_gear_design/design_method.md @@ -0,0 +1,400 @@ +# Calculation method + +- [Initial position estimation](#initial-positions) +- [Calculation of geometric distances](#distances) +- [Estimation of landing gear loads](#loads) +- [Tire selection](#tires) +- [Limitation check](#limitations) +- [Clearance compliance check](#clearances) +- [Estimation of landing gear mass](#mass) +- [Estimation of aircraft classification number](#acn) + + +## Initial positions {#initial-positions} +First, initial x axis positions for the nose \f$x_{NLG}\f$ and main landing gear \f$x_{MLG}\f$ are estimated. If any of the required values are missing, default values are used, such as a minimum distance of 2 meters between the main landing gear and the aft-most center of gravity. + +The nose gear position is determined either from module configuration data or input parameters, such as the front reference point of the payload area or existing landing gear positions. If no relevant data is available, a default starting position, such as 5 meters, is applied. + +Similarly, the main landing gear position is estimated. Depending on the aircraft type, default positions of 19 meters (single-aisle) and 32 meters (wide-body) are assigned. Additional factors, including wing reference points, center of gravity data, and wing chord lengths, are incorporated into the estimation if available. A temporary center of gravity is also calculated based on the main landing gear position and the safety margin from the aft-most center of gravity. + +These positions are recalculated on an ongoing basis. + +## Distances {#distances} +Afterwards, critical distances (lever arms) and tipping points for estimating loads on the landing gear are calculated. +Default values are assigned if parameters are not explicitly provided. + +### Horizontal distances + + +#### Distance between nose and main landing gear +The distance between the nose and the main landing gear can be estimated using the following equation: +\f[ + d_{NLG\_MLG} = |x_{MLG} - x_{NLG}| +\f] +In which +- \f$ x_{MLG}\f$ - x position of main landing gear +- \f$ x_{NLG}\f$ - x position of nose landing gear + +#### Distance between nose gear and foremost center of gravity position +If the foremost center of gravity position is already known, the distance to the nose gear can be determined according to the following formula: +\f[ + d_{NLG\_front\_CG} = |x_{front\_CG} - x_{NLG}| +\f] +In which +- \f$ x_{front\_CG}\f$ - x position of foremost center of gravity + +Otherwise, \f$d_{NLG\_front\_CG}\f$ is determined by using a first estimation: +\f[ + d_{NLG\_front\_CG} = |(x_{MLG} - 2) - x_{NLG}| +\f] + +#### Distance between nose gear and rearmost center of gravity +The distance between the nose gear position and the rearmost center of gravity in x direction can be calculated as follows: +\f[ + d_{NLG\_rear\_CG} = |x_{rear\_CG} - x_{NLG}| +\f] +In which +- \f$x_{rear\_CG}\f$ - x position of rearmost center of gravity + +Otherwise, \f$d_{NLG\_rear\_CG}\f$ is determined by using a first estimation: +\f[ + d_{NLG\_rear\_CG} = |(x_{MLG} - 1) - x_{NLG}| +\f] + +#### Distance between main landing gear and rearmost center of gravity position +If no distance between the main landing gear and the rearmost center of gravity is available from earlier iterations, it equals `1`. + +### Vertical distances + + +#### Vertical distance between ground and center of gravity position +Starting with the second iteration loop, the vertical distance between ground and center of gravity \f$\Delta h_{GND\_CG}\f$ is known. + +In the first loop, however, the vertical distance must be calculated as sum of the following heights: +1. Vertical distance from fuselage center line to center of gravity \f$\Delta h_{FCL\_CG}\f$ +2. z position of tail tipping point (equals vertical distance between fuselage center line and tail tipping point) \f$z_{TP}\f$ +3. Vertical distance from tail tipping point to ground \f$\Delta h_{TP\_GND}\f$ + +**1. Vertical distance from fuselage center line to center of gravity**<br> +The distance between global center of gravity in z-direction and the fuselage center line \f$\Delta h_{FCL\_CG}\f$ is either estimated by subtracting the z position of the fuselage center line \f$z_{FCL}\f$ from the z position of the most aft CG position \f$z_{rear\_CG}\f$ +\f[ + \Delta h_{FCL\_CG} = |z_{rear\_CG} - z_{FCL}| +\f] + +or, if those values are not given, set to `0.5` for single-aisle and `1.0` for wide-body configurations. + +**2. z position of tail tipping point**<br> +If the position of the tail tipping point in z direction is not known, it is assumed to equal \f$z_{TP} = -0.3 \cdot h_{fuselage}\f$. The fuselage height \f$h_{fuselage}\f$ in meter is known or assumed to be `3.8` for single-aisle and `5.8` for wide-body aircraft. + +**3. Vertical distance from tail tipping point to ground**<br> +The vertical distance from the tail tipping point to the ground \f$\Delta h_{TP\_GND}\f$ is estimated in the following way: + +\f[ + \Delta h_{TP\_GND} = |\tan(\theta_{LDG}) \cdot d_{MLG\_TP}| - h_{susp} +\f] + +The vertical distance between the main landing gear and the tail tipping point \f$d_{MLG\_TP}\f$ is either known or set to `15` for single-aisle or `25` for wide-body aircraft configurations. + +If a strut suspension system is implemented, the vertical distance between ground and CG decreases by the suspension travel \f$h_{susp}\f$ that equals `0` if no suspension system is implemented. + +**Vertical distance between ground and center of gravity position**<br> +Finally, the vertical distance between the ground and the CG position can be calculated by summing up these values: +\f[ + \Delta h_{GND\_CG} = \Delta h_{FCL\_CG} + |z_{TP}| + \Delta h_{TP\_GND} +\f] + +## Load estimation {#loads} +Subsequently, the loads on the nose and main landing gear are calculated based on Norman S. Currey's work<sup>[1]</sup>, unless explicitly stated otherwise. It considers the static and dynamic loads during takeoff, landing, and taxiing, while ensuring the loads conform to the permissible percentages as per aviation regulations. + +The following data is necessary: +- Maximum aft position of nose landing gear +- Minimum foremost position of nose landing gear +- Minimum foremost position of main landing gear +- Maximum ramp weight + +If no values are available, initial values are set. + +### Nose landing gear loads +**Minimum static nose gear load** +\f[ + L_{NLG,stat,min} = \frac{MRW \cdot (d_{NLG\_MLG} - d_{NLG\_rear\_CG})}{d_{NLG\_MLG}} +\f] +In which +- \f$MRW\f$ - maximum ramp weight +- \f$d_{NLG\_MLG}\f$ - distance between nose and main gear +- \f$d_{NLG\_rear\_CG}\f$ - distance between nose gear and rearmost center of gravity + +**Maximum static nose gear load** +\f[ + L_{NLG,stat,max} = \frac{MRW \cdot (d_{NLG\_MLG} - d_{NLG\_front\_CG})}{d_{NLG\_MLG}} +\f] +In which +- \f$MRW\f$ - maximum ramp weight +- \f$d_{NLG\_MLG}\f$ - distance between nose and main gear +- \f$d_{NLG\_front\_CG}\f$ - distance between nose gear and foremost center of gravity + +**Maximum dynamic nose gear load** +\f[ + L_{NLG,dyn,max} = L_{NLG,stat,max} + \frac{10 \cdot d_{GND\_rear\_CG} \cdot MRW}{32.2 \cdot d_{NLG\_MLG}} +\f] +In which +- \f$d_{GND\_rear\_CG}\f$ - vertical distance between ground and aft center of gravity + +The static loads on the nose landing gear should be between 6% and 20% of the maximum ramp weight for all CG positions. These values are absolute limits and must not be exceeded at any time. Ideally, the static loads for the minimum and maximum nose landing gear load should be between 8% and 15%. If the limits are violated, the landing gear positions and/or the empty mass center of gravity must be varied. This leads to a renewed check of the center of gravity movement and the limits to be adhered to (iterative process). + +#### Dynamic nose gear loads for takeoff and landing condition +The calculation of the dynamic nose gear loads for takeoff and landing conditions is in accordance with CS 25.733 (b)(2) and (b)(3)<sup>[2]</sup>. + +**Maximum static nose gear landing load** +In order to calculate the maximum static nose gear load at landing, the maximum static nose gear landing load \f$ L_{NLG,stat,max,LDG}\f$ has to be estimated first. + +\f[ + L_{NLG,stat,max,LDG} = \frac{MLM \cdot g \cdot (d_{NLG\_MLG} - d_{NLG\_front\_CG})}{d_{NLG\_MLG}} +\f] +In which +- \f$MLM\f$ - maximum landing mass +- \f$ g\f$ - gravitational acceleration +- \f$d_{NLG\_MLG}\f$ - distance between nose and main gear +- \f$d_{NLG\_front\_CG}\f$ - distance between nose gear and foremost center of gravity + +@note If no maximum landing mass exists, 90% of the maximum ramp weight are initially assumed for the calculation. + +Subsequently, the maximum dynamic load at landing \f$ L_{NLG,dyn,max,LDG} \f$ can be calculated based on CS 25.733 (b)(2): +\f[ + L_{NLG,dyn,max,LDG} = L_{NLG,stat,max,LDG} + 0.31 \cdot L_{NLG,stat,max,LDG} +\f] + +**Maximum dynamic nose gear takeoff load** +The maximum dynamic nose gear load at takeoff can be calculated in accordance with CS 52.733 (b)(3): +\f[ + L_{NLG,dyn,max,TO} = L_{NLG,stat,max} + 0.2 \cdot L_{NLG,stat,max} +\f] + +### Main landing gear loads +The total main gear load can be estimated using the following equation: +\f[ + L_{MLG,max} = \frac{100 - L_{NLG,stat,min}}{100} \cdot MRW +\f] +In which +- \f$L_{NLG,stat,min}\f$ - minimum static nose gear load **in percent** + +### Nose landing gear position +The maximum possible foremost and aft position of the nose landing gear can be determined based on the loads. + +#### Foremost nose landing gear position +A maximum of 20 percent of the maximum ramp weight is allowed as the maximum static nose gear load \f$ L_{NLG,stat,max,possible}\f$: +\f[ + L_{NLG,stat,max,possible} = 0.06 \cdot MRW +\f] + +The foremost nose landing gear position therefore results in: +\f[ + d_{NLG\_front\_CG\_min} = \frac{MRW \cdot d_{NLG\_MLG} - L_{NLG,stat,max,possible} \cdot d_{NLG\_MLG}}{MRW} +\f] +In which +- \f$MRW\f$ - maximum ramp weight +- \f$d_{NLG\_MLG}\f$ - distance between nose and main gear + +#### Aft nose landing gear position +A minimum of 6 percent of the maximum ramp weight is allowed as the minimum static nose gear load \f$ L_{NLG,stat,min,possible}\f$: +\f[ + L_{NLG,stat,min,possible} = 0.2 \cdot MRW +\f] + +The aft nose landing gear position therefore results in: +\f[ + d_{NLG\_aft\_CG\_max} = \frac{MRW \cdot d_{NLG\_MLG} - L_{NLG,stat,min,possible} \cdot d_{NLG\_MLG}}{MRW} +\f] + +## Tires {#tires} +Tire selection in accordance to CS 25.733<sup>[2]</sup> und EASA ETSO tire list<sup>[3]</sup>, bridgestone aircraft tires<sup>[4]</sup> from landing gear lib (see [getting started](getting_started.md) page for more information). + +If a maximum takeoff stall speed exists, the maximum design speed **(in miles per hour)** corresponds to the greater of the two values maximum approach speed or maximum takeoff stall speed*1.3: +\f[ + v_{max\_des} = max(v_{app,max},v_{s,TO} \cdot 1.3) +\f] +In which +- \f$v_{app,max}\f$ - maximum approach speed (in mph) +- \f$v_{s,TO}\f$ - takeoff stall speed (in mph) + +Otherwise, the following applies: +\f[ + v_{max\_des} = v_{app,max} +\f] + +### Nose gear +For both, the number of nose gear struts \f$n_{NLG\_struts}\f$ as well as the number of nose gear tires per strut \f$n_{NLG\_tires\_per\_strut}\f$, the user can define specific values. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used. + +#### Design load estimation +The **single tire design load** \f$v_{NLG\_tire\_des}\f$ is calculated according to CS 25.733 (b)(1): +\f[ + v_{NLG\_tire\_des} = \frac{\frac{L_{NLG,stat,max}}{g} \cdot 2.2}{n_{NLG\_tires\_per\_strut} \cdot n_{NLG\_struts}} +\f] +In which +- \f$ L_{NLG,stat,max}\f$ - maximum static nose gear load +- \f$ g\f$ - gravitational acceleration + +Subsequently, the **single tire dynamic landing load** \f$v_{NLG\_tire\_LDG}\f$ is estimated based on CS 25.733 (b)(2): +\f[ + v_{NLG\_tire\_LDG} = \frac{\frac{L_{NLG,dyn,max,LDG}}{g} \cdot 2.2}{n_{NLG\_tires\_per\_strut} \cdot n_{NLG\_struts}} +\f] +In which +- \f$ L_{NLG,dyn,max,LDG}\f$ - maximum dynamic load at landing + +Afterwards, the calculation of the **single tire dynamic takeoff load** \f$v_{NLG\_tire\_TO}\f$ for nose gear tires is in accordance to CS 25.733 (b)(3): +\f[ + v_{NLG\_tire\_TO} = \frac{\frac{L_{NLG,dyn,max,TO}}{g} \cdot 2.2}{n_{NLG\_tires\_per\_strut} \cdot n_{NLG\_struts}} +\f] +In which +- \f$ L_{NLG,dyn,max,TO}\f$ - maximum dynamic load at takeoff + +#### Tire selection +Knowing the design speed and loads, a suitable tire is selected from the database. + +### Main gear tire selection +Similar to the nose landing gear, the number of main gear struts \f$n_{MLG\_struts}\f$ as well as the number of main gear tires per strut \f$n_{MLG\_tires\_per\_strut}\f$ can be defined by the user. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used. + +#### Design load estimation +The **single tire design load** is calculated according to CS 25.733 (a)(1): +\f[ + v_{MLG\_tire\_des} = \frac{\frac{L_{MLG,max}}{g} \cdot 2.2}{n_{MLG\_tires\_per\_outer\_strut} \cdot n_{MLG\_outer\_struts} + n_{MLG\_tires\_per\_inner\_strut} \cdot n_{MLG\_inner\_struts}} \cdot f_{safety} +\f] +In which +- \f$L_{MLG,max}\f$ - maximum main gear load +- \f$g\f$ - gravitational acceleration +- \f$n_{MLG\_tires\_per\_outer\_strut}\f$ - number of tires per outer strut +- \f$n_{MLG\_outer\_struts}\f$ - number of outer struts +- \f$n_{MLG\_tires\_per\_inner\_strut}\f$ - number of tires per inner strut +- \f$n_{MLG\_inner\_struts}\f$ - number of inner struts +- \f$f_{safety}\f$ - safety factor + +If only one main gear tyre is mounted to one main landing gear strut, \f$f_{safety} = 1\f$. If more than one tire is mounted to one main landing gear strut, an additional safety load margin according to CS 25.733 (c)(1) is required that results in \f$f_{safety} = 1.07\f$. + +#### Tire selection +Knowing the design speed and loads, a suitable tire is selected from the database. + +## Limitations {#limitations} +Estimation of ground strike limitations in accordance to Sforza<sup>[5]</sup> and CS-25<sup>[2]</sup> + +The safest and highest permissible rotation angle during takeoff, considering both landing constraints and tail tipping risks, is calculated, considering different constraints and configurations. + +**Maximum Rotation Angle for Landing**<br> +If the maximum angle of attack during landing is provided, it is compared to the defined tail strike limit and the greater of the two is selected. +If this value is not provided, it defaults to using only the given tail strike limit. + +**Maximum Tail Tipping Angle**<br> +The calculated maximum rotation angle at landing is compared with the maximum rotation angle during takeoff. The larger of these values is taken as the maximum tail tipping angle. + +With the known values, the landing gear placement and dimensions are estimated meeting constraints like stability, retractability, turnover limits, and tail strike prevention. If the criteria aren't met, the design is refined in an iterative process. + +## Clearances {#clearances} +Ground clearance angles for nacelles and wing tips are calculated and verified in accordance to Torenbeek<sup>[6]</sup> and CS-25<sup>[2]</sup>. + +### Nacelle clearance +The ground clearance \f$c_{nacelle}\f$ for each nacelle is given as: +\f[ + c_{nacelle} = d_{GND\_to\_FCL} - |z_{nacelle}| - |h_{nacelle}| +\f] +In which +- \f$d_{GND\_to\_FCL}\f$ - vertical distance between ground and fuselage center line +- \f$z_{nacelle}\f$ - z position of nacelle +- \f$h_{nacelle}\f$ - height of nacelle + +The nacelle clearance angle can then be determined: +\f[ + \theta_{nacelle} = \arctan\left(\frac{c_{nacelle}}{|y_{nacelle}| - y_{MLG\_outer\_strut}}\right) \cdot \frac{180}{\pi} +\f] + +In which: +- \f$y_{nacelle}\f$ - y position of nacelle +- \f$y_{MLG\_outer\_strut}\f$ - y position of outer main landing gear strut + +This value is then checked regarding the minimum required clearance angle of 5 degree, defined by CS 25.149, and the user-specified nacelle clearance angle. + +### Wing tip clearance +The wing tip ground clearance \f$c_{wing\_tip}\f$ is known from the positions of the wing tip section. +\f[ + c_{wing\_tip} = d_{GND\_to\_FCL} - z_{wing\_tip} +\f] +In which +- \f$d_{GND\_to\_FCL}\f$ - vertical distance between ground and fuselage center line +- \f$z_{wing\_tip}\f$ - z position of wing tip + +The wing tip clearance angle is calculated using the wing tip's position relative to the main gear outer strut: +\f[ + \theta_{wing\_tip} = \arctan\left(\frac{c_{wing\_tip}}{|y_{wing\_tip}| - y_{MLG\_outer\_strut}}\right) \cdot \frac{180}{\pi} +\f] +In which: +- \f$y_{wing\_tip}\f$ - y position of wing tip +- \f$y_{MLG\_outer\_strut}\f$ - y position of outer main landing gear strut + +This value is then validated against the minimum required clearance angle of 5 degree, defined by CS 25.149, and the user-specified wing tip clearance angle. + +## Masses {#mass} +The undercarriage masses are calculated in accordance to Torenbeek<sup>[6]</sup> using the following coefficients (taken from Table 8-6): + +| Gear Type | Position | A | B | C | D | +|----------------|----------|---------|---------|---------|-------------| +| Fixed | Main | 9.1 | 0.082 | 0.019 | 0 | +| Fixed | Nose | 11.3 | 0 | 0.0024 | 0 | +| Retractable | Main | 18.1 | 0.131 | 0.019 | 0.0000223 | +| Retractable | Nose | 9.1 | 0.082 | 0 | 0.00000297 | + +Under the use of these coefficients, the mass for the nose as well as the main landing gear can be calculated using the following equation: + +\f[ + m = c_{wing} \cdot \left( A + B \cdot MTOM^{0.75} + C \cdot MTOM + D \cdot MTOM^{1.5} \right) \cdot f_{corr} +\f] +In which: +- \f$c_{wing}\f$ - wing position coefficient (`1.0`for low or mid wing position, `1.8`for high wing position) +- \f$MTOM\f$ - maximum takeoff mass +- \f$f_{corr}\f$ - landing gear correction factor (taken from user specification) +- \f$ A,B,C,D\f$ - coefficients from above table + +@note If the maximum takeoff mass is not available, it is calculated by dividing the maximum ramp weight by the gravitational acceleration. + +The total nose/main landing gear mass divided by the number of struts per nose/main landing gear results in the per-strut mass. + +## Aircraft classification number {#acn} +The calculation is based on the COMFAA Tool developed by the Federal Aviation Administration (FAA) that is specifically used for computing the ACN (Aircraft Classification Number) in line with ICAO standards. +Detailed information can be taken from the website: + +@note By clicking on the following link, you will leave the UNICADO website. Please note that we are not responsible for the content of the linked website and do not assume any liability.<br> +https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/comfaa-30 + +The Aircraft Classification Number (ACN) is a standardized measure that describes the load a particular aircraft imposes on the surface of a runway or taxiway. It is defined by the International Civil Aviation Organization (ICAO) in Annex 14<sup>[7]</sup> and is used to assess whether an aircraft is compatible with a specific pavement's structural capacity, expressed as the Pavement Classification Number (PCN). +The subsequent section provides some information on the method. + +### Key characteristics of ACN +1. Definition + - The ACN represents the relative structural impact of an aircraft on a pavement. + - It is calculated based on the aircraft's weight, landing gear configuration, wheel spacing, and maximum takeoff weight. +2. Calculation + - The ACN is determined for two types of pavements: + - Rigid pavements: Concrete surfaces with a stiff structure. + - Flexible pavements: Asphalt or other elastic materials. + @note Currently only flexible pavement implemented. + - Subgrade strength (the strength of the ground beneath the pavement) is divided into four categories: High (H), Medium (M), Low (L), Very Low (VL). +3. Standardization + - The ACN is normalized to a reference Single Wheel Load (SWL) of 10 tons. + - As a result, it is independent of specific airport conditions. +4. Comparison + - The ACN of an aircraft is compared to the PCN of a pavement: + - ACN ≤ PCN: The aircraft can use the pavement without causing damage. + - ACN > PCN: Using the pavement may lead to structural damage and is generally restricted. + +### Factors influencing ACN +- **Aircraft weight:** Heavier aircraft have higher ACNs. +- **Landing gear configuration:** Aircraft with more wheels or better weight distribution have lower ACNs. +- **Wheel spacing:** Wider spacing reduces the load concentration and lowers the ACN. +- **Pavement type:** The ACN for rigid and flexible pavements differs for the same aircraft. + +___ + +<sup>[1]</sup> N. S. Currey. *Aircraft Landing Gear Design: Principles and Practices*. Washington DC: American Institute of Aeronautics und Astronautics, 1988.<br> +<sup>[2]</sup> European Union Aviation Safety Agency (EASA). *Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes (CS-25). Amendment 27*. 2021.<br> +<sup>[3]</sup> European Union Aviation Safety Agency (EASA). *List of ETSO Authorisations*. 2022.<br> +<sup>[4]</sup> Bridgestone. *Aircraft Tires*. Online. URL: https://www.bridgestone.com/products/aircraft/products/applications/.<br> +<sup>[5]</sup> P. Sforza. *Commercial Airplane Design Principles*. Elsevier Inc., 2014.<br> +<sup>[6]</sup> E. Torenbeek, 1982. *Synthesis of Subsonic Airplane Design*.<br> +<sup>[7]</sup> ICAO, 2022. *ICAO Annex 14, Aerodromes, Volume I - Aerodrome Design and Operations*.<br> \ No newline at end of file diff --git a/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.png b/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.png new file mode 100644 index 0000000..9907a9f --- /dev/null +++ b/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:aef872150d330c6d029c7214d8b5dda51cab48546528338ed3e8b3d8c5baacf2 +size 869538 diff --git a/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.svg b/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.svg new file mode 100644 index 0000000..671327b --- /dev/null +++ b/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.svg @@ -0,0 +1 @@ +<svg width="4408" height="1962" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xml:space="preserve" overflow="hidden"><defs><clipPath id="clip0"><rect x="-0.0909091" y="-2770.82" width="665018" height="279862"/></clipPath><image width="158" height="65" xlink:href="" preserveAspectRatio="none" id="img1"></image><clipPath id="clip2"><rect x="0" y="0" width="665018" height="273583"/></clipPath><image width="2596" height="616" xlink:href="" preserveAspectRatio="none" id="img3"></image><clipPath id="clip4"><rect x="0" y="0" width="10965078" height="2601883"/></clipPath><image width="43" height="45" xlink:href="" preserveAspectRatio="none" id="img5"></image><clipPath id="clip6"><rect x="0" y="0" width="145627" height="152400"/></clipPath><clipPath id="clip7"><rect x="0" y="0" width="145627" height="152400"/></clipPath><clipPath id="clip8"><rect x="0" y="0" width="145627" height="152400"/></clipPath></defs><g transform="translate(4 -256)"><g><rect x="0.499836" y="263.5" width="4400" height="1949" stroke="#FFFFFF" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#FFFFFF" fill-opacity="1"/><g clip-path="url(#clip0)" transform="matrix(0.000360892 0 0 0.000360892 2080 1429)"><g clip-path="url(#clip2)" transform="matrix(1 0 0 1.01282 -0.414062 -0.131104)"><use width="100%" height="100%" xlink:href="#img1" opacity="1" transform="scale(4208.97 4208.97)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 221 544)"><g clip-path="url(#clip4)" transform="matrix(1.0002 0 0 1 0.0218173 -0.0316939)"><use width="100%" height="100%" xlink:href="#img3" opacity="1" transform="scale(4223.84 4223.84)"></use></g></g><path d="M3394 383 3394 2040.28" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M313 1169 3749.78 1169" stroke="#A6A6A6" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875 2.29167 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3558.35 1699)">Tipping point</text><path d="M3498.5 1681C3498.5 1674.65 3503.65 1669.5 3510 1669.5 3516.35 1669.5 3521.5 1674.65 3521.5 1681 3521.5 1687.35 3516.35 1692.5 3510 1692.5 3503.65 1692.5 3498.5 1687.35 3498.5 1681Z" stroke="#00252D" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#006374" fill-rule="evenodd" fill-opacity="1"/><g transform="matrix(0.000360892 0 0 0.000360892 3471 1745)"><g clip-path="url(#clip6)" transform="matrix(1.02749 0 0 1 -0.761208 0.254284)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3556.09 1795)">Center of gravity (CG)</text><path d="M478 383 478.001 1669.54" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 309.266 1687)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 335.712 1697)">NLG</text><path d="M2197 383 2197 1941.66" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><g transform="matrix(0.000360892 0 0 0.000360892 1808 1091)"><g clip-path="url(#clip7)" transform="matrix(1.00846 0 0 1 0.193714 -0.0130726)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><path d="M1.14584 22.9172 1.14619 957-1.14547 957-1.14582 22.9172ZM-13.75 27.5 0 0 13.75 27.5Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(1 0 0 -1 241 2138)"/><path d="M13.7498-1.14581 239.424-1.14547 239.424 1.14619 13.7498 1.14585ZM18.3333 9.16669 0 0 18.3333-9.16664Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 479.424 1631)"/><path d="M2184.42 1910.15 240 1910.15 240 1907.85 2184.42 1907.85ZM2179.84 1899.83 2198.17 1909 2179.84 1918.17Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1163.56 1959)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1190 1969)">MLG</text><path d="M1835 586 1835 1745.21" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M2013 492 2013 1826.47" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 947.093 1772)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 973.539 1782)">front</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1062.91 1782)">_</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1076.66 1782)">CG</text><path d="M13.7542-1.14583 1591.86-1.14547 1591.86 1.14619 13.7542 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 1832.86 1725)"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1044.38 1864)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1070.82 1875)">rear</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1145.3 1875)">_</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1159.05 1875)">CG</text><path d="M13.7542-1.14583 1771.98-1.14547 1771.98 1.14619 13.7542 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 2012.98 1815)"/><path d="M13.7565-1.14583 3146.27-1.14547 3146.27 1.14619 13.7565 1.14583ZM18.3333 9.16667 0 0 18.3333-9.16666Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 3386.27 2011)"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1775.35 2061)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1801.8 2072)">TP</text><path d="M241 1167.85 338.64 1167.85 338.64 1170.15 241 1170.15ZM334.057 1155.25 361.557 1169 334.057 1182.75Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 208.757 2183)">−</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 246.569 2183)">𝑧</text><path d="M229 1169C229 1161.82 234.82 1156 242 1156 249.18 1156 255 1161.82 255 1169 255 1176.18 249.18 1182 242 1182 234.82 1182 229 1176.18 229 1169Z" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#FFFFFF" fill-rule="evenodd" fill-opacity="1"/><path d="M233 1160 251.766 1178.77" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M0 0 18.766 18.766" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 251.766 1160)"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3560.47 1910)">Fuselage center line</text><path d="M3467 1888 3533 1888" stroke="#A6A6A6" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875 2.29167 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 347.903 1149)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 183.259 1184)">𝑦</text><path d="M0 0 3899.61 0.000360892" stroke="#00171E" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 359.5 1479.5)"/><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1020.66 651)">𝑑</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1049.87 661)">NLG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1124.93 661)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1138.68 661)">front</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1228.05 661)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1241.8 661)">CG</text><path d="M13.7507-1.14583 1342.74-1.14548 1342.74 1.14619 13.7507 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666ZM1338.15-9.16631 1356.49 0.000360892 1338.15 9.16702Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 1834.49 600)"/><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1189.62 463)">𝑑</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1218.84 473)">NLG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1293.89 473)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1307.64 473)">MLG</text><path d="M13.753-1.14583 1707.97-1.14548 1707.97 1.14619 13.753 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666ZM1703.39-9.16631 1721.72 0.000360892 1703.39 9.16702Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 2197.72 412)"/><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1109.19 556)">𝑑</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1138.41 567)">NLG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1213.46 567)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1227.21 567)">rear</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1301.69 567)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1315.44 567)">CG</text><path d="M13.7503-1.14583 1519.8-1.14548 1519.8 1.14619 13.7503 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666ZM1515.22-9.16631 1533.56 0.000360892 1515.22 9.16702Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 2011.56 505)"/><rect x="1696" y="838" width="278" height="166" fill="#FFFFFF" fill-opacity="1"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1729.92 906)">foremost</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1802.11 972)">CG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2708.76 651)">𝑑</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2737.98 661)">MLG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2818.19 661)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2831.94 661)">TP</text><path d="M13.7499-1.14583 1182.93-1.14548 1182.93 1.14619 13.7499 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666ZM1178.35-9.16631 1196.68 0.000360892 1178.35 9.16702Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 3393.68 600)"/><path d="M0 0 1302.07 291.125" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 2274 1529.13)"/><path d="M0 0 1214.07 0.000360892" stroke="#00171E" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 3287.57 1529.5)"/><path d="M3387.5 1275C3387.5 1268.65 3392.65 1263.5 3399 1263.5 3405.35 1263.5 3410.5 1268.65 3410.5 1275 3410.5 1281.35 3405.35 1286.5 3399 1286.5 3392.65 1286.5 3387.5 1281.35 3387.5 1275Z" stroke="#00252D" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#006374" fill-rule="evenodd" fill-opacity="1"/><g transform="matrix(0.000360892 0 0 0.000360892 1986 1073)"><g clip-path="url(#clip8)" transform="matrix(1.02749 0 0 1 -0.19225 -0.0504039)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><rect x="1874" y="698" width="278" height="167" fill="#FFFFFF" fill-opacity="1"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1908.54 766)">rea</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1983.02 766)">r</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2001.93 766)">most</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1980.43 832)">CG</text></g></g></svg> \ No newline at end of file diff --git a/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.png b/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.png new file mode 100644 index 0000000..5f3aebb --- /dev/null +++ b/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d1e92ecd985c003c4e2988ca959ca57b8037cfb4b8c301dbd7f578be4e4c8ddb +size 824656 diff --git a/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.svg b/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.svg new file mode 100644 index 0000000..f917437 --- /dev/null +++ b/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.svg @@ -0,0 +1 @@ +<svg width="4408" height="1641" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xml:space="preserve" overflow="hidden"><defs><clipPath id="clip0"><rect x="-0.0909091" y="-2770.82" width="665018" height="279862"/></clipPath><image width="158" height="65" xlink:href="" preserveAspectRatio="none" id="img1"></image><clipPath id="clip2"><rect x="0" y="0" width="665018" height="273583"/></clipPath><image width="2596" height="616" xlink:href="" preserveAspectRatio="none" id="img3"></image><clipPath id="clip4"><rect x="0" y="0" width="10965078" height="2601883"/></clipPath><image width="43" height="45" xlink:href="" preserveAspectRatio="none" id="img5"></image><clipPath id="clip6"><rect x="0" y="0" width="145627" height="152400"/></clipPath><clipPath id="clip7"><rect x="0" y="0" width="145627" height="152400"/></clipPath><clipPath id="clip8"><rect x="0" y="0" width="145627" height="152400"/></clipPath></defs><g transform="translate(4 -412)"><g><rect x="0.499836" y="418.5" width="4400" height="1628" stroke="#FFFFFF" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#FFFFFF" fill-opacity="1"/><g clip-path="url(#clip0)" transform="matrix(0.000360892 0 0 0.000360892 2080 1429)"><g clip-path="url(#clip2)" transform="matrix(1 0 0 1.01282 -0.414062 -0.131104)"><use width="100%" height="100%" xlink:href="#img1" opacity="1" transform="scale(4208.97 4208.97)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 221 544)"><g clip-path="url(#clip4)" transform="matrix(1.0002 0 0 1 0.0218173 -0.0316939)"><use width="100%" height="100%" xlink:href="#img3" opacity="1" transform="scale(4223.84 4223.84)"></use></g></g><path d="M881 1098 3846.27 1098" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M0 0 3899.61 0.000360892" stroke="#00171E" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 359.5 1479.5)"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3394.74 1728)">Tipping point</text><path d="M0 0 1302.07 291.125" stroke="#00A5C0" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 2274 1529.13)"/><g transform="matrix(0.000360892 0 0 0.000360892 1986 1073)"><g clip-path="url(#clip6)" transform="matrix(1.02749 0 0 1 -0.19225 -0.0504039)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><path d="M3335.5 1710C3335.5 1703.65 3340.65 1698.5 3347 1698.5 3353.35 1698.5 3358.5 1703.65 3358.5 1710 3358.5 1716.35 3353.35 1721.5 3347 1721.5 3340.65 1721.5 3335.5 1716.35 3335.5 1710Z" stroke="#00252D" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#006374" fill-rule="evenodd" fill-opacity="1"/><g transform="matrix(0.000360892 0 0 0.000360892 3308 1774)"><g clip-path="url(#clip7)" transform="matrix(1.00846 0 0 1 -0.241211 -0.210094)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3392.48 1824)">Center of gravity (CG)</text><g transform="matrix(0.000360892 0 0 0.000360892 1808 1091)"><g clip-path="url(#clip8)" transform="matrix(1.00846 0 0 1 0.193714 -0.0130726)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><path d="M1.1459 22.9167 1.14619 131.38-1.14547 131.38-1.14577 22.9167ZM-13.7499 27.5 0 0 13.7501 27.5Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(1 0 0 -1 241 1299.38)"/><path d="M1835 1004 1835 1096.43" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M2013 865 2013 1073.33" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 940.237 1145)">𝑧</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 963.635 1156)">rear</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1038.11 1156)">_</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1051.86 1156)">CG</text><path d="M1.14588 13.75 1.14619 105.447-1.14547 105.447-1.14579 13.75ZM-9.1666 18.3334 0 0 9.16673 18.3333Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(1 0 0 -1 676 1277.45)"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 591.024 1228)">𝑧</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 614.422 1238)">TP</text><path d="M241 1168.85 338.64 1168.85 338.64 1171.15 241 1171.15ZM334.057 1156.25 361.557 1170 334.057 1183.75Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 197.023 1351)">−</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 234.835 1351)">𝑧</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 347.903 1149)">𝑥</text><path d="M229 1169.5C229 1162.04 234.82 1156 242 1156 249.18 1156 255 1162.04 255 1169.5 255 1176.96 249.18 1183 242 1183 234.82 1183 229 1176.96 229 1169.5Z" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#FFFFFF" fill-rule="evenodd" fill-opacity="1"/><path d="M233 1160 251.766 1178.77" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M0 0 18.766 18.766" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 251.766 1160)"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 183.259 1185)">𝑦</text><path d="M255 1169 3719.38 1169" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M902.146 1111.75 902.146 1167.77 899.854 1167.77 899.854 1111.75ZM891.833 1116.33 901 1098 910.167 1116.33Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1"/><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3481.61 1391)">Δ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3511.41 1391)">ℎ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3539.48 1401)">TP</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3587.03 1401)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3600.78 1401)">GND</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3269.31 1151)">Δ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3299.1 1151)">ℎ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3327.17 1161)">FCL</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3393.63 1161)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3407.38 1161)">CG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3794.91 1329)">Δ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3824.7 1329)">ℎ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3852.77 1339)">GND</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3932.98 1339)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3946.73 1339)">CG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3280.72 1517)">ℎ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3308.79 1527)">susp</text><path d="M3476.15 1290.75 3476.15 1468.85 3473.85 1468.85 3473.85 1290.75ZM3465.83 1295.33 3475 1277 3484.17 1295.33ZM3484.17 1464.26 3475 1482.6 3465.83 1464.26Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><path d="M3254.15 1491.75 3254.15 1516.18 3251.85 1516.18 3251.85 1491.75ZM3243.83 1496.33 3253 1478 3262.17 1496.33ZM3262.17 1511.6 3253 1529.93 3243.83 1511.6Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><path d="M0 0 1214.07 0.000360892" stroke="#00A5C0" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 3287.57 1529.5)"/><path d="M2782.17 1427.52 2785.55 1443.76 2788.1 1458.73 2790.21 1473.76 2791.87 1488.84 2793.08 1503.98 2793.79 1520.55 2791.5 1520.65 2790.79 1504.1 2790.79 1504.14 2789.58 1489.04 2789.59 1489.08 2787.93 1474.02 2787.94 1474.06 2785.84 1459.06 2785.84 1459.1 2783.3 1444.17 2783.3 1444.21 2779.93 1427.99ZM2773.12 1434.26 2778 1414.35 2791 1430.2ZM2801.69 1515.78 2792.99 1534.34 2783.37 1516.25Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2813.44 1462)">𝜃</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2840.32 1472)">LDG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3286.56 1234)">𝑧</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3309.96 1245)">TP</text><path d="M3254.15 1181.75 3254.15 1261.16 3251.85 1261.16 3251.85 1181.75ZM3243.83 1186.33 3253 1168 3262.17 1186.33ZM3262.17 1256.58 3253 1274.91 3243.83 1256.58Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><path d="M3254.15 1111.75 3254.15 1155.41 3251.85 1155.41 3251.85 1111.75ZM3243.83 1116.33 3253 1098 3262.17 1116.33ZM3262.17 1150.82 3253 1169.16 3243.83 1150.82Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><path d="M3766.15 1111.75 3766.15 1462.4 3763.85 1462.4 3763.85 1111.75ZM3755.83 1116.33 3765 1098 3774.17 1116.33ZM3774.17 1457.81 3765 1476.15 3755.83 1457.81Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3385.61 1912)">(fuselage center</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3779.78 1912)">line equals x</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 4081.13 1912)">-</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 4101.19 1912)">axis)</text><path d="M0 0 2839.48 0.000360892" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 3498.48 1275)"/><path d="M3387.5 1275C3387.5 1268.65 3392.65 1263.5 3399 1263.5 3405.35 1263.5 3410.5 1268.65 3410.5 1275 3410.5 1281.35 3405.35 1286.5 3399 1286.5 3392.65 1286.5 3387.5 1281.35 3387.5 1275Z" stroke="#00252D" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#006374" fill-rule="evenodd" fill-opacity="1"/><rect x="1874" y="698" width="278" height="167" fill="#FFFFFF" fill-opacity="1"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1908.54 766)">rea</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1983.02 766)">r</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2001.93 766)">most</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1980.43 832)">CG</text><rect x="1696" y="838" width="278" height="166" fill="#FFFFFF" fill-opacity="1"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1729.92 906)">foremost</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1802.11 972)">CG</text></g></g></svg> \ No newline at end of file diff --git a/docs/documentation/sizing/landing_gear_design/getting_started.md b/docs/documentation/sizing/landing_gear_design/getting_started.md new file mode 100644 index 0000000..b113ee6 --- /dev/null +++ b/docs/documentation/sizing/landing_gear_design/getting_started.md @@ -0,0 +1,177 @@ +# Getting started +This section will guide you through the necessary steps to get the _landing\_gear\_design_ module up and running. It contains information on tool requirements and design parameters. + +- [Design method selection](#design-method-selection) - How to set the design method? +- [Aircraft exchange file](#aircraft-exchange-file) - Get information on necessary parameters from the _acXML_. +- [Module configuration file](#module-configuration-file) - Dive into landing gear design specific parameters. +- [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running? +- [Next steps](#next-steps) - How to proceed? + +@note It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. + +Generally, we use two files to set or configure modules in UNICADO: +- The aircraft exchange file (or _acXML_) includes + - data related inputs (e.g., configuration type) and + - data related outputs (e.g., component design data). +- The module configuration file `landing_gear_design_conf.xml` (also _configXML_) includes + - control settings (e.g., enable/disable generating plots) and + - program settings (e.g., information on limitations and clearances). + +In the following sections you will find more information on how to configure these files to suit your needs. + +## Design method selection {#design-method-selection} +The calculation method is automatically chosen based on the following data from the aircraft exchange and module configuration file: + +Parameter | File | Example <sup>*</sup> | +:--------------------------|---------------|:------------------------------| +Undercarriage definition | _acXML_ | wing_mounted | +Calculation fidelity | _configXML_ | empirical | +Method name | _configXML_ | landing_gear_design_tu_berlin | +Energy carrier type | _acXML_ | kerosene | + +<sup>*</sup> This example defines a generic short and medium range tube-and-wing aircraft. + +Thus, it must be ensured that this data is available. More information on required data can be found in the following sections. + +## Aircraft exchange file requirements {#aircraft-exchange-file} +_landing\_gear\_design_ can be single executed without the execution of any other module. The only prerequisite is a complete `requirements_and_specifications` block in the aircraft exchange file. + +<!-- To single execute the _fuselage\_design_ module, we need an _acXML_ file that already contains the output data from the following tools: +- _module\_name_ +- ... --> + +The following data should be available in the _acXML_ (2. and 3. are optional): +1. Requirements and specifications + - Design specification + - Configuration information + - Fuselage definition: Fuselage type + - Undercarriage definition: Undercarriage definition, undercarriage retractability + - Wing definition: Wing mounting + - Energy carrier(s) + - Propulsion: Positioning of propulsor element(s) + - Requirements + - Top level aircraft requirements + - Flight envelope information: Maximum approach speed, maximum takeoff stall speed + - Pavement classification number +2. Analysis + - Mission: Taxi fuel takeoff for design mission + - Masses, CG, inertia + - Manufacturer mass empty + - Maximum takeoff mass + - Maximum landing mass + - Most afterward mass: COG position + - Most forward mass: COG position + - Design mass: COG position +3. Component design: Geometrical data of + - Fuselage + - Position + - Information on fuselage sections + - Upper height + - Lower height + - Width + - Information on payload tubes + - Payload tube front reference points + - Payload tube aft reference points + - Wing + - (Position) + - Symmetry information + - Information for wing sections + - Chord origin + - Chord length + - Propulsion + - Information on nacelle sections + - Width + - Height + - Information on engine: Position + - Landing gear<sup>*</sup> + - Position + - Tool level + +<sup>*</sup> Available from the second iteration loop. + +@note When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. + +## Module configuration file {#module-configuration-file} +The _configXML_ is structured into two blocks: the control and program settings. + +The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least +- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings, +- the `console_output` at least to `mode_1`, and +- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`). + +@note If the tool is executed via the workflow, those settings are set by the workflow settings. + +The program settings are structured like this (descriptions can be found in the `landing_gear_design_conf.xml`): + +```plaintext +Program Settings +|- Configuration (ID="wing_mounted") +| |- Fidelity name +| |- Method name +| |- Fidelity (ID="empirical") +| | |- Landing gear design tu berlin +| | | |- General +| | | | |- Sizing mode +| | | | | |- Setting use existing landing gear +| | | | | | |- Name of existing geometry file +| | | | | | |- Use as starting point +| | | | |- Ground strike limitations +| | | | | |- Tail strike limit +| | | | | |- Turnover limit +| | | | | |- Wing strike limit +| | | | |- Nacelle clearance +| | | | |- Strut suspension +| | | | | |- Strut suspension travel +| | | | |- Landing gear bay keel beam width +| | | | |- Landing gear mass correction factor +| | | |- Specific +| | | | |- ACN method +| | | | | |- Use target PCN +| | | | | |- Coverages +| | | | | |- Use specific california bearing ratio for flexible pavement +| | | | | | |- Specific california bearing ratio for flexible pavement +| | | | | |- Use specific alpha value +| | | | | | |- Specific alpha value +| | | | | |- Select new alpha from curve +| | | | | | |- Use Boeing proposals +| | | | |- Nose gear parameter +| | | | | |- Minimum number of nose gear tires per strut +| | | | | |- Use specific number of nose gear struts +| | | | | | |- Specific number of nose gear struts +| | | | | |- Use specific number of nose gear tires per strut +| | | | | | |- Specific number of nose gear tires per strut +| | | | | |- Use specific nose gear starting x-position +| | | | | | |- Specific nose gear starting x-position +| | | | |- Main gear parameter +| | | | | |- Minimum number of main gear tires per strut +| | | | | |- Dynamic range of number of main gear struts +| | | | | | |- Maximum number of main gear struts +| | | | | |- Use specific number of main gear struts +| | | | | | |- Specific number of main gear struts +| | | | | |- Use specific number of main gear tires per strut +| | | | | | |- Specific number of main gear tires per strut +| | | | | |- Dynamic change of number of main gear tires per strut +| | | | | | |- Maximum number of main gear tires per strut +| | | | | |- Minimum required wheel track +| | | | | |- Minimum required wheel base +``` + +## Additional requirements {#additional-requirements} + +### Landing gear library +The landing gear library contains files that are necessary to generate a valid landing gear design. + +#### Tire list +The EASA ETSO (European Technical Standard Order) tire list (`EASA_ETSO_tire_list_2022.xml`) contains data on several nose and main landing gear tires. The following values are provided: +- Tire size +- Diameters +- Rated pressure, speed, load, and ply +- Tire weight + +The data is used to find matching tires for the main and nose gear. + +#### Bridgestone manuals +Valuable information on the tire selection can be found in the Bridgestone manuals. There you can find information on cut depths, lengths limits and useful terminology, as well as tire specifications. + +## Next steps {#next-steps} +The next step is to [run the _landing\_gear\_design_ module](run_your_first_design.md). \ No newline at end of file diff --git a/docs/documentation/sizing/landing_gear_design/index.md b/docs/documentation/sizing/landing_gear_design/index.md new file mode 100644 index 0000000..80ee5a9 --- /dev/null +++ b/docs/documentation/sizing/landing_gear_design/index.md @@ -0,0 +1,38 @@ +# Introduction {#mainpage} +The _landing\_gear\_design_ module is part of the UNICADO sizing loop. It ensures the aircraft's landing gear not only rolls safely on the ground but also meets all regulations as well as the airline and airport operator requirements. It guarantees perfect compatibility with the operational surfaces of the airports while making sure everything runs smoothly. + +## Summary of features +Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned: + +Undercarriage definition | Energy carrier | Fidelity | Methods | Status | +-----------------------------|------------------|-----------|-----------|:-------------------------------------:| +Wing-mounted | Kerosene | Empirical | TUB | running \emoji white_check_mark | +Wing-mounted | Liquid hydrogen | ... | ... | under development \emoji construction | +Body-mounted | ... | ... | ... | under development \emoji construction | + +## A user's guide to landing gear design +The _landing\_gear\_design_ tool is your key to designing the aircraft's landing gear. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a landing gear design from the ground up. +The following sections will walk you through the process: +- [Getting started](getting_started.md) +- [Run your first landing gear design](run_your_first_design.md) + +For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections: +- A [method description](design_method.md) and +- a [software architecture](software_architecture.md) +section. + +Ready to dive in? Let’s get started! \emoji airplane + + +<!-- ## You are a Developer? +If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO! + +The following pages will help you understand the code structure: + +- [Prerequisites](prerequisites.md) +- [Build the code](build-the-code.md) +- [Tank design module structure](wing-module-structure.md) +- [Available methods](available-methods.md) +- [Method template](method-template.md) + +We appreciate it! --> \ No newline at end of file diff --git a/docs/documentation/sizing/landing_gear_design/run_your_first_design.md b/docs/documentation/sizing/landing_gear_design/run_your_first_design.md new file mode 100644 index 0000000..4504378 --- /dev/null +++ b/docs/documentation/sizing/landing_gear_design/run_your_first_design.md @@ -0,0 +1,142 @@ +# Design your first landing gear +Let's dive into the fun part and design a landing gear! + +## Tool single execution +The tool can be executed from the console directly if all paths are set. The following will happen: +- [Console output](#console-output) +- [Generation of reports and plots](#reporting) +- [Writing output to aircraft exchange file](#acxml) +- [Generation of geometry file](#existing-geometry-file) + +Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices. +Also, if you need some additional information on the underlying methodology, check out the page on the [landing gear design method](design_method.md). + +So, feel free to open the terminal and run `landing_gear_design.exe` to see what happens... + +### Console output {#console-output} +Firstly, you see output in the console window. Let's go through it step by step... + +``` +2024-11-11 17:36:51,541 - PRINT - Landing gear design started... +2024-11-11 17:36:51,614 - PRINT - Current run of landing gear iteration is: 1 +``` +To this point, the module started and printed the iteration counter. + +``` +2024-11-11 17:36:51,626 - WARNING - Attention: No engines available in the aircraft exchange file, nacelle ground clearance could not be checked! +2024-11-11 17:36:51,626 - PRINT - The resulting wing tip angle conforms the specified clearance angle of: 8.0 degrees! +2024-11-11 17:36:51,627 - PRINT - Total mass of landing gear is: 2558.0104kg! +``` +Subsequently, some restrictions that must be met are checked and the mass of the landing gear ist calculated. + +``` +2024-11-11 17:36:51,627 - PRINT - ----- Nose gear results of current loop ----- +2024-11-11 17:36:51,627 - PRINT - Nose gear x-position is: 5.75 meter behind reference point. +2024-11-11 17:36:51,628 - PRINT - Nose gear y-position is: 0.0 meter from reference center line. +2024-11-11 17:36:51,628 - PRINT - Nose gear z-position is: -1.4712 meter below reference center line. +2024-11-11 17:36:51,628 - PRINT - Number of nose gear struts is: 1. +2024-11-11 17:36:51,629 - PRINT - Nose gear strut length is: 0.8264 meter. +2024-11-11 17:36:51,629 - PRINT - Number of nose gear axis per strut is: 1. +2024-11-11 17:36:51,629 - PRINT - Number of nose gear tires per strut is: 2. +2024-11-11 17:36:51,629 - PRINT - Nose gear tires design load is: 8771.8989 pound. +2024-11-11 17:36:51,629 - PRINT - Selected nose gear tire type is: APS01203. +2024-11-11 17:36:51,630 - PRINT - ----- Main gear results of current loop ----- +2024-11-11 17:36:51,630 - PRINT - Outer main gear x-position is: 22.4023 meter behind reference point. +2024-11-11 17:36:51,630 - PRINT - Outer main gear strut y-position is: 2.961 meter from reference center line. +2024-11-11 17:36:51,630 - PRINT - Outer main gear strut z-position is: -0.9536 meter below reference center line. +2024-11-11 17:36:51,630 - PRINT - Number of outer main gear struts is: 2. +2024-11-11 17:36:51,631 - PRINT - Outer main gear strut length is: 1.344 meter. +2024-11-11 17:36:51,631 - PRINT - Number of main gear axis per outer strut is: 1. +2024-11-11 17:36:51,631 - PRINT - Number of main gear tires per outer strut is: 2. +2024-11-11 17:36:51,631 - PRINT - Main gear tires design load is: 36727.855 pound. +2024-11-11 17:36:51,631 - PRINT - Selected main gear tire type is: APS01347-A. +``` +Afterwards, the calculation results of the nose and main gear are printed. + +As the landing gear design is an integrative process, several runs may be required to achieve a valid design. Each run generates log file entries similar to those just explained. In the present example, 5 runs are needed. For the sake of clarity, the results of the fifth run are shown before the final messages are explained. + +``` +2024-11-11 17:36:51,644 - PRINT - Current run of landing gear iteration is: 5 +2024-11-11 17:36:51,645 - WARNING - Attention: No engines available in the aircraft exchange file, nacelle ground clearance could not be checked! +2024-11-11 17:36:51,645 - PRINT - The resulting wing tip angle conforms the specified clearance angle of: 8.0 degrees! +2024-11-11 17:36:51,645 - PRINT - Total mass of landing gear is: 2558.0104kg! +2024-11-11 17:36:51,646 - PRINT - ----- Nose gear results of current loop ----- +2024-11-11 17:36:51,646 - PRINT - Nose gear x-position is: 5.75 meter behind reference point. +2024-11-11 17:36:51,646 - PRINT - Nose gear y-position is: 0.0 meter from reference center line. +2024-11-11 17:36:51,646 - PRINT - Nose gear z-position is: -1.4712 meter below reference center line. +2024-11-11 17:36:51,646 - PRINT - Number of nose gear struts is: 1. +2024-11-11 17:36:51,646 - PRINT - Nose gear strut length is: 1.4339 meter. +2024-11-11 17:36:51,647 - PRINT - Number of nose gear axis per strut is: 1. +2024-11-11 17:36:51,647 - PRINT - Number of nose gear tires per strut is: 2. +2024-11-11 17:36:51,647 - PRINT - Nose gear tires design load is: 9295.5602 pound. +2024-11-11 17:36:51,647 - PRINT - Selected nose gear tire type is: APS01203. +2024-11-11 17:36:51,647 - PRINT - ----- Main gear results of current loop ----- +2024-11-11 17:36:51,647 - PRINT - Outer main gear x-position is: 21.465 meter behind reference point. +2024-11-11 17:36:51,647 - PRINT - Outer main gear strut y-position is: 3.6161 meter from reference center line. +2024-11-11 17:36:51,647 - PRINT - Outer main gear strut z-position is: -0.906 meter below reference center line. +2024-11-11 17:36:51,647 - PRINT - Number of outer main gear struts is: 2. +2024-11-11 17:36:51,648 - PRINT - Outer main gear strut length is: 1.9991 meter. +2024-11-11 17:36:51,648 - PRINT - Number of main gear axis per outer strut is: 1. +2024-11-11 17:36:51,648 - PRINT - Number of main gear tires per outer strut is: 2. +2024-11-11 17:36:51,648 - PRINT - Main gear tires design load is: 36587.776 pound. +2024-11-11 17:36:51,648 - PRINT - Selected main gear tire type is: APS01347-A. +``` + +``` +2024-11-11 17:36:51,648 - PRINT - Landing gear design successful after 5 iterations! +2024-11-11 17:36:51,740 - PRINT - ACN for CBR = 3 (ultra-low) is: 44.2 +2024-11-11 17:36:51,740 - PRINT - ACN for CBR = 6 (low) is: 38.6 +2024-11-11 17:36:51,740 - PRINT - ACN for CBR = 10 (medium) is: 35.3 +2024-11-11 17:36:51,740 - PRINT - ACN for CBR = 15 (high) is: 34.0 +2024-11-11 17:36:53,410 - PRINT - Plots for landing gear design are successfully generated and saved. +2024-11-11 17:36:53,410 - PRINT - Moin! This is the "method_html_report" function from the landing_gear_design tool speaking... [Imagine fancy reports are generated here (you can find me in the "methodhtmlreport.py" file).] +2024-11-11 17:36:53,413 - PRINT - Method-specific data are written to 'landing_gear_design_results.xml'... +2024-11-11 17:36:53,418 - PRINT - Moin! This is the "method_tex_output" function from the landing_gear_design tool speaking... [Imagine fancy reports are generated here (you can find me in the "methodtexoutput.py" file).] +2024-11-11 17:36:53,418 - PRINT - Landing gear design finished. +``` +Finally, you receive information about the reports and plots created (depending on your settings) and the tool is successfully completed. + +### Reporting {#reporting} +In the following, a short overview is given on the generated reports: +- A `landing_gear_design.log` file is written within the directory of the executable +- Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file: + - an HTML report in the `report_html` folder (not implemented yet) + - a TeX report in the `report_tex` folder (not implemented yet) + - an XML file with additional output data in the `report_xml` folder + - plots in the `plots` folder + +### Write data to the aircraft exchange file {#acxml} +@note The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! + +Results are saved in the aircraft exchange file at the `/aircraft_exchange_file/component_design/landing_gear` node. The following information is written to the _acXML_: +```plaintext +Aircraft exchange file +|- Component design +| |- Landing gear +| | |- Position* +| | |- Mass properties +| | | |- ... +| | |- Aircraft classification number +| | |- Specific +| | | |- Geometry +| | | | |- Landing gear assembly (ID="0") +| | | | | |- Name +| | | | | |- Position* +| | | | | |- Mass properties +| | | | | | |- ... +| | | | | |- Assembly components +| | | | | | |- Strut diameter +| | | | | | |- Strut length +| | | | | | |- Tire description (ID="0") +| | | | | | | |- Name +| | | | | | | |- Position* +| | | | | | | |- Tire diameter +| | | | | | | |- Tire section width +``` +<sup>*</sup> Node contains the following sub-nodes: x, y, z + +### Generation of geometry file {#existing-geometry-file} +The calculated geometry data is written to the `existing_landing_gear_geometry.xml` file and can then be used if the `use_existing_geometry` flag is set to `true`. + +## Troubleshooting {#troubleshooting} +- The tool does not run properly? *Make sure you have all the paths set up correctly and the specified elements exist.* diff --git a/docs/documentation/sizing/landing_gear_design/software_architecture.md b/docs/documentation/sizing/landing_gear_design/software_architecture.md new file mode 100644 index 0000000..05446b9 --- /dev/null +++ b/docs/documentation/sizing/landing_gear_design/software_architecture.md @@ -0,0 +1,2 @@ +# Software architecture +This site is currently under development. \emoji construction \ No newline at end of file diff --git a/docs/documentation/sizing/propulsion_design/additional.md b/docs/documentation/sizing/propulsion_design/additional.md new file mode 100644 index 0000000..63d4ae2 --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/additional.md @@ -0,0 +1,5 @@ +# Additional information {#additional} +Here, you can find additional documentation on specific comments on the code: + +- @subpage propulsion +- @subpage technology_factors_mass \ No newline at end of file diff --git a/docs/documentation/sizing/propulsion_design/changelog.md b/docs/documentation/sizing/propulsion_design/changelog.md new file mode 100644 index 0000000..7403ff4 --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/changelog.md @@ -0,0 +1,33 @@ +# Changelog {#changelog} +## v3.0.0 +The *v3.0.0* release is a **major** release with many changes including the *modularization*. + + +### Changes +The following changes are introduced: + +- The nacelle cross section is **always** assumed to be a circle and **not** an ellipse. +- The pylon when the engine is attached to a wing starts now at the leading edge of the wing. +- The pylon chord length stays constant. +- The pylon starts at the top (or bottom) of the nacelle. + +### Bugfixes +During the development of this release the following bugs were found and fixed: + +- When designing a *rubber* engine, the engine length was scaled incorrectly. The correct formula with \f${scale_{engine}}^{0.4} \f$ is now implemented. + +### Changes in the CSR designs +The implemented changes and bugfixes lead to the following changes in the results of the CSR designs. +@note Only changes which exceed a 10 % change are listed. + +#### CSR-02 +|Parameter|Changed introduced by|Old Value|New Value|Unit| +|---|---|---|---|:---| +|Nacelle Mass|The default technology factor changed from `0.65` to `1.0`.|705.1|1085.0|*kg*| +|Pylon Mass|The default technology factor changed from `1.2` to `1.0`.|641.3|534.5|*kg*| +|Engine Length|Bugfix in length scaling|2.674|2.641|*m*| +|Nacelle Inlet Width|Change nacelle cross section to circle shape|1.951|2.259|*m*| +|Pylon Chord Length at Nacelle|Pylon shape and wing attachment changed|4.012|2.641|*m*| +|Pylon Chord Length at Wing|Pylon shape and wing attachment changed|2.077|2.641|*m*| +|Pylon Length/Span|Pylon shape and wing attachment changed|1.186|1.129|*m*| +|Pylon Leading Edge Position at Wing|Pylon shape and wing attachment changed|2.441|1.948|*m*| diff --git a/docs/documentation/sizing/propulsion_design/engineering_principles.md b/docs/documentation/sizing/propulsion_design/engineering_principles.md new file mode 100644 index 0000000..4168395 --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/engineering_principles.md @@ -0,0 +1,151 @@ + +# Engineering principles {#engineeringprinciples} + +Designing the propulsion with this tool includes different engineering disciplines. Here a brief explanation (more information in their respective sections): +- [Engine designer](#enginedesigner): calculates the performance of one individual engine based on the required thrust. +- [Propulsor integrator](#propulsionintegrator): places the engine acc. to the user's settings. +- [Nacelle designer](#nacelledesigner): calculates the nacelle geometry. +- [Pylon designer](#pylondesigner): calculates the pylon geometry. +- [Mass analyzer](#massanalyzer): calculates the mass properties (center of gravity, mass, and inertia) of engine, nacelle, and pylon. + +For these five disciplines, you can choose different **methods** (or fidelities) of calculating their output. Here is an overview of the current implemented methods (details see sections): +| Discipline | Methods | +|---------------------|-------------------------------------------------------------------| +|Engine designer | *Rubber* (*Empirical* and *PropulsionSystem* are in preparation) | +|Propulsor integrator | *Default* | +|Nacelle designer | *Default* | +|Pylon designer | *Default* | +|Mass analyzer | *Default* | + +If you want to learn more about how to configure methods or generally the settings and outputs, go to the [getting started](getting_started.md). + +@important These disciplines are executed sequentially for EACH engine. That means that the engines are not aware of each other within the designing and analyzing. More information, see the [software architecture](software_architecture.md) section. + + +## Engine designer {#enginedesigner} + +### General principles {#generalprinciples} + +The **engine designer** bases its principle on the common modelling practice using +- an _engine dataset_ (operating point **in**dependent) +- an _engine deck_ (operating point dependent) +- a _scale factor_ + +The _dataset_ (also called _EngineXML_) includes parameter which are independent of the flight condition such as outer engine dimensions. + +The three-dimensional _engine deck_ contain engine performance data for different values of altitude \f$h\f$, Mach number \f$Ma\f$ and low-pressure engine spool speed \f$N1\f$. The most important performance parameter are thrust and fuel/energy flow. In UNICADO, the deck is split into multiple CSV files. The figure shows an example with values for thrust in kilo newton. The first block contains data for \f$N1=1\f$ for \f$Ma=0...0.9\f$ and \f$h=0...14000\f$. The second block below is for \f$N1=0.95\f$. + + +@note Detailed information on required dataset and deck data will be updated in near future. + +The _scale factor_ is necessary because (as conceptual aircraft designer), we use the concept of a so-called _rubber engine_. That means that (depending on the method, see later) we create or assume an engine deck and provide one _scale factor_ to obtain all engine data acc. to the required thrust the engine shall provide. The figure visualized the concept: + + +@attention → **As mentioned and highlighted in the figure**, there is ONE _scale factor_ **BUT** multiple exponents which differ depending on which property you want to use. E.g. for the diameter, the exponent is \f$0.5\f$ and for the mass its \f$0.4\f$. **So important to remember** that whenever you want to use engine data, you need to access it via the `engine` library. In the following, a brief explanation of the scaling concept will be given - however details are given in the library documentation. + +So, the scaling is based on continuity principle assuming that the operating condition is constant (commonly known station numbering; assuming no pressure drop). + +\f$[ + T = \dot m \cdot (V_9 - V_0) +]\f$ + +Therefore, thrust \f$T\f$ is proportional to the mass flow \f$\dot m\f$, which is related to the cross-sectional area \f$A\f$ of the engine. + +\f$ \dot m = \rho \cdot V \cdot A = \rho \cdot V \cdot \pi \frac{d}{2}^2 \f$ + +Because area \f$A\f$ is proportional to the square of the diameter \f$d\f$ , it follows that the diameter should be proportional to the square root of the scale factor. + +\f$ d_{new} = d_{ref} \cdot ( \frac{T_{new}}{T_{ref}} )^{0.5} \f$ + +An exemplary simplified calculation (data from the V2527-A5): the current engine provides \f$127.27~kN\f$ as sea level static thrust, but for the design only \f$100~kN\f$ are needed. The scaling factor would be \f$0.7857\f$. Assuming an initial diameter \f$2~m\f$, the new diameter would be \f$1.773~m\f$ with the scaling factor of \f$(0.7857)^{0.5} = 0.8864\f$. + +So, again, always access the engine data via the `engine` library to ensure that you have the correctly scaled data 🙂 + +@note Actually, the sea level static thrust is not at \f$N1=1\f$ if you compare the dataset for this engine (for 110.31kN around \f$N1=0.95\f$). So the scaling factor will be slightly lower. + +### Methods description +The **engine designer** includes different methods which create/use this deck in various ways. +- *empirical*: the initial deck is calculated based on emipirical equations +- *rubber*: (most common approach) based on an existing deck (usually created with GasTurb), the deck is "rubberized" +- *propulsionsystem*: with the help of the library `propulsionsystem`, different architecture can be defined and a deck created (for more information see documentation of the library) + +@note *empirical* and *propulsionsystem* is in preparation - not implemented yet! + +For all these methods, the approach of using the _scale factor_ is the same (see explaination [here](#generalprinciples)). A deck is either first created or assumed and then data is drawn with the `engine` library with the scaling approach. + +## Propulsion integrator {#propulsionintegrator} +Additionally to calculating the engine performance parameter, the engine has to be placed on the aircraft. The **propulsion integrator** uses the user settings from the aircraft exchange file - the following needs to be defined: +- parent component: wing, fuselage, empennage +- x-position (aircraft coordinate system): front or rear +- y position (aircraft coordinate system): left or right +- z position (aircraft coordinate system): over, mid, under, in + +### Methods description + +Here, currently only one method is implemented: + - *default* is based on a thesis of RWTH Aachen \cite{Ata10} + +This method includes multiple empirical functions for different propulsion integration. These are the options that are currently implemented: +| Parent | Lateral | Longitudinal | Vertical | +|-----------|---------|--------------|----------| +| Wing | Right | Front | Under | +| Wing | Left | Front | Under | +| Wing | Right | Front | Over | +| Wing | Left | Front | Over | +| Fuselage | Right | Rear | Mid | +| Fuselage | Left | Rear | Mid | +| Empennage | Mid | Front | In | + +For detailed information, it is referred to the thesis. + +@note the implementation include currently Turbofan Kerosene only + +## Nacelle designer {#nacelledesigner} +After the integration, the nacelle geometry is defined (however its actually independent of the position, so the order could be changed). + +### Methods description + +For the **nacelle designer**, only one method is implemented: + - *default* uses the `aircraftGeometry2` library + +The library uses the `.dat` file defined in the _configXML_ to extrude a polygon in different sections. These sections including the origin, width, height and its profile are saved in the _acXML_. With that, every other tool can "rebuild" the geometry using the same library. + +In the current implemented method, there is no differentiation between short and long ducted nacelle. It is a polygon with 3 segments (1. and 3. segments is 25% of engine length). The diameter for the 1. and 3. segment is chosen as the maximum between fan diameter, engine width or height. The 2. segments is 25% larger. + +Keep in mind that the library defines a surface without a thickness. For more information, it is referred to the library. + +@note the implementation include currently Turbofan Kerosene only + +## Pylon designer {#pylondesigner} +The pylon is the structural component to connect the engine to the aircraft. + +### Methods description + +For the **pylon designer**, only one method is implemented: + - *default* uses the `aircraftGeometry2` library + +In the current method, the mounting is attached to the beginning to the nacelle to the leading edge of the wing. The length is the engine length which is extruded to the wing. the profile is, likewise for the nacelle, defined in the _configXML_. + + + + +@note the implementation include currently Turbofan Kerosene only + +## Mass analyzer {#massanalyzer} +Lastly, the mass properties for engine, nacelle and pylon are calculated separate for center of gravity, mass and inertia. + +### Methods description + +Here, only one method is implemented: + - *default* using: + - for engine + - CG: calculating local CG assuming a circular cylinder + - mass: empirical estimation + - inertia: wrt. CG assuming solid cylinder + - for nacelle & pylon + - CG: calculating local CG with `aircraftGeometry2`lib + - mass: empirical estimation + - inertia: wrt. CG with `aircraftGeometry2`lib + +@note the implementation include currently Turbofan Kerosene only + diff --git a/docs/documentation/sizing/propulsion_design/figures/class_diagram.png b/docs/documentation/sizing/propulsion_design/figures/class_diagram.png new file mode 100644 index 0000000..8e33aa1 --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/figures/class_diagram.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c09d393c420c7c1a2b89ca2cbbe192c5aac75703ee1d38fe87342286214a4ebb +size 451430 diff --git a/docs/documentation/sizing/propulsion_design/figures/class_diagram.puml b/docs/documentation/sizing/propulsion_design/figures/class_diagram.puml new file mode 100644 index 0000000..77ee909 --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/figures/class_diagram.puml @@ -0,0 +1,441 @@ +@startuml class_diagram +title Class Diagram propulsionDesign +caption UNICADO (c) 2024 +hide empty members + +' The extracted report functions +package report <<rectangle>> { + + annotation "propulsionDesign::create_plots()" as plot + { + } + + annotation "propulsionDesign::create_html_report()" as html + { + } + + class "report::BucketCurve" as BucketCurve + { + - bucket_point_valid_ + - bucket_point_ + - thrust_ + - fuel_flow_ + - find_bucket_point() + + {static} from_engine_data() + + bucket_point() + + set_fuel_flow() + + set_thrust() + + fuel_flow() + + thrust() + + tsfc() + + update_bucket_point() + } + + class "report::Data" as ReportData + { + + SLST_total + + thrust_takeoff + + fuel_flow_takeoff + + bucket_curves + + {static} generate_data + } + + annotation "file_names" as file_names + { + {static} name_bucket_curve() + {static} name_top_view() + {static} name_front_view() + {static} name_side_view() + } + + plot -- ReportData + html -- ReportData + file_names -- html + file_names -- plot + +} + +' from moduleBasics +package "moduleBasics" { + class RuntimeIO + class Module { + # rtIO_ + + {abstract} initialize() + + {abstract} run() + + {abstract} update() + + {abstract} report() + + {abstract} save() + # execute() + } +} + +' propulsionDesign Module +annotation utility { + to_energy_carrier() + create_energy_carrier_map() + create_engine() + print() +} + +enum Component { + Nacelle + Pylon + Engine + Other +} + +stereotype ParentComponent { + +} + +enum Parent { + Wing + Fuselage +} + +enum Lateral { + Left + Mid + Right +} + +enum Longitudinal { + Front + Rear +} + +enum Vertical { + Over + Mid + Under + In +} + +class propulsionDesign { + - aircraft_xml + - aircraft_geometry + - report_data + - configuration_xml + - std::vector<variant> engines + - engine_designer + - propulsion_integrator + - nacelle_designer + - pylon_designer + - mass_analyzer + - create_aircraft_geometry() + - create_html_report() + - create_plots() + - create_propulsors() + - get_design_condition() + - select_engine_designer() + - select_propulsion_integrator() + - select_nacelle_designer() + - select_pylon_designer() + - select_mass_analyzer() + + propulsionDesign() +} + +struct "geometry::Aircraft" as AircraftGeometry +{ + + fuselages + + wings + + empennage + + {static} is_vertical() +} + +' The propulsion strategy which defines the different propulsions types which have to be considered +interface Strategy { + + {abstract} initialize() + + {abstract} run() + + {abstract} update() + + {abstract} report() + + {abstract} save() +} + +interface PropulsionStrategy { + - configuration_ + + configuration() + + {abstract} operator() (Turbofan<Kerosene> engine) + + {abstract} operator() (Turbofan<Hydrogen> engine) + + {abstract} operator() (Turboprop<Kerosene> engine) + + {abstract} operator() (Turboprop<Hydrogen> engine) +} + +' The types of propulsion systems +class Propulsion <<EnergyCarrier>>{ + + {static} energy_carrier + - bucket_point_ + - dimension_ + - required_thrust_ + - id_ + - model_ + - nacelle_ + - offtakes_ + - parent_ + - pointmasses_ + - position_ + - pylon_ + - scale_ + + bucket_point() + + dimension() + + required_thrust() + + id() + + model() + + nacelle() + + offtakes() + + parent() + + pointmass() + + position() + + pylon() + + scale() + + set_bucket_point() + + set_dimension() + + set_required_thrust() + + set_model() + + set_nacelle() + + set_offtakes() + + set_parent() + + set_pointmass() + + set_scale() + + change_to_global_reference_frame() + + revert_to_local_reference_frame() +} + +struct BucketPoint { + + thrust + + tsfc +} + +struct Dimension_3 { + + width + + height + + length +} + +struct FlightCondition { + + ambiance + + altitude + + mach +} + +struct Offtakes { + + bleed_air + + shaft_power +} + +struct "PointMass" as Mass { + + CG + + inertia + + weight +} + +struct Fan { + + diameter +} + +struct Propeller { + + diameter +} + +class Turbofan <<EnergyCarrier>>{ + - bypass_ratio_ + - fan_ + + bypass_ratio() + + fan() + + set_bypass_ratio() + + set_fan() +} + +class Turboprop <<EnergyCarrier>> { + - propeller_ + + propeller() + + set_propeller() +} + +' The variants of the propulsion systems based on the energy carrier +package "std::variant" as variant { + class "Turbofan" as fan_kerosene < Kerosene > + class "Turbofan" as fan_hydrogen < Liquid_Hydrogen > + class "Turboprop" as turbo_kerosene < Kerosene > + class "Turboprop" as turbo_hydrogen < Liquid_Hydrogen > +} + +' The different design domains of the module +package design <<Rectangle>> { + interface EngineDesigner { + - technology_factors + - engine_database_ + - engine_directory_ + - engine_models_ + - flight_condition_ + + initialize() + + technology_factor() + + designed_engines() + + engine_database() + + engine_directory() + + add_designed_engine() + + write_deck_value() + + flight_condition() + } + + class Rubber { + - preselected_engines_ + - preselected_engine() + - calculate_bucket_point() + + Rubber() + + initialize() + + save() + } + + class Empirical { + } + + class Gasturb { + } + + interface PropulsionIntegrator { + - aircraft_ + + aircraft() + } + + class "integration::Default" as PositionDefault { + - n_engines_ + - engines_done + - parents_placed + - integrate_into_wing() + - integrate_into_fuselage() + - integrate_into_empennage() + - calculate_span_position() + - select_fuselage() + - select_wing() + - select_vertical_tail() + } +} + +package geometry <<Rectangle>> { + interface NacelleDesigner { + - geometry_directory_ + + geometry_directory() + } + + interface PylonDesigner { + - aircraft_ + - geometry_directory_ + + aircraft() + + geometry_directory() + } + + class "nacelle::Default" as DefaultNacelle { + - section_shapes + - get_section_shape() + + initialize() + } + + class "pylon::Default" as DefaultPylon { + - section_profiles + - get_section_profile() + + initialize() + } +} + +package mass <<Rectangle>> { + interface MassAnalyzer { + - technology_factors + + technology_factor() + } + + class "Default" as MassDefault { + } +} + +package io { + ' The interface to the exchange file format + annotation EngineXML { + load_engine_data() + load_engine_scaled() + } + + ' The interface to the aicraft exchange file format + interface AircraftXMLInterface { + + {abstract} insert(geom2::Point_3 reference_position) + + {abstract} insert(PointMass mass_properties) + + {abstract} insert(Turbofan<Kerosene> engine) + + {abstract} insert(Turbofan<Liquid_Hydrogen> engine) + + {abstract} insert(Turboprop<Kerosene> engine) + + {abstract} insert(Turboprop<Liquid_Hydrogen> engine) + } + + class AircraftXML { + - xml_interface + + insert(Turbofan<> engine) + + insert(Turboprop<> engine) + } + + class AircraftXMLv3 { + - aircraft_data + - insert_bucket_point() + - insert_point() + - insert_point_mass() + - insert_string() + - insert_propulsion<carrier>() + + AircraftXMLv3( aircraft_xml ) + } +} + +' Start the diagram +Module *-- RuntimeIO +Module <|- propulsionDesign +AircraftGeometry --* propulsionDesign +propulsionDesign ---- utility +propulsionDesign *- PropulsionStrategy: std::visit() +BucketCurve -* ReportData +ReportData ---* propulsionDesign + +Turbofan *-- Fan +Turbofan ---|> Propulsion +Turboprop *-- Propeller +Turboprop ---|> Propulsion +Propulsion --- ParentComponent +Propulsion *-- BucketPoint +Propulsion *-- Dimension_3 +Propulsion *-- Offtakes +Propulsion *-- Mass +Component - Propulsion +ParentComponent -- Parent +ParentComponent -- Lateral +ParentComponent -- Longitudinal +ParentComponent -- Vertical +fan_kerosene --|> Turbofan +fan_hydrogen --|> Turbofan +turbo_kerosene --|> Turboprop +turbo_hydrogen --|> Turboprop + +PropulsionStrategy -|> Strategy +EngineDesigner *-- FlightCondition +EngineDesigner ---|> PropulsionStrategy +PropulsionStrategy *---- fan_kerosene +PropulsionStrategy *---- fan_hydrogen +PropulsionStrategy *---- turbo_kerosene +PropulsionStrategy *---- turbo_hydrogen + +MassAnalyzer ---|> PropulsionStrategy +MassDefault --|> MassAnalyzer + +PropulsionIntegrator ---|> PropulsionStrategy +PositionDefault --|> PropulsionIntegrator + +Rubber --|> EngineDesigner +Empirical --|> EngineDesigner +Gasturb --|> EngineDesigner + +NacelleDesigner ---|> PropulsionStrategy +DefaultNacelle --|> NacelleDesigner + +PylonDesigner ---|> PropulsionStrategy +DefaultPylon --|> PylonDesigner + +variant ------- io +AircraftXML *- AircraftXMLInterface +AircraftXMLv3 --|> AircraftXMLInterface + +@enduml diff --git a/docs/documentation/sizing/propulsion_design/figures/deck_example_thrust.svg b/docs/documentation/sizing/propulsion_design/figures/deck_example_thrust.svg new file mode 100644 index 0000000..7690ce5 --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/figures/deck_example_thrust.svg @@ -0,0 +1,340 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<!-- Created with Inkscape (http://www.inkscape.org/) --> + +<svg + version="1.1" + id="svg1" + width="1280" + height="720" + viewBox="0 0 1280 720" + sodipodi:docname="deck_example_thrust.svg" + inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <defs + id="defs1"> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath3"> + <path + d="M 0,1.2207e-4 H 960 V 540.00012 H 0 Z" + clip-rule="evenodd" + id="path3" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath4"> + <path + d="M 41.28,8.4001 H 891 v 466.2 H 41.28 Z" + transform="matrix(0.00117686,0,0,-0.002145,-0.04858071,1.0180182)" + clip-rule="evenodd" + id="path4" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath11"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-637.78001,504.65001)" + clip-rule="evenodd" + id="path11" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath12"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-667.54001,504.65001)" + clip-rule="evenodd" + id="path12" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath13"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-673.06001,504.65001)" + clip-rule="evenodd" + id="path13" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath14"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-837.84002,504.65001)" + clip-rule="evenodd" + id="path14" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath15"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-843.36002,504.65001)" + clip-rule="evenodd" + id="path15" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath17"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-416.45001,504.58001)" + clip-rule="evenodd" + id="path17" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath18"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-512.35001,504.58001)" + clip-rule="evenodd" + id="path18" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath19"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-517.87001,504.58001)" + clip-rule="evenodd" + id="path19" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath21"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-152.4,504.58001)" + clip-rule="evenodd" + id="path21" /> + </clipPath> + </defs> + <sodipodi:namedview + id="namedview1" + pagecolor="#ffffff" + bordercolor="#666666" + borderopacity="1.0" + inkscape:showpageshadow="2" + inkscape:pageopacity="0.0" + inkscape:pagecheckerboard="0" + inkscape:deskcolor="#d1d1d1" + showgrid="false" + inkscape:zoom="0.7921875" + inkscape:cx="640" + inkscape:cy="360.39448" + inkscape:window-width="1920" + inkscape:window-height="1137" + inkscape:window-x="1912" + inkscape:window-y="-8" + inkscape:window-maximized="1" + inkscape:current-layer="g1"> + <inkscape:page + x="0" + y="0" + inkscape:label="1" + id="page1" + width="1280" + height="720" + margin="0" + bleed="0" /> + </sodipodi:namedview> + <g + id="g1" + inkscape:groupmode="layer" + inkscape:label="1"> + <g + id="g3"> + <image + width="1" + height="1" + style="image-rendering:optimizeSpeed" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(1132.96,0,0,621.6,55.04,87.199867)" + id="image3" + clip-path="url(#clipPath4)" /> + </g> + <g + id="g4"> + <path + id="path5" + d="m 61.5,436.38 h 84.84 V 453.3 H 61.5 Z" + style="fill:none;stroke:#2f528f;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g5"> + <path + id="path6" + d="m 61.62,136.26 h 84.72 V 156.9 H 61.62 Z" + style="fill:none;stroke:#2f528f;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g6"> + <path + id="path7" + d="m 61.5,158.7 h 84.84 V 432.66 H 61.5 Z" + style="fill:none;stroke:#ffc000;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g7"> + <path + id="path8" + d="m 154.62,432.66 h 736.44 v 30.72 H 154.62 Z" + style="fill:none;stroke:#00b0f0;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g8"> + <path + id="path9" + d="m 154.5,133.74 h 736.56 v 30.72 H 154.5 Z" + style="fill:none;stroke:#00b0f0;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g9"> + <path + id="path10" + d="m 620.34,495.18 h 246 v 30.84 h -246 z" + style="fill:none;stroke:#44546a;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g10"> + <text + id="text10" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,850.37333,47.133333)" + clip-path="url(#clipPath11)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 7.5599999 16.92" + y="0" + sodipodi:role="line" + id="tspan10">Low</tspan></text> + </g> + <g + id="g11"> + <text + id="text11" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,890.05333,47.133333)" + clip-path="url(#clipPath12)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan11">-</tspan></text> + </g> + <g + id="g12"> + <text + id="text12" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,897.41333,47.133333)" + clip-path="url(#clipPath13)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 9.4499998 15.48 24.444 31.535999 38.574001 48.077999 54.071999 63.035999 67.248001 74.286003 83.790001 93.276001 102.762 106.83 110.898 117.972 127.422 136.44 145.40401 154.908 159.084" + y="0" + sodipodi:role="line" + id="tspan12">pressure spool speed [</tspan></text> + </g> + <g + id="g13"> + <text + id="text13" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,1117.12,47.133333)" + clip-path="url(#clipPath14)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan13">-</tspan></text> + </g> + <g + id="g14"> + <text + id="text14" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,1124.48,47.133333)" + clip-path="url(#clipPath15)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan14">]</tspan></text> + </g> + <g + id="g15"> + <path + id="path16" + d="m 346.98,495.18 h 246 v 30.72 h -246 z" + style="fill:none;stroke:#00b0f0;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g16"> + <text + id="text16" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,555.26667,47.226667)" + clip-path="url(#clipPath17)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 15.39 24.011999 28.08 37.529999 47.051998 61.433998 70.938004 79.902 86.183998 90.360001" + y="0" + sodipodi:role="line" + id="tspan16">Ma number [</tspan></text> + </g> + <g + id="g17"> + <text + id="text17" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,683.13333,47.226667)" + clip-path="url(#clipPath18)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan17">-</tspan></text> + </g> + <g + id="g18"> + <text + id="text18" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,690.49333,47.226667)" + clip-path="url(#clipPath19)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan18">]</tspan></text> + </g> + <g + id="g19"> + <path + id="path20" + d="M 73.62,495.18 H 319.5 V 525.9 H 73.62 Z" + style="fill:none;stroke:#ffc000;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g20"> + <text + id="text20" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,203.2,47.226667)" + clip-path="url(#clipPath21)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 10.422 14.562 20.52 24.606001 30.636 40.085999 49.535999 58.554001 62.73 68.255997 82.638" + y="0" + sodipodi:role="line" + id="tspan20">Altitude [m]</tspan></text> + </g> + </g> +</svg> diff --git a/docs/documentation/sizing/propulsion_design/figures/different_engines.svg b/docs/documentation/sizing/propulsion_design/figures/different_engines.svg new file mode 100644 index 0000000..454694a --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/figures/different_engines.svg @@ -0,0 +1,957 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<!-- Created with Inkscape (http://www.inkscape.org/) --> + +<svg + version="1.1" + id="svg1" + width="1280" + height="720" + viewBox="0 0 1280 720" + sodipodi:docname="different_engines.svg" + inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <defs + id="defs1"> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath3"> + <path + d="M 0,1.2207e-4 H 960 V 540.00012 H 0 Z" + clip-rule="evenodd" + id="path3" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath4"> + <path + d="M 57.6,183.6 H 253.8 V 356.4 H 57.6 Z" + transform="matrix(0.00398184,0,0,-0.00578704,-0.11998089,2.0625)" + clip-rule="evenodd" + id="path4" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath6"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-75.720002,218.33001)" + clip-rule="evenodd" + id="path6" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath7"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-140.06001,203.21001)" + clip-rule="evenodd" + id="path7" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath8"> + <path + d="m 273.84,183.6 h 196.2 v 172.8 h -196.2 z" + transform="matrix(0.00339789,0,0,-0.00578704,-0.76381244,2.0625)" + clip-rule="evenodd" + id="path8" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath10"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-288.82,218.33001)" + clip-rule="evenodd" + id="path10" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath11"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-356.26001,203.21001)" + clip-rule="evenodd" + id="path11" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath12"> + <path + d="m 489.96,183.6 h 196.2 v 172.8 h -196.2 z" + transform="matrix(0.00509684,0,0,-0.00370961,-2.4972477,1.5016139)" + clip-rule="evenodd" + id="path12" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath14"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-499.63001,218.33001)" + clip-rule="evenodd" + id="path14" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath15"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-537.79001,218.33001)" + clip-rule="evenodd" + id="path15" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath16"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-542.11001,218.33001)" + clip-rule="evenodd" + id="path16" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath17"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-590.47001,218.33001)" + clip-rule="evenodd" + id="path17" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath18"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-543.31001,203.21001)" + clip-rule="evenodd" + id="path18" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath19"> + <path + d="M 706.2,183.6 H 902.4 V 356.4 H 706.2 Z" + transform="matrix(0.00398184,0,0,-0.00578704,-2.7025962,2.0625)" + clip-rule="evenodd" + id="path19" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath21"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-731.78002,218.33001)" + clip-rule="evenodd" + id="path21" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath22"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-762.65004,218.33001)" + clip-rule="evenodd" + id="path22" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath23"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-766.97004,218.33001)" + clip-rule="evenodd" + id="path23" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath24"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-780.53004,203.21001)" + clip-rule="evenodd" + id="path24" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath25"> + <path + d="m 57.6,6.6002 h 196.2 v 172.8 H 57.6 Z" + transform="matrix(0.0030338,0,0,-0.00578704,0.02763182,1.0381944)" + clip-rule="evenodd" + id="path25" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath27"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-64.080002,41.280001)" + clip-rule="evenodd" + id="path27" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath28"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-142.58001,26.136001)" + clip-rule="evenodd" + id="path28" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath29"> + <path + d="m 273.84,6.6002 h 196.2 v 172.8 h -196.2 z" + transform="matrix(0.0029292,0,0,-0.00578704,-0.58950173,1.0381944)" + clip-rule="evenodd" + id="path29" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath31"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-296.26,41.280001)" + clip-rule="evenodd" + id="path31" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath32"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-350.02001,26.136001)" + clip-rule="evenodd" + id="path32" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath33"> + <path + d="m 489.96,6.6002 h 196.2 v 172.8 h -196.2 z" + transform="matrix(0.00411032,0,0,-0.00578704,-1.9171359,1.038195)" + clip-rule="evenodd" + id="path33" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath35"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-534.79001,33.696001)" + clip-rule="evenodd" + id="path35" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath36"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-576.43001,33.696001)" + clip-rule="evenodd" + id="path36" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath37"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-580.75001,33.696001)" + clip-rule="evenodd" + id="path37" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath40"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-799.49004,33.696001)" + clip-rule="evenodd" + id="path40" /> + </clipPath> + <mask + maskUnits="userSpaceOnUse" + x="0" + y="0" + width="1" + height="1" + id="mask40"> + <image + width="1" + height="1" + style="image-rendering:optimizeSpeed" + preserveAspectRatio="none" + xlink:href="" + id="image40" /> + </mask> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath41"> + <path + d="M 57.6,360.6 H 253.8 V 533.52 H 57.6 Z" + transform="matrix(0.00369331,0,0,-0.00578302,-0.0750554,3.0853574)" + clip-rule="evenodd" + id="path41" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath43"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-71.280002,387.86001)" + clip-rule="evenodd" + id="path43" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath44"> + <path + d="m 273.84,360.6 h 196.2 v 172.92 h -196.2 z" + transform="matrix(0.00417781,0,0,-0.00578302,-1.0538937,3.0853574)" + clip-rule="evenodd" + id="path44" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath46"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-298.66,387.86001)" + clip-rule="evenodd" + id="path46" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath47"> + <path + d="m 489.96,360.6 h 196.2 v 172.92 h -196.2 z" + transform="matrix(0.00392065,0,0,-0.00578302,-1.8055752,3.0853574)" + clip-rule="evenodd" + id="path47" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath49"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-533.23001,387.86001)" + clip-rule="evenodd" + id="path49" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath50"> + <path + d="M 706.2,360.6 H 902.4 V 533.52 H 706.2 Z" + transform="matrix(0.00335323,0,0,-0.00578302,-2.1970022,3.0853574)" + clip-rule="evenodd" + id="path50" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath52"> + <path + d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-770.45004,387.86001)" + clip-rule="evenodd" + id="path52" /> + </clipPath> + </defs> + <sodipodi:namedview + id="namedview1" + pagecolor="#ffffff" + bordercolor="#666666" + borderopacity="1.0" + inkscape:showpageshadow="2" + inkscape:pageopacity="0.0" + inkscape:pagecheckerboard="0" + inkscape:deskcolor="#d1d1d1" + showgrid="false" + inkscape:zoom="0.7921875" + inkscape:cx="640" + inkscape:cy="360.39448" + inkscape:window-width="1920" + inkscape:window-height="1137" + inkscape:window-x="1912" + inkscape:window-y="-8" + inkscape:window-maximized="1" + inkscape:current-layer="g1"> + <inkscape:page + x="0" + y="0" + inkscape:label="1" + id="page1" + width="1280" + height="720" + margin="0" + bleed="0" /> + </sodipodi:namedview> + <g + id="g1" + inkscape:groupmode="layer" + inkscape:label="1"> + <g + id="g2"> + <path + id="path2" + d="M 0,6.1035e-5 H 960 V 540.00006 H 0 Z" + style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" + clip-path="url(#clipPath3)" /> + </g> + <g + id="g3"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(334.85333,0,0,230.4,40.176,244.8)" + id="image3" + clip-path="url(#clipPath4)" /> + </g> + <g + id="g4"> + <path + id="path5" + d="m 57.6,193.92 h 196.2 v 41.52 H 57.6 Z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g5"> + <text + id="text5" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,100.96,428.89333)" + clip-path="url(#clipPath6)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 5.99508 13.30992 18.209881 25.580879 32.979961 40.35096 44.984161 52.38324 59.754238 62.87112 69.863037 77.149803 83.762642 86.991837 94.306679 101.2986 104.61204 108.81 116.12484 123.43968 126.66888 129.89809 136.89 141.78996 145.14552 152.5446 159.9156" + y="0" + sodipodi:role="line" + id="tspan5">Turboprop engine (puller on </tspan></text> + </g> + <g + id="g6"> + <text + id="text6" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,186.74667,449.05333)" + clip-path="url(#clipPath7)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 10.0386 13.30992 20.62476 27.2376" + y="0" + sodipodi:role="line" + id="tspan6">wing)</tspan></text> + </g> + <g + id="g7"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(392.4,0,0,230.4,299.72,244.8)" + id="image7" + clip-path="url(#clipPath8)" /> + </g> + <g + id="g8"> + <path + id="path9" + d="m 273.84,193.92 h 196.2 v 41.52 h -196.2 z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g9"> + <text + id="text9" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,385.09333,428.89333)" + clip-path="url(#clipPath10)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 5.99508 13.30992 18.209881 25.580879 32.979961 40.35096 44.984161 52.38324 59.754238 62.87112 69.863037 77.149803 83.762642 86.991837 94.306679 101.2986 104.61204 108.81 116.12484 123.43968 128.92932 136.30032 143.23608 148.13605 151.50565 158.90472 166.27573" + y="0" + sodipodi:role="line" + id="tspan9">Turboprop engine (pusher on </tspan></text> + </g> + <g + id="g10"> + <text + id="text10" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,475.01333,449.05333)" + clip-path="url(#clipPath11)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 10.0386 13.30992 20.62476 27.2376" + y="0" + sodipodi:role="line" + id="tspan10">wing)</tspan></text> + </g> + <g + id="g11"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(261.6,4.0690667e-5,0,359.42667,653.28,180.28)" + id="image11" + clip-path="url(#clipPath12)" /> + </g> + <g + id="g12"> + <path + id="path13" + d="m 489.96,193.92 h 196.2 v 41.52 h -196.2 z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g13"> + <text + id="text13" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,666.17333,428.89333)" + clip-path="url(#clipPath14)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 7.4411998 14.84028 22.084921 26.788321 31.4496" + y="0" + sodipodi:role="line" + id="tspan13">Contra</tspan></text> + </g> + <g + id="g14"> + <text + id="text14" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,717.05333,428.89333)" + clip-path="url(#clipPath15)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan14">-</tspan></text> + </g> + <g + id="g15"> + <text + id="text15" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,722.81333,428.89333)" + clip-path="url(#clipPath16)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 4.6753201 12.0744 16.67952 23.27832 27.98172 31.21092 38.511719" + y="0" + sodipodi:role="line" + id="tspan15">rotating</tspan></text> + </g> + <g + id="g16"> + <text + id="text16" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,787.29333,428.89333)" + clip-path="url(#clipPath17)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 7.3148398 11.99016 19.38924 26.633881 30.719521 37.444679 44.759521 47.8764 54.86832 62.155079 68.767921 71.997124 79.311958 86.303879" + y="0" + sodipodi:role="line" + id="tspan16">propfan engine </tspan></text> + </g> + <g + id="g17"> + <text + id="text17" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,724.41333,449.05333)" + clip-path="url(#clipPath18)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 4.1979599 11.5128 18.827641 22.056841 25.286039 32.277962 37.177921 40.40712 47.806198 55.1772 58.294079 68.33268 71.603996 78.918839 85.531677" + y="0" + sodipodi:role="line" + id="tspan17">(puller on wing)</tspan></text> + </g> + <g + id="g18"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(334.85333,0,0,230.4,904.97333,244.8)" + id="image18" + clip-path="url(#clipPath19)" /> + </g> + <g + id="g19"> + <path + id="path20" + d="m 706.2,193.92 h 196.2 v 41.52 H 706.2 Z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g20"> + <text + id="text20" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,975.70667,428.89333)" + clip-path="url(#clipPath21)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 9.2383204 16.55316 23.54508" + y="0" + sodipodi:role="line" + id="tspan20">Open</tspan></text> + </g> + <g + id="g21"> + <text + id="text21" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,1016.8667,428.89333)" + clip-path="url(#clipPath22)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan21">-</tspan></text> + </g> + <g + id="g22"> + <text + id="text22" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,1022.6267,428.89333)" + clip-path="url(#clipPath23)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 4.6753201 12.0744 16.67952 24.0786 29.020679 34.440121 41.740921 49.055759 56.370602 63.68544 69.568199 74.131203 81.123123 88.409882 91.751404 95.837044 102.5622 109.87704" + y="0" + sodipodi:role="line" + id="tspan22">rotor/unducted fan </tspan></text> + </g> + <g + id="g23"> + <text + id="text23" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,1040.7067,449.05333)" + clip-path="url(#clipPath24)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 4.1979599 11.5128 18.827641 24.31728 31.68828 38.624039 43.523998" + y="0" + sodipodi:role="line" + id="tspan23">(pusher)</tspan></text> + </g> + <g + id="g24"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(439.49333,0,0,230.4,-12.144,480.8)" + id="image24" + clip-path="url(#clipPath25)" /> + </g> + <g + id="g25"> + <path + id="path26" + d="M 57.6,16.92 H 253.8 V 58.44 H 57.6 Z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g26"> + <text + id="text26" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,85.44,664.96)" + clip-path="url(#clipPath27)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.064px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 8.6493597 11.88408 17.284657 21.996096 26.904432 30.139153 37.43837 44.751648 49.308384 56.270065 63.583344 66.930573 73.892258 77.126976 84.130852 89.967407 94.678848 99.587181 102.82191 108.68659 111.90725 119.22053 123.90384 131.31557 138.69917 145.61865 148.85338 152.08809 159.09196 164.00031 167.17877 171.44016 183.16954" + y="0" + sodipodi:role="line" + id="tspan26">Distributed electric propeller (© </tspan></text> + </g> + <g + id="g27"> + <text + id="text27" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,190.10667,685.152)" + clip-path="url(#clipPath28)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 8.6345997 14.5314 22.183201" + y="0" + sodipodi:role="line" + id="tspan27">DLR)</tspan></text> + </g> + <g + id="g28"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(455.18667,0,0,230.4,268.33333,480.8)" + id="image28" + clip-path="url(#clipPath29)" /> + </g> + <g + id="g29"> + <path + id="path30" + d="m 273.84,16.92 h 196.2 v 41.52 h -196.2 z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g30"> + <text + id="text30" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,395.01333,664.96)" + clip-path="url(#clipPath31)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.064px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 8.6493597 11.88408 17.284657 21.996096 26.904432 30.139153 37.43837 44.751648 49.308384 56.270065 63.583344 66.930573 73.892258 77.126976 84.130852 89.967407 94.678848 99.587181 102.82191 108.68659 111.90725 119.22053 126.53381 132.41257 136.9693 143.93097 151.24426" + y="0" + sodipodi:role="line" + id="tspan30">Distributed electric ducted </tspan></text> + </g> + <g + id="g31"> + <text + id="text31" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,466.69333,685.152)" + clip-path="url(#clipPath32)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 6.99192 14.27868 20.89152 24.12072 31.43556 38.427479" + y="0" + sodipodi:role="line" + id="tspan31">engines</tspan></text> + </g> + <g + id="g32"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(324.38667,0,0,230.4,621.89333,480.79987)" + id="image32" + clip-path="url(#clipPath33)" /> + </g> + <g + id="g33"> + <path + id="path34" + d="m 489.96,16.92 h 196.2 v 41.52 h -196.2 z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g34"> + <text + id="text34" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,713.05333,675.072)" + clip-path="url(#clipPath35)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 6.8515201 10.08072 17.072639 22.91328 27.61668 32.51664 35.745838" + y="0" + sodipodi:role="line" + id="tspan34">Electric</tspan></text> + </g> + <g + id="g35"> + <text + id="text35" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,768.57333,675.072)" + clip-path="url(#clipPath36)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan35">-</tspan></text> + </g> + <g + id="g36"> + <text + id="text36" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,774.33333,675.072)" + clip-path="url(#clipPath37)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 7.3148398 14.62968 20.51244 25.075439 32.06736 39.354118 42.695641 46.781281 53.506439" + y="0" + sodipodi:role="line" + id="tspan36">ducted fan</tspan></text> + </g> + <g + id="g37"> + <path + id="path38" + d="M 706.2,6.6 H 902.4 V 179.4 H 706.2 Z" + style="fill:#cfd5ea;fill-opacity:1;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g38"> + <path + id="path39" + d="M 706.2,16.92 H 902.4 V 58.44 H 706.2 Z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g39"> + <text + id="text39" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,1065.9867,675.072)" + clip-path="url(#clipPath40)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan39">…</tspan></text> + </g> + <g + id="g40"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + mask="url(#mask40)" + id="image41" + transform="matrix(361.01333,0,0,230.56,27.096,8.64)" + clip-path="url(#clipPath41)" /> + </g> + <g + id="g41"> + <path + id="path42" + d="m 57.6,371.04 h 196.2 v 41.4 H 57.6 Z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g42"> + <text + id="text42" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,95.04,202.85333)" + clip-path="url(#clipPath43)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 5.99508 13.30992 18.209881 25.580879 32.979961 37.065601 43.79076 51.105598 54.222481 61.214401 68.50116 75.113998 78.343201 85.658043 92.649963 95.963402 100.16136 107.4762 114.79104 122.10588 129.09779 133.99776 137.32524 147.36385 150.63516 157.95 164.56284" + y="0" + sodipodi:role="line" + id="tspan42">Turbofan engine (under wing)</tspan></text> + </g> + <g + id="g43"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(319.14667,0,0,230.56,336.34667,8.64)" + id="image43" + clip-path="url(#clipPath44)" /> + </g> + <g + id="g44"> + <path + id="path45" + d="m 273.84,371.04 h 196.2 v 41.4 h -196.2 z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g45"> + <text + id="text45" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,398.21333,202.85333)" + clip-path="url(#clipPath46)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 5.99508 13.30992 18.209881 25.580879 32.979961 37.065601 43.79076 51.105598 54.222481 61.214401 68.50116 75.113998 78.343201 85.658043 92.649963 95.963402 100.16136 104.83668 111.8286 118.55376 123.45372 126.66888 133.26768 137.54988 142.25328" + y="0" + sodipodi:role="line" + id="tspan45">Turbofan engine (rear aft)</tspan></text> + </g> + <g + id="g46"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(340.08,0,0,230.56,614.04,8.64)" + id="image46" + clip-path="url(#clipPath47)" /> + </g> + <g + id="g47"> + <path + id="path48" + d="m 489.96,371.04 h 196.2 v 41.4 h -196.2 z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g48"> + <text + id="text48" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,710.97333,202.85333)" + clip-path="url(#clipPath49)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 7.2025199 11.87784 19.27692 26.647921 33.962761 37.191959 42.681599 45.952919 52.18668 59.1786 62.351639 66.690002 74.004837 79.494476 86.486397 89.715599 96.440758 102.92724" + y="0" + sodipodi:role="line" + id="tspan48">Propulsive fuselage</tspan></text> + </g> + <g + id="g49"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(397.62667,0,0,230.56,873.58667,8.64)" + id="image49" + clip-path="url(#clipPath50)" /> + </g> + <g + id="g50"> + <path + id="path51" + d="m 706.2,371.04 h 196.2 v 41.4 H 706.2 Z" + style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,720)" /> + </g> + <g + id="g51"> + <text + id="text51" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,1027.2667,202.85333)" + clip-path="url(#clipPath52)"><tspan + style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 12.4956 19.34712 26.184601 29.385719 36.37764 43.664398 50.277241 53.506439 60.821281" + y="0" + sodipodi:role="line" + id="tspan51">WET engine</tspan></text> + </g> + </g> +</svg> diff --git a/docs/documentation/sizing/propulsion_design/figures/engine_mount.svg b/docs/documentation/sizing/propulsion_design/figures/engine_mount.svg new file mode 100644 index 0000000..efdb17b --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/figures/engine_mount.svg @@ -0,0 +1,244 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<svg + id="Ebene_1" + data-name="Ebene 1" + width="118.98mm" + height="55.57mm" + viewBox="0 0 337.25 157.51" + version="1.1" + sodipodi:docname="engine-mount_modified2.svg" + inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <sodipodi:namedview + id="namedview78" + pagecolor="#ffffff" + bordercolor="#666666" + borderopacity="1.0" + inkscape:showpageshadow="2" + inkscape:pageopacity="0.0" + inkscape:pagecheckerboard="0" + inkscape:deskcolor="#d1d1d1" + inkscape:document-units="mm" + inkscape:zoom="4.2429398" + inkscape:cx="145.53589" + inkscape:cy="127.15241" + inkscape:window-width="1920" + inkscape:window-height="1121" + inkscape:window-x="-9" + inkscape:window-y="-9" + inkscape:window-maximized="1" + inkscape:current-layer="g78" /> + <defs + id="defs1"> + <style + id="style1"> + .cls-1 { + fill: none; + } + + .cls-1, .cls-2, .cls-3, .cls-4, .cls-5 { + stroke: #000; + } + + .cls-1, .cls-2, .cls-3, .cls-4, .cls-5, .cls-7 { + stroke-width: 0.75px; + } + + .cls-2 { + fill: #d9d9d9; + } + + .cls-3, .cls-4 { + fill: #787878; + } + + .cls-3, .cls-4, .cls-7 { + stroke-miterlimit: 1; + } + + .cls-4 { + stroke-dasharray: 1 3 10 3; + } + + .cls-5 { + fill: #bdbdbd; + } + + .cls-6 { + fill: #2c2a28; + } + + .cls-7 { + stroke: #fff; + } + </style> + </defs> + <title + id="title1">engine-mounts</title> + <g + id="g78"> + <path + class="cls-1" + d="m 146.18589,67.695085 -0.77047,-11.762142 c 0,0 -48.330078,-11.068261 -83.771869,-9.040896 -15.133109,0.855429 -51.019157,9.94765 -52.0994949,12.317187 -0.2093678,0.444823 -1.6749429,1.565434 -1.6749429,1.822063 0.6532277,4.901605 -1.6749429,50.906553 3.2912628,74.422283 v 0 c 0.108872,0.48759 28.140721,12.69548 28.819073,12.82379 7.629365,1.41145 66.930531,-0.83177 73.714041,-0.42971 24.27229,-7.85654 31.79731,-9.51984 31.79731,-9.51984 0,-26.49476 0.0715,-31.62754 0.69508,-70.632735 z" + id="path1" + sodipodi:nodetypes="cccccssccccc" /> + <path + class="cls-2" + d="m 288.26189,19.24 c 0.47,7.21 8.31,-10.51 8.31,-10.51 0,0 -86.5,-13.3 -128.84,-6.83 -10.37,0.85 -29.53,2.32 -46.36,7.32 -21.3,6.26 -10.78,22.63 14.49,20.93 18.66,-1.26 144.12,-0.43 144.12,-0.43 0,0 7.81,-17.68 8.28,-10.48 z" + id="path2" /> + <path + class="cls-5" + d="m 382.36625,368.91003 c 0,0 -85.75181,-0.88003 -103.83181,0.24997 -23.43,1.46 -25.3197,-9.35015 -25.3197,-9.35015 0,0 -1.05249,-1.68944 -31.86249,5.39056 -24,5.48 -66.31781,22.94359 -69.70781,34.11359 60.12819,-27.15248 124.13579,-5.12884 136.56282,-4.00901 z" + id="path53" + sodipodi:nodetypes="ccccccc" + transform="translate(-142.92,-339.32)" /> + <g + id="g59"> + <text + xml:space="preserve" + style="font-style:normal;font-weight:normal;font-size:10.99947322px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.749964px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" + x="81.749542" + y="132.0347" + id="text1"><tspan + sodipodi:role="line" + id="tspan1" + style="stroke-width:0.749964px;font-size:10.99947322px" + x="81.749542" + y="132.0347">Nacelle</tspan></text> + </g> + <g + id="g64"> + <path + class="cls-6" + d="M267.47,375.61h3.77a2.85,2.85,0,0,1,2,.63,2.21,2.21,0,0,1,.7,1.74,2.56,2.56,0,0,1-.7,1.92,2.69,2.69,0,0,1-2,.69c-1.1,0-2,0-2.6,0v3.62h-1.17Zm1.17,4H271a2,2,0,0,0,1.33-.38,1.57,1.57,0,0,0,.42-1.21,1.29,1.29,0,0,0-.42-1.06,2.14,2.14,0,0,0-1.33-.34h-2.31Z" + transform="translate(-142.92 -339.32)" + id="path60" /> + <path + class="cls-6" + d="M277.92,384.43a6,6,0,0,1-1,1.89,1.7,1.7,0,0,1-1.29.44,1.38,1.38,0,0,1-.51-.06v-1a2,2,0,0,0,.6.1.74.74,0,0,0,.6-.3,4.42,4.42,0,0,0,.55-1.09v-.1h0L274.58,378h1.2l1.68,5.19h0l1.69-5.19h1.16Z" + transform="translate(-142.92 -339.32)" + id="path61" /> + <path + class="cls-6" + d="M281.25,375.61h1.05v8.61h-1.05Z" + transform="translate(-142.92 -339.32)" + id="path62" /> + <path + class="cls-6" + d="M284.34,383.48a4,4,0,0,1,0-4.8,2.66,2.66,0,0,1,2.1-.92,2.69,2.69,0,0,1,2.12.92,4,4,0,0,1,0,4.8,2.68,2.68,0,0,1-2.12.91A2.66,2.66,0,0,1,284.34,383.48Zm3.43-.65a3.37,3.37,0,0,0,0-3.5,1.66,1.66,0,0,0-2.65,0,3.37,3.37,0,0,0,0,3.5,1.68,1.68,0,0,0,2.65,0Z" + transform="translate(-142.92 -339.32)" + id="path63" /> + <path + class="cls-6" + d="M290.56,378h1v.93l.24-.31a2.16,2.16,0,0,1,1.72-.81,2.12,2.12,0,0,1,1.59.57,2.14,2.14,0,0,1,.57,1.6v4.29h-1.06v-3.94a1.76,1.76,0,0,0-.32-1.19,1.3,1.3,0,0,0-1-.36,1.46,1.46,0,0,0-1.21.57,2.55,2.55,0,0,0-.44,1.56v3.36h-1.06Z" + transform="translate(-142.92 -339.32)" + id="path64" /> + </g> + <g + id="g77"> + <path + class="cls-6" + d="M344.07,359.87l-2.25-8.62h1.26l1.53,6.81c0,.12.05.22.07.33a1,1,0,0,1,0,.22h0a1.52,1.52,0,0,1,0-.24c0-.1,0-.21.07-.31l1.83-6.81h1.31l1.81,6.78a3,3,0,0,1,.07.32,1.52,1.52,0,0,1,0,.24h0a1.58,1.58,0,0,1,0-.23c0-.11,0-.22.07-.33l1.55-6.78h1.25l-2.25,8.62h-1.25l-1.87-6.66c0-.12-.06-.23-.09-.34a1.43,1.43,0,0,1,0-.23h0a1.52,1.52,0,0,1,0,.24c0,.11-.05.22-.08.33l-1.82,6.66h-1.26Z" + transform="translate(-142.92 -339.32)" + id="path65" /> + <path + class="cls-6" + d="M353.75,351.25h1.08v1.2h-1.08Zm0,2.35h1.06v6.27h-1.06Z" + transform="translate(-142.92 -339.32)" + id="path66" /> + <path + class="cls-6" + d="M356.39,353.6h1v.92l.23-.31a2.13,2.13,0,0,1,3.88,1.36v4.3h-1.06v-3.94a1.75,1.75,0,0,0-.32-1.19,1.27,1.27,0,0,0-1-.37,1.44,1.44,0,0,0-1.21.58,2.51,2.51,0,0,0-.44,1.56v3.36h-1.06Z" + transform="translate(-142.92 -339.32)" + id="path67" /> + <path + class="cls-6" + d="M365.36,361.64a1.71,1.71,0,0,0,1.39-.57,2.58,2.58,0,0,0,.47-1.67v-.2h0a2.08,2.08,0,0,1-1.7.83,2.46,2.46,0,0,1-2-.94,4,4,0,0,1-.74-2.54,3.41,3.41,0,0,1,.73-2.28,2.39,2.39,0,0,1,1.92-.87,2.07,2.07,0,0,1,1.79,1l.08.11v-.9h1v5.8a3.4,3.4,0,0,1-.72,2.35,2.83,2.83,0,0,1-2.18.77,2.66,2.66,0,0,1-1.69-.5,2.08,2.08,0,0,1-.76-1.43H364a1.19,1.19,0,0,0,.45.78A1.46,1.46,0,0,0,365.36,361.64Zm.21-7.27a1.49,1.49,0,0,0-1.29.56,4,4,0,0,0,0,3.57,1.45,1.45,0,0,0,1.26.62,1.54,1.54,0,0,0,1.24-.57,2.34,2.34,0,0,0,.46-1.52,3.78,3.78,0,0,0-.42-2A1.4,1.4,0,0,0,365.57,354.37Z" + transform="translate(-142.92 -339.32)" + id="path68" /> + <path + class="cls-6" + d="M372.5,351l-2.94,9.07h-.8l2.93-9.07Z" + transform="translate(-142.92 -339.32)" + id="path69" /> + <path + class="cls-6" + d="M374.39,354.47v5.4h-1.06v-5.4h-.86v-.87h.86v-1.07a1.33,1.33,0,0,1,.41-1,1.9,1.9,0,0,1,1.23-.35l.47,0v1l-.42,0a.59.59,0,0,0-.47.2.83.83,0,0,0-.16.56v.76h1.05v.87Z" + transform="translate(-142.92 -339.32)" + id="path70" /> + <path + class="cls-6" + d="M377.5,357.64a1.73,1.73,0,0,0,.3,1.14,1.28,1.28,0,0,0,1,.35,1.45,1.45,0,0,0,1.21-.59,2.56,2.56,0,0,0,.45-1.6V353.6h1.05v6.27h-1v-1a1.91,1.91,0,0,1-.24.32,2.09,2.09,0,0,1-1.68.81,1.9,1.9,0,0,1-2.14-2.14v-4.3h1.06Z" + transform="translate(-142.92 -339.32)" + id="path71" /> + <path + class="cls-6" + d="M386.67,355.41a1.08,1.08,0,0,0-.42-.8,1.59,1.59,0,0,0-1-.29,1.83,1.83,0,0,0-1,.23.74.74,0,0,0-.34.67.57.57,0,0,0,.24.5,3.12,3.12,0,0,0,.95.34l1.09.26a2.81,2.81,0,0,1,1.31.61,1.47,1.47,0,0,1,.39,1.09,1.78,1.78,0,0,1-.67,1.47,2.75,2.75,0,0,1-1.81.55,3.1,3.1,0,0,1-2-.53,2.21,2.21,0,0,1-.72-1.65h1a1.35,1.35,0,0,0,.47,1,2,2,0,0,0,1.22.3,1.78,1.78,0,0,0,1.07-.27.9.9,0,0,0,.37-.79.56.56,0,0,0-.24-.49,2.84,2.84,0,0,0-1-.34l-1.09-.26a2.64,2.64,0,0,1-1.26-.59,1.43,1.43,0,0,1-.37-1.06,1.71,1.71,0,0,1,.63-1.4,2.54,2.54,0,0,1,1.7-.52,2.73,2.73,0,0,1,1.75.53,1.91,1.91,0,0,1,.68,1.47Z" + transform="translate(-142.92 -339.32)" + id="path72" /> + <path + class="cls-6" + d="M391.64,360a2.64,2.64,0,0,1-2.09-.85,3.34,3.34,0,0,1-.77-2.33,3.69,3.69,0,0,1,.81-2.51,2.7,2.7,0,0,1,2.16-.94,2.46,2.46,0,0,1,2,.91,3.63,3.63,0,0,1,.76,2.41l0,.37h-4.57a2.7,2.7,0,0,0,.42,1.43,1.65,1.65,0,0,0,1.41.6,1.67,1.67,0,0,0,1.05-.34,1.37,1.37,0,0,0,.55-.87h1.05a2.7,2.7,0,0,1-.94,1.58A2.89,2.89,0,0,1,391.64,360Zm1.76-3.79a2.34,2.34,0,0,0-.44-1.36,1.49,1.49,0,0,0-1.25-.54,1.61,1.61,0,0,0-1.33.63,2.34,2.34,0,0,0-.47,1.27Z" + transform="translate(-142.92 -339.32)" + id="path73" /> + <path + class="cls-6" + d="M395.78,351.25h1.05v8.62h-1.05Z" + transform="translate(-142.92 -339.32)" + id="path74" /> + <path + class="cls-6" + d="M400.08,360a2.11,2.11,0,0,1-1.46-.49,1.73,1.73,0,0,1-.54-1.33,1.84,1.84,0,0,1,.5-1.35,2.53,2.53,0,0,1,1.48-.62l1.44-.18a1.61,1.61,0,0,0,.33-.06.48.48,0,0,0,.32-.21.7.7,0,0,0,.11-.4v0a.94.94,0,0,0-.38-.79,1.73,1.73,0,0,0-1.06-.28,1.59,1.59,0,0,0-1,.3,1.34,1.34,0,0,0-.44.9h-1a2.06,2.06,0,0,1,.72-1.55,2.93,2.93,0,0,1,1.87-.52,2.67,2.67,0,0,1,1.74.5,1.76,1.76,0,0,1,.6,1.44v3.45a.35.35,0,0,0,.09.25.38.38,0,0,0,.26.1h.14l.2,0v.76l-.33.1-.28,0a1.06,1.06,0,0,1-.87-.33,1.32,1.32,0,0,1-.25-.61,2.37,2.37,0,0,1-.27.28A2.8,2.8,0,0,1,400.08,360Zm2.18-2.66v-.68a2.15,2.15,0,0,1-.65.2l-1,.14a2.68,2.68,0,0,0-1.11.35.8.8,0,0,0-.35.68,1.06,1.06,0,0,0,.29.81,1.09,1.09,0,0,0,.81.28,2.24,2.24,0,0,0,1.41-.45,1.58,1.58,0,0,0,.52-.71,1.09,1.09,0,0,0,0-.24C402.25,357.65,402.26,357.52,402.26,357.38Z" + transform="translate(-142.92 -339.32)" + id="path75" /> + <path + class="cls-6" + d="M407.39,361.64a1.71,1.71,0,0,0,1.39-.57,2.58,2.58,0,0,0,.47-1.67v-.2h0a2.08,2.08,0,0,1-1.7.83,2.46,2.46,0,0,1-2-.94,4,4,0,0,1-.74-2.54,3.41,3.41,0,0,1,.73-2.28,2.39,2.39,0,0,1,1.92-.87,2.07,2.07,0,0,1,1.79,1l.08.11v-.9h1v5.8a3.4,3.4,0,0,1-.72,2.35,2.83,2.83,0,0,1-2.18.77,2.66,2.66,0,0,1-1.69-.5,2.08,2.08,0,0,1-.76-1.43H406a1.19,1.19,0,0,0,.45.78A1.44,1.44,0,0,0,407.39,361.64Zm.21-7.27a1.49,1.49,0,0,0-1.29.56,4,4,0,0,0,0,3.57,1.45,1.45,0,0,0,1.26.62,1.51,1.51,0,0,0,1.23-.57,2.28,2.28,0,0,0,.47-1.52,3.78,3.78,0,0,0-.42-2A1.4,1.4,0,0,0,407.6,354.37Z" + transform="translate(-142.92 -339.32)" + id="path76" /> + <path + class="cls-6" + d="M414.33,360a2.67,2.67,0,0,1-2.1-.85,3.38,3.38,0,0,1-.76-2.33,3.69,3.69,0,0,1,.81-2.51,2.68,2.68,0,0,1,2.16-.94,2.49,2.49,0,0,1,2,.91,3.68,3.68,0,0,1,.75,2.41v.37h-4.58a2.78,2.78,0,0,0,.43,1.43,1.65,1.65,0,0,0,1.41.6,1.67,1.67,0,0,0,1.05-.34,1.41,1.41,0,0,0,.55-.87h1a2.68,2.68,0,0,1-.93,1.58A2.91,2.91,0,0,1,414.33,360Zm1.75-3.79a2.34,2.34,0,0,0-.43-1.36,1.49,1.49,0,0,0-1.25-.54,1.6,1.6,0,0,0-1.33.63,2.42,2.42,0,0,0-.48,1.27Z" + transform="translate(-142.92 -339.32)" + id="path77" /> + <text + xml:space="preserve" + style="font-style:normal;font-weight:normal;font-size:7.99962px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.749964px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" + x="168.89421" + y="75.285164" + id="text78"><tspan + sodipodi:role="line" + style="font-size:7.99962px;stroke-width:0.749964px" + x="168.89421" + y="75.285164" + id="tspan79">nacelle attachment: engine/nacelle start</tspan></text> + <text + xml:space="preserve" + style="font-style:normal;font-weight:normal;font-size:7.99962px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.749964px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" + x="169.33449" + y="84.31498" + id="text78-6"><tspan + sodipodi:role="line" + id="tspan78-2" + style="font-size:7.99962px;stroke-width:0.749964px" + x="169.33449" + y="84.31498">wing attachment: LE</tspan><tspan + sodipodi:role="line" + style="font-size:7.99962px;stroke-width:0.749964px" + x="169.33449" + y="94.314507" + id="tspan79-2" /></text> + </g> + <polygon + class="cls-7" + points="88.65 42.14 81.58 48.57 84.89 48.57 84.89 70.42 92.02 70.42 92.02 48.57 95.61 48.57 88.65 42.14" + id="polygon77" /> + <polygon + class="cls-7" + points="180.65 20.14 173.57 26.57 176.89 26.57 176.89 48.42 184.02 48.42 184.02 26.57 187.61 26.57 180.65 20.14" + id="polygon78" /> + </g> +</svg> diff --git a/docs/documentation/sizing/propulsion_design/figures/scale_factor.svg b/docs/documentation/sizing/propulsion_design/figures/scale_factor.svg new file mode 100644 index 0000000..ebf362b --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/figures/scale_factor.svg @@ -0,0 +1,557 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<!-- Created with Inkscape (http://www.inkscape.org/) --> + +<svg + version="1.1" + id="svg1" + width="1280" + height="379.84" + viewBox="0 0 1280 379.84" + sodipodi:docname="scale_factor.svg" + inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <defs + id="defs1"> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath3"> + <path + d="M 0,9.1553e-5 H 960 V 284.88009 H 0 Z" + clip-rule="evenodd" + id="path3" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath4"> + <path + d="M 0,6.1035e-5 H 474.84 V 284.88006 H 0 Z" + transform="matrix(-0.00210597,0,0,0.00351025,1,0)" + clip-rule="evenodd" + id="path4" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath5"> + <path + d="M 594.48,41.04 H 960 V 260.4 H 594.48 Z" + transform="matrix(-0.00273583,0,0,0.00455872,2.6263953,-0.18708972)" + clip-rule="evenodd" + id="path5" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath7"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-585.07001,27.336001)" + clip-rule="evenodd" + id="path7" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath8"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-588.67001,8.1120002)" + clip-rule="evenodd" + id="path8" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath9"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-56.448001,257.09001)" + clip-rule="evenodd" + id="path9" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath10"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-591.26002,257.09001)" + clip-rule="evenodd" + id="path10" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath11"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-591.26002,235.46001)" + clip-rule="evenodd" + id="path11" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath12"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-676.85002,240.86001)" + clip-rule="evenodd" + id="path12" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath13"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-450.22001,172.87)" + clip-rule="evenodd" + id="path13" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath14"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-495.94001,172.87)" + clip-rule="evenodd" + id="path14" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath15"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-450.22001,151.27)" + clip-rule="evenodd" + id="path15" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath16"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-511.42001,151.27)" + clip-rule="evenodd" + id="path16" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath17"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-69.144002,152.47)" + clip-rule="evenodd" + id="path17" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath18"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-117.29001,117.43)" + clip-rule="evenodd" + id="path18" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath19"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-134.74,182.93001)" + clip-rule="evenodd" + id="path19" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath20"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-244.63,102.14001)" + clip-rule="evenodd" + id="path20" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath21"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-174,76.008002)" + clip-rule="evenodd" + id="path21" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath22"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-649.22002,141.58)" + clip-rule="evenodd" + id="path22" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath23"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-666.46001,104.76)" + clip-rule="evenodd" + id="path23" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath24"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-671.69002,169.25001)" + clip-rule="evenodd" + id="path24" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath25"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-775.56002,123.38001)" + clip-rule="evenodd" + id="path25" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath26"> + <path + d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z" + transform="matrix(1,0,0,-1,-723.86002,74.688002)" + clip-rule="evenodd" + id="path26" /> + </clipPath> + </defs> + <sodipodi:namedview + id="namedview1" + pagecolor="#ffffff" + bordercolor="#666666" + borderopacity="1.0" + inkscape:showpageshadow="2" + inkscape:pageopacity="0.0" + inkscape:pagecheckerboard="0" + inkscape:deskcolor="#d1d1d1" + showgrid="false" + inkscape:zoom="0.753125" + inkscape:cx="640" + inkscape:cy="190.53942" + inkscape:window-width="1920" + inkscape:window-height="1137" + inkscape:window-x="1912" + inkscape:window-y="-8" + inkscape:window-maximized="1" + inkscape:current-layer="g1"> + <inkscape:page + x="0" + y="0" + inkscape:label="1" + id="page1" + width="1280" + height="379.84" + margin="0" + bleed="0" /> + </sodipodi:namedview> + <g + id="g1" + inkscape:groupmode="layer" + inkscape:label="1"> + <g + id="g2"> + <path + id="path2" + d="M 0,3.0518e-5 H 960 V 284.88003 H 0 Z" + style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,0,379.84)" + clip-path="url(#clipPath3)" /> + </g> + <g + id="g3"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(-633.12,0,0,-379.84,633.12,379.84)" + id="image3" + clip-path="url(#clipPath4)" /> + </g> + <g + id="g4"> + <image + width="1" + height="1" + preserveAspectRatio="none" + xlink:href="" + transform="matrix(-487.36,0,0,-292.48,1280,325.12)" + id="image4" + clip-path="url(#clipPath5)" /> + </g> + <g + id="g5"> + <path + id="path6" + d="m 482.52,137.67 h 76.62 v 4.77 l 9.54,-9.54 -9.54,-9.54 v 4.77 h -76.62 z" + style="fill:#4472c4;fill-opacity:1;fill-rule:evenodd;stroke:#2f528f;stroke-width:0.96;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,0,379.84)" /> + </g> + <g + id="g6"> + <text + id="text6" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,780.09333,343.392)" + clip-path="url(#clipPath7)"><tspan + style="font-style:italic;font-variant:normal;font-weight:normal;font-size:15.96px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 6.2084398 12.72012 20.923559 24.59436 32.271118 35.878078 40.554359 48.757801 55.31736 60.472439 68.65992 74.134201 77.98056 85.928642 89.599442 95.073723 102.7824 110.98584 119.10948 122.8122 128.28648 135.99516 144.19859 147.75768 153.1362 161.33965 166.81392 175.01736 181.09811 186.47664 190.17937 196.37184 199.97881 208.18224 214.82159 220.1682 228.37164 236.49529 240.198 244.0284 249.40692 257.61035 265.73401 271.20828 277.41672 282.76331 286.48199 294.66949 299.53729 303.14423 310.82101 319.02444 327.14807 330.8508 339.05423" + y="0" + sodipodi:role="line" + id="tspan6">scale factor = required thrust / actual thurst of engine</tspan></text> + </g> + <g + id="g7"> + <text + id="text7" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,784.89333,369.024)" + clip-path="url(#clipPath8)"><tspan + style="font-style:italic;font-variant:normal;font-weight:normal;font-size:15.96px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 7.3256402 14.26824 22.47168 30.59532 38.798759 46.427639 54.471481 59.849998 63.680401 67.383118 73.59156 77.10276 85.306198 92.935081 101.13852 108.7674 116.97084 125.11044 132.77124 140.81508 146.1936 150.024 158.21149 166.35107 170.18147 175.56 183.76344 191.39232 194.99928 202.11745 210.24107 215.71536 219.46596 227.6694 235.79305 239.49576 247.15656 250.85928 256.01437 264.20184 267.87265 276.07608 283.70496 287.31192 293.52036 300.03204 308.23547 311.90628 319.58304" + y="0" + sodipodi:role="line" + id="tspan7">exponent is dependent on the variable to be scaled</tspan></text> + </g> + <g + id="g8"> + <text + id="text8" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,75.264,37.053333)" + clip-path="url(#clipPath9)"><tspan + style="font-variant:normal;font-weight:700;font-size:18.024px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 8.7957125 18.4746 27.017977 31.45188 41.130768 50.268936 53.98188 67.40976 71.843666 78.097992 87.776878 91.778206 101.45709 110.25281 116.38097 125.28482 132.47639 141.34421 147.59854 151.41962 160.32349 170.00237 179.7173 183.68259 193.36147 202.49963 210.03368" + y="0" + sodipodi:role="line" + id="tspan8">Engine with dataset and deck</tspan></text> + </g> + <g + id="g9"> + <text + id="text9" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,788.34667,37.053333)" + clip-path="url(#clipPath10)"><tspan + style="font-variant:normal;font-weight:700;font-size:18.024px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 8.7957125 18.4746 27.017977 31.45188 41.130768 50.268936 53.98188 67.40976 71.843666 78.097992 87.776878 91.778206 98.969788 107.87364 122.52715 131.59323 135.45036 145.12924 153.92496 160.05312 168.95697 176.14856 185.1245 191.37883 195.09178 203.99564 213.67451 223.38945 227.35474 237.03363 246.1718 253.70583 262.35733 266.21448 276.32596 288.09561 296.92737 301.10895 314.53683 318.97073 325.22507 334.90393" + y="0" + sodipodi:role="line" + id="tspan9">Engine with same dataset and deck BUT with </tspan></text> + </g> + <g + id="g10"> + <text + id="text10" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,788.34667,65.893333)" + clip-path="url(#clipPath11)"><tspan + style="font-style:italic;font-variant:normal;font-weight:700;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 7.092 14.4 23.903999 28.332001 37.169998 41.237999 46.799999 56.304001 63.720001 69.713997 79.199997" + y="0" + sodipodi:role="line" + id="tspan10">scale factor</tspan></text> + </g> + <g + id="g11"> + <text + id="text11" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,902.46667,58.693333)" + clip-path="url(#clipPath12)"><tspan + style="font-style:italic;font-variant:normal;font-weight:700;font-size:12px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 5.6399999 11.148 17.507999 23.832001 30.216 36.108002 42.335999" + y="0" + sodipodi:role="line" + id="tspan11">exponent</tspan></text> + </g> + <g + id="g12"> + <text + id="text12" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,600.29333,149.34667)" + clip-path="url(#clipPath13)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 10.422 19.872 29.375999 33.462002 41.616001" + y="0" + sodipodi:role="line" + id="tspan12">Apply </tspan></text> + </g> + <g + id="g13"> + <text + id="text13" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,661.25333,149.34667)" + clip-path="url(#clipPath14)"><tspan + style="font-style:italic;font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 6.1739998 15.354 24.606001 33.858002 42.462002 48.636002 52.776001 61.380001 70.632004 79.884003 84.024002 93.222 101.826" + y="0" + sodipodi:role="line" + id="tspan13">rubber engine </tspan></text> + </g> + <g + id="g14"> + <text + id="text14" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,600.29333,178.14667)" + clip-path="url(#clipPath15)"><tspan + style="font-style:italic;font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 7.3260002 16.559999 25.812 33.119999 41.723999 50.886002 56.916" + y="0" + sodipodi:role="line" + id="tspan14">concept </tspan></text> + </g> + <g + id="g15"> + <text + id="text15" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,681.89333,178.14667)" + clip-path="url(#clipPath16)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 12.87 16.92 22.950001" + y="0" + sodipodi:role="line" + id="tspan15">with</tspan></text> + </g> + <g + id="g16"> + <text + id="text16" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,92.192,176.54667)" + clip-path="url(#clipPath17)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 6.0300002 15.48 24.93 30.834 37.674" + y="0" + sodipodi:role="line" + id="tspan16">thurst</tspan></text> + </g> + <g + id="g17"> + <text + id="text17" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,156.38667,223.26667)" + clip-path="url(#clipPath18)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 8.2620001 17.712 26.747999 30.834 35.009998 40.5 44.639999 53.964001" + y="0" + sodipodi:role="line" + id="tspan17">Fuel flow</tspan></text> + </g> + <g + id="g18"> + <text + id="text18" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,179.65333,135.93333)" + clip-path="url(#clipPath19)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18.024px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 11.931888 19.916519 28.892471 34.804344 43.43784 47.529289 51.602711 55.676136 65.138733 71.158752 80.134705 87.21814 94.265518 103.72812 109.78419 118.76014 122.83356 128.74544 137.27078 143.30882 147.34621" + y="0" + sodipodi:role="line" + id="tspan18">Overall pressure ratio</tspan></text> + </g> + <g + id="g19"> + <text + id="text19" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,326.17333,243.65333)" + clip-path="url(#clipPath20)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 11.07 15.12 23.742001 38.124001 47.088001 52.793999 61.757999" + y="0" + sodipodi:role="line" + id="tspan19">Diameter</tspan></text> + </g> + <g + id="g20"> + <text + id="text20" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,232,278.496)" + clip-path="url(#clipPath21)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan20">…</tspan></text> + </g> + <g + id="g21"> + <text + id="text21" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,865.62667,191.06667)" + clip-path="url(#clipPath22)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 6.0300002 15.48 24.93 30.834 37.674" + y="0" + sodipodi:role="line" + id="tspan21">thurst</tspan></text> + </g> + <g + id="g22"> + <text + id="text22" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,888.61333,240.16)" + clip-path="url(#clipPath23)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 8.2620001 17.712 26.747999 30.834 35.009998 40.5 44.639999 53.964001" + y="0" + sodipodi:role="line" + id="tspan22">Fuel flow</tspan></text> + </g> + <g + id="g23"> + <text + id="text23" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,895.58667,154.17333)" + clip-path="url(#clipPath24)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 11.916 19.926001 28.889999 34.812 43.433998 47.574001 51.605999 55.674 65.124001 71.171997 80.136002 87.227997 94.265999 103.77 109.764 118.728 122.796 128.718 137.23199 143.26199 147.312" + y="0" + sodipodi:role="line" + id="tspan23">Overall pressure ratio</tspan></text> + </g> + <g + id="g24"> + <text + id="text24" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,1034.08,215.33333)" + clip-path="url(#clipPath25)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0 11.07 15.12 23.742001 38.124001 47.088001 52.793999 61.757999" + y="0" + sodipodi:role="line" + id="tspan24">Diameter</tspan></text> + </g> + <g + id="g25"> + <text + id="text25" + xml:space="preserve" + transform="matrix(1.3333333,0,0,1.3333333,965.14667,280.256)" + clip-path="url(#clipPath26)"><tspan + style="font-variant:normal;font-weight:normal;font-size:18.024px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + x="0" + y="0" + id="tspan25">…</tspan></text> + </g> + </g> +</svg> diff --git a/docs/documentation/sizing/propulsion_design/getting_started.md b/docs/documentation/sizing/propulsion_design/getting_started.md new file mode 100644 index 0000000..8c6dc34 --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/getting_started.md @@ -0,0 +1,248 @@ +# Getting started {#getting-started} +This guide will show you the basic usage of **propulsion_design**. Following steps are necessary (if you are new to UNICADO check out the [settings and outputs](#settingsandoutputs) first!) + +## Step-by-step + +It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/build/cpp/)). + +1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#acXML)) +2. Fill out the configuration file - change at least: + - in `control_settings` + - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings + - `console_output` at least to `mode_1` + - `plot_output` to false (or define `inkscape_path` and `gnuplot_path`) + - in `program_settings` + - `path_engine_database` to your respective settings + - `propulsion/nacelle/profile` and `pylon/profile` to `propulsion_design/test/stubs` directory +3. Open terminal and run **propulsion_design** + +Following will happen: +- you see output in the console window +- a HTML report is created in the directory of `aircraft_exchange_file_directory` (no plots of engine if they are turned off) +- results are saved in the `/aircraft_exchange_file/component_design/propulsion` + +@note The dummy does not include geometry data for e.g. fuselage or wing. Therefore the positioning of the engine will not work and warnings are expected in the output. + +## Settings and outputs {#settingsandoutputs} +Generally, we use 2 files to set or configure in UNICADO: +- the aircraft exchange file (or _acXML_) includes + - data related inputs (e.g. thrust, offtakes or type of engine) + - data related outputs (e.g. engine position) +- the configuration file `propulsion_design_conf.xml` (also _configXML_) includes + - control settings (e.g. enable/disable generating plots) + - program settings (e.g. set technology factors or methods) + +### Aircraft exchange file +@note _acXML_ is an exchange file - we agreed on that only data will be saved as output which is needed by another tool! + +**Inputs**: +Following is needed from the _acXML_: +1) the total required thrust, +2) the system off-takes, +3) the user settings of the propulsion architecture + +Naturally, the propulsion need an assumption for thrust or power to be designed. Currently, in UNICADO, the requirement is set via the tool _initialSizing_. Here, initial estimation based on the TLARs are calculated like the thrust-to-weight via an design chart or the maximum take-off mass based on regressions. For this, **propulsion_design** currently assumes: + +The sea level static thrust \f$ T_0 \f$ is given by: + +\f$ +T_0 = \frac{T}{W} \cdot MTOM +\f$ + +Where: +- \f$ T_0 \f$ is the sea level static thrust. +- \f$ \frac{T}{W} \f$ is the thrust-to-weight ratio (specified as `/aircraft_exchange_file/sizing_point/thrust_to_weight`). +- \f$ MTOM \f$ is the maximum takeoff mass (specified as `/aircraft_exchange_file/analysis/masses_cg_inertia/maximum_takeoff_mass`). + +@note This might change with new propulsion architectures! + +Not only the thrust is important, but also the system off-takes. Current engine provide power to the systems and therefore, the thrust specific consumption can increase. To include that, the nodes `average_bleed_air_demand` and `average_bleed_air_demand` in `/aircraft_exchange_file/component_design/systems/specific/`are necessary (is set to default values if not existing). + +Additionally, the user settings need to be defined. In the node `/aircraft_exchange_file/requirements_and_specifications/design_specification`, both `energy_carriers` and `propulsion` need to be filled out (for more information on the variables, please read the description in the _acXML_). + +```plaintext +Energy Carriers +|- Energy Carrier (ID=0) +| |- Type +| |- Density +Propulsion +|- Propulsor (ID=0) +| |- Powertrain +| |- Type +| |- Position +| | |- Parent Component +| | |- X +| | |- Y +| | |- Z +| |- Energy Carrier ID +| |- Thrust Share +``` +Let's assume you want to design an aircraft with 5 engine - 2 on each side of the wing and one in the empennage. Additionally, you want to use 3 energy carrier: hydrogen, kerosene and battery-electric. +For that, you need to define 3 energy carriers with each a type and a density with \f$ID=[0,1,2]\f$. Then you create 5 propulsor nodes with \f$ID=[0,...,4]\f$ and assign them each an a powertrain, type, ..., and thrust share. E.g. Engine 0 shall be a kerosene-powered turbofan in the empennage with a thrust share of \f$10\%\f$. Then it has the position with `parent_component=empennage`, `x=front`, `y=mid`, `z=in`. If the type of the energy carrier with ID=0 is set to kerosene, you need to assign `energy_carrier_id=0`. Also `powertrain=turbo`, `type=fan`, and `thrust_share=0.1`. Then Engine 1 could be a hydrogen-powered turboprop located under the left front inner wing with a thrust share of \f$25\%\f$. Then it has the position with `parent_component=wing`, `x=front`, `y=left`, `z=under`. If the type of the energy carrier with ID=1 is set to hydrogen, you need to assign `energy_carrier_id=1`. Also `powertrain=turbo`, `type=prop`, and `thrust_share=0.25`. The same procedure needs to be done for the other 3 engine. + +**Outputs**: The results are saved in the _acXML_ node `/aircraft_exchange_file/component_design/propulsion`. + +```plaintext +Propulsion +|- Position +|- Mass Properties +|- Specific +| |- Propulsion (ID=0) +| | |- Nacelle (ID=0) +| | | |- Origin +| | | |- Normal +| | | |- Mass Properties +| | | |- Sections +| | | | |- Section (ID=0) +| | | | | |- Origin +| | | | | |- Width +| | | | | |- Height +| | | | | |- Profile +| | |- Pylon +| | | |- Position +| | | |- Normal +| | | |- Mass Properties +| | | |- Sections +| | | | |- Section (ID=0) +| | | | | |- Origin +| | | | | |- Chord Length +| | | | | |- Geometric Twist +| | | | | |- Profile +| | |- Engine +| | | |- Engine Model +| | | |- Position +| | | |- Mass Properties +| | | |- Scale Factor +| | | |- Bucket Point +| | | | |- Thrust +| | | | |- TSFC + +``` +To shorten the visualization, the nodes `mass`, `inertia` and `center_of_gravity`in `mass_properties` are excluded. For more information, please read their description. + +### Configuration file + +The control settings are standardized in UNICADO and will not be described in detail here. The program settings are structured like this (descriptions are in the `propulsion_design_conf.xml`): +```plaintext +Program Settings +|- Method +| |- Engine Designer +| |- Nacelle Designer +| |- Pylon Designer +| |- Propulsion Integrator +| |- Mass Analyzer +|- Path Engine Database +|- Technology Factors +| |- Engine Mass +| |- Nacelle Mass +| |- Pylon Mass +| |- Engine Efficiency +|- Propulsion (ID=Default) +| |- Engine +| | |- Empirical +| | | |- BPR +| | |- Rubber +| | |- GasTurb +| |- Nacelle +| | |- Profile +| |- Pylon +| | |- Profile +| |- Integration +``` +You can choose the method for each discipline, the path for your engine data base, and different technology factors. To be highlighted, is the `Propulsion ID=Default` node. This is a default for all engines defined in the _acXML_ (see next paragraph). E.g. if you define 3 engines for an aircraft, both will use the same assumptions in the default setting. In case you want that the 3. engine is been calculated with e.g. another method, you can create a new `propulsion` node and assign the same `ID` value as set for the _acXML_ `ID`. + +## Minimal required aircraft exchange file input {#acXML} + +```xml +<aircraft_exchange_file> + <requirements_and_specifications> + <general description="General aircraft information"> + <type description="Aircraft type"> + <value>Test</value> + </type> + <model description="Model - Version"> + <value>Test</value> + </model> + </general> + <design_specification description="Design specification"> + <configuration description="Configuration information"> + <configuration_type description="aircraft configuration: tube_and_wing / blended_wing_body"> + <value>tube_and_wing</value> + </configuration_type> + </configuration> + <energy_carriers description="Energy carriers information"> + <energy_carrier ID="0" description="One specific energy carrier"> + <type description="Energy type: kerosene / liquid_hydrogen / battery / saf (for multifuel engine create new ID)"> + <value>kerosene</value> + </type> + <density description="Energy carrier density"> + <value>790</value> + <unit>kg/m^3</unit> + <lower_boundary>50</lower_boundary> + <upper_boundary>1000</upper_boundary> + </density> + </energy_carrier> + </energy_carriers> + <propulsion description="Propulsion information"> + <propulsor ID="0" description="Information for specific propulsor"> + <powertrain description="Way the power is generated from the source: turbo, electric, fuel_cell"> + <value>turbo</value> + </powertrain> + <type description="Type of main thrust generator: fan or prop"> + <value>fan</value> + </type> + <position description="propulsor position (arrangement order acc to ID order)"> + <parent_component description="position on component: wing, fuselage, empennage"> + <value>wing</value> + </parent_component> + <x description="x-position (aircraft coordinate system): front or back"> + <value>front</value> + </x> + <y description="y position (aircraft coordinate system): left or right"> + <value>right</value> + </y> + <z description="z position (aircraft coordinate system): over, mid, under, in"> + <value>under</value> + </z> + </position> + <energy_carrier_ID description="see energy carrier specification node"> + <value>0</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>5</upper_boundary> + </energy_carrier_ID> + <thrust_share description="Share of this thrust in relation to required aircraft thrust"> + <value>1</value> + <unit>0</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </thrust_share> + </propulsor> + </propulsion> + </design_specification> + </requirements_and_specifications> + <sizing_point> + <thrust_to_weight description="Total thrust (kN) divided by maximum aircraft weight (kN)" tool_level="1"> + <value>0.33</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </thrust_to_weight> + </sizing_point> + <analysis> + <masses_cg_inertia description="masses, cgs, inertias." tool_level="0"> + <maximum_takeoff_mass description="MTOM"> + <mass_properties description="maximum takeoff mass properties"> + <mass description="mass"> + <value>77000</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + </mass_properties> + </maximum_takeoff_mass> + </masses_cg_inertia> + </analysis> +</aircraft_exchange_file> +``` +The nodes `requirements_and_specifications\general` and `design_specification\configuration` are not needed by **propulsion_design**. However, the library _moduleBasics_ requires them. \ No newline at end of file diff --git a/docs/documentation/sizing/propulsion_design/index.md b/docs/documentation/sizing/propulsion_design/index.md new file mode 100644 index 0000000..9dbf8b6 --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/index.md @@ -0,0 +1,24 @@ +# Introduction {#mainpage} +The tool _propulsion_design_ is one of the core design tools in UNICADO. The overall goal is the design the propulsion based on... +- the architecture (e.g. 2 turbofan at rear fuselage, 4 fuel cell prop engine over the front wing) set by the user and, +- the total required thrust and system off-takes. +This tool is exciting!🔥 because the propulsion is THE critical component providing the thrust or power, enabling to propel the aircraft forward and move through the skies.🌍 + +To give you a general taste, here are a few illustrations of possible concepts. + + +The [getting started](getting_started.md) gives you a first insight in how to execute the tool and how it generally works. To understand how the tools works in detail, the documentation is split into a [engineering principles](engineering_principles.md) and a [software architecture](software_architecture.md) section. + +Prior to that, let's summarize what the tool can currently do and what is planned (terms like _method_ or _strategy_ will be explained in the sections): + +| Engine type | Methods* | Status | +|------------------------------|------------------------------------------------------|------------| +|kerosene-powered turbofan |Rubber(V2527-A5)/ Default/ Default/ Default/ Default |running | +|hydrogen-powered turbofan |Rubber(V2527-H2)/ Default/ Default/ Default/ Default |to be tested| +|kerosene-powered turboprop | |strategy integrated, but methods missing | +|hydrogen-powered turboprop | |strategy integrated, but methods missing | + +(*) order: engine designer/ nacelle designer/ pylon designer/ propulsion integrator/ mass analyzer + +So let's get started! + diff --git a/docs/documentation/sizing/propulsion_design/software_architecture.md b/docs/documentation/sizing/propulsion_design/software_architecture.md new file mode 100644 index 0000000..3fed44e --- /dev/null +++ b/docs/documentation/sizing/propulsion_design/software_architecture.md @@ -0,0 +1,34 @@ +# Software architecture {#softwarearchitecture} + +## Software Architecture Overview + +The software architecture is structured into various modules and packages, each handling specific task. Below is a description of the main components (some classes, interfaces etc. are left out to keep it understandable for now - for more information see the [class diagram](img/class_diagram.png) or the source code): + +- classes: + - **propulsionDesign** is like the "coordinator" responsible for the overall propulsion system design including _initialize_, _run_, _update_, _report_ and _save_ (inherits from `Module` class from **moduleBasics**). These include e.g. method selection function for each disciplines + - **Propulsion** represents a generic propulsion system defining the detailed attributes and functionalities like setter and getter for e.g. dimensions (`template` class parameterized by `EnergyCarrier`). + - **Turbofan** and **Turboprop** specializes engine type specific attributes and functions like `bypass_ratio()` for a turbofan (inherits from `Propulsion` class) +- domains: + - **report** manages the generation of plots and HTML reports from the **propulsion_design** data + - **design** includes the strategies for **engine designer** and **propulsion integrator** into the aircraft, covering different propulsion types and configurations. + - **geometry** includes the strategies for **nacelle designer** and **pylon designer**. + - **mass** includes the strategies for **mass analyzer** + - **io** manages the in- and outputs for the _acXML_ and _engineXML_ (the XML structure changed in the past and this ensures that it is compatible with all versions) +- packages/libraries: + - **moduleBasics** provides the basis structure for the modular approach of the UNICADO tools. The tools are intended to follow the _Strategy Design Pattern_ to execute at different fidelity levels (more information see libraries) +- interfaces: + - **propulsionStrategy** populates the _Strategy Design Pattern_ for **propulsion_design** including the template and the specification methods. + +Some additional words on the **propulsionStrategy**: + +As you might also see in the [class diagram](img/class_diagram.png), the core of it is the functor `operator()` for specific engine types to allow the `engine` object to be used as functions. This object is, depending on the user settings, based on the propulsion type classes (e.g. `Turbofan<Kerosene>`). As also shown in @ref propulsion.md, the type is combined with 3 "building blocks" + - *powertrain*: Way the power is generated from the source: turbo, electric, fuel_cell + - *type*: Type of main thrust generator: fan or prop + - *energy_carrier*: kerosene, liquid_hydrogen, battery (handled over IDs) + +So, if you want to use different combinations in UNICADO, you need to make sure that they are properly handled throughout the strategy! + +## Class Diagram {#classdiagram} +Here is an overview how the module is structured: + +{html: width=1000} diff --git a/docs/documentation/sizing/systems_design/getting_started.md b/docs/documentation/sizing/systems_design/getting_started.md new file mode 100644 index 0000000..b83fb61 --- /dev/null +++ b/docs/documentation/sizing/systems_design/getting_started.md @@ -0,0 +1,154 @@ +# Getting Started +This guide will show you how to use **systems_design**, which requires you to define a [system architecture](\ref defining_architecture) and to define [specific parameters for each system](systems.md) in the the configuration file `systems_design_conf.xml` (also _configXML_). Since the required power of the systems is calculated for each mission step, **systems_design** requires a mission file (e.g. `design_mission.xml`). Additionally, input parameters from the aircraft exchange file (or _acXML_) from the following areas are required: +* paths to mission files +* overall masses (MTOM, OME, MME, wing loading) +* performance data (maximum operating velocity, maximum operating mach number, maximum operating altitude, design range) +* landing gear +* wing +* empennage +* fuselage +* nacelles +* tank +* propulsion +* number of flight and cabin crew + +**systems_design** has three modes, which are explained [here](\ref modes) in more detail. The mode can be selected in `module_configuration_file/program_settings/mission_mode` and defines which mission file is used for the calculation of the required power (design, study or requirement mission). For the design mission the systems are also sized, i.e. their masses are calculated. + +\anchor defining_architecture +## Defining the System Architecture +The system architecture is defined in the _configXML_ of systemsDesign in the node `module_configuration_file/program_settings/aircraft_systems`. Here the systems are grouped into consumer (or sink) systems, conducting systems, and source systems. (This grouping is also used during calculation.) Energy sinks are systems that consume energy. The environmental control system is considered separately to iterate between the heat created by the systems and the sizing of the environmental control system. Energy sources provide energy. Energy conductors conduct electric or hydraulic energy or bleed air. Virtual systems are used for adding systems that will not be designed (for example if there are no sizing methods implemented for this system). For each group the number of systems in the group is defined, followed by the individual system description. A minimal example of the architecture definition is given below. + +```xml +<aircraft_systems> + <energy_sinks> + <number_of_sinks description="Number of energy sinks"> + <value>1</value> + <default>20</default> + </number_of_sinks> + <system ID="0"> + <system_description description="Type of furnishing system"> + <value>conventionalFurnishing</value> + </system_description> + <operating_switch description="Switch whether the system is operated. Switch: true (on) / false (off, mass is determined anyway!)"> + <value>true</value> + <default>true</default> + </operating_switch> + </system> + </energy_sinks> + <environmental_control_system> + <system_description Unit="-" description="Type of environmental control system (ECS)"> + <value>conventionalECS</value> + </system_description> + <operating_switch description="Switch whether the system is operated. Switch: true (on) / false (off, mass is determined anyway!)"> + <value>true</value> + <default>true</default> + </operating_switch> + </environmental_control_system> + <energy_sources> + <number_of_sources description="Number of energy sources"> + <value>1</value> + <default>1</default> + </number_of_sources> + <system ID="0"> + <system_description description="Type of propulsion system"> + <value>conventionalPropulsion</value> + </system_description> + <operating_switch description="Switch whether the system is operated. Switch: true (on) / false (off, mass is determined anyway!)"> + <value>true</value> + <default>true</default> + </operating_switch> + </system> + </energy_sources> + <energy_conductors> + <number_of_conductors description="Number of energy conductor systems"> + <value>2</value> + <default>3</default> + </number_of_conductors> + <system ID="0"> + <system_description description="Type of system"> + <value>BleedAirSystem</value> + </system_description> + <operating_switch description="Switch whether the system is operated. Switch: true (on) / false (off, mass is determined anyway!)"> + <value>true</value> + <default>true</default> + </operating_switch> + </system> + <system ID="1"> + <system_description description="Type of system"> + <value>ElectricSystem</value> + </system_description> + <operating_switch description="Switch whether the system is operated. Switch: true (on) / false (off, mass is determined anyway!)"> + <value>true</value> + <default>true</default> + </operating_switch> + </system> + </energy_conductors> + <virtual_systems> + <number_of_virtual_systems description="Number of energy systems"> + <value>0</value> + <default>0</default> + </number_of_virtual_systems> + </virtual_systems> +</aircraft_systems> +``` + +By including or excluding these systems, you can choose which systems are implemented. By default the following systems are included in the architecture (name for configXML given in brackets): +* energy sinks: + * [conventional furnishing system](\ref ATA25-furnishing) (conventionalFurnishing) + * [conventional fuel system](\ref ATA28-fuel) (conventionalFuel) + * [conventional ice and rain protection system](\ref ATA30-ice-conventional) (conventionalIceRainProtection) + * [conventional lighting system](\ref ATA33-lighting) (conventionalLighting) + * [conventional fire protection system](\ref ATA26-fire) (conventionalFireProtection) + * [conventional oxygen system](\ref ATA35-oxygen) (conventionalOxygenSystem) + * [conventional landing gear system](\ref ATA32-gear) (conventionalGear) + * [conventional flight control system](\ref ATA27-flight-control) (conventionalFlightControl) + * [remaining consumer systems](\ref ATAXX-remaining) (reminingConsumers) +* [environmental control system](\ref ATA21-ECS) (conventionalECS) +* energy sources: + * [conventional propulsion](\ref ATA70-engine) (conventionalPropulsion) + * [conventional APU](\ref ATA49-APU) (conventionalAPU) +* energy conductors: + * [bleed air system](\ref ATA36-bleed) (BleedAirSystem) + * [hydraulic system](\ref ATA29-hydraulic) (HydraulicSystem) + * [electric system](\ref ATA24-electric) (ElectricSystem) + +Some systems have several implementations (e.g. ATA30 has a conventional and an electric implementation). Which one is used is specified by the node `system_description`. Sticking to the ATA30 example, the conventional implementation would be set like this: +```xml +<system ID="2"> + <system_description description="Type of system ice and rain protection system (conventional or electrical)"> + <value>conventionalIceRainProtection</value> + </system_description> + <operating_switch description="Switch whether the system is operated 1: on, 0: off (the mass is also determined for a switched off system!)"> + <value>1</value> + <default>1</default> + </operating_switch> +</system> +``` +To include an electrical ice and rain protection system `system_description/value` can be changed to `electricalIceRainProtection`. **Important**: The name must match those expected by `standardSystemsDesign::initializeSystems()`. + +Additionally, [system-specific parameters](systems.md) can be set in the node `<system_constants>` of the _configXML_. Apart from the specific parameters, a power source is defined for each system. One or more power sources can be defined to power the system. The operation factor of each power source defines the percentage of power it delivers. The type defines the energy type (hydraulic, electric, bleed). The source ID refers to the conductor system, not to the power source itself. This means that in the example below the system is power 100% through the electric conductor system 1. + +```xml +<shaft_power_sources description="Sources for possible existing shaft power consumption"> + <number_of_power_sources description="Number of power sources"> + <value>1</value> + </number_of_power_sources> + <power_source ID="0" description="system description of the power source"> + <operation_factor description="Percentage of performance provided by this source"> + <value>1.0</value> + <unit>-</unit> + </operation_factor> + <type description="Type of power source (Hydraulic, Electric, Engine, APU)"> + <value>Electric</value> + </type> + <source_ID description="ID of the energy source"> + <value>1</value> + </source_ID> + </power_source> +</shaft_power_sources> +``` + +**systems_design** offers scaling factors for each system so you can calibrate the system masses. The scaling factors can be set in the _configXML_ at `/module_configuration_file/program_settings/scaling_factors`. The masses of the systems are then multiplied by this factor. + +## Output +**systems_design** will generate a report containing system masses (if run in sizing mode) and the electric, hydraulic and bleed air power profile over the mission for each system. Additionally, the section `systems` of the component design in the _acXML_ is updated (if **systems_design** was run in design mode) and the bleed air and shaft power offtakes from the engine for each mission step are written to the mission file (for any mode). diff --git a/docs/documentation/sizing/systems_design/index.md b/docs/documentation/sizing/systems_design/index.md new file mode 100644 index 0000000..acf6a95 --- /dev/null +++ b/docs/documentation/sizing/systems_design/index.md @@ -0,0 +1,20 @@ +# Introduction {#mainpage} +The systems design module calculates the mass and power requirement of the aircraft onboard systems. The systems are divided according to the ATA chapters. Models for the following systems exist: + +* [ATA 21: Environmental Control System](\ref ATA21-ECS) +* [ATA 24: Electric System](\ref ATA24-electric) +* [ATA 25: Furnishing System](\ref ATA25-furnishing) +* [ATA 26: Fire Protectrion System](\ref ATA26-fire) +* [ATA 27: Flight Control System](\ref ATA27-flight-control) +* [ATA 28: Fuel System](\ref ATA28-fuel) +* [ATA 29: Hydraulic System](\ref ATA29-hydraulic) +* [ATA 30: Ice and Rain Protection System](\ref ATA30-ice-conventional) +* [ATA 32: Landing Gear System](\ref ATA32-gear) +* [ATA 33: Lighting System](\ref ATA33-lighting) +* [ATA 35: Oxygen System](\ref ATA35-oxygen) +* [ATA 36: Bleed Air System](\ref ATA36-bleed) +* [ATA 49: Auxiliary Power Unit (APU)](\ref ATA49-APU) +* [ATA 70: Engine (only used to account for power extraction efficiencies of the engine)](\ref ATA70-engine) +* [ATA XX: Remaining Consumers](\ref ATAXX-remaining) + +[Getting Started](getting_started.md) will show you how to define the system architecture. The settings and calculation methods for the individual aircraft systems are explained in [Systems](systems.md) or you can follow one of the links above directly to the system. If you want to know how the systems design module works have a look at the [Software Architecture](software_architecture.md). diff --git a/docs/documentation/sizing/systems_design/literature.bib b/docs/documentation/sizing/systems_design/literature.bib new file mode 100644 index 0000000..db647ab --- /dev/null +++ b/docs/documentation/sizing/systems_design/literature.bib @@ -0,0 +1,374 @@ +%%% BOOKS %%% + +@book{Ray18, + author = {Raymer, Daniel P.}, + year = {2018}, + title = {{Aircraft Design: A Conceptual Approach}}, + edition = {6.}, + publisher = {{American Institute of Aeronautics and Astronautics}}, + isbn = {978-1-62410-574-6}, + address = {Washington, DC, United States}, + series = {AIAA education series} +} +@book{Bre91, + title = {{Hydrogen Aircraft Technology}}, + author = {Brewer, G. D.}, + year = 1991, + publisher = {CRC Press, Inc.}, + address = {Boca Raton, Florida, United States}, + isbn = {0-8493-5838-8} +} + +@book{Bre91, + title = {{Hydrogen Aircraft Technology}}, + author = {Brewer, G. D.}, + year = 1991, + publisher = {CRC Press, Inc.}, + address = {Boca Raton, Florida, United States}, + isbn = {0-8493-5838-8} +} + +@book{Jen99, + title = {{Civil Jet Aircraft Design}}, + author = {Jenkinson, L. R. and Simpkin, P. and Rhodes, D.}, + year = 1999, + publisher = {Arnold}, + address = {London, Great Britain}, + isbn = {978-0340741528} +} + +@book{Rou07, + title = {{Turbofan and Turbojet Engines - Database Handbook}}, + author = {Roux, E.}, + year = 2007, + publisher = {Editions Elodie Roux}, + address = {Blagnac, France}, + isbn = {0978-2-9529380-0-6} +} + +@book{Tor13, + title = {{Advanced Aircraft Design}}, + author = {Torenbeek, E.}, + year = 2013, + publisher = {John Wiley \& Sons Ltd}, + address = {Chichester, United Kingdom}, + isbn = {9781119969303} +} + +@book{Sch16, + title = {{Air Transport System}}, + author = {Schmitt, D. and Gollnick, V.}, + year = 2016, + publisher = {Springer Verlag}, + address = {Vienna, Austria}, + isbn = {3709118794} +} + +@book{Tim89, + author = {Timmerhaus, K. D. and Flynn, T. M.}, + year = {1989}, + title = {{Cryogenic Process Engineering}}, + publisher = {{Springer US}}, + isbn = {978-1-4684-8758-9}, + address = {Boston, Massachusetts}, + doi = {10.1007/978-1-4684-8756-5} +} + +@book{Tor82, + title = {{Synthesis of Subsonic Airplane}}, + author = {Torenbeek, E.}, + year = 1982, + publisher = {Delft University Press}, + address = {Delft, Netherlands}, + isbn = {90-247-2724-3} +} + +@book{Gud14, + title = {{General Aviation Aircraft Design}}, + author = {Gudmundsson, S.}, + year = 2014, + publisher = {Butterworth-Heinemann}, + address = {Oxford, UK}, + isbn = {9780123973085}, + doi = {10.1016/B978-0-12-397308-5.12001-X} +} + +@book{Ros89, + title = {{Airplane Design: Part V, Component Weight Estimation}}, + author = {Roskam, J.}, + year = 1990, + publisher = {Roskam Aviation and Engineering Corporation}, + address = {Ottawa, KS}, + isbn = {978-1884885242} +} + +%%% JOURNAL ARTICLES %%% +@Article{Res79, + Author = "E. Reshotko", + Title = {{Drag Reduction by Cooling in Hydrogen-Fueled Aircraft}}, + Journal = "Journal of Aircraft", + Year = "1979", + Volume = "16", + Number = "9", + Pages = "584-590" +} + +@article{Bra17, +author = {Braun-Unkhoff, M. and Riedel, U. and Wahl, C.}, +title = {{About the Emissions of Alternative Jet Fuels}}, +journal = {CEAS Aeronautical Journal}, +volume = {8}, +pages = {167-180}, +year = {2017} +} + + +@article{Ver10, + author = {Verstraete, D. and Hendrick, P. and Pilidis, P. and Ramsden, K.}, + year = {2010}, + title = {{Hydrogen Fuel Tanks for Subsonic Transport Aircraft}}, + pages = {11085--11098}, + volume = {35}, + journal = {International Journal of Hydrogen Energy}, + doi = {10.1016/j.ijhydene.2010.06.060}, + number = {20} +} + +@article{Ver13, +title = {{Long Range Transport Aircraft using Hydrogen Fuel}}, +author = {Verstraete, D.}, +journal = {International Journal of Hydrogen Energy}, +volume = {38}, +number = {34}, +pages = {14824-14831}, +year = {2013} +} + +@article{Ver15, +title = {{On the Energy Efficiency of Hydrogen-Fuelled Transport Aircraft}}, +author = {Verstraete, D.}, +journal = {International Journal of Hydrogen Energy}, +volume = {40}, +number = {23}, +pages = {7388–7394}, +year = {2015} +} + +@article{Win18, + author = {Winnefeld, C. and Kadyk, T. and Bensmann, B. and Krewer, U. and Hanke-Rauschenbach, R.}, + year = {2018}, + title = {{Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications}}, + pages = {105}, + volume = {11}, + journal = {Energies}, + doi = {10.3390/en11010105}, + number = {1} + } + +%%% CONFERENCE PAPERS %%% +@Inproceedings{God16, + Author = "Godula-Jopek, A. and Westenberger, A.", + Title = {{Hydrogen-Fueled Aeroplanes}}, + Booktitle = "Compendium of Hydrogen Energy", + Year = "2016" +} + +@Inproceedings{Tro20, + Author = "F. Troeltsch and M. Engelmann and F. Peter and J. Kaiser and M. Hornung and A. E. Scholz", + Title = {{Hydrogen Powered Long Haul Aircraft with Minimized Climate Impact}}, + Booktitle = {"Proc AIAA AVIATION 2020 FORUM"}, + Year = "2020", + Address = {Virtual Event}, + Organization = "AIAA Aviation Forum" +} + +@Inproceedings{Sil20, + Author = "D. Silberhorn and J. Hartmann and N. M. Dzikus and G. Atanasov and T. Zill and U. Brand and J. C. Gomez Trillos and M. Oswald and T. Vogt and D. Wilken and W. Grimme", + Title = {{The Air-Vehicle as a Complex System of Air Transport Energy Systems}}, + Booktitle = {"Proc AIAA AVIATION 2020 FORUM"}, + Year = "2020", + Address = {Virtual Event}, + Organization = "AIAA Aviation Forum" +} + +%%% PHD DISSERTATIONS %%% + +@phdthesis{Joh17, + author = {Johanning, A.}, + year = {2017}, + title = {{A Method for the Environmental Life Cycle Analysis during Conceptual Aircraft Design [Methodik zur {\"O}kobilanzierung im Flugzeugvorentwurf]}}, + school = {{Technical University of Munich}}, + address = {Munich, Germany} +} + +@phdthesis{Sch18, + author = {Schäfer, K.}, + year = {2018}, + title = {{Conceptual Aircraft Design for Sustainability}}, + school = {{RWTH Aachen University}}, + address = {Aachen, Germany} +} + +@phdthesis{Jac09, + author = {Jackson, A. J. B.}, + year = {2009}, + title = {{Optimisation of Aero and Industrial Gas Turbine Design for the Environment}}, + school = {{Cranfield University}}, + address = {Cranfield, United Kingdom} +} + +@phdthesis{Dob08, + author = {Dobrev, Y.}, + year = {2008}, + title = {{Initial Sizing von Airlinern mit Jet- und Turbopropellerantrieb}}, + school = {{RWTH Aachen University}}, + address = {Aachen, Germany} +} + +@phdthesis{Koe06, + author = {Koeppen, C.}, + year = {2006}, + title = {{Methodik zur modellbasierten Prognose von Flugzeugsystemparametern im Vorentwurf von Verkehrsflugzeugen}}, + school = {{RWTH Aachen University}}, + address = {Aachen, Germany} +} + +@phdthesis{Lam14, + author = {Lammering, T.}, + year = {2014}, + title = {{Integration of Aircraft Systems into Conceptual Design Synthesis}}, + school = {{RWTH Aachen University}}, + address = {Aachen, Germany} +} + +%%% MASTER THESES %%% +@mastersthesis{Kos20, + author = {Kossarev, K.}, + year = {2020}, + title = {{Extension of an Aircraft Design Environment for the Design and Life Cycle Assessment of a Long Range Hydrogen Aircraft}}, + school = {Technical University of Munich}, + address = {Munich, Germany} +} + +@mastersthesis{Man21, + author = {Mangold, J.}, + year = {2021}, + title = {{Economical Assessment of Hydrogen Short-Range Aircraft with the Focus on the Turnaround Procedure}}, + school = {University of Stuttgart}, + address = {Stuttgart, Germany} +} + +@mastersthesis{Bue14, + author = {Buente, C.}, + year = {2014}, + title = {{Analyse von elektrischen Betriebslasten am Beispiel eines Airbus A320 im Hinblick auf die Auslegung der Bordnetze zukünftiger Flugzeugkonfigurationen}}, + school = {RWTH Aachen}, + address = {Aachen, Germany} +} + +@mastersthesis{Ste10, + author = {Steinke, T.}, + year = {2010}, + title = {{Entwicklung einer Methodik zur Modellierung und Analyse von Systemstrukturen im Flugzeugvorentwurf}}, + school = {RWTH Aachen}, + address = {Aachen, Germany} +} + +%%% TECHNICAL REPORTS %%% + +@techreport{DENA19, + title = {{Powerfuels in Aviation}}, + author = {D. Rojas and K. Crone and S. Löchle and S. Sigmund}, + number = {Global Alliance Powerfuels}, + address = {Berlin, Germany}, + month = 9, + year = {2019}, + institution = {Deutsche Energie-Agentur GmbH (dena)} +} + +@techreport{GRR11, + title = {{Sustainable Aviation Fuels Road Map: Data Assumptions and Modelling}}, + author = {P. Graham and L. Reedman and L. Rodriguez and J. Raison and A. Braid and V. Haritos and T. Brinsmead and J. Hayward and J. Taylor and D. O’Connell}, + address = {Newcastle, Australia}, + month = 5, + year = {2011}, + institution = {CSIRO} +} + +@techreport{IEA19, + title = {{The Future of Hydrogen: Seizing today's opportunities}}, + author = {{International Energy Agency}}, + month = 6, + year = {2019}, + institution = {International Energy Agency} +} + +@techreport{NASA76, + title = {{NASA CR-144937: Development of weight and cost estimates for lifting surfaces with active controls}}, + author = {{R. D. Anderson and C. C. Flora and R. M. Nelson and E. T. Raymond and J. H. Vincent}}, + year = {1976}, + institution = {NASA} +} + + +%%% OTHER %%% + +@Misc{Tho13, + Title = {{DOC-Assessment Method}}, + Author = "J. Thorbeck and D. Scholz", + Year = "2013", + Month = "September", + Note = "[Presentation] 3rd Symposium on Collaboration in Aircraft Design, Linköping, Sweden. \url{https://www.fzt.haw-hamburg.de/pers/Scholz/Aero/TU-Berlin_DOC-Method_with_remarks_13-09-19.pdf} [Accessed: 22/07/2020]" +} + +@Misc{Jen01, + Title = {{Butterworth-Heinemann - Civil Jet Aircraft Design - Aircraft Data File - Airbus Aircraft}}, + Author = " L. Jenkinson and P. Simpkin and D. Rhodes", + Year = "2001", + Note = "\url{https://booksite.elsevier.com/9780340741528/appendices/data-a/table-1/table.htm} [Accessed: 14/06/2021]" +} + +@Misc{Ber09, + Title = {{Survey on Standard Weights of Passengers and Baggage}}, + Author = "Z. Berdowski and F. N. van den Broek-Serlé and J. T. Jetten and Y. Kawabata and J. T. Schoemaker and R. Versteegh", + Year = "2009", + Note = "\url{https://www.easa.europa.eu/sites/default/files/dfu/Weight\%20Survey\%20R20090095\%20Final.pdf} [Accessed: 14/06/2021]" +} + +@Misc{Gro09, + author = {Groening, S.}, + year = {2009}, + title = {{Systemmodell Hochauftrieb - Modellierung der Systemkomponenten und Abschätzung der Einflüsse auf das Gesamtsystem Flugzeug}}, + school = {RWTH Aachen}, + address = {Aachen, Germany} +} + +@Misc{Fre11, + author = {Freund, R.}, + year = {2011}, + title = {{Entwicklung eines Modells eines Flügelenteisungssystems}}, + school = {RWTH Aachen}, + address = {Aachen, Germany} +} + +@Misc{Cha10, + author = {Chavez}, + year = {2010}, + title = {{Semesterarbeit}}, + school = {RWTH Aachen}, + address = {Aachen, Germany} +} + +@Misc{SAE04, + Title = {{SAE AIR1168/4: Ice, Rain, Fog, and Frost Protection}}, + Author = "SAE", + Year = "2004", + Note = "\url{https://www.sae.org/standards/content/air1168/4/} [Accessed: 15/06/2023]" +} + +@Misc{Sch04, + Title = {{Skript: Auslegung von Flugzeugsystemen}}, + Author = "Scholz, D.", + Year = "2004", + School = "RWTH Aachen" +} \ No newline at end of file diff --git a/docs/documentation/sizing/systems_design/software_architecture.md b/docs/documentation/sizing/systems_design/software_architecture.md new file mode 100644 index 0000000..814bcf2 --- /dev/null +++ b/docs/documentation/sizing/systems_design/software_architecture.md @@ -0,0 +1,48 @@ +# Systems Design Software Architecture +If you are interested in how **systems_design** performs the system sizing and power requirment calculation, this page will give you an overview. +## Module Structure +Currently **systems_design** only has one strategy - the `STANDARD` strategy implemented in `standardSystemsDesign.cpp`. In **systems_design** each system is represented by an instance of the class `aircraftSystem`. Its properties include the point mass and CoG of the system, the required power, and the heat load emitted by the system. Each aircraftSystem has functions for calculating these properties. The power of a system is not constant throughout the mission but calculated for each mission step. These values are stored in objects of the class `powerProfile`. This class stores the design power, used for system sizing, and the mission power. The mission power is further divided into the base load during this mission step and potential peak loads, e.g. resulting from the retraction or extension of the landing gear. Heat loads occurring due to energy losses in the systems are also calculated for each mission step and stored in a powerProfile. + +If a new aircraftSystem is implemented, its header file has to be included in `standardSystemsDesign.cpp` and an else-if-statement calling its constructor according to the system name has to be added to `standardSystemsDesign::initializeSystems()`. + +## Calculation +#### Initialize +The system design module starts with `standardSystemsDesign::initialize()` by initializing all aircraft systems using the user-provided data from the configuration file. The config file is read when the `data_` object is created. Additionally, required aircraft parameters from the aircraft exchange file are read. This includes geometry data (fuselage, nacelles, wing, empennage), propulsion data, mass and performance and accomodation data. This data are required for the power and mass calculations of specific systems. However, all data are read centrally by the `systemsIOData` class during initialization. Lastly checks for the user input and the geometry from the acxml are performed. + +**systems_design** considers the temperature offset to the International Standard Atmosphere (ISA) defined in the _acXML_. The resulting temperature changes in the atmospheric conditions are applied to the mission steps and affect the power demand and thus the mass properties of systems depending on atmospheric conditions ([environmental control system](\ref ATA21-ECS), [flight control system](\ref ATA27-flight-control), [ice and rain protection system](\ref ATA30-ice-conventional)). + +#### Run +\anchor modes +The strategy standard systems design contains three modes, which can be selected in the configuration file. The sizing mode calculates the required system power and based on that the system masses. The study and requirment mode can be used to calculate the required system power for different missions (either the study or requirments mission) and do not resize the systems (i.e., no mass calculation is performed). + +**Sizing Mode** + +First, the module calculates the performance profile of each system (with the function `standardSystemsDesign::calculatePerformanceProfile()`). This involves calling the respective power calculation function for each system in a specific order: consumer systems, the environmental control system (ECS), conducting systems, and source systems. The calculation order is crucial because the power requirements of consumer systems are necessary to calculate the conducting and source power. At first, the power profiles of all consumer systems are calculated (`standardSystemsDesign::getSinkEnergyConsumption()`) except for the ECS. It is treated separately because its power requirement depends on the heat loads generated by other systems, including conducting systems. Therefore, it is calculated later in the process. + +After each consumer system power calculation, the power is accumulated in a global power profile that stores the combined power requirement and heat loads of all consumer systems. Conductor systems can provide power to other conducting systems, e.g. through the conversion of electrical power to hydraulic power. The power used for these conversions is calculated next (with `transferElec2HydPower` (electric driven hydraulic pumps) and `transferHyd2ElecPower` (only for failure cases)) and stored in the global sink power profile. + +Next, an iteration loop is required because the ECS power requirement depends on the heat load of the sinks and conductors and the conducting power depends on the power requirement of the ECS. At the beginning of each loop the power profiles `data_->data.ECSConsumption` and `data_->data.conductorConsumption` are cleared from the values of the previous iteration loop and the global power profiles of the conductors are initialized (`data_->Systems.energyConductor`). In each iteration loop, the ECS power is calculated (`standardSystemsDesign::getECSEnergyConsumption()`) based on the heat loads of the consumer systems stored in the global sink power profile. The power requirements for conducting systems are then calculated or updated (`standardSystemsDesign::getConductorEnergyConsumption()`) to reflect the new ECS consumption, including any power transfers, such as from hydraulic to electrical power. The iteration continues until the average bleed load of the ECS converges. The convergence criterion is set to a difference of less than 10<sup>-4</sup> between iterations. + +After achieving convergence, the module calculates the power the sources (`standardSystemsDesign::getSourceEnergyConsumption()`) must provide based on the power profiles of the consumer and conductor systems and the ECS. The ECS is now moved to the vector containing the energy sinks (`data_->Systems.energySink`) and that containing all systems (`data_->Systems.allSystems`), since it can now be treated as an ordinary sink system. + +Finally, with the power profiles established, the module calculates the mass of each system (`standardSystemsDesign::getSystemsMass()`) based on the design power requirements and specific characteristics of each system by calling the mass calculation method of each system. For virtual systems no method is called, rather the user definded values are copied from the configuration file. After the individual system masses are calculated, the function `weightsAndCGs::getWeights()` calculates the masses and CGs of system groups and the mass of some operator items. In UNICADO only the residual oil and fuel as well as water and toilet chemicals are considered part of the systems. Other operator items are calculated in fuselage design and mission analysis. + +**Note**: The currently implemented methods for the operator items (Torenbeek) do not calculate the residual oil mass! + +**Study Mode** + +This mode is used to calculate the power required by the systems during the study mission. The methodology is the same as for the sizing mode up until the calculation of system masses, which are skipped. However, the study mission file (`study_mission.xml`) is used instead of the design mission file (`design_mission.xml`). This means offtakes are written to the study mission file but no changes are made to the _acXML_ since the systems are not resized. + +**Requirements Mode** + +This mode is used to calculate the power required by the systems during the requirements mission. The methodology is the same as for the sizing mode up until the calculation of system masses, which are skipped. However, the requirement mission file (`requirement_mission.xml`) is used instead of the design mission file (`design_mission.xml`). This means offtakes are written to the requirements mission file but no changes are made to the _acXML_ since the systems are not resized. + +### Output +#### Update +The update section includes all updates to the aircraft exchange file and the mission file. If the sizing mode was run, the system masses in the aircraft exchange file are updated. Since the systems are considered as point masses in UNICADO the moments of inertia are set to zero. The function `systemsIOData::updateMassProperties()` updates the total mass of all systems and the operator items mass. The masses of the individual systems are updated by their classes, which all contain a function `updateXML()`. This way only the systems included in the architecture are written to the aircraft exchange file. + +The function `systemsIOData::updateMissionXML()` updates all values calculated with the mission data (i.e., power requirements). This are mostly values in the `mission.xml` but can also include values in the aircraft exchange file. + +#### Report +This section is used to create the plots and html and tex report of the module. +Plots are generated using matplot++. Additionally, csv files with the plot data are written. diff --git a/docs/documentation/sizing/systems_design/systems.md b/docs/documentation/sizing/systems_design/systems.md new file mode 100644 index 0000000..a751cd8 --- /dev/null +++ b/docs/documentation/sizing/systems_design/systems.md @@ -0,0 +1,399 @@ +# Implemented Aircraft System Models + +\anchor ATA21-ECS +## ATA 21: Environmental Control System +The environmental control system model implemented is powered by electric power and bleed air from the engines. + +**Methods** + +The power required by the environmental control system is calculated based on the heat loads of all systems, the heat from the sun and from the passengers. The ECO-Mode allows to reduce the required bleed air by 25%. Air conditioning is switched off during takeoff. + +The mass of the ECS depends on the bleed air mass flow in the design point. Calculation method from LTH and Howe. The mass is broken down into the components ducts, air conditioning pack, outlet, ram inlet, vents, and misc. according to factors determined by Koeppen. + +The CoG of the ECS is determined with the assumption that its located in the belly fairing. + +**Required Input Parameters** + +* Airflow per PAX [kg/s] +* Recirculation [-]: percentage of cabin air that is reused (0.0 - 1.0) +* Heat Convection [W/(m^2*K)]: heat convection over aircraft skin (based on Airbus air conditioning system design) +* Cabin Temperature [K] +* Specific Heat Flow from Sun [W/m^2] +* Window Area [m^2]: Area of a single window +* Heat per PAX [W]: heat emitted per person +* Heat per Light Length [W/m] +* Efficiency Factor of the Air Conditioning Pack [-] +* Heat Capacity Air [J/(kg*K)] +* Off Take Off: Switch to turn of ACP during take off +* ECO Mode: Switch for ECO Mode reduces bleed air requirement by 25% + +\anchor ATA24-electric +## ATA 24: Electric System + +**Methods** + +`CheckUserInput()` checks if generator sources exist. + +The required power of the electric system is the power lost through inefficiencies. The efficiency factor for the electric system and for the generators are considered. + +The mass calculation method from Steinke is based on the maximum required electric power and the cable length. The cable length is defined as 2*fuselage length (main bus from front to back, two bus systems) + connection of the engines to the avionics bay. A factor is applied to the mass depending on the design range of the aircraft (short or long range). + +**Required Input Parameters** + +* Efficiency Factor [-] +* Maximum Relative Power [-]: ratio of maximum permanent power and maximum required power of all generators +* Specific Cable Mass [kg/m] +* Number of Electric Circuits [-] +* Number of Generators [-] +* For each Generator: + * name + * type (IDG, APUG, ...) + * source type (hydraulic, engine, APU) + * source ID + * efficiency + * operation factor (share of total power in normal operation) + +\anchor ATA25-furnishing +## ATA 25: Furnishing System + +Furnishing system includes the power required for the galleys and the inflight entertainment system (IFE). The mass of all furnishing is calculated in fuselage design and read from the aircraft exchange file. + +**Methods** + +Power calculation is done based on user inputs. + +**Required Input Parameters** + +* Galley Load Fraction during Takeoff [-]: + Electric Load Analysis for A320 suggest a value of 0.2 [[1]](\ref additional_sources) +* Galley Load Fraction during Cruise [-]: + Electric Load Analysis for A320 suggest a value of 0.7 [[1]](\ref additional_sources) +* Galley Load Fraction during Descent [-]: + Electric Load Analysis for A320 suggest a value of 0.2 [[1]](\ref additional_sources) +* Galley Location [m] +* Non Personal IFE Power [W]: General power for IFE +* Personal IFE Power [W]: Power for IFE per PAX +* Personal IFE Load Fraction Climb [-]: + Electric Load Analysis for A320 suggest a value of 0.58 [[1]](\ref additional_sources) +* Personal IFE Load Fraction Cruise [-]: + Electric Load Analysis for A320 suggest a value of 1 [[1]](\ref additional_sources) +* Personal IFE Load Fraction Descent [-]: + Electric Load Analysis for A320 suggest a value of 0.5 [[1]](\ref additional_sources) + +\anchor ATA26-fire +## ATA 26: Fire Protectrion System + +Does not require power! + +**Methods** + +Mass calculation is based on propulsion type and MTOM (Torenbeek Tab. 8-12). + +**Required Input Parameters** + +None. + +\anchor ATA27-flight-control +## ATA 27: Flight Control System + +The flight control system is modeled in great detail down to the individual actuators of the control surfaces. The calculation is devided into segments according to the control surfaces: + +* Ailerons +* Spoilers +* Elevators +* Rudders +* Trimmable Horizontal Stabilizers (THSAs) +* Flaps +* Slats + +The actuator architecture is defined by the user in the configuration file but the control surface geometry is read from the aircraft exchange file. The control surface geometry from the aircraft exchange file and the actuator architecture are checked against each other to make sure they match. + +**Methods** + +The function `setHorizontalContrSurfGeo` is used to read the geometry of horizontal control surfaces (e.g. ailerons, elevator) while the function `setRudderTemp` is used for the rudder. For the THSA there is a specialized function to read the geometry: `setTHSA_AsControlSurface`. These functions are used to calculate the area moment about the hinge line of each control surface and to determine the reference points of the actuators. This requires the geometry of the aerodynamic surface the control surfaces is mounted on and the geometry of the control surface itself, as well as the maximum deflection, deflection speed and number of actuators on the control surface. + +The design power of primary flight control surfaces is calculated based on the control surface geometry and hinge moment, the wing loading, and the maximum operating speed of the aircraft. The hinge moment is determined according to [NASA76] (equations on page 26). + +For the high lift system there's a separate class calculating the mass and power required (`class highLiftSystem`). This class and all other classes used for the calculation of the high lift system are in the folder src/aircraftSystems/highLiftSystem. The high lift devices are sorted into trailing edge and leading edge panels. For each device the actuation moments for the actuators, their work load and power are calculated. The mass consists of the masses of the actuation and support, the PCU, the wing tip brakes, the gear boxes, the torque shaft, and the torque limiters. The power consists of the actuation power and PCU power. + +There are two functions for the mission power allowing for detailed power calculation at each mission step or the calculation of the average mission power. Power calculation is the same as for the design power but with the flight speed at the given mission step. + +The mass of the primary flight control system is based on [NASA76, p. 42-48]. + +**Required Input Parameters** + +There are some general inputs and then inputs for each control surface type. The general inputs are: + +* Switch whether loads for each mission step are calculated (otherwise average values) +* Switch for electrical flight control system +* Common installation weight factor [-] +* Default actuator: + * Power Source (type and ID) + * Operation Mode (active, standby or damping during normal operation) + * Efficiency [-] + * Standby Power [W] + * Active Power [W] + +Specific inputs for each control surface type: + +* Weight Factor for Electric Flight Control System [-] + (This factor will only be applied if the switch for electric flight control system is set true!) +* Switch if default actuator architecture should be used +* Default Actuator Architecture: + * Number of Actuators per Control Surface [-] + * Default Deflection Speed [deg/s] +* Manual Acturator Archtitecture: + * Number of Control Surfaces [-] + * For each Control Surface: + * Side (left or right) + * Deflection Speed [deg/s] + * Actuator Layout: + * Number of Actuators [-] + * For each actuator same parameters as for default actuator + +Acceptable control surface names are: + +* ailern / droop_aileron +* spoiler_air / spoiler_ground +* flap / slotted_flap / ADHF / fowler / double_fowler / triple_fowler / special / morphing_trailing_edge +* slat / krueger / droop_nose / morphing_droop_nose / special + +**Note**: not all of these devices are implemented. If they aren't implemented a default will be used and a warning issued. + +\anchor ATA28-fuel +## ATA 28: Fuel System + +**The fuel system does not contain the tank mass!** + +**Methods** + +The power of the electric powered pumps of the fuel system is calculated according to Buente, based on the MTOM. + +The mass of the fuel system is the mean value of the results from the Raymer and Torenbeek method. A technology factor of 0.7 is applied to the Raymer method. + +The CoG is assumed to be the same as that of the wing. + +**Required Input Parameters** + +None + +\anchor ATA29-hydraulic +## ATA 29: Hydraulic System + +**Methods** + +`CheckUserInput()` checks if pump sources exist. + +The required power of the hydraulic system is the power lost through inefficiencies. The efficiency factor for the hydraulic system and for the pumps are considered. + +The mass calculation method from [Steinke](\ref additional_sources) is based on the maximum required hydraulic power, the OME, the fluid mass and the ducting length. The ducting length is composed of the lengths from the engines to the belly fairing, the front gear to the back gear, 2 * the length of the wing trailing edge, 2 * the trailing edges of the horizontal and vertical tail plane. The total length is then doubled to account for the backflow. + +**Required Input Parameters** + +* Pressure [Pa] +* Efficiency Factor [-] +* Relative Maximum Power [-]: Ratio of maximum permanent power and maximum required power of all pumps +* Specific Ducting Mass [kg/m] +* Specific Pump Mass [kg/W] +* Number of Hydraulic Circuits [-] +* For each circuit: + * Compartment Reference Point [m] + * Number of Pumps [-] + * For each pump: + * Name + * Type (electric driven, enginge driven, RAT) + * Pump Efficiency [-] + * Operation Factor [-]: Percentage of total pump power in normal operation + * Power Source (type and ID) + +## ATA 30: Ice and Rain Protection System + +There are two implemented models for the ice and rain protection system - a conventional one powered by bleed air and an electric one. + +\anchor ATA30-ice-conventional +### Conventional ATA 30 + +**Methods** + +Mass is calculated as a percentage of the OME defined by the user. + +Anti-Icing is typically applied from the kink of the wing and ends at the outer most leading edge device. If there are no leading edge devices the anti-icing is applied up until the wing tip. The system is design for the continuous maximum icing condition. The design altitude and design mach number are used to determine if there are icing conditions. The calculation of the liquid water content of the air is based on a method from CS-25 Appendix C (Figure 1). This method is valid between -30°C and 0°C. If the altitude's temperature lies outside of these boundaries (e.g. due to setting a delta temperature to the international standard atmosphere (ISA) in the _acXML_) the temperature is set to -30° or 0°, respectively. This ensures that the bleed air required by the anti-icing system is considered in the design loop. If there are icing conditions the external heat flux is calculated based on the water catch, the external heat transfer coefficient, the vapour pressure and from that the skin temperature. The required bleed air mass flow can then be calculated with the external heat flux, the inner skin temperature, the bleed air temperature, and the bleed air efficiency. + +**Required Input Parameters** + +* Switch to turn off anti-icing +* Top Operating Altitude [m] +* Engine Anti Ice Bleed Air Mass Flow [kg/s] +* Skin Thickness [m] +* Relative Half Span Width to Start Anti-Icing [-] +* Heat Conductivity Wing [W/(m*K)] +* Drop Diameter [micro meter] +* Mass Percentage of OME [-] + +\anchor ATA30-ice-electric +### Electric ATA 30 + +Mass is calculated as a percentage of the OME defined by the user. + +**Methods** + +Same calculation for the external heat flux. From there the required electric power can be calculated with the electro thermic efficiency and the user defined electric power. + +**Required Input Parameters** + +Same as for conventional + + +* Electric Power Consumption Departure [W]: + Electric Load Analysis for A320 suggest a value of 14026.9 W [[1]](\ref additional_sources) +* Electric Power Consumption Cruise [W]: + Electric Load Analysis for A320 suggest a value of 13070.9 W [[1]](\ref additional_sources) +* Electric Power Consumption Approach [W]: + Electric Load Analysis for A320 suggest a value of 14026.9 W [[1]](\ref additional_sources) +* Electric Power Consumption Land [W] + Electric Load Analysis for A320 suggest a value of 7192.9 W [[1]](\ref additional_sources) +* Efficiency Electro Thermic Anti-Icing [-] + +\anchor ATA32-gear +## ATA 32: Landing Gear System + +**Methods** + +Mass based on MLM. **Important:** it needs to be checked if this is actually the landing gear actuation mass or the mass of the gear! + +The retraction and extension power are calculated based on the mass of the landing gear (read from aircraft exchange file), the strut length of the main gear, and the retraction/extension time. + +**Required Input Parameters** + +* Efficiency Factor [-] +* Retraction Time [s] +* Extension Time [s] +* Power Source(s) + +\anchor ATA33-lighting +## ATA 33: Lighting System + +**Methods** + +Mass calculation is based on MTOM [Sch04]. + +Info: + +* A320 Landing Lights weights according to honeywell = 2 * 7.484kg +* A320 LED Navigation Lights Goodrich Lighting Systems (green/red) = 2 * 0.408kg +* A320 Logo Lights weights according to honeywell = 2 * 1.4kg + +CoG assumed at 45% fuselage length. + +The design electric power is calculated assuming all lights are on. For the mission power only the lights on in the respective mission steps are considered. Same for the heat load. + +**Required Input Parameters** + +* Navigation Light Power [W] +* Rotating Beacon Light Power [W] +* Wing Light Power [W] +* Runway turn-off Light Power [W] +* Taxi Light Power [W] +* Landing Light Power [W] +* Logo Light Power [W] +* Strobe Light Power [W] +* Specific Emergency Light Power [W/m^3] + Electric Load Analysis for A320 suggest a value of 1.46 W/m^3 [[1]](\ref additional_sources) +* Specific Cabin Light Power [W/m^3] + Electric Load Analysis for A320 suggest a value of 18.04 W/m^3 [[1]](\ref additional_sources) +* Flight Deck Light Power [W] + Electric Load Analysis for A320 suggest a value of 904.4 W [[1]](\ref additional_sources) +* Power Sources + +\anchor ATA35-oxygen +## ATA 35: Oxygen System + +The oxygen system does not require power. + +**Methods** + +The mass is calculated according to Torenbeek based on the number of PAX and depending on the design range of the aircraft. + +**Required Input Parameters** + +None. + +\anchor ATA36-bleed +## ATA 36: Bleed Air System + +**Methods** + +Mass results from ducting mass. The length of the ducts consists of the connectioin from the wing to the APU and the wing to the engines. + +CoG assumes the bleed air system is located in the belly fairing. + +Bleed air required by the bleed air system is based on the efficiency losses in the system. The heat load is calculated by converting the efficiency losses to heat. + +**Required Input Parameters** + +* Bleed Air Temperature [C] +* Efficiency Factor [-] +* Specific Ducting Mass [kg/m] + +\anchor ATA49-APU +## ATA 49: Auxiliary Power Unit (APU) + +The APU is the only power source sized within systems design. However, it is only operated on ground. Ground operations are not included in the mission analysis in UNICADO, thus, the kerosene required by the APU is neglected. + +**Methods** + +The APU mass is calculated based on its design power (bleed air is converted to [W] via the thermal efficiency) and considering the installation factor. The equation is a regression based on LTH data, developed by F. Peter. + +The power provided by the APU is calculated with the user defined percentages and efficiencies multiplied with the total required power of all systems. + +**Required Input Parameters** + +* Position of the APU relative to the fuselage length [-] +* Percentage of bleed air generated by the APU [-] +* Percentage of electric power generated by the APU [-] +* Percentage of hydraulic power generated by the APU [-] +* Bleed air efficiency factor [-] +* Installation factor for attached parts such as fire protection, noise protection, etc. [-] +* Percentages of power provided by APU for design case (bleed air, electric power, hydraulic power) [-] + +\anchor ATA70-engine +## ATA 70: Engine + +This model is only used to account for power extraction efficiencies of the engine. The engine is sized in the engine design module. The powere required by the systems from the engine is checked against the maximum power the engine can provide before updating the xml files. If at power peaks more power is required than available the less power over a longer amount of time will be written to the xml. + +**Methods** + +The efficiency factors for the shaft power extraction (electric + hydraulic power) are those defined for the generators and pumps. + +**Required Input Parameters** + +* Percentage of bleed air provided by the engine [-] +* Percentage of electric power provided by the engine [-] +* Percentage of hydraulic power provided by the engine [-] +* Efficiency factor for the bleed air extraction [-] + +\anchor ATAXX-remaining +## ATA XX: Remaining Consumers + +The remaining consumers are the avionics and their power requirement is derived as a percentage of the power required by all other sink systems. + +**Methods** + +Power: Percentage * Power of previous systems. + +The mass is calculated according to Torenbeek p. 289. The method requires the maximum range, however that is not known yet by UNICADO at this point. Thus, the design range is used. The mass also depends on the OME and is multiplied by the user defined scaling factor. + +The CoG is calculated assuming the instruments are placed at the end of the cockpit segment and tthe auto flight system, navigation and communication are placed in the avionics bay located either in the nose for business jet-like AC or behind the cockpit segment for all other aircraft (this is defined by the user in the configuration file). + +**Required Input Parameters** + +* Location of the avionics bay (wing root, nose, behind cockpit) +* Percentages of unrecorded power (bleed air, electric and hydraulic power) [-] +* Scaling factor [-] +* Mass percentage of ATA XX for instrumentation [-] +* Mass percentage of ATA XX for auto flight [-] +* Mass percentage of ATA XX for navigation [-] +* Mass percentage of ATA XX for communication [-] + +\anchor additional_sources +### Additional Sources +[1] Source documents are available in German and can be requested from the RWTH Aachen. \ No newline at end of file diff --git a/docs/documentation/sizing/tank_design/figures/01_tank_locations.png b/docs/documentation/sizing/tank_design/figures/01_tank_locations.png new file mode 100644 index 0000000..c2cc414 --- /dev/null +++ b/docs/documentation/sizing/tank_design/figures/01_tank_locations.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4d5152eeb324b5666dfffe628b956420697ad3c7f38d46be64f787307e7eeac6 +size 461708 diff --git a/docs/documentation/sizing/tank_design/figures/02_obelisk.png b/docs/documentation/sizing/tank_design/figures/02_obelisk.png new file mode 100644 index 0000000..7bfae7f --- /dev/null +++ b/docs/documentation/sizing/tank_design/figures/02_obelisk.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8180364c165f4ea29a4f94929537b6a382da963534479c5b6852a08221708f24 +size 95118 diff --git a/docs/documentation/sizing/tank_design/figures/02_obelisk_simpson.png b/docs/documentation/sizing/tank_design/figures/02_obelisk_simpson.png new file mode 100644 index 0000000..7edbbfd --- /dev/null +++ b/docs/documentation/sizing/tank_design/figures/02_obelisk_simpson.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a234589ad0727ba7677ed0c07346529c09cf5934dab87f733f9718887c927705 +size 98402 diff --git a/docs/documentation/sizing/tank_design/figures/03_wing_box.png b/docs/documentation/sizing/tank_design/figures/03_wing_box.png new file mode 100644 index 0000000..bcf85aa --- /dev/null +++ b/docs/documentation/sizing/tank_design/figures/03_wing_box.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f4630b20cccebfdd2eb1b6aee5265828b94653d0e650c6e971663294d36b85df +size 86356 diff --git a/docs/documentation/sizing/tank_design/getting_started.md b/docs/documentation/sizing/tank_design/getting_started.md new file mode 100644 index 0000000..4994d01 --- /dev/null +++ b/docs/documentation/sizing/tank_design/getting_started.md @@ -0,0 +1,289 @@ +# Getting started +This section will guide you through the necessary steps to get the _tank\_design_ module up and running. It contains information on tool requirements and design parameters. + +- [Design method selection](#design-method-selection) - How to set the design method? +- [Aircraft exchange file](#aircraft-exchange-file) - Get information on necessary parameters from the _acXML_. +- [Tank design configuration](#configuring-tank-design-parameters-in-the-aircraft-exchange-file) - Learn about parameters used to set the tank configuration. +- [Module configuration file](#module-configuration-file) - Dive into tank design specific parameters. +- [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running? +- [Next steps](#next-steps) - How to proceed? + +@note It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. + +Generally, we use two files to set or configure modules in UNICADO: +- The aircraft exchange file (or _acXML_) includes + - data related inputs (e.g., required energy, component design data) and + - data related outputs (e.g., tank positions). +- The module configuration file `tank_design_conf.xml` (also _configXML_) includes + - control settings (e.g., enable/disable generating plots) and + - program settings (e.g., information on buffers). + +In the following sections you will find more information on how to configure these files to suit your needs. + +## Design method selection {#design-method-selection} +The calculation method is automatically chosen based on the following data from the aircraft exchange and module configuration file: + +Parameter | File | Example <sup>*</sup> | +:--------------------|---------------|:----------------------| +Configuration type | _acXML_ | tube_and_wing | +Calculation fidelity | _configXML_ | empirical | +Method name | _configXML_ | tank_design_tu_berlin | +Energy carrier type | _acXML_ | kerosene | + +<sup>*</sup> This example defines a generic short and medium range tube-and-wing aircraft. + +Thus, it must be ensured that this data is available. More information on required data can be found in the following sections. + +## Aircraft exchange file requirements {#aircraft-exchange-file} +To single execute the _tank\_design_ module, we need an _acXML_ file that already contains the output data from the following tools: +- _wing\_design_ +- _empennage\_design_ +- _fuselage\_design_ +- _mission\_analysis_ - _tank\_design_ execution also possible without mission analysis data (an assumption is made to calculate mission energy amount) + +The following data should then be available in the _acXML_: +1. Requirements and specifications + - Design specification + - Configuration information: Configuration type, tank definition ([see below](#configuring-tank-design-parameters-in-the-aircraft-exchange-file)) + - Energy carrier(s) + - Requirements + - Top level aircraft requirements: Range (req. for design mission only) +2. Analysis + - Mission energy (req. for design mission only): Consumed energy, energy carrier ID +3. Component design: Geometrical data of + - Fuselage + - Wing + - Empennage + +@note When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. + +## Configuring tank design parameters in the aircraft exchange file {#configuring-tank-design-parameters-in-the-aircraft-exchange-file} +The desired tank configuration is defined by the user in the aircraft exchange file. The information can be found in the `aircraft_exchange_file/requirements_and_specifications/design_specification/configuration/tank_definition` block. + +### The ID `tank_element` +Each tank is configured in the _acXML_ as one element (ID element) with the following parameters: +- `energy_carrier_ID`: ID of energy carrier to obtain which fuel is to be stored in the tanks. +- `location`: Aircraft component where the tank is located (valid options depend on the energy carrier). +- `position`: Position at the desired location (valid options depend on location and energy carrier). +- `energy_share`: Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Not used for the calculation of kerosene tanks. **Should therefore equal `0.0` for kerosene tanks.** + +The following sections give an overview on valid tank configurations for [kerosene](#kerosene-driven) and [liquid hydrogen](#lh2-driven) driven aircraft configurations. + +### Kerosene driven aircraft configurations {#kerosene-driven} +For a valid tank configuration, you must first define each tank entity by setting the parameters of the ID element. You must specify a correct parameter combination of tank position and location _for each ID element_. + +Subsequently, you must define a valid overall tank configuration for the aircraft. In other words, the _combination of the individual ID elements_ must be valid. +The following sections will guide you through the process. + +#### Valid tank location and tank position combinations +For aircraft configurations with a kinked wing, the "wing tank configuration" consist of an inner and outer tank on each side of the aircraft and a wing center tank by default. This corresponds to numbers 1-5 in the following table that provides an overview on possible _tank location_ and _tank position_ combinations. Furthermore, there is the option to design a trim tank and an additional center tank. + +| No. | Location | Position | Note | +| --- | --------------------- | ------------|------| +| 1 | Wing | Center | | +| 2 | Wing | Inner left | | +| 3 | Wing | Outer left | No outer tanks available for single trapezoidal wing, only valid for kinked wing. | +| 4 | Wing | Inner right | | +| 5 | Wing | Outer right | No outer tanks available for single trapezoidal wing, only valid for kinked wing. | +| 6 | Horizontal stabilizer | Total | Also referred to as 'trim tank'. | +| 7 | Fuselage | Center | Also referred to as 'additional center tank'. | + +For example, to define a valid combination for the wing center tank, set the following parameters for the ID element `ID="0"`: +- `energy_carrier_ID` to `0` (it is assumed that `0` equals kerosene) +- `location` to `wing` +- `position` to `center` +- `energy_share` equals `0.0` + +Furthermore, give it a clear `description` tag, for example `wing center tank`. + +To define more tanks, continue by subsequently defining those parameters for the ID elements with the `ID="1"`, `ID="2"`, and so on. Please ensure to always keep an eye on valid tank configurations described in the next sections. + +#### Possible tank configurations: Aircraft with kinked wing +The following table provides an overview on possible tank configurations. As can be seen, the "wing tank configuration" also corresponds to the minimum tank configuration `wing_all_tanks` that is similar to a tank configuration that can be found at a common medium range aircraft. The maximum number of tanks is 7. This means that the last ID element should have the `ID="6"`. + +| Tanks 1-5 | Tank 6 | Tank 7 | Configuration name | +| ---------- | ----------------------------- | ----------------------------- | ---------------------------------------- | +| Wing | - | - | wing_all_tanks | +| Wing | Horizontal stabilizer - Total | - | wing_with_trim_tank | +| Wing | Fuselage - Center | - | wing_with_additional_center_tank | +| Wing | Horizontal stabilizer - Total | Fuselage - Center | wing_with_additional_center_and_trim_tank| +| Wing | Fuselage - Center | Horizontal stabilizer - Total | wing_with_additional_center_and_trim_tank| +Note: "Wing" always refers to either the combinations 1 to 5 of the table in the previous section ("wing tank configuration"). + +#### Possible tank configurations: Aircraft with singe trapezoidal wing +The following table provides an overview on possible tank configurations. As can be seen, the "wing tank configuration" also corresponds to the minimum tank configuration `wing_all_tanks`. The maximum number of tanks is 5. This means that the last ID element should have the `ID="4"`. + +| Tanks 1-3 | Tank 4 | Tank 5 | Configuration name | +| ---------- | ----------------------------- | ----------------------------- | ---------------------------------------- | +| Wing | - | - | wing_all_tanks | +| Wing | Horizontal stabilizer - Total | - | wing_with_trim_tank | +| Wing | Fuselage - Center | - | wing_with_additional_center_tank | +| Wing | Horizontal stabilizer - Total | Fuselage - Center | wing_with_additional_center_and_trim_tank| +| Wing | Fuselage - Center | Horizontal stabilizer - Total | wing_with_additional_center_and_trim_tank| +Note: "Wing" always refers to the combinations 1, 2, and 4 of the table in the previous section ("wing tank configuration"). + +#### Example: Minimum tank configuration +The following `tank_definition` code block snippet shows how to configure a standard "wing tank configuration" for an aircraft with a kinked wing that is similar to the one of a common commercial medium range aircraft. +```xml +<tank_definition description="Energy tanks information"> + <tank ID="0" description="Inner left wing tank"> + <energy_carrier_ID description="see energy carrier specification node"> + <value>0</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>5</upper_boundary> + </energy_carrier_ID> + <location description="Component where the tank is located: fuselage, wing, horizontal_stabilizer"> + <value>wing</value> + </location> + <position description="Position of tank in location: tailcone, rear, front, top, bottom, center, inner_left, outer_left, inner_right, outer_right, total"> + <value>inner_left</value> + </position> + <energy_share description="Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Equals 0.0 for kerosene tanks."> + <value>0.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </energy_share> + </tank> + <tank ID="1" description="Outer left wing tank"> + <energy_carrier_ID description="see energy carrier specification node"> + <value>0</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>5</upper_boundary> + </energy_carrier_ID> + <location description="Component where the tank is located: fuselage, wing, horizontal_stabilizer"> + <value>wing</value> + </location> + <position description="Position of tank in location: tailcone, rear, front, top, bottom, center, inner_left, outer_left, inner_right, outer_right, total"> + <value>outer_left</value> + </position> + <energy_share description="Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Equals 0.0 for kerosene tanks."> + <value>0.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </energy_share> + </tank> + <tank ID="2" description="Inner right wing tank"> + <energy_carrier_ID description="see energy carrier specification node"> + <value>0</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>5</upper_boundary> + </energy_carrier_ID> + <location description="Component where the tank is located: fuselage, wing, horizontal_stabilizer"> + <value>wing</value> + </location> + <position description="Position of tank in location: tailcone, rear, front, top, bottom, center, inner_left, outer_left, inner_right, outer_right, total"> + <value>inner_right</value> + </position> + <energy_share description="Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Equals 0.0 for kerosene tanks."> + <value>0.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </energy_share> + </tank> + <tank ID="3" description="Outer right wing tank"> + <energy_carrier_ID description="see energy carrier specification node"> + <value>0</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>5</upper_boundary> + </energy_carrier_ID> + <location description="Component where the tank is located: fuselage, wing, horizontal_stabilizer"> + <value>wing</value> + </location> + <position description="Position of tank in location: tailcone, rear, front, top, bottom, center, inner_left, outer_left, inner_right, outer_right, total"> + <value>outer_right</value> + </position> + <energy_share description="Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Equals 0.0 for kerosene tanks."> + <value>0.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </energy_share> + </tank> + <tank ID="4" description="Wing center tank"> + <energy_carrier_ID description="see energy carrier specification node"> + <value>0</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>5</upper_boundary> + </energy_carrier_ID> + <location description="Component where the tank is located: fuselage, wing, horizontal_stabilizer"> + <value>wing</value> + </location> + <position description="Position of tank in location: tailcone, rear, front, top, bottom, center, inner_left, outer_left, inner_right, outer_right, total"> + <value>center</value> + </position> + <energy_share description="Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Equals 0.0 for kerosene tanks."> + <value>0.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </energy_share> + </tank> +</tank_definition> +``` +<br> + +@note For aircraft with a single trapezoidal wing, please delete the `Outer left tank` and `Outer right tank` elements and adjust the other tank IDs accordingly. + +### Liquid hydrogen driven aircraft configurations {#lh2-driven} +tbd. \emoji construction + +## Module configuration file {#module-configuration-file} +The _configXML_ is structured into two blocks: the control and program settings. + +The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least +- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings, +- the `console_output` at least to `mode_1`, and +- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`). + +@note If the tool is executed via the workflow, those settings are set by the workflow settings. + +The program settings are structured like this (descriptions can be found in the `tank_design_conf.xml`): + +```plaintext +Program Settings +|- Configuration (ID="tube_and_wing") +| |- Fidelity name +| |- Method name +| |- Fidelity (ID="empirical") +| | |- Tank design tu berlin +| | | |- General +| | | | |- Mass technology factor +| | | |- Specific +| | | | |- Kerosene tank design parameter +| | | | | |- Obelisk calculation method +| | | | | |- A/D factor +| | | | | |- Factor volume usable +| | | | | |- Temperature expansion allowance +| | | | | |- Buffer inner tank segment +| | | | | |- Buffer outer tank segment +| | | | | |- Buffer center tank segment +| | | | |- Liquid hydrogen tank design parameter +| | | | | |- End cap type +| | | | | |- Internal pressure +| | | | | |- Insulation type +| | | | | |- Insulation material +| | | | | |- Insulation thickness +| | | | | |- Insulation density +| | | | | |- Material wall +| | | | | |- Density wall +| | | | | |- Wall thickness calculation method +| | | | | |- Mass baffle +| | | | | |- Mass pumps +| | | | |- Miscellaneous +| | | | | |- Factor usable diameter +| | | | | |- Factor volume allowance +``` + +## Additional requirements {#additional-requirements} +There is no additional data required at the moment. + +## Next steps {#next-steps} +The next step is to [run the _tank\_design_ module](run_your_first_tank_design.md). \ No newline at end of file diff --git a/docs/documentation/sizing/tank_design/index.md b/docs/documentation/sizing/tank_design/index.md new file mode 100644 index 0000000..b27c974 --- /dev/null +++ b/docs/documentation/sizing/tank_design/index.md @@ -0,0 +1,38 @@ +# Introduction {#mainpage} +The _tank\_design_ module in UNICADO is here to save your aircraft from fuel-storage nightmares. It handles the math, checks the geometry, and makes sure your energy carrier fits perfectly — because a tank that doesn’t work isn’t worth the fuel. With hydrogen and other next-gen fuels joining the party, you’ll want all the precision you can get. Consider this module your go-to for tanks that get the job done right. 🚀 + +## Summary of features +Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned: + +Configuration | Energy carrier | Fidelity | Methods | Status | +------------------|------------------|-----------|-----------|:------------------------------------:| +Tube-and-wing |Kerosene |Empirical |TUB |running \emoji white_check_mark | +Tube-and-wing |Liquid hydrogen |Empirical |TUB |under development \emoji construction | +Blended-wing-body |... |... |... |under development \emoji construction | + +## A user's guide to tank design +The _tank\_design_ tool is your key to designing the aircraft's fuel storage. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a tank design from the ground up. +The following sections will walk you through the process: +- [Getting started](getting_started.md) +- [Run your first tank design](run_your_first_tank_design.md) + +For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections: +- A [method description](tank_design_method.md) and +- a [software architecture](software_architecture.md) +section. + +Ready to dive in? Let’s get started! \emoji airplane + + +<!-- ## You are a Developer? +If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO! + +The following pages will help you understand the code structure: + +- [Prerequisites](prerequisites.md) +- [Build the code](build-the-code.md) +- [Tank design module structure](wing-module-structure.md) +- [Available methods](available-methods.md) +- [Method template](method-template.md) + +We appreciate it! --> \ No newline at end of file diff --git a/docs/documentation/sizing/tank_design/run_your_first_tank_design.md b/docs/documentation/sizing/tank_design/run_your_first_tank_design.md new file mode 100644 index 0000000..50d4998 --- /dev/null +++ b/docs/documentation/sizing/tank_design/run_your_first_tank_design.md @@ -0,0 +1,136 @@ +# Run your first tank design +Let's dive into the fun part and design some tanks! + +## Tool single execution +The tool can be executed from the console directly if all paths are set. The following will happen: +- [Console output](#console-output) +- [Generation of reports and plots](#reporting) +- [Writing output to aircraft exchange file](#acxml) + +Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices. +Also, if you need some additional information on the underlying methodology, check out the page on the [tank design method](tank_design_method.md). + +So, feel free to open the terminal and run `tank_design.exe` to see what happens... + +### Console output {#console-output} +Firstly, you see output in the console window. Let's go through it step by step... + +``` +2024-12-10 13:05:44,866 - PRINT - Tank design started... +2024-12-10 13:05:45,829 - PRINT - Valid tank configuration found in acXML: wing_with_additional_center_and_trim_tank +``` +To this point, the module started, found a valid tank configuration in the _acXML_, and prints the name of the configuration for your information. + +``` +2024-12-10 12:26:26,090 - PRINT - Initial sizing loop! Energy demand is estimated (3.35 liters per PAX per 100 km). +``` +If the tool is executed during the initial sizing loop in the workflow, or when no information on the required mission energy is available from the _mission\_analysis_ tool, the energy demand is estimated. + +``` +2024-12-10 13:05:45,844 - PRINT - Wing tank design started... +2024-12-10 13:05:45,846 - PRINT - Vent tank (located near each wing tip) calculated. +``` +Afterwards, the tank design starts with the wing tanks, specifically with the vent tank dimensioning that is based on the overall wing tank volume. + +``` +2024-12-10 13:05:45,846 - PRINT - Inner left wing tank (tank_0) calculated. Volume (energy) available: 4,800.69 L (155,182.15 MJ) +2024-12-10 13:05:45,846 - PRINT - Outer left wing tank (tank_1) calculated. Volume (energy) available: 4,630.29 L (149,674.22 MJ) +2024-12-10 13:05:45,847 - PRINT - Inner right wing tank (tank_2) calculated. Volume (energy) available: 4,800.69 L (155,182.15 MJ) +2024-12-10 13:05:45,847 - PRINT - Outer right wing tank (tank_3) calculated. Volume (energy) available: 4,630.29 L (149,674.22 MJ) +2024-12-10 13:05:45,847 - PRINT - Wing center tank (tank_4) calculated. Volume (energy) available: 7,646.16 L (247,162.02 MJ) +2024-12-10 13:05:45,847 - PRINT - Wing tanks successfully calculated. +``` +The tool continues with the calculation of the wing tank entities - in this example the inner and outer left and right wing tanks, and the wing center tank. Additionally, information is given on the volume and energy available of each tank. + +``` +2024-12-10 13:05:45,847 - PRINT - Energy check: Wing center tank necessary to store required energy amount. +2024-12-10 13:05:45,847 - PRINT - Energy check: Energy demand covered. +``` +After the wing tank design there is an energy check to review whether the required mission energy can be stored in the tanks. If the energy demand would not be covered up until this point, an energy check would be occur after the calculation of every subsequent tank. + +``` +2024-12-10 13:05:45,848 - PRINT - Additional center tank design started... +2024-12-10 13:05:45,848 - PRINT - Additional center tank (tank_5) calculated. Volume (energy) available: 3,068.50 L (99,189.26 MJ) +2024-12-10 13:05:45,849 - PRINT - Additional center tank design completed. +2024-12-10 13:05:45,849 - PRINT - Additional center tank is generated but unnecessary to store required energy amount. +``` +As already known, there is an additional center tank given in the _acXML_ tank configuration that is calculated subsequently. Furthermore, the information is given that this tank is not necessary to store the required mission energy amount. + +``` +2024-12-10 13:05:45,850 - PRINT - Trim tank design started... +2024-12-10 13:05:45,850 - PRINT - Trim tank (tank_6) calculated. Volume (energy) available: 2,679.94 L (86,629.04 MJ) +2024-12-10 13:05:45,850 - PRINT - Trim tank design completed. +2024-12-10 13:05:45,850 - PRINT - Trim tank is generated but unnecessary to store required energy amount. +2024-12-10 13:05:45,851 - PRINT - Tank design successful. +2024-12-10 13:05:45,851 - PRINT - Debug: The "calculate_tanks" function was successfully executed. +2024-12-10 13:05:45,851 - PRINT - Tank design completed. +``` +The trim tank is then dimensioned and the tank design is completed. + +``` +2024-12-10 13:05:48,050 - WARNING - Warning: No "method_plot" function in "methodplot.py" file implemented yet. +2024-12-10 13:05:48,050 - WARNING - Warning: No "method_html_report" function in "methodhtmlreport.py" file implemented yet. +2024-12-10 13:05:48,055 - PRINT - Method-specific data are written to 'tank_design_results.xml'... +2024-12-10 13:05:48,212 - WARNING - Warning: No "method_tex_output" function in "methodtexoutput.py" file implemented yet. +2024-12-10 13:05:48,213 - PRINT - Tank design finished. +``` +Finally, you receive information about the reports and plots created (depending on your settings) and the tool is successfully completed. + +### Reporting {#reporting} +In the following, a short overview is given on the generated reports: +- A `tank_design.log` file is written within the directory of the executable +- Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file: + - an HTML report in the `report_html` folder (not implemented yet) + - a TeX report in the `report_tex` folder (not implemented yet) + - an XML file with additional output data in the `report_xml` folder (not written since no more data output necessary) + - plots in the `plots` folder (not implemented yet) + +@warning Steffi: Check if additional output written + +### Write data to the aircraft exchange file {#acxml} +@note The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! + +Results are saved in the aircraft exchange file at the `/aircraft_exchange_file/component_design/tank`. node. The following information is written to the _acXML_: +```plaintext +Aircraft exchange file +|- Component design +| |- Tank +| | |- Position +| | | |- x +| | | |- y +| | | |- z +| | |- Mass properties +| | | |- ... +| | |- Specific +| | | |- Additional fuselage length +| | | |- Tank (ID="0") +| | | | |- Name +| | | | |- Designator +| | | | |- Position +| | | | | |- x +| | | | | |- y +| | | | | |- z +| | | | |- Direction +| | | | |- Mass properties +| | | | | |- ... +| | | | |- Maximum energy capacity +| | | | |- Energy required for mission energy +| | | | |- Geometry +| | | | | |- Cross section (ID="0") +| | | | | | |- Name +| | | | | | |- Position +| | | | | | | |- x +| | | | | | | |- y +| | | | | | | |- z +| | | | | | |- Shape +| | | | | | |- Height +| | | | | | |- Width +| | | | | | |- Length +| | | | | |- Cross section (ID="1") +| | | | | | |- ... +| | | |- Tank (ID="1") +| | | | |- ... +``` + +## Troubleshooting {#troubleshooting} +- The tool does not run properly? *Make sure you have all the paths set up correctly and the specified elements exist.* diff --git a/docs/documentation/sizing/tank_design/software_architecture.md b/docs/documentation/sizing/tank_design/software_architecture.md new file mode 100644 index 0000000..e2e5717 --- /dev/null +++ b/docs/documentation/sizing/tank_design/software_architecture.md @@ -0,0 +1,34 @@ +# Software architecture +This site is currently under development. \emoji construction + +<!-- +## Module structure +'main.py' runs the following functions: +1. 'data_preprocessing' (from 'datapreprocessing.py')<sup>1</sup> + - 1.1 +2. 'run_module' (from 'methodexecutionpackage' library)<sup>2</sup> + - 2.1 +3. 'data_postprocessing' (from 'datapostprocessing.py')<sup>3</sup> + +<sup>1</sup> data preprocessing runs: \ +<sup>2</sup> \ +<sup>3</sup> data_postprocessing runs: ... + +... + + +### Routing layers +The tank design module has the following layer structure: + +1. Aircraft configuration + - Implemented: 'tube_and_wing' + - Not yet implemented: 'blended_wing_body' +2. Calculation method fidelity + - Implemented: 'empirical' +3. Calculation method + - Implemented: 'tank_design_tu_berlin' +4. Energy carrier <sup>1</sup> + - Implemented: 'kerosene' + - Not yet implemented: 'liquid_hydrogen', 'hybrid' + +<sup>1</sup> The used energy carrier is determined automatically in the 'read_energy_carrier_and_tank_configuration' function. --> diff --git a/docs/documentation/sizing/tank_design/tank_design_method.md b/docs/documentation/sizing/tank_design/tank_design_method.md new file mode 100644 index 0000000..8f331b1 --- /dev/null +++ b/docs/documentation/sizing/tank_design/tank_design_method.md @@ -0,0 +1,155 @@ +# Calculation method +The task of the _tank_design_ module differs slightly depending on the energy carrier: +- [Kerosene](#kerosene-tanks) - Determine the maximum fuel capacity of the aircraft using its geometry. +- [Liquid hydrogen](#liquid-hydrogen-tanks) - Size tanks to ensure that the required amount of fuel is available. + +## Kerosene tanks {#kerosene-tanks} +For kerosene-powered aircraft, the fuel is stored in the wing. Additional tanks can be installed in the fuselage +(additional center tank) or in the empennage (trim tank). + +### General methodology +<!-- The tank design process starts with determining the required energy amount since the energy amount is necessary to +check whether the tank capacity is big enough to store the mission energy. If this information is not yet available + in the _acXML_ in the first iteration loop, an initial estimate is made: +\f[ + E_{\text{mission}} = n_{\text{PAX}} \cdot R \cdot fc_{\text{approx}} +\f] +In which +- \f$n_{\text{PAX}}\f$ - number of passengers +- \f$R\f$ - range in km +- \f$fc_{\text{approx}}\f$ - approx. fuel consumption per passenger per 100 km (ca. 3.5 L/100 km) --> + +The tank design starts with the wing tanks. Initially, the available volume of the complete wing is calculated which is then followed by the dimensioning of the vent tank. Afterwards, the wing is divided into several tanks based on its geometry. The gross volume of these tanks is calculated using the [obelisk method](#obelisk-method). This is followed by accounting for volume losses due to structural components and thermal expansion, resulting in the net [usable tank volume](#net-tank-volume). +The [energy stored](#calculate-energy) in the tanks is then calculated using the volumetric energy density of kerosene. +Afterwards, the remaining tanks are calculated, based on the specified tank configuration in the _acXML_. + +Note, that after every tank calculation, there is an assessment whether or not the required mission energy can be +stored in the available tanks. If this is the case, the flag `energy_capacity_required_for_mission` is set to `False` +for all remaining tanks. This means that all tanks defined in the _acXML_ are designed, whether required to store the +mission energy or not! + +### Wing tanks +The tank capacity of aerodynamic surfaces like the wing or the empennage can be determined by a simple calculation of the volume. + +At first, the overall wing tank volume is determined to get the vent tank volume required by the Certification Specification: + +> CS 25.969 Fuel tank expansion space: Each fuel tank must have an expansion space of not less than 2% of the tank capacity. It must be impossible to fill the expansion space inadvertently with the aeroplane in the normal ground attitude. + +Knowing the necessary vent tank volume, the remaining volume of the wing tanks can be calculated. The volume of the vent as well as the volume of any other wing tank can be determined using the obelisk method. + +#### Obelisk method {#obelisk-method} +The obelisk method simplifies the wing by dividing it into several volumes. Depending on the geometry, this results in three (single trapezoidal wing) or five (double trapezoidal/kinked wing) individual wing tanks, each of which has the shape of an obelisk. In the case of a double trapezoidal geometry, it is assumed that the wing can be divided into an inner tank (wing root to kink) and an outer tank (kink to vent tank position) per side as well as a wing center tank. + + + +The obelisk volume can be determined using two different approaches that are described in the following. +The user can select the desired method via the following node in the `program_settings` section of the _confXML_: +`configuration[@ID="tube_and_wing"]/specific/kerosene_tank_design_parameter/obelisk_calculation_method`. + +@note The obelisk method is explained using the wing as an example. The volume of a [trim tank](#trim-tank) located in the horizontal stabilizer is determined analogously. + +##### Obelisk volume according to Torenbeek<sup>[1]</sup> + + +The volume can be calculated using the following equation: +\f[ + V_{\text{obelisk}} = \frac{l}{3} \cdot \left( S_1 + S_2 + \frac{h_1 \cdot w_2 + h_2 \cdot w_1}{2}\right) +\f] +In which +- \f$l\f$ - length +- \f$S_1\f$, \f$S_2\f$ - end face areas +- \f$h_1\f$, \f$w_1\f$ - height and width of end face \f$S_1\f$ +- \f$h_2\f$, \f$w_2\f$ - height and width of end face \f$S_2\f$ + +The parallel end faces \f$S_1\f$ and \f$S_2\f$ are derived from the position of the spars of the wing box, that are +known from the wing design. +<!-- Based on the formula for determining the area of a rectangle: +\f[ + S_{i} = h_i \cdot w_i +\f] +the size of the parallel end surfaces \f$S_1\f$ and \f$S_2\f$ is obtained by extending it with the chord length +\f$l_{chord}\f$: +\f[ + S_{i} = \frac{h_i}{l_{chord}} \cdot l_{chord} \cdot w_i +\f] +By multiplying with the maximum thickness \f$h_{max}\f$ and substituting the width \f$w_i = p_{fs}-p_{rs}\f$, we get: +\f[ + S_{i} = \frac{h_{max}}{l_{chord}} \cdot \frac{h_{i}}{h_{max}} \cdot l_{chord} \cdot (p_{rs} - p_{fs}) +\f] + +Where +- \f$\frac{h_{max}}{l_{chord}}\f$ - maximum thickness ratio of used profile +- \f$\frac{a_{max}}{d_{max}}\f$ - ... +- \f$p_{rs}\f$ - position rear spar +- \f$p_{fs}\f$ - position front spar + + --> + +##### Obelisk volume according to Simpson +The Simpson's rule is a method of numerical integration that is often used to calculate the volume of bodies whose +cross-sections are known at different positions. In the case of an obelisk - i.e. a body with square or rectangular +cross-sections that vary along the height - the volume is integrated as the sum of the cross-sectional areas \f$S(x)\f$ +along the length \f$l\f$: +\f[ + V_{\text{obelisk}} = \int_0^l S(x) \, dx +\f] + +If the cross-sectional areas \f$S(x)\f$ at \f$i+1\f$ uniformly distributed points are known (which is the case for the +tank design), Simpson's rule can be applied. + +Two end surfaces are known for each tank, so that a third middle surface \f$S_{12}\f$ can be determined by linear +interpolation (see following figure). Each tank is thus divided into two sections. + + + +The tank volume can therefore be determined using a simplified Simpson's rule: +\f[ + V_{\text{obelisk}} = \frac{l}{6.0} \cdot (S_{1} + 4.0 \cdot S_{12} + S_{2}) +\f] + +#### Calculate net tank volume {#net-tank-volume} +The volume must then be converted from cubic meter to liter. A portion of the volume of the obelisk is lost to the internal structure of the integral tanks (e.g., ribs), with a reduction factor \f$ f_{\text{volume,usable}} = 0.95\f$. +Additionally, the expansion of the fuel due to heating must be considered, with a temperature expansion allowance of \f$ a_{\text{temperature,expansion}} = 0.95\f$. Thus, the wing tank volume is calculated as: +\f[ + V_{\text{tank}} = f_{\text{volume,usable}} \cdot a_{\text{temperature,expansion}} \cdot V_{\text{obelisk}} +\f] + +@note As the wing has a vent tank at each wing tip to allow for the thermodynamic expansion of the fuel, this factor is `1.0` for the wing tanks. + +#### Calculate energy {#calculate-energy} +Using the volumetric energy density of kerosene \f$\eta_{\text{v,kerosene}}\f$, the energy contained in each tank can be determined: +\f[ + V_{\text{tank}} = \eta_{\text{v,kerosene}} \cdot V_{\text{obelisk}} +\f] + +### Additional center tank +The module allows the installation of an additional center tank in the form of an LD3-45 container. The process includes the following steps: +1. **Height check**: The program first verifies whether the cargo compartment has sufficient height to accommodate the container. + - If insufficient height is detected: All output values related to the center tank are set to zero. + - If sufficient height is detected: The installation proceeds. +2. **Installation placement**: The LD3-45 container is positioned 10 cm behind the end of the landing gear bay, aligning approximately with the trailing edge of the wing. +3. **Container data**: The volume and dimensions of the LD3-45 container are predefined and referenced from the Lufthansa Cargo website<sup>[2]</sup>. + +The energy contained in an additional center tank is calculated by first determining the usable volume and then taking into account the volumetric energy density of kerosene. With the known factors \f$ f_{\text{volume,usable}}\f$ and \f$a_{\text{temperature,expansion}}\f$, the usable volume of an additional center tank results in \f$V_{\text{ACT,usable}} = 3068.5\text{ L}\f$ which is equal to an energy amount of \f$ E_{\text{ACT}} = 99189262.5\text{ MJ}\f$. + +#### Limitations +**Single Center Tank Limit:** The program currently supports the calculation of only one additional center tank. Attempts to add more tanks will not be processed. + +@note Verify that the cargo compartment dimensions are correctly provided to ensure accurate installation. + +### Trim tank {#trim-tank} +The procedure for the trim tank is the same as for the wing tanks. The geometry of the horizontal stabilizer is simplified and divided into several obelisks whose volume is calculated. The usable volume is then determined, taking the already known factors \f$ f_{\text{volume,usable}}\f$ and \f$ a_{\text{temperature,expansion}}\f$ into account. Finally, the available energy is determined. + +<!-- ### Assumptions and tool limitations +tbd. \emoji construction --> +<!-- - All tanks with the same energy carrier (e.g. liquid_hydrogen) have the same design parameters --> +<!-- - Design point for tank design: Point B, design mission --> +<!-- - Der Rumpf wird gestretcht. Es gibt keine Option, die Kabine kleiner zu machen bisher. --> +<!-- - Positionsangaben beziehen sich immer auf vordersten und innersten Punkt, wobei z die Mitte der Ebene angibt (dabei liegt die Annahme zugrunde, dass beim wing auch immer die center line des profils bei der z-Koordinate angegeben wird) --> + +## Liquid hydrogen tanks {#liquid-hydrogen-tanks} +tbd. \emoji construction + +--- +<sup>[1]</sup> E. Torenbeek, 1982. *Synthesis of Subsonic Airplane Design*.<br> +<sup>[2]</sup> Lufthansa Cargo, 2024. *Our containers*. URL: https://www.lufthansa-cargo.com/de/fleet-ulds/ulds/containers \ No newline at end of file diff --git a/docs/documentation/sizing/wing_design/basic-concepts.md b/docs/documentation/sizing/wing_design/basic-concepts.md new file mode 100644 index 0000000..f81d641 --- /dev/null +++ b/docs/documentation/sizing/wing_design/basic-concepts.md @@ -0,0 +1,79 @@ +# Basic Concepts {#BasicConcepts} + +Designing a wing for an aircraft is by far one of the most challenging tasks. This topic provides basic information for wings. + +If you are already familiar with the basic concepts, you can move on to the [Getting Started](getting-started.md). + + +### Available configurations +Here you can find available wing build methods from the _wing\_design_ tool inside UNICADO. +- _UNICADO is shipped natively with the cantilever wing method for a tube and wing configuration._ +- _A basic Blended Wing body method is planned!_ + +<pre class='mermaid'> + graph LR; + A[Wing Design]-->B[Tube and Wing]; + B-->C[Cantilever]; + A-->D[Blended Wing body] +</pre> + +<dl class="section bug"> + <dt>Important</dt> + <dd>Since the documentation might be delayed to the development progress - this graph might not have all information yet</dd> +</dl> +___ + +### Wing Loading +Wing loading is the mass / weight of the aircraft distributed over its reference wing area. +- _Initial parameter to start design_ +- _Wing Loading = M / S_ in (kg/m^2) +- _Wing Loading = M × g / S_ in (N/m^2) +- _M : Aircraft mass_ +- _g : Gravitational acceleration_ +- _Wing Loading ↑ Higher speeds at takeoff necessary_ +- _Wing Loading ↓ Lower speeds at takeoff_ + +### Wing Geometry +Understanding the wing geometry is crucial for designing an efficient wing. Below are key terms and their meanings: +- Aspect Ratio (_AR_): The ratio of the wingspan to the average chord length + - _AR= b² / S_ + - _b : Wingspan_ + - _S : Wing reference area (projected area on ground from top view)_ + - _High AR (e.g. gliders) → increased aerodynamic efficiency (higher drag) but slender and more flexible wing._ + - _Low AR (e.g., fighter jets) → decreased aerodynmic efficiency and stiffer._ + +- Taper Ratio (λ): The ratio of the tip chord to the root chord. + - _λ_ = _c_<sub>_tip_</sub> / _c_<sub>_root_</sub> + - _A taper ratio of one indicates a rectangular wing._ + - _Reduced taper ratio can improve aerodynamic efficiency and reduce structural weight._ + +- Sweep Angle (Φ): The angle between the chord at a given position and a line perpendicular to the chord + - _Increased sweep leads to higher overall speeds due to reduction of the mach number normal to the leading edge_ + - _backward sweep: increased aerodynamic load at the outer wing part → bad behaviour at high angle of attack (AoA)_ + - _forward sweep: decreased aerodynamic load at the outer wing part but increased structural load due to wing torsion effects_ + +- Dihedral / Anhedral Angle (ν): Effects wing clearance and roll stability due to sideslip + - Common dihedral angle (positive) for low wing configuration + - Common anhedral angle (negative) for shoulder or high wing configurations + +- Kink: Discontinuity in the wing trailing edge due to change in trailing edge sweep + - mostly occurs on aircraft from inner to outer wing (low configuration) which is affected by the engine and landing gear vice versa + +### Airfoil selection +An airfoil defines the cross-sectional shape of a wing. The key characteristics include: +- Camber: Airfoil curvature + - _High camber - generates more lift but comes with increased drag_ + - _No camber (symmetrical) often used for aerobatic A/C_ + - _Chord: Defines the length of the line from leading to trailing edge_ + - _Thickness to Chord Ratio (t/c): maximum airfoil thickness in relation to its chord length_ + - _affects lift, drag and wing cross section_ + + +### Spar Placements +Spars are the one of the main structural elements inside the wing to provide strength and rigidity + - _Has effects size of slats, flaps and integral tank size_ + + +### Winglet / Raked wingtip / Rakelet (not available yet): +Additional aerodynamic component at the tip of the main wing section +- _Used for induced drag reduction_ diff --git a/docs/documentation/sizing/wing_design/dfw.md b/docs/documentation/sizing/wing_design/dfw.md new file mode 100644 index 0000000..fd9968a --- /dev/null +++ b/docs/documentation/sizing/wing_design/dfw.md @@ -0,0 +1,266 @@ +# Design your first wing {#design-your-first-wing} +Let's dive into the fun part. In this guide we will create a wing for a classic tube and wing configuration with a cantilever wing design method. + + - [Requirements:](#requirements) - Information on tool requirements + - [Design parameters:](#design-parameters) - Information on design parameters + - [Tool execution:](#tool-execution) - Tool execution information + - [Reporting](#reporting) - Wing Design tool report information + - [Changing parameters](#changing-parameters) - The fun part! Let's change parameters + - [Troubleshooting](#troubleshooting) - Something went wrong? Maybe you are not the first one! + +The wing will be part of a generic tube and wing aircraft which is a look-a-like A320. + +## Requirements +Therefor we use an _Aircraft Exchange File_ where the tools _initial\_sizing_ and _fuselage\_design_ already run. + +From the _Aircraft Exchange File_ we have the following information: + +From the Requirements block: +Parameter | Value +:--------------------------|-------------: +A/C Type | CeraS +A/C Model | SMR-2020 +Configuration Type | Tube and Wing +Wing definition | low +ICAO Aerodrome Ref Code | 3CIIIB +Initial cruise mach number | 0.78 + +From _initial\_sizing_ tool + +Parameter | Value +:------------|---------------: +MTOM | 64232 kg +Wing loading | 619.8444 kg/m^2 + +> [!NOTE] +> Parameters of the fuselage are not listed - however, it has a length of ~37m and a width of ~4m +## Design parameters +Wing Design tool parameters for cantilever method + +Parameter | Value (parameter in order of occurence) +:-- | --: +`wing_area` | `mode_1` → `by_loading_and_mtom` +`sweep` | `mode_0` → `user_defined (27°)` +`taper_ratio` | `mode_0` → `user_defined (0.17)` +`dihedral` | `mode_1` → `by_wing_position_and_quarter_chord_sweep (raymer)`, +`aspect_ratio` | `mode_0` → `user_defined (10.3)` +`relative_kink_position` | `mode_0` → `user_defined (0.3, 10°)` +`wing_profile_and_thickness` | `mode_1` → `torenbeek-jenkinson (F15, 0.15, 1.12)` +`mass` | `mode_0` → `flops (0.0,0.0,0.5)` +`control_devices` | `mode_1` → `empirical (slat, flap_fowler)` +`spars` | `mode_0` → `user_defined ((front_spar,0.0,0.2,0.2, 1.0,0.2,0.2),(rear_spar,0.0,0.6,0.6,1.0,0.6,0.6) ` + + +## Tool execution +The tool can be executed from console directly if all paths are set (see [How to run a tool](howToRunATool.md)). + +We go through the tool output step by step +``` +******************************************************************************* +18.11.2024 21:50:22 - Start wingDesign +18.11.2024 21:50:22 - [MODULE RUNTIMEINFO] - wingDesign +18.11.2024 21:50:22 - [CONSOLE ] - [ON] +18.11.2024 21:50:22 - [LOG ] - [ON] +18.11.2024 21:50:22 - [PLOT ] - [ON] +18.11.2024 21:50:22 - [COPY ] - [ON] +18.11.2024 21:50:22 - [DELETE] - [ON] +18.11.2024 21:50:22 - [REPORT ] - [ON] +18.11.2024 21:50:22 - [TEX ] - [OFF] +18.11.2024 21:50:22 - [INFOFILES] - [OFF] +18.11.2024 21:50:22 - [GNUPLOT] +18.11.2024 21:50:22 - [PATH ] - +18.11.2024 21:50:22 - [FILENAME] - DEFAULT +18.11.2024 21:50:22 - [INKSCAPE] +18.11.2024 21:50:22 - [PATH ] - +18.11.2024 21:50:22 - [FILENAME] - DEFAULT +18.11.2024 21:50:22 - [LOGFILE] +18.11.2024 21:50:22 - [PATH ] - . +18.11.2024 21:50:22 - [FILENAME] - wingDesign.log +18.11.2024 21:50:22 - [IO/ACXML] +18.11.2024 21:50:22 - [PATH ] - ../projects/CSR/CSR-02 +18.11.2024 21:50:22 - [FILENAME] - csmr-2020.xml +18.11.2024 21:50:22 - [MODCONFIG] +18.11.2024 21:50:22 - [PATH ] - . +18.11.2024 21:50:22 - [FILENAME] - wingDesign_conf.xml +18.11.2024 21:50:22 - Checking directory... [REPORT] +18.11.2024 21:50:22 - Checking directory... [TEX] +18.11.2024 21:50:22 - Checking directory... [HTML] +18.11.2024 21:50:22 - Checking directory... [PLOT] +18.11.2024 21:50:22 - Checking directory... [CSVFILES] +18.11.2024 21:50:22 - Checking directory... [CSVFILESTOOL] +18.11.2024 21:50:22 - Creating directory... [CSVFILESTOOL] +18.11.2024 21:50:22 - Checking directory... [PLOTFILES] +18.11.2024 21:50:22 - Checking directory... [PLOTFILESTOOL] +18.11.2024 21:50:22 - Creating directory... [PLOTFILESTOOL] +18.11.2024 21:50:22 - Checking directory... [LOGFILES] +``` +To this point, the module is in the top level stage and creates folders and checks the configuration file settings from the control block. Here you can see some common information. + +Afterwards the module progresses and starts with the wing design initialization where it checks the airfoildata directory +``` +18.11.2024 21:50:22 - Initializing wing design ... [START] +18.11.2024 21:50:22 - Checking directory... [AIRFOILDATA] +18.11.2024 21:50:22 - Initializing wing design ... [FINISHED] +``` +Nothing fancy to this point! Now, we go to the interesting part - the design part begins with the check of the kink. Afterwards it gives you information on your parameter settings and gives you some more information about some selections like the ICAO Aerodrome reference code. +``` +18.11.2024 21:50:22 - Run wing design ... [START] +18.11.2024 21:50:22 - Selected design method ... [START] +18.11.2024 21:50:22 - Wing Design ... [Start] +18.11.2024 21:50:22 - Wing kink check ... +18.11.2024 21:50:22 - Wing is kinked ... [TRUE] +Quarter chord sweep [method]: user_defined +Quarter chord sweep [value]: 27 [deg] +Wing area [method]: by_loading_and_mtom +Wing area [value]: 104.198 [m^2] +18.11.2024 21:50:22 - ICAO EASA Aerodrome reference code: 3CIIIB + Limts for : ICAO field length + Code : 3 + Lower limit: 1200 + Upper limit: 1800 + Limts for : ICAO wing span + Code : C + Lower limit: 24 + Upper limit: 36 + Limts for : FAA ADG tail height + Code : III + Lower limit: 9.144 + Upper limit: 13.716 + Limts for : ICAO aircraft approach speed + Code : B + Lower limit: 169 + Upper limit: 224 +Wing aspect ratio [method]: user_defined +Wing aspect ratio [value]: 10.3 [1] +Wing taper ratio [method]: user_defined +Wing taper ratio [value]: 0.17 [1] +Dihedral [method]: raymer +Dihedral [value]: 5 [deg] +Maximum inner trailing edge sweep [method]: user_defined +Maximum inner trailing edge sweep [value]: 3 [deg] +Relative kink position [method]: user_defined +Relative kink position [value]: 0.3 [1] +``` +The aspect ratio with 10.3 is within limits of the 3CIIIB, otherwise a warning would have occured! + +In the next part, the tool computes the thickness distribution according to the selected method and goes further to the control and spars definition. After finishing this, the masses and the center of gravity as well as the wing position alongside the fuselage is calculated. +``` +Wing profile and thickness [method]: torenbeek_jenkinson +Wing profile and thickness [values]: + Eta : 0 + Thickness to chord: 0.15 + Profile : F15 + Eta : 0.121122 + Thickness to chord: 0.15 + Profile : F15 + Eta : 0.3 + Thickness to chord: 0.13803 + Profile : F15 + Eta : 1 + Thickness to chord: 0.0911906 + Profile : F15 +Leading edge check ... [OK] +Trailing edge check ... [OK] +Spars [method]: user_defined +Spars [values]: + Number 2 [1] +Wing kink check ... +18.11.2024 21:50:22 - Wing is kinked ... [TRUE] +Relative kink position [method]: user_defined +Relative kink position [value]: 0.3 [1] +18.11.2024 21:50:22 - Wing kink check ... +18.11.2024 21:50:22 - Wing is kinked ... [TRUE] +Control devices [method]: empirical +Control devices [values]: + Name : slat + Deflections : 0 40 + Name : slat + Deflections : 0 40 + Name : flap_fowler + Deflections : 0 45 + Name : flap_fowler + Deflections : 0 45 + Name : aileron + Deflections : -20 20 + Name : spoiler_ground + Deflections : 0 45 + Name : spoiler_air + Deflections : 0 45 + Name : spoiler_air + Deflections : 0 45 + Name : spoiler_air + Deflections : 0 45 + Name : spoiler_air + Deflections : 0 45 +18.11.2024 21:50:22 - Selected design method ... [FINISHED] +18.11.2024 21:50:22 - Selected mass method ... [START] +18.11.2024 21:50:22 - Wing mass estimation using ... FLOPS +18.11.2024 21:50:22 - Calculating ... +18.11.2024 21:50:22 - Calculated wing mass ... 5822.87[kg] +18.11.2024 21:50:22 - Wing bending material mass ... 3077.49[kg] +18.11.2024 21:50:22 - Wing shear material and control surface mass ... 2238.51[kg] +18.11.2024 21:50:22 - Wing miscellaneous items mass ... 506.872[kg] +18.11.2024 21:50:22 - Calculate Center of Gravity ... +18.11.2024 21:50:22 - CG Position... +18.11.2024 21:50:22 - x ... 16.9761 +18.11.2024 21:50:22 - y ... 0 +18.11.2024 21:50:22 - z ... -0.673262 +18.11.2024 21:50:22 - Selected mass method ... [FINISHED] +18.11.2024 21:50:22 - Run wing design ... [FINISHED] +``` +Now the design has finished. + +In the following the wing data will be written to the _Aircraft Exchange File_ (Update) and the report will be written. +``` +18.11.2024 21:50:22 - Update designed wing ... [START] +18.11.2024 21:50:22 - Update designed wing ... [FINISHED] +18.11.2024 21:50:22 - Report designed wing ... [START] +18.11.2024 21:50:24 - CSS code written to style.css successfully. +18.11.2024 21:50:24 - Report designed wing ... [FINISHED] +``` + + +Executing the tool with reporting on gives you a HTML report for the designed wing. +Let's have a look at it. +## Reporting +The HTML report is splitted - on the left half, one can see numerical information of the wing design. The right side contains plots and visual information. + + + +It starts with general information followed by section parameters. Then you get information on spars and control devices. It concludes with mass information. + +The plot side starts with a general wing planfrom view, followed by the airfoil shape and the thickness and twist distribution + + +## Changing parameters +The mass here seems quite low - this is due to the `fcomp` parameter in the `mass` block of the configuration file which is set to `0.5` (`fcomp` defines the part of composite utilization), so we want to decrease the composite part so we will set this to `fcomp = 0.2`. + +The results are indeed different: +Now we have a wing mass of `6424kg` instead of `5822kg`. + +Also we can try to trigger an error - lets increase the aspect ratio to get out of the ICAO Aerodrome reference code region (set `aspect_ratio = 18`). + +Now we see the following during code exectuion: +``` +Wing aspect ratio [method]: user_defined +Wing aspect ratio [value]: 18 [1] +18.11.2024 22:15:26 - WARNING: Calculated aspect ratio > maximum_possible_aspect_ratio +18.11.2024 22:15:26 - WARNING: Switch to maximum possible aspect_ratio +Wing taper ratio [method]: user_defined +... +``` +The tool adapted the wing aspect ratio to the maximum possible aspect ratio since the aspect ratio we defined was way too high. + +Soo .... Now it is your turn! + +<dl class="section invariant"> +<dt>Tip</dt> +<dd> +Start by changing only one parameter at once. There might be interactions with other parameters, so don't rush! +</dd> +## Troubleshooting +- Tool does not run properly: + - Make sure you have all the paths set up correctly and the specified elements exist! +- Tool is not there: + - You can build the tool directly from scratch - see therefor [How to build a tool](howToBuildATool.md) + diff --git a/docs/documentation/sizing/wing_design/figures/Report_page_wing_design.png b/docs/documentation/sizing/wing_design/figures/Report_page_wing_design.png new file mode 100644 index 0000000..c90ceb2 --- /dev/null +++ b/docs/documentation/sizing/wing_design/figures/Report_page_wing_design.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c71f29f6a5327254084a8656351ac3497484317d420a91584537e88f90e5c9dd +size 250088 diff --git a/docs/documentation/sizing/wing_design/getting-started.md b/docs/documentation/sizing/wing_design/getting-started.md new file mode 100644 index 0000000..6ad57ae --- /dev/null +++ b/docs/documentation/sizing/wing_design/getting-started.md @@ -0,0 +1,140 @@ +# Getting started {#getting-started} +Welcome to the Wing Design Tool! This section will guide you through the initial steps to access and begin using the tool. +This guide gives you a step-by-step overview of the parameters which affects the basic module behavior. + +## Method selection +The main method selection, _which_ wing shall be designed comes from the _Aircraft Exchange File_. This is defined in the Block `requirements_and_specification` of the _Aircraft Exchange File_. + +Here you have two main elements which will affect the wing design inside `design_specification/configuration`: +- `configuration_type`: This defines the aircraft configuration which the wing is build for + - `tube_and_wing` + - `blended_wing_body` + +- `wing_definition`: This defines where the wing shall be mounted (no effect during BWB design) + - `low` + - `high` + + +The configuration file of the Wing Design tool `wing\_design_conf.xml`, gives you then more specified parameters to chose which will tailor the wing to your desire in the `program_settings` Block. + +The file comes with mode selectors and associated parameters to set which can vary. + +Parameters to chose: +- `wing_configuration`: + - `mode_0: cantilever`: sets wing type to cantilever wing. + +To select a tube and wing with a cantilever chose the following inside the aircraft exchange file +- `configuration_type` is set to `tube_and_wing` +- `wing_configuration` is set to `mode_0` which selects `cantilever` + <pre class="mermaid"> + graph LR; + A[Wing Design] ==> B[Tube and Wing]; + B==>C[Cantilever]; + A-->D[Blended Wing body] + style B stroke-width:4px + style C stroke:#0f0, stroke-width:4px + </pre> + +Each `wing_configuration`will have it's own block to chose parameters from. +<dl class="section todo"> +<dt>Note</dt> +<dd> +For default values or ranges, you should check the description of the parameters or the allowed ranges inside the configuration file +</dd> +</dl> +<dl class ="section invariant"> +<dt>Tip</dt> +<dd>If you are missing some of the terms in here - take a look at [basic concepts](basic-concepts.md).</dd> +</dl> +## Configuration parameters → Tube and Wing +In this section you find parameters for tube and wing methods. +### Cantilever calculation methods and parameters +_Geometry calculation methods_ + - `wing_area`: How to calculate the wing area + - `mode_0: user_defined`: Set a wing area + - `mode_1: by_loading_and_mtom`: Set wing area by wing loading + -`sweep`: How to calculate the wing quarter chord sweep (constant over wing from root to tip) + - `mode_0: user_defined`: Set a user defined quarter chord sweep + - `mode_1: drag_divergence`: Computes the wing sweep by the usage of Korn's equation + - `param: korn_technology_factor`: Technology factor for korns method + - `param: delta_drag_divergence_to_mach_design`: Set the difference between the design mach and the delta to the drag divergence mach number + - `taper_ratio`: How to calculate the wings taper ratio + - `mode_0: user_defined`: Set a taper ratio + - `mode_1: howe`: Calculates the taper ratio by Howe's empirical method + - `dihedral`: How to calculate the wings dihedral (root to tip; negative values → anhedral) + - `mode_0: user_defined`: Set dihedral + - `mode_1: by_wing_position_and_quarter_chord_sweep`: Calculates dihedral by vertical position (ref. to `wing_definition`) and the quarter chord sweep + - `param: dihedral_limitation`: Chose from Raymer or How to set the dihedral limits + - `mode_0: raymer`: Raymer's limits + - `mode_1: howe`: Howe's limits + - `aspect_ratio`: How to calculate aspect ratio + - `mode_0: user_defined`: Set wing aspect ratio + - `mode_1: by_pitch_up_limit_function`: Sets the aspect ratio by a predefined pitch up limit function (function parameters currently fix) + - `relative_kink_position`: How to calculate the relative kink position (takes effect only when `wing_definition` is `low`) + - `mode_0: user_defined`: Set relative kink position as part of dimensionless half span + - `param: relative_kink_position`: relative kink position + - `param: maximum_inner_trailing_edge_sweep`: sets the maximum inner wing trailing edge sweep. + - `mode_1: based_on_landing_gear_track`: Calculate kink position on landing gear track (no effect - future implementation) + - `param: initial_relative_kink_position`: initial relative kink position (first iteration) + - `param: maximum_inner_trailing_edge_sweep`: sets the maximum inner wing trailing edge sweep. + - `wing_profile_and_thickness_distribution`: + - `mode_0: user_defined`: Sets user defined profiles with associated thickness to chord ratios (multiple ID Elements) + - `param: wing_profile`: Name of desired airfoil + - `param: thickness_to_chord/ratio`: thickness to chord ratio for the desired profile + - `param: thickness_to_chord/at_half_span`: dimensionless half span position where to apply the airfoil + - `mode_1: torenbeek_jenkinson`: Torenbeek-Jenkinson method to determine thickness distribution + - `param: wing_profiel`: Name of desired airfoil + - `param: max_thickness_to_chord_ratio`: Maximum thickness to chord ratio (at root / centerline) + - `param: airfoil_critical_factor`: Sets technology level + +_Mass Calculation Methods_ + - `mass`: How to calculate the mass methods + - `mode_0: flops`: Calculate the wing mass according to FLOPS (_NASA Flight Optimization System_) + - `param: fstrt`: Wing strut bracing factor + - `param: faert`: Wing aeroelastic tailoring factor + - `param: fcomp`: Wing composite utilization factor + - `mode_1: chiozzotto_wer`: Calculate the wing mass according to Chiozzotto (WER) + - `param: technology_factor`: Technology factor, scales effective weight + - `param: material`: Material to chose between Aluminium or Carbo Fiber Reinforced Plastic + +_Control Design Methods_ + - `mode_0: user_defined`: User defined control devices (multiple ID Elements) + - `param: type`: Sets type of control device (e.g. aileron, rudder, elevator...) + - `param: deflection`: Set positive and negative deflection limits + - `param: position`: Set position parameters like chordwise and spanwise position for inner and outer dimension of a control device + - `mode_1: empirical`: Sets control devices according to standard values + - `param: high_lift_device_type_leading_edge`: Select high lift leading edge device type + - `param: high_lift_device_type_trailing_edge`: Select high lift trailing edge device type + +_Spars Methods_ + - `mode_0: user_defined`: Sets spars directly (multiple ID Elements) + - `param: name`: Set spar name (e.g. front spar, rear spar etc.) + - `param: position`: Set position parameters like chordwise and spanwise position for inner and outer dimension of a spar + +## Configuration parameters → Blended Wing Body +In this section you find parameters for Blended Wing Body methods. + +<dl class="section todo"> +<dt>Note</dt> +<dd>In the beta version of UNICADO, BWB methods are under development</dd> +</dl> + +## Additional configurations +Additionally, one has to define the common airfoil data paths inside the configuration file: +- `common_airfoil_data_paths`: Defines the path, where to look for airfoils - normally a database + +## Additional information and requirements +The methods in the wing design tool also require additional information on the design mach number, and the ICAO aerodrome reference code (for determination of maximum allowed span) from the requirements and specification block of the _Aircraft Exchange File_. + +<dl class="section bug"> +<dt>Important</dt> +<dd> + Keep in mind that the _wing\_design_ tool generates a wing as a part of an aircraft. This lets it rely on specific values, e.g. for definining the area inside the fuselage etc. This leads to mandatory items at this point: + + - A specified fuselage - here length and width and height are necessary to determine wing geometry and wing position + - Initial Maximum Takeoff Mass (MTOM) - for determination of the wing area necessary based on the wing loading (only if method is selected) +</dd> +Please keep in mind, that the module is still in beta phase and you can gratefully contribute to the + +## Next Steps +The next step is to run the _wing\_design_ tool. So let's get your wings from [Design your first wing](dfw.md) diff --git a/docs/documentation/sizing/wing_design/index.md b/docs/documentation/sizing/wing_design/index.md new file mode 100644 index 0000000..69e61e1 --- /dev/null +++ b/docs/documentation/sizing/wing_design/index.md @@ -0,0 +1,28 @@ +# Introduction {#mainpage} +The wing is an essential part of the aircraft. The _wing\_design_ tool is one of the core design tools in UNICADO and enables the workflow to design wings according to specified requirements and design specifications. + +## A User's Guide to Wing Design +The _wing\_design_ tool will help you design various wings for classical configurations to blended wing body confiugartions (in the future). This user documentation will guide you through all necessary steps to understand the tool as well as the necessary inputs and configurations to create a new wing from scratch. +The following pages will guide you through the process of generating your first wing within UNICADO: + +- [Basic Concepts](basic-concepts.md) +- [Getting Started](getting-started.md) +- [Design your first wing](dfw.md) + +So let's get started! + + +## You are a Developer? + +If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO! + +The following pages will help you understand the code structure: + +- [Prerequisites](prerequisites.md) +- [Build the code](build-the-code.md) +- [Wing module structure](wing-module-structure.md) +- [Available methods](available-methods.md) +- [Method template](method-template.md) + +We appreciate it! + -- GitLab From 5cc11047c1c0d62e763dd4e06eb879b6704e4d2d Mon Sep 17 00:00:00 2001 From: Kristina Mazur <kristina.mazur@tum.de> Date: Mon, 27 Jan 2025 22:09:38 +0100 Subject: [PATCH 42/53] Update ReadMe --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index a60eceb..ee00062 100644 --- a/README.md +++ b/README.md @@ -7,7 +7,7 @@ We are using `mkdocs` as the static site generator to generate the website from You can preview the website after cloning it. First you need to install `mkdocs` and the used theme by: ```sh -pip install mkdocs mkdocs-material mkdocs-glightbox +pip install mkdocs mkdocs-material mkdocs-glightbox mkdoxy ``` Then you can change the directory to the repository and run -- GitLab From bb2d8076f5a5ff03a98b1ca277aa2973ac323ed8 Mon Sep 17 00:00:00 2001 From: Kristina Mazur <kristina.mazur@tum.de> Date: Mon, 27 Jan 2025 22:45:01 +0100 Subject: [PATCH 43/53] Delete tool reference which do not exists, include libaries, update initial tools --- docs/documentation/analysis.md | 14 +- docs/documentation/libraries.md | 30 +- .../figures/Tutorial/airfoil_surface.png | 3 + .../figures/Tutorial/spar.png | 3 + .../figures/Tutorial/step001.png | 3 + .../figures/Tutorial/step003.png | 3 + .../figures/Tutorial/step004.png | 3 + .../figures/Tutorial/step005.png | 3 + .../figures/Tutorial/step006.png | 3 + .../figures/Tutorial/step007.png | 3 + .../figures/class_diagram.png | 3 + .../figures/class_diagram.puml | 249 ++++++++ .../figures/coordinate_example.png | 3 + .../figures/coordinate_example.svg | 234 ++++++++ .../aircraftGeometry2/figures/section2d.svg | 170 ++++++ .../aircraftGeometry2/figures/surface_top.svg | 164 ++++++ .../aircraftGeometry2/getting-started.md | 97 ++++ .../libraries/aircraftGeometry2/index.md | 128 +++++ .../aircraftGeometry2/tutorial-convert.md | 154 +++++ .../aircraftGeometry2/tutorial-factory.md | 542 ++++++++++++++++++ .../aircraftGeometry2/tutorial-geometry.md | 347 +++++++++++ .../libraries/aircraftGeometry2/tutorial.md | 5 + docs/documentation/sizing.md | 18 +- ...{getting-started.md => getting_started.md} | 0 ...{getting-started.md => getting_started.md} | 0 .../style/python-modularization.md | 2 +- mkdocs.yml | 140 +++-- 27 files changed, 2250 insertions(+), 74 deletions(-) create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/airfoil_surface.png create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/spar.png create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step001.png create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step003.png create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step004.png create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step005.png create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step006.png create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step007.png create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.png create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.puml create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.png create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.svg create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/section2d.svg create mode 100644 docs/documentation/libraries/aircraftGeometry2/figures/surface_top.svg create mode 100644 docs/documentation/libraries/aircraftGeometry2/getting-started.md create mode 100644 docs/documentation/libraries/aircraftGeometry2/index.md create mode 100644 docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md create mode 100644 docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md create mode 100644 docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md create mode 100644 docs/documentation/libraries/aircraftGeometry2/tutorial.md rename docs/documentation/sizing/initial_sizing/{getting-started.md => getting_started.md} (100%) rename docs/documentation/sizing/wing_design/{getting-started.md => getting_started.md} (100%) diff --git a/docs/documentation/analysis.md b/docs/documentation/analysis.md index aea5d4c..060c8bc 100644 --- a/docs/documentation/analysis.md +++ b/docs/documentation/analysis.md @@ -22,7 +22,7 @@ lift mach numbers. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/aerodynamic_analysis/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|-| --- @@ -39,7 +39,7 @@ For the user, possible changes in the module run configuration can be made in th |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/mission_analysis/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|-| --- @@ -50,7 +50,7 @@ The `weight_and_balance_analysis` module calculates sub-masses and total masses |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](../documentation/aircraft-design/weight_and_balance_analysis/doc/content/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](analysis/weight_and_balance_analysis/content/index.md)| --- @@ -61,7 +61,7 @@ The `constraint_analysis` module updates the performance criteria wing loading a |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|1.0.0|:simple-cplusplus: |GPLv3|[Link](constraint_analysis/index.html)| +|1.0.0|:simple-cplusplus: |GPLv3|-| --- @@ -78,7 +78,7 @@ The parameters comprised in this XML file can have different attributes as e.g. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](../documentation/aircraft-design/ecological_assessment/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](analysis/ecological_assessment/content/index.md)| --- @@ -89,7 +89,7 @@ The module `calculatePerformance` is used to evaluate the mission performance of |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus:| GPLv3 |[Link](../documentation/aircraft-design/performance_assessment/doc/content/index.md)| +|2.1.0|:simple-cplusplus:| GPLv3 |-| --- @@ -105,6 +105,6 @@ Direct costs include all expenses incurred in operating and financing the aircra |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](../documentation/aircraft-design/cost_estimation/doc/content/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](analysis/cost_estimation/content/index.md)| --- diff --git a/docs/documentation/libraries.md b/docs/documentation/libraries.md index 64a7ee5..e6fe7d1 100644 --- a/docs/documentation/libraries.md +++ b/docs/documentation/libraries.md @@ -17,7 +17,7 @@ As mentioned in the [build instructions](../get-involved/build/general.md), we h !!! note - Currently, only `aircraftGeometry2` and `engine` are documented. + Currently, only `aircraftGeometry2` is documented. ## aerodynamics {.overview-img align=left} @@ -27,7 +27,7 @@ It has helper functions to extract and interpolate data of provided airfoil pola |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](documentation/libraries/aerodynamics/doc/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -39,7 +39,7 @@ The modularity and flexibility is achieved by using the high performance [Comput |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aircraftGeometry2/doc/content/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aircraftGeometry2/content/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| --- @@ -50,7 +50,7 @@ The **airfoils** libary provides a database for different airfoils. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|1.0.0|:simple-cplusplus: |GPLv3|[Link](libraries/airfoils/doc/content/index.md)|-| +|1.0.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -62,7 +62,7 @@ It uses a simple XML library, namely *tinyxml*, to read and parse the XML files. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aixml/doc/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -74,7 +74,7 @@ You can set different atmospheric conditions (e.g. *ISA+25*) and calculate the p |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/atmosphere/doc/content/index.md)|| +|2.1.0|:simple-cplusplus: |GPLv3|-|| --- @@ -85,7 +85,7 @@ The **blackboxTest** library provides an interface to run a complete module with |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/blackboxTest/doc/content/index.md)|[googleTest](https://google.github.io/googletest/)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/blackboxTest/content/index.md)|[googleTest](https://google.github.io/googletest/)| --- @@ -98,7 +98,7 @@ The engine decks can originate from different softwaretools as long as they prov |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/engine/doc/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -118,7 +118,7 @@ It has helper functions to extract and interpolate data of the results from the |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/liftingLineInterface/doc/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -131,7 +131,7 @@ The library gives a template how modules should be structured and gives helpers |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/moduleBasics/doc/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -142,7 +142,7 @@ This library provides standardized UNICADO data preprocessing, run, and postproc |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|1.0.0|:simple-python: |GPLv3|[Link](libraries/pymodulepackage/doc/content/index.md)|-| +|1.0.0|:simple-python: |GPLv3|-|-| --- @@ -154,7 +154,7 @@ In provides custom output streams, which automatically handle the log files and |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/runtimeInfo/doc/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -167,7 +167,7 @@ The library can handle *UNIX* and *Windows* systems alike. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/standardFiles/doc/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|-|-| !!! warning Some functions of this library are a bit outdated! When using this library, please look first at the wonderful [STL :octicons-link-external-16:](https://en.cppreference.com/w/) whether the function you are seeking is already there. @@ -181,7 +181,7 @@ The `simple vector library` by Andrew Willmott provides vector and matrix classe |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: | |[Link](https://www.cs.cmu.edu/~ajw/doc/svl.html)|-| +|2.1.0|:simple-cplusplus: | |[Link](https://www.cs.cmu.edu/~ajw/svl.html)|-| !!! note This will soon be replaced by `Eigen`. @@ -196,4 +196,4 @@ In addition, it defines some common **constants** which are useful for calculati |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/unitConversion/doc/content/index.md)|-| +|2.1.0|:simple-cplusplus: |GPLv3|-|-| diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/airfoil_surface.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/airfoil_surface.png new file mode 100644 index 0000000..09161d1 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/airfoil_surface.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1c9a9b9dc3670e47b2f4dbb11955410863684e0c0d9dd06704f49b7752b4b6a0 +size 535690 diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/spar.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/spar.png new file mode 100644 index 0000000..1358b62 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/spar.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:438f1e754de68cb79c715ff18e4274fb5bc0643c878ace75c8bc382ccfaf6ef0 +size 1387097 diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step001.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step001.png new file mode 100644 index 0000000..a74eb28 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step001.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:98677c36ebf8ba60af113ebac1c501d1eb415df53acdd3b1fe54f582361d1ed0 +size 622716 diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step003.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step003.png new file mode 100644 index 0000000..510ed14 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step003.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ca88e353720fb6ab3d37ed4e1c0294edc197b502c45474c98f22db4c96fab26f +size 832849 diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step004.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step004.png new file mode 100644 index 0000000..d987368 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step004.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:29de9f9833750519bdd85d4743cf3f0c660f7fef3c8f132148f11cf4f9cddb9c +size 835782 diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step005.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step005.png new file mode 100644 index 0000000..1e11ddb --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step005.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:11901d664e9927a0cbbcbabd8d26fc2d30ec48f67bdbceb9e607eeb11b907738 +size 831370 diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step006.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step006.png new file mode 100644 index 0000000..b2bfa23 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step006.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:371bfa92b7cc26f7dabcebd7b4b15ae5fec68f72deb7395374aa37edadc61d76 +size 842354 diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step007.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step007.png new file mode 100644 index 0000000..3653a30 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step007.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ed47dce79d4b4393785c789fb61825f7bf9e9e2c6b28cecfd0431fdbb96fda3a +size 846902 diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.png b/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.png new file mode 100644 index 0000000..d097908 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0b0b74dec107b32d6e94e716ee6ee39652146a233d631221ced439ed439e6e1c +size 387546 diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.puml b/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.puml new file mode 100644 index 0000000..9efddf8 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.puml @@ -0,0 +1,249 @@ +@startuml class_diagram +title Class Diagram aircraftGeometry2 +caption (c) 2024 UNICADO +hide empty members + +entity Entity3D { + + string name + + Point_3 origin + + Direction_3 normal + + double rotation_z +} + +interface Section { + # Aff_transformation_2 scale + # Aff_transformation_2 rotate + # Polygon_2 contour + + get_contour() + + set_contour() + + size() +} + +class PolygonSection { + + set_width() + + set_height() + + set_beta_angle() + + set_scale() +} + +interface SectionBuilder <<SectionType>> { + # vector<SectionType> sections + + get_result() + + peek() + + insert_back() + + arrange() +} + +class PolygonBuilder <<PolygonSection>> { +} + +class AirfoilBuilder <<AirfoilSection>> { +} + +annotation build { + + ellipse() +} + +class "AirfoilSection" as Airfoil { + + set_chord_length() + + set_dihedral_angle() + + set_twist_angle() + + scale_thickness() + + get_chord_length() + + get_thickness_scale() +} + +interface MultisectionSurface <<SectionType>> { + + vector<SectionType> sections + + bool is_symmetric +} + +class "MultisectionSurface" as tube <<PolygonSection>> { +} + +class "MultisectionSurface" as lift <<Airfoil>> { + +} + +annotation Measure { + + area() + + bottom() + + center() + + centroid() + + centroids() + + height() + + height_max() + + inertia() + + left() + + length() + + right() + + top() + + volume() + + width() + + width_max() +} + +annotation "Measure" as meas_airfoil { + + area() + + aspect_ratio() + + centroid() + + centroids() + + chord() + + dihedral() + + mean_aerodynamic_chord() + + mean_aerodynamic_chord_position() + + inertia() + + offset_LE() + + reference_area() + + span() + + sweep() + + taper_ratio() + + thickness() + + thickness_max() + + top_and_bottom() + + volume() +} + +annotation Transform { + + to_parent() + + to_local() + + to_mesh() + + get_reflection_point_top() + + get_reflection_point_bottom() + + outline_3d() + + outline_2d() + + resample() +} + +annotation "Transform" as transform_sepcific { + + to_absolute() +} + +Measure -> tube +tube <- build +Section <--- Transform +Transform -> Entity3D +PolygonSection <-- transform_sepcific +Airfoil <-- transform_sepcific +lift <- meas_airfoil + +Section --|> Entity3D +PolygonSection ---|> Section +Airfoil ---|> Section +tube *-- PolygonSection +MultisectionSurface --|> Entity3D +tube ----|> MultisectionSurface +lift ----|> MultisectionSurface +lift *-- Airfoil + +PolygonBuilder ---|> SectionBuilder +PolygonBuilder *--- PolygonSection +AirfoilBuilder ---|> SectionBuilder +AirfoilBuilder *--- Airfoil + +package convert <<frame>> +{ + interface converter as "Converter" <<ReturnType>> { + + operator()(Hull surface) -> ReturnType + + operator()(Fuselage surface) -> ReturnType + + operator()(AirfoilSurface surface) -> ReturnType + + operator()(Wing surface) -> ReturnType + + operator()(Spar surface) -> ReturnType + + operator()(ControlDevice surface) -> ReturnType + } + + class aixml_converter as "AixmlConverter" <<std::shared_ptr<node>>> { + - node* parent + - insert_string() + - insert_point() + - insert_direction() + } + + MultisectionSurface --* Hull + MultisectionSurface --* Fuselage + MultisectionSurface --* AirfoilSurface + MultisectionSurface --* Wing + MultisectionSurface --* Spar + MultisectionSurface --* ControlDevice + Hull --* converter + Fuselage --* converter + AirfoilSurface --* converter + Wing --* converter + Spar --* converter + ControlDevice --* converter + converter <|- aixml_converter +} + +package factory <<frame>> +{ + interface Factory <<SurfaceType>> { + - unique_ptr<SurfaceBuilder> builder + + Factory( std::shared_ptr<node> input, data_dir ) + + create( name ) -> SurfaceType = 0 + } + + interface SurfaceBuilder { + + build_hull( name ) = 0 + + build_airfoil_surface( name ) = 0 + + build_fuselage( name ) = 0 + + build_spar( name ) = 0 + + build_control_device( name ) = 0 + + build_wing( name ) = 0 + } + + class HullFactory <<InputType>> { + + HullFactory( InputType input, data_dir ) + + create( name ) -> MultisectionSurface<PolygonSection> + } + + class FuselageFactory <<InputType>> { + + FuselageFactory( InputType input, data_dir ) + + create( name ) -> MultisectionSurface<PolygonSection> + } + + class SparFactory <<InputType>> { + + SparFactory( InputType input, data_dir ) + + create( name ) -> MultisectionSurface<PolygonSection> + } + + class ControlDeviceFactory <<InputType>> { + + ControlDeviceFactory( InputType input, data_dir ) + + create( name ) -> MultisectionSurface<PolygonSection> + } + + class WingFactory <<InputType>> { + + WingFactory( InputType input, data_dir ) + + create( name ) -> MultisectionSurface<PolygonSection> + } + + class AIXMLv2{ + + AIXMLv2( acxml, data_dir ) + - shared_ptr<node> aircraft + - path data_dir + - get_point( id ) + ' - get_surface_description( id ) = 0 + ' - build_first_segment() = 0 + ' - build_segment() = 0 + } + + class AIXMLv3{ + - shared_ptr<node> aircraft + - path data_dir + + AIXMLv3( acxml, data_dir ) + - get_point( id ) + - get_direction( id ) + } + + Factory *---- MultisectionSurface + SurfaceBuilder *---- MultisectionSurface + HullFactory ---|> Factory + FuselageFactory ---|> Factory + SparFactory ---|> Factory + ControlDeviceFactory ---|> Factory + WingFactory ---|> Factory + Factory *- SurfaceBuilder + AIXMLv2 --|> SurfaceBuilder + AIXMLv3 --|> SurfaceBuilder +} + +@enduml diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.png b/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.png new file mode 100644 index 0000000..5adaecd --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dfdc04b65c0139e930eb5515cf42ed989a656855a403a77297c4d955433c98a2 +size 47045 diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.svg b/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.svg new file mode 100644 index 0000000..626b039 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.svg @@ -0,0 +1,234 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<!-- Created with Inkscape (http://www.inkscape.org/) --> + +<svg + version="1.1" + id="svg1" + width="380.84399" + height="253.78267" + viewBox="0 0 380.84399 253.78267" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <defs + id="defs1" /> + <g + id="g1"> + <path + id="path1" + d="M -85.04045,-42.52022 0,0 56.69363,56.69363" + style="fill:none;stroke:#808080;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:2.98883, 2.98883;stroke-dashoffset:0;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" /> + <path + id="path2" + d="M 0,0 H 24.76025" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" /> + <path + id="path3" + d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,199.18167,133.532)" /> + <path + id="path4" + d="m 2.7650703,-2.5674609 1.6640625,-2.390625 H 3.5385078 L 2.3431953,-3.1651172 1.1596016,-4.9580859 H 0.25725781 L 1.9096016,-2.5323047 0.16350781,-0.00105469 H 1.0541328 l 1.265625,-1.89843751 1.2421875,1.89843751 h 0.9140625 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="x" + transform="matrix(1.3333333,0,0,1.3333333,200.80933,129.06)" /> + <path + id="path5" + d="M 0,0 V 24.76025" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" /> + <path + id="path6" + d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(0,-1.3333333,-1.3333333,0,166.168,100.51833)" /> + <path + id="path7" + d="M 3.6801563,-4.956125 2.2973438,-1.1006563 1.0317188,-4.956125 H 0.18796875 L 1.86375,0.02434375 1.5590625,0.8095 C 1.441875,1.1610625 1.254375,1.2899687 0.92625,1.2899687 c -0.1171875,0 -0.24609375,-0.023437 -0.41015625,-0.058594 v 0.714844 C 0.6684375,2.02825 0.8325,2.0634062 1.0434375,2.0634062 c 0.2578125,0 0.5273438,-0.082031 0.7382813,-0.234375 C 2.0278125,1.65325 2.1684375,1.4423125 2.3207813,1.043875 l 2.203125,-6 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="y" + transform="matrix(1.3333333,0,0,1.3333333,170.64,97.670667)" /> + <path + id="path8" + d="M 3.9851,0 C 3.9851,2.20093 2.20093,3.9851 0,3.9851 -2.20093,3.9851 -3.9851,2.20093 -3.9851,0 c 0,-2.20093 1.78417,-3.9851 3.9851,-3.9851 2.20093,0 3.9851,1.78417 3.9851,3.9851 z" + style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" /> + <path + id="path9" + d="M 4.1953516,-4.9582969 H 0.49222656 v 0.6914063 H 3.2578516 l -2.96484379,3.55078122 v 0.71484375 H 4.3242578 V -0.69267188 H 1.2539453 L 4.1953516,-4.2668906 Z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="z" + transform="matrix(1.3333333,0,0,1.3333333,155.38667,144.572)" /> + <path + id="path10" + d="M 0.99628,0 C 0.99628,0.55023 0.55023,0.99628 0,0.99628 -0.55023,0.99628 -0.99628,0.55023 -0.99628,0 c 0,-0.55023 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" /> + <g + id="g10" + aria-label="O child = 2.0 1.0 0.0 " + transform="matrix(1.3333333,0,0,1.3333333,170.64,151.97067)"> + <path + id="path11" + d="m 7.3715625,-4.3490938 c 0,-1.59375 -1.0546875,-2.671875 -2.5429687,-2.671875 -2.1445313,0 -4.33593755,2.2617188 -4.33593755,4.5820313 0,1.65234375 1.11328125,2.66015625 2.54296875,2.66015625 2.109375,0 4.3359375,-2.17968755 4.3359375,-4.57031255 z m -4.2773437,4.31250005 c -0.984375,0 -1.6757813,-0.80859375 -1.6757813,-2.12109375 0,-0.4453125 0.140625,-1.8984375 0.9023438,-3.0585938 C 3.0121875,-6.25925 3.9848438,-6.774875 4.77,-6.774875 c 0.8203125,0 1.7109375,0.5625 1.7109375,2.0390625 0,0.7148437 -0.2695312,2.2734375 -1.2539062,3.5039062 -0.4804688,0.5976563 -1.2890625,1.19531255 -2.1328125,1.19531255 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path12" + d="m 10.658672,-1.1791719 c -0.257813,0.046875 -0.363281,0.23437502 -0.363281,0.38671877 0,0.1875 0.152343,0.2578125 0.269531,0.2578125 0.164062,0 0.398437,-0.10546875 0.398437,-0.4453125 0,-0.46874997 -0.539062,-0.59765627 -0.914062,-0.59765627 -1.0429689,0 -2.0156251,0.96093752 -2.0156251,1.92187502 0,0.609375 0.421875,1.21874998 1.2890625,1.21874998 1.1835936,0 1.7343746,-0.69140623 1.7343746,-0.78515623 0,-0.046875 -0.07031,-0.1171875 -0.128906,-0.1171875 -0.03516,0 -0.04687,0.0117188 -0.105469,0.0703125 C 10.271953,1.3637969 9.4633594,1.3637969 9.3344531,1.3637969 c -0.5039062,0 -0.7265625,-0.3398438 -0.7265625,-0.77343753 0,-0.19921875 0.1054688,-0.9609375 0.46875,-1.44140625 0.2578125,-0.33984372 0.6210938,-0.53906252 0.9726564,-0.53906252 0.09375,0 0.433594,0.011719 0.609375,0.2109375 z m 2.680664,-1.9570312 c 0.01172,-0.011719 0.03516,-0.1054688 0.03516,-0.1171875 0,-0.035156 -0.03516,-0.09375 -0.117187,-0.09375 -0.140625,0 -0.714844,0.058594 -0.890625,0.070312 -0.05859,0.011719 -0.152344,0.011719 -0.152344,0.1640625 0,0.09375 0.09375,0.09375 0.175781,0.09375 0.339844,0 0.339844,0.046875 0.339844,0.1054687 0,0.046875 -0.01172,0.09375 -0.03516,0.1523438 l -0.972657,3.9492187 c -0.03516,0.1289063 -0.03516,0.140625 -0.03516,0.1523438 0,0.1054687 0.08203,0.2226562 0.234375,0.2226562 0.07031,0 0.210938,-0.035156 0.28125,-0.1875 0.02344,-0.035156 0.08203,-0.2929687 0.117188,-0.43359373 l 0.164062,-0.62109375 c 0.02344,-0.10546875 0.09375,-0.36328125 0.117188,-0.46875 0.07031,-0.26953125 0.07031,-0.28125 0.199218,-0.50390625 0.222657,-0.33984375 0.574219,-0.73828127 1.125,-0.73828127 0.386719,0 0.410157,0.328125 0.410157,0.49218752 0,0.421875 -0.304688,1.1953125 -0.410157,1.48828125 -0.08203,0.1875 -0.105468,0.2578125 -0.105468,0.375 0,0.36328123 0.304687,0.59765623 0.65625,0.59765623 0.703125,0 1.007812,-0.96093748 1.007812,-1.06640623 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.046875 -0.128907,0.1171875 -0.164062,0.56250003 -0.46875,0.84375003 -0.738281,0.84375003 -0.140625,0 -0.175781,-0.09375 -0.175781,-0.2460938 0,-0.15234373 0.03516,-0.24609373 0.164062,-0.56249998 0.08203,-0.2109375 0.363282,-0.94921875 0.363282,-1.34765625 0,-0.10546875 0,-0.39843747 -0.257813,-0.59765627 -0.117187,-0.09375 -0.316406,-0.1875 -0.644531,-0.1875 -0.503906,0 -0.878906,0.2695313 -1.136719,0.5742188 z m 4.746094,0.2695312 c 0,-0.1054687 -0.08203,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386719,0.1757813 -0.386719,0.375 0,0.1171875 0.08203,0.2695313 0.269531,0.2695313 0.210938,0 0.398438,-0.1992188 0.398438,-0.3867188 z m -1.429688,3.53906252 c -0.02344,0.09375 -0.05859,0.17578125 -0.05859,0.29296875 0,0.32812503 0.28125,0.59765623 0.667969,0.59765623 0.691406,0 0.996094,-0.96093748 0.996094,-1.06640623 0,-0.09375 -0.08203,-0.09375 -0.105469,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 C 17.862777,1.0825469 17.55809,1.3637969 17.27684,1.3637969 c -0.140625,0 -0.175781,-0.082031 -0.175781,-0.2460938 0,-0.15234373 0.05859,-0.29296873 0.117187,-0.44531248 0.07031,-0.1875 0.140625,-0.375 0.222656,-0.55078125 0.05859,-0.1640625 0.316407,-0.80859375 0.339844,-0.890625 0.02344,-0.0703125 0.04687,-0.15234375 0.04687,-0.22265625 0,-0.32812502 -0.28125,-0.58593752 -0.667969,-0.58593752 -0.691406,0 -1.007812,0.94921877 -1.007812,1.06640627 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0351563 0.128907,-0.10546875 0.175781,-0.59765632 0.480468,-0.85546882 0.738281,-0.85546882 0.117187,0 0.175781,0.058594 0.175781,0.2460938 0,0.16406252 -0.03516,0.26953127 -0.210937,0.70312502 z M 20.61082,-3.1362031 c 0,-0.011719 0.02344,-0.1054688 0.02344,-0.1171875 0,-0.035156 -0.02344,-0.09375 -0.105469,-0.09375 -0.140625,0 -0.726562,0.058594 -0.902344,0.070312 -0.04687,0.011719 -0.140625,0.011719 -0.140625,0.1640625 0,0.09375 0.09375,0.09375 0.175782,0.09375 0.328125,0 0.328125,0.046875 0.328125,0.1054687 0,0.046875 -0.01172,0.09375 -0.02344,0.1523438 l -0.867187,3.44531247 c -0.02344,0.0703125 -0.02344,0.140625 -0.02344,0.2109375 0,0.45703123 0.398438,0.66796873 0.726563,0.66796873 0.175781,0 0.375,-0.058594 0.5625,-0.375 0.140625,-0.25781248 0.246093,-0.66796873 0.246093,-0.69140623 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.046875 -0.140625,0.1640625 -0.08203,0.3515625 -0.222656,0.79687503 -0.515625,0.79687503 -0.1875,0 -0.234375,-0.1757813 -0.234375,-0.3398438 0,-0.0703125 0.01172,-0.21093748 0.03516,-0.28124998 z m 4.576172,0 c 0,-0.011719 0.02344,-0.1054688 0.02344,-0.1171875 0,-0.035156 -0.02344,-0.09375 -0.105469,-0.09375 -0.140625,0 -0.726563,0.058594 -0.902344,0.070312 -0.04687,0.011719 -0.152344,0.011719 -0.152344,0.1640625 0,0.09375 0.105469,0.09375 0.1875,0.09375 0.328125,0 0.328125,0.046875 0.328125,0.1054687 0,0.046875 -0.01172,0.09375 -0.02344,0.1523438 l -0.398438,1.59375 c -0.140625,-0.234375 -0.386718,-0.4101563 -0.714843,-0.4101563 -0.890625,0 -1.804688,0.97265627 -1.804688,1.98046877 0,0.67968753 0.457031,1.16015623 1.054688,1.16015623 0.375,0 0.714843,-0.2109375 0.996093,-0.4921875 0.128907,0.421875 0.527344,0.4921875 0.714844,0.4921875 0.246094,0 0.421875,-0.1523437 0.550781,-0.375 0.152344,-0.26953123 0.246094,-0.66796873 0.246094,-0.69140623 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.0351563 -0.152344,0.22265625 -0.08203,0.328125 -0.210938,0.73828128 -0.503906,0.73828128 -0.1875,0 -0.234375,-0.1523438 -0.234375,-0.3398438 0,-0.12890623 0.01172,-0.19921873 0.03516,-0.28124998 z m -1.488281,3.76171872 c -0.04687,0.1875 -0.199219,0.328125 -0.351563,0.45703128 -0.07031,0.058594 -0.339843,0.28125 -0.644531,0.28125 -0.257812,0 -0.515625,-0.1757813 -0.515625,-0.66796878 0,-0.375 0.210938,-1.13671875 0.363281,-1.41796875 0.328125,-0.56249997 0.679688,-0.66796877 0.878907,-0.66796877 0.480468,0 0.621093,0.52734377 0.621093,0.60937502 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path13" + d="m 35.458477,-3.25925 c 0.152343,0 0.339843,0 0.339843,-0.1992188 0,-0.1992187 -0.1875,-0.1992187 -0.328125,-0.1992187 h -5.964843 c -0.140625,0 -0.328125,0 -0.328125,0.1992187 0,0.1992188 0.1875,0.1992188 0.339843,0.1992188 z m 0.01172,1.9335937 c 0.140625,0 0.328125,0 0.328125,-0.1992187 0,-0.1992188 -0.1875,-0.1992188 -0.339843,-0.1992188 H 29.51707 c -0.152343,0 -0.339843,0 -0.339843,0.1992188 0,0.1992187 0.1875,0.1992187 0.328125,0.1992187 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path14" + d="m 42.378398,-2.4946016 h 0.691407 V -19.721164 h 2.625 v -0.691406 h -3.316407 z m 0,17.9208986 h 3.316407 v -0.679688 h -2.625 V -2.4916719 h -0.691407 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path15" + d="m 47.039531,-12.815891 1.054688,-1.03125 c 1.558594,-1.371093 2.15625,-1.910156 2.15625,-2.90625 0,-1.136718 -0.902344,-1.933593 -2.121094,-1.933593 -1.125,0 -1.851562,0.914062 -1.851562,1.804687 0,0.550781 0.492187,0.550781 0.527343,0.550781 0.164063,0 0.515625,-0.117187 0.515625,-0.527343 0,-0.257813 -0.1875,-0.515625 -0.527343,-0.515625 -0.08203,0 -0.105469,0 -0.128907,0.01172 0.222657,-0.644531 0.761719,-1.019531 1.335938,-1.019531 0.914062,0 1.335937,0.808594 1.335937,1.628906 0,0.796875 -0.492187,1.582032 -1.042968,2.203125 l -1.910157,2.132813 c -0.105468,0.105469 -0.105468,0.128906 -0.105468,0.363281 h 3.691406 l 0.28125,-1.734375 h -0.257813 c -0.04687,0.304688 -0.117187,0.738281 -0.210937,0.890625 -0.07031,0.08203 -0.726563,0.08203 -0.949219,0.08203 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path16" + d="m 52.664531,-12.581516 c 0,-0.292968 -0.234375,-0.527343 -0.527343,-0.527343 -0.28125,0 -0.527344,0.234375 -0.527344,0.527343 0,0.292969 0.246094,0.527344 0.527344,0.527344 0.292968,0 0.527343,-0.234375 0.527343,-0.527344 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path17" + d="m 58.104961,-15.241672 c 0,-0.796875 -0.04687,-1.59375 -0.398438,-2.332031 -0.457031,-0.960938 -1.277343,-1.113281 -1.6875,-1.113281 -0.597656,0 -1.335937,0.257812 -1.734375,1.183593 -0.328125,0.691407 -0.375,1.464844 -0.375,2.261719 0,0.75 0.04687,1.640625 0.445313,2.402344 0.433594,0.808594 1.160156,1.007812 1.652344,1.007812 0.539062,0 1.289062,-0.210937 1.734375,-1.160156 0.316406,-0.691406 0.363281,-1.464844 0.363281,-2.25 z m -2.097656,3.1875 c -0.386719,0 -0.984375,-0.246094 -1.160157,-1.207031 -0.105468,-0.597656 -0.105468,-1.511719 -0.105468,-2.097656 0,-0.644532 0,-1.300782 0.08203,-1.839844 0.1875,-1.183594 0.925781,-1.265625 1.183594,-1.265625 0.328125,0 0.984375,0.175781 1.171875,1.160156 0.09375,0.5625 0.09375,1.3125 0.09375,1.945313 0,0.75 0,1.417968 -0.105469,2.0625 -0.152344,0.9375 -0.714844,1.242187 -1.160155,1.242187 z m -7.303711,5.5781251 c 0,-0.234375 0,-0.2578125 -0.234375,-0.2578125 -0.609375,0.6328125 -1.488281,0.6328125 -1.804688,0.6328125 v 0.3164063 c 0.199219,0 0.785157,0 1.300782,-0.2578125 v 5.15624997 c 0,0.3515625 -0.03516,0.48046875 -0.925782,0.48046875 h -0.316406 v 0.3046875 c 0.351563,-0.0351563 1.207031,-0.0351563 1.605469,-0.0351563 0.398437,0 1.265625,0 1.617187,0.0351563 v -0.3046875 h -0.316406 c -0.902344,0 -0.925781,-0.1171875 -0.925781,-0.48046875 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path18" + d="m 52.664531,-0.62839063 c 0,-0.29296875 -0.234375,-0.52734377 -0.527343,-0.52734377 -0.28125,0 -0.527344,0.23437502 -0.527344,0.52734377 0,0.29296875 0.246094,0.52734375 0.527344,0.52734375 0.292968,0 0.527343,-0.234375 0.527343,-0.52734375 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path19" + d="m 58.104961,-3.2885469 c 0,-0.796875 -0.04687,-1.59375 -0.398438,-2.3320312 -0.457031,-0.9609375 -1.277343,-1.1132813 -1.6875,-1.1132813 -0.597656,0 -1.335937,0.2578125 -1.734375,1.1835938 -0.328125,0.6914062 -0.375,1.4648437 -0.375,2.2617187 0,0.75 0.04687,1.640625 0.445313,2.40234377 0.433594,0.80859375 1.160156,1.0078125 1.652344,1.0078125 0.539062,0 1.289062,-0.2109375 1.734375,-1.16015627 0.316406,-0.6914062 0.363281,-1.4648437 0.363281,-2.25 z m -2.097656,3.18750002 c -0.386719,0 -0.984375,-0.24609375 -1.160157,-1.20703122 -0.105468,-0.5976563 -0.105468,-1.5117188 -0.105468,-2.0976563 0,-0.6445312 0,-1.3007812 0.08203,-1.8398437 0.1875,-1.1835938 0.925781,-1.265625 1.183594,-1.265625 0.328125,0 0.984375,0.1757812 1.171875,1.1601562 0.09375,0.5625 0.09375,1.3125 0.09375,1.9453125 0,0.75 0,1.4179688 -0.105469,2.0625 -0.152344,0.93750002 -0.714844,1.24218752 -1.160155,1.24218752 z M 50.355938,8.6675078 c 0,-0.796875 -0.04687,-1.59375 -0.398438,-2.3320312 C 49.500469,5.3745391 48.680156,5.2221953 48.27,5.2221953 c -0.597656,0 -1.335937,0.2578125 -1.734375,1.1835938 -0.328125,0.6914062 -0.375,1.4648437 -0.375,2.2617187 0,0.75 0.04687,1.6406252 0.445313,2.4023442 0.433593,0.808593 1.160156,1.007812 1.652343,1.007812 0.539063,0 1.289063,-0.210937 1.734375,-1.160156 0.316407,-0.691406 0.363282,-1.4648439 0.363282,-2.2500002 z m -2.097657,3.1875002 c -0.386718,0 -0.984375,-0.246094 -1.160156,-1.207031 -0.105469,-0.597657 -0.105469,-1.5117192 -0.105469,-2.0976567 0,-0.6445312 0,-1.3007812 0.08203,-1.8398437 0.1875,-1.1835938 0.925781,-1.265625 1.183593,-1.265625 0.328125,0 0.984375,0.1757812 1.171875,1.1601562 0.09375,0.5625 0.09375,1.3125 0.09375,1.9453125 0,0.75 0,1.4179688 -0.105468,2.0624997 -0.152344,0.9375 -0.714844,1.242188 -1.160157,1.242188 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path20" + d="m 52.664531,11.327664 c 0,-0.292969 -0.234375,-0.527344 -0.527343,-0.527344 -0.28125,0 -0.527344,0.234375 -0.527344,0.527344 0,0.292969 0.246094,0.527344 0.527344,0.527344 0.292968,0 0.527343,-0.234375 0.527343,-0.527344 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path21" + d="m 58.104961,8.6675078 c 0,-0.796875 -0.04687,-1.59375 -0.398438,-2.3320312 -0.457031,-0.9609375 -1.277343,-1.1132813 -1.6875,-1.1132813 -0.597656,0 -1.335937,0.2578125 -1.734375,1.1835938 -0.328125,0.6914062 -0.375,1.4648437 -0.375,2.2617187 0,0.75 0.04687,1.6406252 0.445313,2.4023442 0.433594,0.808593 1.160156,1.007812 1.652344,1.007812 0.539062,0 1.289062,-0.210937 1.734375,-1.160156 0.316406,-0.691406 0.363281,-1.4648439 0.363281,-2.2500002 z m -2.097656,3.1875002 c -0.386719,0 -0.984375,-0.246094 -1.160157,-1.207031 C 54.74168,10.05032 54.74168,9.1362578 54.74168,8.5503203 c 0,-0.6445312 0,-1.3007812 0.08203,-1.8398437 0.1875,-1.1835938 0.925781,-1.265625 1.183594,-1.265625 0.328125,0 0.984375,0.1757812 1.171875,1.1601562 0.09375,0.5625 0.09375,1.3125 0.09375,1.9453125 0,0.75 0,1.4179688 -0.105469,2.0624997 -0.152344,0.9375 -0.714844,1.242188 -1.160155,1.242188 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path22" + d="m 61.198711,-2.4946016 h 0.691406 V -20.41257 h -3.316406 v 0.691406 h 2.625 z m 0,17.2412106 h -2.625 v 0.679688 h 3.316406 V -2.4916719 h -0.691406 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + <path + id="path23" + d="m 57.68991,56.69363 c 0,0.55024 -0.44604,0.99628 -0.99628,0.99628 -0.55024,0 -0.99627,-0.44604 -0.99627,-0.99628 0,-0.55024 0.44603,-0.99627 0.99627,-0.99627 0.55024,0 0.99628,0.44603 0.99628,0.99627 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" /> + <g + id="g23" + aria-label="p local,2d = 0.5 0.5 " + transform="matrix(1.3333333,0,0,1.3333333,246.23067,61.262667)"> + <path + id="path24" + d="m 0.44516406,1.2180391 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796879,0.035156 0.98437499,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054687,-0.1054688 -0.2460937,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609374 0.4804687,-1.99218749 0.140625,0.29296875 0.4101563,0.6328125 0.9257813,0.6328125 1.1484375,0 2.4023437,-1.45312501 2.4023437,-2.91796871 0,-0.9375 -0.5742187,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726562,0.3632812 -1.3007812,0.75 -0.09375,-0.5390625 -0.5273438,-0.75 -0.890625,-0.75 -0.45703129,0 -0.65625004,0.3867187 -0.73828129,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656249,-1.1835938 0.1757813,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.2029766,-3.1061797 c 0.070312,-0.2695312 0.3398437,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085937,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039062,2.109375 -0.3398438,0.70312501 -0.8203125,1.03125001 -1.1835938,1.03125001 -0.65625,0 -0.7851562,-0.83203125 -0.7851562,-0.890625 0,-0.0234375 0,-0.0351562 0.023437,-0.16406251 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path25" + d="m 6.9812969,-3.1354766 c 0,-0.011719 0.023437,-0.1054687 0.023437,-0.1171875 0,-0.035156 -0.023437,-0.09375 -0.1054688,-0.09375 -0.140625,0 -0.7265625,0.058594 -0.9023437,0.070312 -0.046875,0.011719 -0.140625,0.011719 -0.140625,0.1640625 0,0.09375 0.09375,0.09375 0.1757812,0.09375 0.328125,0 0.328125,0.046875 0.328125,0.1054688 0,0.046875 -0.011719,0.09375 -0.023437,0.1523437 L 5.4695781,0.68483594 c -0.023437,0.0703125 -0.023437,0.140625 -0.023437,0.2109375 0,0.45703126 0.3984375,0.66796876 0.7265625,0.66796876 0.1757813,0 0.375,-0.058594 0.5625,-0.375 0.140625,-0.25781251 0.2460938,-0.66796876 0.2460938,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.1171875,-0.09375 -0.09375,0 -0.1054688,0.046875 -0.140625,0.1640625 -0.082031,0.3515625 -0.2226563,0.79687496 -0.515625,0.79687496 -0.1875,0 -0.234375,-0.1757812 -0.234375,-0.3398437 0,-0.0703125 0.011719,-0.21093751 0.035156,-0.28125001 z m 4.2949221,2.77734379 c 0,-0.77343749 -0.574219,-1.21874999 -1.265625,-1.21874999 -1.0312503,0 -2.0039065,0.96093749 -2.0039065,1.92187499 0,0.69140621 0.5039062,1.21875001 1.265625,1.21875001 0.9960935,0 2.0039065,-0.92578126 2.0039065,-1.92187501 z M 9.2840312,1.3645234 c -0.3515625,0 -0.703125,-0.2226562 -0.703125,-0.77343746 0,-0.28125 0.140625,-0.9609375 0.4101563,-1.359375 0.2929687,-0.43359374 0.703125,-0.62109374 1.0195315,-0.62109374 0.375,0 0.691406,0.2578125 0.691406,0.77343749 0,0.17578125 -0.08203,0.85546875 -0.386719,1.34765625 C 10.04575,1.1418672 9.6355937,1.3645234 9.2840312,1.3645234 Z m 5.2792968,-2.5429687 c -0.257812,0.046875 -0.363281,0.23437499 -0.363281,0.38671874 0,0.1875 0.152344,0.2578125 0.269531,0.2578125 0.164063,0 0.398438,-0.10546875 0.398438,-0.4453125 0,-0.46875004 -0.539063,-0.59765624 -0.914063,-0.59765624 -1.042969,0 -2.015625,0.96093749 -2.015625,1.92187499 0,0.609375 0.421875,1.21875001 1.289063,1.21875001 1.183593,0 1.734375,-0.69140626 1.734375,-0.78515626 0,-0.046875 -0.07031,-0.1171875 -0.128907,-0.1171875 -0.03516,0 -0.04687,0.0117188 -0.105468,0.0703125 -0.550782,0.63281246 -1.359375,0.63281246 -1.488282,0.63281246 -0.503906,0 -0.726562,-0.3398437 -0.726562,-0.77343746 0,-0.19921875 0.105469,-0.9609375 0.46875,-1.44140625 0.257812,-0.33984379 0.621094,-0.53906249 0.972656,-0.53906249 0.09375,0 0.433594,0.011719 0.609375,0.2109375 z m 3.445313,0.011719 c -0.140625,-0.234375 -0.386719,-0.4101562 -0.714844,-0.4101562 -0.890625,0 -1.804688,0.97265624 -1.804688,1.98046874 0,0.67968746 0.457032,1.16015626 1.054688,1.16015626 0.375,0 0.714844,-0.2109375 0.996094,-0.4921875 0.128906,0.421875 0.527343,0.4921875 0.714843,0.4921875 0.246094,0 0.421875,-0.1523438 0.550782,-0.375 0.152343,-0.26953126 0.246093,-0.66796876 0.246093,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.0351563 -0.152344,0.22265625 -0.08203,0.328125 -0.210937,0.73828121 -0.503906,0.73828121 -0.1875,0 -0.234375,-0.1523437 -0.234375,-0.3398437 0,-0.11718751 0.05859,-0.36328126 0.105469,-0.55078126 0.04687,-0.1875 0.117187,-0.46875 0.152343,-0.62109375 l 0.140625,-0.5390625 c 0.04687,-0.17578125 0.128907,-0.50390629 0.128907,-0.53906249 0,-0.1523438 -0.128907,-0.2226563 -0.246094,-0.2226563 -0.117188,0 -0.269531,0.082031 -0.316406,0.28125 z m -0.445313,1.79296879 c -0.04687,0.1875 -0.199219,0.328125 -0.351562,0.45703121 -0.07031,0.058594 -0.339844,0.28125 -0.644532,0.28125 -0.257812,0 -0.515625,-0.1757812 -0.515625,-0.66796871 0,-0.375 0.210938,-1.13671875 0.363282,-1.41796875 0.328125,-0.56250004 0.679687,-0.66796874 0.878906,-0.66796874 0.480469,0 0.621094,0.52734374 0.621094,0.60937499 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 3.793945,-3.76171879 c 0,-0.011719 0.02344,-0.1054687 0.02344,-0.1171875 0,-0.035156 -0.02344,-0.09375 -0.105469,-0.09375 -0.140625,0 -0.726562,0.058594 -0.902344,0.070312 -0.04687,0.011719 -0.140625,0.011719 -0.140625,0.1640625 0,0.09375 0.09375,0.09375 0.175782,0.09375 0.328125,0 0.328125,0.046875 0.328125,0.1054688 0,0.046875 -0.01172,0.09375 -0.02344,0.1523437 l -0.867187,3.44531254 c -0.02344,0.0703125 -0.02344,0.140625 -0.02344,0.2109375 0,0.45703126 0.398438,0.66796876 0.726563,0.66796876 0.175781,0 0.375,-0.058594 0.5625,-0.375 0.140625,-0.25781251 0.246093,-0.66796876 0.246093,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.046875 -0.140625,0.1640625 -0.08203,0.3515625 -0.222656,0.79687496 -0.515625,0.79687496 -0.1875,0 -0.234375,-0.1757812 -0.234375,-0.3398437 0,-0.0703125 0.01172,-0.21093751 0.03516,-0.28125001 z m 2.06836,4.5117188 c 0,0.3867187 -0.07031,0.8320312 -0.550781,1.2773437 -0.02344,0.035156 -0.04687,0.058594 -0.04687,0.09375 0,0.046875 0.05859,0.09375 0.09375,0.09375 0.105468,0 0.691406,-0.5625 0.691406,-1.3945312 0,-0.421875 -0.164063,-0.75000001 -0.480469,-0.75000001 -0.234375,0 -0.398437,0.17578125 -0.398437,0.38671871 0,0.234375 0.152343,0.4101563 0.398437,0.4101563 0.164063,0 0.28125,-0.1171875 0.292969,-0.1171875 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path26" + d="m 27.828953,0.22780469 h -0.234375 c -0.02344,0.15234375 -0.08203,0.5625 -0.175781,0.6328125 -0.05859,0.0351563 -0.597656,0.0351563 -0.691406,0.0351563 h -1.289063 c 0.738281,-0.64453125 0.984375,-0.84375 1.394531,-1.171875 0.515625,-0.41015625 0.996094,-0.84374999 0.996094,-1.49999999 0,-0.8437501 -0.738281,-1.3593751 -1.628906,-1.3593751 -0.867188,0 -1.453125,0.609375 -1.453125,1.2421876 0,0.3632813 0.304687,0.3984375 0.375,0.3984375 0.164062,0 0.375,-0.1171875 0.375,-0.375 0,-0.1289062 -0.05859,-0.3632812 -0.421875,-0.3632812 0.222656,-0.5039064 0.691406,-0.65625 1.019531,-0.65625 0.703125,0 1.066406,0.5507811 1.066406,1.1132812 0,0.609375 -0.433593,1.08984374 -0.65625,1.33593749 l -1.6875,1.66406251 c -0.07031,0.058594 -0.07031,0.070312 -0.07031,0.2695313 h 2.882812 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path27" + d="m 32.26743,-3.1354766 c 0,-0.011719 0.02344,-0.1054687 0.02344,-0.1171875 0,-0.035156 -0.02344,-0.09375 -0.105469,-0.09375 -0.140625,0 -0.726562,0.058594 -0.902343,0.070312 -0.04687,0.011719 -0.152344,0.011719 -0.152344,0.1640625 0,0.09375 0.105469,0.09375 0.1875,0.09375 0.328125,0 0.328125,0.046875 0.328125,0.1054688 0,0.046875 -0.01172,0.09375 -0.02344,0.1523437 l -0.398437,1.59375 c -0.140625,-0.234375 -0.386719,-0.4101562 -0.714844,-0.4101562 -0.890625,0 -1.804687,0.97265624 -1.804687,1.98046874 0,0.67968746 0.457031,1.16015626 1.054687,1.16015626 0.375,0 0.714844,-0.2109375 0.996094,-0.4921875 0.128906,0.421875 0.527344,0.4921875 0.714844,0.4921875 0.246093,0 0.421875,-0.1523438 0.550781,-0.375 0.152344,-0.26953126 0.246094,-0.66796876 0.246094,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105469,0.0351563 -0.152344,0.22265625 -0.08203,0.328125 -0.210937,0.73828121 -0.503906,0.73828121 -0.1875,0 -0.234375,-0.1523437 -0.234375,-0.3398437 0,-0.12890626 0.01172,-0.19921876 0.03516,-0.28125001 z m -1.488282,3.76171879 c -0.04687,0.1875 -0.199218,0.328125 -0.351562,0.45703121 -0.07031,0.058594 -0.339844,0.28125 -0.644531,0.28125 -0.257813,0 -0.515625,-0.1757812 -0.515625,-0.66796871 0,-0.375 0.210937,-1.13671875 0.363281,-1.41796875 0.328125,-0.56250004 0.679687,-0.66796874 0.878906,-0.66796874 0.480469,0 0.621094,0.52734374 0.621094,0.60937499 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path28" + d="m 42.538914,-3.2585234 c 0.152344,0 0.339844,0 0.339844,-0.1992188 0,-0.1992187 -0.1875,-0.1992187 -0.328125,-0.1992187 h -5.964844 c -0.140625,0 -0.328125,0 -0.328125,0.1992187 0,0.1992188 0.1875,0.1992188 0.339844,0.1992188 z m 0.01172,1.9335937 c 0.140625,0 0.328125,0 0.328125,-0.1992187 0,-0.1992188 -0.1875,-0.1992188 -0.339844,-0.1992188 h -5.941406 c -0.152344,0 -0.339844,0 -0.339844,0.1992188 0,0.1992187 0.1875,0.1992187 0.328125,0.1992187 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path29" + d="m 56.053562,-9.2643828 c 0,-0.7968752 -0.04687,-1.5937502 -0.398437,-2.3320312 -0.457031,-0.960938 -1.277344,-1.113281 -1.6875,-1.113281 -0.597656,0 -1.335938,0.257812 -1.734375,1.183593 -0.328125,0.691407 -0.375,1.464844 -0.375,2.2617192 0,0.75 0.04687,1.640625 0.445312,2.4023437 0.433594,0.8085938 1.160157,1.0078125 1.652344,1.0078125 0.539063,0 1.289063,-0.2109375 1.734375,-1.1601562 0.316406,-0.6914063 0.363281,-1.4648438 0.363281,-2.25 z m -2.097656,3.1875 c -0.386719,0 -0.984375,-0.2460938 -1.160156,-1.2070313 -0.105469,-0.5976562 -0.105469,-1.5117187 -0.105469,-2.0976562 0,-0.6445317 0,-1.3007817 0.08203,-1.8398437 0.1875,-1.183594 0.925782,-1.265625 1.183594,-1.265625 0.328125,0 0.984375,0.175781 1.171875,1.160156 0.09375,0.5625 0.09375,1.3125 0.09375,1.9453127 0,0.75 0,1.4179687 -0.105469,2.0625 -0.152343,0.9375 -0.714843,1.2421875 -1.160155,1.2421875 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path30" + d="m 58.362156,-6.6042266 c 0,-0.2929687 -0.234375,-0.5273437 -0.527344,-0.5273437 -0.28125,0 -0.527343,0.234375 -0.527343,0.5273437 0,0.2929688 0.246093,0.5273438 0.527343,0.5273438 0.292969,0 0.527344,-0.234375 0.527344,-0.5273438 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path31" + d="m 63.694187,-8.0807891 c 0,-1.1835937 -0.820312,-2.1796879 -1.898437,-2.1796879 -0.480469,0 -0.902344,0.164063 -1.265625,0.5039067 v -1.9335937 c 0.199219,0.05859 0.527344,0.128906 0.84375,0.128906 1.230469,0 1.933594,-0.914062 1.933594,-1.042969 0,-0.05859 -0.03516,-0.105468 -0.105469,-0.105468 -0.01172,0 -0.03516,0 -0.08203,0.02344 -0.199219,0.09375 -0.679688,0.292969 -1.347657,0.292969 -0.398437,0 -0.855468,-0.07031 -1.324218,-0.28125 -0.08203,-0.02344 -0.105469,-0.02344 -0.128907,-0.02344 -0.09375,0 -0.09375,0.08203 -0.09375,0.234375 v 2.9531254 c 0,0.1757813 0,0.2578125 0.140625,0.2578125 0.07031,0 0.08203,-0.035156 0.128907,-0.09375 0.105468,-0.1523437 0.480468,-0.6914059 1.277343,-0.6914059 0.527344,0 0.773438,0.4570309 0.855469,0.6328122 0.152344,0.375 0.175781,0.7617187 0.175781,1.2539062 0,0.3515625 0,0.9492188 -0.234375,1.3710938 -0.246093,0.3867187 -0.609375,0.6445312 -1.066406,0.6445312 -0.726562,0 -1.300781,-0.5273437 -1.464844,-1.1132812 0.02344,0.011719 0.05859,0.011719 0.164063,0.011719 0.328125,0 0.503906,-0.2460937 0.503906,-0.4804687 0,-0.2460938 -0.175781,-0.4921875 -0.503906,-0.4921875 -0.140625,0 -0.480469,0.070312 -0.480469,0.5273437 0,0.8554688 0.679688,1.828125 1.792969,1.828125 1.160156,0 2.179687,-0.9609375 2.179687,-2.2265625 z M 56.053562,2.6887422 c 0,-0.796875 -0.04687,-1.59375 -0.398437,-2.33203126 -0.457031,-0.9609375 -1.277344,-1.11328125 -1.6875,-1.11328125 -0.597656,0 -1.335938,0.2578125 -1.734375,1.18359375 -0.328125,0.69140626 -0.375,1.46484376 -0.375,2.26171876 0,0.75 0.04687,1.640625 0.445312,2.4023437 0.433594,0.8085938 1.160157,1.0078125 1.652344,1.0078125 0.539063,0 1.289063,-0.2109375 1.734375,-1.1601562 0.316406,-0.6914063 0.363281,-1.4648438 0.363281,-2.25 z m -2.097656,3.1875 c -0.386719,0 -0.984375,-0.2460938 -1.160156,-1.2070313 -0.105469,-0.5976562 -0.105469,-1.5117187 -0.105469,-2.0976562 0,-0.6445313 0,-1.3007813 0.08203,-1.83984376 0.1875,-1.18359375 0.925782,-1.265625 1.183594,-1.265625 0.328125,0 0.984375,0.17578125 1.171875,1.16015625 0.09375,0.56250001 0.09375,1.31250001 0.09375,1.94531251 0,0.75 0,1.4179687 -0.105469,2.0625 -0.152343,0.9375 -0.714843,1.2421875 -1.160155,1.2421875 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path32" + d="m 58.362156,5.3488984 c 0,-0.2929687 -0.234375,-0.5273437 -0.527344,-0.5273437 -0.28125,0 -0.527343,0.234375 -0.527343,0.5273437 0,0.2929688 0.246093,0.5273438 0.527343,0.5273438 0.292969,0 0.527344,-0.234375 0.527344,-0.5273438 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path33" + d="m 63.694187,3.8723359 c 0,-1.1835937 -0.820312,-2.1796875 -1.898437,-2.1796875 -0.480469,0 -0.902344,0.1640625 -1.265625,0.5039063 V 0.26296094 c 0.199219,0.0585938 0.527344,0.12890625 0.84375,0.12890625 1.230469,0 1.933594,-0.9140625 1.933594,-1.04296875 0,-0.0585938 -0.03516,-0.10546875 -0.105469,-0.10546875 -0.01172,0 -0.03516,0 -0.08203,0.0234375 -0.199219,0.09375 -0.679688,0.29296875 -1.347657,0.29296875 -0.398437,0 -0.855468,-0.0703125 -1.324218,-0.28125 -0.08203,-0.0234375 -0.105469,-0.0234375 -0.128907,-0.0234375 -0.09375,0 -0.09375,0.0820313 -0.09375,0.234375 V 2.4426484 c 0,0.1757813 0,0.2578125 0.140625,0.2578125 0.07031,0 0.08203,-0.035156 0.128907,-0.09375 0.105468,-0.1523437 0.480468,-0.6914062 1.277343,-0.6914062 0.527344,0 0.773438,0.4570312 0.855469,0.6328125 0.152344,0.375 0.175781,0.7617187 0.175781,1.2539062 0,0.3515625 0,0.9492188 -0.234375,1.3710938 -0.246093,0.3867187 -0.609375,0.6445312 -1.066406,0.6445312 -0.726562,0 -1.300781,-0.5273437 -1.464844,-1.1132812 0.02344,0.011719 0.05859,0.011719 0.164063,0.011719 0.328125,0 0.503906,-0.2460937 0.503906,-0.4804687 0,-0.2460938 -0.175781,-0.4921875 -0.503906,-0.4921875 -0.140625,0 -0.480469,0.070312 -0.480469,0.5273437 0,0.8554688 0.679688,1.828125 1.792969,1.828125 1.160156,0 2.179687,-0.9609375 2.179687,-2.2265625 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + <path + id="path34" + d="m -85.04045,-42.52022 h 24.76027" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" /> + <path + id="path35" + d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,85.794427,190.22563)" /> + <path + id="path36" + d="m 2.7650313,-2.5659766 1.6640625,-2.390625 H 3.5384688 L 2.3431563,-3.1636328 1.1595625,-4.9566016 H 0.25721875 L 1.9095625,-2.5308203 0.16346875,4.296875e-4 H 1.0540938 L 2.3197188,-1.8980078 3.5619063,4.296875e-4 h 0.9140625 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="x" + transform="matrix(1.3333333,0,0,1.3333333,87.422667,185.75333)" /> + <path + id="path37" + d="m -85.04045,-42.52022 v 24.76027" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" /> + <path + id="path38" + d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(0,-1.3333333,-1.3333333,0,52.780733,157.21193)" /> + <path + id="path39" + d="M 3.6791172,-4.9565703 2.2963047,-1.1011016 1.0306797,-4.9565703 H 0.18692969 L 1.8627109,0.02389844 1.5580234,0.80905469 C 1.4408359,1.1606172 1.2533359,1.2895234 0.92521094,1.2895234 c -0.1171875,0 -0.24609375,-0.023437 -0.41015625,-0.058594 v 0.7148437 c 0.15234375,0.082031 0.31640625,0.1171875 0.52734371,0.1171875 0.2578125,0 0.5273438,-0.082031 0.7382813,-0.234375 C 2.0267734,1.6528047 2.1673984,1.4418672 2.3197422,1.0434297 l 2.203125,-6 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="y" + transform="matrix(1.3333333,0,0,1.3333333,57.254667,154.36267)" /> + <path + id="path40" + d="m -81.05534,-42.52022 c 0,2.20095 -1.78417,3.98511 -3.98511,3.98511 -2.20095,0 -3.98511,-1.78416 -3.98511,-3.98511 0,-2.20094 1.78416,-3.98511 3.98511,-3.98511 2.20094,0 3.98511,1.78417 3.98511,3.98511 z" + style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" /> + <path + id="path41" + d="m 4.1943125,-4.9558125 h -3.703125 v 0.6914062 h 2.765625 L 0.29196875,-0.713625 V 0.00121875 H 4.3232187 V -0.6901875 H 1.2529062 l 2.9414063,-3.5742188 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="z" + transform="matrix(1.3333333,0,0,1.3333333,42.001333,201.264)" /> + <path + id="path42" + d="m -84.04417,-42.52022 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55023,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" /> + <g + id="g42" + aria-label="O parent" + transform="matrix(1.3333333,0,0,1.3333333,57.254667,207.98133)"> + <path + id="path43" + d="m 7.3705234,-4.3483047 c 0,-1.59375 -1.0546875,-2.671875 -2.5429687,-2.671875 -2.1445313,0 -4.33593751,2.2617188 -4.33593751,4.5820313 0,1.65234371 1.11328121,2.66015621 2.54296871,2.66015621 2.109375,0 4.3359375,-2.17968751 4.3359375,-4.57031251 z m -4.2773437,4.31250001 c -0.984375,0 -1.6757813,-0.80859375 -1.6757813,-2.12109371 0,-0.4453125 0.140625,-1.8984375 0.9023438,-3.0585938 0.6914062,-1.0429687 1.6640625,-1.5585937 2.4492187,-1.5585937 0.8203125,0 1.7109375,0.5625 1.7109375,2.0390625 0,0.7148437 -0.2695312,2.2734375 -1.2539062,3.5039062 -0.4804688,0.59765626 -1.2890625,1.19531251 -2.1328125,1.19531251 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path44" + d="m 8.1263828,2.3489609 c -0.058594,0.1875 -0.070312,0.2460938 -0.3515625,0.2460938 -0.082031,0 -0.1875,0 -0.1875,0.1523437 0,0.070312 0.070312,0.09375 0.1054688,0.09375 0.1757812,0 0.4101562,-0.023437 0.5976562,-0.023437 0.234375,0 0.5039063,0.023437 0.7265625,0.023437 0.070312,0 0.140625,-0.011719 0.140625,-0.1523437 0,-0.09375 -0.09375,-0.09375 -0.1757812,-0.09375 -0.1523438,0 -0.3398438,0 -0.3398438,-0.082031 0,-0.035156 0.046875,-0.2226562 0.070312,-0.3164062 0.082031,-0.375 0.1875,-0.75 0.2578125,-1.0429688 0.082031,0.140625 0.3046875,0.4101563 0.7265625,0.4101563 0.8437502,0 1.7812502,-0.93750001 1.7812502,-1.98046876 0,-0.82031254 -0.5625,-1.16015624 -1.042969,-1.16015624 -0.433593,0 -0.7968749,0.2929687 -0.9843749,0.4804687 C 9.3334136,-1.4947888 8.9349761,-1.57682 8.7240386,-1.57682 c -0.2695313,0 -0.4335938,0.1757812 -0.5507813,0.3632812 -0.140625,0.23437504 -0.2460937,0.65625004 -0.2460937,0.70312504 0,0.0820313 0.09375,0.0820313 0.1171875,0.0820313 0.09375,0 0.1054687,-0.0117188 0.1523437,-0.19921875 0.1054688,-0.41015619 0.234375,-0.76171869 0.515625,-0.76171869 0.1757813,0 0.2226563,0.1523437 0.2226563,0.3398437 0,0.0820313 -0.011719,0.17578124 -0.023437,0.21093749 z m 1.3125,-3.09374996 C 9.8490391,-1.2838516 10.188883,-1.3893203 10.411539,-1.3893203 c 0.28125,0 0.515625,0.2109375 0.515625,0.67968749 0,0.28125 -0.152344,0.99609375 -0.363281,1.40625 -0.175781,0.33984371 -0.515625,0.66796871 -0.8671877,0.66796871 -0.5039062,0 -0.6210937,-0.53906246 -0.6210937,-0.59765621 0,-0.0351563 0.011719,-0.0820313 0.011719,-0.10546875 z M 14.647867,-1.1666641 c -0.140625,-0.234375 -0.386719,-0.4101562 -0.714844,-0.4101562 -0.890625,0 -1.804687,0.97265624 -1.804687,1.98046874 0,0.67968746 0.457031,1.16015626 1.054687,1.16015626 0.375,0 0.714844,-0.2109375 0.996094,-0.4921875 0.128906,0.421875 0.527344,0.4921875 0.714844,0.4921875 0.246094,0 0.421875,-0.1523438 0.550781,-0.375 0.152344,-0.26953126 0.246094,-0.66796876 0.246094,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105468,0.0351563 -0.152343,0.22265625 -0.08203,0.328125 -0.210938,0.73828121 -0.503907,0.73828121 -0.1875,0 -0.234375,-0.1523437 -0.234375,-0.3398437 0,-0.11718751 0.05859,-0.36328126 0.105469,-0.55078126 0.04687,-0.1875 0.117188,-0.46875 0.152344,-0.62109375 l 0.140625,-0.5390625 c 0.04687,-0.17578125 0.128906,-0.50390629 0.128906,-0.53906249 0,-0.1523438 -0.128906,-0.2226563 -0.246094,-0.2226563 -0.117187,0 -0.269531,0.082031 -0.316406,0.28125 z m -0.445312,1.79296879 c -0.04687,0.1875 -0.199219,0.328125 -0.351563,0.45703121 -0.07031,0.058594 -0.339844,0.28125 -0.644531,0.28125 -0.257813,0 -0.515625,-0.1757812 -0.515625,-0.66796871 0,-0.375 0.210937,-1.13671875 0.363281,-1.41796875 0.328125,-0.56250004 0.679688,-0.66796874 0.878906,-0.66796874 0.480469,0 0.621094,0.52734374 0.621094,0.60937499 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 3.46582,-0.5390625 c 0,-0.046875 0.164062,-0.66796875 0.175781,-0.703125 0.01172,-0.0585938 0.222656,-0.41015629 0.445313,-0.57421879 0.07031,-0.058594 0.257812,-0.1992187 0.5625,-0.1992187 0.07031,0 0.246093,0.011719 0.386718,0.1054687 -0.222656,0.058594 -0.304687,0.2578125 -0.304687,0.37500004 0,0.15234375 0.117187,0.2578125 0.269531,0.2578125 0.164063,0 0.398438,-0.12890625 0.398438,-0.42187504 0,-0.3632812 -0.386719,-0.5039062 -0.738282,-0.5039062 -0.363281,0 -0.679687,0.140625 -0.984375,0.4921875 -0.128906,-0.421875 -0.550781,-0.4921875 -0.726562,-0.4921875 -0.257813,0 -0.421875,0.1523437 -0.539063,0.3515625 -0.164062,0.26953124 -0.257812,0.67968749 -0.257812,0.71484374 0,0.0820313 0.09375,0.0820313 0.117187,0.0820313 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.43359379 0.234375,-0.76171869 0.515625,-0.76171869 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062499 -0.05859,0.39843749 -0.105468,0.58593749 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 L 16.883219,1.0598984 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.105469,0 0.246094,-0.058594 0.292969,-0.1992188 0.02344,-0.046875 0.09375,-0.3515625 0.140625,-0.52734371 z m 3.832031,-0.1875 c 0.199219,0 0.75,-0.0117188 1.125,-0.140625 0.515625,-0.1875 0.609375,-0.515625 0.609375,-0.7265625 0,-0.38671879 -0.375,-0.60937499 -0.855469,-0.60937499 -0.84375,0 -1.96875,0.63281249 -1.96875,1.82812499 0,0.703125 0.433594,1.31250001 1.253907,1.31250001 1.183593,0 1.734375,-0.69140626 1.734375,-0.78515626 0,-0.046875 -0.07031,-0.1171875 -0.128907,-0.1171875 -0.03516,0 -0.04687,0.0117188 -0.105468,0.0703125 -0.550782,0.63281246 -1.359375,0.63281246 -1.488282,0.63281246 -0.421875,0 -0.691406,-0.28125 -0.691406,-0.84374996 0,-0.09375 0,-0.234375 0.08203,-0.62109375 z m -0.375,-0.1875 c 0.28125,-1.01953129 1.054688,-1.10156249 1.253906,-1.10156249 0.304688,0 0.5625,0.1523437 0.5625,0.42187499 0,0.6796875 -1.183593,0.6796875 -1.476562,0.6796875 z m 3.451172,1.34765621 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117187,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128906,-0.43359371 0.03516,-0.12890625 0.105469,-0.45703125 0.152344,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117187,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199219,-0.28125004 0.527344,-0.64453124 1.042969,-0.64453124 0.410156,0 0.410156,0.3632812 0.410156,0.49218749 0,0.421875 -0.292969,1.1953125 -0.410156,1.48828125 -0.07031,0.1875 -0.105469,0.2578125 -0.105469,0.375 0,0.36328126 0.304688,0.59765626 0.667969,0.59765626 0.691406,0 1.007812,-0.96093751 1.007812,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.046875 -0.128906,0.1171875 -0.164063,0.56249996 -0.46875,0.84374996 -0.738282,0.84374996 -0.152343,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234376 0.03516,-0.24609376 0.152344,-0.56250001 0.09375,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.66796874 -0.539063,-0.78515624 -0.902344,-0.78515624 -0.585937,0 -0.972656,0.3515625 -1.183594,0.63281249 -0.04687,-0.48046879 -0.457031,-0.63281249 -0.75,-0.63281249 -0.292968,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781249 -0.246094,0.65624999 -0.246094,0.69140624 0,0.0820313 0.09375,0.0820313 0.117188,0.0820313 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105468,-0.42187499 0.234375,-0.76171869 0.515625,-0.76171869 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062499 -0.05859,0.39843749 -0.105469,0.58593749 -0.04687,0.1875 -0.117187,0.46875 -0.152344,0.62109375 z m 5.780274,-2.3203125 h 0.714843 c 0.128907,0 0.222657,0 0.222657,-0.1523437 0,-0.09375 -0.09375,-0.09375 -0.210938,-0.09375 h -0.65625 l 0.257813,-1.0429688 c 0,-0.023437 0.02344,-0.058594 0.02344,-0.09375 0,-0.1289062 -0.105469,-0.2226562 -0.246094,-0.2226562 -0.175781,0 -0.28125,0.1171875 -0.328125,0.3046875 -0.04687,0.1757812 0.04687,-0.1640625 -0.257812,1.0546875 h -0.714844 c -0.128906,0 -0.222656,0 -0.222656,0.1523437 0,0.09375 0.08203,0.09375 0.210937,0.09375 h 0.65625 l -0.410156,1.64062504 c -0.03516,0.17578125 -0.105469,0.43359375 -0.105469,0.515625 0,0.42187496 0.351563,0.66796876 0.75,0.66796876 0.773438,0 1.21875,-0.97265626 1.21875,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.08203,0 -0.09375,0.0117188 -0.140625,0.12890625 -0.199219,0.4453125 -0.550781,0.83203121 -0.9375,0.83203121 -0.152344,0 -0.246094,-0.082031 -0.246094,-0.3398437 0,-0.0703125 0.02344,-0.21093751 0.04687,-0.28125001 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + </g> +</svg> diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/section2d.svg b/docs/documentation/libraries/aircraftGeometry2/figures/section2d.svg new file mode 100644 index 0000000..db0b7b6 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/section2d.svg @@ -0,0 +1,170 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<!-- Created with Inkscape (http://www.inkscape.org/) --> + +<svg + version="1.1" + id="svg1" + width="427.29068" + height="338.75732" + viewBox="0 0 427.29068 338.75732" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <defs + id="defs1" /> + <g + id="g1"> + <path + id="path1" + d="M 113.38728,0 C 113.38728,46.96715 62.62285,85.04045 0,85.04045 -62.62285,85.04045 -113.38728,46.96715 -113.38728,0 c 0,-46.96715 50.76443,-85.04045 113.38728,-85.04045 62.62285,0 113.38728,38.0733 113.38728,85.04045 z" + style="fill:none;stroke:#000000;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:1.19553, 3.9851;stroke-dashoffset:0;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <path + id="path2" + d="M 113.38728,0 C 113.38728,46.96715 62.62285,85.04045 0,85.04045 -62.62285,85.04045 -113.38728,46.96715 -113.38728,0 c 0,-46.96715 50.76443,-85.04045 113.38728,-85.04045 62.62285,0 113.38728,38.0733 113.38728,85.04045 z" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <path + id="path3" + d="M -113.38728,0 H 113.38728" + style="fill:none;stroke:#808080;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:2.98883, 1.99255;stroke-dashoffset:0;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <path + id="path4" + d="m -111.39473,0 c 0,1.10046 -0.89207,1.99255 -1.99255,1.99255 -1.10047,0 -1.99256,-0.89209 -1.99256,-1.99255 0,-1.10046 0.89209,-1.99255 1.99256,-1.99255 1.10048,0 1.99255,0.89209 1.99255,1.99255 z" + style="fill:#808080;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <g + id="g4" + aria-label="p x,min" + transform="matrix(1.3333333,0,0,1.3333333,45.189333,161.10667)"> + <path + id="path5" + d="m 0.4439375,1.2178516 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796875,0.035156 0.98437495,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054687,-0.1054688 -0.2460937,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609374 0.4804687,-1.99218749 0.140625,0.29296875 0.4101563,0.6328125 0.9257813,0.6328125 1.1484375,0 2.4023437,-1.45312501 2.4023437,-2.91796871 0,-0.9375 -0.5742187,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726562,0.3632812 -1.3007812,0.75 -0.09375,-0.5390625 -0.5273438,-0.75 -0.890625,-0.75 -0.45703125,0 -0.65625,0.3867187 -0.73828125,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656245,-1.1835938 0.1757813,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.20175,-3.1063672 c 0.070312,-0.2695312 0.3398437,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085937,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039062,2.109375 -0.3398438,0.70312501 -0.8203125,1.03125001 -1.1835938,1.03125001 -0.65625,0 -0.7851562,-0.83203125 -0.7851562,-0.890625 0,-0.0234375 0,-0.0351562 0.023437,-0.16406251 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path6" + d="m 6.7456953,0.75496094 c -0.070312,0.234375 -0.2929687,0.60937496 -0.65625,0.60937496 -0.023437,0 -0.2226562,0 -0.375,-0.09375 0.28125,-0.09375 0.3046875,-0.33984371 0.3046875,-0.38671871 0,-0.15234375 -0.1171875,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.3867187,0.1640625 -0.3867187,0.43359371 0,0.3398438 0.3867187,0.5039063 0.7265625,0.5039063 0.3164062,0 0.609375,-0.1992188 0.7851562,-0.4921875 0.1640625,0.3632812 0.5507813,0.4921875 0.8203125,0.4921875 0.8085938,0 1.2304688,-0.86718751 1.2304688,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.1054688,-0.09375 -0.1054687,0 -0.1054687,0.0351563 -0.140625,0.1171875 -0.140625,0.48046876 -0.5625,0.84374996 -0.9492187,0.84374996 -0.28125,0 -0.421875,-0.1875 -0.421875,-0.44531246 0,-0.1875 0.1640625,-0.8203125 0.3632812,-1.59375 0.1289063,-0.53906254 0.4453125,-0.71484374 0.6796875,-0.71484374 0.011719,0 0.2226563,0 0.375,0.1054687 -0.2226562,0.058594 -0.3046875,0.2578125 -0.3046875,0.37500004 0,0.15234375 0.1171875,0.2578125 0.28125,0.2578125 0.1523438,0 0.3867188,-0.12890625 0.3867188,-0.42187504 0,-0.3867187 -0.4453125,-0.5039062 -0.7265625,-0.5039062 -0.3515625,0 -0.6328125,0.2226562 -0.7851563,0.4921875 -0.1171875,-0.2929688 -0.4453125,-0.4921875 -0.8320312,-0.4921875 -0.7851563,0 -1.2304688,0.85546874 -1.2304688,1.06640624 0,0.0820313 0.1054688,0.0820313 0.1171875,0.0820313 0.09375,0 0.1054688,-0.0234375 0.140625,-0.1171875 0.1757813,-0.53906244 0.609375,-0.84374994 0.9492188,-0.84374994 0.234375,0 0.421875,0.1289062 0.421875,0.46874994 0,0.12890625 -0.082031,0.48046875 -0.1523438,0.71484375 z M 11.005461,1.3760547 c 0,0.3867187 -0.07031,0.8320312 -0.550781,1.2773437 -0.02344,0.035156 -0.04687,0.058594 -0.04687,0.09375 0,0.046875 0.05859,0.09375 0.09375,0.09375 0.105468,0 0.691406,-0.5625 0.691406,-1.3945312 0,-0.421875 -0.164063,-0.75000001 -0.480469,-0.75000001 -0.234375,0 -0.398437,0.17578125 -0.398437,0.38671871 0,0.234375 0.152343,0.4101563 0.398437,0.4101563 0.164063,0 0.28125,-0.1171875 0.292969,-0.1171875 z m 3.914062,-0.44531251 c -0.03516,0.14062501 -0.09375,0.37500001 -0.09375,0.41015621 0,0.1523438 0.128907,0.2226563 0.234375,0.2226563 0.128907,0 0.234375,-0.09375 0.269532,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128906,-0.43359371 0.03516,-0.12890625 0.117187,-0.45703125 0.152344,-0.6328125 0.04687,-0.15234375 0.08203,-0.3046875 0.117187,-0.45703125 0.08203,-0.3046875 0.08203,-0.31640625 0.222656,-0.5390625 0.222657,-0.33984375 0.5625,-0.73828124 1.113282,-0.73828124 0.386718,0 0.410156,0.328125 0.410156,0.49218749 0,0.421875 -0.304688,1.1953125 -0.410156,1.48828125 -0.08203,0.1875 -0.105469,0.2578125 -0.105469,0.375 0,0.36328126 0.304687,0.59765626 0.65625,0.59765626 0.703125,0 1.007812,-0.96093751 1.007812,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.105468,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249996 -0.457032,0.84374996 -0.738282,0.84374996 -0.140625,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234376 0.03516,-0.24609376 0.164063,-0.56250001 0.08203,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.10546875 0,-0.39843754 -0.257813,-0.59765624 -0.128906,-0.09375 -0.328125,-0.1875 -0.65625,-0.1875 -0.621094,0 -1.007812,0.4101562 -1.230469,0.70312499 -0.05859,-0.59765629 -0.550781,-0.70312499 -0.902343,-0.70312499 -0.585938,0 -0.972657,0.3515625 -1.183594,0.63281249 -0.04687,-0.48046879 -0.457031,-0.63281249 -0.75,-0.63281249 -0.292969,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781249 -0.246094,0.65624999 -0.246094,0.69140624 0,0.0820313 0.09375,0.0820313 0.117187,0.0820313 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187499 0.234375,-0.76171869 0.515625,-0.76171869 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062499 -0.05859,0.39843749 -0.105468,0.58593749 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 L 12.751555,1.0596484 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128907,-0.43359371 0.03516,-0.12890625 0.105468,-0.45703125 0.152343,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199218,-0.28125004 0.527343,-0.64453124 1.042968,-0.64453124 0.410157,0 0.410157,0.3632812 0.410157,0.49218749 0,0.17578125 -0.01172,0.26953125 -0.117188,0.65625 z m 6.307618,-3.79687499 c 0,-0.1054688 -0.08203,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386719,0.1757812 -0.386719,0.375 0,0.1171875 0.08203,0.2695312 0.269531,0.2695312 0.210938,0 0.398438,-0.1992187 0.398438,-0.3867187 z m -1.429688,3.53906249 c -0.02344,0.09375 -0.05859,0.17578125 -0.05859,0.29296875 0,0.32812496 0.28125,0.59765626 0.667969,0.59765626 0.691406,0 0.996094,-0.96093751 0.996094,-1.06640626 0,-0.09375 -0.08203,-0.09375 -0.105469,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249996 -0.457031,0.84374996 -0.738281,0.84374996 -0.140625,0 -0.175781,-0.082031 -0.175781,-0.2460937 0,-0.15234376 0.05859,-0.29296876 0.117187,-0.44531251 0.07031,-0.1875 0.140625,-0.375 0.222656,-0.55078125 0.05859,-0.1640625 0.316407,-0.80859375 0.339844,-0.890625 0.02344,-0.0703125 0.04687,-0.15234375 0.04687,-0.22265625 0,-0.32812499 -0.28125,-0.58593749 -0.667969,-0.58593749 -0.691406,0 -1.007812,0.94921874 -1.007812,1.06640624 0,0.0820313 0.09375,0.0820313 0.117187,0.0820313 0.09375,0 0.105469,-0.0351563 0.128907,-0.10546875 0.175781,-0.59765619 0.480468,-0.85546869 0.738281,-0.85546869 0.117187,0 0.175781,0.058594 0.175781,0.2460937 0,0.16406249 -0.03516,0.26953124 -0.210937,0.70312499 z M 22.63925,1.0596484 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.128907,0 0.234375,-0.09375 0.269532,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128906,-0.43359371 0.03516,-0.12890625 0.105469,-0.45703125 0.152344,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117187,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199219,-0.28125004 0.527344,-0.64453124 1.042969,-0.64453124 0.410156,0 0.410156,0.3632812 0.410156,0.49218749 0,0.421875 -0.292969,1.1953125 -0.410156,1.48828125 -0.07031,0.1875 -0.105469,0.2578125 -0.105469,0.375 0,0.36328126 0.304687,0.59765626 0.667969,0.59765626 0.691406,0 1.007812,-0.96093751 1.007812,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.046875 -0.128907,0.1171875 -0.164062,0.56249996 -0.46875,0.84374996 -0.738281,0.84374996 -0.152344,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234376 0.03516,-0.24609376 0.152344,-0.56250001 0.09375,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.66796874 -0.539063,-0.78515624 -0.902344,-0.78515624 -0.585938,0 -0.972656,0.3515625 -1.183594,0.63281249 -0.04687,-0.48046879 -0.457031,-0.63281249 -0.75,-0.63281249 -0.292969,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781249 -0.246094,0.65624999 -0.246094,0.69140624 0,0.0820313 0.09375,0.0820313 0.117188,0.0820313 0.09375,0 0.105468,-0.0117188 0.152343,-0.19921875 0.105469,-0.42187499 0.234375,-0.76171869 0.515625,-0.76171869 0.175782,0 0.222657,0.1523437 0.222657,0.3398437 0,0.14062499 -0.05859,0.39843749 -0.105469,0.58593749 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + <path + id="path7" + d="m 115.37984,0 c 0,1.10046 -0.89209,1.99255 -1.99256,1.99255 -1.10048,0 -1.99255,-0.89209 -1.99255,-1.99255 0,-1.10046 0.89207,-1.99255 1.99255,-1.99255 1.10047,0 1.99256,0.89209 1.99256,1.99255 z" + style="fill:#808080;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <g + id="g7" + aria-label="p x,max" + transform="matrix(1.3333333,0,0,1.3333333,347.552,161.10667)"> + <path + id="path8" + d="m 0.44439844,1.2178516 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796871,0.035156 0.98437501,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054688,-0.1054688 -0.2460938,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609374 0.4804688,-1.99218749 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312501 2.4023438,-2.91796871 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632812 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703121,0 -0.65624996,0.3867187 -0.73828121,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656251,-1.1835938 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.2022109,-3.1063672 c 0.070312,-0.2695312 0.3398438,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312501 -0.8203125,1.03125001 -1.1835937,1.03125001 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351562 0.023437,-0.16406251 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path9" + d="m 6.7461563,0.75496094 c -0.070312,0.234375 -0.2929688,0.60937496 -0.65625,0.60937496 -0.023437,0 -0.2226563,0 -0.375,-0.09375 0.28125,-0.09375 0.3046875,-0.33984371 0.3046875,-0.38671871 0,-0.15234375 -0.1171875,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.3867188,0.1640625 -0.3867188,0.43359371 0,0.3398438 0.3867188,0.5039063 0.7265625,0.5039063 0.3164063,0 0.609375,-0.1992188 0.7851563,-0.4921875 0.1640625,0.3632812 0.5507812,0.4921875 0.8203125,0.4921875 0.8085937,0 1.2304687,-0.86718751 1.2304687,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.1054687,-0.09375 -0.1054688,0 -0.1054688,0.0351563 -0.140625,0.1171875 -0.140625,0.48046876 -0.5625,0.84374996 -0.9492188,0.84374996 -0.28125,0 -0.421875,-0.1875 -0.421875,-0.44531246 0,-0.1875 0.1640625,-0.8203125 0.3632813,-1.59375 0.1289062,-0.53906254 0.4453125,-0.71484374 0.6796875,-0.71484374 0.011719,0 0.2226562,0 0.375,0.1054687 -0.2226563,0.058594 -0.3046875,0.2578125 -0.3046875,0.37500004 0,0.15234375 0.1171875,0.2578125 0.28125,0.2578125 0.1523437,0 0.3867187,-0.12890625 0.3867187,-0.42187504 0,-0.3867187 -0.4453125,-0.5039062 -0.7265625,-0.5039062 -0.3515625,0 -0.6328125,0.2226562 -0.7851562,0.4921875 -0.1171875,-0.2929688 -0.4453125,-0.4921875 -0.8320313,-0.4921875 -0.7851562,0 -1.2304687,0.85546874 -1.2304687,1.06640624 0,0.0820313 0.1054687,0.0820313 0.1171875,0.0820313 0.09375,0 0.1054687,-0.0234375 0.140625,-0.1171875 C 5.9375625,-1.0848828 6.3711563,-1.3895703 6.711,-1.3895703 c 0.234375,0 0.421875,0.1289062 0.421875,0.46874999 0,0.12890625 -0.082031,0.48046875 -0.1523437,0.71484375 z M 11.005922,1.3760547 c 0,0.3867187 -0.07031,0.8320312 -0.550781,1.2773437 -0.02344,0.035156 -0.04687,0.058594 -0.04687,0.09375 0,0.046875 0.05859,0.09375 0.09375,0.09375 0.105468,0 0.691406,-0.5625 0.691406,-1.3945312 0,-0.421875 -0.164063,-0.75000001 -0.480469,-0.75000001 -0.234375,0 -0.398437,0.17578125 -0.398437,0.38671871 0,0.234375 0.152343,0.4101563 0.398437,0.4101563 0.164063,0 0.28125,-0.1171875 0.292969,-0.1171875 z m 3.914062,-0.44531251 c -0.03516,0.14062501 -0.09375,0.37500001 -0.09375,0.41015621 0,0.1523438 0.128907,0.2226563 0.234375,0.2226563 0.128907,0 0.234375,-0.09375 0.269532,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128906,-0.43359371 0.03516,-0.12890625 0.117187,-0.45703125 0.152344,-0.6328125 0.04687,-0.15234375 0.08203,-0.3046875 0.117187,-0.45703125 0.08203,-0.3046875 0.08203,-0.31640625 0.222656,-0.5390625 0.222657,-0.33984375 0.5625,-0.73828124 1.113282,-0.73828124 0.386718,0 0.410156,0.328125 0.410156,0.49218749 0,0.421875 -0.304688,1.1953125 -0.410156,1.48828125 -0.08203,0.1875 -0.105469,0.2578125 -0.105469,0.375 0,0.36328126 0.304687,0.59765626 0.65625,0.59765626 0.703125,0 1.007812,-0.96093751 1.007812,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.105468,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249996 -0.457032,0.84374996 -0.738282,0.84374996 -0.140625,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234376 0.03516,-0.24609376 0.164063,-0.56250001 0.08203,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.10546875 0,-0.39843754 -0.257813,-0.59765624 -0.128906,-0.09375 -0.328125,-0.1875 -0.65625,-0.1875 -0.621094,0 -1.007812,0.4101562 -1.230469,0.70312499 -0.05859,-0.59765629 -0.550781,-0.70312499 -0.902343,-0.70312499 -0.585938,0 -0.972657,0.3515625 -1.183594,0.63281249 -0.04687,-0.48046879 -0.457031,-0.63281249 -0.75,-0.63281249 -0.292969,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781249 -0.246094,0.65624999 -0.246094,0.69140624 0,0.0820313 0.09375,0.0820313 0.117187,0.0820313 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187499 0.234375,-0.76171869 0.515625,-0.76171869 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062499 -0.05859,0.39843749 -0.105468,0.58593749 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 L 12.752016,1.0596484 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128907,-0.43359371 0.03516,-0.12890625 0.105468,-0.45703125 0.152343,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199218,-0.28125004 0.527343,-0.64453124 1.042968,-0.64453124 0.410157,0 0.410157,0.3632812 0.410157,0.49218749 0,0.17578125 -0.01172,0.26953125 -0.117188,0.65625 z m 6.987305,-2.09765629 c -0.140625,-0.234375 -0.386719,-0.4101562 -0.714844,-0.4101562 -0.890625,0 -1.804687,0.97265624 -1.804687,1.98046874 0,0.67968746 0.457031,1.16015626 1.054687,1.16015626 0.375,0 0.714844,-0.2109375 0.996094,-0.4921875 0.128906,0.421875 0.527344,0.4921875 0.714844,0.4921875 0.246094,0 0.421875,-0.1523438 0.550781,-0.375 0.152344,-0.26953126 0.246094,-0.66796876 0.246094,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105468,0.0351563 -0.152343,0.22265625 -0.08203,0.328125 -0.210938,0.73828121 -0.503907,0.73828121 -0.1875,0 -0.234375,-0.1523437 -0.234375,-0.3398437 0,-0.11718751 0.05859,-0.36328126 0.105469,-0.55078126 0.04687,-0.1875 0.117188,-0.46875 0.152344,-0.62109375 l 0.140625,-0.5390625 c 0.04687,-0.17578125 0.128906,-0.50390629 0.128906,-0.53906249 0,-0.1523438 -0.128906,-0.2226563 -0.246094,-0.2226563 -0.117187,0 -0.269531,0.082031 -0.316406,0.28125 z m -0.445312,1.79296879 c -0.04687,0.1875 -0.199219,0.328125 -0.351563,0.45703121 -0.07031,0.058594 -0.339844,0.28125 -0.644531,0.28125 -0.257813,0 -0.515625,-0.1757812 -0.515625,-0.66796871 0,-0.375 0.210937,-1.13671875 0.363281,-1.41796875 0.328125,-0.56250004 0.679688,-0.66796874 0.878906,-0.66796874 0.480469,0 0.621094,0.52734374 0.621094,0.60937499 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 3.55957,0.12890625 c -0.07031,0.234375 -0.292969,0.60937496 -0.65625,0.60937496 -0.02344,0 -0.222656,0 -0.375,-0.09375 0.28125,-0.09375 0.304687,-0.33984371 0.304687,-0.38671871 0,-0.15234375 -0.117187,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386718,0.1640625 -0.386718,0.43359371 0,0.3398438 0.386718,0.5039063 0.726562,0.5039063 0.316406,0 0.609375,-0.1992188 0.785156,-0.4921875 0.164063,0.3632812 0.550782,0.4921875 0.820313,0.4921875 0.808594,0 1.230469,-0.86718751 1.230469,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.105469,-0.09375 -0.105469,0 -0.105469,0.0351563 -0.140625,0.1171875 -0.140625,0.48046876 -0.5625,0.84374996 -0.949219,0.84374996 -0.28125,0 -0.421875,-0.1875 -0.421875,-0.44531246 0,-0.1875 0.164063,-0.8203125 0.363281,-1.59375 0.128907,-0.53906254 0.445313,-0.71484374 0.679688,-0.71484374 0.01172,0 0.222656,0 0.375,0.1054687 -0.222656,0.058594 -0.304688,0.2578125 -0.304688,0.37500004 0,0.15234375 0.117188,0.2578125 0.28125,0.2578125 0.152344,0 0.386719,-0.12890625 0.386719,-0.42187504 0,-0.3867187 -0.445312,-0.5039062 -0.726562,-0.5039062 -0.351563,0 -0.632813,0.2226562 -0.785157,0.4921875 -0.117187,-0.2929688 -0.445312,-0.4921875 -0.832031,-0.4921875 -0.785156,0 -1.230469,0.85546874 -1.230469,1.06640624 0,0.0820313 0.105469,0.0820313 0.117188,0.0820313 0.09375,0 0.105469,-0.0234375 0.140625,-0.1171875 0.175781,-0.53906244 0.609375,-0.84374994 0.949219,-0.84374994 0.234375,0 0.421875,0.1289062 0.421875,0.46874994 0,0.12890625 -0.08203,0.48046875 -0.152344,0.71484375 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + <path + id="path10" + d="M 0,-85.04045 V 85.04045" + style="fill:none;stroke:#808080;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:2.98883, 1.99255;stroke-dashoffset:0;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <path + id="path11" + d="m 1.99255,-85.04045 c 0,1.10046 -0.89209,1.99255 -1.99255,1.99255 -1.10046,0 -1.99255,-0.89209 -1.99255,-1.99255 0,-1.10048 0.89209,-1.99255 1.99255,-1.99255 1.10046,0 1.99255,0.89207 1.99255,1.99255 z" + style="fill:#808080;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <g + id="g11" + aria-label="p y,min" + transform="matrix(1.3333333,0,0,1.3333333,196.37067,292.956)"> + <path + id="path12" + d="m 0.44563281,1.2195234 c -0.0820313,0.3398438 -0.09375,0.4101563 -0.5390625,0.4101563 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796874,0.035156 0.98437504,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992188 0,-0.1054687 -0.1054688,-0.1054687 -0.2460938,-0.1054687 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609376 0.4804688,-1.99218751 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312499 2.4023438,-2.91796879 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632813 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703124,0 -0.65624999,0.3867188 -0.73828124,0.5742188 -0.1875,0.3398437 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054687 0.10546875,0.1054687 0.12890625,0.1054687 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835937 0.72656254,-1.1835937 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570312 0,0.234375 -0.023437,0.3398438 -0.070312,0.5039063 z M 2.2034453,-3.1046953 c 0.070312,-0.2695313 0.3398438,-0.5507813 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312499 -0.8203125,1.03124999 -1.1835937,1.03124999 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351563 0.023437,-0.16406249 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path13" + d="m 8.8919219,-1.1300859 c 0.023437,-0.1054688 0.023437,-0.1171875 0.023437,-0.1523438 0,-0.140625 -0.1054688,-0.2226562 -0.2226563,-0.2226562 -0.082031,0 -0.2109375,0.035156 -0.2929687,0.1640625 -0.023437,0.035156 -0.070312,0.2578125 -0.1054688,0.39843746 l -0.1523437,0.5859375 c -0.035156,0.1640625 -0.2578125,1.04296875 -0.28125,1.125 0,0 -0.3046875,0.59765624 -0.8554688,0.59765624 -0.46875,0 -0.46875,-0.44531249 -0.46875,-0.57421874 0,-0.375 0.1523438,-0.8203125 0.3632813,-1.359375 0.082031,-0.22265625 0.1171875,-0.3046875 0.1171875,-0.421875 0,-0.32812496 -0.28125,-0.58593746 -0.65625,-0.58593746 -0.703125,0 -1.0195313,0.94921871 -1.0195313,1.06640621 0,0.0820312 0.09375,0.0820312 0.1171875,0.0820312 0.09375,0 0.1054688,-0.0351563 0.1289063,-0.10546875 0.1757812,-0.58593756 0.46875,-0.85546876 0.75,-0.85546876 0.1171875,0 0.1757812,0.082031 0.1757812,0.2460937 0,0.16406256 -0.058594,0.31640631 -0.09375,0.41015631 -0.3398437,0.84375 -0.4101562,1.1015625 -0.4101562,1.40625 0,0.1171875 0,0.44531249 0.2695312,0.67968749 0.2226563,0.1757812 0.515625,0.2109375 0.703125,0.2109375 0.28125,0 0.5273438,-0.1054688 0.7617188,-0.3164063 -0.09375,0.3867188 -0.1757813,0.6796875 -0.46875,1.03125 -0.1875,0.2109375 -0.4570313,0.4453125 -0.8320313,0.4453125 -0.046875,0 -0.375,0 -0.5273437,-0.234375 0.375,-0.035156 0.375,-0.375 0.375,-0.3867187 0,-0.2226563 -0.1992188,-0.2578125 -0.2695313,-0.2578125 -0.1757812,0 -0.3984375,0.140625 -0.3984375,0.4570312 0,0.3515625 0.328125,0.609375 0.8320313,0.609375 0.703125,0 1.5585937,-0.5390625 1.7695312,-1.40625 z M 10.78157,1.3777266 c 0,0.3867187 -0.07031,0.8320312 -0.550781,1.2773437 -0.02344,0.035156 -0.04687,0.058594 -0.04687,0.09375 0,0.046875 0.05859,0.09375 0.09375,0.09375 0.105469,0 0.691406,-0.5625 0.691406,-1.3945312 0,-0.421875 -0.164062,-0.75000004 -0.480468,-0.75000004 -0.234375,0 -0.398438,0.17578125 -0.398438,0.38671874 0,0.234375 0.152344,0.4101563 0.398438,0.4101563 0.164062,0 0.28125,-0.1171875 0.292968,-0.1171875 z m 3.911133,-0.44531254 c -0.03516,0.14062504 -0.09375,0.37500004 -0.09375,0.41015624 0,0.1523438 0.128906,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128907,-0.43359374 0.03516,-0.12890625 0.117187,-0.45703125 0.152343,-0.6328125 0.04687,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.3046875 0.08203,-0.31640625 0.222656,-0.5390625 0.222656,-0.33984375 0.5625,-0.73828121 1.113281,-0.73828121 0.386719,0 0.410157,0.328125 0.410157,0.49218746 0,0.421875 -0.304688,1.1953125 -0.410157,1.48828125 -0.08203,0.1875 -0.105468,0.2578125 -0.105468,0.375 0,0.36328129 0.304687,0.59765629 0.65625,0.59765629 0.703125,0 1.007812,-0.96093754 1.007812,-1.06640629 0,-0.09375 -0.09375,-0.09375 -0.105469,-0.09375 -0.105468,0 -0.105468,0.046875 -0.140625,0.1171875 -0.152343,0.56249999 -0.457031,0.84374999 -0.738281,0.84374999 -0.140625,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234379 0.03516,-0.24609379 0.164062,-0.56250004 0.08203,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.10546875 0,-0.39843751 -0.257812,-0.59765621 -0.128906,-0.09375 -0.328125,-0.1875 -0.65625,-0.1875 -0.621094,0 -1.007813,0.4101562 -1.230469,0.70312496 -0.05859,-0.59765626 -0.550781,-0.70312496 -0.902344,-0.70312496 -0.585937,0 -0.972656,0.3515625 -1.183593,0.63281246 -0.04687,-0.48046876 -0.457032,-0.63281246 -0.75,-0.63281246 -0.292969,0 -0.457032,0.2109375 -0.550782,0.375 -0.152343,0.25781246 -0.246093,0.65624996 -0.246093,0.69140621 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187506 0.234375,-0.76171876 0.515625,-0.76171876 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062506 -0.05859,0.39843756 -0.105469,0.58593756 -0.04687,0.1875 -0.117187,0.46875 -0.152343,0.62109375 L 12.524734,1.0613203 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117187,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128906,-0.43359374 0.03516,-0.12890625 0.105469,-0.45703125 0.152344,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292968,-0.6328125 0.199219,-0.28125001 0.527344,-0.64453121 1.042969,-0.64453121 0.410156,0 0.410156,0.3632812 0.410156,0.49218746 0,0.17578125 -0.01172,0.26953125 -0.117187,0.65625 z M 21.00032,-2.8644609 c 0,-0.1054688 -0.08203,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386718,0.1757812 -0.386718,0.375 0,0.1171875 0.08203,0.2695312 0.269531,0.2695312 0.210937,0 0.398437,-0.1992187 0.398437,-0.3867187 z m -1.429687,3.53906246 c -0.02344,0.09375 -0.05859,0.17578125 -0.05859,0.29296875 0,0.32812499 0.28125,0.59765629 0.667969,0.59765629 0.691406,0 0.996094,-0.96093754 0.996094,-1.06640629 0,-0.09375 -0.08203,-0.09375 -0.105469,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249999 -0.457031,0.84374999 -0.738281,0.84374999 -0.140625,0 -0.175782,-0.082031 -0.175782,-0.2460937 0,-0.15234379 0.05859,-0.29296879 0.117188,-0.44531254 0.07031,-0.1875 0.140625,-0.375 0.222656,-0.55078125 0.05859,-0.1640625 0.316406,-0.80859375 0.339844,-0.890625 0.02344,-0.0703125 0.04687,-0.15234375 0.04687,-0.22265625 0,-0.32812496 -0.28125,-0.58593746 -0.667969,-0.58593746 -0.691406,0 -1.007812,0.94921871 -1.007812,1.06640621 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0351563 0.128906,-0.10546875 0.175782,-0.59765626 0.480469,-0.85546876 0.738282,-0.85546876 0.117187,0 0.175781,0.058594 0.175781,0.2460937 0,0.16406256 -0.03516,0.26953131 -0.210938,0.70312506 z M 22.41243,1.0613203 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128907,-0.43359374 0.03516,-0.12890625 0.105468,-0.45703125 0.152343,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199218,-0.28125001 0.527343,-0.64453121 1.042968,-0.64453121 0.410157,0 0.410157,0.3632812 0.410157,0.49218746 0,0.421875 -0.292969,1.1953125 -0.410157,1.48828125 -0.07031,0.1875 -0.105468,0.2578125 -0.105468,0.375 0,0.36328129 0.304687,0.59765629 0.667968,0.59765629 0.691407,0 1.007813,-0.96093754 1.007813,-1.06640629 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105468,0.046875 -0.128906,0.1171875 -0.164062,0.56249999 -0.46875,0.84374999 -0.738281,0.84374999 -0.152344,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234379 0.03516,-0.24609379 0.152343,-0.56250004 0.09375,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.66796871 -0.539062,-0.78515621 -0.902343,-0.78515621 -0.585938,0 -0.972657,0.3515625 -1.183594,0.63281246 -0.04687,-0.48046876 -0.457031,-0.63281246 -0.75,-0.63281246 -0.292969,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781246 -0.246094,0.65624996 -0.246094,0.69140621 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187506 0.234375,-0.76171876 0.515625,-0.76171876 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062506 -0.05859,0.39843756 -0.105468,0.58593756 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + <path + id="path14" + d="M 1.99255,85.04045 C 1.99255,86.14093 1.10046,87.033 0,87.033 c -1.10046,0 -1.99255,-0.89207 -1.99255,-1.99255 0,-1.10046 0.89209,-1.99255 1.99255,-1.99255 1.10046,0 1.99255,0.89209 1.99255,1.99255 z" + style="fill:#808080;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <g + id="g14" + aria-label="p y,max" + transform="matrix(1.3333333,0,0,1.3333333,196.37067,47.721333)"> + <path + id="path15" + d="m 0.44563281,1.2197422 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796874,0.035156 0.98437504,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054688,-0.1054688 -0.2460938,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609371 0.4804688,-1.99218746 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312504 2.4023438,-2.91796874 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632812 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703124,0 -0.65624999,0.3867187 -0.73828124,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656254,-1.1835938 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.2034453,-3.1044766 c 0.070312,-0.2695312 0.3398438,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312504 -0.8203125,1.03125004 -1.1835937,1.03125004 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351562 0.023437,-0.16406254 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path16" + d="m 8.8919219,-1.1298672 c 0.023437,-0.1054687 0.023437,-0.1171875 0.023437,-0.1523437 0,-0.140625 -0.1054688,-0.2226563 -0.2226563,-0.2226563 -0.082031,0 -0.2109375,0.035156 -0.2929687,0.1640625 -0.023437,0.035156 -0.070312,0.2578125 -0.1054688,0.39843751 l -0.1523437,0.5859375 c -0.035156,0.1640625 -0.2578125,1.04296875 -0.28125,1.125 0,0 -0.3046875,0.59765629 -0.8554688,0.59765629 -0.46875,0 -0.46875,-0.44531254 -0.46875,-0.57421879 0,-0.375 0.1523438,-0.8203125 0.3632813,-1.359375 0.082031,-0.22265625 0.1171875,-0.3046875 0.1171875,-0.421875 0,-0.32812501 -0.28125,-0.58593751 -0.65625,-0.58593751 -0.703125,0 -1.0195313,0.94921876 -1.0195313,1.06640626 0,0.0820313 0.09375,0.0820313 0.1171875,0.0820313 0.09375,0 0.1054688,-0.0351563 0.1289063,-0.10546875 0.1757812,-0.58593751 0.46875,-0.85546881 0.75,-0.85546881 0.1171875,0 0.1757812,0.082031 0.1757812,0.2460938 0,0.16406251 -0.058594,0.31640626 -0.09375,0.41015626 -0.3398437,0.84375 -0.4101562,1.1015625 -0.4101562,1.40625 0,0.1171875 0,0.44531244 0.2695312,0.67968744 0.2226563,0.1757813 0.515625,0.2109375 0.703125,0.2109375 0.28125,0 0.5273438,-0.1054687 0.7617188,-0.3164062 -0.09375,0.3867187 -0.1757813,0.6796875 -0.46875,1.03125 -0.1875,0.2109375 -0.4570313,0.4453125 -0.8320313,0.4453125 -0.046875,0 -0.375,0 -0.5273437,-0.234375 0.375,-0.035156 0.375,-0.375 0.375,-0.3867188 0,-0.2226562 -0.1992188,-0.2578125 -0.2695313,-0.2578125 -0.1757812,0 -0.3984375,0.140625 -0.3984375,0.4570313 0,0.3515625 0.328125,0.609375 0.8320313,0.609375 0.703125,0 1.5585937,-0.5390625 1.7695312,-1.40625 z M 10.78157,1.3779453 c 0,0.3867188 -0.07031,0.8320313 -0.550781,1.2773438 -0.02344,0.035156 -0.04687,0.058594 -0.04687,0.09375 0,0.046875 0.05859,0.09375 0.09375,0.09375 0.105469,0 0.691406,-0.5625 0.691406,-1.3945313 0,-0.421875 -0.164062,-0.74999999 -0.480468,-0.74999999 -0.234375,0 -0.398438,0.17578125 -0.398438,0.38671879 0,0.234375 0.152344,0.4101562 0.398438,0.4101562 0.164062,0 0.28125,-0.1171875 0.292968,-0.1171875 z m 3.911133,-0.44531249 c -0.03516,0.14062499 -0.09375,0.37499999 -0.09375,0.41015629 0,0.1523437 0.128906,0.2226562 0.234375,0.2226562 0.128906,0 0.234375,-0.09375 0.269531,-0.1523437 0.03516,-0.058594 0.09375,-0.2929688 0.128907,-0.43359379 0.03516,-0.12890625 0.117187,-0.45703125 0.152343,-0.6328125 0.04687,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.3046875 0.08203,-0.31640625 0.222656,-0.5390625 0.222656,-0.33984375 0.5625,-0.73828126 1.113281,-0.73828126 0.386719,0 0.410157,0.328125 0.410157,0.49218751 0,0.421875 -0.304688,1.1953125 -0.410157,1.48828125 -0.08203,0.1875 -0.105468,0.2578125 -0.105468,0.375 0,0.36328124 0.304687,0.59765624 0.65625,0.59765624 0.703125,0 1.007812,-0.96093749 1.007812,-1.06640624 0,-0.09375 -0.09375,-0.09375 -0.105469,-0.09375 -0.105468,0 -0.105468,0.046875 -0.140625,0.1171875 -0.152343,0.56250004 -0.457031,0.84375004 -0.738281,0.84375004 -0.140625,0 -0.175781,-0.09375 -0.175781,-0.2460938 0,-0.15234374 0.03516,-0.24609374 0.164062,-0.56249999 0.08203,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.10546875 0,-0.39843746 -0.257812,-0.59765626 -0.128906,-0.09375 -0.328125,-0.1875 -0.65625,-0.1875 -0.621094,0 -1.007813,0.4101563 -1.230469,0.70312501 -0.05859,-0.59765621 -0.550781,-0.70312501 -0.902344,-0.70312501 -0.585937,0 -0.972656,0.3515625 -1.183593,0.63281251 -0.04687,-0.48046871 -0.457032,-0.63281251 -0.75,-0.63281251 -0.292969,0 -0.457032,0.2109375 -0.550782,0.375 -0.152343,0.25781251 -0.246093,0.65625001 -0.246093,0.69140626 0,0.0820313 0.09375,0.0820313 0.117187,0.0820313 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187491 0.234375,-0.76171871 0.515625,-0.76171871 0.175781,0 0.222656,0.1523438 0.222656,0.3398438 0,0.14062491 -0.05859,0.39843741 -0.105469,0.58593741 -0.04687,0.1875 -0.117187,0.46875 -0.152343,0.62109375 L 12.524734,1.0615391 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523437 0.117187,0.2226562 0.234375,0.2226562 0.128906,0 0.234375,-0.09375 0.269531,-0.1523437 0.03516,-0.058594 0.09375,-0.2929688 0.128906,-0.43359379 0.03516,-0.12890625 0.105469,-0.45703125 0.152344,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292968,-0.6328125 0.199219,-0.28124996 0.527344,-0.64453126 1.042969,-0.64453126 0.410156,0 0.410156,0.3632813 0.410156,0.49218751 0,0.17578125 -0.01172,0.26953125 -0.117187,0.65625 z m 6.987305,-2.09765621 c -0.140625,-0.234375 -0.386719,-0.4101563 -0.714844,-0.4101563 -0.890625,0 -1.804687,0.97265626 -1.804687,1.98046876 0,0.67968754 0.457031,1.16015624 1.054687,1.16015624 0.375,0 0.714844,-0.2109375 0.996094,-0.4921875 0.128906,0.421875 0.527344,0.4921875 0.714844,0.4921875 0.246093,0 0.421875,-0.1523437 0.550781,-0.375 0.152344,-0.26953124 0.246094,-0.66796874 0.246094,-0.69140624 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105469,0.0351563 -0.152344,0.22265625 -0.08203,0.328125 -0.210937,0.73828129 -0.503906,0.73828129 -0.1875,0 -0.234375,-0.1523438 -0.234375,-0.3398438 0,-0.11718749 0.05859,-0.36328124 0.105469,-0.55078124 0.04687,-0.1875 0.117187,-0.46875 0.152344,-0.62109375 l 0.140625,-0.5390625 c 0.04687,-0.17578125 0.128906,-0.50390621 0.128906,-0.53906251 0,-0.1523437 -0.128906,-0.2226562 -0.246094,-0.2226562 -0.117187,0 -0.269531,0.082031 -0.316406,0.28125 z m -0.445313,1.79296871 c -0.04687,0.1875 -0.199218,0.328125 -0.351562,0.45703129 -0.07031,0.058594 -0.339844,0.28125 -0.644531,0.28125 -0.257813,0 -0.515625,-0.1757813 -0.515625,-0.66796879 0,-0.375 0.210937,-1.13671875 0.363281,-1.41796875 0.328125,-0.56249996 0.679687,-0.66796876 0.878906,-0.66796876 0.480469,0 0.621094,0.52734376 0.621094,0.60937501 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 3.559571,0.12890625 c -0.07031,0.234375 -0.292969,0.60937504 -0.65625,0.60937504 -0.02344,0 -0.222657,0 -0.375,-0.09375 0.28125,-0.09375 0.304687,-0.33984379 0.304687,-0.38671879 0,-0.15234375 -0.117187,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386719,0.1640625 -0.386719,0.43359379 0,0.3398437 0.386719,0.5039062 0.726563,0.5039062 0.316406,0 0.609375,-0.1992187 0.785156,-0.4921875 0.164063,0.3632813 0.550781,0.4921875 0.820313,0.4921875 0.808593,0 1.230468,-0.86718749 1.230468,-1.06640624 0,-0.09375 -0.09375,-0.09375 -0.105468,-0.09375 -0.105469,0 -0.105469,0.0351563 -0.140625,0.1171875 -0.140625,0.48046874 -0.5625,0.84375004 -0.949219,0.84375004 -0.28125,0 -0.421875,-0.1875 -0.421875,-0.44531254 0,-0.1875 0.164062,-0.8203125 0.363281,-1.59375 0.128906,-0.53906246 0.445313,-0.71484376 0.679688,-0.71484376 0.01172,0 0.222656,0 0.375,0.1054688 -0.222657,0.058594 -0.304688,0.2578125 -0.304688,0.37499996 0,0.15234375 0.117188,0.2578125 0.28125,0.2578125 0.152344,0 0.386719,-0.12890625 0.386719,-0.42187496 0,-0.3867188 -0.445313,-0.5039063 -0.726563,-0.5039063 -0.351562,0 -0.632812,0.2226563 -0.785156,0.4921875 -0.117187,-0.2929687 -0.445312,-0.4921875 -0.832031,-0.4921875 -0.785156,0 -1.230469,0.85546876 -1.230469,1.06640626 0,0.0820313 0.105469,0.0820313 0.117188,0.0820313 0.09375,0 0.105468,-0.0234375 0.140625,-0.1171875 0.175781,-0.53906256 0.609375,-0.84375006 0.949218,-0.84375006 0.234375,0 0.421875,0.1289063 0.421875,0.46875006 0,0.12890625 -0.08203,0.48046875 -0.152343,0.71484375 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + <path + id="path17" + d="M 0,0 H 24.76025" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <path + id="path18" + d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,224.91233,169.37867)" /> + <path + id="path19" + d="m 2.7659219,-2.5667187 1.6640625,-2.390625 H 3.5393594 L 2.3440469,-3.164375 1.1604531,-4.9573437 H 0.25810938 l 1.65234372,2.4257812 -1.74609372,2.53125 H 1.0549844 L 2.3206094,-1.89875 3.5627969,-3.125e-4 h 0.9140625 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="x" + transform="matrix(1.3333333,0,0,1.3333333,226.53867,164.90667)" /> + <path + id="path20" + d="M 0,0 V 24.76025" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <path + id="path21" + d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(0,-1.3333333,-1.3333333,0,191.89867,136.365)" /> + <path + id="path22" + d="M 3.6800078,-4.9583125 2.2971953,-1.1028438 1.0315703,-4.9583125 H 0.18782031 L 1.8636016,0.02215625 1.5589141,0.8073125 C 1.4417266,1.158875 1.2542266,1.2877812 0.92610156,1.2877812 c -0.1171875,0 -0.24609375,-0.023437 -0.41015625,-0.058594 v 0.7148437 c 0.15234375,0.082031 0.31640625,0.1171875 0.52734379,0.1171875 0.2578125,0 0.5273437,-0.082031 0.7382812,-0.234375 C 2.0276641,1.6510625 2.1682891,1.440125 2.3206328,1.0416875 l 2.203125,-6 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="y" + transform="matrix(1.3333333,0,0,1.3333333,196.37067,133.51733)" /> + <path + id="path23" + d="M 3.9851,0 C 3.9851,2.20093 2.20093,3.9851 0,3.9851 -2.20093,3.9851 -3.9851,2.20093 -3.9851,0 c 0,-2.20093 1.78417,-3.9851 3.9851,-3.9851 2.20093,0 3.9851,1.78417 3.9851,3.9851 z" + style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <path + id="path24" + d="M 4.1952031,-4.9575547 H 0.49207813 v 0.6914063 H 3.2577031 L 0.29285938,-0.71536719 V -5.234375e-4 H 4.3241094 V -0.69192969 H 1.2537969 L 4.1952031,-4.2661484 Z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="z" + transform="matrix(1.3333333,0,0,1.3333333,181.11733,180.41867)" /> + <path + id="path25" + d="M 0.99628,0 C 0.99628,0.55023 0.55023,0.99628 0,0.99628 -0.55023,0.99628 -0.99628,0.55023 -0.99628,0 c 0,-0.55023 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" /> + <g + id="g25" + aria-label="p origin" + transform="matrix(1.3333333,0,0,1.3333333,195.872,185.456)"> + <path + id="path26" + d="m 0.44463281,1.2195234 c -0.0820313,0.3398438 -0.09375,0.4101563 -0.5390625,0.4101563 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796874,0.035156 0.98437504,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992188 0,-0.1054687 -0.1054688,-0.1054687 -0.2460938,-0.1054687 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609376 0.4804688,-1.99218751 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312499 2.4023438,-2.91796879 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632813 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703124,0 -0.65624999,0.3867188 -0.73828124,0.5742188 -0.1875,0.3398437 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054687 0.10546875,0.1054687 0.12890625,0.1054687 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835937 0.72656254,-1.1835937 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570312 0,0.234375 -0.023437,0.3398438 -0.070312,0.5039063 z M 2.2024453,-3.1046953 c 0.070312,-0.2695313 0.3398438,-0.5507813 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312499 -0.8203125,1.03124999 -1.1835937,1.03124999 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351563 0.023437,-0.16406249 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path27" + d="m 8.7151406,-0.35664844 c 0,-0.77343746 -0.5742187,-1.21874996 -1.265625,-1.21874996 -1.03125,0 -2.0039062,0.96093746 -2.0039062,1.92187496 0,0.69140624 0.5039062,1.21875004 1.265625,1.21875004 0.9960937,0 2.0039062,-0.92578129 2.0039062,-1.92187504 z M 6.7229531,1.3660078 c -0.3515625,0 -0.703125,-0.2226562 -0.703125,-0.77343749 0,-0.28125 0.140625,-0.9609375 0.4101563,-1.359375 0.2929687,-0.43359371 0.703125,-0.62109371 1.0195312,-0.62109371 0.375,0 0.6914063,0.2578125 0.6914063,0.77343746 0,0.17578125 -0.082031,0.85546875 -0.3867188,1.34765625 C 7.4846719,1.1433516 7.0745156,1.3660078 6.7229531,1.3660078 Z M 10.584281,0.08866406 c 0,-0.046875 0.164063,-0.66796875 0.175782,-0.703125 0.01172,-0.0585938 0.222656,-0.41015626 0.445312,-0.57421876 0.07031,-0.058594 0.257813,-0.1992187 0.5625,-0.1992187 0.07031,0 0.246094,0.011719 0.386719,0.1054687 -0.222656,0.058594 -0.304688,0.2578125 -0.304688,0.37500001 0,0.15234375 0.117188,0.2578125 0.269532,0.2578125 0.164062,0 0.398437,-0.12890625 0.398437,-0.42187501 0,-0.3632812 -0.386719,-0.5039062 -0.738281,-0.5039062 -0.363281,0 -0.679688,0.140625 -0.984375,0.4921875 -0.128906,-0.421875 -0.550781,-0.4921875 -0.726563,-0.4921875 -0.2578122,0 -0.4218747,0.1523437 -0.5390622,0.3515625 -0.1640625,0.26953121 -0.2578125,0.67968746 -0.2578125,0.71484371 0,0.0820312 0.09375,0.0820312 0.1171875,0.0820312 0.09375,0 0.1054687,-0.0117188 0.1523437,-0.19921875 0.1054688,-0.43359376 0.234375,-0.76171876 0.5156255,-0.76171876 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062506 -0.05859,0.39843756 -0.105469,0.58593756 -0.04687,0.1875 -0.117187,0.46875 -0.152344,0.62109375 L 9.799125,1.0613203 c -0.035156,0.082031 -0.070312,0.2578125 -0.070312,0.28125 0,0.1523438 0.1171875,0.2226563 0.234375,0.2226563 0.105469,0 0.246094,-0.058594 0.292969,-0.1992188 0.02344,-0.046875 0.09375,-0.3515625 0.140625,-0.52734374 z m 4.538086,-2.95312496 c 0,-0.1054688 -0.08203,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386719,0.1757812 -0.386719,0.375 0,0.1171875 0.08203,0.2695312 0.269532,0.2695312 0.210937,0 0.398437,-0.1992187 0.398437,-0.3867187 z M 13.69268,0.67460156 c -0.02344,0.09375 -0.05859,0.17578125 -0.05859,0.29296875 0,0.32812499 0.28125,0.59765629 0.667969,0.59765629 0.691406,0 0.996093,-0.96093754 0.996093,-1.06640629 0,-0.09375 -0.08203,-0.09375 -0.105468,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249999 -0.457032,0.84374999 -0.738282,0.84374999 -0.140625,0 -0.175781,-0.082031 -0.175781,-0.2460937 0,-0.15234379 0.05859,-0.29296879 0.117188,-0.44531254 0.07031,-0.1875 0.140625,-0.375 0.222656,-0.55078125 0.05859,-0.1640625 0.316406,-0.80859375 0.339844,-0.890625 0.02344,-0.0703125 0.04687,-0.15234375 0.04687,-0.22265625 0,-0.32812496 -0.28125,-0.58593746 -0.667969,-0.58593746 -0.691406,0 -1.007813,0.94921871 -1.007813,1.06640621 0,0.0820312 0.09375,0.0820312 0.117188,0.0820312 0.09375,0 0.105469,-0.0351563 0.128906,-0.10546875 0.175781,-0.59765626 0.480469,-0.85546876 0.738281,-0.85546876 0.117188,0 0.175782,0.058594 0.175782,0.2460937 0,0.16406256 -0.03516,0.26953131 -0.210938,0.70312506 z m 5.701172,-1.75781246 c 0.02344,-0.09375 0.02344,-0.1289063 0.02344,-0.140625 0,-0.1523438 -0.128906,-0.2226563 -0.234375,-0.2226563 -0.164062,0 -0.292969,0.1289063 -0.328125,0.2695313 -0.117187,-0.1992188 -0.351562,-0.3984375 -0.714844,-0.3984375 -0.867187,0 -1.78125,0.92578121 -1.78125,1.92187496 0,0.72656254 0.480469,1.14843754 1.054688,1.14843754 0.328125,0 0.632812,-0.1640625 0.878906,-0.375 L 18.12823,1.7410078 c -0.07031,0.2929688 -0.117188,0.4804688 -0.386719,0.7265625 -0.304688,0.2578125 -0.609375,0.2578125 -0.785156,0.2578125 -0.316407,0 -0.410157,-0.023437 -0.527344,-0.046875 0.175781,-0.09375 0.222656,-0.2578125 0.222656,-0.3515625 0,-0.1640625 -0.140625,-0.2578125 -0.269531,-0.2578125 -0.199219,0 -0.398438,0.1523438 -0.398438,0.421875 0,0.421875 0.597657,0.421875 0.984375,0.421875 1.089844,0 1.558594,-0.5507812 1.664063,-0.9492187 z m -0.972657,1.65234371 c -0.02344,0.10546875 -0.02344,0.1171875 -0.140625,0.2578125 -0.246093,0.29296879 -0.574218,0.46874999 -0.84375,0.46874999 -0.351562,0 -0.527343,-0.2929687 -0.527343,-0.65624999 0,-0.3046875 0.1875,-1.08984375 0.375,-1.39453125 0.292968,-0.49218746 0.621093,-0.63281246 0.855468,-0.63281246 0.492188,0 0.621094,0.52734371 0.621094,0.59765621 0,0.0117188 0,0.0234375 -0.02344,0.10546875 z m 3.65625,-3.43359371 c 0,-0.1054688 -0.08203,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386718,0.1757812 -0.386718,0.375 0,0.1171875 0.08203,0.2695312 0.269531,0.2695312 0.210937,0 0.398437,-0.1992187 0.398437,-0.3867187 z m -1.429687,3.53906246 c -0.02344,0.09375 -0.05859,0.17578125 -0.05859,0.29296875 0,0.32812499 0.28125,0.59765629 0.667969,0.59765629 0.691406,0 0.996094,-0.96093754 0.996094,-1.06640629 0,-0.09375 -0.08203,-0.09375 -0.105469,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249999 -0.457031,0.84374999 -0.738281,0.84374999 -0.140625,0 -0.175782,-0.082031 -0.175782,-0.2460937 0,-0.15234379 0.05859,-0.29296879 0.117188,-0.44531254 0.07031,-0.1875 0.140625,-0.375 0.222656,-0.55078125 0.05859,-0.1640625 0.316406,-0.80859375 0.339844,-0.890625 0.02344,-0.0703125 0.04687,-0.15234375 0.04687,-0.22265625 0,-0.32812496 -0.28125,-0.58593746 -0.667969,-0.58593746 -0.691406,0 -1.007812,0.94921871 -1.007812,1.06640621 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0351563 0.128906,-0.10546875 0.175782,-0.59765626 0.480469,-0.85546876 0.738282,-0.85546876 0.117187,0 0.175781,0.058594 0.175781,0.2460937 0,0.16406256 -0.03516,0.26953131 -0.210938,0.70312506 z m 2.841797,0.38671874 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128907,-0.43359374 0.03516,-0.12890625 0.105468,-0.45703125 0.152343,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199218,-0.28125001 0.527343,-0.64453121 1.042968,-0.64453121 0.410157,0 0.410157,0.3632812 0.410157,0.49218746 0,0.421875 -0.292969,1.1953125 -0.410157,1.48828125 -0.07031,0.1875 -0.105468,0.2578125 -0.105468,0.375 0,0.36328129 0.304687,0.59765629 0.667968,0.59765629 0.691407,0 1.007813,-0.96093754 1.007813,-1.06640629 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105468,0.046875 -0.128906,0.1171875 -0.164062,0.56249999 -0.46875,0.84374999 -0.738281,0.84374999 -0.152344,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234379 0.03516,-0.24609379 0.152343,-0.56250004 0.09375,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.66796871 -0.539062,-0.78515621 -0.902343,-0.78515621 -0.585938,0 -0.972657,0.3515625 -1.183594,0.63281246 -0.04687,-0.48046876 -0.457031,-0.63281246 -0.75,-0.63281246 -0.292969,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781246 -0.246094,0.65624996 -0.246094,0.69140621 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187506 0.234375,-0.76171876 0.515625,-0.76171876 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062506 -0.05859,0.39843756 -0.105468,0.58593756 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + </g> +</svg> diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/surface_top.svg b/docs/documentation/libraries/aircraftGeometry2/figures/surface_top.svg new file mode 100644 index 0000000..dee7819 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/figures/surface_top.svg @@ -0,0 +1,164 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<!-- Created with Inkscape (http://www.inkscape.org/) --> + +<svg + version="1.1" + id="svg1" + width="281.14801" + height="337.28799" + viewBox="0 0 281.14801 337.28799" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <defs + id="defs1" /> + <g + id="g1"> + <path + id="path1" + d="m 56.69362,0 5.66926,85.04042 22.67754,85.04044 h 28.34682 L 136.06476,85.04042 141.73404,0 Z" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path2" + d="m 62.36288,85.04042 h 73.70188" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path3" + d="m 57.6899,0 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55025,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44603,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path4" + d="m 63.35916,85.04042 c 0,0.55023 -0.44604,0.99628 -0.99628,0.99628 -0.55023,0 -0.99627,-0.44605 -0.99627,-0.99628 0,-0.55023 0.44604,-0.99628 0.99627,-0.99628 0.55024,0 0.99628,0.44605 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path5" + d="m 86.0367,170.08086 c 0,0.55023 -0.44605,0.99627 -0.99628,0.99627 -0.55023,0 -0.99628,-0.44604 -0.99628,-0.99627 0,-0.55025 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44603 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path6" + d="m 142.73032,0 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55024,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44604,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path7" + d="m 137.06104,85.04042 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55025,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44603,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path8" + d="m 114.38351,170.08086 c 0,0.55023 -0.44604,0.99627 -0.99627,0.99627 -0.55025,0 -0.99628,-0.44604 -0.99628,-0.99627 0,-0.55025 0.44603,-0.99628 0.99628,-0.99628 0.55023,0 0.99627,0.44603 0.99627,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <g + id="g8" + aria-label="p 1" + transform="matrix(1.3333333,0,0,1.3333333,178.744,274.492)"> + <path + id="path9" + d="m 0.44395313,1.2188906 c -0.0820313,0.3398438 -0.09375,0.4101563 -0.5390625,0.4101563 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796872,0.035156 0.98437502,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992188 0,-0.1054687 -0.1054688,-0.1054687 -0.2460938,-0.1054687 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609378 0.4804688,-1.99218753 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312497 2.4023438,-2.91796877 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632813 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703122,0 -0.65624997,0.3867188 -0.73828122,0.5742188 -0.1875,0.3398437 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054687 0.10546875,0.1054687 0.12890625,0.1054687 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835937 0.72656252,-1.1835937 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570312 0,0.234375 -0.023437,0.3398438 -0.070312,0.5039063 z M 2.2017656,-3.1053281 c 0.070312,-0.2695313 0.3398438,-0.5507813 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312497 -0.8203125,1.03124997 -1.1835937,1.03124997 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351563 0.023437,-0.16406247 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path10" + d="m 7.3462969,-2.9354063 c 0,-0.1875 -0.011719,-0.1992187 -0.2109375,-0.1992187 -0.4453125,0.4335937 -1.078125,0.4453125 -1.359375,0.4453125 v 0.2460937 c 0.1640625,0 0.6210937,0 1.0078125,-0.1875 v 3.5507813 c 0,0.234375 0,0.328125 -0.6914063,0.328125 H 5.8228594 v 0.2460937 c 0.1289062,-0.011719 0.984375,-0.023437 1.2421875,-0.023437 0.2109375,0 1.0898437,0.011719 1.2421875,0.023437 V 1.2481875 H 8.0494219 c -0.703125,0 -0.703125,-0.09375 -0.703125,-0.328125 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + <path + id="path11" + d="m 100.2101,0 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55023,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <g + id="g11" + aria-label="p 2" + transform="matrix(1.3333333,0,0,1.3333333,178.744,161.10667)"> + <path + id="path12" + d="m 0.44395313,1.2178516 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796872,0.035156 0.98437502,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054688,-0.1054688 -0.2460938,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609374 0.4804688,-1.99218749 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312501 2.4023438,-2.91796871 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632812 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703122,0 -0.65624997,0.3867187 -0.73828122,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656252,-1.1835938 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.2017656,-3.1063672 c 0.070312,-0.2695312 0.3398438,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312501 -0.8203125,1.03125001 -1.1835937,1.03125001 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351562 0.023437,-0.16406251 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path13" + d="m 8.5298906,0.22761719 h -0.234375 c -0.023437,0.15234375 -0.082031,0.5625 -0.1757812,0.6328125 -0.058594,0.0351563 -0.5976563,0.0351563 -0.6914063,0.0351563 H 6.1392656 c 0.7382813,-0.64453125 0.984375,-0.84375 1.3945313,-1.171875 0.515625,-0.41015625 0.9960937,-0.84374999 0.9960937,-1.49999999 0,-0.8437501 -0.7382812,-1.3593751 -1.6289062,-1.3593751 -0.8671875,0 -1.453125,0.609375 -1.453125,1.2421876 0,0.3632813 0.3046875,0.3984375 0.375,0.3984375 0.1640625,0 0.375,-0.1171875 0.375,-0.375 0,-0.1289062 -0.058594,-0.3632812 -0.421875,-0.3632812 0.2226562,-0.5039064 0.6914062,-0.65625 1.0195312,-0.65625 0.703125,0 1.0664063,0.5507811 1.0664063,1.1132812 0,0.609375 -0.4335938,1.08984374 -0.65625,1.33593749 l -1.6875,1.66406251 c -0.070312,0.058594 -0.070312,0.070312 -0.070312,0.2695313 h 2.8828125 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + <path + id="path14" + d="m 100.2101,85.04042 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55023,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <g + id="g14" + aria-label="p 3" + transform="matrix(1.3333333,0,0,1.3333333,178.744,47.72)"> + <path + id="path15" + d="m 0.44395313,1.2178125 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796872,0.035156 0.98437502,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054688,-0.1054688 -0.2460938,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.7460937 0.4804688,-1.99218745 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312505 2.4023438,-2.91796875 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632812 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703122,0 -0.65624997,0.3867187 -0.73828122,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656252,-1.1835938 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.2017656,-3.1064063 c 0.070312,-0.2695312 0.3398438,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312505 -0.8203125,1.03125005 -1.1835937,1.03125005 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234374 0,-0.0351563 0.023437,-0.16406255 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + <path + id="path16" + d="m 6.9127031,-0.83589844 c 0.5507813,0 0.9375,0.375 0.9375,1.125 0,0.86718754 -0.5039062,1.12500004 -0.9023437,1.12500004 -0.28125,0 -0.890625,-0.082031 -1.1835938,-0.49218754 0.328125,-0.0117188 0.3984375,-0.24609375 0.3984375,-0.38671875 0,-0.22265625 -0.1640625,-0.38671875 -0.3867187,-0.38671875 -0.1875,0 -0.3867188,0.1171875 -0.3867188,0.41015625 0,0.65624999 0.7265625,1.07812499 1.5703125,1.07812499 0.9726563,0 1.640625,-0.64453124 1.640625,-1.34765624 0,-0.5390625 -0.4453125,-1.08984375 -1.21875,-1.2421875 0.7382813,-0.26953126 0.9960938,-0.79687496 0.9960938,-1.21874996 0,-0.5507813 -0.6328125,-0.9609375 -1.40625,-0.9609375 -0.7734375,0 -1.359375,0.375 -1.359375,0.9375 0,0.234375 0.1523437,0.3632812 0.3632812,0.3632812 0.2109375,0 0.3515625,-0.1640625 0.3515625,-0.3515625 0,-0.1992187 -0.140625,-0.3515625 -0.3515625,-0.3632812 0.234375,-0.3046875 0.7148438,-0.3867188 0.9726563,-0.3867188 0.3164062,0 0.7617187,0.1523438 0.7617187,0.7617188 0,0.2929687 -0.1054687,0.609375 -0.28125,0.8320312 -0.234375,0.2578125 -0.421875,0.28125 -0.7734375,0.2929688 -0.1757812,0.023437 -0.1875,0.023437 -0.2226562,0.023437 -0.011719,0 -0.070312,0.011719 -0.070312,0.09375 0,0.09375 0.058594,0.09375 0.1757812,0.09375 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" /> + </g> + <path + id="path17" + d="m 100.2101,170.08086 c 0,0.55023 -0.44605,0.99627 -0.99628,0.99627 -0.55023,0 -0.99628,-0.44604 -0.99628,-0.99627 0,-0.55025 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44603 0.99628,0.99628 z" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path18" + d="M 0,0 H 24.76025" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path19" + d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1.3333333,0,0,-1.3333333,85.796333,281.54667)" /> + <path + id="path20" + d="m 2.7650313,-2.5667422 1.6640625,-2.390625 H 3.5384688 L 2.3431563,-3.1643984 1.1595625,-4.9573672 H 0.25721875 L 1.9095625,-2.5315859 0.16346875,-3.359375e-4 H 1.0540938 L 2.3197188,-1.8987734 3.5619063,-3.359375e-4 h 0.9140625 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="x" + transform="matrix(1.3333333,0,0,1.3333333,87.422667,277.07467)" /> + <path + id="path21" + d="M 0,0 V 24.76025" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path22" + d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(0,-1.3333333,-1.3333333,0,52.782667,248.533)" /> + <path + id="path23" + d="M 4.1947422,-4.9576641 H 0.49161719 v 0.6914063 H 3.2572422 L 0.29239844,-0.71547656 V -6.328125e-4 H 4.3236484 V -0.69203906 H 1.2533359 L 4.1947422,-4.2662578 Z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="z" + transform="matrix(1.3333333,0,0,1.3333333,57.254667,247.036)" /> + <path + id="path24" + d="M 2.98883,0 C 2.98883,1.6507 1.6507,2.98883 0,2.98883 -1.6507,2.98883 -2.98883,1.6507 -2.98883,0 c 0,-1.6507 1.33813,-2.98883 2.98883,-2.98883 1.6507,0 2.98883,1.33813 2.98883,2.98883 z" + style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path25" + d="M 3.6786875,-4.9575781 2.295875,-1.1021094 1.03025,-4.9575781 H 0.1865 L 1.8622813,0.02289062 1.5575938,0.80804687 C 1.4404063,1.1596094 1.2529063,1.2885156 0.92478125,1.2885156 c -0.1171875,0 -0.24609375,-0.023437 -0.41015625,-0.058594 v 0.7148437 c 0.15234375,0.082031 0.31640625,0.1171875 0.5273438,0.1171875 0.2578125,0 0.5273437,-0.082031 0.7382812,-0.234375 C 2.0263438,1.6517969 2.1669688,1.4408594 2.3193125,1.0424219 l 2.203125,-6 z m 0,0" + style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + aria-label="y" + transform="matrix(1.3333333,0,0,1.3333333,42.001333,292.58667)" /> + <path + id="path26" + d="M 2.11342,2.11342 -2.11342,-2.11342" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + <path + id="path27" + d="M -2.11342,2.11342 2.11342,-2.11342" + style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" /> + </g> +</svg> diff --git a/docs/documentation/libraries/aircraftGeometry2/getting-started.md b/docs/documentation/libraries/aircraftGeometry2/getting-started.md new file mode 100644 index 0000000..96b0bdc --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/getting-started.md @@ -0,0 +1,97 @@ +# Getting Started {#getting_started} +This guide will show you the basic usage of the geometry objects. + +→ Only the most important operations are shown here. +You can refer to the *unit tests* within the test folder located in the source code for more examples. +The library is completely *test driven* so you can find most functionality in the tests and see how they are supposed to be used. + +→ The following examples assume you execute them in a sequential manner. That means that the objects which appear in the example, which are not directly instantiated, are assumed to already exists and are created in the previous code examples. + +--- + +## Install CGAL +The **CGAL** library is an external dependency we do not provide within the copy of **UNICADO**. So you need to make sure the library is installed and can be found by *CMake*. You can refer to the [→ Getting Started Guide](https://doc.cgal.org/latest/Manual/general_intro.html) of **CGAL** to find instructions for your machine. + +If you use the **MSYS2** environment as the **UNICADO** build setup requires, you can install **CGAL** with this command in your terminal: +```sh +pacman -S mingw-w64-ucrt-x86_64-cgal +``` + +--- + +## Create Sections + +```cpp +/* Includes */ +#include <aircraftGeometry2/geometry/section.h> + +/* Create the shape */ +geom2::Polygon_2 shape; +shape.push_back(geom2::Point_2(0, 0)); +shape.push_back(geom2::Point_2(1, 0)); +shape.push_back(geom2::Point_2(1, 1)); +shape.push_back(geom2::Point_2(0, 1)); + +/* Create the section */ +geom2::PolygonSection section(shape); +``` + +--- + +## Create Surfaces +```cpp +/* Includes */ +#include <aircraftGeometry2/geometry/surface.h> +#include <aircraftGeometry2/geometry/factory.h> + +/* Setup the surface builder */ +geom2::SectionBuilder<geom2::PolygonSection> builder; + +/* Insert section using different methods */ +geom2::Vector_3 offset_z{0.0, 0.0, 0.5}; +geom2::Vector_3 offset_y{0.0, 0.5, 0.5}; +builder.arrange(shape, offset_z, 2); +builder.insert_back(shape, offset_y); + +/* Create the surface */ +geom2::MultisectionSurface<geom2::PolygonSection> surface; +surface.sections = builder.get_result(); +``` + +--- + +## Use Surfaces +### Measure +```cpp +/* Includes */ +#include <aircraftGeometry2/processing/measure.h> + +/* Measure the surface area of a surface */ +double area = geom2::measure::area(surface); +``` + +### Transform +```cpp +/* Includes */ +#include <aircraftGeometry2/processing/transform.h> + +/* Create a triangulated surface mesh */ +geom2::Mesh mesh = geom2::transform::to_mesh(surface.sections); +``` + +--- + +## Import Surfaces +```cpp +/* Includes */ +#include <aircraftGeometry2/hull_surface.h> + +/* Create the nacelle surface as defined in the Aircraft XML file. + * => Assuming the XML file is loaded and exists as a node object. + * => And assuming you have the path `data_dir` where the dat files are stored. + */ +geom2::HullFactory factory{AcXml, data_dir}; +geom2::MultisectionSurface<geom2::PolygonSection> surface = factory.create("Nacelle@ID"); +``` + +--- \ No newline at end of file diff --git a/docs/documentation/libraries/aircraftGeometry2/index.md b/docs/documentation/libraries/aircraftGeometry2/index.md new file mode 100644 index 0000000..0db0ce1 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/index.md @@ -0,0 +1,128 @@ +# Introduction {#mainpage} +This library is based on the older *aircraftGeometry* library and extends it to be more modular. +The modularity and flexibility is achieved by using the high performance [Computational Geometry Algorithms Library](https://www.cgal.org/) also known as **CGAL**. + +The library tries to model the shapes needed for aircraft design as flexibel as possible and tries to limit the assumptions about the shapes as far as possible. +It does not assume a specific orientation of components in the 3D space, but models every component in its own local coordinate space which then can be transformed to any parent coordinate system. +This flexibility is great to very freely define complex shapes which have an arbitrary location/orientation in the 3D space, but is makes it a bit harder to use since you have to remember in which coordinate space you are currently working in. +This documentation explains the different coordinate systems and how they are derived from each other in a later section. + +Each geometry object in this library is referred to as an entity and derives from Entity3D. +This class defines the general properties of the location and orientation of the geometry. +It is used to determine the transformation in between the different coordinate spaces. + +Before we dive into the coordinate systems however, let's get to know how the actual geometry and shapes are represented using **CGAL**. + +@attention → This library does only support discrete shapes. Meaning the shapes are **always** polygons where the discrete vertices of the polygon are connected with lines which form the edges of the polygon. + +@note The Python binding of this library does __not__ include a complete implementation of **CGAL**! +If you want to use the full flexibility of **CGAL** you need to implement your tool in C++. + +--- + +## 2D Geometry +The base of every geometry are 2D sections. The base properties of such a shape are shown here: + +{html: width=30%} + +A section **always** defines its local axes as `X` and `Y`. Where `X` is the *horizontal* axis and `Y` the *vertical* axis. +The origin point of the section is the origin point of the local coordinate system. +The local coordinate system in the scope of a section always refers to the shown *X* and *Y* axes. + +The shape of the section consists of vertices which form the outline polygon. The polygon can have an arbitrary shape. It only needs to be simple, meaning no edges connecting the vertices should intersect each other. +A concrete implementation of this described polygon concept which is used in the library is the [Polygon_2](https://doc.cgal.org/latest/Polygon/index.html#Chapter_2D_Polygon) class from **CGAL**. + +The concept of the polygon shape is formalized with the *C++* concept [Shape](@ref geom2.Shape). +You can use any shape class which satisfies this concept to create the surfaces. +This library currently implements two main types: +- [PolygonSection](@ref geom2.PolygonSection): For creating general "tube" based surfaces, i.e. fuselages or nacelles. +- [AirfoilSection](@ref geom2.AirfoilSection): For creating aerodynamic surfaces which have an airfoil shape. + +Those two section types mainly differ via the applied terminology how their geometric parameters are called. +For example: An **AirfoilSection** can only set the *chord length* as opposed to a **PolygonSection** where you can set the *width* and *height* of the section independently. +→ Refer to the documentation of each section type to see what parameters you can set. + +--- + +## 3D Geometry +The connection from the 2D section to create 3D surfaces are [multi-section surfaces](@ref geom2.MultisectionSurface). A multi-section surface consists of multiple sections which form the single segments of the the surface. A projected view of such a surface might look like this: + +{html: width=30%} + +The example consists of three surface sections which result in **two** surface segments. +Note, that the library rather uses sections and not segments and therefore does not allow for disconnected steps in between the sections directly. You can however insert two section at the same location, which have different shapes. This effectively gives a stepped shape when viewed from any side, but the data structure itself is still connected. + +The main extrusion direction of the surface is along the local `Z` axis. +The origin points of each section are 3D coordinates and define the location of the section within the surface coordinate space. By moving the origin point, the complete section gets moved as well. + +@note The order how you insert the sections in the surface **does** matter as it defines how the sections are connected. + +The surfaces themselves have an origin point which defines their location in the 3D space of some parent entity. + +The multi-section surface is basically just a `std::vector` which contains multiple section objects. +You can use this vector as a regular iterator and apply **STL** algorithms as you are used to. + +--- + +## Coordinate Systems +You should have a basic idea of how the geometry is build up. +Now, comes the part where we position the geometry within one space and actually build up a complete aircraft in its final shape. + +> Keep your right hand ready to always do the "three finger dance" to visualize the right hand coordinate space. Also be aware, **Euler angles** will be involved! :-) + +The library currently differentiates three coordinate spaces: +1. `2D` : The local coordinate system of a 2D section profile/shape. +2. `3D` : The local coordinate system of a multi-section surface which can include multiple 2D sections. +3. `3D` : The global body-fixed coordinate system of the aircraft where all the surfaces finally live and are positioned. + +Whenever one entity is contained within another parent entity, the **parent coordinate system** refers to this parent entity. + +### Transform from 2D to 3D +Let's look at a simple example, which mainly uses 2D coordinates: + +{html: width=30%} + +The *local point* `p` has 2D coordinates and is defined within the *local coordinate* system of `child`. The `child` represents a 2D section here, so it technically does not have a `Z` axis in its local coordinate space. It is just shown here for completeness to always remember the right-hand convention. + +The `child` entity is then contained within the 3D entity `parent`. The `child` has an offset within the `parent` coordinate space as defined by its **origin** point. +Within the scope of `child`, point `p` has the coordinates as they are shown in the figure. +In the scope of `parent`, you have to add the offset of the `child` origin `O` to the coordinates of point `p`. +The resulting coordinates of `p` will then be: +\f{align*}{ +p_{parent, 3d} &= \begin{bmatrix} 2.5 \\1.5 \\0.0 \end{bmatrix} +\f} + +An additional offset of the `child` in `Z` direction is applied to the coordinate transform in the same manner. It just adds the offset to the resulting `Z` coordinate. + +> The **origin** point of a *parent* is always `[0, 0, 0]` when dealing with the **parent scope**! When the *parent* is contained within another parent, its scope becomes the *child scope*. → This paradigm shift is probably the most confusing and hard to imagine part of this library, but it is important to keep the library flexible! + +### Transform from 3D to 3D {#euler_angles} +So far no rotation was involved. The coordinate system had always the same orientation but where just translated within the 3D space. +That is not enough to represent arbitrary geometry. You need a mechanism to orient surfaces which should be extruded in a different direction than the global `Z` axis. For this reason, the idea of the **normal direction** is introduced. + +The normal direction basically defines the direction where the local `Z` axis should point to within a parent scope. +The direction is defined using the [Direction_3](@ref geom2.Direction_3) class of **CGAL** and is a vector in 3D space. Although, this class is technically not concerned about the length of the vector, it is a good idea to make sure, that the resulting length of the normal direction is equal to **1.0**. + +The definition of this normal direction is not enough to unambiguously define the three Euler angles which are needed for the coordinate transform. The normal direction can only define **two** of the three angles. As a consequence, the third Euler angle \f$\gamma\f$ has to be set manually using the `rotation_z` property of the geom2::Entity3D class. +This angle applies a rotation around the local `Z` axis whenever the coordinates of the geometry are transformed to another coordinate system. + +@note The handling of the third Euler angle can still be subjected to change. + +The usage of the Euler angles can lead to unintuitive results, but that is unfortunately the nature of those angles. Here are some results of Euler angles with different normal directions: +|Normal Direction | Euler Angle \f$\alpha\f$ | Euler Angle \f$\beta\f$ | Euler Angle \f$\gamma\f$ | +| --- | :---: | :---: | :---: | +|`[0, 0, 1]` | 0° | 0° | 0° | +|`[0, 1, 1]` | -45° | 0° | 0° | +|`[1, 0, 1]` | 45° | 0° | 90° | + +Understanding the relationship of the normal direction and the Euler angles of this table is key to understand the 3D coordinate transformation with rotation. +**Most importantly,** the last case, where a "simple" rotation around the `Y` axis leads to *two* non-zero angles, especially the third angle \f$\gamma\f$ is not zero any more as opposed to the initial assumption! That is again due to the fact how Euler angles work... + +In the end, you do not need to understand this in great detail to use the library, just be aware, that certain normal directions can lead to a final orientation which was not the one you expected. In such cases, you can use the `rotation_z` parameter to adjust. + +## Class Diagram +Here is an overview how the library is structured: + +{html: width=1000} + +@note This is still work in progress and can change! diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md b/docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md new file mode 100644 index 0000000..93b1c31 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md @@ -0,0 +1,154 @@ +# Convert to Different Format {#tutorial_convert} +The library provides conversion functions which can translate the geometry to different output formats. +It is up to the used converter to define the in- and outputs of this conversion. +The converters do **not** access or write files on the hard drive! +There are just means to translate the geometry to other class concepts. +It is up to those concepts to provide the file access! + +The converters are implemented using the *visitor design pattern*. +The converters inherit from a common base class geom2::io::Converter, for future polymorphic use. +You can "visit" a specific converter with a surface object and the object gets converted to the converter specific return type. +You have the specify how the converter "treats" this surface, since certain formats might treat the same surface geometry differently based on their function (for example wings or stabilizers are both airfoil surfaces, but might get treated differently in the export format). +You can select the surface function base on type by using the surface type variant geom2::io::SurfaceType. +Depending on which type you select for the variant the converter will treat the surface accordingly. + +@note The python bindings do work differently. They use the same underlying functions, but the interface does not enable the polymorphic use (yet)! + +## Convert to aixml::node Object +The following tutorial will show you how you can convert a multi-section surface as a wing surface node to the aircraft XML using the geom2::io::AixmlConverter class. +The *aixml* library will not be discussed in detail in this tutorial. +Refer to its [documentation](https://www.google.de) if you need further information. + +@note The Python examples assume that you imported the following modules: +```python +import pyaircraftGeometry2 as geom2 +import pyaixml as aixml +``` + +### Create Node +The *aixml* converter can only insert nodes into an **existing** node! +This is a precaution, so that the user has to take care of memory management and not the library. +The user can provide heap and/or stack allocated node objects. +The library treats both the same and does not leak memory. ;) + +For this tutorial, we will show two use cases of inserting a node: +- Create a completely new node. +- Update an existing node which has additional, non geometry related nodes as children. + +To create the node objects: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +#include <filesystem> +#include <aixml/node.h> + +/* First create an empty node on the stack */ +node new_node{}; + +/* Load an aircraft exchange file to update */ +std::shared_ptr<node> AcXML = aixml::openDocument("path/to/your/aircraft.xml"); +``` +- <span class="tab-title">Python</span> +```python +# First create an empty node on the stack +new_node = aixml.Node() + +# Load an aircraft exchange file to update +AcXML = aixml.openDocument("path/to/your/aircraft.xml") +``` + +</div> + +### Convert To Node +@attention The following steps assume that you have created a surface which contains valid geometry! +Refer to @ref tutorial_geometry to learn how to do that. + +You can convert an existing surface by visiting the *aixml* converter. + +- Convert surface to an *aerodynamic surface node*: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +#include <aircraftGeometry2/io/convert.h> + +/* Assume this surface has some valid geometry */ +geom2::MultisectionSurface<geom2::AirfoilSection> surface = <<some-geometry>>... + +/* Treat the surface as an airfoil surface */ +geom2::io::SurfaceType wing = geom2::io::AirfoilSurface{surface}; + +/* Convert using the aixml format */ +node& created_node = std::visit(geom2::io::AixmlConverter{new_node, {"aerodynamic_surface", "0", "description"}}, wing); +``` +- <span class="tab-title">Python</span> +```python +# Convert the surface specifically to an aerodynamic surface +created_node = geom2.convert.aixml.to_aerodynamic_surface(new_node, ("aerodynamic_surface", "0", "description"), wing) +``` + +</div> + +Now what is happening here: +- You tell the converter to create a node **inside** `new_node`. +- The created node will have the **name** `"aerodynamic_surface"`. +- The created node will have the **id** `"0"`. +- The created node will have the description attribute with convent** `"description"`. +- The created node will contain the **geometry** of `wing`. +- You get direct access of the **created node** by `created_node`. +- *Be aware*: The `new_node` is also modified! In this case `new_node` is equal to `created_node`. + +That's it. +Now you can save the node as an XML file or further use the node object. + +### Add Another Node +You can add different nodes by specifying different IDs. + +- Add another node using the same surface: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Add another node */ +node& created_node = std::visit(geom2::io::AixmlConverter{new_node, {"aerodynamic_surface", "1", "main wing"}}, wing); +``` +- <span class="tab-title">Python</span> +```python +# Add another node +created_node = geom2.convert.aixml.to_aerodynamic_surface(new_node, ("aerodynamic_surface", "1", "main wing"), wing) +``` + +</div> + +This will add another node inside `new_node`. +However, the `created_node` will just contain the second inserted node! + +### Updating A Node +Let's assume we imported the geometry from an existing aircraft XML file and modified the geometry. +Now, we want to update the data inside the imported node tree. + +- Update an existing node tree with the surface geometry: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Update the existing node */ +node& created_node = std::visit(geom2::io::AixmlConverter{AcXML->at("path/to/wing/geometry/"), {"aerodynamic_surface", "0", "main wing"}}, wing); +``` +- <span class="tab-title">Python</span> +```python +# Update the existing node +created_node = geom2.convert.aixml.to_aerodynamic_surface(AcXML.at("path/to/wing/geometry/"), ("aerodynamic_surface", "0", "main wing"), wing) +``` + +</div> + +This will search for `"path/to/wing/geometry/aerodynamic_surface@0"` and update all geometry specific nodes there. +Existing nodes, which are not written by this library, are not touched and their values are unchanged. +Should the node not exist at the specified node path, it will be created just the same as explained in the previous examples. +The `created_node` contains again a reference to the updated or inserted node. diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md b/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md new file mode 100644 index 0000000..189b70a --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md @@ -0,0 +1,542 @@ +# Using the Factory Classes {#tutorial_factory} +@remark You only need to use the factories when you quickly want to create geometry which **is already** existing in the aircraft XML file. +If you start geometry from scratch you just need to use the geom2::MultisectionSurface and the geom2::SectionBuilder itself. +The surface provides all the necessary tools to build your geometry. + +The factory classes follow the *factory design pattern*, hence the name. +The idea is, that you give this "factory" a **build plan** of what you want and the factory produces or creates the **item** for you. +In our case, the build plan is the *aircraft XML file* and the items are the *resulting surfaces*. + +@note The concept how the geometry is encoded in den aircraft XML file **differs** from the concept used in this library! +The main difference is, that the library uses sections rather than segments! +The factories translate the data of the aircraft XML to the surface concept of this library. +Although, this might change in future release if the aircraft XML structure. + +The library has factories for all major components of the aircraft geometry as they are currently defined in the aircraft XML file: +- @ref hull_factory +- @ref fuselage_factory +- @ref airfoil_surface_factory +- @ref wing_factory +- @ref spar_factory +- @ref control_device_factory + +@note The Python examples assume that you imported the following modules: +```python +import pyaircraftGeometry2 as geom2 +import pyaixml as aixml +``` + +--- + +## Preface +Before you can get started extracting the surfaces from the aircraft XML file, you need to have the file loaded as a `node` object/pointer. +It is best if you use the `std::filesystem::path` class to specify the file path. + +- Load the aircraft XML file: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +#include <filesystem> +#include <aixml/node.h> +std::filesystem::path file{"path/to/your/aircraft.xml"}; +std::shared_ptr<node> AcXML = aixml::openDocument(file); +``` +Since a `std::filesystem::path` can be constructed from a string, this is also possible: +```cpp +#include <aixml/node.h> +std::shared_ptr<node> AcXML = aixml::openDocument("path/to/your/aircraft.xml"); +``` +- <span class="tab-title">Python</span> +```python +AcXML = aixml.openDocument("path/to/your/aircraft.xml") +``` + +</div> + +@attention Please always use `/` as the separator! The `std::filesystem` library takes care of converting this separator to the OS appropriate one. +However, it does not deal very well with strings where you use `\` or `\\` as the separator, since these are valid characters for file names on *UNIX* systems. + +**Please note:** + +For the sake of maintainability of this documentation, the following examples do not provide the content of the aircraft XML file. Instead, each example lists the XML file which is used for *unit testing* the class, since those files directly set the requirements of the XML content and are always up to date. + +Due to changes in the format of the aircraft exchange file, there are subtle differences when using the factories with the newer version. +You can jump to @ref tutorial_aixml_v3 to directly get started with the newer version. +The factories support both versions and automatically deduce from the input data which version of the aircraft XML you are using. + +--- + +## Aircraft XML Version 2.0.0 {#tutorial_aixml_v2} + +@attention The factories **always** assume a relative path to `"AcftExchangeFile/Geometry"` when specifying paths to geometry nodes! +At least for now... + +Most of the surfaces defined in the aircraft XML **version 2.0.0** file use `*.dat` files to specify the shape of the surface sections. +The paths to those files are denoted as *relative* paths. +The factories automatically deduce the *parent* path of the proved aircraft XML file and search for the geometry data **relative** to this parent path. + +To illustrate this, let's assume you have the following directory structure: +``` +/some/path/to/Project_Folder +├── aircraft.xml +└── geometryData + ├── airfoilData + │ ├── F15_11.dat + │ └── n0012.dat + ├── fuselage.dat + └── nacelle.dat +``` + +By passing the node of the `aircraft.xml` file, the factories automatically deduce the parent path to be `/some/path/to/Project_Folder/` and remember this path internally. +It is then enough to specify the path, to i.e. the `n0012.dat` file, by adding this to the content of the aircraft XML file: +```xml +<SegmentPointData ToolLevel="1">geometryData/airfoilData/n0012.dat</SegmentPointData> +``` + +If the specified data file does not exist or the path is wrong, the library does **not** throw an error in the current implementation! When loading a `*.dat` file which does not exist, the library just returns a shape which contains a single point with the coordinates `[0.0, 0.0, 0.0]`. See @ref geom2.io.read_dat_file for more information. + +### Hull Factory {#hull_factory} +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/hull.xml` + +The hull factory is the most basic factory of the library and can be used to create simple hulls or tube surfaces, for example **nacelles**. +All described functionality of this factory does also apply to all other factories since they are all derived from the same base factory class. + +- Create a hull factory: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the hull factory */ +#include <aircraftGeometry2/hull_surface.h> +geom2::HullFactory factory{AcXML, "./geometryData"}; +``` +- <span class="tab-title">Python</span> +```python +# Create the hull factory +factory = geom2.factory.HullFactory(AcXML, "./geometryData") +``` + +</div> + +@note You can omit the path `"./geometryData"` for the *version 2.0.0* aircraft exchange files and just give an empty string. The factories then will search for the directory as explained before. + +After creating the factory with the existing aircraft XML data, the factory knows what to do and you can ask it to create the complete surface for you. +The aircraft XML can contain several surfaces of the same type, but with a different id. +You can have multiple *nacelles* for example. +That is why you have to tell the factory which surface you want to extract from the aircraft XML. +You can do this by specifying the **surface name** and its **id**. +You can use the id notation as provided by the **aixml** library. + +You are not limited to just creating *nacelles* with this factory. +As long as the data structure of the custom surface follows the convention as defined in `aircraftGeometry2/test/stubs/acxml-v2/hull.xml` it can be created with this factory. + +- Get **nacelle** with the id `SimpleHull` from the factory: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the nacelle surface */ +geom2::MultisectionSurface<geom2::PolygonSection> nacelle = factory.create("Nacelle@SimpleHull"); +``` +- <span class="tab-title">Python</span> +```python +# Create the nacelle surface +nacelle = factory.create("Nacelle@SimpleHull") +``` + +</div> + +@attention The current aircraft XML does not define the orientation of those surfaces, yet. +Therefore, the normal direction when retrieving the surface from the factory is always the default direction. +The origin point, however, is extracted from the aircraft XML file. + +The resulting multi-section surface is **moved** from the factory! +This means you can use the same factory multiple times and create different surfaces by passing different surface id's. + +If you only need the factory **once**, you can abbreviate the process as follows: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the nacelle surface */ +geom2::MultisectionSurface<geom2::PolygonSection> nacelle = geom2::HullFactory{AcXML, ""}.create("Nacelle@SimpleHull"); +``` +- <span class="tab-title">Python</span> +```python +# Create the nacelle surface +nacelle = geom2.factory.HullFactory(AcXML, "").create("Nacelle@SimpleHull") +``` + +</div> + +### Fuselage Factory {#fuselage_factory} +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/fuselage.xml` + +The fuselage factory does basically the same thing as the hull factory. +But since the aircraft XML currently defines the data structure for fuselages a bit differently than for nacelles, this specialized factory exists. + +- Create the fuselage surface: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the factory */ +#include <aircraftGeometry2/fuselage.h> +geom2::FuselageFactory factory{AcXML, ""}; + +/* Create the surface */ +geom2::MultisectionSurface<geom2::PolygonSection> fuselage = factory.create("Fuselage@SimpleFuselage"); +``` +- <span class="tab-title">Python</span> +```python +# Create the factory +factory = geom2.factory.FuselageFactory(AcXML, "") + +# Create the surface +fuselage = factory.create("Fuselage@SimpleFuselage") +``` + +</div> + +### Airfoil Surface Factory {#airfoil_surface_factory} +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/pylon.xml` + +The airfoil surface factory can be used to create the following surfaces from the aircraft XML file: +- **Pylon** +- **VerticalSurface** + +The main difference of this factory is, that is uses geom2::AirfoilSection when creating the multi-section surface. + +- Create a pylon surface: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the factory */ +#include <aircraftGeometry2/airfoil_surface.h> +geom2::AirfoilSurfaceFactory factory{AcXML, ""}; + +/* Create the surface */ +geom2::MultisectionSurface<geom2::AirfoilSection> pylon = factory.create("Pylon@SimplePylon"); +``` +- <span class="tab-title">Python</span> +```python +# Create the factory +factory = geom2.factory.AirfoilSurfaceFactory(AcXML, "") + +# Create the surface +pylon = factory.create("Pylon@SimplePylon") +``` + +</div> + +@attention As recommended in @ref tutorial_airfoil_surface , the airfoil factories use the **negative** local `Z` direction as the extrusion or span direction! + +### Wing Factory {#wing_factory} +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/wing.xml` + +The wing factory specializes the airfoil surface factory. +Again, due to a slight different data structure in the aircraft XML file. +The functionality is otherwise the same. + +- Create a wing surface: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the factory */ +#include <aircraftGeometry2/airfoil_surface.h> +geom2::WingFactory factory{AcXML, ""}; + +/* Create the surface */ +geom2::MultisectionSurface<geom2::AirfoilSection> wing = factory.create("LiftingSurface@MainWing"); +``` +- <span class="tab-title">Python</span> +```python +# Create the factory +factory = geom2.factory.WingFactory(AcXML, "") + +# Create the surface +wing = factory.create("LiftingSurface@MainWing") +``` + +</div> + +@note The wing factory does **not** produces discontinuous sections! +It takes the inner length of the first segment as the length for the first section and then continuous by using the outer length of the following segments from the aircraft XML file! + +### Spar Factory {#spar_factory} +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/wing.xml` + +The aircraft XML file provides the relative positions of the front and rear spar location of the lifting surfaces. +The spar factory creates a planar surface using those relative coordinates. +Each section of the spar contains two coordinates: +The **front** and the **rear** position in relative coordinates ranging from *0* to *1*. +The position is defined by the local `X` direction, the `Y` coordinate of the section points is **always** *0.0*! +The `Z` offset of these sections corresponds to the relative span position and also ranges from *0* to *1*. + +- Create the spar of a wing: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the factory */ +#include <aircraftGeometry2/airfoil_surface.h> +geom2::SparFactory factory{AcXML, ""}; + +/* Create the surface */ +geom2::MultisectionSurface<geom2::PolygonSection> spar = factory.create("LiftingSurface@MainWing"); +``` +- <span class="tab-title">Python</span> +```python +# Create the factory +factory = geom2.factory.SparFactory(AcXML, "") + +# Create the surface +spar = factory.create("LiftingSurface@MainWing") +``` + +</div> + +@note This factory returns a multi-section surface which contains geom2::PolygonSection as the section type. +Be aware, that the spar geometry is **not** considered an airfoil shape in the context of this library. +The extrusion direction, however, is the **negative** local `Z` direction as for the airfoil surfaces, so that the spar geometry is at the same location as the wing geometry. +The origin point of the spar is the same as the wing origin as well. + +The spar factory just returns the spar surface and **not** the wing surface. +You have to use the wing factory separately to create the wing surface. + +### Control Device Factory {#control_device_factory} +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/wing.xml` + +As for the spar geometry, the control device geometry is coupled to the wing geometry it belongs to. +The handling of control devices is different from the other geometry objects in the way, that all dimensions are normalized between [0, 1]. +The local `Z` coordinates are normalized using the **span** of the corresponding wing and the local `X` coordinates are normalized using the **chord length** of the wing at the corresponding location of the control device. +Since the control devices are modelled as "flat plates", they do **not** have a *thickness* or local `Y` coordinates greater than 0. + +You can use the control device factory to extract single devices from the aircraft XML file using geom2::ControlDeviceFactory::create. + +- Create the geometry of a control device of a wing: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the factory */ +#include <aircraftGeometry2/airfoil_surface.h> +geom2::ControlDeviceFactory factory{AcXML, ""}; + +/* Create the surface */ +geom2::MultisectionSurface<geom2::PolygonSection> flap = factory.create("LiftingSurface@MainWing/SurfaceParameters/HalfSurfaceDescription/ControlDeviceSetup/TEDevice@1"); +``` +- <span class="tab-title">Python</span> +```python +# Create the factory +factory = geom2.factory.ControlDeviceFactory(AcXML, "") + +# Create the surface +flaps = factory.create("LiftingSurface@MainWing/SurfaceParameters/HalfSurfaceDescription/ControlDeviceSetup/TEDevice@1") +``` + +</div> + +--- + +## Aircraft XML Version 3.0.0 {#tutorial_aixml_v3} + +@attention The factories **always** assume a relative path to `"aircraft_exchange_file/component_design/"` when specifying paths to geometry nodes! +At least for now... + +The newer version of the aircraft XML file does not expect the geometry files at a certain location as a result of the modularization of the whole project. +Instead, each surface factory of this library expects a path where to find the geometry files. +So when using the factories, you **must** specify this *data directory* otherwise the factories will not know where to look for the geometry. +The node defining the geometry file in the aircraft XML simply looks like this: +```xml +<value>n0012</value> +``` +The library will then try to use a `n0012.dat` file from the `data_directory` you have given it. + +@note In the following examples it is assumed, that you have the same directory structure for the *version 3.0.0* XML files as for the *version 2.0.0* files in @ref tutorial_aixml_v2 ! + +### Hull Factory +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/hull.xml` + +The hull factory is the most basic factory of the library and can be used to create simple hulls or tube surfaces, for example **nacelles**. +All described functionality of this factory does also apply to all other factories since they are all derived from the same base factory class. + +- Create a hull factory: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the hull factory */ +#include <aircraftGeometry2/hull_surface.h> +geom2::HullFactory factory{AcXML, "./geometryData"}; +``` +- <span class="tab-title">Python</span> +```python +# Create the hull factory +factory = geom2.factory.HullFactory(AcXML, "./geometryData") +``` + +</div> + +@note You **cannot** omit the path `"./geometryData"` for the *version 3.0.0* aircraft exchange files! + +- Get **nacelle** with the id `0` from the factory: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the nacelle surface */ +geom2::MultisectionSurface<geom2::PolygonSection> nacelle = factory.create("propulsion/specific/geometry/nacelle@0"); +``` +- <span class="tab-title">Python</span> +```python +# Create the nacelle surface +nacelle = factory.create("propulsion/specific/geometry/nacelle@0") +``` + +</div> + +Note that the path to the nacelle node needs more information than in @ref tutorial_aixml_v2 since the structure of the aircraft exchange file *version 3.0.0* allows for a more flexible arrangement for different components. +Since those components still use the some geometry encoding throughout the file, the same factories can be used to create the geometry surfaces. +However, the factories cannot know where to find each individual component. +That is why you have to give the more detailed node path when creating the surfaces, so that the factory knows where to find the specific nodes. +This makes the factory more flexible, since you are not confined to certain locations within the exchange file to extract geometry from, but you can use any node from the exchange file as long as its content structure satisfies the requirements of the surface. (Remember: The requirements are documented in the given XML example files.) + +### Fuselage Factory +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/fuselage.xml` + +The fuselage factory does basically the same thing as the hull factory. +But since the aircraft XML currently defines the data structure for fuselages a bit differently than for nacelles, this specialized factory exists. + +- Create the fuselage surface: + +</div> +`tbd` + +### Airfoil Surface Factory +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/pylon.xml` + +`tbd` + +@attention As recommended in @ref tutorial_airfoil_surface , the airfoil factories use the **negative** local `Z` direction as the extrusion or span direction! + +### Wing Factory +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/wing.xml` + +The wing factory creates the aerodynamic surfaces of the wings. + +- Create a wing surface: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the factory */ +#include <aircraftGeometry2/airfoil_surface.h> +geom2::WingFactory factory{AcXML, "./geometryData/airfoilData"}; + +/* Create the surface */ +geom2::MultisectionSurface<geom2::AirfoilSection> wing = factory.create("wing/specific/geometry/aerodynamic_surface@0"); +``` +- <span class="tab-title">Python</span> +```python +# Create the factory +factory = geom2.factory.WingFactory(AcXML, "./geometryData/airfoilData") + +# Create the surface +wing = factory.create("wing/specific/geometry/aerodynamic_surface@0") +``` + +</div> + +### Spar Factory +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/wing.xml` + +The aircraft XML file provides the relative positions of the front and rear spar location of the lifting surfaces. +The spar factory creates a planar surface using those relative coordinates. +Each section of the spar contains two coordinates: +The **front** and the **rear** position in relative coordinates ranging from *0* to *1*. +The position is defined by the local `X` direction, the `Y` coordinate of the section points is **always** *0.0*! +The `Z` offset of these sections corresponds to the relative span position and also ranges from *0* to *1*. + +- Create the spar of a wing: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the factory */ +#include <aircraftGeometry2/airfoil_surface.h> +geom2::SparFactory factory{AcXML, "./geometryData/airfoilData"}; + +/* Create the surface */ +geom2::MultisectionSurface<geom2::PolygonSection> spar = factory.create("wing/specific/geometry/aerodynamic_surface@0/spars/spar@0"); +``` +- <span class="tab-title">Python</span> +```python +# Create the factory +factory = geom2.factory.SparFactory(AcXML, "./geometryData/airfoilData") + +# Create the surface +spar = factory.create("wing/specific/geometry/aerodynamic_surface@0/spars/spar@0") +``` + +</div> + +@note This factory returns a multi-section surface which contains geom2::PolygonSection as the section type. +Be aware, that the spar geometry is **not** considered an airfoil shape in the context of this library. +The extrusion direction, however, is the **negative** local `Z` direction as for the airfoil surfaces, so that the spar geometry is at the same location as the wing geometry. +The origin point of the spar is the same as the wing origin as well. + +The spar factory just returns the spar surface and **not** the wing surface. +You have to use the wing factory separately to create the wing surface. + +### Control Device Factory +> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/wing.xml` + +As for the spar geometry, the control device geometry is coupled to the wing geometry it belongs to. +The handling of control devices is different from the other geometry objects in the way, that all dimensions are normalized between [0, 1]. +The local `Z` coordinates are normalized using the **span** of the corresponding wing and the local `X` coordinates are normalized using the **chord length** of the wing at the corresponding location of the control device. +Since the control devices are modelled as "flat plates", they do **not** have a *thickness* or local `Y` coordinates greater than 0. + +You can use the control device factory to extract single devices from the aircraft XML file using geom2::ControlDeviceFactory::create. + +- Create the geometry of a control device of a wing: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +/* Create the factory */ +#include <aircraftGeometry2/airfoil_surface.h> +geom2::ControlDeviceFactory factory{AcXML, "./geometryData/airfoilData"}; + +/* Create the surface */ +geom2::MultisectionSurface<geom2::PolygonSection> flap = factory.create("wing/specific/geometry/aerodynamic_surface@0/control_devices/control_device@0"); +``` +- <span class="tab-title">Python</span> +```python +# Create the factory +factory = geom2.factory.ControlDeviceFactory(AcXML, "./geometryData/airfoilData") + +# Create the surface +flaps = factory.create("wing/specific/geometry/aerodynamic_surface@0/control_devices/control_device@0") +``` + +</div> + +--- diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md b/docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md new file mode 100644 index 0000000..fa4f26c --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md @@ -0,0 +1,347 @@ +# Using the Geometry Classes {#tutorial_geometry} +The following tutorial provides you with the basic usage to create your own shapes. +For each instruction the C++ and Python code is available. +The resulting images of each step are not part of the library, though. +Those images are rendered with a 3D animation software after the geometry is exported as a `*.ply` file after each step. +The tutorial will show as a last step, how this is done. + +@note The Python examples assume that you imported the module with: +```python +import pyaircraftGeometry2 as geom2 +``` + +--- + +## Hull Surface +This tutorial shows you how you can define a simple hull surface. +The hull surface is basically a tube where you can define the shape of the cross sections. + +### Step 1 - Loading DAT files +The simplest way to start with a shape for the sections is to load the 2D data from a `*.dat` file. +An example file which defines the shape of a circle is provided as part of the unit tests. +The file can be found here: `aircraftGeometry2/test/stubs/circle-tab.dat`. + +- Load the geometry: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +#include <aircraftGeometry2/io/dat.h> +geom2::Polygon_2 shape = geom2::io::read_dat_file("aircraftGeometry2/test/stubs/dat-files/circle-tab.dat"); +``` +- <span class="tab-title">Python</span> +```python +shape = geom2.io.read_dat_file("aircraftGeometry2/test/stubs/dat-files/circle-tab.dat") +``` + +</div> + +@note Make sure the path to the file is correct according to your current working directory! + +This will give you the following 2D polygon: + +{html: width=600} + +The 2D polygon is **always** oriented in the `XY`-Plane. +The 2D geometry gets oriented in the 3D space when you use it as the section of a surface. + +### Step 2 - Create Section +The imported shape just contains the coordinates of the vertices of the polygon. +You have to create a `geom2::PolygonSection` from this shape to further create geometry. + +- Create a section: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +#include <aircraftGeometry2/geometry/section.h> +geom2::PolygonSection section(shape); +``` +- <span class="tab-title">Python</span> +```python +section = geom2.PolygonSection(shape) +``` + +</div> + +This does not change the shape of the polygon, but it gives the shape an orientation in the 3D space. +The geom2::PolygonSection class has also methods to manipulate the shape of the polygon. + +### Step 3 - Create Surface +After converting the imported polygon to a section, you can use this section to build a surface. +This surface is basically a container for different PolygonSections, see geom2::MultisectionSurface. + +This library uses the *builder design pattern* to build a surface. +This builder has some convenient methods to quickly create a surface. +The key concept is, that you first create the builder, perform the build steps and then you can retrieve the result from the builder to further use the surface. + +- Create a surface with two sections: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +#include <aircraftGeometry2/geometry/factory.h> +/* Create builder */ +geom2::SectionBuilder<geom2::PolygonSection> builder; + +/* Instruct the builder to insert sections */ +builder.insert_back(section, geom2::Vector_3(0,0,0)); // Section 0 +builder.insert_back(section, geom2::Vector_3(0,0,1)); // Section 1 with offset in Z direction + +/* Create the surface */ +geom2::MultisectionSurface<geom2::PolygonSection> surface; +surface.sections = builder.get_result(); +``` +- <span class="tab-title">Python</span> +```python +# Create the builder +builder = geom2.PolygonBuilder() + +# Instruct the builder to insert sections +builder.insert_back(section, geom2.Vector_3(0,0,0)) # Section 0 +builder.insert_back(section, geom2.Vector_3(0,0,1)) # Section 1 with offset on Z direction + +# Create the surface +surface = geom2.PolygonSurface() +surface.sections = builder.get_result() +``` + +</div> + +@remark There is also the geom2::SectionBuilder::arrange function which can be used to insert multiple equidistant sections of the same shape. + +A few things to note about the builder: +1. The section gets copy-constructed within the builder. So you can use the same section multiple times and even change some parameters in between without affecting the already inserted sections. +2. The result of the builder gets **moved**! This means, after you retrieve the result, the builder is "empty" and does not contain a valid surface anymore. +3. Instead of providing a geom2::PolygonSection as the shape input, you can directly use a geom2::Polygon_2. The builder converts the polygon to a section automatically in this case. + +The resulting surface has two circular sections and looks like a cylinder. +The length of the cylinder is 1 as the defined by the offset of the second section. + +{html: width=600} + +### Step 4 - Modify Section +The builder is only intended to create the basic structure of the multi-section surface with the necessary section count. +It does not provide all the flexibility which is needed to form any surface. +You can access and modify each section of the surface instead. + +- Set the width of the second section: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +surface.sections.back().set_width(0.5); +``` +- <span class="tab-title">Python</span> +```python +surface.sections[-1].set_width(0.5) +``` + +</div> + +The top section looks like this now: + +{html: width=600} + +The **width** refers to the dimension in the local `X` direction of the section. +Whereas the **height** refers to the `Y` direction. +You can set the width and height separately for geom2::PolygonSection. +The **scale** methods applies an **uniform** scaling with the origin point of the section as the scaling center. + +### Step 5 - Move Section +You also change the location of the section within the surface afterwards, but **not the order of the sections!** +The location of the section within the local coordinate system of the section is defined by the origin point of the section. + +- Change the location of a section: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +surface.sections[0].origin = geom2::Point_3(-0.5,0,0); +``` +- <span class="tab-title">Python</span> +```python +surface.sections[0].origin = geom2.Point_3(-0.5,0,0); +``` + +</div> + +@note **CGAL** does not supply a mechanism to change single components of points or vectors. You always have to assign a complete new set of coordinates. However, you can read the value of single coordinate components. + +As you can see, the bottom section moved in negative X direction: + +{html: width=600} + +### Step 6 - Orient Surface +So far, we only operated in the local coordinate system of the multi-section surface. +The surface can be aligned in the global 3D space using its **origin** and, most importantly, its **normal** direction. +The main extrusion axis within the **local coordinate** system of the surface is always the `Z` direction, as you can see in the previous steps. +You can specify the orientation of the *local* `Z` axis within the *global* 3D space by defining the direction of the **normal**. +The **normal** defacto represents the orientation of the `Z` axis. + +@attention It is not enough to just specify the `Z` direction to fully define the orientation of geometry within the 3D space. This only defines 2 of the 3 necessary Euler angles, the third is technically undefined! See @ref euler_angles for more details. The library assumes the third angle to be 0°, which leads most of the times to the expected result. + +- Orient the surface along global X direction: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +surface.normal = geom2::Direction_3(1,0,0); +``` +- <span class="tab-title">Python</span> +```python +surface.normal = geom2.Direction_3(1,0,0); +``` + +</div> + +In this example the result is this: + +{html: width=600} + +The highlighted coordinate system in the figure is now the **global** coordinate space and not the local any more. +The local coordinate system of the surface remains unchanged. +You can also see that the orientation introduced a rotation around the local `Z` axis in this case, again see @ref euler_angles why this is. +For the expected result you need to set the parameter `rotate_z` of the surface. + +@note This behavior is admittedly not the most intuitive result. In further release this might get fixed. In a practical point of view, you are most often interested in properties within the local coordinate system of the surface rather then global properties in between multiple surfaces. + +### Step 7 - Move Surface +As for moving the location of a section, the same principle applies when moving the surface within the global 3D space. +The **origin** of the surface defines the global position. +The **origin** is located at the origin of the first section. + +- Move surface + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +surface.origin = geom2::Point_3(0,-0.25,0); +``` +- <span class="tab-title">Python</span> +```python +surface.normal = geom2.Point_3(0,-0.25,0); +``` + +</div> + +This moves the surface *0.25* in negative `Y` direction: + +{html: width=600} + +### Step 8 - Measure Surface +After creating the geometry, you can use different measurement tools to extract dimensions. +The measurement tools always reference the surface in its local coordinate system. +So the results do not depend on the global orientation of the surface. + +- Measure the width of the surface at local `Z` position 0.5: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +#include <aircraftGeometry2/processing/measure.h> +double width = geom2::measure::width(surface, 0.5); +``` +- <span class="tab-title">Python</span> +```python +width = geom2.measure.width(surface, 0.5) +``` + +</div> + +This should result in `width = 0.75`. + +@note There are measurement functions which use additional properties of the geom2::MultisectionSurface as their input, because their result depends on more information than contained in the *sections* vector. See the documentation of each measurement for more information. + +### Step 9 - Export PLY (optional) +As an optional step, you can export your surface as a triangulated surface mesh in the **PLY** format. + +- Export mesh: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +#include <CGAL/Surface_mesh/IO/PLY.h> +geom2::Mesh mesh = geom2::transform::to_mesh(surface); +CGAL::IO::write_PLY("./mesh.ply", mesh); +``` +- <span class="tab-title">Python</span> +```python +geom2.io.export_ply(surface, "./mesh.ply") +``` + +</div> + +@note This function is rather a debugging tool than a fully tested tool for production use! + +--- + +## Airfoil Surface {#tutorial_airfoil_surface} +An airfoil surface works similar to the hull surface. +Instead of using polygon sections, the airfoil surface expects geom2::AirfoilSection as inputs. +Those sections follow the same principle as the polygon sections, but offer different methods which are more suitable/intuitive for airfoil shapes. + +- You can load an airfoil files with the corresponding function: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +#include <aircraftGeometry2/io/dat.h> +geom2::Polygon_2 shape = geom2::io::read_airfoil("aircraftGeometry2/test/stubs/n0012-tab.dat"); +``` +- <span class="tab-title">Python</span> +```python +shape = geom2.io.read_airfoil("aircraftGeometry2/test/stubs/n0012-tab.dat") +``` + +</div> + +This reads the dat file **and** additionally sorts the points that the resulting polygon does not intersect itself, because airfoil coordinate files specify first the upper coordinates and then the lower coordinates which would result in a discontinuity in between the upper and lower part. + +- Create an initial airfoil surface: + +<div class="tabbed"> + +- <span class="tab-title">C++</span> +```cpp +#include <aircraftGeometry2/geometry/factory.h> +/* Create builder */ +geom2::SectionBuilder<geom2::AirfoilSection> builder; + +/* Instruct the builder to arrange 3 sections */ +builder.arrange(section, geom2::Vector_3(0,0,-1), 3); + +/* Create the surface */ +geom2::MultisectionSurface<geom2::AirfoilSection> surface; +surface.sections = builder.get_result(); +``` +- <span class="tab-title">Python</span> +```python +# Create the builder +builder = geom2.AirfoilBuilder() + +# Instruct the builder to arrange 3 sections +builder.arrange(section, geom2.Vector_3(0,0,-1), 3) + +# Create the surface +surface = geom2.AirfoilSurface() +surface.sections = builder.get_result() +``` + +</div> + +This gives a planar rectangular wing shape: + +{html: width=600} + +@attention You should always use the **negative** `Z` direction as the main span direction of an airfoil surface. Only then do the angles like twist or dihedral rotate in the direction you would expect. diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial.md b/docs/documentation/libraries/aircraftGeometry2/tutorial.md new file mode 100644 index 0000000..cb11ba0 --- /dev/null +++ b/docs/documentation/libraries/aircraftGeometry2/tutorial.md @@ -0,0 +1,5 @@ +# Tutorial {#Tutorial} +There are tutorial available for the following topics: +- @subpage tutorial_geometry +- @subpage tutorial_factory +- @subpage tutorial_convert \ No newline at end of file diff --git a/docs/documentation/sizing.md b/docs/documentation/sizing.md index 0a1bf73..833c5a9 100644 --- a/docs/documentation/sizing.md +++ b/docs/documentation/sizing.md @@ -23,7 +23,7 @@ Furthermore an initial estimation of the takeoff mass is done. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/initial_sizing/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/initial_sizing/index.md)| --- @@ -37,7 +37,7 @@ The parameters comprised in this file can have different attributes as e.g. Desc |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/create_mission_xml/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|-| --- @@ -48,7 +48,7 @@ The **fuselage_design** module calculates characteristic parameters and generate |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/fuselage_design/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/fuselage_design/content/index.md)| --- @@ -59,7 +59,7 @@ The **wing_design** module calculates characteristic parameter of the aircraft m |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/wing_design/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/wing_design/content/index.md)| --- @@ -71,7 +71,7 @@ It takes takes the controllability as wells as the static margin of the aircraft |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/empennage_design/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/empennage_design/content/index.md)| --- @@ -82,7 +82,7 @@ It takes takes the controllability as wells as the static margin of the aircraft |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](aircraft-design/tank_design/doc/content/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](sizing/tank_design/content/index.md)| --- @@ -100,7 +100,7 @@ Also the mass properties are analyzed. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|3.0.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/propulsion_design/doc/content/index.md)| +|3.0.0|:simple-cplusplus: |GPLv3|[Link](sizing/propulsion_design/content/index.md)| --- @@ -111,7 +111,7 @@ The **landing_gear_design** module calculates characteristic parameters for the |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/landing_gear_design/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/landing_gear_design/content/index.md)| --- @@ -123,6 +123,6 @@ It dimensions ATA chapter systems in terms of mass and energy requirement divide |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](aircraft-design/systems_design/doc/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/systems_design/content/index.md)| --- diff --git a/docs/documentation/sizing/initial_sizing/getting-started.md b/docs/documentation/sizing/initial_sizing/getting_started.md similarity index 100% rename from docs/documentation/sizing/initial_sizing/getting-started.md rename to docs/documentation/sizing/initial_sizing/getting_started.md diff --git a/docs/documentation/sizing/wing_design/getting-started.md b/docs/documentation/sizing/wing_design/getting_started.md similarity index 100% rename from docs/documentation/sizing/wing_design/getting-started.md rename to docs/documentation/sizing/wing_design/getting_started.md diff --git a/docs/get-involved/style/python-modularization.md b/docs/get-involved/style/python-modularization.md index ef9af3d..d8a39ba 100644 --- a/docs/get-involved/style/python-modularization.md +++ b/docs/get-involved/style/python-modularization.md @@ -15,7 +15,7 @@ This documentation provides a detailed overview of helpful guidelines and conven --- -# First things first ... Easter egg hunt 🪺 +# First things first ... Easter egg hunt 1. Please open a Python interpreter or IDE of your choice. 2. Start an interactive Python console. diff --git a/mkdocs.yml b/mkdocs.yml index 2431431..1a2b2af 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -180,96 +180,152 @@ nav: # Customizes the main navigation struc - Sizing: - Modules: documentation/sizing.md # Link to aircraft sizing documentation. - Initial Sizing: - - Introduction: documentation/aircraft-design/initial_sizing/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/initial_sizing/doc/content/getting_started.md - - Changelog: documentation/aircraft-design/initial_sizing/doc/content/changelog.md + - Introduction: documentation/sizing/initial_sizing/index.md + - Getting Started: documentation/sizing/initial_sizing/getting_started.md + - Methods: documentation/sizing/initial_sizing/initialSizing.md + - Changelog: documentation/sizing/initial_sizing/changelog.md - API Reference: - initial_sizing/classes.md - initial_sizing/namespaces.md - initial_sizing/files.md - initial_sizing/functions.md - - initial_sizing/pages.md - - Create Mission XML: - - Introduction: documentation/aircraft-design/create_mission_xml/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/create_mission_xml/doc/content/getting_started.md - - API Reference: - - create_mission_xml/classes.md - - create_mission_xml/namespaces.md - - create_mission_xml/files.md - - create_mission_xml/functions.md - - create_mission_xml/pages.md - Fuselage Design: - - Introduction: documentation/aircraft-design/fuselage_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/fuselage_design/doc/content/getting_started.md + - Introduction: documentation/sizing/fuselage_design/index.md + - Getting Started: documentation/sizing/fuselage_design/getting_started.md + - Design Method: documentation/sizing/fuselage_design/design_method.md + - Run your First Design: documentation/sizing/fuselage_design/run_your_first_design.md + - Software Architecture: documentation/sizing/fuselage_design/software_architecture.md - API Reference: - fuselage_design/classes.md - fuselage_design/namespaces.md - fuselage_design/files.md - fuselage_design/functions.md - - fuselage_design/pages.md - Wing Design: - - Introduction: documentation/aircraft-design/wing_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/wing_design/doc/content/getting_started.md + - Introduction: documentation/sizing/wing_design/index.md + - Getting Started: documentation/sizing/wing_design/getting_started.md - API Reference: - wing_design/classes.md - wing_design/namespaces.md - wing_design/files.md - wing_design/functions.md - - wing_design/pages.md - Empennage Design: - - Introduction: documentation/aircraft-design/empennage_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/empennage_design/doc/content/getting_started.md + - Introduction: documentation/sizing/empennage_design/index.md + - Getting Started: documentation/sizing/empennage_design/getting_started.md + - Basic Concepts: documentation/sizing/empennage_design/basic_concepts.md + - Run your First Design: documentation/sizing/empennage_design/dfw.md - API Reference: - empennage_design/classes.md - empennage_design/namespaces.md - empennage_design/files.md - empennage_design/functions.md - - empennage_design/pages.md - Tank Design: - - Introduction: documentation/aircraft-design/tank_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/tank_design/doc/content/getting_started.md + - Introduction: documentation/sizing/tank_design/index.md + - Getting Started: documentation/sizing/tank_design/getting_started.md + - Design Method: documentation/sizing/tank_design/tank_design_method.md + - Run your First Design: documentation/sizing/tank_design/run_your_first_tank_design.md + - Software Architecture: documentation/sizing/tank_design/software_architecture.md - API Reference: - tank_design/classes.md - tank_design/namespaces.md - tank_design/files.md - tank_design/functions.md - - tank_design/pages.md - Propulsion Design: - - Introduction: documentation/aircraft-design/propulsion_design/doc/content/index.md - - Getting Started: documentation/aircraft-design/propulsion_design/doc/content/getting_started.md - - Engineering Principles: documentation/aircraft-design/propulsion_design/doc/content/engineering_principles.md - - Software Architecture: documentation/aircraft-design/propulsion_design/doc/content/software_architecture.md + - Introduction: documentation/sizing/propulsion_design/index.md + - Getting Started: documentation/sizing/propulsion_design/getting_started.md + - Engineering Principles: documentation/sizing/propulsion_design/engineering_principles.md + - Software Architecture: documentation/sizing/propulsion_design/software_architecture.md - Tutorial: - - Main: documentation/aircraft-design/propulsion_design/doc/content/tutorial.md - - Engine Extension: documentation/aircraft-design/propulsion_design/doc/content/tutorial_engine_extension.md - - Fidelity Extension: documentation/aircraft-design/propulsion_design/doc/content/tutorial_fidelity_extension.md - - Changelog: documentation/aircraft-design/propulsion_design/doc/content/changelog.md - - Additional Information: documentation/aircraft-design/propulsion_design/doc/content/additional.md + - Main: documentation/sizing/propulsion_design/tutorial.md + - Engine Extension: documentation/sizing/propulsion_design/tutorial_engine_extension.md + - Fidelity Extension: documentation/sizing/propulsion_design/tutorial_fidelity_extension.md + - Changelog: documentation/sizing/propulsion_design/changelog.md + - Additional Information: documentation/sizing/propulsion_design/additional.md - API Reference: - propulsion_design/classes.md - propulsion_design/namespaces.md - propulsion_design/files.md - propulsion_design/functions.md - - propulsion_design/pages.md - Landing Gear Design: - - Introduction: documentation/aircraft-design/landing_gear_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/landing_gear_design/doc/content/getting_started.md + - Introduction: documentation/sizing/landing_gear_design/index.md + - Getting Started: documentation/sizing/landing_gear_design/getting_started.md - API Reference: - landing_gear_design/classes.md - landing_gear_design/namespaces.md - landing_gear_design/files.md - landing_gear_design/functions.md - - landing_gear_design/pages.md - Systems Design: - - Introduction: documentation/aircraft-design/systems_design/doc/content/index.md - - Getting Staretd: documentation/aircraft-design/systems_design/doc/content/getting_started.md + - Introduction: documentation/sizing/systems_design/index.md + - Getting Started: documentation/sizing/systems_design/getting_started.md - API Reference: - systems_design/classes.md - systems_design/namespaces.md - systems_design/files.md - systems_design/functions.md - - systems_design/pages.md - - Analysis: documentation/analysis.md # Link to analysis module page. + - Analysis: + - Modules: documentation/analysis.md # Link to analysis module page. + - Aerodynamic Analysis: + - Introduction: documentation/analysis/aerodynamic_analysis/index.md + - Getting Started: documentation/analysis/aerodynamic_analysis/getting_started.md + - Changelog: documentation/analysis/aerodynamic_analysis/changelog.md + - API Reference: + - aerodynamic_analysis/classes.md + - aerodynamic_analysis/namespaces.md + - aerodynamic_analysis/files.md + - aerodynamic_analysis/functions.md + - Mission Analysis: + - Introduction: documentation/analysis/mission_analysis/index.md + - Getting Started: documentation/analysis/mission_analysis/getting_started.md + - Changelog: documentation/analysis/mission_analysis/changelog.md + - API Reference: + - mission_analysis/classes.md + - mission_analysis/namespaces.md + - mission_analysis/files.md + - mission_analysis/functions.md + - Constraint Analysis: + - Introduction: documentation/analysis/constraint_analysis/index.md + - Getting Started: documentation/analysis/constraint_analysis/getting_started.md + - Changelog: documentation/analysis/constraint_analysis/changelog.md + - API Reference: + - constraint_analysis/classes.md + - constraint_analysis/namespaces.md + - constraint_analysis/files.md + - constraint_analysis/functions.md + - Weight and Balance Analysis: + - Introduction: documentation/analysis/weight_and_balance_analysis/index.md + - Getting Started: documentation/analysis/weight_and_balance_analysis/getting_started.md + - Changelog: documentation/analysis/weight_and_balance_analysis/changelog.md + - API Reference: + - weight_and_balance_analysis/classes.md + - weight_and_balance_analysis/namespaces.md + - weight_and_balance_analysis/files.md + - weight_and_balance_analysis/functions.md + - Cost Estimation: + - Introduction: documentation/analysis/cost_estimation/index.md + - Getting Started: documentation/analysis/cost_estimation/getting_started.md + - Changelog: documentation/analysis/cost_estimation/changelog.md + - API Reference: + - cost_estimation/classes.md + - cost_estimation/namespaces.md + - cost_estimation/files.md + - cost_estimation/functions.md + - Ecological Assessment: + - Introduction: documentation/analysis/ecological_assessment/index.md + - Getting Started: documentation/analysis/ecological_assessment/getting_started.md + - Changelog: documentation/analysis/ecological_assessment/changelog.md + - API Reference: + - ecological_assessment/classes.md + - ecological_assessment/namespaces.md + - ecological_assessment/files.md + - ecological_assessment/functions.md + - Performance Assessment: + - Introduction: documentation/analysis/performance_assessment/index.md + - Getting Started: documentation/analysis/performance_assessment/getting_started.md + - Changelog: documentation/analysis/performance_assessment/changelog.md + - API Reference: + - performance_assessment/classes.md + - performance_assessment/namespaces.md + - performance_assessment/files.md + - performance_assessment/functions.md - Libraries: documentation/libraries.md # Link to libraries overview. - Utilities: documentation/additional_software.md - Workflow: 'workflow.md' # Link to the workflow page. -- GitLab From f119e28f0dd8ba5508e4be21872f4be957a6bf89 Mon Sep 17 00:00:00 2001 From: Kristina Mazur <kristina.mazur@tum.de> Date: Tue, 28 Jan 2025 10:49:37 +0100 Subject: [PATCH 44/53] Unify getting-started & add libraries --- .../getting_started.md => getting-started.md} | 0 .../cost_estimation/{content => }/index.md | 0 .../{content => }/operating_cost_method.md | 0 .../run_your_first_cost_estimation.md | 0 .../{content => }/basic-concepts.md | 0 .../{content => }/index.md | 0 .../{content => }/usage.md | 0 ...{getting_started.md => getting-started.md} | 0 ...{getting_started.md => getting-started.md} | 0 ...{getting_started.md => getting-started.md} | 0 ...{getting_started.md => getting-started.md} | 0 ...{getting_started.md => getting-started.md} | 0 ...{getting_started.md => getting-started.md} | 0 ...{getting_started.md => getting-started.md} | 0 mkdocs.yml | 113 ++++++------------ 15 files changed, 37 insertions(+), 76 deletions(-) rename docs/documentation/analysis/cost_estimation/{content/getting_started.md => getting-started.md} (100%) rename docs/documentation/analysis/cost_estimation/{content => }/index.md (100%) rename docs/documentation/analysis/cost_estimation/{content => }/operating_cost_method.md (100%) rename docs/documentation/analysis/cost_estimation/{content => }/run_your_first_cost_estimation.md (100%) rename docs/documentation/analysis/weight_and_balance_analysis/{content => }/basic-concepts.md (100%) rename docs/documentation/analysis/weight_and_balance_analysis/{content => }/index.md (100%) rename docs/documentation/analysis/weight_and_balance_analysis/{content => }/usage.md (100%) rename docs/documentation/sizing/fuselage_design/{getting_started.md => getting-started.md} (100%) rename docs/documentation/sizing/initial_sizing/{getting_started.md => getting-started.md} (100%) rename docs/documentation/sizing/landing_gear_design/{getting_started.md => getting-started.md} (100%) rename docs/documentation/sizing/propulsion_design/{getting_started.md => getting-started.md} (100%) rename docs/documentation/sizing/systems_design/{getting_started.md => getting-started.md} (100%) rename docs/documentation/sizing/tank_design/{getting_started.md => getting-started.md} (100%) rename docs/documentation/sizing/wing_design/{getting_started.md => getting-started.md} (100%) diff --git a/docs/documentation/analysis/cost_estimation/content/getting_started.md b/docs/documentation/analysis/cost_estimation/getting-started.md similarity index 100% rename from docs/documentation/analysis/cost_estimation/content/getting_started.md rename to docs/documentation/analysis/cost_estimation/getting-started.md diff --git a/docs/documentation/analysis/cost_estimation/content/index.md b/docs/documentation/analysis/cost_estimation/index.md similarity index 100% rename from docs/documentation/analysis/cost_estimation/content/index.md rename to docs/documentation/analysis/cost_estimation/index.md diff --git a/docs/documentation/analysis/cost_estimation/content/operating_cost_method.md b/docs/documentation/analysis/cost_estimation/operating_cost_method.md similarity index 100% rename from docs/documentation/analysis/cost_estimation/content/operating_cost_method.md rename to docs/documentation/analysis/cost_estimation/operating_cost_method.md diff --git a/docs/documentation/analysis/cost_estimation/content/run_your_first_cost_estimation.md b/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md similarity index 100% rename from docs/documentation/analysis/cost_estimation/content/run_your_first_cost_estimation.md rename to docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md diff --git a/docs/documentation/analysis/weight_and_balance_analysis/content/basic-concepts.md b/docs/documentation/analysis/weight_and_balance_analysis/basic-concepts.md similarity index 100% rename from docs/documentation/analysis/weight_and_balance_analysis/content/basic-concepts.md rename to docs/documentation/analysis/weight_and_balance_analysis/basic-concepts.md diff --git a/docs/documentation/analysis/weight_and_balance_analysis/content/index.md b/docs/documentation/analysis/weight_and_balance_analysis/index.md similarity index 100% rename from docs/documentation/analysis/weight_and_balance_analysis/content/index.md rename to docs/documentation/analysis/weight_and_balance_analysis/index.md diff --git a/docs/documentation/analysis/weight_and_balance_analysis/content/usage.md b/docs/documentation/analysis/weight_and_balance_analysis/usage.md similarity index 100% rename from docs/documentation/analysis/weight_and_balance_analysis/content/usage.md rename to docs/documentation/analysis/weight_and_balance_analysis/usage.md diff --git a/docs/documentation/sizing/fuselage_design/getting_started.md b/docs/documentation/sizing/fuselage_design/getting-started.md similarity index 100% rename from docs/documentation/sizing/fuselage_design/getting_started.md rename to docs/documentation/sizing/fuselage_design/getting-started.md diff --git a/docs/documentation/sizing/initial_sizing/getting_started.md b/docs/documentation/sizing/initial_sizing/getting-started.md similarity index 100% rename from docs/documentation/sizing/initial_sizing/getting_started.md rename to docs/documentation/sizing/initial_sizing/getting-started.md diff --git a/docs/documentation/sizing/landing_gear_design/getting_started.md b/docs/documentation/sizing/landing_gear_design/getting-started.md similarity index 100% rename from docs/documentation/sizing/landing_gear_design/getting_started.md rename to docs/documentation/sizing/landing_gear_design/getting-started.md diff --git a/docs/documentation/sizing/propulsion_design/getting_started.md b/docs/documentation/sizing/propulsion_design/getting-started.md similarity index 100% rename from docs/documentation/sizing/propulsion_design/getting_started.md rename to docs/documentation/sizing/propulsion_design/getting-started.md diff --git a/docs/documentation/sizing/systems_design/getting_started.md b/docs/documentation/sizing/systems_design/getting-started.md similarity index 100% rename from docs/documentation/sizing/systems_design/getting_started.md rename to docs/documentation/sizing/systems_design/getting-started.md diff --git a/docs/documentation/sizing/tank_design/getting_started.md b/docs/documentation/sizing/tank_design/getting-started.md similarity index 100% rename from docs/documentation/sizing/tank_design/getting_started.md rename to docs/documentation/sizing/tank_design/getting-started.md diff --git a/docs/documentation/sizing/wing_design/getting_started.md b/docs/documentation/sizing/wing_design/getting-started.md similarity index 100% rename from docs/documentation/sizing/wing_design/getting_started.md rename to docs/documentation/sizing/wing_design/getting-started.md diff --git a/mkdocs.yml b/mkdocs.yml index 1a2b2af..5bb700d 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -181,7 +181,7 @@ nav: # Customizes the main navigation struc - Modules: documentation/sizing.md # Link to aircraft sizing documentation. - Initial Sizing: - Introduction: documentation/sizing/initial_sizing/index.md - - Getting Started: documentation/sizing/initial_sizing/getting_started.md + - Getting Started: documentation/sizing/initial_sizing/getting-started.md - Methods: documentation/sizing/initial_sizing/initialSizing.md - Changelog: documentation/sizing/initial_sizing/changelog.md - API Reference: @@ -191,18 +191,16 @@ nav: # Customizes the main navigation struc - initial_sizing/functions.md - Fuselage Design: - Introduction: documentation/sizing/fuselage_design/index.md - - Getting Started: documentation/sizing/fuselage_design/getting_started.md + - Getting Started: documentation/sizing/fuselage_design/getting-started.md - Design Method: documentation/sizing/fuselage_design/design_method.md - Run your First Design: documentation/sizing/fuselage_design/run_your_first_design.md - Software Architecture: documentation/sizing/fuselage_design/software_architecture.md - - API Reference: - - fuselage_design/classes.md - - fuselage_design/namespaces.md - - fuselage_design/files.md - - fuselage_design/functions.md + # - API Reference: # TODO define for Python - Wing Design: - Introduction: documentation/sizing/wing_design/index.md - - Getting Started: documentation/sizing/wing_design/getting_started.md + - Getting Started: documentation/sizing/wing_design/getting-started.md + - Basic Concepts: documentation/sizing/wing_design/basic-concepts.md + - Run your First Design: documentation/sizing/wing_design/dfw.md - API Reference: - wing_design/classes.md - wing_design/namespaces.md @@ -210,9 +208,9 @@ nav: # Customizes the main navigation struc - wing_design/functions.md - Empennage Design: - Introduction: documentation/sizing/empennage_design/index.md - - Getting Started: documentation/sizing/empennage_design/getting_started.md - - Basic Concepts: documentation/sizing/empennage_design/basic_concepts.md - - Run your First Design: documentation/sizing/empennage_design/dfw.md + - Getting Started: documentation/sizing/empennage_design/getting-started.md + - Basic Concepts: documentation/sizing/empennage_design/basic-concepts.md + - Run your First Design: documentation/sizing/empennage_design/dfe.md - API Reference: - empennage_design/classes.md - empennage_design/namespaces.md @@ -220,18 +218,14 @@ nav: # Customizes the main navigation struc - empennage_design/functions.md - Tank Design: - Introduction: documentation/sizing/tank_design/index.md - - Getting Started: documentation/sizing/tank_design/getting_started.md + - Getting Started: documentation/sizing/tank_design/getting-started.md - Design Method: documentation/sizing/tank_design/tank_design_method.md - Run your First Design: documentation/sizing/tank_design/run_your_first_tank_design.md - Software Architecture: documentation/sizing/tank_design/software_architecture.md - - API Reference: - - tank_design/classes.md - - tank_design/namespaces.md - - tank_design/files.md - - tank_design/functions.md + # - API Reference: # TODO define for Python - Propulsion Design: - Introduction: documentation/sizing/propulsion_design/index.md - - Getting Started: documentation/sizing/propulsion_design/getting_started.md + - Getting Started: documentation/sizing/propulsion_design/getting-started.md - Engineering Principles: documentation/sizing/propulsion_design/engineering_principles.md - Software Architecture: documentation/sizing/propulsion_design/software_architecture.md - Tutorial: @@ -247,15 +241,16 @@ nav: # Customizes the main navigation struc - propulsion_design/functions.md - Landing Gear Design: - Introduction: documentation/sizing/landing_gear_design/index.md - - Getting Started: documentation/sizing/landing_gear_design/getting_started.md - - API Reference: - - landing_gear_design/classes.md - - landing_gear_design/namespaces.md - - landing_gear_design/files.md - - landing_gear_design/functions.md + - Getting Started: documentation/sizing/landing_gear_design/getting-started.md + - Design Method: documentation/sizing/landing_gear_design/design_method.md + - Run your First Design: documentation/sizing/landing_gear_design/run_your_first_design.md + - Software Architecture: documentation/sizing/landing_gear_design/software_architecture.md + # - API Reference: # TODO define for Python - Systems Design: - Introduction: documentation/sizing/systems_design/index.md - - Getting Started: documentation/sizing/systems_design/getting_started.md + - Getting Started: documentation/sizing/systems_design/getting-started.md + - Implemented Models: documentation/sizing/systems_design/systems.md + - Software Architecture: documentation/sizing/systems_design/software_architecture.md - API Reference: - systems_design/classes.md - systems_design/namespaces.md @@ -263,70 +258,36 @@ nav: # Customizes the main navigation struc - systems_design/functions.md - Analysis: - Modules: documentation/analysis.md # Link to analysis module page. - - Aerodynamic Analysis: - - Introduction: documentation/analysis/aerodynamic_analysis/index.md - - Getting Started: documentation/analysis/aerodynamic_analysis/getting_started.md - - Changelog: documentation/analysis/aerodynamic_analysis/changelog.md - - API Reference: - - aerodynamic_analysis/classes.md - - aerodynamic_analysis/namespaces.md - - aerodynamic_analysis/files.md - - aerodynamic_analysis/functions.md - - Mission Analysis: - - Introduction: documentation/analysis/mission_analysis/index.md - - Getting Started: documentation/analysis/mission_analysis/getting_started.md - - Changelog: documentation/analysis/mission_analysis/changelog.md - - API Reference: - - mission_analysis/classes.md - - mission_analysis/namespaces.md - - mission_analysis/files.md - - mission_analysis/functions.md - - Constraint Analysis: - - Introduction: documentation/analysis/constraint_analysis/index.md - - Getting Started: documentation/analysis/constraint_analysis/getting_started.md - - Changelog: documentation/analysis/constraint_analysis/changelog.md - - API Reference: - - constraint_analysis/classes.md - - constraint_analysis/namespaces.md - - constraint_analysis/files.md - - constraint_analysis/functions.md - Weight and Balance Analysis: - Introduction: documentation/analysis/weight_and_balance_analysis/index.md - - Getting Started: documentation/analysis/weight_and_balance_analysis/getting_started.md - - Changelog: documentation/analysis/weight_and_balance_analysis/changelog.md - - API Reference: - - weight_and_balance_analysis/classes.md - - weight_and_balance_analysis/namespaces.md - - weight_and_balance_analysis/files.md - - weight_and_balance_analysis/functions.md + - Basic Concepts: documentation/analysis/weight_and_balance_analysis/basic-concepts.md + - Usage: documentation/analysis/weight_and_balance_analysis/usage.md + # - API Reference: # TODO define for Python - Cost Estimation: - Introduction: documentation/analysis/cost_estimation/index.md - - Getting Started: documentation/analysis/cost_estimation/getting_started.md - - Changelog: documentation/analysis/cost_estimation/changelog.md - - API Reference: - - cost_estimation/classes.md - - cost_estimation/namespaces.md - - cost_estimation/files.md - - cost_estimation/functions.md + - Getting Started: documentation/analysis/cost_estimation/getting-started.md + - Methods: documentation/analysis/cost_estimation/operating_cost_method.md + - Run your First Estimation: documentation/analysis/cost_estimation/run_your_first_cost_estimation.md + # - API Reference: # TODO define for Python - Ecological Assessment: - Introduction: documentation/analysis/ecological_assessment/index.md - - Getting Started: documentation/analysis/ecological_assessment/getting_started.md + - Getting Started: documentation/analysis/ecological_assessment/getting-started.md - Changelog: documentation/analysis/ecological_assessment/changelog.md - API Reference: - ecological_assessment/classes.md - ecological_assessment/namespaces.md - ecological_assessment/files.md - ecological_assessment/functions.md - - Performance Assessment: - - Introduction: documentation/analysis/performance_assessment/index.md - - Getting Started: documentation/analysis/performance_assessment/getting_started.md - - Changelog: documentation/analysis/performance_assessment/changelog.md - - API Reference: - - performance_assessment/classes.md - - performance_assessment/namespaces.md - - performance_assessment/files.md - - performance_assessment/functions.md - Libraries: documentation/libraries.md # Link to libraries overview. + - AircraftGeometry2: + - Introduction: documentation/libraries/aircraftGeometry2/index.md + - Getting Started: documentation/libraries/aircraftGeometry2/getting-started.md + - Tutorial: documentation/libraries/aircraftGeometry2/tutorial.md + - API Reference: + - aircraftGeometry2/classes.md + - aircraftGeometry2/namespaces.md + - aircraftGeometry2/files.md + - aircraftGeometry2/functions.md - Utilities: documentation/additional_software.md - Workflow: 'workflow.md' # Link to the workflow page. - Get Involved: -- GitLab From b651ce622e523e6841f78458e94b17cc4164e991 Mon Sep 17 00:00:00 2001 From: Kristina Mazur <kristina.mazur@tum.de> Date: Tue, 28 Jan 2025 10:51:34 +0100 Subject: [PATCH 45/53] Correct link paths --- docs/documentation/analysis.md | 6 +++--- docs/documentation/libraries.md | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/documentation/analysis.md b/docs/documentation/analysis.md index 060c8bc..a2581a3 100644 --- a/docs/documentation/analysis.md +++ b/docs/documentation/analysis.md @@ -50,7 +50,7 @@ The `weight_and_balance_analysis` module calculates sub-masses and total masses |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](analysis/weight_and_balance_analysis/content/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](analysis/weight_and_balance_analysis/index.md)| --- @@ -78,7 +78,7 @@ The parameters comprised in this XML file can have different attributes as e.g. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](analysis/ecological_assessment/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](analysis/ecological_assessment/index.md)| --- @@ -105,6 +105,6 @@ Direct costs include all expenses incurred in operating and financing the aircra |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](analysis/cost_estimation/content/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](analysis/cost_estimation/index.md)| --- diff --git a/docs/documentation/libraries.md b/docs/documentation/libraries.md index e6fe7d1..2537022 100644 --- a/docs/documentation/libraries.md +++ b/docs/documentation/libraries.md @@ -85,7 +85,7 @@ The **blackboxTest** library provides an interface to run a complete module with |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/blackboxTest/content/index.md)|[googleTest](https://google.github.io/googletest/)| +|2.1.0|:simple-cplusplus: |GPLv3|-|[googleTest](https://google.github.io/googletest/)| --- -- GitLab From 69fe1fcfad88facd211d3c0da287ed46bb9f4b2a Mon Sep 17 00:00:00 2001 From: Kristina Mazur <kristina.mazur@tum.de> Date: Tue, 28 Jan 2025 10:57:13 +0100 Subject: [PATCH 46/53] Update pipeline --- .gitlab-ci.yml | 30 ++++++++++++++++++++++++++++++ 1 file changed, 30 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index f17d36b..943ac59 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -17,8 +17,38 @@ # === Configure pipeline === # This section defines the stages of the pipeline: build and deploy stages: + - build # The 'build' stage is where documents are copied to the PROJECT_DIR - deploy # The 'deploy' stage generates and deploys the generated documentation. +# === Clone the repositories / copy documentation to the PROJECT_DIR === +clone: + image: alpine:latest + stage: build # This job is part of the build stage + tags: + - documentation # Label for the job to be picked up by appropriate runners + before_script: + # Install necessary packages, including git, doxygen, and other dependencies + - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi + script: + # clone repos + - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design + - cd aircraft-design + - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries libs/ + # Change to the project directory (useful for multi-directory repositories) + - cd $CI_PROJECT_DIR + - ls -la $CI_PROJECT_DIR + artifacts: + # Save the generated documentation as artifacts so they can be accessed later in the pipeline + paths: + - $CI_PROJECT_DIR/aircraft-design + rules: + - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch + when: on_success # Only run if the previous jobs are successful + - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH' # Allow manual triggers on non-default branches + when: manual # Run only when triggered manually + - if: '$CI_PIPELINE_SOURCE == "trigger"' # Triggered by another pipeline + when: on_success # Run if the source pipeline was successful + # === Build and deploy the website === pages: image: python:latest -- GitLab From 2b72b07c00e1df801adeb43927f0afa56d3fdadf Mon Sep 17 00:00:00 2001 From: Kristina Mazur <kristina.mazur@tum.de> Date: Tue, 28 Jan 2025 10:58:46 +0100 Subject: [PATCH 47/53] Update links by removing content --- docs/documentation/sizing.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/docs/documentation/sizing.md b/docs/documentation/sizing.md index 833c5a9..1214ee8 100644 --- a/docs/documentation/sizing.md +++ b/docs/documentation/sizing.md @@ -48,7 +48,7 @@ The **fuselage_design** module calculates characteristic parameters and generate |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/fuselage_design/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/fuselage_design/index.md)| --- @@ -59,7 +59,7 @@ The **wing_design** module calculates characteristic parameter of the aircraft m |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/wing_design/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/wing_design/index.md)| --- @@ -71,7 +71,7 @@ It takes takes the controllability as wells as the static margin of the aircraft |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/empennage_design/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/empennage_design/index.md)| --- @@ -82,7 +82,7 @@ It takes takes the controllability as wells as the static margin of the aircraft |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](sizing/tank_design/content/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](sizing/tank_design/index.md)| --- @@ -100,7 +100,7 @@ Also the mass properties are analyzed. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|3.0.0|:simple-cplusplus: |GPLv3|[Link](sizing/propulsion_design/content/index.md)| +|3.0.0|:simple-cplusplus: |GPLv3|[Link](sizing/propulsion_design/index.md)| --- @@ -111,7 +111,7 @@ The **landing_gear_design** module calculates characteristic parameters for the |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/landing_gear_design/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/landing_gear_design/index.md)| --- @@ -123,6 +123,6 @@ It dimensions ATA chapter systems in terms of mass and energy requirement divide |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/systems_design/content/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/systems_design/index.md)| --- -- GitLab From 02278c9197f83ceb6aae8b2cf82c0aee4a40aeb6 Mon Sep 17 00:00:00 2001 From: Alfin Johny <alfin.johny@tum.de> Date: Tue, 28 Jan 2025 15:00:01 +0100 Subject: [PATCH 48/53] Fix broken links --- .gitlab-ci.yml | 3 ++ docs/documentation/libraries.md | 4 +-- .../libraries/aircraftGeometry2/index.md | 8 ++--- .../sizing/empennage_design/dfe.md | 4 +-- .../landing_gear_design/design_method.md | 4 +-- .../engineering_principles.md | 6 ++-- .../software_architecture.md | 6 ++-- .../sizing/tank_design/tank_design_method.md | 6 ++-- docs/documentation/sizing/wing_design/dfw.md | 2 +- mkdocs.yml | 31 ++++++++++--------- 10 files changed, 39 insertions(+), 35 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 943ac59..a08f136 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -41,6 +41,8 @@ clone: # Save the generated documentation as artifacts so they can be accessed later in the pipeline paths: - $CI_PROJECT_DIR/aircraft-design + - $CI_PROJECT_DIR/libraries + - $CI_PROJECT_DIR/docs/documentation rules: - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH' # Run when the commit is on the default branch when: on_success # Only run if the previous jobs are successful @@ -67,6 +69,7 @@ pages: - pipenv install --dev # Install all necessary dependencies script: # Build the MkDocs documentation site + - cp -r $CI_PROJECT_DIR/aircraft-design $CI_PROJECT_DIR/docs/documentation # Copy aircraft-design to the docs/documentation folder - pipenv run mkdocs build --verbose --site-dir $CI_PROJECT_DIR/public needs: - clone # This job depends on the successful completion of the clone job diff --git a/docs/documentation/libraries.md b/docs/documentation/libraries.md index 2537022..b39adfa 100644 --- a/docs/documentation/libraries.md +++ b/docs/documentation/libraries.md @@ -39,7 +39,7 @@ The modularity and flexibility is achieved by using the high performance [Comput |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aircraftGeometry2/content/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aircraftGeometry2/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| --- @@ -181,7 +181,7 @@ The `simple vector library` by Andrew Willmott provides vector and matrix classe |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: | |[Link](https://www.cs.cmu.edu/~ajw/svl.html)|-| +|2.1.0|:simple-cplusplus: | |[Link](https://www.cs.cmu.edu/~ajw/doc/svl.html)|-| !!! note This will soon be replaced by `Eigen`. diff --git a/docs/documentation/libraries/aircraftGeometry2/index.md b/docs/documentation/libraries/aircraftGeometry2/index.md index 0db0ce1..5286723 100644 --- a/docs/documentation/libraries/aircraftGeometry2/index.md +++ b/docs/documentation/libraries/aircraftGeometry2/index.md @@ -23,7 +23,7 @@ If you want to use the full flexibility of **CGAL** you need to implement your t ## 2D Geometry The base of every geometry are 2D sections. The base properties of such a shape are shown here: -{html: width=30%} +{html: width=30%} A section **always** defines its local axes as `X` and `Y`. Where `X` is the *horizontal* axis and `Y` the *vertical* axis. The origin point of the section is the origin point of the local coordinate system. @@ -47,7 +47,7 @@ For example: An **AirfoilSection** can only set the *chord length* as opposed to ## 3D Geometry The connection from the 2D section to create 3D surfaces are [multi-section surfaces](@ref geom2.MultisectionSurface). A multi-section surface consists of multiple sections which form the single segments of the the surface. A projected view of such a surface might look like this: -{html: width=30%} +{html: width=30%} The example consists of three surface sections which result in **two** surface segments. Note, that the library rather uses sections and not segments and therefore does not allow for disconnected steps in between the sections directly. You can however insert two section at the same location, which have different shapes. This effectively gives a stepped shape when viewed from any side, but the data structure itself is still connected. @@ -80,7 +80,7 @@ Whenever one entity is contained within another parent entity, the **parent coor ### Transform from 2D to 3D Let's look at a simple example, which mainly uses 2D coordinates: -{html: width=30%} +{html: width=30%} The *local point* `p` has 2D coordinates and is defined within the *local coordinate* system of `child`. The `child` represents a 2D section here, so it technically does not have a `Z` axis in its local coordinate space. It is just shown here for completeness to always remember the right-hand convention. @@ -123,6 +123,6 @@ In the end, you do not need to understand this in great detail to use the librar ## Class Diagram Here is an overview how the library is structured: -{html: width=1000} +{html: width=1000} @note This is still work in progress and can change! diff --git a/docs/documentation/sizing/empennage_design/dfe.md b/docs/documentation/sizing/empennage_design/dfe.md index d9d7613..66dd141 100644 --- a/docs/documentation/sizing/empennage_design/dfe.md +++ b/docs/documentation/sizing/empennage_design/dfe.md @@ -153,7 +153,7 @@ Let's have a look at it. ## Reporting The HTML report is splitted - on the left half, one can see numerical information of the empennage design. The right side contains plots and visual information. - + It starts with general information for the vertical stabilizer by section parameters. Then you get information on spars and control devices. It concludes with mass information. @@ -165,7 +165,7 @@ Lets change a parameter for the vertical stabilizer → we reduce the rudder The resulted output in the console will not change, however you see that the rudder area is quite small: - + Soo .... Now it is your turn! diff --git a/docs/documentation/sizing/landing_gear_design/design_method.md b/docs/documentation/sizing/landing_gear_design/design_method.md index f678d16..896cc0b 100644 --- a/docs/documentation/sizing/landing_gear_design/design_method.md +++ b/docs/documentation/sizing/landing_gear_design/design_method.md @@ -24,7 +24,7 @@ Afterwards, critical distances (lever arms) and tipping points for estimating lo Default values are assigned if parameters are not explicitly provided. ### Horizontal distances - + #### Distance between nose and main landing gear The distance between the nose and the main landing gear can be estimated using the following equation: @@ -65,7 +65,7 @@ Otherwise, \f$d_{NLG\_rear\_CG}\f$ is determined by using a first estimation: If no distance between the main landing gear and the rearmost center of gravity is available from earlier iterations, it equals `1`. ### Vertical distances - + #### Vertical distance between ground and center of gravity position Starting with the second iteration loop, the vertical distance between ground and center of gravity \f$\Delta h_{GND\_CG}\f$ is known. diff --git a/docs/documentation/sizing/propulsion_design/engineering_principles.md b/docs/documentation/sizing/propulsion_design/engineering_principles.md index 4168395..d0cd301 100644 --- a/docs/documentation/sizing/propulsion_design/engineering_principles.md +++ b/docs/documentation/sizing/propulsion_design/engineering_principles.md @@ -34,12 +34,12 @@ The **engine designer** bases its principle on the common modelling practice usi The _dataset_ (also called _EngineXML_) includes parameter which are independent of the flight condition such as outer engine dimensions. The three-dimensional _engine deck_ contain engine performance data for different values of altitude \f$h\f$, Mach number \f$Ma\f$ and low-pressure engine spool speed \f$N1\f$. The most important performance parameter are thrust and fuel/energy flow. In UNICADO, the deck is split into multiple CSV files. The figure shows an example with values for thrust in kilo newton. The first block contains data for \f$N1=1\f$ for \f$Ma=0...0.9\f$ and \f$h=0...14000\f$. The second block below is for \f$N1=0.95\f$. - + @note Detailed information on required dataset and deck data will be updated in near future. The _scale factor_ is necessary because (as conceptual aircraft designer), we use the concept of a so-called _rubber engine_. That means that (depending on the method, see later) we create or assume an engine deck and provide one _scale factor_ to obtain all engine data acc. to the required thrust the engine shall provide. The figure visualized the concept: - + @attention → **As mentioned and highlighted in the figure**, there is ONE _scale factor_ **BUT** multiple exponents which differ depending on which property you want to use. E.g. for the diameter, the exponent is \f$0.5\f$ and for the mass its \f$0.4\f$. **So important to remember** that whenever you want to use engine data, you need to access it via the `engine` library. In the following, a brief explanation of the scaling concept will be given - however details are given in the library documentation. @@ -126,7 +126,7 @@ For the **pylon designer**, only one method is implemented: In the current method, the mounting is attached to the beginning to the nacelle to the leading edge of the wing. The length is the engine length which is extruded to the wing. the profile is, likewise for the nacelle, defined in the _configXML_. - + @note the implementation include currently Turbofan Kerosene only diff --git a/docs/documentation/sizing/propulsion_design/software_architecture.md b/docs/documentation/sizing/propulsion_design/software_architecture.md index 3fed44e..e8f2c95 100644 --- a/docs/documentation/sizing/propulsion_design/software_architecture.md +++ b/docs/documentation/sizing/propulsion_design/software_architecture.md @@ -2,7 +2,7 @@ ## Software Architecture Overview -The software architecture is structured into various modules and packages, each handling specific task. Below is a description of the main components (some classes, interfaces etc. are left out to keep it understandable for now - for more information see the [class diagram](img/class_diagram.png) or the source code): +The software architecture is structured into various modules and packages, each handling specific task. Below is a description of the main components (some classes, interfaces etc. are left out to keep it understandable for now - for more information see the [class diagram](figures/class_diagram.png) or the source code): - classes: - **propulsionDesign** is like the "coordinator" responsible for the overall propulsion system design including _initialize_, _run_, _update_, _report_ and _save_ (inherits from `Module` class from **moduleBasics**). These include e.g. method selection function for each disciplines @@ -21,7 +21,7 @@ The software architecture is structured into various modules and packages, each Some additional words on the **propulsionStrategy**: -As you might also see in the [class diagram](img/class_diagram.png), the core of it is the functor `operator()` for specific engine types to allow the `engine` object to be used as functions. This object is, depending on the user settings, based on the propulsion type classes (e.g. `Turbofan<Kerosene>`). As also shown in @ref propulsion.md, the type is combined with 3 "building blocks" +As you might also see in the [class diagram](figures/class_diagram.png), the core of it is the functor `operator()` for specific engine types to allow the `engine` object to be used as functions. This object is, depending on the user settings, based on the propulsion type classes (e.g. `Turbofan<Kerosene>`). As also shown in @ref propulsion.md, the type is combined with 3 "building blocks" - *powertrain*: Way the power is generated from the source: turbo, electric, fuel_cell - *type*: Type of main thrust generator: fan or prop - *energy_carrier*: kerosene, liquid_hydrogen, battery (handled over IDs) @@ -31,4 +31,4 @@ So, if you want to use different combinations in UNICADO, you need to make sure ## Class Diagram {#classdiagram} Here is an overview how the module is structured: -{html: width=1000} +{html: width=1000} diff --git a/docs/documentation/sizing/tank_design/tank_design_method.md b/docs/documentation/sizing/tank_design/tank_design_method.md index 8f331b1..24b1085 100644 --- a/docs/documentation/sizing/tank_design/tank_design_method.md +++ b/docs/documentation/sizing/tank_design/tank_design_method.md @@ -40,7 +40,7 @@ Knowing the necessary vent tank volume, the remaining volume of the wing tanks c #### Obelisk method {#obelisk-method} The obelisk method simplifies the wing by dividing it into several volumes. Depending on the geometry, this results in three (single trapezoidal wing) or five (double trapezoidal/kinked wing) individual wing tanks, each of which has the shape of an obelisk. In the case of a double trapezoidal geometry, it is assumed that the wing can be divided into an inner tank (wing root to kink) and an outer tank (kink to vent tank position) per side as well as a wing center tank. - + The obelisk volume can be determined using two different approaches that are described in the following. The user can select the desired method via the following node in the `program_settings` section of the _confXML_: @@ -49,7 +49,7 @@ The user can select the desired method via the following node in the `program_se @note The obelisk method is explained using the wing as an example. The volume of a [trim tank](#trim-tank) located in the horizontal stabilizer is determined analogously. ##### Obelisk volume according to Torenbeek<sup>[1]</sup> - + The volume can be calculated using the following equation: \f[ @@ -100,7 +100,7 @@ tank design), Simpson's rule can be applied. Two end surfaces are known for each tank, so that a third middle surface \f$S_{12}\f$ can be determined by linear interpolation (see following figure). Each tank is thus divided into two sections. - + The tank volume can therefore be determined using a simplified Simpson's rule: \f[ diff --git a/docs/documentation/sizing/wing_design/dfw.md b/docs/documentation/sizing/wing_design/dfw.md index fd9968a..4b207fc 100644 --- a/docs/documentation/sizing/wing_design/dfw.md +++ b/docs/documentation/sizing/wing_design/dfw.md @@ -225,7 +225,7 @@ Let's have a look at it. ## Reporting The HTML report is splitted - on the left half, one can see numerical information of the wing design. The right side contains plots and visual information. - + It starts with general information followed by section parameters. Then you get information on spars and control devices. It concludes with mass information. diff --git a/mkdocs.yml b/mkdocs.yml index 5bb700d..43e8a02 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -256,20 +256,20 @@ nav: # Customizes the main navigation struc - systems_design/namespaces.md - systems_design/files.md - systems_design/functions.md - - Analysis: - - Modules: documentation/analysis.md # Link to analysis module page. - - Weight and Balance Analysis: + - Analysis: + - Modules: documentation/analysis.md # Link to analysis module page. + - Weight and Balance Analysis: - Introduction: documentation/analysis/weight_and_balance_analysis/index.md - Basic Concepts: documentation/analysis/weight_and_balance_analysis/basic-concepts.md - Usage: documentation/analysis/weight_and_balance_analysis/usage.md # - API Reference: # TODO define for Python - - Cost Estimation: + - Cost Estimation: - Introduction: documentation/analysis/cost_estimation/index.md - Getting Started: documentation/analysis/cost_estimation/getting-started.md - Methods: documentation/analysis/cost_estimation/operating_cost_method.md - Run your First Estimation: documentation/analysis/cost_estimation/run_your_first_cost_estimation.md # - API Reference: # TODO define for Python - - Ecological Assessment: + - Ecological Assessment: - Introduction: documentation/analysis/ecological_assessment/index.md - Getting Started: documentation/analysis/ecological_assessment/getting-started.md - Changelog: documentation/analysis/ecological_assessment/changelog.md @@ -278,16 +278,17 @@ nav: # Customizes the main navigation struc - ecological_assessment/namespaces.md - ecological_assessment/files.md - ecological_assessment/functions.md - - Libraries: documentation/libraries.md # Link to libraries overview. - - AircraftGeometry2: - - Introduction: documentation/libraries/aircraftGeometry2/index.md - - Getting Started: documentation/libraries/aircraftGeometry2/getting-started.md - - Tutorial: documentation/libraries/aircraftGeometry2/tutorial.md - - API Reference: - - aircraftGeometry2/classes.md - - aircraftGeometry2/namespaces.md - - aircraftGeometry2/files.md - - aircraftGeometry2/functions.md + - Libraries: + - Overview: documentation/libraries.md # Link to libraries overview. + - AircraftGeometry2: + - Introduction: documentation/libraries/aircraftGeometry2/index.md + - Getting Started: documentation/libraries/aircraftGeometry2/getting-started.md + - Tutorial: documentation/libraries/aircraftGeometry2/tutorial.md + - API Reference: + - aircraftGeometry2/classes.md + - aircraftGeometry2/namespaces.md + - aircraftGeometry2/files.md + - aircraftGeometry2/functions.md - Utilities: documentation/additional_software.md - Workflow: 'workflow.md' # Link to the workflow page. - Get Involved: -- GitLab From e72d8fc55cb606d01cb521a00509cedfe4011cd0 Mon Sep 17 00:00:00 2001 From: Kristina Mazur <kristina.mazur@tum.de> Date: Tue, 28 Jan 2025 18:42:44 +0100 Subject: [PATCH 49/53] Fix note and equations to md native + some links --- .../cost_estimation/getting-started.md | 7 +- .../analysis/cost_estimation/index.md | 14 +- .../cost_estimation/operating_cost_method.md | 244 ++++++++-------- .../run_your_first_cost_estimation.md | 5 +- .../ecological_assessment/aqi_schaefer.md | 8 +- .../ecological_assessment/getting-started.md | 3 +- .../ecological_assessment/lca_schaefer.md | 5 +- .../mission_emissions.md | 8 +- .../basic-concepts.md | 98 +++---- .../weight_and_balance_analysis/usage.md | 3 +- .../libraries/aircraftGeometry2/index.md | 18 +- .../aircraftGeometry2/tutorial-convert.md | 6 +- .../aircraftGeometry2/tutorial-factory.md | 44 +-- .../aircraftGeometry2/tutorial-geometry.md | 18 +- .../sizing/fuselage_design/design_method.md | 143 +++++----- .../sizing/fuselage_design/getting-started.md | 12 +- .../sizing/fuselage_design/index.md | 8 +- .../fuselage_design/run_your_first_design.md | 3 +- .../fuselage_design/software_architecture.md | 2 +- .../sizing/initial_sizing/changelog.md | 3 +- .../sizing/initial_sizing/getting-started.md | 5 +- .../sizing/initial_sizing/index.md | 2 +- .../landing_gear_design/design_method.md | 270 +++++++++--------- .../landing_gear_design/getting-started.md | 9 +- .../sizing/landing_gear_design/index.md | 8 +- .../run_your_first_design.md | 3 +- .../software_architecture.md | 2 +- .../sizing/propulsion_design/changelog.md | 5 +- .../engineering_principles.md | 43 +-- .../propulsion_design/getting-started.md | 29 +- .../sizing/propulsion_design/index.md | 3 +- .../software_architecture.md | 1 + .../sizing/tank_design/getting-started.md | 14 +- .../documentation/sizing/tank_design/index.md | 8 +- .../tank_design/run_your_first_tank_design.md | 3 +- .../tank_design/software_architecture.md | 2 +- .../sizing/tank_design/tank_design_method.md | 99 +++---- 37 files changed, 615 insertions(+), 543 deletions(-) diff --git a/docs/documentation/analysis/cost_estimation/getting-started.md b/docs/documentation/analysis/cost_estimation/getting-started.md index e21104e..ff94edb 100644 --- a/docs/documentation/analysis/cost_estimation/getting-started.md +++ b/docs/documentation/analysis/cost_estimation/getting-started.md @@ -5,7 +5,8 @@ This section will guide you through the necessary steps to get the _cost\_estima - [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running? - [Next steps](#next-steps) - How to proceed? -@note It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. +!!! note + It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. Generally, we use two files to set or configure modules in UNICADO: - The aircraft exchange file (or _acXML_) includes @@ -47,11 +48,13 @@ The following information is needed from the _acXML_: The _configXML_ is structured into two blocks: the control and program settings. The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least + - the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings, - the `console_output` at least to `mode_1`, and - the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`). -@note If the tool is executed via the workflow, those settings are set by the workflow settings. +!!! note + If the tool is executed via the workflow, those settings are set by the workflow settings. The program settings are structured like this (descriptions can be found in the `cost_estimation_conf.xml`): diff --git a/docs/documentation/analysis/cost_estimation/index.md b/docs/documentation/analysis/cost_estimation/index.md index 4d38f4a..7446bf1 100644 --- a/docs/documentation/analysis/cost_estimation/index.md +++ b/docs/documentation/analysis/cost_estimation/index.md @@ -1,16 +1,16 @@ # Introduction {#mainpage} -Welcome to the _cost\_estimation_ module in UNICADO – where we take your aircraft operating costs from “hmm… probably a lot?” to laser-accurate precision! This tool is like a financial \emoji crystal_ball for your aircraft, crunching numbers on fuel, maintenance, crew costs, and just about (almost) every other expense you can imagine. Think of it as your budgeting co-pilot, always ready to calculate so you can focus on the skies instead of spreadsheets. With _cost\_estimation_, you stay in control, keep the accountants happy, and land at your bottom line without any turbulence. So buckle up, and let’s start calculating! +Welcome to the _cost\_estimation_ module in UNICADO – where we take your aircraft operating costs from “hmm… probably a lot?” to laser-accurate precision! This tool is like a financial :crystal_ball for your aircraft, crunching numbers on fuel, maintenance, crew costs, and just about (almost) every other expense you can imagine. Think of it as your budgeting co-pilot, always ready to calculate so you can focus on the skies instead of spreadsheets. With _cost\_estimation_, you stay in control, keep the accountants happy, and land at your bottom line without any turbulence. So buckle up, and let’s start calculating! ## Summary of features Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned: Configuration | Energy carrier |Cost share | Status | ------------------|-----------------|-------------------------|:------------------------------------:| -Tube-and-wing |Kerosene |Direct operating cost |running \emoji white_check_mark | -Tube-and-wing |Kerosene |Indirect operating cost |under development \emoji construction | -Tube-and-wing |Liquid hydrogen |Direct operating cost |running \emoji white_check_mark | -Tube-and-wing |Liquid hydrogen |Indirect operating cost |under development \emoji construction | -Blended-wing-body |... |... |under development \emoji construction | +Tube-and-wing |Kerosene |Direct operating cost |running :white_check_mark: | +Tube-and-wing |Kerosene |Indirect operating cost |under development :construction:| +Tube-and-wing |Liquid hydrogen |Direct operating cost |running :white_check_mark: | +Tube-and-wing |Liquid hydrogen |Indirect operating cost |under development :construction:| +Blended-wing-body |... |... |under development :construction:| ## A user's guide to cost calculation The _cost\_estimation_ tool is your key to accurately calculating the operating costs of an aircraft. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a cost analysis from the ground up. @@ -23,7 +23,7 @@ For a comprehensive understanding of the tool’s functionality, the documentati - a [software architecture](software_architecture.md) section. -Ready to dive in? Let’s get started! \emoji money_with_wings +Ready to dive in? Let’s get started! :money_with_wings: <!-- ## You are a Developer? diff --git a/docs/documentation/analysis/cost_estimation/operating_cost_method.md b/docs/documentation/analysis/cost_estimation/operating_cost_method.md index 6c9b8ee..c323127 100644 --- a/docs/documentation/analysis/cost_estimation/operating_cost_method.md +++ b/docs/documentation/analysis/cost_estimation/operating_cost_method.md @@ -1,55 +1,56 @@ # Calculation method The total operating costs of an aircraft are split into direct operating costs (DOC) and indirect operating costs (IOC). -\f[ +$ TOC = DOC + IOC -\f] +$ -@note Unless explicitly stated, all values are in SI units and all costs in EUR. +!!! note + Unless explicitly stated, all values are in SI units and all costs in EUR. ## Direct operating costs (calculate_direct_operating_costs function) The Direct Operating Costs (DOC) are directly influenced by the parameters and the aircraft's performance and are commonly used for aircraft evaluation. Therefore, a simplified method for DOC estimation, based on „From Aircraft Performance to Aircraft Assessment“ by J. Thorbeck <sup>[1]</sup>, is provided. The DOC are determined for one year and the entire depreciation period. -Two elements are required for the simplified DOC model: The route independent (fixed) costs \f$C_1\f$ and route dependent (variable) costs \f$C_2\f$: -\f[ +Two elements are required for the simplified DOC model: The route independent (fixed) costs $C_1$ and route dependent (variable) costs $C_2$: +$ DOC = C_1 + C_2 -\f] +$ ### Route independent costs (calculate_route_independent_costs function) Route-independent costs include all cost components apart from the operation of the aircraft. Hence, the route-independent costs are the sum of the capital costs and the crew costs: -\f[ +$ C_1 = C_{CAP} + C_{crew} -\f] +$ Those are calculated both, for one year and for the depreciation period. #### Capital costs (calculate_capital_costs function) The capital costs can be assumed to be a linear function of the operating empty mass if the influence of the aircraft market is considered negligible: -\f[ +$ C_{CAP} = P_{OE} \cdot m_{OE} \cdot (a+f_I) -\f] +$ In which -- \f$P_{OE}\f$ - price per kg operating empty mass -- \f$m_{OE}\f$ - operating empty mass -- \f$a\f$ - annuity factor in percent -- \f$f_I\f$ - insurance rate in percent +- $P_{OE}$ - price per kg operating empty mass +- $m_{OE}$ - operating empty mass +- $a$ - annuity factor in percent +- $f_I$ - insurance rate in percent The annuity formula, which is based on a modified mortgage equation, addresses both yearly depreciation and interest: -\f[ +$ a = f_{IR} \cdot \frac{1-f_{RV} \cdot \left(\frac{1}{1+f_{IR}}\right)^{t_{DEP}}}{1-\left(\frac{1}{1+f_{IR}}\right)^{t_{DEP}}} -\f] +$ In which -- \f$f_{IR}\f$ - interest rate in percent -- \f$f_{RV}\f$ - residual value factor in percent -- \f$t_{DEP}\f$ - depreciation period in years +- $f_{IR}$ - interest rate in percent +- $f_{RV}$ - residual value factor in percent +- $t_{DEP}$ - depreciation period in years The reason for the annuity method modification is to include the residual aircraft value at the end of the depreciation period into the capital costs, which is occasionally relevant. This assumes that an operator is purchasing an aircraft at a constant price per kilogram and spends the corresponding capital cost consistently per year throughout the depreciation period. #### Crew costs (calculate_crew_costs function) This method is based on the lecture "J Flugzeugbewertung" by A. Bardenhagen <sup>[2]</sup>. The annual crew costs are assumed to be the sum of the flight and cabin crew costs: -\f[ +$ C_{crew} = C_{FC} + C_{CC} -\f] +$ both of which are of different levels. There are different approaches here, which must be adapted to the respective cost structure of the airline: - Some airlines (mainly low-cost carriers) employ and pay pilots and flight attendants on a time basis (block hours). @@ -58,27 +59,27 @@ both of which are of different levels. There are different approaches here, whic In the first case, the personnel costs belong to the variable in the second case to the fixed direct operating costs. Here, crew costs are assumed to be fixed (route independent) because an airline must provide enough crews to ensure flight operations over the entire service time and therefore are proportional to the payload. 50 passengers per flight attendant are assumed based on certification requirements. Crew costs are constant per year. To calculate the crew cost for several years, the expected salary increase should be considered by an escalation factor. Accordingly, past price levels can be extrapolated to the current level changed according to inflation, price, or salary increase. Both cost shares are determined by the same variables: -- The flight/cabin crew complement (the number of crews per aircraft, dependent on the stage length): \f$n_{FCC}\f$/\f$n_{CCC}\f$, -- The number of flight/cabin crew members: \f$n_{FC}\f$/\f$n_{CC}\f$, -- The annual salary of a flight/cabin crew member (dependent on the stage length): \f$S_{FC}\f$/\f$S_{CC}\f$, and -- The escalation factor in percent: \f$f_{ESC}\f$. +- The flight/cabin crew complement (the number of crews per aircraft, dependent on the stage length): $n_{FCC}$/$n_{CCC}$, +- The number of flight/cabin crew members: $n_{FC}$/$n_{CC}$, +- The annual salary of a flight/cabin crew member (dependent on the stage length): $S_{FC}$/$S_{CC}$, and +- The escalation factor in percent: $f_{ESC}$. <!-- NOTE: The values of these drivers depend on the stage length. Two modes are implemented. Mode 1 (salary_variation = False, default): To ensure that the values of the above-mentioned parameters are the same for the design mission and mission study, the stage length of the design mission is used to determine the values for the study mission as well. Mode 2 (salary_variation = True): The above-mentioned values are obtained for different stage lengths for the design mission and mission study. --> That results in the following calculations: -\f[ +$ C_{FC} = n_{FCC} \cdot n_{FC} \cdot S_{FC} \cdot f_{ESC} -\f] -\f[ +$ +$ C_{CC} = n_{CCC} \cdot n_{CC} \cdot S_{CC} \cdot f_{ESC} -\f] +$ The escalation factor -\f[ +$ f_{ESC} = (1+r_{INF})^{y} -\f] +$ -incorporates the inflation rate (\f$r_{INF}\f$), which encompasses both price and salary adjustments, and the number of years elapsed between the calculation year and the base year for salaries (\f$y\f$). +incorporates the inflation rate ($r_{INF}$), which encompasses both price and salary adjustments, and the number of years elapsed between the calculation year and the base year for salaries ($y$). If the depreciation period is used as the time difference, resulting costs are related to the whole depreciation period, whereas a time difference of one year solely results in the costs for the base year. The crew complements as well as the average annual salaries are dependent on the stage length: @@ -90,7 +91,7 @@ The crew complements as well as the average annual salaries are dependent on the and can be taken from the following tables: -Segment | Crew complement | \f$S_{FC}\f$ in EUR/y | \f$S_{CC}\f$ in EUR/y | +Segment | Crew complement | $S_{FC}$ in EUR/y | $S_{CC}$ in EUR/y | ----------------|:---------------:|:-----------------:|:-----------------:| Regional | 5 | 70 000 | 30 000 | Short haul | 5 | 120 000 | 30 000 | @@ -99,75 +100,75 @@ Long haul | 8 | 200 000 | 45 000 | Ultra-long haul | 8 | 200 000 | 45 000 | ### Route dependent costs (calculate_route_dependent_costs function) -Route dependent costs \f$C_2\f$ include all cost components that are directly attributable to flight operations. These include -- fuel \f$C_F\f$, -- fees (handling \f$C_H\f$, landing \f$C_L\f$, air traffic control (ATC) \f$C_{ATC}\f$), and -- maintenance \f$C_{MRO}\f$. +Route dependent costs $C_2$ include all cost components that are directly attributable to flight operations. These include +- fuel $C_F$, +- fees (handling $C_H$, landing $C_L$, air traffic control (ATC) $C_{ATC}$), and +- maintenance $C_{MRO}$. Thus, the **annual** route dependent costs can be calculated by -\f[ +$ C_2 = C_F + C_H + C_{LDG} + C_{ATC} + C_{MRO} -\f] +$ #### Flights per year Knowing the number of annual flights is mandatory to calculate the above-mentioned cost shares. A reliable approximation of the number of annual flights can be found using the following analytical basis: -- Potential flight hours per year: \f$365 \cdot 24 = 8760\f$ -- Maintenance lay days per year (C-Check every 15 months for 4 days): \f$4 \cdot 12/15 = 3.2\f$ -- Overhaul lay days per year (D-Check every 5 years for 4 weeks): \f$4 \cdot 7/5 = 5.6\f$ -- Lay days for repairs, technical and operational reserve: \f$2.6\f$ -- Lay hours per year: \f$(3.2+5.6+2.6) \cdot 24 = 273.6\f$ -- Potential operation days per year: \f$365-(3.2+5.6+2.6) = 353.6\f$ -- Daily night curfew hours: \f$7\f$ -- Yearly night curfew hours: \f$354 \cdot 7 = 2475\f$ -- Yearly operation time in hours: \f$OT = 8760-2475-273.6 = 6011.4\f$ - -Knowing the time for one flight \f$FT\f$ and the block time supplement \f$BT\f$ (turn around time) per flight, the number of flight cycles \f$FC\f$ can be calculated: -\f[ +- Potential flight hours per year: $365 \cdot 24 = 8760$ +- Maintenance lay days per year (C-Check every 15 months for 4 days): $4 \cdot 12/15 = 3.2$ +- Overhaul lay days per year (D-Check every 5 years for 4 weeks): $4 \cdot 7/5 = 5.6$ +- Lay days for repairs, technical and operational reserve: $2.6$ +- Lay hours per year: $(3.2+5.6+2.6) \cdot 24 = 273.6$ +- Potential operation days per year: $365-(3.2+5.6+2.6) = 353.6$ +- Daily night curfew hours: $7$ +- Yearly night curfew hours: $354 \cdot 7 = 2475$ +- Yearly operation time in hours: $OT = 8760-2475-273.6 = 6011.4$ + +Knowing the time for one flight $FT$ and the block time supplement $BT$ (turn around time) per flight, the number of flight cycles $FC$ can be calculated: +$ FC = \frac{OT}{(FT + BT)} -\f] +$ It is assumed that one flight cycle consists of an outbound flight, a turnaround time and a return flight. Consequently, the number of annual flights is calculated as follows: -\f[ +$ n_{flights} = 2 \cdot FC -\f] +$ #### Fuel costs (calculate_fuel_costs function) -The fuel costs depend on the fuel price \f$P_F\f$, the trip fuel mass \f$m_{TF}\f$ (which can be obtained from the payload range diagram (PRD)), and the number of yearly flights \f$n_{flights}\f$: -\f[ +The fuel costs depend on the fuel price $P_F$, the trip fuel mass $m_{TF}$ (which can be obtained from the payload range diagram (PRD)), and the number of yearly flights $n_{flights}$: +$ C_F = P_{F} \cdot m_{TF} \cdot n_{flights} -\f] +$ #### Handling costs (calculate_handling_costs function) -Handling charges \f$F_H\f$ include charges for loading and unloading, use of terminals and passenger boarding bridges, security checks, and ground energy supply. -The annual handling fees are charged based on the payload mass \f$m_{PL}\f$ and the number of flights per year. The resulting handling costs are calculated as follows: -\f[ +Handling charges $F_H$ include charges for loading and unloading, use of terminals and passenger boarding bridges, security checks, and ground energy supply. +The annual handling fees are charged based on the payload mass $m_{PL}$ and the number of flights per year. The resulting handling costs are calculated as follows: +$ C_H = m_{PL} \cdot F_{H} \cdot n_{flights} -\f] +$ #### Landing costs (calcutale_landing_costs function) -The annual landing fees \f$F_{LDG}\f$ are charged based on the maximum (certified) takeoff mass \f$m_{TO}\f$ and number of flights per year. The resulting landing costs are calculated as follows: -\f[ +The annual landing fees $F_{LDG}$ are charged based on the maximum (certified) takeoff mass $m_{TO}$ and number of flights per year. The resulting landing costs are calculated as follows: +$ C_{LDG} = m_{TO} \cdot F_L \cdot n_{flights} -\f] +$ #### Air traffic control costs (calculate_air_traffic_control_costs function) The calculation of the ATC costs is based on the EUROCONTROL route charge formula <sup>[3]</sup>, more precisely the aircraft weight factor. > "The weight factor (expressed to two decimals) is determined by dividing, by fifty (50), the certificated Maximum Take-Off Weight (MTOW) of the aircraft (in metric tonnes, to one decimal) and subsequently taking the square root of the result rounded to the second decimal [...]". -The ATC price factor \f$f_{ATC}\f$ considers the fact that the price scenarios are varying strongly for each continent (or even region): -- \f$f_{ATC} = 1.0\f$ for domestic europe -- \f$f_{ATC} = 0.7\f$ for transatlantic flights -- \f$f_{ATC} = 0.6\f$ for far east flights (only half of the landings at european airports) +The ATC price factor $f_{ATC}$ considers the fact that the price scenarios are varying strongly for each continent (or even region): +- $f_{ATC} = 1.0$ for domestic europe +- $f_{ATC} = 0.7$ for transatlantic flights +- $f_{ATC} = 0.6$ for far east flights (only half of the landings at european airports) The ATC costs are calculated as follows: -\f[ +$ C_{ATC} = R \cdot f_{ATC} \cdot \sqrt{\frac{m_{TO}[\text t]}{50}} \cdot n_{flights} -\f] +$ with -- \f$R\f$ - range in km -- \f$m_{TO}\f$ - maximum takeoff mass (in tonnes) +- $R$ - range in km +- $m_{TO}$ - maximum takeoff mass (in tonnes) #### Maintenance costs (calculate_maintenance_costs function) Maintenance costs are categorized into three components: @@ -176,36 +177,36 @@ Maintenance costs are categorized into three components: - Calendar time dependent cost: This component represents a constant share, such as the rectification of corrosion during overhaul. In the following, only the maintenance costs per flight cycle are considered. Following the JADC method, an approximation for those costs is given by the sum of three parts: -- Airframe material maintenance cost (repair and replacement): \f$C_{MRO,AF,MAT}\f$ -- Airframe personnel maintenance cost (inspection and repair): \f$C_{MRO,AF,PER}\f$ -- Engine total maintenance cost: \f$C_{MRO,ENG}\f$ +- Airframe material maintenance cost (repair and replacement): $C_{MRO,AF,MAT}$ +- Airframe personnel maintenance cost (inspection and repair): $C_{MRO,AF,PER}$ +- Engine total maintenance cost: $C_{MRO,ENG}$ In which -\f[ +$ C_{MRO,AF,MAT} = m_{OE}[\text t] \cdot (0.2 \cdot t_{flight} + 13.7) + C_{MRO,AF,REP} -\f] -\f[ +$ +$ C_{MRO,AF,PER} = f_{LR} \cdot (1+C_B) \cdot \left[ (0.655 + 0.01 \cdot m_{OE}[\text t]) \cdot t_{flight} + 0.254 + 0.01 \cdot m_{OE}[\text t] \right] -\f] -\f[ +$ +$ C_{MRO,ENG} = n_{ENG} \cdot \left( 1.5 \cdot \frac{T_{0} [\text t]}{n_{ENG}} + 30.5 \cdot t_{flight} + 10.6 \cdot f_{MRO,ENG}\right) -\f] +$ with -- \f$C_{MRO,AF,REP}\f$ - airframe repair cost per flight -- \f$f_{LR}\f$ - labor rate in EUR/h -- \f$C_B\f$ - cost burden -- \f$n_{ENG}\f$ - number of engines -- \f$T_{0}\f$ - sea level static thrust per engine -- \f$f_{MRO,ENG}\f$ - engine maintenance factor +- $C_{MRO,AF,REP}$ - airframe repair cost per flight +- $f_{LR}$ - labor rate in EUR/h +- $C_B$ - cost burden +- $n_{ENG}$ - number of engines +- $T_{0}$ - sea level static thrust per engine +- $f_{MRO,ENG}$ - engine maintenance factor -The airframe repair cost per flight \f$C_{MRO,AF,REP}\f$ equal 57.5 for kerosene-powered aircraft. For hydrogen-powered aircraft, this value is multiplied by the operating empty mass factor \f$f_{OEM} = 1.1\f$ to account for an approx. 10% higher operating empty mass. -The engine maintenance factor is considered \f$f_{ENG} = 1\f$ for kerosene-powered aircraft and \f$f_{ENG} = 0.7\f$ for hydrogen-powered aircraft. +The airframe repair cost per flight $C_{MRO,AF,REP}$ equal 57.5 for kerosene-powered aircraft. For hydrogen-powered aircraft, this value is multiplied by the operating empty mass factor $f_{OEM} = 1.1$ to account for an approx. 10% higher operating empty mass. +The engine maintenance factor is considered $f_{ENG} = 1$ for kerosene-powered aircraft and $f_{ENG} = 0.7$ for hydrogen-powered aircraft. Thus, the annual maintenance costs result in -\f[ +$ C_{MRO} = (C_{MRO,AF,MAT} + C_{MRO,AF,PER} + C_{MRO,ENG}) \cdot n_{flights} -\f] +$ ## Related direct operating costs Absolute DOC are generally unsuitable as an assessment measure because aircraft size and technology strongly influence this figure. They are therefore expressed in differently related quantities, depending on the purpose of the evaluation: @@ -218,41 +219,42 @@ These are described below. ### Flight kilometer costs (calculate_flight_kilometer_costs function) The flight kilometer costs are very flexible and suitable for an extended consideration of changed route structures. This parameter allows the range potential of the aircraft to be assessed: -\f[ +$ FKC = \frac{DOC}{R}. -\f] +$ ### Seat kilometer costs (calculate_seat_kilometer_costs function) -The seat kilometer offered (SKO) (or available) is a measure of an aircraft's passenger carrying capacity or, in other words, its potential to generate revenue by providing available seats to passengers. They are calculated by multiplying the number of seats available \f$n_{seats}\f$ by the range: -\f[ +The seat kilometer offered (SKO) (or available) is a measure of an aircraft's passenger carrying capacity or, in other words, its potential to generate revenue by providing available seats to passengers. They are calculated by multiplying the number of seats available $n_{seats}$ by the range: +$ SKO = n_{seats} \cdot R. -\f] +$ The seat kilometer costs allow the analysis of a change in seat capacity and thus the assessment of the passenger kilometer potential: -\f[ +$ SKC = \frac{DOC}{SKO} -\f] +$ ### Corrected seat kilometer costs (calculate_corrected_seat_kilometer_costs function) -@note The calculation of this cost share is not implemented at the moment and set to `0` instead. +!!! note + The calculation of this cost share is not implemented at the moment and set to `0` instead. A method of freight equivalent passenger seats is applied. -Cargo revenue from residual cargo payload at maximum zero fuel mass (\f$m_{PL,max} - m_{PL}\f$) can be calculated using -\f[ +Cargo revenue from residual cargo payload at maximum zero fuel mass ($m_{PL,max} - m_{PL}$) can be calculated using +$ I_{cargo} = I_{FR} \cdot (W_{PL,max} - W_{PAX}) -\f] +$ with -- \f$I_{FR}\f$ - revenue per freight kilometer -- \f$W_{PL,max}\f$ - maximum payload weight -- \f$W_{PAX}\f$ - pax weight +- $I_{FR}$ - revenue per freight kilometer +- $W_{PL,max}$ - maximum payload weight +- $W_{PAX}$ - pax weight The equivalent seat revenue can be derived using the following formula: -\f[ +$ n_{PAX,cargo} = \frac{I_{cargo}}{I_{PAX}} -\f] -with \f$I_{PAX}\f$ as revenue per seat and flight (see following table). +$ +with $I_{PAX}$ as revenue per seat and flight (see following table). -Segment | \f$I_{PAX,multi-class}\f$ in EUR/SO | \f$I_{PAX,all-economy}\f$ in EUR/SO | +Segment | $I_{PAX,multi-class}$ in EUR/SO | $I_{PAX,all-economy}$ in EUR/SO | ----------------|:-------------------------------:|:-------------------------------:| Short haul | 400 | 250 | Medium haul | 450 | 300 | @@ -260,33 +262,33 @@ Long haul | 550 | 400 Ultra long haul | 700 | 550 | Finally, the SKC correction can be determined as follows: -\f[ +$ SKC_{cor} = SKC \cdot \frac{n_{PAX}}{n_{PAX} + n_{PAX,cargo}} -\f] +$ ### Ton kilometer costs (calculate_ton_kilometer_costs function) The ton kilometer costs (TKC) allow the analysis of a change in payload capacity and thus the assessment of the payload kilometer potential. The Ton Kilometers Offered (TKO) are the product of the payload and the range: -\f[ +$ TKO = m_{PL} \cdot R -\f] +$ The Ton Kilometer Costs (TKC) are the DOC related to the TKO: -\f[ +$ TKC = \frac{DOC}{TKO} -\f] +$ ### Revenue seat kilometer costs (calculate_revenue_seat_kilometer_costs) -Revenue passenger kilometers (RPK) are a measure of how many kilometers the aircraft has carried paying passengers. It is often referred to as "traffic" as it represents the actual demand for air transport. The RPK are determined by multiplying the range by the number of paying passengers. The revenue passenger kilometers are calculated by multiplying the number of revenue passengers with the maximum number of seats and the seat load factor \f$f_{PL}\f$: -\f[ +Revenue passenger kilometers (RPK) are a measure of how many kilometers the aircraft has carried paying passengers. It is often referred to as "traffic" as it represents the actual demand for air transport. The RPK are determined by multiplying the range by the number of paying passengers. The revenue passenger kilometers are calculated by multiplying the number of revenue passengers with the maximum number of seats and the seat load factor $f_{PL}$: +$ RPK = n_{PAX} \cdot f_{SL} \cdot R -\f] +$ The DOC per revenue passenger kilometer additionally take into account the overall performance of an airline. Note that revenue is strongly dependent on market situation and therefore varying. -\f[ +$ RSKC = \frac{DOC}{RPK} -\f] +$ ## Indirect operating costs (IOC) -tbd. \emoji construction +tbd. :construction: --- <sup>[1]</sup> J. Thorbeck, 2007. *From Aircraft Performance to Aircraft Assessment*. DLR.<br> diff --git a/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md b/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md index dfa91ac..a043b4a 100644 --- a/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md +++ b/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md @@ -1,5 +1,5 @@ # Run your first cost estimation -Let's dive into the fun part and crunch some numbers! \emoji moneybag +Let's dive into the fun part and crunch some numbers! :moneybag: ## Tool single execution The tool can be executed from the console directly if all paths are set. The following will happen: @@ -62,7 +62,8 @@ In the following, a short overview is given on the generated reports: - plots in the `plots` folder ### Write data to the aircraft exchange file {#write-data-to-acxml} -@note The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! +!!! note + The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! Results are saved in the aircraft exchange file at the `aircraft_exchange_file/assessment/cost_estimation/operating_cost` node. The following information is written to the _acXML_: ``` diff --git a/docs/documentation/analysis/ecological_assessment/aqi_schaefer.md b/docs/documentation/analysis/ecological_assessment/aqi_schaefer.md index 7746724..9d53720 100644 --- a/docs/documentation/analysis/ecological_assessment/aqi_schaefer.md +++ b/docs/documentation/analysis/ecological_assessment/aqi_schaefer.md @@ -4,13 +4,13 @@ This method provides a single indicator (called the Air Quality Index (AQI)) for ## General principles {#aqi-schaefer-generalprinciples} The calculation method, including all required inputs, is described in Schaefer (2017) \cite Sch17. It is: -\f$ AQI = 1/n \cdot \sum x_i/x_{i,max}\f$ +$ AQI = 1/n \cdot \sum x_i/x_{i,max}$ where: -- \f$ x_i \f$: emission mass [g] ( for CO, HC, NOx) or maximum concentration [mg/m^3] ( for soot) during the landing and takeoff cycle, -- \f$ x_{i,max}\f$: regulatory value defined by ICAO, the ratio of emission mass Dp [g] emitted during LTO and the rated thrust F00 [kN], -- \f$ n \f$: number of emission species. +- $ x_i $: emission mass [g] ( for CO, HC, NOx) or maximum concentration [mg/m^3] ( for soot) during the landing and takeoff cycle, +- $ x_{i,max}$: regulatory value defined by ICAO, the ratio of emission mass Dp [g] emitted during LTO and the rated thrust F00 [kN], +- $ n $: number of emission species. ## Input-Data {#aqi-schaefer-input} Only engine and emission data are needed. To construct the engine object, the following is required from acXML: diff --git a/docs/documentation/analysis/ecological_assessment/getting-started.md b/docs/documentation/analysis/ecological_assessment/getting-started.md index da59af2..ffa00dd 100644 --- a/docs/documentation/analysis/ecological_assessment/getting-started.md +++ b/docs/documentation/analysis/ecological_assessment/getting-started.md @@ -3,7 +3,8 @@ ## Tool execution This guide will show you the basic usage of the _ecological\_assessment_ tool. -@note It is assumed that you have the `UNICADO Package` installed, including the executables and UNICADO libraries. If you are a developer, you need to build the tool first (see [build instructions on the UNICADO website](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/build/cpp/)). +!!! note + It is assumed that you have the `UNICADO Package` installed, including the executables and UNICADO libraries. If you are a developer, you need to build the tool first (see [build instructions on the UNICADO website](../../../get-involved/build/cpp/)). The following steps are necessary: 1. Create a dummy `aircraft_exchange_file` and provide all other required inputs (for submodule-dependent minimal required inputs see [here](#submodules)). diff --git a/docs/documentation/analysis/ecological_assessment/lca_schaefer.md b/docs/documentation/analysis/ecological_assessment/lca_schaefer.md index e41ab25..d03f517 100644 --- a/docs/documentation/analysis/ecological_assessment/lca_schaefer.md +++ b/docs/documentation/analysis/ecological_assessment/lca_schaefer.md @@ -2,14 +2,15 @@ # LCA_schaefer {#lca-schaefer} The method is based on the dissertation by Katharina Schäfer (2011) \cite Sch17. It is highly recommended to refer to this work for detailed insights. The method calculates the energy demand and emissions across the aircraft's life cycle phases: development, production, operation, and end-of-life. The following image shows the processes considered. - + ## General principles {#lca-schaefer-generalprinciples} For all processes within the four phases, an inventory analysis is conducted. The function `calculateResources` collects all relevant inputs, such as materials and energy demand. Next, `calculateEmissions` determines the resulting emissions. For background processes, data provided primarily by [GaBi Software](https://ghgprotocol.org/gabi-databases) is used, offering emission data for material extraction, fuel production, energy production, and more. If recycling is enabled, emissions in the end-of-life phase can be negative, as the emissions saved in the production phase due to recycling are accounted for here. ## Input-Data {#lca-schaefer-input} -@note The following lists show only the data that is directly read by the module. For data required by the libraries in use, please refer to the respective documentation. +!!! note + The following lists show only the data that is directly read by the module. For data required by the libraries in use, please refer to the respective documentation. The method reads following data from the acXML file: ```xml diff --git a/docs/documentation/analysis/ecological_assessment/mission_emissions.md b/docs/documentation/analysis/ecological_assessment/mission_emissions.md index 08979db..1871d52 100644 --- a/docs/documentation/analysis/ecological_assessment/mission_emissions.md +++ b/docs/documentation/analysis/ecological_assessment/mission_emissions.md @@ -6,10 +6,10 @@ The following steps are executed within the mission class: - `get_mission_data`, `write_emissions_path_csv`, and `get_engine_thermodynamics_LTO`: Data from the `mission.csv` file is imported, engine data for every mission step is determined and saved in a CSV file, and the engine thermodynamics during the landing and takeoff phase according to ICAO definition are calculated. - Emission calculation: Depending on the defined engine carrier, the emissions will be calculated for every mission step. - Kerosene: - - The emissions of CO2, H2O, SO2, and SO4 are considered to be proportional to the fuel flow. Therefore, they are calculated via \f$ m_{emission} = EI * m_{fuel}\f$, with - - \f$ m_{emission}\f$: emission mass \f$[kg]\f$ - - \f$ EI \f$: emission index \f$[\frac{kg_{emission}}{kg_{fuel}}]\f$ - - \f$ m_{fuel} \f$: fuel mass \f$[kg]\f$ + - The emissions of CO2, H2O, SO2, and SO4 are considered to be proportional to the fuel flow. Therefore, they are calculated via $ m_{emission} = EI * m_{fuel}$, with + - $ m_{emission}$: emission mass $[kg]$ + - $ EI $: emission index $[\frac{kg_{emission}}{kg_{fuel}}]$ + - $ m_{fuel} $: fuel mass $[kg]$ - All other emissions are considered to be non-proportional. For NOx emissions, there are a P3T3 Method \cite Nor03, Boeing Fuel Flow Method 2 \cite Sch13, and the calculation based on data generated by GasTurb available. For HC as well as CO emissions, the DLR Omega method and Boeing Fuel Flow Method 2 \cite Sch13 are implemented. Additionally, there is the option to calculate the landing and takeoff cycle emissions based on constants provided by ICAO. Soot emissions can be determined via a DLR correlation based on ICAO smoke numbers or a correlation by R.B. Whyte \cite Kug05. Alternatively, it can be assumed to be proportional to the consumed fuel. - Hydrogen: Only H2O and NOx emissions are produced. - H2O is assumed to be proportional to the fuel flow. diff --git a/docs/documentation/analysis/weight_and_balance_analysis/basic-concepts.md b/docs/documentation/analysis/weight_and_balance_analysis/basic-concepts.md index a6c77b1..238d4d7 100644 --- a/docs/documentation/analysis/weight_and_balance_analysis/basic-concepts.md +++ b/docs/documentation/analysis/weight_and_balance_analysis/basic-concepts.md @@ -18,26 +18,26 @@ Let us start defining the different masses calculated by the tool and how they a - The **Operating Empty Mass (OEM)** represents the mass of the aircraft which includes the crew, all essential operational fluids and all operator-required items and equipment for flight. It coresponds to the MEM with addition of the operator items mass. - \f$ OEM = MEM + operator\_items\_mass \f$ + $ OEM = MEM + operator\_items\_mass $ > [!NOTE] > The operator items are calculated by both the fueselage design and the systems design module. - The **Maximum Zero Fuel Mass (MZFM)** is the total mass of the aircraft without any fuel. It is calculated with - \f$MZFM = OEM + maximum\_payload\_mass \f$ + $MZFM = OEM + maximum\_payload\_mass $ - The ***maximum payload mass*** is refering to the maximum allowed payload which can be taken on board without violation of the structural limits and capacity constraints. This is defined in the TLARs. - The **Ferry Range Mass (FRM)** is the mass at which the aircraft can reach the maximum range. For this, no payload is carried and the tanks are filled up with the maximum fuel mass. - \f$ FRM = OEM + maximum\_fuel\_mass \f$ + $ FRM = OEM + maximum\_fuel\_mass $ - The ***maximum fuel mass*** is the maximum fuel that can be carried and fits in all tanks up to the maximum capacity, i.e all tanks are full. The tank design module outputs the maximum energy per each designed tank. These are transformed here with the corresponding gravimetric density to a maximum fuel mass per tank and then summed up for all tanks. - The **Maximum Take-Off Mass (MTOM)** is the mass at which the aircraft takes off. For the design mission this corresponds to the design mass at take-off. Starting with the previously determined OEM, the calculated design fuel at takeoff and the design payload mass are added: - \f$ MTOM = OEM + design\_fuel\_mass\_takeoff + design\_payload\_mass \f$ + $ MTOM = OEM + design\_fuel\_mass\_takeoff + design\_payload\_mass $ > [!NOTE] > The estimated MTOM is an input of the weight and balance analysis tool and is initially written by the _initial\_sizing_ module. Here, it is updated to a mass based on more exact calculation, as the components design and its mass breakdown is now known. @@ -49,7 +49,7 @@ Let us start defining the different masses calculated by the tool and how they a - The ***design fuel mass landing*** corresponds to the remaining fuel in the tanks just after the plane touched down. The minimum fuel mass at landing is determined by substracting from the mission fuel mass the trip fuel mass (containing all flight segments) and the taxi fuel mass before the take-off. If no mission information is available, the minimum design fuel mass at landing is calculated by multiplying the design fuel mass at takeoff with factors for the contingency fuel, alternate fuel and the final fuel reserve. With the knowledge about the OEM, the design payload mass and the design fuel masses at different points during flight, the total design masses of the aircraft at specific times can be calculated: - - ***design mass mission*** (the mass of the aircraft in the parking position before the start) \f$design\_mass\_mission = OEM + design\_fuel\_mass\_mission + design\_payload\_mass. \f$ + - ***design mass mission*** (the mass of the aircraft in the parking position before the start) $design\_mass\_mission = OEM + design\_fuel\_mass\_mission + design\_payload\_mass. $ - ***design mass at take-off*** (equal with the MTOM and to the ***design mass*** written in the acxml) - ***design mass at midflight*** - ***design mass at landing*** @@ -57,12 +57,12 @@ Let us start defining the different masses calculated by the tool and how they a - The **Maximum Landing Mass (MLM)** is the maximum mass at which the pilot of the aircraft is allowed to attempt to land due to structural or other limits. Two calculation modes are available: - based on the mission information and the consumed fuel during flight (`default method`): - \f$MLM = OEM + design\_fuel\_mass\_landing + design\_payload\_mass \f$ + $MLM = OEM + design\_fuel\_mass\_landing + design\_payload\_mass $ - via the `RWTH regression method`: This calculation uses different formulas depending on whether the maximum takeoff mass exceeds a threshold value of 15,000 kg. 1. For Aircraft with *MTOM > 15,000 kg* the following empirical formula is used: - \f$MLM = 1.9689 \times MTOM^{0.9248}\f$ + $MLM = 1.9689 \times MTOM^{0.9248}$ 2. For Aircraft with *MTOM ≤ 15,000 kg* a linear approximation is used: - \f$MLM = 0.9009 \times MTOM + 410.85 \f$ + $MLM = 0.9009 \times MTOM + 410.85 $ Additionally, two masses are calculated for the case that the aircraft flies either with maximum payload mass or with maximum fuel mass. In both cases the difference up to MTOM is completed with fuel or payload respectively. Based on the loading diagramm, the masses at the most forward and most aft CG positions are also determined. @@ -71,16 +71,16 @@ Additionally, two masses are calculated for the case that the aircraft flies eit The knowledge of the center of gravity (CG) position and movement is necessary to ensure the static stability and controllability of the aircraft on the ground and in the air. Based on the results of the detailed mass breakdown of the components with their _mass properties_ information, the total center of gravity of the aircraft can now be determined. The position of the overall CG can generally be determined from the position of the individual centers of gravity w.r.t. a global reference point. -The calculation involves determining the weighted average of the CG positions for all components. For each axis (_x, y ,z_), the function sums the scaled masses, which are the product of a component’s mass and its CG coordinate for the respective axis. This sum is then divided by the total mass of all components to yield the final CG coordinate for that axis. The global center of gravity (\f$ \text{CG} \f$) for a specific axis (\f$ \text{ax} \f$) is calculated as: +The calculation involves determining the weighted average of the CG positions for all components. For each axis (_x, y ,z_), the function sums the scaled masses, which are the product of a component’s mass and its CG coordinate for the respective axis. This sum is then divided by the total mass of all components to yield the final CG coordinate for that axis. The global center of gravity ($ \text{CG} $) for a specific axis ($ \text{ax} $) is calculated as: -\f$ +$ \text{CG}_{\text{ax}} = \frac{\sum_{i=1}^n (m_i \cdot x_i)}{\sum_{i=1}^n m_i} -\f$ +$ Where: -- \f$ m_i \f$ is the mass of the \f$ i \f$-th component. -- \f$ x_i \f$ is the coordinate of the \f$ i \f$-th component along the \f$ \text{ax} \f$. -- \f$ n \f$ is the total number of components. +- $ m_i $ is the mass of the $ i $-th component. +- $ x_i $ is the coordinate of the $ i $-th component along the $ \text{ax} $. +- $ n $ is the total number of components. > [!NOTE] > It is often common to specify the center of gravity as %MAC. @@ -129,32 +129,32 @@ Finally, the **most forward and most aft _x_-CG positions** and the correspondin --- ## Mass Moments of Inertia {#inertia} -Inertia forces arise from the tendency of mass to resist accelerations. For rotational accelerations, these forces are represented by the **mass moment of inertia** terms.These are critical parameters in the analysis and design of aircraft, as they determine the rotational dynamics about the principal axes: roll, pitch, and yaw. These values influence stability, control responsiveness, and handling qualities. The moments of inertia are calculated relative to an axis and depend on the mass distribution of the aircraft. The cross products of inertia (e.g., \f$ I_{xy} \f$) arise when the axes are not aligned with the principal axes of the mass distribution. +Inertia forces arise from the tendency of mass to resist accelerations. For rotational accelerations, these forces are represented by the **mass moment of inertia** terms.These are critical parameters in the analysis and design of aircraft, as they determine the rotational dynamics about the principal axes: roll, pitch, and yaw. These values influence stability, control responsiveness, and handling qualities. The moments of inertia are calculated relative to an axis and depend on the mass distribution of the aircraft. The cross products of inertia (e.g., $ I_{xy} $) arise when the axes are not aligned with the principal axes of the mass distribution. In this context the mass moments of inertia about the three principal axes -- \f$ I_{xx} \f$: About the roll axis -- \f$ I_{yy} \f$: About the pitch axis -- \f$ I_{zz} \f$: About the yaw axis +- $ I_{xx} $: About the roll axis +- $ I_{yy} $: About the pitch axis +- $ I_{zz} $: About the yaw axis > [!NOTE] > The mass moments of inertia are calculated only for the total masses. are determined determined by means of the following ***calculation methods:*** #### 1. Using Raymer's Empirical Equations -*Raymer* provides empirical formulas to estimate the moments of inertia based on the aircraft's geometry and mass distribution. These equations are derived from historical data based on nondimensional radii of gyration (\f$ R_x \f$, \f$ R_y \f$, \f$ R_z \f$) and are suitable for early design phases where detailed component-level data may not be available. The mass moments of inertia are given as follows: +*Raymer* provides empirical formulas to estimate the moments of inertia based on the aircraft's geometry and mass distribution. These equations are derived from historical data based on nondimensional radii of gyration ($ R_x $, $ R_y $, $ R_z $) and are suitable for early design phases where detailed component-level data may not be available. The mass moments of inertia are given as follows: -- **Roll**: \f$I_{xx} = \frac{b^2 M R_x^2}{4} \cdot f_{xx}\f$ -- **Pitch**: \f$I_{yy} = \frac{l^2 M R_y^2}{4} \cdot f_{yy} \f$ -- **Yaw:** \f$I_{zz} = \frac{\left( \frac{b + l}{2} \right)^2 M R_z^2}{4}\f$ +- **Roll**: $I_{xx} = \frac{b^2 M R_x^2}{4} \cdot f_{xx}$ +- **Pitch**: $I_{yy} = \frac{l^2 M R_y^2}{4} \cdot f_{yy} $ +- **Yaw:** $I_{zz} = \frac{\left( \frac{b + l}{2} \right)^2 M R_z^2}{4}$ Where: -- \f$ b \f$: Wingspan -- \f$ l \f$: Fuselage length -- \f$ M \f$: Aircraft mass -- \f$f_{xx}\f$ and \f$f_{yy}\f$: Technology factors set to \f$1.25\f$ respectively \f$1.15\f$ -- \f$ R_x, R_y, R_z \f$: Nondimensional radii of gyration. The following values are implemented: +- $ b $: Wingspan +- $ l $: Fuselage length +- $ M $: Aircraft mass +- $f_{xx}$ and $f_{yy}$: Technology factors set to $1.25$ respectively $1.15$ +- $ R_x, R_y, R_z $: Nondimensional radii of gyration. The following values are implemented: -| **Aircraft Configuration** | \f$ R_x \f$ | \f$ R_y \f$ | \f$ R_z \f$ | +| **Aircraft Configuration** | $ R_x $ | $ R_y $ | $ R_z $ | |-----------------------------------------|-----------|-----------|-----------| | Fuselage-mounted engines | 0.24 | 0.34 | 0.42 | | 2 wing-mounted engines | 0.23 | 0.33 | 0.45 | @@ -163,50 +163,50 @@ Where: #### 2. Using the LTH Tables (*Luftfahrttechnisches Handbuch*) -The LTH provides tabulated values and empirical methods specific to various aircraft configurations. These tables account for typical mass distributions and structural layouts. They are more accurate than Raymer’s approach but require knowledge of the specific aircraft class and design. The `calculate_inertia_by_lth_method` function is tailored specifically for conventional tube-and-wing configurations. This method uses aircraft mass properties like the OEM, the payload mass (\f$m_{payload}\f$) and the fuel mass (\f$m_{fuel}\f$) and geometric dimensions such as wing span \f$b\f$ and fuselage length \f$l\f$. All cross-product terms (\f$I_{xy}\f$, \f$I_{xz}\f$, etc.) are set to \f$0\f$, assuming symmetry. +The LTH provides tabulated values and empirical methods specific to various aircraft configurations. These tables account for typical mass distributions and structural layouts. They are more accurate than Raymer’s approach but require knowledge of the specific aircraft class and design. The `calculate_inertia_by_lth_method` function is tailored specifically for conventional tube-and-wing configurations. This method uses aircraft mass properties like the OEM, the payload mass ($m_{payload}$) and the fuel mass ($m_{fuel}$) and geometric dimensions such as wing span $b$ and fuselage length $l$. All cross-product terms ($I_{xy}$, $I_{xz}$, etc.) are set to $0$, assuming symmetry. The mass moments of inertia around the principal axes are given as follows: - **Roll**: - \f$ + $ I_{xx} = f_{xx} \cdot K_x^2 \cdot b^2 \cdot m_m - \f$ + $ - **Pitch**: - \f$ + $ I_{yy} = f_{yy} \cdot K_y^2 \cdot l^2 \cdot m_m - \f$ + $ - **Yaw**: - \f$ + $ I_{zz} = 0.96 \cdot (I_{xx} + I_{yy}) - \f$ + $ -Here, \f$f_{xx}\f$ and \f$f_{yy}\f$ are technology factors set to \f$0.8\f$ respectively \f$0.9\f$. The expected mass \f$M\f$ and the scaling factors \f$K_x\f$ and \f$K_y\f$, derived from empirical LTH tables, are defined as: +Here, $f_{xx}$ and $f_{yy}$ are technology factors set to $0.8$ respectively $0.9$. The expected mass $M$ and the scaling factors $K_x$ and $K_y$, derived from empirical LTH tables, are defined as: - \f$ M = OME + m_{payload} + m_{fuel} \f$ + $ M = OME + m_{payload} + m_{fuel} $ - \f$ K_x = \frac{1}{12} \left( \left[ - \frac{2}{3} \cdot \left(\frac{M}{OME}- 1\right) + \frac{m_{fuel}}{OME} \right] +1 \right) + 0.065 \f$ + $ K_x = \frac{1}{12} \left( \left[ - \frac{2}{3} \cdot \left(\frac{M}{OME}- 1\right) + \frac{m_{fuel}}{OME} \right] +1 \right) + 0.065 $ - \f$ K_y = -\frac{0.065}{1.72} \left[ 0.2 \cdot \left(\frac{M}{OME}- 1\right) + \frac{m_{fuel}}{OME} \right] + 0.2025 \f$ + $ K_y = -\frac{0.065}{1.72} \left[ 0.2 \cdot \left(\frac{M}{OME}- 1\right) + \frac{m_{fuel}}{OME} \right] + 0.2025 $ #### 3. Using the Component's Inertia -This method involves calculating the total inertia tensor of the aircraft based on its components' individual mass properties. For each inertia component (\f$I_{xx}\f$, \f$I_{xy}\f$, etc.), the function adds the component's intrinsic inertia and the inertia due to its offset from the reference CG (using the Steiner theorem). The mass moments of inertia are given exemplary +This method involves calculating the total inertia tensor of the aircraft based on its components' individual mass properties. For each inertia component ($I_{xx}$, $I_{xy}$, etc.), the function adds the component's intrinsic inertia and the inertia due to its offset from the reference CG (using the Steiner theorem). The mass moments of inertia are given exemplary -- around the principal axes (\f$I_{xx}\f$, \f$I_{yy}\f$,\f$I_{zz}\f$): -\f$ +- around the principal axes ($I_{xx}$, $I_{yy}$,$I_{zz}$): +$ I_{xx} = \sum (I_{xx},{\text{component}} + m_{\text{component}} \cdot (p^2 + q^2)) -\f$ -- around the deviation axes (cross-product terms \f$I_{xy}\f$, \f$I_{xz}\f$, etc.): -\f$ +$ +- around the deviation axes (cross-product terms $I_{xy}$, $I_{xz}$, etc.): +$ I_{xy} = \sum (I_{xy},{\text{component}} + m_{\text{component}} \cdot -(p \cdot q)) -\f$ +$ -with \f$p\f$ and \f$q\f$ representing the relative distances between the reference center of gravity (CG) and the current component's CG along the specified axes. Specifically: -- \f$ p \f$: The distance along the first axis (e.g., x, y, or z). -- \f$ q \f$: The distance along the second axis (e.g., x, y, or z). +with $p$ and $q$ representing the relative distances between the reference center of gravity (CG) and the current component's CG along the specified axes. Specifically: +- $ p $: The distance along the first axis (e.g., x, y, or z). +- $ q $: The distance along the second axis (e.g., x, y, or z). > [!NOTE] > The component's moments of inertia, if available, are calculated in the component's design modules. Otherwise, these are 0. diff --git a/docs/documentation/analysis/weight_and_balance_analysis/usage.md b/docs/documentation/analysis/weight_and_balance_analysis/usage.md index 5185edd..117b548 100644 --- a/docs/documentation/analysis/weight_and_balance_analysis/usage.md +++ b/docs/documentation/analysis/weight_and_balance_analysis/usage.md @@ -57,7 +57,8 @@ The _weight\_and\_balance\_analysis\_conf.xml_ is structured into two blocks: th - the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings, - the `console_output` at least to `mode_1`, and -@note If the tool is executed via the workflow, those settings are set by the workflow settings. +!!! note + If the tool is executed via the workflow, those settings are set by the workflow settings. ## Method Selection {#method-selection} By changing the program settings im the configXML we can manipulate how the w&b analysis tool is running. The program settings are structured like this: diff --git a/docs/documentation/libraries/aircraftGeometry2/index.md b/docs/documentation/libraries/aircraftGeometry2/index.md index 5286723..2d692b3 100644 --- a/docs/documentation/libraries/aircraftGeometry2/index.md +++ b/docs/documentation/libraries/aircraftGeometry2/index.md @@ -15,7 +15,8 @@ Before we dive into the coordinate systems however, let's get to know how the ac @attention → This library does only support discrete shapes. Meaning the shapes are **always** polygons where the discrete vertices of the polygon are connected with lines which form the edges of the polygon. -@note The Python binding of this library does __not__ include a complete implementation of **CGAL**! +!!! note + The Python binding of this library does __not__ include a complete implementation of **CGAL**! If you want to use the full flexibility of **CGAL** you need to implement your tool in C++. --- @@ -55,7 +56,8 @@ Note, that the library rather uses sections and not segments and therefore does The main extrusion direction of the surface is along the local `Z` axis. The origin points of each section are 3D coordinates and define the location of the section within the surface coordinate space. By moving the origin point, the complete section gets moved as well. -@note The order how you insert the sections in the surface **does** matter as it defines how the sections are connected. +!!! note + The order how you insert the sections in the surface **does** matter as it defines how the sections are connected. The surfaces themselves have an origin point which defines their location in the 3D space of some parent entity. @@ -103,20 +105,21 @@ That is not enough to represent arbitrary geometry. You need a mechanism to orie The normal direction basically defines the direction where the local `Z` axis should point to within a parent scope. The direction is defined using the [Direction_3](@ref geom2.Direction_3) class of **CGAL** and is a vector in 3D space. Although, this class is technically not concerned about the length of the vector, it is a good idea to make sure, that the resulting length of the normal direction is equal to **1.0**. -The definition of this normal direction is not enough to unambiguously define the three Euler angles which are needed for the coordinate transform. The normal direction can only define **two** of the three angles. As a consequence, the third Euler angle \f$\gamma\f$ has to be set manually using the `rotation_z` property of the geom2::Entity3D class. +The definition of this normal direction is not enough to unambiguously define the three Euler angles which are needed for the coordinate transform. The normal direction can only define **two** of the three angles. As a consequence, the third Euler angle $\gamma$ has to be set manually using the `rotation_z` property of the geom2::Entity3D class. This angle applies a rotation around the local `Z` axis whenever the coordinates of the geometry are transformed to another coordinate system. -@note The handling of the third Euler angle can still be subjected to change. +!!! note + The handling of the third Euler angle can still be subjected to change. The usage of the Euler angles can lead to unintuitive results, but that is unfortunately the nature of those angles. Here are some results of Euler angles with different normal directions: -|Normal Direction | Euler Angle \f$\alpha\f$ | Euler Angle \f$\beta\f$ | Euler Angle \f$\gamma\f$ | +|Normal Direction | Euler Angle $\alpha$ | Euler Angle $\beta$ | Euler Angle $\gamma$ | | --- | :---: | :---: | :---: | |`[0, 0, 1]` | 0° | 0° | 0° | |`[0, 1, 1]` | -45° | 0° | 0° | |`[1, 0, 1]` | 45° | 0° | 90° | Understanding the relationship of the normal direction and the Euler angles of this table is key to understand the 3D coordinate transformation with rotation. -**Most importantly,** the last case, where a "simple" rotation around the `Y` axis leads to *two* non-zero angles, especially the third angle \f$\gamma\f$ is not zero any more as opposed to the initial assumption! That is again due to the fact how Euler angles work... +**Most importantly,** the last case, where a "simple" rotation around the `Y` axis leads to *two* non-zero angles, especially the third angle $\gamma$ is not zero any more as opposed to the initial assumption! That is again due to the fact how Euler angles work... In the end, you do not need to understand this in great detail to use the library, just be aware, that certain normal directions can lead to a final orientation which was not the one you expected. In such cases, you can use the `rotation_z` parameter to adjust. @@ -125,4 +128,5 @@ Here is an overview how the library is structured: {html: width=1000} -@note This is still work in progress and can change! +!!! note + This is still work in progress and can change! diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md b/docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md index 93b1c31..7747cc7 100644 --- a/docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md +++ b/docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md @@ -12,14 +12,16 @@ You have the specify how the converter "treats" this surface, since certain form You can select the surface function base on type by using the surface type variant geom2::io::SurfaceType. Depending on which type you select for the variant the converter will treat the surface accordingly. -@note The python bindings do work differently. They use the same underlying functions, but the interface does not enable the polymorphic use (yet)! +!!! note + The python bindings do work differently. They use the same underlying functions, but the interface does not enable the polymorphic use (yet)! ## Convert to aixml::node Object The following tutorial will show you how you can convert a multi-section surface as a wing surface node to the aircraft XML using the geom2::io::AixmlConverter class. The *aixml* library will not be discussed in detail in this tutorial. Refer to its [documentation](https://www.google.de) if you need further information. -@note The Python examples assume that you imported the following modules: +!!! note + The Python examples assume that you imported the following modules: ```python import pyaircraftGeometry2 as geom2 import pyaixml as aixml diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md b/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md index 189b70a..1ba48f5 100644 --- a/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md +++ b/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md @@ -7,10 +7,11 @@ The factory classes follow the *factory design pattern*, hence the name. The idea is, that you give this "factory" a **build plan** of what you want and the factory produces or creates the **item** for you. In our case, the build plan is the *aircraft XML file* and the items are the *resulting surfaces*. -@note The concept how the geometry is encoded in den aircraft XML file **differs** from the concept used in this library! -The main difference is, that the library uses sections rather than segments! -The factories translate the data of the aircraft XML to the surface concept of this library. -Although, this might change in future release if the aircraft XML structure. +!!! note + The concept how the geometry is encoded in den aircraft XML file **differs** from the concept used in this library! + The main difference is, that the library uses sections rather than segments! + The factories translate the data of the aircraft XML to the surface concept of this library. + Although, this might change in future release if the aircraft XML structure. The library has factories for all major components of the aircraft geometry as they are currently defined in the aircraft XML file: - @ref hull_factory @@ -20,7 +21,8 @@ The library has factories for all major components of the aircraft geometry as t - @ref spar_factory - @ref control_device_factory -@note The Python examples assume that you imported the following modules: +!!! note + The Python examples assume that you imported the following modules: ```python import pyaircraftGeometry2 as geom2 import pyaixml as aixml @@ -121,7 +123,8 @@ factory = geom2.factory.HullFactory(AcXML, "./geometryData") </div> -@note You can omit the path `"./geometryData"` for the *version 2.0.0* aircraft exchange files and just give an empty string. The factories then will search for the directory as explained before. +!!! note + You can omit the path `"./geometryData"` for the *version 2.0.0* aircraft exchange files and just give an empty string. The factories then will search for the directory as explained before. After creating the factory with the existing aircraft XML data, the factory knows what to do and you can ask it to create the complete surface for you. The aircraft XML can contain several surfaces of the same type, but with a different id. @@ -270,8 +273,9 @@ wing = factory.create("LiftingSurface@MainWing") </div> -@note The wing factory does **not** produces discontinuous sections! -It takes the inner length of the first segment as the length for the first section and then continuous by using the outer length of the following segments from the aircraft XML file! +!!! note + The wing factory does **not** produces discontinuous sections! + It takes the inner length of the first segment as the length for the first section and then continuous by using the outer length of the following segments from the aircraft XML file! ### Spar Factory {#spar_factory} > **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/wing.xml` @@ -307,10 +311,11 @@ spar = factory.create("LiftingSurface@MainWing") </div> -@note This factory returns a multi-section surface which contains geom2::PolygonSection as the section type. -Be aware, that the spar geometry is **not** considered an airfoil shape in the context of this library. -The extrusion direction, however, is the **negative** local `Z` direction as for the airfoil surfaces, so that the spar geometry is at the same location as the wing geometry. -The origin point of the spar is the same as the wing origin as well. +!!! note + This factory returns a multi-section surface which contains geom2::PolygonSection as the section type. + Be aware, that the spar geometry is **not** considered an airfoil shape in the context of this library. + The extrusion direction, however, is the **negative** local `Z` direction as for the airfoil surfaces, so that the spar geometry is at the same location as the wing geometry. + The origin point of the spar is the same as the wing origin as well. The spar factory just returns the spar surface and **not** the wing surface. You have to use the wing factory separately to create the wing surface. @@ -365,7 +370,8 @@ The node defining the geometry file in the aircraft XML simply looks like this: ``` The library will then try to use a `n0012.dat` file from the `data_directory` you have given it. -@note In the following examples it is assumed, that you have the same directory structure for the *version 3.0.0* XML files as for the *version 2.0.0* files in @ref tutorial_aixml_v2 ! +!!! note + In the following examples it is assumed, that you have the same directory structure for the *version 3.0.0* XML files as for the *version 2.0.0* files in @ref tutorial_aixml_v2 ! ### Hull Factory > **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/hull.xml` @@ -391,7 +397,8 @@ factory = geom2.factory.HullFactory(AcXML, "./geometryData") </div> -@note You **cannot** omit the path `"./geometryData"` for the *version 3.0.0* aircraft exchange files! +!!! note + You **cannot** omit the path `"./geometryData"` for the *version 3.0.0* aircraft exchange files! - Get **nacelle** with the id `0` from the factory: @@ -497,10 +504,11 @@ spar = factory.create("wing/specific/geometry/aerodynamic_surface@0/spars/spar@0 </div> -@note This factory returns a multi-section surface which contains geom2::PolygonSection as the section type. -Be aware, that the spar geometry is **not** considered an airfoil shape in the context of this library. -The extrusion direction, however, is the **negative** local `Z` direction as for the airfoil surfaces, so that the spar geometry is at the same location as the wing geometry. -The origin point of the spar is the same as the wing origin as well. +!!! note + This factory returns a multi-section surface which contains geom2::PolygonSection as the section type. + Be aware, that the spar geometry is **not** considered an airfoil shape in the context of this library. + The extrusion direction, however, is the **negative** local `Z` direction as for the airfoil surfaces, so that the spar geometry is at the same location as the wing geometry. + The origin point of the spar is the same as the wing origin as well. The spar factory just returns the spar surface and **not** the wing surface. You have to use the wing factory separately to create the wing surface. diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md b/docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md index fa4f26c..4424658 100644 --- a/docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md +++ b/docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md @@ -5,7 +5,8 @@ The resulting images of each step are not part of the library, though. Those images are rendered with a 3D animation software after the geometry is exported as a `*.ply` file after each step. The tutorial will show as a last step, how this is done. -@note The Python examples assume that you imported the module with: +!!! note + The Python examples assume that you imported the module with: ```python import pyaircraftGeometry2 as geom2 ``` @@ -37,7 +38,8 @@ shape = geom2.io.read_dat_file("aircraftGeometry2/test/stubs/dat-files/circle-ta </div> -@note Make sure the path to the file is correct according to your current working directory! +!!! note + Make sure the path to the file is correct according to your current working directory! This will give you the following 2D polygon: @@ -171,7 +173,8 @@ surface.sections[0].origin = geom2.Point_3(-0.5,0,0); </div> -@note **CGAL** does not supply a mechanism to change single components of points or vectors. You always have to assign a complete new set of coordinates. However, you can read the value of single coordinate components. +!!! note + **CGAL** does not supply a mechanism to change single components of points or vectors. You always have to assign a complete new set of coordinates. However, you can read the value of single coordinate components. As you can see, the bottom section moved in negative X direction: @@ -210,7 +213,8 @@ The local coordinate system of the surface remains unchanged. You can also see that the orientation introduced a rotation around the local `Z` axis in this case, again see @ref euler_angles why this is. For the expected result you need to set the parameter `rotate_z` of the surface. -@note This behavior is admittedly not the most intuitive result. In further release this might get fixed. In a practical point of view, you are most often interested in properties within the local coordinate system of the surface rather then global properties in between multiple surfaces. +!!! note + This behavior is admittedly not the most intuitive result. In further release this might get fixed. In a practical point of view, you are most often interested in properties within the local coordinate system of the surface rather then global properties in between multiple surfaces. ### Step 7 - Move Surface As for moving the location of a section, the same principle applies when moving the surface within the global 3D space. @@ -259,7 +263,8 @@ width = geom2.measure.width(surface, 0.5) This should result in `width = 0.75`. -@note There are measurement functions which use additional properties of the geom2::MultisectionSurface as their input, because their result depends on more information than contained in the *sections* vector. See the documentation of each measurement for more information. +!!! note + There are measurement functions which use additional properties of the geom2::MultisectionSurface as their input, because their result depends on more information than contained in the *sections* vector. See the documentation of each measurement for more information. ### Step 9 - Export PLY (optional) As an optional step, you can export your surface as a triangulated surface mesh in the **PLY** format. @@ -281,7 +286,8 @@ geom2.io.export_ply(surface, "./mesh.ply") </div> -@note This function is rather a debugging tool than a fully tested tool for production use! +!!! note + This function is rather a debugging tool than a fully tested tool for production use! --- diff --git a/docs/documentation/sizing/fuselage_design/design_method.md b/docs/documentation/sizing/fuselage_design/design_method.md index 5bba67a..fdd1ec8 100644 --- a/docs/documentation/sizing/fuselage_design/design_method.md +++ b/docs/documentation/sizing/fuselage_design/design_method.md @@ -5,82 +5,83 @@ - [Estimation of masses](#mass-estimation) - [Generation of fuselage shape](#generate-shape) -@note Currently the tool supports only one fuselage with one payload tube. +!!! note + Currently the tool supports only one fuselage with one payload tube. ## Determine cabin geometry {#cabin-geometry} ### Cabin width The cabin width is estimated using the given class definition. #### Determine width of seat row per aircraft side -The width of one seat row/bench \f$w_{seat\_bench}\f$ (in inch) can be determined for the left and right side of the aircraft using the following equation: -\f[ +The width of one seat row/bench $w_{seat\_bench}$ (in inch) can be determined for the left and right side of the aircraft using the following equation: +$ w_{seat\_bench} = n_{seats} \cdot w_{seat} + 2 \cdot w_{armrest} -\f] +$ In which -- \f$n_{seats}\f$ - number of seats per seat bench -- \f$w_{seat}\f$ - seat width (taken from lowest class seat) -- \f$w_{armrest}\f$ - armrest width (taken from lowest class seat) +- $n_{seats}$ - number of seats per seat bench +- $w_{seat}$ - seat width (taken from lowest class seat) +- $w_{armrest}$ - armrest width (taken from lowest class seat) #### Calculate cabin width -The cabin width \f$w_{cabin}\f$ (in inch) can then be calculated: -\f[ +The cabin width $w_{cabin}$ (in inch) can then be calculated: +$ w_{cabin} = w_{aisle} + w_{seat\_bench\_left} + w_{seat\_bench\_right} + 2 \cdot w_{seat\_space} -\f] +$ In which -- \f$w_{aisle}\f$ - passenger aisle width -- \f$w_{seat\_space}\f$ - lowest class seat space +- $w_{aisle}$ - passenger aisle width +- $w_{seat\_space}$ - lowest class seat space -In case of a **wide-body aircraft configuration** there is an additional row in the middle of the aircraft as well as an additional passenger aisle. The width of the seat bench \f$w_{seat\_bench\_center}\f$ can be calculated using an equation similar to that in the previous section. -\f[ +In case of a **wide-body aircraft configuration** there is an additional row in the middle of the aircraft as well as an additional passenger aisle. The width of the seat bench $w_{seat\_bench\_center}$ can be calculated using an equation similar to that in the previous section. +$ w_{seat\_bench\_center} = n_{seats} \cdot w_{seat} + 2 \cdot w_{armrest\_outer} + (n_{seats} - 1) \cdot w_{armrest\_inner} -\f] +$ In which -- \f$w_{seat}\f$ - seat width (from lowest class seat parameters of right side) -- \f$w_{armrest\_outer}\f$ - width of outer armrest (from lowest class seat parameters of right side) -- \f$w_{armrest\_inner}\f$ - width of inner armrest (from lowest class seat parameters of right side) +- $w_{seat}$ - seat width (from lowest class seat parameters of right side) +- $w_{armrest\_outer}$ - width of outer armrest (from lowest class seat parameters of right side) +- $w_{armrest\_inner}$ - width of inner armrest (from lowest class seat parameters of right side) The equation for the cabin width estimation must be adapted accordingly: -\f[ +$ w_{cabin} = w_{aisle} + w_{seat\_bench\_left} + w_{seat\_bench\_right} + 2 \cdot w_{seat\_space} + w_{aisle} + w_{seat\_bench\_center} -\f] +$ ### Cabin slenderness ratio <sup>[1]</sup> -The cabin slenderness ratio describes the ratio of cabin width to cabin length \f$\frac{w_{cabin}}{l_{cabin}}\f$. +The cabin slenderness ratio describes the ratio of cabin width to cabin length $\frac{w_{cabin}}{l_{cabin}}$. Whilst the cabin width is already known, the cabin length can be determined using the following equation: -\f[ +$ l_{cabin} = \frac{n_{PAX\_per\_class}}{ab} \cdot \left[ sp + \frac{a_{service}}{w_{seat}} + \frac{a_{bulk}}{\frac{w_{aisle}}{ab} + w_{seat}} + x \cdot w_{exit} \cdot \left( \frac{ab}{n_{PAX\_per\_class}} + \frac{sp}{d_{exits}} \right) \right] -\f] +$ In which -- \f$x\f$ - factor (1 for single-aisle, 2 for wide-body) -- \f$n_{PAX\_per\_class}\f$ - number of PAX per class -- \f$ab\f$ - seat abreast -- \f$sp\f$ - seat pitch -- \f$a_{service}\f$ - service area per PAX -- \f$a_{bulk}\f$ - bulk area per PAX -- \f$w_{exit}\f$ - exit width -- \f$d_{exits}\f$ - maximum distance between two exits +- $x$ - factor (1 for single-aisle, 2 for wide-body) +- $n_{PAX\_per\_class}$ - number of PAX per class +- $ab$ - seat abreast +- $sp$ - seat pitch +- $a_{service}$ - service area per PAX +- $a_{bulk}$ - bulk area per PAX +- $w_{exit}$ - exit width +- $d_{exits}$ - maximum distance between two exits ### Cabin length Knowing the cabin width and the cabin slenderness ratio, the cabin length (in inch) can be calculated: -\f[ +$ l_{cabin} = \frac{w_{cabin}}{\frac{w_{cabin}}{l_{cabin}}} -\f] +$ ### Cabin wall thickness The cabin wall thickness can be estimated using the following calculation: -\f[ +$ t_{wall} = 0.02 \cdot w_{cabin} + 2.5" -\f] +$ ### Cabin floor thickness With the use of the cabin wall thickness, the cabin floor thickness can be calculated: -\f[ +$ t_{floor} = 1.5 \cdot t_{wall} -\f] +$ ## Determine fuselage geometry {#fuselage-geometry} With the calculated cabin the fuselage dimensions can be estimated. @@ -89,14 +90,14 @@ With the calculated cabin the fuselage dimensions can be estimated. The fuselage length can be determined via regression formulas using the cabin length (in meter). For single-aisle aircraft: -\f[ +$ l_{fuselage} = \frac{l_{cabin}}{0.23482756 \cdot \log l_{cabin} - 0.05106017} -\f] +$ For wide-body aircraft: -\f[ +$ l_{fuselage} = \frac{l_{cabin}}{0.1735 \cdot \log l_{cabin} - 0.0966} -\f] +$ ### Fuselage diameters The fuselage does not necessarily have a circular cross-section. It is more common to design elliptical cross-sections. Because of that, there are several values that must be determined: @@ -105,65 +106,66 @@ The fuselage does not necessarily have a circular cross-section. It is more comm - Fuselage diameter in positive z-direction #### Fuselage diameter in y-direction -The fuselage diameter in y-direction \f$d_{fuselage\_y}\f$ can be calculated in the following way: -\f[ +The fuselage diameter in y-direction $d_{fuselage\_y}$ can be calculated in the following way: +$ d_{fuselage\_y} = w_{cabin} + 2 \cdot t_{wall} -\f] +$ #### Fuselage diameter in negative z-direction -The fuselage diameter in negative z-direction \f$d_{fuselage\_z\_neg}\f$ is determined by the cargo accommodation. It can be calculated in the following way. +The fuselage diameter in negative z-direction $d_{fuselage\_z\_neg}$ is determined by the cargo accommodation. It can be calculated in the following way. At first, the distance to the cargo bottom is calculated: -\f[ +$ d_{to\_cargo\_bottom} = h_{max} + t_{floor} + d_{container\_to\_ceil} + o_{cabin\_floor} -\f] +$ In which -- \f$h_{max}\f$ - maximum height of unit load device -- \f$d_{container\_to\_ceil}\f$ - distance from the container to the ceiling -- \f$o_{cabin\_floor}\f$ - offset cabin floor +- $h_{max}$ - maximum height of unit load device +- $d_{container\_to\_ceil}$ - distance from the container to the ceiling +- $o_{cabin\_floor}$ - offset cabin floor Afterwards, the distance to the lower compartment edge is estimated: -\f[ +$ d_{to\_lower\_compartment\_edge} = d_{container\_to\_wall} + 0.5 \cdot w_{max\_at\_base} -\f] +$ In which -- \f$d_{container\_to\_wall}\f$ - distance from container to wall -- \f$w_{max\_at\_base}\f$ - maximum width at container base +- $d_{container\_to\_wall}$ - distance from container to wall +- $w_{max\_at\_base}$ - maximum width at container base Based on the Pythagorean theorem, the inner fuselage diameter (that equals the hypotenuse) can be calculated: -\f[ +$ d_{inner\_fuselage\_z\_neg} = \sqrt{(d_{to\_cargo\_bottom})^2 + (d_{to\_lower\_compartment\_edge})^2} -\f] +$ Adding the wall thickness results in the fuselage diameter in negative z-direction: -\f[ +$ d_{fuselage\_z\_neg} = d_{inner\_fuselage\_z\_neg} + t_{wall} -\f] +$ #### Fuselage diameter in positive z-direction -The fuselage diameter in positive z-direction \f$d_{fuselage\_z\_pos}\f$ is determined by the passenger accommodation. It can be calculated in the following way. +The fuselage diameter in positive z-direction $d_{fuselage\_z\_pos}$ is determined by the passenger accommodation. It can be calculated in the following way. Firstly, the inner fuselage height (equals outer cabin height) can be determined: -\f[ +$ d_{inner\_fuselage\_z\_pos} = h_{aisle\_standing} - o_{cabin\_floor} + h_{system\_bay} -\f] +$ In which -- \f$h_{aisle\_standing}\f$ - passenger aisle standing height -- \f$o_{cabin\_floor}\f$ - cabin floor offset -- \f$h_{system\_bay}\f$ - system bay height above cabin +- $h_{aisle\_standing}$ - passenger aisle standing height +- $o_{cabin\_floor}$ - cabin floor offset +- $h_{system\_bay}$ - system bay height above cabin Adding the wall thickness leads to the fuselage diameter in positive z-direction. -\f[ +$ d_{fuselage\_z\_pos} = d_{inner\_fuselage\_z\_pos} + t_{wall} -\f] +$ ### Fuselage height The total height of the fuselage can be determined by summing up the fuselage diameters in positive and negative z-direction: -\f[ +$ h_{fuselage} = d_{fuselage\_z\_pos} + d_{fuselage\_z\_neg} -\f] +$ -@note If the `force_circle_cross_section` mode is selected, fuselage height and width are set to the maximum of both. +!!! note + If the `force_circle_cross_section` mode is selected, fuselage height and width are set to the maximum of both. ## Mass estimation {#mass-estimation} The following masses are estimated: @@ -173,7 +175,8 @@ The following masses are estimated: Please refer to _Synthesis of Subsonic Airplane Design_ by E. Torenbeek<sup>[3]</sup> and the Certification Specifications<sup>[4]</sup> for further information. -@note All masses are estimated in accordance with the CPACS standard. +!!! note + All masses are estimated in accordance with the CPACS standard. <!-- ## Estimate positions and COG --> ## Generate fuselage shape {#generate-shape} diff --git a/docs/documentation/sizing/fuselage_design/getting-started.md b/docs/documentation/sizing/fuselage_design/getting-started.md index c9af4ab..7973557 100644 --- a/docs/documentation/sizing/fuselage_design/getting-started.md +++ b/docs/documentation/sizing/fuselage_design/getting-started.md @@ -7,7 +7,8 @@ This section will guide you through the necessary steps to get the _fuselage\_de - [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running? - [Next steps](#next-steps) - How to proceed? -@note It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. +!!! note + It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. Generally, we use two files to set or configure modules in UNICADO: - The aircraft exchange file (or _acXML_) includes @@ -74,7 +75,8 @@ The following data should be available in the _acXML_ (2. and 3. are optional): - Chord length - Global reference point position -@note When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. +!!! note + When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. ## Module configuration file {#module-configuration-file} The _configXML_ is structured into two blocks: the control and program settings. @@ -84,7 +86,8 @@ The control settings are standardized in UNICADO and will not be described in de - the `console_output` at least to `mode_1`, and - the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`). -@note If the tool is executed via the workflow, those settings are set by the workflow settings. +!!! note + If the tool is executed via the workflow, those settings are set by the workflow settings. The program settings are structured like this (descriptions can be found in the `fuselage_design_conf.xml`): @@ -210,7 +213,8 @@ The `fuselage_design_cs_requirements.xml` file contains necessary design require - Maximum number of PAX per flight attendant - Maximum crew duty time -@note Please do not change any values that are set in accordance with the CS-25. Otherwise compliance of the design with the certification requirements cannot be guaranteed. +!!! note + Please do not change any values that are set in accordance with the CS-25. Otherwise compliance of the design with the certification requirements cannot be guaranteed. ## Next steps {#next-steps} The next step is to [run the _fuselage\_design_ module](run_your_first_design.md). \ No newline at end of file diff --git a/docs/documentation/sizing/fuselage_design/index.md b/docs/documentation/sizing/fuselage_design/index.md index 89bd2ee..4fee3ec 100644 --- a/docs/documentation/sizing/fuselage_design/index.md +++ b/docs/documentation/sizing/fuselage_design/index.md @@ -1,5 +1,5 @@ # Introduction {#mainpage} -The _fuselage\_design_ module is your go-to tool in the UNICADO sizing loop for all things aircraft fuselage! From sculpting the cockpit section to shaping the constant and tail section, this module handles it all with precision and flexibility. Need parametric ellipses for those fuselage cross-sections? Done. Want to adapt to a unique aircraft configuration? No problem! Ok, you got me... coming soon. \emoji soon +The _fuselage\_design_ module is your go-to tool in the UNICADO sizing loop for all things aircraft fuselage! From sculpting the cockpit section to shaping the constant and tail section, this module handles it all with precision and flexibility. Need parametric ellipses for those fuselage cross-sections? Done. Want to adapt to a unique aircraft configuration? No problem! Ok, you got me... coming soon. :soon: Seamlessly integrated into the design workflow, _fuselage\_design_ empowers you to create efficient, certifiable fuselage geometries — all while keeping your design process smooth and adaptable. @@ -8,9 +8,9 @@ Here’s a quick rundown of what the tool currently does, along with a sneak pee Configuration | Energy carrier | Fidelity | Methods | Status | ------------------|------------------|-----------|-----------|:------------------------------------:| -Tube-and-wing |Kerosene |Empirical |TUB |running \emoji white_check_mark | +Tube-and-wing |Kerosene |Empirical |TUB |running :white_check_mark: | Tube-and-wing |Liquid hydrogen |Empirical |TUB |? | -Blended-wing-body |... |... |... |under development \emoji construction | +Blended-wing-body |... |... |... |under development :construction:| ## A user's guide to fuselage design The _fuselage\_design_ tool is your key to designing the aircraft's fuselage. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a fuselage design from the ground up. @@ -23,7 +23,7 @@ For a comprehensive understanding of the tool’s functionality, the documentati - a [software architecture](software_architecture.md) section. -Ready to dive in? Let’s get started! \emoji airplane +Ready to dive in? Let’s get started! :airplane: <!-- ## You are a Developer? diff --git a/docs/documentation/sizing/fuselage_design/run_your_first_design.md b/docs/documentation/sizing/fuselage_design/run_your_first_design.md index 1196538..4e69db7 100644 --- a/docs/documentation/sizing/fuselage_design/run_your_first_design.md +++ b/docs/documentation/sizing/fuselage_design/run_your_first_design.md @@ -58,7 +58,8 @@ In the following, a short overview is given on the generated reports: - plots in the `plots` folder ### Write data to the aircraft exchange file {#acxml} -@note The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! +!!! note + The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! Results are saved in the aircraft exchange file at the `/aircraft_exchange_file/component_design/fuselage` node. The following information is written to the _acXML_: ```plaintext diff --git a/docs/documentation/sizing/fuselage_design/software_architecture.md b/docs/documentation/sizing/fuselage_design/software_architecture.md index 05446b9..4c59c73 100644 --- a/docs/documentation/sizing/fuselage_design/software_architecture.md +++ b/docs/documentation/sizing/fuselage_design/software_architecture.md @@ -1,2 +1,2 @@ # Software architecture -This site is currently under development. \emoji construction \ No newline at end of file +This site is currently under development. :construction: \ No newline at end of file diff --git a/docs/documentation/sizing/initial_sizing/changelog.md b/docs/documentation/sizing/initial_sizing/changelog.md index ec0bb9d..2e8daec 100644 --- a/docs/documentation/sizing/initial_sizing/changelog.md +++ b/docs/documentation/sizing/initial_sizing/changelog.md @@ -15,6 +15,7 @@ During the development of this release the following bugs were found and fixed: ### Changes in the CSR designs The implemented changes and bugfixes lead to the following changes in the results of the CSR designs. -@note Only changes which exceed a 10 % change are listed. +!!! note + Only changes which exceed a 10 % change are listed. diff --git a/docs/documentation/sizing/initial_sizing/getting-started.md b/docs/documentation/sizing/initial_sizing/getting-started.md index 61f4b3a..e9c0520 100644 --- a/docs/documentation/sizing/initial_sizing/getting-started.md +++ b/docs/documentation/sizing/initial_sizing/getting-started.md @@ -3,7 +3,7 @@ This guide will show you the basic usage of **initial_sizing**. Following steps ## Step-by-step -It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/build/cpp/)). +It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build/cpp/)). 1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#acXML)) 2. Fill out the configuration file - change at least: @@ -31,7 +31,8 @@ Generally, we use 2 files to set our configuration in UNICADO: - program settings (e.g. set parameters to consider for specific technologies or change of methods) ### Aircraft exchange file -@note _acXML_ is an exchange file - we agreed on that only data will be saved as output which is needed by another tool! +!!! note + _acXML_ is an exchange file - we agreed on that only data will be saved as output which is needed by another tool! **Inputs**: The following is needed from the _acXML_: diff --git a/docs/documentation/sizing/initial_sizing/index.md b/docs/documentation/sizing/initial_sizing/index.md index e5f09ae..72fdf8f 100644 --- a/docs/documentation/sizing/initial_sizing/index.md +++ b/docs/documentation/sizing/initial_sizing/index.md @@ -10,7 +10,7 @@ This tool is exiting because it starts the clean sheet aircraft design and you w To remind you of the concept of an initial sizing chart and desing window, here is the diagram where each border is derived from a different TLAR - hence every combination of wing loading and thrust to weight ratio within the borders are possible design points for the aircraft. - + The @subpage getting-started gives you a first insight in how to execute the tool and how it generally works. diff --git a/docs/documentation/sizing/landing_gear_design/design_method.md b/docs/documentation/sizing/landing_gear_design/design_method.md index 896cc0b..d117245 100644 --- a/docs/documentation/sizing/landing_gear_design/design_method.md +++ b/docs/documentation/sizing/landing_gear_design/design_method.md @@ -11,7 +11,7 @@ ## Initial positions {#initial-positions} -First, initial x axis positions for the nose \f$x_{NLG}\f$ and main landing gear \f$x_{MLG}\f$ are estimated. If any of the required values are missing, default values are used, such as a minimum distance of 2 meters between the main landing gear and the aft-most center of gravity. +First, initial x axis positions for the nose $x_{NLG}$ and main landing gear $x_{MLG}$ are estimated. If any of the required values are missing, default values are used, such as a minimum distance of 2 meters between the main landing gear and the aft-most center of gravity. The nose gear position is determined either from module configuration data or input parameters, such as the front reference point of the payload area or existing landing gear positions. If no relevant data is available, a default starting position, such as 5 meters, is applied. @@ -28,38 +28,38 @@ Default values are assigned if parameters are not explicitly provided. #### Distance between nose and main landing gear The distance between the nose and the main landing gear can be estimated using the following equation: -\f[ +$ d_{NLG\_MLG} = |x_{MLG} - x_{NLG}| -\f] +$ In which -- \f$ x_{MLG}\f$ - x position of main landing gear -- \f$ x_{NLG}\f$ - x position of nose landing gear +- $ x_{MLG}$ - x position of main landing gear +- $ x_{NLG}$ - x position of nose landing gear #### Distance between nose gear and foremost center of gravity position If the foremost center of gravity position is already known, the distance to the nose gear can be determined according to the following formula: -\f[ +$ d_{NLG\_front\_CG} = |x_{front\_CG} - x_{NLG}| -\f] +$ In which -- \f$ x_{front\_CG}\f$ - x position of foremost center of gravity +- $ x_{front\_CG}$ - x position of foremost center of gravity -Otherwise, \f$d_{NLG\_front\_CG}\f$ is determined by using a first estimation: -\f[ +Otherwise, $d_{NLG\_front\_CG}$ is determined by using a first estimation: +$ d_{NLG\_front\_CG} = |(x_{MLG} - 2) - x_{NLG}| -\f] +$ #### Distance between nose gear and rearmost center of gravity The distance between the nose gear position and the rearmost center of gravity in x direction can be calculated as follows: -\f[ +$ d_{NLG\_rear\_CG} = |x_{rear\_CG} - x_{NLG}| -\f] +$ In which -- \f$x_{rear\_CG}\f$ - x position of rearmost center of gravity +- $x_{rear\_CG}$ - x position of rearmost center of gravity -Otherwise, \f$d_{NLG\_rear\_CG}\f$ is determined by using a first estimation: -\f[ +Otherwise, $d_{NLG\_rear\_CG}$ is determined by using a first estimation: +$ d_{NLG\_rear\_CG} = |(x_{MLG} - 1) - x_{NLG}| -\f] +$ #### Distance between main landing gear and rearmost center of gravity position If no distance between the main landing gear and the rearmost center of gravity is available from earlier iterations, it equals `1`. @@ -68,40 +68,40 @@ If no distance between the main landing gear and the rearmost center of gravity  #### Vertical distance between ground and center of gravity position -Starting with the second iteration loop, the vertical distance between ground and center of gravity \f$\Delta h_{GND\_CG}\f$ is known. +Starting with the second iteration loop, the vertical distance between ground and center of gravity $\Delta h_{GND\_CG}$ is known. In the first loop, however, the vertical distance must be calculated as sum of the following heights: -1. Vertical distance from fuselage center line to center of gravity \f$\Delta h_{FCL\_CG}\f$ -2. z position of tail tipping point (equals vertical distance between fuselage center line and tail tipping point) \f$z_{TP}\f$ -3. Vertical distance from tail tipping point to ground \f$\Delta h_{TP\_GND}\f$ +1. Vertical distance from fuselage center line to center of gravity $\Delta h_{FCL\_CG}$ +2. z position of tail tipping point (equals vertical distance between fuselage center line and tail tipping point) $z_{TP}$ +3. Vertical distance from tail tipping point to ground $\Delta h_{TP\_GND}$ **1. Vertical distance from fuselage center line to center of gravity**<br> -The distance between global center of gravity in z-direction and the fuselage center line \f$\Delta h_{FCL\_CG}\f$ is either estimated by subtracting the z position of the fuselage center line \f$z_{FCL}\f$ from the z position of the most aft CG position \f$z_{rear\_CG}\f$ -\f[ +The distance between global center of gravity in z-direction and the fuselage center line $\Delta h_{FCL\_CG}$ is either estimated by subtracting the z position of the fuselage center line $z_{FCL}$ from the z position of the most aft CG position $z_{rear\_CG}$ +$ \Delta h_{FCL\_CG} = |z_{rear\_CG} - z_{FCL}| -\f] +$ or, if those values are not given, set to `0.5` for single-aisle and `1.0` for wide-body configurations. **2. z position of tail tipping point**<br> -If the position of the tail tipping point in z direction is not known, it is assumed to equal \f$z_{TP} = -0.3 \cdot h_{fuselage}\f$. The fuselage height \f$h_{fuselage}\f$ in meter is known or assumed to be `3.8` for single-aisle and `5.8` for wide-body aircraft. +If the position of the tail tipping point in z direction is not known, it is assumed to equal $z_{TP} = -0.3 \cdot h_{fuselage}$. The fuselage height $h_{fuselage}$ in meter is known or assumed to be `3.8` for single-aisle and `5.8` for wide-body aircraft. **3. Vertical distance from tail tipping point to ground**<br> -The vertical distance from the tail tipping point to the ground \f$\Delta h_{TP\_GND}\f$ is estimated in the following way: +The vertical distance from the tail tipping point to the ground $\Delta h_{TP\_GND}$ is estimated in the following way: -\f[ +$ \Delta h_{TP\_GND} = |\tan(\theta_{LDG}) \cdot d_{MLG\_TP}| - h_{susp} -\f] +$ -The vertical distance between the main landing gear and the tail tipping point \f$d_{MLG\_TP}\f$ is either known or set to `15` for single-aisle or `25` for wide-body aircraft configurations. +The vertical distance between the main landing gear and the tail tipping point $d_{MLG\_TP}$ is either known or set to `15` for single-aisle or `25` for wide-body aircraft configurations. -If a strut suspension system is implemented, the vertical distance between ground and CG decreases by the suspension travel \f$h_{susp}\f$ that equals `0` if no suspension system is implemented. +If a strut suspension system is implemented, the vertical distance between ground and CG decreases by the suspension travel $h_{susp}$ that equals `0` if no suspension system is implemented. **Vertical distance between ground and center of gravity position**<br> Finally, the vertical distance between the ground and the CG position can be calculated by summing up these values: -\f[ +$ \Delta h_{GND\_CG} = \Delta h_{FCL\_CG} + |z_{TP}| + \Delta h_{TP\_GND} -\f] +$ ## Load estimation {#loads} Subsequently, the loads on the nose and main landing gear are calculated based on Norman S. Currey's work<sup>[1]</sup>, unless explicitly stated otherwise. It considers the static and dynamic loads during takeoff, landing, and taxiing, while ensuring the loads conform to the permissible percentages as per aviation regulations. @@ -116,29 +116,29 @@ If no values are available, initial values are set. ### Nose landing gear loads **Minimum static nose gear load** -\f[ +$ L_{NLG,stat,min} = \frac{MRW \cdot (d_{NLG\_MLG} - d_{NLG\_rear\_CG})}{d_{NLG\_MLG}} -\f] +$ In which -- \f$MRW\f$ - maximum ramp weight -- \f$d_{NLG\_MLG}\f$ - distance between nose and main gear -- \f$d_{NLG\_rear\_CG}\f$ - distance between nose gear and rearmost center of gravity +- $MRW$ - maximum ramp weight +- $d_{NLG\_MLG}$ - distance between nose and main gear +- $d_{NLG\_rear\_CG}$ - distance between nose gear and rearmost center of gravity **Maximum static nose gear load** -\f[ +$ L_{NLG,stat,max} = \frac{MRW \cdot (d_{NLG\_MLG} - d_{NLG\_front\_CG})}{d_{NLG\_MLG}} -\f] +$ In which -- \f$MRW\f$ - maximum ramp weight -- \f$d_{NLG\_MLG}\f$ - distance between nose and main gear -- \f$d_{NLG\_front\_CG}\f$ - distance between nose gear and foremost center of gravity +- $MRW$ - maximum ramp weight +- $d_{NLG\_MLG}$ - distance between nose and main gear +- $d_{NLG\_front\_CG}$ - distance between nose gear and foremost center of gravity **Maximum dynamic nose gear load** -\f[ +$ L_{NLG,dyn,max} = L_{NLG,stat,max} + \frac{10 \cdot d_{GND\_rear\_CG} \cdot MRW}{32.2 \cdot d_{NLG\_MLG}} -\f] +$ In which -- \f$d_{GND\_rear\_CG}\f$ - vertical distance between ground and aft center of gravity +- $d_{GND\_rear\_CG}$ - vertical distance between ground and aft center of gravity The static loads on the nose landing gear should be between 6% and 20% of the maximum ramp weight for all CG positions. These values are absolute limits and must not be exceeded at any time. Ideally, the static loads for the minimum and maximum nose landing gear load should be between 8% and 15%. If the limits are violated, the landing gear positions and/or the empty mass center of gravity must be varied. This leads to a renewed check of the center of gravity movement and the limits to be adhered to (iterative process). @@ -146,129 +146,130 @@ The static loads on the nose landing gear should be between 6% and 20% of the ma The calculation of the dynamic nose gear loads for takeoff and landing conditions is in accordance with CS 25.733 (b)(2) and (b)(3)<sup>[2]</sup>. **Maximum static nose gear landing load** -In order to calculate the maximum static nose gear load at landing, the maximum static nose gear landing load \f$ L_{NLG,stat,max,LDG}\f$ has to be estimated first. +In order to calculate the maximum static nose gear load at landing, the maximum static nose gear landing load $ L_{NLG,stat,max,LDG}$ has to be estimated first. -\f[ +$ L_{NLG,stat,max,LDG} = \frac{MLM \cdot g \cdot (d_{NLG\_MLG} - d_{NLG\_front\_CG})}{d_{NLG\_MLG}} -\f] +$ In which -- \f$MLM\f$ - maximum landing mass -- \f$ g\f$ - gravitational acceleration -- \f$d_{NLG\_MLG}\f$ - distance between nose and main gear -- \f$d_{NLG\_front\_CG}\f$ - distance between nose gear and foremost center of gravity +- $MLM$ - maximum landing mass +- $ g$ - gravitational acceleration +- $d_{NLG\_MLG}$ - distance between nose and main gear +- $d_{NLG\_front\_CG}$ - distance between nose gear and foremost center of gravity -@note If no maximum landing mass exists, 90% of the maximum ramp weight are initially assumed for the calculation. +!!! note + If no maximum landing mass exists, 90% of the maximum ramp weight are initially assumed for the calculation. -Subsequently, the maximum dynamic load at landing \f$ L_{NLG,dyn,max,LDG} \f$ can be calculated based on CS 25.733 (b)(2): -\f[ +Subsequently, the maximum dynamic load at landing $ L_{NLG,dyn,max,LDG} $ can be calculated based on CS 25.733 (b)(2): +$ L_{NLG,dyn,max,LDG} = L_{NLG,stat,max,LDG} + 0.31 \cdot L_{NLG,stat,max,LDG} -\f] +$ **Maximum dynamic nose gear takeoff load** The maximum dynamic nose gear load at takeoff can be calculated in accordance with CS 52.733 (b)(3): -\f[ +$ L_{NLG,dyn,max,TO} = L_{NLG,stat,max} + 0.2 \cdot L_{NLG,stat,max} -\f] +$ ### Main landing gear loads The total main gear load can be estimated using the following equation: -\f[ +$ L_{MLG,max} = \frac{100 - L_{NLG,stat,min}}{100} \cdot MRW -\f] +$ In which -- \f$L_{NLG,stat,min}\f$ - minimum static nose gear load **in percent** +- $L_{NLG,stat,min}$ - minimum static nose gear load **in percent** ### Nose landing gear position The maximum possible foremost and aft position of the nose landing gear can be determined based on the loads. #### Foremost nose landing gear position -A maximum of 20 percent of the maximum ramp weight is allowed as the maximum static nose gear load \f$ L_{NLG,stat,max,possible}\f$: -\f[ +A maximum of 20 percent of the maximum ramp weight is allowed as the maximum static nose gear load $ L_{NLG,stat,max,possible}$: +$ L_{NLG,stat,max,possible} = 0.06 \cdot MRW -\f] +$ The foremost nose landing gear position therefore results in: -\f[ +$ d_{NLG\_front\_CG\_min} = \frac{MRW \cdot d_{NLG\_MLG} - L_{NLG,stat,max,possible} \cdot d_{NLG\_MLG}}{MRW} -\f] +$ In which -- \f$MRW\f$ - maximum ramp weight -- \f$d_{NLG\_MLG}\f$ - distance between nose and main gear +- $MRW$ - maximum ramp weight +- $d_{NLG\_MLG}$ - distance between nose and main gear #### Aft nose landing gear position -A minimum of 6 percent of the maximum ramp weight is allowed as the minimum static nose gear load \f$ L_{NLG,stat,min,possible}\f$: -\f[ +A minimum of 6 percent of the maximum ramp weight is allowed as the minimum static nose gear load $ L_{NLG,stat,min,possible}$: +$ L_{NLG,stat,min,possible} = 0.2 \cdot MRW -\f] +$ The aft nose landing gear position therefore results in: -\f[ +$ d_{NLG\_aft\_CG\_max} = \frac{MRW \cdot d_{NLG\_MLG} - L_{NLG,stat,min,possible} \cdot d_{NLG\_MLG}}{MRW} -\f] +$ ## Tires {#tires} Tire selection in accordance to CS 25.733<sup>[2]</sup> und EASA ETSO tire list<sup>[3]</sup>, bridgestone aircraft tires<sup>[4]</sup> from landing gear lib (see [getting started](getting_started.md) page for more information). If a maximum takeoff stall speed exists, the maximum design speed **(in miles per hour)** corresponds to the greater of the two values maximum approach speed or maximum takeoff stall speed*1.3: -\f[ +$ v_{max\_des} = max(v_{app,max},v_{s,TO} \cdot 1.3) -\f] +$ In which -- \f$v_{app,max}\f$ - maximum approach speed (in mph) -- \f$v_{s,TO}\f$ - takeoff stall speed (in mph) +- $v_{app,max}$ - maximum approach speed (in mph) +- $v_{s,TO}$ - takeoff stall speed (in mph) Otherwise, the following applies: -\f[ +$ v_{max\_des} = v_{app,max} -\f] +$ ### Nose gear -For both, the number of nose gear struts \f$n_{NLG\_struts}\f$ as well as the number of nose gear tires per strut \f$n_{NLG\_tires\_per\_strut}\f$, the user can define specific values. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used. +For both, the number of nose gear struts $n_{NLG\_struts}$ as well as the number of nose gear tires per strut $n_{NLG\_tires\_per\_strut}$, the user can define specific values. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used. #### Design load estimation -The **single tire design load** \f$v_{NLG\_tire\_des}\f$ is calculated according to CS 25.733 (b)(1): -\f[ +The **single tire design load** $v_{NLG\_tire\_des}$ is calculated according to CS 25.733 (b)(1): +$ v_{NLG\_tire\_des} = \frac{\frac{L_{NLG,stat,max}}{g} \cdot 2.2}{n_{NLG\_tires\_per\_strut} \cdot n_{NLG\_struts}} -\f] +$ In which -- \f$ L_{NLG,stat,max}\f$ - maximum static nose gear load -- \f$ g\f$ - gravitational acceleration +- $ L_{NLG,stat,max}$ - maximum static nose gear load +- $ g$ - gravitational acceleration -Subsequently, the **single tire dynamic landing load** \f$v_{NLG\_tire\_LDG}\f$ is estimated based on CS 25.733 (b)(2): -\f[ +Subsequently, the **single tire dynamic landing load** $v_{NLG\_tire\_LDG}$ is estimated based on CS 25.733 (b)(2): +$ v_{NLG\_tire\_LDG} = \frac{\frac{L_{NLG,dyn,max,LDG}}{g} \cdot 2.2}{n_{NLG\_tires\_per\_strut} \cdot n_{NLG\_struts}} -\f] +$ In which -- \f$ L_{NLG,dyn,max,LDG}\f$ - maximum dynamic load at landing +- $ L_{NLG,dyn,max,LDG}$ - maximum dynamic load at landing -Afterwards, the calculation of the **single tire dynamic takeoff load** \f$v_{NLG\_tire\_TO}\f$ for nose gear tires is in accordance to CS 25.733 (b)(3): -\f[ +Afterwards, the calculation of the **single tire dynamic takeoff load** $v_{NLG\_tire\_TO}$ for nose gear tires is in accordance to CS 25.733 (b)(3): +$ v_{NLG\_tire\_TO} = \frac{\frac{L_{NLG,dyn,max,TO}}{g} \cdot 2.2}{n_{NLG\_tires\_per\_strut} \cdot n_{NLG\_struts}} -\f] +$ In which -- \f$ L_{NLG,dyn,max,TO}\f$ - maximum dynamic load at takeoff +- $ L_{NLG,dyn,max,TO}$ - maximum dynamic load at takeoff #### Tire selection Knowing the design speed and loads, a suitable tire is selected from the database. ### Main gear tire selection -Similar to the nose landing gear, the number of main gear struts \f$n_{MLG\_struts}\f$ as well as the number of main gear tires per strut \f$n_{MLG\_tires\_per\_strut}\f$ can be defined by the user. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used. +Similar to the nose landing gear, the number of main gear struts $n_{MLG\_struts}$ as well as the number of main gear tires per strut $n_{MLG\_tires\_per\_strut}$ can be defined by the user. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used. #### Design load estimation The **single tire design load** is calculated according to CS 25.733 (a)(1): -\f[ +$ v_{MLG\_tire\_des} = \frac{\frac{L_{MLG,max}}{g} \cdot 2.2}{n_{MLG\_tires\_per\_outer\_strut} \cdot n_{MLG\_outer\_struts} + n_{MLG\_tires\_per\_inner\_strut} \cdot n_{MLG\_inner\_struts}} \cdot f_{safety} -\f] +$ In which -- \f$L_{MLG,max}\f$ - maximum main gear load -- \f$g\f$ - gravitational acceleration -- \f$n_{MLG\_tires\_per\_outer\_strut}\f$ - number of tires per outer strut -- \f$n_{MLG\_outer\_struts}\f$ - number of outer struts -- \f$n_{MLG\_tires\_per\_inner\_strut}\f$ - number of tires per inner strut -- \f$n_{MLG\_inner\_struts}\f$ - number of inner struts -- \f$f_{safety}\f$ - safety factor +- $L_{MLG,max}$ - maximum main gear load +- $g$ - gravitational acceleration +- $n_{MLG\_tires\_per\_outer\_strut}$ - number of tires per outer strut +- $n_{MLG\_outer\_struts}$ - number of outer struts +- $n_{MLG\_tires\_per\_inner\_strut}$ - number of tires per inner strut +- $n_{MLG\_inner\_struts}$ - number of inner struts +- $f_{safety}$ - safety factor -If only one main gear tyre is mounted to one main landing gear strut, \f$f_{safety} = 1\f$. If more than one tire is mounted to one main landing gear strut, an additional safety load margin according to CS 25.733 (c)(1) is required that results in \f$f_{safety} = 1.07\f$. +If only one main gear tyre is mounted to one main landing gear strut, $f_{safety} = 1$. If more than one tire is mounted to one main landing gear strut, an additional safety load margin according to CS 25.733 (c)(1) is required that results in $f_{safety} = 1.07$. #### Tire selection Knowing the design speed and loads, a suitable tire is selected from the database. @@ -291,42 +292,42 @@ With the known values, the landing gear placement and dimensions are estimated m Ground clearance angles for nacelles and wing tips are calculated and verified in accordance to Torenbeek<sup>[6]</sup> and CS-25<sup>[2]</sup>. ### Nacelle clearance -The ground clearance \f$c_{nacelle}\f$ for each nacelle is given as: -\f[ +The ground clearance $c_{nacelle}$ for each nacelle is given as: +$ c_{nacelle} = d_{GND\_to\_FCL} - |z_{nacelle}| - |h_{nacelle}| -\f] +$ In which -- \f$d_{GND\_to\_FCL}\f$ - vertical distance between ground and fuselage center line -- \f$z_{nacelle}\f$ - z position of nacelle -- \f$h_{nacelle}\f$ - height of nacelle +- $d_{GND\_to\_FCL}$ - vertical distance between ground and fuselage center line +- $z_{nacelle}$ - z position of nacelle +- $h_{nacelle}$ - height of nacelle The nacelle clearance angle can then be determined: -\f[ +$ \theta_{nacelle} = \arctan\left(\frac{c_{nacelle}}{|y_{nacelle}| - y_{MLG\_outer\_strut}}\right) \cdot \frac{180}{\pi} -\f] +$ In which: -- \f$y_{nacelle}\f$ - y position of nacelle -- \f$y_{MLG\_outer\_strut}\f$ - y position of outer main landing gear strut +- $y_{nacelle}$ - y position of nacelle +- $y_{MLG\_outer\_strut}$ - y position of outer main landing gear strut This value is then checked regarding the minimum required clearance angle of 5 degree, defined by CS 25.149, and the user-specified nacelle clearance angle. ### Wing tip clearance -The wing tip ground clearance \f$c_{wing\_tip}\f$ is known from the positions of the wing tip section. -\f[ +The wing tip ground clearance $c_{wing\_tip}$ is known from the positions of the wing tip section. +$ c_{wing\_tip} = d_{GND\_to\_FCL} - z_{wing\_tip} -\f] +$ In which -- \f$d_{GND\_to\_FCL}\f$ - vertical distance between ground and fuselage center line -- \f$z_{wing\_tip}\f$ - z position of wing tip +- $d_{GND\_to\_FCL}$ - vertical distance between ground and fuselage center line +- $z_{wing\_tip}$ - z position of wing tip The wing tip clearance angle is calculated using the wing tip's position relative to the main gear outer strut: -\f[ +$ \theta_{wing\_tip} = \arctan\left(\frac{c_{wing\_tip}}{|y_{wing\_tip}| - y_{MLG\_outer\_strut}}\right) \cdot \frac{180}{\pi} -\f] +$ In which: -- \f$y_{wing\_tip}\f$ - y position of wing tip -- \f$y_{MLG\_outer\_strut}\f$ - y position of outer main landing gear strut +- $y_{wing\_tip}$ - y position of wing tip +- $y_{MLG\_outer\_strut}$ - y position of outer main landing gear strut This value is then validated against the minimum required clearance angle of 5 degree, defined by CS 25.149, and the user-specified wing tip clearance angle. @@ -342,16 +343,17 @@ The undercarriage masses are calculated in accordance to Torenbeek<sup>[6]</sup> Under the use of these coefficients, the mass for the nose as well as the main landing gear can be calculated using the following equation: -\f[ +$ m = c_{wing} \cdot \left( A + B \cdot MTOM^{0.75} + C \cdot MTOM + D \cdot MTOM^{1.5} \right) \cdot f_{corr} -\f] +$ In which: -- \f$c_{wing}\f$ - wing position coefficient (`1.0`for low or mid wing position, `1.8`for high wing position) -- \f$MTOM\f$ - maximum takeoff mass -- \f$f_{corr}\f$ - landing gear correction factor (taken from user specification) -- \f$ A,B,C,D\f$ - coefficients from above table +- $c_{wing}$ - wing position coefficient (`1.0`for low or mid wing position, `1.8`for high wing position) +- $MTOM$ - maximum takeoff mass +- $f_{corr}$ - landing gear correction factor (taken from user specification) +- $ A,B,C,D$ - coefficients from above table -@note If the maximum takeoff mass is not available, it is calculated by dividing the maximum ramp weight by the gravitational acceleration. +!!! note + If the maximum takeoff mass is not available, it is calculated by dividing the maximum ramp weight by the gravitational acceleration. The total nose/main landing gear mass divided by the number of struts per nose/main landing gear results in the per-strut mass. @@ -359,8 +361,9 @@ The total nose/main landing gear mass divided by the number of struts per nose/m The calculation is based on the COMFAA Tool developed by the Federal Aviation Administration (FAA) that is specifically used for computing the ACN (Aircraft Classification Number) in line with ICAO standards. Detailed information can be taken from the website: -@note By clicking on the following link, you will leave the UNICADO website. Please note that we are not responsible for the content of the linked website and do not assume any liability.<br> -https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/comfaa-30 +!!! note + By clicking on the following link, you will leave the UNICADO website. Please note that we are not responsible for the content of the linked website and do not assume any liability.<br> + https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/comfaa-30 The Aircraft Classification Number (ACN) is a standardized measure that describes the load a particular aircraft imposes on the surface of a runway or taxiway. It is defined by the International Civil Aviation Organization (ICAO) in Annex 14<sup>[7]</sup> and is used to assess whether an aircraft is compatible with a specific pavement's structural capacity, expressed as the Pavement Classification Number (PCN). The subsequent section provides some information on the method. @@ -373,7 +376,8 @@ The subsequent section provides some information on the method. - The ACN is determined for two types of pavements: - Rigid pavements: Concrete surfaces with a stiff structure. - Flexible pavements: Asphalt or other elastic materials. - @note Currently only flexible pavement implemented. + !!! note + Currently only flexible pavement implemented. - Subgrade strength (the strength of the ground beneath the pavement) is divided into four categories: High (H), Medium (M), Low (L), Very Low (VL). 3. Standardization - The ACN is normalized to a reference Single Wheel Load (SWL) of 10 tons. diff --git a/docs/documentation/sizing/landing_gear_design/getting-started.md b/docs/documentation/sizing/landing_gear_design/getting-started.md index b113ee6..6bdeea4 100644 --- a/docs/documentation/sizing/landing_gear_design/getting-started.md +++ b/docs/documentation/sizing/landing_gear_design/getting-started.md @@ -7,7 +7,8 @@ This section will guide you through the necessary steps to get the _landing\_gea - [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running? - [Next steps](#next-steps) - How to proceed? -@note It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. +!!! note + It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. Generally, we use two files to set or configure modules in UNICADO: - The aircraft exchange file (or _acXML_) includes @@ -89,7 +90,8 @@ The following data should be available in the _acXML_ (2. and 3. are optional): <sup>*</sup> Available from the second iteration loop. -@note When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. +!!! note + When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. ## Module configuration file {#module-configuration-file} The _configXML_ is structured into two blocks: the control and program settings. @@ -99,7 +101,8 @@ The control settings are standardized in UNICADO and will not be described in de - the `console_output` at least to `mode_1`, and - the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`). -@note If the tool is executed via the workflow, those settings are set by the workflow settings. +!!! note + If the tool is executed via the workflow, those settings are set by the workflow settings. The program settings are structured like this (descriptions can be found in the `landing_gear_design_conf.xml`): diff --git a/docs/documentation/sizing/landing_gear_design/index.md b/docs/documentation/sizing/landing_gear_design/index.md index 80ee5a9..8eab731 100644 --- a/docs/documentation/sizing/landing_gear_design/index.md +++ b/docs/documentation/sizing/landing_gear_design/index.md @@ -6,9 +6,9 @@ Here’s a quick rundown of what the tool currently does, along with a sneak pee Undercarriage definition | Energy carrier | Fidelity | Methods | Status | -----------------------------|------------------|-----------|-----------|:-------------------------------------:| -Wing-mounted | Kerosene | Empirical | TUB | running \emoji white_check_mark | -Wing-mounted | Liquid hydrogen | ... | ... | under development \emoji construction | -Body-mounted | ... | ... | ... | under development \emoji construction | +Wing-mounted | Kerosene | Empirical | TUB | running :white_check_mark: | +Wing-mounted | Liquid hydrogen | ... | ... | under development :construction:| +Body-mounted | ... | ... | ... | under development :construction:| ## A user's guide to landing gear design The _landing\_gear\_design_ tool is your key to designing the aircraft's landing gear. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a landing gear design from the ground up. @@ -21,7 +21,7 @@ For a comprehensive understanding of the tool’s functionality, the documentati - a [software architecture](software_architecture.md) section. -Ready to dive in? Let’s get started! \emoji airplane +Ready to dive in? Let’s get started! :airplane: <!-- ## You are a Developer? diff --git a/docs/documentation/sizing/landing_gear_design/run_your_first_design.md b/docs/documentation/sizing/landing_gear_design/run_your_first_design.md index 4504378..aa5198a 100644 --- a/docs/documentation/sizing/landing_gear_design/run_your_first_design.md +++ b/docs/documentation/sizing/landing_gear_design/run_your_first_design.md @@ -106,7 +106,8 @@ In the following, a short overview is given on the generated reports: - plots in the `plots` folder ### Write data to the aircraft exchange file {#acxml} -@note The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! +!!! note + The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! Results are saved in the aircraft exchange file at the `/aircraft_exchange_file/component_design/landing_gear` node. The following information is written to the _acXML_: ```plaintext diff --git a/docs/documentation/sizing/landing_gear_design/software_architecture.md b/docs/documentation/sizing/landing_gear_design/software_architecture.md index 05446b9..4c59c73 100644 --- a/docs/documentation/sizing/landing_gear_design/software_architecture.md +++ b/docs/documentation/sizing/landing_gear_design/software_architecture.md @@ -1,2 +1,2 @@ # Software architecture -This site is currently under development. \emoji construction \ No newline at end of file +This site is currently under development. :construction: \ No newline at end of file diff --git a/docs/documentation/sizing/propulsion_design/changelog.md b/docs/documentation/sizing/propulsion_design/changelog.md index 7403ff4..d6f5738 100644 --- a/docs/documentation/sizing/propulsion_design/changelog.md +++ b/docs/documentation/sizing/propulsion_design/changelog.md @@ -14,11 +14,12 @@ The following changes are introduced: ### Bugfixes During the development of this release the following bugs were found and fixed: -- When designing a *rubber* engine, the engine length was scaled incorrectly. The correct formula with \f${scale_{engine}}^{0.4} \f$ is now implemented. +- When designing a *rubber* engine, the engine length was scaled incorrectly. The correct formula with ${scale_{engine}}^{0.4} $ is now implemented. ### Changes in the CSR designs The implemented changes and bugfixes lead to the following changes in the results of the CSR designs. -@note Only changes which exceed a 10 % change are listed. +!!! note + Only changes which exceed a 10 % change are listed. #### CSR-02 |Parameter|Changed introduced by|Old Value|New Value|Unit| diff --git a/docs/documentation/sizing/propulsion_design/engineering_principles.md b/docs/documentation/sizing/propulsion_design/engineering_principles.md index d0cd301..0a8220b 100644 --- a/docs/documentation/sizing/propulsion_design/engineering_principles.md +++ b/docs/documentation/sizing/propulsion_design/engineering_principles.md @@ -2,6 +2,7 @@ # Engineering principles {#engineeringprinciples} Designing the propulsion with this tool includes different engineering disciplines. Here a brief explanation (more information in their respective sections): + - [Engine designer](#enginedesigner): calculates the performance of one individual engine based on the required thrust. - [Propulsor integrator](#propulsionintegrator): places the engine acc. to the user's settings. - [Nacelle designer](#nacelledesigner): calculates the nacelle geometry. @@ -33,43 +34,45 @@ The **engine designer** bases its principle on the common modelling practice usi The _dataset_ (also called _EngineXML_) includes parameter which are independent of the flight condition such as outer engine dimensions. -The three-dimensional _engine deck_ contain engine performance data for different values of altitude \f$h\f$, Mach number \f$Ma\f$ and low-pressure engine spool speed \f$N1\f$. The most important performance parameter are thrust and fuel/energy flow. In UNICADO, the deck is split into multiple CSV files. The figure shows an example with values for thrust in kilo newton. The first block contains data for \f$N1=1\f$ for \f$Ma=0...0.9\f$ and \f$h=0...14000\f$. The second block below is for \f$N1=0.95\f$. +The three-dimensional _engine deck_ contain engine performance data for different values of altitude $h$, Mach number $Ma$ and low-pressure engine spool speed $N1$. The most important performance parameter are thrust and fuel/energy flow. In UNICADO, the deck is split into multiple CSV files. The figure shows an example with values for thrust in kilo newton. The first block contains data for $N1=1$ for $Ma=0...0.9$ and $h=0...14000$. The second block below is for $N1=0.95$.  -@note Detailed information on required dataset and deck data will be updated in near future. +!!! note + Detailed information on required dataset and deck data will be updated in near future. The _scale factor_ is necessary because (as conceptual aircraft designer), we use the concept of a so-called _rubber engine_. That means that (depending on the method, see later) we create or assume an engine deck and provide one _scale factor_ to obtain all engine data acc. to the required thrust the engine shall provide. The figure visualized the concept:  -@attention → **As mentioned and highlighted in the figure**, there is ONE _scale factor_ **BUT** multiple exponents which differ depending on which property you want to use. E.g. for the diameter, the exponent is \f$0.5\f$ and for the mass its \f$0.4\f$. **So important to remember** that whenever you want to use engine data, you need to access it via the `engine` library. In the following, a brief explanation of the scaling concept will be given - however details are given in the library documentation. +@attention → **As mentioned and highlighted in the figure**, there is ONE _scale factor_ **BUT** multiple exponents which differ depending on which property you want to use. E.g. for the diameter, the exponent is $0.5$ and for the mass its $0.4$. **So important to remember** that whenever you want to use engine data, you need to access it via the `engine` library. In the following, a brief explanation of the scaling concept will be given - however details are given in the library documentation. So, the scaling is based on continuity principle assuming that the operating condition is constant (commonly known station numbering; assuming no pressure drop). -\f$[ - T = \dot m \cdot (V_9 - V_0) -]\f$ +$ T = \dot m \cdot (V_9 - V_0) $ -Therefore, thrust \f$T\f$ is proportional to the mass flow \f$\dot m\f$, which is related to the cross-sectional area \f$A\f$ of the engine. +Therefore, thrust $T$ is proportional to the mass flow $\dot m$, which is related to the cross-sectional area $A$ of the engine. -\f$ \dot m = \rho \cdot V \cdot A = \rho \cdot V \cdot \pi \frac{d}{2}^2 \f$ +$ \dot m = \rho \cdot V \cdot A = \rho \cdot V \cdot \pi \frac{d}{2}^2 $ -Because area \f$A\f$ is proportional to the square of the diameter \f$d\f$ , it follows that the diameter should be proportional to the square root of the scale factor. +Because area $A$ is proportional to the square of the diameter $d$ , it follows that the diameter should be proportional to the square root of the scale factor. -\f$ d_{new} = d_{ref} \cdot ( \frac{T_{new}}{T_{ref}} )^{0.5} \f$ +$ d_{new} = d_{ref} \cdot ( \frac{T_{new}}{T_{ref}} )^{0.5} $ -An exemplary simplified calculation (data from the V2527-A5): the current engine provides \f$127.27~kN\f$ as sea level static thrust, but for the design only \f$100~kN\f$ are needed. The scaling factor would be \f$0.7857\f$. Assuming an initial diameter \f$2~m\f$, the new diameter would be \f$1.773~m\f$ with the scaling factor of \f$(0.7857)^{0.5} = 0.8864\f$. +An exemplary simplified calculation (data from the V2527-A5): the current engine provides $127.27~kN$ as sea level static thrust, but for the design only $100~kN$ are needed. The scaling factor would be $0.7857$. Assuming an initial diameter $2~m$, the new diameter would be $1.773~m$ with the scaling factor of $(0.7857)^{0.5} = 0.8864$. So, again, always access the engine data via the `engine` library to ensure that you have the correctly scaled data 🙂 -@note Actually, the sea level static thrust is not at \f$N1=1\f$ if you compare the dataset for this engine (for 110.31kN around \f$N1=0.95\f$). So the scaling factor will be slightly lower. +!!! note + Actually, the sea level static thrust is not at $N1=1$ if you compare the dataset for this engine (for 110.31kN around $N1=0.95$). So the scaling factor will be slightly lower. ### Methods description The **engine designer** includes different methods which create/use this deck in various ways. + - *empirical*: the initial deck is calculated based on emipirical equations - *rubber*: (most common approach) based on an existing deck (usually created with GasTurb), the deck is "rubberized" - *propulsionsystem*: with the help of the library `propulsionsystem`, different architecture can be defined and a deck created (for more information see documentation of the library) -@note *empirical* and *propulsionsystem* is in preparation - not implemented yet! +!!! note + *empirical* and *propulsionsystem* is in preparation - not implemented yet! For all these methods, the approach of using the _scale factor_ is the same (see explaination [here](#generalprinciples)). A deck is either first created or assumed and then data is drawn with the `engine` library with the scaling approach. @@ -98,7 +101,7 @@ This method includes multiple empirical functions for different propulsion integ For detailed information, it is referred to the thesis. -@note the implementation include currently Turbofan Kerosene only +!!! note the implementation include currently Turbofan Kerosene only ## Nacelle designer {#nacelledesigner} After the integration, the nacelle geometry is defined (however its actually independent of the position, so the order could be changed). @@ -106,6 +109,7 @@ After the integration, the nacelle geometry is defined (however its actually ind ### Methods description For the **nacelle designer**, only one method is implemented: + - *default* uses the `aircraftGeometry2` library The library uses the `.dat` file defined in the _configXML_ to extrude a polygon in different sections. These sections including the origin, width, height and its profile are saved in the _acXML_. With that, every other tool can "rebuild" the geometry using the same library. @@ -114,7 +118,8 @@ In the current implemented method, there is no differentiation between short and Keep in mind that the library defines a surface without a thickness. For more information, it is referred to the library. -@note the implementation include currently Turbofan Kerosene only +!!!note + The implementation include currently Turbofan Kerosene only ## Pylon designer {#pylondesigner} The pylon is the structural component to connect the engine to the aircraft. @@ -122,6 +127,7 @@ The pylon is the structural component to connect the engine to the aircraft. ### Methods description For the **pylon designer**, only one method is implemented: + - *default* uses the `aircraftGeometry2` library In the current method, the mounting is attached to the beginning to the nacelle to the leading edge of the wing. The length is the engine length which is extruded to the wing. the profile is, likewise for the nacelle, defined in the _configXML_. @@ -129,7 +135,8 @@ In the current method, the mounting is attached to the beginning to the nacelle  -@note the implementation include currently Turbofan Kerosene only +!!!note + the implementation include currently Turbofan Kerosene only ## Mass analyzer {#massanalyzer} Lastly, the mass properties for engine, nacelle and pylon are calculated separate for center of gravity, mass and inertia. @@ -137,6 +144,7 @@ Lastly, the mass properties for engine, nacelle and pylon are calculated separat ### Methods description Here, only one method is implemented: + - *default* using: - for engine - CG: calculating local CG assuming a circular cylinder @@ -147,5 +155,6 @@ Here, only one method is implemented: - mass: empirical estimation - inertia: wrt. CG with `aircraftGeometry2`lib -@note the implementation include currently Turbofan Kerosene only +!!!note + the implementation include currently Turbofan Kerosene only diff --git a/docs/documentation/sizing/propulsion_design/getting-started.md b/docs/documentation/sizing/propulsion_design/getting-started.md index 8c6dc34..fafd391 100644 --- a/docs/documentation/sizing/propulsion_design/getting-started.md +++ b/docs/documentation/sizing/propulsion_design/getting-started.md @@ -3,7 +3,7 @@ This guide will show you the basic usage of **propulsion_design**. Following ste ## Step-by-step -It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/build/cpp/)). +It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build/cpp/)). 1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#acXML)) 2. Fill out the configuration file - change at least: @@ -17,14 +17,17 @@ It is assumed that you have the `UNICADO Package` installed including the execut 3. Open terminal and run **propulsion_design** Following will happen: + - you see output in the console window - a HTML report is created in the directory of `aircraft_exchange_file_directory` (no plots of engine if they are turned off) - results are saved in the `/aircraft_exchange_file/component_design/propulsion` -@note The dummy does not include geometry data for e.g. fuselage or wing. Therefore the positioning of the engine will not work and warnings are expected in the output. +!!! note + The dummy does not include geometry data for e.g. fuselage or wing. Therefore the positioning of the engine will not work and warnings are expected in the output. ## Settings and outputs {#settingsandoutputs} Generally, we use 2 files to set or configure in UNICADO: + - the aircraft exchange file (or _acXML_) includes - data related inputs (e.g. thrust, offtakes or type of engine) - data related outputs (e.g. engine position) @@ -33,28 +36,30 @@ Generally, we use 2 files to set or configure in UNICADO: - program settings (e.g. set technology factors or methods) ### Aircraft exchange file -@note _acXML_ is an exchange file - we agreed on that only data will be saved as output which is needed by another tool! +!!! note + _acXML_ is an exchange file - we agreed on that only data will be saved as output which is needed by another tool! **Inputs**: Following is needed from the _acXML_: + 1) the total required thrust, 2) the system off-takes, 3) the user settings of the propulsion architecture Naturally, the propulsion need an assumption for thrust or power to be designed. Currently, in UNICADO, the requirement is set via the tool _initialSizing_. Here, initial estimation based on the TLARs are calculated like the thrust-to-weight via an design chart or the maximum take-off mass based on regressions. For this, **propulsion_design** currently assumes: -The sea level static thrust \f$ T_0 \f$ is given by: +The sea level static thrust $T_0$ is given by: -\f$ -T_0 = \frac{T}{W} \cdot MTOM -\f$ +$ T_0 = \frac{T}{W} \cdot MTOM $ Where: -- \f$ T_0 \f$ is the sea level static thrust. -- \f$ \frac{T}{W} \f$ is the thrust-to-weight ratio (specified as `/aircraft_exchange_file/sizing_point/thrust_to_weight`). -- \f$ MTOM \f$ is the maximum takeoff mass (specified as `/aircraft_exchange_file/analysis/masses_cg_inertia/maximum_takeoff_mass`). -@note This might change with new propulsion architectures! +- $T_0$ is the sea level static thrust. +- $\frac{T}{W}$ is the thrust-to-weight ratio (specified as `/aircraft_exchange_file/sizing_point/thrust_to_weight`). +- $MTOM$ is the maximum takeoff mass (specified as `/aircraft_exchange_file/analysis/masses_cg_inertia/maximum_takeoff_mass`). + +!!! note + This might change with new propulsion architectures! Not only the thrust is important, but also the system off-takes. Current engine provide power to the systems and therefore, the thrust specific consumption can increase. To include that, the nodes `average_bleed_air_demand` and `average_bleed_air_demand` in `/aircraft_exchange_file/component_design/systems/specific/`are necessary (is set to default values if not existing). @@ -78,7 +83,7 @@ Propulsion | |- Thrust Share ``` Let's assume you want to design an aircraft with 5 engine - 2 on each side of the wing and one in the empennage. Additionally, you want to use 3 energy carrier: hydrogen, kerosene and battery-electric. -For that, you need to define 3 energy carriers with each a type and a density with \f$ID=[0,1,2]\f$. Then you create 5 propulsor nodes with \f$ID=[0,...,4]\f$ and assign them each an a powertrain, type, ..., and thrust share. E.g. Engine 0 shall be a kerosene-powered turbofan in the empennage with a thrust share of \f$10\%\f$. Then it has the position with `parent_component=empennage`, `x=front`, `y=mid`, `z=in`. If the type of the energy carrier with ID=0 is set to kerosene, you need to assign `energy_carrier_id=0`. Also `powertrain=turbo`, `type=fan`, and `thrust_share=0.1`. Then Engine 1 could be a hydrogen-powered turboprop located under the left front inner wing with a thrust share of \f$25\%\f$. Then it has the position with `parent_component=wing`, `x=front`, `y=left`, `z=under`. If the type of the energy carrier with ID=1 is set to hydrogen, you need to assign `energy_carrier_id=1`. Also `powertrain=turbo`, `type=prop`, and `thrust_share=0.25`. The same procedure needs to be done for the other 3 engine. +For that, you need to define 3 energy carriers with each a type and a density with $ID=[0,1,2]$. Then you create 5 propulsor nodes with $ID=[0,...,4]$ and assign them each an a powertrain, type, ..., and thrust share. E.g. Engine 0 shall be a kerosene-powered turbofan in the empennage with a thrust share of $10\%$. Then it has the position with `parent_component=empennage`, `x=front`, `y=mid`, `z=in`. If the type of the energy carrier with ID=0 is set to kerosene, you need to assign `energy_carrier_id=0`. Also `powertrain=turbo`, `type=fan`, and `thrust_share=0.1`. Then Engine 1 could be a hydrogen-powered turboprop located under the left front inner wing with a thrust share of $25\%$. Then it has the position with `parent_component=wing`, `x=front`, `y=left`, `z=under`. If the type of the energy carrier with ID=1 is set to hydrogen, you need to assign `energy_carrier_id=1`. Also `powertrain=turbo`, `type=prop`, and `thrust_share=0.25`. The same procedure needs to be done for the other 3 engine. **Outputs**: The results are saved in the _acXML_ node `/aircraft_exchange_file/component_design/propulsion`. diff --git a/docs/documentation/sizing/propulsion_design/index.md b/docs/documentation/sizing/propulsion_design/index.md index 9dbf8b6..9caaff8 100644 --- a/docs/documentation/sizing/propulsion_design/index.md +++ b/docs/documentation/sizing/propulsion_design/index.md @@ -1,11 +1,12 @@ # Introduction {#mainpage} The tool _propulsion_design_ is one of the core design tools in UNICADO. The overall goal is the design the propulsion based on... + - the architecture (e.g. 2 turbofan at rear fuselage, 4 fuel cell prop engine over the front wing) set by the user and, - the total required thrust and system off-takes. This tool is exciting!🔥 because the propulsion is THE critical component providing the thrust or power, enabling to propel the aircraft forward and move through the skies.🌍 To give you a general taste, here are a few illustrations of possible concepts. - + The [getting started](getting_started.md) gives you a first insight in how to execute the tool and how it generally works. To understand how the tools works in detail, the documentation is split into a [engineering principles](engineering_principles.md) and a [software architecture](software_architecture.md) section. diff --git a/docs/documentation/sizing/propulsion_design/software_architecture.md b/docs/documentation/sizing/propulsion_design/software_architecture.md index e8f2c95..294c85b 100644 --- a/docs/documentation/sizing/propulsion_design/software_architecture.md +++ b/docs/documentation/sizing/propulsion_design/software_architecture.md @@ -23,6 +23,7 @@ Some additional words on the **propulsionStrategy**: As you might also see in the [class diagram](figures/class_diagram.png), the core of it is the functor `operator()` for specific engine types to allow the `engine` object to be used as functions. This object is, depending on the user settings, based on the propulsion type classes (e.g. `Turbofan<Kerosene>`). As also shown in @ref propulsion.md, the type is combined with 3 "building blocks" - *powertrain*: Way the power is generated from the source: turbo, electric, fuel_cell + - - *type*: Type of main thrust generator: fan or prop - *energy_carrier*: kerosene, liquid_hydrogen, battery (handled over IDs) diff --git a/docs/documentation/sizing/tank_design/getting-started.md b/docs/documentation/sizing/tank_design/getting-started.md index 4994d01..4b81a6a 100644 --- a/docs/documentation/sizing/tank_design/getting-started.md +++ b/docs/documentation/sizing/tank_design/getting-started.md @@ -8,7 +8,8 @@ This section will guide you through the necessary steps to get the _tank\_design - [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running? - [Next steps](#next-steps) - How to proceed? -@note It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. +!!! note + It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries. Generally, we use two files to set or configure modules in UNICADO: - The aircraft exchange file (or _acXML_) includes @@ -55,7 +56,8 @@ The following data should then be available in the _acXML_: - Wing - Empennage -@note When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. +!!! note + When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. ## Configuring tank design parameters in the aircraft exchange file {#configuring-tank-design-parameters-in-the-aircraft-exchange-file} The desired tank configuration is defined by the user in the aircraft exchange file. The information can be found in the `aircraft_exchange_file/requirements_and_specifications/design_specification/configuration/tank_definition` block. @@ -230,10 +232,11 @@ The following `tank_definition` code block snippet shows how to configure a stan ``` <br> -@note For aircraft with a single trapezoidal wing, please delete the `Outer left tank` and `Outer right tank` elements and adjust the other tank IDs accordingly. +!!! note + For aircraft with a single trapezoidal wing, please delete the `Outer left tank` and `Outer right tank` elements and adjust the other tank IDs accordingly. ### Liquid hydrogen driven aircraft configurations {#lh2-driven} -tbd. \emoji construction +tbd. :construction: ## Module configuration file {#module-configuration-file} The _configXML_ is structured into two blocks: the control and program settings. @@ -243,7 +246,8 @@ The control settings are standardized in UNICADO and will not be described in de - the `console_output` at least to `mode_1`, and - the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`). -@note If the tool is executed via the workflow, those settings are set by the workflow settings. +!!! note + If the tool is executed via the workflow, those settings are set by the workflow settings. The program settings are structured like this (descriptions can be found in the `tank_design_conf.xml`): diff --git a/docs/documentation/sizing/tank_design/index.md b/docs/documentation/sizing/tank_design/index.md index b27c974..9b314d9 100644 --- a/docs/documentation/sizing/tank_design/index.md +++ b/docs/documentation/sizing/tank_design/index.md @@ -6,9 +6,9 @@ Here’s a quick rundown of what the tool currently does, along with a sneak pee Configuration | Energy carrier | Fidelity | Methods | Status | ------------------|------------------|-----------|-----------|:------------------------------------:| -Tube-and-wing |Kerosene |Empirical |TUB |running \emoji white_check_mark | -Tube-and-wing |Liquid hydrogen |Empirical |TUB |under development \emoji construction | -Blended-wing-body |... |... |... |under development \emoji construction | +Tube-and-wing |Kerosene |Empirical |TUB |running :white_check_mark: | +Tube-and-wing |Liquid hydrogen |Empirical |TUB |under development :construction: | +Blended-wing-body |... |... |... |under development :construction: | ## A user's guide to tank design The _tank\_design_ tool is your key to designing the aircraft's fuel storage. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a tank design from the ground up. @@ -21,7 +21,7 @@ For a comprehensive understanding of the tool’s functionality, the documentati - a [software architecture](software_architecture.md) section. -Ready to dive in? Let’s get started! \emoji airplane +Ready to dive in? Let’s get started! :airplane: <!-- ## You are a Developer? diff --git a/docs/documentation/sizing/tank_design/run_your_first_tank_design.md b/docs/documentation/sizing/tank_design/run_your_first_tank_design.md index 50d4998..400fe0a 100644 --- a/docs/documentation/sizing/tank_design/run_your_first_tank_design.md +++ b/docs/documentation/sizing/tank_design/run_your_first_tank_design.md @@ -88,7 +88,8 @@ In the following, a short overview is given on the generated reports: @warning Steffi: Check if additional output written ### Write data to the aircraft exchange file {#acxml} -@note The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! +!!! note + The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool! Results are saved in the aircraft exchange file at the `/aircraft_exchange_file/component_design/tank`. node. The following information is written to the _acXML_: ```plaintext diff --git a/docs/documentation/sizing/tank_design/software_architecture.md b/docs/documentation/sizing/tank_design/software_architecture.md index e2e5717..b947e4a 100644 --- a/docs/documentation/sizing/tank_design/software_architecture.md +++ b/docs/documentation/sizing/tank_design/software_architecture.md @@ -1,5 +1,5 @@ # Software architecture -This site is currently under development. \emoji construction +This site is currently under development. :construction: <!-- ## Module structure diff --git a/docs/documentation/sizing/tank_design/tank_design_method.md b/docs/documentation/sizing/tank_design/tank_design_method.md index 24b1085..dd7c72b 100644 --- a/docs/documentation/sizing/tank_design/tank_design_method.md +++ b/docs/documentation/sizing/tank_design/tank_design_method.md @@ -11,13 +11,13 @@ For kerosene-powered aircraft, the fuel is stored in the wing. Additional tanks <!-- The tank design process starts with determining the required energy amount since the energy amount is necessary to check whether the tank capacity is big enough to store the mission energy. If this information is not yet available in the _acXML_ in the first iteration loop, an initial estimate is made: -\f[ +$ E_{\text{mission}} = n_{\text{PAX}} \cdot R \cdot fc_{\text{approx}} -\f] +$ In which -- \f$n_{\text{PAX}}\f$ - number of passengers -- \f$R\f$ - range in km -- \f$fc_{\text{approx}}\f$ - approx. fuel consumption per passenger per 100 km (ca. 3.5 L/100 km) --> +- $n_{\text{PAX}}$ - number of passengers +- $R$ - range in km +- $fc_{\text{approx}}$ - approx. fuel consumption per passenger per 100 km (ca. 3.5 L/100 km) --> The tank design starts with the wing tanks. Initially, the available volume of the complete wing is calculated which is then followed by the dimensioning of the vent tank. Afterwards, the wing is divided into several tanks based on its geometry. The gross volume of these tanks is calculated using the [obelisk method](#obelisk-method). This is followed by accounting for volume losses due to structural components and thermal expansion, resulting in the net [usable tank volume](#net-tank-volume). The [energy stored](#calculate-energy) in the tanks is then calculated using the volumetric energy density of kerosene. @@ -46,81 +46,83 @@ The obelisk volume can be determined using two different approaches that are des The user can select the desired method via the following node in the `program_settings` section of the _confXML_: `configuration[@ID="tube_and_wing"]/specific/kerosene_tank_design_parameter/obelisk_calculation_method`. -@note The obelisk method is explained using the wing as an example. The volume of a [trim tank](#trim-tank) located in the horizontal stabilizer is determined analogously. +!!! note + The obelisk method is explained using the wing as an example. The volume of a [trim tank](#trim-tank) located in the horizontal stabilizer is determined analogously. ##### Obelisk volume according to Torenbeek<sup>[1]</sup>  The volume can be calculated using the following equation: -\f[ +$ V_{\text{obelisk}} = \frac{l}{3} \cdot \left( S_1 + S_2 + \frac{h_1 \cdot w_2 + h_2 \cdot w_1}{2}\right) -\f] +$ In which -- \f$l\f$ - length -- \f$S_1\f$, \f$S_2\f$ - end face areas -- \f$h_1\f$, \f$w_1\f$ - height and width of end face \f$S_1\f$ -- \f$h_2\f$, \f$w_2\f$ - height and width of end face \f$S_2\f$ +- $l$ - length +- $S_1$, $S_2$ - end face areas +- $h_1$, $w_1$ - height and width of end face $S_1$ +- $h_2$, $w_2$ - height and width of end face $S_2$ -The parallel end faces \f$S_1\f$ and \f$S_2\f$ are derived from the position of the spars of the wing box, that are +The parallel end faces $S_1$ and $S_2$ are derived from the position of the spars of the wing box, that are known from the wing design. <!-- Based on the formula for determining the area of a rectangle: -\f[ +$ S_{i} = h_i \cdot w_i -\f] -the size of the parallel end surfaces \f$S_1\f$ and \f$S_2\f$ is obtained by extending it with the chord length -\f$l_{chord}\f$: -\f[ +$ +the size of the parallel end surfaces $S_1$ and $S_2$ is obtained by extending it with the chord length +$l_{chord}$: +$ S_{i} = \frac{h_i}{l_{chord}} \cdot l_{chord} \cdot w_i -\f] -By multiplying with the maximum thickness \f$h_{max}\f$ and substituting the width \f$w_i = p_{fs}-p_{rs}\f$, we get: -\f[ +$ +By multiplying with the maximum thickness $h_{max}$ and substituting the width $w_i = p_{fs}-p_{rs}$, we get: +$ S_{i} = \frac{h_{max}}{l_{chord}} \cdot \frac{h_{i}}{h_{max}} \cdot l_{chord} \cdot (p_{rs} - p_{fs}) -\f] +$ Where -- \f$\frac{h_{max}}{l_{chord}}\f$ - maximum thickness ratio of used profile -- \f$\frac{a_{max}}{d_{max}}\f$ - ... -- \f$p_{rs}\f$ - position rear spar -- \f$p_{fs}\f$ - position front spar +- $\frac{h_{max}}{l_{chord}}$ - maximum thickness ratio of used profile +- $\frac{a_{max}}{d_{max}}$ - ... +- $p_{rs}$ - position rear spar +- $p_{fs}$ - position front spar - --> + --> ##### Obelisk volume according to Simpson The Simpson's rule is a method of numerical integration that is often used to calculate the volume of bodies whose cross-sections are known at different positions. In the case of an obelisk - i.e. a body with square or rectangular -cross-sections that vary along the height - the volume is integrated as the sum of the cross-sectional areas \f$S(x)\f$ -along the length \f$l\f$: -\f[ +cross-sections that vary along the height - the volume is integrated as the sum of the cross-sectional areas $S(x)$ +along the length $l$: +$ V_{\text{obelisk}} = \int_0^l S(x) \, dx -\f] +$ -If the cross-sectional areas \f$S(x)\f$ at \f$i+1\f$ uniformly distributed points are known (which is the case for the +If the cross-sectional areas $S(x)$ at $i+1$ uniformly distributed points are known (which is the case for the tank design), Simpson's rule can be applied. -Two end surfaces are known for each tank, so that a third middle surface \f$S_{12}\f$ can be determined by linear +Two end surfaces are known for each tank, so that a third middle surface $S_{12}$ can be determined by linear interpolation (see following figure). Each tank is thus divided into two sections.  The tank volume can therefore be determined using a simplified Simpson's rule: -\f[ +$ V_{\text{obelisk}} = \frac{l}{6.0} \cdot (S_{1} + 4.0 \cdot S_{12} + S_{2}) -\f] +$ #### Calculate net tank volume {#net-tank-volume} -The volume must then be converted from cubic meter to liter. A portion of the volume of the obelisk is lost to the internal structure of the integral tanks (e.g., ribs), with a reduction factor \f$ f_{\text{volume,usable}} = 0.95\f$. -Additionally, the expansion of the fuel due to heating must be considered, with a temperature expansion allowance of \f$ a_{\text{temperature,expansion}} = 0.95\f$. Thus, the wing tank volume is calculated as: -\f[ +The volume must then be converted from cubic meter to liter. A portion of the volume of the obelisk is lost to the internal structure of the integral tanks (e.g., ribs), with a reduction factor $ f_{\text{volume,usable}} = 0.95$. +Additionally, the expansion of the fuel due to heating must be considered, with a temperature expansion allowance of $ a_{\text{temperature,expansion}} = 0.95$. Thus, the wing tank volume is calculated as: +$ V_{\text{tank}} = f_{\text{volume,usable}} \cdot a_{\text{temperature,expansion}} \cdot V_{\text{obelisk}} -\f] +$ -@note As the wing has a vent tank at each wing tip to allow for the thermodynamic expansion of the fuel, this factor is `1.0` for the wing tanks. +!!! note + As the wing has a vent tank at each wing tip to allow for the thermodynamic expansion of the fuel, this factor is `1.0` for the wing tanks. #### Calculate energy {#calculate-energy} -Using the volumetric energy density of kerosene \f$\eta_{\text{v,kerosene}}\f$, the energy contained in each tank can be determined: -\f[ +Using the volumetric energy density of kerosene $\eta_{\text{v,kerosene}}$, the energy contained in each tank can be determined: +$ V_{\text{tank}} = \eta_{\text{v,kerosene}} \cdot V_{\text{obelisk}} -\f] +$ ### Additional center tank The module allows the installation of an additional center tank in the form of an LD3-45 container. The process includes the following steps: @@ -130,25 +132,26 @@ The module allows the installation of an additional center tank in the form of a 2. **Installation placement**: The LD3-45 container is positioned 10 cm behind the end of the landing gear bay, aligning approximately with the trailing edge of the wing. 3. **Container data**: The volume and dimensions of the LD3-45 container are predefined and referenced from the Lufthansa Cargo website<sup>[2]</sup>. -The energy contained in an additional center tank is calculated by first determining the usable volume and then taking into account the volumetric energy density of kerosene. With the known factors \f$ f_{\text{volume,usable}}\f$ and \f$a_{\text{temperature,expansion}}\f$, the usable volume of an additional center tank results in \f$V_{\text{ACT,usable}} = 3068.5\text{ L}\f$ which is equal to an energy amount of \f$ E_{\text{ACT}} = 99189262.5\text{ MJ}\f$. +The energy contained in an additional center tank is calculated by first determining the usable volume and then taking into account the volumetric energy density of kerosene. With the known factors $ f_{\text{volume,usable}}$ and $a_{\text{temperature,expansion}}$, the usable volume of an additional center tank results in $V_{\text{ACT,usable}} = 3068.5\text{ L}$ which is equal to an energy amount of $ E_{\text{ACT}} = 99189262.5\text{ MJ}$. #### Limitations **Single Center Tank Limit:** The program currently supports the calculation of only one additional center tank. Attempts to add more tanks will not be processed. -@note Verify that the cargo compartment dimensions are correctly provided to ensure accurate installation. +!!! note + Verify that the cargo compartment dimensions are correctly provided to ensure accurate installation. ### Trim tank {#trim-tank} -The procedure for the trim tank is the same as for the wing tanks. The geometry of the horizontal stabilizer is simplified and divided into several obelisks whose volume is calculated. The usable volume is then determined, taking the already known factors \f$ f_{\text{volume,usable}}\f$ and \f$ a_{\text{temperature,expansion}}\f$ into account. Finally, the available energy is determined. +The procedure for the trim tank is the same as for the wing tanks. The geometry of the horizontal stabilizer is simplified and divided into several obelisks whose volume is calculated. The usable volume is then determined, taking the already known factors $ f_{\text{volume,usable}}$ and $ a_{\text{temperature,expansion}}$ into account. Finally, the available energy is determined. <!-- ### Assumptions and tool limitations -tbd. \emoji construction --> +tbd. :construction --> <!-- - All tanks with the same energy carrier (e.g. liquid_hydrogen) have the same design parameters --> <!-- - Design point for tank design: Point B, design mission --> <!-- - Der Rumpf wird gestretcht. Es gibt keine Option, die Kabine kleiner zu machen bisher. --> <!-- - Positionsangaben beziehen sich immer auf vordersten und innersten Punkt, wobei z die Mitte der Ebene angibt (dabei liegt die Annahme zugrunde, dass beim wing auch immer die center line des profils bei der z-Koordinate angegeben wird) --> ## Liquid hydrogen tanks {#liquid-hydrogen-tanks} -tbd. \emoji construction +tbd. :construction: --- <sup>[1]</sup> E. Torenbeek, 1982. *Synthesis of Subsonic Airplane Design*.<br> -- GitLab From 7db0b9c1816700ff4e301bb9a0bd2e4d22e4c352 Mon Sep 17 00:00:00 2001 From: Kristina Mazur <kristina.mazur@tum.de> Date: Tue, 28 Jan 2025 18:44:39 +0100 Subject: [PATCH 50/53] Add missing figure --- .../initial_sizing/figures/sizing_chart.svg | 49 +++++++++++++++++++ 1 file changed, 49 insertions(+) create mode 100644 docs/documentation/sizing/initial_sizing/figures/sizing_chart.svg diff --git a/docs/documentation/sizing/initial_sizing/figures/sizing_chart.svg b/docs/documentation/sizing/initial_sizing/figures/sizing_chart.svg new file mode 100644 index 0000000..2040200 --- /dev/null +++ b/docs/documentation/sizing/initial_sizing/figures/sizing_chart.svg @@ -0,0 +1,49 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<!-- Created with Inkscape (http://www.inkscape.org/) --> + +<svg + version="1.1" + id="svg1" + width="781.59998" + height="668.79999" + viewBox="0 0 781.59998 668.79999" + sodipodi:docname="sizing chart.svg" + inkscape:version="1.4 (86a8ad7, 2024-10-11)" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <defs + id="defs1" /> + <sodipodi:namedview + id="namedview1" + pagecolor="#ffffff" + bordercolor="#666666" + borderopacity="1.0" + inkscape:showpageshadow="2" + inkscape:pageopacity="0.0" + inkscape:pagecheckerboard="0" + inkscape:deskcolor="#d1d1d1" + inkscape:zoom="1.1707536" + inkscape:cx="390.77394" + inkscape:cy="334.39999" + inkscape:window-width="1920" + inkscape:window-height="1001" + inkscape:window-x="1911" + inkscape:window-y="-9" + inkscape:window-maximized="1" + inkscape:current-layer="g1" /> + <g + inkscape:groupmode="layer" + inkscape:label="Image" + id="g1"> + <image + width="781.59998" + height="668.79999" + preserveAspectRatio="none" + style="image-rendering:optimizeQuality" + xlink:href=" BwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwM DAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCANEA9EDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsvxP410jwWLD+19TsNM/tS8TT7P7VcJD9quHD FIk3EbnIViFHJ2njitSv52P+DqD/AIK761pP7WHhD4a/DvXbizPwv1K312+ktriaPZqkSy+UcrtB HlXI+6T9e1AH9EwO4ZFLXz1/wS5/bU0f9vj9ijwX8Q9KnEj6haNb3cZZi8c0E0ls5bcqt8zQseR3 6nrX0LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQBR8SLqTaHcDSGsk1Lb+4a8VmgDZH3gpDYxnoa/mF/4KBf8Gzfxw+H fxR8BeIvG/xY8BeI9b+NnxA07wPHcwR3pNvd3cE7RzymRMmNVtSDgluRgV/URXxT/wAFl/8AkYP2 Pf8As47wz/6RapQB5n/wQV/4JCfGX/gkrY+KNA8X/EHwX4v8Ia80U0Frpsd4JrKRPNPyeYFQKzSs W4JJx0r9IqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACvin/gsv/yMH7Hv/Zx3hn/0i1Svtavin/gsv/yMH7Hv/Zx3 hn/0i1SgD7WooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArjf2g/jBb/AL4M6/4wu4GubfQrcTy RL1cF1X/ANmrsq8K/wCCmH/JifxI/wCwav8A6Ojr0smw0MRmFDD1fhnOKfo5JM8jiDF1MLleJxVH SUKc5L1UW1+Jc/Yp/bJ079s3wdrGr6bYS2EekXi2bq5J3EoHz+te018Ff8EDf+SG+Of+w7H/AOk6 19616fGOW0Mvzmvg8MrQg0l16JnjcAZvic04fw2PxjvUmm27W+01t8gooor5o+wCiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqpreu2nhvTnu764jtraLG+RzwuSB/ MigC3RXIj49eDiuf+Eg0/H+8f8KT/hfng7/oYdP/AO+j/hQB19FYHhv4oeH/ABfffZtM1W1vJ8Z2 Rkk4rfoAKKKKACiiigAorA8ZfFHw/wDD0p/bWq2uneZynnMRurDH7TngEoT/AMJTpeB1O8/4UAd3 RXB/8NPeAP8AoatK/wC+z/hR/wANPeAP+hq0r/vs/wCFAHeUVwf/AA094A/6GrSv++z/AIUf8NPe AP8AoatK/wC+z/hQB3lFcH/w094A/wChq0r/AL7P+FH/AA094A/6GrSv++z/AIUAd5RXJ+Gfjp4R 8ZaoLLS9fsL27YZEUbEseCfT2NdZQAUUVk+DfHGk/ELQ49S0W/g1GxlLKk0JyrFWKn8mUj8KANai iigAr4p/4LL/APIwfse/9nHeGf8A0i1Svtavin/gsv8A8jB+x7/2cd4Z/wDSLVKAPtaiiigAoorP svFenalrU+nQXcUt7bLulhU/MgyBk/mPzrGriaNKUY1ZKLk7K7Su+y7vyRcac5JuKvbfyNCiiiti AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigArwr/gph/wAmJ/Ej/sGr/wCjo691rwr/AIKYf8mJ/Ej/ALBq/wDo6OvZ 4c/5G2F/6+Q/9KR8/wAW/wDIjxv/AF6qf+kM+f8A/ggb/wAkN8c/9h2P/wBJ1r71r4K/4IG/8kN8 c/8AYdj/APSda+9a9vxE/wCSjxX+Jf8ApKPm/Cf/AJJLBf4X/wClSCiiiviz9ECiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArwD/AIKJeGdL8W/BqCy1ld+myXSecnmt EG/eRkZZSD1A717/AF8+f8FH/wDkhQ/6+ov/AEdFQB3I/ZB+HQH/ACLcf/gZcf8Axyj/AIZB+HP/ AELcf/gZcf8AxyvSqKAPmLUv2Ovh54j+Nms2Nro0ml6lbQwSWt/De3DNbN5WQwQybTyBwQRxWjJ4 k+K37MMgXU7Wf4i+EYfkS4srYvqltGvyqPJijVCB8mSW6Bj2r0nSdFeH9oTV73I2TQQgD0xFiu81 P/kG3GQCPLbgjrwaAPJfDP7d3w08UaL9sj8QWlqUbZLb3NxDHPbvgEq6bztYZGQanvv24fhlptlL cTeKtJSKFC7sbyAAAf8AA6u/BXwH4d1jwxdTyeHNE8x7xt5NhFlzsTk/LVn4z/D3w1pXwo8QXI8N 6ETDYyuB9gi5wv8Au0AcHF+2VrPxLuFi+H/gTxDqMUmQmo6pYyQafJ2BWaPeCM5ycdjU6fBv4p/F NH/4SvxhF4fspjltP0mKK4RlPO0vJErjt0PrXr/w8hgi8Gaf9mtoLWMwqRHDGEVfwAAraoA+W7j9 kbwN4R/aN8Lp/ZT3lzPCwmuJbufMp8qXJ2+ZtHPPA717X/wzb4Jx/wAgKH/v/L/8XVDxlonnfH/w ze7v9Wrrt9f3cv8AjXpFAHDf8M1+CP8AoAw/9/5f/i6P+Ga/BH/QBh/7/wAv/wAXXc0UAcN/wzX4 I/6AMP8A3/l/+Lo/4Zr8Ef8AQBh/7/y//F13NFAHDf8ADNfgj/oAw/8Af+X/AOLo/wCGa/BH/QBh /wC/8v8A8XXc0UAfMXiP9lTwB4s/aXlsLrw/8q2SmN0vLhPLJibkbZBnoOvpW+n7O3xB+EMQHgTx j9ssI2JTSdTijjgVegHmiN5DgY7/AMI9a9Fm0qFPjlFdBf3zwFS3qBGQP513NAHgcP7YOt/D68eD 4geBde0xF4OoaXZST6cp95pNgHRu3pXpnwLh8Jj4b2MvgmazuPDs5ke2ktbj7RExMj78PubPz7we eCCO1dJrthb6lpkkdzbwXMWMlJow6n8DxXiv/BN3Qk8Pfsj+HLeNiyCW9Iz2zfXB/rQB7tRRRQAV 8U/8Fl/+Rg/Y9/7OO8M/+kWqV9rV8U/8Fl/+Rg/Y9/7OO8M/+kWqUAfa1FFFABXiOjn/AIRv9rC+ 6j+1bc9e+ZF/+Jr26vEvjGP7B/aQ8J34+WKREjk9/nkP9K/J/Fn9zhsBmK/5c4mi/lJ8j/CR9Nwx 79Sth/56cvwV/wBD22ikVtyg+vNLX6wfMhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXhX/BTD/kxP4kf9g1f/R0d e614V/wUw/5MT+JH/YNX/wBHR17PDn/I2wv/AF8h/wClI+f4t/5EeN/69VP/AEhnz/8A8EDf+SG+ Of8AsOx/+k619618Ff8ABA3/AJIb45/7Dsf/AKTrX3rXt+In/JR4r/Ev/SUfN+E//JJYL/C//SpB RRRXxZ+iBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8/f8ABRqF 5vgYAilv9Kizj/rtFXv1zcJaW7yyNtjiUuzHsByTXyl+2h+158Pdc8Jr4as9ch1DV57tYlgiRwUZ JFLZyoHRTQB9YUUUUAcBYa0D8fL6yxz5CNn/ALZ5rur7/jym/wBxv5Vwtvp8cfx9nuAD5j24DH6R gV3V8C1lMB12Nj8qAOX+DShPDFxgAf6U3Qf7CVZ+MGnLq/wu162YlVnspEJHbIrM+BJuR4c1FLrZ vi1GRF2Z+6Ejx/WtL4x3L2fwr1+WP78djIy59cUAaHgiAWvhOxjHRIgorVrH8ATNceDtPdvvNECa 2KAPOvHGpNbfHTwnAB8twZAT6YikP9K9Frzjx9p8snx18HXAH7tHlBP/AGxl/wAa9HoAKKKKACii igAooooA464/5LDb/wDXE/8AoBrsa464/wCSw2//AFxP/oBrsaAIdQGbKT6V4/8AsBx+T+y14eX0 kvP/AEsnr2K65t2+leVfsTIYv2dtFUqUxJdfKe3+lTUAes0UUUAFfFP/AAWX/wCRg/Y9/wCzjvDP /pFqlfa1fFP/AAWX/wCRg/Y9/wCzjvDP/pFqlAH2tRRRQAV4v+15H/Y9roWsAcwXqR7h2+SU/Wva K82/ar0T+1/hJdPjP2JvtH0wrD+tfnHi5gp4rhHHKl8UIc69YNS/Q9/hesqeaUXLZuz+eh6HYSeb Ywt/eRT+lTVzXwe1z/hI/htpd5nPmo3P0dl/pXS19tk+OhjcBQxlP4akIyXpKKa/M8fFUXRrzpS3 i2vudgooor0TAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigArwr/AIKYf8mJ/Ej/ALBq/wDo6Ovda8K/4KYf8mJ/Ej/sGr/6 Ojr2eHP+Rthf+vkP/SkfP8W/8iPG/wDXqp/6Qz5//wCCBv8AyQ3xz/2HY/8A0nWvvWvgr/ggb/yQ 3xz/ANh2P/0nWvvWvb8RP+SjxX+Jf+ko+b8J/wDkksF/hf8A6VIKKKK+LP0QKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPnn9unyNR1vwHpWvXElr4H1K6uBrb8CMspg NsrsegaQ46jrVn9qDwzongP9mjydAt4bTRka3MYhYsmwywhSCSeMY717V4s8H6b450ObTtVtI7yz uF2vG+R+RGCD7g18i/to/sjaN8MvhDPqGhapqmnWVvcwsLF5pblHzPGuN0kjEAAj8qAPs2iiigDg 47hB8d3jz85t8gf9sxXc3P8Ax7yf7p/lXGPYRj42xz/8tPIYf+OCuzn5gf8A3TQBynwgmWbStU2k HbqUgOOx2R1e+Koz8N9b/wCvOT+VZ/wdiWGy1wIcg6vKT7HZHxV74s2zXvwz1yJTtaSzkUH04oAu eBhjwnY/9c61q5z4Th1+H+nCRt7hWBb1+Y10dAHC+OryOH4s+EI2OHlmmCj1xDIa7qvP/iHpMt38 Y/BNwuPLtricv+NvIP616BQAUUUUAFFFFABRRRQBxVzdIPjRbx5+cwtx/wBszXa1w95Bj432b+sL D/yGa7igBk/MR+leY/sdZ/4ULpOeT5lz/wClMteny/6s/SvMf2PP+SD6V/10uf8A0ploA9QooooA K+Kf+Cy//Iwfse/9nHeGf/SLVK+1q+Kf+Cy//Iwfse/9nHeGf/SLVKAPtaiiigArD+JGj/8ACQeB dTssZ+0QFMVuUjKHXB5FcmYYOGLwtTC1PhnFxfpJWf5mtCq6VSNWO6af3Hln7JGsfbPhp9jz/wAg 6Vo/pl3b+teqV4h+zC58M+OfEmhNw3mCfaTzjaD9f4q9vr888HMZOvwlhKVX46KlSl5OnJwt9yR7 vFdJQzSrKO07SX/byTCiiiv04+dCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8K/4KYf8AJifxI/7Bq/8Ao6Ovda8K/wCC mH/JifxI/wCwav8A6Ojr2eHP+Rthf+vkP/SkfP8AFv8AyI8b/wBeqn/pDPyv/ZG8S/tBaH4V1VPg 7H4qfSXu1a//ALKsEuIxPsGNxKNg7ccV63/wsH9uL/nh8Sf/AATRf/Gq91/4IG/8kN8c/wDYdj/9 J1r71r9Z4v44p4LOK+FeBo1OVr3pRvJ6Ldn4ZwH4cVcxyDDY2OZYikppvlhNqK95rRfK5+Sv/Cwf 24v+eHxJ/wDBNF/8ao/4WD+3F/zw+JP/AIJov/jVfrVRXzf/ABEal/0LcP8A+AH1/wDxCSv/ANDf Ff8Agxn5K/8ACwf24v8Anh8Sf/BNF/8AGq6T4OeOv2y7n4t+GI9fg+IQ0N9Vtl1Az6RGkYtzKvmb j5Ywu3OTmv1GorOr4h0pwcP7OoK6tdQNaHhTWp1I1P7WxLs07Oo7O3RkGmGRtNtzNnzTEu/I53YG f1qeiivzV6u5+vJWVgooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXhP/BQ//k3W +/672/8A6UQ17tXiH/BQK1F1+zxfgttxNbn/AMmIaAPb6KKKAOHm1OFPjhDalv3z27sox2CLn+dd rP8A6h/90151faZKP2kdPudv7r7JMN2f+maCvRpOYz9KAOI+Bl8L6z8SYUr5OuTxnPciOLn9a3/i N/yImrf9ez/yrH+Ft7aWn/CQR+dbI39sTFlDqDnZH15qx8WNdtYfhprjLd24K2chz5o44+tAFr4X /wDIjWP0f/0Nq6CuT+B90bz4Y6a5dXJEnIbOf3jV1lAHJ+Lj/wAXD8Nf9dpf/RT11lcn4u/5KH4a /wCu0v8A6KeusoAKKKKACiiigAooooA4y9/5LJZf9cX/APRZrs64y9/5LJZf9cX/APRZrs6AGyDc hFeUfsVarDq/wA0qSE5XzbkdP+nmYV6vLMsCbnZUHqxwK8T/AOCfc0U/7NultDnZ591j/wACp6AP bqKKKACvin/gsv8A8jB+x7/2cd4Z/wDSLVK+1q+Kf+Cy/wDyMH7Hv/Zx3hn/ANItUoA+1qKKKACi iigDw67H/CC/tZfaPux67GsKr0GT5Kf0r3GvFv2p7P8AsbxB4Z8Qgbf7PvI1Lj/f3fX+GvYNGvP7 Q0e1n6+dCkmfqoNfknh7/sOeZzkr0Sre2ivKsuZ/+TqR9Rnv77B4TF948j9YaL8LFmiiiv1s+XCi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAK8K/wCCmH/JifxI/wCwav8A6Ojr3WvCv+CmH/JifxI/7Bq/+jo69nhz/kbYX/r5 D/0pHz/Fv/Ijxv8A16qf+kM+f/8Aggb/AMkN8c/9h2P/ANJ1r71r4K/4IG/8kN8c/wDYdj/9J1r7 1r2/ET/ko8V/iX/pKPm/Cf8A5JLBf4X/AOlSCiiiviz9ECiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigArwf8A4KMalb6N+zNqt3eSJDa28tu0sr/dQfaYRz+Jr3iqus6L a+ItNls72BLm2mADxuOG5z/MCgDibL9qf4eajD5kPizSZE9Q5/wqb/hpnwF/0NGl/wDfZ/wqPwn+ zB4E8DLejS/D8NqNRuDdXH+kTP5khULu+ZzjhRwMDjpWv/wpvwz/ANAmH/vt/wDGgDyTxz+2V4A8 O/F3TY7fW4NYv3t5hFY2TBp5W2JhQGwMnIxzTprn4r/tFMVt1Hw88MyMSJJN8WsSRnlcY8yLkBQf Zm9q9j0b4Z6D4evTcWmmW0U5434LH9Sa3AMCgDwrwR/wTy+H3g27u7qS3udWvr+Uz3N1eFDLPIcZ ZtqgZOPStLU/2Cvhjq+m3VpP4ctXgvYjFKu37ynqK9kooA8F0n9kDWfhJpUdt8P/ABprGn2lvkw6 ZeyoLFOS2MJFvwSTnnuatJ8Tvix8OZhH4g8K2PiS1jHM3h6OV5CB1J851Gen5GvcKDzQB8zeK/25 vBsXxY8Gwavdy+FZWuZ1ng1XajriB+PkZhndx+Fesn9qj4eKMnxbpPP+2f8ACtnxt8G/DPxF1TSr 3WdIt7260SZ57KRmZDC7oUY/KQGypI+bNXT8O9EYf8g63/X/ABoA5j/hqv4df9DdpH/fw/4Uf8NV /Dr/AKG7SP8Av4f8K6b/AIVxof8A0Dbf9f8AGj/hXGh/9A23/X/GgDmf+Gq/h1/0N2kf9/D/AIUh /as+HQH/ACN2kf8Afw/4V0//AArjQ/8AoG2/6/40f8K40P8A6Btv+v8AjQBjH9onwQLUzf8ACS6b 5SjJbecAflVW4/ai+H1pIFk8V6UjEZALn/Cum/4QDR9uPsEOPTn/ABprfDrRGPOnQH8/8aAPG9f/ AGwvhxY/Fy2MfijTrydIX/cQvl2/dnAGcDn61pP+0D41+IzoPBXg6a3t5OFv9ciItn75UwyFsEYx x3Feo6b8OdD0i/a6t9Mto524L7cn9frWzHGsS4VQoHQAYoA8Nb9l/wAUfEuFh488Z30sLnLadpUo +xN+EsW7ue/pXq/w3+Gui/CTwfaaD4fsIdN0uyDCGCIYVdzM7fmzMfxrdooAKKKKACvin/gsv/yM H7Hv/Zx3hn/0i1Svtavin/gsv/yMH7Hv/Zx3hn/0i1SgD7WooooAKKKKAOA/aZ8Pf8JF8I9QGM/Y 1a7/AO+Ec/1q58APEf8AwlHwr0y4zkqphP8AwA7f6V0/iDSl13Qryyb7t3C8J+jAj+teR/soaqdO v/EegzZQ2FyPJU8ZBeUkjv2FfkWZ/wDCZ4g4TEv4MbRnSf8Ajp/vI/8AkvMl5s+pw/8AtGRVafWj NS+Uvdf42PaKKKK/XT5YKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigArwr/gph/yYn8SP+wav/o6Ovda8K/4KYf8mJ/Ej/sG r/6Ojr2eHP8AkbYX/r5D/wBKR8/xb/yI8b/16qf+kM+f/wDggb/yQ3xz/wBh2P8A9J1r71r4K/4I G/8AJDfHP/Ydj/8ASda+9a9vxE/5KPFf4l/6Sj5vwn/5JLBf4X/6VIKKKK+LP0QKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACvin/gsv/wAjB+x7/wBnHeGf/SLVK+1q+Kf+Cy//ACMH 7Hv/AGcd4Z/9ItUoA+1qKKKACiiigArwu5/4tx+1Osn3LHWIwoHQM+xR/N690rxr9rLSGs/+Ef8A EEY2/wBkXQMjL3DPFjPc/dNflHjDQnTyWnnNFfvMFVp1l/hUrT+XJJt+h9NwpNSxcsJP4a0ZQ+bV 1+KR7LRWf4U1geIfDGn3ykEXltHNkf7Shv61oV+o4fEQr0o16bvGSTXo9UfOVIOEnCW6CiiitiAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAK8K/4KYf8mJ/Ej/sGr/6Ojr3WvCv+CmH/JifxI/7Bq/+jo69nhz/AJG2F/6+Q/8ASkfP 8W/8iPG/9eqn/pDPn/8A4IG/8kN8c/8AYdj/APSda+9a+Cv+CBv/ACQ3xz/2HY//AEnWvvWvb8RP +SjxX+Jf+ko+b8J/+SSwX+F/+lSCiiiviz9ECiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAr4p/4LL/8AIwfse/8AZx3hn/0i1Svtavin/gsv/wAjB+x7/wBnHeGf/SLVKAPtaiiigAoo ooAK5j4xeGY/Fnw41S1kGdsDzL/vKpI/UV09eH/Gzx7d/EzxRF4M8PkuGfF9Ooyqr8p4Iz0G7OR2 r4PxHz3BZdklWni4e0lXTpQpr4qkpqyivv1fRant5Bgq2IxkZUnyqHvOXSKWt2b/AOyj4qfWfh39 inP+kaZIYCPRFAVf5GvUa+e/ghpr/Bn45T+GppCy6lDlWPQhVkbPb+76V9CV4vgzmmIxXDNPCY1W r4WUqFRN3alDa/8A264s6+LcNCnmMqtHWFRKcX5S/wCDcKKKK/Vj5kKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCv+CmH/ACYn 8SP+wav/AKOjr3WvCv8Agph/yYn8SP8AsGr/AOjo69nhz/kbYX/r5D/0pHz/ABb/AMiPG/8AXqp/ 6Qz5/wD+CBv/ACQ3xz/2HY//AEnWvvWvgr/ggb/yQ3xz/wBh2P8A9J1r71r2/ET/AJKPFf4l/wCk o+b8J/8AkksF/hf/AKVIKKKK+LP0QKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv in/gsv8A8jB+x7/2cd4Z/wDSLVK+1q+Kf+Cy/wDyMH7Hv/Zx3hn/ANItUoA+1qKKKACiiuT+L3xT tfhb4Ze6kxJdSfLBCDzI2CR2PHB5xXm5vm+EyvB1MfjpqFKmrtvt/n2XVnRhcLVxNWNCirylokc5 +0D8XH8N2i6Do/8ApGuan+4VI8MYQwxkjBOcspAxWh8CfhGnw70I3N0PN1fUMS3ErZyD8xAxnj72 OAK5z4A/Cy6v79/F3iLM2pXhzCkoz5IBwD1PPyDBwK9ir8x4LynF55mH+uOdwcW01hqT/wCXVN/b a/5+TWr6pOx9Fm+KpYOh/ZWDd/8An5Jfal2/wr8WeI/tSaXL4b8R6H4ntQd9vIY53A+6pwoyen8Z r2TRNWi17Sbe8gO6G5QSIQeoNYfxf8Hr45+Huo6eQNzoHU45BVlfj/vmuT/ZQ8Xvrvw8NhcEi60q Y2+wnkIqR4P5k0YC+Sce18I9KOYU1Vj29tT92a/7ejyy8/kFf/bMkhV+3Qlyv/DLVfc7o9Sooor9 gPlQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAK8K/wCCmH/JifxI/wCwav8A6Ojr3WvCv+CmH/JifxI/7Bq/+jo69nhz/kbYX/r5 D/0pHz/Fv/Ijxv8A16qf+kM+FP8Agld+334A/ZD+GXifSvF76wt3quqJdwfY7Pz12CJUOTuGDkV9 S/8AD7T4I/8APbxV/wCCr/7OvmH/AIJSfsH/AA8/a0+GHijVPGVlqNzd6VqiWluba9eALGYlY5C9 Tk19Vf8ADl74F/8AQJ17/wAG8tfrPF74Q/tiv/aCre1uubl5eW9ltfyPwzgOPHryDDf2U8P7Cz5e fm5rcz3tpvcp/wDD7T4I/wDPbxV/4Kv/ALOj/h9p8Ef+e3ir/wAFX/2dXP8Ahy98C/8AoE69/wCD eWj/AIcvfAv/AKBOvf8Ag3lr5vm4D7Yj/wAlPr+XxN/mwv8A5P8A5FP/AIfafBH/AJ7eKv8AwVf/ AGdafgz/AILEfBzx54v0vRLCXxMb7V7uKyt/M0zanmSOEXJ38DJHNQf8OXvgX/0Cde/8G8taXg// AIJD/BbwN4s0zWtP0vW0vtJuory3Z9VkZVkjYOpIPUZA4rOrLgbkfs1X5raX5d+hrQj4k+0j7V4b lur2572620Ppm1uFu7aOVM7ZVDrn0IzUlR21utpbRxJ9yNQi59AMCpK/NXvofryvbUKKKKBhRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAV8U/wDBZf8A5GD9j3/s47wz/wCkWqV9rV8U/wDBZf8A5GD9j3/s 47wz/wCkWqUAfa1FFFAFbVtRXSdOluHyViXJArw34d+Gr79oHx2/iTW42GkWbbba2c5UkYIBU54w zdhXvZ5pkMK28YRAFUdAO1fE8T8Gxz3G4WeMqv6tRbk6VtKk9ORyd/hjq+W2rPYy7NngqNRUo/vJ 6KX8q62833HIgjQKowAMADtS0UV9ttojxxHQSIVPIIwa8L8OMfhP+0zdWB/d2niJDLEv8K5dugHA /wBXXuteP/taeFpm0G08QWXy3WlON7ekfzD+b1+U+LWEq0stpZ/hY3q4Goqum7gtKi+cGz6bherG WIlgar92snH5/Zf3nsFFZHgbxXF428K2mpw/6u6UsB6YJH9K16/TcHi6WLw8MVh3zQmlJPumrp/c fO1aUqU3TmrNOz9UFFFFdJmFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFeFf8FMP+TE/iR/2DV/8AR0de614V/wAFMP8AkxP4kf8AYNX/ ANHR17PDn/I2wv8A18h/6Uj5/i3/AJEeN/69VP8A0hnz/wD8EDf+SG+Of+w7H/6TrX3rXwV/wQN/ 5Ib45/7Dsf8A6TrX3rXt+In/ACUeK/xL/wBJR834T/8AJJYL/C//AEqQUUUV8WfogUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfFP8AwWX/AORg/Y9/7OO8M/8ApFqlfa1fFP8AwWX/ AORg/Y9/7OO8M/8ApFqlAH2tRRRQAUUUUAFFFFABVPxBokHiTR57G5G6C4Xa49RnP9KuUVlWo061 OVGqrxkmmns09GioTlCSnF2aPFP2Wdbm8Narq3hC/bF1Yt50atwVXCcY4PV69rrw746Wb/DH4r6P 4tgBW1nlSC82jG/J3YJ+iDtXtenXqajYwzxkMkqBwQc9a/KfCqtPA08VwriHeeCnaN93Rl71N/JX j6o+m4lgq0qeZ01pWV35TWkv8/mTUUUV+tny4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4V/wAFMP8AkxP4kf8AYNX/ANHR17rXhX/B TD/kxP4kf9g1f/R0dezw5/yNsL/18h/6Uj5/i3/kR43/AK9VP/SGfP8A/wAEDf8Akhvjn/sOx/8A pOtfetfBX/BA3/khvjn/ALDsf/pOtfete34if8lHiv8AEv8A0lHzfhP/AMklgv8AC/8A0qQUUUV8 WfogUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfFP/BZf/kYP2Pf+zjvDP8A6Rap X2tXxT/wWX/5GD9j3/s47wz/AOkWqUAfa1FFFABRRRQAUUUUAFFFFAHLfGPwKvxC8A3thsV59hkt 8gfLJtIB5+prl/2XfHMmveEZdJu2JvtGkMTlicsC7kfkAO9eo14N4rh/4Up+0LZahECmm6+6wsv8 Kk+WhbAx3LHvX47x3fIc8wfFtP8AhtqhiP8Ar3N+5N/4J217Ox9Xkv8AtuDq5XL4vjh/iW6+a/I9 5opkE63MCSIcpIoZT6g8in1+wppq6PlNtGFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCv8Agph/yYn8SP8AsGr/AOjo691rwr/gph/y Yn8SP+wav/o6OvZ4c/5G2F/6+Q/9KR8/xb/yI8b/ANeqn/pDPn//AIIG/wDJDfHP/Ydj/wDSda+9 a+Cv+CBv/JDfHP8A2HY//Sda+9a9vxE/5KPFf4l/6Sj5vwn/AOSSwX+F/wDpUgooor4s/RAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAoor5A/wCCxP8AwUV8df8ABMz9n4fEbw38PdA8d6JZSqmp Lfa8+my24IfmNVgk38hO4+8fTnGvXhRjzVHZXS+/RfiaUqM6j5Yb6v7j6/or4I+CX7bv7anx8+FW i+MNF/Zu+D8Ola7Abi2S++JtzBcKoZl+dP7OO05U966n/gmV/wAFGvil+2f8YviX4S+IHwl0j4fH 4bXR026u9P1ybU4ri78u2lEal7eIYMdxnPX5Oneuz2E1WlQkrTim2no0otJ/c2l8zlVeDoxrx1hJ pJrVe9t959nUUUVibBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAV8U/8Fl/+Rg/Y9/7OO8M/+kWqV9rV8U/8Fl/+Rg/Y9/7OO8M/+kWqUAfa1FFFABRR RQAUUUUAFFFFABXC/tCeAj47+HN2kf8Ax82am5jPclFLYH1wK7qvMv2gvi0fC+nDQ9M/0jWtVBt0 jTDGIOAuSMHn5gRxzXxPiLicro8OYr+2P4MouLS3blpFRXWTe3mexkNPEzx9L6p8ad/JW3b8u5a/ Zv8AH/8AwmPgSO1m4vtJAtpk7qF+Vf8A0E16HXzR4Ds9V/Z7+I2nTaoXNn4gUGcldo8wr0PHGGk9 q+lY5BKgZSGVhkEHIIr53wf4kxOY5IsBmcXDF4W1OpGXxWteEn/ihb5pnfxVl9OhjPb4Zp0qnvRa 2818mOooor9YPmAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACvCv+CmH/JifxI/7Bq/+jo691rwr/gph/yYn8SP+wav/o6OvZ4c/wCRthf+vkP/ AEpHz/Fv/Ijxv/Xqp/6Qz5//AOCBv/JDfHP/AGHY/wD0nWvvWvgr/ggb/wAkN8c/9h2P/wBJ1r71 r2/ET/ko8V/iX/pKPm/Cf/kksF/hf/pUgooor4s/RAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAr8gv8Ag7v+NEWl/st+A/h2NbsdJPi7xDH9vM80aYtPs138zbiCqeZGo3cDPGa/X2vxu/bF0Oz/ AG/v+DjD4e+Ab6ztdc8KfCzQRfaxZXUSywGQXFwnzLjDcXKcNWKpqtjcNh5JNOak09nGmnUaa8+U 2VZ4fDV8THRxg0v8U7Qj+MvkfU3xK/4K/wDwP/Zx8FeBfBPwd8X/AA4+LvifXdQGjaXofhzxdaXx hzHNNvlNu0zon7sjcVIy6juK+2dB8KaX4enurnT9L0/T7jUpBPdyW1ukTXMm0LukKgF2wqjJ5wB6 V8z/ABn/AOCR/wAMfiV+0B8MfH+h6N4a8EXnw31ZdU+z6R4fggGqARTx+U7RlMA+eDkhv9WOPT6p HArslU54OpUbdSUpNt9nay+dnLvd67I4oUlSkqNL+HGEEvVc1/uXKu2mnUWvzN8XeN/Ev7bv/Bd3 TfCOjeI9X0/wH8CtJGrapDp9y62+oags1vthlMbKDmG9J2uWHyg7TgEfev7T37QGjfstfAfxJ498 QTJDpXhu0a7nLOFyARwM9+a+Lf8Ag3R+Bes6H+yrq3xY8Y2t0vjT4vanLq13Lewsl1HGhFssZ3YY ArbxnGAOnHescF7+LlV+zQjzPznO8YL5Lnn/ANuo3xXu4Tk61pci/wAK96b+7lj58/qfocBgUtFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHyv+2l/wV8+F/7C/wAY/DvgHxPo/wARvEPizxUsjabp 3hXw5JrE9xsEJICRtvJ/fx4AB6mvVv2WP2qbP9qzwrd6tZ+CPih4HSzdUNt438LXOgXUuS4ykU4D MBs5I6bl9a/M3/gqR/ysC/sxf791/PS6/YSjA/vMAsVU1cp1Y+nJPlT89N/vFi/cxrw8NFGNOXrz wu/x/wAgooooGFfKf7UX/BW7wn+yT4p1iw8SfCn9onUNP0KNprvXdF+HN9faKiKW3OLxQItoCkk5 xjBr6sr5/wD+Cp3/ACj4+LP/AGLd7/6JeuHMcRPD4eeIj9lN272R14GhGvXjQl9ppX7HbfslftWe FP21PgXo3xE8FNqLeHddiSa1N9b+ROVaNJBuTJx8rr3r0qvhv/g3Q/5RM/DH/sH2/wD6SW9fcle5 mWHhQxM6MNkzx8uryr4aFWe7QUUUVwnaFFFFABXxT/wWX/5GD9j3/s47wz/6RapX2tXxT/wWX/5G D9j3/s47wz/6RapQB9rUUUUAFFFFABRRRQAUUVR8R+IrTwro819eyiG3gGXYgnHbtzWWIxFKhSlW rSUYxTbb0SS3bfZFQhKclCCu2Yfxb+J9r8LvC8l5MQ9w/wAlvDnmR8MR2PHynnFcL8Bvhjd67qr+ L/EQaW+uzuto5Ru8kAkA9euFUjgVjeAdBvf2jPHh8Q6ujLodiR9mt2OVZgVOCDkY+/2Fe9wxLbxK iAKqAKoA6AV+McP0KvGmax4ix0WsDQb+rQenPLZ15Lr2pp7b7n12OnHKMM8BRf76f8SXZfyL/wBu +44347fD9fHvgS4RABeWg86CTHKFSGOOnXbVH9nL4gHxj4Fjtrk41DSsWsyMcsdiqNx+pzXoLKHU gjIPBB714R40ST4AfGeLWocromts32lR08w7zgAe5XqDXZxrfh3PMPxbTX7mdqOI8ot/u6j/AMEn Zv8AlfkjHKP9vwc8rl8avOn6/aj81+J7xRTIJ0uYVkjO5GGQR3p9fr6aautj5XbRhRRRTAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCv+CmH/ACYn 8SP+wav/AKOjr3WvCv8Agph/yYn8SP8AsGr/AOjo69nhz/kbYX/r5D/0pHz/ABb/AMiPG/8AXqp/ 6Qz4j/4JL/txfDj9lX4W+KdM8bazc6ZeanqqXVukdhPcB4xCqk5jUgcg8GvrH/h8T8A/+hrv/wDw S3n/AMbr42/4Jef8E9vAv7Y/w18S6t4sufEMF1pGppZwDTrqOFChiV/mDRtk5PrX0/8A8OM/g1/z /wDjr/wZQf8Axiv1ni+lwg84rvMJ1lVuubl5eW9ltddj8M4Dr8exyDDLKqeHdCz5XPm5rcz3tJLe 51X/AA+J+Af/AENd/wD+CW8/+N0f8PifgH/0Nd//AOCW8/8Ajdcr/wAOM/g1/wA//jr/AMGUH/xi j/hxn8Gv+f8A8df+DKD/AOMV837DgP8A5+Yj/wAl/wDkT6/6z4m/8+sL/wCT/wDyR1X/AA+J+Af/ AENd/wD+CW8/+N1oeE/+CsXwP8beKNO0fTvE99Nf6rcx2dtGdIukDySMFUZMeBkkcmuF/wCHGfwa /wCf/wAdf+DKD/4xWp4I/wCCMPwk8AeM9J12xvvGjXujXkV7AJdQhaMyRuHXcBCCRkDPIrOrQ4G5 H7OpX5raX5d+n2TWhiPEn2kfa0sNy3V7c97dbe8fWdvcLdW6Spykih1OOoPIp9R2lstnaxwrnbEg Rc9cAYqSvzV76H68r21CiiigYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1y0ur/AEmeGyuxY3Ui4juDEJfKPrtJ ANfmn+y3/wAECvib+zZ+3Jqfx4f9qa58ReKPEamHXIrj4fW6JqEJ2Hy0JvHEPzRocovY+pr9N6KK P7qusTD40rX306qz0166a6J3SQVf3lF4efwvVrz6arXTp2eqsFFFIzBRk8D1NDaSuwPzY/4OBPH9 78Z1+GP7MXh6V01n4w63DDqLwtue201obxHkZByV81IhnKjJHNfdF14j8GfsjfBjT11nVdJ8NeH9 JiFtE93cR20bPhn2JvYAscOdoOeCe1fnt/wT70+P/goD/wAFe/ip8drrzNU8IfD22/4RfwpcbzLa +YfsN15sTj5DgtOvGf4ue1fpp4v8C6J8QdLFjr+j6VrlkriUW+oWkdzEHAIDbXBGcEjOO59amhGc cBC2kqz9o/R2UPuppNJ7OTHiGnjZReqor2a/xbz/APJrRf8AhPmv9nv/AILGfBr9oL4keJfChm8U +ANZ8I6VJrepx+O9Hfw2Lezjkhjacm6K/JuuIvmOBhutZmjf8FtPgxqP7ROh/DS9t/H/AIf1jxPO lvo+oa14bm0/SNVZiFH2e7kIjlGSRlCfuP8A3TXxJ+zZ8LI/2/v+Dgb4z63fxwf8IJ4C0pNPltAg kg1aTbpUn2ebG0PCVd8xsGUlFJHAxn/8F2/hJB+1n/wVI/Zr+BnhqZdDhgaO/vrnSX+z3GkQi4eM lPKKOn/Hwp4Zeoow0pVvqUkv946X+y+Z89+nuR5uXfdb2CtFQeKhzfwVe/8AeUY+5bq+Z8t772sf c37Q3/BcP4Gfs16xEusTeMNY8Py3C2o8VaDocmp+G1lIJ8s6jGTbhhtfI3ZHlv8A3TX1n4Z8SWXj Dw9Z6pp1xHdWN/Cs8EsbBldWGRyOK/Kf/g5J8I+GPgJ/wS68LfCjwhoOlRXvijxPa6TY2kAS3cvJ Z3+Z8BSWO/Ofd+tfo1+z3pFl8Av2WPDNvrepW1hY6Fo6S3d7e3Aiit1xvZnkc4VRu6k4GKqi4PD1 asnpCpyqW11yqUtOnLdLfVPyJrcyrUoRXxwcnHdxtLljr15tei1i7HplFfHNh/wXL+CNx4y0vTry 2+Iui6NrOpJpVl4r1Xwrc2Xhi5nZiuF1OQC2IBV8kPx5b/3Tj7AsL+HVLGK5tpY7i3nQSRSxsGSR SMggjggjvTUW4KpbR9QbSnyPcmopHJCnAyew9a/Pn/gmH+1p+1N8a/23fi74a+MXgvUdC+HugzBf D13caMbOIjau0RzGBPtAbJYkMdh+XmppP2mI+rrfllK72tG116u+i++2l3V/d0HXe3NGNut5Xs7d lbV9D9B6bNMtvEzuyoiAszMcBQOpJp1fDv8AwcFftd6n+yf/AME7PEv/AAj91NaeJPHAfwrp0sEn lzQyXkE0SyIwGQysVIIwQehFYYqtKnTvBc0m0ku7bsl82zfDUVVqKMnZbt9ktW/kjrviv/wWd+EH w5+IWqeG9EsfiF8Vb3Qjt1Sb4c+GZ/Fdrpb7QdlxLZ71if7w2vg5jcfwmuq/Zg/4Kl/CH9r/AOIk XhXwPq97qOvG1lubu0e2CyaV5eN0V0oYmCXJICOAcow/hNcj/wAEm/2T/DX7D3/BPrQGmtrG31HV NJbxB4j1e4RRcXrTCS6d7iZiWcIJnALscDPQcV8ff8G3fwq07xX+09+1F8VrbT44bTV/FItNKniX 9xIiXGoRSsjDCvuKKTjpXoQoxjjquDk+ZU4Sm5LTW/JFJdnOUdd7RfVnFUq8+DWLpe7zzhGMXu0/ ebfmoRk2tldau2v680UUVzmx+Pf/AAVI/wCVgX9mL/fuv56XX6zfE7WPEGg+A9Uu/C2jWniHxBb2 0j2GnXV/9hhvJgpKRtNsfywzYBbacZzg4r8mf+CpH/KwL+zF/v3X89Lr9hKjApyyamk7fvcR/wCn QxTtm1RtX/d0P/TZ8Zf8NP8A7bn/AEaj8Lv/AA8Y/wDlbR/w0/8Atuf9Go/C7/w8Y/8AlbX2bRVg eA/sufGL9ofx/wCMLi2+LHwU8G/DrRkQGG90nx6NellbD5Bi+yQ45CDO4/ePpy3/AIKnf8o+Piz/ ANi3e/8Aol6+gK+f/wDgqd/yj4+LP/Yt3v8A6JevMz6SeW1kltCXz3/4Y78mTWPpO/2l8tv+HPG/ +DdD/lEz8Mf+wfb/APpJb19yV8N/8G6H/KJn4Y/9g+3/APSS3r7kr6jO/wDfqnr+h87k3+5U/QKK KK8o9MKKKKACvin/AILL/wDIwfse/wDZx3hn/wBItUr7Wr4p/wCCy/8AyMH7Hv8A2cd4Z/8ASLVK APtaiiigAooooAKKKKAEd9iEnoBk14H45udQ/aJ+JTaBab7fQ9LYi5foWYFgSOo/iXtXvtQ29hDa SO0cao0rbnIH3jXxXGnCdTiGjSwNSs4YfmvVilrUitoXvom9+60PXyjNFgJyrRhepa0X/K+9ur7E WiaLbeHdLis7SMRW8AwiDoBnP9at0UV9jRowpU40qSSjFWSWyS2SPKlKUpOUndsK5z4p+AofiN4N utOlwruAY37oQwPHB9K6OiuXM8uw+YYSpgcXHmp1IuMl3TVmaYfEVKFWNak7Si7r5Hkn7MHj6a70 248M6n8mp6PkBD18sbevPXLV63Xh/wAf/D9z8NfGtl410uNtisEvEUE7/vMWPXA4X0r1/wAK+Jbb xdoFvqFpIJILhcqwIPQkHp7g1+a+GmZ18I63CWZSvXwduVvepRf8OfnZe7Ls15n0PEOHhVUM0w69 yruv5Z/aX6o0aKKK/WD5gKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACvCv8Agph/yYn8SP8AsGr/AOjo691rwr/gph/yYn8SP+wav/o6OvZ4c/5G2F/6 +Q/9KR8/xb/yI8b/ANeqn/pDPn//AIIG/wDJDfHP/Ydj/wDSda+9a+Cv+CBv/JDfHP8A2HY//Sda +9a9vxE/5KPFf4l/6Sj5vwn/AOSSwX+F/wDpUgooor4s/RAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAoqDUdSt9Js3uLqeK3gjBZ5JHCqoHJJJ4rxf4lfthW ttqB0nwjaS6/qrEoDABJHn1UoTnuenavMzPOcHl8OfFTt2W7fot2YV8TToq9RnsWv+IrLwvpz3d/ cR2tvH96RzwK8x8K/tY6b49+JcGh6NZ3V1A/El1tXYvIGQQ3Tkdq4nw/+zf4r+Neppq3jzUpIISc x2aJsZVPIVhtUjG4/lXu3gv4eaP8PdMW00myjtYQc4BZjn6sSf1rxMNi83zGrGrTj7Cinf3tZyXp tFP7zkhUxNaSklyR893/AJG3RRRX1x6QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfMP/BX 39sY/sQ/sL+LvGNovm62YfsukwLN5bz3JBcKvysSdqPwAelfT1eN/td/sI/D79uLT/D1n8QbXVtQ svDWorqlpa22oyW8EkyxyxjzUU7ZF2zPwwI6egrmxWHWIh7CbtCTSlbfkb963ny3S216nRhq/san trXcbtLo5L4b+V7X8jzX/gi9+x5N+xT+wH4O8LanEq+I5o5bvWJNuGmnaaQqScnJ8vYOvavpnxv4 hPhPwlf6iLa6vDZxGQQW0bSSy47Kqgkn6CtK3gW1gSNAFSMBVA7AU+uzM6ksZKpJe7zXSt9lWsrf 4VZL0OLAUlQhCM/etq/7zbvJ/N3fzPzG/wCDar9nfxX4B+FnxM8eePvDviTw/wCLPHHiBpmj1ywn s7toVRIxlJgGx+5THHTFZn7Nvwh8V/GH/g42+Knj/XfBview8HeFvCn9n6Hqmp6PPBZ3U5bSJd0E 0iBGIKzDCE/db0Ir9TKKtVEsRSrxjZUockV0XuKHN6pc2n95lTUp0q8Ju7rT5pP/ALf57fekr9kf lZ/wX98B+Kbr9qz9mvxePBXjHxr8PPCPia0vdftvDug3OszxKjTsXMECMxGwkdOrAd6P+C1P7Yfj rxP/AMEkPFOp2vg6/wDh7o3ifUI9A0qbUL17bUL2zksrsSvPbPFG9oVliICsTuUK4IDAV+qdfLn/ AAWM/Ym1T9vr9g3xd4C8PtbjxI0Ul7pCzquya7WCaONCzMoQEy/ePT0rzqrVDCunJc0VUU2vJyg5 ertGy6Wumno16GGkp46nWb5bR5Pu5uX0V5a/LVK9/HP+CkX7PWgav/wQX8R6VHpNgIfDHgufW7BY lVVtLpbSZ/OjIHD7pXORzlia9v8A+CPPxHv/AIsf8E2vhbrupvLJe3Nlcwu0kplYiG9uIVyx5Pyx iviPxv8AtiePP2w/+CdcH7Odj8Jvinofxd8U2U3hLU5dQ8L39pommwv59utyL97dIJF2mBtu5R8z fN8pNfpX+yF8Abb9lz9mvwj4CtCpj8PWXluVXaDI7tLJgZP8cjd69eScZYycndVKsHF9JcsZ80l5 Pmjr1+R4lGLjSwlCStOlCakv5bunaL87xn+fVX9IooorjO4K/OD/AIOM/gzq/wC0f+y3Y2/w/ex8 UeOPhprtp4sn8K2rrcaleW1qrXDBbdS0hZgECqI23bxgHIB/R+vyO8G+J/Gf/BNb/grZ8U/GfxZ8 I/Fbx54W+INtC/hzXvDOi6h4gWwSK3iSS3e2to5fKyzKAS658onHphbnxVKm3y2vNSe3NTtKMfNy a2/lUra2Nub2dCdXl59oOOusZvlk9NUknuurWqN79pL9vTxX+0L/AMEv/FGj+F/BXxB+G1l4Z+H9 wvjLV/FPh+70N7VI9NkEttZx3EUZnMipN+9jcGMonB3DHrv/AAbffAmX4I/8ExfC32nc93r15fai 0zj5545Ly4liZskkkpIDye9eVftq/GX4hf8ABZ2z0j4N/CbwD8Q/CPw6vtTtj468TeLNHvPDkqaa zKk9vBa3UUTXG+F7gHZKMbFBB3jH6Q/A/wCE2nfAr4Q+G/B+koiWHhzToNPi2ps3iONU3Ec8nGTy evU13UG1DEYiSs60opd3GN+Z+UXJ2invyt6qzOKrZ+wwsXdUrt9k2koq/WXLdy6K6WjudVRRRWBu fjz/AMFjtM8TfDz/AILF/AP4lR/D/wCJHinwj4X+1Sald+GfC97rP2cf8S4jIgjbk+W+B32n0r9N P2Wf2s9E/a28K3er6H4d+IHh2CzdY3h8V+GbvQrhyS4ykdwisw+Q5IHdfUV6lRRhf3OF+qvVKU5L 1nPmfrbZfeGI/eYn6ytG1CL9IR5V6d39wUUUUAFfBX/BWH9vjRbX4I/Ev4UWXw6+OWv+J9S0a5sr afRvh3qmoabNI6Oi7bqKJoyM9wehBr71ormxeGWIpyozfuyTT76+Z0Yau6NRVYr3k018j4z/AOCB Xw+1/wCF/wDwS++HOjeJdE1fw7rFpYQLPY6nZyWlzCRawAho5AGU5BHI6g19mUUV6WMxLxFaVZq1 zz8Jh1h6MaKd7BRRRXMdAUUUUAFfFP8AwWX/AORg/Y9/7OO8M/8ApFqlfa1fFP8AwWX/AORg/Y9/ 7OO8M/8ApFqlAH2tRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFHxFoFt4o0aexu4xJBcLtYGvFvgr4 guvg98Q7nwdqzkWszA2cr8KWbaQq/i579q93rzH9pP4Zv4n8ODWNPXZquj5uEkTAYqgLEZ4Ocgd6 /K/ErJcVBUeKMojfFYO7sv8Al5Sf8Sm++msezWm59Lw/i6cubLcU/wB1V/8AJZfZl+j8j00HIpa4 f4DfE1PiL4Nj807dQsgIriM5yCCVB987Sa7ivvchzvC5vl9HM8FLmp1YqS/yfmno10aseJjcJUwt eWHrK0ouwUUUV65yhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABXhX/BTD/kxP4kf9g1f/AEdHXuteFf8ABTD/AJMT+JH/AGDV/wDR0dezw5/yNsL/ANfIf+lI +f4t/wCRHjf+vVT/ANIZ8/8A/BA3/khvjn/sOx/+k619618Ff8EDf+SG+Of+w7H/AOk619617fiJ /wAlHiv8S/8ASUfN+E//ACSWC/wv/wBKkFFFFfFn6IFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRSM21cngDqT2rgPit+0h4c+Fds6z3Qur/H7u1iVmLnOD8wUgY5PPpXLj Mdh8JSdbEzUYrq2Z1asKceao7I76aZLeMu7KiLyWY4Aryn4p/taaH4HdrPS1OvaqeEgtW3KeD/Eo YdcDp3rzi01b4iftVSs1lO3h3w9u2+ZDcAOCOdrBXVjww/hr1n4VfsyeGvhhGsq2kWoX/Vri5jWR gc5ypIyOg718os3zLNdMqh7Ok/8Al5Nb/wCGPX1eh5/1mviP93XLH+Z/ojy+w+GvxA/aRvVu/EV9 NoGiFtyWyL87L0KsAUPO3qR3r2b4a/A7w98LbFY9PsYjNgb55Bvdm7kFskZye9deBtGBwB0FLXqZ Zw3hcJP6xO9Sq95y1fy6JeSN6GBp03zv3pd2FFFFfQnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAV8U/8Fl/+Rg/Y9/7OO8M/+kWqV9rV8U/8Fl/+Rg/Y9/7OO8M/+kWqUAfa1FFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFI6CRCrDIIwQe9LRRvowPAfHekT/ALPHxTg1/Twf7F1WTbdR npGflBJAx3diOte6aLq8OvaRbXtud0N1EsyH1VgCP0NVPGnhS38a+GrrTrpQ0dwhAyfutjg/ga8d +A/jk/DXxzfeCdSnUwrPILOXIwNu/wC8Tjsg6A8mvxDDSjwTxGsFJ2y/HzvDtSrveP8AhqbrtLQ+ xqJ5xgPbLWvQXvf3odH6x/I93ooor9vPjgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigArwr/gph/yYn8SP+wav/o6Ovda8K/4KYf8AJifxI/7Bq/8Ao6OvZ4c/ 5G2F/wCvkP8A0pHz/Fv/ACI8b/16qf8ApDPn/wD4IG/8kN8c/wDYdj/9J1r71r4K/wCCBv8AyQ3x z/2HY/8A0nWvvWvb8RP+SjxX+Jf+ko+b8J/+SSwX+F/+lSCiiiviz9ECiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKxvGfj/SPh/pputWvYLOIdPMcKW+mTWdWrClB1KjSS6sUpKKvLY2 a5X4m/GLQ/hPppn1a6EblSY4gDulIGcDjFeOeI/2mfE3xiv20z4f6XdJDnD380XMfY/dLjHK9q2P hr+xpa2mpjV/FtyNY1RmEjIrHygwPBB2qegH618jPiPEY6To5JT5+9SWkF6dZfI8142dV8uFjf8A vPb/AIJzt58XvHf7SV21n4Utf7I0TcUe9yVkAPHJDnj5W/hrtvhp+x7ofhKN7zVS+taxOpMslwVe MOyncV+QN1J6n0r1yysotOtUhhQRxRKFVR2A6VLXRhOFqXtFicxm69XvL4V/hjsvzLp5fHm9pXfP Lz2+SPnz9lW7k8KfGHxj4WkJ2W00lwmT1O6NP6elfQdfO3jdT8Ov2y9GueltrlsDM/YEvMcf+Oiv okHNTwi3ToVsE96VSS+T95fgxZb7sJUv5W1+oUUUV9YeiFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFfFP/BZf/kYP2Pf+zjvDP8A6RapX2tXxT/wWX/5GD9j3/s47wz/AOkW qUAfa1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc/8AEr4hWfw28L3GoXTAsqkRRZ5lfaSB0PXH XFcWY5jhsBhZ4zGTUKcE3JvZJG1ChUr1FSpK8nokc/8AHj4tp8P9DFpZkTaxqGYreJCCyk4GSOT/ ABAjjmvOIv2Zr6+8Avrk00n/AAlEzC9XOQRuKsQRnAOC3G2tr4KfD+8+IviWXxl4iVn3vmygkGQg +YZxn2TnAr2zaNuMcdMV+IYHhR8eyqZ5xBBxw0ouOGpvRwi/+X77VJbx/lVj7Gtmf9iKODwLTqJp 1Jd3/J/hWz7s8++Afxb/AOFgaCbS+/c61YHy7iJ8K7YC5bbxjkkdO1ehV4d8cPBN98MvFkfjPw8r ADi8t04DkliWPqOV4x2r1jwJ43s/iB4dh1GycNHKOVzyhyRg9D29K+q4B4ixkK1ThfPZf7Zh1pJ/ 8vqW0ai7vpPs/U8zO8BScI5jgl+6nuv5JdYv9PI2aKKK/Uj5sKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigArwr/AIKYf8mJ/Ej/ALBq/wDo6Ovda8K/4KYf8mJ/Ej/s Gr/6Ojr2eHP+Rthf+vkP/SkfP8W/8iPG/wDXqp/6Qz5//wCCBv8AyQ3xz/2HY/8A0nWvvWvgr/gg b/yQ3xz/ANh2P/0nWvvWvb8RP+SjxX+Jf+ko+b8J/wDkksF/hf8A6VIKKKK+LP0QKKKKACiiigAo oooAKKKKACiiigAooooAKKKivL6HT4TJPNFBGOrSOFA/E0m0ldgS1R1/xLYeF9Pe51C8trOBFLF5 pVjBxzxkivIviX+2HYaVdHTfDFpLr2pt8v7oMFiJHB+4Q3Ud+9c34f8A2f8Axl8b9RXVPHGqT2di xDDT4m+SRen8L4XgD+HvXymK4ojUqPC5VD29Tq18Ef8AFLb5LU86pj05ezw655fgvVmj47/a3vPE upvo/gLTLrVLokobtIi6xH1ACsCOG5qHwb+ybqfjvUhrHxA1KS+nl+Y2aEonPPVCuDknt2r2TwJ8 L9E+HGnJb6VYW8GwY83yx5rcY5bGT/8AXroKzpcNVcXNV86qe0fSC0pr5fa+ZMcDKo+fFPm8ui/z M/w94V0/wpYpb6faRW0SDACjnHueprQoor66EIwioQVkux6SSSsgoooqhngP7dOlS6doujeIbQH7 TYXIRiB91Nsh/m1e5aBq0euaPBdQnMcy5U/p/Ssj4qfDi2+Kng+50i6fy0nHDhclD69RV/wb4ZTw b4ZtNMikeVLRSodjy2ST/Wvn8Hl9ahm1fEL+HUjH/wACjdPTzRx06MoYic/syS+9GpRRRX0B2BRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXxT/wWX/5GD9j3/s47wz/6RapX 2tXxT/wWX/5GD9j3/s47wz/6RapQB9rUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBW1fV7fQtNlu7q QRQQLudiOgrwjQrK8/ab+I39oXSvH4a0uRTHET8spBXgg5znDdu9dF8dvD3iL4meLLLw9awyW+jM BLcXIGAeWXrzxgjtXpnhLwta+DNAt9Os4xHBbqQAPckn9Sa/G80wWL4vzx5fiYShl2EknO6a9vVW qj/17hu/5np6fWYatSyrBqvTaliKq0/uR7/4n+CLtnZx6faRwwoEiiUIqgYAA4FS0UV+xRioxUYq yR8o227shvrGLU7R4J40lhkGGRxkMPcV4DYSXf7LvxH8iVpH8MamwCszZERO35iB3AVu3evoSsXx /wCBrP4heGZ9NvFykgJRu8bYIDD35Nfn/HvCNbNadLMMsl7PG4ZuVKXR94S7wns+257mSZpDDSlQ xK5qNTSS/KS80alhfxanZxzwsHilUMrDuKmrwv4QeNr34P8AjA+DdfP+ju4Wxn/hO4525OOpkHav c1bcMjoa9Hgni6ln+B9s4+zr03yVab3p1Fun5dYvqtTDN8rlga3LfmhLWMukl0f+YtFFFfYnkhRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4V/wUw/5MT+JH/YNX/0dHXut eFf8FMP+TE/iR/2DV/8AR0dezw5/yNsL/wBfIf8ApSPn+Lf+RHjf+vVT/wBIZ8Z/8EgP2xfht+zX 8J/FmneN/E8OhXmo6slzbxva3E3mxiFVLZjjYDkEc19ef8PVvgB/0US0/wDBbe//ABmvgv8A4Jp/ 8E5fCf7anw78Rax4h1rxFpk+j6itnEmnPCqOpiD5bfGxzk9jX0p/w4W+GX/Q2+O/+/tp/wDGK/We L8HwjPOK8swr1Y1brmUUrJ2W3uvp5n4ZwHj+O6eQYaGVYahKgk+Vyb5muZ7++ut+h7B/w9W+AH/R RLT/AMFt7/8AGaP+Hq3wA/6KJaf+C29/+M14/wD8OFvhl/0Nvjv/AL+2n/xij/hwt8Mv+ht8d/8A f20/+MV839Q4E/6Ca/3L/wCQPr/7T8S/+gPDf+BS/wDlh7B/w9W+AH/RRLT/AMFt7/8AGau+G/8A gpp8DfF/iGx0rTvHtrc6hqVwlrbQjT7xTLI7BVXJhAGSQOTivEv+HC3wy/6G3x3/AN/bT/4xWv4A /wCCI3w6+HnjrRtftfFPjWa60W9hvoY5Zbby3eJw4DYhBwSOcEVnVwPA6g3TxNbmtpot+n2DWhmX iQ6kVVwmHUbq9pSvbr/y8PsuCdbmBJEO5JFDKfUHkU+orO2FlaRQqSViQICepAGKlr81e+h+vK9t QooooGFFFFABRRRQAUjyCNcsQAOpNcH8Wf2ivDvwjt3F7cedegEraw4Mh4yOCQPTv3FeRyar8Rf2 opilqg8PeHJDjewZPtCH1++M4X/x6vm8x4mw+Hq/VcOnVrfyR1+97L5nDXx8IS9nD3pdl+vY9E+L 37WHh/4ZmS0hc6lqiHb9niDDYc45JG3179q87sPBPxC/abcXes3raFoMn3IIJSFnXqDgOwz83cfw 11sf7Ieg+DfhtqEUCNd6s8Ac3cpBZWGC20gDjhuo71a/Yi8Uv4i+DnkyE+Zpl0bTB9FjjP8A7NXz NSjjsfmVPCZy+WE4uShB2WjV1J7vR9LI4XGrWrxp4rRNXsttO/c7D4Z/Afw38KrZRptjGbgf8vMy I055z94KD6fkK7Kiiv0LC4Sjhqao4eKjFdEezTpxpx5YKyCiiiugsKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvin/gsv8A8jB+x7/2cd4Z/wDS LVK+1q+Kf+Cy/wDyMH7Hv/Zx3hn/ANItUoA+1qKKKACiiigAooooAKKKKACiiigAooooATHNLRRQ AUUUUAFFFFAHFfGv4UQfE3w0yqPL1G1BktZQTkMBkD8SB2rmvgP8W5hO3hXxAfs+r6f+5iMoCeeq 7gMZwTwvXHevWq80+O3wa/4S22XWNJP2bW7D94joMGX7vB5HYH1zmvyjjLh/HZfjv9bOHo81eKtW pbKvTX/uSK1g+vwn02U46jXo/wBmY92g37kv5Jf/ACL6/eel0V5v8CvjN/wmdodK1X/Rdcsf3Usc hwZdoAJAwOchuO2K9Ir7rhviPA55gIZjl8rwl98X1jJdGno0eNmGArYOu8PXVmvx815MKKKK904g ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArwr/AIKYf8mJ/Ej/ALBq/wDo6Ovd a8K/4KYf8mJ/Ej/sGr/6Ojr2eHP+Rthf+vkP/SkfP8W/8iPG/wDXqp/6Qz5//wCCBv8AyQ3xz/2H Y/8A0nWvvWvgr/ggb/yQ3xz/ANh2P/0nWvvWvb8RP+SjxX+Jf+ko+b8J/wDkksF/hf8A6VIKKKK+ LP0QKKKKACiiigAooooAKKx/F/jzSfAunPc6pfW9qiKW2vIA7YGeBnJ/CvDvFf7TniP4qai2k+Ad Kn8tmKHUZFOzH0ZMDgH+LvXi5pxBg8B7lWV5vaEdZP0S/WyOXEYylR0k7vstz2H4ifGLw/8AC+zM mrahBFJjKwCRPOfnHCkgn/6xrxLVPjJ49/aFujZeENPn0jSX4N9PCdkg7gsUYA8g8HtXQfD39j1b i9XVvGmoT61qDHeYGZgkJI5AIcgjJPavbNM0i10a2ENpbw20Q6LEgUfkK8X6rm+a64qX1ek/sxfv tecvs+i1OX2eJxH8R8key3+b6HlHwn/ZD0XwTcR6hqrPrGrA7/MkZgI2ByMAEA9B1FeuwQJbRhI1 VFUYAAxin0V9Jl2VYTAU/ZYSCivxfq92d1HD06MeWmrEd1D9ptpI/wC+pX8xXz7+zHM3gr47eMfD MnyQpJJPDngOd0a8Z68LX0NXzt8Tc/Dj9r/QNRX5LPVrcC4foNxeYkf+OivC4n/c1cLjv5KiT9J+ 7+djkx/uyp1ez/PQ+iaKQHIpa+tPRCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAK+Kf+Cy//Iwfse/9nHeGf/SLVK+1q+Kf+Cy//Iwfse/9 nHeGf/SLVKAPtaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyD48/CC4i vB4p8OH7Jqtr80qxERedkkE5yvPzHJ74roPgh8dLL4r6Z5bFYdUhXMsOD8w4+YHGOrAYzXNftAfF C71LVYvB/h4l9RvOJnXIMYBJIByOfkOevFYXib9nG/8AhbpFnrXhm5mfVLBB9oQuNsw5JxgKf7vU 9q/mTF5vi8q4qxeZcIUHVwlO31yK+F1O9Jf8/Ix1nbR6K1z9FpYWlictpYfNZqNWX8JvdR/vf3W9 j6Borivgz8YbT4qaEGGItQgytxDg/KQSPftjv3rta/obJM7wWb4GnmOXzU6VRXTX5Ps1s10Z8HjM HWwtaVCurSiFFFFeqcwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXhX/BTD/kxP4kf 9g1f/R0de614V/wUw/5MT+JH/YNX/wBHR17PDn/I2wv/AF8h/wClI+f4t/5EeN/69VP/AEhnz/8A 8EDf+SG+Of8AsOx/+k619618Ff8ABA3/AJIb45/7Dsf/AKTrX3rXt+In/JR4r/Ev/SUfN+E//JJY L/C//SpBRRRXxZ+iBRRRQAUUyaZbeFpHO1EUsx9AOteNfFX9sXSfC16+maDH/bGrFjGoC/u0cHBD ZKnsehrzsyzbCYCn7XFzUV07v0W7MK+Ip0Y81R2PXtW1u00K1aa8uIreJRks7Yrw3x5+2DJrl+dJ 8B2L6veyHalyyMkYJ45Dhe5HesnSfgN4z+P92uoeOdQm03T2ORYW0hUr3yobeB94jr2r3HwD8LND +Gdj5GkWMVtxh5AoDyf7xAGe35V859YzfNdKC+r0X9p/xH6LaPz1OLnxOI+D3I9+vy7Hjng79lnW /iHqKav8QdUvLkswkXTxPvSIg9PvMuCAOPevcPC3gzS/BWnrbaXYWllEoAIhhWPfjudoGTWpRXt5 XkODwCvRjeb3k9ZP1f8ASOrD4OlR1ite73CiiivZOoKKKKACuG+L3wRtfixd6bPLcPazafJvDpwz DDDGev8AEa7miubF4OjiqTo143i+noRUpxqR5Zq6EUbVA9KWiiuksKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4p/4LL/APIwfse/9nHe Gf8A0i1Svtavin/gsv8A8jB+x7/2cd4Z/wDSLVKAPtaiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACvPfj38Xk+HuhiztP32r6h+6gjGDtyVBJGc9G44PSug+JvxDs/ht4Xnv7l08wI whiLANK+DgAfXH515r8Efh3eePfEsvjPxEjF5XLWUMikbEO7twMYK4OOcV+Wcd8R4ytiIcK5A/8A a66vKfShS+1Uf95rSC6s+lyXAUoU3mWOX7qGy/nl0ivLv5HQfs+fCJ/B2nPq+p/vNa1T99KxzlNw BwRgYOS3avTKBxRX2vDPDmDyLLqeW4FWhDr1k3vJvq29Wzx8xx9XG4iWIrPV/guiXkjxr4xfB688 O65/wl3hb93f2xElxAMnzlUAkAYP9wDt1rr/AIO/GWy+J2lbM+RqduNtxbvgMG5BwMk/wmu1ZQ64 IyDwQe9eP/GD4J3WmaoPE3hTNtqNuTLPCmSJwMdjkZwG6DvX5xnWRY/hbG1OIOHaftKE3zV8Ouve pSWymt5R2l6nv4TG0MyoxwOPlyzWkKn/ALbLy7Poew0V5/8ABj4323xDtBZXuLPW7YeXNbykK8jK PmIU4OchsgDjFegV+l8P8QYDOsDDMMuqc9OX3p9U10a6p7Hz2OwNfB1nQxCtJf1deQUUUV7RyBRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4V/wUw/5MT+JH/YNX/0dHXuteFf8FMP+TE/iR/2D V/8AR0dezw5/yNsL/wBfIf8ApSPn+Lf+RHjf+vVT/wBIZ8//APBA3/khvjn/ALDsf/pOtfetfBX/ AAQN/wCSG+Of+w7H/wCk619617fiJ/yUeK/xL/0lHzfhP/ySWC/wv/0qQUUZrhvih+0L4a+Fds32 2+hmuhx9mgkV5Qc45UHI/LtXwWLxlDC03WxE1GK6s/QalWFOPNN2R3OcV5d8WP2q/Dvw4DWsEv8A auqH5I7e2Kvtcj5Q/wAwIGcdPWvObrxB8SP2mZmt7K2m8M6C3LtLHtaQdMqzICfvdj2r0v4Ufsue HvhptuZIzqmp9Wupy3POfulivp+VfKvOMwzN8mUw5Kf/AD8mrf8AgMd36uyPO+s1q+mHVl/M/wBE eU6r4W+Iv7R+nz32rY0TQoY2mS0dWR5RjI25Q5ztH8X8VdZ+xjZ6KNO1KGDTIbXVdLuHt5pQW3SB TsDMCSMnDdh1r3PyE8ny9oCY27QMDFfPXwSk/wCEA/as8V6O3yLrs0txCh443zycZ9hXmVMnhlmZ 4XFVJOpKpJxlKWru17tv5ddNDB4ZUK9OpJ8zbs2/w9D6Iooor9GPbCiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAr4p/4LL/8jB+x7/2cd4Z/9ItUr7Wr4p/4LL/8jB+x7/2cd4Z/9ItUoA+1qKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooA8g8SfCnW/ib8YBPrI8vw/prI8EQcMspwhIIB7kHq O9etWdpHp9rHDCixxRKERVGAoAwKlor5fh/hLBZRXxOLouU6uIm5znJ3k+0b2VoxWkV0PSx2aVsV CnSnZRgrJLbzfq+oUUUV9QeaFIRuGDS0UAeTfGf4FS316PEPhlvsWs25LskXyCfJ55yADgtnrmrX wd+PyeKm/srXF/s7W4PlZZPlEuMfMOABznjPavT688+MXwEs/iIv22zb+z9Zi/1dxGAu48/eIGT9 496/Ic94RzHJcdPiDhFLmnrWw70hV/vR/kqee0uvW/1WCzTD4uisDmmy+Cp1j5PvH8j0OivGvhV8 db3RdaHhrxgjW2oodsU7Et5hJGFJBbJ565xxXsccglQMpypGQR3r7XhPi/L+IMJ9ZwTalF2nCWk6 clvGcd01+J4+Z5VXwNX2dXZ6praS7pjqKKK+pPNCiiigAooooAKKKKACiiigAooooAKKKKACvCv+ CmH/ACYn8SP+wav/AKOjr3WvBP8AgpxqMNt+wz8Q43kVZJtOVUUnlj50f+Fexw60s2wrf/PyH/pS PnuLf+RHjf8Ar1U/9IZ4L/wQN/5Ib45/7Dsf/pOtfaPj/wCLOhfDXT3n1S+ihKgkRg7nY4z90ZP6 V+av/BJP4ieLdI+Fnirw94SsEuLzUtVSZ5mOPJXyVQ4O5cHJWvtfwB+yE2qalHrPjnUbnW9RyH8m WTzI15+6wYNngKOvauLxSzrGT4qxmCyyjzTjJJylpCPux/8AAn5I+M8LcVVfCuDpUI3ai9Xsvel9 5i6z8b/G3x91BtN8G6ZLpunMSr3kjYLr2ZSwQjgE4B7113wv/ZC0vw3dLqXiG4fxDqrfMz3ILICR yCrMwPJPPvXrGjaHZ+HbBLWxtoLS3jGFjiQIo/AVbr4rCcMQlUWKzObr1fP4Y/4Y7fN6n6JTwCcv aYh88vwXoiO1tIrKERwxxxRrwFRQoH4CpKKK+qSsrI9AK+dv2gP+LeftL+FvE/3EnV7ZiOAx8p1/ 9qV9E149+2T4FuPFvgK0urOAz3WlXCSxqCAfmkjU9fbNfMcX4edTLZVaSvOm4zXrF3/K5wZlByoO Ud42a+R7CDkUVk+BLu5vvB2nTXaNHcyQK0qsclW781rV9JSqc8FNdVc7ou6uFFFFWMKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAK+Kf8Agsv/AMjB+x7/ANnHeGf/AEi1Svtavin/AILL/wDIwfse/wDZx3hn/wBI tUoA+1qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAO V+KXwm034p6MYLtNs6D91Ov3ozg+x9fSvLvD3xF179nzW49G8Sq13o7uEgu1GdgJz1JUYG7njtXv deP/ALTHj+O5t4/Cmnwre6tqLCIqoDGAMABnGSPvg9K/FvFLKcJldKXFmBrfVsZCyTirqs3tSnDT n5tl1W59dw3iquJkssrQ9pSetnpyd5J9Lfcz1TQtdtfEmlxXlnKs1vMoZWWrlfOGm+F/F/7Nsdtq FsH1HS540a7gRCxjOBnPy5XBY45HSvZ/hr8W9I+JumJLZXEYuNo8y3Z18xDgE/LknHP6V7fBniND M6iyvOKTwuOSTdOW0l/NTf2k+262fd8ebZA8PH6zhJe1o9JLp5SXR/gzqKKKK/Tj50KKKKACiiig AooooAKKKZc3MdnA0krrHGgyzMcBR7mi9tWA+q2q6tbaHYSXV3MkFvENzyP0UV5N8Tv2vNJ8OXL6 b4ejbxFq7fLEloRLGWI4GUJOckDp61x+l/A/xt+0DfpqPjO+k03TC2+KyVNkig9VYbVOPlXvXyuL 4ng6jwuWQder5fDH/FLb7rs8+pj1zezoLnl+C9WbXxA/bEF7qjaN4JsX1rU2Yosm3dEcHkjDg9Ax 6eleG/tr/ATxPrH7Jfjrxb4z1V3vLKwWW2tUb/V/vY/lYFf9puhr7G+Hvwo0P4ZaWttpVkkOAA7k szOcYJ+YnGfavLv+CmH/ACYn8SP+wav/AKOjr1uFOH8Tic7weKzerzyVWm1COkItTVvOTXd/cfO8 U4Oc8lxlTEyu1SqaLZe4/vPn/wD4IG/8kN8c/wDYdj/9J1r71r8Ov2Rv2EviP+1l4V1XVPBWo6TZ Wel3Ytbhbu/ltmaQoGBARGBGCOa9b/4cx/Hv/oPeGP8Awd3H/wAar+huL+FMpxWcV8RiMyhSnJq8 XG7Wi/vL8j8e4D43z3BZBhsLhcnqVoRTtNSspe89UuR+m/Q/WqivyV/4cx/Hv/oPeGP/AAd3H/xq j/hzH8e/+g94Y/8AB3cf/Gq+b/1JyP8A6G9P/wAB/wDtz6//AIiNxL/0Iav/AIH/APcz9aqK/JX/ AIcx/Hv/AKD3hj/wd3H/AMarpPg5/wAEjPjf4H+LfhjWtR1vw5JYaTqtteXKx6xO7NHHKrsADEAT gHjNZ1eDMkhByjm0G0tuXfy+M1oeIfEc6kYTyKrFNpN8+3n8HQ/UaioNMt2tNNt4n5eOJUYj1AAN T1+avc/Xk7q7CiiigYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfFP/AAWX/wCRg/Y9/wCzjvDP/pFq lfa1fC3/AAXg0a58YfDD9n/w3p14+ka34r+NWiaPpOsREiXQ7uWy1Ly7yMqQ4dMHBRlbngit8NTh UqxhUlyp7t3dvu1LpxjKajJ2Xc+6aK/Nr/hz3+0h/wBHeeOf/A/VP/kuj/hz3+0h/wBHeeOf/A/V P/kuvf8A7Gy7/oOj/wCAz/yPQ+p4b/n+vul/kfpLRX5tf8Oe/wBpD/o7zxz/AOB+qf8AyXR/w57/ AGkP+jvPHP8A4H6p/wDJdH9jZd/0HR/8Bn/kH1PDf8/190v8j9JaK/Nlv+CPv7R6KSf2vfHAA5JN /qnH/k3XzJc/DL436n+2LB8IPDn7T/xF8SXgBN9qdvq+qRwWB2K2GDT4bqw4b+A+tdWG4ZwuI5vY 4yL5Vd+7PRLrsa0sspVL8lZO2r0Z+4NFfm1/w57/AGkP+jvPHP8A4H6p/wDJdH/Dnv8AaQ/6O88c /wDgfqn/AMl1y/2Nl3/QdH/wGf8AkZfU8N/z/X3S/wAj9JaK/Nr/AIc9/tIf9HeeOf8AwP1T/wCS 6P8Ahz3+0h/0d545/wDA/VP/AJLo/sbLv+g6P/gM/wDIPqeG/wCf6+6X+R+ktFfm1/w57/aQ/wCj vPHP/gfqn/yXR/w57/aQ/wCjvPHP/gfqn/yXR/Y2Xf8AQdH/AMBn/kH1PDf8/wBfdL/I/SWivza/ 4c9/tIf9HeeOf/A/VP8A5Lo/4c9/tIf9HeeOf/A/VP8A5Lo/sbLv+g6P/gM/8g+p4b/n+vul/kfp LRX5Y/Gf/gm38dfgT8N9V8T69+2N41tdP0q3edi1/quZCqkhBi6JycY6d680/Ya/ZV/aI/be8F6l 4gsP2lviPoGl2l29tazXOr6nJ9uVTxIo+0KVBBBwR3rpjwzhZUJYlYyPInZvlnu/karLKTpuqqy5 V1sz9maK/Nr/AIc9/tIf9HeeOf8AwP1T/wCS6P8Ahz3+0h/0d545/wDA/VP/AJLrm/sbLv8AoOj/ AOAz/wAjL6nhv+f6+6X+R+ktFfm1/wAOe/2kP+jvPHP/AIH6p/8AJdH/AA57/aQ/6O88c/8Agfqn /wAl0f2Nl3/QdH/wGf8AkH1PDf8AP9fdL/I/SWivza/4c9/tIf8AR3njn/wP1T/5Lo/4c9/tIf8A R3njn/wP1T/5Lo/sbLv+g6P/AIDP/IPqeG/5/r7pf5H6S0V+bX/Dnv8AaQ/6O88c/wDgfqn/AMl0 f8Oe/wBpD/o7zxz/AOB+qf8AyXR/Y2Xf9B0f/AZ/5B9Tw3/P9fdL/I/SWivxO/be+DHxq/YvvtE0 uX9qr4g+J/EeuziKDSrTVNVilA3ICxb7QygAMx5I+4a9mk/4Jj/tD6Z8O4PEGqftbeO9NWWFZXt3 1HVHaMn+HK3XJ+gp5hkmXYHB/wBoYzHQhSs3zSjJK0d3tsu50xyeEuXlqp82i0ev4H6MfGj4sQfC /wAMtKCJdQn/AHdtCDlmYhiDjB4yMdO9cv8As/8Awonimk8Ua9mbVr87kWQZMC5IHf0C9hivz4+H f/BJz9oH43aeNVv/ANpPxhCsRxby3d7f3DEf7ObnK85/Ku8T/gjx+0dGgVf2u/HAAGABfapgD/wL r8swPBeVcR5tR4mxGaQq4SCvh4eyqxSk96slOKbl0jpZLVdz26yoZfhZ5dCoo1ZP949Xp/KrXsu5 +kV1ax3sDRSoskbjDKwyDXj/AMR/2c57DUm1vwhcvYX6ne1upOyUknPVsDr0x2r4+/4c9/tIf9He eOf/AAP1T/5Lo/4c9/tIf9HeeOf/AAP1T/5Lr6jirw04a4gw6oZhio80dYzjGcZwfSUJJXTX3Pqm ebluJ+o1OehiFZ7pxbTXZqx9l/DD9o/7fejSfFEB0rVF48yb5El6c8qoHU/lXrEUqzRhkYMp5BBy DX5j6p/wRC+OuuXfn3v7UniS8n6eZPJqEj/mbomuP+IH/BOX9pj4W3iRXP7SvxB/s3cFW6i1fUdg Xudi3RIxz+VeBgMLT4Wy+UuKc6hVoxdo1VRrOVunteSEkv8AHon11O6tlmBzKullslGT3j0v/dvZ /I/Wqivy98Ef8EwPj18QdLW5039sfxtKCPmU32qqynnjDXQPY9q3T/wR8/aPH/N3vjn/AMD9U/8A kuvvcDhslxtCOKweZU6lOSupRUmmvJpHiVsspUZunVqqMlunGSf5H6S0V+H3xy+Gfxu+FH7T2g/C rSP2oPiJ4u1/V1DXBtNX1SJdP5mB3lpypwYuzfxivpsf8Eff2jyuf+GvPHP/AIH6p/8AJderiOGc LQjCdbGRSmrr3Z6rvsFTLKVNJzrJX20Z+k1I7iNCzEAAZJJ4FflP8T/+Cenxt+FVkWv/ANsnxs1y QfKt473VnaRscDK3JxnI6+tdt+yN+yf8Z9SkM998VfiXriHKPdX/AIkuntcEMAfIkm3HP+FfF57m WUYD9zhcSsRX6U6cZN/NtJRXmzyMZVwlFctOrzz/AJYp3+fY+2Pir+1F4e+GwNvHKNW1JuI7a2ff k55BKhsdD27V5nF4e+I/7TdwJNQmn8LaCTxGF/ej2I/dsRhj+VeF/GL/AIJD/F34ma6bmx+OVv4f jVy8bWOnXMNxyT96RLgEnBrEX/gjz+0ci4H7XfjgAdAL7VOP/JuuDDcJTzaCqZ1j40oP/l1BT/8A J5pa+i0MqeV/WY82LrqK/lSf4ux9u+Gv2btC+H/g6+t9NtxJqM9tIgu5AWfeQcMMklSOOh7Vzf7G njG61ix8R6RfXE08+iXmzdK5ZiGkm9f92vkf/hz3+0h/0d545/8AA/VP/kuqfiH9iH4p3fiu1+HO mfGvxD4X8SRxedc6/Y3N3CdT+VXHmCOYOxAyMs5++fU1GbZFlmVZhl88HiYqlKTpytGSS5o+62ra +8vUWJwOGw1ei6VVcrbi7J6XWn4n6Y14V/wUw/5MT+JH/YNX/wBHR18n/wDDnv8AaQ/6O88c/wDg fqn/AMl151+1P/wTp+M3wB+C2seIfF/7T/inxZpFtGPM0K8vdQaLVfmH7srJcsh/vcqfu1+p5BlG AjmeHlDGRk1OGnLPX3lpsc3F+Dw6yHGuNZN+xq9H/JLyPdf+CBv/ACQ3xz/2HY//AEnWvvWvxa/Y M/Yp+LP7U/hvWr3wB8ZPEXwv0nTboQXcWn3l1El3OUVgzLDNHk7TjJB6da+gP+HPf7SH/R3njn/w P1T/AOS69fjrK8FUz3EVKuLjCTa0cZO3ursrHzPhFhaEuD8DKVZJ8r0s/wCeR+ktFfm1/wAOe/2k P+jvPHP/AIH6p/8AJdH/AA57/aQ/6O88c/8Agfqn/wAl18l/Y2Xf9B0f/AZ/5H6P9Tw3/P8AX3S/ yP0lor82v+HPf7SH/R3njn/wP1T/AOS6P+HPf7SH/R3njn/wP1T/AOS6P7Gy7/oOj/4DP/IPqeG/ 5/r7pf5H6S0V+bX/AA57/aQ/6O88c/8Agfqn/wAl0f8ADnv9pD/o7zxz/wCB+qf/ACXR/Y2Xf9B0 f/AZ/wCQfU8N/wA/190v8j9JaK/Nr/hz3+0h/wBHeeOf/A/VP/kuvFP23v2XfjR+w78Mf7f1z9rj x5qV7cSiCx0uHUdWWa9kKSMqgi4bbnyyMkYGeTW2G4dweIqqjRxkXJ7Lkn/kXTy6jUkoQrJt+Uv8 j9kKK/Jb9l7/AIJ0ftSftCfCLTvFOqftIfETwc+pKzx2Nzrl/dSBQ7KCWS6A5ChuR/F7V6J/w57/ AGkP+jvPHP8A4H6p/wDJdTWyHAUpunPGwutH7s3+SsKeAw8ZOMq6uvJn6S0V+bX/AA57/aQ/6O88 c/8Agfqn/wAl0f8ADnv9pD/o7zxz/wCB+qf/ACXWf9jZd/0HR/8AAZ/5E/U8N/z/AF90v8j9JaK/ Nr/hz3+0h/0d545/8D9U/wDkuj/hz3+0h/0d545/8D9U/wDkuj+xsu/6Do/+Az/yD6nhv+f6+6X+ R+ktFfm1/wAOe/2kP+jvPHP/AIH6p/8AJdH/AA57/aQ/6O88c/8Agfqn/wAl0f2Nl3/QdH/wGf8A kH1PDf8AP9fdL/I/SWivxv8A23v2XfjR+w98Mf7f1z9rnx5qN7cSiCx0uHUdWWa9kKSMqgi4bbny yMkYGeTXT/su/wDBOj9qP9oX4Rad4p1P9pD4ieDn1JWeOxudcv7qQKHZQSyXQHIUNyP4vaut8MYW OHWKljIqDdk+WWr8la7NnldJU/ausuX0Z+tNFfm1/wAOe/2kP+jvPHP/AIH6p/8AJdH/AA57/aQ/ 6O88c/8Agfqn/wAl1yf2Nl3/AEHR/wDAZ/5GP1PDf8/190v8j9JaK/Nr/hz3+0h/0d545/8AA/VP /kuj/hz3+0h/0d545/8AA/VP/kuj+xsu/wCg6P8A4DP/ACD6nhv+f6+6X+R+ktFfm1/w57/aQ/6O 88c/+B+qf/JdH/Dnv9pD/o7zxz/4H6p/8l0f2Nl3/QdH/wABn/kH1PDf8/190v8AI/SWivza/wCH Pf7SH/R3njn/AMD9U/8Akuj/AIc9/tIf9HeeOf8AwP1T/wCS6P7Gy7/oOj/4DP8AyD6nhv8An+vu l/kfpLRX4j/tbfCP41/su/Fbwr4Jh/am+IXivxL4nvI7T7FaatqsTWYd4lDsxuGXGJVOMivpPwH/ AMEm/wBo120bVbv9q/xyUPkXc1nJqGptx8rNGT9qwe46Yrpr8M4WjShWqYuKjPb3Z62+RrPLKUIK cqys9tGfpLRWd4S0m40HwxYWV3dPfXNrAkUtw5JadgMFjkk8+5rRr5F6OyPHYUUUUgCiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAr4p/4LL/APIwfse/9nHeGf8A0i1Svtavin/gsv8A8jB+ x7/2cd4Z/wDSLVKAPtaiiigAoorwz9vf9tvQf2IvgtdeINRdJtWn/c6ZZblzcTFWYAgsp24RunPH St8NhquIqxo0VeUtEaUqcqk1CCu2eT/8FXP287n4EeFrb4deCv8ASviN45zptmihg1sJlaMOpDLi QO8ZU5IGeQa6D/gl9+wPafsnfDV9d1kG+8eeLAt7qt3KVcxsxlcKp2hs4mIbJbJHHv5J/wAEqv2J dd8T+Mb34+/FdJLjxl4kbfYQTq0ctqiMqK0i7VAYCCMrjcCpBNfoNX0Wa4mng6H9lYR3/wCfkl9q XZf3V+J6GLqxo0/qlJ/4n3fb0QUUUV8seWFFFFABRRRQAVDqOoQ6TYTXVw4igt0MkjnoigZJ/Kpq /Oj/AIKeftda3+0N8TLX9nH4TSG61fXJEtfEN7EokjtbaZVjcMV3lY9lwpY7MjHHv6WVZbUx1f2U dEtZPol1bOnCYaVepyLRdX2RxXx5+IWvf8FgP2uIvht4XlktfhZ4JvQdauUYp9rbKMVfJYMd1vME /djGTmv0o+EXwp0b4I/DnSPC+gWq2ul6PaxWsKgAM4jjVAzYABYhRkgDntXBfsRfsjaJ+xv8D9O8 M6VGDdmJZNQuNxJnmO5m644DO+OBwea9hrsznM4VuXCYTSjT+HzfWT83+RtjcTGdqVLSEdvPzfqF FFFeCcAUUUUAFFFFABXkn7af7WWi/sd/A7VPFWrODOkTR2EBUnz5yMIDgjjey55HB613XxU+KGjf BrwBqviXX7pbPStHtpLqeQsoJWNGcgbiBnCnGSK/ND4LeBvEP/BYn9r4/EPxLFJa/CjwLef8SaB1 KC7bO0mMgMGBe0Qv+843DHWvdyXLIVubFYp2o09ZPv2ivN/kd+Cw0Z3q1dIR38/Jep2P/BNz9lTV f2ifihqH7SnxbRp7vU5JbvQLGQh4ra2mWVk+Vg7CMR3A2APkbRnPf6cv7i6/al+Iv2aNni8MaWxD MhwZSCeRnIzh17dq90i8MWMHhyLSUt1XT4YFt44QThI1ACr68AD8qi8JeD9P8D6QLLTYFt7fdvKg k5OAM8+wFfmniTk2P4ux+HoYiooYCOtSmr3nyv3Kfbk6y6s9fB57Ch7TEKP73aHaC6tefYu6bp0G kWMdtbRrDBEMIijAXvU9FFfWU4RpxUIKyWiS2SPmm23d7hRRRVCCob/T4dVs5Le4iSaGVSro4yGB 4INTUVM4RnFwmrp7pjTad1ueNeNv2dLrw1qba14Lu5LG7UmSS237UkxjCqFA6/NnJ714F+2h/wAF Sbn9mf4S3WjT6Yv/AAsS/wBtnp8JQmEt5kaOzYkDZ2lyMN1A+h+pP2jfjvYfs/8Aw2vtYuVe5vvJ cWFpGAZLmbGFABYZXcVzg5wa/Mr4W/s8+Mf2o/2k9R+JfjKw/tvXb6WRtOsY1fy9Jt381kibCqQU WQjndyvU9a/PMDwrk3DGZvO8HiHShq3hI6xrzt7qjHV07ytzTirWvofR/wCsuHnQ5M3Sm1blf2/T +8vX7z3z/gmv+yppv7L/AIMuPi58U743PxD8Ysbt5bkiVreORYm252bvM3rJk7iMH1r2TVf2gvGP x91B9M8DWBsbHpJevkSxdicq+MfMD93tXGT/ALJPiXwN9n1bUrOy8QKg+e0heVsdeuFUj8697+EH x38N+IrKLTYh/ZFzCNot5iFBJPRfmJPXv714uN8SMTn2c/2dn1T6hOSVoarn8oVJKMbLay1PHxWU 5pmNN4+OlLtGzkl05kr8phfDH9j3S9Cvl1XxHPJrursQ7mYq8IYHggFA2Rx37V7Ja2sdjbpFEixx xgKqqMBQOgp6tuGR0PSlr9Ny3KcJgKfs8LBLu+r9XuzzKGGp0Vy01YKKKK9I3Cvnn9qCJ/BHxy8F 6/F/y+3DQTN/dXMCfyJr6GrhPj18JB8WPDlvCtwlrLZTLOsrHAUBlY9j/d9K+f4nwFXF5fKnQV6i cZR9YtP/AIBx4+jKpRahurNfJnV6x4ltNC8NzarcyiOygh+0PIegXGc1+Ov7Z3x88W/8FKvFvivx F4ckFv8ACr4UwmWNgWVL+ZZSm/buOXMd1HztXha9c/bt+PXiP9tf4qaX+zN8MJvtVpZbbXxRqYUN bhrY72RnQOVIe0bHyDlgD7fQn7RP7Neg/sof8ErvGvg/QIttvZaUjTTEktdS+ZAhkb3IRemBx0r9 i4VpRyzEYWtiF+/qyhaP8kXJXb83svvHxVFYXhzGzqL95OjUsuycHr6vocJ/wQN/5Ib45/7Dsf8A 6TrX3rXwV/wQN/5Ib45/7Dsf/pOtfetcPiJ/yUeK/wAS/wDSUfDeE/8AySWC/wAL/wDSpBRRRXxZ +iBRRRQAUUVV1rWLfw/pNxe3cqw21qhkkdjgKBQk27IDn/jT8ZND+Afw31LxV4juhZ6TpUYknkIJ wMgdvqK/OL9j34TeIP8Agq5+003xq+IkBi8DaC6/2FpQP7uR0eIgFHMg8skTZAKnJ61n/F7X9d/4 LUftYJ4R8PSTWfwe8GSH7bfbRsu5kaRS8bqJFZik8XBZRgfn+oHgTwNpnw18JWWh6NapZaZp6FII UJIQEljyST1JPXvX18rZNhuRf7xUWv8Aci+n+KXXsj2H/sVLlX8SX/kq/wA2adpax2FpFBCgjihQ RoijhVAwAPwqSiivkDxwooooAKKKKACuV+NPxk0P4B/DfUvFXiO6FnpOlRiSeQgnAyB2+oroNZ1i 38P6VcXt3KsNtaoZJHY4CqK/LL4v+INd/wCC0/7WEfhDw7JNafB/wZKftt9tGy7mRpFLxuokVmKT xcEqMD8/ZybK1i6jnWfLShrKXl2Xm+h24LC+2k5TdoLd/wBdTQ/Y++E/iD/gq5+00fjT8RIDF4G0 F1/sLSgf3cjo8RAKOZB5ZKzZAKnJ6iv1DtLSOwtIoIUEcUKCNEUcKoGAB+FZngPwNpnw18I2Wh6N apZaZp6GOCFCSEBJY8kk9ST+Na9TnGaPGVVyLlpx0jHsv831JxmK9tPRWitEuyCiiivIOQKKKKAC iiigArwn/goF+2vpP7EnwMvPEFz5c+sXWbbSrV1LLNcNHIybgCvy5jIOGBr0n42/Gzw9+z58OdQ8 U+JrxbPStNTfK25QzcgYXcQM8+or85P2OPg94k/4Kn/tQ/8AC8PiHavbeB9CZf8AhH9PdWj8x0eJ htwMNGSs2T5hOTj6e/kuW06iljcZpRp7/wB59Ir169kehgsNGSdet8EfxfZHo/8AwSw/Yj1XxR4p vPj38VFlvvGPiV/O06CdlkFnErOik5DHOxISuH4A5r9AajtLWOxtY4YlCRRKERR/CAMAVJXDmmZV MdXdapp0S6JdEjnxWJlXqc8vkuy7BRRRXnHOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFAEV8xSxmI4IRiD6cV418KPhNpfj+z1zUL641Cef+27yIkXUs YUCToArgYGfSvZNQGbCb/rm38q4H9m2FoPDGvB1Kk+Ib84Pp5lAHP/ET4D6RpTaWLa41K3ae5KGQ Xcz7RsJ6F8dquaj4g8c/CGeJbuMeLtMnmWCOZIxFcRsQT/q40OR8p5z3Fdn8RLqO2k0rzE37rkhe Oh2NVnxyM21gdxXbeoRg4/hagDita+O2vaXZh18IX7vI6xxhklUFm6ZOzgZ6mrFrYfEDxsEkuby1 8MW0q7vKgWO7YgjODvUEH/H2rqPiFbPdeH7cJIYyLmJsg9cGtvTxiwh7/u159eKAPHPD3wLsNU+J OqQ6reajqLR2yuH+0SwDcXYHhHArqf8Ahmnwuf8AllqP/gzuf/jlbGhXSv8AErVIggDLbIxb1+dq 6igDz/8A4Zp8L/8APLUf/Bnc/wDxyj/hmnwv/wA8tR/8Gdz/APHK9AooA851L9mvwymnTlItS3iN iv8AxMrnrg/9NKw/h78Jte0LwTZTaD4jubKVoVMlvPAs4dsDOXkLEdvy969dvP8Aj0l/3D/Ks3wR /wAi7B9B/IUAeeQeN9SXx/o2k+L9HNtdtIr2d3aXLyRyPuwocAKo6twc9K9arzv4oQmT4neFTjIW 5j/A7mr0SgAooooAKKKKACiiigAr4p/4LL/8jB+x7/2cd4Z/9ItUr7Wr4p/4LL/8jB+x7/2cd4Z/ 9ItUoA+1qKKKAOT+Nnxp8P8AwB+HOoeJ/Et/b6fpmnoGd5ZFTcSwUAbiM8sK/OX9lH4TeI/+CsX7 Tcnxh+IVpdWvw70FzHoWlzxsiXBUo6gFRHvTE0v7w7uRjtx9V/8ABQv9g3Vv24v+Eb00eLptD8OW FwZdRskgZ1vBgkbsSpkbgpwQele+/DX4aaL8IvBll4f8P2EGnaVp6eXDDEgUKPwAr6PCY+hgcE5Y d3r1Lpv+SPl5vutkelSr06FC9N/vJfgv82bNnaRafaxwwoscUShUVRgKBUtFFfOHmhRRRQAUUUUA FFFNkUvGQDgkYB9KAPkP/gqZ/wAFBT+zJ4Ki8J+DW/tT4k+JcQ2FnaBbie2VhJiTysOWO6PGCuPm qX/glv8A8E/V/Ze8CP4o8U/8TD4h+Jd01/cyFma2G9tqAlsHKCM/dGCMU/4Rf8ExY9G/bF8QfFrx xr//AAmF5O7f2Pa3Nr8mnDMbKV3SOOCsgwFX75/H61UbRgcAcADtX0mMx9DD4NYHAu/NZzltzP8A l9F+LPSrV4U6KoUHvrJ9/L0QtFFFfNnmhRRRQAUUUUAFRXl7Dp1q81xLHBDGNzySMFVB6kngVLXm f7Xfwc1z49/AXXPC/h7xBL4a1HU4TEl7EhZ0yD0w6Ec453dq1oQjOpGM5cqb1fbzKgk5JSdkfAv7 THxc8Qf8Faf2pbX4TeBJ7iP4X+H7qGbXtUhXfDdL+7Eg8xRwwWaUBBIN20+nH6NfBP4N6J8BPhrp fhjQLSO1sNMgWIBQcyMB8znJJyTk9T1rz79hn9ibw/8AsTfCKDQdN8m+1WUtJqOpmARy3rmR2BPL HhWC8sfu17bXs5zmVOqo4PB6UYbf3n1k/N/gjuxuJjK1Gj8EdvPzYUUUV4J54UUUUAFFMuLmO0hM krpHGvJZjgD8a8m+Kv7W+jeCppLDSIn13VgcCC33YBzj7wVgehrz8wzXCYGn7XFTUV+L9Fu/kY1s RTox5qjseqanq9rolo095c29pAv3pJpBGg+pPFeB/G79u3SfBOlXx0UJdCziZ7i+kkVLe1UKWMhf lcL1OcDg1y3inQvFHjjThr3xD1m48PeH3falvAjSebwTgrG2Rxu5K9qT9rH/AIJ6Wv7SnwT0nw14 P1//AIRnTJryOTUJ0tjLNe2/zrIjOJEbaQ5BBJ6DjivAwOOxudYpYalP6rS0cpS1qcr6qHS/Rs5K FWpi6qpp+zj1b+K3p0PGf2aPF+v/APBRr4t3l632uTwfos6i61WWHZFcnLARQbQEcEwsrMrZX5T1 Nffng7wFpPgHSYrPSrKK1hhUKuMs2AAOWOSenrXPfs7fAHQP2avhTpXhTw9aQW1pp8KpI8cQQ3En VnOPVix5J613NfQ0skyzB1nLBQb/AL8nzTl5uT79lZI7fquHpTbor5vVv1YjLuGCMj3rgfiV+zxo nj8m4RDp2o/w3MJbjg/whgPT8q7+iuTPeHcszrDPB5pRjVpvpJbeae6fmmmd+Cx+IwlT2uGm4y8v 61PBIdT8e/ASdY7iGXxDoinjy48tGvUliqEjqep7V6N8PvjxoHj+IKl1HaXnAa3uHWN93cAE5PQ9 q7KaFLmJkkRXRhhlYZBHuK8C/ac8LeHfDktu+lwtbeI7p/3KWjGPByuSQo44J61+O55hc54Cwc8y y7F+2wVP/lzXbcktlGlU1k30jB36JH1eDqYTO6qw+IpclaX24LR+co7erR7+DkUtfPugeLfiN8Jd KtpdSsJNX01o1bb5oaYZGME/M3p2r0XwJ+0RoHjVxC032C9/ignDLt6fxMAO9fXcPeKuT5hOOExy lhMQ7fu68XBu/wDK37svk7+R5eO4ZxdBOrRtVpr7UHf70tUd7XxD/wAFV/28r34fWtp8JPhyTqnx C8ZFrF1tNs76dG/lKS6hXK7kmJ3EDGwkHjNfbkUyzxhkZXU9CpyDXjGgfsG+AtE/aW1D4qPZTX/i a9RER7uTzkt9qFMqrZAOMdMYwK/YcnxGEo1vrGJXMoq8V0cul/LqeRhJ0qdTnrK9tl5+Zx//AATR /YSsf2QfhHDeakv23x14jjjvdavpNxdZnRWeIZYj5ZGk+YBSc8jtXSf8FMP+TE/iR/2DV/8AR0de 614V/wAFMP8AkxP4kf8AYNX/ANHR135TjKuKz3D16zvJ1Yf+lI+Z4zrTq5Njqk93Sqf+kM+f/wDg gb/yQ3xz/wBh2P8A9J1r71r4K/4IG/8AJDfHP/Ydj/8ASda+9a9HxE/5KPFf4l/6Sj5bwn/5JLBf 4X/6VIKKKK+LP0QKKKKAEdxGhZiAoGSSeAK/N/8A4KS/tZeIv2qvi9B+zt8I3lup7ydo/EOo2mJY 7YQuZWjZ1VvLKm2cY3KTnB64r9G7+zXUbGa3k3BJ42jYqcHBGDg9jXkP7PP7DPgX9m3x/wCJ/E+h 2Ty654qvpr66u7pvOlQySO5Cs2SvMjDg8g17OTYzDYScsTVjzTivcXTm7v03O3B1qdJupNXktu1/ P0L/AOx3+yd4e/Y7+DNh4U0KFC8YEl7dkNvvJ9iI0h3MxGQi/KDjivVaKK8uvXqVqjq1XeT1bOWp UlOTnN3bCiiisiAooooAKR3EaFmICgZJJ4Apaiv7NdRsZreTcEnRo2KnBwRg4PY0AfnH/wAFJv2s /EX7VPxeg/Z1+EbyXVxeTtF4h1G0xLHbiFzI0bOqt5ZU2zj7yk5weuK+y/2O/wBk3w9+x38GbDwp oUKF4wJL27IbfeT7ERpDuZsZCL8oOOKo/s9fsM+Bf2bfiB4o8UaHZPLrniq+mvrq7um86VDJI7kK zZK8yMODyDXsle9mWZ0pUIYHBJqlHV33lLq36bI78TioumqFHSK3833YUUUV4JwBRRRQAUUUUAFV Nd1208M6PcX9/cRWtpaoZJZZXCKgHqTxVuvHv25P2edd/ag+AOp+EdA8SzeF7nUWhEl1FGzOUWeK RgMSIRlUYdf4q3w0ITrRhVlyxbV32XculGMppSdl3Pg74q+J/EH/AAWg/as/4Q/w9NdWfwZ8JSEX 19Gm6G9lRnBYSKBuYpNF+7EmMDNfpz4A+H+kfC/wnZ6JodlFYabYqUhhjzhQSSeTknknqe9cD+xz +yT4d/Y3+DVh4U0KGB5IgHvb1YRG97NsRGc9TyEXgk9Oter162dZnCu44bCq1GnpFd+8n5s68biY 1GqdLSEdv8/mFFFFeEcIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFAHnXxN8d61J4ytfDOhNZ2dxdQyvLdXaMyIAqkbcMDnBP6VJ+zfZ3Vh4N1OG 8uUvLqPWLtZZVzh2DjJGeeua3fiJ8NNI+IOn/wDEythJJboxhlH34s4zt7dh+Vcv+yxpEeg+CNYt IWkeKDXr2NWkxuIDgc4+lAHU/EEKW0zcBxcHGR/sGpfiBCJrGyySNt4jDB/2Wpvj2BZo7HcM7ZyR /wB8mj4hso06z3f8/aY+u1qAG/ECIy+GoQrFcTRnINbemcabb/8AXJf5CsP4gwfaPC8I3Ff30ZyK 29KG3TLcekSj9BQBg6Jbxp8R9ScH941sgI9t7V01c3o2niL4iajcZOXtkXHp87H+tdJQAUUUUARX n/HnL/uH+VZvgdg3hyDHPA/kK0r0brOUf7B/lWX4Di8nw1Ao7AfyFAGD8RY93jnw43PF1H/Nq7eu L+If/I6+Hf8Ar7j/AJtXaUAFFFFABRRRQAUUUUAFfFP/AAWX/wCRg/Y9/wCzjvDP/pFqlfa1fFP/ AAWX/wCRg/Y9/wCzjvDP/pFqlAH2tRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRXIfE344eH/hPaltVuwJsbkt0I8yQZI4BIHY9+1c+JxVHDU3WryUYrq9CJ 1IwjzTdkdczbRk8D1NedfFz9pjw98KkeB5je6nj5LWJW3E4yOcbe47968vufiH8QP2mpvs3h62Og 6DJw13IGUyL0KsQXHc9v4a9C+En7KHh/4byR3twranqoIczzEHY2c/LgD26+lfKPO8dmXuZPT5Yf 8/ZrT/t2O8vXY8/61Wr6YZWX8z/RdTz2Gy+I37Ttx5ksr+G/DchyvlylTMh5wwDnnAHUfxV6x8LP 2cfDXwrt0a2s0ur7q11cIjyg4wcNtBA6/ma71RtGB0HFLXoZfw1h8PU+s4hurW/mlr9y2ivQ2o4G EJc8/el3f6djz79p/wAKjxX8F9Yj27pbeEzRDH8QBH9TVf8AZP8AE58TfBDSGkbdcwCVJevB86TH 6AV6Fqenx6tYS20ozHMu1h7V4J+xRfSaBqXibw7cn97bXIkjX0Ujcf8A0IVyYz/Zs/oV+laEoP1j aS/VGVX93jIT/mTX3an0FRRRX1x6QUUVT17XLfw3pE97duI7e3Qu7HsBzWdatTo05VartGKu29kl 1KhGU5KMVdsyPih8RLX4a+FLjULhhvCkQpgne+DtHHvivN/gd8O7rx14il8Z+IVMsk7brOGQhhGp 3Y657FcdMYrL8MaXeftK/En+2b1Wj8P6XIDbxnjzCCM46jBMZzz3r3y2t0s7eOKNdscShFUdgBgC vxbJqNTjbNo57ilbL8PJ/V4P/l7Nae2kv5V/y7X/AG8fXYuUcnwrwVJ/v5r33/Kv5F5/zfcOZQ64 IyPSuF8efs8eG/HILtaLY3PXzbVUjZjz1O0k9f0Fd3RX6rnWQZbm9B4bM6MasO0lf7u3yPmcJjsR hZ+0w83F+R4Y/hH4i/B+QvpV5/wkGnx8+VPIW8tOpxudR69q1fCv7WOny3Qs9ftJtJuVO15GBZCf YKD/AJNevVj+LPAWk+N7bytTsoroYIUv1XPp+Q/Kvzl+H+c5P+84UzCUYr/lzXvVpeil/Eh8m/kj 3/7cwmL93M6Cb/nh7svmvhf4FrRPElj4jskuLK5SeKQZVhkZ79DzXjH/AAUw/wCTE/iR/wBg1f8A 0dHVrXf2U59BvWvvCWrS6fdEkhJXAQew2oT0JFeLft4eLPiBoX7IXjnSdd09LuxubBUe+2sSv71O 5I/u+nevoeDvEDNcLn+BwPEeWzpSnWpRVSl+9pNucUnde9FXf2lZdz5zjPI8NV4fx1bAYhSSo1Xy y92WkJfJ/L7jnv8Aggb/AMkN8c/9h2P/ANJ1r71r86v+CGvxP0XwZ8KfGNhqd5HaS3WsxyRmQ4DD yUGK/Q7TtTg1a1Wa2lWaJuQy9DX7Fx5muCr8VY7C0asZVISXNFNc0fdi9Vutz888KsNWhwfgKs4t RlF2dtH78upPRRRXzR96FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUARXgzZy/7h/lXCfs7p5fh3Xsc/wDFQX5/8iV30iCSMqejDBrzbQfgdrnhbWtVfT/F 5g0zUbyW9WzOmq5hkkcs37wyZI5A6Dp70AdJ8TbCa+sbPyesc244HbaayPjR8SPD/hm0tIdQvEe4 S7RvssDq1wPlbnZuBx/iKg8R/BnXPE9ktvP4vlWLdlvLsAjH8RICK3PDHwd0HwvlktPtkzfelvGN w/4FySOlAHJfEP45aWvhiLyrbVTiaLJW3B2r6nngDvXa+DviJoniTTbVbPVbCeZoUzElwhkU7ehU Hg9ePatV9AsZE2tZWjKeCDCpB/SsLXPg3oGuyb2tDauOjWkjW/8A6ARQBd035fG16O/2dTj23NW5 Xl+j/s+6p4b8Y3mo6f4uuorO5gWFbSa1M5jIYnPmNJk8EDGO3vW3/wAK68Qf9DWf/Bev/wAXQB2t FcV/wrrxB/0NZ/8ABev/AMXUlt8P9ehly/igyD0+wKP/AGegDrbv/j1k/wBw/wAqyPC93FpnhiOS 5kSCMAEtI20DgdzWPffDvXrtGVfFJjDAj/jwU4z/AMDqjoX7P1rb2yrq2p3+rSKMZEskCH/gAcj1 oAyfGXjTT/G3xO8NW+jT/wBqG1u4555bQiaKJASDuZScfeHX1r1es/RvC2neH4wtnZW1vgY3JEAx +pxmtCgAooooAKKKKACiiigAr4p/4LL/APIwfse/9nHeGf8A0i1Svtavin/gsv8A8jB+x7/2cd4Z /wDSLVKAPtaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorP8Q+KtO8K WLXGo3lvaRKM5lkC5+mTzUznGEeabskJtJXZoVg+OPiXovw605rjVtQtrUBSyxvKqvJjsoJGTyPz FeO+Mf2sdT8a6i2k+ANKuL2aQ7Bfsp2Rk8cgoRjJ657VJ4E/ZKvPE2ojWPHmpz6ldSMJBZAkRxH6 q+P7vG3tXyVXiSpi5uhktP2r6zelOPz+16RPOljpVHyYVc3n0X+fyM7Xf2gvGHxtv5NO8CaZc2li WKHUpYCVwDnk7XUZAx/wKui+GX7Hen6Tdf2l4nnbW9Uc72DOypGxA6bSM9+o7167oXhyx8M2KW1h awWsUahQI0C5AGOcdavVphuGI1KixOaz9tUWyfwR9I7fN6jp4BOXtMQ+Z/gvREdtax2cQSJFjUdA owKkoor6tK2iPRCiiigAr52tl/4Vx+2tcN/q7XX4UijQ9CxECcZ9819E1kan4F0vWPENrqlxapJf Wf8AqZD1TkH+YFeJnWVzxioypO0qc4yT9NGvmmcuKoOryuO8Wma9FFFe2dQjuI1yxAA6k14H478R 3f7RnjuPw7pDMNCs3WS6uFGVfGAcMM84k6ZHSveLy0S/tnikzscYODg/nWJ8P/hppXw2097fTYdn mHc7sSWY/U5Nfn3HPDWY5/LD5bGooYNtuvZvnmlblpr+7LXmd9lY93JswoYFTxDjestIdl3l6roa Hhfw1a+EdDt7CzjEcEC4AGeT1J59ya0KKK+7w2HpYelGhQiowikkloklokl5Hi1Kkpyc5u7e4UUU VsQFFFFABXhX/BTEZ/YT+JHtpq/+jo691rwr/gph/wAmJ/Ej/sGr/wCjo69nhz/kbYX/AK+Q/wDS kfP8W/8AIjxv/Xqp/wCkM+Lv+CR/iT4Wab8GfF1p4/8AEnhnQr6XV0ktF1PVks5GTyANyqzruGc8 19Fah4w+GHhq7a58MfHDwHBJ1WObX7TYpHTq7d6+I/2Av+Caiftw+Bdd1l/GT+Gf7Fv1svJGlfbP OzGH3bvOjx1xjB+te+/8Q/EP/RWJf/CaH/yVXveKHhB4aZ/n1fH5zWlSxbablThOM0+VJe/COult 2z8m8NOPfETLeHsNhcnwMKuGSfLzVIWa5nf3ZS01v0R61H/wUGsPh7IqX3j/AMAeI0U7c22tWzcd P4AP8iuz8Kf8FPvhZqoVNQ8TaLZzHqVv4DGPxMgr5y/4h+If+isS/wDhND/5Ko/4h+If+isS/wDh ND/5Kr47KfC3h/Lav+z8UYmdL+SrS9p/5O4KX3s+0xXHfHeIj+84foqXeNaMfwVSx9kWf7cHwevI A/8Aws/wHFn+GTXrVWH4b6u6V+2D8KNd1S3srL4leBLu8u5Vhggh122eSZ2OFVVD5JJIAAr8/fi3 /wAEUdN+FGg/aZvio91dSHbDbDw8FaU4J/5+SQODzitj4P8A/BFXXNGutC8Vw+NDHfaddx30VpJp IXJik3AFjPxnaP4e9e5icy8PKOJq5XSzSpVxVKnzuEaFRu3S7VNxTk9k2n12OfDY3xIqKniK2UU4 UZSUeZ1qfzaXtLuy7I/S6ORZYwykMrDIIOQRTq8Msdf+KngO0jgvbGDVIrdAoMRjBZVH+ypq1Z/t TarYybNV8G6laqvBlBkYH/yEP8mvwheMWRUpezzKFfCy7VaNRfjFSj97P3L/AFUxso81BwqL+7OL /BtM9porzHS/2r/C118l093ZT/3Hgbp9SBXT6Z8ZPDWqkeXq9kuf+ekyp/M19Nl3H/DeP/3THUpP tzxv9zd0efXyPMKH8WjJfJnT0VnW/i3Srv8A1Wp6fL/uXCH+tXobiO4XMbo49VOa+oo4qhV/hTUv Rpnmypzh8SaH0UUVuQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8U/wDBZf8A5GD9j3/s47wz/wCkWqV9rV8U/wDB Zf8A5GD9j3/s47wz/wCkWqUAfa1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUE4FA BUN/qMGl2zTXEscMaAks7YAFeVfFv9rfQvh/M1hp/wDxNdXY+WsMY4RyBt3ZK8ZI6GvP5vhv8Qf2 hbSbUPEl0dH0cI00VjC7L5owWXAJcdl/OvlcdxTSjUeGy+Dr1Vuo7L/FLZfmefVzCKk6dFc0vLb5 s634k/thWdnfNpfhO1k1zUiSm9UdEiYHnO5QD09e9Yfh/wDZt8V/F++XUfiDqt1FAxz/AGbDPlF9 xh2UdWHStX9jSXTRbavp6aZZWmoaTcvA0sceJJEXaoLnPJznOMV7rXmZZlss6pRx2Z1eeL2px92C t36yfroYUKDxUVVryuuy0X/BMXwb8PdG8AaetvpWnWlmqjBeOFEd+c/MQBmtqiivuaVGFKCp00kl 0R60YqKtFaBRRRWgwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCv+CmH/ACYn8SP+ wav/AKOjr3WvCv8Agph/yYn8SP8AsGr/AOjo69nhz/kbYX/r5D/0pHz/ABb/AMiPG/8AXqp/6Qz5 /wD+CBv/ACQ3xz/2HY//AEnWvvWvgr/ggb/yQ3xz/wBh2P8A9J1r71r2/ET/AJKPFf4l/wCko+b8 J/8AkksF/hf/AKVIKzPF3iyz8FaDPqF9KIoIBkkgnOSBwACe9X7u6SxtZJpDtjiUux9AOa8C1m7u /wBp/wCI50+3dovDWluwkdDgykFsEZyOfl7V+HcecYTybDwwuAh7XGYh8tGHeXWUu0IbyfyP1/Jc qWLnKrXfLRhrN+XZeb2RY+GXhe++PXjZvFOuxsNKtziztpCGQkEEcEnjlu1e8IgjQKoAAGAB2qvp OlW+h6dFa2saw28I2oijAUVZro4H4QhkOCcas/a4iq+erUe85vf0itorojPOM1eNqpxXLTjpGPZf 59wqG7sIL+PbPDFMvpIgYfrU1FfZzhGa5ZK6PJTad0c/qfwr8N6uD5+haQzH+P7FFu/PbXM6l+yx 4Q1JcGzlhyMfuSqfyWvRqK+YzHgjh/H/AO+YKlP1hH/I9GhnGOofwq0l82eR3H7JGmWv/IO1TVrP kbf9Jbj8sVRm/Zp8UWzD7B481W2QH7pnmOR2HDivaqK+ZreDfCU/4eGdP/r3OpT/APSJI9GPFmaL 4qnN/iUZfmmeJt8IPiLZTFo/FlxcbD8oaR8P+Bkpg8L/ABY0754ryO5Y8bXlGB78y17fRXM/B/K4 /wC74vFU/wDDXn/7dzGn+tWJfx0qcvWC/Sx4gL3406Z8sWm6ddA8lnkh4/OWj/hIPjd/0A9K/wC/ kH/x2vb6KX/EKai0hnWOS7KtD9aTYf6yxe+Eov8A7cf/AMkeIp4g+Nu8Z0PSsZ5/eQf/AB2vYPDU l9LoFo2pIsV+YwZ0XGFfvjBI/Wr1FfT8McITyarOpPH4jE8ytatOM0vOPLCNn9552Y5osXFRVCnT t/Imr+t2wooor7I8kKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAr4p/4LL/APIwfse/9nHeGf8A0i1Svtavin/gsv8A8jB+x7/2cd4Z/wDS LVKAPtaiiigAooooAKKKKACiiigAooooAKKKKACiiigAozXJfEj42eHvhdYvJqWoW4mAO23SRWmY 8fwZz3FeNan8SviB+0ZeNZ+GrKfQtCkODdTxYEyZ3BgzJwcAcBu9fP5nxJhcJP2Eb1Kr2hHV/Pol 5s46+Op03yL3pdlueofFf9pfwz8KEaO5uftd8P8Al1tijyjkjkFh6GvK5LX4j/tQS7JlHhvw45yy SIyGZeh25Rsn5j37V33wo/ZN0PwHMt9qJfWtW73E5bjgcbdxU85PTvXq0USwIFRVRR0CjAFeZ/ZW ZZp72aT9nT/59wer/wAUuvotDD6vXxGuIfLH+VfqzgvhJ+zn4f8AhJEr2kJnv8fPdSE725J6Zx39 O1d8V3LjseKWivqcHgcPhKSoYaCjFdEd9KlCnHkgrI+dvhi4+Hn7X/iDTm+UeIi88YPcGSV//Za+ ia+d/wBqA/8ACA/HTwp4sxsABtS/Y/LL+H8dfQ4O4cV85wt+5qYrAP8A5d1G1/hn7y/G5xZf7rqU ez/B6i0UUV9aeiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeFf8ABTD/AJMT +JH/AGDV/wDR0de614V/wUw/5MT+JH/YNX/0dHXs8Of8jbC/9fIf+lI+f4t/5EeN/wCvVT/0hnz/ AP8ABA3/AJIb45/7Dsf/AKTrX3rXwV/wQN/5Ib45/wCw7H/6TrX3rXt+In/JR4r/ABL/ANJR834T /wDJJYL/AAv/ANKkeJ/HXxjqPj/xZD4J0RXHmENeSleAow3BGf7rdq9O+HHgK1+HPhW3021HEYBk fP8ArH2gFvxwK1Y9Itor9rpYIxcOADIF+Y/5zVmvxDIuDXhs4xOfZjV9tiKj5YO1lTpLaEVr6yfV n69jc2VTCU8FQjywjq/70urf6dgooor7s8UKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK +Kf+Cy//ACMH7Hv/AGcd4Z/9ItUr7Wr4p/4LL/8AIwfse/8AZx3hn/0i1SgD7WooooAKKKKACiii gAooooAKKKKACiqeua/Z+G9Okur2dIIIhlmbnA+g5rw3xv8Atd3fiXVm0bwFp39q3jEqtxICIzgn OAxQ9Bn8a8jNM8weXpfWJe89orWT9EtTmxGLpUV7717dX8j2Txj8Q9H8A6e1zqt9Daxp1BOXP0Uc np6V4fr/AO0Z4q+MuotpXgTSpYbeT5Gv5ThWU4BI3KuCCfXtVvwd+yZqHjPUF1Xx/qt5qM+dyWnm 7li9ju3Aj73Q969w8PeGdP8ACenLaabZ29lbp0jhjCL+Q+prw+TN81/iP6tR7L+JL1e0flqclsTi Pi9yP/kz/wAjyL4bfsh21rerqvi69m8QaoSHCzElIjzkEFmBHQfhXsunaZb6RaLBawQ20KABY4kC KB06Dip6K+gy3J8JgIcmFhbu92/VvVnbQw1OirU0FFFFembhRRRQB5P+1/8ADy58e/DZTZQG4u7C USxIOpJZQf0zXf8Aw/ku5vBmntfoY7wxfvVLbipye9bNFeZSyyFPHVMdFu84pNdPdvZ+utjCNBRq uquqS+4KKKK9M3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCv8Agph/yYn8 SP8AsGr/AOjo691rwr/gph/yYn8SP+wav/o6OvZ4c/5G2F/6+Q/9KR8/xb/yI8b/ANeqn/pDPn// AIIG/wDJDfHP/Ydj/wDSda+9a+Cv+CBv/JDfHP8A2HY//Sda+9a9vxE/5KPFf4l/6Sj5vwn/AOSS wX+F/wDpUgooor4s/RAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Kf+Cy//Iwf se/9nHeGf/SLVK+1q+Kf+Cy//Iwfse/9nHeGf/SLVKAPtaiiigAooooAKKKKACimySLEhZiFVRkk ngV5Z8Uv2sfD/gOb7HYONc1R+Ehs2WUA88NtbIPB7elcOPzPC4Kn7XFTUV59fRdTKtXp0o81R2R6 jd3cdhbPNM4jijG5mPRRXifxW/bL0zQZpdO8NxHWdT2kK6qGhQ474YN1Pp2Nc3a/DX4hftI3KT+J riXQNE3Ai08rZMpHHQopIwW71694N+Afh7wH4YudP0+zVXuoHhlmZmZn3AjPJOPvHpXzE8dm2aRa wEfYU/55r3n/AIY9PVnA6uJxC/crkj3e79EeMeAfg9q/7Tsq654q15ZtOSQ7LO1c5hbPzIQyHuFH Xsa+g/BHw+0n4d6UtnpNpHaxAANt6ucAZPvwK8Z/Y81B9C8ceNfD0x2izvc26n+IGSbJHfoBX0BT 4NwWFeDjjuW9aV1KT1ldNp6vZabBllKm6Sq2957vroFFFFfaHqBRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeFf8FMP+TE/iR/2DV/9HR17rXh X/BTD/kxP4kf9g1f/R0dezw5/wAjbC/9fIf+lI+f4t/5EeN/69VP/SGfP/8AwQN/5Ib45/7Dsf8A 6TrX3rXwV/wQN/5Ib45/7Dsf/pOtfete34if8lHiv8S/9JR834T/APJJYL/C/wD0qQUUUV8WfogU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfFP/BZf/kYP2Pf+zjvDP/pFqlfa1fFP /BZf/kYP2Pf+zjvDP/pFqlAH2tRRRQAUUVzHxD+L+gfDHTzPq1/HD2VFVpGY88YUEjoaxxGJpUKb q15KMV1bsiZzjBc03ZHTE4FcF8Uv2jPDnwugKz3Ud5fNkR21u29i3GAduSucjtXld/8AFrx7+0Ve PZeE7KbRdIY7ZLwyhJUB4LA7kbuTwOwrt/hd+yXo3hG4Goa0f+Eg1eTDSTXiiZQwzyA4Jzz1z2r5 N57jcxfJk9P3P+fs01H/ALdW8vyPO+t1a2mGWn8z2+Xc4Z7z4i/tO3JSJJvC/h1mzlh+9K9QQSEY 5wvfvXqPwt/Zp8O/DKPzBANR1BuZLq4BYueMkBi2Onr3r0C3t0tIVjiRI40AVVRcBQOgAp9d2A4a oUqn1rFydat/NLp/hW0V6GtHAwjL2lR80u7/AEXQQDaOOKWiivpDuPnaZf8AhW/7acR+5YazAzMe gZ/Kc/zevomvAP2z9Lk0bXvCPiG2+RrS7ZZ3HHyloVA9fWvddE1Rda0e1u0+5cxLKv0IzXyPD3+z 43GYDop869JpP8Gebgvcq1aPndfMtUUUV9cekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4V/wUw/5MT+JH/YNX/0dHXuteFf8FMP+TE/iR/2 DV/9HR17PDn/ACNsL/18h/6Uj5/i3/kR43/r1U/9IZ+V/wCyL+0p8bfgh4V1Wz+FtlqV1pt7drNe m20H+0QswQAZby22naBxmvXP+HgP7Xv/AECPEH/hF/8A2mvdP+CBv/JDfHP/AGHY/wD0nWvvWv1n i/jDAYTOK+Gq5dSqSi1eUkrvRb+6z8M4D4BzPH5BhsXQzatRjJO0It8sfea095eux+S3/DwH9r3/ AKBHiD/wi/8A7TR/w8B/a9/6BHiD/wAIv/7TX600V83/AK+5Z/0KaP3L/wCRPr/+IYZx/wBDzEfe /wD5M/Jb/h4D+17/ANAjxB/4Rf8A9prpPg7+3P8AtVeI/i14Y0/WtL11NHvtVtre+Z/CAiVYGlVZ CX8kbRtJ5zxX6i0VnV46y2cHBZVRTa3stPP4TWh4aZvTqRnLO8Q0mnZt2fl8XUg0yV59Nt3l/wBY 8Ss+RjkgZ4qeiivzV7n68tFYKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8U/8Fl/+Rg/Y9/7O O8M/+kWqV9rV8Vf8FnFMN9+yXeMCLXTf2hvDl3dS/wANvEtlqm52PZRkZPvSlJRXNJ2QNpK7PtWs rxf4103wJpD3uqXSWtugJ3MDz7cD3H514344/a5m8Rak+jeBNNudWvmPlm48sNFHuAAZSrHpnuO1 VfCH7Jmp+OtXTW/H+o/brliJFtYj8oBydrfKpGOPyr5OtxLPETeHyen7WWzltTj6vr6I86WOc3yY aPM+/RfMg8Q/tQeIvi1qsukfD/TN6ZKyXko+ZQCfmUhxwcDqO9bXw8/Y9tjfrq/jK9n17Vm+8sjh 4ex5DJuz17969i8O+GrHwnpUdlp9uttbQgBEUkgAADvz0Aq9Tw/DHtaixGbVPbT6LaEfSP6sIYDm fPiXzP8ABfIg0/ToNJs0t7aJIYIhhEQYC96noor6tJJWWx6O2iCiiimAUUUUAYnj34f6d8SNE+wa nGZLfer4XGcqwYdQe4FaWj6VDoWlW9nbrtgtY1ijHoqjAqzRWKw9JVXWUVzNWb62RPJHm5rahRRR WxQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABXhX/BTD/kxP4kf9g1f/R0de614V/wUw/5MT+JH/YNX/wBHR17PDn/I2wv/AF8h/wClI+f4t/5E eN/69VP/AEhnz/8A8EDf+SG+Of8AsOx/+k619618Ff8ABA3/AJIb45/7Dsf/AKTrX3rXt+In/JR4 r/Ev/SUfN+E//JJYL/C//SpBRRRXxZ+iBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV5N8U/24fhd8EfjHovgTxd4v0bw74j8R Kx023v7uOE3hXywVQM25jmWMYA6sKAPWaKjs7uPULSKeF1lhmQSRupyHUjIIPoRUlABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAV55+0r8HIvjF8PjbjT7bVNQ0yYX9hbXMxhjluER1QFxyn3z8wBIr0OisMThq WIpOjXjzRe6ZM4RnHlmro+EfC3j39sz4bRPZ6F+y58FUtInYRSv8VJvMkXcSGJaxJBOc4zxWx/w0 Z+3b/wBGz/Bj/wAOtL/8gV9rUVVGhTowVOlFRitklZBGMYrlirI+Kf8Ahoz9u3/o2f4Mf+HWl/8A kCj/AIaM/bt/6Nn+DH/h1pf/AJAr7WorUo+Kf+GjP27f+jZ/gx/4daX/AOQKP+GjP27f+jZ/gx/4 daX/AOQK+1qKAPin/hoz9u3/AKNn+DH/AIdaX/5Ao/4aM/bt/wCjZ/gx/wCHWl/+QK+1qKAPin/h oz9u3/o2f4Mf+HWl/wDkCj/hoz9u3/o2f4Mf+HWl/wDkCvtaigD4p/4aM/bt/wCjZ/gx/wCHWl/+ QKP+GjP27f8Ao2f4Mf8Ah1pf/kCvtaigD4p/4aM/bt/6Nn+DH/h1pf8A5Ao/4aM/bt/6Nn+DH/h1 pf8A5Ar7WooA+Kf+GjP27f8Ao2f4Mf8Ah1pf/kCj/hoz9u3/AKNn+DH/AIdaX/5Ar7WooA+Kf+Gj P27f+jZ/gx/4daX/AOQKP+GjP27f+jZ/gx/4daX/AOQK+1qKAPin/hoz9u3/AKNn+DH/AIdaX/5A o/4aM/bt/wCjZ/gx/wCHWl/+QK+1qKAPin/hoz9u3/o2f4Mf+HWl/wDkCj/hoz9u3/o2f4Mf+HWl /wDkCvtaigD4p/4aM/bt/wCjZ/gx/wCHWl/+QKP+GjP27f8Ao2f4Mf8Ah1pf/kCvtaigD4p/4aM/ bt/6Nn+DH/h1pf8A5Ao/4aM/bt/6Nn+DH/h1pf8A5Ar7WooA+Kf+GjP27f8Ao2f4Mf8Ah1pf/kCj /hoz9u3/AKNn+DH/AIdaX/5Ar7WooA+Kf+GjP27f+jZ/gx/4daX/AOQKP+GjP27f+jZ/gx/4daX/ AOQK+1qKAPin/hoz9u3/AKNn+DH/AIdaX/5Ao/4aM/bt/wCjZ/gx/wCHWl/+QK+1qKAPin/hoz9u 3/o2f4Mf+HWl/wDkCj/hoz9u3/o2f4Mf+HWl/wDkCvtaigD4p/4aM/bt/wCjZ/gx/wCHWl/+QKP+ GjP27f8Ao2f4Mf8Ah1pf/kCvtaigD4p/4aM/bt/6Nn+DH/h1pf8A5Ao/4aM/bt/6Nn+DH/h1pf8A 5Ar7WooA+Kf+GjP27f8Ao2f4Mf8Ah1pf/kCj/hoz9u3/AKNn+DH/AIdaX/5Ar7WooA+Kf+GjP27f +jZ/gx/4daX/AOQKP+GjP27f+jZ/gx/4daX/AOQK+1qKAPin/hoz9u3/AKNn+DH/AIdaX/5Arjf2 g/EP7cf7Rnwa1/wTe/s9fB7RrXxDbi3kvYvidJO9uA6vkIbFd33cdR1r9CKK2w2IqYetCvSdpRaa 9U7o58XhaWKoTw1ZXhNOLXdNWf4H5gfsU/Cv9tj9hvwdrGi6V8D/AISeKYtavFvXmuPiM9mYSECb Qos3z0znIr2n/hoz9u3/AKNn+DH/AIdaX/5Ar7WorfMsxr4/EzxeKd5y3e3l0OXKMpwuWYOGAwUe WnDRK7fW+716nxT/AMNGft2/9Gz/AAY/8OtL/wDIFH/DRn7dv/Rs/wAGP/DrS/8AyBX2tRXEekfF P/DRn7dv/Rs/wY/8OtL/APIFH/DRn7dv/Rs/wY/8OtL/APIFfa1FAHxT/wANGft2/wDRs/wY/wDD rS//ACBR/wANGft2/wDRs/wY/wDDrS//ACBX2tRQB8U/8NGft2/9Gz/Bj/w60v8A8gUf8NGft2/9 Gz/Bj/w60v8A8gV9rUUAfFP/AA0Z+3b/ANGz/Bj/AMOtL/8AIFH/AA0Z+3b/ANGz/Bj/AMOtL/8A IFfa1FAHxT/w0Z+3b/0bP8GP/DrS/wDyBR/w0Z+3b/0bP8GP/DrS/wDyBX2tRQB8U/8ADRn7dv8A 0bP8GP8Aw60v/wAgUf8ADRn7dv8A0bP8GP8Aw60v/wAgV9rUUAfFP/DRn7dv/Rs/wY/8OtL/APIF H/DRn7dv/Rs/wY/8OtL/APIFfa1FAHxT/wANGft2/wDRs/wY/wDDrS//ACBR/wANGft2/wDRs/wY /wDDrS//ACBX2tRQB8U/8NGft2/9Gz/Bj/w60v8A8gUf8NGft2/9Gz/Bj/w60v8A8gV9rUUAfFP/ AA0Z+3b/ANGz/Bj/AMOtL/8AIFH/AA0Z+3b/ANGz/Bj/AMOtL/8AIFfa1FAHxT/w0Z+3b/0bP8GP /DrS/wDyBR/w0Z+3b/0bP8GP/DrS/wDyBX2tRQB8U/8ADRn7dv8A0bP8GP8Aw60v/wAgUf8ADRn7 dv8A0bP8GP8Aw60v/wAgV9rUUAfFP/DRn7dv/Rs/wY/8OtL/APIFH/DRn7dv/Rs/wY/8OtL/APIF fa1FAHxT/wANGft2/wDRs/wY/wDDrS//ACBR/wANGft2/wDRs/wY/wDDrS//ACBX2tRQB8U/8NGf t2/9Gz/Bj/w60v8A8gUf8NGft2/9Gz/Bj/w60v8A8gV9rUUAfFP/AA0Z+3b/ANGz/Bj/AMOtL/8A IFH/AA0Z+3b/ANGz/Bj/AMOtL/8AIFfa1FAHxT/w0Z+3b/0bP8GP/DrS/wDyBX4a/wDB0h8Tvjb4 i/aP+HV98V/A/hr4ba3a2l4dPTw54ofVxMNtnuYyeTCUIxGRgHO4+nP9UFfG37dv/BFX4Zf8FE/2 kfCHjz4kPd6haeEI5RBpcTNGk7P9n5dt2GXMAypUghiKAPw3/wCCGH/BS39tnQfGmleF/AXh/wAT fE/wKZUhmgvNMP2K3UK4Bk1AWsrp0yMsMlMdzX9O3w51XW9b8D6Xd+I9MtdH1y4to5L2ytrk3MVt KVBZFkKqWAORnaM46VhfA39m3wJ+zZ4Tt9F8D+FNA8M2MESQkadp8Ns0wRcAyGNV3t1yTyST613F ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUV5d x6fZyzysEihQyOx6KoGSaAJaK+PLj/gpH4l+PfjrVtH+A/hOHxbZ+HLt7DU9Z1CJm09bhMF4kaGX fuCvC3Kjh6f+wt+3p8R/2k/2k/FXgvxN4R0W10TwxYPI+u6RHN9le6DW+2DdJITkpM7Y2D7nX1AP sCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACvnv/goZ8ZL/wAGfDG28JeG5P8AisfG8httOjQK7eVC8ct2duCeLYTHhTjG eMZHv2o6hDpOnz3VxIsVvbRtLK7HARVGSSfQAV+b/i74h+Nf2i/20pda0fSoZdBu7u68N+HL17xS dOaz877ZdCMqNyXFswUHIHOQzYoAsaB4F0z4C/B7V7nw6jWtvrQ/4RHTriJ2YXVrH5dyl+ckglzu TIyPl619Af8ABJf4OWPww/ZM0vUbWCW3n8Us19cJLuLqyu0QB3Enogr5j/a6+KGg674wb4W+FbqX +0UtF8KaHDCpdDdwyPMZw3QkxZXr2+8elfpN4K8JWfgXwtZ6Tp8Sw2dkmyNFHCgkk/qTQBqUUUUA FFFFABRRXkv7VP7Ynhz9lTQrc31lq/ibxLqmV0fwxoiRy6vrbjP7u2jkdFZiRjBYckVMpqO41FvY 9aor42+Bv/Bbr4WfHD4E6n4yTRvF/h7UrDXG8NxeFNWhtY9cv79YEuDBDEk7Rl/JffgyDhWqj+z7 /wAF1vhX8ZL/AOIGn+JPD3jj4Sa38N/JXVNK8aW9paXbyTSmGKKNYp5RveX92AxGWOKrS7XZKXyd ndd9GnZXdmu6Frppu+X53tZ9tU0r7tWWp9r0V8cfs6f8Fn/Bnx6/a5HwY1D4e/E74d+Krq1e+0yT xTZWltbaxbqMrLbmK4kdlZSjKSo4kXpmvsenyvkjV6Svb5Np/c001uieZc8qfVWv80mvk07p7MKK KKRQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTJ51toHkc7UQFmJ 7AUAfP8A/wAFA/jDL4S8A2Hg/S5gmt+N5GtMB9rR2IaNLyUHgZSKbdjOT2B6V5V8Oraw+BPwR1zx nJDDHaaFFb+GNFLhU8/EiWZvgeqyTJMrM2Ax/iNcX4+8MP8AtoftBR+IpptYs3/tFtM8Li0lRAlr DIINW37g3DiOLG0jIzkHjHpv7XVl4U1CfRfhvq3ky+F/A+hPfatbTru89FtW+x5GNpInt4z06jtQ B8S+IfjJ8KP2Rf8Agpv4V/4Sm+vZ9P8AA3haHU9Z1HbLqPk6wbq7t5j5cMUju3lmP5kDcH7xxX7G eHvEFp4q0aDULGQzWlyu6NyjIWGSOjAEdO4r83/+CHn7FPgn4p/AXW/jB4x8JaXq+v8AxE8QT61p txfQLJLa6fNbWjRwqcZAEglOMn7x9a/Sm1tY7KBYokWONBhVUcCgCSiiigAooooAKwPiJfab4Z8O 3Wv39rZyto0TXCTTRqWhx3DEfLW/Xy1/wWj+Llx8F/8Agmf8V9XsZLqLU30We3sWtlkaTzyjMuNg 3D7p54+tcGaVp0sJUnT+Kzt6vRfidmX0Y1sTTpz+FtX9Ov4Hxr/wbLfAwfEL4c+Pvjn4miiuLvxT r1wumQypmO2t1jgG8DhS26OQbtu7BxuxxXFf8E6P2cNJ/bS/4L2/tB/FjWI477Q/hxqk2naWiSsb e8lMl0pLhGVG2iZGG4PggEY619of8Ek/hnb/ALKf/BIHwhBcxzWk0Gi3V5dhkLP5jSy4yFBJP3fW vHP+DXfwfPefsf8Ajvx/qNk9vq3jrxte37STRbJnia3tGUMW+Y4Yt19TXuzoQw+ZTpUl7uFo8i8p Plppr1Ualn007I8iOIlXy/203riaqk/OPvVNF2+BNdnZ7nG+LLVP2h/+DnrQbbTLe3/s74VeGGkv LmGbpLLHGUjKrgDBtXGCfXiv0M/a3/ba8EfsYeFrHUfFb6vf3eqXAtbDRtCsm1LV79yGP7m0jPmy D5cEqDyyjqRX5b/seftKaZ+yt/wWV/axPjDRtQ1T4jeMNXs7XwDpMdtJv1xRcaqohju9jwW+7zrV cyyRqPMBPCnHs2meNNX/AGgP+Di3TdJ8TaS9tYeAPh62o2mm3M8dwumXs39kTkjkoZEaSRRIg7nB 5rz8FGU8FgcNTdudTlJ7rml7SvO3d2tB/wArO3GyjDG42tPX2ahFLvGKp04/fKTfnZpbH2V+xt/w UT+HP7cR1u28Jvruka54dm8nUdB8Sac2k6za/Kjb3tJT5qpiRPmKgfMK91r8uvilZL8BP+DlPwNN otvJp8fxT8GMur+Q4jS+kWd8SSKuN522yLlsnCj0FfqLWsbVMPSxEVbmTut9YycH8m43XrYzknCv Oi3e3K0/KUVL8L2+R87/APBTH9vSH/gnx+zyPFsWiL4o17UdQt9K0bRftBhbUrqaRYo0DKrN990H Cn71ezfCHxbqHj74V+G9c1XTRo+pazpltfXNgJDJ9jkliV2i3EKTtLEcgdOgr88P+Cgt437av/BY X4FfBO1JOkfDOR/GniDJzE7q9rc2iMpwCd1pMB97Ge3f9LreBbWBI41CpGoVVAwFA4AqMN72F9vL 7cpcv+CPuX/7emp/JK3nWI93EKjH7ME5f4p+8l8ocr/7e16D6KKKACiiigDh/wBob9orwn+y38Mr vxf401KPSdBsSBNcyMoCEgnqxA7HvXB/AD/gon8NP2mPF1vovhS91K7u7tGkiaS02ROoVmJD5I6K a+Zf+DoT/lEd42/67R/+gSV9Ff8ABOb4PeEfDX7Kvw/1bTvC3hzT9VbSwWvbbTYYrg5ZwcyKoboS OtAH0JRX5Nf8F+bTxX4P/bD/AGcZvAPxU+LPhrxB468T22mX2haP4svLDSbm0gu7QyMbaNliLGOa XcWPzAAYOK/VfwzYS6T4b0+1nlknntraOKSWRtzyMqgFmPckjJNFD97h/rG3vyh84pNteWqXrddA r/u60aO94KfpdtWa+Tt3WpeooooAKKKKAEZtoyeB6mue+HPxd8KfGHS577wl4n8PeKbK2mNvNcaR qMN9FFIACUZomYBsMDgnPI9a8F/4K6/tln9h/wDYj8TeLLE7/Ed4P7N0GAFg1xevHJIiAjpkRPyS Bx1o/wCCRn7FUH7Cv7FHhrwk8MY1y5D6hrNwFTfdXMjffZlzuOwRjJJPyjmjD/vPbSekYcqXnJ3b X/bsbN+corqFf937OK+Kd36RWl/nJ2XpLsfTlFFFABXyx/wUP/4KN3v7IHiHwp4L8G+Crn4gfE/x 1IE0TRmkktbOVcSszS3KRyeUAIZOqHnHrX1PXOeLPA3hOfXbXxXrWiaDPqugRs1rq11YxSXWnphs +XKyl04ZvukfePrWdTeLbtFNOXotWrva+1+iuUnpJJXk1Zevfzt27nxp8CP+CsfxA039uzR/gF8f /hTo/wAMfFXi/Sjqfhu50PxA+u2V/sS5kkjklMESxsEtXIHJOV9a+kf2jP23PAn7LWp2dr4tuNRg kvkeSM29qZVCoFLEnIx94V8SfAGyT/gqv/wVo039oDw/Hj4TfBG3ufDulX0sRU+INQaC7jldEcLI iLHeW7jdHjrhicgfffx9+E/hbx94A1u513w14f1q4tdMuvJlv9OhuXh/dH7pdSR0HT0FdC1w1Kc4 2m021rtzPkbT2bhZtefTYiouXE1IQd4x5V/2/b30vJPT1ujN/Zd/bB8B/ti+Fb3WfAWsJrFjp8/2 e4dSuYpMsu0hWODlGHPpXp9flZ/wazW0dl8H/jfDDGkUMXju+RERQqoovr8AADgACv1TrMYUUUUA FFFFABRRRQAUUUUAFFFFABXFfF79oHwt8Dre1PiDUhaz3zFLWBIZZpJyBk4WNWPQE8jtXXalqEek 6dPdTNshto2lkb+6qgkn8hXwn4v8RWnxw+MWq/EuaSCS28JNJa6NcICPLj3OquuckOVnIJGBg9KA Ppj4A/toeC/2j/GuteH/AA7dXMuqaAGN7G9ncRrFgxgje8aoT+9TgE9fY163XgP/AATr+GTeCvgV Hq13Ev8AaviiU6heTfxSuVVMk/SMflXv1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV83f8FKv2gbX 4WfB+Pw0s7R33jeX+yZmj2l7GymR45rsgnhI8qS2CBkV9IMwRckgAdSa+EJtdn/ay/aE1PV4B5+l 6oy6BopeEOF0uURx30oGMErOh+bkjsy9KAPXP2MfCFhoXgS78dThP7OtbBUsGJ+aFII3S4l9P3u1 W6n/AIDXxb/wUk1Lwz8S/hPcagVh1Hxl8QvE7adpN6snzWFjBfW8yAhWx80LyL91uvXvX37+0Xc2 /wANfgrpPhDTmijm1qSDSFiXCmSBmSKdwOTwr5OOmeo61+dHxl/Y7/4ai/bHh+HngWQ6HZeF7c2e p3P2l7lXeJZlEq72OxmeHOFI6gZNAH6o/AP4Yx/Bf4NeG/CsQTy9CsY7MbCSvyjHGea6+vF/2HP2 VdR/ZI+Ej+HdU8Yah4zuZrtrs3d5D5bxAxxJ5Y+dsgeWTnP8Zr2igAooooAKKKKACiiigAooooAK /LD9ty9j/wCCev8AwW28IftDeLIY7D4X+PtCbwnqniCX5bTRrljYeX9okbaiZjspmHzMcKTjrj9T 6zfFHg/SPG+miz1rS9O1e0DiQQXtslxGGAIB2uCM4J59zUrmjXp14bwb+alGUGn8pP52LvGVKpRn 8M1Z230akn8nFH5x/BKbTP8Ago//AMFmLX41eCr2LxB8LvhZ4VbR7HxBbOJLHUdQacSFIJF3K4Ed w+clTlG4wMn9HvFevxeFPC+papcHbBptrLdSE9lRCx/QU3wv4N0jwRp5tNF0rTdItS24w2VqlvGT 67UAGa+SP+C637Scn7P3/BP7xLaaZJJ/wlHjWa00DSIYhmSZri9toJcDB+7FK56duo6jLGVfZYSN GgtUrRXVznJv8ZysuysVhKTq4rnrO3M1d9FGKSv8oq7+bPHv+CHfhG4+PX7R/wC0d+0Zq0s10fGn i240PQWk6Q6fY3l+ItnGMNFcp0Zug6d/0qrw3/gmt+z1H+y7+wp8K/BvkeTf6X4X0xNTJUhpbwWc Kzu2STuLqxPNU/8AgoH/AMFDvBv/AAT4+GNtrHiGK/1fXNcuBYaBoWnQPc3ur3bKxSNI4w0m0lcF gjYLLxyK7saoYeUcNDWNNRpxt1tpolu5Su7LVt+ZzYL2mKcsQ171Vub8k9r+UY2V+y1PfqK/Nf8A aU/4KzftZ/sqfADUfif4r/ZJ8IxeD9LiS4nlt/if513HE7AKxgFhuB+YZHbNfef7Onxbf48/A7wz 4xfTZdHfxDYpeGylLF7bdn5TlVPbuBWUYOUJzjtBpPybTaTW+yY3UipQj/Om12aVk2nt1X3na0UU VJZ+eP8AwdB/8ojvG3/XaP8A9Akr6t/YB/5M1+Hv/YKX/wBDavlL/g6D/wCUR3jb/rtH/wCgSV9V /sETC2/Yu8ASN91NIDH6BmpNpK7DfRHwd+1o/wDw0n/wccfBbwVL82m/DfQbrXXZOvmzQSlR3HDW ozwPqe0P7cl/+0B+2b/wU90bwJ+zf8bPGXhXwd4eA/4WDdWUsQ0rRwDbgQwyLBMwu3UXRCygKXjb kAGvl3TvA/xk/bG/b/8A23PiV8MfiRL8OD8O7W/0SNh4ettY/t6GFtTUwJLNt+zHZkbowzDzQeqi v0K/4N0PH9n8Rv8Agm/ol61vbx+I7fUb6z1ybeJLi5uYrmWN3lbAbllcgHgZIHFPLIP6th5S0dKP tXH+Z1pTcZPpyqPLdb83KmkvirMJuGLrctnz8tFS/l9nCLa/xt81nskmtXovtS0u4vhl8OoJNc1d 549ItEF5qN2wDSlQA0jkADJPPQda/M/9lf4wfHD/AILmeIfEnj7w58R/FvwA+CWh3TaV4cPhoxwa 7rkyJHKZ7lJ47m3MRE5UNFIDmH7vGT9Ef8F8finqnwg/4JTfFjV9HlMF9/ZjRJIMZTILZGQf7oqP /glppHhz9jL/AIJDeCL2eexsdN0jQpL67uDOBFJIZHUfOSRkkIo564FZ05RmsViq/wANLkS6e9Pm k5eijGy829AknTjh8JR+OrzPu+SHKrLzlKSv1svM+bf+CXv7Tfx58a/8FTfH3wX8YeNtS8V+Dvgs 09tJqU77rnW0cXUEMl4Qip5ge3D/ACKg3MevSv1cr8pP+DbW/H7RXxG/aQ+Pxhltl+I3jO5ht4JF O6COOV5gMnH/AD89NoxX6P8A7T/xz0z9mj9nnxp491e4jt7Hwnot5qrl2A3+RA8u1c9WOw4GCT6V riarw+Coyr/FGnGUtLNuV5u67rm5fkkTRpKrja0KGzqOMV25Uofc3Fv53Pz8/bE0hf8AgpP/AMFm fA3whieW58FfAmCPxd4lQ4+zT3wFsYISRu+Ywag5wwT7p5wOfvj9pTQ/iRrfw6XTvhfd+F9N1a4k EU93rM08YtYMctCYkf8AejtuG2vkD/ggH+zrqmk/BnxT8cPFwnk8ZfGvVrnUpGuIyksFnDczW1sm M4w0EFu33V7dep++PE2provhy/u3O1LW3klJ9Aqk/wBKVei8NhYYav8AFG86munPJ80433tHSnfe 0RRrKviZ16Xwv3IP+7G6Uv8At5tzW/xL0PyP/ZL/AGpPj14H/bw+Mv7OeifErWPi7q9r5MOia140 kDLoaLPOLqS4e0jQoxghbydsbAzABsLzXL/FL9sb4/f8E5/+Cs2g/CmL4i+L/jgfiRpbRado+tmO ez0bVrhYlgaTyEhkWwSa4G5hvkEUeQrNwfUP+Dc7QrX4wfFj9pD43mB5pPGXje8tbK8lU5NuhWVQ pPGP37dB3rO/ZI0GH9rH/g46+M/j2e0juLT4Raba6DCzPvEM0n2qLcBwAd1mD0JGOtPBwm8Vg41X q6TnU0+z7J+7bZO8oLm35lfrYeKcY0Ma4rSNRQh/j9rGN297e7J225dLXZmfthfFL9of9gr9tj9n 3V9V+L3ijxPZ/FTXoLHX/BolSTRbEs3KWg8mObbhDnzHJyxr2P8A4L0eO/jH4i8B+D/h98Ovhz8V vFHhfxNcx3Hi/UPBWlJeXUVkFmPkRl3CeYZUhJDjG1j82cCvNP22bD/hq/8A4OKPgt4JMXn2fwi0 tvElygmO3d5tg4YqMdBckck9elfrCq7FAHQcCsoUo1sBSlLb2k2lbTkhLlUHfWUeaMnrunZ3RpOb o42ah8Xs4Xe1pyTlzR6J8so7Ws1tofA37Kn7bPiXStR+G3wj+Gf7Jvx4+Gvg2wV7G61Hxx4YhsdN 0u1ihLRhZILyUhiU2jcuMso75r7d+KH/ACTPxF/2DLn/ANFNW7WF8UP+SZ+Iv+wZc/8Aopq6alVz vKesm223u72/DS/q2c1OkoWUdIpJJejevq7/AII/Mz/g1v8A+SUfHP8A7H2//wDS+/r9UK/K/wD4 Nb/+SUfHP/sfb/8A9L7+v1QrI1CiiigAooooAKKKKACiiigAooqprutW/hvRLzULuRYbWxge4mdi AERFLMSTx0BoA8Q/bi+LKaL4bsPBtlcKuseK5DEgBBZERo2YEdfmViOh/Cvi/wDbxuNK+BHwW0Lw np2rw6TBHcrdahZ27q91Ncnakke1/TYp6g8Gvo3wXpVr8efjBrHxI1VBc2mgGWLTHMhWNhiRIiu0 hTnCevbrXn3wA8EyftTft63WteIdESOz8EQNeMJFMsFxeSNNDIpyAuQrg7ecccDrQB9sfB3VtG1z 4aaRc+H8/wBjSw5tckH5Mn0JHXPeumqKzsodPtlhgijghQYVI1Cqo9gOKloAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKR3EaFjwAMk0AeAf8ABRP4+3vwe+Cf9leHke58Z+MrgaPodvFLskNw6SOrZwcDETDJ IHvTP2KvgNe+BNPXUdV0hNGW1hMGl2ZkSZ7aORt82XXqTKC3Qfe/GvBPi7c3v7Vv7WKaxpt1f2g8 J6mPD2gS2s3lILkKZ1vGB5I2yumRtPSvvmyjeKziWRt0ioAzepxyaAPlX/gop8WfDsITw0+j63q3 iqKwu59OfTriW1azfy43DmRUIAzsPLD7przn/gjF4UvtXufGPi7X7fytduTHp7+ZMLiQiJn/AHhk 7u29t3f1JzXZ/td+O7f4VftE3F7qkd5BZa3pU9jBcxnKl2tkjwQAT1cDmvkX9lHXP2k9D+MGuR/B vSbK/wDDv9qv9vl1iQS2gQyuG2xCeJg23PODzt9KAP18oqHT2maxiNxtE+0b9o4z7VNQAUUUUAFF FFABRRRQAUUUUAFFFFABX5mft1TH9tr/AILSfBj4MRZl8N/DbT5fGOvbjmJpJIr+OBGRuCVmtImz g4yDxjI/SPxV4htvCfhu91K8mjt7ayhaWSR2CqoA7k1+cH/BA7w7L+0P8RPjZ+01qU0lxP8AEXxF Npmjlh8q6ZEkNxEVwMEb7iXkMw96MJrjoz6UU6n/AG98NP7pPmXfkYYl8uDnHrVap/J61P8AyRON +nMj9LlUIoAGAOAB2r8ev+DknVvEP7M/7V37Nf7QNxp1zrvw/wDh3rynVbRHBEcnmxTKVUk4YrBL hgpxk+vP7BXd3HYWks8zrFDChkkdjhUUDJJPoBXFad4g8AftdfCbVLex1DRPG3g/V/tOk3xtLkT2 05R3gnhZkPVXR0YA5BUjtWb9rGpDEULc9KSkr7dVZ+TTav03WqNabpqMqdVe5UTg7b6rp5re36HI fAD9oH4Rf8FLf2botZ0B9C+IPgXxBD5d1Z6hpxmtZirfNHJBcRjcFde64yoI7V7BpWk2ug6dDZ2N tb2dpbrsiggjEccS+iqMAD6V+KX7Pv7On/Doj/g4E0T4efDi8ux8OvjJpL3c+jKAyWDbkBI4BA3W /dm+/wDl+2tdHuTw9PE0rpVE7p7qUW4tedmnZ9vvOVc8Ks8NV1cLWfdSSkn5XVr+aCiiiszU/PH/ AIOg/wDlEd42/wCu0f8A6BJX09+xXpk+t/sG+DrO1mFtc3egNDFKc4iZt4Dcc8E54o/4KGfsL6F/ wUV/Zl1b4YeI9Z1bQdL1d1eS800Rm4TAYceYrL/F6Vi/slfsKeIP2V5tJt2+NvxE8ZaBo8Bt4dH1 eKyW1KkMBkxQq/BbPXqBUzipRcXsxxk4u6OD/wCCXf8AwS+1D9hr4d/E3S/GPiTTvGup/E3Xb3VN QvLe2dPMiuCxMb+ZuLH53ySSDmvNv2Sf+CQHxT/ZF+NHi+z8O/Fyy0/4K+K/ETeIm0SwiurbWrOQ 3EsxhiuUkESQt58gZBHhsJ/d5/Q+iqj7s4zXSCh5cseWya625U15omaU4yjLrJz/AO3pc12u1+Zr 0Z8X/t9/Gr4X/tDePx+xz4hjvtW1r4i6KWupIz8+mQho081meMqW/epyDn5/rXzzc/sM/Fn9jD/g n/f6D8ePjF4W8VfCX4aaO/2Cy0bTr21udQleTZEuoNJJKlzEJJVZU8sYdUbjbXsv7cX/AATf+Kt9 +2/4c/aN/Z71XwTb/ES1tho2t6X4wvLm10jVNPOxmy1tBLL5m+2tQANo2h+cgZ5j4x/sDftTf8FH 7zTPC/7Ret/CLwZ8MLGeO8vNP+G2p393ca3JG+9Irhb61VRGHEbZRg2UHvXNCjOrh5U4vlnVk+dv 4Y8spck0urjB3VtXJ29OiVWNOspSXNTppOKXxNyjHnjfdKUlZ30UdfXrP+DdH4On4Xf8ExvCWpy2 S2N148ceKZo0VVXN1bwNkBeg+Xoea8//AOC8XjjV/j98Tfgn+y54bluFPxX15bjxLJbzGJoNJt57 SO4R+QGV4rx8qdwIXBU9K/Rvwj4UsPAvhew0bS7dLTTdLgS2toUztijQYVRnngCuLtv2S/hzZ/tE XHxZj8KaevxFu7NbCbXA0n2h4AoURkbtuMAD7vavRxc6dfGwqtfuoyTt1agvcj96jzeSas7nHg/a UcNNX/etOz6KUn7z+ScnH+9bodP8LvAVp8LfhvofhywjSKz0SxisolRQowiBc4AA5xnp3qr8aPCO q+PfhVrui6JfW+mapqdo1vb3U6M8cJbgkhSCeM9D3rqKK5cVBYmM4VtVO9/nua4b9xy+z+za3y2P l7/gk/8A8E/b/wD4JvfsbW/w2u9d07X9ZF1LfT6lbWzRQyzPDFGTtY7sZizye/Wuf/4Jo/8ABNPX P2Ivjj8e/HPiXxRpXifUvjL4k/tqI2drJCbCEXN9MkLlyS21bwKMHHyH1r7BoreVecq0q7+KUeV/ 4bxdvLWKM/ZpUlR+zzc3rLXV9/ib1669D4F/aO/4JW/FXWv+ClN3+0N8JfiN4S8K3ut6F/YGq2mt 6XcXjmDbZgtA0Ukflv8A6GmCSep4r7S+DPw0Pwf+Gul+HW13xF4lbToyralruoPf39yzMWJkmf5m wWwM9FCjtXUUVlS/d0VQj8Kv+Lcrel5SaXS7NKv7yt7efxWS+5KK+dklfyCsL4of8kz8Rf8AYMuf /RTVu141+0/+y54k/aEkiXSPi745+HdmIJbe4tdDjtGjuw6qvz+dE54AOMEffNAHwp/wa3/8ko+O f/Y+3/8A6X39fqhXzV/wTU/4JoeH/wDgmj4C8S6HoPinxF4s/wCEp1N9VvLvWFhWbznlmkbHlKo5 aZu3YV9K0AFFFFABRRRQAUUUUAFFFFABXg/7bXj2Y6Hp/grTSWvvFDmGYJJgiAlUkU+m5ZO5/Ovb 9X1WHQ9MnvLl/Lt7ZDJIx/hUck18ufsweHJ/2gv2gfFHxC19rxo7KeKDR7dJR9lRUUxu3ltk7iYV OQRyTQAvxj8O6X+z1+zNpfhNJbqwi1O3ku5rlCweKSJY5QhkHTLfKOec8Zrh/wDgl3+zn430fU7v 4jXPi6UeHfFVzJfDR7qzaSaVJUV1bzjJkfeXgp/CfWtL/gqfqJv9BubG61a6tbS0jiuIrOFnX7UQ 6MwPBXjaOuOtenf8E6P2i7H45/ATRrey0q803+wrGGzczkYlZI0BZcDoc0AfQdFFFABRRRQAU2SQ RIWYhVAySTgCnV4d+0H8Q7rxf42tvBGi31xYw26f2jr97bu0clvZqdkkasP4yJEYHDDjoaAPaLPW bTUZCtvdW07L1EcqsR+RqzXyd+w14MYfHXxxqNtrWu3VhYG3hFpd3XmRLvibDBcAZO0k+5r6xoAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiv Hv2hf2vNM+Cl/Hpdpp97rusyqHMdpH5sNoMsMzspzGMqRkjqVHegD2GiviT4T/Er49/tYfGGRrXU tO8NfD2yIS4uLNEuVumymfJd4cONrN0ccqa77WP2BNa8V/Eb7bq3xC1a70RF+S2FtFGWbC5yUweo PfvQB9O15X+2J8YLn4PfBTULrTIxca5ebYLC3xkzMZEEmBkdIyx69q4uX/gnF4Udtw1PVVk7t58v P4eZWN4m/wCCVvgnxfeabcX+o6rcTaTI01oxmlHlOylGOBJg5Ukc5oAf+wT8GYtDQ6kUL2mgWx0T T5X/AOXtAyTCfpycsy546dO9fT1edeE/ghqvgfwxbaRpfjC+tbKzj8qFBYwNsHXqwJP4msnw18C/ iHpGrtPe/GXXNUtypC28mg6fGqkkc7ljB/8A10Abf7T7Ffgxqw/vKFPuDnNePf8ABL/RbfTPh74l kh3bpdbugwPQfP2/OvWfE3wP1nxlocunan411C6tJvvobCBN34qAf1rJ+G37LNx8INMns/Dni7UN Mtbmd7mWMWUMu+Rjlmy+48/lQB69RXC/8K18V/8ARQNS/wDBZa//ABNZ/iT4JeIvFmiXWnXvj/VJ LO9iaGaMadbJvQ8EblUEfUGgD0qivnu0/wCCfum6fLHJB4o1iOaJgyvtz0OehbFcbrPgj4jfCrxy 1lcfHnSdH0xizWlrfRafFPIuCQuHjzgZXnJPNAH1bqurQaLarNcOI43migBPd5JFjQfizKPxqzXx 9rHj3xxrHxt+Henan4k8IeIvD9vq1s90bTUY2ubly4Eb7I4x92QRvgHB2kHjivsGgAooooAKKKKA CiiigCO7tIr+2eGeKOaKQYdJFDKw9CDwapeF/COk+CNJSw0XS9P0ixjOVtrK2S3iU4A4RAB0A7dq 0aKAOd+L3h++8W/CfxPpWmOI9S1PSbu0tHOMLNJC6oeePvEda/LP/gm98NP28f8Agm94O8W+Dm+A vg/4o+Hb7XrzU9Hnl+JFjor2iT3VxO+VFvMzF2m3fM3y4xX63UVNNOFSVSL+KKi10snzL536/Lqx 1Gp0405LSMuZetrfkfDP7EP/AAT78eeIP2pL39pD4/vZxfEq9sW0zSvDVq8dxb+FLfzIyEW6hZUu SxiL7jCpHnlf4efuaiitLpQjSgrRirJLprd73bbbbbbbbd2yOX35VJO8pO7f4LySSsklokgoooqS gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK+ZP2tf2h/FOleL28M+G 72Dw/wDZY/tNxczBDc3qAspjt43VhISSpGMH5G9KAPobxR440nwXAJNVv7exRujStgGvP/EX7bvw p8K3CQ3vjjQ4Z5CQsZm+ZsYz29xXy9+xp+x9pv7QfxCf4meJ9T1e9k0y5QWWnXW63eEqwyZURhjL RZAIOVbNfXVl+zP4J0/xqPEEehW/9pquxZWkkYAYx90sV6e1AHIv/wAFCfhLHMVbxdpox/F5gwal X/goB8I2XP8Awmujgeplr1Y+F9NI/wCQfY/9+F/wpj+D9Kcc6bZf9+V/woA+R/2zP+Ckfw6Hgq38 N6L4ktru68QTC2mkicGOOB1dWJOc9dvY11vwA/ba+BfgjwTZaJZ/EXw1PfxpunRLglyxJbngdN2K +i28H6SyAHTLAgcDNupx+lYmk/AjwhoerG+tdAsYrps5cKT168E4oA+Wf+CgH7U/ws8ffBjy7TxD pWpXi3MOzy5Mug8+Ldj8Afyr0/4I/tp/Crw/8HvC9lL4y0eCS20u3jaNpeUIQDBr3EeDNJx/yDbE /WFT/SmnwRo5/wCYbZf9+hQB5u37d/wlVwP+E30Xn/ptSN+3l8JFUk+OdEGPWavSf+EI0fH/ACDb L/v0Ka3gLRXPOmWX/foUAedWn7dvwlvJ0RPHGiZkOF/fdTXW6J8fPBviMIbHxFp1zvO1dj5yevpW xJ4B0WSLYdMs9voIgK+T/wBqTwB8H/gp8TFvtS+F/jLXtQ1jdK15pqXr2MDEszF3SdVUnceMdxig D6R+OPxktvg/8PJtZ2fbLl/ksrZBlruTrtUZGTjJ6jpXl2l+B7n4VfDaO21W5S58T+K7pZ9dmBJE sWGjJGQDgKIxyO1fOHiOHwrrniPSPEHhKxTQZ9FxJafa9QmfyG+ccrI7qeH7g1zPxj/aX+IM8V49 74q1fVJtUtH0aKHw/pNrftAsvzbzhAQAV6+4oA+2P2JfDR0/4Vy6tPbi2vdYu5xKo7rDPLHGfxTB /GvZK+GPgZ+3xrvgjQfDGlXOkQ6paXWoW2lSxFtmqxNNNs837Mq/dGSWOeOPWvuKzuPtdpFLtZPN QPtYYZcjOCPWgCWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAr58/aa/ZP1jxrrs3iDwjqEUN7dRCG+0+aJSNQXez4EzN+65KnhT933r6DooA+Df2 e/2gvGP7H/xDPgbxH8OdYt/Bk0yrb6lavJdrZbtudxWE7hzIclx6V9BeGv2+PBfib4kSeH0+326h N8d3cW8kUb/KpIyygDk469q9p1DTbfV7VoLq3huYX+9HLGHVvqDxWA/wX8HSyb28J+Gmb+8dLgJ/ 9BoAhT43eF5OmsWX/f1f8agvP2g/BunXVvBP4h0qGa7YpBG90itMQMkKCckgAnjtWgPhB4SH/Mr+ HeOn/Eth4/8AHa8Y/bp/ZY03xx8FLi/8LeHNIg8V6A63WmSW1rDBIpZ0SXD4XH7oyfxD056UAe46 f470/VrI3FsZpoAMh0iLK4/2SOv4Vz2hftC+H9f1KS1RNXtpY1LN9q0+WBcDHdgB3ryj9hf4yW3i q3k05biWTT9atzreipMWJtrTckIi+Ydd4c4wvX7vevoW68P2F85aeytJmYYJeFWJH4igDNh+I+l3 EUkiSStFCpZ5BESigckk9Oxqjo/xt8OeIb6a20+/S+ubZVeWK3HmvErZCswXJAODgnrg1b8a6RZ6 V8Odejt7a3tYjp9xuWKMIP8AVt2A+tfGH/BMHUXvP2wvi5BvaS3g0XTBFubOB590P5AUAfak/j+z t8Zh1Dn0tHP9KYPiLYkf6jUv/AOT/Ct4oD2H5UBAOw/KgDhfFv7RvhnwOyDVJb60aRSyK9o4Lgdc DHPUdK+Yfix8UPhV+038SfO1Lwh4/vLmwWSK2v7Wz1BIiQMH5UQKfujBzX2J4g8D6L4tmik1XR9L 1OS3BETXdpHMYgcZ2lgcZwOnpU+k+GtO0GMJY6fZWSjosECxgfkBQB8LeDtOufD3xy+H1ho3hHUb LTL7WbYrqOpTSRMkcbiRgUlTO4ouAN2SzADmvvesfxh4Ls/GcFmLqJDJYXtvewS7QXieKZJPlPUZ 2bTjqCRWxQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABXCfGj9nbw18dNOji1i1YXEDB4bqB2iljIDAfMpBI+Y8ZxXd0UA fGn/AAwt8Uvgh8YovFXgDx1/aOmtNFJd6DcWaQRXSJsynmvK20sEI3BMjeT9fQNK+IPx6074j/at S8F6XJ4fZCr2cesQlkYLgMHEW4884xX0XRQB5inxi8Zcb/AQXPpqucf+QqbN8ZvGKH5fAO71/wCJ rj/2lXqFFAHzd8VP26vEPwe1/TbPWfhtdJFqsiw29zFqLSRb2JADMIML0PU9q2vCXx6+LOo3vmaj 8LbG306Rd0U0XiRJmYHlflEAI4967b9pr4XD4q/Cm8tIw322zzeWZUgHzlRwvJ7fN6isP9jr4oH4 gfDlrSVpJLnRXNvLI5YljvkHU+m3FAHM/GP9szxH8EfCx1jWPh6RY+bHCGTVyx3O6oOBCe7iuh0P 9oHxv4h0C01G2+HMbQXsSzR51sAlWGR/yxrx7/gqr8Ur/TvhreaTBpMk2n6bLZ3l3eLMo2Dz4nVQ n3iSUI4B6161+wn+0bpv7R3wJ0zUNNsr6xj0+NLJ1uopEZmSOMkjei5HzjkDHHWgDSuvjL4/jRTF 8OIZSeoOuBcf+Qah/wCF1/EX/omVv/4Px/8AGa9dooA8bufjJ8U7r5LX4X2W7H3n8SIuD+MFcPD4 a/aE8Z+KprnVf+Eb0vSZZH8uxeC0v/JQ7inzkAnGV7c7a+nKKAPi39ov9l3xZo2k6Zr/AIi8UWep 6BaSj+2NP0zw5FZSLFtb5lkhcsTuKjAFWvin+xj4L0e3e80SS7+z6vo81nZTxXUjol4zDy3DB8ZG 1v8AGvsHUdNt9YspLa7t4bq3lGJIpkDo49CDwa+btO0S58BnU/hzqEtxLHpKHWfDszS/NcRIApQt k8mWVsAkHA6d6AOw/ZT+DHg2x+HWnavYaTazXTlkeedvtLeZFIyFgzZwdynp0/CvaAMCvB/2DfEc EvgfV/D8Jl/4kF2xdZCSVaeWaU84x1J6V7xQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2aITxMjcq4Kn6GnUUAfBHjia2/Y8+O d7YXGoG0trG5/wCEn0cXBLI1kMQCxTaBgeYHkxwOD83avu/SdQXVdMguU5WeMOMe4r5x/wCClvwq mvvhZafEjQ7C1vPF/wAMrhda05Z2cLMY0lURkLnjMxPT8a6/9kb9ovUvjJoktn4ij0m3120RX/4l 8rPb3SEZLRl8MQuVU8DDZFAFT9rvxZ4sF3Y+G/DFzpVmuraTqk95LeLKTthhRgE2MOoZuoPavzK+ E37efiH9iL9rjxiuneGYvF82r6JpUU9lbRk3k8gmmDNGWljQDLFvm5wp71+lX7adnrXhg2njHT20 QadoukapBfnUZpI9omhRVKbVIzhW6kdq+fP+COfjrSvH3xT+Il3bxyx3TWdoreYq7JlEkxDxnJJQ 8kE4yMUAfb3wl8cXHxK+Gui69daVeaHcaraJcyafdlfOtGYZKPtLLkexIroqOlFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAV8xSre/syftVeVbTPH4U8YujR2rH93E6iNXZQMAZeRievJ r6dryv8Aa8+FjfEf4R301pHG2raLG1/ZlyQC0alwvGepVe1AHgn/AAU+0HWL/T7W68PEzm8e2nvI pzm3eGCSKTIAwc7d/U9cV9P/ALP/AIhtvFfwR8KajaKsdteaXbzRoowEVo1IAH41866zcP8AtC/s pIt3P9m13w3ELO4aPGIFk2RSDnttRgcjOK4D/gj78HPD3hbxD43lsNZuLi+0TWrmwitoyjWz2ieW I5VP3jks3twKAPvmiiigAooooAK4b42/BO2+L+l2hW7utK1fS51urG+tXVJYpFDbQWKt8uWyQBnI HNdzRQB4z+yp+yvd/s66h4gurzxLqmvz6/LHLIbqcSBCm/p8i/3/AH6V7NRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQ 39hDqlnJb3ESTQSja6OMqw9CK+FfhXNefsufHufwoWuFh8LXSJbSyx4F5pU5S5u5tzZyI3k2ZycY +8vSvvCvlz/gpb8KtRfwXZ+PfDhS21XQCYNVmMYcf2SQ0l1lcjccRpxyeMAGgDsP22/C8fj/AOCW n6tF51xZ6be2mpTxxFiJrVZEklyAeRsU9fWvhoftEeGv2Ev2+9K8U3cksfgXx1YHUJE06MTtawyw 3ElujIDxhpYx1GOfTFfa37InjJfid8HtR8F6xeLfX9vYIJJ2GBPBdpI0YVTn7keAQCccZx0r4E/b x/ZU0TTP2cPFuo/ab9tR8A+K2F6J5maWTTpNSt7eBIiTlIwN+FXcAvGAKAP0y/Z1/a9+Hv7VWm3d x4I8TaVrMmnyGK7tYbuJ7m0YBCRJGrFkI3r97HWvS68N/YQ+Cfw08AfBrS/Efw78O6bo9v4rtUvp Z4Yk8+53qnMkgVWcnYvLegr3KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKbJGJYyr AMrDBB6EU6igD5M13S739nz9qC4sW8pfCHjNZm3PgZmdJCQAQeFeReh/AV4UPixr37Dv7aE97Z+F LzxFpPiyE+HYrfSkeaWWSB5pzc+WiMfmXHTjjrxX2j+2D8KZviR8J7mfTolOuaMDdWMnAKYZGcAk jqqY618j+M9Tn+IHgXwd46kum0nxD4WZYr3y88P5YRicEfNmUgtzmgD9AfDWrvr2hW15JbzWjzpu MMqlXj9iDyKvVS8O6/beKNEt9QtH8y2ul3xsO46VdoAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqHi nw1Z+M/DWoaRqEK3FhqdvJa3MTAESRupVlIOQcgnqKv0UAfBfwm8Qz/s4fHDUNA1PdDe+DNQSNHk bP8AaVnqDsyZI6i2iCgA4wGwB2rp/wBsv9nvQ/in8ZtNkvb7VP7D+JWjz2qwW06x2k0ttbS3MMki MpBzIYyM9wDxW3/wU/8A2ftO8Z6X4X8d3FhDfHwlcvBdxvnH2a5eBZpeO8aRFhyB6g1kXunW/wC0 V+yBq/hKGe5FxoS2V9os9vt8xdJE8LwMucj5oISDxjB4oAyP+CD/AMS9S1L9lTXPh/4jlP8Awkvw l8Sz+ELqNpN5ItrSzYsDkjG6Yjg9q+4K/Fz4h/BHx38PP+ChHh+H4DeK38FWnxs8LQ60st7JshGq zXV0ZGJjjchvItohxu6V+t/7PnhjxZ4N+Eej6d441e213xPbRst9fW7M0c7F2IILKp+6VHKjpQB2 lFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2aJbiJkdQyOCrKRkMD1FfEX7RHwZ1 r4U/FjVYk0wXXw/8U7rppV2lbK5Z3cpsznaAsQGEPXr6fb9FAHz5/wAE5finq/jn4Gx6TrunNY6p 4ZkNhM4+5cEBX3KMkgfPjk9q+g6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAzvF3hm28aeF dS0i9QPaapay2kynukiFT+hNfnt4N+Jt9+zF+0u3gi/0XWbmLQbu5hmlhtGaCTQ5RLb6ajPxjZgn PU92av0ar5Q/4KRfDe58KjRvivo1n9qm8NMbXWLRF+bUre4KWsW488QtO0v3W+7/AA/eAB82/tO/ Ba5/Z9+NLeLPCltpdvaeBZD4rtQL6Saee1lZ7RdiPuG3Ldjjg1+nWm6hDqthFcQSJNFKuVdGDK30 Ir4P1m10/wCIfwvs0udQ+12uguNLuLzbuOqaKihops5+607nnLcr9417l/wTI+J998Q/2VdFt9YV 013Q99pqKu+5hIXd1zwP4GWgD6FooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArP8U+GrTxj4dvNLv4Iri0vomikjkQOpB7 4IIyDyPcCtCigD82ZfhF4l/Yj+Imvad410jXfFfwtv7X+zNCvNPvlVtPs1l3xW0sIMkjldjNuEar +8HAINVv+Cc3x+8V/Db9qPUPB9pp+oeKfBvjWVb86rJby2h0yUGCAIyzAMw27m4Ar9L6KACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k= " + id="image1" /> + </g> +</svg> -- GitLab From cedc86155d55ad4f524857099ddb0ee88207c0f1 Mon Sep 17 00:00:00 2001 From: Christopher Ruwisch <christopher.ruwisch@gmail.com> Date: Wed, 29 Jan 2025 16:37:01 +0100 Subject: [PATCH 51/53] initial commit changing main content --- docs/assets/css/unicado.css | 93 ++++- .../images/logos/UNICADO_Logo_white.svg | 319 ++++++++++++++++++ .../UNICADO_Logo_white.svg:Zone.Identifier | 3 + docs/documentation/.gitattributes | 5 + docs/documentation/.gitignore | 74 ++++ .../.gitlab/issue_templates/Default.md | 18 + .../.gitlab/issue_templates/bug_report.md | 22 ++ .../issue_templates/documentation_request.md | 14 + .../issue_templates/feature_request.md | 17 + .../issue_templates/testing_request.md | 24 ++ .../.gitlab/issue_templates/todo.md | 16 + .../merge_request_templates/Default.md | 29 ++ docs/documentation/.gitmodules | 3 + docs/index.md | 23 +- mkdocs.yml | 8 +- overrides/home.html | 42 +++ 16 files changed, 680 insertions(+), 30 deletions(-) create mode 100644 docs/assets/images/logos/UNICADO_Logo_white.svg create mode 100644 docs/assets/images/logos/UNICADO_Logo_white.svg:Zone.Identifier create mode 100644 docs/documentation/.gitattributes create mode 100644 docs/documentation/.gitignore create mode 100644 docs/documentation/.gitlab/issue_templates/Default.md create mode 100644 docs/documentation/.gitlab/issue_templates/bug_report.md create mode 100644 docs/documentation/.gitlab/issue_templates/documentation_request.md create mode 100644 docs/documentation/.gitlab/issue_templates/feature_request.md create mode 100644 docs/documentation/.gitlab/issue_templates/testing_request.md create mode 100644 docs/documentation/.gitlab/issue_templates/todo.md create mode 100644 docs/documentation/.gitlab/merge_request_templates/Default.md create mode 100644 docs/documentation/.gitmodules create mode 100644 overrides/home.html diff --git a/docs/assets/css/unicado.css b/docs/assets/css/unicado.css index 8837256..53ada91 100644 --- a/docs/assets/css/unicado.css +++ b/docs/assets/css/unicado.css @@ -1,27 +1,64 @@ /* Define color variables in :root for easy reference */ :root { - --primary-color: #2C3E50; /* Primary color for headers, hero section, and cards */ - --background-color: #34495E; /* Background color for main content areas */ - --text-color: #D1D5DB; /* Main text color for readability on dark backgrounds */ + --primary-color: #00418b; /* Primary color for headers, hero section, and cards */ + --background-color: #00418b; /* Background color for main content areas */ + --text-color: #ecf1f8; /* Main text color for readability on dark backgrounds */ --button-bg-color: #ffffff; /* Background color for buttons */ - --accent-color: #E74C3C; /* Accent color for links and hover effects */ + --accent-color: #e20e1f; /* Accent color for links and hover effects */ --secondary-accent: #1ABC9C; /* Secondary accent color for icons */ --link-color: #3498DB; /* Link color for clickable items */ --link-hover-color: #E74C3C; /* Hover color for links */ + --bg-gradient-start-color: #00418b; + --bg-gradient-intermediate-color: #1C5598; + --bg-gradient-end-color: #ffffff; +} + +.md-typeset h1 { + color: var(--text-color); } .md-header { - background-color: var(--primary-color); + color: var(--text-color); + background: linear-gradient(to bottom, var(--bg-gradient-start-color), var(--bg-gradient-intermediate-color)); /* var(--md-primary-bg-color); */ + } +.md-tabs { + color: var(--text-color); + background: linear-gradient(to bottom, var(--bg-gradient-intermediate-color), 75%, var(--bg-gradient-end-color)); +} + + +[dir="ltr"] .md-header__title { + margin-left: 0.1rem; + +} + +.md-header__topic { + font-weight: bold; +} + +.md-header__topic:first-child { + font-weight: lighter; +} + +/* [data-md-color-scheme=default] .md-header { */ + /* background-color: var(--primary-color); */ +/* } */ + /* Apply primary color to tab backgrounds */ -[data-md-color-scheme=slate] .md-tabs { - background-color: var(--primary-color); +/* [data-md-color-scheme=default] .md-tabs { */ + /* background-color: var(--primary-color); */ +/* } */ + +body[data-md-page=Home] .md-main { + background: #00418b; } /* Hero Section Styling */ .hero-section { - background-color: var(--primary-color); + background: transparent; + color: var(--text-color); padding: 2em; border-radius: 10px; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); @@ -31,6 +68,13 @@ } +.hero-logo { + width: 60%; + max-width: 100%; + height: auto; + display: block; +} + /* Text styling within the hero section */ .intro-text { color: var(--text-color); @@ -44,17 +88,29 @@ } .download-button { + background-color: var(--text-color); display: inline-block; - background-color: var(--button-bg-color); /* Uses button background color */ padding: 10px 20px; font-size: 1.1em; font-weight: bold; border-radius: 5px; text-decoration: none; - color: var(--primary-color); /* Button text color */ + color: var(--primary-color); transition: background-color 0.3s ease; } +.download-button:hover { + background-color: var(--primary-color); +} + +.download-button a { + color: var(--primary-color); +} + +.download-button:hover a { + color: var(--text-color); +} + /* Grid Container */ .grid-container { display: grid; @@ -66,7 +122,8 @@ } .grid-item { - background-color: var(--primary-color); /* Uses primary color for card background */ + /* background-color: var(--background-color); Uses primary color for card background */ + background: transparent; padding: 1.5em; border-radius: 10px; text-align: left; @@ -97,12 +154,12 @@ } .card a:hover { - color: var(--link-hover-color); /* Changes to accent color on hover */ + color: var(--accent-color); /* Changes to accent color on hover */ } /* Accent color for icons or specific elements */ .accent { - color: var(--secondary-accent); /* Teal accent color for specific elements */ + color: var(--accent-color); /* Teal accent color for specific elements */ } .overview-item { @@ -118,11 +175,11 @@ display: flex; align-items: center; justify-content: space-between; - background-color: var(--primary-color); /* Background color for the footer */ - color: var(--text-color); + background: var(--bg-gradient-end-color); /* Background color for the footer */ + color: var(--background-color); padding: 1em 2em; /* Adjust padding for spacing */ font-size: 1em; /* Increase text size for better readability */ - border-top: 1px solid rgba(255, 255, 255, 0.2); /* Subtle top border */ + /* border-top: 1px solid rgba(255, 255, 255, 0.2); Subtle top border */ } /* Align text and links */ @@ -139,7 +196,7 @@ /* Footer link styling */ .footer-link { - color: var(--text-color); + color: inherit; text-decoration: none; font-weight: bold; font-size: 1.4em; @@ -162,6 +219,8 @@ height: auto; margin-left: 1em; /* Space between image and text */ border-radius: 8px; /* Optional: Rounded corners */ + border-color: var(--background-color); + border: 1px solid; } diff --git a/docs/assets/images/logos/UNICADO_Logo_white.svg b/docs/assets/images/logos/UNICADO_Logo_white.svg new file mode 100644 index 0000000..1f60fd0 --- /dev/null +++ b/docs/assets/images/logos/UNICADO_Logo_white.svg @@ -0,0 +1,319 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<svg + width="298" + height="71" + overflow="hidden" + version="1.1" + id="svg86" + sodipodi:docname="UNICADO_Logo - Kopie.svg" + inkscape:version="1.2.2 (732a01da63, 2022-12-09)" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <sodipodi:namedview + id="namedview88" + pagecolor="#ffffff" + bordercolor="#666666" + borderopacity="1.0" + inkscape:showpageshadow="2" + inkscape:pageopacity="0.0" + inkscape:pagecheckerboard="0" + inkscape:deskcolor="#d1d1d1" + showgrid="false" + inkscape:zoom="1.6372607" + inkscape:cx="-43.670505" + inkscape:cy="38.784294" + inkscape:window-width="1920" + inkscape:window-height="1001" + inkscape:window-x="-9" + inkscape:window-y="-9" + inkscape:window-maximized="1" + inkscape:current-layer="g84" /> + <defs + id="defs46"> + <linearGradient + x1="185.239" + y1="217.114" + x2="168.208" + y2="198.587" + gradientUnits="userSpaceOnUse" + spreadMethod="pad" + id="linearGradient1747"> + <stop + offset="0" + stop-color="#3070B3" + id="stop1743" + style="stop-color:#00c1d4;stop-opacity:1;" /> + <stop + offset="1" + stop-color="#86B1DF" + id="stop1745" + style="stop-color:#02e9ff;stop-opacity:1;" /> + </linearGradient> + <clipPath + id="clip0"> + <rect + x="948" + y="638" + width="298" + height="71" + id="rect2" /> + </clipPath> + <linearGradient + x1="185.239" + y1="217.114" + x2="168.208" + y2="198.587" + gradientUnits="userSpaceOnUse" + spreadMethod="pad" + id="fill1"> + <stop + offset="0" + stop-color="#3070B3" + id="stop5" /> + <stop + offset="1" + stop-color="#86B1DF" + id="stop7" /> + </linearGradient> + <linearGradient + x1="54.3874" + y1="28.8395" + x2="33.6735" + y2="17.8514" + gradientUnits="userSpaceOnUse" + spreadMethod="pad" + id="fill2"> + <stop + offset="0" + stop-color="#EA7B90" + id="stop10" /> + <stop + offset="1" + stop-color="#BE1E3C" + id="stop12" /> + </linearGradient> + <linearGradient + x1="43.9735" + y1="29.0697" + x2="22.0527" + y2="50.9907" + gradientUnits="userSpaceOnUse" + spreadMethod="pad" + id="fill3"> + <stop + offset="0" + stop-color="#6C6C6C" + id="stop15" /> + <stop + offset="1" + id="stop17" /> + </linearGradient> + <linearGradient + x1="34.7104" + y1="42.5904" + x2="5.58103" + y2="48.6115" + gradientUnits="userSpaceOnUse" + spreadMethod="pad" + id="fill4"> + <stop + offset="0" + stop-color="#00427D" + id="stop20" /> + <stop + offset="1" + stop-color="#007DEC" + id="stop22" /> + </linearGradient> + <linearGradient + x1="12.4171" + y1="21.8334" + x2="27.0816" + y2="41.5023" + gradientUnits="userSpaceOnUse" + spreadMethod="pad" + id="fill5"> + <stop + offset="0" + stop-color="#E20E1F" + id="stop25" /> + <stop + offset="1" + stop-color="#F24657" + id="stop27" /> + </linearGradient> + <clipPath + id="clip6"> + <rect + x="1106" + y="653" + width="24" + height="26" + id="rect30" /> + </clipPath> + <image + width="24" + height="26" + xlink:href="" + preserveAspectRatio="none" + id="img7" /> + <clipPath + id="clip8"> + <rect + x="1106" + y="653" + width="24" + height="26" + id="rect34" /> + </clipPath> + <clipPath + id="clip9"> + <rect + x="1198" + y="661" + width="43" + height="43" + id="rect37" /> + </clipPath> + <clipPath + id="clip10"> + <rect + x="1198" + y="661" + width="43" + height="43" + id="rect40" /> + </clipPath> + <clipPath + id="clip11"> + <rect + x="1198" + y="661" + width="43" + height="43" + id="rect43" /> + </clipPath> + <linearGradient + inkscape:collect="always" + xlink:href="#linearGradient1747" + id="linearGradient457" + gradientUnits="userSpaceOnUse" + x1="185.239" + y1="217.114" + x2="168.208" + y2="198.587" + spreadMethod="pad" + gradientTransform="matrix(-0.42225183,-0.90647856,0.90871757,-0.4232948,997.29228,914.26247)" /> + </defs> + <g + clip-path="url(#clip0)" + transform="translate(-948 -638)" + id="g84"> + <path + d="M168.208 198.587C168.208 198.587 185.446 204.074 185.174 216.773 184.909 229.086 169.714 224.706 169.714 224.706 169.714 224.706 178.02 225.236 178.291 216.943 178.544 209.203 168.208 198.587 168.208 198.587Z" + stroke="#3D6EA2" + stroke-width="0.0805491" + stroke-opacity="0.980392" + fill="url(#fill1)" + transform="matrix(1 0 0 1.00247 959.453 474.551)" + id="path48" /> + <path + d="m 1106.7256,677.72463 c 0,0 -2.2926,-17.94849 9.3621,-23.07735 11.3009,-4.97182 13.7368,10.65616 13.7368,10.65616 0,0 -3.0256,-7.75356 -10.676,-4.48883 -7.1403,3.04696 -12.4229,16.91002 -12.4229,16.91002 z" + stroke="#3d6ea2" + stroke-width="0.0806485" + stroke-opacity="0.980392" + fill="url(#fill1)" + id="path48-2" + style="fill:url(#linearGradient457);stroke:#00c1d4;stroke-opacity:1" /> + <path + d="M24.6418 21.1874C24.6418 21.1874 30.9312 11.7743 42.0749 14.3407 54.1568 17.1233 54.3876 28.8396 54.3876 28.8396 54.3876 28.8396 45.2261 21.3469 39.6585 20.0367 34.7717 18.8868 24.6418 21.1874 24.6418 21.1874Z" + stroke="#C7314F" + stroke-width="0.0805491" + stroke-opacity="0.952941" + fill="url(#fill2)" + id="path50" + transform="matrix(1 0 0 1.00247 1086.95 651.274)" /> + <path + d="M43.9736 29.0697C43.9736 29.0697 48.9549 38.5784 42.0749 46.5605 33.4985 56.511 22.0527 50.9906 22.0527 50.9906 22.0527 50.9906 31.3154 48.8724 37.357 42.3029 41.7683 37.5062 43.9736 29.0697 43.9736 29.0697Z" + stroke="#161616" + stroke-width="0.0805491" + fill="url(#fill3)" + transform="matrix(1 0 0 1.00247 1086.95 651.274)" + id="path52" /> + <path + d="M34.7105 42.5906C34.7105 42.5906 20.1955 55.3134 8.53194 46.4454 2.14078 41.5862 11.4087 30.9108 11.4087 30.9108 11.4087 30.9108 6.54432 38.1851 14.6307 42.3604 20.4931 45.3875 34.7105 42.5906 34.7105 42.5906Z" + stroke="#444444" + stroke-width="0.0805491" + fill="url(#fill4)" + transform="matrix(1 0 0 1.00247 1086.95 651.274)" + id="path54" /> + <path + d="M19.189 12.1287C19.189 12.1287 16.6741 18.3127 18.7822 28.0767 20.3828 35.4902 27.0816 41.5022 27.0816 41.5022 27.0816 41.5022 15.0506 41.2532 12.3542 28.8089 10.1085 18.4447 19.189 12.1287 19.189 12.1287Z" + stroke="#E30E1F" + stroke-width="0.0805491" + stroke-opacity="0.984314" + fill="url(#fill5)" + transform="matrix(1 0 0 1.00247 1086.95 651.274)" + id="path56" /> + <g + clip-path="url(#clip9)" + id="g70" + style="fill:#ffffff"> + <g + clip-path="url(#clip10)" + id="g68" + style="fill:#ffffff"> + <g + clip-path="url(#clip11)" + id="g66" + style="fill:#ffffff"> + <path + d="M9.38124 5.47236C6.84635 7.07468 3.90302 10.04 2.42395 14.426 1.30943 17.7309 1.13432 21.6777 2.39458 25.4529 3.51183 28.7997 5.7266 31.8589 8.71401 33.9397 11.5573 35.92 15.0063 36.9464 18.3715 36.8511 21.9988 36.7699 25.4458 35.3962 27.9991 33.2254 30.6867 30.9402 32.3567 27.8407 32.9347 24.8163 33.5884 21.3963 32.899 18.1172 31.6247 15.6517 30.7933 14.0432 29.7023 12.7244 28.5842 11.6982 27.4643 10.6703 26.3268 9.94133 25.3224 9.41739 25.3171 9.4146 27.748 4.69272 27.7402 4.68873 27.748 4.69272 30.2251-0.00519014 30.235 4.31641e-06 32.099 0.972299 34.0932 2.37663 35.9492 4.31917 37.7955 6.25127 39.5044 8.72207 40.6766 11.6872 42.4656 16.2132 42.8962 21.7357 41.1616 27.0648 39.6242 31.7879 36.4301 36.0759 32.069 38.8734 27.9179 41.5361 22.8991 42.7025 18.0783 42.1567 13.6112 41.6305 9.48517 39.652 6.39241 36.7763 3.1404 33.7527 1.12267 29.8478 0.36369 25.9806-0.492325 21.6191 0.242872 17.439 1.73228 14.1526 3.70191 9.80669 6.88426 7.0507 9.38124 5.47236Z" + fill="#BFBFBF" + transform="matrix(1.00015 0 0 1 1198.07 661.483)" + id="path64" + style="fill:#ffffff" /> + </g> + </g> + </g> + <path + d="M59.257 42.6301 59.257 85.5161 47.5763 85.5161 47.5763 42.6301ZM41.3523 74.5175 45.4448 81.9351 45.4448 82.0204C42.4893 84.6351 38.8231 85.9424 34.4462 85.9424 27.5118 85.9424 22.5952 84.0667 19.6963 80.3152 17.0248 76.9617 15.6891 71.6187 15.6891 64.2863L15.6891 42.6301 27.3696 42.6301 27.3696 64.2863C27.3696 65.821 27.3982 67.2987 27.4549 68.7198 27.5687 70.1409 27.8812 71.3912 28.3927 72.4713 28.9612 73.5513 29.8138 74.4322 30.9506 75.1143 32.0875 75.7395 33.7075 76.0522 35.8104 76.0522 36.7769 76.0522 37.7147 75.91 38.624 75.6259 39.5335 75.3418 40.3861 74.9721 41.1818 74.5175Z" + fill="#BFBFBF" + transform="matrix(1 0 0 1.00247 938.012 617.542)" + id="path72" + style="fill:#ffffff" /> + <path + d="M47.5988 42.6301 59.1942 42.6301 59.1942 85.2603 47.5988 85.2603ZM86.989 47.5752C88.4101 49.3374 89.4332 51.5542 90.0584 54.2256 90.6838 56.8969 90.9963 60.1938 90.9963 64.1157L90.9963 85.2603 79.4009 85.2603 79.4009 64.1157C79.4009 62.5241 79.3442 61.018 79.2303 59.597 79.1737 58.1192 78.8893 56.8403 78.3777 55.7602 77.8662 54.6235 77.0422 53.7423 75.9052 53.1172 74.7685 52.492 73.1485 52.1793 71.0453 52.1793 69.056 52.1793 67.2086 52.6056 65.5034 53.4582L65.5034 53.5435 65.4182 53.4582 61.2404 46.0406 61.3257 45.9553C64.2815 43.2839 67.976 41.9481 72.4095 41.9481 79.2303 41.9481 84.0902 43.8238 86.989 47.5752Z" + fill="#BFBFBF" + transform="matrix(1 0 0 1.00247 938.012 617.542)" + id="path74" + style="fill:#ffffff" /> + <path + d="M95.6856 85.2603 95.6856 42.6301 107.025 42.6301 107.025 85.2603ZM95.6856 25.5781 107.025 25.5781 107.025 35.5535 95.6856 35.5535Z" + fill="#BFBFBF" + transform="matrix(1 0 0 1.00247 938.012 617.542)" + id="path76" + style="fill:#ffffff" /> + <path + d="M143.261 68.9756 152.469 75.0291 152.384 75.1143C150.394 78.5247 147.694 81.1961 144.284 83.1288 140.93 85.0614 137.293 86.0276 133.371 86.0276 130.301 86.0276 127.431 85.4591 124.759 84.3224 122.088 83.1288 119.757 81.5372 117.768 79.5479 115.778 77.5585 114.187 75.2279 112.993 72.5565 111.856 69.8851 111.288 67.0429 111.288 64.0305 111.288 61.018 111.856 58.1759 112.993 55.5045 114.187 52.8331 115.778 50.5024 117.768 48.5131 119.757 46.5238 122.088 44.9605 124.759 43.8238 127.431 42.6301 130.301 42.0333 133.371 42.0333 137.293 42.0333 140.93 42.9995 144.284 44.9322 147.694 46.8648 150.394 49.5362 152.384 52.9466L152.469 53.0319 143.176 59.0854 143.09 59.0001C142.181 56.8969 140.845 55.1917 139.083 53.8845 137.378 52.5773 135.474 51.9235 133.371 51.9235 131.836 51.9235 130.387 52.2646 129.022 52.9466 127.715 53.5718 126.578 54.453 125.612 55.5897 124.645 56.6698 123.878 57.9487 123.31 59.4264 122.741 60.8475 122.457 62.3822 122.457 64.0305 122.457 65.6788 122.741 67.2134 123.31 68.6345 123.878 70.0556 124.645 71.3059 125.612 72.386 126.578 73.4091 127.715 74.2334 129.022 74.8585 130.387 75.427 131.836 75.7111 133.371 75.7111 135.474 75.7111 137.378 75.1427 139.083 74.0059 140.845 72.8123 142.181 71.164 143.09 69.0608L143.176 68.8903Z" + fill="#BFBFBF" + transform="matrix(1 0 0 1.00247 938.012 617.542)" + id="path78" + style="fill:#ffffff" /> + <path + d="M256.162 25.5781 256.162 85.2603 244.822 85.2603 244.908 63.86C244.908 62.2683 244.567 60.7623 243.885 59.3412 243.259 57.9201 242.407 56.6981 241.327 55.675 240.304 54.5949 239.053 53.7709 237.575 53.2024 236.154 52.5773 234.62 52.2646 232.971 52.2646 231.323 52.2646 229.788 52.5773 228.367 53.2024 226.946 53.7709 225.696 54.5949 224.616 55.675 223.593 56.755 222.769 58.0053 222.143 59.4264 221.518 60.8475 221.205 62.3822 221.205 64.0305 221.205 65.6788 221.518 67.2134 222.143 68.6345 222.769 70.0556 223.593 71.3059 224.616 72.386 225.696 73.4091 226.946 74.2334 228.367 74.8585 229.788 75.4837 231.323 75.7964 232.971 75.7964 233.767 75.7964 234.563 75.7395 235.359 75.6259 236.154 75.5123 236.893 75.2848 237.575 74.9438L237.661 74.9438 237.746 74.9438 241.924 82.6172 241.838 82.7025C239.053 84.8623 235.643 85.9424 231.607 85.9424 228.538 85.9424 225.667 85.3739 222.996 84.2372 220.324 83.1005 217.994 81.5372 216.004 79.5479 214.015 77.5585 212.423 75.2279 211.23 72.5565 210.093 69.8851 209.525 67.0429 209.525 64.0305 209.525 61.018 210.093 58.1759 211.23 55.5045 212.423 52.8331 214.015 50.5024 216.004 48.5131 217.994 46.5238 220.324 44.9605 222.996 43.8238 225.667 42.6871 228.538 42.1186 231.607 42.1186 237.405 42.1186 241.838 44.2784 244.908 48.5984L244.908 25.5781Z" + fill="#BFBFBF" + transform="matrix(1 0 0 1.00247 938.012 617.542)" + id="path80" + style="fill:#ffffff" /> + <path + d="M263.29 35.6554 263.293 35.6564C262.452 37.5851 268.222 40.0157 271.018 41.5405L271.149 43.9489C270.77 43.5723 270.406 43.4403 270.045 43.2566 269.401 42.9875 268.5 44.4468 269.334 44.8958 269.989 45.3064 270.591 45.4405 271.149 45.5528L270.975 54.4693 271.983 54.9603 276.169 44.3362 280.958 46.8047 282.214 51.3802 282.735 51.7861 284.171 46.5954 287.624 42.4647 286.993 42.2648 282.514 43.8348 277.761 41.2997 284.12 31.8147 283.142 31.2654 275.907 36.4788C275.495 36.0819 275.043 35.6639 274.335 35.36 273.49 34.9292 272.804 36.5008 273.389 36.8757 273.747 37.0698 274.062 37.2932 274.586 37.391L272.534 38.6534C269.687 37.2195 264.406 33.8569 263.298 35.6452L263.296 35.6441C263.296 35.646 263.296 35.6482 263.293 35.6508 263.293 35.6524 263.29 35.6538 263.29 35.6556Z" + fill="#BFBFBF" + transform="matrix(1 0 0 1.00247 938.012 617.542)" + id="path82" + style="fill:#ffffff" /> + </g> +</svg> diff --git a/docs/assets/images/logos/UNICADO_Logo_white.svg:Zone.Identifier b/docs/assets/images/logos/UNICADO_Logo_white.svg:Zone.Identifier new file mode 100644 index 0000000..f5e9067 --- /dev/null +++ b/docs/assets/images/logos/UNICADO_Logo_white.svg:Zone.Identifier @@ -0,0 +1,3 @@ +[ZoneTransfer] +ZoneId=3 +HostUrl=https://files.slack.com/files-pri/TM4C17XC6-F08BFGXG0DN/download/unicado_logo_white.svg?origin_team=TM4C17XC6 diff --git a/docs/documentation/.gitattributes b/docs/documentation/.gitattributes new file mode 100644 index 0000000..fbd3fdf --- /dev/null +++ b/docs/documentation/.gitattributes @@ -0,0 +1,5 @@ +# Exclude all binaries from the diff +*.exe binary +*.dll binary +*.so binary +*.a binary diff --git a/docs/documentation/.gitignore b/docs/documentation/.gitignore new file mode 100644 index 0000000..de15f63 --- /dev/null +++ b/docs/documentation/.gitignore @@ -0,0 +1,74 @@ +# Project specific +databases/ +gnuplot/ +inkscape/ +/projects/ +/inkscape-linux/ +/gnuplot-linux/ +*.log +*.stl +*_plot.csv +*_guiSettings.xml +*_inputs.xml +*_outputs.xml +*_IOinfo.txt +*.cscope_file_list +test_runner_config.json +.modifiedFiles +.toolList +test_detail.xml + +# IDE Files +.vscode +*.cbp + +# Prerequisites +*.d + +# Compiled Object files +*.slo +*.lo +*.o +*.obj + +# Precompiled Headers +*.gch +*.pch + +# Compiled Dynamic libraries +*.so +*.dylib +*.dll +*.pyd + +# Fortran module files +*.mod +*.smod + +# Compiled Static libraries +*.lai +*.la +*.a +*.lib + +# Executables +*.exe +*.out +*.app + +# Debugging databases +*.pdb + +# Python artefacts +__pycache__ +*.spec + +# Build directories +build +build* + +# CMake user files +CMakeUserPresets.json +*.cmake +Makefile +*/CMakeFiles/ \ No newline at end of file diff --git a/docs/documentation/.gitlab/issue_templates/Default.md b/docs/documentation/.gitlab/issue_templates/Default.md new file mode 100644 index 0000000..ed6f8d8 --- /dev/null +++ b/docs/documentation/.gitlab/issue_templates/Default.md @@ -0,0 +1,18 @@ +<!-- Title: Provide a concise and descriptive title for the issue incl. tool or library name --> + +## Choose Your Issue Template +Before creating an issue, please review existing issues to avoid duplicates! +ALso, select the **appropriate type for your issue in the desciption drop-down**. +- Bug Report Template +- Feature Request Template +- TODO Template +- Documentation Request Template +- Testing Request Template + +If not suitable, use the sections below and contact the owners. + +## Description +Provide a concise description of the issue. + +## Additional Context +Add screenshots, logs, or relevant information here. diff --git a/docs/documentation/.gitlab/issue_templates/bug_report.md b/docs/documentation/.gitlab/issue_templates/bug_report.md new file mode 100644 index 0000000..b906703 --- /dev/null +++ b/docs/documentation/.gitlab/issue_templates/bug_report.md @@ -0,0 +1,22 @@ +<!-- Title: Provide a concise and descriptive title for the issue incl. tool or library name --> +# Bug Report + +## Description +Describe the bug clearly. What happened? + +## Steps to Reproduce +1. [Step 1] +2. [Step 2] +3. [Step 3] + +## Expected Behavior +Explain what you expected to see. + +## Environment +- **OS**: [e.g., Windows 10] +- **Version/Branch**: [e.g., v1.2.3] + +## Additional Context +Attach any logs, screenshots, or context. + +/label ~"type::bug" diff --git a/docs/documentation/.gitlab/issue_templates/documentation_request.md b/docs/documentation/.gitlab/issue_templates/documentation_request.md new file mode 100644 index 0000000..bc94cf6 --- /dev/null +++ b/docs/documentation/.gitlab/issue_templates/documentation_request.md @@ -0,0 +1,14 @@ +<!-- Title: Provide a concise and descriptive title for the issue --> +# Documentation + +## Summary +Explain what documentation is missing. + +- **Unicado Version**: vx.x.x +- **Page**: page-to-change + +## Additional Context +Attach any logs, screenshots, or context. + +/label ~"type::documentation" + diff --git a/docs/documentation/.gitlab/issue_templates/feature_request.md b/docs/documentation/.gitlab/issue_templates/feature_request.md new file mode 100644 index 0000000..2c12fdb --- /dev/null +++ b/docs/documentation/.gitlab/issue_templates/feature_request.md @@ -0,0 +1,17 @@ +<!-- Title: Provide a concise and descriptive title for the issue incl. tool or library name --> +# Feature Request + +## Summary +What feature are you requesting? + +## Why? +Explain the problem this feature solves or the value it adds. + +## Acceptance Criteria +- [ ] Define measurable outcomes for success. +- [ ] List specific requirements. + +## Additional Notes +Include references, examples, or diagrams if applicable. + +/label ~"type::feature" diff --git a/docs/documentation/.gitlab/issue_templates/testing_request.md b/docs/documentation/.gitlab/issue_templates/testing_request.md new file mode 100644 index 0000000..0289f4d --- /dev/null +++ b/docs/documentation/.gitlab/issue_templates/testing_request.md @@ -0,0 +1,24 @@ +<!-- Title: Provide a concise and descriptive title for the issue incl. tool or library name --> +# Testing Issue + +## Summary +Provide a brief overview of what should be tested or changed in the test process. Also think about what is the goal of this test? E.g. +- Verify that [feature/bug fix/module] works as expected. +- Ensure that [specific requirement] is met. + +## Related Issues or Merge Requests +- Issue(s): #[Issue ID] +- Merge Request(s): #[Merge Request ID] + +## Expected Results +- [Outcome 1]: [What should happen]. +- [Outcome 2]: [Another expected result]. + +## Environment +- **OS**: [e.g., Windows 10] +- **Version/Branch**: [e.g., v1.2.3] + +## Additional Context +Attach any logs, screenshots, or context. + +/label ~"type::testing" diff --git a/docs/documentation/.gitlab/issue_templates/todo.md b/docs/documentation/.gitlab/issue_templates/todo.md new file mode 100644 index 0000000..07bdd0f --- /dev/null +++ b/docs/documentation/.gitlab/issue_templates/todo.md @@ -0,0 +1,16 @@ +<!-- Title: Provide a concise and descriptive title for the issue incl. tool or library name --> +# TODO + +## Summary +Briefly describe the task. Provide any background information or related issues. + +## Subtasks +- [ ] Step 1 +- [ ] Step 2 +- [ ] Step 3 + +## Acceptance Criteria +- [ ] Define measurable outcomes for success. +- [ ] List specific requirements. + +/label ~"type::todo" diff --git a/docs/documentation/.gitlab/merge_request_templates/Default.md b/docs/documentation/.gitlab/merge_request_templates/Default.md new file mode 100644 index 0000000..00be17d --- /dev/null +++ b/docs/documentation/.gitlab/merge_request_templates/Default.md @@ -0,0 +1,29 @@ +<!-- Title: Use an imperative, clear title (e.g., "Fix login bug" or "Add new analytics feature") --> + +## Description +Provide a concise explanation of the changes made in this merge request. + +## Related Issue(s) +- Closes #[feature issues] +- Fixes #[bug report issue] +- Resolves #[any other issues] + +### Other Changes +- [Mention refactoring, tests, etc.] + +## Screenshots/Logs +Attach screenshots or log outputs if applicable. + +## Testing Instructions +1. [Step 1: How to test] +2. [Step 2: Expected outcome] +3. [Step 3: Additional steps if required] + +## Developer Checklist +- [ ] Code has been tested locally and/or in pipeline. +- [ ] (if applicable) documentation updated. +- [ ] (if applicable) impact of new dependencies reviewed and included in project. +- [ ] Merge conflicts resolved with the target branch. + +## Additional Notes +Add any information reviewers should focus on, e.g., specific files, functions, or changes of interest. diff --git a/docs/documentation/.gitmodules b/docs/documentation/.gitmodules new file mode 100644 index 0000000..6bd4d12 --- /dev/null +++ b/docs/documentation/.gitmodules @@ -0,0 +1,3 @@ +[submodule "libs"] + path = libs + url = ssh://git@git.rwth-aachen.de/unicado/libraries.git \ No newline at end of file diff --git a/docs/index.md b/docs/index.md index 7467305..04f5763 100644 --- a/docs/index.md +++ b/docs/index.md @@ -5,18 +5,23 @@ authors: - Sebastian Oberschwendtner - Kristina Mazur date: 2024-11-05 -glightbox: false +glightbox: true hide: - navigation - toc +template: home.html --- <div class="hero-section" markdown="1"> -{.hero-logo} +<!-- <img src="assets/images/logos/UNICADO_Logo_white.svg" class="hero-logo"> --> +{ .hero-logo} # Think. Design. Change. <div class="intro-text" markdown="1"> -**UNICADO** is a conceptual aircraft design environment. It provides a _robust framework_ for designing, analyzing and optimizing aircraft based on a minimum set of requirements. Developed in collaboration with _leading German aerospace universities_, it enables designers to define and size an aircraft's geometry, analyse performance and feasibility while balancing aerodynamic, operational and user-specific requirements. Its _modular architecture_ allows for easy customization and adaptability, enabling users to integrate new tools or methods. +**UNICADO** [*ˌjuː.nɪˈkɑː.doʊ*] +_University Conceptual Aircraft Design and Optimization_ + +A _robust framework_ for designing, analyzing and optimizing aircraft based on a minimum set of requirements. Developed in collaboration with _leading German aerospace universities_, it enables designers to define and size an aircraft's geometry, analyse performance and feasibility while balancing aerodynamic, operational and user-specific requirements. Its _modular architecture_ allows for easy customization and adaptability, enabling users to integrate new tools or methods. </div> <div class="download-button-container"> <a href="download/getting-started" class="download-button">Download UNICADO</a> @@ -25,8 +30,8 @@ hide: <div class="grid-container" markdown="1"> <div class="grid-item card" markdown="1"> -:material-clock-fast:{ .lg .accent } **Getting Started** - +:octicons-rocket-16:{ .lg .accent } **Getting Started** +<!-- :material-clock-fast:{ .lg .primary } **Getting Started** --> --- Learn how to set it up & install the prerequisites. @@ -35,7 +40,7 @@ Learn how to set it up & install the prerequisites. </div> <div class="grid-item card" markdown="1"> -:octicons-book-16:{ .lg .accent } **Ready to design** +:fontawesome-solid-plane-departure:{ .lg .accent } **Ready to design** --- @@ -45,7 +50,7 @@ Design your first aircraft. </div> <div class="grid-item card" markdown="1"> -:material-library:{ .lg .accent } **Available Tools** +:octicons-book-16:{ .lg .accent } **Available Tools** --- @@ -55,7 +60,7 @@ Get an overview of the tools and libraries. </div> <div class="grid-item card" markdown="1"> -:fontawesome-solid-plane-departure:{ .lg .accent } **Cleared to develop** +:octicons-command-palette-16:{ .lg .accent } **Cleared to develop** --- @@ -75,7 +80,7 @@ Read about who is behind it. </div> <div class="grid-item card" markdown="1"> -:material-scale-balance:{ .lg .accent } **Open Source** +:octicons-globe-16:{ .lg .accent } **Open Source** --- diff --git a/mkdocs.yml b/mkdocs.yml index 43e8a02..c55cc6e 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -144,10 +144,10 @@ theme: logo: assets/images/logos/unicado-icon.png # Path to the UNICADO logo displayed in the header. custom_dir: overrides # Directory for custom files (like footer). # Theme colors configuration - palette: - - scheme: slate - primary: green - accent: red + # palette: + # - scheme: default + # primary: blue + # accent: light blue # Feature configurations for navigation and ToC behavior features: diff --git a/overrides/home.html b/overrides/home.html new file mode 100644 index 0000000..95269f1 --- /dev/null +++ b/overrides/home.html @@ -0,0 +1,42 @@ +{% extends "base.html" %} +{% block tabs %} +{{ super() }} + <style> + body { + background-color: var(--background-color); + } + .md-tabs { + background: transparent; + } + .md-header { + background: transparent; + } + .md-main { + background: linear-gradient(to bottom, var(--bg-gradient-start-color),90%, var(--bg-gradient-end-color)); + background-repeat: no-repeat; + background-attachment: fixed; + } + + + </style> + +{% endblock %} + +{% block content %} + {{ page.content }} +{% endblock %} + + +{% block footer %} +<div class="custom-footer"> + <div class="footer-content"> + <p>© 2024 UNICADO. All rights reserved.</p> + <a href="/impressum/" class="footer-link">Impressum</a> + <a href="/datenschutz/" class="footer-link">Datenschutzerklärung</a> + </div> + <div class="footer-image-container"> + <img src="{{ base_url }}/assets/images/logos/bmwk.png" alt="Footer Logo" class="footer-image"> + </div> +</div> + +{% endblock %} \ No newline at end of file -- GitLab From 1b33d21ada358f969373289c2b111ffb62be6b6a Mon Sep 17 00:00:00 2001 From: Christopher Ruwisch <christopher.ruwisch@gmail.com> Date: Thu, 20 Feb 2025 17:03:26 +0100 Subject: [PATCH 52/53] reworked landing page --- docs/assets/css/unicado.css | 128 ++----------------------------- docs/index.md | 13 +++- overrides/home.html | 147 ++++++++++++++++++++++++++++++++++++ 3 files changed, 164 insertions(+), 124 deletions(-) diff --git a/docs/assets/css/unicado.css b/docs/assets/css/unicado.css index 53ada91..ecdbb0c 100644 --- a/docs/assets/css/unicado.css +++ b/docs/assets/css/unicado.css @@ -2,7 +2,9 @@ :root { --primary-color: #00418b; /* Primary color for headers, hero section, and cards */ --background-color: #00418b; /* Background color for main content areas */ - --text-color: #ecf1f8; /* Main text color for readability on dark backgrounds */ + --text-color: var(--primary-color); + --text-color-hero: #ecf1f8; + --text-color-tabs: #ecf1f8; /* Main text color for readability on dark backgrounds */ --button-bg-color: #ffffff; /* Background color for buttons */ --accent-color: #e20e1f; /* Accent color for links and hover effects */ --secondary-accent: #1ABC9C; /* Secondary accent color for icons */ @@ -18,14 +20,15 @@ } .md-header { - color: var(--text-color); + color: var(--text-color-tabs); background: linear-gradient(to bottom, var(--bg-gradient-start-color), var(--bg-gradient-intermediate-color)); /* var(--md-primary-bg-color); */ } .md-tabs { - color: var(--text-color); - background: linear-gradient(to bottom, var(--bg-gradient-intermediate-color), 75%, var(--bg-gradient-end-color)); + color: var(--text-color-tabs); + /* background: linear-gradient(to bottom, var(--bg-gradient-intermediate-color), 75%, var(--bg-gradient-end-color)); */ + background-color: var(--bg-gradient-intermediate-color); } @@ -35,128 +38,13 @@ } .md-header__topic { - font-weight: bold; + font-weight: lighter; } .md-header__topic:first-child { font-weight: lighter; } -/* [data-md-color-scheme=default] .md-header { */ - /* background-color: var(--primary-color); */ -/* } */ - -/* Apply primary color to tab backgrounds */ -/* [data-md-color-scheme=default] .md-tabs { */ - /* background-color: var(--primary-color); */ -/* } */ - -body[data-md-page=Home] .md-main { - background: #00418b; -} - -/* Hero Section Styling */ -.hero-section { - background: transparent; - color: var(--text-color); - padding: 2em; - border-radius: 10px; - box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); - max-width: 1060px; - margin: auto; - border: 1px solid rgba(255, 255, 255, 0.1); - -} - -.hero-logo { - width: 60%; - max-width: 100%; - height: auto; - display: block; -} - -/* Text styling within the hero section */ -.intro-text { - color: var(--text-color); - font-size: 1.1em; -} - -/* Download button styling */ -.download-button-container { - text-align: center; - margin-top: 20px; -} - -.download-button { - background-color: var(--text-color); - display: inline-block; - padding: 10px 20px; - font-size: 1.1em; - font-weight: bold; - border-radius: 5px; - text-decoration: none; - color: var(--primary-color); - transition: background-color 0.3s ease; -} - -.download-button:hover { - background-color: var(--primary-color); -} - -.download-button a { - color: var(--primary-color); -} - -.download-button:hover a { - color: var(--text-color); -} - -/* Grid Container */ -.grid-container { - display: grid; - grid-template-columns: repeat(auto-fit, minmax(220px, 1fr)); - gap: 1.5em; - margin: 2em auto; - max-width: 1100px; - padding: 1em; -} - -.grid-item { - /* background-color: var(--background-color); Uses primary color for card background */ - background: transparent; - padding: 1.5em; - border-radius: 10px; - text-align: left; - color: var(--text-color); /* Text color for readability */ - transition: transform 0.3s, box-shadow 0.3s; -} - -.grid-item h3 { - font-size: 1.25em; - margin-bottom: 0.5em; -} - -/* Card styling with hover effects */ -.card { - box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15); - border: 1px solid rgba(255, 255, 255, 0.1); -} - -.card:hover { - transform: translateY(-5px); - box-shadow: 0 8px 16px rgba(0, 0, 0, 0.25); -} - -/* Link styling within cards */ -.card a { - color: var(--link-color); - font-weight: bold; -} - -.card a:hover { - color: var(--accent-color); /* Changes to accent color on hover */ -} - /* Accent color for icons or specific elements */ .accent { color: var(--accent-color); /* Teal accent color for specific elements */ diff --git a/docs/index.md b/docs/index.md index 04f5763..734de09 100644 --- a/docs/index.md +++ b/docs/index.md @@ -5,26 +5,31 @@ authors: - Sebastian Oberschwendtner - Kristina Mazur date: 2024-11-05 -glightbox: true +glightbox: false hide: - navigation - toc template: home.html --- -<div class="hero-section" markdown="1"> +<div class="hero-section-main" markdown="1"> <!-- <img src="assets/images/logos/UNICADO_Logo_white.svg" class="hero-logo"> --> { .hero-logo} # Think. Design. Change. <div class="intro-text" markdown="1"> -**UNICADO** [*ˌjuː.nɪˈkɑː.doʊ*] +**UNICADO** [*ˌjuː.nɪˈkɑː.doʊ*] + _University Conceptual Aircraft Design and Optimization_ A _robust framework_ for designing, analyzing and optimizing aircraft based on a minimum set of requirements. Developed in collaboration with _leading German aerospace universities_, it enables designers to define and size an aircraft's geometry, analyse performance and feasibility while balancing aerodynamic, operational and user-specific requirements. Its _modular architecture_ allows for easy customization and adaptability, enabling users to integrate new tools or methods. </div> <div class="download-button-container"> - <a href="download/getting-started" class="download-button">Download UNICADO</a> + + <a href="download/getting-started"> + Download + </a> + <img src="assets/images/logos/unicado-icon.png" alt="Unicado Icon"> </div> </div> diff --git a/overrides/home.html b/overrides/home.html index 95269f1..dbac0f2 100644 --- a/overrides/home.html +++ b/overrides/home.html @@ -4,6 +4,7 @@ <style> body { background-color: var(--background-color); + overflow: hidden; } .md-tabs { background: transparent; @@ -16,6 +17,152 @@ background-repeat: no-repeat; background-attachment: fixed; } + + /* Hero Section Styling */ + .hero-section-main { + background: transparent; + color: var(--text-color-hero); + padding: 2em; + border-radius: 10px; + box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); + max-width: 1060px; + margin: auto; + margin-bottom: 2em; + border: 1px solid rgba(255, 255, 255, 0.1); + + } + + .hero-section-main ::after { + gap: 3em; + } + .hero-logo { + width: 60%; + max-width: 100%; + height: auto; + display: block; + } + #think-design-change { + color: var(--text-color-hero) + } + + /* Text styling within the hero section */ + .intro-text { + color: var(--text-color-hero); + font-size: 1.1em; + } + + /* Download button styling */ + .download-button-container { + width: fit-content; + align-items: center; + display: flex; + margin-top: 20px; + background-color: var(--accent-color); + border-radius: 5px; + font-size: 1.1em; + padding: 10px 20px; + transition: background-color 0.3s ease; + } + .download-button-container > a { + color: var(--text-color-hero); + background: transparent; + } + .download-button-container:hover { + color: var(--accent-color); + background-color: var(--text-color-hero); + } + .download-button-container:hover > a { + color: var(--accent-color); + background: transparent; + } + + .download-button { + + display: inline-block; + align-items: center; + padding: 10px 20px; + font-size: 1.1em; + font-weight: bold; + border-radius: 5px; + text-decoration: none; + transition: background-color 0.3s ease; + gap: 8px; + } + + .download-button:hover { + color: var(--accent-color); + background-color: var(--text-color-hero); + } + + .download-button-container img { + max-width: 24px; + display: inline-block; + height: auto; + pointer-events: none; + margin-left: 5px; + } + + /* Grid Container */ + .grid-container { + display: grid; + grid-template-columns: repeat(auto-fit, minmax(220px, 1fr)); + gap: 3.5em; + margin: 2em auto; + max-width: 1100px; + padding: 1em; + } + + .grid-item { + /* background-color: var(--background-color); Uses primary color for card background */ + background: transparent; + padding: 1.0em; + border-radius: 10px; + text-align: left; + color: var(--text-color-hero); /* Text color for readability */ + transition: transform 0.3s, box-shadow 0.3s; + + display: flex; + flex-direction: column; + justify-content: space-between; + height: 100%; + } + + .grid-item h3 { + font-size: 1.25em; + margin-bottom: 0.5em; + } + + .grid-item > hr { + border: none; + background-color: var(--text-color-hero); + margin: auto 0; + } + + /* Card styling with hover effects */ + .card { + box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15); + border: 1px solid rgba(255, 255, 255, 0.1); + } + + .card:hover { + transform: translateY(-5px); + box-shadow: 0 8px 16px rgba(0, 0, 0, 0.25); + } + + /* Link styling within cards */ + .card a { + display: flex; + color: var(--text-color-hero); + font-weight: bold; + align-items: center; + justify-content: flex-start; + margin-top: auto; + padding-top: 1em; + } + + .card a:hover { + color: var(--accent-color); /* Changes to accent color on hover */ + } </style> -- GitLab From e108736229dd73141c9faec4562c1fef75517ab5 Mon Sep 17 00:00:00 2001 From: Christopher Ruwisch <christopher.ruwisch@gmail.com> Date: Thu, 20 Feb 2025 17:24:55 +0100 Subject: [PATCH 53/53] update landing page -> current status ok --- docs/index.md | 4 ++-- overrides/home.html | 32 +++++++++++--------------------- 2 files changed, 13 insertions(+), 23 deletions(-) diff --git a/docs/index.md b/docs/index.md index 734de09..c174f63 100644 --- a/docs/index.md +++ b/docs/index.md @@ -26,10 +26,10 @@ A _robust framework_ for designing, analyzing and optimizing aircraft based on a </div> <div class="download-button-container"> - <a href="download/getting-started"> + <a href="download/getting_started/"> Download + <img src="assets/images/logos/unicado-icon.png" alt="Unicado Icon"> </a> - <img src="assets/images/logos/unicado-icon.png" alt="Unicado Icon"> </div> </div> diff --git a/overrides/home.html b/overrides/home.html index dbac0f2..8e0e428 100644 --- a/overrides/home.html +++ b/overrides/home.html @@ -60,12 +60,21 @@ background-color: var(--accent-color); border-radius: 5px; font-size: 1.1em; + font-weight: 700; padding: 10px 20px; transition: background-color 0.3s ease; + cursor: pointer; } .download-button-container > a { color: var(--text-color-hero); + text-decoration: none; + display: flex; + align-items: center; + justify-content: center; background: transparent; + gap: 8px + width: 100%; + height: 100%; } .download-button-container:hover { color: var(--accent-color); @@ -76,29 +85,10 @@ background: transparent; } - .download-button { - - display: inline-block; - align-items: center; - padding: 10px 20px; - font-size: 1.1em; - font-weight: bold; - border-radius: 5px; - text-decoration: none; - transition: background-color 0.3s ease; - gap: 8px; - } - - .download-button:hover { - color: var(--accent-color); - background-color: var(--text-color-hero); - } - .download-button-container img { max-width: 24px; - display: inline-block; height: auto; - pointer-events: none; + pointer-events: auto; margin-left: 5px; } @@ -107,7 +97,7 @@ display: grid; grid-template-columns: repeat(auto-fit, minmax(220px, 1fr)); gap: 3.5em; - margin: 2em auto; + margin: 3em auto; max-width: 1100px; padding: 1em; } -- GitLab