diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..d47e3f6326b6fba249cb5977fdf7e2bc26368b17
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,7 @@
+# Image files
+*.png filter=lfs diff=lfs merge=lfs -text
+*.PNG filter=lfs diff=lfs merge=lfs -text
+*.jpg filter=lfs diff=lfs merge=lfs -text
+*.JPG filter=lfs diff=lfs merge=lfs -text
+*.jpeg filter=lfs diff=lfs merge=lfs -text
+*.JPEG filter=lfs diff=lfs merge=lfs -text
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
new file mode 100644
index 0000000000000000000000000000000000000000..78058f5cbee863dfe152cf8db15ca8f6833c61e3
--- /dev/null
+++ b/.gitlab-ci.yml
@@ -0,0 +1,86 @@
+# UNICADO - UNIversity Conceptual Aircraft Design and Optimization
+#
+# Copyright (C) 2025 UNICADO consortium
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <https://www.gnu.org/licenses/>.
+#
+# Description:
+# This file is part of UNICADO.
+
+# === Configure pipeline ===
+# This section defines the stages of the pipeline: build and deploy
+stages:
+  - build   # The 'build' stage is where documents are copied to the PROJECT_DIR
+  - deploy  # The 'deploy' stage generates and deploys the generated documentation.
+
+# === Clone the repositories / copy documentation to the  PROJECT_DIR ===
+clone:
+  image: alpine:latest
+  stage: build  # This job is part of the build stage
+  tags:
+    - documentation  # Label for the job to be picked up by appropriate runners
+  before_script:
+  # Install necessary packages, including git, doxygen, and other dependencies
+    - apk update && apk --no-cache add git doxygen graphviz ttf-freefont texmf-dist texmf-dist-latexextra texlive texlive-dvi
+  script:
+      # clone repos
+      - git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/aircraft-design
+      - cd aircraft-design
+      - git clone --recurse-submodules https://gitlab-ci-token:${CI_JOB_TOKEN}@git.rwth-aachen.de/unicado/libraries libs/
+    # Change to the project directory (useful for multi-directory repositories)
+      - cd $CI_PROJECT_DIR
+      - ls -la $CI_PROJECT_DIR
+  artifacts:
+    # Save the generated documentation as artifacts so they can be accessed later in the pipeline
+    paths:
+      - $CI_PROJECT_DIR/aircraft-design
+      - $CI_PROJECT_DIR/libraries
+      - $CI_PROJECT_DIR/docs/documentation
+  rules:
+    - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH'  # Run when the commit is on the default branch
+      when: on_success  # Only run if the previous jobs are successful
+    - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH'  # Allow manual triggers on non-default branches
+      when: manual  # Run only when triggered manually
+    - if: '$CI_PIPELINE_SOURCE == "trigger"'  # Triggered by another pipeline
+      when: on_success  # Run if the source pipeline was successful
+
+# === Build and deploy the website ===
+pages:
+  image: python:latest
+  stage: deploy  # This job is part of the deploy stage
+  tags:
+    - documentation  # Label for the job to be picked up by appropriate runners
+  before_script:
+    # Install pipenv to manage Python dependencies
+    - apk update && apk --no-cache add graphviz
+    - pip install pipenv
+    - pipenv install  # Install the dependencies from the Pipfile and Pipfile.lock
+    - apt-get update
+    - apt-get install -y doxygen
+    - export DOXYGEN_BIN=/usr/bin/doxygen
+    - pipenv install --dev  # Install all necessary dependencies
+  script:
+    # Build the MkDocs documentation site
+    - pipenv run mkdocs build --verbose --site-dir $CI_PROJECT_DIR/public
+  needs:
+    - clone  # This job depends on the successful completion of the clone job
+  artifacts:
+    # Save the generated static website files as artifacts
+    paths:
+      - $CI_PROJECT_DIR/public
+  rules:
+    - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH'  # Run when the commit is on the default branch
+      when: on_success  # Only run if the previous jobs are successful
+    - if: '$CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH'  # Allow manual triggers on non-default branches
+      when: manual  # Run only when triggered manually
\ No newline at end of file
diff --git a/.gitlab/issue_templates/Default.md b/.gitlab/issue_templates/Default.md
new file mode 100644
index 0000000000000000000000000000000000000000..ed6f8d8cfb4c948a3cb438fb92d89159e2d1a352
--- /dev/null
+++ b/.gitlab/issue_templates/Default.md
@@ -0,0 +1,18 @@
+<!-- Title: Provide a concise and descriptive title for the issue incl. tool or library name -->
+
+## Choose Your Issue Template
+Before creating an issue, please review existing issues to avoid duplicates!
+ALso, select the **appropriate type for your issue in the desciption drop-down**. 
+- Bug Report Template
+- Feature Request Template
+- TODO Template
+- Documentation Request Template
+- Testing Request Template
+
+If not suitable, use the sections below and contact the owners.
+
+## Description
+Provide a concise description of the issue.
+
+## Additional Context
+Add screenshots, logs, or relevant information here.
diff --git a/.gitlab/issue_templates/bug_report.md b/.gitlab/issue_templates/bug_report.md
new file mode 100644
index 0000000000000000000000000000000000000000..b906703dce8a5a8d1ca99bd5a36d980f6a2fc26a
--- /dev/null
+++ b/.gitlab/issue_templates/bug_report.md
@@ -0,0 +1,22 @@
+<!-- Title: Provide a concise and descriptive title for the issue incl. tool or library name -->
+# Bug Report
+
+## Description
+Describe the bug clearly. What happened?
+
+## Steps to Reproduce
+1. [Step 1]
+2. [Step 2]
+3. [Step 3]
+
+## Expected Behavior
+Explain what you expected to see.
+
+## Environment
+- **OS**: [e.g., Windows 10]
+- **Version/Branch**: [e.g., v1.2.3]
+
+## Additional Context
+Attach any logs, screenshots, or context.
+
+/label ~"type::bug"
diff --git a/.gitlab/issue_templates/documentation_request.md b/.gitlab/issue_templates/documentation_request.md
new file mode 100644
index 0000000000000000000000000000000000000000..bc94cf6d704aa0645ae950ba690cc716b81659f1
--- /dev/null
+++ b/.gitlab/issue_templates/documentation_request.md
@@ -0,0 +1,14 @@
+<!-- Title: Provide a concise and descriptive title for the issue -->
+# Documentation
+
+## Summary
+Explain what documentation is missing.
+
+- **Unicado Version**: vx.x.x 
+- **Page**: page-to-change
+
+## Additional Context
+Attach any logs, screenshots, or context.
+
+/label ~"type::documentation"
+
diff --git a/.gitlab/issue_templates/feature_request.md b/.gitlab/issue_templates/feature_request.md
new file mode 100644
index 0000000000000000000000000000000000000000..2c12fdb6bfc6f26eec57a4c7b1b228b65d991e24
--- /dev/null
+++ b/.gitlab/issue_templates/feature_request.md
@@ -0,0 +1,17 @@
+<!-- Title: Provide a concise and descriptive title for the issue incl. tool or library name -->
+# Feature Request
+
+## Summary
+What feature are you requesting?
+
+## Why?
+Explain the problem this feature solves or the value it adds.
+
+## Acceptance Criteria
+- [ ] Define measurable outcomes for success.
+- [ ] List specific requirements.
+
+## Additional Notes
+Include references, examples, or diagrams if applicable.
+
+/label ~"type::feature"
diff --git a/.gitlab/issue_templates/testing_request.md b/.gitlab/issue_templates/testing_request.md
new file mode 100644
index 0000000000000000000000000000000000000000..0289f4df34cec1c786d637480d7456bbf20b3d08
--- /dev/null
+++ b/.gitlab/issue_templates/testing_request.md
@@ -0,0 +1,24 @@
+<!-- Title: Provide a concise and descriptive title for the issue incl. tool or library name -->
+# Testing Issue
+
+## Summary
+Provide a brief overview of what should be tested or changed in the test process. Also think about what is the goal of this test? E.g.
+- Verify that [feature/bug fix/module] works as expected.
+- Ensure that [specific requirement] is met.
+
+## Related Issues or Merge Requests
+- Issue(s): #[Issue ID]
+- Merge Request(s): #[Merge Request ID]
+
+## Expected Results
+- [Outcome 1]: [What should happen].
+- [Outcome 2]: [Another expected result].
+
+## Environment
+- **OS**: [e.g., Windows 10]
+- **Version/Branch**: [e.g., v1.2.3]
+
+## Additional Context
+Attach any logs, screenshots, or context.
+
+/label ~"type::testing"
diff --git a/.gitlab/issue_templates/todo.md b/.gitlab/issue_templates/todo.md
new file mode 100644
index 0000000000000000000000000000000000000000..07bdd0f8b2e7294d7949344698e4426530efc826
--- /dev/null
+++ b/.gitlab/issue_templates/todo.md
@@ -0,0 +1,16 @@
+<!-- Title: Provide a concise and descriptive title for the issue incl. tool or library name -->
+# TODO
+
+## Summary
+Briefly describe the task. Provide any background information or related issues.
+
+## Subtasks
+- [ ] Step 1
+- [ ] Step 2
+- [ ] Step 3
+
+## Acceptance Criteria
+- [ ] Define measurable outcomes for success.
+- [ ] List specific requirements.
+
+/label ~"type::todo"
diff --git a/.gitlab/merge_request_templates/Default.md b/.gitlab/merge_request_templates/Default.md
new file mode 100644
index 0000000000000000000000000000000000000000..00be17dc34a7fc90bb7096112e57c895a2f6d4bf
--- /dev/null
+++ b/.gitlab/merge_request_templates/Default.md
@@ -0,0 +1,29 @@
+<!-- Title: Use an imperative, clear title (e.g., "Fix login bug" or "Add new analytics feature") -->
+
+## Description
+Provide a concise explanation of the changes made in this merge request.
+
+## Related Issue(s)
+- Closes #[feature issues]
+- Fixes #[bug report issue] 
+- Resolves #[any other issues]
+
+### Other Changes
+- [Mention refactoring, tests, etc.]
+
+## Screenshots/Logs
+Attach screenshots or log outputs if applicable.
+
+## Testing Instructions
+1. [Step 1: How to test]
+2. [Step 2: Expected outcome]
+3. [Step 3: Additional steps if required]
+
+## Developer Checklist
+- [ ] Code has been tested locally and/or in pipeline.
+- [ ] (if applicable) documentation updated.
+- [ ] (if applicable) impact of new dependencies reviewed and included in project.
+- [ ] Merge conflicts resolved with the target branch.
+
+## Additional Notes
+Add any information reviewers should focus on, e.g., specific files, functions, or changes of interest.
diff --git a/CODEOWNERS b/CODEOWNERS
new file mode 100644
index 0000000000000000000000000000000000000000..1d9c80075ed1462469f5954eb2ad669546372aa7
--- /dev/null
+++ b/CODEOWNERS
@@ -0,0 +1,12 @@
+# Repository-specific code ownership
+  *                           @kbistreck
+
+# File-specific code ownership
+.gitattributes                @Florian.Schueltke
+.gitignore                    @Florian.Schueltke
+.gitlab-ci.yml                @maurice.zimmnau   @kristina.mazur
+CMakeLists.txt                @Florian.Schueltke
+CMakePresets.json             @Florian.Schueltke
+CODEOWNERS                    @Florian.Schueltke
+LICENSE                       @Florian.Schueltke
+README.md                     @Florian.Schueltke
diff --git a/Doxyfile b/Doxyfile
new file mode 100644
index 0000000000000000000000000000000000000000..4a0794a4f7db5cc3d71d87b7ca31170e8d465d34
--- /dev/null
+++ b/Doxyfile
@@ -0,0 +1,2872 @@
+# Doxyfile 1.9.8
+
+# This file describes the settings to be used by the documentation system
+# doxygen (www.doxygen.org) for a project.
+#
+# All text after a double hash (##) is considered a comment and is placed in
+# front of the TAG it is preceding.
+#
+# All text after a single hash (#) is considered a comment and will be ignored.
+# The format is:
+# TAG = value [value, ...]
+# For lists, items can also be appended using:
+# TAG += value [value, ...]
+# Values that contain spaces should be placed between quotes (\" \").
+#
+# Note:
+#
+# Use doxygen to compare the used configuration file with the template
+# configuration file:
+# doxygen -x [configFile]
+# Use doxygen to compare the used configuration file with the template
+# configuration file without replacing the environment variables or CMake type
+# replacement variables:
+# doxygen -x_noenv [configFile]
+
+#---------------------------------------------------------------------------
+# Project related configuration options
+#---------------------------------------------------------------------------
+
+# This tag specifies the encoding used for all characters in the configuration
+# file that follow. The default is UTF-8 which is also the encoding used for all
+# text before the first occurrence of this tag. Doxygen uses libiconv (or the
+# iconv built into libc) for the transcoding. See
+# https://www.gnu.org/software/libiconv/ for the list of possible encodings.
+# The default value is: UTF-8.
+
+DOXYFILE_ENCODING      = UTF-8
+
+# The PROJECT_NAME tag is a single word (or a sequence of words surrounded by
+# double-quotes, unless you are using Doxywizard) that should identify the
+# project for which the documentation is generated. This name is used in the
+# title of most generated pages and in a few other places.
+# The default value is: My Project.
+
+PROJECT_NAME           = @PROJECT_NAME@
+
+# The PROJECT_NUMBER tag can be used to enter a project or revision number. This
+# could be handy for archiving the generated documentation or if some version
+# control system is used.
+
+PROJECT_NUMBER         =
+
+# Using the PROJECT_BRIEF tag one can provide an optional one line description
+# for a project that appears at the top of each page and should give viewer a
+# quick idea about the purpose of the project. Keep the description short.
+
+PROJECT_BRIEF          =
+
+# With the PROJECT_LOGO tag one can specify a logo or an icon that is included
+# in the documentation. The maximum height of the logo should not exceed 55
+# pixels and the maximum width should not exceed 200 pixels. Doxygen will copy
+# the logo to the output directory.
+
+PROJECT_LOGO           =
+
+# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) path
+# into which the generated documentation will be written. If a relative path is
+# entered, it will be relative to the location where doxygen was started. If
+# left blank the current directory will be used.
+
+OUTPUT_DIRECTORY       = @OUTPUT_DIR@
+
+# If the CREATE_SUBDIRS tag is set to YES then doxygen will create up to 4096
+# sub-directories (in 2 levels) under the output directory of each output format
+# and will distribute the generated files over these directories. Enabling this
+# option can be useful when feeding doxygen a huge amount of source files, where
+# putting all generated files in the same directory would otherwise causes
+# performance problems for the file system. Adapt CREATE_SUBDIRS_LEVEL to
+# control the number of sub-directories.
+# The default value is: NO.
+
+CREATE_SUBDIRS         = NO
+
+# Controls the number of sub-directories that will be created when
+# CREATE_SUBDIRS tag is set to YES. Level 0 represents 16 directories, and every
+# level increment doubles the number of directories, resulting in 4096
+# directories at level 8 which is the default and also the maximum value. The
+# sub-directories are organized in 2 levels, the first level always has a fixed
+# number of 16 directories.
+# Minimum value: 0, maximum value: 8, default value: 8.
+# This tag requires that the tag CREATE_SUBDIRS is set to YES.
+
+CREATE_SUBDIRS_LEVEL   = 8
+
+# If the ALLOW_UNICODE_NAMES tag is set to YES, doxygen will allow non-ASCII
+# characters to appear in the names of generated files. If set to NO, non-ASCII
+# characters will be escaped, for example _xE3_x81_x84 will be used for Unicode
+# U+3044.
+# The default value is: NO.
+
+ALLOW_UNICODE_NAMES    = NO
+
+# The OUTPUT_LANGUAGE tag is used to specify the language in which all
+# documentation generated by doxygen is written. Doxygen will use this
+# information to generate all constant output in the proper language.
+# Possible values are: Afrikaans, Arabic, Armenian, Brazilian, Bulgarian,
+# Catalan, Chinese, Chinese-Traditional, Croatian, Czech, Danish, Dutch, English
+# (United States), Esperanto, Farsi (Persian), Finnish, French, German, Greek,
+# Hindi, Hungarian, Indonesian, Italian, Japanese, Japanese-en (Japanese with
+# English messages), Korean, Korean-en (Korean with English messages), Latvian,
+# Lithuanian, Macedonian, Norwegian, Persian (Farsi), Polish, Portuguese,
+# Romanian, Russian, Serbian, Serbian-Cyrillic, Slovak, Slovene, Spanish,
+# Swedish, Turkish, Ukrainian and Vietnamese.
+# The default value is: English.
+
+OUTPUT_LANGUAGE        = English
+
+# If the BRIEF_MEMBER_DESC tag is set to YES, doxygen will include brief member
+# descriptions after the members that are listed in the file and class
+# documentation (similar to Javadoc). Set to NO to disable this.
+# The default value is: YES.
+
+BRIEF_MEMBER_DESC      = YES
+
+# If the REPEAT_BRIEF tag is set to YES, doxygen will prepend the brief
+# description of a member or function before the detailed description
+#
+# Note: If both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the
+# brief descriptions will be completely suppressed.
+# The default value is: YES.
+
+REPEAT_BRIEF           = YES
+
+# This tag implements a quasi-intelligent brief description abbreviator that is
+# used to form the text in various listings. Each string in this list, if found
+# as the leading text of the brief description, will be stripped from the text
+# and the result, after processing the whole list, is used as the annotated
+# text. Otherwise, the brief description is used as-is. If left blank, the
+# following values are used ($name is automatically replaced with the name of
+# the entity):The $name class, The $name widget, The $name file, is, provides,
+# specifies, contains, represents, a, an and the.
+
+ABBREVIATE_BRIEF       = "The $name class" \
+                         "The $name widget" \
+                         "The $name file" \
+                         is \
+                         provides \
+                         specifies \
+                         contains \
+                         represents \
+                         a \
+                         an \
+                         the
+
+# If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then
+# doxygen will generate a detailed section even if there is only a brief
+# description.
+# The default value is: NO.
+
+ALWAYS_DETAILED_SEC    = NO
+
+# If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all
+# inherited members of a class in the documentation of that class as if those
+# members were ordinary class members. Constructors, destructors and assignment
+# operators of the base classes will not be shown.
+# The default value is: NO.
+
+INLINE_INHERITED_MEMB  = NO
+
+# If the FULL_PATH_NAMES tag is set to YES, doxygen will prepend the full path
+# before files name in the file list and in the header files. If set to NO the
+# shortest path that makes the file name unique will be used
+# The default value is: YES.
+
+FULL_PATH_NAMES        = YES
+
+# The STRIP_FROM_PATH tag can be used to strip a user-defined part of the path.
+# Stripping is only done if one of the specified strings matches the left-hand
+# part of the path. The tag can be used to show relative paths in the file list.
+# If left blank the directory from which doxygen is run is used as the path to
+# strip.
+#
+# Note that you can specify absolute paths here, but also relative paths, which
+# will be relative from the directory where doxygen is started.
+# This tag requires that the tag FULL_PATH_NAMES is set to YES.
+
+STRIP_FROM_PATH        =
+
+# The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of the
+# path mentioned in the documentation of a class, which tells the reader which
+# header file to include in order to use a class. If left blank only the name of
+# the header file containing the class definition is used. Otherwise one should
+# specify the list of include paths that are normally passed to the compiler
+# using the -I flag.
+
+STRIP_FROM_INC_PATH    =
+
+# If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter (but
+# less readable) file names. This can be useful is your file systems doesn't
+# support long names like on DOS, Mac, or CD-ROM.
+# The default value is: NO.
+
+SHORT_NAMES            = NO
+
+# If the JAVADOC_AUTOBRIEF tag is set to YES then doxygen will interpret the
+# first line (until the first dot) of a Javadoc-style comment as the brief
+# description. If set to NO, the Javadoc-style will behave just like regular Qt-
+# style comments (thus requiring an explicit @brief command for a brief
+# description.)
+# The default value is: NO.
+
+JAVADOC_AUTOBRIEF      = NO
+
+# If the JAVADOC_BANNER tag is set to YES then doxygen will interpret a line
+# such as
+# /***************
+# as being the beginning of a Javadoc-style comment "banner". If set to NO, the
+# Javadoc-style will behave just like regular comments and it will not be
+# interpreted by doxygen.
+# The default value is: NO.
+
+JAVADOC_BANNER         = NO
+
+# If the QT_AUTOBRIEF tag is set to YES then doxygen will interpret the first
+# line (until the first dot) of a Qt-style comment as the brief description. If
+# set to NO, the Qt-style will behave just like regular Qt-style comments (thus
+# requiring an explicit \brief command for a brief description.)
+# The default value is: NO.
+
+QT_AUTOBRIEF           = NO
+
+# The MULTILINE_CPP_IS_BRIEF tag can be set to YES to make doxygen treat a
+# multi-line C++ special comment block (i.e. a block of //! or /// comments) as
+# a brief description. This used to be the default behavior. The new default is
+# to treat a multi-line C++ comment block as a detailed description. Set this
+# tag to YES if you prefer the old behavior instead.
+#
+# Note that setting this tag to YES also means that rational rose comments are
+# not recognized any more.
+# The default value is: NO.
+
+MULTILINE_CPP_IS_BRIEF = NO
+
+# By default Python docstrings are displayed as preformatted text and doxygen's
+# special commands cannot be used. By setting PYTHON_DOCSTRING to NO the
+# doxygen's special commands can be used and the contents of the docstring
+# documentation blocks is shown as doxygen documentation.
+# The default value is: YES.
+
+PYTHON_DOCSTRING       = YES
+
+# If the INHERIT_DOCS tag is set to YES then an undocumented member inherits the
+# documentation from any documented member that it re-implements.
+# The default value is: YES.
+
+INHERIT_DOCS           = YES
+
+# If the SEPARATE_MEMBER_PAGES tag is set to YES then doxygen will produce a new
+# page for each member. If set to NO, the documentation of a member will be part
+# of the file/class/namespace that contains it.
+# The default value is: NO.
+
+SEPARATE_MEMBER_PAGES  = NO
+
+# The TAB_SIZE tag can be used to set the number of spaces in a tab. Doxygen
+# uses this value to replace tabs by spaces in code fragments.
+# Minimum value: 1, maximum value: 16, default value: 4.
+
+TAB_SIZE               = 4
+
+# This tag can be used to specify a number of aliases that act as commands in
+# the documentation. An alias has the form:
+# name=value
+# For example adding
+# "sideeffect=@par Side Effects:^^"
+# will allow you to put the command \sideeffect (or @sideeffect) in the
+# documentation, which will result in a user-defined paragraph with heading
+# "Side Effects:". Note that you cannot put \n's in the value part of an alias
+# to insert newlines (in the resulting output). You can put ^^ in the value part
+# of an alias to insert a newline as if a physical newline was in the original
+# file. When you need a literal { or } or , in the value part of an alias you
+# have to escape them by means of a backslash (\), this can lead to conflicts
+# with the commands \{ and \} for these it is advised to use the version @{ and
+# @} or use a double escape (\\{ and \\})
+
+ALIASES                =
+
+# Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C sources
+# only. Doxygen will then generate output that is more tailored for C. For
+# instance, some of the names that are used will be different. The list of all
+# members will be omitted, etc.
+# The default value is: NO.
+
+OPTIMIZE_OUTPUT_FOR_C  = NO
+
+# Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java or
+# Python sources only. Doxygen will then generate output that is more tailored
+# for that language. For instance, namespaces will be presented as packages,
+# qualified scopes will look different, etc.
+# The default value is: NO.
+
+OPTIMIZE_OUTPUT_JAVA   = NO
+
+# Set the OPTIMIZE_FOR_FORTRAN tag to YES if your project consists of Fortran
+# sources. Doxygen will then generate output that is tailored for Fortran.
+# The default value is: NO.
+
+OPTIMIZE_FOR_FORTRAN   = NO
+
+# Set the OPTIMIZE_OUTPUT_VHDL tag to YES if your project consists of VHDL
+# sources. Doxygen will then generate output that is tailored for VHDL.
+# The default value is: NO.
+
+OPTIMIZE_OUTPUT_VHDL   = NO
+
+# Set the OPTIMIZE_OUTPUT_SLICE tag to YES if your project consists of Slice
+# sources only. Doxygen will then generate output that is more tailored for that
+# language. For instance, namespaces will be presented as modules, types will be
+# separated into more groups, etc.
+# The default value is: NO.
+
+OPTIMIZE_OUTPUT_SLICE  = NO
+
+# Doxygen selects the parser to use depending on the extension of the files it
+# parses. With this tag you can assign which parser to use for a given
+# extension. Doxygen has a built-in mapping, but you can override or extend it
+# using this tag. The format is ext=language, where ext is a file extension, and
+# language is one of the parsers supported by doxygen: IDL, Java, JavaScript,
+# Csharp (C#), C, C++, Lex, D, PHP, md (Markdown), Objective-C, Python, Slice,
+# VHDL, Fortran (fixed format Fortran: FortranFixed, free formatted Fortran:
+# FortranFree, unknown formatted Fortran: Fortran. In the later case the parser
+# tries to guess whether the code is fixed or free formatted code, this is the
+# default for Fortran type files). For instance to make doxygen treat .inc files
+# as Fortran files (default is PHP), and .f files as C (default is Fortran),
+# use: inc=Fortran f=C.
+#
+# Note: For files without extension you can use no_extension as a placeholder.
+#
+# Note that for custom extensions you also need to set FILE_PATTERNS otherwise
+# the files are not read by doxygen. When specifying no_extension you should add
+# * to the FILE_PATTERNS.
+#
+# Note see also the list of default file extension mappings.
+
+EXTENSION_MAPPING      =
+
+# If the MARKDOWN_SUPPORT tag is enabled then doxygen pre-processes all comments
+# according to the Markdown format, which allows for more readable
+# documentation. See https://daringfireball.net/projects/markdown/ for details.
+# The output of markdown processing is further processed by doxygen, so you can
+# mix doxygen, HTML, and XML commands with Markdown formatting. Disable only in
+# case of backward compatibilities issues.
+# The default value is: YES.
+
+MARKDOWN_SUPPORT       = YES
+
+# When the TOC_INCLUDE_HEADINGS tag is set to a non-zero value, all headings up
+# to that level are automatically included in the table of contents, even if
+# they do not have an id attribute.
+# Note: This feature currently applies only to Markdown headings.
+# Minimum value: 0, maximum value: 99, default value: 5.
+# This tag requires that the tag MARKDOWN_SUPPORT is set to YES.
+
+TOC_INCLUDE_HEADINGS   = 5
+
+# The MARKDOWN_ID_STYLE tag can be used to specify the algorithm used to
+# generate identifiers for the Markdown headings. Note: Every identifier is
+# unique.
+# Possible values are: DOXYGEN use a fixed 'autotoc_md' string followed by a
+# sequence number starting at 0 and GITHUB use the lower case version of title
+# with any whitespace replaced by '-' and punctuation characters removed.
+# The default value is: DOXYGEN.
+# This tag requires that the tag MARKDOWN_SUPPORT is set to YES.
+
+MARKDOWN_ID_STYLE      = DOXYGEN
+
+# When enabled doxygen tries to link words that correspond to documented
+# classes, or namespaces to their corresponding documentation. Such a link can
+# be prevented in individual cases by putting a % sign in front of the word or
+# globally by setting AUTOLINK_SUPPORT to NO.
+# The default value is: YES.
+
+AUTOLINK_SUPPORT       = YES
+
+# If you use STL classes (i.e. std::string, std::vector, etc.) but do not want
+# to include (a tag file for) the STL sources as input, then you should set this
+# tag to YES in order to let doxygen match functions declarations and
+# definitions whose arguments contain STL classes (e.g. func(std::string);
+# versus func(std::string) {}). This also make the inheritance and collaboration
+# diagrams that involve STL classes more complete and accurate.
+# The default value is: NO.
+
+BUILTIN_STL_SUPPORT    = NO
+
+# If you use Microsoft's C++/CLI language, you should set this option to YES to
+# enable parsing support.
+# The default value is: NO.
+
+CPP_CLI_SUPPORT        = NO
+
+# Set the SIP_SUPPORT tag to YES if your project consists of sip (see:
+# https://www.riverbankcomputing.com/software/sip/intro) sources only. Doxygen
+# will parse them like normal C++ but will assume all classes use public instead
+# of private inheritance when no explicit protection keyword is present.
+# The default value is: NO.
+
+SIP_SUPPORT            = NO
+
+# For Microsoft's IDL there are propget and propput attributes to indicate
+# getter and setter methods for a property. Setting this option to YES will make
+# doxygen to replace the get and set methods by a property in the documentation.
+# This will only work if the methods are indeed getting or setting a simple
+# type. If this is not the case, or you want to show the methods anyway, you
+# should set this option to NO.
+# The default value is: YES.
+
+IDL_PROPERTY_SUPPORT   = YES
+
+# If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC
+# tag is set to YES then doxygen will reuse the documentation of the first
+# member in the group (if any) for the other members of the group. By default
+# all members of a group must be documented explicitly.
+# The default value is: NO.
+
+DISTRIBUTE_GROUP_DOC   = NO
+
+# If one adds a struct or class to a group and this option is enabled, then also
+# any nested class or struct is added to the same group. By default this option
+# is disabled and one has to add nested compounds explicitly via \ingroup.
+# The default value is: NO.
+
+GROUP_NESTED_COMPOUNDS = NO
+
+# Set the SUBGROUPING tag to YES to allow class member groups of the same type
+# (for instance a group of public functions) to be put as a subgroup of that
+# type (e.g. under the Public Functions section). Set it to NO to prevent
+# subgrouping. Alternatively, this can be done per class using the
+# \nosubgrouping command.
+# The default value is: YES.
+
+SUBGROUPING            = YES
+
+# When the INLINE_GROUPED_CLASSES tag is set to YES, classes, structs and unions
+# are shown inside the group in which they are included (e.g. using \ingroup)
+# instead of on a separate page (for HTML and Man pages) or section (for LaTeX
+# and RTF).
+#
+# Note that this feature does not work in combination with
+# SEPARATE_MEMBER_PAGES.
+# The default value is: NO.
+
+INLINE_GROUPED_CLASSES = NO
+
+# When the INLINE_SIMPLE_STRUCTS tag is set to YES, structs, classes, and unions
+# with only public data fields or simple typedef fields will be shown inline in
+# the documentation of the scope in which they are defined (i.e. file,
+# namespace, or group documentation), provided this scope is documented. If set
+# to NO, structs, classes, and unions are shown on a separate page (for HTML and
+# Man pages) or section (for LaTeX and RTF).
+# The default value is: NO.
+
+INLINE_SIMPLE_STRUCTS  = NO
+
+# When TYPEDEF_HIDES_STRUCT tag is enabled, a typedef of a struct, union, or
+# enum is documented as struct, union, or enum with the name of the typedef. So
+# typedef struct TypeS {} TypeT, will appear in the documentation as a struct
+# with name TypeT. When disabled the typedef will appear as a member of a file,
+# namespace, or class. And the struct will be named TypeS. This can typically be
+# useful for C code in case the coding convention dictates that all compound
+# types are typedef'ed and only the typedef is referenced, never the tag name.
+# The default value is: NO.
+
+TYPEDEF_HIDES_STRUCT   = NO
+
+# The size of the symbol lookup cache can be set using LOOKUP_CACHE_SIZE. This
+# cache is used to resolve symbols given their name and scope. Since this can be
+# an expensive process and often the same symbol appears multiple times in the
+# code, doxygen keeps a cache of pre-resolved symbols. If the cache is too small
+# doxygen will become slower. If the cache is too large, memory is wasted. The
+# cache size is given by this formula: 2^(16+LOOKUP_CACHE_SIZE). The valid range
+# is 0..9, the default is 0, corresponding to a cache size of 2^16=65536
+# symbols. At the end of a run doxygen will report the cache usage and suggest
+# the optimal cache size from a speed point of view.
+# Minimum value: 0, maximum value: 9, default value: 0.
+
+LOOKUP_CACHE_SIZE      = 0
+
+# The NUM_PROC_THREADS specifies the number of threads doxygen is allowed to use
+# during processing. When set to 0 doxygen will based this on the number of
+# cores available in the system. You can set it explicitly to a value larger
+# than 0 to get more control over the balance between CPU load and processing
+# speed. At this moment only the input processing can be done using multiple
+# threads. Since this is still an experimental feature the default is set to 1,
+# which effectively disables parallel processing. Please report any issues you
+# encounter. Generating dot graphs in parallel is controlled by the
+# DOT_NUM_THREADS setting.
+# Minimum value: 0, maximum value: 32, default value: 1.
+
+NUM_PROC_THREADS       = 1
+
+# If the TIMESTAMP tag is set different from NO then each generated page will
+# contain the date or date and time when the page was generated. Setting this to
+# NO can help when comparing the output of multiple runs.
+# Possible values are: YES, NO, DATETIME and DATE.
+# The default value is: NO.
+
+TIMESTAMP              = NO
+
+#---------------------------------------------------------------------------
+# Build related configuration options
+#---------------------------------------------------------------------------
+
+# If the EXTRACT_ALL tag is set to YES, doxygen will assume all entities in
+# documentation are documented, even if no documentation was available. Private
+# class members and static file members will be hidden unless the
+# EXTRACT_PRIVATE respectively EXTRACT_STATIC tags are set to YES.
+# Note: This will also disable the warnings about undocumented members that are
+# normally produced when WARNINGS is set to YES.
+# The default value is: NO.
+
+EXTRACT_ALL            = YES
+
+# If the EXTRACT_PRIVATE tag is set to YES, all private members of a class will
+# be included in the documentation.
+# The default value is: NO.
+
+EXTRACT_PRIVATE        = YES
+
+# If the EXTRACT_PRIV_VIRTUAL tag is set to YES, documented private virtual
+# methods of a class will be included in the documentation.
+# The default value is: NO.
+
+EXTRACT_PRIV_VIRTUAL   = YES
+
+# If the EXTRACT_PACKAGE tag is set to YES, all members with package or internal
+# scope will be included in the documentation.
+# The default value is: NO.
+
+EXTRACT_PACKAGE        = YES
+
+# If the EXTRACT_STATIC tag is set to YES, all static members of a file will be
+# included in the documentation.
+# The default value is: NO.
+
+EXTRACT_STATIC         = YES
+
+# If the EXTRACT_LOCAL_CLASSES tag is set to YES, classes (and structs) defined
+# locally in source files will be included in the documentation. If set to NO,
+# only classes defined in header files are included. Does not have any effect
+# for Java sources.
+# The default value is: YES.
+
+EXTRACT_LOCAL_CLASSES  = YES
+
+# This flag is only useful for Objective-C code. If set to YES, local methods,
+# which are defined in the implementation section but not in the interface are
+# included in the documentation. If set to NO, only methods in the interface are
+# included.
+# The default value is: NO.
+
+EXTRACT_LOCAL_METHODS  = YES
+
+# If this flag is set to YES, the members of anonymous namespaces will be
+# extracted and appear in the documentation as a namespace called
+# 'anonymous_namespace{file}', where file will be replaced with the base name of
+# the file that contains the anonymous namespace. By default anonymous namespace
+# are hidden.
+# The default value is: NO.
+
+EXTRACT_ANON_NSPACES   = YES
+
+# If this flag is set to YES, the name of an unnamed parameter in a declaration
+# will be determined by the corresponding definition. By default unnamed
+# parameters remain unnamed in the output.
+# The default value is: YES.
+
+RESOLVE_UNNAMED_PARAMS = YES
+
+# If the HIDE_UNDOC_MEMBERS tag is set to YES, doxygen will hide all
+# undocumented members inside documented classes or files. If set to NO these
+# members will be included in the various overviews, but no documentation
+# section is generated. This option has no effect if EXTRACT_ALL is enabled.
+# The default value is: NO.
+
+HIDE_UNDOC_MEMBERS     = NO
+
+# If the HIDE_UNDOC_CLASSES tag is set to YES, doxygen will hide all
+# undocumented classes that are normally visible in the class hierarchy. If set
+# to NO, these classes will be included in the various overviews. This option
+# will also hide undocumented C++ concepts if enabled. This option has no effect
+# if EXTRACT_ALL is enabled.
+# The default value is: NO.
+
+HIDE_UNDOC_CLASSES     = NO
+
+# If the HIDE_FRIEND_COMPOUNDS tag is set to YES, doxygen will hide all friend
+# declarations. If set to NO, these declarations will be included in the
+# documentation.
+# The default value is: NO.
+
+HIDE_FRIEND_COMPOUNDS  = NO
+
+# If the HIDE_IN_BODY_DOCS tag is set to YES, doxygen will hide any
+# documentation blocks found inside the body of a function. If set to NO, these
+# blocks will be appended to the function's detailed documentation block.
+# The default value is: NO.
+
+HIDE_IN_BODY_DOCS      = NO
+
+# The INTERNAL_DOCS tag determines if documentation that is typed after a
+# \internal command is included. If the tag is set to NO then the documentation
+# will be excluded. Set it to YES to include the internal documentation.
+# The default value is: NO.
+
+INTERNAL_DOCS          = NO
+
+# With the correct setting of option CASE_SENSE_NAMES doxygen will better be
+# able to match the capabilities of the underlying filesystem. In case the
+# filesystem is case sensitive (i.e. it supports files in the same directory
+# whose names only differ in casing), the option must be set to YES to properly
+# deal with such files in case they appear in the input. For filesystems that
+# are not case sensitive the option should be set to NO to properly deal with
+# output files written for symbols that only differ in casing, such as for two
+# classes, one named CLASS and the other named Class, and to also support
+# references to files without having to specify the exact matching casing. On
+# Windows (including Cygwin) and MacOS, users should typically set this option
+# to NO, whereas on Linux or other Unix flavors it should typically be set to
+# YES.
+# Possible values are: SYSTEM, NO and YES.
+# The default value is: SYSTEM.
+
+CASE_SENSE_NAMES       = SYSTEM
+
+# If the HIDE_SCOPE_NAMES tag is set to NO then doxygen will show members with
+# their full class and namespace scopes in the documentation. If set to YES, the
+# scope will be hidden.
+# The default value is: NO.
+
+HIDE_SCOPE_NAMES       = NO
+
+# If the HIDE_COMPOUND_REFERENCE tag is set to NO (default) then doxygen will
+# append additional text to a page's title, such as Class Reference. If set to
+# YES the compound reference will be hidden.
+# The default value is: NO.
+
+HIDE_COMPOUND_REFERENCE= NO
+
+# If the SHOW_HEADERFILE tag is set to YES then the documentation for a class
+# will show which file needs to be included to use the class.
+# The default value is: YES.
+
+SHOW_HEADERFILE        = YES
+
+# If the SHOW_INCLUDE_FILES tag is set to YES then doxygen will put a list of
+# the files that are included by a file in the documentation of that file.
+# The default value is: YES.
+
+SHOW_INCLUDE_FILES     = YES
+
+# If the SHOW_GROUPED_MEMB_INC tag is set to YES then Doxygen will add for each
+# grouped member an include statement to the documentation, telling the reader
+# which file to include in order to use the member.
+# The default value is: NO.
+
+SHOW_GROUPED_MEMB_INC  = NO
+
+# If the FORCE_LOCAL_INCLUDES tag is set to YES then doxygen will list include
+# files with double quotes in the documentation rather than with sharp brackets.
+# The default value is: NO.
+
+FORCE_LOCAL_INCLUDES   = NO
+
+# If the INLINE_INFO tag is set to YES then a tag [inline] is inserted in the
+# documentation for inline members.
+# The default value is: YES.
+
+INLINE_INFO            = YES
+
+# If the SORT_MEMBER_DOCS tag is set to YES then doxygen will sort the
+# (detailed) documentation of file and class members alphabetically by member
+# name. If set to NO, the members will appear in declaration order.
+# The default value is: YES.
+
+SORT_MEMBER_DOCS       = YES
+
+# If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the brief
+# descriptions of file, namespace and class members alphabetically by member
+# name. If set to NO, the members will appear in declaration order. Note that
+# this will also influence the order of the classes in the class list.
+# The default value is: NO.
+
+SORT_BRIEF_DOCS        = NO
+
+# If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen will sort the
+# (brief and detailed) documentation of class members so that constructors and
+# destructors are listed first. If set to NO the constructors will appear in the
+# respective orders defined by SORT_BRIEF_DOCS and SORT_MEMBER_DOCS.
+# Note: If SORT_BRIEF_DOCS is set to NO this option is ignored for sorting brief
+# member documentation.
+# Note: If SORT_MEMBER_DOCS is set to NO this option is ignored for sorting
+# detailed member documentation.
+# The default value is: NO.
+
+SORT_MEMBERS_CTORS_1ST = NO
+
+# If the SORT_GROUP_NAMES tag is set to YES then doxygen will sort the hierarchy
+# of group names into alphabetical order. If set to NO the group names will
+# appear in their defined order.
+# The default value is: NO.
+
+SORT_GROUP_NAMES       = NO
+
+# If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be sorted by
+# fully-qualified names, including namespaces. If set to NO, the class list will
+# be sorted only by class name, not including the namespace part.
+# Note: This option is not very useful if HIDE_SCOPE_NAMES is set to YES.
+# Note: This option applies only to the class list, not to the alphabetical
+# list.
+# The default value is: NO.
+
+SORT_BY_SCOPE_NAME     = NO
+
+# If the STRICT_PROTO_MATCHING option is enabled and doxygen fails to do proper
+# type resolution of all parameters of a function it will reject a match between
+# the prototype and the implementation of a member function even if there is
+# only one candidate or it is obvious which candidate to choose by doing a
+# simple string match. By disabling STRICT_PROTO_MATCHING doxygen will still
+# accept a match between prototype and implementation in such cases.
+# The default value is: NO.
+
+STRICT_PROTO_MATCHING  = NO
+
+# The GENERATE_TODOLIST tag can be used to enable (YES) or disable (NO) the todo
+# list. This list is created by putting \todo commands in the documentation.
+# The default value is: YES.
+
+GENERATE_TODOLIST      = YES
+
+# The GENERATE_TESTLIST tag can be used to enable (YES) or disable (NO) the test
+# list. This list is created by putting \test commands in the documentation.
+# The default value is: YES.
+
+GENERATE_TESTLIST      = YES
+
+# The GENERATE_BUGLIST tag can be used to enable (YES) or disable (NO) the bug
+# list. This list is created by putting \bug commands in the documentation.
+# The default value is: YES.
+
+GENERATE_BUGLIST       = YES
+
+# The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or disable (NO)
+# the deprecated list. This list is created by putting \deprecated commands in
+# the documentation.
+# The default value is: YES.
+
+GENERATE_DEPRECATEDLIST= YES
+
+# The ENABLED_SECTIONS tag can be used to enable conditional documentation
+# sections, marked by \if <section_label> ... \endif and \cond <section_label>
+# ... \endcond blocks.
+
+ENABLED_SECTIONS       =
+
+# The MAX_INITIALIZER_LINES tag determines the maximum number of lines that the
+# initial value of a variable or macro / define can have for it to appear in the
+# documentation. If the initializer consists of more lines than specified here
+# it will be hidden. Use a value of 0 to hide initializers completely. The
+# appearance of the value of individual variables and macros / defines can be
+# controlled using \showinitializer or \hideinitializer command in the
+# documentation regardless of this setting.
+# Minimum value: 0, maximum value: 10000, default value: 30.
+
+MAX_INITIALIZER_LINES  = 30
+
+# Set the SHOW_USED_FILES tag to NO to disable the list of files generated at
+# the bottom of the documentation of classes and structs. If set to YES, the
+# list will mention the files that were used to generate the documentation.
+# The default value is: YES.
+
+SHOW_USED_FILES        = YES
+
+# Set the SHOW_FILES tag to NO to disable the generation of the Files page. This
+# will remove the Files entry from the Quick Index and from the Folder Tree View
+# (if specified).
+# The default value is: YES.
+
+SHOW_FILES             = YES
+
+# Set the SHOW_NAMESPACES tag to NO to disable the generation of the Namespaces
+# page. This will remove the Namespaces entry from the Quick Index and from the
+# Folder Tree View (if specified).
+# The default value is: YES.
+
+SHOW_NAMESPACES        = YES
+
+# The FILE_VERSION_FILTER tag can be used to specify a program or script that
+# doxygen should invoke to get the current version for each file (typically from
+# the version control system). Doxygen will invoke the program by executing (via
+# popen()) the command command input-file, where command is the value of the
+# FILE_VERSION_FILTER tag, and input-file is the name of an input file provided
+# by doxygen. Whatever the program writes to standard output is used as the file
+# version. For an example see the documentation.
+
+FILE_VERSION_FILTER    =
+
+# The LAYOUT_FILE tag can be used to specify a layout file which will be parsed
+# by doxygen. The layout file controls the global structure of the generated
+# output files in an output format independent way. To create the layout file
+# that represents doxygen's defaults, run doxygen with the -l option. You can
+# optionally specify a file name after the option, if omitted DoxygenLayout.xml
+# will be used as the name of the layout file. See also section "Changing the
+# layout of pages" for information.
+#
+# Note that if you run doxygen from a directory containing a file called
+# DoxygenLayout.xml, doxygen will parse it automatically even if the LAYOUT_FILE
+# tag is left empty.
+
+LAYOUT_FILE            =
+
+# The CITE_BIB_FILES tag can be used to specify one or more bib files containing
+# the reference definitions. This must be a list of .bib files. The .bib
+# extension is automatically appended if omitted. This requires the bibtex tool
+# to be installed. See also https://en.wikipedia.org/wiki/BibTeX for more info.
+# For LaTeX the style of the bibliography can be controlled using
+# LATEX_BIB_STYLE. To use this feature you need bibtex and perl available in the
+# search path. See also \cite for info how to create references.
+
+CITE_BIB_FILES         = literature.bib
+
+#---------------------------------------------------------------------------
+# Configuration options related to warning and progress messages
+#---------------------------------------------------------------------------
+
+# The QUIET tag can be used to turn on/off the messages that are generated to
+# standard output by doxygen. If QUIET is set to YES this implies that the
+# messages are off.
+# The default value is: NO.
+
+QUIET                  = NO
+
+# The WARNINGS tag can be used to turn on/off the warning messages that are
+# generated to standard error (stderr) by doxygen. If WARNINGS is set to YES
+# this implies that the warnings are on.
+#
+# Tip: Turn warnings on while writing the documentation.
+# The default value is: YES.
+
+WARNINGS               = YES
+
+# If the WARN_IF_UNDOCUMENTED tag is set to YES then doxygen will generate
+# warnings for undocumented members. If EXTRACT_ALL is set to YES then this flag
+# will automatically be disabled.
+# The default value is: YES.
+
+WARN_IF_UNDOCUMENTED   = YES
+
+# If the WARN_IF_DOC_ERROR tag is set to YES, doxygen will generate warnings for
+# potential errors in the documentation, such as documenting some parameters in
+# a documented function twice, or documenting parameters that don't exist or
+# using markup commands wrongly.
+# The default value is: YES.
+
+WARN_IF_DOC_ERROR      = YES
+
+# If WARN_IF_INCOMPLETE_DOC is set to YES, doxygen will warn about incomplete
+# function parameter documentation. If set to NO, doxygen will accept that some
+# parameters have no documentation without warning.
+# The default value is: YES.
+
+WARN_IF_INCOMPLETE_DOC = YES
+
+# This WARN_NO_PARAMDOC option can be enabled to get warnings for functions that
+# are documented, but have no documentation for their parameters or return
+# value. If set to NO, doxygen will only warn about wrong parameter
+# documentation, but not about the absence of documentation. If EXTRACT_ALL is
+# set to YES then this flag will automatically be disabled. See also
+# WARN_IF_INCOMPLETE_DOC
+# The default value is: NO.
+
+WARN_NO_PARAMDOC       = NO
+
+# If WARN_IF_UNDOC_ENUM_VAL option is set to YES, doxygen will warn about
+# undocumented enumeration values. If set to NO, doxygen will accept
+# undocumented enumeration values. If EXTRACT_ALL is set to YES then this flag
+# will automatically be disabled.
+# The default value is: NO.
+
+WARN_IF_UNDOC_ENUM_VAL = NO
+
+# If the WARN_AS_ERROR tag is set to YES then doxygen will immediately stop when
+# a warning is encountered. If the WARN_AS_ERROR tag is set to FAIL_ON_WARNINGS
+# then doxygen will continue running as if WARN_AS_ERROR tag is set to NO, but
+# at the end of the doxygen process doxygen will return with a non-zero status.
+# If the WARN_AS_ERROR tag is set to FAIL_ON_WARNINGS_PRINT then doxygen behaves
+# like FAIL_ON_WARNINGS but in case no WARN_LOGFILE is defined doxygen will not
+# write the warning messages in between other messages but write them at the end
+# of a run, in case a WARN_LOGFILE is defined the warning messages will be
+# besides being in the defined file also be shown at the end of a run, unless
+# the WARN_LOGFILE is defined as - i.e. standard output (stdout) in that case
+# the behavior will remain as with the setting FAIL_ON_WARNINGS.
+# Possible values are: NO, YES, FAIL_ON_WARNINGS and FAIL_ON_WARNINGS_PRINT.
+# The default value is: NO.
+
+WARN_AS_ERROR          = NO
+
+# The WARN_FORMAT tag determines the format of the warning messages that doxygen
+# can produce. The string should contain the $file, $line, and $text tags, which
+# will be replaced by the file and line number from which the warning originated
+# and the warning text. Optionally the format may contain $version, which will
+# be replaced by the version of the file (if it could be obtained via
+# FILE_VERSION_FILTER)
+# See also: WARN_LINE_FORMAT
+# The default value is: $file:$line: $text.
+
+WARN_FORMAT            = "$file:$line: $text"
+
+# In the $text part of the WARN_FORMAT command it is possible that a reference
+# to a more specific place is given. To make it easier to jump to this place
+# (outside of doxygen) the user can define a custom "cut" / "paste" string.
+# Example:
+# WARN_LINE_FORMAT = "'vi $file +$line'"
+# See also: WARN_FORMAT
+# The default value is: at line $line of file $file.
+
+WARN_LINE_FORMAT       = "at line $line of file $file"
+
+# The WARN_LOGFILE tag can be used to specify a file to which warning and error
+# messages should be written. If left blank the output is written to standard
+# error (stderr). In case the file specified cannot be opened for writing the
+# warning and error messages are written to standard error. When as file - is
+# specified the warning and error messages are written to standard output
+# (stdout).
+
+WARN_LOGFILE           =
+
+#---------------------------------------------------------------------------
+# Configuration options related to the input files
+#---------------------------------------------------------------------------
+
+# The INPUT tag is used to specify the files and/or directories that contain
+# documented source files. You may enter file names like myfile.cpp or
+# directories like /usr/src/myproject. Separate the files or directories with
+# spaces. See also FILE_PATTERNS and EXTENSION_MAPPING
+# Note: If this tag is empty the current directory is searched.
+
+INPUT                  = @SOURCE_DIR@
+
+# This tag can be used to specify the character encoding of the source files
+# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
+# libiconv (or the iconv built into libc) for the transcoding. See the libiconv
+# documentation (see:
+# https://www.gnu.org/software/libiconv/) for the list of possible encodings.
+# See also: INPUT_FILE_ENCODING
+# The default value is: UTF-8.
+
+INPUT_ENCODING         = UTF-8
+
+# This tag can be used to specify the character encoding of the source files
+# that doxygen parses The INPUT_FILE_ENCODING tag can be used to specify
+# character encoding on a per file pattern basis. Doxygen will compare the file
+# name with each pattern and apply the encoding instead of the default
+# INPUT_ENCODING) if there is a match. The character encodings are a list of the
+# form: pattern=encoding (like *.php=ISO-8859-1). See cfg_input_encoding
+# "INPUT_ENCODING" for further information on supported encodings.
+
+INPUT_FILE_ENCODING    =
+
+# If the value of the INPUT tag contains directories, you can use the
+# FILE_PATTERNS tag to specify one or more wildcard patterns (like *.cpp and
+# *.h) to filter out the source-files in the directories.
+#
+# Note that for custom extensions or not directly supported extensions you also
+# need to set EXTENSION_MAPPING for the extension otherwise the files are not
+# read by doxygen.
+#
+# Note the list of default checked file patterns might differ from the list of
+# default file extension mappings.
+#
+# If left blank the following patterns are tested:*.c, *.cc, *.cxx, *.cxxm,
+# *.cpp, *.cppm, *.c++, *.c++m, *.java, *.ii, *.ixx, *.ipp, *.i++, *.inl, *.idl,
+# *.ddl, *.odl, *.h, *.hh, *.hxx, *.hpp, *.h++, *.ixx, *.l, *.cs, *.d, *.php,
+# *.php4, *.php5, *.phtml, *.inc, *.m, *.markdown, *.md, *.mm, *.dox (to be
+# provided as doxygen C comment), *.py, *.pyw, *.f90, *.f95, *.f03, *.f08,
+# *.f18, *.f, *.for, *.vhd, *.vhdl, *.ucf, *.qsf and *.ice.
+
+FILE_PATTERNS          = *.c \
+                         *.cc \
+                         *.cxx \
+                         *.cxxm \
+                         *.cpp \
+                         *.cppm \
+                         *.c++ \
+                         *.c++m \
+                         *.java \
+                         *.ii \
+                         *.ixx \
+                         *.ipp \
+                         *.i++ \
+                         *.inl \
+                         *.idl \
+                         *.ddl \
+                         *.odl \
+                         *.h \
+                         *.hh \
+                         *.hxx \
+                         *.hpp \
+                         *.h++ \
+                         *.ixx \
+                         *.l \
+                         *.cs \
+                         *.d \
+                         *.php \
+                         *.php4 \
+                         *.php5 \
+                         *.phtml \
+                         *.inc \
+                         *.m \
+                         *.markdown \
+                         *.md \
+                         *.mm \
+                         *.dox \
+                         *.py \
+                         *.pyw \
+                         *.f90 \
+                         *.f95 \
+                         *.f03 \
+                         *.f08 \
+                         *.f18 \
+                         *.f \
+                         *.for \
+                         *.vhd \
+                         *.vhdl \
+                         *.ucf \
+                         *.qsf \
+                         *.ice
+
+# The RECURSIVE tag can be used to specify whether or not subdirectories should
+# be searched for input files as well.
+# The default value is: NO.
+
+RECURSIVE              = YES
+
+# The EXCLUDE tag can be used to specify files and/or directories that should be
+# excluded from the INPUT source files. This way you can easily exclude a
+# subdirectory from a directory tree whose root is specified with the INPUT tag.
+#
+# Note that relative paths are relative to the directory from which doxygen is
+# run.
+
+EXCLUDE                =
+
+# The EXCLUDE_SYMLINKS tag can be used to select whether or not files or
+# directories that are symbolic links (a Unix file system feature) are excluded
+# from the input.
+# The default value is: NO.
+
+EXCLUDE_SYMLINKS       = NO
+
+# If the value of the INPUT tag contains directories, you can use the
+# EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude
+# certain files from those directories.
+#
+# Note that the wildcards are matched against the file with absolute path, so to
+# exclude all test directories for example use the pattern */test/*
+
+EXCLUDE_PATTERNS       =
+
+# The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names
+# (namespaces, classes, functions, etc.) that should be excluded from the
+# output. The symbol name can be a fully qualified name, a word, or if the
+# wildcard * is used, a substring. Examples: ANamespace, AClass,
+# ANamespace::AClass, ANamespace::*Test
+
+EXCLUDE_SYMBOLS        =
+
+# The EXAMPLE_PATH tag can be used to specify one or more files or directories
+# that contain example code fragments that are included (see the \include
+# command).
+
+EXAMPLE_PATH           =
+
+# If the value of the EXAMPLE_PATH tag contains directories, you can use the
+# EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp and
+# *.h) to filter out the source-files in the directories. If left blank all
+# files are included.
+
+EXAMPLE_PATTERNS       = *
+
+# If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be
+# searched for input files to be used with the \include or \dontinclude commands
+# irrespective of the value of the RECURSIVE tag.
+# The default value is: NO.
+
+EXAMPLE_RECURSIVE      = NO
+
+# The IMAGE_PATH tag can be used to specify one or more files or directories
+# that contain images that are to be included in the documentation (see the
+# \image command).
+
+IMAGE_PATH             = ./img/
+
+# The INPUT_FILTER tag can be used to specify a program that doxygen should
+# invoke to filter for each input file. Doxygen will invoke the filter program
+# by executing (via popen()) the command:
+#
+# <filter> <input-file>
+#
+# where <filter> is the value of the INPUT_FILTER tag, and <input-file> is the
+# name of an input file. Doxygen will then use the output that the filter
+# program writes to standard output. If FILTER_PATTERNS is specified, this tag
+# will be ignored.
+#
+# Note that the filter must not add or remove lines; it is applied before the
+# code is scanned, but not when the output code is generated. If lines are added
+# or removed, the anchors will not be placed correctly.
+#
+# Note that doxygen will use the data processed and written to standard output
+# for further processing, therefore nothing else, like debug statements or used
+# commands (so in case of a Windows batch file always use @echo OFF), should be
+# written to standard output.
+#
+# Note that for custom extensions or not directly supported extensions you also
+# need to set EXTENSION_MAPPING for the extension otherwise the files are not
+# properly processed by doxygen.
+
+INPUT_FILTER           =
+
+# The FILTER_PATTERNS tag can be used to specify filters on a per file pattern
+# basis. Doxygen will compare the file name with each pattern and apply the
+# filter if there is a match. The filters are a list of the form: pattern=filter
+# (like *.cpp=my_cpp_filter). See INPUT_FILTER for further information on how
+# filters are used. If the FILTER_PATTERNS tag is empty or if none of the
+# patterns match the file name, INPUT_FILTER is applied.
+#
+# Note that for custom extensions or not directly supported extensions you also
+# need to set EXTENSION_MAPPING for the extension otherwise the files are not
+# properly processed by doxygen.
+
+FILTER_PATTERNS        =
+
+# If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using
+# INPUT_FILTER) will also be used to filter the input files that are used for
+# producing the source files to browse (i.e. when SOURCE_BROWSER is set to YES).
+# The default value is: NO.
+
+FILTER_SOURCE_FILES    = NO
+
+# The FILTER_SOURCE_PATTERNS tag can be used to specify source filters per file
+# pattern. A pattern will override the setting for FILTER_PATTERN (if any) and
+# it is also possible to disable source filtering for a specific pattern using
+# *.ext= (so without naming a filter).
+# This tag requires that the tag FILTER_SOURCE_FILES is set to YES.
+
+FILTER_SOURCE_PATTERNS =
+
+# If the USE_MDFILE_AS_MAINPAGE tag refers to the name of a markdown file that
+# is part of the input, its contents will be placed on the main page
+# (index.html). This can be useful if you have a project on for instance GitHub
+# and want to reuse the introduction page also for the doxygen output.
+
+USE_MDFILE_AS_MAINPAGE =
+
+# The Fortran standard specifies that for fixed formatted Fortran code all
+# characters from position 72 are to be considered as comment. A common
+# extension is to allow longer lines before the automatic comment starts. The
+# setting FORTRAN_COMMENT_AFTER will also make it possible that longer lines can
+# be processed before the automatic comment starts.
+# Minimum value: 7, maximum value: 10000, default value: 72.
+
+FORTRAN_COMMENT_AFTER  = 72
+
+#---------------------------------------------------------------------------
+# Configuration options related to source browsing
+#---------------------------------------------------------------------------
+
+# If the SOURCE_BROWSER tag is set to YES then a list of source files will be
+# generated. Documented entities will be cross-referenced with these sources.
+#
+# Note: To get rid of all source code in the generated output, make sure that
+# also VERBATIM_HEADERS is set to NO.
+# The default value is: NO.
+
+SOURCE_BROWSER         = NO
+
+# Setting the INLINE_SOURCES tag to YES will include the body of functions,
+# classes and enums directly into the documentation.
+# The default value is: NO.
+
+INLINE_SOURCES         = NO
+
+# Setting the STRIP_CODE_COMMENTS tag to YES will instruct doxygen to hide any
+# special comment blocks from generated source code fragments. Normal C, C++ and
+# Fortran comments will always remain visible.
+# The default value is: YES.
+
+STRIP_CODE_COMMENTS    = YES
+
+# If the REFERENCED_BY_RELATION tag is set to YES then for each documented
+# entity all documented functions referencing it will be listed.
+# The default value is: NO.
+
+REFERENCED_BY_RELATION = NO
+
+# If the REFERENCES_RELATION tag is set to YES then for each documented function
+# all documented entities called/used by that function will be listed.
+# The default value is: NO.
+
+REFERENCES_RELATION    = NO
+
+# If the REFERENCES_LINK_SOURCE tag is set to YES and SOURCE_BROWSER tag is set
+# to YES then the hyperlinks from functions in REFERENCES_RELATION and
+# REFERENCED_BY_RELATION lists will link to the source code. Otherwise they will
+# link to the documentation.
+# The default value is: YES.
+
+REFERENCES_LINK_SOURCE = YES
+
+# If SOURCE_TOOLTIPS is enabled (the default) then hovering a hyperlink in the
+# source code will show a tooltip with additional information such as prototype,
+# brief description and links to the definition and documentation. Since this
+# will make the HTML file larger and loading of large files a bit slower, you
+# can opt to disable this feature.
+# The default value is: YES.
+# This tag requires that the tag SOURCE_BROWSER is set to YES.
+
+SOURCE_TOOLTIPS        = YES
+
+# If the USE_HTAGS tag is set to YES then the references to source code will
+# point to the HTML generated by the htags(1) tool instead of doxygen built-in
+# source browser. The htags tool is part of GNU's global source tagging system
+# (see https://www.gnu.org/software/global/global.html). You will need version
+# 4.8.6 or higher.
+#
+# To use it do the following:
+# - Install the latest version of global
+# - Enable SOURCE_BROWSER and USE_HTAGS in the configuration file
+# - Make sure the INPUT points to the root of the source tree
+# - Run doxygen as normal
+#
+# Doxygen will invoke htags (and that will in turn invoke gtags), so these
+# tools must be available from the command line (i.e. in the search path).
+#
+# The result: instead of the source browser generated by doxygen, the links to
+# source code will now point to the output of htags.
+# The default value is: NO.
+# This tag requires that the tag SOURCE_BROWSER is set to YES.
+
+USE_HTAGS              = NO
+
+# If the VERBATIM_HEADERS tag is set the YES then doxygen will generate a
+# verbatim copy of the header file for each class for which an include is
+# specified. Set to NO to disable this.
+# See also: Section \class.
+# The default value is: YES.
+
+VERBATIM_HEADERS       = YES
+
+# If the CLANG_ASSISTED_PARSING tag is set to YES then doxygen will use the
+# clang parser (see:
+# http://clang.llvm.org/) for more accurate parsing at the cost of reduced
+# performance. This can be particularly helpful with template rich C++ code for
+# which doxygen's built-in parser lacks the necessary type information.
+# Note: The availability of this option depends on whether or not doxygen was
+# generated with the -Duse_libclang=ON option for CMake.
+# The default value is: NO.
+
+CLANG_ASSISTED_PARSING = NO
+
+# If the CLANG_ASSISTED_PARSING tag is set to YES and the CLANG_ADD_INC_PATHS
+# tag is set to YES then doxygen will add the directory of each input to the
+# include path.
+# The default value is: YES.
+# This tag requires that the tag CLANG_ASSISTED_PARSING is set to YES.
+
+CLANG_ADD_INC_PATHS    = YES
+
+# If clang assisted parsing is enabled you can provide the compiler with command
+# line options that you would normally use when invoking the compiler. Note that
+# the include paths will already be set by doxygen for the files and directories
+# specified with INPUT and INCLUDE_PATH.
+# This tag requires that the tag CLANG_ASSISTED_PARSING is set to YES.
+
+CLANG_OPTIONS          =
+
+# If clang assisted parsing is enabled you can provide the clang parser with the
+# path to the directory containing a file called compile_commands.json. This
+# file is the compilation database (see:
+# http://clang.llvm.org/docs/HowToSetupToolingForLLVM.html) containing the
+# options used when the source files were built. This is equivalent to
+# specifying the -p option to a clang tool, such as clang-check. These options
+# will then be passed to the parser. Any options specified with CLANG_OPTIONS
+# will be added as well.
+# Note: The availability of this option depends on whether or not doxygen was
+# generated with the -Duse_libclang=ON option for CMake.
+
+CLANG_DATABASE_PATH    =
+#---------------------------------------------------------------------------
+# Configuration options related to the alphabetical class index
+#---------------------------------------------------------------------------
+
+# If the ALPHABETICAL_INDEX tag is set to YES, an alphabetical index of all
+# compounds will be generated. Enable this if the project contains a lot of
+# classes, structs, unions or interfaces.
+# The default value is: YES.
+
+ALPHABETICAL_INDEX     = YES
+
+# The IGNORE_PREFIX tag can be used to specify a prefix (or a list of prefixes)
+# that should be ignored while generating the index headers. The IGNORE_PREFIX
+# tag works for classes, function and member names. The entity will be placed in
+# the alphabetical list under the first letter of the entity name that remains
+# after removing the prefix.
+# This tag requires that the tag ALPHABETICAL_INDEX is set to YES.
+
+IGNORE_PREFIX          =
+
+#---------------------------------------------------------------------------
+# Configuration options related to the HTML output
+#---------------------------------------------------------------------------
+
+# If the GENERATE_HTML tag is set to YES, doxygen will generate HTML output
+# The default value is: YES.
+
+GENERATE_HTML          = YES
+
+# The HTML_OUTPUT tag is used to specify where the HTML docs will be put. If a
+# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
+# it.
+# The default directory is: html.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_OUTPUT            = ecological_assessment
+
+# The HTML_FILE_EXTENSION tag can be used to specify the file extension for each
+# generated HTML page (for example: .htm, .php, .asp).
+# The default value is: .html.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_FILE_EXTENSION    = .html
+
+# The HTML_HEADER tag can be used to specify a user-defined HTML header file for
+# each generated HTML page. If the tag is left blank doxygen will generate a
+# standard header.
+#
+# To get valid HTML the header file that includes any scripts and style sheets
+# that doxygen needs, which is dependent on the configuration options used (e.g.
+# the setting GENERATE_TREEVIEW). It is highly recommended to start with a
+# default header using
+# doxygen -w html new_header.html new_footer.html new_stylesheet.css
+# YourConfigFile
+# and then modify the file new_header.html. See also section "Doxygen usage"
+# for information on how to generate the default header that doxygen normally
+# uses.
+# Note: The header is subject to change so you typically have to regenerate the
+# default header when upgrading to a newer version of doxygen. For a description
+# of the possible markers and block names see the documentation.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_HEADER            = header.html
+
+# The HTML_FOOTER tag can be used to specify a user-defined HTML footer for each
+# generated HTML page. If the tag is left blank doxygen will generate a standard
+# footer. See HTML_HEADER for more information on how to generate a default
+# footer and what special commands can be used inside the footer. See also
+# section "Doxygen usage" for information on how to generate the default footer
+# that doxygen normally uses.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_FOOTER            =
+
+# The HTML_STYLESHEET tag can be used to specify a user-defined cascading style
+# sheet that is used by each HTML page. It can be used to fine-tune the look of
+# the HTML output. If left blank doxygen will generate a default style sheet.
+# See also section "Doxygen usage" for information on how to generate the style
+# sheet that doxygen normally uses.
+# Note: It is recommended to use HTML_EXTRA_STYLESHEET instead of this tag, as
+# it is more robust and this tag (HTML_STYLESHEET) will in the future become
+# obsolete.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_STYLESHEET        =
+
+# The HTML_EXTRA_STYLESHEET tag can be used to specify additional user-defined
+# cascading style sheets that are included after the standard style sheets
+# created by doxygen. Using this option one can overrule certain style aspects.
+# This is preferred over using HTML_STYLESHEET since it does not replace the
+# standard style sheet and is therefore more robust against future updates.
+# Doxygen will copy the style sheet files to the output directory.
+# Note: The order of the extra style sheet files is of importance (e.g. the last
+# style sheet in the list overrules the setting of the previous ones in the
+# list).
+# Note: Since the styling of scrollbars can currently not be overruled in
+# Webkit/Chromium, the styling will be left out of the default doxygen.css if
+# one or more extra stylesheets have been specified. So if scrollbar
+# customization is desired it has to be added explicitly. For an example see the
+# documentation.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_EXTRA_STYLESHEET  = ../../libs/extern/doxygen-awesome-css/doxygen-awesome.css
+
+# The HTML_EXTRA_FILES tag can be used to specify one or more extra images or
+# other source files which should be copied to the HTML output directory. Note
+# that these files will be copied to the base HTML output directory. Use the
+# $relpath^ marker in the HTML_HEADER and/or HTML_FOOTER files to load these
+# files. In the HTML_STYLESHEET file, use the file name only. Also note that the
+# files will be copied as-is; there are no commands or markers available.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_EXTRA_FILES       = ../../libs/extern/doxygen-awesome-css/doxygen-awesome-darkmode-toggle.js\
+    ../../libs/extern/doxygen-awesome-css/doxygen-awesome-tabs.js\
+    ../../libs/extern/doxygen-awesome-css/doxygen-awesome-fragment-copy-button.js
+
+# The HTML_COLORSTYLE tag can be used to specify if the generated HTML output
+# should be rendered with a dark or light theme.
+# Possible values are: LIGHT always generate light mode output, DARK always
+# generate dark mode output, AUTO_LIGHT automatically set the mode according to
+# the user preference, use light mode if no preference is set (the default),
+# AUTO_DARK automatically set the mode according to the user preference, use
+# dark mode if no preference is set and TOGGLE allow to user to switch between
+# light and dark mode via a button.
+# The default value is: AUTO_LIGHT.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_COLORSTYLE        = LIGHT
+
+# The HTML_COLORSTYLE_HUE tag controls the color of the HTML output. Doxygen
+# will adjust the colors in the style sheet and background images according to
+# this color. Hue is specified as an angle on a color-wheel, see
+# https://en.wikipedia.org/wiki/Hue for more information. For instance the value
+# 0 represents red, 60 is yellow, 120 is green, 180 is cyan, 240 is blue, 300
+# purple, and 360 is red again.
+# Minimum value: 0, maximum value: 359, default value: 220.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_COLORSTYLE_HUE    = 220
+
+# The HTML_COLORSTYLE_SAT tag controls the purity (or saturation) of the colors
+# in the HTML output. For a value of 0 the output will use gray-scales only. A
+# value of 255 will produce the most vivid colors.
+# Minimum value: 0, maximum value: 255, default value: 100.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_COLORSTYLE_SAT    = 100
+
+# The HTML_COLORSTYLE_GAMMA tag controls the gamma correction applied to the
+# luminance component of the colors in the HTML output. Values below 100
+# gradually make the output lighter, whereas values above 100 make the output
+# darker. The value divided by 100 is the actual gamma applied, so 80 represents
+# a gamma of 0.8, The value 220 represents a gamma of 2.2, and 100 does not
+# change the gamma.
+# Minimum value: 40, maximum value: 240, default value: 80.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_COLORSTYLE_GAMMA  = 80
+
+# If the HTML_DYNAMIC_MENUS tag is set to YES then the generated HTML
+# documentation will contain a main index with vertical navigation menus that
+# are dynamically created via JavaScript. If disabled, the navigation index will
+# consists of multiple levels of tabs that are statically embedded in every HTML
+# page. Disable this option to support browsers that do not have JavaScript,
+# like the Qt help browser.
+# The default value is: YES.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_DYNAMIC_MENUS     = YES
+
+# If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML
+# documentation will contain sections that can be hidden and shown after the
+# page has loaded.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_DYNAMIC_SECTIONS  = NO
+
+# If the HTML_CODE_FOLDING tag is set to YES then classes and functions can be
+# dynamically folded and expanded in the generated HTML source code.
+# The default value is: YES.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_CODE_FOLDING      = YES
+
+# With HTML_INDEX_NUM_ENTRIES one can control the preferred number of entries
+# shown in the various tree structured indices initially; the user can expand
+# and collapse entries dynamically later on. Doxygen will expand the tree to
+# such a level that at most the specified number of entries are visible (unless
+# a fully collapsed tree already exceeds this amount). So setting the number of
+# entries 1 will produce a full collapsed tree by default. 0 is a special value
+# representing an infinite number of entries and will result in a full expanded
+# tree by default.
+# Minimum value: 0, maximum value: 9999, default value: 100.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_INDEX_NUM_ENTRIES = 100
+
+# If the GENERATE_DOCSET tag is set to YES, additional index files will be
+# generated that can be used as input for Apple's Xcode 3 integrated development
+# environment (see:
+# https://developer.apple.com/xcode/), introduced with OSX 10.5 (Leopard). To
+# create a documentation set, doxygen will generate a Makefile in the HTML
+# output directory. Running make will produce the docset in that directory and
+# running make install will install the docset in
+# ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find it at
+# startup. See https://developer.apple.com/library/archive/featuredarticles/Doxy
+# genXcode/_index.html for more information.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+GENERATE_DOCSET        = NO
+
+# This tag determines the name of the docset feed. A documentation feed provides
+# an umbrella under which multiple documentation sets from a single provider
+# (such as a company or product suite) can be grouped.
+# The default value is: Doxygen generated docs.
+# This tag requires that the tag GENERATE_DOCSET is set to YES.
+
+DOCSET_FEEDNAME        = "Doxygen generated docs"
+
+# This tag determines the URL of the docset feed. A documentation feed provides
+# an umbrella under which multiple documentation sets from a single provider
+# (such as a company or product suite) can be grouped.
+# This tag requires that the tag GENERATE_DOCSET is set to YES.
+
+DOCSET_FEEDURL         =
+
+# This tag specifies a string that should uniquely identify the documentation
+# set bundle. This should be a reverse domain-name style string, e.g.
+# com.mycompany.MyDocSet. Doxygen will append .docset to the name.
+# The default value is: org.doxygen.Project.
+# This tag requires that the tag GENERATE_DOCSET is set to YES.
+
+DOCSET_BUNDLE_ID       = org.doxygen.Project
+
+# The DOCSET_PUBLISHER_ID tag specifies a string that should uniquely identify
+# the documentation publisher. This should be a reverse domain-name style
+# string, e.g. com.mycompany.MyDocSet.documentation.
+# The default value is: org.doxygen.Publisher.
+# This tag requires that the tag GENERATE_DOCSET is set to YES.
+
+DOCSET_PUBLISHER_ID    = org.doxygen.Publisher
+
+# The DOCSET_PUBLISHER_NAME tag identifies the documentation publisher.
+# The default value is: Publisher.
+# This tag requires that the tag GENERATE_DOCSET is set to YES.
+
+DOCSET_PUBLISHER_NAME  = Publisher
+
+# If the GENERATE_HTMLHELP tag is set to YES then doxygen generates three
+# additional HTML index files: index.hhp, index.hhc, and index.hhk. The
+# index.hhp is a project file that can be read by Microsoft's HTML Help Workshop
+# on Windows. In the beginning of 2021 Microsoft took the original page, with
+# a.o. the download links, offline the HTML help workshop was already many years
+# in maintenance mode). You can download the HTML help workshop from the web
+# archives at Installation executable (see:
+# http://web.archive.org/web/20160201063255/http://download.microsoft.com/downlo
+# ad/0/A/9/0A939EF6-E31C-430F-A3DF-DFAE7960D564/htmlhelp.exe).
+#
+# The HTML Help Workshop contains a compiler that can convert all HTML output
+# generated by doxygen into a single compiled HTML file (.chm). Compiled HTML
+# files are now used as the Windows 98 help format, and will replace the old
+# Windows help format (.hlp) on all Windows platforms in the future. Compressed
+# HTML files also contain an index, a table of contents, and you can search for
+# words in the documentation. The HTML workshop also contains a viewer for
+# compressed HTML files.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+GENERATE_HTMLHELP      = NO
+
+# The CHM_FILE tag can be used to specify the file name of the resulting .chm
+# file. You can add a path in front of the file if the result should not be
+# written to the html output directory.
+# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
+
+CHM_FILE               =
+
+# The HHC_LOCATION tag can be used to specify the location (absolute path
+# including file name) of the HTML help compiler (hhc.exe). If non-empty,
+# doxygen will try to run the HTML help compiler on the generated index.hhp.
+# The file has to be specified with full path.
+# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
+
+HHC_LOCATION           =
+
+# The GENERATE_CHI flag controls if a separate .chi index file is generated
+# (YES) or that it should be included in the main .chm file (NO).
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
+
+GENERATE_CHI           = NO
+
+# The CHM_INDEX_ENCODING is used to encode HtmlHelp index (hhk), content (hhc)
+# and project file content.
+# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
+
+CHM_INDEX_ENCODING     =
+
+# The BINARY_TOC flag controls whether a binary table of contents is generated
+# (YES) or a normal table of contents (NO) in the .chm file. Furthermore it
+# enables the Previous and Next buttons.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
+
+BINARY_TOC             = NO
+
+# The TOC_EXPAND flag can be set to YES to add extra items for group members to
+# the table of contents of the HTML help documentation and to the tree view.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
+
+TOC_EXPAND             = NO
+
+# The SITEMAP_URL tag is used to specify the full URL of the place where the
+# generated documentation will be placed on the server by the user during the
+# deployment of the documentation. The generated sitemap is called sitemap.xml
+# and placed on the directory specified by HTML_OUTPUT. In case no SITEMAP_URL
+# is specified no sitemap is generated. For information about the sitemap
+# protocol see https://www.sitemaps.org
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+SITEMAP_URL            =
+
+# If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and
+# QHP_VIRTUAL_FOLDER are set, an additional index file will be generated that
+# can be used as input for Qt's qhelpgenerator to generate a Qt Compressed Help
+# (.qch) of the generated HTML documentation.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+GENERATE_QHP           = NO
+
+# If the QHG_LOCATION tag is specified, the QCH_FILE tag can be used to specify
+# the file name of the resulting .qch file. The path specified is relative to
+# the HTML output folder.
+# This tag requires that the tag GENERATE_QHP is set to YES.
+
+QCH_FILE               =
+
+# The QHP_NAMESPACE tag specifies the namespace to use when generating Qt Help
+# Project output. For more information please see Qt Help Project / Namespace
+# (see:
+# https://doc.qt.io/archives/qt-4.8/qthelpproject.html#namespace).
+# The default value is: org.doxygen.Project.
+# This tag requires that the tag GENERATE_QHP is set to YES.
+
+QHP_NAMESPACE          = org.doxygen.Project
+
+# The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating Qt
+# Help Project output. For more information please see Qt Help Project / Virtual
+# Folders (see:
+# https://doc.qt.io/archives/qt-4.8/qthelpproject.html#virtual-folders).
+# The default value is: doc.
+# This tag requires that the tag GENERATE_QHP is set to YES.
+
+QHP_VIRTUAL_FOLDER     = doc
+
+# If the QHP_CUST_FILTER_NAME tag is set, it specifies the name of a custom
+# filter to add. For more information please see Qt Help Project / Custom
+# Filters (see:
+# https://doc.qt.io/archives/qt-4.8/qthelpproject.html#custom-filters).
+# This tag requires that the tag GENERATE_QHP is set to YES.
+
+QHP_CUST_FILTER_NAME   =
+
+# The QHP_CUST_FILTER_ATTRS tag specifies the list of the attributes of the
+# custom filter to add. For more information please see Qt Help Project / Custom
+# Filters (see:
+# https://doc.qt.io/archives/qt-4.8/qthelpproject.html#custom-filters).
+# This tag requires that the tag GENERATE_QHP is set to YES.
+
+QHP_CUST_FILTER_ATTRS  =
+
+# The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this
+# project's filter section matches. Qt Help Project / Filter Attributes (see:
+# https://doc.qt.io/archives/qt-4.8/qthelpproject.html#filter-attributes).
+# This tag requires that the tag GENERATE_QHP is set to YES.
+
+QHP_SECT_FILTER_ATTRS  =
+
+# The QHG_LOCATION tag can be used to specify the location (absolute path
+# including file name) of Qt's qhelpgenerator. If non-empty doxygen will try to
+# run qhelpgenerator on the generated .qhp file.
+# This tag requires that the tag GENERATE_QHP is set to YES.
+
+QHG_LOCATION           =
+
+# If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files will be
+# generated, together with the HTML files, they form an Eclipse help plugin. To
+# install this plugin and make it available under the help contents menu in
+# Eclipse, the contents of the directory containing the HTML and XML files needs
+# to be copied into the plugins directory of eclipse. The name of the directory
+# within the plugins directory should be the same as the ECLIPSE_DOC_ID value.
+# After copying Eclipse needs to be restarted before the help appears.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+GENERATE_ECLIPSEHELP   = NO
+
+# A unique identifier for the Eclipse help plugin. When installing the plugin
+# the directory name containing the HTML and XML files should also have this
+# name. Each documentation set should have its own identifier.
+# The default value is: org.doxygen.Project.
+# This tag requires that the tag GENERATE_ECLIPSEHELP is set to YES.
+
+ECLIPSE_DOC_ID         = org.doxygen.Project
+
+# If you want full control over the layout of the generated HTML pages it might
+# be necessary to disable the index and replace it with your own. The
+# DISABLE_INDEX tag can be used to turn on/off the condensed index (tabs) at top
+# of each HTML page. A value of NO enables the index and the value YES disables
+# it. Since the tabs in the index contain the same information as the navigation
+# tree, you can set this option to YES if you also set GENERATE_TREEVIEW to YES.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+DISABLE_INDEX          = NO
+
+# The GENERATE_TREEVIEW tag is used to specify whether a tree-like index
+# structure should be generated to display hierarchical information. If the tag
+# value is set to YES, a side panel will be generated containing a tree-like
+# index structure (just like the one that is generated for HTML Help). For this
+# to work a browser that supports JavaScript, DHTML, CSS and frames is required
+# (i.e. any modern browser). Windows users are probably better off using the
+# HTML help feature. Via custom style sheets (see HTML_EXTRA_STYLESHEET) one can
+# further fine tune the look of the index (see "Fine-tuning the output"). As an
+# example, the default style sheet generated by doxygen has an example that
+# shows how to put an image at the root of the tree instead of the PROJECT_NAME.
+# Since the tree basically has the same information as the tab index, you could
+# consider setting DISABLE_INDEX to YES when enabling this option.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+GENERATE_TREEVIEW      = YES
+
+# When both GENERATE_TREEVIEW and DISABLE_INDEX are set to YES, then the
+# FULL_SIDEBAR option determines if the side bar is limited to only the treeview
+# area (value NO) or if it should extend to the full height of the window (value
+# YES). Setting this to YES gives a layout similar to
+# https://docs.readthedocs.io with more room for contents, but less room for the
+# project logo, title, and description. If either GENERATE_TREEVIEW or
+# DISABLE_INDEX is set to NO, this option has no effect.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+FULL_SIDEBAR           = NO
+
+# The ENUM_VALUES_PER_LINE tag can be used to set the number of enum values that
+# doxygen will group on one line in the generated HTML documentation.
+#
+# Note that a value of 0 will completely suppress the enum values from appearing
+# in the overview section.
+# Minimum value: 0, maximum value: 20, default value: 4.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+ENUM_VALUES_PER_LINE   = 4
+
+# If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be used
+# to set the initial width (in pixels) of the frame in which the tree is shown.
+# Minimum value: 0, maximum value: 1500, default value: 250.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+TREEVIEW_WIDTH         = 250
+
+# If the EXT_LINKS_IN_WINDOW option is set to YES, doxygen will open links to
+# external symbols imported via tag files in a separate window.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+EXT_LINKS_IN_WINDOW    = NO
+
+# If the OBFUSCATE_EMAILS tag is set to YES, doxygen will obfuscate email
+# addresses.
+# The default value is: YES.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+OBFUSCATE_EMAILS       = YES
+
+# If the HTML_FORMULA_FORMAT option is set to svg, doxygen will use the pdf2svg
+# tool (see https://github.com/dawbarton/pdf2svg) or inkscape (see
+# https://inkscape.org) to generate formulas as SVG images instead of PNGs for
+# the HTML output. These images will generally look nicer at scaled resolutions.
+# Possible values are: png (the default) and svg (looks nicer but requires the
+# pdf2svg or inkscape tool).
+# The default value is: png.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+HTML_FORMULA_FORMAT    = png
+
+# Use this tag to change the font size of LaTeX formulas included as images in
+# the HTML documentation. When you change the font size after a successful
+# doxygen run you need to manually remove any form_*.png images from the HTML
+# output directory to force them to be regenerated.
+# Minimum value: 8, maximum value: 50, default value: 10.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+FORMULA_FONTSIZE       = 10
+
+# The FORMULA_MACROFILE can contain LaTeX \newcommand and \renewcommand commands
+# to create new LaTeX commands to be used in formulas as building blocks. See
+# the section "Including formulas" for details.
+
+FORMULA_MACROFILE      =
+
+# Enable the USE_MATHJAX option to render LaTeX formulas using MathJax (see
+# https://www.mathjax.org) which uses client side JavaScript for the rendering
+# instead of using pre-rendered bitmaps. Use this if you do not have LaTeX
+# installed or if you want to formulas look prettier in the HTML output. When
+# enabled you may also need to install MathJax separately and configure the path
+# to it using the MATHJAX_RELPATH option.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+USE_MATHJAX            = YES
+
+# With MATHJAX_VERSION it is possible to specify the MathJax version to be used.
+# Note that the different versions of MathJax have different requirements with
+# regards to the different settings, so it is possible that also other MathJax
+# settings have to be changed when switching between the different MathJax
+# versions.
+# Possible values are: MathJax_2 and MathJax_3.
+# The default value is: MathJax_2.
+# This tag requires that the tag USE_MATHJAX is set to YES.
+
+MATHJAX_VERSION        = MathJax_2
+
+# When MathJax is enabled you can set the default output format to be used for
+# the MathJax output. For more details about the output format see MathJax
+# version 2 (see:
+# http://docs.mathjax.org/en/v2.7-latest/output.html) and MathJax version 3
+# (see:
+# http://docs.mathjax.org/en/latest/web/components/output.html).
+# Possible values are: HTML-CSS (which is slower, but has the best
+# compatibility. This is the name for Mathjax version 2, for MathJax version 3
+# this will be translated into chtml), NativeMML (i.e. MathML. Only supported
+# for NathJax 2. For MathJax version 3 chtml will be used instead.), chtml (This
+# is the name for Mathjax version 3, for MathJax version 2 this will be
+# translated into HTML-CSS) and SVG.
+# The default value is: HTML-CSS.
+# This tag requires that the tag USE_MATHJAX is set to YES.
+
+MATHJAX_FORMAT         = HTML-CSS
+
+# When MathJax is enabled you need to specify the location relative to the HTML
+# output directory using the MATHJAX_RELPATH option. The destination directory
+# should contain the MathJax.js script. For instance, if the mathjax directory
+# is located at the same level as the HTML output directory, then
+# MATHJAX_RELPATH should be ../mathjax. The default value points to the MathJax
+# Content Delivery Network so you can quickly see the result without installing
+# MathJax. However, it is strongly recommended to install a local copy of
+# MathJax from https://www.mathjax.org before deployment. The default value is:
+# - in case of MathJax version 2: https://cdn.jsdelivr.net/npm/mathjax@2
+# - in case of MathJax version 3: https://cdn.jsdelivr.net/npm/mathjax@3
+# This tag requires that the tag USE_MATHJAX is set to YES.
+
+MATHJAX_RELPATH        =
+
+# The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax
+# extension names that should be enabled during MathJax rendering. For example
+# for MathJax version 2 (see
+# https://docs.mathjax.org/en/v2.7-latest/tex.html#tex-and-latex-extensions):
+# MATHJAX_EXTENSIONS = TeX/AMSmath TeX/AMSsymbols
+# For example for MathJax version 3 (see
+# http://docs.mathjax.org/en/latest/input/tex/extensions/index.html):
+# MATHJAX_EXTENSIONS = ams
+# This tag requires that the tag USE_MATHJAX is set to YES.
+
+MATHJAX_EXTENSIONS     =
+
+# The MATHJAX_CODEFILE tag can be used to specify a file with javascript pieces
+# of code that will be used on startup of the MathJax code. See the MathJax site
+# (see:
+# http://docs.mathjax.org/en/v2.7-latest/output.html) for more details. For an
+# example see the documentation.
+# This tag requires that the tag USE_MATHJAX is set to YES.
+
+MATHJAX_CODEFILE       =
+
+# When the SEARCHENGINE tag is enabled doxygen will generate a search box for
+# the HTML output. The underlying search engine uses javascript and DHTML and
+# should work on any modern browser. Note that when using HTML help
+# (GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets (GENERATE_DOCSET)
+# there is already a search function so this one should typically be disabled.
+# For large projects the javascript based search engine can be slow, then
+# enabling SERVER_BASED_SEARCH may provide a better solution. It is possible to
+# search using the keyboard; to jump to the search box use <access key> + S
+# (what the <access key> is depends on the OS and browser, but it is typically
+# <CTRL>, <ALT>/<option>, or both). Inside the search box use the <cursor down
+# key> to jump into the search results window, the results can be navigated
+# using the <cursor keys>. Press <Enter> to select an item or <escape> to cancel
+# the search. The filter options can be selected when the cursor is inside the
+# search box by pressing <Shift>+<cursor down>. Also here use the <cursor keys>
+# to select a filter and <Enter> or <escape> to activate or cancel the filter
+# option.
+# The default value is: YES.
+# This tag requires that the tag GENERATE_HTML is set to YES.
+
+SEARCHENGINE           = YES
+
+# When the SERVER_BASED_SEARCH tag is enabled the search engine will be
+# implemented using a web server instead of a web client using JavaScript. There
+# are two flavors of web server based searching depending on the EXTERNAL_SEARCH
+# setting. When disabled, doxygen will generate a PHP script for searching and
+# an index file used by the script. When EXTERNAL_SEARCH is enabled the indexing
+# and searching needs to be provided by external tools. See the section
+# "External Indexing and Searching" for details.
+# The default value is: NO.
+# This tag requires that the tag SEARCHENGINE is set to YES.
+
+SERVER_BASED_SEARCH    = NO
+
+# When EXTERNAL_SEARCH tag is enabled doxygen will no longer generate the PHP
+# script for searching. Instead the search results are written to an XML file
+# which needs to be processed by an external indexer. Doxygen will invoke an
+# external search engine pointed to by the SEARCHENGINE_URL option to obtain the
+# search results.
+#
+# Doxygen ships with an example indexer (doxyindexer) and search engine
+# (doxysearch.cgi) which are based on the open source search engine library
+# Xapian (see:
+# https://xapian.org/).
+#
+# See the section "External Indexing and Searching" for details.
+# The default value is: NO.
+# This tag requires that the tag SEARCHENGINE is set to YES.
+
+EXTERNAL_SEARCH        = NO
+
+# The SEARCHENGINE_URL should point to a search engine hosted by a web server
+# which will return the search results when EXTERNAL_SEARCH is enabled.
+#
+# Doxygen ships with an example indexer (doxyindexer) and search engine
+# (doxysearch.cgi) which are based on the open source search engine library
+# Xapian (see:
+# https://xapian.org/). See the section "External Indexing and Searching" for
+# details.
+# This tag requires that the tag SEARCHENGINE is set to YES.
+
+SEARCHENGINE_URL       =
+
+# When SERVER_BASED_SEARCH and EXTERNAL_SEARCH are both enabled the unindexed
+# search data is written to a file for indexing by an external tool. With the
+# SEARCHDATA_FILE tag the name of this file can be specified.
+# The default file is: searchdata.xml.
+# This tag requires that the tag SEARCHENGINE is set to YES.
+
+SEARCHDATA_FILE        = searchdata.xml
+
+# When SERVER_BASED_SEARCH and EXTERNAL_SEARCH are both enabled the
+# EXTERNAL_SEARCH_ID tag can be used as an identifier for the project. This is
+# useful in combination with EXTRA_SEARCH_MAPPINGS to search through multiple
+# projects and redirect the results back to the right project.
+# This tag requires that the tag SEARCHENGINE is set to YES.
+
+EXTERNAL_SEARCH_ID     =
+
+# The EXTRA_SEARCH_MAPPINGS tag can be used to enable searching through doxygen
+# projects other than the one defined by this configuration file, but that are
+# all added to the same external search index. Each project needs to have a
+# unique id set via EXTERNAL_SEARCH_ID. The search mapping then maps the id of
+# to a relative location where the documentation can be found. The format is:
+# EXTRA_SEARCH_MAPPINGS = tagname1=loc1 tagname2=loc2 ...
+# This tag requires that the tag SEARCHENGINE is set to YES.
+
+EXTRA_SEARCH_MAPPINGS  =
+
+#---------------------------------------------------------------------------
+# Configuration options related to the LaTeX output
+#---------------------------------------------------------------------------
+
+# If the GENERATE_LATEX tag is set to YES, doxygen will generate LaTeX output.
+# The default value is: YES.
+
+GENERATE_LATEX         = NO
+
+# The LATEX_OUTPUT tag is used to specify where the LaTeX docs will be put. If a
+# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
+# it.
+# The default directory is: latex.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_OUTPUT           = latex
+
+# The LATEX_CMD_NAME tag can be used to specify the LaTeX command name to be
+# invoked.
+#
+# Note that when not enabling USE_PDFLATEX the default is latex when enabling
+# USE_PDFLATEX the default is pdflatex and when in the later case latex is
+# chosen this is overwritten by pdflatex. For specific output languages the
+# default can have been set differently, this depends on the implementation of
+# the output language.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_CMD_NAME         =
+
+# The MAKEINDEX_CMD_NAME tag can be used to specify the command name to generate
+# index for LaTeX.
+# Note: This tag is used in the Makefile / make.bat.
+# See also: LATEX_MAKEINDEX_CMD for the part in the generated output file
+# (.tex).
+# The default file is: makeindex.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+MAKEINDEX_CMD_NAME     = makeindex
+
+# The LATEX_MAKEINDEX_CMD tag can be used to specify the command name to
+# generate index for LaTeX. In case there is no backslash (\) as first character
+# it will be automatically added in the LaTeX code.
+# Note: This tag is used in the generated output file (.tex).
+# See also: MAKEINDEX_CMD_NAME for the part in the Makefile / make.bat.
+# The default value is: makeindex.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_MAKEINDEX_CMD    = makeindex
+
+# If the COMPACT_LATEX tag is set to YES, doxygen generates more compact LaTeX
+# documents. This may be useful for small projects and may help to save some
+# trees in general.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+COMPACT_LATEX          = NO
+
+# The PAPER_TYPE tag can be used to set the paper type that is used by the
+# printer.
+# Possible values are: a4 (210 x 297 mm), letter (8.5 x 11 inches), legal (8.5 x
+# 14 inches) and executive (7.25 x 10.5 inches).
+# The default value is: a4.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+PAPER_TYPE             = a4
+
+# The EXTRA_PACKAGES tag can be used to specify one or more LaTeX package names
+# that should be included in the LaTeX output. The package can be specified just
+# by its name or with the correct syntax as to be used with the LaTeX
+# \usepackage command. To get the times font for instance you can specify :
+# EXTRA_PACKAGES=times or EXTRA_PACKAGES={times}
+# To use the option intlimits with the amsmath package you can specify:
+# EXTRA_PACKAGES=[intlimits]{amsmath}
+# If left blank no extra packages will be included.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+EXTRA_PACKAGES         = amsmath
+
+# The LATEX_HEADER tag can be used to specify a user-defined LaTeX header for
+# the generated LaTeX document. The header should contain everything until the
+# first chapter. If it is left blank doxygen will generate a standard header. It
+# is highly recommended to start with a default header using
+# doxygen -w latex new_header.tex new_footer.tex new_stylesheet.sty
+# and then modify the file new_header.tex. See also section "Doxygen usage" for
+# information on how to generate the default header that doxygen normally uses.
+#
+# Note: Only use a user-defined header if you know what you are doing!
+# Note: The header is subject to change so you typically have to regenerate the
+# default header when upgrading to a newer version of doxygen. The following
+# commands have a special meaning inside the header (and footer): For a
+# description of the possible markers and block names see the documentation.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_HEADER           =
+
+# The LATEX_FOOTER tag can be used to specify a user-defined LaTeX footer for
+# the generated LaTeX document. The footer should contain everything after the
+# last chapter. If it is left blank doxygen will generate a standard footer. See
+# LATEX_HEADER for more information on how to generate a default footer and what
+# special commands can be used inside the footer. See also section "Doxygen
+# usage" for information on how to generate the default footer that doxygen
+# normally uses. Note: Only use a user-defined footer if you know what you are
+# doing!
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_FOOTER           =
+
+# The LATEX_EXTRA_STYLESHEET tag can be used to specify additional user-defined
+# LaTeX style sheets that are included after the standard style sheets created
+# by doxygen. Using this option one can overrule certain style aspects. Doxygen
+# will copy the style sheet files to the output directory.
+# Note: The order of the extra style sheet files is of importance (e.g. the last
+# style sheet in the list overrules the setting of the previous ones in the
+# list).
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_EXTRA_STYLESHEET =
+
+# The LATEX_EXTRA_FILES tag can be used to specify one or more extra images or
+# other source files which should be copied to the LATEX_OUTPUT output
+# directory. Note that the files will be copied as-is; there are no commands or
+# markers available.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_EXTRA_FILES      =
+
+# If the PDF_HYPERLINKS tag is set to YES, the LaTeX that is generated is
+# prepared for conversion to PDF (using ps2pdf or pdflatex). The PDF file will
+# contain links (just like the HTML output) instead of page references. This
+# makes the output suitable for online browsing using a PDF viewer.
+# The default value is: YES.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+PDF_HYPERLINKS         = YES
+
+# If the USE_PDFLATEX tag is set to YES, doxygen will use the engine as
+# specified with LATEX_CMD_NAME to generate the PDF file directly from the LaTeX
+# files. Set this option to YES, to get a higher quality PDF documentation.
+#
+# See also section LATEX_CMD_NAME for selecting the engine.
+# The default value is: YES.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+USE_PDFLATEX           = YES
+
+# The LATEX_BATCHMODE tag signals the behavior of LaTeX in case of an error.
+# Possible values are: NO same as ERROR_STOP, YES same as BATCH, BATCH In batch
+# mode nothing is printed on the terminal, errors are scrolled as if <return> is
+# hit at every error; missing files that TeX tries to input or request from
+# keyboard input (\read on a not open input stream) cause the job to abort,
+# NON_STOP In nonstop mode the diagnostic message will appear on the terminal,
+# but there is no possibility of user interaction just like in batch mode,
+# SCROLL In scroll mode, TeX will stop only for missing files to input or if
+# keyboard input is necessary and ERROR_STOP In errorstop mode, TeX will stop at
+# each error, asking for user intervention.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_BATCHMODE        = NO
+
+# If the LATEX_HIDE_INDICES tag is set to YES then doxygen will not include the
+# index chapters (such as File Index, Compound Index, etc.) in the output.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_HIDE_INDICES     = NO
+
+# The LATEX_BIB_STYLE tag can be used to specify the style to use for the
+# bibliography, e.g. plainnat, or ieeetr. See
+# https://en.wikipedia.org/wiki/BibTeX and \cite for more info.
+# The default value is: plain.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_BIB_STYLE        = plain
+
+# The LATEX_EMOJI_DIRECTORY tag is used to specify the (relative or absolute)
+# path from which the emoji images will be read. If a relative path is entered,
+# it will be relative to the LATEX_OUTPUT directory. If left blank the
+# LATEX_OUTPUT directory will be used.
+# This tag requires that the tag GENERATE_LATEX is set to YES.
+
+LATEX_EMOJI_DIRECTORY  =
+
+#---------------------------------------------------------------------------
+# Configuration options related to the RTF output
+#---------------------------------------------------------------------------
+
+# If the GENERATE_RTF tag is set to YES, doxygen will generate RTF output. The
+# RTF output is optimized for Word 97 and may not look too pretty with other RTF
+# readers/editors.
+# The default value is: NO.
+
+GENERATE_RTF           = NO
+
+# The RTF_OUTPUT tag is used to specify where the RTF docs will be put. If a
+# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
+# it.
+# The default directory is: rtf.
+# This tag requires that the tag GENERATE_RTF is set to YES.
+
+RTF_OUTPUT             = rtf
+
+# If the COMPACT_RTF tag is set to YES, doxygen generates more compact RTF
+# documents. This may be useful for small projects and may help to save some
+# trees in general.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_RTF is set to YES.
+
+COMPACT_RTF            = NO
+
+# If the RTF_HYPERLINKS tag is set to YES, the RTF that is generated will
+# contain hyperlink fields. The RTF file will contain links (just like the HTML
+# output) instead of page references. This makes the output suitable for online
+# browsing using Word or some other Word compatible readers that support those
+# fields.
+#
+# Note: WordPad (write) and others do not support links.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_RTF is set to YES.
+
+RTF_HYPERLINKS         = NO
+
+# Load stylesheet definitions from file. Syntax is similar to doxygen's
+# configuration file, i.e. a series of assignments. You only have to provide
+# replacements, missing definitions are set to their default value.
+#
+# See also section "Doxygen usage" for information on how to generate the
+# default style sheet that doxygen normally uses.
+# This tag requires that the tag GENERATE_RTF is set to YES.
+
+RTF_STYLESHEET_FILE    =
+
+# Set optional variables used in the generation of an RTF document. Syntax is
+# similar to doxygen's configuration file. A template extensions file can be
+# generated using doxygen -e rtf extensionFile.
+# This tag requires that the tag GENERATE_RTF is set to YES.
+
+RTF_EXTENSIONS_FILE    =
+
+#---------------------------------------------------------------------------
+# Configuration options related to the man page output
+#---------------------------------------------------------------------------
+
+# If the GENERATE_MAN tag is set to YES, doxygen will generate man pages for
+# classes and files.
+# The default value is: NO.
+
+GENERATE_MAN           = NO
+
+# The MAN_OUTPUT tag is used to specify where the man pages will be put. If a
+# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
+# it. A directory man3 will be created inside the directory specified by
+# MAN_OUTPUT.
+# The default directory is: man.
+# This tag requires that the tag GENERATE_MAN is set to YES.
+
+MAN_OUTPUT             = man
+
+# The MAN_EXTENSION tag determines the extension that is added to the generated
+# man pages. In case the manual section does not start with a number, the number
+# 3 is prepended. The dot (.) at the beginning of the MAN_EXTENSION tag is
+# optional.
+# The default value is: .3.
+# This tag requires that the tag GENERATE_MAN is set to YES.
+
+MAN_EXTENSION          = .3
+
+# The MAN_SUBDIR tag determines the name of the directory created within
+# MAN_OUTPUT in which the man pages are placed. If defaults to man followed by
+# MAN_EXTENSION with the initial . removed.
+# This tag requires that the tag GENERATE_MAN is set to YES.
+
+MAN_SUBDIR             =
+
+# If the MAN_LINKS tag is set to YES and doxygen generates man output, then it
+# will generate one additional man file for each entity documented in the real
+# man page(s). These additional files only source the real man page, but without
+# them the man command would be unable to find the correct page.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_MAN is set to YES.
+
+MAN_LINKS              = NO
+
+#---------------------------------------------------------------------------
+# Configuration options related to the XML output
+#---------------------------------------------------------------------------
+
+# If the GENERATE_XML tag is set to YES, doxygen will generate an XML file that
+# captures the structure of the code including all documentation.
+# The default value is: NO.
+
+GENERATE_XML           = NO
+
+# The XML_OUTPUT tag is used to specify where the XML pages will be put. If a
+# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
+# it.
+# The default directory is: xml.
+# This tag requires that the tag GENERATE_XML is set to YES.
+
+XML_OUTPUT             = xml
+
+# If the XML_PROGRAMLISTING tag is set to YES, doxygen will dump the program
+# listings (including syntax highlighting and cross-referencing information) to
+# the XML output. Note that enabling this will significantly increase the size
+# of the XML output.
+# The default value is: YES.
+# This tag requires that the tag GENERATE_XML is set to YES.
+
+XML_PROGRAMLISTING     = YES
+
+# If the XML_NS_MEMB_FILE_SCOPE tag is set to YES, doxygen will include
+# namespace members in file scope as well, matching the HTML output.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_XML is set to YES.
+
+XML_NS_MEMB_FILE_SCOPE = NO
+
+#---------------------------------------------------------------------------
+# Configuration options related to the DOCBOOK output
+#---------------------------------------------------------------------------
+
+# If the GENERATE_DOCBOOK tag is set to YES, doxygen will generate Docbook files
+# that can be used to generate PDF.
+# The default value is: NO.
+
+GENERATE_DOCBOOK       = NO
+
+# The DOCBOOK_OUTPUT tag is used to specify where the Docbook pages will be put.
+# If a relative path is entered the value of OUTPUT_DIRECTORY will be put in
+# front of it.
+# The default directory is: docbook.
+# This tag requires that the tag GENERATE_DOCBOOK is set to YES.
+
+DOCBOOK_OUTPUT         = docbook
+
+#---------------------------------------------------------------------------
+# Configuration options for the AutoGen Definitions output
+#---------------------------------------------------------------------------
+
+# If the GENERATE_AUTOGEN_DEF tag is set to YES, doxygen will generate an
+# AutoGen Definitions (see https://autogen.sourceforge.net/) file that captures
+# the structure of the code including all documentation. Note that this feature
+# is still experimental and incomplete at the moment.
+# The default value is: NO.
+
+GENERATE_AUTOGEN_DEF   = NO
+
+#---------------------------------------------------------------------------
+# Configuration options related to Sqlite3 output
+#---------------------------------------------------------------------------
+
+# If the GENERATE_SQLITE3 tag is set to YES doxygen will generate a Sqlite3
+# database with symbols found by doxygen stored in tables.
+# The default value is: NO.
+
+GENERATE_SQLITE3       = NO
+
+# The SQLITE3_OUTPUT tag is used to specify where the Sqlite3 database will be
+# put. If a relative path is entered the value of OUTPUT_DIRECTORY will be put
+# in front of it.
+# The default directory is: sqlite3.
+# This tag requires that the tag GENERATE_SQLITE3 is set to YES.
+
+SQLITE3_OUTPUT         = sqlite3
+
+# The SQLITE3_OVERWRITE_DB tag is set to YES, the existing doxygen_sqlite3.db
+# database file will be recreated with each doxygen run. If set to NO, doxygen
+# will warn if an a database file is already found and not modify it.
+# The default value is: YES.
+# This tag requires that the tag GENERATE_SQLITE3 is set to YES.
+
+SQLITE3_RECREATE_DB    = YES
+
+#---------------------------------------------------------------------------
+# Configuration options related to the Perl module output
+#---------------------------------------------------------------------------
+
+# If the GENERATE_PERLMOD tag is set to YES, doxygen will generate a Perl module
+# file that captures the structure of the code including all documentation.
+#
+# Note that this feature is still experimental and incomplete at the moment.
+# The default value is: NO.
+
+GENERATE_PERLMOD       = NO
+
+# If the PERLMOD_LATEX tag is set to YES, doxygen will generate the necessary
+# Makefile rules, Perl scripts and LaTeX code to be able to generate PDF and DVI
+# output from the Perl module output.
+# The default value is: NO.
+# This tag requires that the tag GENERATE_PERLMOD is set to YES.
+
+PERLMOD_LATEX          = NO
+
+# If the PERLMOD_PRETTY tag is set to YES, the Perl module output will be nicely
+# formatted so it can be parsed by a human reader. This is useful if you want to
+# understand what is going on. On the other hand, if this tag is set to NO, the
+# size of the Perl module output will be much smaller and Perl will parse it
+# just the same.
+# The default value is: YES.
+# This tag requires that the tag GENERATE_PERLMOD is set to YES.
+
+PERLMOD_PRETTY         = YES
+
+# The names of the make variables in the generated doxyrules.make file are
+# prefixed with the string contained in PERLMOD_MAKEVAR_PREFIX. This is useful
+# so different doxyrules.make files included by the same Makefile don't
+# overwrite each other's variables.
+# This tag requires that the tag GENERATE_PERLMOD is set to YES.
+
+PERLMOD_MAKEVAR_PREFIX =
+
+#---------------------------------------------------------------------------
+# Configuration options related to the preprocessor
+#---------------------------------------------------------------------------
+
+# If the ENABLE_PREPROCESSING tag is set to YES, doxygen will evaluate all
+# C-preprocessor directives found in the sources and include files.
+# The default value is: YES.
+
+ENABLE_PREPROCESSING   = YES
+
+# If the MACRO_EXPANSION tag is set to YES, doxygen will expand all macro names
+# in the source code. If set to NO, only conditional compilation will be
+# performed. Macro expansion can be done in a controlled way by setting
+# EXPAND_ONLY_PREDEF to YES.
+# The default value is: NO.
+# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
+
+MACRO_EXPANSION        = NO
+
+# If the EXPAND_ONLY_PREDEF and MACRO_EXPANSION tags are both set to YES then
+# the macro expansion is limited to the macros specified with the PREDEFINED and
+# EXPAND_AS_DEFINED tags.
+# The default value is: NO.
+# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
+
+EXPAND_ONLY_PREDEF     = NO
+
+# If the SEARCH_INCLUDES tag is set to YES, the include files in the
+# INCLUDE_PATH will be searched if a #include is found.
+# The default value is: YES.
+# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
+
+SEARCH_INCLUDES        = YES
+
+# The INCLUDE_PATH tag can be used to specify one or more directories that
+# contain include files that are not input files but should be processed by the
+# preprocessor. Note that the INCLUDE_PATH is not recursive, so the setting of
+# RECURSIVE has no effect here.
+# This tag requires that the tag SEARCH_INCLUDES is set to YES.
+
+INCLUDE_PATH           =
+
+# You can use the INCLUDE_FILE_PATTERNS tag to specify one or more wildcard
+# patterns (like *.h and *.hpp) to filter out the header-files in the
+# directories. If left blank, the patterns specified with FILE_PATTERNS will be
+# used.
+# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
+
+INCLUDE_FILE_PATTERNS  =
+
+# The PREDEFINED tag can be used to specify one or more macro names that are
+# defined before the preprocessor is started (similar to the -D option of e.g.
+# gcc). The argument of the tag is a list of macros of the form: name or
+# name=definition (no spaces). If the definition and the "=" are omitted, "=1"
+# is assumed. To prevent a macro definition from being undefined via #undef or
+# recursively expanded use the := operator instead of the = operator.
+# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
+
+PREDEFINED             =
+
+# If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then this
+# tag can be used to specify a list of macro names that should be expanded. The
+# macro definition that is found in the sources will be used. Use the PREDEFINED
+# tag if you want to use a different macro definition that overrules the
+# definition found in the source code.
+# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
+
+EXPAND_AS_DEFINED      =
+
+# If the SKIP_FUNCTION_MACROS tag is set to YES then doxygen's preprocessor will
+# remove all references to function-like macros that are alone on a line, have
+# an all uppercase name, and do not end with a semicolon. Such function macros
+# are typically used for boiler-plate code, and will confuse the parser if not
+# removed.
+# The default value is: YES.
+# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
+
+SKIP_FUNCTION_MACROS   = YES
+
+#---------------------------------------------------------------------------
+# Configuration options related to external references
+#---------------------------------------------------------------------------
+
+# The TAGFILES tag can be used to specify one or more tag files. For each tag
+# file the location of the external documentation should be added. The format of
+# a tag file without this location is as follows:
+# TAGFILES = file1 file2 ...
+# Adding location for the tag files is done as follows:
+# TAGFILES = file1=loc1 "file2 = loc2" ...
+# where loc1 and loc2 can be relative or absolute paths or URLs. See the
+# section "Linking to external documentation" for more information about the use
+# of tag files.
+# Note: Each tag file must have a unique name (where the name does NOT include
+# the path). If a tag file is not located in the directory in which doxygen is
+# run, you must also specify the path to the tagfile here.
+
+TAGFILES               =
+
+# When a file name is specified after GENERATE_TAGFILE, doxygen will create a
+# tag file that is based on the input files it reads. See section "Linking to
+# external documentation" for more information about the usage of tag files.
+
+GENERATE_TAGFILE       =
+
+# If the ALLEXTERNALS tag is set to YES, all external classes and namespaces
+# will be listed in the class and namespace index. If set to NO, only the
+# inherited external classes will be listed.
+# The default value is: NO.
+
+ALLEXTERNALS           = NO
+
+# If the EXTERNAL_GROUPS tag is set to YES, all external groups will be listed
+# in the topic index. If set to NO, only the current project's groups will be
+# listed.
+# The default value is: YES.
+
+EXTERNAL_GROUPS        = YES
+
+# If the EXTERNAL_PAGES tag is set to YES, all external pages will be listed in
+# the related pages index. If set to NO, only the current project's pages will
+# be listed.
+# The default value is: YES.
+
+EXTERNAL_PAGES         = YES
+
+#---------------------------------------------------------------------------
+# Configuration options related to diagram generator tools
+#---------------------------------------------------------------------------
+
+# If set to YES the inheritance and collaboration graphs will hide inheritance
+# and usage relations if the target is undocumented or is not a class.
+# The default value is: YES.
+
+HIDE_UNDOC_RELATIONS   = NO
+
+# If you set the HAVE_DOT tag to YES then doxygen will assume the dot tool is
+# available from the path. This tool is part of Graphviz (see:
+# https://www.graphviz.org/), a graph visualization toolkit from AT&T and Lucent
+# Bell Labs. The other options in this section have no effect if this option is
+# set to NO
+# The default value is: NO.
+
+HAVE_DOT               = YES
+
+# The DOT_NUM_THREADS specifies the number of dot invocations doxygen is allowed
+# to run in parallel. When set to 0 doxygen will base this on the number of
+# processors available in the system. You can set it explicitly to a value
+# larger than 0 to get control over the balance between CPU load and processing
+# speed.
+# Minimum value: 0, maximum value: 32, default value: 0.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOT_NUM_THREADS        = 0
+
+# DOT_COMMON_ATTR is common attributes for nodes, edges and labels of
+# subgraphs. When you want a differently looking font in the dot files that
+# doxygen generates you can specify fontname, fontcolor and fontsize attributes.
+# For details please see <a href=https://graphviz.org/doc/info/attrs.html>Node,
+# Edge and Graph Attributes specification</a> You need to make sure dot is able
+# to find the font, which can be done by putting it in a standard location or by
+# setting the DOTFONTPATH environment variable or by setting DOT_FONTPATH to the
+# directory containing the font. Default graphviz fontsize is 14.
+# The default value is: fontname=Helvetica,fontsize=10.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOT_COMMON_ATTR        = "fontname=Helvetica,fontsize=10"
+
+# DOT_EDGE_ATTR is concatenated with DOT_COMMON_ATTR. For elegant style you can
+# add 'arrowhead=open, arrowtail=open, arrowsize=0.5'. <a
+# href=https://graphviz.org/doc/info/arrows.html>Complete documentation about
+# arrows shapes.</a>
+# The default value is: labelfontname=Helvetica,labelfontsize=10.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOT_EDGE_ATTR          = "labelfontname=Helvetica,labelfontsize=10"
+
+# DOT_NODE_ATTR is concatenated with DOT_COMMON_ATTR. For view without boxes
+# around nodes set 'shape=plain' or 'shape=plaintext' <a
+# href=https://www.graphviz.org/doc/info/shapes.html>Shapes specification</a>
+# The default value is: shape=box,height=0.2,width=0.4.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOT_NODE_ATTR          = "shape=box,height=0.2,width=0.4"
+
+# You can set the path where dot can find font specified with fontname in
+# DOT_COMMON_ATTR and others dot attributes.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOT_FONTPATH           =
+
+# If the CLASS_GRAPH tag is set to YES or GRAPH or BUILTIN then doxygen will
+# generate a graph for each documented class showing the direct and indirect
+# inheritance relations. In case the CLASS_GRAPH tag is set to YES or GRAPH and
+# HAVE_DOT is enabled as well, then dot will be used to draw the graph. In case
+# the CLASS_GRAPH tag is set to YES and HAVE_DOT is disabled or if the
+# CLASS_GRAPH tag is set to BUILTIN, then the built-in generator will be used.
+# If the CLASS_GRAPH tag is set to TEXT the direct and indirect inheritance
+# relations will be shown as texts / links.
+# Possible values are: NO, YES, TEXT, GRAPH and BUILTIN.
+# The default value is: YES.
+
+CLASS_GRAPH            = YES
+
+# If the COLLABORATION_GRAPH tag is set to YES then doxygen will generate a
+# graph for each documented class showing the direct and indirect implementation
+# dependencies (inheritance, containment, and class references variables) of the
+# class with other documented classes. Explicit enabling a collaboration graph,
+# when COLLABORATION_GRAPH is set to NO, can be accomplished by means of the
+# command \collaborationgraph. Disabling a collaboration graph can be
+# accomplished by means of the command \hidecollaborationgraph.
+# The default value is: YES.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+COLLABORATION_GRAPH    = YES
+
+# If the GROUP_GRAPHS tag is set to YES then doxygen will generate a graph for
+# groups, showing the direct groups dependencies. Explicit enabling a group
+# dependency graph, when GROUP_GRAPHS is set to NO, can be accomplished by means
+# of the command \groupgraph. Disabling a directory graph can be accomplished by
+# means of the command \hidegroupgraph. See also the chapter Grouping in the
+# manual.
+# The default value is: YES.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+GROUP_GRAPHS           = YES
+
+# If the UML_LOOK tag is set to YES, doxygen will generate inheritance and
+# collaboration diagrams in a style similar to the OMG's Unified Modeling
+# Language.
+# The default value is: NO.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+UML_LOOK               = YES
+
+# If the UML_LOOK tag is enabled, the fields and methods are shown inside the
+# class node. If there are many fields or methods and many nodes the graph may
+# become too big to be useful. The UML_LIMIT_NUM_FIELDS threshold limits the
+# number of items for each type to make the size more manageable. Set this to 0
+# for no limit. Note that the threshold may be exceeded by 50% before the limit
+# is enforced. So when you set the threshold to 10, up to 15 fields may appear,
+# but if the number exceeds 15, the total amount of fields shown is limited to
+# 10.
+# Minimum value: 0, maximum value: 100, default value: 10.
+# This tag requires that the tag UML_LOOK is set to YES.
+
+UML_LIMIT_NUM_FIELDS   = 10
+
+# If the DOT_UML_DETAILS tag is set to NO, doxygen will show attributes and
+# methods without types and arguments in the UML graphs. If the DOT_UML_DETAILS
+# tag is set to YES, doxygen will add type and arguments for attributes and
+# methods in the UML graphs. If the DOT_UML_DETAILS tag is set to NONE, doxygen
+# will not generate fields with class member information in the UML graphs. The
+# class diagrams will look similar to the default class diagrams but using UML
+# notation for the relationships.
+# Possible values are: NO, YES and NONE.
+# The default value is: NO.
+# This tag requires that the tag UML_LOOK is set to YES.
+
+DOT_UML_DETAILS        = NO
+
+# The DOT_WRAP_THRESHOLD tag can be used to set the maximum number of characters
+# to display on a single line. If the actual line length exceeds this threshold
+# significantly it will wrapped across multiple lines. Some heuristics are apply
+# to avoid ugly line breaks.
+# Minimum value: 0, maximum value: 1000, default value: 17.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOT_WRAP_THRESHOLD     = 17
+
+# If the TEMPLATE_RELATIONS tag is set to YES then the inheritance and
+# collaboration graphs will show the relations between templates and their
+# instances.
+# The default value is: NO.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+TEMPLATE_RELATIONS     = NO
+
+# If the INCLUDE_GRAPH, ENABLE_PREPROCESSING and SEARCH_INCLUDES tags are set to
+# YES then doxygen will generate a graph for each documented file showing the
+# direct and indirect include dependencies of the file with other documented
+# files. Explicit enabling an include graph, when INCLUDE_GRAPH is is set to NO,
+# can be accomplished by means of the command \includegraph. Disabling an
+# include graph can be accomplished by means of the command \hideincludegraph.
+# The default value is: YES.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+INCLUDE_GRAPH          = YES
+
+# If the INCLUDED_BY_GRAPH, ENABLE_PREPROCESSING and SEARCH_INCLUDES tags are
+# set to YES then doxygen will generate a graph for each documented file showing
+# the direct and indirect include dependencies of the file with other documented
+# files. Explicit enabling an included by graph, when INCLUDED_BY_GRAPH is set
+# to NO, can be accomplished by means of the command \includedbygraph. Disabling
+# an included by graph can be accomplished by means of the command
+# \hideincludedbygraph.
+# The default value is: YES.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+INCLUDED_BY_GRAPH      = YES
+
+# If the CALL_GRAPH tag is set to YES then doxygen will generate a call
+# dependency graph for every global function or class method.
+#
+# Note that enabling this option will significantly increase the time of a run.
+# So in most cases it will be better to enable call graphs for selected
+# functions only using the \callgraph command. Disabling a call graph can be
+# accomplished by means of the command \hidecallgraph.
+# The default value is: NO.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+CALL_GRAPH             = NO
+
+# If the CALLER_GRAPH tag is set to YES then doxygen will generate a caller
+# dependency graph for every global function or class method.
+#
+# Note that enabling this option will significantly increase the time of a run.
+# So in most cases it will be better to enable caller graphs for selected
+# functions only using the \callergraph command. Disabling a caller graph can be
+# accomplished by means of the command \hidecallergraph.
+# The default value is: NO.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+CALLER_GRAPH           = NO
+
+# If the GRAPHICAL_HIERARCHY tag is set to YES then doxygen will graphical
+# hierarchy of all classes instead of a textual one.
+# The default value is: YES.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+GRAPHICAL_HIERARCHY    = YES
+
+# If the DIRECTORY_GRAPH tag is set to YES then doxygen will show the
+# dependencies a directory has on other directories in a graphical way. The
+# dependency relations are determined by the #include relations between the
+# files in the directories. Explicit enabling a directory graph, when
+# DIRECTORY_GRAPH is set to NO, can be accomplished by means of the command
+# \directorygraph. Disabling a directory graph can be accomplished by means of
+# the command \hidedirectorygraph.
+# The default value is: YES.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DIRECTORY_GRAPH        = YES
+
+# The DIR_GRAPH_MAX_DEPTH tag can be used to limit the maximum number of levels
+# of child directories generated in directory dependency graphs by dot.
+# Minimum value: 1, maximum value: 25, default value: 1.
+# This tag requires that the tag DIRECTORY_GRAPH is set to YES.
+
+DIR_GRAPH_MAX_DEPTH    = 1
+
+# The DOT_IMAGE_FORMAT tag can be used to set the image format of the images
+# generated by dot. For an explanation of the image formats see the section
+# output formats in the documentation of the dot tool (Graphviz (see:
+# https://www.graphviz.org/)).
+# Note: If you choose svg you need to set HTML_FILE_EXTENSION to xhtml in order
+# to make the SVG files visible in IE 9+ (other browsers do not have this
+# requirement).
+# Possible values are: png, jpg, gif, svg, png:gd, png:gd:gd, png:cairo,
+# png:cairo:gd, png:cairo:cairo, png:cairo:gdiplus, png:gdiplus and
+# png:gdiplus:gdiplus.
+# The default value is: png.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOT_IMAGE_FORMAT       = png
+
+# If DOT_IMAGE_FORMAT is set to svg, then this option can be set to YES to
+# enable generation of interactive SVG images that allow zooming and panning.
+#
+# Note that this requires a modern browser other than Internet Explorer. Tested
+# and working are Firefox, Chrome, Safari, and Opera.
+# Note: For IE 9+ you need to set HTML_FILE_EXTENSION to xhtml in order to make
+# the SVG files visible. Older versions of IE do not have SVG support.
+# The default value is: NO.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+INTERACTIVE_SVG        = NO
+
+# The DOT_PATH tag can be used to specify the path where the dot tool can be
+# found. If left blank, it is assumed the dot tool can be found in the path.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOT_PATH               =
+
+# The DOTFILE_DIRS tag can be used to specify one or more directories that
+# contain dot files that are included in the documentation (see the \dotfile
+# command).
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOTFILE_DIRS           =
+
+# You can include diagrams made with dia in doxygen documentation. Doxygen will
+# then run dia to produce the diagram and insert it in the documentation. The
+# DIA_PATH tag allows you to specify the directory where the dia binary resides.
+# If left empty dia is assumed to be found in the default search path.
+
+DIA_PATH               =
+
+# The DIAFILE_DIRS tag can be used to specify one or more directories that
+# contain dia files that are included in the documentation (see the \diafile
+# command).
+
+DIAFILE_DIRS           =
+
+# When using plantuml, the PLANTUML_JAR_PATH tag should be used to specify the
+# path where java can find the plantuml.jar file or to the filename of jar file
+# to be used. If left blank, it is assumed PlantUML is not used or called during
+# a preprocessing step. Doxygen will generate a warning when it encounters a
+# \startuml command in this case and will not generate output for the diagram.
+
+PLANTUML_JAR_PATH      =
+
+# When using plantuml, the PLANTUML_CFG_FILE tag can be used to specify a
+# configuration file for plantuml.
+
+PLANTUML_CFG_FILE      =
+
+# When using plantuml, the specified paths are searched for files specified by
+# the !include statement in a plantuml block.
+
+PLANTUML_INCLUDE_PATH  =
+
+# The DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of nodes
+# that will be shown in the graph. If the number of nodes in a graph becomes
+# larger than this value, doxygen will truncate the graph, which is visualized
+# by representing a node as a red box. Note that doxygen if the number of direct
+# children of the root node in a graph is already larger than
+# DOT_GRAPH_MAX_NODES then the graph will not be shown at all. Also note that
+# the size of a graph can be further restricted by MAX_DOT_GRAPH_DEPTH.
+# Minimum value: 0, maximum value: 10000, default value: 50.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOT_GRAPH_MAX_NODES    = 500
+
+# The MAX_DOT_GRAPH_DEPTH tag can be used to set the maximum depth of the graphs
+# generated by dot. A depth value of 3 means that only nodes reachable from the
+# root by following a path via at most 3 edges will be shown. Nodes that lay
+# further from the root node will be omitted. Note that setting this option to 1
+# or 2 may greatly reduce the computation time needed for large code bases. Also
+# note that the size of a graph can be further restricted by
+# DOT_GRAPH_MAX_NODES. Using a depth of 0 means no depth restriction.
+# Minimum value: 0, maximum value: 1000, default value: 0.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+MAX_DOT_GRAPH_DEPTH    = 0
+
+# Set the DOT_MULTI_TARGETS tag to YES to allow dot to generate multiple output
+# files in one run (i.e. multiple -o and -T options on the command line). This
+# makes dot run faster, but since only newer versions of dot (>1.8.10) support
+# this, this feature is disabled by default.
+# The default value is: NO.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+DOT_MULTI_TARGETS      = NO
+
+# If the GENERATE_LEGEND tag is set to YES doxygen will generate a legend page
+# explaining the meaning of the various boxes and arrows in the dot generated
+# graphs.
+# Note: This tag requires that UML_LOOK isn't set, i.e. the doxygen internal
+# graphical representation for inheritance and collaboration diagrams is used.
+# The default value is: YES.
+# This tag requires that the tag HAVE_DOT is set to YES.
+
+GENERATE_LEGEND        = YES
+
+# If the DOT_CLEANUP tag is set to YES, doxygen will remove the intermediate
+# files that are used to generate the various graphs.
+#
+# Note: This setting is not only used for dot files but also for msc temporary
+# files.
+# The default value is: YES.
+
+DOT_CLEANUP            = YES
+
+# You can define message sequence charts within doxygen comments using the \msc
+# command. If the MSCGEN_TOOL tag is left empty (the default), then doxygen will
+# use a built-in version of mscgen tool to produce the charts. Alternatively,
+# the MSCGEN_TOOL tag can also specify the name an external tool. For instance,
+# specifying prog as the value, doxygen will call the tool as prog -T
+# <outfile_format> -o <outputfile> <inputfile>. The external tool should support
+# output file formats "png", "eps", "svg", and "ismap".
+
+MSCGEN_TOOL            =
+
+# The MSCFILE_DIRS tag can be used to specify one or more directories that
+# contain msc files that are included in the documentation (see the \mscfile
+# command).
+
+MSCFILE_DIRS           =
+
+# Enable BibTeX for citations
+GENERATE_BIBTEX = YES
+USE_BIBTEX = YES
+BIBFILE = @BIBTEX_FILE@
+
+# Other settings
+
+EXTERNAL_LINKS = YES
\ No newline at end of file
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..e06ae69696acc3a0209f8fb93f7e4203fd960279
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,674 @@
+                    GNU GENERAL PUBLIC LICENSE
+                       Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+                            Preamble
+
+  The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+  The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works.  By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users.  We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors.  You can apply it to
+your programs, too.
+
+  When we speak of free software, we are referring to freedom, not
+price.  Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+  To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights.  Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+  For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received.  You must make sure that they, too, receive
+or can get the source code.  And you must show them these terms so they
+know their rights.
+
+  Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+  For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software.  For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+  Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so.  This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software.  The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable.  Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products.  If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+  Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary.  To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+  The precise terms and conditions for copying, distribution and
+modification follow.
+
+                       TERMS AND CONDITIONS
+
+  0. Definitions.
+
+  "This License" refers to version 3 of the GNU General Public License.
+
+  "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+  "The Program" refers to any copyrightable work licensed under this
+License.  Each licensee is addressed as "you".  "Licensees" and
+"recipients" may be individuals or organizations.
+
+  To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy.  The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+  A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+  To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy.  Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+  To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies.  Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+  An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License.  If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+  1. Source Code.
+
+  The "source code" for a work means the preferred form of the work
+for making modifications to it.  "Object code" means any non-source
+form of a work.
+
+  A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+  The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form.  A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+  The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities.  However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work.  For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+  The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+  The Corresponding Source for a work in source code form is that
+same work.
+
+  2. Basic Permissions.
+
+  All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met.  This License explicitly affirms your unlimited
+permission to run the unmodified Program.  The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work.  This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+  You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force.  You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright.  Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+  Conveying under any other circumstances is permitted solely under
+the conditions stated below.  Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+  No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+  When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+  4. Conveying Verbatim Copies.
+
+  You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+  You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+  5. Conveying Modified Source Versions.
+
+  You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+    a) The work must carry prominent notices stating that you modified
+    it, and giving a relevant date.
+
+    b) The work must carry prominent notices stating that it is
+    released under this License and any conditions added under section
+    7.  This requirement modifies the requirement in section 4 to
+    "keep intact all notices".
+
+    c) You must license the entire work, as a whole, under this
+    License to anyone who comes into possession of a copy.  This
+    License will therefore apply, along with any applicable section 7
+    additional terms, to the whole of the work, and all its parts,
+    regardless of how they are packaged.  This License gives no
+    permission to license the work in any other way, but it does not
+    invalidate such permission if you have separately received it.
+
+    d) If the work has interactive user interfaces, each must display
+    Appropriate Legal Notices; however, if the Program has interactive
+    interfaces that do not display Appropriate Legal Notices, your
+    work need not make them do so.
+
+  A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit.  Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+  6. Conveying Non-Source Forms.
+
+  You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+    a) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by the
+    Corresponding Source fixed on a durable physical medium
+    customarily used for software interchange.
+
+    b) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by a
+    written offer, valid for at least three years and valid for as
+    long as you offer spare parts or customer support for that product
+    model, to give anyone who possesses the object code either (1) a
+    copy of the Corresponding Source for all the software in the
+    product that is covered by this License, on a durable physical
+    medium customarily used for software interchange, for a price no
+    more than your reasonable cost of physically performing this
+    conveying of source, or (2) access to copy the
+    Corresponding Source from a network server at no charge.
+
+    c) Convey individual copies of the object code with a copy of the
+    written offer to provide the Corresponding Source.  This
+    alternative is allowed only occasionally and noncommercially, and
+    only if you received the object code with such an offer, in accord
+    with subsection 6b.
+
+    d) Convey the object code by offering access from a designated
+    place (gratis or for a charge), and offer equivalent access to the
+    Corresponding Source in the same way through the same place at no
+    further charge.  You need not require recipients to copy the
+    Corresponding Source along with the object code.  If the place to
+    copy the object code is a network server, the Corresponding Source
+    may be on a different server (operated by you or a third party)
+    that supports equivalent copying facilities, provided you maintain
+    clear directions next to the object code saying where to find the
+    Corresponding Source.  Regardless of what server hosts the
+    Corresponding Source, you remain obligated to ensure that it is
+    available for as long as needed to satisfy these requirements.
+
+    e) Convey the object code using peer-to-peer transmission, provided
+    you inform other peers where the object code and Corresponding
+    Source of the work are being offered to the general public at no
+    charge under subsection 6d.
+
+  A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+  A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling.  In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage.  For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product.  A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+  "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source.  The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+  If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information.  But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+  The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed.  Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+  Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+  7. Additional Terms.
+
+  "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law.  If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+  When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it.  (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.)  You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+  Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+    a) Disclaiming warranty or limiting liability differently from the
+    terms of sections 15 and 16 of this License; or
+
+    b) Requiring preservation of specified reasonable legal notices or
+    author attributions in that material or in the Appropriate Legal
+    Notices displayed by works containing it; or
+
+    c) Prohibiting misrepresentation of the origin of that material, or
+    requiring that modified versions of such material be marked in
+    reasonable ways as different from the original version; or
+
+    d) Limiting the use for publicity purposes of names of licensors or
+    authors of the material; or
+
+    e) Declining to grant rights under trademark law for use of some
+    trade names, trademarks, or service marks; or
+
+    f) Requiring indemnification of licensors and authors of that
+    material by anyone who conveys the material (or modified versions of
+    it) with contractual assumptions of liability to the recipient, for
+    any liability that these contractual assumptions directly impose on
+    those licensors and authors.
+
+  All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10.  If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term.  If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+  If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+  Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+  8. Termination.
+
+  You may not propagate or modify a covered work except as expressly
+provided under this License.  Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+  However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+  Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+  Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License.  If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+  9. Acceptance Not Required for Having Copies.
+
+  You are not required to accept this License in order to receive or
+run a copy of the Program.  Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance.  However,
+nothing other than this License grants you permission to propagate or
+modify any covered work.  These actions infringe copyright if you do
+not accept this License.  Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+  10. Automatic Licensing of Downstream Recipients.
+
+  Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License.  You are not responsible
+for enforcing compliance by third parties with this License.
+
+  An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations.  If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+  You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License.  For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+  11. Patents.
+
+  A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based.  The
+work thus licensed is called the contributor's "contributor version".
+
+  A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version.  For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+  Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+  In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement).  To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+  If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients.  "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+  If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+  A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License.  You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+  Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+  12. No Surrender of Others' Freedom.
+
+  If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License.  If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all.  For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+  13. Use with the GNU Affero General Public License.
+
+  Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work.  The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+  14. Revised Versions of this License.
+
+  The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time.  Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+  Each version is given a distinguishing version number.  If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation.  If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+  If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+  Later license versions may give you additional or different
+permissions.  However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+  15. Disclaimer of Warranty.
+
+  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+  16. Limitation of Liability.
+
+  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+  17. Interpretation of Sections 15 and 16.
+
+  If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+                     END OF TERMS AND CONDITIONS
+
+            How to Apply These Terms to Your New Programs
+
+  If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+  To do so, attach the following notices to the program.  It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+    <one line to give the program's name and a brief idea of what it does.>
+    Copyright (C) 2025 UNICADO consortium
+
+    This program is free software: you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation, either version 3 of the License, or
+    (at your option) any later version.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
+
+    You should have received a copy of the GNU General Public License
+    along with this program.  If not, see <https://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+  If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+    <program>  Copyright (C) 2025 UNICADO consortium
+    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+    This is free software, and you are welcome to redistribute it
+    under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License.  Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+  You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+<https://www.gnu.org/licenses/>.
+
+  The GNU General Public License does not permit incorporating your program
+into proprietary programs.  If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library.  If this is what you want to do, use the GNU Lesser General
+Public License instead of this License.  But first, please read
+<https://www.gnu.org/licenses/why-not-lgpl.html>.
diff --git a/Pipfile b/Pipfile
new file mode 100644
index 0000000000000000000000000000000000000000..c3336e6973447348bb016cbc371b8680004a4dca
--- /dev/null
+++ b/Pipfile
@@ -0,0 +1,18 @@
+[[source]]
+url = "https://pypi.org/simple"
+verify_ssl = true
+name = "pypi"
+
+[packages]
+mkdocs = "*"
+mkdocs-material = "*"
+mkdocs-glightbox = "*"
+mkdocs-site-urls = "*"
+mkdoxy = "*"
+mkdocs-bibtex =  "*"
+
+[dev-packages]
+mkdocs = "*"
+
+[requires]
+python_version = "3.11"
diff --git a/Pipfile.lock b/Pipfile.lock
new file mode 100644
index 0000000000000000000000000000000000000000..c0be02830948f3765a09f8d1ae3c01331d41e206
--- /dev/null
+++ b/Pipfile.lock
@@ -0,0 +1,866 @@
+{
+    "_meta": {
+        "hash": {
+            "sha256": "ba21ff566edd33d7f2eb9f27d67fd37e2cdec33b04fb5680c464356679bc7bd0"
+        },
+        "pipfile-spec": 6,
+        "requires": {
+            "python_version": "3.11"
+        },
+        "sources": [
+            {
+                "name": "pypi",
+                "url": "https://pypi.org/simple",
+                "verify_ssl": true
+            }
+        ]
+    },
+    "default": {
+        "babel": {
+            "hashes": [
+                "sha256:0c54cffb19f690cdcc52a3b50bcbf71e07a808d1c80d549f2459b9d2cf0afb9d",
+                "sha256:4d0b53093fdfb4b21c92b5213dba5a1b23885afa8383709427046b21c366e5f2"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==2.17.0"
+        },
+        "certifi": {
+            "hashes": [
+                "sha256:3d5da6925056f6f18f119200434a4780a94263f10d1c21d032a6f6b2baa20651",
+                "sha256:ca78db4565a652026a4db2bcdf68f2fb589ea80d0be70e03929ed730746b84fe"
+            ],
+            "markers": "python_version >= '3.6'",
+            "version": "==2025.1.31"
+        },
+        "charset-normalizer": {
+            "hashes": [
+                "sha256:0167ddc8ab6508fe81860a57dd472b2ef4060e8d378f0cc555707126830f2537",
+                "sha256:01732659ba9b5b873fc117534143e4feefecf3b2078b0a6a2e925271bb6f4cfa",
+                "sha256:01ad647cdd609225c5350561d084b42ddf732f4eeefe6e678765636791e78b9a",
+                "sha256:04432ad9479fa40ec0f387795ddad4437a2b50417c69fa275e212933519ff294",
+                "sha256:0907f11d019260cdc3f94fbdb23ff9125f6b5d1039b76003b5b0ac9d6a6c9d5b",
+                "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd",
+                "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601",
+                "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd",
+                "sha256:0af291f4fe114be0280cdd29d533696a77b5b49cfde5467176ecab32353395c4",
+                "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d",
+                "sha256:1a2bc9f351a75ef49d664206d51f8e5ede9da246602dc2d2726837620ea034b2",
+                "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313",
+                "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd",
+                "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa",
+                "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8",
+                "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1",
+                "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2",
+                "sha256:2a75d49014d118e4198bcee5ee0a6f25856b29b12dbf7cd012791f8a6cc5c496",
+                "sha256:2bdfe3ac2e1bbe5b59a1a63721eb3b95fc9b6817ae4a46debbb4e11f6232428d",
+                "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b",
+                "sha256:2fb9bd477fdea8684f78791a6de97a953c51831ee2981f8e4f583ff3b9d9687e",
+                "sha256:311f30128d7d333eebd7896965bfcfbd0065f1716ec92bd5638d7748eb6f936a",
+                "sha256:329ce159e82018d646c7ac45b01a430369d526569ec08516081727a20e9e4af4",
+                "sha256:345b0426edd4e18138d6528aed636de7a9ed169b4aaf9d61a8c19e39d26838ca",
+                "sha256:363e2f92b0f0174b2f8238240a1a30142e3db7b957a5dd5689b0e75fb717cc78",
+                "sha256:3a3bd0dcd373514dcec91c411ddb9632c0d7d92aed7093b8c3bbb6d69ca74408",
+                "sha256:3bed14e9c89dcb10e8f3a29f9ccac4955aebe93c71ae803af79265c9ca5644c5",
+                "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3",
+                "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f",
+                "sha256:4532bff1b8421fd0a320463030c7520f56a79c9024a4e88f01c537316019005a",
+                "sha256:49402233c892a461407c512a19435d1ce275543138294f7ef013f0b63d5d3765",
+                "sha256:4c0907b1928a36d5a998d72d64d8eaa7244989f7aaaf947500d3a800c83a3fd6",
+                "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146",
+                "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6",
+                "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9",
+                "sha256:619a609aa74ae43d90ed2e89bdd784765de0a25ca761b93e196d938b8fd1dbbd",
+                "sha256:6e27f48bcd0957c6d4cb9d6fa6b61d192d0b13d5ef563e5f2ae35feafc0d179c",
+                "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f",
+                "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545",
+                "sha256:7461baadb4dc00fd9e0acbe254e3d7d2112e7f92ced2adc96e54ef6501c5f176",
+                "sha256:75832c08354f595c760a804588b9357d34ec00ba1c940c15e31e96d902093770",
+                "sha256:7709f51f5f7c853f0fb938bcd3bc59cdfdc5203635ffd18bf354f6967ea0f824",
+                "sha256:78baa6d91634dfb69ec52a463534bc0df05dbd546209b79a3880a34487f4b84f",
+                "sha256:7974a0b5ecd505609e3b19742b60cee7aa2aa2fb3151bc917e6e2646d7667dcf",
+                "sha256:7a4f97a081603d2050bfaffdefa5b02a9ec823f8348a572e39032caa8404a487",
+                "sha256:7b1bef6280950ee6c177b326508f86cad7ad4dff12454483b51d8b7d673a2c5d",
+                "sha256:7d053096f67cd1241601111b698f5cad775f97ab25d81567d3f59219b5f1adbd",
+                "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b",
+                "sha256:807f52c1f798eef6cf26beb819eeb8819b1622ddfeef9d0977a8502d4db6d534",
+                "sha256:80ed5e856eb7f30115aaf94e4a08114ccc8813e6ed1b5efa74f9f82e8509858f",
+                "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b",
+                "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9",
+                "sha256:89149166622f4db9b4b6a449256291dc87a99ee53151c74cbd82a53c8c2f6ccd",
+                "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125",
+                "sha256:8c60ca7339acd497a55b0ea5d506b2a2612afb2826560416f6894e8b5770d4a9",
+                "sha256:91b36a978b5ae0ee86c394f5a54d6ef44db1de0815eb43de826d41d21e4af3de",
+                "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11",
+                "sha256:97f68b8d6831127e4787ad15e6757232e14e12060bec17091b85eb1486b91d8d",
+                "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35",
+                "sha256:9f0b8b1c6d84c8034a44893aba5e767bf9c7a211e313a9605d9c617d7083829f",
+                "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda",
+                "sha256:ab36c8eb7e454e34e60eb55ca5d241a5d18b2c6244f6827a30e451c42410b5f7",
+                "sha256:b010a7a4fd316c3c484d482922d13044979e78d1861f0e0650423144c616a46a",
+                "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971",
+                "sha256:b7b2d86dd06bfc2ade3312a83a5c364c7ec2e3498f8734282c6c3d4b07b346b8",
+                "sha256:b97e690a2118911e39b4042088092771b4ae3fc3aa86518f84b8cf6888dbdb41",
+                "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d",
+                "sha256:c0429126cf75e16c4f0ad00ee0eae4242dc652290f940152ca8c75c3a4b6ee8f",
+                "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757",
+                "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a",
+                "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886",
+                "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77",
+                "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76",
+                "sha256:d973f03c0cb71c5ed99037b870f2be986c3c05e63622c017ea9816881d2dd247",
+                "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85",
+                "sha256:d9c3cdf5390dcd29aa8056d13e8e99526cda0305acc038b96b30352aff5ff2bb",
+                "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7",
+                "sha256:dccbe65bd2f7f7ec22c4ff99ed56faa1e9f785482b9bbd7c717e26fd723a1d1e",
+                "sha256:dd78cfcda14a1ef52584dbb008f7ac81c1328c0f58184bf9a84c49c605002da6",
+                "sha256:e218488cd232553829be0664c2292d3af2eeeb94b32bea483cf79ac6a694e037",
+                "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1",
+                "sha256:ea0d8d539afa5eb2728aa1932a988a9a7af94f18582ffae4bc10b3fbdad0626e",
+                "sha256:eab677309cdb30d047996b36d34caeda1dc91149e4fdca0b1a039b3f79d9a807",
+                "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407",
+                "sha256:ecddf25bee22fe4fe3737a399d0d177d72bc22be6913acfab364b40bce1ba83c",
+                "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12",
+                "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3",
+                "sha256:f30bf9fd9be89ecb2360c7d94a711f00c09b976258846efe40db3d05828e8089",
+                "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd",
+                "sha256:fc54db6c8593ef7d4b2a331b58653356cf04f67c960f584edb7c3d8c97e8f39e",
+                "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00",
+                "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616"
+            ],
+            "markers": "python_version >= '3.7'",
+            "version": "==3.4.1"
+        },
+        "click": {
+            "hashes": [
+                "sha256:63c132bbbed01578a06712a2d1f497bb62d9c1c0d329b7903a866228027263b2",
+                "sha256:ed53c9d8990d83c2a27deae68e4ee337473f6330c040a31d4225c9574d16096a"
+            ],
+            "markers": "python_version >= '3.7'",
+            "version": "==8.1.8"
+        },
+        "colorama": {
+            "hashes": [
+                "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44",
+                "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"
+            ],
+            "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6'",
+            "version": "==0.4.6"
+        },
+        "ghp-import": {
+            "hashes": [
+                "sha256:8337dd7b50877f163d4c0289bc1f1c7f127550241988d568c1db512c4324a619",
+                "sha256:9c535c4c61193c2df8871222567d7fd7e5014d835f97dc7b7439069e2413d343"
+            ],
+            "version": "==2.1.0"
+        },
+        "idna": {
+            "hashes": [
+                "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9",
+                "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"
+            ],
+            "markers": "python_version >= '3.6'",
+            "version": "==3.10"
+        },
+        "jinja2": {
+            "hashes": [
+                "sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb",
+                "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb"
+            ],
+            "markers": "python_version >= '3.7'",
+            "version": "==3.1.5"
+        },
+        "markdown": {
+            "hashes": [
+                "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2",
+                "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==3.7"
+        },
+        "markupsafe": {
+            "hashes": [
+                "sha256:0bff5e0ae4ef2e1ae4fdf2dfd5b76c75e5c2fa4132d05fc1b0dabcd20c7e28c4",
+                "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30",
+                "sha256:1225beacc926f536dc82e45f8a4d68502949dc67eea90eab715dea3a21c1b5f0",
+                "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9",
+                "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396",
+                "sha256:1a9d3f5f0901fdec14d8d2f66ef7d035f2157240a433441719ac9a3fba440b13",
+                "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028",
+                "sha256:1e084f686b92e5b83186b07e8a17fc09e38fff551f3602b249881fec658d3eca",
+                "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557",
+                "sha256:2cb8438c3cbb25e220c2ab33bb226559e7afb3baec11c4f218ffa7308603c832",
+                "sha256:3169b1eefae027567d1ce6ee7cae382c57fe26e82775f460f0b2778beaad66c0",
+                "sha256:3809ede931876f5b2ec92eef964286840ed3540dadf803dd570c3b7e13141a3b",
+                "sha256:38a9ef736c01fccdd6600705b09dc574584b89bea478200c5fbf112a6b0d5579",
+                "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a",
+                "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c",
+                "sha256:48032821bbdf20f5799ff537c7ac3d1fba0ba032cfc06194faffa8cda8b560ff",
+                "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c",
+                "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22",
+                "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094",
+                "sha256:57cb5a3cf367aeb1d316576250f65edec5bb3be939e9247ae594b4bcbc317dfb",
+                "sha256:5b02fb34468b6aaa40dfc198d813a641e3a63b98c2b05a16b9f80b7ec314185e",
+                "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5",
+                "sha256:6af100e168aa82a50e186c82875a5893c5597a0c1ccdb0d8b40240b1f28b969a",
+                "sha256:6c89876f41da747c8d3677a2b540fb32ef5715f97b66eeb0c6b66f5e3ef6f59d",
+                "sha256:6e296a513ca3d94054c2c881cc913116e90fd030ad1c656b3869762b754f5f8a",
+                "sha256:70a87b411535ccad5ef2f1df5136506a10775d267e197e4cf531ced10537bd6b",
+                "sha256:7e94c425039cde14257288fd61dcfb01963e658efbc0ff54f5306b06054700f8",
+                "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225",
+                "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c",
+                "sha256:88b49a3b9ff31e19998750c38e030fc7bb937398b1f78cfa599aaef92d693144",
+                "sha256:8c4e8c3ce11e1f92f6536ff07154f9d49677ebaaafc32db9db4620bc11ed480f",
+                "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87",
+                "sha256:9025b4018f3a1314059769c7bf15441064b2207cb3f065e6ea1e7359cb46db9d",
+                "sha256:93335ca3812df2f366e80509ae119189886b0f3c2b81325d39efdb84a1e2ae93",
+                "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf",
+                "sha256:9e2d922824181480953426608b81967de705c3cef4d1af983af849d7bd619158",
+                "sha256:a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84",
+                "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb",
+                "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48",
+                "sha256:b424c77b206d63d500bcb69fa55ed8d0e6a3774056bdc4839fc9298a7edca171",
+                "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c",
+                "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6",
+                "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd",
+                "sha256:bbcb445fa71794da8f178f0f6d66789a28d7319071af7a496d4d507ed566270d",
+                "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1",
+                "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d",
+                "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca",
+                "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a",
+                "sha256:cfad01eed2c2e0c01fd0ecd2ef42c492f7f93902e39a42fc9ee1692961443a29",
+                "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe",
+                "sha256:d8213e09c917a951de9d09ecee036d5c7d36cb6cb7dbaece4c71a60d79fb9798",
+                "sha256:e07c3764494e3776c602c1e78e298937c3315ccc9043ead7e685b7f2b8d47b3c",
+                "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8",
+                "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f",
+                "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f",
+                "sha256:eaa0a10b7f72326f1372a713e73c3f739b524b3af41feb43e4921cb529f5929a",
+                "sha256:eb7972a85c54febfb25b5c4b4f3af4dcc731994c7da0d8a0b4a6eb0640e1d178",
+                "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0",
+                "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79",
+                "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430",
+                "sha256:fcabf5ff6eea076f859677f5f0b6b5c1a51e70a376b0579e0eadef8db48c6b50"
+            ],
+            "markers": "python_version >= '3.9'",
+            "version": "==3.0.2"
+        },
+        "mergedeep": {
+            "hashes": [
+                "sha256:0096d52e9dad9939c3d975a774666af186eda617e6ca84df4c94dec30004f2a8",
+                "sha256:70775750742b25c0d8f36c55aed03d24c3384d17c951b3175d898bd778ef0307"
+            ],
+            "markers": "python_version >= '3.6'",
+            "version": "==1.3.4"
+        },
+        "mkdocs": {
+            "hashes": [
+                "sha256:7b432f01d928c084353ab39c57282f29f92136665bdd6abf7c1ec8d822ef86f2",
+                "sha256:db91759624d1647f3f34aa0c3f327dd2601beae39a366d6e064c03468d35c20e"
+            ],
+            "index": "pypi",
+            "markers": "python_version >= '3.8'",
+            "version": "==1.6.1"
+        },
+        "mkdocs-get-deps": {
+            "hashes": [
+                "sha256:162b3d129c7fad9b19abfdcb9c1458a651628e4b1dea628ac68790fb3061c60c",
+                "sha256:2bf11d0b133e77a0dd036abeeb06dec8775e46efa526dc70667d8863eefc6134"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==0.2.0"
+        },
+        "mkdocs-glightbox": {
+            "hashes": [
+                "sha256:392b34207bf95991071a16d5f8916d1d2f2cd5d5bb59ae2997485ccd778c70d9",
+                "sha256:e0107beee75d3eb7380ac06ea2d6eac94c999eaa49f8c3cbab0e7be2ac006ccf"
+            ],
+            "index": "pypi",
+            "version": "==0.4.0"
+        },
+        "mkdocs-material": {
+            "hashes": [
+                "sha256:71d90dbd63b393ad11a4d90151dfe3dcbfcd802c0f29ce80bebd9bbac6abc753",
+                "sha256:a3de1c5d4c745f10afa78b1a02f917b9dce0808fb206adc0f5bb48b58c1ca21f"
+            ],
+            "index": "pypi",
+            "markers": "python_version >= '3.8'",
+            "version": "==9.6.2"
+        },
+        "mkdocs-material-extensions": {
+            "hashes": [
+                "sha256:10c9511cea88f568257f960358a467d12b970e1f7b2c0e5fb2bb48cab1928443",
+                "sha256:adff8b62700b25cb77b53358dad940f3ef973dd6db797907c49e3c2ef3ab4e31"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==1.3.1"
+        },
+        "mkdocs-site-urls": {
+            "hashes": [
+                "sha256:1a2a1363e55de0bb9818984ae544a6f2f48a851d0112ebe097ad392eeaaf1cec",
+                "sha256:675cdf9c3f759620edfb3011cc75226daf106593548c93ee568feb5ffd3cc089"
+            ],
+            "index": "pypi",
+            "markers": "python_version >= '3.7'",
+            "version": "==0.2.0"
+        },
+        "mkdoxy": {
+            "hashes": [
+                "sha256:7366ab6fbdda25667c89aa5e0114caee712c280f56b49160107a8596293f0aaf",
+                "sha256:88189dd0569d728ac26de7526aa453e69b3d91ac27e38ee8fdf4a97dbb93a91f"
+            ],
+            "index": "pypi",
+            "markers": "python_version >= '3.9'",
+            "version": "==1.2.7"
+        },
+        "packaging": {
+            "hashes": [
+                "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759",
+                "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==24.2"
+        },
+        "paginate": {
+            "hashes": [
+                "sha256:22bd083ab41e1a8b4f3690544afb2c60c25e5c9a63a30fa2f483f6c60c8e5945",
+                "sha256:b885e2af73abcf01d9559fd5216b57ef722f8c42affbb63942377668e35c7591"
+            ],
+            "version": "==0.5.7"
+        },
+        "pathspec": {
+            "hashes": [
+                "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08",
+                "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==0.12.1"
+        },
+        "platformdirs": {
+            "hashes": [
+                "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907",
+                "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==4.3.6"
+        },
+        "pygments": {
+            "hashes": [
+                "sha256:61c16d2a8576dc0649d9f39e089b5f02bcd27fba10d8fb4dcc28173f7a45151f",
+                "sha256:9ea1544ad55cecf4b8242fab6dd35a93bbce657034b0611ee383099054ab6d8c"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==2.19.1"
+        },
+        "pymdown-extensions": {
+            "hashes": [
+                "sha256:05e0bee73d64b9c71a4ae17c72abc2f700e8bc8403755a00580b49a4e9f189e9",
+                "sha256:41e576ce3f5d650be59e900e4ceff231e0aed2a88cf30acaee41e02f063a061b"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==10.14.3"
+        },
+        "python-dateutil": {
+            "hashes": [
+                "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3",
+                "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"
+            ],
+            "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2'",
+            "version": "==2.9.0.post0"
+        },
+        "pyyaml": {
+            "hashes": [
+                "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff",
+                "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48",
+                "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086",
+                "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e",
+                "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133",
+                "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5",
+                "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484",
+                "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee",
+                "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5",
+                "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68",
+                "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a",
+                "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf",
+                "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99",
+                "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8",
+                "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85",
+                "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19",
+                "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc",
+                "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a",
+                "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1",
+                "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317",
+                "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c",
+                "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631",
+                "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d",
+                "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652",
+                "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5",
+                "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e",
+                "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b",
+                "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8",
+                "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476",
+                "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706",
+                "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563",
+                "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237",
+                "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b",
+                "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083",
+                "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180",
+                "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425",
+                "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e",
+                "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f",
+                "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725",
+                "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183",
+                "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab",
+                "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774",
+                "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725",
+                "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e",
+                "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5",
+                "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d",
+                "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290",
+                "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44",
+                "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed",
+                "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4",
+                "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba",
+                "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12",
+                "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==6.0.2"
+        },
+        "pyyaml-env-tag": {
+            "hashes": [
+                "sha256:70092675bda14fdec33b31ba77e7543de9ddc88f2e5b99160396572d11525bdb",
+                "sha256:af31106dec8a4d68c60207c1886031cbf839b68aa7abccdb19868200532c2069"
+            ],
+            "markers": "python_version >= '3.6'",
+            "version": "==0.1"
+        },
+        "regex": {
+            "hashes": [
+                "sha256:02a02d2bb04fec86ad61f3ea7f49c015a0681bf76abb9857f945d26159d2968c",
+                "sha256:02e28184be537f0e75c1f9b2f8847dc51e08e6e171c6bde130b2687e0c33cf60",
+                "sha256:040df6fe1a5504eb0f04f048e6d09cd7c7110fef851d7c567a6b6e09942feb7d",
+                "sha256:068376da5a7e4da51968ce4c122a7cd31afaaec4fccc7856c92f63876e57b51d",
+                "sha256:06eb1be98df10e81ebaded73fcd51989dcf534e3c753466e4b60c4697a003b67",
+                "sha256:072623554418a9911446278f16ecb398fb3b540147a7828c06e2011fa531e773",
+                "sha256:086a27a0b4ca227941700e0b31425e7a28ef1ae8e5e05a33826e17e47fbfdba0",
+                "sha256:08986dce1339bc932923e7d1232ce9881499a0e02925f7402fb7c982515419ef",
+                "sha256:0a86e7eeca091c09e021db8eb72d54751e527fa47b8d5787caf96d9831bd02ad",
+                "sha256:0c32f75920cf99fe6b6c539c399a4a128452eaf1af27f39bce8909c9a3fd8cbe",
+                "sha256:0d7f453dca13f40a02b79636a339c5b62b670141e63efd511d3f8f73fba162b3",
+                "sha256:1062b39a0a2b75a9c694f7a08e7183a80c63c0d62b301418ffd9c35f55aaa114",
+                "sha256:13291b39131e2d002a7940fb176e120bec5145f3aeb7621be6534e46251912c4",
+                "sha256:149f5008d286636e48cd0b1dd65018548944e495b0265b45e1bffecce1ef7f39",
+                "sha256:164d8b7b3b4bcb2068b97428060b2a53be050085ef94eca7f240e7947f1b080e",
+                "sha256:167ed4852351d8a750da48712c3930b031f6efdaa0f22fa1933716bfcd6bf4a3",
+                "sha256:1c4de13f06a0d54fa0d5ab1b7138bfa0d883220965a29616e3ea61b35d5f5fc7",
+                "sha256:202eb32e89f60fc147a41e55cb086db2a3f8cb82f9a9a88440dcfc5d37faae8d",
+                "sha256:220902c3c5cc6af55d4fe19ead504de80eb91f786dc102fbd74894b1551f095e",
+                "sha256:2b3361af3198667e99927da8b84c1b010752fa4b1115ee30beaa332cabc3ef1a",
+                "sha256:2c89a8cc122b25ce6945f0423dc1352cb9593c68abd19223eebbd4e56612c5b7",
+                "sha256:2d548dafee61f06ebdb584080621f3e0c23fff312f0de1afc776e2a2ba99a74f",
+                "sha256:2e34b51b650b23ed3354b5a07aab37034d9f923db2a40519139af34f485f77d0",
+                "sha256:32f9a4c643baad4efa81d549c2aadefaeba12249b2adc5af541759237eee1c54",
+                "sha256:3a51ccc315653ba012774efca4f23d1d2a8a8f278a6072e29c7147eee7da446b",
+                "sha256:3cde6e9f2580eb1665965ce9bf17ff4952f34f5b126beb509fee8f4e994f143c",
+                "sha256:40291b1b89ca6ad8d3f2b82782cc33807f1406cf68c8d440861da6304d8ffbbd",
+                "sha256:41758407fc32d5c3c5de163888068cfee69cb4c2be844e7ac517a52770f9af57",
+                "sha256:4181b814e56078e9b00427ca358ec44333765f5ca1b45597ec7446d3a1ef6e34",
+                "sha256:4f51f88c126370dcec4908576c5a627220da6c09d0bff31cfa89f2523843316d",
+                "sha256:50153825ee016b91549962f970d6a4442fa106832e14c918acd1c8e479916c4f",
+                "sha256:5056b185ca113c88e18223183aa1a50e66507769c9640a6ff75859619d73957b",
+                "sha256:5071b2093e793357c9d8b2929dfc13ac5f0a6c650559503bb81189d0a3814519",
+                "sha256:525eab0b789891ac3be914d36893bdf972d483fe66551f79d3e27146191a37d4",
+                "sha256:52fb28f528778f184f870b7cf8f225f5eef0a8f6e3778529bdd40c7b3920796a",
+                "sha256:5478c6962ad548b54a591778e93cd7c456a7a29f8eca9c49e4f9a806dcc5d638",
+                "sha256:5670bce7b200273eee1840ef307bfa07cda90b38ae56e9a6ebcc9f50da9c469b",
+                "sha256:5704e174f8ccab2026bd2f1ab6c510345ae8eac818b613d7d73e785f1310f839",
+                "sha256:59dfe1ed21aea057a65c6b586afd2a945de04fc7db3de0a6e3ed5397ad491b07",
+                "sha256:5e7e351589da0850c125f1600a4c4ba3c722efefe16b297de54300f08d734fbf",
+                "sha256:63b13cfd72e9601125027202cad74995ab26921d8cd935c25f09c630436348ff",
+                "sha256:658f90550f38270639e83ce492f27d2c8d2cd63805c65a13a14d36ca126753f0",
+                "sha256:684d7a212682996d21ca12ef3c17353c021fe9de6049e19ac8481ec35574a70f",
+                "sha256:69ab78f848845569401469da20df3e081e6b5a11cb086de3eed1d48f5ed57c95",
+                "sha256:6f44ec28b1f858c98d3036ad5d7d0bfc568bdd7a74f9c24e25f41ef1ebfd81a4",
+                "sha256:70b7fa6606c2881c1db9479b0eaa11ed5dfa11c8d60a474ff0e095099f39d98e",
+                "sha256:764e71f22ab3b305e7f4c21f1a97e1526a25ebdd22513e251cf376760213da13",
+                "sha256:7ab159b063c52a0333c884e4679f8d7a85112ee3078fe3d9004b2dd875585519",
+                "sha256:805e6b60c54bf766b251e94526ebad60b7de0c70f70a4e6210ee2891acb70bf2",
+                "sha256:8447d2d39b5abe381419319f942de20b7ecd60ce86f16a23b0698f22e1b70008",
+                "sha256:86fddba590aad9208e2fa8b43b4c098bb0ec74f15718bb6a704e3c63e2cef3e9",
+                "sha256:89d75e7293d2b3e674db7d4d9b1bee7f8f3d1609428e293771d1a962617150cc",
+                "sha256:93c0b12d3d3bc25af4ebbf38f9ee780a487e8bf6954c115b9f015822d3bb8e48",
+                "sha256:94d87b689cdd831934fa3ce16cc15cd65748e6d689f5d2b8f4f4df2065c9fa20",
+                "sha256:9714398225f299aa85267fd222f7142fcb5c769e73d7733344efc46f2ef5cf89",
+                "sha256:982e6d21414e78e1f51cf595d7f321dcd14de1f2881c5dc6a6e23bbbbd68435e",
+                "sha256:997d6a487ff00807ba810e0f8332c18b4eb8d29463cfb7c820dc4b6e7562d0cf",
+                "sha256:a03e02f48cd1abbd9f3b7e3586d97c8f7a9721c436f51a5245b3b9483044480b",
+                "sha256:a36fdf2af13c2b14738f6e973aba563623cb77d753bbbd8d414d18bfaa3105dd",
+                "sha256:a6ba92c0bcdf96cbf43a12c717eae4bc98325ca3730f6b130ffa2e3c3c723d84",
+                "sha256:a7c2155f790e2fb448faed6dd241386719802296ec588a8b9051c1f5c481bc29",
+                "sha256:a93c194e2df18f7d264092dc8539b8ffb86b45b899ab976aa15d48214138e81b",
+                "sha256:abfa5080c374a76a251ba60683242bc17eeb2c9818d0d30117b4486be10c59d3",
+                "sha256:ac10f2c4184420d881a3475fb2c6f4d95d53a8d50209a2500723d831036f7c45",
+                "sha256:ad182d02e40de7459b73155deb8996bbd8e96852267879396fb274e8700190e3",
+                "sha256:b2837718570f95dd41675328e111345f9b7095d821bac435aac173ac80b19983",
+                "sha256:b489578720afb782f6ccf2840920f3a32e31ba28a4b162e13900c3e6bd3f930e",
+                "sha256:b583904576650166b3d920d2bcce13971f6f9e9a396c673187f49811b2769dc7",
+                "sha256:b85c2530be953a890eaffde05485238f07029600e8f098cdf1848d414a8b45e4",
+                "sha256:b97c1e0bd37c5cd7902e65f410779d39eeda155800b65fc4d04cc432efa9bc6e",
+                "sha256:ba9b72e5643641b7d41fa1f6d5abda2c9a263ae835b917348fc3c928182ad467",
+                "sha256:bb26437975da7dc36b7efad18aa9dd4ea569d2357ae6b783bf1118dabd9ea577",
+                "sha256:bb8f74f2f10dbf13a0be8de623ba4f9491faf58c24064f32b65679b021ed0001",
+                "sha256:bde01f35767c4a7899b7eb6e823b125a64de314a8ee9791367c9a34d56af18d0",
+                "sha256:bec9931dfb61ddd8ef2ebc05646293812cb6b16b60cf7c9511a832b6f1854b55",
+                "sha256:c36f9b6f5f8649bb251a5f3f66564438977b7ef8386a52460ae77e6070d309d9",
+                "sha256:cdf58d0e516ee426a48f7b2c03a332a4114420716d55769ff7108c37a09951bf",
+                "sha256:d1cee317bfc014c2419a76bcc87f071405e3966da434e03e13beb45f8aced1a6",
+                "sha256:d22326fcdef5e08c154280b71163ced384b428343ae16a5ab2b3354aed12436e",
+                "sha256:d3660c82f209655a06b587d55e723f0b813d3a7db2e32e5e7dc64ac2a9e86fde",
+                "sha256:da8f5fc57d1933de22a9e23eec290a0d8a5927a5370d24bda9a6abe50683fe62",
+                "sha256:df951c5f4a1b1910f1a99ff42c473ff60f8225baa1cdd3539fe2819d9543e9df",
+                "sha256:e5364a4502efca094731680e80009632ad6624084aff9a23ce8c8c6820de3e51",
+                "sha256:ea1bfda2f7162605f6e8178223576856b3d791109f15ea99a9f95c16a7636fb5",
+                "sha256:f02f93b92358ee3f78660e43b4b0091229260c5d5c408d17d60bf26b6c900e86",
+                "sha256:f056bf21105c2515c32372bbc057f43eb02aae2fda61052e2f7622c801f0b4e2",
+                "sha256:f1ac758ef6aebfc8943560194e9fd0fa18bcb34d89fd8bd2af18183afd8da3a2",
+                "sha256:f2a19f302cd1ce5dd01a9099aaa19cae6173306d1302a43b627f62e21cf18ac0",
+                "sha256:f654882311409afb1d780b940234208a252322c24a93b442ca714d119e68086c",
+                "sha256:f65557897fc977a44ab205ea871b690adaef6b9da6afda4790a2484b04293a5f",
+                "sha256:f9d1e379028e0fc2ae3654bac3cbbef81bf3fd571272a42d56c24007979bafb6",
+                "sha256:fdabbfc59f2c6edba2a6622c647b716e34e8e3867e0ab975412c5c2f79b82da2",
+                "sha256:fdd6028445d2460f33136c55eeb1f601ab06d74cb3347132e1c24250187500d9",
+                "sha256:ff590880083d60acc0433f9c3f713c51f7ac6ebb9adf889c79a261ecf541aa91"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==2024.11.6"
+        },
+        "requests": {
+            "hashes": [
+                "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760",
+                "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==2.32.3"
+        },
+        "six": {
+            "hashes": [
+                "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274",
+                "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"
+            ],
+            "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2'",
+            "version": "==1.17.0"
+        },
+        "urllib3": {
+            "hashes": [
+                "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df",
+                "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d"
+            ],
+            "markers": "python_version >= '3.9'",
+            "version": "==2.3.0"
+        },
+        "watchdog": {
+            "hashes": [
+                "sha256:07df1fdd701c5d4c8e55ef6cf55b8f0120fe1aef7ef39a1c6fc6bc2e606d517a",
+                "sha256:20ffe5b202af80ab4266dcd3e91aae72bf2da48c0d33bdb15c66658e685e94e2",
+                "sha256:212ac9b8bf1161dc91bd09c048048a95ca3a4c4f5e5d4a7d1b1a7d5752a7f96f",
+                "sha256:2cce7cfc2008eb51feb6aab51251fd79b85d9894e98ba847408f662b3395ca3c",
+                "sha256:490ab2ef84f11129844c23fb14ecf30ef3d8a6abafd3754a6f75ca1e6654136c",
+                "sha256:6eb11feb5a0d452ee41f824e271ca311a09e250441c262ca2fd7ebcf2461a06c",
+                "sha256:6f10cb2d5902447c7d0da897e2c6768bca89174d0c6e1e30abec5421af97a5b0",
+                "sha256:7607498efa04a3542ae3e05e64da8202e58159aa1fa4acddf7678d34a35d4f13",
+                "sha256:76aae96b00ae814b181bb25b1b98076d5fc84e8a53cd8885a318b42b6d3a5134",
+                "sha256:7a0e56874cfbc4b9b05c60c8a1926fedf56324bb08cfbc188969777940aef3aa",
+                "sha256:82dc3e3143c7e38ec49d61af98d6558288c415eac98486a5c581726e0737c00e",
+                "sha256:9041567ee8953024c83343288ccc458fd0a2d811d6a0fd68c4c22609e3490379",
+                "sha256:90c8e78f3b94014f7aaae121e6b909674df5b46ec24d6bebc45c44c56729af2a",
+                "sha256:9513f27a1a582d9808cf21a07dae516f0fab1cf2d7683a742c498b93eedabb11",
+                "sha256:9ddf7c82fda3ae8e24decda1338ede66e1c99883db93711d8fb941eaa2d8c282",
+                "sha256:a175f755fc2279e0b7312c0035d52e27211a5bc39719dd529625b1930917345b",
+                "sha256:a1914259fa9e1454315171103c6a30961236f508b9b623eae470268bbcc6a22f",
+                "sha256:afd0fe1b2270917c5e23c2a65ce50c2a4abb63daafb0d419fde368e272a76b7c",
+                "sha256:bc64ab3bdb6a04d69d4023b29422170b74681784ffb9463ed4870cf2f3e66112",
+                "sha256:bdd4e6f14b8b18c334febb9c4425a878a2ac20efd1e0b231978e7b150f92a948",
+                "sha256:c7ac31a19f4545dd92fc25d200694098f42c9a8e391bc00bdd362c5736dbf881",
+                "sha256:c7c15dda13c4eb00d6fb6fc508b3c0ed88b9d5d374056b239c4ad1611125c860",
+                "sha256:c897ac1b55c5a1461e16dae288d22bb2e412ba9807df8397a635d88f671d36c3",
+                "sha256:cbafb470cf848d93b5d013e2ecb245d4aa1c8fd0504e863ccefa32445359d680",
+                "sha256:d1cdb490583ebd691c012b3d6dae011000fe42edb7a82ece80965b42abd61f26",
+                "sha256:e3df4cbb9a450c6d49318f6d14f4bbc80d763fa587ba46ec86f99f9e6876bb26",
+                "sha256:e6439e374fc012255b4ec786ae3c4bc838cd7309a540e5fe0952d03687d8804e",
+                "sha256:e6f0e77c9417e7cd62af82529b10563db3423625c5fce018430b249bf977f9e8",
+                "sha256:e7631a77ffb1f7d2eefa4445ebbee491c720a5661ddf6df3498ebecae5ed375c",
+                "sha256:ef810fbf7b781a5a593894e4f439773830bdecb885e6880d957d5b9382a960d2"
+            ],
+            "markers": "python_version >= '3.9'",
+            "version": "==6.0.0"
+        }
+    },
+    "develop": {
+        "click": {
+            "hashes": [
+                "sha256:63c132bbbed01578a06712a2d1f497bb62d9c1c0d329b7903a866228027263b2",
+                "sha256:ed53c9d8990d83c2a27deae68e4ee337473f6330c040a31d4225c9574d16096a"
+            ],
+            "markers": "python_version >= '3.7'",
+            "version": "==8.1.8"
+        },
+        "ghp-import": {
+            "hashes": [
+                "sha256:8337dd7b50877f163d4c0289bc1f1c7f127550241988d568c1db512c4324a619",
+                "sha256:9c535c4c61193c2df8871222567d7fd7e5014d835f97dc7b7439069e2413d343"
+            ],
+            "version": "==2.1.0"
+        },
+        "jinja2": {
+            "hashes": [
+                "sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb",
+                "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb"
+            ],
+            "markers": "python_version >= '3.7'",
+            "version": "==3.1.5"
+        },
+        "markdown": {
+            "hashes": [
+                "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2",
+                "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==3.7"
+        },
+        "markupsafe": {
+            "hashes": [
+                "sha256:0bff5e0ae4ef2e1ae4fdf2dfd5b76c75e5c2fa4132d05fc1b0dabcd20c7e28c4",
+                "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30",
+                "sha256:1225beacc926f536dc82e45f8a4d68502949dc67eea90eab715dea3a21c1b5f0",
+                "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9",
+                "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396",
+                "sha256:1a9d3f5f0901fdec14d8d2f66ef7d035f2157240a433441719ac9a3fba440b13",
+                "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028",
+                "sha256:1e084f686b92e5b83186b07e8a17fc09e38fff551f3602b249881fec658d3eca",
+                "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557",
+                "sha256:2cb8438c3cbb25e220c2ab33bb226559e7afb3baec11c4f218ffa7308603c832",
+                "sha256:3169b1eefae027567d1ce6ee7cae382c57fe26e82775f460f0b2778beaad66c0",
+                "sha256:3809ede931876f5b2ec92eef964286840ed3540dadf803dd570c3b7e13141a3b",
+                "sha256:38a9ef736c01fccdd6600705b09dc574584b89bea478200c5fbf112a6b0d5579",
+                "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a",
+                "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c",
+                "sha256:48032821bbdf20f5799ff537c7ac3d1fba0ba032cfc06194faffa8cda8b560ff",
+                "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c",
+                "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22",
+                "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094",
+                "sha256:57cb5a3cf367aeb1d316576250f65edec5bb3be939e9247ae594b4bcbc317dfb",
+                "sha256:5b02fb34468b6aaa40dfc198d813a641e3a63b98c2b05a16b9f80b7ec314185e",
+                "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5",
+                "sha256:6af100e168aa82a50e186c82875a5893c5597a0c1ccdb0d8b40240b1f28b969a",
+                "sha256:6c89876f41da747c8d3677a2b540fb32ef5715f97b66eeb0c6b66f5e3ef6f59d",
+                "sha256:6e296a513ca3d94054c2c881cc913116e90fd030ad1c656b3869762b754f5f8a",
+                "sha256:70a87b411535ccad5ef2f1df5136506a10775d267e197e4cf531ced10537bd6b",
+                "sha256:7e94c425039cde14257288fd61dcfb01963e658efbc0ff54f5306b06054700f8",
+                "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225",
+                "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c",
+                "sha256:88b49a3b9ff31e19998750c38e030fc7bb937398b1f78cfa599aaef92d693144",
+                "sha256:8c4e8c3ce11e1f92f6536ff07154f9d49677ebaaafc32db9db4620bc11ed480f",
+                "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87",
+                "sha256:9025b4018f3a1314059769c7bf15441064b2207cb3f065e6ea1e7359cb46db9d",
+                "sha256:93335ca3812df2f366e80509ae119189886b0f3c2b81325d39efdb84a1e2ae93",
+                "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf",
+                "sha256:9e2d922824181480953426608b81967de705c3cef4d1af983af849d7bd619158",
+                "sha256:a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84",
+                "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb",
+                "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48",
+                "sha256:b424c77b206d63d500bcb69fa55ed8d0e6a3774056bdc4839fc9298a7edca171",
+                "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c",
+                "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6",
+                "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd",
+                "sha256:bbcb445fa71794da8f178f0f6d66789a28d7319071af7a496d4d507ed566270d",
+                "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1",
+                "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d",
+                "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca",
+                "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a",
+                "sha256:cfad01eed2c2e0c01fd0ecd2ef42c492f7f93902e39a42fc9ee1692961443a29",
+                "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe",
+                "sha256:d8213e09c917a951de9d09ecee036d5c7d36cb6cb7dbaece4c71a60d79fb9798",
+                "sha256:e07c3764494e3776c602c1e78e298937c3315ccc9043ead7e685b7f2b8d47b3c",
+                "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8",
+                "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f",
+                "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f",
+                "sha256:eaa0a10b7f72326f1372a713e73c3f739b524b3af41feb43e4921cb529f5929a",
+                "sha256:eb7972a85c54febfb25b5c4b4f3af4dcc731994c7da0d8a0b4a6eb0640e1d178",
+                "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0",
+                "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79",
+                "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430",
+                "sha256:fcabf5ff6eea076f859677f5f0b6b5c1a51e70a376b0579e0eadef8db48c6b50"
+            ],
+            "markers": "python_version >= '3.9'",
+            "version": "==3.0.2"
+        },
+        "mergedeep": {
+            "hashes": [
+                "sha256:0096d52e9dad9939c3d975a774666af186eda617e6ca84df4c94dec30004f2a8",
+                "sha256:70775750742b25c0d8f36c55aed03d24c3384d17c951b3175d898bd778ef0307"
+            ],
+            "markers": "python_version >= '3.6'",
+            "version": "==1.3.4"
+        },
+        "mkdocs": {
+            "hashes": [
+                "sha256:7b432f01d928c084353ab39c57282f29f92136665bdd6abf7c1ec8d822ef86f2",
+                "sha256:db91759624d1647f3f34aa0c3f327dd2601beae39a366d6e064c03468d35c20e"
+            ],
+            "index": "pypi",
+            "markers": "python_version >= '3.8'",
+            "version": "==1.6.1"
+        },
+        "mkdocs-get-deps": {
+            "hashes": [
+                "sha256:162b3d129c7fad9b19abfdcb9c1458a651628e4b1dea628ac68790fb3061c60c",
+                "sha256:2bf11d0b133e77a0dd036abeeb06dec8775e46efa526dc70667d8863eefc6134"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==0.2.0"
+        },
+        "packaging": {
+            "hashes": [
+                "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759",
+                "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==24.2"
+        },
+        "pathspec": {
+            "hashes": [
+                "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08",
+                "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==0.12.1"
+        },
+        "platformdirs": {
+            "hashes": [
+                "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907",
+                "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==4.3.6"
+        },
+        "python-dateutil": {
+            "hashes": [
+                "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3",
+                "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"
+            ],
+            "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2'",
+            "version": "==2.9.0.post0"
+        },
+        "pyyaml": {
+            "hashes": [
+                "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff",
+                "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48",
+                "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086",
+                "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e",
+                "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133",
+                "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5",
+                "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484",
+                "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee",
+                "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5",
+                "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68",
+                "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a",
+                "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf",
+                "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99",
+                "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8",
+                "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85",
+                "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19",
+                "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc",
+                "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a",
+                "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1",
+                "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317",
+                "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c",
+                "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631",
+                "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d",
+                "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652",
+                "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5",
+                "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e",
+                "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b",
+                "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8",
+                "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476",
+                "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706",
+                "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563",
+                "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237",
+                "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b",
+                "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083",
+                "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180",
+                "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425",
+                "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e",
+                "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f",
+                "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725",
+                "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183",
+                "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab",
+                "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774",
+                "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725",
+                "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e",
+                "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5",
+                "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d",
+                "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290",
+                "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44",
+                "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed",
+                "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4",
+                "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba",
+                "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12",
+                "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"
+            ],
+            "markers": "python_version >= '3.8'",
+            "version": "==6.0.2"
+        },
+        "pyyaml-env-tag": {
+            "hashes": [
+                "sha256:70092675bda14fdec33b31ba77e7543de9ddc88f2e5b99160396572d11525bdb",
+                "sha256:af31106dec8a4d68c60207c1886031cbf839b68aa7abccdb19868200532c2069"
+            ],
+            "markers": "python_version >= '3.6'",
+            "version": "==0.1"
+        },
+        "six": {
+            "hashes": [
+                "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274",
+                "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"
+            ],
+            "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2'",
+            "version": "==1.17.0"
+        },
+        "watchdog": {
+            "hashes": [
+                "sha256:07df1fdd701c5d4c8e55ef6cf55b8f0120fe1aef7ef39a1c6fc6bc2e606d517a",
+                "sha256:20ffe5b202af80ab4266dcd3e91aae72bf2da48c0d33bdb15c66658e685e94e2",
+                "sha256:212ac9b8bf1161dc91bd09c048048a95ca3a4c4f5e5d4a7d1b1a7d5752a7f96f",
+                "sha256:2cce7cfc2008eb51feb6aab51251fd79b85d9894e98ba847408f662b3395ca3c",
+                "sha256:490ab2ef84f11129844c23fb14ecf30ef3d8a6abafd3754a6f75ca1e6654136c",
+                "sha256:6eb11feb5a0d452ee41f824e271ca311a09e250441c262ca2fd7ebcf2461a06c",
+                "sha256:6f10cb2d5902447c7d0da897e2c6768bca89174d0c6e1e30abec5421af97a5b0",
+                "sha256:7607498efa04a3542ae3e05e64da8202e58159aa1fa4acddf7678d34a35d4f13",
+                "sha256:76aae96b00ae814b181bb25b1b98076d5fc84e8a53cd8885a318b42b6d3a5134",
+                "sha256:7a0e56874cfbc4b9b05c60c8a1926fedf56324bb08cfbc188969777940aef3aa",
+                "sha256:82dc3e3143c7e38ec49d61af98d6558288c415eac98486a5c581726e0737c00e",
+                "sha256:9041567ee8953024c83343288ccc458fd0a2d811d6a0fd68c4c22609e3490379",
+                "sha256:90c8e78f3b94014f7aaae121e6b909674df5b46ec24d6bebc45c44c56729af2a",
+                "sha256:9513f27a1a582d9808cf21a07dae516f0fab1cf2d7683a742c498b93eedabb11",
+                "sha256:9ddf7c82fda3ae8e24decda1338ede66e1c99883db93711d8fb941eaa2d8c282",
+                "sha256:a175f755fc2279e0b7312c0035d52e27211a5bc39719dd529625b1930917345b",
+                "sha256:a1914259fa9e1454315171103c6a30961236f508b9b623eae470268bbcc6a22f",
+                "sha256:afd0fe1b2270917c5e23c2a65ce50c2a4abb63daafb0d419fde368e272a76b7c",
+                "sha256:bc64ab3bdb6a04d69d4023b29422170b74681784ffb9463ed4870cf2f3e66112",
+                "sha256:bdd4e6f14b8b18c334febb9c4425a878a2ac20efd1e0b231978e7b150f92a948",
+                "sha256:c7ac31a19f4545dd92fc25d200694098f42c9a8e391bc00bdd362c5736dbf881",
+                "sha256:c7c15dda13c4eb00d6fb6fc508b3c0ed88b9d5d374056b239c4ad1611125c860",
+                "sha256:c897ac1b55c5a1461e16dae288d22bb2e412ba9807df8397a635d88f671d36c3",
+                "sha256:cbafb470cf848d93b5d013e2ecb245d4aa1c8fd0504e863ccefa32445359d680",
+                "sha256:d1cdb490583ebd691c012b3d6dae011000fe42edb7a82ece80965b42abd61f26",
+                "sha256:e3df4cbb9a450c6d49318f6d14f4bbc80d763fa587ba46ec86f99f9e6876bb26",
+                "sha256:e6439e374fc012255b4ec786ae3c4bc838cd7309a540e5fe0952d03687d8804e",
+                "sha256:e6f0e77c9417e7cd62af82529b10563db3423625c5fce018430b249bf977f9e8",
+                "sha256:e7631a77ffb1f7d2eefa4445ebbee491c720a5661ddf6df3498ebecae5ed375c",
+                "sha256:ef810fbf7b781a5a593894e4f439773830bdecb885e6880d957d5b9382a960d2"
+            ],
+            "markers": "python_version >= '3.9'",
+            "version": "==6.0.0"
+        }
+    }
+}
diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..f2a2154277534d989e78ac28ffbe4c335e562d4b
--- /dev/null
+++ b/README.md
@@ -0,0 +1,48 @@
+# Unicado Pages
+This repository contains the static website of UNICADO which is hosted by GitLab *pages*.
+We are using `mkdocs` as the static site generator to generate the website from *markdown* files.
+
+## Preview
+> It is assumed you have a working :snake: **Python** installation in the following!
+
+You can preview the website after cloning it. First you need to install `mkdocs` and the used theme by:
+```sh
+pip install mkdocs mkdocs-material mkdocs-glightbox mkdoxy mkdocs-site-urls mkdocs-bibtex
+```
+
+Then you can change the directory to the repository and run
+```sh
+mkdocs serve
+```
+
+This will start a local webserver which you can access with your webbrowser and preview the website.
+
+### with pipenv
+You can also start the server inside a virtual environment using `pipenv`:
+```sh 
+pipenv run mkdocs serve
+```
+
+## Further Documentation
+For features of the site generator and its theme please refer to their excellent documentation:
+
+- [&rdca; MkDocs](https://www.mkdocs.org/user-guide/)
+- [&rdca; MkDocs Material](https://squidfunk.github.io/mkdocs-material/)
+
+## Page Template
+The pages are written in plain *markdown*.
+The site generator has the option the extract some meta data from the content.
+A template might look like this:
+```
+---
+title: Displayed Title of Page
+summary: Summary of the page content.
+authors:
+    - Author 1
+    - Author 2
+date: yyyy-mm-dd
+---
+# MyPage
+
+<Content goes here>
+```
diff --git a/docs/about.md b/docs/about.md
new file mode 100644
index 0000000000000000000000000000000000000000..df5d87fc3ee8c0503ba7ba652326e71a982cc193
--- /dev/null
+++ b/docs/about.md
@@ -0,0 +1,11 @@
+UNICADO is the result of years of dedicated research and innovation in the field of aircraft preliminary design. Originating from a rich history of academic efforts in developing design environments, the software represents a significant evolution in how new aircraft configurations are conceived and how emerging technologies are evaluated in existing designs. While many universities globally have achieved high levels of proficiency with similar tools, their impact has often been constrained to academic circles.
+
+The aerospace industry and large-scale research institutions have traditionally relied on tools and methodologies validated by a limited number of universities. This selective validation has created barriers to wider industry adoption, with universities often lacking the resources and scale to independently develop and qualify new design approaches to meet industry demands.
+
+UNICADO bridges this gap by establishing a collaborative, university-based aircraft design environment that unites the expertise and resources of German universities. By consolidating disciplinary knowledge and fostering synergies, UNICADO shifts the focus of academic research and education from developing standalone tools to engaging in impactful design activities.
+
+Developed in close collaboration with aerospace industry leaders and research institutions, UNICADO ensures its methodologies align with industry standards and are rigorously validated. This partnership enables universities to actively contribute to cutting-edge aircraft design research and positions them as competitive players alongside industry leaders.
+
+At its core, UNICADO is more than a tool — it is a platform for collaboration, innovation, and excellence in aircraft design, driving academic and industry partnerships to new heights.
+
+UNICADO - Think. Design. Change.
\ No newline at end of file
diff --git a/docs/assets/UNICADOinstaller.exe b/docs/assets/UNICADOinstaller.exe
new file mode 100644
index 0000000000000000000000000000000000000000..2b36afcd74a21ebcd32cebb321cb4d512c87616b
Binary files /dev/null and b/docs/assets/UNICADOinstaller.exe differ
diff --git a/docs/assets/bibtex/create_mission_xml_literature.bib b/docs/assets/bibtex/create_mission_xml_literature.bib
new file mode 100644
index 0000000000000000000000000000000000000000..0645464482dfa64665215bcc61671979d263c2ff
--- /dev/null
+++ b/docs/assets/bibtex/create_mission_xml_literature.bib
@@ -0,0 +1,19 @@
+%%% BOOKS %%%
+
+@book{Ple24,
+  title={Air Navigation: Fundamentals, Systems, and Flight Trajectory Management},
+  author={Pleter, Octavian Thor},
+  year={2024},
+  pages = {239-240},
+  publisher={Springer Nature}
+}
+
+%%% JOURNAL ARTICLES %%%
+
+%%% CONFERENCE PAPERS %%%
+
+%%% THESES %%%
+
+%%% TECHNICAL REPORTS %%%
+
+%%% OTHER %%%
diff --git a/docs/assets/bibtex/ecological_assessment_literature.bib b/docs/assets/bibtex/ecological_assessment_literature.bib
new file mode 100644
index 0000000000000000000000000000000000000000..6f72d808b7aa91a99857dc88507958ab9fbc02b2
--- /dev/null
+++ b/docs/assets/bibtex/ecological_assessment_literature.bib
@@ -0,0 +1,102 @@
+%%% BOOKS %%%
+
+%%% JOURNAL ARTICLES %%%
+@article{Dal11,
+  author = {Dallara, E. S. and Kroo, I. M. and Waitz, I. A.},
+  title = {Metric for Comparing Lifetime Average Climate Impact of Aircraft},
+  journal = {IAAA Journal},
+  year = {2011},
+  volume = {49},
+  number = {8},
+  pages = {1600-1613}
+}
+
+@article{Kug05,
+  author = {Kugele, A. and Jelinek, F. and Gaffal, R.},
+  title = {Aircraft particulate matter estimation through all phases of flight},
+  journal = {Eurocontrol Experimental Centre, Br{\'e}tigny sur Orge, France},
+  year = {2005}
+}
+
+%%% CONFERENCE PAPERS %%%
+
+@inproceedings{Koss22,
+  author = {Kossarev, Kristina and Scholz, Anna E. and Egerer, Patrick and Hornung, Mirko},
+  title = {Comparison of Environmental Life Cycle Impact Assessment Methods for Future Aircraft Designs},
+  booktitle = {AIAA AVIATION 2022 Forum},
+  year = {2022},
+  doi = {10.2514/6.2022-3659},
+  url = {https://arc.aiaa.org/doi/abs/10.2514/6.2022-3659},
+  eprint = {https://arc.aiaa.org/doi/pdf/10.2514/6.2022-3659}
+}
+
+%%% THESES %%%
+
+@misc{Ste13,
+  author = {Steinbrunn, V.},
+  year = {2013},
+  title = {Bewertung von Flugzeugentw{"u}rfen hinsichtlich ihrer Klimawirkung},
+  howpublished = {Diplomarbeit, RWTH Aachen, Aachen, Germany}
+}
+
+@misc{Sch17,
+  author = {Schaefer, K.},
+  year = {2017},
+  title = {Conceptual Aircraft Design for Sustainability - Nachhaltigkeitsorientierter Flugzeugvorentwurf},
+  howpublished = {Dissertation, RWTH Aachen, Aachen, Germany}
+}
+
+%%% TECHNICAL REPORTS %%%
+
+@techreport{Eye04,
+  author = {Eyers, C. J. and Norman, P. and Middel, J. and Plohr, M. and Michot, S. and Atkinson, K. and Christou, R. A.},
+  institution = {QinetiQ},
+  year = {2004},
+  title = {AERO2K Global Aviation Emissions Inventories for 2002 and 2025},
+  series = {QinetiQ Report},
+  note = {LIDO-Berichtsjahr=2005},
+  url = {https://elib.dlr.de/1328/},
+  keywords = {AERO2K Global Aviation Emissions Inventories}
+}
+
+@techreport{Nor03,
+  author = {Norman, P. D. and Lister, D. H. and Lecht, M. and Madden, P. and Park, K. and Penanhoat, O.},
+  institution = {QinetiQ},
+  year = {2003},
+  title = {Development of the technical basis for a New Emissions Parameter covering the whole AIRcraft operation: NEPAIR: Final Technical Report},
+  note = {Tech. Rep. NEPAIR/WP4/WPR/01 Report}
+}
+
+@techreport{Sch13,
+  author = {Schaefer, Martin and Bartosch, Sebastian},
+  institution = {DLR},
+  year = {2013},
+  month = {07},
+  title = {Overview on fuel flow correlation methods for the calculation of NOx, CO and HC emissions and their implementation into aircraft performance software}
+}
+
+@misc{Pet05,
+  author = {Petzhold, A.},
+  institution = {DLR, Institut f{"u}r Physik der Atmosph{"a}re},
+  year = {2005},
+  title = {Particle Emissions from Aviation: Microphysics, Chemistry, and Climate Impact},
+  howpublished = {Forschungsbericht 2006-02}
+}
+
+%%% OTHER %%%
+
+@inproceedings{Mar05,
+  author = {Marek, Cecil and Smith, Timothy and Kundu, Krishna},
+  title = {Low emission hydrogen combustors for gas turbines using lean direct injection},
+  booktitle = {41st AIAA/ASME/SAE/ASEE joint propulsion conference \& exhibit},
+  pages = {3776},
+  year = {2005}
+}
+
+@inproceedings{Lam12,
+  author = {Lammering, Tim and Franz, Katharina and Risse, Kristof and Hoernschemeyer, Ralf and Stumpf, Eike},
+  title = {Aircraft cost model for preliminary design synthesis},
+  booktitle = {50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition},
+  pages = {686},
+  year = {2012}
+}
\ No newline at end of file
diff --git a/docs/assets/bibtex/mission_analysis_literature.bib b/docs/assets/bibtex/mission_analysis_literature.bib
new file mode 100644
index 0000000000000000000000000000000000000000..faf1490f83da1a16d035b9eff65c69293187d882
--- /dev/null
+++ b/docs/assets/bibtex/mission_analysis_literature.bib
@@ -0,0 +1,19 @@
+%%% BOOKS %%%
+
+%%% JOURNAL ARTICLES %%%
+
+@article{Air02,
+  author = {S.A.S., Airbus},
+  title = {Getting to Grips with Aircraft Performance},
+  journal = {Airbus Customer Services},
+  year = {2002},
+  pages = {155-156}
+}
+
+%%% CONFERENCE PAPERS %%%
+
+%%% THESES %%%
+
+%%% TECHNICAL REPORTS %%%
+
+%%% OTHER %%%
diff --git a/docs/assets/bibtex/propulsion_design_literature.bib b/docs/assets/bibtex/propulsion_design_literature.bib
new file mode 100644
index 0000000000000000000000000000000000000000..c50e8e4dc274523ae2b425e7f19c7218d5e0fe54
--- /dev/null
+++ b/docs/assets/bibtex/propulsion_design_literature.bib
@@ -0,0 +1,13 @@
+@Misc{Pet13,
+  title = {Regression line from LTH-Data},
+  author = {Fabian Peter},
+  year = {2013},
+  note = {For A319-100, A320-200, A321-200, A340-300B, A300-600R, A310-300, A330-200 see Excel file "sheet real_reduziert" on RWTH Aachen ILR-Server: \textbackslash\11\_MICADO\04-Descriptions\massEstimation\engine\[engineWeightMethods.xlsx] (stand von Fabian Peter 2012)}
+}
+
+@misc{Ata10,
+  author = {Atanasov, Georgi},
+  year = {2010},
+  title = {Methodische Entwicklung von Konzepten zur Antriebsintegration im Flugzeugentwurf},
+  howpublished = {Diplomarbeit, RWTH Aachen University, Aachen, Germany}
+}
diff --git a/docs/assets/css/unicado.css b/docs/assets/css/unicado.css
new file mode 100644
index 0000000000000000000000000000000000000000..bbe7e6b5f378e43dc986c28a36d2404258a6a2e7
--- /dev/null
+++ b/docs/assets/css/unicado.css
@@ -0,0 +1,183 @@
+/* Define color variables in :root for easy reference */
+:root {
+  --primary-color: #2C3E50;      /* Primary color for headers, hero section, and cards */
+  --background-color: #34495E;   /* Background color for main content areas */
+  --text-color: #D1D5DB;         /* Main text color for readability on dark backgrounds */
+  --button-bg-color: #ffffff;    /* Background color for buttons */
+  --accent-color: #E74C3C;       /* Accent color for links and hover effects */
+  --secondary-accent: #1ABC9C;   /* Secondary accent color for icons */
+  --link-color: #3498DB;         /* Link color for clickable items */
+  --link-hover-color: #E74C3C;   /* Hover color for links */
+}
+
+.md-header {
+  background-color: var(--primary-color);
+}
+
+/* Apply primary color to tab backgrounds */
+[data-md-color-scheme=slate] .md-tabs {
+  background-color: var(--primary-color);
+}
+
+/* Hero Section Styling */
+.hero-section {
+  background-color: var(--primary-color);
+  padding: 2em;
+  border-radius: 10px;
+  box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
+  max-width: 1060px;
+  margin: auto;
+  border: 1px solid rgba(255, 255, 255, 0.1);
+
+}
+
+/* Text styling within the hero section */
+.intro-text {
+  color: var(--text-color);
+  font-size: 1.1em;
+}
+
+/* Make all LaTeX-style math equations white */
+:root {
+  --math-color: #ffffff; /* Set the default color for equations */
+}
+
+/* MathJax equations */
+.MathJax, mjx-container, math {
+  color: var(--math-color) !important;
+}
+
+/* KaTeX equations */
+.katex *, .katex-display {
+  color: var(--math-color) !important;
+}
+
+/* Download button styling */
+.download-button-container {
+  text-align: center;
+  margin-top: 20px;
+}
+
+.download-button {
+  display: inline-block;
+  background-color: var(--button-bg-color);  /* Uses button background color */
+  padding: 10px 20px;
+  font-size: 1.1em;
+  font-weight: bold;
+  border-radius: 5px;
+  text-decoration: none;
+  color: var(--primary-color); /* Button text color */
+  transition: background-color 0.3s ease;
+}
+
+/* Grid Container */
+.grid-container {
+  display: grid;
+  grid-template-columns: repeat(auto-fit, minmax(220px, 1fr));
+  gap: 1.5em;
+  margin: 2em auto;
+  max-width: 1100px;
+  padding: 1em;
+}
+
+.grid-item {
+  background-color: var(--primary-color);   /* Uses primary color for card background */
+  padding: 1.5em;
+  border-radius: 10px;
+  text-align: left;
+  color: var(--text-color);                 /* Text color for readability */
+  transition: transform 0.3s, box-shadow 0.3s;
+}
+
+.grid-item h3 {
+  font-size: 1.25em;
+  margin-bottom: 0.5em;
+}
+
+/* Card styling with hover effects */
+.card {
+  box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15);
+  border: 1px solid rgba(255, 255, 255, 0.1);
+}
+
+.card:hover {
+  transform: translateY(-5px);
+  box-shadow: 0 8px 16px rgba(0, 0, 0, 0.25);
+}
+
+/* Link styling within cards */
+.card a {
+  color: var(--link-color);
+  font-weight: bold;
+}
+
+.card a:hover {
+  color: var(--link-hover-color);  /* Changes to accent color on hover */
+}
+
+/* Accent color for icons or specific elements */
+.accent {
+  color: var(--secondary-accent);  /* Teal accent color for specific elements */
+}
+
+.overview-item {
+  min-height: 240px;
+}
+
+.overview-img {
+  width: 200px;
+}
+
+/* Footer Styling */
+.custom-footer {
+  display: flex;
+  align-items: center;
+  justify-content: space-between;
+  background-color: var(--primary-color); /* Background color for the footer */
+  color: var(--text-color);
+  padding: 1em 2em; /* Adjust padding for spacing */
+  font-size: 1em; /* Increase text size for better readability */
+  border-top: 1px solid rgba(255, 255, 255, 0.2); /* Subtle top border */
+}
+
+/* Align text and links */
+.footer-content {
+  display: flex;
+  align-items: center;
+  gap: 1em; /* Space between text and impressum link */
+}
+
+.footer-content p {
+  margin: 0; /* Remove extra spacing */
+  font-size: 1.4em; /* Make text slightly larger */
+}
+
+/* Footer link styling */
+.footer-link {
+  color: var(--text-color);
+  text-decoration: none;
+  font-weight: bold;
+  font-size: 1.4em;
+  border-bottom: 1px solid transparent;
+  margin-left: 1em; /* Space between copyright and link */
+}
+
+.footer-link:hover {
+  border-bottom: 1px solid var(--accent-color); /* Underline on hover with accent color */
+}
+
+/* Footer image styling */
+.footer-image-container {
+  display: flex;
+  align-items: center;
+}
+
+.footer-image {
+  width: 150px; /* Adjust the width as needed */
+  height: auto;
+  margin-left: 1em; /* Space between image and text */
+  border-radius: 8px; /* Optional: Rounded corners */
+}
+
+
+
diff --git a/docs/assets/favicon.png b/docs/assets/favicon.png
new file mode 100644
index 0000000000000000000000000000000000000000..f039f5adb2ec41b374eff0bd7fec4c28e34443e8
--- /dev/null
+++ b/docs/assets/favicon.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7f43d758b7b269eaf3603a38cc705aa9afb3e28b21ef6d3b00873c7b37ff1864
+size 5428
diff --git a/docs/assets/images/banner.png b/docs/assets/images/banner.png
new file mode 100644
index 0000000000000000000000000000000000000000..da0080d30d7f97a608743f08f043f0544f34d79e
--- /dev/null
+++ b/docs/assets/images/banner.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5ac8b569949a92d73185474a331f292f9a293c73d3df76ba899b1d64e9a2d285
+size 2582463
diff --git a/docs/assets/images/developer/python-debug-binaries.png b/docs/assets/images/developer/python-debug-binaries.png
new file mode 100644
index 0000000000000000000000000000000000000000..50df52734eb751ae5d8bed549847be6f6ba17e20
--- /dev/null
+++ b/docs/assets/images/developer/python-debug-binaries.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4640b4eacf6c9c4fca1a4f77fb8490bfa8e152daf65a480184ae41f91b008ff1
+size 108902
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_01_code-modularity.png b/docs/assets/images/developer/style/modularization/python-modularization_01_code-modularity.png
new file mode 100644
index 0000000000000000000000000000000000000000..0a29d3aadf7401019fb92deade1dba544b033312
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_01_code-modularity.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:03b4c572759cf886f6d2b5d44c51346bf42da6daa4aef402917c75b5435a574d
+size 155693
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_02_example-folder.png b/docs/assets/images/developer/style/modularization/python-modularization_02_example-folder.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e63fdf8f459e352db2d47d0e540ac594d7b7952
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_02_example-folder.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7fba9e2393c5bb763d410e7352de52474be41d9b796bfdd005311ee0f3c7e5c8
+size 195802
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_03_example-folder-changes-module-manager.png b/docs/assets/images/developer/style/modularization/python-modularization_03_example-folder-changes-module-manager.png
new file mode 100644
index 0000000000000000000000000000000000000000..97d4239bd5ec6e047ae9a3efadd1e89f508f01a3
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_03_example-folder-changes-module-manager.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8144d9b8320a8a374321cccf0e49764145c91fb3928beec742764a6cb7f9b4af
+size 196101
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_04_main-01.png b/docs/assets/images/developer/style/modularization/python-modularization_04_main-01.png
new file mode 100644
index 0000000000000000000000000000000000000000..1917294ddcb1e07079a489c5e754a42bfbec1a75
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_04_main-01.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:796488f22857b95660e1a0bffb47a219f67a62009aa54d37bca46e1546efafa3
+size 331123
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_05_main-02.png b/docs/assets/images/developer/style/modularization/python-modularization_05_main-02.png
new file mode 100644
index 0000000000000000000000000000000000000000..f6cf1c0728bf4efcf3b247d6013e2ba78b6c2268
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_05_main-02.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b7c64a0120f6d16d2cf93143f51eb1b882f6f87da4883da62c5d46d2387da3ee
+size 290488
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_06_datapreprocessing-01.png b/docs/assets/images/developer/style/modularization/python-modularization_06_datapreprocessing-01.png
new file mode 100644
index 0000000000000000000000000000000000000000..9abb406eb96dfcd7eae9613069d14322ca86869f
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_06_datapreprocessing-01.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1c7ec64acb94c52dcab1b915762df5589ab4f4ac8a43ffedcf813fc521868983
+size 313579
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_07_datapreprocessing-02.png b/docs/assets/images/developer/style/modularization/python-modularization_07_datapreprocessing-02.png
new file mode 100644
index 0000000000000000000000000000000000000000..886f23a986a32cfb08f1aab56bf4b5468943db18
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_07_datapreprocessing-02.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e4a7abe707b8edf50e570a47b7c96bf5ed6bfcb0dc653515c78f2b1b6b783bce
+size 363406
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_08_datapostprocessing-01.png b/docs/assets/images/developer/style/modularization/python-modularization_08_datapostprocessing-01.png
new file mode 100644
index 0000000000000000000000000000000000000000..0a1b8ae31a9af7aed1733c4bf808cb10a7113ef6
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_08_datapostprocessing-01.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4b40d19b9cf7fc6f5b3312b34c61233fd7ce9f47363af0d91386f4f6eac3e481
+size 297481
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_09_datapostprocessing-02.png b/docs/assets/images/developer/style/modularization/python-modularization_09_datapostprocessing-02.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e697a327c09021515f649d3f394d3bb22abebba
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_09_datapostprocessing-02.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3d927e8d9d6f6c5ba4ff9fafd6252d3cf154d74183493340d30ff56865ee230b
+size 309195
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_10_example-folder-changes-user.png b/docs/assets/images/developer/style/modularization/python-modularization_10_example-folder-changes-user.png
new file mode 100644
index 0000000000000000000000000000000000000000..3bd32da553a790f1f0f0d2b517acc3ca6148dbbe
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_10_example-folder-changes-user.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:feac17192622ff3fb8c215979c58943f6810b6a8a64feda4f2891fcd73cf12e8
+size 195890
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_11_unicado-python-library.png b/docs/assets/images/developer/style/modularization/python-modularization_11_unicado-python-library.png
new file mode 100644
index 0000000000000000000000000000000000000000..79eb03fffccd875ca3f06ec9c19311a0e53d6cf6
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_11_unicado-python-library.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d49e7060d87384eafd9653981286d320579e6f2be64053b4e65fec84b9d03751
+size 139372
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_12_toml_file.png b/docs/assets/images/developer/style/modularization/python-modularization_12_toml_file.png
new file mode 100644
index 0000000000000000000000000000000000000000..f807921f50a3b0c72b1a79b4c085a46f30287875
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_12_toml_file.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2fb99f03e5d110fe7abf2cbd116830de6d86b9a78ca40336c4812703224760ff
+size 233783
diff --git a/docs/assets/images/documentation/aerodynamics.svg b/docs/assets/images/documentation/aerodynamics.svg
new file mode 100644
index 0000000000000000000000000000000000000000..f959623939aaca89c85ffa12569e0725a6992c8b
--- /dev/null
+++ b/docs/assets/images/documentation/aerodynamics.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 108.00002,918.00002 v 54 H 1080 V 1080 H 0 V 0 h 108.00002 v 809.99998 c 162,0 324,-108 437.4,-302.39998 162,-270 340.2,-399.59999 534.59998,-399.59999 V 216.00002 C 928.8,216.00002 783.00002,329.4 642.60002,567 502.20002,788.4 307.8,918.00002 108.00002,918.00002 Z"
+     id="path1-4"
+     style="fill:#001c83;fill-opacity:1;stroke-width:53.9998" /><path
+     d="m 880.96709,501.17996 c 0,60.23043 -19.55193,115.86814 -52.4884,161.00816 l 166.12578,166.257 c 16.40263,16.40263 16.40263,43.04049 0,59.44311 -16.40262,16.40263 -43.04048,16.40263 -59.44311,0 l -166.12578,-166.257 c -45.14002,33.06769 -100.77773,52.4884 -161.00816,52.4884 -150.77293,0 -272.93967,-122.16674 -272.93967,-272.93967 0,-150.77293 122.16674,-272.93969 272.93967,-272.93969 150.77293,0 272.93967,122.16676 272.93967,272.93969 z M 608.02742,690.1382 a 188.95824,188.95824 0 1 0 0,-377.91648 188.95824,188.95824 0 1 0 0,377.91648 z"
+     id="path1"
+     style="fill:#4d4d4d;fill-opacity:1;stroke-width:21;stroke-dasharray:none;stroke:#ffffff;stroke-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/aircraft-geometry.svg b/docs/assets/images/documentation/aircraft-geometry.svg
new file mode 100644
index 0000000000000000000000000000000000000000..ad7a3b951fb9bcc96595bb1ff40d01f7cc437ef9
--- /dev/null
+++ b/docs/assets/images/documentation/aircraft-geometry.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="m 583.03161,616.06874 v 295.35737 c 13.69487,7.90632 25.13079,19.34224 33.03711,33.03711 h 295.35736 c 0,-0.14119 0.14119,-0.28237 0.14119,-0.42356 l -6.35329,-11.15355 -45.17895,-79.06316 c -1.97658,0.14119 -3.95316,0.14119 -5.92974,0.14119 -49.83802,0 -90.35789,-40.51987 -90.35789,-90.3579 0,-49.83802 40.51987,-90.35789 90.35789,-90.35789 1.97658,0 3.95316,0 5.92974,0.14118 l 45.17895,-79.06315 6.35329,-11.15356 -0.14119,-0.42355 H 616.06872 c -7.90632,13.69487 -19.34224,25.13079 -33.03711,33.03711 z M 990.06566,899.28427 C 1039.7625,899.56664 1080,939.80414 1080,989.64211 1080,1039.4801 1039.4801,1080 989.64211,1080 c -33.46063,0 -62.68576,-18.2128 -78.21603,-45.1789 H 616.06872 C 600.39727,1061.7872 571.31332,1080 537.85266,1080 c -49.83802,0 -90.35789,-40.5199 -90.35789,-90.35789 0,-33.46066 18.21276,-62.68574 45.17895,-78.216 V 616.06874 c -26.96619,-15.53026 -45.17895,-44.75539 -45.17895,-78.21605 0,-49.83802 40.51987,-90.35789 90.35789,-90.35789 33.46066,0 62.68579,18.21276 78.21606,45.17895 h 295.35736 c 15.67145,-26.96619 44.7554,-45.17895 78.21603,-45.17895 49.83799,0 90.35789,40.51987 90.35789,90.35789 0,49.83803 -40.2375,90.07553 -89.93434,90.3579 l -6.35329,11.15355 -45.17892,79.06316 -3.24724,5.64736 c 5.92974,12.00066 9.17698,25.41316 9.17698,39.67277 0,14.2596 -3.24724,27.6721 -9.17698,39.67276 l 3.24724,5.64737 45.17892,79.06316 z"
+     id="path1-98"
+     style="display:inline;stroke-width:1.41184;fill:#00fff2;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/airfoil.svg b/docs/assets/images/documentation/airfoil.svg
new file mode 100644
index 0000000000000000000000000000000000000000..29976ff5d404179aba64aa61b41b80e88cf21609
--- /dev/null
+++ b/docs/assets/images/documentation/airfoil.svg
@@ -0,0 +1,38 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   sodipodi:docname="airfoil.svg"
+   inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><sodipodi:namedview
+     id="namedview1"
+     pagecolor="#ffffff"
+     bordercolor="#666666"
+     borderopacity="1.0"
+     inkscape:showpageshadow="2"
+     inkscape:pageopacity="0.0"
+     inkscape:pagecheckerboard="0"
+     inkscape:deskcolor="#d1d1d1"
+     inkscape:zoom="0.93981481"
+     inkscape:cx="539.46798"
+     inkscape:cy="540"
+     inkscape:window-width="2400"
+     inkscape:window-height="1271"
+     inkscape:window-x="2391"
+     inkscape:window-y="-9"
+     inkscape:window-maximized="1"
+     inkscape:current-layer="svg1" /><defs
+     id="defs1" /><path
+     style="fill:none;stroke:#000000;stroke-width:25;stroke-linecap:butt;stroke-linejoin:miter;stroke-dasharray:none;stroke-opacity:1"
+     d="M 1049.1429,950.1872 C 731.41522,341.03307 259.88089,177.05321 296.867,191.5271 c 0,0 -64.37885,-18.78533 -109.59606,-18.08867 -45.21722,0.69665 -99.148933,17.5084 -124.492615,58.52216 -43.775502,103.0815 -23.519286,142.83581 67.034485,183.01478 90.55377,40.17897 286.27101,104.0098 411.78325,164.92611 212.49543,103.93765 346.87501,243.02744 507.54684,370.28572 z"
+     id="path1"
+     sodipodi:nodetypes="cczczcc" /></svg>
diff --git a/docs/assets/images/documentation/aixml.svg b/docs/assets/images/documentation/aixml.svg
new file mode 100644
index 0000000000000000000000000000000000000000..1019bf69b27ae24b6bf316c5a880babbff1d75d8
--- /dev/null
+++ b/docs/assets/images/documentation/aixml.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="m 713.81277,846.97169 c 13.6488,0 26.96469,-0.99868 40.2806,-1.99738 6.32506,-25.30021 16.97777,-49.26883 31.62526,-70.24137 -22.96992,3.66187 -47.27145,5.65926 -71.90586,5.65926 -80.56119,0 -156.46183,-19.97386 -199.73849,-51.59912 v -93.54419 c 48.93593,27.63049 120.17598,45.27405 199.73849,45.27405 79.5625,0 150.80257,-17.64356 199.7385,-45.27405 V 686.848 c 16.64488,-3.99477 33.28976,-6.32506 51.59911,-6.32506 4.99346,0 9.98692,0 14.9804,0.9987 v -134.1577 c 0,-73.57034 -119.17732,-133.159 -266.31801,-133.159 -147.1407,0 -266.318,59.58866 -266.318,133.159 v 332.89751 c 0,73.57034 119.5102,133.15905 266.318,133.15905 21.97123,0 43.60957,-1.3317 63.91632,-3.9949 -11.65141,-19.6409 -20.30675,-41.27922 -25.30021,-64.58203 -12.31721,1.99738 -24.96731,1.99738 -38.61611,1.99738 -128.83133,0 -199.73849,-49.93463 -199.73849,-66.5795 V 806.0253 c 53.59649,25.96601 123.83786,40.94639 199.73849,40.94639 m 0,-366.18724 c 128.83134,0 199.7385,49.93462 199.7385,66.57949 0,16.64488 -70.90716,66.57951 -199.7385,66.57951 -128.83133,0 -199.73849,-49.93463 -199.73849,-66.57951 0,-16.64487 70.90716,-66.57949 199.73849,-66.57949 M 1080,896.90632 c 0,27.29759 -8.3224,52.59781 -22.3041,73.57035 L 1021.41,934.19084 c 5.6594,-11.31851 8.6554,-23.96862 8.6554,-37.28452 a 83.224376,83.224376 0 0 0 -83.22437,-83.22438 v 49.93463 l -74.90194,-74.90194 74.90194,-74.90194 v 49.93463 c 73.57027,0 133.15897,59.58865 133.15897,133.159 M 946.84103,930.19608 1021.743,1005.098 946.84103,1080 v -49.9347 c -73.57036,0 -133.159,-59.58863 -133.159,-133.15898 0,-27.29759 8.32243,-52.5978 22.30413,-73.57035 l 36.28582,36.28583 c -5.65925,11.31852 -8.65534,23.96862 -8.65534,37.28452 a 83.224376,83.224376 0 0 0 83.22439,83.22437 z"
+     id="path1-65"
+     style="display:inline;stroke-width:33.2897;fill:#ff0097;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/atmosphere.svg b/docs/assets/images/documentation/atmosphere.svg
new file mode 100644
index 0000000000000000000000000000000000000000..79bc175d4d5f2df9c0c989e65a0b17a2b411635a
--- /dev/null
+++ b/docs/assets/images/documentation/atmosphere.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="m 738.32641,575.24818 c 5.0406,2.07554 8.59867,6.62196 9.48818,11.95907 l 13.93578,83.71349 83.71349,13.93577 c 5.3371,0.88952 9.88353,4.44759 11.95907,9.48819 2.07554,5.0406 1.48253,10.77305 -1.58137,15.22064 l -38.05158,54.35941 c -2.17438,-0.0988 -4.34875,-0.19767 -6.62197,-0.19767 -23.02862,0 -44.57471,6.12778 -63.25458,16.90083 v -1.08719 c 0,-52.3827 -42.49918,-94.88188 -94.88188,-94.88188 -52.3827,0 -94.88188,42.49918 -94.88188,94.88188 0,52.3827 42.49918,94.88188 94.88188,94.88188 8.00566,0 15.71481,-0.98835 23.12746,-2.86622 -36.17372,17.88918 -62.56274,52.48153 -68.98703,93.79468 l -24.11581,16.802 c -4.44759,3.16273 -10.18004,3.75574 -15.22064,1.58137 -5.0406,-2.17438 -8.59867,-6.62197 -9.48819,-11.95907 L 544.5104,888.25954 460.79691,874.32376 c -5.3371,-0.88951 -9.88352,-4.44758 -11.95907,-9.48818 -2.07554,-5.0406 -1.48252,-10.77305 1.58137,-15.22064 l 49.0223,-69.97538 -49.0223,-69.97539 c -3.16273,-4.44759 -3.75574,-10.18003 -1.58137,-15.22063 2.17438,-5.0406 6.62197,-8.59867 11.95907,-9.48819 l 83.71349,-13.93578 13.93578,-83.71349 c 0.88952,-5.3371 4.44759,-9.88352 9.48819,-11.95907 5.0406,-2.07554 10.77304,-1.48252 15.22063,1.58137 l 69.97539,49.0223 69.97538,-49.0223 c 4.44759,-3.16273 10.18004,-3.75574 15.22064,-1.58137 z M 589.8758,779.63956 a 63.254585,63.254585 0 1 1 126.50917,0 63.254585,63.254585 0 1 1 -126.50917,0 z M 1080,1000.9318 C 1080,1044.617 1044.617,1080 1000.9318,1080 H 732.19862 c -52.38271,0 -94.88188,-42.4992 -94.88188,-94.88188 0,-47.04559 34.19701,-85.9867 79.06823,-93.49818 v -1.28486 c 0,-52.3827 42.49918,-94.88188 94.88188,-94.88188 34.49352,0 64.63828,18.38337 81.24261,45.85958 12.84858,-8.99401 28.46456,-14.23228 45.26656,-14.23228 43.6852,0 79.06828,35.38303 79.06828,79.06823 0,5.83128 -0.5931,11.56373 -1.8779,16.99967 36.9644,6.62196 65.0336,38.9411 65.0336,77.7834 z"
+     id="path1-2"
+     style="display:inline;stroke-width:0.988353;fill:#ffdd00;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/blackbox.svg b/docs/assets/images/documentation/blackbox.svg
new file mode 100644
index 0000000000000000000000000000000000000000..9f9c2040fec73006aa71491c09f0c09823a499a6
--- /dev/null
+++ b/docs/assets/images/documentation/blackbox.svg
@@ -0,0 +1,179 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="64.558327mm"
+   height="57.463997mm"
+   viewBox="0 0 64.558327 57.463997"
+   version="1.1"
+   id="svg1"
+   inkscape:export-filename="Rastergrafik.svg"
+   inkscape:export-xdpi="97.675713"
+   inkscape:export-ydpi="97.675713"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns:xlink="http://www.w3.org/1999/xlink"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <sodipodi:namedview
+     id="namedview1"
+     pagecolor="#ffffff"
+     bordercolor="#666666"
+     borderopacity="1.0"
+     inkscape:showpageshadow="2"
+     inkscape:pageopacity="0.0"
+     inkscape:pagecheckerboard="0"
+     inkscape:deskcolor="#d1d1d1"
+     inkscape:document-units="mm" />
+  <defs
+     id="defs1">
+    <linearGradient
+       id="linearGradient18"
+       inkscape:collect="always">
+      <stop
+         style="stop-color:#1a1a1a;stop-opacity:1;"
+         offset="0"
+         id="stop18" />
+      <stop
+         style="stop-color:#1a1a1a;stop-opacity:0;"
+         offset="1"
+         id="stop19" />
+    </linearGradient>
+    <inkscape:perspective
+       sodipodi:type="inkscape:persp3d"
+       inkscape:vp_x="-39.183297 : 71.966521 : 1"
+       inkscape:vp_y="0 : 1000 : 0"
+       inkscape:vp_z="130.75039 : 71.966521 : 1"
+       inkscape:persp3d-origin="45.783542 : 22.46652 : 1"
+       id="perspective6" />
+    <linearGradient
+       inkscape:collect="always"
+       xlink:href="#linearGradient18"
+       id="linearGradient19"
+       x1="44.099556"
+       y1="207.63306"
+       x2="128.20709"
+       y2="207.63306"
+       gradientUnits="userSpaceOnUse"
+       gradientTransform="translate(0.16076398,0.54606116)" />
+    <linearGradient
+       inkscape:collect="always"
+       xlink:href="#linearGradient18"
+       id="linearGradient29"
+       gradientUnits="userSpaceOnUse"
+       x1="44.099556"
+       y1="207.63306"
+       x2="128.20709"
+       y2="207.63306"
+       gradientTransform="matrix(0.80920799,0,0,1,-38.820612,-162.45647)" />
+    <linearGradient
+       inkscape:collect="always"
+       xlink:href="#linearGradient18"
+       id="linearGradient30"
+       gradientUnits="userSpaceOnUse"
+       x1="44.099556"
+       y1="207.63306"
+       x2="128.20709"
+       y2="207.63306"
+       gradientTransform="matrix(0.80920799,0,0,1,-38.820612,-162.45647)" />
+    <linearGradient
+       inkscape:collect="always"
+       xlink:href="#linearGradient18"
+       id="linearGradient31"
+       gradientUnits="userSpaceOnUse"
+       x1="44.099556"
+       y1="207.63306"
+       x2="128.20709"
+       y2="207.63306"
+       gradientTransform="matrix(0.80920799,0,0,1,-38.820612,-162.45647)" />
+    <linearGradient
+       inkscape:collect="always"
+       xlink:href="#linearGradient18"
+       id="linearGradient32"
+       gradientUnits="userSpaceOnUse"
+       x1="44.099556"
+       y1="207.63306"
+       x2="128.20709"
+       y2="207.63306"
+       gradientTransform="matrix(0.80920799,0,0,1,-38.820612,-162.45647)" />
+    <linearGradient
+       inkscape:collect="always"
+       xlink:href="#linearGradient18"
+       id="linearGradient33"
+       gradientUnits="userSpaceOnUse"
+       x1="44.099556"
+       y1="207.63306"
+       x2="128.20709"
+       y2="207.63306"
+       gradientTransform="matrix(0.80920799,0,0,1,-38.820612,-162.45647)" />
+    <linearGradient
+       inkscape:collect="always"
+       xlink:href="#linearGradient18"
+       id="linearGradient34"
+       gradientUnits="userSpaceOnUse"
+       x1="44.099556"
+       y1="207.63306"
+       x2="128.20709"
+       y2="207.63306"
+       gradientTransform="matrix(0.80920799,0,0,1,-38.820612,-162.45647)" />
+  </defs>
+  <g
+     inkscape:label="Ebene 1"
+     inkscape:groupmode="layer"
+     id="layer1"
+     transform="translate(-1.2190973,-1.0752278)">
+    <g
+       sodipodi:type="inkscape:box3d"
+       id="g6"
+       style="fill:url(#linearGradient19);stroke:#b3b3b3;stroke-width:0;stroke-linecap:round;paint-order:fill markers stroke"
+       inkscape:perspectiveID="#perspective6"
+       inkscape:corner0="1.0773091 : 0.0043692419 : 0 : 1"
+       inkscape:corner7="0.30793536 : -0.045355937 : 0.72972311 : 1"
+       inkscape:export-filename="tesz.svg"
+       inkscape:export-xdpi="97.675713"
+       inkscape:export-ydpi="97.675713">
+      <path
+         sodipodi:type="inkscape:box3dside"
+         id="path11"
+         style="fill:url(#linearGradient29);fill-rule:evenodd;stroke:#b3b3b3;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:round;stroke-opacity:1"
+         inkscape:box3dsidetype="11"
+         d="m 36.481464,2.6504547 28.108998,6.070594 V 33.124146 L 36.481464,20.364957 Z"
+         points="64.590462,8.7210487 64.590462,33.124146 36.481464,20.364957 36.481464,2.6504547 " />
+      <path
+         sodipodi:type="inkscape:box3dside"
+         id="path6"
+         style="fill:url(#linearGradient30);fill-rule:evenodd;stroke:#b3b3b3;stroke-width:0.860698px;stroke-linecap:butt;stroke-linejoin:round;stroke-opacity:1"
+         inkscape:box3dsidetype="6"
+         d="M 2.9381575,8.2982923 V 32.235595 L 36.481464,20.364957 V 2.6504547 Z"
+         points="2.9381575,32.235595 36.481464,20.364957 36.481464,2.6504547 2.9381575,8.2982923 " />
+      <path
+         sodipodi:type="inkscape:box3dside"
+         id="path10"
+         style="fill:url(#linearGradient31);fill-rule:evenodd;stroke:#b3b3b3;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:round;stroke-opacity:1"
+         inkscape:box3dsidetype="13"
+         d="M 2.9381575,32.235595 26.998367,59.096118 64.590462,33.124146 36.481464,20.364957 Z"
+         points="26.998367,59.096118 64.590462,33.124146 36.481464,20.364957 2.9381575,32.235595 " />
+      <path
+         sodipodi:type="inkscape:box3dside"
+         id="path7"
+         style="fill:url(#linearGradient32);fill-rule:evenodd;stroke:#b3b3b3;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:round;stroke-opacity:1"
+         inkscape:box3dsidetype="5"
+         d="M 2.9381575,8.2982923 26.998367,21.078049 64.590462,8.7210487 36.481464,2.6504547 Z"
+         points="26.998367,21.078049 64.590462,8.7210487 36.481464,2.6504547 2.9381575,8.2982923 " />
+      <path
+         sodipodi:type="inkscape:box3dside"
+         id="path9"
+         style="fill:url(#linearGradient33);fill-rule:evenodd;stroke:#b3b3b3;stroke-width:1.03676px;stroke-linecap:butt;stroke-linejoin:round;stroke-opacity:1"
+         inkscape:box3dsidetype="14"
+         d="M 26.998367,21.078049 V 59.096118 L 64.590462,33.124146 V 8.7210487 Z"
+         points="26.998367,59.096118 64.590462,33.124146 64.590462,8.7210487 26.998367,21.078049 " />
+      <path
+         sodipodi:type="inkscape:box3dside"
+         id="path8"
+         style="fill:url(#linearGradient34);fill-rule:evenodd;stroke:#b3b3b3;stroke-width:0.860698px;stroke-linecap:butt;stroke-linejoin:round;stroke-opacity:1"
+         inkscape:box3dsidetype="3"
+         d="M 2.9381575,8.2982923 26.998367,21.078049 V 59.096118 L 2.9381575,32.235595 Z"
+         points="26.998367,21.078049 26.998367,59.096118 2.9381575,32.235595 2.9381575,8.2982923 " />
+    </g>
+  </g>
+</svg>
diff --git a/docs/assets/images/documentation/calculate-emissions.svg b/docs/assets/images/documentation/calculate-emissions.svg
new file mode 100644
index 0000000000000000000000000000000000000000..bbbab46c703c0da2992cfccb5ed693912d3c21de
--- /dev/null
+++ b/docs/assets/images/documentation/calculate-emissions.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="M 667.14321,329.18778 A 180.33108,180.33108 0 0 0 500.93759,581.51445 c -35.01182,34.20697 -55.13358,80.88941 -55.13358,129.98648 0,100.60872 80.48698,181.0957 181.09571,181.0957 20.12175,0 40.24349,-4.42679 60.36523,-11.26819 v 172.24216 h 80.48699 V 843.09714 c 20.12174,5.63409 40.24348,9.256 60.36522,9.256 A 221.33919,221.33919 0 0 0 1049.4564,631.01394 221.33919,221.33919 0 0 0 828.11716,409.67475 h -10.4633 c -33.4021,-49.90193 -90.14542,-80.48697 -150.51065,-80.48697 m 0,80.48697 c 53.12141,0 96.98681,41.45079 100.60873,94.57221 18.512,-9.25602 40.24348,-14.08524 60.36522,-14.08524 A 140.85222,140.85222 0 0 1 968.96938,631.01394 140.85222,140.85222 0 0 1 828.11716,771.86615 c -38.63374,0 -75.25532,-15.69495 -102.21845,-43.8654 a 100.24653,100.24653 0 0 1 -98.99899,84.1089 100.60872,100.60872 0 0 1 -100.60873,-100.60872 c 0,-55.53602 32.1948,-78.87725 80.48699,-109.05987 -32.1948,-41.45079 -40.24349,-65.59689 -40.24349,-92.15759 A 100.60872,100.60872 0 0 1 667.14321,409.67475 Z"
+     id="path1-4"
+     style="fill:#529600;fill-opacity:1;stroke:none;stroke-width:40.2435;stroke-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/calculate-performance.svg b/docs/assets/images/documentation/calculate-performance.svg
new file mode 100644
index 0000000000000000000000000000000000000000..b31b683b132b8eb2b6004184bba1a0ca5540d0dc
--- /dev/null
+++ b/docs/assets/images/documentation/calculate-performance.svg
@@ -0,0 +1,318 @@
+<?xml version="1.0" encoding="utf-8"  standalone="no"?>
+<svg 
+ width="650" height="487"
+ viewBox="0 0 650 487"
+ xmlns="http://www.w3.org/2000/svg"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+>
+
+<title>Gnuplot</title>
+<desc>Produced by GNUPLOT 5.4 patchlevel 9 </desc>
+
+<g id="gnuplot_canvas">
+
+<rect x="0" y="0" width="650" height="487" fill="none"/>
+<defs>
+
+	<circle id='gpDot' r='0.5' stroke-width='0.5' stroke='currentColor'/>
+	<path id='gpPt0' stroke-width='0.167' stroke='currentColor' d='M-1,0 h2 M0,-1 v2'/>
+	<path id='gpPt1' stroke-width='0.167' stroke='currentColor' d='M-1,-1 L1,1 M1,-1 L-1,1'/>
+	<path id='gpPt2' stroke-width='0.167' stroke='currentColor' d='M-1,0 L1,0 M0,-1 L0,1 M-1,-1 L1,1 M-1,1 L1,-1'/>
+	<rect id='gpPt3' stroke-width='0.167' stroke='currentColor' x='-1' y='-1' width='2' height='2'/>
+	<rect id='gpPt4' stroke-width='0.167' stroke='currentColor' fill='currentColor' x='-1' y='-1' width='2' height='2'/>
+	<circle id='gpPt5' stroke-width='0.167' stroke='currentColor' cx='0' cy='0' r='1'/>
+	<use xlink:href='#gpPt5' id='gpPt6' fill='currentColor' stroke='none'/>
+	<path id='gpPt7' stroke-width='0.167' stroke='currentColor' d='M0,-1.33 L-1.33,0.67 L1.33,0.67 z'/>
+	<use xlink:href='#gpPt7' id='gpPt8' fill='currentColor' stroke='none'/>
+	<use xlink:href='#gpPt7' id='gpPt9' stroke='currentColor' transform='rotate(180)'/>
+	<use xlink:href='#gpPt9' id='gpPt10' fill='currentColor' stroke='none'/>
+	<use xlink:href='#gpPt3' id='gpPt11' stroke='currentColor' transform='rotate(45)'/>
+	<use xlink:href='#gpPt11' id='gpPt12' fill='currentColor' stroke='none'/>
+	<path id='gpPt13' stroke-width='0.167' stroke='currentColor' d='M0,1.330 L1.265,0.411 L0.782,-1.067 L-0.782,-1.076 L-1.265,0.411 z'/>
+	<use xlink:href='#gpPt13' id='gpPt14' fill='currentColor' stroke='none'/>
+	<filter id='textbox' filterUnits='objectBoundingBox' x='0' y='0' height='1' width='1'>
+	  <feFlood flood-color='white' flood-opacity='1' result='bgnd'/>
+	  <feComposite in='SourceGraphic' in2='bgnd' operator='atop'/>
+	</filter>
+	<filter id='greybox' filterUnits='objectBoundingBox' x='0' y='0' height='1' width='1'>
+	  <feFlood flood-color='lightgrey' flood-opacity='1' result='grey'/>
+	  <feComposite in='SourceGraphic' in2='grey' operator='atop'/>
+	</filter>
+</defs>
+<g fill="none" color="white" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M56.00,415.50 L633.19,415.50  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M56.00,415.50 L68.00,415.50 M633.19,415.50 L621.19,415.50  '/>	<g transform="translate(44.80,420.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M56.00,334.80 L633.19,334.80  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M56.00,334.80 L68.00,334.80 M633.19,334.80 L621.19,334.80  '/>	<g transform="translate(44.80,340.00)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >10</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M56.00,254.10 L633.19,254.10  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M56.00,254.10 L68.00,254.10 M633.19,254.10 L621.19,254.10  '/>	<g transform="translate(44.80,259.30)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >20</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M56.00,173.41 L633.19,173.41  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M56.00,173.41 L68.00,173.41 M633.19,173.41 L621.19,173.41  '/>	<g transform="translate(44.80,178.61)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >30</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M56.00,92.71 L633.19,92.71  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M56.00,92.71 L68.00,92.71 M633.19,92.71 L621.19,92.71  '/>	<g transform="translate(44.80,97.91)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >40</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M56.00,12.01 L633.19,12.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M56.00,12.01 L68.00,12.01 M633.19,12.01 L621.19,12.01  '/>	<g transform="translate(44.80,17.21)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >50</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M56.00,415.50 L56.00,12.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M56.00,415.50 L56.00,403.50 M56.00,12.01 L56.00,24.01  '/>	<g transform="translate(56.00,444.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text xml:space="preserve"><tspan font-family="Times"  xml:space="preserve">  0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M138.46,415.50 L138.46,12.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M138.46,415.50 L138.46,403.50 M138.46,12.01 L138.46,24.01  '/>	<g transform="translate(138.46,444.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >100</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M220.91,415.50 L220.91,78.01 M220.91,24.01 L220.91,12.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M220.91,415.50 L220.91,403.50 M220.91,12.01 L220.91,24.01  '/>	<g transform="translate(220.91,444.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >200</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M303.37,415.50 L303.37,78.01 M303.37,24.01 L303.37,12.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M303.37,415.50 L303.37,403.50 M303.37,12.01 L303.37,24.01  '/>	<g transform="translate(303.37,444.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >300</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M385.82,415.50 L385.82,78.01 M385.82,24.01 L385.82,12.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M385.82,415.50 L385.82,403.50 M385.82,12.01 L385.82,24.01  '/>	<g transform="translate(385.82,444.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >400</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M468.28,415.50 L468.28,78.01 M468.28,24.01 L468.28,12.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M468.28,415.50 L468.28,403.50 M468.28,12.01 L468.28,24.01  '/>	<g transform="translate(468.28,444.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >500</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M550.73,415.50 L550.73,12.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M550.73,415.50 L550.73,403.50 M550.73,12.01 L550.73,24.01  '/>	<g transform="translate(550.73,444.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >600</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M633.19,415.50 L633.19,12.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M633.19,415.50 L633.19,403.50 M633.19,12.01 L633.19,24.01  '/>	<g transform="translate(633.19,444.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >700</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M56.00,12.01 L56.00,415.50 L633.19,415.50 L633.19,12.01 L56.00,12.01 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(12.80,213.76) rotate(270)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >Altitude, 1000 ft</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(344.59,474.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >TAS, kts</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	<g id="gnuplot_plot_1" ><title>Vs,1g</title>
+<g fill="none" color="white" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(251.08,41.41)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >V</tspan><tspan font-family="Times"  font-size="9.6" dy="3.60px">s,1g</tspan><tspan font-size="12.0" dy="-3.60"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M259.47,37.51 L279.86,37.51 M183.64,415.50 L187.26,400.21 L191.02,384.92 L194.94,369.63 L199.04,354.34 L203.31,339.05
+		L207.78,323.76 L212.45,308.47 L217.33,293.18 L222.44,277.89 L227.78,262.60 L233.39,247.31 L239.27,232.02 L245.44,216.73
+		L251.92,201.44 L258.73,186.15 L265.90,170.86 L273.44,155.57 L281.39,140.29 L289.78,125.00 L300.56,109.71  '/></g>
+	</g>
+	<g id="gnuplot_plot_2" ><title>VMO</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(251.08,68.41)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >V</tspan><tspan font-family="Times"  font-size="9.6" dy="3.60px">MO</tspan><tspan font-size="12.0" dy="-3.60"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(105, 105, 105)' stroke-dasharray=' 5,8'  d='M259.47,64.51 L279.86,64.51 M344.60,415.50 L350.06,410.34 L355.65,405.17 L361.38,400.01 L367.24,394.85 L373.24,389.69
+		L379.39,384.52 L385.68,379.36 L392.12,374.20 L398.73,369.04 L405.49,363.87 L412.41,358.71 L419.51,353.55 L426.78,348.38
+		L434.24,343.22 L441.88,338.06 L449.71,332.90 L457.74,327.73 L465.97,322.57 L474.41,317.41 L483.06,312.24  '/></g>
+	</g>
+	<g id="gnuplot_plot_3" ><title>MMO</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(363.76,41.41)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >M</tspan><tspan font-family="Times"  font-size="9.6" dy="3.60px">MO</tspan><tspan font-size="12.0" dy="-3.60"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(198, 226, 255)' stroke-dasharray='10.0,10.0'  d='M372.15,37.51 L392.54,37.51 M483.13,312.24 L481.10,302.12 L479.07,291.99 L477.02,281.86 L474.97,271.74 L472.90,261.61
+		L470.83,251.48 L468.74,241.36 L466.65,231.23 L464.54,221.10 L462.42,210.97 L460.29,200.85 L458.15,190.72 L456.00,180.59
+		L453.84,170.47 L451.66,160.34 L449.47,150.21 L447.28,140.09 L445.06,129.96 L443.81,119.83 L443.81,109.71  '/></g>
+	</g>
+	<g id="gnuplot_plot_4" ><title>VDive</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(363.76,68.41)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >V</tspan><tspan font-family="Times"  font-size="9.6" dy="3.60px">Dive</tspan><tspan font-size="12.0" dy="-3.60"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 82, 139, 139)' stroke-dasharray='2.0,5.0,20.0,10.0'  d='M372.15,64.51 L392.54,64.51 M373.45,415.50 L379.47,410.34 L385.62,405.17 L391.92,400.01 L398.37,394.85 L404.97,389.69
+		L411.73,384.52 L418.65,379.36 L425.74,374.20 L433.00,369.04 L440.44,363.87 L448.06,358.71 L455.86,353.55 L463.86,348.38
+		L472.06,343.22 L480.46,338.06 L489.08,332.90 L497.91,327.73 L506.96,322.57 L516.25,317.41 L525.77,312.24  '/></g>
+	</g>
+	<g id="gnuplot_plot_5" ><title>MDive</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(476.44,41.41)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >M</tspan><tspan font-family="Times"  font-size="9.6" dy="3.60px">Dive</tspan><tspan font-size="12.0" dy="-3.60"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(112, 128, 144)' stroke-dasharray=' 9,4,1,4,1,4'  d='M484.83,37.51 L505.22,37.51 M525.84,312.24 L523.61,302.12 L521.37,291.99 L519.12,281.86 L516.86,271.74 L514.59,261.61
+		L512.31,251.48 L510.02,241.36 L507.71,231.23 L505.39,221.10 L503.06,210.97 L500.72,200.85 L498.37,190.72 L496.00,180.59
+		L493.62,170.47 L491.23,160.34 L488.82,150.21 L486.40,140.09 L483.97,129.96 L482.60,119.83 L482.60,109.71  '/></g>
+	</g>
+	<g id="gnuplot_plot_6" ><title>Ceiling</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(476.44,68.41)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ceiling</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(159, 182, 205)' stroke-dasharray='20.0,10.0'  d='M484.83,64.51 L505.22,64.51 M300.56,109.71 L482.60,109.71  '/></g>
+	</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M56.00,12.01 L56.00,415.50 L633.19,415.50 L633.19,12.01 L56.00,12.01 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+</g>
+</svg>
+
diff --git a/docs/assets/images/documentation/calculate-polar.svg b/docs/assets/images/documentation/calculate-polar.svg
new file mode 100644
index 0000000000000000000000000000000000000000..f313325e8c2a1bef4f1ba849cee8bf4cae05d339
--- /dev/null
+++ b/docs/assets/images/documentation/calculate-polar.svg
@@ -0,0 +1,1711 @@
+<?xml version="1.0" encoding="utf-8"  standalone="no"?>
+<svg 
+ width="1300" height="1300"
+ viewBox="0 0 1300 1300"
+ xmlns="http://www.w3.org/2000/svg"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+>
+
+<title>Gnuplot</title>
+<desc>Produced by GNUPLOT 5.4 patchlevel 9 </desc>
+
+<g id="gnuplot_canvas">
+
+<rect x="0" y="0" width="1300" height="1300" fill="none"/>
+<defs>
+
+	<circle id='gpDot' r='0.5' stroke-width='0.5' stroke='currentColor'/>
+	<path id='gpPt0' stroke-width='0.167' stroke='currentColor' d='M-1,0 h2 M0,-1 v2'/>
+	<path id='gpPt1' stroke-width='0.167' stroke='currentColor' d='M-1,-1 L1,1 M1,-1 L-1,1'/>
+	<path id='gpPt2' stroke-width='0.167' stroke='currentColor' d='M-1,0 L1,0 M0,-1 L0,1 M-1,-1 L1,1 M-1,1 L1,-1'/>
+	<rect id='gpPt3' stroke-width='0.167' stroke='currentColor' x='-1' y='-1' width='2' height='2'/>
+	<rect id='gpPt4' stroke-width='0.167' stroke='currentColor' fill='currentColor' x='-1' y='-1' width='2' height='2'/>
+	<circle id='gpPt5' stroke-width='0.167' stroke='currentColor' cx='0' cy='0' r='1'/>
+	<use xlink:href='#gpPt5' id='gpPt6' fill='currentColor' stroke='none'/>
+	<path id='gpPt7' stroke-width='0.167' stroke='currentColor' d='M0,-1.33 L-1.33,0.67 L1.33,0.67 z'/>
+	<use xlink:href='#gpPt7' id='gpPt8' fill='currentColor' stroke='none'/>
+	<use xlink:href='#gpPt7' id='gpPt9' stroke='currentColor' transform='rotate(180)'/>
+	<use xlink:href='#gpPt9' id='gpPt10' fill='currentColor' stroke='none'/>
+	<use xlink:href='#gpPt3' id='gpPt11' stroke='currentColor' transform='rotate(45)'/>
+	<use xlink:href='#gpPt11' id='gpPt12' fill='currentColor' stroke='none'/>
+	<path id='gpPt13' stroke-width='0.167' stroke='currentColor' d='M0,1.330 L1.265,0.411 L0.782,-1.067 L-0.782,-1.076 L-1.265,0.411 z'/>
+	<use xlink:href='#gpPt13' id='gpPt14' fill='currentColor' stroke='none'/>
+	<filter id='textbox' filterUnits='objectBoundingBox' x='0' y='0' height='1' width='1'>
+	  <feFlood flood-color='white' flood-opacity='1' result='bgnd'/>
+	  <feComposite in='SourceGraphic' in2='bgnd' operator='atop'/>
+	</filter>
+	<filter id='greybox' filterUnits='objectBoundingBox' x='0' y='0' height='1' width='1'>
+	  <feFlood flood-color='lightgrey' flood-opacity='1' result='grey'/>
+	  <feComposite in='SourceGraphic' in2='grey' operator='atop'/>
+	</filter>
+</defs>
+<g fill="none" color="white" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,568.75 L568.74,568.75  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,568.75 L93.25,568.75 M568.74,568.75 L556.74,568.75  '/>	<g transform="translate(70.05,573.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >-0.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,535.64 L453.25,535.64 M557.54,535.64 L568.74,535.64  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,535.64 L93.25,535.64 M568.74,535.64 L556.74,535.64  '/>	<g transform="translate(70.05,540.84)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >-0.1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,502.54 L453.25,502.54 M557.54,502.54 L568.74,502.54  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,502.54 L93.25,502.54 M568.74,502.54 L556.74,502.54  '/>	<g transform="translate(70.05,507.74)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,469.43 L453.25,469.43 M557.54,469.43 L568.74,469.43  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,469.43 L93.25,469.43 M568.74,469.43 L556.74,469.43  '/>	<g transform="translate(70.05,474.63)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0.1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,436.32 L453.25,436.32 M557.54,436.32 L568.74,436.32  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,436.32 L93.25,436.32 M568.74,436.32 L556.74,436.32  '/>	<g transform="translate(70.05,441.52)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,403.22 L453.25,403.22 M557.54,403.22 L568.74,403.22  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,403.22 L93.25,403.22 M568.74,403.22 L556.74,403.22  '/>	<g transform="translate(70.05,408.42)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0.3</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,370.11 L568.74,370.11  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,370.11 L93.25,370.11 M568.74,370.11 L556.74,370.11  '/>	<g transform="translate(70.05,375.31)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0.4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,337.00 L568.74,337.00  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,337.00 L93.25,337.00 M568.74,337.00 L556.74,337.00  '/>	<g transform="translate(70.05,342.20)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0.5</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,303.90 L568.74,303.90  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,303.90 L93.25,303.90 M568.74,303.90 L556.74,303.90  '/>	<g transform="translate(70.05,309.10)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0.6</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,270.79 L568.74,270.79  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,270.79 L93.25,270.79 M568.74,270.79 L556.74,270.79  '/>	<g transform="translate(70.05,275.99)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0.7</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,237.69 L568.74,237.69  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,237.69 L93.25,237.69 M568.74,237.69 L556.74,237.69  '/>	<g transform="translate(70.05,242.89)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0.8</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,204.58 L568.74,204.58  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,204.58 L93.25,204.58 M568.74,204.58 L556.74,204.58  '/>	<g transform="translate(70.05,209.78)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 0.9</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,171.47 L568.74,171.47  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,171.47 L93.25,171.47 M568.74,171.47 L556.74,171.47  '/>	<g transform="translate(70.05,176.67)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,138.37 L568.74,138.37  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,138.37 L93.25,138.37 M568.74,138.37 L556.74,138.37  '/>	<g transform="translate(70.05,143.57)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 1.1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,105.26 L568.74,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,105.26 L93.25,105.26 M568.74,105.26 L556.74,105.26  '/>	<g transform="translate(70.05,110.46)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 1.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,568.75 L81.25,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,568.75 L81.25,556.75 M81.25,105.26 L81.25,117.26  '/>	<g transform="translate(81.25,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M178.75,568.75 L178.75,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M178.75,568.75 L178.75,556.75 M178.75,105.26 L178.75,117.26  '/>	<g transform="translate(178.75,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.01</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M276.25,568.75 L276.25,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M276.25,568.75 L276.25,556.75 M276.25,105.26 L276.25,117.26  '/>	<g transform="translate(276.25,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.02</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M373.74,568.75 L373.74,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M373.74,568.75 L373.74,556.75 M373.74,105.26 L373.74,117.26  '/>	<g transform="translate(373.74,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.03</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M471.24,568.75 L471.24,556.75 M471.24,394.75 L471.24,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M471.24,568.75 L471.24,556.75 M471.24,105.26 L471.24,117.26  '/>	<g transform="translate(471.24,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.04</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M568.74,568.75 L568.74,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M568.74,568.75 L568.74,556.75 M568.74,105.26 L568.74,117.26  '/>	<g transform="translate(568.74,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.05</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,105.26 L81.25,568.75 L568.74,568.75 L568.74,105.26 L81.25,105.26 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(34.42,337.01) rotate(270)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >C</tspan><tspan font-family="Times"  font-size="12.8" dy="4.80px">L</tspan><tspan font-size="16.0" dy="-4.80"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(324.99,633.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >C</tspan><tspan font-family="Times"  font-size="12.8" dy="4.80px">D, total</tspan><tspan font-size="16.0" dy="-4.80"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M453.25,556.75 L453.25,394.75 L557.54,394.75 L557.54,556.75 L453.25,556.75 Z  '/></g>
+	<g id="gnuplot_plot_1a" ><title>Ma 0.20</title>
+<g fill="none" color="white" stroke="black" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,407.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.20</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M520.37,403.75 L549.15,403.75 M293.67,568.75 L288.98,560.47 L284.79,552.20 L281.08,543.92 L277.88,535.64 L275.18,527.37
+		L272.97,519.09 L271.26,510.81 L270.05,502.54 L269.34,494.26 L269.14,485.98 L269.44,477.71 L270.23,469.43 L271.52,461.15
+		L273.29,452.88 L275.56,444.60 L278.34,436.32 L281.64,428.05 L285.45,419.77 L289.78,411.49 L294.63,403.22 L300.03,394.94
+		L305.94,386.66 L312.42,378.39 L319.43,370.11 L327.00,361.83 L335.13,353.56 L343.81,345.28 L353.07,337.00 L362.90,328.73
+		L373.31,320.45 L384.30,312.18 L395.89,303.90 L408.05,295.62 L420.84,287.35 L434.21,279.07 L448.20,270.79 L462.80,262.52
+		L478.03,254.24 L493.87,245.96 L510.36,237.69 L527.47,229.41 L545.22,221.13 L563.63,212.86 L568.74,210.64  '/></g>
+	</g>
+	<g id="gnuplot_plot_2a" ><title>Ma 0.50</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,425.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.50</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(105, 105, 105)' stroke-dasharray=' 5,8'  d='M520.37,421.75 L549.15,421.75 M291.04,568.75 L286.35,560.47 L282.14,552.20 L278.43,543.92 L275.22,535.64 L272.50,527.37
+		L270.28,519.09 L268.55,510.81 L267.32,502.54 L266.59,494.26 L266.36,485.98 L266.62,477.71 L267.39,469.43 L268.66,461.15
+		L270.41,452.88 L272.65,444.60 L275.39,436.32 L278.63,428.05 L282.38,419.77 L286.64,411.49 L291.41,403.22 L296.70,394.94
+		L302.52,386.66 L308.86,378.39 L315.73,370.11 L323.14,361.83 L331.09,353.56 L339.58,345.28 L348.62,337.00 L358.21,328.73
+		L368.36,320.45 L379.08,312.18 L390.35,303.90 L402.19,295.62 L414.62,287.35 L427.61,279.07 L441.19,270.79 L455.36,262.52
+		L470.12,254.24 L485.47,245.96 L501.42,237.69 L517.97,229.41 L535.14,221.13 L552.92,212.86 L568.74,205.74  '/></g>
+	</g>
+	<g id="gnuplot_plot_3a" ><title>Ma 0.58</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,443.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.58</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(190, 190, 190)' stroke-dasharray=' 2,4'  d='M520.37,439.75 L549.15,439.75 M295.88,568.75 L291.32,560.47 L287.24,552.20 L283.65,543.92 L280.54,535.64 L277.90,527.37
+		L275.74,519.09 L274.04,510.81 L272.81,502.54 L272.05,494.26 L271.77,485.98 L271.96,477.71 L272.61,469.43 L273.76,461.15
+		L275.38,452.88 L277.47,444.60 L280.07,436.32 L283.15,428.05 L286.76,419.77 L290.88,411.49 L295.55,403.22 L300.77,394.94
+		L306.56,386.66 L312.93,378.39 L319.91,370.11 L327.51,361.83 L335.75,353.56 L344.64,345.28 L354.22,337.00 L364.51,328.73
+		L375.52,320.45 L387.28,312.18 L399.81,303.90 L413.15,295.62 L427.31,287.35 L442.32,279.07 L458.23,270.79 L475.03,262.52
+		L492.78,254.24 L511.50,245.96 L531.23,237.69 L551.99,229.41 L568.74,223.06  '/></g>
+	</g>
+	<g id="gnuplot_plot_4a" ><title>Ma 0.68</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,461.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.68</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(211, 211, 211)' stroke-dasharray=' 8,4,2,4'  d='M520.37,457.75 L549.15,457.75 M306.33,568.75 L301.80,560.47 L297.75,552.20 L294.18,543.92 L291.09,535.64 L288.45,527.37
+		L286.28,519.09 L284.58,510.81 L283.34,502.54 L282.56,494.26 L282.24,485.98 L282.39,477.71 L283.00,469.43 L284.09,461.15
+		L285.66,452.88 L287.70,444.60 L290.22,436.32 L293.23,428.05 L296.75,419.77 L300.79,411.49 L305.36,403.22 L310.48,394.94
+		L316.18,386.66 L322.48,378.39 L329.42,370.11 L337.04,361.83 L345.36,353.56 L354.47,345.28 L364.43,337.00 L375.32,328.73
+		L387.25,320.45 L400.35,312.18 L414.78,303.90 L430.72,295.62 L448.41,287.35 L468.11,279.07 L490.18,270.79 L514.96,262.52
+		L542.95,254.24 L568.74,247.52  '/></g>
+	</g>
+	<g id="gnuplot_plot_5a" ><title>Ma 0.73</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,479.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.73</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(112, 128, 144)' stroke-dasharray=' 9,4,1,4,1,4'  d='M520.37,475.75 L549.15,475.75 M305.50,568.75 L300.99,560.47 L296.95,552.20 L293.41,543.92 L290.31,535.64 L287.69,527.37
+		L285.53,519.09 L283.82,510.81 L282.57,502.54 L281.78,494.26 L281.45,485.98 L281.59,477.71 L282.17,469.43 L283.24,461.15
+		L284.79,452.88 L286.81,444.60 L289.29,436.32 L292.28,428.05 L295.77,419.77 L299.78,411.49 L304.34,403.22 L309.46,394.94
+		L315.18,386.66 L321.52,378.39 L328.54,370.11 L336.30,361.83 L344.86,353.56 L354.31,345.28 L364.76,337.00 L376.37,328.73
+		L389.28,320.45 L403.72,312.18 L419.96,303.90 L438.30,295.62 L459.13,287.35 L482.94,279.07 L510.27,270.79 L541.79,262.52
+		L568.74,256.41  '/></g>
+	</g>
+	<g id="gnuplot_plot_6a" ><title>Ma 0.76</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,497.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.76</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(159, 182, 205)' stroke-dasharray='20.0,10.0'  d='M520.37,493.75 L549.15,493.75 M305.13,568.75 L300.66,560.47 L296.66,552.20 L293.14,543.92 L290.09,535.64 L287.51,527.37
+		L285.38,519.09 L283.71,510.81 L282.52,502.54 L281.77,494.26 L281.49,485.98 L281.69,477.71 L282.35,469.43 L283.49,461.15
+		L285.12,452.88 L287.24,444.60 L289.87,436.32 L293.00,428.05 L296.64,419.77 L300.84,411.49 L305.61,403.22 L310.97,394.94
+		L316.98,386.66 L323.66,378.39 L331.07,370.11 L339.30,361.83 L348.41,353.56 L358.55,345.28 L369.85,337.00 L382.51,328.73
+		L396.73,320.45 L412.82,312.18 L431.13,303.90 L452.08,295.62 L476.20,287.35 L504.14,279.07 L536.63,270.79 L568.74,263.81
+		 '/></g>
+	</g>
+	<g id="gnuplot_plot_7a" ><title>Ma 0.78</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,515.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.78</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(198, 226, 255)' stroke-dasharray='10.0,10.0'  d='M520.37,511.75 L549.15,511.75 M305.23,568.75 L300.83,560.47 L296.90,552.20 L293.45,543.92 L290.48,535.64 L287.98,527.37
+		L285.96,519.09 L284.40,510.81 L283.31,502.54 L282.71,494.26 L282.57,485.98 L282.93,477.71 L283.77,469.43 L285.11,461.15
+		L286.95,452.88 L289.32,444.60 L292.20,436.32 L295.61,428.05 L299.58,419.77 L304.11,411.49 L309.25,403.22 L315.02,394.94
+		L321.46,386.66 L328.63,378.39 L336.59,370.11 L345.42,361.83 L355.25,353.56 L366.20,345.28 L378.45,337.00 L392.23,328.73
+		L407.80,320.45 L425.53,312.18 L445.82,303.90 L469.22,295.62 L496.37,287.35 L528.02,279.07 L565.13,270.79 L568.74,270.11
+		 '/></g>
+	</g>
+	<g id="gnuplot_plot_8a" ><title>Ma 0.79</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,533.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.79</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 82, 139, 139)' stroke-dasharray='2.0,5.0,20.0,10.0'  d='M520.37,529.75 L549.15,529.75 M305.53,568.75 L301.19,560.47 L297.33,552.20 L293.96,543.92 L291.07,535.64 L288.65,527.37
+		L286.72,519.09 L285.26,510.81 L284.29,502.54 L283.80,494.26 L283.81,485.98 L284.31,477.71 L285.30,469.43 L286.81,461.15
+		L288.83,452.88 L291.39,444.60 L294.48,436.32 L298.12,428.05 L302.33,419.77 L307.12,411.49 L312.54,403.22 L318.61,394.94
+		L325.38,386.66 L332.89,378.39 L341.24,370.11 L350.51,361.83 L360.81,353.56 L372.30,345.28 L385.17,337.00 L399.67,328.73
+		L416.10,320.45 L434.84,312.18 L456.35,303.90 L481.24,295.62 L510.19,287.35 L544.06,279.07 L568.74,273.94  '/></g>
+	</g>
+	<g id="gnuplot_plot_9a" ><title>Ma 0.83</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,551.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.83</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(121, 205, 205)' stroke-dasharray='2.0,5.0,2.0,5.0,10.0,10.0'  d='M520.37,547.75 L549.15,547.75 M312.33,568.75 L308.63,560.47 L305.47,552.20 L302.83,543.92 L300.74,535.64 L299.16,527.37
+		L298.12,519.09 L297.63,510.81 L297.68,502.54 L298.26,494.26 L299.41,485.98 L301.12,477.71 L303.40,469.43 L306.27,461.15
+		L309.72,452.88 L313.79,444.60 L318.48,436.32 L323.81,428.05 L329.79,419.77 L336.46,411.49 L343.86,403.22 L352.01,394.94
+		L360.99,386.66 L370.88,378.39 L381.75,370.11 L393.76,361.83 L407.06,353.56 L421.87,345.28 L438.45,337.00  '/></g>
+	</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,105.26 L81.25,568.75 L568.74,568.75 L568.74,105.26 L81.25,105.26 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(324.99,74.46)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >Drag Polar</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,568.75 L1218.74,568.75  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,568.75 L743.25,568.75 M1218.74,568.75 L1206.74,568.75  '/>	<g transform="translate(720.05,573.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,510.81 L1218.74,510.81  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,510.81 L743.25,510.81 M1218.74,510.81 L1206.74,510.81  '/>	<g transform="translate(720.05,516.01)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 6</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,452.88 L1218.74,452.88  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,452.88 L743.25,452.88 M1218.74,452.88 L1206.74,452.88  '/>	<g transform="translate(720.05,458.08)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 8</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,394.94 L1218.74,394.94  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,394.94 L743.25,394.94 M1218.74,394.94 L1206.74,394.94  '/>	<g transform="translate(720.05,400.14)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 10</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,337.00 L1218.74,337.00  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,337.00 L743.25,337.00 M1218.74,337.00 L1206.74,337.00  '/>	<g transform="translate(720.05,342.20)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 12</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,279.07 L1218.74,279.07  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,279.07 L743.25,279.07 M1218.74,279.07 L1206.74,279.07  '/>	<g transform="translate(720.05,284.27)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 14</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,221.13 L1218.74,221.13  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,221.13 L743.25,221.13 M1218.74,221.13 L1206.74,221.13  '/>	<g transform="translate(720.05,226.33)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 16</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,163.20 L1218.74,163.20  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,163.20 L743.25,163.20 M1218.74,163.20 L1206.74,163.20  '/>	<g transform="translate(720.05,168.40)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 18</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,105.26 L1218.74,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,105.26 L743.25,105.26 M1218.74,105.26 L1206.74,105.26  '/>	<g transform="translate(720.05,110.46)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 20</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,568.75 L731.25,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,568.75 L731.25,556.75 M731.25,105.26 L731.25,117.26  '/>	<g transform="translate(731.25,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M771.87,568.75 L771.87,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M771.87,568.75 L771.87,556.75 M771.87,105.26 L771.87,117.26  '/>	<g transform="translate(771.87,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M812.50,568.75 L812.50,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M812.50,568.75 L812.50,556.75 M812.50,105.26 L812.50,117.26  '/>	<g transform="translate(812.50,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M853.12,568.75 L853.12,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M853.12,568.75 L853.12,556.75 M853.12,105.26 L853.12,117.26  '/>	<g transform="translate(853.12,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.3</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M893.75,568.75 L893.75,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M893.75,568.75 L893.75,556.75 M893.75,105.26 L893.75,117.26  '/>	<g transform="translate(893.75,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M934.37,568.75 L934.37,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M934.37,568.75 L934.37,556.75 M934.37,105.26 L934.37,117.26  '/>	<g transform="translate(934.37,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.5</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M975.00,568.75 L975.00,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M975.00,568.75 L975.00,556.75 M975.00,105.26 L975.00,117.26  '/>	<g transform="translate(975.00,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.6</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1015.62,568.75 L1015.62,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1015.62,568.75 L1015.62,556.75 M1015.62,105.26 L1015.62,117.26  '/>	<g transform="translate(1015.62,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.7</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1056.24,568.75 L1056.24,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1056.24,568.75 L1056.24,556.75 M1056.24,105.26 L1056.24,117.26  '/>	<g transform="translate(1056.24,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.8</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1096.87,568.75 L1096.87,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1096.87,568.75 L1096.87,556.75 M1096.87,105.26 L1096.87,117.26  '/>	<g transform="translate(1096.87,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.9</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1137.49,568.75 L1137.49,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1137.49,568.75 L1137.49,556.75 M1137.49,105.26 L1137.49,117.26  '/>	<g transform="translate(1137.49,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1178.12,568.75 L1178.12,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1178.12,568.75 L1178.12,556.75 M1178.12,105.26 L1178.12,117.26  '/>	<g transform="translate(1178.12,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 1.1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1218.74,568.75 L1218.74,105.26  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1218.74,568.75 L1218.74,556.75 M1218.74,105.26 L1218.74,117.26  '/>	<g transform="translate(1218.74,597.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 1.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,105.26 L731.25,568.75 L1218.74,568.75 L1218.74,105.26 L731.25,105.26 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(695.62,337.01) rotate(270)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >L/D</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(974.99,633.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >C</tspan><tspan font-family="Times"  font-size="12.8" dy="4.80px">L</tspan><tspan font-size="16.0" dy="-4.80"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	<g id="gnuplot_plot_1b" ><title>Ma 0.20</title>
+<g fill="none" color="white" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M762.63,568.75 L771.87,535.17 L782.03,499.07 L792.19,464.01 L802.34,430.26 L812.50,398.03 L822.65,367.50 L832.81,338.84
+		L842.97,312.16 L853.12,287.54 L863.28,265.05 L873.43,244.69 L883.59,226.46 L893.75,210.30 L903.90,196.18 L914.06,184.00
+		L924.21,173.67 L934.37,165.10 L944.53,158.16 L954.68,152.75 L964.84,148.74 L975.00,146.02 L985.15,144.48 L995.31,144.01
+		L1005.46,144.50 L1015.62,145.85 L1025.78,147.96 L1035.93,150.76 L1046.09,154.15 L1056.24,158.07 L1066.40,162.44 L1076.56,167.21
+		L1086.71,172.31 L1096.87,177.69 L1107.02,183.32 L1117.18,189.14 L1127.34,195.11 L1137.49,201.22 L1147.65,207.42 L1157.80,213.69
+		L1167.96,220.00 L1178.12,226.34 L1188.27,232.69 L1198.43,239.03 L1208.58,245.35 L1218.74,251.64  '/></g>
+	</g>
+	<g id="gnuplot_plot_2b" ><title>Ma 0.50</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(105, 105, 105)' stroke-dasharray=' 5,8'  d='M762.15,568.75 L771.87,532.89 L782.03,496.24 L792.19,460.65 L802.34,426.39 L812.50,393.66 L822.65,362.67 L832.81,333.57
+		L842.97,306.47 L853.12,281.46 L863.28,258.59 L873.43,237.87 L883.59,219.29 L893.75,202.82 L903.90,188.38 L914.06,175.91
+		L924.21,165.30 L934.37,156.45 L944.53,149.25 L954.68,143.58 L964.84,139.33 L975.00,136.38 L985.15,134.62 L995.31,133.93
+		L1005.46,134.21 L1015.62,135.36 L1025.78,137.28 L1035.93,139.90 L1046.09,143.12 L1056.24,146.87 L1066.40,151.09 L1076.56,155.71
+		L1086.71,160.67 L1096.87,165.93 L1107.02,171.43 L1117.18,177.14 L1127.34,183.01 L1137.49,189.02 L1147.65,195.12 L1157.80,201.31
+		L1167.96,207.55 L1178.12,213.82 L1188.27,220.11 L1198.43,226.39 L1208.58,232.66 L1218.74,238.90  '/></g>
+	</g>
+	<g id="gnuplot_plot_3b" ><title>Ma 0.58</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(190, 190, 190)' stroke-dasharray=' 2,4'  d='M763.05,568.75 L771.87,537.03 L782.03,501.23 L792.19,466.39 L802.34,432.74 L812.50,400.50 L822.65,369.88 L832.81,341.04
+		L842.97,314.12 L853.12,289.24 L863.28,266.47 L873.43,245.88 L883.59,227.47 L893.75,211.25 L903.90,197.19 L914.06,185.22
+		L924.21,175.29 L934.37,167.30 L944.53,161.15 L954.68,156.75 L964.84,153.96 L975.00,152.67 L985.15,152.77 L995.31,154.13
+		L1005.46,156.64 L1015.62,160.17 L1025.78,164.63 L1035.93,169.90 L1046.09,175.89 L1056.24,182.50 L1066.40,189.65 L1076.56,197.25
+		L1086.71,205.24 L1096.87,213.55 L1107.02,222.12 L1117.18,230.89 L1127.34,239.80 L1137.49,248.83 L1147.65,257.92 L1157.80,267.04
+		L1167.96,276.16 L1178.12,285.26 L1188.27,294.30 L1198.43,303.26 L1208.58,312.14 L1218.74,320.90  '/></g>
+	</g>
+	<g id="gnuplot_plot_4b" ><title>Ma 0.68</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(211, 211, 211)' stroke-dasharray=' 8,4,2,4'  d='M764.81,568.75 L771.87,544.63 L782.03,510.58 L792.19,477.37 L802.34,445.22 L812.50,414.32 L822.65,384.85 L832.81,356.97
+		L842.97,330.83 L853.12,306.54 L863.28,284.19 L873.43,263.85 L883.59,245.58 L893.75,229.40 L903.90,215.34 L914.06,203.41
+		L924.21,193.61 L934.37,185.94 L944.53,180.40 L954.68,176.98 L964.84,175.70 L975.00,176.54 L985.15,179.52 L995.31,184.62
+		L1005.46,191.84 L1015.62,201.15 L1025.78,212.50 L1035.93,225.84 L1046.09,241.03 L1056.24,257.95 L1066.40,276.41 L1076.56,296.19
+		L1086.71,317.02 L1096.87,338.62 L1107.02,360.70 L1117.18,382.94 L1127.34,405.06 L1137.49,426.78 L1147.65,447.85 L1157.80,468.08
+		L1167.96,487.30 L1178.12,505.40 L1188.27,522.30 L1198.43,537.96  '/></g>
+	</g>
+	<g id="gnuplot_plot_5b" ><title>Ma 0.73</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(112, 128, 144)' stroke-dasharray=' 9,4,1,4,1,4'  d='M764.67,568.75 L771.87,544.06 L782.03,509.84 L792.19,476.48 L802.34,444.17 L812.50,413.11 L822.65,383.49 L832.81,355.48
+		L842.97,329.22 L853.12,304.82 L863.28,282.40 L873.43,262.04 L883.59,243.82 L893.75,227.78 L903.90,213.99 L914.06,202.48
+		L924.21,193.31 L934.37,186.53 L944.53,182.18 L954.68,180.32 L964.84,181.01 L975.00,184.30 L985.15,190.23 L995.31,198.81
+		L1005.46,210.02 L1015.62,223.79 L1025.78,240.01 L1035.93,258.46 L1046.09,278.90 L1056.24,301.00 L1066.40,324.36 L1076.56,348.58
+		L1086.71,373.22 L1096.87,397.85 L1107.02,422.08 L1117.18,445.56  '/></g>
+	</g>
+	<g id="gnuplot_plot_6b" ><title>Ma 0.76</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(159, 182, 205)' stroke-dasharray='20.0,10.0'  d='M764.69,568.75 L771.87,544.18 L782.03,510.06 L792.19,476.82 L802.34,444.69 L812.50,413.85 L822.65,384.51 L832.81,356.82
+		L842.97,330.93 L853.12,306.98 L863.28,285.06 L873.43,265.28 L883.59,247.70 L893.75,232.41 L903.90,219.45 L914.06,208.91
+		L924.21,200.84 L934.37,195.32 L944.53,192.43 L954.68,192.24 L964.84,194.84 L975.00,200.28 L985.15,208.61 L995.31,219.80
+		L1005.46,233.81 L1015.62,250.48 L1025.78,269.59 L1035.93,290.85 L1046.09,313.85 L1056.24,338.14 L1066.40,363.25  '/></g>
+	</g>
+	<g id="gnuplot_plot_7b" ><title>Ma 0.78</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(198, 226, 255)' stroke-dasharray='10.0,10.0'  d='M764.91,568.75 L771.87,545.16 L782.03,511.44 L792.19,478.67 L802.34,447.08 L812.50,416.85 L822.65,388.17 L832.81,361.21
+		L842.97,336.11 L853.12,313.00 L863.28,291.96 L873.43,273.10 L883.59,256.48 L893.75,242.18 L903.90,230.25 L914.06,220.77
+		L924.21,213.82 L934.37,209.47 L944.53,207.81 L954.68,208.93 L964.84,212.91 L975.00,219.81 L985.15,229.64 L995.31,242.38
+		L1005.46,257.92 L1015.62,276.05 L1025.78,296.49 L1035.93,318.87  '/></g>
+	</g>
+	<g id="gnuplot_plot_8b" ><title>Ma 0.79</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 82, 139, 139)' stroke-dasharray='2.0,5.0,20.0,10.0'  d='M765.15,568.75 L771.87,546.21 L782.03,512.87 L792.19,480.53 L802.34,449.42 L812.50,419.71 L822.65,391.60 L832.81,365.24
+		L842.97,340.76 L853.12,318.29 L863.28,297.90 L873.43,279.70 L883.59,263.74 L893.75,250.10 L903.90,238.83 L914.06,230.00
+		L924.21,223.69 L934.37,219.98 L944.53,218.96 L954.68,220.72 L964.84,225.33 L975.00,232.86 L985.15,243.31 L995.31,256.63
+		L1005.46,272.70 L1015.62,291.29  '/></g>
+	</g>
+	<g id="gnuplot_plot_9b" ><title>Ma 0.83</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(121, 205, 205)' stroke-dasharray='2.0,5.0,2.0,5.0,10.0,10.0'  d='M768.15,568.75 L771.87,557.49 L782.03,527.72 L792.19,499.19 L802.34,472.08 L812.50,446.52 L822.65,422.63 L832.81,400.53
+		L842.97,380.29 L853.12,361.97 L863.28,345.62 L873.43,331.26 L883.59,318.93 L893.75,308.67 L903.90,300.52 L914.06,294.53
+		L924.21,290.76 L934.37,289.29  '/></g>
+	</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,105.26 L731.25,568.75 L1218.74,568.75 L1218.74,105.26 L731.25,105.26 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(974.99,74.46)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >L/D Polar</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,1218.75 L568.74,1218.75  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,1218.75 L93.25,1218.75 M568.74,1218.75 L556.74,1218.75  '/>	<g transform="translate(70.05,1223.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >-0.8</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,1141.50 L411.30,1141.50 M557.54,1141.50 L568.74,1141.50  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,1141.50 L93.25,1141.50 M568.74,1141.50 L556.74,1141.50  '/>	<g transform="translate(70.05,1146.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >-0.4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,1064.25 L411.30,1064.25 M557.54,1064.25 L568.74,1064.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,1064.25 L93.25,1064.25 M568.74,1064.25 L556.74,1064.25  '/>	<g transform="translate(70.05,1069.45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0.0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,987.00 L568.74,987.00  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,987.00 L93.25,987.00 M568.74,987.00 L556.74,987.00  '/>	<g transform="translate(70.05,992.20)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0.4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,909.75 L568.74,909.75  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,909.75 L93.25,909.75 M568.74,909.75 L556.74,909.75  '/>	<g transform="translate(70.05,914.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0.8</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,832.50 L568.74,832.50  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,832.50 L93.25,832.50 M568.74,832.50 L556.74,832.50  '/>	<g transform="translate(70.05,837.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >1.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,755.25 L568.74,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,755.25 L93.25,755.25 M568.74,755.25 L556.74,755.25  '/>	<g transform="translate(70.05,760.45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >1.6</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M81.25,1218.75 L81.25,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,1218.75 L81.25,1206.75 M81.25,755.25 L81.25,767.25  '/>	<g transform="translate(81.25,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >-4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M150.89,1218.75 L150.89,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M150.89,1218.75 L150.89,1206.75 M150.89,755.25 L150.89,767.25  '/>	<g transform="translate(150.89,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >-2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M220.53,1218.75 L220.53,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M220.53,1218.75 L220.53,1206.75 M220.53,755.25 L220.53,767.25  '/>	<g transform="translate(220.53,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M290.17,1218.75 L290.17,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M290.17,1218.75 L290.17,1206.75 M290.17,755.25 L290.17,767.25  '/>	<g transform="translate(290.17,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M359.82,1218.75 L359.82,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M359.82,1218.75 L359.82,1206.75 M359.82,755.25 L359.82,767.25  '/>	<g transform="translate(359.82,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M429.46,1218.75 L429.46,1206.75 M429.46,1008.75 L429.46,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M429.46,1218.75 L429.46,1206.75 M429.46,755.25 L429.46,767.25  '/>	<g transform="translate(429.46,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 6</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M499.10,1218.75 L499.10,1206.75 M499.10,1008.75 L499.10,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M499.10,1218.75 L499.10,1206.75 M499.10,755.25 L499.10,767.25  '/>	<g transform="translate(499.10,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 8</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M568.74,1218.75 L568.74,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M568.74,1218.75 L568.74,1206.75 M568.74,755.25 L568.74,767.25  '/>	<g transform="translate(568.74,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 10</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,755.25 L81.25,1218.75 L568.74,1218.75 L568.74,755.25 L81.25,755.25 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(31.80,987.00) rotate(270)" stroke="none" fill="black" font-family="Times" font-size="14.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >C</tspan><tspan font-family="Times"  font-size="11.2" dy="4.20px">L</tspan><tspan font-size="14.0" dy="-4.20"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(324.99,1276.10)" stroke="none" fill="black" font-family="Times" font-size="14.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >AoA [deg]</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M411.30,1206.75 L411.30,1008.75 L557.54,1008.75 L557.54,1206.75 L411.30,1206.75 Z  '/></g>
+	<g id="gnuplot_plot_1c" ><title>Ma 0.20</title>
+<g fill="none" color="white" stroke="black" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1021.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.20</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M520.37,1017.75 L549.15,1017.75 M81.25,1097.50 L89.50,1093.22 L98.80,1088.39 L108.13,1083.56 L117.43,1078.73 L126.76,1073.91
+		L136.06,1069.08 L145.39,1064.25 L154.69,1059.42 L163.98,1054.59 L173.32,1049.77 L182.61,1044.94 L191.95,1040.11 L201.24,1035.28
+		L210.57,1030.45 L219.87,1025.63 L229.20,1020.80 L238.50,1015.97 L247.80,1011.14 L257.13,1006.31 L266.43,1001.48 L275.76,996.66
+		L285.06,991.83 L294.39,987.00 L303.68,982.17 L313.02,977.34 L322.31,972.52 L331.61,967.69 L340.94,962.86 L350.24,958.03
+		L359.57,953.20 L368.87,948.38 L378.20,943.55 L387.50,938.72 L396.83,933.89 L406.13,929.06 L415.42,924.23 L424.76,919.41
+		L434.05,914.58 L443.39,909.75 L452.68,904.92 L462.01,900.09 L471.31,895.27 L480.61,890.44 L489.94,885.61 L499.24,880.78
+		L508.57,875.95 L517.87,871.13 L527.20,866.30 L536.50,861.47 L545.83,856.64 L555.13,851.81 L564.42,846.98 L568.74,844.75
+		 '/></g>
+	</g>
+	<g id="gnuplot_plot_2c" ><title>Ma 0.50</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1039.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.50</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(105, 105, 105)' stroke-dasharray=' 5,8'  d='M520.37,1035.75 L549.15,1035.75 M81.25,1100.07 L84.73,1098.05 L93.09,1093.22 L101.41,1088.39 L109.73,1083.56 L118.09,1078.73
+		L126.41,1073.91 L134.73,1069.08 L143.09,1064.25 L151.41,1059.42 L159.74,1054.59 L168.06,1049.77 L176.42,1044.94 L184.74,1040.11
+		L193.06,1035.28 L201.42,1030.45 L209.74,1025.63 L218.06,1020.80 L226.42,1015.97 L234.74,1011.14 L243.06,1006.31 L251.42,1001.48
+		L259.74,996.66 L268.06,991.83 L276.42,987.00 L284.74,982.17 L293.06,977.34 L301.42,972.52 L309.74,967.69 L318.07,962.86
+		L326.42,958.03 L334.74,953.20 L343.07,948.38 L351.39,943.55 L359.75,938.72 L368.07,933.89 L376.39,929.06 L384.75,924.23
+		L393.07,919.41 L401.39,914.58 L409.75,909.75 L418.07,904.92 L426.39,900.09 L434.75,895.27 L443.07,890.44 L451.39,885.61
+		L459.75,880.78 L468.07,875.95 L476.40,871.13 L484.75,866.30 L493.07,861.47 L501.40,856.64 L509.75,851.81 L518.08,846.98
+		L526.40,842.16 L534.75,837.33 L543.08,832.50 L551.40,827.67 L559.72,822.84 L568.08,818.02 L568.74,817.64  '/></g>
+	</g>
+	<g id="gnuplot_plot_3c" ><title>Ma 0.58</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1057.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.58</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(190, 190, 190)' stroke-dasharray=' 2,4'  d='M520.37,1053.75 L549.15,1053.75 M81.25,1101.05 L86.23,1098.05 L94.24,1093.22 L102.28,1088.39 L110.29,1083.56 L118.30,1078.73
+		L126.31,1073.91 L134.32,1069.08 L142.33,1064.25 L150.33,1059.42 L158.34,1054.59 L166.35,1049.77 L174.36,1044.94 L182.37,1040.11
+		L190.38,1035.28 L198.39,1030.45 L206.40,1025.63 L214.40,1020.80 L222.41,1015.97 L230.42,1011.14 L238.43,1006.31 L246.44,1001.48
+		L254.45,996.66 L262.46,991.83 L270.47,987.00 L278.47,982.17 L286.48,977.34 L294.49,972.52 L302.50,967.69 L310.51,962.86
+		L318.55,958.03 L326.56,953.20 L334.57,948.38 L342.58,943.55 L350.59,938.72 L358.60,933.89 L366.61,929.06 L374.61,924.23
+		L382.62,919.41 L390.63,914.58 L398.64,909.75 L406.65,904.92 L414.66,900.09 L422.67,895.27 L430.68,890.44 L438.68,885.61
+		L446.69,880.78 L454.70,875.95 L462.71,871.13 L470.72,866.30 L478.73,861.47 L486.74,856.64 L494.75,851.81 L502.75,846.98
+		L510.76,842.16 L518.77,837.33 L526.78,832.50 L534.82,827.67 L542.83,822.84 L550.84,818.02 L558.85,813.19 L566.86,808.36
+		L568.74,807.23  '/></g>
+	</g>
+	<g id="gnuplot_plot_4c" ><title>Ma 0.68</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1075.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.68</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(211, 211, 211)' stroke-dasharray=' 8,4,2,4'  d='M520.37,1071.75 L549.15,1071.75 M81.25,1102.63 L88.39,1098.05 L95.94,1093.22 L103.50,1088.39 L111.06,1083.56 L118.58,1078.73
+		L126.13,1073.91 L133.69,1069.08 L141.21,1064.25 L148.77,1059.42 L156.32,1054.59 L163.88,1049.77 L171.40,1044.94 L178.96,1040.11
+		L186.51,1035.28 L194.07,1030.45 L201.59,1025.63 L209.15,1020.80 L216.70,1015.97 L224.22,1011.14 L231.78,1006.31 L239.34,1001.48
+		L246.89,996.66 L254.41,991.83 L261.97,987.00 L269.53,982.17 L277.08,977.34 L284.60,972.52 L292.16,967.69 L299.72,962.86
+		L307.24,958.03 L314.79,953.20 L322.35,948.38 L329.90,943.55 L337.43,938.72 L344.98,933.89 L352.54,929.06 L360.09,924.23
+		L367.62,919.41 L375.17,914.58 L382.73,909.75 L390.25,904.92 L397.81,900.09 L405.36,895.27 L412.92,890.44 L420.44,885.61
+		L427.99,880.78 L435.55,875.95 L443.11,871.13 L450.63,866.30 L458.18,861.47 L465.74,856.64 L473.26,851.81 L480.82,846.98
+		L488.37,842.16  '/></g>
+	</g>
+	<g id="gnuplot_plot_5c" ><title>Ma 0.73</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1093.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.73</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(112, 128, 144)' stroke-dasharray=' 9,4,1,4,1,4'  d='M520.37,1089.75 L549.15,1089.75 M81.25,1103.57 L82.29,1102.87 L89.61,1098.05 L96.88,1093.22 L104.16,1088.39 L111.47,1083.56
+		L118.75,1078.73 L126.03,1073.91 L133.34,1069.08 L140.62,1064.25 L147.90,1059.42 L155.21,1054.59 L162.49,1049.77 L169.76,1044.94
+		L177.08,1040.11 L184.35,1035.28 L191.63,1030.45 L198.94,1025.63 L206.22,1020.80 L213.50,1015.97 L220.81,1011.14 L228.09,1006.31
+		L235.37,1001.48 L242.68,996.66 L249.96,991.83 L257.23,987.00 L264.55,982.17 L271.82,977.34 L279.10,972.52 L286.38,967.69
+		L293.69,962.86 L300.97,958.03 L308.25,953.20 L315.56,948.38 L322.84,943.55 L330.11,938.72 L337.43,933.89 L344.70,929.06
+		L351.98,924.23 L359.29,919.41 L366.57,914.58 L373.85,909.75 L381.16,904.92 L388.44,900.09 L395.72,895.27 L403.03,890.44
+		L410.31,885.61 L417.58,880.78  '/></g>
+	</g>
+	<g id="gnuplot_plot_6c" ><title>Ma 0.76</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1111.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.76</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(159, 182, 205)' stroke-dasharray='20.0,10.0'  d='M520.37,1107.75 L549.15,1107.75 M81.25,1104.22 L83.23,1102.87 L90.37,1098.05 L97.48,1093.22 L104.61,1088.39 L111.75,1083.56
+		L118.86,1078.73 L125.99,1073.91 L133.10,1069.08 L140.24,1064.25 L147.37,1059.42 L154.48,1054.59 L161.62,1049.77 L168.72,1044.94
+		L175.86,1040.11 L183.00,1035.28 L190.10,1030.45 L197.24,1025.63 L204.38,1020.80 L211.48,1015.97 L218.62,1011.14 L225.72,1006.31
+		L232.86,1001.48 L240.00,996.66 L247.10,991.83 L254.24,987.00 L261.34,982.17 L268.48,977.34 L275.62,972.52 L282.72,967.69
+		L289.86,962.86 L296.96,958.03 L304.10,953.20 L311.24,948.38 L318.34,943.55 L325.48,938.72 L332.62,933.89 L339.72,929.06
+		L346.86,924.23 L353.97,919.41 L361.10,914.58 L368.24,909.75 L375.35,904.92  '/></g>
+	</g>
+	<g id="gnuplot_plot_7c" ><title>Ma 0.78</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1129.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.78</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(198, 226, 255)' stroke-dasharray='10.0,10.0'  d='M520.37,1125.75 L549.15,1125.75 M81.25,1104.69 L83.90,1102.87 L90.90,1098.05 L97.89,1093.22 L104.93,1088.39 L111.93,1083.56
+		L118.93,1078.73 L125.96,1073.91 L132.96,1069.08 L139.96,1064.25 L146.99,1059.42 L153.99,1054.59 L160.99,1049.77 L168.02,1044.94
+		L175.02,1040.11 L182.02,1035.28 L189.05,1030.45 L196.05,1025.63 L203.05,1020.80 L210.09,1015.97 L217.09,1011.14 L224.12,1006.31
+		L231.12,1001.48 L238.12,996.66 L245.15,991.83 L252.15,987.00 L259.15,982.17 L266.18,977.34 L273.18,972.52 L280.18,967.69
+		L287.21,962.86 L294.21,958.03 L301.21,953.20 L308.25,948.38 L315.25,943.55 L322.24,938.72 L329.28,933.89 L336.28,929.06
+		L343.31,924.23 L350.31,919.41  '/></g>
+	</g>
+	<g id="gnuplot_plot_8c" ><title>Ma 0.79</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1147.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.79</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 82, 139, 139)' stroke-dasharray='2.0,5.0,20.0,10.0'  d='M520.37,1143.75 L549.15,1143.75 M81.25,1104.93 L84.21,1102.87 L91.17,1098.05 L98.10,1093.22 L105.07,1088.39 L112.03,1083.56
+		L118.96,1078.73 L125.92,1073.91 L132.89,1069.08 L139.82,1064.25 L146.78,1059.42 L153.75,1054.59 L160.68,1049.77 L167.64,1044.94
+		L174.60,1040.11 L181.53,1035.28 L188.50,1030.45 L195.46,1025.63 L202.43,1020.80 L209.36,1015.97 L216.32,1011.14 L223.28,1006.31
+		L230.21,1001.48 L237.18,996.66 L244.14,991.83 L251.07,987.00 L258.03,982.17 L265.00,977.34 L271.93,972.52 L278.89,967.69
+		L285.86,962.86 L292.79,958.03 L299.75,953.20 L306.71,948.38 L313.64,943.55 L320.61,938.72 L327.57,933.89 L334.50,929.06
+		 '/></g>
+	</g>
+	<g id="gnuplot_plot_9c" ><title>Ma 0.83</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1165.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.83</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(121, 205, 205)' stroke-dasharray='2.0,5.0,2.0,5.0,10.0,10.0'  d='M520.37,1161.75 L549.15,1161.75 M81.25,1105.99 L85.57,1102.87 L92.29,1098.05 L99.01,1093.22 L105.73,1088.39 L112.41,1083.56
+		L119.13,1078.73 L125.86,1073.91 L132.54,1069.08 L139.26,1064.25 L145.98,1059.42 L152.67,1054.59 L159.39,1049.77 L166.11,1044.94
+		L172.79,1040.11 L179.51,1035.28 L186.23,1030.45 L192.95,1025.63 L199.64,1020.80 L206.36,1015.97 L213.08,1011.14 L219.77,1006.31
+		L226.49,1001.48 L233.21,996.66 L239.89,991.83 L246.61,987.00 L253.33,982.17 L260.05,977.34 L266.74,972.52 L273.46,967.69
+		 '/></g>
+	</g>
+	<g id="gnuplot_plot_10c" ><title>LILI (inc)</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1183.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >LILI (inc)</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<use xlink:href='#gpPt0' transform='translate(81.25,1098.05) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(150.89,1061.55) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(220.53,1025.05) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(290.17,988.54) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(359.82,952.24) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(429.46,916.12) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(499.10,880.40) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(568.74,844.09) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(534.76,1179.75) scale(4.50)' color='rgb(  0,   0,   0)'/>
+</g>
+	</g>
+	<g id="gnuplot_plot_11c" ><title>LILI (Ma 0.78)</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(511.98,1201.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >LILI (Ma 0.78)</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<use xlink:href='#gpPt0' transform='translate(81.25,1104.81) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(150.89,1056.78) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(220.53,1008.63) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(290.17,960.54) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(359.82,912.45) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(429.46,865.33) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(499.10,817.05) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(568.74,768.77) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(534.76,1197.75) scale(4.50)' color='rgb(105, 105, 105)'/>
+</g>
+	</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M81.25,755.25 L81.25,1218.75 L568.74,1218.75 L568.74,755.25 L81.25,755.25 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(324.99,741.25)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >Lift Polar</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,1218.75 L1218.74,1218.75  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,1218.75 L743.25,1218.75 M1218.74,1218.75 L1206.74,1218.75  '/>	<g transform="translate(720.05,1223.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >-0.4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,1160.81 L742.45,1160.81 M888.69,1160.81 L1218.74,1160.81  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,1160.81 L743.25,1160.81 M1218.74,1160.81 L1206.74,1160.81  '/>	<g transform="translate(720.05,1166.01)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >-0.3</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,1102.87 L742.45,1102.87 M888.69,1102.87 L1218.74,1102.87  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,1102.87 L743.25,1102.87 M1218.74,1102.87 L1206.74,1102.87  '/>	<g transform="translate(720.05,1108.07)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >-0.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,1044.94 L742.45,1044.94 M888.69,1044.94 L1218.74,1044.94  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,1044.94 L743.25,1044.94 M1218.74,1044.94 L1206.74,1044.94  '/>	<g transform="translate(720.05,1050.14)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >-0.1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,987.00 L1218.74,987.00  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,987.00 L743.25,987.00 M1218.74,987.00 L1206.74,987.00  '/>	<g transform="translate(720.05,992.20)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0.0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,929.06 L1218.74,929.06  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,929.06 L743.25,929.06 M1218.74,929.06 L1206.74,929.06  '/>	<g transform="translate(720.05,934.26)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0.1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,871.12 L1218.74,871.12  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,871.12 L743.25,871.12 M1218.74,871.12 L1206.74,871.12  '/>	<g transform="translate(720.05,876.32)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,813.19 L1218.74,813.19  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,813.19 L743.25,813.19 M1218.74,813.19 L1206.74,813.19  '/>	<g transform="translate(720.05,818.39)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0.3</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,755.25 L1218.74,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,755.25 L743.25,755.25 M1218.74,755.25 L1206.74,755.25  '/>	<g transform="translate(720.05,760.45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0.4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M731.25,1218.75 L731.25,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,1218.75 L731.25,1206.75 M731.25,755.25 L731.25,767.25  '/>	<g transform="translate(731.25,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >-0.6</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M785.42,1218.75 L785.42,1206.75 M785.42,1008.75 L785.42,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M785.42,1218.75 L785.42,1206.75 M785.42,755.25 L785.42,767.25  '/>	<g transform="translate(785.42,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >-0.4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M839.58,1218.75 L839.58,1206.75 M839.58,1008.75 L839.58,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M839.58,1218.75 L839.58,1206.75 M839.58,755.25 L839.58,767.25  '/>	<g transform="translate(839.58,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >-0.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M893.75,1218.75 L893.75,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M893.75,1218.75 L893.75,1206.75 M893.75,755.25 L893.75,767.25  '/>	<g transform="translate(893.75,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M947.91,1218.75 L947.91,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M947.91,1218.75 L947.91,1206.75 M947.91,755.25 L947.91,767.25  '/>	<g transform="translate(947.91,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1002.08,1218.75 L1002.08,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1002.08,1218.75 L1002.08,1206.75 M1002.08,755.25 L1002.08,767.25  '/>	<g transform="translate(1002.08,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1056.24,1218.75 L1056.24,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1056.24,1218.75 L1056.24,1206.75 M1056.24,755.25 L1056.24,767.25  '/>	<g transform="translate(1056.24,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.6</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1110.41,1218.75 L1110.41,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1110.41,1218.75 L1110.41,1206.75 M1110.41,755.25 L1110.41,767.25  '/>	<g transform="translate(1110.41,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 0.8</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1164.57,1218.75 L1164.57,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1164.57,1218.75 L1164.57,1206.75 M1164.57,755.25 L1164.57,767.25  '/>	<g transform="translate(1164.57,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M1218.74,1218.75 L1218.74,755.25  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M1218.74,1218.75 L1218.74,1206.75 M1218.74,755.25 L1218.74,767.25  '/>	<g transform="translate(1218.74,1247.95)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" > 1.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,755.25 L731.25,1218.75 L1218.74,1218.75 L1218.74,755.25 L731.25,755.25 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(681.80,987.00) rotate(270)" stroke="none" fill="black" font-family="Times" font-size="14.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >C</tspan><tspan font-family="Times"  font-size="11.2" dy="4.20px">M</tspan><tspan font-size="14.0" dy="-4.20"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(974.99,1276.10)" stroke="none" fill="black" font-family="Times" font-size="14.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >C</tspan><tspan font-family="Times"  font-size="11.2" dy="4.20px">L</tspan><tspan font-size="14.0" dy="-4.20"></tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M742.45,1206.75 L742.45,1008.75 L888.69,1008.75 L888.69,1206.75 L742.45,1206.75 Z  '/></g>
+	<g id="gnuplot_plot_1d" ><title>Ma 0.20</title>
+<g fill="none" color="white" stroke="black" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1021.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.20</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M851.52,1017.75 L880.30,1017.75 M812.50,868.98 L819.27,873.07 L826.04,877.16 L832.81,881.25 L839.58,885.34 L846.35,889.42
+		L853.12,893.51 L859.89,897.60 L866.66,901.69 L873.43,905.78 L880.21,909.87 L886.98,913.95 L893.75,918.04 L900.52,922.13
+		L907.29,926.22 L914.06,930.31 L920.83,934.40 L927.60,938.49 L934.37,942.57 L941.14,946.66 L947.91,950.75 L954.68,954.84
+		L961.45,958.93 L968.22,963.02 L975.00,967.10 L981.77,971.19 L988.54,975.28 L995.31,979.37 L1002.08,983.46 L1008.85,987.55
+		L1015.62,991.64 L1022.39,995.72 L1029.16,999.81 L1035.93,1003.90 L1042.70,1007.99 L1049.47,1012.08 L1056.24,1016.17 L1063.01,1020.25
+		L1069.78,1024.34 L1076.56,1028.43 L1083.33,1032.52 L1090.10,1036.61 L1096.87,1040.70 L1103.64,1044.79 L1110.41,1048.87 L1117.18,1052.96
+		L1123.95,1057.05 L1130.72,1061.14 L1137.49,1065.23 L1144.26,1069.32 L1151.03,1073.40 L1157.80,1077.49 L1164.57,1081.58 L1171.35,1085.67
+		L1178.12,1089.76 L1184.89,1093.85 L1191.66,1097.94 L1198.43,1102.02 L1205.20,1106.11 L1211.97,1110.20 L1218.74,1114.29  '/></g>
+	</g>
+	<g id="gnuplot_plot_2d" ><title>Ma 0.50</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1039.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.50</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(105, 105, 105)' stroke-dasharray=' 5,8'  d='M851.52,1035.75 L880.30,1035.75 M812.50,858.51 L819.27,862.74 L826.04,866.97 L832.81,871.21 L839.58,875.44 L846.35,879.67
+		L853.12,883.91 L859.89,888.14 L866.66,892.37 L873.43,896.60 L880.21,900.84 L886.98,905.07 L893.75,909.30 L900.52,913.54
+		L907.29,917.77 L914.06,922.00 L920.83,926.23 L927.60,930.47 L934.37,934.70 L941.14,938.93 L947.91,943.17 L954.68,947.40
+		L961.45,951.63 L968.22,955.86 L975.00,960.10 L981.77,964.33 L988.54,968.56 L995.31,972.80 L1002.08,977.03 L1008.85,981.26
+		L1015.62,985.49 L1022.39,989.73 L1029.16,993.96 L1035.93,998.19 L1042.70,1002.42 L1049.47,1006.66 L1056.24,1010.89 L1063.01,1015.12
+		L1069.78,1019.36 L1076.56,1023.59 L1083.33,1027.82 L1090.10,1032.05 L1096.87,1036.29 L1103.64,1040.52 L1110.41,1044.75 L1117.18,1048.99
+		L1123.95,1053.22 L1130.72,1057.45 L1137.49,1061.68 L1144.26,1065.92 L1151.03,1070.15 L1157.80,1074.38 L1164.57,1078.62 L1171.35,1082.85
+		L1178.12,1087.08 L1184.89,1091.31 L1191.66,1095.55 L1198.43,1099.78 L1205.20,1104.01 L1211.97,1108.25 L1218.74,1112.48  '/></g>
+	</g>
+	<g id="gnuplot_plot_3d" ><title>Ma 0.58</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1057.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.58</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(190, 190, 190)' stroke-dasharray=' 2,4'  d='M851.52,1053.75 L880.30,1053.75 M812.50,854.57 L819.27,858.85 L826.04,863.13 L832.81,867.41 L839.58,871.69 L846.35,875.97
+		L853.12,880.25 L859.89,884.53 L866.66,888.81 L873.43,893.09 L880.21,897.37 L886.98,901.65 L893.75,905.93 L900.52,910.21
+		L907.29,914.49 L914.06,918.77 L920.83,923.05 L927.60,927.33 L934.37,931.61 L941.14,935.89 L947.91,940.17 L954.68,944.46
+		L961.45,948.74 L968.22,953.02 L975.00,957.30 L981.77,961.58 L988.54,965.86 L995.31,970.14 L1002.08,974.42 L1008.85,978.70
+		L1015.62,982.98 L1022.39,987.26 L1029.16,991.54 L1035.93,995.82 L1042.70,1000.10 L1049.47,1004.38 L1056.24,1008.66 L1063.01,1012.94
+		L1069.78,1017.22 L1076.56,1021.50 L1083.33,1025.78 L1090.10,1030.06 L1096.87,1034.34 L1103.64,1038.63 L1110.41,1042.91 L1117.18,1047.19
+		L1123.95,1051.47 L1130.72,1055.75 L1137.49,1060.03 L1144.26,1064.31 L1151.03,1068.59 L1157.80,1072.87 L1164.57,1077.15 L1171.35,1081.43
+		L1178.12,1085.71 L1184.89,1089.99 L1191.66,1094.27 L1198.43,1098.55 L1205.20,1102.83 L1211.97,1107.11 L1218.74,1111.39  '/></g>
+	</g>
+	<g id="gnuplot_plot_4d" ><title>Ma 0.68</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1075.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.68</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(211, 211, 211)' stroke-dasharray=' 8,4,2,4'  d='M851.52,1071.75 L880.30,1071.75 M812.50,848.39 L819.27,852.74 L826.04,857.09 L832.81,861.44 L839.58,865.78 L846.35,870.13
+		L853.12,874.48 L859.89,878.83 L866.66,883.18 L873.43,887.53 L880.21,891.88 L886.98,896.23 L893.75,900.58 L900.52,904.92
+		L907.29,909.27 L914.06,913.62 L920.83,917.97 L927.60,922.32 L934.37,926.67 L941.14,931.02 L947.91,935.37 L954.68,939.71
+		L961.45,944.06 L968.22,948.41 L975.00,952.76 L981.77,957.11 L988.54,961.46 L995.31,965.81 L1002.08,970.16 L1008.85,974.50
+		L1015.62,978.85 L1022.39,983.20 L1029.16,987.55 L1035.93,991.90 L1042.70,996.25 L1049.47,1000.60 L1056.24,1004.95 L1063.01,1009.29
+		L1069.78,1013.64 L1076.56,1017.99 L1083.33,1022.34 L1090.10,1026.69 L1096.87,1031.04 L1103.64,1035.39 L1110.41,1039.74 L1117.18,1044.08
+		L1123.95,1048.43 L1130.72,1052.78 L1137.49,1057.13 L1144.26,1061.48 L1151.03,1065.83 L1157.80,1070.18 L1164.57,1074.53 L1171.35,1078.87
+		L1178.12,1083.22 L1184.89,1087.57 L1191.66,1091.92 L1198.43,1096.27 L1205.20,1100.62  '/></g>
+	</g>
+	<g id="gnuplot_plot_5d" ><title>Ma 0.73</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1093.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.73</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(112, 128, 144)' stroke-dasharray=' 9,4,1,4,1,4'  d='M851.52,1089.75 L880.30,1089.75 M812.50,844.65 L819.27,849.04 L826.04,853.42 L832.81,857.81 L839.58,862.20 L846.35,866.58
+		L853.12,870.97 L859.89,875.36 L866.66,879.74 L873.43,884.13 L880.21,888.52 L886.98,892.91 L893.75,897.29 L900.52,901.68
+		L907.29,906.07 L914.06,910.45 L920.83,914.84 L927.60,919.23 L934.37,923.61 L941.14,928.00 L947.91,932.39 L954.68,936.77
+		L961.45,941.16 L968.22,945.55 L975.00,949.93 L981.77,954.32 L988.54,958.71 L995.31,963.09 L1002.08,967.48 L1008.85,971.87
+		L1015.62,976.25 L1022.39,980.64 L1029.16,985.03 L1035.93,989.41 L1042.70,993.80 L1049.47,998.19 L1056.24,1002.57 L1063.01,1006.96
+		L1069.78,1011.35 L1076.56,1015.74 L1083.33,1020.12 L1090.10,1024.51 L1096.87,1028.90 L1103.64,1033.28 L1110.41,1037.67 L1117.18,1042.06
+		L1123.95,1046.44 L1130.72,1050.83 L1137.49,1055.22 L1144.26,1059.60 L1151.03,1063.99  '/></g>
+	</g>
+	<g id="gnuplot_plot_6d" ><title>Ma 0.76</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1111.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.76</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(159, 182, 205)' stroke-dasharray='20.0,10.0'  d='M851.52,1107.75 L880.30,1107.75 M812.50,842.15 L819.27,846.56 L826.04,850.97 L832.81,855.38 L839.58,859.79 L846.35,864.20
+		L853.12,868.61 L859.89,873.02 L866.66,877.43 L873.43,881.84 L880.21,886.26 L886.98,890.67 L893.75,895.08 L900.52,899.49
+		L907.29,903.90 L914.06,908.31 L920.83,912.72 L927.60,917.13 L934.37,921.54 L941.14,925.95 L947.91,930.36 L954.68,934.78
+		L961.45,939.19 L968.22,943.60 L975.00,948.01 L981.77,952.42 L988.54,956.83 L995.31,961.24 L1002.08,965.65 L1008.85,970.06
+		L1015.62,974.47 L1022.39,978.89 L1029.16,983.30 L1035.93,987.71 L1042.70,992.12 L1049.47,996.53 L1056.24,1000.94 L1063.01,1005.35
+		L1069.78,1009.76 L1076.56,1014.17 L1083.33,1018.58 L1090.10,1022.99 L1096.87,1027.41 L1103.64,1031.82 L1110.41,1036.23 L1117.18,1040.64
+		 '/></g>
+	</g>
+	<g id="gnuplot_plot_7d" ><title>Ma 0.78</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1129.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.78</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(198, 226, 255)' stroke-dasharray='10.0,10.0'  d='M851.52,1125.75 L880.30,1125.75 M812.50,840.35 L819.27,844.78 L826.04,849.20 L832.81,853.63 L839.58,858.06 L846.35,862.49
+		L853.12,866.91 L859.89,871.34 L866.66,875.77 L873.43,880.20 L880.21,884.63 L886.98,889.05 L893.75,893.48 L900.52,897.91
+		L907.29,902.34 L914.06,906.76 L920.83,911.19 L927.60,915.62 L934.37,920.05 L941.14,924.47 L947.91,928.90 L954.68,933.33
+		L961.45,937.76 L968.22,942.18 L975.00,946.61 L981.77,951.04 L988.54,955.47 L995.31,959.90 L1002.08,964.32 L1008.85,968.75
+		L1015.62,973.18 L1022.39,977.61 L1029.16,982.03 L1035.93,986.46 L1042.70,990.89 L1049.47,995.32 L1056.24,999.75 L1063.01,1004.17
+		L1069.78,1008.60 L1076.56,1013.03 L1083.33,1017.46 L1090.10,1021.88 L1096.87,1026.31  '/></g>
+	</g>
+	<g id="gnuplot_plot_8d" ><title>Ma 0.79</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1147.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.79</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 82, 139, 139)' stroke-dasharray='2.0,5.0,20.0,10.0'  d='M851.52,1143.75 L880.30,1143.75 M812.50,839.41 L819.27,843.84 L826.04,848.28 L832.81,852.71 L839.58,857.15 L846.35,861.59
+		L853.12,866.02 L859.89,870.46 L866.66,874.90 L873.43,879.33 L880.21,883.77 L886.98,888.21 L893.75,892.64 L900.52,897.08
+		L907.29,901.51 L914.06,905.95 L920.83,910.39 L927.60,914.82 L934.37,919.26 L941.14,923.70 L947.91,928.13 L954.68,932.57
+		L961.45,937.00 L968.22,941.44 L975.00,945.88 L981.77,950.31 L988.54,954.75 L995.31,959.19 L1002.08,963.62 L1008.85,968.06
+		L1015.62,972.49 L1022.39,976.93 L1029.16,981.37 L1035.93,985.80 L1042.70,990.24 L1049.47,994.68 L1056.24,999.11 L1063.01,1003.55
+		L1069.78,1007.98 L1076.56,1012.42 L1083.33,1016.86  '/></g>
+	</g>
+	<g id="gnuplot_plot_9d" ><title>Ma 0.83</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1165.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Ma 0.83</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(121, 205, 205)' stroke-dasharray='2.0,5.0,2.0,5.0,10.0,10.0'  d='M851.52,1161.75 L880.30,1161.75 M812.50,835.31 L819.27,839.78 L826.04,844.25 L832.81,848.73 L839.58,853.20 L846.35,857.67
+		L853.12,862.14 L859.89,866.61 L866.66,871.09 L873.43,875.56 L880.21,880.03 L886.98,884.50 L893.75,888.98 L900.52,893.45
+		L907.29,897.92 L914.06,902.39 L920.83,906.86 L927.60,911.34 L934.37,915.81 L941.14,920.28 L947.91,924.75 L954.68,929.22
+		L961.45,933.70 L968.22,938.17 L975.00,942.64 L981.77,947.11 L988.54,951.59 L995.31,956.06 L1002.08,960.53 L1008.85,965.00
+		L1015.62,969.47 L1022.39,973.95 L1029.16,978.42  '/></g>
+	</g>
+	<g id="gnuplot_plot_10d" ><title>LILI (inc)</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1183.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >LILI (inc)</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<use xlink:href='#gpPt0' transform='translate(795.71,769.73) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(846.35,829.41) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(897.54,889.66) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(948.72,950.38) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(999.91,1011.62) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(1050.83,1072.75) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(1101.47,1134.16) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(1151.57,1194.42) scale(4.50)' color='rgb(  0,   0,   0)'/>
+	<use xlink:href='#gpPt0' transform='translate(865.91,1179.75) scale(4.50)' color='rgb(  0,   0,   0)'/>
+</g>
+	</g>
+	<g id="gnuplot_plot_11d" ><title>LILI (Ma 0.78)</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(843.13,1201.65)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >LILI (Ma 0.78)</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<use xlink:href='#gpPt0' transform='translate(836.87,796.39) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(904.23,869.97) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(971.75,943.72) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(1039.18,1018.00) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(1106.62,1092.45) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(1172.70,1166.61) scale(4.50)' color='rgb(105, 105, 105)'/>
+	<use xlink:href='#gpPt0' transform='translate(865.91,1197.75) scale(4.50)' color='rgb(105, 105, 105)'/>
+</g>
+	</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M731.25,755.25 L731.25,1218.75 L1218.74,1218.75 L1218.74,755.25 L731.25,755.25 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(974.99,741.25)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >Moment Polar</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+</g>
+</svg>
+
diff --git a/docs/assets/images/documentation/constraint_analysis.svg b/docs/assets/images/documentation/constraint_analysis.svg
new file mode 100644
index 0000000000000000000000000000000000000000..6a05faa14c248197346a082e030844b220035f11
--- /dev/null
+++ b/docs/assets/images/documentation/constraint_analysis.svg
@@ -0,0 +1,1043 @@
+<?xml version="1.0" encoding="windows-1252"  standalone="no"?>
+<svg 
+ width="800" height="600"
+ viewBox="0 0 800 600"
+ xmlns="http://www.w3.org/2000/svg"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+>
+
+<title>Gnuplot</title>
+<desc>Produced by GNUPLOT 6.0 patchlevel 1 </desc>
+
+<g id="gnuplot_canvas">
+
+<rect x="0" y="0" width="800" height="600" fill="none"/>
+<defs>
+
+	<circle id='gpDot' r='0.5' stroke-width='0.5' stroke='currentColor'/>
+	<path id='gpPt0' stroke-width='0.267' stroke='currentColor' d='M-1,0 h2 M0,-1 v2'/>
+	<path id='gpPt1' stroke-width='0.267' stroke='currentColor' d='M-1,-1 L1,1 M1,-1 L-1,1'/>
+	<path id='gpPt2' stroke-width='0.267' stroke='currentColor' d='M-1,0 L1,0 M0,-1 L0,1 M-1,-1 L1,1 M-1,1 L1,-1'/>
+	<rect id='gpPt3' stroke-width='0.267' stroke='currentColor' x='-1' y='-1' width='2' height='2'/>
+	<rect id='gpPt4' stroke-width='0.267' stroke='currentColor' fill='currentColor' x='-1' y='-1' width='2' height='2'/>
+	<circle id='gpPt5' stroke-width='0.267' stroke='currentColor' cx='0' cy='0' r='1'/>
+	<use xlink:href='#gpPt5' id='gpPt6' fill='currentColor' stroke='none'/>
+	<path id='gpPt7' stroke-width='0.267' stroke='currentColor' d='M0,-1.33 L-1.33,0.67 L1.33,0.67 z'/>
+	<use xlink:href='#gpPt7' id='gpPt8' fill='currentColor' stroke='none'/>
+	<use xlink:href='#gpPt7' id='gpPt9' stroke='currentColor' transform='rotate(180)'/>
+	<use xlink:href='#gpPt9' id='gpPt10' fill='currentColor' stroke='none'/>
+	<use xlink:href='#gpPt3' id='gpPt11' stroke='currentColor' transform='rotate(45)'/>
+	<use xlink:href='#gpPt11' id='gpPt12' fill='currentColor' stroke='none'/>
+	<path id='gpPt13' stroke-width='0.267' stroke='currentColor' d='M0,1.330 L1.265,0.411 L0.782,-1.067 L-0.782,-1.076 L-1.265,0.411 z'/>
+	<use xlink:href='#gpPt13' id='gpPt14' fill='currentColor' stroke='none'/>
+	<filter id='textbox' filterUnits='objectBoundingBox' x='0' y='0' height='1' width='1'>
+	  <feFlood flood-color='white' flood-opacity='1' result='bgnd'/>
+	  <feComposite in='SourceGraphic' in2='bgnd' operator='atop'/>
+	</filter>
+	<filter id='greybox' filterUnits='objectBoundingBox' x='0' y='0' height='1' width='1'>
+	  <feFlood flood-color='lightgrey' flood-opacity='1' result='grey'/>
+	  <feComposite in='SourceGraphic' in2='grey' operator='atop'/>
+	</filter>
+</defs>
+<g fill="none" color="white" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="white" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M103.99,534.01 L723.99,534.01  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M103.99,534.01 L109.61,534.01  '/>	<g transform="translate(96.99,539.86)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="end">
+		<text><tspan font-family="Sans" >0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M103.99,436.21 L723.99,436.21  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M103.99,436.21 L109.61,436.21  '/>	<g transform="translate(96.99,442.06)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="end">
+		<text><tspan font-family="Sans" >0.2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M103.99,338.41 L723.99,338.41  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M103.99,338.41 L109.61,338.41  '/>	<g transform="translate(96.99,344.26)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="end">
+		<text><tspan font-family="Sans" >0.4</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M103.99,240.61 L723.99,240.61  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M103.99,240.61 L109.61,240.61  '/>	<g transform="translate(96.99,246.46)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="end">
+		<text><tspan font-family="Sans" >0.6</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M103.99,142.81 L110.99,142.81 M318.43,142.81 L723.99,142.81  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M103.99,142.81 L109.61,142.81  '/>	<g transform="translate(96.99,148.66)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="end">
+		<text><tspan font-family="Sans" >0.8</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M103.99,45.01 L723.99,45.01  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M103.99,45.01 L109.61,45.01  '/>	<g transform="translate(96.99,50.86)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="end">
+		<text><tspan font-family="Sans" >1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M137.50,534.01 L137.50,184.51 M137.50,52.51 L137.50,45.01  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M137.50,534.01 L137.50,528.39  '/>	<g transform="translate(137.50,554.86)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="middle">
+		<text><tspan font-family="Sans" >1000</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M221.29,534.01 L221.29,184.51 M221.29,52.51 L221.29,45.01  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M221.29,534.01 L221.29,528.39  '/>	<g transform="translate(221.29,554.86)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="middle">
+		<text><tspan font-family="Sans" >2000</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M305.07,534.01 L305.07,184.51 M305.07,52.51 L305.07,45.01  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M305.07,534.01 L305.07,528.39  '/>	<g transform="translate(305.07,554.86)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="middle">
+		<text><tspan font-family="Sans" >3000</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M388.85,534.01 L388.85,45.01  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M388.85,534.01 L388.85,528.39  '/>	<g transform="translate(388.85,554.86)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="middle">
+		<text><tspan font-family="Sans" >4000</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M472.64,534.01 L472.64,45.01  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M472.64,534.01 L472.64,528.39  '/>	<g transform="translate(472.64,554.86)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="middle">
+		<text><tspan font-family="Sans" >5000</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M556.42,534.01 L556.42,45.01  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M556.42,534.01 L556.42,528.39  '/>	<g transform="translate(556.42,554.86)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="middle">
+		<text><tspan font-family="Sans" >6000</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M640.21,534.01 L640.21,45.01  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M640.21,534.01 L640.21,528.39  '/>	<g transform="translate(640.21,554.86)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="middle">
+		<text><tspan font-family="Sans" >7000</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 38,  38,  38)' opacity='0.15' class="gridline"  d='M723.99,534.01 L723.99,45.01  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M723.99,534.01 L723.99,528.39  '/>	<g transform="translate(723.99,554.86)" stroke="none" fill="rgb(38,38,38)" font-family="Sans" font-size="18.00"  text-anchor="middle">
+		<text><tspan font-family="Sans" >8000</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M103.99,45.01 L103.99,534.01 L723.99,534.01 L723.99,45.01 L103.99,45.01 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M110.99,184.51 L110.99,52.51 L318.43,52.51 L318.43,184.51 L110.99,184.51 Z  '/></g>
+	<g id="gnuplot_plot_1a"  fill="none"><title>gnuplot_plot_1a</title>
+<g fill="none" color="white" stroke="rgb(  0,   0,   0)" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g stroke='none' shape-rendering='crispEdges'>
+		<polygon fill = 'rgb(255,   0,   0)' fill-opacity='0.30'  points = '103.99,45.01 103.99,534.01 104.68,534.01 105.50,534.01 106.32,534.01 107.14,534.01 107.97,534.01 108.79,534.01 109.61,534.01 110.43,534.01 111.25,534.01 112.08,534.01 112.90,534.01 113.72,534.01 114.54,534.01 115.36,534.01
+116.19,534.01 117.01,534.01 117.83,534.01 118.65,534.01 119.47,534.01 120.30,534.01 121.12,534.01 121.94,534.01 122.76,534.01 123.58,534.01 124.40,534.01 125.23,534.01 126.05,534.01 126.87,534.01 127.69,534.01 128.51,534.01
+129.34,534.01 130.16,534.01 130.98,534.01 131.80,534.01 132.62,534.01 133.45,534.01 134.27,534.01 135.09,534.01 135.91,534.01 136.73,534.01 137.56,534.01 138.38,534.01 139.20,534.01 140.02,534.01 140.84,534.01 141.67,534.01
+142.49,534.01 143.31,534.01 144.13,534.01 144.95,534.01 145.77,534.01 146.60,534.01 147.42,534.01 148.24,534.01 149.06,534.01 149.88,534.01 150.71,534.01 151.53,534.01 152.35,534.01 153.17,534.01 153.99,534.01 154.82,534.01
+155.64,534.01 156.46,534.01 157.28,534.01 158.10,534.01 158.93,534.01 159.75,534.01 160.57,534.01 161.39,534.01 162.21,534.01 163.03,534.01 163.86,534.01 164.68,534.01 165.50,534.01 166.32,534.01 167.14,534.01 167.97,534.01
+168.79,534.01 169.61,534.01 170.43,534.01 171.25,534.01 172.08,534.01 172.90,534.01 173.72,534.01 174.54,534.01 175.36,534.01 176.19,534.01 177.01,534.01 177.83,534.01 178.65,534.01 179.47,534.01 180.30,534.01 181.12,534.01
+181.94,534.01 182.76,534.01 183.58,534.01 184.40,534.01 185.23,534.01 186.05,534.01 186.87,534.01 187.69,534.01 188.51,534.01 189.34,534.01 190.16,534.01 190.98,534.01 191.80,534.01 192.62,534.01 193.45,534.01 194.27,534.01
+195.09,534.01 195.91,534.01 196.73,534.01 197.56,534.01 198.38,534.01 199.20,534.01 200.02,534.01 200.84,534.01 201.67,534.01 202.49,534.01 203.31,534.01 204.13,534.01 204.95,534.01 205.77,534.01 206.60,534.01 207.42,534.01
+208.24,534.01 209.06,534.01 209.88,534.01 210.71,534.01 211.53,534.01 212.35,534.01 213.17,534.01 213.99,534.01 214.82,534.01 215.64,534.01 216.46,534.01 217.28,534.01 218.10,534.01 218.93,534.01 219.75,534.01 220.57,534.01
+221.39,534.01 222.21,534.01 223.04,534.01 223.86,534.01 224.68,534.01 225.50,534.01 226.32,534.01 227.14,534.01 227.97,534.01 228.79,534.01 229.61,534.01 230.43,534.01 231.25,534.01 232.08,534.01 232.90,534.01 233.72,534.01
+234.54,534.01 235.36,534.01 236.19,534.01 237.01,534.01 237.83,534.01 238.65,534.01 239.47,534.01 240.30,534.01 241.12,534.01 241.94,534.01 242.76,534.01 243.58,534.01 244.40,534.01 245.23,534.01 246.05,534.01 246.87,534.01
+247.69,534.01 248.51,534.01 249.34,534.01 250.16,534.01 250.98,534.01 251.80,534.01 252.62,534.01 253.45,534.01 254.27,534.01 255.09,534.01 255.91,534.01 256.73,534.01 257.56,534.01 258.38,534.01 259.20,534.01 260.02,534.01
+260.84,534.01 261.67,534.01 262.49,534.01 263.31,534.01 264.13,534.01 264.95,534.01 265.77,534.01 266.60,534.01 267.42,534.01 268.24,534.01 269.06,534.01 269.88,534.01 270.71,534.01 271.53,534.01 272.35,534.01 273.17,534.01
+273.99,534.01 274.82,534.01 275.64,534.01 276.46,534.01 277.28,534.01 278.10,534.01 278.93,534.01 279.75,534.01 280.57,534.01 281.39,534.01 282.21,534.01 283.04,534.01 283.86,534.01 284.68,534.01 285.50,534.01 286.32,534.01
+287.14,534.01 287.97,534.01 288.79,534.01 289.61,534.01 290.43,534.01 291.25,534.01 292.08,534.01 292.90,534.01 293.72,534.01 294.54,534.01 295.36,534.01 296.19,534.01 297.01,534.01 297.83,534.01 298.65,534.01 299.47,534.01
+300.30,534.01 301.12,534.01 301.94,534.01 302.76,534.01 303.58,534.01 304.41,534.01 305.23,534.01 306.05,534.01 306.87,534.01 307.69,534.01 308.51,534.01 309.34,534.01 310.16,534.01 310.98,534.01 311.80,534.01 312.62,534.01
+313.45,534.01 314.27,534.01 315.09,534.01 315.91,534.01 316.73,534.01 317.56,534.01 318.38,534.01 319.20,534.01 320.02,534.01 320.84,534.01 321.67,534.01 322.49,534.01 323.31,534.01 324.13,534.01 324.95,534.01 325.77,534.01
+326.60,534.01 327.42,534.01 328.24,534.01 329.06,534.01 329.88,534.01 330.71,534.01 331.53,534.01 332.35,534.01 333.17,534.01 333.99,534.01 334.82,534.01 335.64,534.01 336.46,534.01 337.28,534.01 338.10,534.01 338.93,534.01
+339.75,534.01 340.57,534.01 341.39,534.01 342.21,534.01 343.04,534.01 343.86,534.01 344.68,534.01 345.50,534.01 346.32,534.01 347.14,534.01 347.97,534.01 348.79,534.01 349.61,534.01 350.43,534.01 351.25,534.01 352.08,534.01
+352.90,534.01 353.72,534.01 354.54,534.01 355.36,534.01 356.19,534.01 357.01,534.01 357.83,534.01 358.65,534.01 359.47,534.01 360.30,534.01 361.12,534.01 361.94,534.01 362.76,534.01 363.58,534.01 364.41,534.01 365.23,534.01
+366.05,534.01 366.87,534.01 367.69,534.01 368.51,534.01 369.34,534.01 370.16,534.01 370.98,534.01 371.80,534.01 372.62,534.01 373.45,534.01 374.27,534.01 375.09,534.01 375.91,534.01 376.73,534.01 377.56,534.01 378.38,534.01
+379.20,534.01 380.02,534.01 380.84,534.01 381.67,534.01 382.49,534.01 383.31,534.01 384.13,534.01 384.95,534.01 385.77,534.01 386.60,534.01 387.42,534.01 388.24,534.01 389.06,534.01 389.88,534.01 390.71,534.01 391.53,534.01
+392.35,534.01 393.17,534.01 393.99,534.01 394.82,534.01 395.64,534.01 396.46,534.01 397.28,534.01 398.10,534.01 398.93,534.01 399.75,534.01 400.57,534.01 401.39,534.01 402.21,534.01 403.04,534.01 403.86,534.01 404.68,534.01
+405.50,534.01 406.32,534.01 407.14,534.01 407.97,534.01 408.79,534.01 409.61,534.01 410.43,534.01 411.25,534.01 412.08,534.01 412.90,534.01 413.72,534.01 414.54,534.01 415.36,534.01 416.19,534.01 417.01,534.01 417.83,534.01
+418.65,534.01 419.47,534.01 420.30,534.01 421.12,534.01 421.94,534.01 422.76,534.01 423.58,534.01 424.41,534.01 425.23,534.01 426.05,534.01 426.87,534.01 427.69,534.01 428.51,534.01 429.34,534.01 430.16,534.01 430.98,534.01
+431.80,534.01 432.62,534.01 433.45,534.01 434.27,534.01 435.09,534.01 435.91,534.01 436.73,534.01 437.56,534.01 438.38,534.01 439.20,534.01 440.02,534.01 440.84,534.01 441.67,534.01 442.49,534.01 443.31,534.01 444.13,534.01
+444.95,534.01 445.78,534.01 446.60,534.01 447.42,534.01 448.24,534.01 449.06,534.01 449.88,534.01 450.71,534.01 451.53,534.01 452.35,534.01 453.17,534.01 453.99,534.01 454.82,534.01 455.64,534.01 456.46,534.01 457.28,534.01
+458.10,534.01 458.93,534.01 459.75,534.01 460.57,534.01 461.39,534.01 462.21,534.01 463.04,534.01 463.86,534.01 464.68,534.01 465.50,534.01 466.32,534.01 467.14,534.01 467.97,534.01 468.79,534.01 469.61,534.01 470.43,534.01
+471.25,534.01 472.08,534.01 472.90,534.01 473.72,534.01 474.54,534.01 475.36,534.01 476.19,534.01 477.01,534.01 477.83,534.01 478.65,534.01 479.47,534.01 480.30,534.01 481.12,534.01 481.94,534.01 482.76,534.01 483.58,534.01
+484.41,534.01 485.23,534.01 486.05,534.01 486.87,534.01 487.69,534.01 488.51,534.01 489.34,534.01 490.16,534.01 490.98,534.01 491.80,534.01 492.62,534.01 493.45,534.01 494.27,534.01 495.09,534.01 495.91,534.01 496.73,534.01
+497.56,534.01 498.38,534.01 499.20,534.01 500.02,534.01 500.84,534.01 501.67,534.01 502.49,534.01 503.31,534.01 504.13,534.01 504.95,534.01 505.78,534.01 506.60,534.01 507.42,534.01 508.24,534.01 509.06,534.01 509.88,534.01
+510.71,534.01 511.53,534.01 512.35,534.01 513.17,534.01 513.99,534.01 514.82,534.01 515.64,534.01 516.46,534.01 517.28,534.01 518.10,534.01 518.93,534.01 519.75,534.01 520.57,534.01 521.39,534.01 522.21,534.01 523.04,534.01
+523.86,534.01 524.68,534.01 525.50,534.01 526.32,534.01 527.15,534.01 527.97,534.01 528.79,534.01 529.61,534.01 530.43,534.01 531.25,534.01 532.08,534.01 532.90,534.01 533.72,534.01 534.54,534.01 535.36,534.01 536.19,534.01
+537.01,534.01 537.83,534.01 538.65,534.01 539.47,534.01 540.30,534.01 541.12,534.01 541.94,534.01 542.76,534.01 543.58,534.01 544.41,534.01 545.23,534.01 546.05,534.01 546.87,534.01 547.69,534.01 548.51,534.01 549.34,534.01
+550.16,534.01 550.98,534.01 551.80,534.01 552.62,534.01 553.45,534.01 554.27,534.01 555.09,534.01 555.91,534.01 556.73,534.01 557.56,534.01 558.38,534.01 559.20,534.01 560.02,534.01 560.84,534.01 561.67,534.01 562.49,534.01
+563.31,534.01 564.13,534.01 564.95,534.01 565.78,534.01 566.60,534.01 567.42,534.01 568.24,534.01 569.06,534.01 569.88,534.01 570.71,534.01 571.53,534.01 572.35,534.01 573.17,534.01 573.99,534.01 574.82,534.01 575.64,534.01
+576.46,534.01 577.28,534.01 578.10,534.01 578.93,534.01 579.75,534.01 580.57,534.01 581.39,534.01 582.21,534.01 583.04,534.01 583.86,534.01 584.68,534.01 585.50,534.01 586.32,534.01 587.15,534.01 587.97,534.01 588.79,534.01
+589.61,534.01 590.43,534.01 591.25,534.01 592.08,534.01 592.90,534.01 593.72,534.01 594.54,534.01 595.36,534.01 596.19,534.01 597.01,534.01 597.83,534.01 598.65,534.01 599.47,534.01 600.30,534.01 601.12,534.01 601.94,534.01
+602.76,534.01 603.58,534.01 604.41,534.01 605.23,534.01 606.05,534.01 606.87,534.01 607.69,534.01 608.52,534.01 609.34,534.01 610.16,534.01 610.98,534.01 611.80,534.01 612.62,534.01 613.45,534.01 614.27,534.01 615.09,534.01
+615.91,534.01 616.73,534.01 617.56,534.01 618.38,534.01 619.20,534.01 620.02,534.01 620.84,534.01 621.67,534.01 622.49,534.01 623.31,534.01 624.13,534.01 624.95,534.01 625.78,534.01 626.60,534.01 627.42,534.01 628.24,534.01
+629.06,534.01 629.88,534.01 630.71,534.01 631.53,534.01 632.35,534.01 633.17,534.01 633.99,534.01 634.82,534.01 635.64,534.01 636.46,534.01 637.28,534.01 638.10,534.01 638.93,534.01 639.75,534.01 640.57,534.01 641.39,534.01
+642.21,534.01 643.04,534.01 643.86,534.01 644.68,534.01 645.50,534.01 646.32,534.01 647.15,534.01 647.97,534.01 648.79,534.01 649.61,534.01 650.43,534.01 651.25,534.01 652.08,534.01 652.90,534.01 653.72,534.01 654.54,534.01
+655.36,534.01 656.19,534.01 657.01,534.01 657.83,534.01 658.65,534.01 659.47,534.01 660.30,534.01 661.12,534.01 661.94,534.01 662.76,534.01 663.58,534.01 664.41,534.01 665.23,534.01 666.05,534.01 666.87,534.01 667.69,534.01
+668.52,534.01 669.34,534.01 670.16,534.01 670.98,534.01 671.80,534.01 672.62,534.01 673.45,534.01 674.27,534.01 675.09,534.01 675.91,534.01 676.73,534.01 677.56,534.01 678.38,534.01 679.20,534.01 680.02,534.01 680.84,534.01
+681.67,534.01 682.49,534.01 683.31,534.01 684.13,534.01 684.95,534.01 685.78,534.01 686.60,534.01 687.42,534.01 688.24,534.01 689.06,534.01 689.88,534.01 690.71,534.01 691.53,534.01 692.35,534.01 693.17,534.01 693.99,534.01
+694.82,534.01 695.64,534.01 696.46,534.01 697.28,534.01 698.10,534.01 698.93,534.01 699.75,534.01 700.57,534.01 701.39,534.01 702.21,534.01 703.04,534.01 703.86,534.01 704.68,534.01 705.50,534.01 706.32,534.01 707.15,534.01
+707.97,534.01 708.79,534.01 709.61,534.01 710.43,534.01 711.25,534.01 712.08,534.01 712.90,534.01 713.72,534.01 714.54,534.01 715.36,534.01 716.19,534.01 717.01,534.01 717.83,534.01 718.65,534.01 719.47,534.01 720.30,534.01
+721.12,534.01 721.94,534.01 722.76,534.01 723.58,534.01 723.99,534.01 723.99,343.42 723.58,343.48 722.76,343.61 721.94,343.73 721.12,343.86 720.30,343.99 719.47,344.11 718.65,344.24 717.83,344.36 717.01,344.49 716.19,344.61
+715.36,344.74 714.54,344.87 713.72,344.99 712.90,345.12 712.08,345.24 711.25,345.37 710.43,345.49 709.61,345.61 708.79,345.74 707.97,345.86 707.15,345.99 706.32,346.11 705.50,346.23 704.68,346.36 703.86,346.48 703.04,346.61
+702.21,346.73 701.39,346.85 700.57,346.97 699.75,347.10 698.93,347.22 698.10,347.34 697.28,347.47 696.46,347.59 695.64,347.71 694.82,347.83 693.99,347.95 693.17,348.08 692.35,348.20 691.53,348.32 690.71,348.44 689.88,348.56
+689.06,348.68 688.24,348.80 687.42,348.92 686.60,349.04 685.78,349.17 684.95,349.29 684.13,349.41 683.31,349.53 682.49,349.65 681.67,349.77 680.84,349.89 680.02,350.00 679.20,350.12 678.38,350.24 677.56,350.36 676.73,350.48
+675.91,350.60 675.09,350.72 674.27,350.84 673.45,350.95 672.62,351.07 671.80,351.19 670.98,351.31 670.16,351.43 669.34,351.54 668.52,351.66 667.69,351.78 666.87,351.90 666.05,352.01 665.23,352.13 664.41,352.25 663.58,352.36
+662.76,352.48 661.94,352.59 661.12,352.71 660.30,352.83 659.47,352.94 658.65,353.06 657.83,353.17 657.01,353.29 656.19,353.40 655.36,353.52 654.54,353.63 653.72,353.74 652.90,353.86 652.08,353.97 651.25,354.09 650.43,354.20
+649.61,354.31 648.79,354.43 647.97,354.54 647.15,354.65 646.32,354.77 645.50,354.88 644.68,354.99 643.86,355.10 643.04,355.22 642.21,355.33 641.39,355.44 640.57,355.55 639.75,355.66 638.93,355.77 638.10,355.88 637.28,355.99
+636.46,356.11 635.64,356.22 634.82,356.33 633.99,356.44 633.17,356.55 632.35,356.66 631.53,356.77 630.71,356.87 629.88,356.98 629.06,357.09 628.24,357.20 627.42,357.31 626.60,357.42 625.78,357.53 624.95,357.63 624.13,357.74
+623.31,357.85 622.49,357.96 621.67,358.06 620.84,358.17 620.02,358.28 619.20,358.38 618.38,358.49 617.56,358.60 616.73,358.70 615.91,358.81 615.09,358.91 614.27,359.02 613.45,359.12 612.62,359.23 611.80,359.33 610.98,359.44
+610.16,359.54 609.34,359.65 608.52,359.75 607.69,359.85 606.87,359.96 606.05,360.06 605.23,360.16 604.41,360.27 603.58,360.37 602.76,360.47 601.94,360.57 601.12,360.67 600.30,360.78 599.47,360.88 598.65,360.98 597.83,361.08
+597.01,361.18 596.19,361.28 595.36,361.38 594.54,361.48 593.72,361.58 592.90,361.68 592.08,361.78 591.25,361.88 590.43,361.98 589.61,362.08 588.79,362.18 587.97,362.27 587.15,362.37 586.32,362.47 585.50,362.57 584.68,362.66
+583.86,362.76 583.04,362.86 582.21,362.95 581.39,363.05 580.57,363.15 579.75,363.24 578.93,363.34 578.10,363.43 577.28,363.53 576.46,363.62 575.64,363.72 574.82,363.81 573.99,363.90 573.17,364.00 572.35,364.09 571.53,364.18
+570.71,364.28 569.88,364.37 569.06,364.46 568.24,364.55 567.42,364.64 566.60,364.74 565.78,364.83 564.95,364.92 564.13,365.01 563.31,365.10 562.49,365.19 561.67,365.28 560.84,365.37 560.02,365.46 559.20,365.55 558.38,365.64
+557.56,365.72 556.73,365.81 555.91,365.90 555.09,365.99 554.27,366.07 553.45,366.16 552.62,366.25 551.80,366.33 550.98,366.42 550.16,366.51 549.34,366.59 548.51,366.68 547.69,366.76 546.87,366.85 546.05,366.93 545.23,367.01
+544.41,367.10 543.58,367.18 542.76,367.26 541.94,367.35 541.12,367.43 540.30,367.51 539.47,367.59 538.65,367.67 537.83,367.76 537.01,367.84 536.19,367.92 535.36,368.00 534.54,368.08 533.72,368.16 532.90,368.24 532.08,368.31
+531.25,368.39 530.43,368.47 529.61,368.55 528.79,368.63 527.97,368.70 527.15,368.78 526.32,368.86 525.50,368.93 524.68,369.01 523.86,369.08 523.04,369.16 522.21,369.23 521.39,369.31 520.57,369.38 519.75,369.45 518.93,369.53
+518.10,369.60 517.28,369.67 516.46,369.74 515.64,369.82 514.82,369.89 513.99,369.96 513.17,370.03 512.35,370.10 511.53,370.17 510.71,370.24 509.88,370.31 509.06,370.38 508.24,370.44 507.42,370.51 506.60,370.58 505.78,370.65
+504.95,370.71 504.13,370.78 503.31,370.85 502.49,370.91 501.67,370.98 500.84,371.04 500.02,371.11 499.20,371.17 498.38,371.23 497.56,371.30 496.73,371.36 495.91,371.42 495.09,371.48 494.27,371.54 493.45,371.60 492.62,371.66
+491.80,371.72 490.98,371.78 490.16,371.84 489.34,371.90 488.51,371.96 487.69,372.02 486.87,372.08 486.05,372.13 485.23,372.19 484.41,372.24 483.58,372.30 482.76,372.35 481.94,372.41 481.12,372.46 480.30,372.52 479.47,372.57
+478.65,372.62 477.83,372.68 477.01,372.73 476.19,372.78 475.36,372.83 474.54,372.88 473.72,372.93 472.90,372.98 472.08,373.03 471.25,373.08 470.43,373.12 469.61,373.17 468.79,373.22 467.97,373.26 467.14,373.31 466.32,373.35
+465.50,373.40 464.68,373.44 463.86,373.49 463.04,373.53 462.21,373.57 461.39,373.61 460.57,373.66 459.75,373.70 458.93,373.74 458.10,373.78 457.28,373.82 456.46,373.85 455.64,373.89 454.82,373.93 453.99,373.97 453.17,374.00
+452.35,374.04 451.53,374.07 450.71,374.11 449.88,374.14 449.06,374.18 448.24,374.21 447.42,374.24 446.60,374.27 445.78,374.30 444.95,374.33 444.13,374.36 443.31,374.39 442.49,374.42 441.67,374.45 440.84,374.48 440.02,374.50
+439.20,374.53 438.38,374.56 437.56,374.58 436.73,374.60 435.91,374.63 435.09,374.65 434.27,374.67 433.45,374.69 432.62,374.72 431.80,374.74 430.98,374.76 430.16,374.77 429.34,374.79 428.51,374.81 427.69,374.83 426.87,374.84
+426.05,374.86 425.23,374.87 424.41,374.89 423.58,374.90 422.76,374.91 421.94,374.92 421.12,374.93 420.30,374.94 419.47,374.95 418.65,374.93 417.83,374.69 417.01,374.45 416.19,374.20 415.36,373.96 414.54,373.71 413.72,373.46
+412.90,373.21 412.08,372.96 411.25,372.71 410.43,372.45 409.61,372.20 408.79,371.94 407.97,371.68 407.14,371.42 406.32,371.16 405.50,370.89 404.68,370.63 403.86,370.36 403.04,370.09 402.21,369.82 401.39,369.55 400.57,369.28
+399.75,369.00 398.93,368.73 398.10,368.45 397.28,368.17 396.46,367.89 395.64,367.60 394.82,367.32 393.99,367.03 393.17,366.74 392.35,366.45 391.53,366.16 390.71,365.87 389.88,365.57 389.06,365.27 388.24,364.97 387.42,364.67
+386.60,364.37 385.77,364.07 384.95,363.76 384.13,363.45 383.31,363.14 382.49,362.83 381.67,362.51 380.84,362.20 380.02,361.88 379.20,361.56 378.38,361.24 377.56,360.91 376.73,360.59 375.91,360.26 375.09,359.93 374.27,359.60
+373.45,359.26 372.62,358.93 371.80,358.59 370.98,358.25 370.16,357.90 369.34,357.56 368.51,357.21 367.69,356.86 366.87,356.51 366.05,356.16 365.23,355.80 364.41,355.44 363.58,355.08 362.76,354.72 361.94,354.35 361.12,353.99
+360.30,353.62 359.47,353.24 358.65,352.87 357.83,352.49 357.01,352.11 356.19,351.73 355.36,351.35 354.54,350.96 353.72,350.57 352.90,350.18 352.08,349.78 351.25,349.39 350.43,348.99 349.61,348.59 348.79,348.18 347.97,347.77
+347.14,347.36 346.32,346.95 345.50,346.53 344.68,346.12 343.86,345.69 343.04,345.27 342.21,344.84 341.39,344.41 340.57,343.98 339.75,343.54 338.93,343.11 338.10,342.66 337.28,342.22 336.46,341.77 335.64,341.32 334.82,340.87
+333.99,340.41 333.17,339.95 332.35,339.49 331.53,339.02 330.71,338.56 329.88,338.08 329.06,337.61 328.24,337.13 327.42,336.65 326.60,336.16 325.77,335.67 324.95,335.18 324.13,334.68 323.31,334.18 322.49,333.68 321.67,333.18
+320.84,332.67 320.02,332.15 319.20,331.64 318.38,331.12 317.56,330.59 316.73,330.06 315.91,329.53 315.09,329.00 314.27,328.46 313.45,327.91 312.62,327.37 311.80,326.81 310.98,326.26 310.16,325.70 309.34,325.14 308.51,324.57
+307.69,324.00 306.87,323.42 306.05,322.84 305.23,322.26 304.41,321.67 303.58,321.08 302.76,320.48 301.94,319.88 301.12,319.27 300.30,318.66 299.47,318.05 298.65,317.43 297.83,316.80 297.01,316.17 296.19,315.54 295.36,314.90
+294.54,314.26 293.72,313.61 292.90,312.96 292.08,312.30 291.25,311.63 290.43,310.96 289.61,310.29 288.79,309.61 287.97,308.93 287.14,308.24 286.32,307.54 285.50,306.84 284.68,306.14 283.86,305.43 283.04,304.71 282.21,303.99
+281.39,303.26 280.57,302.52 279.75,301.78 278.93,301.04 278.10,300.29 277.28,299.53 277.27,45.01 '/>
+		<polygon fill = 'rgb(255,   0,   0)' fill-opacity='0.30'  points = '723.99,534.01 103.99,534.01 103.99,534.01 723.99,534.01 '/>
+	</g>
+</g>
+	</g>
+	<g id="gnuplot_plot_2a"  fill="none"><title>gnuplot_plot_2a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M103.99,534.01 L104.68,534.01 L105.50,534.01 L106.32,534.01 L107.14,534.01 L107.97,534.01 L108.79,534.01 L109.61,534.01
+		L110.43,534.01 L111.25,534.01 L112.08,534.01 L112.90,534.01 L113.72,534.01 L114.54,534.01 L115.36,534.01 L116.19,534.01
+		L117.01,534.01 L117.83,534.01 L118.65,534.01 L119.47,534.01 L120.30,534.01 L121.12,534.01 L121.94,534.01 L122.76,534.01
+		L123.58,534.01 L124.40,534.01 L125.23,534.01 L126.05,534.01 L126.87,534.01 L127.69,534.01 L128.51,534.01 L129.34,534.01
+		L130.16,534.01 L130.98,534.01 L131.80,534.01 L132.62,534.01 L133.45,534.01 L134.27,534.01 L135.09,534.01 L135.91,534.01
+		L136.73,534.01 L137.56,534.01 L138.38,534.01 L139.20,534.01 L140.02,534.01 L140.84,534.01 L141.67,534.01 L142.49,534.01
+		L143.31,534.01 L144.13,534.01 L144.95,534.01 L145.77,534.01 L146.60,534.01 L147.42,534.01 L148.24,534.01 L149.06,534.01
+		L149.88,534.01 L150.71,534.01 L151.53,534.01 L152.35,534.01 L153.17,534.01 L153.99,534.01 L154.82,534.01 L155.64,534.01
+		L156.46,534.01 L157.28,534.01 L158.10,534.01 L158.93,534.01 L159.75,534.01 L160.57,534.01 L161.39,534.01 L162.21,534.01
+		L163.03,534.01 L163.86,534.01 L164.68,534.01 L165.50,534.01 L166.32,534.01 L167.14,534.01 L167.97,534.01 L168.79,534.01
+		L169.61,534.01 L170.43,534.01 L171.25,534.01 L172.08,534.01 L172.90,534.01 L173.72,534.01 L174.54,534.01 L175.36,534.01
+		L176.19,534.01 L177.01,534.01 L177.83,534.01 L178.65,534.01 L179.47,534.01 L180.30,534.01 L181.12,534.01 L181.94,534.01
+		L182.76,534.01 L183.58,534.01 L184.40,534.01 L185.23,534.01 L186.05,534.01 L186.87,534.01 L187.69,534.01 L188.51,534.01
+		L189.34,534.01 L190.16,534.01 L190.98,534.01 L191.80,534.01 L192.62,534.01 L193.45,534.01 L194.27,534.01 L195.09,534.01
+		L195.91,534.01 L196.73,534.01 L197.56,534.01 L198.38,534.01 L199.20,534.01 L200.02,534.01 L200.84,534.01 L201.67,534.01
+		L202.49,534.01 L203.31,534.01 L204.13,534.01 L204.95,534.01 L205.77,534.01 L206.60,534.01 L207.42,534.01 L208.24,534.01
+		L209.06,534.01 L209.88,534.01 L210.71,534.01 L211.53,534.01 L212.35,534.01 L213.17,534.01 L213.99,534.01 L214.82,534.01
+		L215.64,534.01 L216.46,534.01 L217.28,534.01 L218.10,534.01 L218.93,534.01 L219.75,534.01 L220.57,534.01 L221.39,534.01
+		L222.21,534.01 L223.04,534.01 L223.86,534.01 L224.68,534.01 L225.50,534.01 L226.32,534.01 L227.14,534.01 L227.97,534.01
+		L228.79,534.01 L229.61,534.01 L230.43,534.01 L231.25,534.01 L232.08,534.01 L232.90,534.01 L233.72,534.01 L234.54,534.01
+		L235.36,534.01 L236.19,534.01 L237.01,534.01 L237.83,534.01 L238.65,534.01 L239.47,534.01 L240.30,534.01 L241.12,534.01
+		L241.94,534.01 L242.76,534.01 L243.58,534.01 L244.40,534.01 L245.23,534.01 L246.05,534.01 L246.87,534.01 L247.69,534.01
+		L248.51,534.01 L249.34,534.01 L250.16,534.01 L250.98,534.01 L251.80,534.01 L252.62,534.01 L253.45,534.01 L254.27,534.01
+		L255.09,534.01 L255.91,534.01 L256.73,534.01 L257.56,534.01 L258.38,534.01 L259.20,534.01 L260.02,534.01 L260.84,534.01
+		L261.67,534.01 L262.49,534.01 L263.31,534.01 L264.13,534.01 L264.95,534.01 L265.77,534.01 L266.60,534.01 L267.42,534.01
+		L268.24,534.01 L269.06,534.01 L269.88,534.01 L270.71,534.01 L271.53,534.01 L272.35,534.01 L273.17,534.01 L273.99,534.01
+		L274.82,534.01 L275.64,534.01 L276.46,534.01 L277.28,534.01 L278.10,534.01 L278.93,534.01 L279.75,534.01 L280.57,534.01
+		L281.39,534.01 L282.21,534.01 L283.04,534.01 L283.86,534.01 L284.68,534.01 L285.50,534.01 L286.32,534.01 L287.14,534.01
+		L287.97,534.01 L288.79,534.01 L289.61,534.01 L290.43,534.01 L291.25,534.01 L292.08,534.01 L292.90,534.01 L293.72,534.01
+		L294.54,534.01 L295.36,534.01 L296.19,534.01 L297.01,534.01 L297.83,534.01 L298.65,534.01 L299.47,534.01 L300.30,534.01
+		L301.12,534.01 L301.94,534.01 L302.76,534.01 L303.58,534.01 L304.41,534.01 L305.23,534.01 L306.05,534.01 L306.87,534.01
+		L307.69,534.01 L308.51,534.01 L309.34,534.01 L310.16,534.01 L310.98,534.01 L311.80,534.01 L312.62,534.01 L313.45,534.01
+		L314.27,534.01 L315.09,534.01 L315.91,534.01 L316.73,534.01 L317.56,534.01 L318.38,534.01 L319.20,534.01 L320.02,534.01
+		L320.84,534.01 L321.67,534.01 L322.49,534.01 L323.31,534.01 L324.13,534.01 L324.95,534.01 L325.77,534.01 L326.60,534.01
+		L327.42,534.01 L328.24,534.01 L329.06,534.01 L329.88,534.01 L330.71,534.01 L331.53,534.01 L332.35,534.01 L333.17,534.01
+		L333.99,534.01 L334.82,534.01 L335.64,534.01 L336.46,534.01 L337.28,534.01 L338.10,534.01 L338.93,534.01 L339.75,534.01
+		L340.57,534.01 L341.39,534.01 L342.21,534.01 L343.04,534.01 L343.86,534.01 L344.68,534.01 L345.50,534.01 L346.32,534.01
+		L347.14,534.01 L347.97,534.01 L348.79,534.01 L349.61,534.01 L350.43,534.01 L351.25,534.01 L352.08,534.01 L352.90,534.01
+		L353.72,534.01 L354.54,534.01 L355.36,534.01 L356.19,534.01 L357.01,534.01 L357.83,534.01 L358.65,534.01 L359.47,534.01
+		L360.30,534.01 L361.12,534.01 L361.94,534.01 L362.76,534.01 L363.58,534.01 L364.41,534.01 L365.23,534.01 L366.05,534.01
+		L366.87,534.01 L367.69,534.01 L368.51,534.01 L369.34,534.01 L370.16,534.01 L370.98,534.01 L371.80,534.01 L372.62,534.01
+		L373.45,534.01 L374.27,534.01 L375.09,534.01 L375.91,534.01 L376.73,534.01 L377.56,534.01 L378.38,534.01 L379.20,534.01
+		L380.02,534.01 L380.84,534.01 L381.67,534.01 L382.49,534.01 L383.31,534.01 L384.13,534.01 L384.95,534.01 L385.77,534.01
+		L386.60,534.01 L387.42,534.01 L388.24,534.01 L389.06,534.01 L389.88,534.01 L390.71,534.01 L391.53,534.01 L392.35,534.01
+		L393.17,534.01 L393.99,534.01 L394.82,534.01 L395.64,534.01 L396.46,534.01 L397.28,534.01 L398.10,534.01 L398.93,534.01
+		L399.75,534.01 L400.57,534.01 L401.39,534.01 L402.21,534.01 L403.04,534.01 L403.86,534.01 L404.68,534.01 L405.50,534.01
+		L406.32,534.01 L407.14,534.01 L407.97,534.01 L408.79,534.01 L409.61,534.01 L410.43,534.01 L411.25,534.01 L412.08,534.01
+		L412.90,534.01 L413.72,534.01 L414.54,534.01 L415.36,534.01 L416.19,534.01 L417.01,534.01 L417.83,534.01 L418.65,534.01
+		L419.47,534.01 L420.30,534.01 L421.12,534.01 L421.94,534.01 L422.76,534.01 L423.58,534.01 L424.41,534.01 L425.23,534.01
+		L426.05,534.01 L426.87,534.01 L427.69,534.01 L428.51,534.01 L429.34,534.01 L430.16,534.01 L430.98,534.01 L431.80,534.01
+		L432.62,534.01 L433.45,534.01 L434.27,534.01 L435.09,534.01 L435.91,534.01 L436.73,534.01 L437.56,534.01 L438.38,534.01
+		L439.20,534.01 L440.02,534.01 L440.84,534.01 L441.67,534.01 L442.49,534.01 L443.31,534.01 L444.13,534.01 L444.95,534.01
+		L445.78,534.01 L446.60,534.01 L447.42,534.01 L448.24,534.01 L449.06,534.01 L449.88,534.01 L450.71,534.01 L451.53,534.01
+		L452.35,534.01 L453.17,534.01 L453.99,534.01 L454.82,534.01 L455.64,534.01 L456.46,534.01 L457.28,534.01 L458.10,534.01
+		L458.93,534.01 L459.75,534.01 L460.57,534.01 L461.39,534.01 L462.21,534.01 L463.04,534.01 L463.86,534.01 L464.68,534.01
+		L465.50,534.01 L466.32,534.01 L467.14,534.01 L467.97,534.01 L468.79,534.01 L469.61,534.01 L470.43,534.01 L471.25,534.01
+		L472.08,534.01 L472.90,534.01 L473.72,534.01 L474.54,534.01 L475.36,534.01 L476.19,534.01 L477.01,534.01 L477.83,534.01
+		L478.65,534.01 L479.47,534.01 L480.30,534.01 L481.12,534.01 L481.94,534.01 L482.76,534.01 L483.58,534.01 L484.41,534.01
+		L485.23,534.01 L486.05,534.01 L486.87,534.01 L487.69,534.01 L488.51,534.01 L489.34,534.01 L490.16,534.01 L490.98,534.01
+		L491.80,534.01 L492.62,534.01 L493.45,534.01 L494.27,534.01 L495.09,534.01 L495.91,534.01 L496.73,534.01 L497.56,534.01
+		L498.38,534.01 L499.20,534.01 L500.02,534.01 L500.84,534.01 L501.67,534.01 L502.49,534.01 L503.31,534.01 L504.13,534.01
+		L504.95,534.01 L505.78,534.01 L506.60,534.01 L507.42,534.01 L508.24,534.01 L509.06,534.01 L509.88,534.01 L510.71,534.01
+		L511.53,534.01 L512.35,534.01 L513.17,534.01 L513.99,534.01 L514.82,534.01 L515.64,534.01 L516.46,534.01 L517.28,534.01
+		L518.10,534.01 L518.93,534.01 L519.75,534.01 L520.57,534.01 L521.39,534.01 L522.21,534.01 L523.04,534.01 L523.86,534.01
+		L524.68,534.01 L525.50,534.01 L526.32,534.01 L527.15,534.01 L527.97,534.01 L528.79,534.01 L529.61,534.01 L530.43,534.01
+		L531.25,534.01 L532.08,534.01 L532.90,534.01 L533.72,534.01 L534.54,534.01 L535.36,534.01 L536.19,534.01 L537.01,534.01
+		L537.83,534.01 L538.65,534.01 L539.47,534.01 L540.30,534.01 L541.12,534.01 L541.94,534.01 L542.76,534.01 L543.58,534.01
+		L544.41,534.01 L545.23,534.01 L546.05,534.01 L546.87,534.01 L547.69,534.01 L548.51,534.01 L549.34,534.01 L550.16,534.01
+		L550.98,534.01 L551.80,534.01 L552.62,534.01 L553.45,534.01 L554.27,534.01 L555.09,534.01 L555.91,534.01 L556.73,534.01
+		L557.56,534.01 L558.38,534.01 L559.20,534.01 L560.02,534.01 L560.84,534.01 L561.67,534.01 L562.49,534.01 L563.31,534.01
+		L564.13,534.01 L564.95,534.01 L565.78,534.01 L566.60,534.01 L567.42,534.01 L568.24,534.01 L569.06,534.01 L569.88,534.01
+		L570.71,534.01 L571.53,534.01 L572.35,534.01 L573.17,534.01 L573.99,534.01 L574.82,534.01 L575.64,534.01 L576.46,534.01
+		L577.28,534.01 L578.10,534.01 L578.93,534.01 L579.75,534.01 L580.57,534.01 L581.39,534.01 L582.21,534.01 L583.04,534.01
+		L583.86,534.01 L584.68,534.01 L585.50,534.01 L586.32,534.01 L587.15,534.01 L587.97,534.01 L588.79,534.01 L589.61,534.01
+		L590.43,534.01 L591.25,534.01 L592.08,534.01 L592.90,534.01 L593.72,534.01 L594.54,534.01 L595.36,534.01 L596.19,534.01
+		L597.01,534.01 L597.83,534.01 L598.65,534.01 L599.47,534.01 L600.30,534.01 L601.12,534.01 L601.94,534.01 L602.76,534.01
+		L603.58,534.01 L604.41,534.01 L605.23,534.01 L606.05,534.01 L606.87,534.01 L607.69,534.01 L608.52,534.01 L609.34,534.01
+		L610.16,534.01 L610.98,534.01 L611.80,534.01 L612.62,534.01 L613.45,534.01 L614.27,534.01 L615.09,534.01 L615.91,534.01
+		L616.73,534.01 L617.56,534.01 L618.38,534.01 L619.20,534.01 L620.02,534.01 L620.84,534.01 L621.67,534.01 L622.49,534.01
+		L623.31,534.01 L624.13,534.01 L624.95,534.01 L625.78,534.01 L626.60,534.01 L627.42,534.01 L628.24,534.01 L629.06,534.01
+		L629.88,534.01 L630.71,534.01 L631.53,534.01 L632.35,534.01 L633.17,534.01 L633.99,534.01 L634.82,534.01 L635.64,534.01
+		L636.46,534.01 L637.28,534.01 L638.10,534.01 L638.93,534.01 L639.75,534.01 L640.57,534.01 L641.39,534.01 L642.21,534.01
+		L643.04,534.01 L643.86,534.01 L644.68,534.01 L645.50,534.01 L646.32,534.01 L647.15,534.01 L647.97,534.01 L648.79,534.01
+		L649.61,534.01 L650.43,534.01 L651.25,534.01 L652.08,534.01 L652.90,534.01 L653.72,534.01 L654.54,534.01 L655.36,534.01
+		L656.19,534.01 L657.01,534.01 L657.83,534.01 L658.65,534.01 L659.47,534.01 L660.30,534.01 L661.12,534.01 L661.94,534.01
+		L662.76,534.01 L663.58,534.01 L664.41,534.01 L665.23,534.01 L666.05,534.01 L666.87,534.01 L667.69,534.01 L668.52,534.01
+		L669.34,534.01 L670.16,534.01 L670.98,534.01 L671.80,534.01 L672.62,534.01 L673.45,534.01 L674.27,534.01 L675.09,534.01
+		L675.91,534.01 L676.73,534.01 L677.56,534.01 L678.38,534.01 L679.20,534.01 L680.02,534.01 L680.84,534.01 L681.67,534.01
+		L682.49,534.01 L683.31,534.01 L684.13,534.01 L684.95,534.01 L685.78,534.01 L686.60,534.01 L687.42,534.01 L688.24,534.01
+		L689.06,534.01 L689.88,534.01 L690.71,534.01 L691.53,534.01 L692.35,534.01 L693.17,534.01 L693.99,534.01 L694.82,534.01
+		L695.64,534.01 L696.46,534.01 L697.28,534.01 L698.10,534.01 L698.93,534.01 L699.75,534.01 L700.57,534.01 L701.39,534.01
+		L702.21,534.01 L703.04,534.01 L703.86,534.01 L704.68,534.01 L705.50,534.01 L706.32,534.01 L707.15,534.01 L707.97,534.01
+		L708.79,534.01 L709.61,534.01 L710.43,534.01 L711.25,534.01 L712.08,534.01 L712.90,534.01 L713.72,534.01 L714.54,534.01
+		L715.36,534.01 L716.19,534.01 L717.01,534.01 L717.83,534.01 L718.65,534.01 L719.47,534.01 L720.30,534.01 L721.12,534.01
+		L721.94,534.01 L722.76,534.01 L723.58,534.01 L723.99,534.01  '/></g>
+	</g>
+	<g id="gnuplot_plot_3a"  fill="none"><title>gnuplot_plot_3a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M277.27,45.01 L277.28,299.53 L278.10,300.29 L278.93,301.04 L279.75,301.78 L280.57,302.52 L281.39,303.26 L282.21,303.99
+		L283.04,304.71 L283.86,305.43 L284.68,306.14 L285.50,306.84 L286.32,307.54 L287.14,308.24 L287.97,308.93 L288.79,309.61
+		L289.61,310.29 L290.43,310.96 L291.25,311.63 L292.08,312.30 L292.90,312.96 L293.72,313.61 L294.54,314.26 L295.36,314.90
+		L296.19,315.54 L297.01,316.17 L297.83,316.80 L298.65,317.43 L299.47,318.05 L300.30,318.66 L301.12,319.27 L301.94,319.88
+		L302.76,320.48 L303.58,321.08 L304.41,321.67 L305.23,322.26 L306.05,322.84 L306.87,323.42 L307.69,324.00 L308.51,324.57
+		L309.34,325.14 L310.16,325.70 L310.98,326.26 L311.80,326.81 L312.62,327.37 L313.45,327.91 L314.27,328.46 L315.09,329.00
+		L315.91,329.53 L316.73,330.06 L317.56,330.59 L318.38,331.12 L319.20,331.64 L320.02,332.15 L320.84,332.67 L321.67,333.18
+		L322.49,333.68 L323.31,334.18 L324.13,334.68 L324.95,335.18 L325.77,335.67 L326.60,336.16 L327.42,336.65 L328.24,337.13
+		L329.06,337.61 L329.88,338.08 L330.71,338.56 L331.53,339.02 L332.35,339.49 L333.17,339.95 L333.99,340.41 L334.82,340.87
+		L335.64,341.32 L336.46,341.77 L337.28,342.22 L338.10,342.66 L338.93,343.11 L339.75,343.54 L340.57,343.98 L341.39,344.41
+		L342.21,344.84 L343.04,345.27 L343.86,345.69 L344.68,346.12 L345.50,346.53 L346.32,346.95 L347.14,347.36 L347.97,347.77
+		L348.79,348.18 L349.61,348.59 L350.43,348.99 L351.25,349.39 L352.08,349.78 L352.90,350.18 L353.72,350.57 L354.54,350.96
+		L355.36,351.35 L356.19,351.73 L357.01,352.11 L357.83,352.49 L358.65,352.87 L359.47,353.24 L360.30,353.62 L361.12,353.99
+		L361.94,354.35 L362.76,354.72 L363.58,355.08 L364.41,355.44 L365.23,355.80 L366.05,356.16 L366.87,356.51 L367.69,356.86
+		L368.51,357.21 L369.34,357.56 L370.16,357.90 L370.98,358.25 L371.80,358.59 L372.62,358.93 L373.45,359.26 L374.27,359.60
+		L375.09,359.93 L375.91,360.26 L376.73,360.59 L377.56,360.91 L378.38,361.24 L379.20,361.56 L380.02,361.88 L380.84,362.20
+		L381.67,362.51 L382.49,362.83 L383.31,363.14 L384.13,363.45 L384.95,363.76 L385.77,364.07 L386.60,364.37 L387.42,364.67
+		L388.24,364.97 L389.06,365.27 L389.88,365.57 L390.71,365.87 L391.53,366.16 L392.35,366.45 L393.17,366.74 L393.99,367.03
+		L394.82,367.32 L395.64,367.60 L396.46,367.89 L397.28,368.17 L398.10,368.45 L398.93,368.73 L399.75,369.00 L400.57,369.28
+		L401.39,369.55 L402.21,369.82 L403.04,370.09 L403.86,370.36 L404.68,370.63 L405.50,370.89 L406.32,371.16 L407.14,371.42
+		L407.97,371.68 L408.79,371.94 L409.61,372.20 L410.43,372.45 L411.25,372.71 L412.08,372.96 L412.90,373.21 L413.72,373.46
+		L414.54,373.71 L415.36,373.96 L416.19,374.20 L417.01,374.45 L417.83,374.69 L418.65,374.93 L419.47,374.95 L420.30,374.94
+		L421.12,374.93 L421.94,374.92 L422.76,374.91 L423.58,374.90 L424.41,374.89 L425.23,374.87 L426.05,374.86 L426.87,374.84
+		L427.69,374.83 L428.51,374.81 L429.34,374.79 L430.16,374.77 L430.98,374.76 L431.80,374.74 L432.62,374.72 L433.45,374.69
+		L434.27,374.67 L435.09,374.65 L435.91,374.63 L436.73,374.60 L437.56,374.58 L438.38,374.56 L439.20,374.53 L440.02,374.50
+		L440.84,374.48 L441.67,374.45 L442.49,374.42 L443.31,374.39 L444.13,374.36 L444.95,374.33 L445.78,374.30 L446.60,374.27
+		L447.42,374.24 L448.24,374.21 L449.06,374.18 L449.88,374.14 L450.71,374.11 L451.53,374.07 L452.35,374.04 L453.17,374.00
+		L453.99,373.97 L454.82,373.93 L455.64,373.89 L456.46,373.85 L457.28,373.82 L458.10,373.78 L458.93,373.74 L459.75,373.70
+		L460.57,373.66 L461.39,373.61 L462.21,373.57 L463.04,373.53 L463.86,373.49 L464.68,373.44 L465.50,373.40 L466.32,373.35
+		L467.14,373.31 L467.97,373.26 L468.79,373.22 L469.61,373.17 L470.43,373.12 L471.25,373.08 L472.08,373.03 L472.90,372.98
+		L473.72,372.93 L474.54,372.88 L475.36,372.83 L476.19,372.78 L477.01,372.73 L477.83,372.68 L478.65,372.62 L479.47,372.57
+		L480.30,372.52 L481.12,372.46 L481.94,372.41 L482.76,372.35 L483.58,372.30 L484.41,372.24 L485.23,372.19 L486.05,372.13
+		L486.87,372.08 L487.69,372.02 L488.51,371.96 L489.34,371.90 L490.16,371.84 L490.98,371.78 L491.80,371.72 L492.62,371.66
+		L493.45,371.60 L494.27,371.54 L495.09,371.48 L495.91,371.42 L496.73,371.36 L497.56,371.30 L498.38,371.23 L499.20,371.17
+		L500.02,371.11 L500.84,371.04 L501.67,370.98 L502.49,370.91 L503.31,370.85 L504.13,370.78 L504.95,370.71 L505.78,370.65
+		L506.60,370.58 L507.42,370.51 L508.24,370.44 L509.06,370.38 L509.88,370.31 L510.71,370.24 L511.53,370.17 L512.35,370.10
+		L513.17,370.03 L513.99,369.96 L514.82,369.89 L515.64,369.82 L516.46,369.74 L517.28,369.67 L518.10,369.60 L518.93,369.53
+		L519.75,369.45 L520.57,369.38 L521.39,369.31 L522.21,369.23 L523.04,369.16 L523.86,369.08 L524.68,369.01 L525.50,368.93
+		L526.32,368.86 L527.15,368.78 L527.97,368.70 L528.79,368.63 L529.61,368.55 L530.43,368.47 L531.25,368.39 L532.08,368.31
+		L532.90,368.24 L533.72,368.16 L534.54,368.08 L535.36,368.00 L536.19,367.92 L537.01,367.84 L537.83,367.76 L538.65,367.67
+		L539.47,367.59 L540.30,367.51 L541.12,367.43 L541.94,367.35 L542.76,367.26 L543.58,367.18 L544.41,367.10 L545.23,367.01
+		L546.05,366.93 L546.87,366.85 L547.69,366.76 L548.51,366.68 L549.34,366.59 L550.16,366.51 L550.98,366.42 L551.80,366.33
+		L552.62,366.25 L553.45,366.16 L554.27,366.07 L555.09,365.99 L555.91,365.90 L556.73,365.81 L557.56,365.72 L558.38,365.64
+		L559.20,365.55 L560.02,365.46 L560.84,365.37 L561.67,365.28 L562.49,365.19 L563.31,365.10 L564.13,365.01 L564.95,364.92
+		L565.78,364.83 L566.60,364.74 L567.42,364.64 L568.24,364.55 L569.06,364.46 L569.88,364.37 L570.71,364.28 L571.53,364.18
+		L572.35,364.09 L573.17,364.00 L573.99,363.90 L574.82,363.81 L575.64,363.72 L576.46,363.62 L577.28,363.53 L578.10,363.43
+		L578.93,363.34 L579.75,363.24 L580.57,363.15 L581.39,363.05 L582.21,362.95 L583.04,362.86 L583.86,362.76 L584.68,362.66
+		L585.50,362.57 L586.32,362.47 L587.15,362.37 L587.97,362.27 L588.79,362.18 L589.61,362.08 L590.43,361.98 L591.25,361.88
+		L592.08,361.78 L592.90,361.68 L593.72,361.58 L594.54,361.48 L595.36,361.38 L596.19,361.28 L597.01,361.18 L597.83,361.08
+		L598.65,360.98 L599.47,360.88 L600.30,360.78 L601.12,360.67 L601.94,360.57 L602.76,360.47 L603.58,360.37 L604.41,360.27
+		L605.23,360.16 L606.05,360.06 L606.87,359.96 L607.69,359.85 L608.52,359.75 L609.34,359.65 L610.16,359.54 L610.98,359.44
+		L611.80,359.33 L612.62,359.23 L613.45,359.12 L614.27,359.02 L615.09,358.91 L615.91,358.81 L616.73,358.70 L617.56,358.60
+		L618.38,358.49 L619.20,358.38 L620.02,358.28 L620.84,358.17 L621.67,358.06 L622.49,357.96 L623.31,357.85 L624.13,357.74
+		L624.95,357.63 L625.78,357.53 L626.60,357.42 L627.42,357.31 L628.24,357.20 L629.06,357.09 L629.88,356.98 L630.71,356.87
+		L631.53,356.77 L632.35,356.66 L633.17,356.55 L633.99,356.44 L634.82,356.33 L635.64,356.22 L636.46,356.11 L637.28,355.99
+		L638.10,355.88 L638.93,355.77 L639.75,355.66 L640.57,355.55 L641.39,355.44 L642.21,355.33 L643.04,355.22 L643.86,355.10
+		L644.68,354.99 L645.50,354.88 L646.32,354.77 L647.15,354.65 L647.97,354.54 L648.79,354.43 L649.61,354.31 L650.43,354.20
+		L651.25,354.09 L652.08,353.97 L652.90,353.86 L653.72,353.74 L654.54,353.63 L655.36,353.52 L656.19,353.40 L657.01,353.29
+		L657.83,353.17 L658.65,353.06 L659.47,352.94 L660.30,352.83 L661.12,352.71 L661.94,352.59 L662.76,352.48 L663.58,352.36
+		L664.41,352.25 L665.23,352.13 L666.05,352.01 L666.87,351.90 L667.69,351.78 L668.52,351.66 L669.34,351.54 L670.16,351.43
+		L670.98,351.31 L671.80,351.19 L672.62,351.07 L673.45,350.95 L674.27,350.84 L675.09,350.72 L675.91,350.60 L676.73,350.48
+		L677.56,350.36 L678.38,350.24 L679.20,350.12 L680.02,350.00 L680.84,349.89 L681.67,349.77 L682.49,349.65 L683.31,349.53
+		L684.13,349.41 L684.95,349.29 L685.78,349.17 L686.60,349.04 L687.42,348.92 L688.24,348.80 L689.06,348.68 L689.88,348.56
+		L690.71,348.44 L691.53,348.32 L692.35,348.20 L693.17,348.08 L693.99,347.95 L694.82,347.83 L695.64,347.71 L696.46,347.59
+		L697.28,347.47 L698.10,347.34 L698.93,347.22 L699.75,347.10 L700.57,346.97 L701.39,346.85 L702.21,346.73 L703.04,346.61
+		L703.86,346.48 L704.68,346.36 L705.50,346.23 L706.32,346.11 L707.15,345.99 L707.97,345.86 L708.79,345.74 L709.61,345.61
+		L710.43,345.49 L711.25,345.37 L712.08,345.24 L712.90,345.12 L713.72,344.99 L714.54,344.87 L715.36,344.74 L716.19,344.61
+		L717.01,344.49 L717.83,344.36 L718.65,344.24 L719.47,344.11 L720.30,343.99 L721.12,343.86 L721.94,343.73 L722.76,343.61
+		L723.58,343.48 L723.99,343.42  '/></g>
+	</g>
+	<g id="gnuplot_plot_4a"  fill="none"><title>gnuplot_plot_4a</title>
+<g fill="none" color="white" stroke="rgb(  0,   0,   0)" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(216,  82,  24)'  d='M103.99,524.46 L104.68,524.33 L105.50,524.17 L106.32,524.02 L107.14,523.86 L107.97,523.70 L108.79,523.55 L109.61,523.39
+		L110.43,523.23 L111.25,523.08 L112.08,522.92 L112.90,522.77 L113.72,522.61 L114.54,522.45 L115.36,522.30 L116.19,522.14
+		L117.01,521.99 L117.83,521.83 L118.65,521.67 L119.47,521.52 L120.30,521.36 L121.12,521.20 L121.94,521.05 L122.76,520.89
+		L123.58,520.74 L124.40,520.58 L125.23,520.42 L126.05,520.27 L126.87,520.11 L127.69,519.96 L128.51,519.80 L129.34,519.64
+		L130.16,519.49 L130.98,519.33 L131.80,519.17 L132.62,519.02 L133.45,518.86 L134.27,518.71 L135.09,518.55 L135.91,518.39
+		L136.73,518.24 L137.56,518.08 L138.38,517.92 L139.20,517.77 L140.02,517.61 L140.84,517.46 L141.67,517.30 L142.49,517.14
+		L143.31,516.99 L144.13,516.83 L144.95,516.68 L145.77,516.52 L146.60,516.36 L147.42,516.21 L148.24,516.05 L149.06,515.89
+		L149.88,515.74 L150.71,515.58 L151.53,515.43 L152.35,515.27 L153.17,515.11 L153.99,514.96 L154.82,514.80 L155.64,514.65
+		L156.46,514.49 L157.28,514.33 L158.10,514.18 L158.93,514.02 L159.75,513.86 L160.57,513.71 L161.39,513.55 L162.21,513.40
+		L163.03,513.24 L163.86,513.08 L164.68,512.93 L165.50,512.77 L166.32,512.62 L167.14,512.46 L167.97,512.30 L168.79,512.15
+		L169.61,511.99 L170.43,511.83 L171.25,511.68 L172.08,511.52 L172.90,511.37 L173.72,511.21 L174.54,511.05 L175.36,510.90
+		L176.19,510.74 L177.01,510.59 L177.83,510.43 L178.65,510.27 L179.47,510.12 L180.30,509.96 L181.12,509.80 L181.94,509.65
+		L182.76,509.49 L183.58,509.34 L184.40,509.18 L185.23,509.02 L186.05,508.87 L186.87,508.71 L187.69,508.56 L188.51,508.40
+		L189.34,508.24 L190.16,508.09 L190.98,507.93 L191.80,507.77 L192.62,507.62 L193.45,507.46 L194.27,507.31 L195.09,507.15
+		L195.91,506.99 L196.73,506.84 L197.56,506.68 L198.38,506.52 L199.20,506.37 L200.02,506.21 L200.84,506.06 L201.67,505.90
+		L202.49,505.74 L203.31,505.59 L204.13,505.43 L204.95,505.28 L205.77,505.12 L206.60,504.96 L207.42,504.81 L208.24,504.65
+		L209.06,504.49 L209.88,504.34 L210.71,504.18 L211.53,504.03 L212.35,503.87 L213.17,503.71 L213.99,503.56 L214.82,503.40
+		L215.64,503.25 L216.46,503.09 L217.28,502.93 L218.10,502.78 L218.93,502.62 L219.75,502.46 L220.57,502.31 L221.39,502.15
+		L222.21,502.00 L223.04,501.84 L223.86,501.68 L224.68,501.53 L225.50,501.37 L226.32,501.22 L227.14,501.06 L227.97,500.90
+		L228.79,500.75 L229.61,500.59 L230.43,500.43 L231.25,500.28 L232.08,500.12 L232.90,499.97 L233.72,499.81 L234.54,499.65
+		L235.36,499.50 L236.19,499.34 L237.01,499.19 L237.83,499.03 L238.65,498.87 L239.47,498.72 L240.30,498.56 L241.12,498.40
+		L241.94,498.25 L242.76,498.09 L243.58,497.94 L244.40,497.78 L245.23,497.62 L246.05,497.47 L246.87,497.31 L247.69,497.15
+		L248.51,497.00 L249.34,496.84 L250.16,496.69 L250.98,496.53 L251.80,496.37 L252.62,496.22 L253.45,496.06 L254.27,495.91
+		L255.09,495.75 L255.91,495.59 L256.73,495.44 L257.56,495.28 L258.38,495.12 L259.20,494.97 L260.02,494.81 L260.84,494.66
+		L261.67,494.50 L262.49,494.34 L263.31,494.19 L264.13,494.03 L264.95,493.88 L265.77,493.72 L266.60,493.56 L267.42,493.41
+		L268.24,493.25 L269.06,493.09 L269.88,492.94 L270.71,492.78 L271.53,492.63 L272.35,492.47 L273.17,492.31 L273.99,492.16
+		L274.82,492.00 L275.64,491.85 L276.46,491.69 L277.28,491.53 L278.10,491.38 L278.93,491.22 L279.75,491.06 L280.57,490.91
+		L281.39,490.75 L282.21,490.60 L283.04,490.44 L283.86,490.28 L284.68,490.13 L285.50,489.97 L286.32,489.82 L287.14,489.66
+		L287.97,489.50 L288.79,489.35 L289.61,489.19 L290.43,489.03 L291.25,488.88 L292.08,488.72 L292.90,488.57 L293.72,488.41
+		L294.54,488.25 L295.36,488.10 L296.19,487.94 L297.01,487.78 L297.83,487.63 L298.65,487.47 L299.47,487.32 L300.30,487.16
+		L301.12,487.00 L301.94,486.85 L302.76,486.69 L303.58,486.54 L304.41,486.38 L305.23,486.22 L306.05,486.07 L306.87,485.91
+		L307.69,485.75 L308.51,485.60 L309.34,485.44 L310.16,485.29 L310.98,485.13 L311.80,484.97 L312.62,484.82 L313.45,484.66
+		L314.27,484.51 L315.09,484.35 L315.91,484.19 L316.73,484.04 L317.56,483.88 L318.38,483.72 L319.20,483.57 L320.02,483.41
+		L320.84,483.26 L321.67,483.10 L322.49,482.94 L323.31,482.79 L324.13,482.63 L324.95,482.48 L325.77,482.32 L326.60,482.16
+		L327.42,482.01 L328.24,481.85 L329.06,481.69 L329.88,481.54 L330.71,481.38 L331.53,481.23 L332.35,481.07 L333.17,480.91
+		L333.99,480.76 L334.82,480.60 L335.64,480.45 L336.46,480.29 L337.28,480.13 L338.10,479.98 L338.93,479.82 L339.75,479.66
+		L340.57,479.51 L341.39,479.35 L342.21,479.20 L343.04,479.04 L343.86,478.88 L344.68,478.73 L345.50,478.57 L346.32,478.42
+		L347.14,478.26 L347.97,478.10 L348.79,477.95 L349.61,477.79 L350.43,477.63 L351.25,477.48 L352.08,477.32 L352.90,477.17
+		L353.72,477.01 L354.54,476.85 L355.36,476.70 L356.19,476.54 L357.01,476.38 L357.83,476.23 L358.65,476.07 L359.47,475.92
+		L360.30,475.76 L361.12,475.60 L361.94,475.45 L362.76,475.29 L363.58,475.14 L364.41,474.98 L365.23,474.82 L366.05,474.67
+		L366.87,474.51 L367.69,474.35 L368.51,474.20 L369.34,474.04 L370.16,473.89 L370.98,473.73 L371.80,473.57 L372.62,473.42
+		L373.45,473.26 L374.27,473.11 L375.09,472.95 L375.91,472.79 L376.73,472.64 L377.56,472.48 L378.38,472.32 L379.20,472.17
+		L380.02,472.01 L380.84,471.86 L381.67,471.70 L382.49,471.54 L383.31,471.39 L384.13,471.23 L384.95,471.08 L385.77,470.92
+		L386.60,470.76 L387.42,470.61 L388.24,470.45 L389.06,470.29 L389.88,470.14 L390.71,469.98 L391.53,469.83 L392.35,469.67
+		L393.17,469.51 L393.99,469.36 L394.82,469.20 L395.64,469.05 L396.46,468.89 L397.28,468.73 L398.10,468.58 L398.93,468.42
+		L399.75,468.26 L400.57,468.11 L401.39,467.95 L402.21,467.80 L403.04,467.64 L403.86,467.48 L404.68,467.33 L405.50,467.17
+		L406.32,467.01 L407.14,466.86 L407.97,466.70 L408.79,466.55 L409.61,466.39 L410.43,466.23 L411.25,466.08 L412.08,465.92
+		L412.90,465.77 L413.72,465.61 L414.54,465.45 L415.36,465.30 L416.19,465.14 L417.01,464.98 L417.83,464.83 L418.65,464.67
+		L419.47,464.52 L420.30,464.36 L421.12,464.20 L421.94,464.05 L422.76,463.89 L423.58,463.74 L424.41,463.58 L425.23,463.42
+		L426.05,463.27 L426.87,463.11 L427.69,462.95 L428.51,462.80 L429.34,462.64 L430.16,462.49 L430.98,462.33 L431.80,462.17
+		L432.62,462.02 L433.45,461.86 L434.27,461.71 L435.09,461.55 L435.91,461.39 L436.73,461.24 L437.56,461.08 L438.38,460.92
+		L439.20,460.77 L440.02,460.61 L440.84,460.46 L441.67,460.30 L442.49,460.14 L443.31,459.99 L444.13,459.83 L444.95,459.68
+		L445.78,459.52 L446.60,459.36 L447.42,459.21 L448.24,459.05 L449.06,458.89 L449.88,458.74 L450.71,458.58 L451.53,458.43
+		L452.35,458.27 L453.17,458.11 L453.99,457.96 L454.82,457.80 L455.64,457.65 L456.46,457.49 L457.28,457.33 L458.10,457.18
+		L458.93,457.02 L459.75,456.86 L460.57,456.71 L461.39,456.55 L462.21,456.40 L463.04,456.24 L463.86,456.08 L464.68,455.93
+		L465.50,455.77 L466.32,455.61 L467.14,455.46 L467.97,455.30 L468.79,455.15 L469.61,454.99 L470.43,454.83 L471.25,454.68
+		L472.08,454.52 L472.90,454.37 L473.72,454.21 L474.54,454.05 L475.36,453.90 L476.19,453.74 L477.01,453.58 L477.83,453.43
+		L478.65,453.27 L479.47,453.12 L480.30,452.96 L481.12,452.80 L481.94,452.65 L482.76,452.49 L483.58,452.34 L484.41,452.18
+		L485.23,452.02 L486.05,451.87 L486.87,451.71 L487.69,451.55 L488.51,451.40 L489.34,451.24 L490.16,451.09 L490.98,450.93
+		L491.80,450.77 L492.62,450.62 L493.45,450.46 L494.27,450.31 L495.09,450.15 L495.91,449.99 L496.73,449.84 L497.56,449.68
+		L498.38,449.52 L499.20,449.37 L500.02,449.21 L500.84,449.06 L501.67,448.90 L502.49,448.74 L503.31,448.59 L504.13,448.43
+		L504.95,448.28 L505.78,448.12 L506.60,447.96 L507.42,447.81 L508.24,447.65 L509.06,447.49 L509.88,447.34 L510.71,447.18
+		L511.53,447.03 L512.35,446.87 L513.17,446.71 L513.99,446.56 L514.82,446.40 L515.64,446.24 L516.46,446.09 L517.28,445.93
+		L518.10,445.78 L518.93,445.62 L519.75,445.46 L520.57,445.31 L521.39,445.15 L522.21,445.00 L523.04,444.84 L523.86,444.68
+		L524.68,444.53 L525.50,444.37 L526.32,444.21 L527.15,444.06 L527.97,443.90 L528.79,443.75 L529.61,443.59 L530.43,443.43
+		L531.25,443.28 L532.08,443.12 L532.90,442.97 L533.72,442.81 L534.54,442.65 L535.36,442.50 L536.19,442.34 L537.01,442.18
+		L537.83,442.03 L538.65,441.87 L539.47,441.72 L540.30,441.56 L541.12,441.40 L541.94,441.25 L542.76,441.09 L543.58,440.94
+		L544.41,440.78 L545.23,440.62 L546.05,440.47 L546.87,440.31 L547.69,440.15 L548.51,440.00 L549.34,439.84 L550.16,439.69
+		L550.98,439.53 L551.80,439.37 L552.62,439.22 L553.45,439.06 L554.27,438.91 L555.09,438.75 L555.91,438.59 L556.73,438.44
+		L557.56,438.28 L558.38,438.12 L559.20,437.97 L560.02,437.81 L560.84,437.66 L561.67,437.50 L562.49,437.34 L563.31,437.19
+		L564.13,437.03 L564.95,436.88 L565.78,436.72 L566.60,436.56 L567.42,436.41 L568.24,436.25 L569.06,436.09 L569.88,435.94
+		L570.71,435.78 L571.53,435.63 L572.35,435.47 L573.17,435.31 L573.99,435.16 L574.82,435.00 L575.64,434.84 L576.46,434.69
+		L577.28,434.53 L578.10,434.38 L578.93,434.22 L579.75,434.06 L580.57,433.91 L581.39,433.75 L582.21,433.60 L583.04,433.44
+		L583.86,433.28 L584.68,433.13 L585.50,432.97 L586.32,432.81 L587.15,432.66 L587.97,432.50 L588.79,432.35 L589.61,432.19
+		L590.43,432.03 L591.25,431.88 L592.08,431.72 L592.90,431.57 L593.72,431.41 L594.54,431.25 L595.36,431.10 L596.19,430.94
+		L597.01,430.78 L597.83,430.63 L598.65,430.47 L599.47,430.32 L600.30,430.16 L601.12,430.00 L601.94,429.85 L602.76,429.69
+		L603.58,429.54 L604.41,429.38 L605.23,429.22 L606.05,429.07 L606.87,428.91 L607.69,428.75 L608.52,428.60 L609.34,428.44
+		L610.16,428.29 L610.98,428.13 L611.80,427.97 L612.62,427.82 L613.45,427.66 L614.27,427.51 L615.09,427.35 L615.91,427.19
+		L616.73,427.04 L617.56,426.88 L618.38,426.72 L619.20,426.57 L620.02,426.41 L620.84,426.26 L621.67,426.10 L622.49,425.94
+		L623.31,425.79 L624.13,425.63 L624.95,425.47 L625.78,425.32 L626.60,425.16 L627.42,425.01 L628.24,424.85 L629.06,424.69
+		L629.88,424.54 L630.71,424.38 L631.53,424.23 L632.35,424.07 L633.17,423.91 L633.99,423.76 L634.82,423.60 L635.64,423.44
+		L636.46,423.29 L637.28,423.13 L638.10,422.98 L638.93,422.82 L639.75,422.66 L640.57,422.51 L641.39,422.35 L642.21,422.20
+		L643.04,422.04 L643.86,421.88 L644.68,421.73 L645.50,421.57 L646.32,421.41 L647.15,421.26 L647.97,421.10 L648.79,420.95
+		L649.61,420.79 L650.43,420.63 L651.25,420.48 L652.08,420.32 L652.90,420.17 L653.72,420.01 L654.54,419.85 L655.36,419.70
+		L656.19,419.54 L657.01,419.38 L657.83,419.23 L658.65,419.07 L659.47,418.92 L660.30,418.76 L661.12,418.60 L661.94,418.45
+		L662.76,418.29 L663.58,418.14 L664.41,417.98 L665.23,417.82 L666.05,417.67 L666.87,417.51 L667.69,417.35 L668.52,417.20
+		L669.34,417.04 L670.16,416.89 L670.98,416.73 L671.80,416.57 L672.62,416.42 L673.45,416.26 L674.27,416.11 L675.09,415.95
+		L675.91,415.79 L676.73,415.64 L677.56,415.48 L678.38,415.32 L679.20,415.17 L680.02,415.01 L680.84,414.86 L681.67,414.70
+		L682.49,414.54 L683.31,414.39 L684.13,414.23 L684.95,414.07 L685.78,413.92 L686.60,413.76 L687.42,413.61 L688.24,413.45
+		L689.06,413.29 L689.88,413.14 L690.71,412.98 L691.53,412.83 L692.35,412.67 L693.17,412.51 L693.99,412.36 L694.82,412.20
+		L695.64,412.04 L696.46,411.89 L697.28,411.73 L698.10,411.58 L698.93,411.42 L699.75,411.26 L700.57,411.11 L701.39,410.95
+		L702.21,410.80 L703.04,410.64 L703.86,410.48 L704.68,410.33 L705.50,410.17 L706.32,410.01 L707.15,409.86 L707.97,409.70
+		L708.79,409.55 L709.61,409.39 L710.43,409.23 L711.25,409.08 L712.08,408.92 L712.90,408.77 L713.72,408.61 L714.54,408.45
+		L715.36,408.30 L716.19,408.14 L717.01,407.98 L717.83,407.83 L718.65,407.67 L719.47,407.52 L720.30,407.36 L721.12,407.20
+		L721.94,407.05 L722.76,406.89 L723.58,406.74 L723.99,406.67  '/></g>
+	</g>
+	<g id="gnuplot_plot_5a"  fill="none"><title>gnuplot_plot_5a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(236, 176,  31)'  d='M103.99,421.19 L104.68,421.19 L105.50,421.19 L106.32,421.19 L107.14,421.19 L107.97,421.19 L108.79,421.19 L109.61,421.19
+		L110.43,421.19 L111.25,421.19 L112.08,421.19 L112.90,421.19 L113.72,421.19 L114.54,421.19 L115.36,421.19 L116.19,421.19
+		L117.01,421.19 L117.83,421.19 L118.65,421.19 L119.47,421.19 L120.30,421.19 L121.12,421.19 L121.94,421.19 L122.76,421.19
+		L123.58,421.19 L124.40,421.19 L125.23,421.19 L126.05,421.19 L126.87,421.19 L127.69,421.19 L128.51,421.19 L129.34,421.19
+		L130.16,421.19 L130.98,421.19 L131.80,421.19 L132.62,421.19 L133.45,421.19 L134.27,421.19 L135.09,421.19 L135.91,421.19
+		L136.73,421.19 L137.56,421.19 L138.38,421.19 L139.20,421.19 L140.02,421.19 L140.84,421.19 L141.67,421.19 L142.49,421.19
+		L143.31,421.19 L144.13,421.19 L144.95,421.19 L145.77,421.19 L146.60,421.19 L147.42,421.19 L148.24,421.19 L149.06,421.19
+		L149.88,421.19 L150.71,421.19 L151.53,421.19 L152.35,421.19 L153.17,421.19 L153.99,421.19 L154.82,421.19 L155.64,421.19
+		L156.46,421.19 L157.28,421.19 L158.10,421.19 L158.93,421.19 L159.75,421.19 L160.57,421.19 L161.39,421.19 L162.21,421.19
+		L163.03,421.19 L163.86,421.19 L164.68,421.19 L165.50,421.19 L166.32,421.19 L167.14,421.19 L167.97,421.19 L168.79,421.19
+		L169.61,421.19 L170.43,421.19 L171.25,421.19 L172.08,421.19 L172.90,421.19 L173.72,421.19 L174.54,421.19 L175.36,421.19
+		L176.19,421.19 L177.01,421.19 L177.83,421.19 L178.65,421.19 L179.47,421.19 L180.30,421.19 L181.12,421.19 L181.94,421.19
+		L182.76,421.19 L183.58,421.19 L184.40,421.19 L185.23,421.19 L186.05,421.19 L186.87,421.19 L187.69,421.19 L188.51,421.19
+		L189.34,421.19 L190.16,421.19 L190.98,421.19 L191.80,421.19 L192.62,421.19 L193.45,421.19 L194.27,421.19 L195.09,421.19
+		L195.91,421.19 L196.73,421.19 L197.56,421.19 L198.38,421.19 L199.20,421.19 L200.02,421.19 L200.84,421.19 L201.67,421.19
+		L202.49,421.19 L203.31,421.19 L204.13,421.19 L204.95,421.19 L205.77,421.19 L206.60,421.19 L207.42,421.19 L208.24,421.19
+		L209.06,421.19 L209.88,421.19 L210.71,421.19 L211.53,421.19 L212.35,421.19 L213.17,421.19 L213.99,421.19 L214.82,421.19
+		L215.64,421.19 L216.46,421.19 L217.28,421.19 L218.10,421.19 L218.93,421.19 L219.75,421.19 L220.57,421.19 L221.39,421.19
+		L222.21,421.19 L223.04,421.19 L223.86,421.19 L224.68,421.19 L225.50,421.19 L226.32,421.19 L227.14,421.19 L227.97,421.19
+		L228.79,421.19 L229.61,421.19 L230.43,421.19 L231.25,421.19 L232.08,421.19 L232.90,421.19 L233.72,421.19 L234.54,421.19
+		L235.36,421.19 L236.19,421.19 L237.01,421.19 L237.83,421.19 L238.65,421.19 L239.47,421.19 L240.30,421.19 L241.12,421.19
+		L241.94,421.19 L242.76,421.19 L243.58,421.19 L244.40,421.19 L245.23,421.19 L246.05,421.19 L246.87,421.19 L247.69,421.19
+		L248.51,421.19 L249.34,421.19 L250.16,421.19 L250.98,421.19 L251.80,421.19 L252.62,421.19 L253.45,421.19 L254.27,421.19
+		L255.09,421.19 L255.91,421.19 L256.73,421.19 L257.56,421.19 L258.38,421.19 L259.20,421.19 L260.02,421.19 L260.84,421.19
+		L261.67,421.19 L262.49,421.19 L263.31,421.19 L264.13,421.19 L264.95,421.19 L265.77,421.19 L266.60,421.19 L267.42,421.19
+		L268.24,421.19 L269.06,421.19 L269.88,421.19 L270.71,421.19 L271.53,421.19 L272.35,421.19 L273.17,421.19 L273.99,421.19
+		L274.82,421.19 L275.64,421.19 L276.46,421.19 L277.28,421.19 L278.10,421.19 L278.93,421.19 L279.75,421.19 L280.57,421.19
+		L281.39,421.19 L282.21,421.19 L283.04,421.19 L283.86,421.19 L284.68,421.19 L285.50,421.19 L286.32,421.19 L287.14,421.19
+		L287.97,421.19 L288.79,421.19 L289.61,421.19 L290.43,421.19 L291.25,421.19 L292.08,421.19 L292.90,421.19 L293.72,421.19
+		L294.54,421.19 L295.36,421.19 L296.19,421.19 L297.01,421.19 L297.83,421.19 L298.65,421.19 L299.47,421.19 L300.30,421.19
+		L301.12,421.19 L301.94,421.19 L302.76,421.19 L303.58,421.19 L304.41,421.19 L305.23,421.19 L306.05,421.19 L306.87,421.19
+		L307.69,421.19 L308.51,421.19 L309.34,421.19 L310.16,421.19 L310.98,421.19 L311.80,421.19 L312.62,421.19 L313.45,421.19
+		L314.27,421.19 L315.09,421.19 L315.91,421.19 L316.73,421.19 L317.56,421.19 L318.38,421.19 L319.20,421.19 L320.02,421.19
+		L320.84,421.19 L321.67,421.19 L322.49,421.19 L323.31,421.19 L324.13,421.19 L324.95,421.19 L325.77,421.19 L326.60,421.19
+		L327.42,421.19 L328.24,421.19 L329.06,421.19 L329.88,421.19 L330.71,421.19 L331.53,421.19 L332.35,421.19 L333.17,421.19
+		L333.99,421.19 L334.82,421.19 L335.64,421.19 L336.46,421.19 L337.28,421.19 L338.10,421.19 L338.93,421.19 L339.75,421.19
+		L340.57,421.19 L341.39,421.19 L342.21,421.19 L343.04,421.19 L343.86,421.19 L344.68,421.19 L345.50,421.19 L346.32,421.19
+		L347.14,421.19 L347.97,421.19 L348.79,421.19 L349.61,421.19 L350.43,421.19 L351.25,421.19 L352.08,421.19 L352.90,421.19
+		L353.72,421.19 L354.54,421.19 L355.36,421.19 L356.19,421.19 L357.01,421.19 L357.83,421.19 L358.65,421.19 L359.47,421.19
+		L360.30,421.19 L361.12,421.19 L361.94,421.19 L362.76,421.19 L363.58,421.19 L364.41,421.19 L365.23,421.19 L366.05,421.19
+		L366.87,421.19 L367.69,421.19 L368.51,421.19 L369.34,421.19 L370.16,421.19 L370.98,421.19 L371.80,421.19 L372.62,421.19
+		L373.45,421.19 L374.27,421.19 L375.09,421.19 L375.91,421.19 L376.73,421.19 L377.56,421.19 L378.38,421.19 L379.20,421.19
+		L380.02,421.19 L380.84,421.19 L381.67,421.19 L382.49,421.19 L383.31,421.19 L384.13,421.19 L384.95,421.19 L385.77,421.19
+		L386.60,421.19 L387.42,421.19 L388.24,421.19 L389.06,421.19 L389.88,421.19 L390.71,421.19 L391.53,421.19 L392.35,421.19
+		L393.17,421.19 L393.99,421.19 L394.82,421.19 L395.64,421.19 L396.46,421.19 L397.28,421.19 L398.10,421.19 L398.93,421.19
+		L399.75,421.19 L400.57,421.19 L401.39,421.19 L402.21,421.19 L403.04,421.19 L403.86,421.19 L404.68,421.19 L405.50,421.19
+		L406.32,421.19 L407.14,421.19 L407.97,421.19 L408.79,421.19 L409.61,421.19 L410.43,421.19 L411.25,421.19 L412.08,421.19
+		L412.90,421.19 L413.72,421.19 L414.54,421.19 L415.36,421.19 L416.19,421.19 L417.01,421.19 L417.83,421.19 L418.65,421.19
+		L419.47,421.19 L420.30,421.19 L421.12,421.19 L421.94,421.19 L422.76,421.19 L423.58,421.19 L424.41,421.19 L425.23,421.19
+		L426.05,421.19 L426.87,421.19 L427.69,421.19 L428.51,421.19 L429.34,421.19 L430.16,421.19 L430.98,421.19 L431.80,421.19
+		L432.62,421.19 L433.45,421.19 L434.27,421.19 L435.09,421.19 L435.91,421.19 L436.73,421.19 L437.56,421.19 L438.38,421.19
+		L439.20,421.19 L440.02,421.19 L440.84,421.19 L441.67,421.19 L442.49,421.19 L443.31,421.19 L444.13,421.19 L444.95,421.19
+		L445.78,421.19 L446.60,421.19 L447.42,421.19 L448.24,421.19 L449.06,421.19 L449.88,421.19 L450.71,421.19 L451.53,421.19
+		L452.35,421.19 L453.17,421.19 L453.99,421.19 L454.82,421.19 L455.64,421.19 L456.46,421.19 L457.28,421.19 L458.10,421.19
+		L458.93,421.19 L459.75,421.19 L460.57,421.19 L461.39,421.19 L462.21,421.19 L463.04,421.19 L463.86,421.19 L464.68,421.19
+		L465.50,421.19 L466.32,421.19 L467.14,421.19 L467.97,421.19 L468.79,421.19 L469.61,421.19 L470.43,421.19 L471.25,421.19
+		L472.08,421.19 L472.90,421.19 L473.72,421.19 L474.54,421.19 L475.36,421.19 L476.19,421.19 L477.01,421.19 L477.83,421.19
+		L478.65,421.19 L479.47,421.19 L480.30,421.19 L481.12,421.19 L481.94,421.19 L482.76,421.19 L483.58,421.19 L484.41,421.19
+		L485.23,421.19 L486.05,421.19 L486.87,421.19 L487.69,421.19 L488.51,421.19 L489.34,421.19 L490.16,421.19 L490.98,421.19
+		L491.80,421.19 L492.62,421.19 L493.45,421.19 L494.27,421.19 L495.09,421.19 L495.91,421.19 L496.73,421.19 L497.56,421.19
+		L498.38,421.19 L499.20,421.19 L500.02,421.19 L500.84,421.19 L501.67,421.19 L502.49,421.19 L503.31,421.19 L504.13,421.19
+		L504.95,421.19 L505.78,421.19 L506.60,421.19 L507.42,421.19 L508.24,421.19 L509.06,421.19 L509.88,421.19 L510.71,421.19
+		L511.53,421.19 L512.35,421.19 L513.17,421.19 L513.99,421.19 L514.82,421.19 L515.64,421.19 L516.46,421.19 L517.28,421.19
+		L518.10,421.19 L518.93,421.19 L519.75,421.19 L520.57,421.19 L521.39,421.19 L522.21,421.19 L523.04,421.19 L523.86,421.19
+		L524.68,421.19 L525.50,421.19 L526.32,421.19 L527.15,421.19 L527.97,421.19 L528.79,421.19 L529.61,421.19 L530.43,421.19
+		L531.25,421.19 L532.08,421.19 L532.90,421.19 L533.72,421.19 L534.54,421.19 L535.36,421.19 L536.19,421.19 L537.01,421.19
+		L537.83,421.19 L538.65,421.19 L539.47,421.19 L540.30,421.19 L541.12,421.19 L541.94,421.19 L542.76,421.19 L543.58,421.19
+		L544.41,421.19 L545.23,421.19 L546.05,421.19 L546.87,421.19 L547.69,421.19 L548.51,421.19 L549.34,421.19 L550.16,421.19
+		L550.98,421.19 L551.80,421.19 L552.62,421.19 L553.45,421.19 L554.27,421.19 L555.09,421.19 L555.91,421.19 L556.73,421.19
+		L557.56,421.19 L558.38,421.19 L559.20,421.19 L560.02,421.19 L560.84,421.19 L561.67,421.19 L562.49,421.19 L563.31,421.19
+		L564.13,421.19 L564.95,421.19 L565.78,421.19 L566.60,421.19 L567.42,421.19 L568.24,421.19 L569.06,421.19 L569.88,421.19
+		L570.71,421.19 L571.53,421.19 L572.35,421.19 L573.17,421.19 L573.99,421.19 L574.82,421.19 L575.64,421.19 L576.46,421.19
+		L577.28,421.19 L578.10,421.19 L578.93,421.19 L579.75,421.19 L580.57,421.19 L581.39,421.19 L582.21,421.19 L583.04,421.19
+		L583.86,421.19 L584.68,421.19 L585.50,421.19 L586.32,421.19 L587.15,421.19 L587.97,421.19 L588.79,421.19 L589.61,421.19
+		L590.43,421.19 L591.25,421.19 L592.08,421.19 L592.90,421.19 L593.72,421.19 L594.54,421.19 L595.36,421.19 L596.19,421.19
+		L597.01,421.19 L597.83,421.19 L598.65,421.19 L599.47,421.19 L600.30,421.19 L601.12,421.19 L601.94,421.19 L602.76,421.19
+		L603.58,421.19 L604.41,421.19 L605.23,421.19 L606.05,421.19 L606.87,421.19 L607.69,421.19 L608.52,421.19 L609.34,421.19
+		L610.16,421.19 L610.98,421.19 L611.80,421.19 L612.62,421.19 L613.45,421.19 L614.27,421.19 L615.09,421.19 L615.91,421.19
+		L616.73,421.19 L617.56,421.19 L618.38,421.19 L619.20,421.19 L620.02,421.19 L620.84,421.19 L621.67,421.19 L622.49,421.19
+		L623.31,421.19 L624.13,421.19 L624.95,421.19 L625.78,421.19 L626.60,421.19 L627.42,421.19 L628.24,421.19 L629.06,421.19
+		L629.88,421.19 L630.71,421.19 L631.53,421.19 L632.35,421.19 L633.17,421.19 L633.99,421.19 L634.82,421.19 L635.64,421.19
+		L636.46,421.19 L637.28,421.19 L638.10,421.19 L638.93,421.19 L639.75,421.19 L640.57,421.19 L641.39,421.19 L642.21,421.19
+		L643.04,421.19 L643.86,421.19 L644.68,421.19 L645.50,421.19 L646.32,421.19 L647.15,421.19 L647.97,421.19 L648.79,421.19
+		L649.61,421.19 L650.43,421.19 L651.25,421.19 L652.08,421.19 L652.90,421.19 L653.72,421.19 L654.54,421.19 L655.36,421.19
+		L656.19,421.19 L657.01,421.19 L657.83,421.19 L658.65,421.19 L659.47,421.19 L660.30,421.19 L661.12,421.19 L661.94,421.19
+		L662.76,421.19 L663.58,421.19 L664.41,421.19 L665.23,421.19 L666.05,421.19 L666.87,421.19 L667.69,421.19 L668.52,421.19
+		L669.34,421.19 L670.16,421.19 L670.98,421.19 L671.80,421.19 L672.62,421.19 L673.45,421.19 L674.27,421.19 L675.09,421.19
+		L675.91,421.19 L676.73,421.19 L677.56,421.19 L678.38,421.19 L679.20,421.19 L680.02,421.19 L680.84,421.19 L681.67,421.19
+		L682.49,421.19 L683.31,421.19 L684.13,421.19 L684.95,421.19 L685.78,421.19 L686.60,421.19 L687.42,421.19 L688.24,421.19
+		L689.06,421.19 L689.88,421.19 L690.71,421.19 L691.53,421.19 L692.35,421.19 L693.17,421.19 L693.99,421.19 L694.82,421.19
+		L695.64,421.19 L696.46,421.19 L697.28,421.19 L698.10,421.19 L698.93,421.19 L699.75,421.19 L700.57,421.19 L701.39,421.19
+		L702.21,421.19 L703.04,421.19 L703.86,421.19 L704.68,421.19 L705.50,421.19 L706.32,421.19 L707.15,421.19 L707.97,421.19
+		L708.79,421.19 L709.61,421.19 L710.43,421.19 L711.25,421.19 L712.08,421.19 L712.90,421.19 L713.72,421.19 L714.54,421.19
+		L715.36,421.19 L716.19,421.19 L717.01,421.19 L717.83,421.19 L718.65,421.19 L719.47,421.19 L720.30,421.19 L721.12,421.19
+		L721.94,421.19 L722.76,421.19 L723.58,421.19 L723.99,421.19  '/></g>
+	</g>
+	<g id="gnuplot_plot_6a"  fill="none"><title>gnuplot_plot_6a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(125,  46, 141)'  d='M156.75,45.01 L157.28,47.48 L158.10,51.26 L158.93,54.98 L159.75,58.64 L160.57,62.25 L161.39,65.79 L162.21,69.29
+		L163.03,72.72 L163.86,76.11 L164.68,79.44 L165.50,82.73 L166.32,85.97 L167.14,89.15 L167.97,92.29 L168.79,95.39
+		L169.61,98.44 L170.43,101.45 L171.25,104.41 L172.08,107.33 L172.90,110.21 L173.72,113.05 L174.54,115.85 L175.36,118.61
+		L176.19,121.33 L177.01,124.02 L177.83,126.67 L178.65,129.28 L179.47,131.86 L180.30,134.40 L181.12,136.91 L181.94,139.39
+		L182.76,141.83 L183.58,144.25 L184.40,146.63 L185.23,148.98 L186.05,151.30 L186.87,153.59 L187.69,155.85 L188.51,158.08
+		L189.34,160.29 L190.16,162.47 L190.98,164.62 L191.80,166.74 L192.62,168.84 L193.45,170.92 L194.27,172.96 L195.09,174.99
+		L195.91,176.99 L196.73,178.96 L197.56,180.91 L198.38,182.84 L199.20,184.75 L200.02,186.63 L200.84,188.50 L201.67,190.34
+		L202.49,192.16 L203.31,193.96 L204.13,195.73 L204.95,197.49 L205.77,199.23 L206.60,200.95 L207.42,202.65 L208.24,204.33
+		L209.06,205.99 L209.88,207.64 L210.71,209.27 L211.53,210.87 L212.35,212.46 L213.17,214.04 L213.99,215.60 L214.82,217.14
+		L215.64,218.66 L216.46,220.17 L217.28,221.66 L218.10,223.14 L218.93,224.60 L219.75,226.04 L220.57,227.48 L221.39,228.89
+		L222.21,230.29 L223.04,231.68 L223.86,233.05 L224.68,234.41 L225.50,235.76 L226.32,237.09 L227.14,238.41 L227.97,239.72
+		L228.79,241.01 L229.61,242.29 L230.43,243.56 L231.25,244.81 L232.08,246.06 L232.90,247.29 L233.72,248.51 L234.54,249.71
+		L235.36,250.91 L236.19,252.09 L237.01,253.27 L237.83,254.43 L238.65,255.58 L239.47,256.72 L240.30,257.85 L241.12,258.97
+		L241.94,260.07 L242.76,261.17 L243.58,262.26 L244.40,263.34 L245.23,264.41 L246.05,265.47 L246.87,266.51 L247.69,267.55
+		L248.51,268.58 L249.34,269.60 L250.16,270.62 L250.98,271.62 L251.80,272.61 L252.62,273.60 L253.45,274.57 L254.27,275.54
+		L255.09,276.50 L255.91,277.45 L256.73,278.39 L257.56,279.33 L258.38,280.25 L259.20,281.17 L260.02,282.08 L260.84,282.98
+		L261.67,283.88 L262.49,284.77 L263.31,285.65 L264.13,286.52 L264.95,287.38 L265.77,288.24 L266.60,289.09 L267.42,289.93
+		L268.24,290.77 L269.06,291.60 L269.88,292.42 L270.71,293.24 L271.53,294.05 L272.35,294.85 L273.17,295.64 L273.99,296.43
+		L274.82,297.22 L275.64,297.99 L276.46,298.76 L277.28,299.53 L278.10,300.29 L278.93,301.04 L279.75,301.78 L280.57,302.52
+		L281.39,303.26 L282.21,303.99 L283.04,304.71 L283.86,305.43 L284.68,306.14 L285.50,306.84 L286.32,307.54 L287.14,308.24
+		L287.97,308.93 L288.79,309.61 L289.61,310.29 L290.43,310.96 L291.25,311.63 L292.08,312.30 L292.90,312.96 L293.72,313.61
+		L294.54,314.26 L295.36,314.90 L296.19,315.54 L297.01,316.17 L297.83,316.80 L298.65,317.43 L299.47,318.05 L300.30,318.66
+		L301.12,319.27 L301.94,319.88 L302.76,320.48 L303.58,321.08 L304.41,321.67 L305.23,322.26 L306.05,322.84 L306.87,323.42
+		L307.69,324.00 L308.51,324.57 L309.34,325.14 L310.16,325.70 L310.98,326.26 L311.80,326.81 L312.62,327.37 L313.45,327.91
+		L314.27,328.46 L315.09,329.00 L315.91,329.53 L316.73,330.06 L317.56,330.59 L318.38,331.12 L319.20,331.64 L320.02,332.15
+		L320.84,332.67 L321.67,333.18 L322.49,333.68 L323.31,334.18 L324.13,334.68 L324.95,335.18 L325.77,335.67 L326.60,336.16
+		L327.42,336.65 L328.24,337.13 L329.06,337.61 L329.88,338.08 L330.71,338.56 L331.53,339.02 L332.35,339.49 L333.17,339.95
+		L333.99,340.41 L334.82,340.87 L335.64,341.32 L336.46,341.77 L337.28,342.22 L338.10,342.66 L338.93,343.11 L339.75,343.54
+		L340.57,343.98 L341.39,344.41 L342.21,344.84 L343.04,345.27 L343.86,345.69 L344.68,346.12 L345.50,346.53 L346.32,346.95
+		L347.14,347.36 L347.97,347.77 L348.79,348.18 L349.61,348.59 L350.43,348.99 L351.25,349.39 L352.08,349.78 L352.90,350.18
+		L353.72,350.57 L354.54,350.96 L355.36,351.35 L356.19,351.73 L357.01,352.11 L357.83,352.49 L358.65,352.87 L359.47,353.24
+		L360.30,353.62 L361.12,353.99 L361.94,354.35 L362.76,354.72 L363.58,355.08 L364.41,355.44 L365.23,355.80 L366.05,356.16
+		L366.87,356.51 L367.69,356.86 L368.51,357.21 L369.34,357.56 L370.16,357.90 L370.98,358.25 L371.80,358.59 L372.62,358.93
+		L373.45,359.26 L374.27,359.60 L375.09,359.93 L375.91,360.26 L376.73,360.59 L377.56,360.91 L378.38,361.24 L379.20,361.56
+		L380.02,361.88 L380.84,362.20 L381.67,362.51 L382.49,362.83 L383.31,363.14 L384.13,363.45 L384.95,363.76 L385.77,364.07
+		L386.60,364.37 L387.42,364.67 L388.24,364.97 L389.06,365.27 L389.88,365.57 L390.71,365.87 L391.53,366.16 L392.35,366.45
+		L393.17,366.74 L393.99,367.03 L394.82,367.32 L395.64,367.60 L396.46,367.89 L397.28,368.17 L398.10,368.45 L398.93,368.73
+		L399.75,369.00 L400.57,369.28 L401.39,369.55 L402.21,369.82 L403.04,370.09 L403.86,370.36 L404.68,370.63 L405.50,370.89
+		L406.32,371.16 L407.14,371.42 L407.97,371.68 L408.79,371.94 L409.61,372.20 L410.43,372.45 L411.25,372.71 L412.08,372.96
+		L412.90,373.21 L413.72,373.46 L414.54,373.71 L415.36,373.96 L416.19,374.20 L417.01,374.45 L417.83,374.69 L418.65,374.93
+		L419.47,375.17 L420.30,375.41 L421.12,375.65 L421.94,375.88 L422.76,376.12 L423.58,376.35 L424.41,376.58 L425.23,376.81
+		L426.05,377.04 L426.87,377.27 L427.69,377.50 L428.51,377.72 L429.34,377.95 L430.16,378.17 L430.98,378.39 L431.80,378.61
+		L432.62,378.83 L433.45,379.05 L434.27,379.26 L435.09,379.48 L435.91,379.69 L436.73,379.90 L437.56,380.11 L438.38,380.32
+		L439.20,380.53 L440.02,380.74 L440.84,380.95 L441.67,381.15 L442.49,381.36 L443.31,381.56 L444.13,381.76 L444.95,381.96
+		L445.78,382.16 L446.60,382.36 L447.42,382.56 L448.24,382.75 L449.06,382.95 L449.88,383.14 L450.71,383.34 L451.53,383.53
+		L452.35,383.72 L453.17,383.91 L453.99,384.10 L454.82,384.28 L455.64,384.47 L456.46,384.65 L457.28,384.84 L458.10,385.02
+		L458.93,385.20 L459.75,385.39 L460.57,385.57 L461.39,385.74 L462.21,385.92 L463.04,386.10 L463.86,386.28 L464.68,386.45
+		L465.50,386.62 L466.32,386.80 L467.14,386.97 L467.97,387.14 L468.79,387.31 L469.61,387.48 L470.43,387.65 L471.25,387.82
+		L472.08,387.98 L472.90,388.15 L473.72,388.31 L474.54,388.48 L475.36,388.64 L476.19,388.80 L477.01,388.96 L477.83,389.12
+		L478.65,389.28 L479.47,389.44 L480.30,389.60 L481.12,389.75 L481.94,389.91 L482.76,390.06 L483.58,390.22 L484.41,390.37
+		L485.23,390.52 L486.05,390.67 L486.87,390.82 L487.69,390.97 L488.51,391.12 L489.34,391.27 L490.16,391.42 L490.98,391.56
+		L491.80,391.71 L492.62,391.85 L493.45,392.00 L494.27,392.14 L495.09,392.28 L495.91,392.42 L496.73,392.56 L497.56,392.70
+		L498.38,392.84 L499.20,392.98 L500.02,393.12 L500.84,393.26 L501.67,393.39 L502.49,393.53 L503.31,393.66 L504.13,393.80
+		L504.95,393.93 L505.78,394.06 L506.60,394.19 L507.42,394.32 L508.24,394.45 L509.06,394.58 L509.88,394.71 L510.71,394.84
+		L511.53,394.97 L512.35,395.09 L513.17,395.22 L513.99,395.34 L514.82,395.47 L515.64,395.59 L516.46,395.71 L517.28,395.84
+		L518.10,395.96 L518.93,396.08 L519.75,396.20 L520.57,396.32 L521.39,396.44 L522.21,396.55 L523.04,396.67 L523.86,396.79
+		L524.68,396.90 L525.50,397.02 L526.32,397.13 L527.15,397.25 L527.97,397.36 L528.79,397.47 L529.61,397.59 L530.43,397.70
+		L531.25,397.81 L532.08,397.92 L532.90,398.03 L533.72,398.14 L534.54,398.25 L535.36,398.36 L536.19,398.46 L537.01,398.57
+		L537.83,398.68 L538.65,398.78 L539.47,398.89 L540.30,398.99 L541.12,399.09 L541.94,399.20 L542.76,399.30 L543.58,399.40
+		L544.41,399.50 L545.23,399.60 L546.05,399.70 L546.87,399.80 L547.69,399.90 L548.51,400.00 L549.34,400.10 L550.16,400.19
+		L550.98,400.29 L551.80,400.39 L552.62,400.48 L553.45,400.58 L554.27,400.67 L555.09,400.77 L555.91,400.86 L556.73,400.95
+		L557.56,401.05 L558.38,401.14 L559.20,401.23 L560.02,401.32 L560.84,401.41 L561.67,401.50 L562.49,401.59 L563.31,401.68
+		L564.13,401.77 L564.95,401.85 L565.78,401.94 L566.60,402.03 L567.42,402.11 L568.24,402.20 L569.06,402.28 L569.88,402.37
+		L570.71,402.45 L571.53,402.54 L572.35,402.62 L573.17,402.70 L573.99,402.78 L574.82,402.87 L575.64,402.95 L576.46,403.03
+		L577.28,403.11 L578.10,403.19 L578.93,403.27 L579.75,403.35 L580.57,403.42 L581.39,403.50 L582.21,403.58 L583.04,403.66
+		L583.86,403.73 L584.68,403.81 L585.50,403.88 L586.32,403.96 L587.15,404.03 L587.97,404.11 L588.79,404.18 L589.61,404.25
+		L590.43,404.33 L591.25,404.40 L592.08,404.47 L592.90,404.54 L593.72,404.61 L594.54,404.69 L595.36,404.76 L596.19,404.83
+		L597.01,404.89 L597.83,404.96 L598.65,405.03 L599.47,405.10 L600.30,405.17 L601.12,405.23 L601.94,405.30 L602.76,405.37
+		L603.58,405.43 L604.41,405.50 L605.23,405.56 L606.05,405.63 L606.87,405.69 L607.69,405.76 L608.52,405.82 L609.34,405.88
+		L610.16,405.95 L610.98,406.01 L611.80,406.07 L612.62,406.13 L613.45,406.19 L614.27,406.26 L615.09,406.32 L615.91,406.38
+		L616.73,406.44 L617.56,406.49 L618.38,406.55 L619.20,406.61 L620.02,406.67 L620.84,406.73 L621.67,406.78 L622.49,406.84
+		L623.31,406.90 L624.13,406.95 L624.95,407.01 L625.78,407.07 L626.60,407.12 L627.42,407.18 L628.24,407.23 L629.06,407.28
+		L629.88,407.34 L630.71,407.39 L631.53,407.44 L632.35,407.50 L633.17,407.55 L633.99,407.60 L634.82,407.65 L635.64,407.70
+		L636.46,407.75 L637.28,407.81 L638.10,407.86 L638.93,407.91 L639.75,407.95 L640.57,408.00 L641.39,408.05 L642.21,408.10
+		L643.04,408.15 L643.86,408.20 L644.68,408.24 L645.50,408.29 L646.32,408.34 L647.15,408.38 L647.97,408.43 L648.79,408.48
+		L649.61,408.52 L650.43,408.57 L651.25,408.61 L652.08,408.66 L652.90,408.70 L653.72,408.74 L654.54,408.79 L655.36,408.83
+		L656.19,408.87 L657.01,408.92 L657.83,408.96 L658.65,409.00 L659.47,409.04 L660.30,409.08 L661.12,409.13 L661.94,409.17
+		L662.76,409.21 L663.58,409.25 L664.41,409.29 L665.23,409.33 L666.05,409.37 L666.87,409.40 L667.69,409.44 L668.52,409.48
+		L669.34,409.52 L670.16,409.56 L670.98,409.60 L671.80,409.63 L672.62,409.67 L673.45,409.71 L674.27,409.74 L675.09,409.78
+		L675.91,409.81 L676.73,409.85 L677.56,409.88 L678.38,409.92 L679.20,409.95 L680.02,409.99 L680.84,410.02 L681.67,410.06
+		L682.49,410.09 L683.31,410.12 L684.13,410.16 L684.95,410.19 L685.78,410.22 L686.60,410.25 L687.42,410.29 L688.24,410.32
+		L689.06,410.35 L689.88,410.38 L690.71,410.41 L691.53,410.44 L692.35,410.47 L693.17,410.50 L693.99,410.53 L694.82,410.56
+		L695.64,410.59 L696.46,410.62 L697.28,410.65 L698.10,410.68 L698.93,410.70 L699.75,410.73 L700.57,410.76 L701.39,410.79
+		L702.21,410.81 L703.04,410.84 L703.86,410.87 L704.68,410.90 L705.50,410.92 L706.32,410.95 L707.15,410.97 L707.97,411.00
+		L708.79,411.02 L709.61,411.05 L710.43,411.07 L711.25,411.10 L712.08,411.12 L712.90,411.15 L713.72,411.17 L714.54,411.19
+		L715.36,411.22 L716.19,411.24 L717.01,411.26 L717.83,411.29 L718.65,411.31 L719.47,411.33 L720.30,411.35 L721.12,411.37
+		L721.94,411.39 L722.76,411.42 L723.58,411.44 L723.99,411.45  '/></g>
+	</g>
+	<g id="gnuplot_plot_7a"  fill="none"><title>gnuplot_plot_7a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(118, 171,  47)'  d='M111.63,45.01 L112.08,48.49 L112.90,54.79 L113.72,60.93 L114.54,66.89 L115.36,72.69 L116.19,78.33 L117.01,83.81
+		L117.83,89.16 L118.65,94.36 L119.47,99.43 L120.30,104.37 L121.12,109.19 L121.94,113.88 L122.76,118.46 L123.58,122.93
+		L124.40,127.29 L125.23,131.54 L126.05,135.70 L126.87,139.75 L127.69,143.72 L128.51,147.59 L129.34,151.37 L130.16,155.07
+		L130.98,158.69 L131.80,162.22 L132.62,165.68 L133.45,169.07 L134.27,172.38 L135.09,175.62 L135.91,178.79 L136.73,181.90
+		L137.56,184.94 L138.38,187.92 L139.20,190.84 L140.02,193.70 L140.84,196.50 L141.67,199.25 L142.49,201.94 L143.31,204.58
+		L144.13,207.17 L144.95,209.71 L145.77,212.20 L146.60,214.64 L147.42,217.04 L148.24,219.39 L149.06,221.70 L149.88,223.97
+		L150.71,226.19 L151.53,228.38 L152.35,230.52 L153.17,232.63 L153.99,234.70 L154.82,236.73 L155.64,238.73 L156.46,240.69
+		L157.28,242.62 L158.10,244.51 L158.93,246.38 L159.75,248.21 L160.57,250.01 L161.39,251.78 L162.21,253.52 L163.03,255.23
+		L163.86,256.92 L164.68,258.57 L165.50,260.20 L166.32,261.81 L167.14,263.38 L167.97,264.93 L168.79,266.46 L169.61,267.97
+		L170.43,269.44 L171.25,270.90 L172.08,272.33 L172.90,273.75 L173.72,275.14 L174.54,276.50 L175.36,277.85 L176.19,279.18
+		L177.01,280.49 L177.83,281.77 L178.65,283.04 L179.47,284.29 L180.30,285.52 L181.12,286.73 L181.94,287.93 L182.76,289.11
+		L183.58,290.27 L184.40,291.41 L185.23,292.54 L186.05,293.65 L186.87,294.74 L187.69,295.82 L188.51,296.88 L189.34,297.93
+		L190.16,298.97 L190.98,299.99 L191.80,300.99 L192.62,301.98 L193.45,302.96 L194.27,303.92 L195.09,304.88 L195.91,305.81
+		L196.73,306.74 L197.56,307.65 L198.38,308.55 L199.20,309.44 L200.02,310.31 L200.84,311.18 L201.67,312.03 L202.49,312.87
+		L203.31,313.70 L204.13,314.52 L204.95,315.33 L205.77,316.13 L206.60,316.91 L207.42,317.69 L208.24,318.46 L209.06,319.21
+		L209.88,319.96 L210.71,320.70 L211.53,321.43 L212.35,322.14 L213.17,322.85 L213.99,323.55 L214.82,324.24 L215.64,324.93
+		L216.46,325.60 L217.28,326.26 L218.10,326.92 L218.93,327.57 L219.75,328.21 L220.57,328.84 L221.39,329.47 L222.21,330.08
+		L223.04,330.69 L223.86,331.29 L224.68,331.88 L225.50,332.47 L226.32,333.05 L227.14,333.62 L227.97,334.19 L228.79,334.74
+		L229.61,335.30 L230.43,335.84 L231.25,336.38 L232.08,336.91 L232.90,337.43 L233.72,337.95 L234.54,338.46 L235.36,338.97
+		L236.19,339.47 L237.01,339.96 L237.83,340.45 L238.65,340.93 L239.47,341.40 L240.30,341.87 L241.12,342.34 L241.94,342.80
+		L242.76,343.25 L243.58,343.70 L244.40,344.14 L245.23,344.58 L246.05,345.01 L246.87,345.43 L247.69,345.86 L248.51,346.27
+		L249.34,346.68 L250.16,347.09 L250.98,347.49 L251.80,347.89 L252.62,348.28 L253.45,348.67 L254.27,349.05 L255.09,349.43
+		L255.91,349.80 L256.73,350.17 L257.56,350.54 L258.38,350.90 L259.20,351.25 L260.02,351.60 L260.84,351.95 L261.67,352.30
+		L262.49,352.63 L263.31,352.97 L264.13,353.30 L264.95,353.63 L265.77,353.95 L266.60,354.27 L267.42,354.59 L268.24,354.90
+		L269.06,355.21 L269.88,355.51 L270.71,355.81 L271.53,356.11 L272.35,356.41 L273.17,356.70 L273.99,356.98 L274.82,357.27
+		L275.64,357.55 L276.46,357.82 L277.28,358.10 L278.10,358.37 L278.93,358.63 L279.75,358.90 L280.57,359.16 L281.39,359.41
+		L282.21,359.67 L283.04,359.92 L283.86,360.17 L284.68,360.41 L285.50,360.65 L286.32,360.89 L287.14,361.13 L287.97,361.36
+		L288.79,361.59 L289.61,361.82 L290.43,362.04 L291.25,362.27 L292.08,362.49 L292.90,362.70 L293.72,362.92 L294.54,363.13
+		L295.36,363.33 L296.19,363.54 L297.01,363.74 L297.83,363.94 L298.65,364.14 L299.47,364.34 L300.30,364.53 L301.12,364.72
+		L301.94,364.91 L302.76,365.10 L303.58,365.28 L304.41,365.46 L305.23,365.64 L306.05,365.82 L306.87,365.99 L307.69,366.16
+		L308.51,366.33 L309.34,366.50 L310.16,366.66 L310.98,366.83 L311.80,366.99 L312.62,367.15 L313.45,367.30 L314.27,367.46
+		L315.09,367.61 L315.91,367.76 L316.73,367.91 L317.56,368.06 L318.38,368.20 L319.20,368.34 L320.02,368.48 L320.84,368.62
+		L321.67,368.76 L322.49,368.89 L323.31,369.02 L324.13,369.16 L324.95,369.28 L325.77,369.41 L326.60,369.54 L327.42,369.66
+		L328.24,369.78 L329.06,369.90 L329.88,370.02 L330.71,370.14 L331.53,370.25 L332.35,370.36 L333.17,370.47 L333.99,370.58
+		L334.82,370.69 L335.64,370.80 L336.46,370.90 L337.28,371.01 L338.10,371.11 L338.93,371.21 L339.75,371.30 L340.57,371.40
+		L341.39,371.50 L342.21,371.59 L343.04,371.68 L343.86,371.77 L344.68,371.86 L345.50,371.95 L346.32,372.03 L347.14,372.12
+		L347.97,372.20 L348.79,372.28 L349.61,372.36 L350.43,372.44 L351.25,372.52 L352.08,372.59 L352.90,372.67 L353.72,372.74
+		L354.54,372.81 L355.36,372.88 L356.19,372.95 L357.01,373.02 L357.83,373.09 L358.65,373.15 L359.47,373.22 L360.30,373.28
+		L361.12,373.34 L361.94,373.40 L362.76,373.46 L363.58,373.52 L364.41,373.57 L365.23,373.63 L366.05,373.68 L366.87,373.73
+		L367.69,373.78 L368.51,373.83 L369.34,373.88 L370.16,373.93 L370.98,373.98 L371.80,374.02 L372.62,374.07 L373.45,374.11
+		L374.27,374.15 L375.09,374.19 L375.91,374.23 L376.73,374.27 L377.56,374.31 L378.38,374.35 L379.20,374.38 L380.02,374.42
+		L380.84,374.45 L381.67,374.48 L382.49,374.51 L383.31,374.54 L384.13,374.57 L384.95,374.60 L385.77,374.63 L386.60,374.65
+		L387.42,374.68 L388.24,374.70 L389.06,374.73 L389.88,374.75 L390.71,374.77 L391.53,374.79 L392.35,374.81 L393.17,374.83
+		L393.99,374.85 L394.82,374.86 L395.64,374.88 L396.46,374.89 L397.28,374.91 L398.10,374.92 L398.93,374.93 L399.75,374.94
+		L400.57,374.95 L401.39,374.96 L402.21,374.97 L403.04,374.98 L403.86,374.98 L404.68,374.99 L405.50,374.99 L406.32,375.00
+		L407.14,375.00 L407.97,375.00 L408.79,375.01 L409.61,375.01 L410.43,375.01 L411.25,375.01 L412.08,375.00 L412.90,375.00
+		L413.72,375.00 L414.54,374.99 L415.36,374.99 L416.19,374.98 L417.01,374.98 L417.83,374.97 L418.65,374.96 L419.47,374.95
+		L420.30,374.94 L421.12,374.93 L421.94,374.92 L422.76,374.91 L423.58,374.90 L424.41,374.89 L425.23,374.87 L426.05,374.86
+		L426.87,374.84 L427.69,374.83 L428.51,374.81 L429.34,374.79 L430.16,374.77 L430.98,374.76 L431.80,374.74 L432.62,374.72
+		L433.45,374.69 L434.27,374.67 L435.09,374.65 L435.91,374.63 L436.73,374.60 L437.56,374.58 L438.38,374.56 L439.20,374.53
+		L440.02,374.50 L440.84,374.48 L441.67,374.45 L442.49,374.42 L443.31,374.39 L444.13,374.36 L444.95,374.33 L445.78,374.30
+		L446.60,374.27 L447.42,374.24 L448.24,374.21 L449.06,374.18 L449.88,374.14 L450.71,374.11 L451.53,374.07 L452.35,374.04
+		L453.17,374.00 L453.99,373.97 L454.82,373.93 L455.64,373.89 L456.46,373.85 L457.28,373.82 L458.10,373.78 L458.93,373.74
+		L459.75,373.70 L460.57,373.66 L461.39,373.61 L462.21,373.57 L463.04,373.53 L463.86,373.49 L464.68,373.44 L465.50,373.40
+		L466.32,373.35 L467.14,373.31 L467.97,373.26 L468.79,373.22 L469.61,373.17 L470.43,373.12 L471.25,373.08 L472.08,373.03
+		L472.90,372.98 L473.72,372.93 L474.54,372.88 L475.36,372.83 L476.19,372.78 L477.01,372.73 L477.83,372.68 L478.65,372.62
+		L479.47,372.57 L480.30,372.52 L481.12,372.46 L481.94,372.41 L482.76,372.35 L483.58,372.30 L484.41,372.24 L485.23,372.19
+		L486.05,372.13 L486.87,372.08 L487.69,372.02 L488.51,371.96 L489.34,371.90 L490.16,371.84 L490.98,371.78 L491.80,371.72
+		L492.62,371.66 L493.45,371.60 L494.27,371.54 L495.09,371.48 L495.91,371.42 L496.73,371.36 L497.56,371.30 L498.38,371.23
+		L499.20,371.17 L500.02,371.11 L500.84,371.04 L501.67,370.98 L502.49,370.91 L503.31,370.85 L504.13,370.78 L504.95,370.71
+		L505.78,370.65 L506.60,370.58 L507.42,370.51 L508.24,370.44 L509.06,370.38 L509.88,370.31 L510.71,370.24 L511.53,370.17
+		L512.35,370.10 L513.17,370.03 L513.99,369.96 L514.82,369.89 L515.64,369.82 L516.46,369.74 L517.28,369.67 L518.10,369.60
+		L518.93,369.53 L519.75,369.45 L520.57,369.38 L521.39,369.31 L522.21,369.23 L523.04,369.16 L523.86,369.08 L524.68,369.01
+		L525.50,368.93 L526.32,368.86 L527.15,368.78 L527.97,368.70 L528.79,368.63 L529.61,368.55 L530.43,368.47 L531.25,368.39
+		L532.08,368.31 L532.90,368.24 L533.72,368.16 L534.54,368.08 L535.36,368.00 L536.19,367.92 L537.01,367.84 L537.83,367.76
+		L538.65,367.67 L539.47,367.59 L540.30,367.51 L541.12,367.43 L541.94,367.35 L542.76,367.26 L543.58,367.18 L544.41,367.10
+		L545.23,367.01 L546.05,366.93 L546.87,366.85 L547.69,366.76 L548.51,366.68 L549.34,366.59 L550.16,366.51 L550.98,366.42
+		L551.80,366.33 L552.62,366.25 L553.45,366.16 L554.27,366.07 L555.09,365.99 L555.91,365.90 L556.73,365.81 L557.56,365.72
+		L558.38,365.64 L559.20,365.55 L560.02,365.46 L560.84,365.37 L561.67,365.28 L562.49,365.19 L563.31,365.10 L564.13,365.01
+		L564.95,364.92 L565.78,364.83 L566.60,364.74 L567.42,364.64 L568.24,364.55 L569.06,364.46 L569.88,364.37 L570.71,364.28
+		L571.53,364.18 L572.35,364.09 L573.17,364.00 L573.99,363.90 L574.82,363.81 L575.64,363.72 L576.46,363.62 L577.28,363.53
+		L578.10,363.43 L578.93,363.34 L579.75,363.24 L580.57,363.15 L581.39,363.05 L582.21,362.95 L583.04,362.86 L583.86,362.76
+		L584.68,362.66 L585.50,362.57 L586.32,362.47 L587.15,362.37 L587.97,362.27 L588.79,362.18 L589.61,362.08 L590.43,361.98
+		L591.25,361.88 L592.08,361.78 L592.90,361.68 L593.72,361.58 L594.54,361.48 L595.36,361.38 L596.19,361.28 L597.01,361.18
+		L597.83,361.08 L598.65,360.98 L599.47,360.88 L600.30,360.78 L601.12,360.67 L601.94,360.57 L602.76,360.47 L603.58,360.37
+		L604.41,360.27 L605.23,360.16 L606.05,360.06 L606.87,359.96 L607.69,359.85 L608.52,359.75 L609.34,359.65 L610.16,359.54
+		L610.98,359.44 L611.80,359.33 L612.62,359.23 L613.45,359.12 L614.27,359.02 L615.09,358.91 L615.91,358.81 L616.73,358.70
+		L617.56,358.60 L618.38,358.49 L619.20,358.38 L620.02,358.28 L620.84,358.17 L621.67,358.06 L622.49,357.96 L623.31,357.85
+		L624.13,357.74 L624.95,357.63 L625.78,357.53 L626.60,357.42 L627.42,357.31 L628.24,357.20 L629.06,357.09 L629.88,356.98
+		L630.71,356.87 L631.53,356.77 L632.35,356.66 L633.17,356.55 L633.99,356.44 L634.82,356.33 L635.64,356.22 L636.46,356.11
+		L637.28,355.99 L638.10,355.88 L638.93,355.77 L639.75,355.66 L640.57,355.55 L641.39,355.44 L642.21,355.33 L643.04,355.22
+		L643.86,355.10 L644.68,354.99 L645.50,354.88 L646.32,354.77 L647.15,354.65 L647.97,354.54 L648.79,354.43 L649.61,354.31
+		L650.43,354.20 L651.25,354.09 L652.08,353.97 L652.90,353.86 L653.72,353.74 L654.54,353.63 L655.36,353.52 L656.19,353.40
+		L657.01,353.29 L657.83,353.17 L658.65,353.06 L659.47,352.94 L660.30,352.83 L661.12,352.71 L661.94,352.59 L662.76,352.48
+		L663.58,352.36 L664.41,352.25 L665.23,352.13 L666.05,352.01 L666.87,351.90 L667.69,351.78 L668.52,351.66 L669.34,351.54
+		L670.16,351.43 L670.98,351.31 L671.80,351.19 L672.62,351.07 L673.45,350.95 L674.27,350.84 L675.09,350.72 L675.91,350.60
+		L676.73,350.48 L677.56,350.36 L678.38,350.24 L679.20,350.12 L680.02,350.00 L680.84,349.89 L681.67,349.77 L682.49,349.65
+		L683.31,349.53 L684.13,349.41 L684.95,349.29 L685.78,349.17 L686.60,349.04 L687.42,348.92 L688.24,348.80 L689.06,348.68
+		L689.88,348.56 L690.71,348.44 L691.53,348.32 L692.35,348.20 L693.17,348.08 L693.99,347.95 L694.82,347.83 L695.64,347.71
+		L696.46,347.59 L697.28,347.47 L698.10,347.34 L698.93,347.22 L699.75,347.10 L700.57,346.97 L701.39,346.85 L702.21,346.73
+		L703.04,346.61 L703.86,346.48 L704.68,346.36 L705.50,346.23 L706.32,346.11 L707.15,345.99 L707.97,345.86 L708.79,345.74
+		L709.61,345.61 L710.43,345.49 L711.25,345.37 L712.08,345.24 L712.90,345.12 L713.72,344.99 L714.54,344.87 L715.36,344.74
+		L716.19,344.61 L717.01,344.49 L717.83,344.36 L718.65,344.24 L719.47,344.11 L720.30,343.99 L721.12,343.86 L721.94,343.73
+		L722.76,343.61 L723.58,343.48 L723.99,343.42  '/></g>
+	</g>
+	<g id="gnuplot_plot_8a"  fill="none"><title>gnuplot_plot_8a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_9a"  fill="none"><title>gnuplot_plot_9a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(161,  19,  46)'  d='M276.68,534.01 L276.68,45.01  '/></g>
+	</g>
+	<g id="gnuplot_plot_10a"  fill="none"><title>gnuplot_plot_10a</title>
+<g fill="none" color="white" stroke="rgb(161,  19,  46)" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<use xlink:href='#gpPt6' transform='translate(419.47,367.00) scale(3.12)' color='rgb(  0, 113, 188)'/>
+</g>
+	</g>
+	<g id="gnuplot_plot_11a"  fill="none"><title>gnuplot_plot_11a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(419.47,345.80)" stroke="none" fill="rgb(0,0,0)" font-family="Helvetica" font-size="10.00"  text-anchor="start">
+		<text><tspan font-family="Helvetica" >W/S = 445.00</tspan></text>
+	</g>
+	<g transform="translate(419.47,360.80)" stroke="none" fill="rgb(0,0,0)" font-family="Helvetica" font-size="10.00"  text-anchor="start">
+		<text><tspan font-family="Helvetica" >T/W = 0.3415</tspan></text>
+	</g>
+</g>
+	</g>
+	<g id="gnuplot_plot_12a" ><title>Infeasible Area</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_13a" ><title>Takeoff Ground Roll</title>
+<g fill="none" color="white" stroke="rgb(  0,   0,   0)" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_14a" ><title>Takeoff Climb Angle</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_15a" ><title>OEI Climb</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_16a" ><title>Service Ceiling</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_17a" ><title>Landing</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_18a" ><title>Gust</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_19a" ><title>Design Point</title>
+<g fill="none" color="white" stroke="rgb(161,  19,  46)" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g stroke='none' shape-rendering='crispEdges'>
+		<polygon fill = 'white' points = '110.99,184.51 318.43,184.51 318.43,52.51 110.99,52.51 '/>
+	</g>
+<g fill="none" color="white" stroke="white" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M110.99,184.51 L110.99,52.51 L318.43,52.51 L318.43,184.51 L110.99,184.51 Z  '/></g>
+	<g id="gnuplot_plot_1a"  fill="none"><title>gnuplot_plot_1a</title>
+<g fill="none" color="white" stroke="rgb(  0,   0,   0)" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_2a"  fill="none"><title>gnuplot_plot_2a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_3a"  fill="none"><title>gnuplot_plot_3a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_4a"  fill="none"><title>gnuplot_plot_4a</title>
+<g fill="none" color="white" stroke="rgb(  0,   0,   0)" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_5a"  fill="none"><title>gnuplot_plot_5a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_6a"  fill="none"><title>gnuplot_plot_6a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_7a"  fill="none"><title>gnuplot_plot_7a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_8a"  fill="none"><title>gnuplot_plot_8a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_9a"  fill="none"><title>gnuplot_plot_9a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_10a"  fill="none"><title>gnuplot_plot_10a</title>
+<g fill="none" color="white" stroke="rgb(161,  19,  46)" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_11a"  fill="none"><title>gnuplot_plot_11a</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+	<g id="gnuplot_plot_12a" ><title>Infeasible Area</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(164.63,64.34)" stroke="none" fill="rgb(0,0,0)" font-family="Helvetica" font-size="11.00"  text-anchor="start">
+		<text><tspan font-family="Helvetica" >Infeasible Area</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M118.68,60.76 L156.94,60.76  '/></g>
+	</g>
+	<g id="gnuplot_plot_13a" ><title>Takeoff Ground Roll</title>
+<g fill="none" color="white" stroke="rgb(  0,   0,   0)" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(164.63,80.84)" stroke="none" fill="rgb(0,0,0)" font-family="Helvetica" font-size="11.00"  text-anchor="start">
+		<text><tspan font-family="Helvetica" >Takeoff Ground Roll</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(216,  82,  24)'  d='M118.68,77.26 L156.94,77.26  '/></g>
+	</g>
+	<g id="gnuplot_plot_14a" ><title>Takeoff Climb Angle</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(164.63,97.34)" stroke="none" fill="rgb(0,0,0)" font-family="Helvetica" font-size="11.00"  text-anchor="start">
+		<text><tspan font-family="Helvetica" >Takeoff Climb Angle</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(236, 176,  31)'  d='M118.68,93.76 L156.94,93.76  '/></g>
+	</g>
+	<g id="gnuplot_plot_15a" ><title>OEI Climb</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(164.63,113.84)" stroke="none" fill="rgb(0,0,0)" font-family="Helvetica" font-size="11.00"  text-anchor="start">
+		<text><tspan font-family="Helvetica" >OEI Climb</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(125,  46, 141)'  d='M118.68,110.26 L156.94,110.26  '/></g>
+	</g>
+	<g id="gnuplot_plot_16a" ><title>Service Ceiling</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(164.63,130.34)" stroke="none" fill="rgb(0,0,0)" font-family="Helvetica" font-size="11.00"  text-anchor="start">
+		<text><tspan font-family="Helvetica" >Service Ceiling</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(118, 171,  47)'  d='M118.68,126.76 L156.94,126.76  '/></g>
+	</g>
+	<g id="gnuplot_plot_17a" ><title>Landing</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(164.63,146.84)" stroke="none" fill="rgb(0,0,0)" font-family="Helvetica" font-size="11.00"  text-anchor="start">
+		<text><tspan font-family="Helvetica" >Landing</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 76, 189, 237)'  d='M118.68,143.26 L156.94,143.26  '/></g>
+	</g>
+	<g id="gnuplot_plot_18a" ><title>Gust</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(164.63,163.34)" stroke="none" fill="rgb(0,0,0)" font-family="Helvetica" font-size="11.00"  text-anchor="start">
+		<text><tspan font-family="Helvetica" >Gust</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(161,  19,  46)'  d='M118.68,159.76 L156.94,159.76  '/></g>
+	</g>
+	<g id="gnuplot_plot_19a" ><title>Design Point</title>
+<g fill="none" color="white" stroke="rgb(161,  19,  46)" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(164.63,179.84)" stroke="none" fill="rgb(0,0,0)" font-family="Helvetica" font-size="11.00"  text-anchor="start">
+		<text><tspan font-family="Helvetica" >Design Point</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<use xlink:href='#gpPt6' transform='translate(137.81,176.26) scale(3.12)' color='rgb(  0, 113, 188)'/>
+</g>
+	</g>
+<g fill="none" color="white" stroke="rgb(  0, 113, 188)" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M103.99,45.01 L103.99,534.01 L723.99,534.01 L723.99,45.01 L103.99,45.01 Z  '/>	<g transform="translate(69.09,289.51) rotate(270.00)" stroke="none" fill="rgb(0,0,0)" font-family="Sans" font-size="18.00"  text-anchor="middle">
+		<text><tspan font-family="Sans" >Thrust to Weight [-]</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(413.99,577.36)" stroke="none" fill="rgb(0,0,0)" font-family="Sans" font-size="18.00"  text-anchor="middle">
+		<text><tspan font-family="Sans" >Wing Loading [N/m</tspan><tspan font-family="Sans"  font-size="14.4" dy="-9.00px">2</tspan><tspan font-family="Sans"  font-size="18.0" dy="9.00px">]</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+</g>
+</svg>
+
diff --git a/docs/assets/images/documentation/cost-estimation.svg b/docs/assets/images/documentation/cost-estimation.svg
new file mode 100644
index 0000000000000000000000000000000000000000..97e423763a768fe16202d671e4347555c87b7eab
--- /dev/null
+++ b/docs/assets/images/documentation/cost-estimation.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="M 447.49477,574.05344 V 953.51337 H 773.83029 A 201.74619,201.74619 0 0 1 763.71136,890.27004 H 573.9814 A 63.243319,63.243319 0 0 0 510.73809,827.02672 V 700.54007 c 35.10004,0 63.24331,-28.14327 63.24331,-63.24331 H 890.198 a 63.243319,63.243319 0 0 0 63.24335,63.24331 v 1.8973 c 21.18648,0 42.37294,3.79461 63.24335,10.75137 V 574.05344 H 447.49477 m 284.59494,94.86498 c -53.75683,0.94865 -94.86499,41.10816 -94.86499,94.86498 0,53.75682 41.10816,92.96769 94.86499,94.86499 12.01622,0 24.34866,-2.52975 36.04868,-7.273 8.53786,-34.78382 22.76759,-67.67035 57.86763,-99.92444 -3.79459,-42.05681 -43.63787,-83.48118 -93.91631,-82.53253 m 221.35164,63.24331 71.14865,71.14874 -71.14865,71.14874 v -47.43249 c -58.5001,0 -96.76231,61.97845 -70.83255,114.4704 l -34.46761,34.46761 c -55.65412,-84.1136 4.42704,-196.3705 105.30016,-196.3705 v -47.4325 m 0,347.83827 -71.14877,-71.1488 71.14877,-71.14868 v 47.4325 c 58.50005,0 96.76225,-61.97845 70.83245,-114.47042 l 34.4677,-34.46761 c 55.6541,84.11362 -4.4271,196.37041 -105.30015,196.37041 V 1080"
+     id="path1-8"
+     style="display:inline;fill:#ffe400;fill-opacity:1;stroke-width:31.6217" /></svg>
diff --git a/docs/assets/images/documentation/cpacs-interface.svg b/docs/assets/images/documentation/cpacs-interface.svg
new file mode 100644
index 0000000000000000000000000000000000000000..2f741e6382c787904b4b6d2e2cf18bada7006575
--- /dev/null
+++ b/docs/assets/images/documentation/cpacs-interface.svg
@@ -0,0 +1,34 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns:xlink="http://www.w3.org/1999/xlink"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1"><color-profile
+       name="sRGB-IEC61966-2.1"
+       xlink:href="data:application/vnd.iccprofile;base64,AAAMbGxjbXMCEAAAbW50clJHQiBYWVogB84AAgAJAAYAMQAAYWNzcE1TRlQAAAAASUVDIHNSR0IAAAAAAAAAAAAAAAAAAPbWAAEAAAAA0y1sY21zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARY3BydAAAAVAAAAAzZGVzYwAAAYQAAACQd3RwdAAAAhQAAAAUYmtwdAAAAigAAAAUclhZWgAAAjwAAAAUZ1hZWgAAAlAAAAAUYlhZWgAAAmQAAAAUZG1uZAAAAngAAABwZG1kZAAAAugAAACIdnVlZAAAA3AAAACGdmlldwAAA/gAAAAkbHVtaQAABBwAAAAUbWVhcwAABDAAAAAkdGVjaAAABFQAAAAMclRSQwAABGAAAAgMZ1RSQwAABGAAAAgMYlRSQwAABGAAAAgMdGV4dAAAAABDb3B5cmlnaHQgKGMpIDE5OTggSGV3bGV0dC1QYWNrYXJkIENvbXBhbnkAAGRlc2MAAAAAAAAAEnNSR0IgSUVDNjE5NjYtMi4xAAAAAAAAAAASAHMAUgBHAEIAIABJAEUAQwA2ADEAOQA2ADYALQAyAC4AMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAADzUQABAAAAARbMWFlaIAAAAAAAAAAAAAAAAAAAAABYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9kZXNjAAAAAAAAABZJRUMgaHR0cDovL3d3dy5pZWMuY2gAAAAAAAAAAAAAABZJRUMgaHR0cDovL3d3dy5pZWMuY2gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAuSUVDIDYxOTY2LTIuMSBEZWZhdWx0IFJHQiBjb2xvdXIgc3BhY2UgLSBzUkdCAAAAAAAAAAAAAAAuSUVDIDYxOTY2LTIuMSBEZWZhdWx0IFJHQiBjb2xvdXIgc3BhY2UgLSBzUkdCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRlc2MAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAACxSZWZlcmVuY2UgVmlld2luZyBDb25kaXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2aWV3AAAAAAATpP4AFF8uABDPFAAD7cwABBMLAANcngAAAAFYWVogAAAAAABMCVYAUAAAAFcf521lYXMAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAKPAAAAAnNpZyAAAAAAQ1JUIGN1cnYAAAAAAAAEAAAAAAUACgAPABQAGQAeACMAKAAtADIANwA7AEAARQBKAE8AVABZAF4AYwBoAG0AcgB3AHwAgQCGAIsAkACVAJoAnwCkAKkArgCyALcAvADBAMYAywDQANUA2wDgAOUA6wDwAPYA+wEBAQcBDQETARkBHwElASsBMgE4AT4BRQFMAVIBWQFgAWcBbgF1AXwBgwGLAZIBmgGhAakBsQG5AcEByQHRAdkB4QHpAfIB+gIDAgwCFAIdAiYCLwI4AkECSwJUAl0CZwJxAnoChAKOApgCogKsArYCwQLLAtUC4ALrAvUDAAMLAxYDIQMtAzgDQwNPA1oDZgNyA34DigOWA6IDrgO6A8cD0wPgA+wD+QQGBBMEIAQtBDsESARVBGMEcQR+BIwEmgSoBLYExATTBOEE8AT+BQ0FHAUrBToFSQVYBWcFdwWGBZYFpgW1BcUF1QXlBfYGBgYWBicGNwZIBlkGagZ7BowGnQavBsAG0QbjBvUHBwcZBysHPQdPB2EHdAeGB5kHrAe/B9IH5Qf4CAsIHwgyCEYIWghuCIIIlgiqCL4I0gjnCPsJEAklCToJTwlkCXkJjwmkCboJzwnlCfsKEQonCj0KVApqCoEKmAquCsUK3ArzCwsLIgs5C1ELaQuAC5gLsAvIC+EL+QwSDCoMQwxcDHUMjgynDMAM2QzzDQ0NJg1ADVoNdA2ODakNww3eDfgOEw4uDkkOZA5/DpsOtg7SDu4PCQ8lD0EPXg96D5YPsw/PD+wQCRAmEEMQYRB+EJsQuRDXEPURExExEU8RbRGMEaoRyRHoEgcSJhJFEmQShBKjEsMS4xMDEyMTQxNjE4MTpBPFE+UUBhQnFEkUahSLFK0UzhTwFRIVNBVWFXgVmxW9FeAWAxYmFkkWbBaPFrIW1hb6Fx0XQRdlF4kXrhfSF/cYGxhAGGUYihivGNUY+hkgGUUZaxmRGbcZ3RoEGioaURp3Gp4axRrsGxQbOxtjG4obshvaHAIcKhxSHHscoxzMHPUdHh1HHXAdmR3DHeweFh5AHmoelB6+HukfEx8+H2kflB+/H+ogFSBBIGwgmCDEIPAhHCFIIXUhoSHOIfsiJyJVIoIiryLdIwojOCNmI5QjwiPwJB8kTSR8JKsk2iUJJTglaCWXJccl9yYnJlcmhya3JugnGCdJJ3onqyfcKA0oPyhxKKIo1CkGKTgpaymdKdAqAio1KmgqmyrPKwIrNitpK50r0SwFLDksbiyiLNctDC1BLXYtqy3hLhYuTC6CLrcu7i8kL1ovkS/HL/4wNTBsMKQw2zESMUoxgjG6MfIyKjJjMpsy1DMNM0YzfzO4M/E0KzRlNJ402DUTNU01hzXCNf02NzZyNq426TckN2A3nDfXOBQ4UDiMOMg5BTlCOX85vDn5OjY6dDqyOu87LTtrO6o76DwnPGU8pDzjPSI9YT2hPeA+ID5gPqA+4D8hP2E/oj/iQCNAZECmQOdBKUFqQaxB7kIwQnJCtUL3QzpDfUPARANER0SKRM5FEkVVRZpF3kYiRmdGq0bwRzVHe0fASAVIS0iRSNdJHUljSalJ8Eo3Sn1KxEsMS1NLmkviTCpMcky6TQJNSk2TTdxOJU5uTrdPAE9JT5NP3VAnUHFQu1EGUVBRm1HmUjFSfFLHUxNTX1OqU/ZUQlSPVNtVKFV1VcJWD1ZcVqlW91dEV5JX4FgvWH1Yy1kaWWlZuFoHWlZaplr1W0VblVvlXDVchlzWXSddeF3JXhpebF69Xw9fYV+zYAVgV2CqYPxhT2GiYfViSWKcYvBjQ2OXY+tkQGSUZOllPWWSZedmPWaSZuhnPWeTZ+loP2iWaOxpQ2maafFqSGqfavdrT2una/9sV2yvbQhtYG25bhJua27Ebx5veG/RcCtwhnDgcTpxlXHwcktypnMBc11zuHQUdHB0zHUodYV14XY+dpt2+HdWd7N4EXhueMx5KnmJeed6RnqlewR7Y3vCfCF8gXzhfUF9oX4BfmJ+wn8jf4R/5YBHgKiBCoFrgc2CMIKSgvSDV4O6hB2EgITjhUeFq4YOhnKG14c7h5+IBIhpiM6JM4mZif6KZIrKizCLlov8jGOMyo0xjZiN/45mjs6PNo+ekAaQbpDWkT+RqJIRknqS45NNk7aUIJSKlPSVX5XJljSWn5cKl3WX4JhMmLiZJJmQmfyaaJrVm0Kbr5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaLpv2nbqfgqFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LCszizrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9j74KvoS+/796v/XAcMDswWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbPN8+40DnQutE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W3hzeot8p36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXrcOv77IbtEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4qPk4+cf6V/rn+3f8B/yY/Sn9uv5L/tz/bf//"
+       id="color-profile1" /><clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath1"><path
+         d="M 0,841.98 H 595.2 V 0 H 0 Z"
+         transform="translate(-2.2918065e-6)"
+         id="path1" /></clipPath></defs><path
+     id="path3"
+     d="m 214.52303,792.82457 c 0,-6.46118 14.8227,-36.10658 44.08804,-88.55615 29.26534,-52.82963 46.74853,-81.7149 52.44956,-86.27573 4.56084,-3.8007 9.12167,-5.70104 12.92236,-5.70104 1.90035,0 8.36153,5.32097 20.52374,15.58284 14.44264,11.78215 28.5052,21.28388 42.1877,27.74506 21.28388,9.8818 43.3279,14.8227 66.8922,14.8227 29.6454,0 54.72998,-10.64194 75.25372,-32.30589 20.52374,-21.28388 31.16568,-47.12859 30.78561,-76.774 0.38007,-30.02548 -10.26187,-55.87019 -30.78561,-77.53414 -20.52374,-22.04402 -45.60832,-32.68596 -75.25372,-32.68596 -49.78908,0 -88.17608,14.8227 -115.161,44.46811 -4.18077,4.9409 -7.60139,7.22132 -9.50174,7.22132 -3.80069,0 -22.80416,-25.08458 -56.63032,-74.87366 -34.58631,-51.30935 -51.68943,-81.33483 -51.68943,-90.07642 0,-6.08111 3.80069,-13.6825 10.64194,-22.80416 24.7045,-31.54576 59.29081,-56.25026 104.13899,-74.11352 40.28735,-16.34298 82.47504,-24.7045 125.42287,-24.7045 95.77747,0 177.1123,33.06603 244.0045,99.57816 66.8922,66.13206 100.3383,147.08682 100.3383,242.48422 0,95.39739 -33.4461,176.73222 -100.3383,243.62442 -66.8922,66.8922 -148.22703,100.3383 -244.0045,100.3383 -96.15753,0 -174.45181,-30.02547 -234.88283,-90.45649 -7.60139,-6.84125 -11.40208,-13.30243 -11.40208,-19.00347"
+     style="fill:#7e7e7e;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:6.33449" /><path
+     id="path4"
+     d="m 352.10813,7.9814395 c 96.15754,0 174.83188,30.4055445 235.2629,90.4564955 7.60139,7.221315 11.40208,13.682495 11.40208,19.003465 0,6.84125 -14.8227,36.48665 -44.08804,88.93622 -29.26533,52.82963 -46.74852,81.33483 -52.44956,86.27573 -4.9409,3.42063 -9.12167,5.32097 -12.92236,5.32097 -1.90035,0 -8.36152,-4.9409 -20.52374,-15.20277 -14.44264,-12.16222 -28.5052,-21.28388 -42.1877,-27.74506 -21.28388,-9.8818 -43.3279,-14.8227 -66.89219,-14.8227 -29.64541,0 -54.72998,10.64194 -75.25373,32.30589 -20.90381,21.28388 -31.16568,47.12859 -31.16568,76.774 0,30.02548 10.26187,55.87019 31.16568,77.53414 20.52375,21.66395 45.60832,32.68596 75.25373,32.68596 49.78908,0 88.17608,-14.8227 115.161,-44.46811 4.18076,-4.9409 7.60138,-7.60139 9.50173,-7.60139 3.80069,0 22.80416,25.08458 56.63033,75.25373 34.5863,51.30935 51.68942,81.33483 51.68942,90.07642 0,5.70104 -3.80069,13.30243 -10.64194,22.80416 -24.7045,31.54576 -59.29081,56.25026 -104.13899,74.11352 -40.28735,16.34298 -82.47504,24.7045 -125.80294,24.7045 -95.3974,0 -176.73223,-33.06603 -243.62443,-99.57816 C 41.591504,528.29632 8.1454045,447.72163 8.1454045,352.32423 8.1454045,256.92684 41.591504,175.59201 108.4837,108.69981 175.3759,41.807608 256.71073,7.9814395 352.10813,7.9814395"
+     style="fill:#3d74a4;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:6.33449" /><path
+     id="path5"
+     d="M 352.10813,-1.6218825e-5 361.22979,0.38005309 h 9.12167 C 415.69373,2.4577653 458.97729,11.142349 500.71523,29.265321 l 7.60139,3.420623 6.84124,3.800694 7.22132,3.420623 c 13.73317,8.253839 27.78307,16.127608 40.28735,26.224783 l 6.08111,4.940901 6.46117,5.32097 c 9.52074,8.868284 20.4224,16.944757 27.365,28.125125 l 1.52027,3.04056 2.28042,6.08111 c 0,0.38007 0,0.76014 0,1.14021 l 0.38007,2.28041 c 0,0.38007 0,1.14021 -0.38007,1.52028 v 1.52028 c 0,0.38007 0,0.76013 -0.38007,1.1402 l -0.38007,1.90035 -1.14021,3.04055 c -14.03722,35.6125 -39.38785,77.74318 -58.1506,111.36031 l -4.18077,7.98146 -4.56083,7.22131 c -10.72429,15.43082 -22.79782,48.38916 -43.3279,52.82964 l -2.28041,0.38007 h -2.28042 c -1.14021,0.38007 -1.90035,0 -2.66048,0 l -0.76014,-0.38007 c -0.76014,0 -1.14021,-0.38007 -1.90035,-0.76014 l -1.14021,-0.76014 -2.66048,-1.52028 -2.28042,-1.90034 c -41.6936,-35.6505 -80.9611,-59.4175 -138.7253,-50.54922 l -4.56083,1.14021 -4.56083,1.14021 c -37.10743,11.8835 -65.76466,47.66069 -68.41248,86.6558 l -0.38007,5.32097 -0.38007,4.9409 0.38007,5.32097 0.38007,4.9409 c 1.82434,38.31099 32.21088,76.94503 68.79255,87.79601 l 4.56083,1.52028 4.56083,0.76014 4.9409,0.76014 c 21.3789,3.40795 50.77726,-0.62712 71.45303,-6.84125 l 6.84125,-2.66049 6.46118,-2.66048 c 19.85229,-9.09633 29.38569,-18.31934 44.08804,-33.4461 l 1.52028,-1.52028 3.80069,-2.28041 1.90035,-0.76014 c 0.38007,0 1.1402,-0.38007 1.52027,-0.38007 h 0.76014 c 1.14021,-0.38007 1.90035,-0.38007 2.66049,0 h 0.38007 c 0.76014,0 1.1402,0.38007 1.90034,0.38007 l 0.38007,0.38007 c 0.38007,0 0.76014,0.38007 1.14021,0.76014 l 0.76014,0.38006 1.14021,0.76014 c 10.56592,9.73611 22.41775,27.66905 30.78561,39.52721 l 2.66049,3.42063 2.28041,3.42062 c 24.05205,34.85235 53.14636,75.5071 70.69289,113.64072 l 1.14021,3.42063 1.14021,3.04055 c 0,0.38007 0,0.76014 0,1.14021 l 0.38007,1.90035 c 0,0.38006 0,0.76013 0,1.52027 l -0.38007,2.28042 -0.38007,3.42062 -1.14021,3.42063 -1.52028,3.42062 c -16.8624,32.33756 -58.8664,64.8905 -91.5967,79.81455 l -7.98145,4.18077 -7.98146,3.42062 c -41.66193,18.64874 -91.57137,29.04997 -137.20502,28.88527 h -9.12166 l -9.12167,-0.38007 -9.12166,-0.76014 C 213.45251,695.63451 113.78567,632.49866 53.373652,539.6984 l -9.121663,-14.44263 -3.800693,-7.22132 -4.180763,-7.60138 c -48.382823,-93.35769 -48.338481,-223.25272 0,-316.59774 l 3.800693,-7.60138 4.180763,-7.22132 C 100.66694,81.22713 202.50018,10.179507 316.38161,1.9003303 l 8.7416,-0.7601386 9.12166,-0.3800693 8.7416,-0.38006931 z M 343.74661,16.342964 h -8.7416 l -8.74159,0.760139 -8.36153,0.380069 C 210.21559,26.965901 118.64422,88.492788 62.495316,179.77277 l -4.180763,6.84124 -3.800693,6.84125 C 5.4279089,282.70187 3.419876,404.21636 46.912474,495.99043 l 3.420624,7.22132 3.800693,6.84125 4.180762,7.22131 3.800693,6.84125 C 119.20799,614.53405 210.14591,676.16862 317.90189,684.88488 l 8.36153,0.76014 8.36152,0.38007 c 86.2884,5.09293 202.56427,-30.57024 248.9454,-108.31976 l 0.38007,-1.90034 0.38007,-1.14021 0.38007,-2.28042 v 1.14021 l -0.38007,-1.90034 0.38007,1.1402 -0.38007,-1.52027 -0.76014,-2.66049 C 566.22018,532.26171 539.78002,495.2683 517.05821,461.7842 l -2.66048,-3.8007 -2.66049,-3.42062 c -9.10266,-13.04905 -18.9908,-27.53602 -29.64541,-39.14714 l -0.38007,-0.38007 -0.76013,-0.38007 1.1402,0.76014 -0.38007,-0.38007 1.52028,0.38007 h -0.38007 2.66049 l -0.76014,0.38007 1.52028,-0.38007 v -0.38007 l -0.76014,0.76014 -0.76014,0.38007 -1.14021,1.14021 -1.52028,1.1402 c -13.21374,16.73572 -33.94019,29.67075 -53.58977,37.62687 l -7.60138,2.66048 -7.98146,2.28042 c -21.40424,5.78338 -54.52728,9.17867 -76.39393,4.18076 l -5.70104,-1.14021 -5.32097,-1.52028 -5.32097,-1.90034 C 277.51319,444.26933 246.77192,400.74506 245.68872,354.98472 l -0.38007,-6.08111 0.38007,-5.70104 0.38007,-6.08111 0.76014,-5.32097 c 4.5735,-42.67545 38.67839,-82.31668 79.43449,-95.01733 l 5.32097,-1.1402 5.32097,-1.52028 c 61.89428,-8.9253 105.67827,14.42363 150.50744,53.58977 l 2.28042,1.52028 2.28042,1.52028 -1.52028,-0.38007 h 0.76014 l -2.66049,-0.38007 h 1.52028 c 10.54692,-0.5321 24.24842,-31.33038 30.02548,-38.387 l 3.80069,-6.84125 4.18076,-7.22132 c 20.98616,-37.20245 44.35409,-77.24275 61.57123,-116.30121 l 0.38007,-1.90034 0.76014,-2.28042 -0.38007,1.14021 0.38007,-1.52028 v 1.52028 l -0.38007,-1.90035 0.38007,1.14021 -0.38007,-1.14021 -0.38007,-1.52027 C 578.45841,95.612753 535.17485,63.95298 514.77779,54.349895 l -6.46117,-3.800693 -6.84125,-3.420624 C 458.07145,27.130598 417.50539,18.87676 369.97139,16.342964 h -8.7416 l -8.74159,-0.380069"
+     style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:6.33449" /><path
+     d="M 735.78785,987.28367 H 513.01592 c -36.03663,0 -65.52115,-29.4845 -65.52115,-65.52111 V 397.59334 c 0,-36.03663 29.48452,-65.52115 65.52115,-65.52115 H 775.10053 L 971.66399,528.63565 V 643.29766 C 952.00766,633.4695 929.07525,630.19344 906.14284,626.91738 V 561.39623 H 742.33996 V 397.59334 H 513.01592 V 921.76256 H 693.1991 c 9.82816,22.93241 26.20846,45.86481 42.58875,65.52111 m 137.59442,-327.60572 -72.07327,72.07327 72.07327,72.07327 v -45.8648 c 45.8648,0 81.90144,36.03663 81.90144,81.90144 0,13.10422 -3.27605,26.20846 -9.82817,36.03663 l 36.03663,36.03664 c 13.10423,-19.65635 22.93243,-45.86481 22.93243,-72.07327 0,-72.07327 -58.96906,-131.0423 -131.04233,-131.0423 v -49.14088 m 72.07327,288.29312 -72.07327,-75.34937 v 49.14086 c -45.8648,0 -81.90144,-36.03662 -81.90144,-81.90143 0,-13.10423 3.27605,-26.20846 9.82817,-36.03664 l -36.03664,-36.03663 c -13.10422,19.65634 -22.9324,45.86481 -22.9324,72.07327 0,72.07327 58.96904,131.04234 131.04231,131.04234 v 49.14083 z"
+     id="path1-5"
+     style="fill:#fcff7a;fill-opacity:1;stroke-width:32.7606" /></svg>
diff --git a/docs/assets/images/documentation/create-mission.png b/docs/assets/images/documentation/create-mission.png
new file mode 100644
index 0000000000000000000000000000000000000000..1405948e4a1857e03548322d816a89adff960940
--- /dev/null
+++ b/docs/assets/images/documentation/create-mission.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a2bdcdcc757e9dcd8fa6589c9b83acdbf7f548c260f778508610eed0e985a5ac
+size 25773
diff --git a/docs/assets/images/documentation/design-evaluator.svg b/docs/assets/images/documentation/design-evaluator.svg
new file mode 100644
index 0000000000000000000000000000000000000000..a10f0f57e2540a6899a298d132db8a9949f06c73
--- /dev/null
+++ b/docs/assets/images/documentation/design-evaluator.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="m 645.15265,508.22822 c 0,-21.08409 17.66568,-38.11812 39.53158,-38.11812 h 39.53158 c 21.8659,0 39.53157,17.03403 39.53157,38.11812 21.86591,0 39.53158,17.03403 39.53158,38.11812 v 266.82683 c 0,21.08408 -17.66567,38.11812 -39.53158,38.11812 0,21.08408 -17.66567,38.11812 -39.53157,38.11812 h -39.53158 c -21.8659,0 -39.53158,-17.03404 -39.53158,-38.11812 -21.8659,0 -39.53157,-17.03404 -39.53157,-38.11812 V 546.34634 c 0,-21.08409 17.66567,-38.11812 39.53157,-38.11812 z m -158.1263,495.53558 h 355.78419 c 87.34008,0 158.12626,-68.25529 158.12626,-152.47251 0,-84.21722 -70.78618,-152.47248 -158.12626,-152.47248 v -76.23624 c 130.94835,0 237.18946,102.44245 237.18946,228.70872 0,58.6066 -22.8542,111.97197 -60.4092,152.47251 h 20.8776 c 21.8659,0 39.5316,17.034 39.5316,38.1181 0,21.0841 -17.6657,38.1181 -39.5316,38.1181 H 487.02635 c -21.86591,0 -39.53158,-17.034 -39.53158,-38.1181 0,-21.0841 17.66567,-38.1181 39.53158,-38.1181 z m 98.82894,-76.23628 h 237.18946 c 10.87118,0 19.76579,8.57658 19.76579,19.05906 0,10.48249 -8.89461,19.05906 -19.76579,19.05906 H 585.85529 c -10.87118,0 -19.76579,-8.57657 -19.76579,-19.05906 0,-10.48248 8.89461,-19.05906 19.76579,-19.05906 z"
+     id="path1"
+     style="stroke-width:1.21308;fill:#8ef936;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/empennage-sizing.png b/docs/assets/images/documentation/empennage-sizing.png
new file mode 100644
index 0000000000000000000000000000000000000000..b4c3a7c39fb52875334c5af90e7ed6215a5b83de
--- /dev/null
+++ b/docs/assets/images/documentation/empennage-sizing.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2a10334ebf7714979eac4854a6fad0ab03c66c0424fbff62c1dee2018a716315
+size 15591
diff --git a/docs/assets/images/documentation/engine.svg b/docs/assets/images/documentation/engine.svg
new file mode 100644
index 0000000000000000000000000000000000000000..231421f678c34267ee396b6dc5dd6804a3247e40
--- /dev/null
+++ b/docs/assets/images/documentation/engine.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="m 763.74739,447.49474 c -174.8877,0 -316.25262,142.31368 -316.25262,316.25262 C 447.49477,937.6863 589.80845,1080 763.74739,1080 937.68633,1080 1080,937.6863 1080,763.74736 1080,589.80842 937.68633,447.49474 763.74739,447.49474 m 0,569.25466 c -139.78366,0 -253.00209,-113.21839 -253.00209,-253.00204 0,-139.78366 113.21843,-253.00209 253.00209,-253.00209 139.78365,0 253.00211,113.21843 253.00211,253.00209 0,139.78365 -113.21846,253.00204 -253.00211,253.00204 M 928.515,781.14124 l -42.6941,-11.38509 45.54038,-12.01759 61.03675,-16.44514 a 63.124022,63.124022 0 0 0 -77.16564,-44.90787 l -42.6941,11.38509 33.52277,-33.20652 44.59162,-44.59163 c -24.6677,-24.35145 -64.83178,-24.35145 -89.49948,-0.31625 v 0.31625 l -30.99277,30.99277 12.65011,-45.54038 15.81264,-61.03676 c -33.83904,-9.17132 -68.31057,10.75259 -77.4819,44.59162 l -11.38509,42.69411 -12.0176,-45.54038 -16.44514,-61.03675 c -33.83903,8.85507 -53.76294,43.64285 -44.90787,77.48189 l 11.38509,42.37784 -33.20652,-33.52277 -44.59162,-44.59162 c -24.35146,24.6677 -24.35146,64.83179 -0.31626,89.49949 h 0.31626 l 30.99276,30.99275 -45.54038,-12.65009 -61.03676,-15.81264 c -9.17132,33.83903 10.7526,68.31057 44.59162,77.48189 l 42.69411,11.3851 -45.54038,12.33385 -61.03675,16.12888 c 8.85507,33.83903 43.64285,53.76295 77.48189,44.90787 l 42.37784,-11.38509 -33.52277,33.20652 -44.59162,44.59162 c 24.6677,24.35145 64.83179,24.35145 89.49949,0.31625 v -0.31625 l 30.99276,-30.99275 -12.6501,45.54038 -15.81264,61.03675 c 33.83903,9.17133 68.31057,-10.75259 77.48189,-44.59163 l 11.3851,-42.69409 12.33385,45.54038 16.12889,61.03675 c 33.83902,-8.85507 53.76294,-43.64287 44.90786,-77.16564 l -11.38509,-42.69411 33.20652,33.52278 44.90788,44.59162 c 24.0352,-24.66771 24.0352,-64.83178 0,-89.49949 l -31.30901,-30.99276 45.54038,12.65011 61.03675,15.81263 c 9.17133,-33.83903 -10.75259,-68.31056 -44.59162,-77.4819 m -164.76761,30.04401 c -26.24897,0 -47.43789,-21.18893 -47.43789,-47.43789 0,-26.24897 21.18892,-47.4379 47.43789,-47.4379 26.24897,0 47.43789,21.18893 47.43789,47.4379 0,26.24896 -21.18892,47.43789 -47.43789,47.43789 z"
+     id="path1"
+     style="stroke-width:31.6252;fill:#b40000;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/fuselage-design.png b/docs/assets/images/documentation/fuselage-design.png
new file mode 100644
index 0000000000000000000000000000000000000000..7d979cbaf67ceda855a64798f3afbb049e2f957a
--- /dev/null
+++ b/docs/assets/images/documentation/fuselage-design.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1f4c2f41f79816a2bd94e6dee01d7f8dde0c6c7750a18a43dd1a7f354c910589
+size 131367
diff --git a/docs/assets/images/documentation/hydrogen-tank.svg b/docs/assets/images/documentation/hydrogen-tank.svg
new file mode 100644
index 0000000000000000000000000000000000000000..44e7d4b7ac784b163f5c8a5934fb597e27a74aff
--- /dev/null
+++ b/docs/assets/images/documentation/hydrogen-tank.svg
@@ -0,0 +1,26 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><rect
+     style="fill:#ffffff;fill-opacity:1;stroke:none;stroke-width:14;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1"
+     id="rect1"
+     width="269.53247"
+     height="453.24365"
+     x="502.85907"
+     y="510.90482"
+     ry="7.8822551" /><path
+     d="m 524.16207,389.99422 a 76.6673,76.6673 0 0 0 -76.6673,76.6673 v 613.33838 h 383.3365 V 792.49754 h 57.50047 v 191.66831 a 95.83413,95.83413 0 0 0 191.66826,0 V 619.99611 c 0,-26.45021 -10.7334,-50.60041 -27.9835,-67.85055 l 0.3832,-0.38334 -142.60112,-142.60118 -40.63366,40.63367 80.88401,80.88401 c -36.03364,13.8001 -61.71719,48.3004 -61.71719,89.31739 a 95.834125,95.834125 0 0 0 95.83409,95.83414 c 13.80022,0 26.45027,-3.0667 38.33367,-8.05007 v 276.38567 c 0,21.08345 -17.2501,38.33355 -38.33367,38.33355 -21.08343,0 -38.3336,-17.2501 -38.3336,-38.33355 V 811.66429 A 76.6673,76.6673 0 0 0 869.16492,734.99707 H 830.83127 V 466.66152 a 76.6673,76.6673 0 0 0 -76.6673,-76.6673 h -230.0019 m 0,153.33461 h 76.66731 v 153.33459 h 76.66728 V 543.32883 h 76.66731 V 926.66539 H 677.49666 V 773.33072 H 600.82938 V 926.66539 H 524.16207 V 543.32883 m 460.00376,38.33363 c 21.08357,0 38.33367,17.25016 38.33367,38.33365 0,21.08352 -17.2501,38.33366 -38.33367,38.33366 -21.08343,0 -38.3336,-17.25014 -38.3336,-38.33366 0,-21.08349 17.25017,-38.33365 38.3336,-38.33365 z"
+     id="path1"
+     style="stroke-width:38.3337;fill:#418500;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/initial-sizing.svg b/docs/assets/images/documentation/initial-sizing.svg
new file mode 100644
index 0000000000000000000000000000000000000000..e00e6072abae01ed9e1ceff9eac23b8f2e1d079e
--- /dev/null
+++ b/docs/assets/images/documentation/initial-sizing.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="m 868.2614,803.80596 a 177.40268,177.40268 0 0 0 -64.75649,65.35889 L 735.13409,737.5435 617.97001,854.1052 l 10.24056,75.2983 -31.62526,31.92653 -53.31117,-96.08069 -95.77937,-53.00997 31.92646,-31.92646 74.69586,10.54176 L 671.28118,673.38939 447.49477,556.5265 489.96298,514.05829 767.06054,577.91122 884.22463,460.74714 a 44.877757,44.877757 0 0 1 63.85284,0 c 17.46935,17.77038 17.46935,46.9861 0,63.85291 l -117.164,117.16408 37.34793,162.04183 M 989.64218,929.4035 v -90.35795 h -60.2386 v 90.35795 h -90.3579 v 60.23868 h 90.3579 V 1080 h 60.2386 V 989.64218 H 1080 V 929.4035 Z"
+     id="path1"
+     style="stroke-width:30.1193;stroke:none;stroke-opacity:1;fill:#970044;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/landing-gear-design.svg b/docs/assets/images/documentation/landing-gear-design.svg
new file mode 100644
index 0000000000000000000000000000000000000000..33b8d868e180ad2e4c69dc2280e8aaf516b3c17e
--- /dev/null
+++ b/docs/assets/images/documentation/landing-gear-design.svg
@@ -0,0 +1,266 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<svg
+xmlns:svg="http://www.w3.org/2000/svg"
+xmlns="http://www.w3.org/2000/svg"
+version="1.0"
+width="600"
+height="250"
+id="svg3234">
+<defs
+id="defs3236">
+id=&quot;perspective3243&quot; /&gt;
+</defs>
+  <g
+  id="layer1" />
+<line
+    x1="300"
+    y1="250"
+    x2="300"
+    y2="0"
+    style="fill:none;stroke:#070000;stroke-opacity:0.25806451000000002;stroke-width:2;stroke-miterlimit:4;stroke-dasharray:8,4,2,4;stroke-dashoffset:0"
+/>
+<path
+    d="M294.623 , 114.224
+    L298.577,5.90351
+    L301.423,5.90351
+    L305.377,114.224
+ z"
+style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+<path
+    d="M300 , 150.912
+    L219,152.311
+    L30,148.012
+    L30,149.829
+    L219,160.643
+    L300,167.521
+ z"
+style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+<path
+    d="M300 , 150.912
+    L381,152.311
+    L570,148.012
+    L570,149.829
+    L381,160.643
+    L300,167.521
+ z"
+style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+<path
+    d="M300 , 110.077
+    L199.674,113.056
+    L199.674,115.163
+    L300,117.559
+ z"
+style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+<path
+    d="M300 , 110.077
+    L400.326,113.056
+    L400.326,115.163
+    L300,117.559
+ z"
+style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+<ellipse
+    cx="300"
+    cy="140"
+    rx="30.9256"
+    ry="32.2203"
+    style="fill:#dadada;fill-opacity:1.0;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+/>
+<line
+    x1="356.327"
+    y1="160.464"
+    x2="376.327"
+    y2="160.464"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<line
+    x1="366.327"
+    y1="150.464"
+    x2="366.327"
+    y2="170.464"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<rect
+    x="223.582"
+    y="205.744"
+    width="6.72717"
+    height="18.2029"
+style="fill:#a8a8cd;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+/>
+<rect
+    x="237.038"
+    y="205.744"
+    width="6.72717"
+    height="18.2029"
+style="fill:#a8a8cd;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+/>
+<line
+    x1="223.673"
+    y1="160.464"
+    x2="243.673"
+    y2="160.464"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<line
+    x1="233.673"
+    y1="150.464"
+    x2="233.673"
+    y2="170.464"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<rect
+    x="356.235"
+    y="205.744"
+    width="6.72717"
+    height="18.2029"
+style="fill:#a8a8cd;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+/>
+<rect
+    x="369.691"
+    y="205.744"
+    width="6.72717"
+    height="18.2029"
+style="fill:#a8a8cd;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+/>
+<line
+    x1="290"
+    y1="170.83"
+    x2="310"
+    y2="170.83"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<line
+    x1="300"
+    y1="160.83"
+    x2="300"
+    y2="180.83"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<rect
+    x="295.429"
+    y="213.262"
+    width="3.04701"
+    height="10.6843"
+style="fill:#a8a8cd;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+/>
+<rect
+    x="301.524"
+    y="213.262"
+    width="3.04701"
+    height="10.6843"
+style="fill:#a8a8cd;fill-opacity:1.0;stroke:#000000;stroke-opacity:1" />
+/>
+<ellipse
+    cx="214.423"
+    cy="187.86"
+    rx="19.2485"
+    ry="22.29"
+    style="fill:#dadada;fill-opacity:1.0;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+/>
+<ellipse
+    cx="214.423"
+    cy="187.86"
+    rx="15.3988"
+    ry="17.832"
+    style="fill:#ffffff;fill-opacity:1.0;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+/>
+<ellipse
+    cx="385.577"
+    cy="187.86"
+    rx="19.2485"
+    ry="22.29"
+    style="fill:#dadada;fill-opacity:1.0;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+/>
+<ellipse
+    cx="385.577"
+    cy="187.86"
+    rx="15.3988"
+    ry="17.832"
+    style="fill:#ffffff;fill-opacity:1.0;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+/>
+<line
+    x1="233.671"
+    y1="214.847"
+    x2="233.671"
+    y2="237.847"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<line
+    x1="366.329"
+    y1="214.847"
+    x2="366.329"
+    y2="237.847"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<line
+    x1="233.671"
+    y1="234.847"
+    x2="366.329"
+    y2="234.847"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<text
+style="font-size:12px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans;text-anchor:middle;text-align:center"
+    x="300"
+    y="245.847"
+transform="rotate(0, 
+300, 
+245.847)"
+>
+8.51 m
+</text>
+<line
+    x1="214.423"
+    y1="210.15"
+    x2="191.423"
+    y2="210.15"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<line
+    x1="214.423"
+    y1="223.949"
+    x2="191.423"
+    y2="223.949"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<line
+    x1="194.423"
+    y1="210.15"
+    x2="194.423"
+    y2="223.949"
+    style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<text
+style="font-size:12px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans;text-anchor:middle;text-align:center"
+    x="189.423"
+    y="217.049"
+transform="rotate(-90, 
+189.423, 
+217.049)"
+>
+0.89 m
+</text>
+<line
+    x1="376.42"
+    y1="223.949"
+    x2="570"
+    y2="149.007"
+    style="fill:none;stroke:#000000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<line
+    x1="376.42"
+    y1="223.949"
+    x2="570"
+    y2="223.949"
+    style="fill:none;stroke:#000000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none" 
+/>
+<text
+style="font-size:12px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans;text-anchor:middle;text-align:center"
+    x="532.214"
+    y="220.949"
+transform="rotate(0, 
+532.214, 
+220.949)"
+>
+21.16 deg
+</text>
+</svg>
diff --git a/docs/assets/images/documentation/lifting-line.svg b/docs/assets/images/documentation/lifting-line.svg
new file mode 100644
index 0000000000000000000000000000000000000000..26d0a406f89bf19f4d3f955b8ae4d1255b3d5098
--- /dev/null
+++ b/docs/assets/images/documentation/lifting-line.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="M 482.62937,658.38474 H 1044.783 c 19.4339,0 35.1347,-15.70077 35.1347,-35.1346 0,-19.43383 -15.7008,-35.1346 -35.1347,-35.1346 H 482.62937 c -19.43382,0 -35.1346,15.70077 -35.1346,35.1346 0,19.43383 15.70078,35.1346 35.1346,35.1346 z m -24.81381,150.85921 c -13.72445,13.72446 -13.72445,36.01297 0,49.73743 13.72446,13.72445 36.01297,13.72445 49.73742,0 l 45.3456,-45.4554 v 231.33942 c 0,19.4338 15.70078,35.1346 35.13461,35.1346 19.43383,0 35.1346,-15.7008 35.1346,-35.1346 V 813.52598 l 45.4554,45.4554 c 13.72445,13.72445 36.01297,13.72445 49.73742,0 13.72446,-13.72446 13.72446,-36.01297 0,-49.73743 L 612.9568,703.84014 c -13.72446,-13.72446 -36.01297,-13.72446 -49.73743,0 z m 351.34605,49.73743 c 13.72445,13.72445 36.01297,13.72445 49.73742,0 l 45.3456,-45.4554 v 231.33942 c 0,19.4338 15.70078,35.1346 35.1346,35.1346 19.43383,0 35.13461,-15.7008 35.13461,-35.1346 V 813.52598 l 45.45536,45.4554 c 13.7245,13.72445 36.013,13.72445 49.7375,0 13.7244,-13.72446 13.7244,-36.01297 0,-49.73743 L 964.30284,703.84014 c -13.72445,-13.72446 -36.01296,-13.72446 -49.73742,0 L 809.16161,809.24395 c -13.72446,13.72446 -13.72446,36.01297 0,49.73743 z"
+     id="path1"
+     style="stroke-width:1.09796;fill:#00a6b4;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/mass-estimation.svg b/docs/assets/images/documentation/mass-estimation.svg
new file mode 100644
index 0000000000000000000000000000000000000000..5c9ea2229f1b3f5eae5025c1f03a75d546bedec2
--- /dev/null
+++ b/docs/assets/images/documentation/mass-estimation.svg
@@ -0,0 +1,26 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><rect
+     style="fill:#ffffff;stroke:none;stroke-width:10;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1;fill-opacity:1"
+     id="rect1"
+     width="439.83408"
+     height="282.94205"
+     x="549.7926"
+     y="749.59528"
+     ry="7.8822551" /><path
+     d="m 763.74733,510.74539 a 126.50102,126.50102 0 0 1 126.50102,126.50102 c 0,23.08643 -6.0088,44.59162 -17.07763,63.25052 h 80.32815 c 30.04399,0 55.34413,21.18891 61.66933,49.3354 C 1078.7349,1003.1506 1080,1009.7919 1080,1016.7495 A 63.250512,63.250512 0 0 1 1016.7494,1080 H 510.74529 a 63.250512,63.250512 0 0 1 -63.25052,-63.2505 c 0,-6.9576 1.26501,-13.5989 64.83177,-266.91717 6.32506,-28.14649 31.62526,-49.3354 61.66925,-49.3354 h 80.32815 A 123.02224,123.02224 0 0 1 637.24631,637.24641 126.50102,126.50102 0 0 1 763.74733,510.74539 m 0,63.25051 a 63.250512,63.250512 0 0 0 -63.25052,63.25051 63.250512,63.250512 0 0 0 63.25052,63.25052 63.250512,63.250512 0 0 0 63.2505,-63.25052 63.250512,63.250512 0 0 0 -63.2505,-63.25051 M 573.99579,763.74743 v 253.00207 h 63.25052 v -79.06316 l 31.62525,31.62525 v 47.43791 h 63.25052 v -63.25053 l -63.25052,-63.25052 63.25052,-63.2505 v -63.25052 h -63.25052 v 47.43789 l -31.62525,31.62525 v -79.06314 h -63.25052 m 284.62731,0 c -35.10404,0 -63.25052,28.14648 -63.25052,63.25052 v 126.50102 c 0,35.104 28.14648,63.25053 63.25052,63.25053 h 94.87577 V 858.6232 h -63.25052 v 94.87577 H 858.6231 V 826.99795 h 94.87577 v -63.25052 z"
+     id="path1-9"
+     style="display:inline;stroke-width:10;fill:#81858c;fill-opacity:1;stroke:none;stroke-opacity:1;stroke-dasharray:none;stroke-linecap:round" /></svg>
diff --git a/docs/assets/images/documentation/mission-analysis.png b/docs/assets/images/documentation/mission-analysis.png
new file mode 100644
index 0000000000000000000000000000000000000000..ace5ce85f941ae59243ab0b6e1c6e79ebeb1e2fb
--- /dev/null
+++ b/docs/assets/images/documentation/mission-analysis.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:88d4765e54613a9427c2b30966de4bb70afd7b6acf3a6fc17c6dcb3471be1bd7
+size 187208
diff --git a/docs/assets/images/documentation/module-basics.svg b/docs/assets/images/documentation/module-basics.svg
new file mode 100644
index 0000000000000000000000000000000000000000..b425481845e1a6804c8bbfc5b024fa6f4e992e0f
--- /dev/null
+++ b/docs/assets/images/documentation/module-basics.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="M 57.02551,568.80612 H 475.7551 V 801.43364 H 57.02551 V 568.80612 M 10.5,289.65306 H 289.65306 V 522.2806 H 10.5 V 289.65306 m 325.67857,0 H 615.33163 V 522.2806 H 336.17857 V 289.65306 m 325.67856,0 H 941.01015 V 522.2806 H 661.85713 V 289.65306 M 522.2806,568.80612 H 894.48465 V 801.43364 H 522.2806 V 568.80612 M 57.02551,10.5 H 429.22959 V 243.12756 H 57.02551 V 10.5 m 418.72959,0 H 894.48465 V 243.12756 H 475.7551 Z"
+     id="path1"
+     style="fill:#4d4d4d;fill-opacity:1;stroke:#fcfcfc;stroke-width:20;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="m 247.89739,455.92304 c 0,-23.01283 18.59229,-41.60513 41.60513,-41.60513 h 20.80256 c 57.46709,0 104.01282,46.54575 104.01282,104.01284 v 374.44617 c 0,11.4414 9.36116,20.80257 20.80257,20.80257 h 603.27433 c 23.013,0 41.6052,18.59228 41.6052,41.60513 0,23.01278 -18.5922,41.6051 -41.6052,41.6051 h -86.72063 c 2.34029,6.50078 3.51043,13.52168 3.51043,20.80258 0,34.4543 -27.95345,62.4077 -62.40769,62.4077 -34.45425,0 -62.40771,-27.9534 -62.40771,-62.4077 0,-7.2809 1.30016,-14.3018 3.51045,-20.80258 H 577.228 c 2.34029,6.50078 3.51043,13.52168 3.51043,20.80258 0,34.4543 -27.95344,62.4077 -62.40769,62.4077 -34.45425,0 -62.4077,-27.9534 -62.4077,-62.4077 0,-7.2809 1.30015,-14.3018 3.51044,-20.80258 h -24.31301 c -57.46709,0 -104.01282,-46.54572 -104.01282,-104.0128 V 518.33075 c 0,-11.44141 -9.36115,-20.80257 -20.80257,-20.80257 h -20.80256 c -23.01284,0 -41.60513,-18.59229 -41.60513,-41.60514 z m 561.66925,83.21028 V 487.1269 c 0,-5.72071 -4.68057,-10.40128 -10.40128,-10.40128 H 695.15254 c -5.72072,0 -10.40129,4.68057 -10.40129,10.40128 v 52.00642 z m -187.22308,0 V 487.1269 c 0,-40.17496 32.63402,-72.80899 72.80898,-72.80899 h 104.01282 c 40.17495,0 72.80898,32.63403 72.80898,72.80899 V 830.36921 H 622.34356 Z M 913.57948,830.36921 V 539.13332 h 20.80256 c 34.45425,0 62.40768,27.95343 62.40768,62.40768 v 166.42053 c 0,34.45424 -27.95343,62.40768 -62.40768,62.40768 z M 559.93586,539.13332 h 20.80257 v 291.23589 h -20.80257 c -34.45425,0 -62.40769,-27.95344 -62.40769,-62.40768 V 601.541 c 0,-34.45425 27.95344,-62.40768 62.40769,-62.40768 z"
+     id="path1-6"
+     style="fill:#a200dc;fill-opacity:1;stroke-width:1.30016" /></svg>
diff --git a/docs/assets/images/documentation/propulsion-design.svg b/docs/assets/images/documentation/propulsion-design.svg
new file mode 100644
index 0000000000000000000000000000000000000000..3d75dcd09bb243f05eb043b6279a74b2ce58aa94
--- /dev/null
+++ b/docs/assets/images/documentation/propulsion-design.svg
@@ -0,0 +1,719 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<svg
+   version="1.0"
+   width="600"
+   height="300"
+   id="svg3234"
+   sodipodi:docname="propulsion-integration.svg"
+   inkscape:version="1.3 (0e150ed6c4, 2023-07-21)"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <sodipodi:namedview
+     id="namedview94"
+     pagecolor="#505050"
+     bordercolor="#ffffff"
+     borderopacity="1"
+     inkscape:showpageshadow="0"
+     inkscape:pageopacity="0"
+     inkscape:pagecheckerboard="1"
+     inkscape:deskcolor="#d1d1d1"
+     inkscape:zoom="2.0916667"
+     inkscape:cx="300"
+     inkscape:cy="149.88048"
+     inkscape:window-width="1920"
+     inkscape:window-height="1137"
+     inkscape:window-x="-8"
+     inkscape:window-y="-8"
+     inkscape:window-maximized="1"
+     inkscape:current-layer="svg3234" />
+  <defs
+     id="defs3236">&#10;id=&quot;perspective3243&quot; /&gt;&#10;</defs>
+  <g
+     id="layer1" />
+  <path
+     d="M461.426 , 150     L517.151,239.179     L532.712,239.179     L516.696,150  z"
+     style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1"
+     id="path1" />
+  <path
+     d="M461.426 , 150     L517.151,60.8209     L532.712,60.8209     L516.696,150  z"
+     style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1"
+     id="path2" />
+  <line
+     x1="505.697"
+     y1="167.836"
+     x2="526.646"
+     y2="234.72"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line2" />
+  <line
+     x1="519.899"
+     y1="167.836"
+     x2="531.911"
+     y2="234.72"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line3" />
+  <line
+     x1="505.697"
+     y1="167.836"
+     x2="519.899"
+     y2="167.836"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line4" />
+  <line
+     x1="526.646"
+     y1="234.72"
+     x2="531.911"
+     y2="234.72"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line5" />
+  <line
+     x1="505.697"
+     y1="132.164"
+     x2="526.646"
+     y2="65.2799"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line6" />
+  <line
+     x1="519.899"
+     y1="132.164"
+     x2="531.911"
+     y2="65.2799"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line7" />
+  <line
+     x1="505.697"
+     y1="132.164"
+     x2="519.899"
+     y2="132.164"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line8" />
+  <line
+     x1="526.646"
+     y1="65.2799"
+     x2="531.911"
+     y2="65.2799"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line9" />
+  <path
+     d="M436.562 , 150     L436.582,149.777     L436.641,149.558     L436.74,149.341     L436.878,149.128     L437.056,148.918     L437.272,148.712     L437.527,148.51     L437.821,148.311     L438.153,148.117     L438.524,147.927     L438.931,147.742     L439.376,147.561     L439.858,147.386     L440.376,147.215     L440.93,147.051     L441.519,146.892     L442.143,146.739     L442.801,146.592     L443.492,146.452     L444.216,146.319     L444.971,146.193     L445.759,146.073     L446.576,145.961     L447.423,145.857     L448.299,145.76     L449.203,145.671     L450.135,145.59     L451.092,145.517     L452.074,145.452     L453.081,145.395     L454.111,145.346     L455.163,145.305     L456.237,145.273     L457.33,145.248     L458.443,145.231     L459.573,145.222     L460.721,145.22     L461.884,145.226     L463.061,145.24     L464.252,145.26     L465.455,145.288     L466.67,145.322     L467.894,145.362     L469.127,145.409     L470.367,145.462     L471.613,145.521     L472.864,145.585     L474.119,145.654     L475.377,145.729     L476.636,145.808     L477.894,145.891     L479.152,145.978     L480.407,146.069     L481.658,146.163     L482.904,146.261     L484.145,146.361     L485.377,146.464     L486.601,146.57     L487.816,146.677     L489.019,146.787     L490.21,146.898     L491.388,147.01     L492.551,147.123     L493.698,147.237     L494.828,147.351     L495.941,147.466     L497.035,147.581     L498.108,147.696     L499.16,147.81     L500.19,147.924     L501.197,148.037     L502.179,148.148     L503.137,148.259     L504.068,148.368     L504.972,148.475     L505.848,148.58     L506.695,148.683     L507.513,148.783     L508.3,148.881     L509.056,148.976     L509.779,149.068     L510.471,149.157     L511.128,149.242     L511.752,149.324     L512.341,149.402     L512.895,149.475     L513.413,149.545     L513.895,149.61     L514.34,149.671     L514.748,149.726     L515.118,149.777     L515.45,149.823     L515.744,149.864     L515.999,149.9     L516.216,149.93     L516.393,149.955     L516.531,149.975     L516.63,149.989     L516.689,149.997     L516.709,150     L516.709,150     L516.689,150.003     L516.63,150.011     L516.531,150.025     L516.393,150.045     L516.216,150.07     L515.999,150.1     L515.744,150.136     L515.45,150.177     L515.118,150.223     L514.748,150.274     L514.34,150.329     L513.895,150.39     L513.413,150.455     L512.895,150.525     L512.341,150.598     L511.752,150.676     L511.128,150.758     L510.471,150.843     L509.779,150.932     L509.056,151.024     L508.3,151.119     L507.513,151.217     L506.695,151.317     L505.848,151.42     L504.972,151.525     L504.068,151.632     L503.137,151.741     L502.179,151.852     L501.197,151.963     L500.19,152.076     L499.16,152.19     L498.108,152.304     L497.035,152.419     L495.941,152.534     L494.828,152.649     L493.698,152.763     L492.551,152.877     L491.388,152.99     L490.21,153.102     L489.019,153.213     L487.816,153.323     L486.601,153.43     L485.377,153.536     L484.145,153.639     L482.904,153.739     L481.658,153.837     L480.407,153.931     L479.152,154.022     L477.894,154.109     L476.636,154.192     L475.377,154.271     L474.119,154.346     L472.864,154.415     L471.613,154.479     L470.367,154.538     L469.127,154.591     L467.894,154.638     L466.67,154.678     L465.455,154.712     L464.252,154.74     L463.061,154.76     L461.884,154.774     L460.721,154.78     L459.573,154.778     L458.443,154.769     L457.33,154.752     L456.237,154.727     L455.163,154.695     L454.111,154.654     L453.081,154.605     L452.074,154.548     L451.092,154.483     L450.135,154.41     L449.203,154.329     L448.299,154.24     L447.423,154.143     L446.576,154.039     L445.759,153.927     L444.971,153.807     L444.216,153.681     L443.492,153.548     L442.801,153.408     L442.143,153.261     L441.519,153.108     L440.93,152.949     L440.376,152.785     L439.858,152.614     L439.376,152.439     L438.931,152.258     L438.524,152.073     L438.153,151.883     L437.821,151.689     L437.527,151.49     L437.272,151.288     L437.056,151.082     L436.878,150.872     L436.74,150.659     L436.641,150.442     L436.582,150.223     L436.562,150  z"
+     style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1"
+     id="path9" />
+  <path
+     d="M514.532 , 150     L514.537,149.941     L514.553,149.883     L514.579,149.826     L514.616,149.769     L514.663,149.714     L514.72,149.659     L514.787,149.606     L514.865,149.553     L514.953,149.502     L515.051,149.452     L515.159,149.403     L515.277,149.355     L515.404,149.308     L515.541,149.263     L515.688,149.22     L515.843,149.178     L516.009,149.137     L516.183,149.098     L516.365,149.061     L516.557,149.026     L516.757,148.993     L516.965,148.961     L517.182,148.931     L517.406,148.904     L517.637,148.878     L517.877,148.855     L518.123,148.833     L518.376,148.814     L518.636,148.797     L518.903,148.782     L519.175,148.769     L519.454,148.758     L519.738,148.749     L520.027,148.743     L520.321,148.738     L520.62,148.736     L520.924,148.735     L521.232,148.737     L521.543,148.74     L521.858,148.746     L522.177,148.753     L522.498,148.762     L522.822,148.773     L523.148,148.785     L523.476,148.799     L523.806,148.815     L524.137,148.832     L524.469,148.85     L524.802,148.87     L525.135,148.891     L525.468,148.913     L525.801,148.936     L526.133,148.96     L526.464,148.985     L526.793,149.011     L527.122,149.037     L527.448,149.065     L527.772,149.092     L528.093,149.121     L528.411,149.15     L528.726,149.179     L529.038,149.209     L529.346,149.239     L529.649,149.269     L529.948,149.299     L530.243,149.33     L530.532,149.36     L530.816,149.39     L531.094,149.421     L531.367,149.451     L531.633,149.481     L531.893,149.51     L532.147,149.539     L532.393,149.568     L532.632,149.596     L532.864,149.624     L533.088,149.651     L533.304,149.678     L533.513,149.704     L533.713,149.729     L533.904,149.753     L534.087,149.777     L534.261,149.799     L534.426,149.821     L534.582,149.842     L534.728,149.861     L534.866,149.88     L534.993,149.897     L535.111,149.913     L535.219,149.928     L535.317,149.941     L535.404,149.953     L535.482,149.964     L535.55,149.974     L535.607,149.982     L535.654,149.988     L535.691,149.993     L535.717,149.997     L535.732,149.999     L535.738,150     L535.738,150     L535.732,150.001     L535.717,150.003     L535.691,150.007     L535.654,150.012     L535.607,150.018     L535.55,150.026     L535.482,150.036     L535.404,150.047     L535.317,150.059     L535.219,150.072     L535.111,150.087     L534.993,150.103     L534.866,150.12     L534.728,150.139     L534.582,150.158     L534.426,150.179     L534.261,150.201     L534.087,150.223     L533.904,150.247     L533.713,150.271     L533.513,150.296     L533.304,150.322     L533.088,150.349     L532.864,150.376     L532.632,150.404     L532.393,150.432     L532.147,150.461     L531.893,150.49     L531.633,150.519     L531.367,150.549     L531.094,150.579     L530.816,150.61     L530.532,150.64     L530.243,150.67     L529.948,150.701     L529.649,150.731     L529.346,150.761     L529.038,150.791     L528.726,150.821     L528.411,150.85     L528.093,150.879     L527.772,150.908     L527.448,150.935     L527.122,150.963     L526.793,150.989     L526.464,151.015     L526.133,151.04     L525.801,151.064     L525.468,151.087     L525.135,151.109     L524.802,151.13     L524.469,151.15     L524.137,151.168     L523.806,151.185     L523.476,151.201     L523.148,151.215     L522.822,151.227     L522.498,151.238     L522.177,151.247     L521.858,151.254     L521.543,151.26     L521.232,151.263     L520.924,151.265     L520.62,151.264     L520.321,151.262     L520.027,151.257     L519.738,151.251     L519.454,151.242     L519.175,151.231     L518.903,151.218     L518.636,151.203     L518.376,151.186     L518.123,151.167     L517.877,151.145     L517.637,151.122     L517.406,151.096     L517.182,151.069     L516.965,151.039     L516.757,151.007     L516.557,150.974     L516.365,150.939     L516.183,150.902     L516.009,150.863     L515.843,150.822     L515.688,150.78     L515.541,150.737     L515.404,150.692     L515.277,150.645     L515.159,150.597     L515.051,150.548     L514.953,150.498     L514.865,150.447     L514.787,150.394     L514.72,150.341     L514.663,150.286     L514.616,150.231     L514.579,150.174     L514.553,150.117     L514.537,150.059     L514.532,150  z"
+     style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1"
+     id="path10" />
+  <path
+     d="M23 , 150     L23.8926,145.694     L26.5705,141.468     L31.0336,137.406     L37.282,133.597     L45.3157,130.139     L55.1345,127.143     L66.7387,124.747     L80.1281,123.123     L95.3027,122.511     L327.411,122.511     L351.306,122.511     L375.2,122.511     L399.094,123.046     L422.988,124.946     L446.883,128.239     L494.788,136.255     L542.694,144.272     L542.694,155.728     L494.788,163.745     L446.883,171.761     L422.988,175.054     L399.094,176.954     L375.2,177.489     L351.306,177.489     L327.411,177.489     L95.3027,177.489     L80.1281,176.877     L66.7387,175.253     L55.1345,172.857     L45.3157,169.861     L37.282,166.403     L31.0336,162.594     L26.5705,158.532     L23.8926,154.306  z"
+     style="fill:#dadada;fill-opacity:1.0;stroke:#000000;stroke-opacity:1"
+     id="path11" />
+  <path
+     d="M196.276 , 150     L232.961,222     L318.562,390     L333.155,390     L294.37,222     L294.37,150  z"
+     style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1"
+     id="path12" />
+  <path
+     d="M196.276 , 150     L232.961,78     L318.562,-90     L333.155,-90     L294.37,78     L294.37,150  z"
+     style="fill:#c8c8c8;fill-opacity:1.0;stroke:#000000;stroke-opacity:1"
+     id="path13" />
+  <line
+     x1="277.609"
+     y1="178.039"
+     x2="275.728"
+     y2="220.56"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line13" />
+  <line
+     x1="294.37"
+     y1="178.039"
+     x2="294.37"
+     y2="220.56"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line14" />
+  <line
+     x1="277.609"
+     y1="178.039"
+     x2="294.37"
+     y2="178.039"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line15" />
+  <line
+     x1="275.728"
+     y1="220.56"
+     x2="294.37"
+     y2="220.56"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line16" />
+  <line
+     x1="276.4"
+     y1="223.44"
+     x2="312.173"
+     y2="337.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line17" />
+  <line
+     x1="294.703"
+     y1="223.44"
+     x2="320.965"
+     y2="337.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line18" />
+  <line
+     x1="276.4"
+     y1="223.44"
+     x2="294.703"
+     y2="223.44"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line19" />
+  <line
+     x1="312.173"
+     y1="337.2"
+     x2="320.965"
+     y2="337.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line20" />
+  <line
+     x1="313.683"
+     y1="342"
+     x2="327.268"
+     y2="385.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line21" />
+  <line
+     x1="322.074"
+     y1="342"
+     x2="332.047"
+     y2="385.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line22" />
+  <line
+     x1="313.683"
+     y1="342"
+     x2="322.074"
+     y2="342"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line23" />
+  <line
+     x1="327.268"
+     y1="385.2"
+     x2="332.047"
+     y2="385.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line24" />
+  <line
+     x1="267.005"
+     y1="199.3"
+     x2="266.406"
+     y2="220.56"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line25" />
+  <line
+     x1="276.126"
+     y1="199.3"
+     x2="275.728"
+     y2="220.56"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line26" />
+  <line
+     x1="267.005"
+     y1="199.3"
+     x2="276.126"
+     y2="199.3"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line27" />
+  <line
+     x1="266.406"
+     y1="220.56"
+     x2="275.728"
+     y2="220.56"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line28" />
+  <line
+     x1="267.249"
+     y1="223.44"
+     x2="276.954"
+     y2="250.68"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line29" />
+  <line
+     x1="276.4"
+     y1="223.44"
+     x2="284.966"
+     y2="250.68"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line30" />
+  <line
+     x1="267.249"
+     y1="223.44"
+     x2="276.4"
+     y2="223.44"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line31" />
+  <line
+     x1="276.954"
+     y1="250.68"
+     x2="284.966"
+     y2="250.68"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line32" />
+  <line
+     x1="276.954"
+     y1="250.68"
+     x2="286.658"
+     y2="277.92"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line33" />
+  <line
+     x1="284.966"
+     y1="250.68"
+     x2="293.532"
+     y2="277.92"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line34" />
+  <line
+     x1="276.954"
+     y1="250.68"
+     x2="284.966"
+     y2="250.68"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line35" />
+  <line
+     x1="286.658"
+     y1="277.92"
+     x2="293.532"
+     y2="277.92"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line36" />
+  <line
+     x1="286.658"
+     y1="277.92"
+     x2="296.363"
+     y2="305.16"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line37" />
+  <line
+     x1="293.532"
+     y1="277.92"
+     x2="302.098"
+     y2="305.16"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line38" />
+  <line
+     x1="286.658"
+     y1="277.92"
+     x2="293.532"
+     y2="277.92"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line39" />
+  <line
+     x1="296.363"
+     y1="305.16"
+     x2="302.098"
+     y2="305.16"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line40" />
+  <line
+     x1="296.363"
+     y1="305.16"
+     x2="306.067"
+     y2="332.4"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line41" />
+  <line
+     x1="302.098"
+     y1="305.16"
+     x2="310.664"
+     y2="332.4"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line42" />
+  <line
+     x1="296.363"
+     y1="305.16"
+     x2="302.098"
+     y2="305.16"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line43" />
+  <line
+     x1="306.067"
+     y1="332.4"
+     x2="310.664"
+     y2="332.4"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line44" />
+  <line
+     x1="219.781"
+     y1="178.039"
+     x2="317.29"
+     y2="378"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line45" />
+  <line
+     x1="210.562"
+     y1="178.039"
+     x2="312.447"
+     y2="378"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line46" />
+  <line
+     x1="219.781"
+     y1="178.039"
+     x2="210.562"
+     y2="178.039"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line47" />
+  <line
+     x1="317.29"
+     y1="378"
+     x2="312.447"
+     y2="378"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line48" />
+  <line
+     x1="277.609"
+     y1="121.961"
+     x2="275.728"
+     y2="79.44"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line49" />
+  <line
+     x1="294.37"
+     y1="121.961"
+     x2="294.37"
+     y2="79.44"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line50" />
+  <line
+     x1="277.609"
+     y1="121.961"
+     x2="294.37"
+     y2="121.961"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line51" />
+  <line
+     x1="275.728"
+     y1="79.44"
+     x2="294.37"
+     y2="79.44"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line52" />
+  <line
+     x1="276.4"
+     y1="76.56"
+     x2="312.173"
+     y2="-37.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line53" />
+  <line
+     x1="294.703"
+     y1="76.56"
+     x2="320.965"
+     y2="-37.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line54" />
+  <line
+     x1="276.4"
+     y1="76.56"
+     x2="294.703"
+     y2="76.56"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line55" />
+  <line
+     x1="312.173"
+     y1="-37.2"
+     x2="320.965"
+     y2="-37.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line56" />
+  <line
+     x1="313.683"
+     y1="-42"
+     x2="327.268"
+     y2="-85.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line57" />
+  <line
+     x1="322.074"
+     y1="-42"
+     x2="332.047"
+     y2="-85.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line58" />
+  <line
+     x1="313.683"
+     y1="-42"
+     x2="322.074"
+     y2="-42"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line59" />
+  <line
+     x1="327.268"
+     y1="-85.2"
+     x2="332.047"
+     y2="-85.2"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line60" />
+  <line
+     x1="267.005"
+     y1="100.7"
+     x2="266.406"
+     y2="79.44"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line61" />
+  <line
+     x1="276.126"
+     y1="100.7"
+     x2="275.728"
+     y2="79.44"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line62" />
+  <line
+     x1="267.005"
+     y1="100.7"
+     x2="276.126"
+     y2="100.7"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line63" />
+  <line
+     x1="266.406"
+     y1="79.44"
+     x2="275.728"
+     y2="79.44"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line64" />
+  <line
+     x1="267.249"
+     y1="76.56"
+     x2="276.954"
+     y2="49.32"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line65" />
+  <line
+     x1="276.4"
+     y1="76.56"
+     x2="284.966"
+     y2="49.32"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line66" />
+  <line
+     x1="267.249"
+     y1="76.56"
+     x2="276.4"
+     y2="76.56"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line67" />
+  <line
+     x1="276.954"
+     y1="49.32"
+     x2="284.966"
+     y2="49.32"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line68" />
+  <line
+     x1="276.954"
+     y1="49.32"
+     x2="286.658"
+     y2="22.08"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line69" />
+  <line
+     x1="284.966"
+     y1="49.32"
+     x2="293.532"
+     y2="22.08"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line70" />
+  <line
+     x1="276.954"
+     y1="49.32"
+     x2="284.966"
+     y2="49.32"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line71" />
+  <line
+     x1="286.658"
+     y1="22.08"
+     x2="293.532"
+     y2="22.08"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line72" />
+  <line
+     x1="286.658"
+     y1="22.08"
+     x2="296.363"
+     y2="-5.16"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line73" />
+  <line
+     x1="293.532"
+     y1="22.08"
+     x2="302.098"
+     y2="-5.16"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line74" />
+  <line
+     x1="286.658"
+     y1="22.08"
+     x2="293.532"
+     y2="22.08"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line75" />
+  <line
+     x1="296.363"
+     y1="-5.16"
+     x2="302.098"
+     y2="-5.16"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line76" />
+  <line
+     x1="296.363"
+     y1="-5.16"
+     x2="306.067"
+     y2="-32.4"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line77" />
+  <line
+     x1="302.098"
+     y1="-5.16"
+     x2="310.664"
+     y2="-32.4"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line78" />
+  <line
+     x1="296.363"
+     y1="-5.16"
+     x2="302.098"
+     y2="-5.16"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line79" />
+  <line
+     x1="306.067"
+     y1="-32.4"
+     x2="310.664"
+     y2="-32.4"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line80" />
+  <line
+     x1="219.781"
+     y1="121.961"
+     x2="317.29"
+     y2="-78"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line81" />
+  <line
+     x1="210.562"
+     y1="121.961"
+     x2="312.447"
+     y2="-78"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line82" />
+  <line
+     x1="219.781"
+     y1="121.961"
+     x2="210.562"
+     y2="121.961"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line83" />
+  <line
+     x1="317.29"
+     y1="-78"
+     x2="312.447"
+     y2="-78"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line84" />
+  <path
+     d="M207.277 , 60.2436     L216.662,56.8216     L235.431,56.8216     L244.816,60.2436     L244.816,87.6193     L235.431,91.0412     L216.662,91.0412     L207.277,87.6193  z"
+     style="fill:#e3ff00;fill-opacity:1;stroke:#000000;stroke-opacity:1"
+     id="path84" />
+  <path
+     d="M207.277 , 212.381     L216.662,208.959     L235.431,208.959     L244.816,212.381     L244.816,239.756     L235.431,243.178     L216.662,243.178     L207.277,239.756  z"
+     style="fill:#dadada;fill-opacity:1.0;stroke:#000000;stroke-opacity:1"
+     id="path85" />
+  <line
+     x1="0"
+     y1="150"
+     x2="600"
+     y2="150"
+     style="fill:none;stroke:#070000;stroke-opacity:0.25806451000000002;stroke-width:2;stroke-miterlimit:4;stroke-dasharray:8,4,2,4;stroke-dashoffset:0"
+     id="line85" />
+  <line
+     x1="207.277"
+     y1="150"
+     x2="180.277"
+     y2="150"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line86" />
+  <line
+     x1="207.277"
+     y1="73.9314"
+     x2="180.277"
+     y2="73.9314"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line87" />
+  <line
+     x1="183.277"
+     y1="150"
+     x2="183.277"
+     y2="73.9314"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line88" />
+  <text
+     style="font-size:12px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans;text-anchor:middle;text-align:center"
+     x="178.277"
+     y="111.966"
+     transform="rotate(-90,  178.277,  111.966)"
+     id="text88">&#10;5.49 m&#10;</text>
+  <line
+     x1="207.277"
+     y1="73.9314"
+     x2="207.277"
+     y2="46.9314"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line89" />
+  <line
+     x1="244.816"
+     y1="73.9314"
+     x2="244.816"
+     y2="46.9314"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line90" />
+  <line
+     x1="207.277"
+     y1="49.9314"
+     x2="244.816"
+     y2="49.9314"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line91" />
+  <text
+     style="font-size:12px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans;text-anchor:middle;text-align:center"
+     x="226.046"
+     y="44.9314"
+     transform="rotate(0,  226.046,  44.9314)"
+     id="text91">&#10;2.71 m&#10;</text>
+  <line
+     x1="207.277"
+     y1="73.9314"
+     x2="207.277"
+     y2="46.9314"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line92" />
+  <line
+     x1="23"
+     y1="150"
+     x2="23"
+     y2="46.9314"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line93" />
+  <line
+     x1="207.277"
+     y1="49.9314"
+     x2="23"
+     y2="49.9314"
+     style="fill:none;stroke:#070000;stroke-opacity:1;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
+     id="line94" />
+  <text
+     style="font-size:12px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans;text-anchor:middle;text-align:center"
+     x="115.139"
+     y="44.9314"
+     transform="rotate(0,  115.139,  44.9314)"
+     id="text94">&#10;13.31 m&#10;</text>
+</svg>
diff --git a/docs/assets/images/documentation/pymodulepackage.svg b/docs/assets/images/documentation/pymodulepackage.svg
new file mode 100644
index 0000000000000000000000000000000000000000..6055f3eaf17eab6eceffc3273b5dcc814f3b3d75
--- /dev/null
+++ b/docs/assets/images/documentation/pymodulepackage.svg
@@ -0,0 +1,13 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 40 40">
+	<rect x="10" y="0" width="20" height="40" rx="10" ry="5" mask="url(#lines)"/>
+	<rect x="0" y="10" width="40" height="20" rx="5" ry="10" mask="url(#lines)"/>
+	<circle cx="14.5" cy="5" r="1.85" fill="white" />
+	<circle cx="25.5" cy="35" r="1.85" fill="white" />
+	<mask id="lines">
+		<rect id="bg" x="0" y="0" width="100%" height="100%" fill="white"/>
+		<line x1="10" y1="9.5" x2="20" y2="9.5" stroke="black" />
+		<line x1="20" y1="30.5" x2="30" y2="30.5" stroke="black" />
+		<path d="m 9.5,30 c 0,-10 2.5,-10 10,-10 8.5,0 11,0 11,-10" stroke="black" fill="none" />
+	</mask>
+</svg>
\ No newline at end of file
diff --git a/docs/assets/images/documentation/report-generator.svg b/docs/assets/images/documentation/report-generator.svg
new file mode 100644
index 0000000000000000000000000000000000000000..4ad524be1ea1619aec07d6a79f9c91d2e49b5782
--- /dev/null
+++ b/docs/assets/images/documentation/report-generator.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 328.09193,181.23128 c 0,-51.93088 44.03495,-142.27846 97.18059,-142.27846 54.66408,0 97.18059,90.34758 97.18059,142.27846 V 281.9043 l 269.97984,179.93594 c 13.51418,8.95884 21.56195,24.14331 21.56195,40.39069 v 86.09593 c 0,16.55107 -16.24739,28.24311 -32.03923,23.08039 L 522.45311,524.85579 v 121.47574 l 87.46254,65.5969 c 6.07379,4.55534 9.71806,11.84388 9.71806,19.43612 v 63.77476 c 0,11.84389 -9.56622,21.25826 -21.25826,21.25826 -1.97398,0 -3.94796,-0.30369 -5.92194,-0.75923 L 425.27252,767.80727 258.09153,815.63834 c -1.97398,0.60738 -3.94796,0.75923 -5.92194,0.75923 -11.84389,0 -21.25826,-9.56622 -21.25826,-21.25826 v -63.77476 c 0,-7.59224 3.64428,-14.88078 9.71806,-19.43612 l 87.46254,-65.5969 V 524.85579 L 68.589377,611.40725 C 52.797531,616.56997 36.55015,604.87793 36.55015,588.32686 v -86.09593 c 0,-16.24738 8.047768,-31.43185 21.561945,-40.39069 L 328.09193,281.9043 Z"
+     id="path1-3"
+     style="fill:#494949;fill-opacity:1;stroke:#ffffff;stroke-width:21.2583;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="M 890.24843,320.99373 H 637.24634 c -34.78779,0 -63.25052,28.46274 -63.25052,63.25052 v 506.00418 c 0,34.78779 28.46273,63.25053 63.25052,63.25053 h 379.50316 c 34.7878,0 63.2505,-28.46274 63.2505,-63.25053 V 510.7453 L 890.24843,320.99373 m 126.50107,569.2547 H 637.24634 V 384.24425 H 858.62316 V 542.37056 H 1016.7495 V 890.24843 M 510.74529,447.49478 V 1016.7495 H 1016.7495 V 1080 H 510.74529 c -34.78778,0 -63.25052,-28.4627 -63.25052,-63.2505 V 447.49478 h 63.25052 m 189.75157,189.75156 v 63.25053 H 953.49895 V 637.24634 H 700.49686 m 0,126.50105 v 63.25052 h 158.1263 v -63.25052 z"
+     id="path1"
+     style="stroke-width:31.6253;fill:#c5a200;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/runtime-info.svg b/docs/assets/images/documentation/runtime-info.svg
new file mode 100644
index 0000000000000000000000000000000000000000..025cffa3a627a5ed12219e71419f8d8a128b49f4
--- /dev/null
+++ b/docs/assets/images/documentation/runtime-info.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="M 973.67795,752.02041 H 106.32209 V 115.95939 h 867.35586 z m 0,-742.0712025 H 106.32209 c -53.486954,0 -96.3728825,47.1745215 -96.3728825,106.0101825 v 636.06102 c 0,58.5478 43.1476105,106.01018 96.3728825,106.01017 H 443.62714 V 964.04074 H 347.25428 V 1070.0508 H 732.74576 V 964.04074 H 636.3729 V 858.03058 h 337.30505 c 53.22525,-10e-6 96.37285,-47.46238 96.37285,-106.01017 V 115.95939 c 0,-58.547795 -43.1476,-106.0101679 -96.37285,-106.0101825 z"
+     id="path1"
+     style="fill:#4d4d4d;fill-opacity:1;stroke:#ffffff;stroke-width:19.898;stroke-linecap:butt;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="m 540,691 a 256,256 0 1 0 0,-512 256,256 0 1 0 0,512 z M 500,515 h 24 v -64 h -24 c -13.3,0 -24,-10.7 -24,-24 0,-13.3 10.7,-24 24,-24 h 48 c 13.3,0 24,10.7 24,24 v 88 h 8 c 13.3,0 24,10.7 24,24 0,13.3 -10.7,24 -24,24 h -80 c -13.3,0 -24,-10.7 -24,-24 0,-13.3 10.7,-24 24,-24 z m 40,-208 a 32,32 0 1 1 0,64 32,32 0 1 1 0,-64 z"
+     id="path1-3"
+     style="fill:#dbff3f;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/standard-files.svg b/docs/assets/images/documentation/standard-files.svg
new file mode 100644
index 0000000000000000000000000000000000000000..5ac3b2dbb17f6b57ac0b88adde9cfbe7d85ac382
--- /dev/null
+++ b/docs/assets/images/documentation/standard-files.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 810.46978,287.11711 c 5.32278,14.4713 0.83168,30.60596 -10.64555,40.91885 l -72.02384,65.53669 c 1.82971,13.80595 2.82773,27.94459 2.82773,42.24954 0,14.30498 -0.99802,28.4436 -2.82773,42.24955 l 72.02384,65.5367 c 11.47723,10.31288 15.96833,26.44756 10.64555,40.91885 -7.31881,19.79408 -16.13467,38.75647 -26.28122,57.05352 l -7.81783,13.47329 c -10.97823,18.29705 -23.28714,35.59606 -36.76043,51.89708 -9.81387,11.97624 -26.11487,15.96832 -40.7525,11.3109 l -92.6496,-29.44161 c -22.28914,17.13268 -46.90698,31.43765 -73.18819,42.24954 l -20.7921,94.97831 c -3.32674,15.13665 -14.97031,27.1129 -30.27331,29.60795 -22.95446,3.82575 -46.57429,5.82179 -70.69313,5.82179 -24.11883,0 -47.73866,-1.99604 -70.69314,-5.82179 -15.30298,-2.49505 -26.94656,-14.4713 -30.27329,-29.60795 l -20.79211,-94.97831 c -26.2812,-10.81189 -50.89905,-25.11686 -73.18818,-42.24954 l -92.48327,29.60795 c -14.63764,4.65743 -30.938644,0.499 -40.752514,-11.31091 -13.47328,-16.301 -25.782203,-33.60004 -36.760432,-51.89708 l -7.81783,-13.47329 C 28.354161,623.4501 19.53831,604.48771 12.219491,584.69362 6.896714,570.22233 11.387807,554.08767 22.865045,543.77478 l 72.023834,-65.5367 c -1.829706,-13.97229 -2.827726,-28.11091 -2.827726,-42.41589 0,-14.30495 0.99802,-28.44359 2.827726,-42.24954 L 22.865045,328.03596 C 11.387807,317.72307 6.896714,301.58841 12.219491,287.11711 19.53831,267.32303 28.354161,248.36063 38.500704,230.06359 l 7.81783,-13.47328 c 10.978229,-18.29705 23.287152,-35.59608 36.760432,-51.89708 9.81387,-11.97626 26.114874,-15.96834 40.752514,-11.31092 l 92.6496,29.44163 c 22.28914,-17.13269 46.90699,-31.43767 73.18819,-42.24955 L 310.46138,45.596075 C 313.78811,30.459426 325.43168,18.483176 340.73467,15.988124 363.68915,11.996042 387.30898,10 411.42781,10 c 24.11884,0 47.73866,1.996042 70.69313,5.821788 15.30299,2.495052 26.94657,14.471302 30.27331,29.607951 l 20.7921,94.978301 c 26.2812,10.8119 50.89906,25.11687 73.18818,42.24955 l 92.6496,-29.44161 c 14.63763,-4.65742 30.93864,-0.49901 40.75251,11.3109 13.47328,16.30102 25.78221,33.60003 36.76044,51.89708 l 7.81782,13.47329 c 10.14654,18.29705 18.96239,37.25944 26.28121,57.05352 z M 411.42781,568.89163 a 133.06944,133.06944 0 1 0 0,-266.13887 133.06944,133.06944 0 1 0 0,266.13887 z"
+     id="path1"
+     style="fill:#4d4d4d;fill-opacity:1;stroke:#ffffff;stroke-width:20;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="m 723.46457,936.97465 c 3.64315,21.85905 11.23297,42.20007 21.85886,60.71943 h -237.1092 c -33.69934,0 -60.71946,-27.02008 -60.71946,-60.71943 V 451.21946 A 60.719413,60.719413 0 0 1 508.21423,390.5 H 751.0919 l 182.15823,182.15822 v 154.53092 c -10.01869,-1.51843 -20.03752,-2.73244 -30.35974,-2.73244 -10.32236,0 -20.34104,1.21501 -30.35972,2.73244 V 603.01795 H 720.73218 V 451.21946 H 508.21423 v 485.75519 h 215.25034 m 118.70637,-151.79852 -75.89925,91.0792 h 45.53952 v 121.43875 h 60.71946 V 876.25533 h 45.53951 l -75.89924,-91.0792 M 993.96943,936.97465 V 815.5359 h -60.7193 v 121.43875 h -45.53967 l 75.89939,91.07915 75.89925,-91.07915 z"
+     id="path1-7"
+     style="stroke-width:30.3598;fill:#7e16d6;fill-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/svl.svg b/docs/assets/images/documentation/svl.svg
new file mode 100644
index 0000000000000000000000000000000000000000..4bc4b59495b25adfb3ce109660eb8d8148433209
--- /dev/null
+++ b/docs/assets/images/documentation/svl.svg
@@ -0,0 +1,22 @@
+<?xml version="1.0" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
+ "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
+<svg version="1.0" xmlns="http://www.w3.org/2000/svg"
+ width="1280.000000pt" height="640.000000pt" viewBox="0 0 1280.000000 640.000000"
+ preserveAspectRatio="xMidYMid meet">
+<metadata>
+Created by potrace 1.15, written by Peter Selinger 2001-2017
+</metadata>
+<g transform="translate(0.000000,640.000000) scale(0.100000,-0.100000)"
+fill="#000000" stroke="none">
+<path d="M9280 5934 c-106 -21 -223 -80 -293 -150 -99 -97 -148 -196 -168
+-336 -10 -72 -9 -97 5 -164 22 -108 75 -212 144 -282 33 -33 391 -297 851
+-627 l794 -570 -5084 -5 c-4763 -5 -5087 -6 -5132 -22 -146 -52 -265 -152
+-330 -275 -114 -217 -77 -472 93 -644 70 -71 126 -108 217 -142 l58 -22 5078
+-5 5078 -5 -752 -615 c-414 -338 -776 -638 -804 -667 -29 -29 -68 -84 -89
+-125 -112 -224 -73 -470 105 -649 104 -105 233 -159 382 -159 99 0 186 22 270
+68 70 39 2847 2303 2942 2399 160 162 199 422 93 633 -46 94 -119 163 -324
+311 -1086 782 -2701 1940 -2747 1970 -83 54 -166 80 -272 84 -49 2 -101 1
+-115 -1z"/>
+</g>
+</svg>
diff --git a/docs/assets/images/documentation/systems-design.png b/docs/assets/images/documentation/systems-design.png
new file mode 100644
index 0000000000000000000000000000000000000000..7030b383abd7048be1282e06a183702bdaf4004c
--- /dev/null
+++ b/docs/assets/images/documentation/systems-design.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a1d389a7015096cd85227135b121732474de8a30c663a768cebfa42c261e5cdf
+size 61830
diff --git a/docs/assets/images/documentation/systems-design.svg b/docs/assets/images/documentation/systems-design.svg
new file mode 100644
index 0000000000000000000000000000000000000000..15f3a5d7c8a3291135010b872584c1b6b17bd4ba
--- /dev/null
+++ b/docs/assets/images/documentation/systems-design.svg
@@ -0,0 +1,288 @@
+<?xml version="1.0" encoding="utf-8"  standalone="no"?>
+<svg 
+ width="650" height="325"
+ viewBox="0 0 650 325"
+ xmlns="http://www.w3.org/2000/svg"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+>
+
+<title>Gnuplot</title>
+<desc>Produced by GNUPLOT 5.4 patchlevel 9 </desc>
+
+<g id="gnuplot_canvas">
+
+<rect x="0" y="0" width="650" height="325" fill="none"/>
+<defs>
+
+	<circle id='gpDot' r='0.5' stroke-width='0.5' stroke='currentColor'/>
+	<path id='gpPt0' stroke-width='0.167' stroke='currentColor' d='M-1,0 h2 M0,-1 v2'/>
+	<path id='gpPt1' stroke-width='0.167' stroke='currentColor' d='M-1,-1 L1,1 M1,-1 L-1,1'/>
+	<path id='gpPt2' stroke-width='0.167' stroke='currentColor' d='M-1,0 L1,0 M0,-1 L0,1 M-1,-1 L1,1 M-1,1 L1,-1'/>
+	<rect id='gpPt3' stroke-width='0.167' stroke='currentColor' x='-1' y='-1' width='2' height='2'/>
+	<rect id='gpPt4' stroke-width='0.167' stroke='currentColor' fill='currentColor' x='-1' y='-1' width='2' height='2'/>
+	<circle id='gpPt5' stroke-width='0.167' stroke='currentColor' cx='0' cy='0' r='1'/>
+	<use xlink:href='#gpPt5' id='gpPt6' fill='currentColor' stroke='none'/>
+	<path id='gpPt7' stroke-width='0.167' stroke='currentColor' d='M0,-1.33 L-1.33,0.67 L1.33,0.67 z'/>
+	<use xlink:href='#gpPt7' id='gpPt8' fill='currentColor' stroke='none'/>
+	<use xlink:href='#gpPt7' id='gpPt9' stroke='currentColor' transform='rotate(180)'/>
+	<use xlink:href='#gpPt9' id='gpPt10' fill='currentColor' stroke='none'/>
+	<use xlink:href='#gpPt3' id='gpPt11' stroke='currentColor' transform='rotate(45)'/>
+	<use xlink:href='#gpPt11' id='gpPt12' fill='currentColor' stroke='none'/>
+	<path id='gpPt13' stroke-width='0.167' stroke='currentColor' d='M0,1.330 L1.265,0.411 L0.782,-1.067 L-0.782,-1.076 L-1.265,0.411 z'/>
+	<use xlink:href='#gpPt13' id='gpPt14' fill='currentColor' stroke='none'/>
+	<filter id='textbox' filterUnits='objectBoundingBox' x='0' y='0' height='1' width='1'>
+	  <feFlood flood-color='white' flood-opacity='1' result='bgnd'/>
+	  <feComposite in='SourceGraphic' in2='bgnd' operator='atop'/>
+	</filter>
+	<filter id='greybox' filterUnits='objectBoundingBox' x='0' y='0' height='1' width='1'>
+	  <feFlood flood-color='lightgrey' flood-opacity='1' result='grey'/>
+	  <feComposite in='SourceGraphic' in2='grey' operator='atop'/>
+	</filter>
+</defs>
+<g fill="none" color="white" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M89.60,205.00 L638.79,205.00  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M89.60,205.00 L101.60,205.00 M638.79,205.00 L626.79,205.00  '/>	<g transform="translate(78.40,210.20)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M89.60,168.80 L638.79,168.80  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M89.60,168.80 L101.60,168.80 M638.79,168.80 L626.79,168.80  '/>	<g transform="translate(78.40,174.00)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >20</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M89.60,132.60 L638.79,132.60  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M89.60,132.60 L101.60,132.60 M638.79,132.60 L626.79,132.60  '/>	<g transform="translate(78.40,137.80)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >40</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M89.60,96.41 L638.79,96.41  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M89.60,96.41 L101.60,96.41 M638.79,96.41 L626.79,96.41  '/>	<g transform="translate(78.40,101.61)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >60</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M89.60,60.21 L638.79,60.21  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M89.60,60.21 L101.60,60.21 M638.79,60.21 L626.79,60.21  '/>	<g transform="translate(78.40,65.41)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >80</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M89.60,24.01 L638.79,24.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M89.60,24.01 L101.60,24.01 M638.79,24.01 L626.79,24.01  '/>	<g transform="translate(78.40,29.21)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >100</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M150.62,205.00 L150.62,24.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M150.62,205.00 L150.62,193.00 M150.62,24.01 L150.62,36.01  '/>	<g transform="translate(126.29,303.88) rotate(-45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" >OME</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M211.64,205.00 L211.64,24.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M211.64,205.00 L211.64,193.00 M211.64,24.01 L211.64,36.01  '/>	<g transform="translate(187.31,303.88) rotate(-45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" >MME</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M272.66,205.00 L272.66,24.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M272.66,205.00 L272.66,193.00 M272.66,24.01 L272.66,36.01  '/>	<g transform="translate(248.33,303.88) rotate(-45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" >Op Items</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M333.68,205.00 L333.68,24.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M333.68,205.00 L333.68,193.00 M333.68,24.01 L333.68,36.01  '/>	<g transform="translate(309.35,303.88) rotate(-45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" >Structure</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M394.71,205.00 L394.71,24.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M394.71,205.00 L394.71,193.00 M394.71,24.01 L394.71,36.01  '/>	<g transform="translate(370.38,303.88) rotate(-45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" >Gear</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M455.73,205.00 L455.73,24.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M455.73,205.00 L455.73,193.00 M455.73,24.01 L455.73,36.01  '/>	<g transform="translate(431.40,303.88) rotate(-45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" >Propulsion</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M516.75,205.00 L516.75,24.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M516.75,205.00 L516.75,193.00 M516.75,24.01 L516.75,36.01  '/>	<g transform="translate(492.42,303.88) rotate(-45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" >Systems</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M577.77,205.00 L577.77,24.01  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M577.77,205.00 L577.77,193.00 M577.77,24.01 L577.77,36.01  '/>	<g transform="translate(553.44,303.88) rotate(-45)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" >not Alloc</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M89.60,24.01 L89.60,205.00 L638.79,205.00 L638.79,24.01 L89.60,24.01 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(29.60,114.51) rotate(270)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >Mass/OME, %</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	<g id="gnuplot_plot_1"  fill="none"><title>gnuplot_plot_1</title>
+<g fill="none" color="white" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g stroke='none' shape-rendering='crispEdges'>
+		<polygon fill = 'rgb(211, 211, 211)' points = '127.74,205.00 173.51,205.00 173.51,24.00 127.74,24.00 '/>
+	</g>
+	<path stroke='rgb(  0,   0,   0)'  d='M127.74,205.00 L127.74,24.01 L173.50,24.01 L173.50,205.00 L127.74,205.00 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g stroke='none' shape-rendering='crispEdges'>
+		<polygon fill = 'rgb(211, 211, 211)' points = '188.76,205.00 234.54,205.00 234.54,38.25 188.76,38.25 '/>
+	</g>
+	<path stroke='rgb(  0,   0,   0)'  d='M188.76,205.00 L188.76,38.26 L234.53,38.26 L234.53,205.00 L188.76,205.00 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g stroke='none' shape-rendering='crispEdges'>
+		<polygon fill = 'rgb(211, 211, 211)' points = '249.78,205.00 295.56,205.00 295.56,190.74 249.78,190.74 '/>
+	</g>
+	<path stroke='rgb(  0,   0,   0)'  d='M249.78,205.00 L249.78,190.75 L295.55,190.75 L295.55,205.00 L249.78,205.00 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g stroke='none' shape-rendering='crispEdges'>
+		<polygon fill = 'rgb(211, 211, 211)' points = '310.80,205.00 356.58,205.00 356.58,110.88 310.80,110.88 '/>
+	</g>
+	<path stroke='rgb(  0,   0,   0)'  d='M310.80,205.00 L310.80,110.89 L356.57,110.89 L356.57,205.00 L310.80,205.00 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g stroke='none' shape-rendering='crispEdges'>
+		<polygon fill = 'rgb(211, 211, 211)' points = '371.82,205.00 417.60,205.00 417.60,193.86 371.82,193.86 '/>
+	</g>
+	<path stroke='rgb(  0,   0,   0)'  d='M371.82,205.00 L371.82,193.87 L417.59,193.87 L417.59,205.00 L371.82,205.00 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g stroke='none' shape-rendering='crispEdges'>
+		<polygon fill = 'rgb(211, 211, 211)' points = '432.84,205.00 478.62,205.00 478.62,168.57 432.84,168.57 '/>
+	</g>
+	<path stroke='rgb(  0,   0,   0)'  d='M432.84,205.00 L432.84,168.58 L478.61,168.58 L478.61,205.00 L432.84,205.00 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g stroke='none' shape-rendering='crispEdges'>
+		<polygon fill = 'rgb(211, 211, 211)' points = '493.86,205.00 539.64,205.00 539.64,182.08 493.86,182.08 '/>
+	</g>
+	<path stroke='rgb(  0,   0,   0)'  d='M493.86,205.00 L493.86,182.09 L539.63,182.09 L539.63,205.00 L493.86,205.00 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+	</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M89.60,24.01 L89.60,205.00 L638.79,205.00 L638.79,24.01 L89.60,24.01 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+</g>
+</svg>
+
diff --git a/docs/assets/images/documentation/test-framework.svg b/docs/assets/images/documentation/test-framework.svg
new file mode 100644
index 0000000000000000000000000000000000000000..5ced8a1e4b389b7e650a14dc93ce32de1f850645
--- /dev/null
+++ b/docs/assets/images/documentation/test-framework.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 345.31808,457.86703 c 0,-26.5 21.5,-48 48.00001,-48 h 288 c 26.5,0 48,21.5 48,48 v 304 H 345.31808 Z m 313.00001,47 c -9.4,-9.4 -24.6,-9.4 -33.9,0 l -111,111 -47,-47 c -9.4,-9.4 -24.6,-9.4 -33.9,0 -9.3,9.4 -9.4,24.6 0,33.9 l 64,64 c 9.4,9.4 24.6,9.4 33.9,0 l 127.9,-127.9 c 9.4,-9.4 9.4,-24.6 0,-33.9 z m -409.00001,209 c 0,-26.5 21.5,-48 48,-48 h 16 v 128 h 448.00001 v -128 h 16 c 26.5,0 48,21.5 48,48 v 96 c 0,26.5 -21.5,48 -48,48 H 297.31808 c -26.5,0 -48,-21.5 -48,-48 z"
+     id="path1"
+     style="fill:#00c429;fill-opacity:1" /><path
+     d="M 198.30467,973.13934 V 295.1125 H 874.39425 V 973.13934 H 198.30467 M 537.31807,72.332293 663.72165,199.70445 H 409.94591 L 537.31807,72.332293 M 198.30467,199.70445 c -24.21523,0 -48.43047,9.20179 -67.31836,28.08969 -19.85651,18.88788 -29.5426,41.16592 -29.5426,67.31836 v 678.02684 c 0,24.21526 9.68609,48.43036 29.5426,67.31836 18.88789,19.8564 43.10313,29.5423 67.31836,29.5423 h 676.08958 c 26.15253,0 48.43047,-9.6859 68.28702,-29.5423 19.37216,-18.888 30.51118,-43.1031 30.51118,-67.31836 V 295.1125 c 0,-26.15244 -11.13902,-48.43048 -30.51118,-67.31836 -19.85655,-18.8879 -42.13459,-28.08969 -68.28702,-28.08969 H 731.04003 L 537.31807,4.529603 341.65893,199.70445 Z"
+     id="path1-8"
+     style="fill:#4d4d4d;fill-opacity:1;stroke:#fefefe;stroke-width:20;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/unit-conversion.svg b/docs/assets/images/documentation/unit-conversion.svg
new file mode 100644
index 0000000000000000000000000000000000000000..2ce27289675e65aef080b571c437d70e5ed95601
--- /dev/null
+++ b/docs/assets/images/documentation/unit-conversion.svg
@@ -0,0 +1,19 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   width="1080"
+   height="1080"
+   viewBox="0 0 1080 1080"
+   version="1.1"
+   id="svg1"
+   xml:space="preserve"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"><defs
+     id="defs1" /><path
+     d="m 518.91635,730.58777 c 0,-38.11745 10.39566,-72.76971 24.25657,-103.95665 h -6.93047 c -65.83923,0 -121.28282,-55.44358 -121.28282,-121.28288 0,-65.83925 55.44359,-121.28282 121.28282,-121.28282 65.83926,0 121.28284,55.44357 121.28284,121.28282 0,6.93044 0,13.86089 -3.46523,17.32612 27.7218,-10.39568 55.44358,-17.32612 90.09582,-17.32612 17.32613,0 34.65224,3.46523 51.97835,6.93044 v -6.93044 c 0,-10.39568 0,-24.25657 -3.46522,-34.65223 l 72.7697,-55.44358 c 6.93045,-6.93045 6.93045,-13.8609 3.46522,-20.79134 L 799.59947,273.17826 C 796.13423,262.7826 789.20379,262.7826 778.80812,262.7826 l -86.6306,34.65223 c -17.32611,-13.8609 -38.11746,-24.25657 -58.9088,-34.65223 l -13.86089,-93.56106 c 3.46522,-3.46521 -6.93045,-10.39566 -13.86089,-10.39566 H 466.93799 c -6.93045,0 -17.32611,6.93045 -17.32611,13.86089 l -13.86089,93.56104 c -20.79136,6.93045 -38.11746,20.79134 -58.90881,31.18702 L 293.67681,262.7826 c -10.39567,0 -17.32611,0 -24.25656,10.39566 l -69.30448,121.28283 c -3.46522,6.93044 0,13.86089 6.93045,20.79134 l 72.7697,55.44358 c 0,10.39566 -3.46522,24.25655 -3.46522,34.65223 0,10.39567 0,24.25657 3.46522,34.65224 l -72.7697,58.90879 c -6.93045,6.9304 -6.93045,13.86093 -3.46522,20.79133 l 69.30447,121.2829 c 3.46523,6.9304 10.39567,6.9304 20.79134,6.9304 l 86.63059,-34.65225 c 17.32613,13.86093 38.11747,24.25653 58.9088,34.65225 l 13.8609,93.56106 c 0,6.9304 6.93044,13.86092 17.32612,13.86092 h 86.63059 C 532.77724,817.21843 518.91635,775.63564 518.91635,730.58777 M 744.15588,591.97886 v -51.97838 l -76.23493,76.23491 76.23493,76.23493 v -48.51319 c 48.51313,0 86.63058,38.11746 86.63058,86.63064 0,13.86094 -3.46521,27.72173 -10.39566,38.11746 l 38.11746,38.11747 C 900.09094,744.44871 882.76482,657.81806 820.3908,616.23539 799.59947,598.90927 771.87767,591.97886 744.15588,591.97886 m 0,225.23957 c -48.51313,0 -86.63059,-38.11747 -86.63059,-86.63066 0,-13.86092 3.46522,-27.72172 10.39566,-38.11745 l -38.11746,-38.11746 c -41.58267,62.37399 -24.25655,149.00463 38.11746,190.58729 24.25657,13.86094 48.51314,24.25654 76.23493,24.25654 v 51.97839 l 76.23492,-76.23493 -76.23492,-79.70011 z"
+     id="path1"
+     style="fill:#ccc300;fill-opacity:1;stroke:none;stroke-width:11.8265;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1" /><path
+     d="M 738.77131,9.9431107 V 142.45734 H 937.54253 V 937.54263 H 738.77131 V 1070.057 H 1070.0569 V 9.9431107 Z m -728.8281993,0 V 1070.057 H 341.22865 V 937.54263 H 142.45734 V 142.45734 H 341.22865 V 9.9431107 Z"
+     id="path1-6"
+     style="fill:#4d4d4d;fill-opacity:1;stroke:#ffffff;stroke-width:19.8862;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1" /></svg>
diff --git a/docs/assets/images/documentation/wing-design.svg b/docs/assets/images/documentation/wing-design.svg
new file mode 100644
index 0000000000000000000000000000000000000000..92a5ef4f65f13d450606af2c68430c025e7b3da5
--- /dev/null
+++ b/docs/assets/images/documentation/wing-design.svg
@@ -0,0 +1,546 @@
+<?xml version="1.0" encoding="iso-8859-1"  standalone="no"?>
+<svg 
+ width="650" height="617"
+ viewBox="0 0 650 617"
+ xmlns="http://www.w3.org/2000/svg"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+>
+
+<title>Gnuplot</title>
+<desc>Produced by GNUPLOT 5.4 patchlevel 9 </desc>
+
+<g id="gnuplot_canvas">
+
+<rect x="0" y="0" width="650" height="617" fill="none"/>
+<defs>
+
+	<circle id='gpDot' r='0.5' stroke-width='0.5' stroke='currentColor'/>
+	<path id='gpPt0' stroke-width='0.167' stroke='currentColor' d='M-1,0 h2 M0,-1 v2'/>
+	<path id='gpPt1' stroke-width='0.167' stroke='currentColor' d='M-1,-1 L1,1 M1,-1 L-1,1'/>
+	<path id='gpPt2' stroke-width='0.167' stroke='currentColor' d='M-1,0 L1,0 M0,-1 L0,1 M-1,-1 L1,1 M-1,1 L1,-1'/>
+	<rect id='gpPt3' stroke-width='0.167' stroke='currentColor' x='-1' y='-1' width='2' height='2'/>
+	<rect id='gpPt4' stroke-width='0.167' stroke='currentColor' fill='currentColor' x='-1' y='-1' width='2' height='2'/>
+	<circle id='gpPt5' stroke-width='0.167' stroke='currentColor' cx='0' cy='0' r='1'/>
+	<use xlink:href='#gpPt5' id='gpPt6' fill='currentColor' stroke='none'/>
+	<path id='gpPt7' stroke-width='0.167' stroke='currentColor' d='M0,-1.33 L-1.33,0.67 L1.33,0.67 z'/>
+	<use xlink:href='#gpPt7' id='gpPt8' fill='currentColor' stroke='none'/>
+	<use xlink:href='#gpPt7' id='gpPt9' stroke='currentColor' transform='rotate(180)'/>
+	<use xlink:href='#gpPt9' id='gpPt10' fill='currentColor' stroke='none'/>
+	<use xlink:href='#gpPt3' id='gpPt11' stroke='currentColor' transform='rotate(45)'/>
+	<use xlink:href='#gpPt11' id='gpPt12' fill='currentColor' stroke='none'/>
+	<path id='gpPt13' stroke-width='0.167' stroke='currentColor' d='M0,1.330 L1.265,0.411 L0.782,-1.067 L-0.782,-1.076 L-1.265,0.411 z'/>
+	<use xlink:href='#gpPt13' id='gpPt14' fill='currentColor' stroke='none'/>
+	<filter id='textbox' filterUnits='objectBoundingBox' x='0' y='0' height='1' width='1'>
+	  <feFlood flood-color='white' flood-opacity='1' result='bgnd'/>
+	  <feComposite in='SourceGraphic' in2='bgnd' operator='atop'/>
+	</filter>
+	<filter id='greybox' filterUnits='objectBoundingBox' x='0' y='0' height='1' width='1'>
+	  <feFlood flood-color='lightgrey' flood-opacity='1' result='grey'/>
+	  <feComposite in='SourceGraphic' in2='grey' operator='atop'/>
+	</filter>
+</defs>
+<g fill="none" color="white" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,339.63 L584.99,339.63  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,339.63 L77.00,339.63  '/>	<g transform="translate(53.80,344.83)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 12</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,283.50 L435.94,283.50 M573.79,283.50 L584.99,283.50  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,283.50 L77.00,283.50  '/>	<g transform="translate(53.80,288.70)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 14</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,227.36 L435.94,227.36 M573.79,227.36 L584.99,227.36  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,227.36 L77.00,227.36  '/>	<g transform="translate(53.80,232.56)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 16</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,171.23 L584.99,171.23  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,171.23 L77.00,171.23  '/>	<g transform="translate(53.80,176.43)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 18</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,115.09 L584.99,115.09  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,115.09 L77.00,115.09  '/>	<g transform="translate(53.80,120.29)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 20</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,58.96 L584.99,58.96  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,58.96 L77.00,58.96  '/>	<g transform="translate(53.80,64.16)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" > 22</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,339.63 L65.00,30.89  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,339.63 L65.00,327.63 M65.00,30.89 L65.00,42.89  '/>	<g transform="translate(65.00,368.83)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M195.00,339.63 L195.00,30.89  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M195.00,339.63 L195.00,327.63 M195.00,30.89 L195.00,42.89  '/>	<g transform="translate(195.00,368.83)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M325.00,339.63 L325.00,30.89  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M325.00,339.63 L325.00,327.63 M325.00,30.89 L325.00,42.89  '/>	<g transform="translate(325.00,368.83)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M454.99,339.63 L454.99,327.63 M454.99,192.63 L454.99,30.89  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M454.99,339.63 L454.99,327.63 M454.99,30.89 L454.99,42.89  '/>	<g transform="translate(454.99,368.83)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M584.99,339.63 L584.99,30.89  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M584.99,339.63 L584.99,327.63 M584.99,30.89 L584.99,42.89  '/>	<g transform="translate(584.99,368.83)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,30.89 L65.00,339.63 L584.99,339.63 L584.99,30.89 L65.00,30.89 Z  '/></g>
+<g fill="none" color="black" stroke="black" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(112, 128, 144)' stroke-dasharray=' 9,4,1,4,1,4'  d='M65.01,325.23 L65.01,126.42  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(112, 128, 144)' stroke-dasharray=' 9,4,1,4,1,4'  d='M200.19,250.88 L200.19,126.42  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(112, 128, 144)' stroke-dasharray=' 9,4,1,4,1,4'  d='M515.60,77.39 L515.60,47.81  '/></g>
+<g fill="none" color="black" stroke="rgb(112, 128, 144)" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(16.20,185.26) rotate(270)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >x [m]</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M435.94,327.63 L435.94,192.63 L573.79,192.63 L573.79,327.63 L435.94,327.63 Z  '/></g>
+	<g id="gnuplot_plot_1a" ><title>Planform (old)</title>
+<g fill="none" color="white" stroke="rgb(  0,   0,   0)" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(536.62,210.03)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Planform (old)</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(148,   0, 211)'  d='M545.01,206.13 L565.40,206.13 M65.00,325.23 L200.18,250.88 L515.60,77.40 L515.60,47.81 L200.18,126.43 L65.00,126.43
+		 '/></g>
+	</g>
+	<g id="gnuplot_plot_2a" ><title>Planform (new)</title>
+<g fill="none" color="white" stroke="rgb(148,   0, 211)" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(536.62,237.03)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Planform (new)</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M545.01,233.13 L565.40,233.13 M65.00,325.23 L200.18,250.88 L515.60,77.40 L515.60,47.81 L200.18,126.43 L65.00,126.43
+		 '/></g>
+	</g>
+	<g id="gnuplot_plot_3a" ><title>Spoiler</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(536.62,264.03)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Spoiler</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M545.01,260.13 L565.40,260.13 M157.56,144.93 L197.47,145.32 L197.47,164.21 L157.56,163.40 L157.56,144.93 M202.88,144.31
+		L254.02,129.24 L254.02,145.49 L202.88,162.86 L202.88,144.31 M254.02,129.24 L305.16,114.19 L305.16,128.12 L254.02,145.49
+		L254.02,129.24 M305.16,114.19 L356.30,99.15 L356.30,110.77 L305.16,128.12 L305.16,114.19 M356.30,99.15 L407.44,84.08
+		L407.44,93.40 L356.30,110.77 M157.56,144.93 L197.47,145.32 L197.47,164.21 L157.56,163.40 L157.56,144.93 M202.88,144.31
+		L254.02,129.24 L254.02,145.49 L202.88,162.86 L202.88,144.31 M254.02,129.24 L305.16,114.19 L305.16,128.12 L254.02,145.49
+		L254.02,129.24 M305.16,114.19 L356.30,99.15 L356.30,110.77 L305.16,128.12 L305.16,114.19 M356.30,99.15 L407.44,84.08
+		L407.44,93.40 L356.30,110.77  '/></g>
+	</g>
+	<g id="gnuplot_plot_4a" ><title>Spars (old)</title>
+<g fill="none" color="white" stroke="rgb(  0,   0,   0)" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(536.62,291.03)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Spars (old)</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0, 158, 115)'  d='M545.01,287.13 L565.40,287.13 M65.00,215.91 L200.18,169.99 L515.60,61.12 L515.60,69.43 L200.18,230.98 L65.00,303.37
+		 '/></g>
+	</g>
+	<g id="gnuplot_plot_5a" ><title>Spars (new)</title>
+<g fill="none" color="white" stroke="rgb(  0, 158, 115)" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(536.62,318.03)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Spars (new)</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(105, 105, 105)' stroke-dasharray=' 5,8'  d='M545.01,314.13 L565.40,314.13 M65.00,215.91 L200.18,169.99 L515.60,61.12 L515.60,69.43 L200.18,230.98 L65.00,303.37
+		 '/></g>
+	</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,30.89 L65.00,339.63 L584.99,339.63 L584.99,30.89 L65.00,30.89 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,524.88 L584.99,524.88  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,524.88 L77.00,524.88  '/>	<g transform="translate(53.80,530.08)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >-1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,505.58 L584.99,505.58  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,505.58 L77.00,505.58  '/>	<g transform="translate(53.80,510.78)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >-0.5</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,486.29 L584.99,486.29  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,486.29 L77.00,486.29  '/>	<g transform="translate(53.80,491.49)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,466.99 L584.99,466.99  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,466.99 L77.00,466.99  '/>	<g transform="translate(53.80,472.19)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >0.5</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,447.69 L584.99,447.69  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,447.69 L77.00,447.69  '/>	<g transform="translate(53.80,452.89)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,428.40 L393.99,428.40 M573.79,428.40 L584.99,428.40  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,428.40 L77.00,428.40  '/>	<g transform="translate(53.80,433.60)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >1.5</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,409.10 L393.99,409.10 M573.79,409.10 L584.99,409.10  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,409.10 L77.00,409.10  '/>	<g transform="translate(53.80,414.30)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >2</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,389.81 L393.99,389.81 M573.79,389.81 L584.99,389.81  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,389.81 L77.00,389.81  '/>	<g transform="translate(53.80,395.01)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >2.5</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,370.51 L584.99,370.51  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,370.51 L77.00,370.51  '/>	<g transform="translate(53.80,375.71)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="end">
+		<text><tspan font-family="Times" >3</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M65.00,524.88 L65.00,370.51  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,524.88 L65.00,512.88 M65.00,370.51 L65.00,382.51  '/>	<g transform="translate(65.00,554.08)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >0</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M195.00,524.88 L195.00,370.51  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M195.00,524.88 L195.00,512.88 M195.00,370.51 L195.00,382.51  '/>	<g transform="translate(195.00,554.08)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >5</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M325.00,524.88 L325.00,370.51  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M325.00,524.88 L325.00,512.88 M325.00,370.51 L325.00,382.51  '/>	<g transform="translate(325.00,554.08)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >10</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M454.99,524.88 L454.99,436.51 M454.99,382.51 L454.99,370.51  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M454.99,524.88 L454.99,512.88 M454.99,370.51 L454.99,382.51  '/>	<g transform="translate(454.99,554.08)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >15</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="gray" stroke="currentColor" stroke-width="0.50" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='gray' stroke-dasharray='2,4' class="gridline"  d='M584.99,524.88 L584.99,370.51  '/></g>
+<g fill="none" color="gray" stroke="gray" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M584.99,524.88 L584.99,512.88 M584.99,370.51 L584.99,382.51  '/>	<g transform="translate(584.99,554.08)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >20</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M584.99,505.58 L572.99,505.58  '/>	<g transform="translate(596.19,510.78)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" > 0.1</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M584.99,466.99 L572.99,466.99  '/>	<g transform="translate(596.19,472.19)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" > 0.12</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M584.99,428.40 L572.99,428.40  '/>	<g transform="translate(596.19,433.60)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" > 0.14</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M584.99,389.81 L572.99,389.81  '/>	<g transform="translate(596.19,395.01)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="start">
+		<text><tspan font-family="Times" > 0.16</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,370.51 L65.00,524.88 L584.99,524.88 L584.99,370.51 L65.00,370.51 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(16.20,447.70) rotate(270)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >twist angle [deg]</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(646.99,447.70) rotate(270)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >thickness ratio t/c</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(324.99,590.08)" stroke="none" fill="black" font-family="Times" font-size="16.00"  text-anchor="middle">
+		<text><tspan font-family="Times" >y [m]</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(  0,   0,   0)'  d='M393.99,436.51 L393.99,382.51 L573.79,382.51 L573.79,436.51 L393.99,436.51 Z  '/></g>
+	<g id="gnuplot_plot_1b" ><title>Wing Twist</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(536.62,399.91)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Wing Twist</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb(112, 128, 144)' stroke-dasharray=' 9,4,1,4,1,4'  d='M545.01,396.01 L565.40,396.01 M65.00,486.29 L200.18,486.29 L515.60,486.29  '/>	<use xlink:href='#gpPt0' transform='translate(65.00,486.29) scale(4.50)' color='rgb(112, 128, 144)'/>
+	<use xlink:href='#gpPt0' transform='translate(200.18,486.29) scale(4.50)' color='rgb(112, 128, 144)'/>
+	<use xlink:href='#gpPt0' transform='translate(515.60,486.29) scale(4.50)' color='rgb(112, 128, 144)'/>
+	<use xlink:href='#gpPt0' transform='translate(555.20,396.01) scale(4.50)' color='rgb(112, 128, 144)'/>
+</g>
+	</g>
+	<g id="gnuplot_plot_2b" ><title>Thickness Distribution</title>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<g transform="translate(536.62,426.91)" stroke="none" fill="black" font-family="Times" font-size="12.00"  text-anchor="end">
+		<text><tspan font-family="Times" >Thickness Distribution</tspan></text>
+	</g>
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='rgb( 82, 139, 139)' stroke-dasharray='2.0,5.0,20.0,10.0'  d='M545.01,423.01 L565.40,423.01 M65.00,409.08 L200.18,467.09 L515.60,486.38  '/>	<use xlink:href='#gpPt1' transform='translate(65.00,409.08) scale(4.50)' color='rgb( 82, 139, 139)'/>
+	<use xlink:href='#gpPt1' transform='translate(200.18,467.09) scale(4.50)' color='rgb( 82, 139, 139)'/>
+	<use xlink:href='#gpPt1' transform='translate(515.60,486.38) scale(4.50)' color='rgb( 82, 139, 139)'/>
+	<use xlink:href='#gpPt1' transform='translate(555.20,423.01) scale(4.50)' color='rgb( 82, 139, 139)'/>
+</g>
+	</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="2.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="black" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+	<path stroke='black'  d='M65.00,370.51 L65.00,524.88 L584.99,524.88 L584.99,370.51 L65.00,370.51 Z  '/></g>
+<g fill="none" color="black" stroke="currentColor" stroke-width="1.00" stroke-linecap="butt" stroke-linejoin="miter">
+</g>
+</g>
+</svg>
+
diff --git a/docs/assets/images/logos/RWTH.svg b/docs/assets/images/logos/RWTH.svg
new file mode 100644
index 0000000000000000000000000000000000000000..56b828efc212784f4b3ab3323af479c91f59366f
--- /dev/null
+++ b/docs/assets/images/logos/RWTH.svg
@@ -0,0 +1 @@
+<svg width="304" height="82" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" overflow="hidden"><defs><clipPath id="clip0"><rect x="23" y="32" width="304" height="82"/></clipPath></defs><g clip-path="url(#clip0)" transform="translate(-23 -32)"><path d="M35.871 71.244 23 71.244 23 32.843C23 32.791 23 32.558 23 32.558L44.106 32.558C49.831 32.557 54.766 36.262 56.377 41.175 57.868 45.725 56.593 50.671 53.228 54.19 53.676 55.403 54.112 56.35 54.527 57.44 55.461 59.594 56.317 61.747 57.251 63.875L60.313 71.244 47.261 71.244C47.261 71.25 47.158 70.932 47.054 70.803 46.535 69.661 46.068 68.442 45.549 67.3L42.41 59.853C41.164 56.844 39.919 54 38.674 50.99 40.228 50.947 41.39 51.239 42.89 50.549 43.944 50.031 45.542 48.741 45.583 46.269 45.542 45.044 45.203 44.116 44.393 43.152 43.579 42.255 42.404 41.59 40.871 41.568 40.871 41.568 35.868 41.565 35.871 41.568L35.871 71.244" fill="#176FC1" fill-rule="evenodd"/><path d="M170.308 32.563 170.308 71.249 157.438 71.249 157.438 55.474 148.426 55.474 148.426 71.249C146.092 71.249 143.575 71.223 141.24 71.249L135.556 71.249 135.556 41.515 126.554 41.515C126.554 41.801 126.554 42.086 126.554 42.449L126.554 71.249 113.683 71.249 113.683 41.515 104.604 41.515 104.604 71.249 91.345 71.249C89.036 65.671 86.597 60.041 84.34 54.488 84.08 53.321 83.821 52.153 83.483 51.012L83.483 71.249 70.199 71.249C67.565 65.126 65.035 59.126 62.408 52.912 61.498 50.759 60.754 49.007 59.814 46.769L59.684 46.4771 57.641 41.677 54.713 34.821C54.454 34.043 54.039 33.342 53.779 32.563L67.033 32.563C69.758 39.179 72.508 45.718 75.362 52.231L75.44 52.387C75.336 51.634 75.102 50.674 74.972 49.948L74.972 38.401C74.998 36.559 74.972 34.457 74.972 32.563L88.257 32.563C88.424 32.985 88.517 33.212 88.647 33.55 90.203 37.208 91.682 40.84 93.239 44.473L96.716 52.387 96.716 52.387C96.638 51.556 96.456 50.752 96.353 49.948L96.353 32.563 148.426 32.563 148.426 46.523C148.426 46.523 148.843 46.523 149.05 46.523L157.438 46.523 157.438 32.563C157.438 32.563 161.919 32.563 164.15 32.563L170.308 32.563 170.308 32.563" fill="#176FC1"/><path d="M170.58 71.27 178.671 71.27 180.451 63.125 190.7 63.125 192.48 71.27 200.571 71.27 190.376 32.756 180.775 32.756 170.58 71.27ZM185.521 39.444 185.63 39.444 189.351 56.76 181.8 56.76 185.521 39.444" fill="#83A7DD" fill-rule="evenodd"/><path d="M196.254 71.27 204.345 71.27 206.125 63.125 216.374 63.125 218.154 71.27 226.245 71.27 216.05 32.756 206.449 32.756 196.254 71.27ZM211.195 39.444 211.304 39.444 215.025 56.76 207.474 56.76 211.195 39.444" fill="#83A7DD" fill-rule="evenodd"/><path d="M249.383 45.756C249.383 40.146 248.574 32 237.463 32 225.811 32 224.354 40.307 224.354 52.012 224.354 63.718 225.811 72.025 237.463 72.025 247.656 72.025 249.706 64.851 249.706 56.544L241.939 56.544C241.939 64.851 239.889 66.307 237.085 66.307 233.74 66.307 232.123 64.203 232.123 52.552 232.123 41.656 233.039 37.718 236.976 37.718 240.483 37.718 241.615 40.146 241.615 45.756L249.383 45.756" fill="#83A7DD"/><path d="M250.888 71.27 258.655 71.27 258.655 54.17 267.718 54.17 267.718 71.27 275.485 71.27 275.485 32.756 267.718 32.756 267.718 47.482 258.655 47.482 258.655 32.756 250.888 32.756 250.888 71.27" fill="#83A7DD"/><path d="M277.639 32.756 277.639 71.27 299.701 71.27 299.701 64.905 285.406 64.905 285.406 54.548 298.353 54.548 298.353 48.183 285.406 48.183 285.406 39.121 299.161 39.121 299.161 32.756 277.639 32.756" fill="#83A7DD"/><path d="M301.43 32.756 301.43 71.27 308.55 71.27 308.55 44.299 308.659 44.299 318.153 71.27 326.999 71.27 326.999 32.756 319.878 32.756 319.878 59.133 319.77 59.133 310.384 32.756 301.43 32.756" fill="#83A7DD"/><path d="M226.393 80.465 230.06 80.465C233.566 80.465 235.454 82.245 235.454 85.805 235.454 89.958 233.351 91.577 229.629 91.577L226.393 91.577 226.393 80.465ZM218.625 113.262 226.393 113.262 226.393 96.971 230.545 96.971C233.674 96.971 235.023 98.805 235.13 101.826L235.346 109.216C235.4 110.726 235.563 112.182 236.318 113.262L244.733 113.262 244.733 112.938C243.276 112.182 243.06 110.079 243.006 106.033 242.898 97.888 242.089 94.975 236.803 94.274L236.803 94.166C241.173 93.249 243.221 89.797 243.221 84.672 243.221 78.092 239.338 74.747 232.973 74.747L218.625 74.747 218.625 113.262" fill="#83A7DD" fill-rule="evenodd"/><path d="M104.106 74.747 104.106 101.61C104.106 111.913 110.094 114.016 116.405 114.016 122.716 114.016 128.703 111.427 128.703 101.61L128.703 74.747 120.936 74.747 120.936 101.61C120.936 105.44 120.018 108.299 116.405 108.299 112.79 108.299 111.873 105.44 111.873 101.61L111.873 74.747 104.106 74.747" fill="#83A7DD"/><path d="M130.605 74.747 130.605 113.262 137.725 113.262 137.725 86.291 137.833 86.291 147.326 113.262 156.173 113.262 156.173 74.747 149.053 74.747 149.053 101.124 148.945 101.124 139.559 74.747 130.605 74.747" fill="#83A7DD"/><path d="M158.17 113.262 165.938 113.262 165.938 74.747 158.17 74.747 158.17 113.262Z" fill="#83A7DD"/><path d="M166.47 74.747 175.316 113.262 185.295 113.262 194.141 74.747 186.105 74.747 180.386 103.228 180.225 103.228 174.778 74.747 166.47 74.747" fill="#83A7DD"/><path d="M194.834 74.747 194.834 113.262 216.895 113.262 216.895 106.896 202.601 106.896 202.601 96.539 215.548 96.539 215.548 90.174 202.601 90.174 202.601 81.112 216.356 81.112 216.356 74.747 194.834 74.747" fill="#83A7DD"/><path d="M243.866 101.232 243.866 102.797C243.866 109.917 247.319 114.016 256.111 114.016 264.525 114.016 269.488 110.348 269.488 102.203 269.488 97.511 267.978 94.544 262.153 92.009L256.165 89.419C252.874 88.017 252.173 86.56 252.173 84.187 252.173 81.921 253.09 79.71 256.596 79.71 259.563 79.71 260.804 81.814 260.804 85.428L268.248 85.428 268.248 84.349C268.248 76.959 263.231 73.992 256.326 73.992 248.99 73.992 244.405 77.822 244.405 85.32 244.405 91.739 247.588 94.597 254.493 96.971 259.616 98.751 261.398 100.046 261.398 103.552 261.398 106.788 259.131 108.299 256.758 108.299 252.659 108.299 251.634 105.979 251.634 102.365L251.634 101.232 243.866 101.232" fill="#83A7DD"/><path d="M270.503 113.262 278.27 113.262 278.27 74.747 270.503 74.747 270.503 113.262Z" fill="#83A7DD"/><path d="M279.289 74.747 279.289 81.112 287.704 81.112 287.704 113.262 295.471 113.262 295.471 81.112 303.886 81.112 303.886 74.747 279.289 74.747" fill="#83A7DD"/><path d="M299.305 74.747 309.284 98.104 309.284 113.262 317.051 113.262 317.051 98.104 327.031 74.747 318.616 74.747 313.221 89.635 313.114 89.635 308.044 74.747 299.305 74.747" fill="#83A7DD"/></g></svg>
\ No newline at end of file
diff --git a/docs/assets/images/logos/TUB.svg b/docs/assets/images/logos/TUB.svg
new file mode 100644
index 0000000000000000000000000000000000000000..7b8fb25678113633a6ffde4308cfa1ace682b0b0
--- /dev/null
+++ b/docs/assets/images/logos/TUB.svg
@@ -0,0 +1 @@
+<svg width="188" height="105" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" overflow="hidden"><defs><clipPath id="clip0"><rect x="366" y="41" width="188" height="105"/></clipPath></defs><g clip-path="url(#clip0)" transform="translate(-366 -41)"><path d="M152.275 12.2542C159.714 12.2542 165.059 14.4624 169.209 17.2429 173.08 19.8366 176.08 22.9055 178.381 26.8642 181.356 31.9812 182.272 36.7373 182.523 39.4961 182.524 39.519 187.988 97.0096 187.988 97.0096L160.414 97.0114C160.414 97.0114 152.267 12.2542 152.275 12.2542" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M126.186 77.7428 122.453 38.9634C121.766 29.6833 125.245 24.9152 127.41 22.4026 131.365 17.8149 138.637 14.2079 147.035 12.7032 147.268 15.1696 154.503 90.234 154.503 90.2475 154.754 94.1007 153.631 97.4703 151.061 100.407 148.063 103.832 143.627 104.858 141.795 104.858L75.8629 104.85C70.9032 104.85 63.4466 99.817 63.4466 91.5158 63.4466 81.2582 72.5613 77.7421 75.6975 77.7421 77.2984 77.7421 126.186 77.7428 126.186 77.7428" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M87.793 20.0482 112.345 20.0493 117.369 72.2249 92.8164 72.2243C92.8164 72.2243 88.4287 26.8053 87.793 20.0482L87.793 20.0482" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M170.035 50.6946C169.885 49.1537 171.58 48.3247 173.183 48.3228L176.12 48.3203C176.294 48.7438 176.397 49.2246 176.456 49.8219 176.612 51.4589 175.729 52.5763 173.173 52.5789 171.265 52.58 170.158 51.9837 170.035 50.6946ZM178.062 49.6674C177.932 48.3192 177.701 47.2985 177.332 46.2585L163.655 46.2702 163.855 48.3312 168.223 48.3276C168.776 48.3264 169.534 48.2683 170.018 48.1519L170.022 48.1912C168.887 48.6919 168.252 49.8293 168.389 51.2353 168.607 53.5072 170.331 54.7569 173.19 54.7552 176.473 54.7526 178.369 52.8443 178.062 49.6674" fill="#FFFFFF" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M170.825 60.693C170.714 59.5384 171.494 58.7287 172.794 58.553L173.185 62.6165C171.853 62.6564 170.941 61.9067 170.825 60.693ZM174.787 64.5992 174.201 58.5141C176.353 58.4542 177.394 59.3778 177.583 61.342 177.672 62.2656 177.574 63.2292 177.295 64.0964L178.905 64.3636C179.19 63.3629 179.303 62.1685 179.189 60.9747 178.905 58.0288 177.221 56.3932 173.883 56.3961 171.04 56.3987 169.043 58.0367 169.309 60.8093 169.572 63.5437 171.474 64.6793 173.631 64.6774 173.936 64.6774 174.392 64.6564 174.787 64.5992" fill="#FFFFFF" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M172.396 71.8668C171.851 69.9615 173.078 69.0361 175.92 69.0335L179.773 69.0306 179.574 66.97 170.094 66.978 170.283 68.9426C170.816 68.9415 171.651 68.8834 172.363 68.7481L172.367 68.7863C171.129 69.2117 170.039 70.1753 170.403 71.966L172.396 71.8668" fill="#FFFFFF" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M180.225 73.7267 166.3 73.7387 166.499 75.7986 180.423 75.7865 180.225 73.7267" fill="#FFFFFF" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M180.694 78.6046 171.214 78.6129 171.412 80.6728 180.894 80.6644 180.694 78.6046ZM169.635 79.6536C169.566 78.9209 168.954 78.3256 168.229 78.3264 167.523 78.3264 167.01 78.9238 167.078 79.6565 167.147 80.3692 167.778 80.9644 168.484 80.9644 169.189 80.9637 169.703 80.3662 169.635 79.6536" fill="#FFFFFF" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M181.739 89.4584 175.654 89.4639C174.472 89.4649 173.734 89.1377 173.629 88.0404 173.49 86.5949 174.894 85.5361 176.803 85.5343L181.36 85.5307 181.163 83.4697 171.683 83.4781 171.872 85.4424C172.387 85.4416 173.203 85.4023 173.727 85.306L173.728 85.3252C172.561 85.8841 171.834 87.0404 171.991 88.6584 172.2 90.8339 173.638 91.5067 175.298 91.5048L181.936 91.4994 181.739 89.4584" fill="#FFFFFF" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M8.36711 49.5148 7.43845 39.8706 5.63493 39.8706 6.56359 49.5148 3.50196 49.5148 3.64886 51.0364 11.592 51.0364 11.4451 49.5148 8.36711 49.5148" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M14.7332 46.9338C13.7406 46.9338 12.9734 46.1895 12.7141 45.0484L16.2059 45.0484C16.3506 46.2066 15.7758 46.9338 14.7332 46.9338ZM17.7928 43.8242 12.564 43.8242C12.3334 41.9552 13.0483 41.128 14.7366 41.128 15.5311 41.128 16.3739 41.2934 17.1491 41.6079L17.2484 40.2342C16.3557 39.9045 15.3114 39.7052 14.2849 39.7052 11.7535 39.7052 10.4742 41.0287 10.7535 43.9242 10.9906 46.3884 12.577 48.2574 14.9594 48.2574 17.3095 48.2574 18.1356 46.7022 17.9557 44.8332 17.9301 44.5685 17.8756 44.1714 17.7928 43.8242" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M22.5397 39.739C20.4217 39.739 18.9828 40.7808 19.2646 43.7086 19.5166 46.3222 21.0394 48.2246 23.7865 48.2246 24.481 48.2246 25.1508 48.1246 25.6751 47.9101L25.233 46.4048C24.7555 46.6029 24.1574 46.752 23.5458 46.752 22.1561 46.752 21.2991 45.5939 21.1365 43.9078 20.9914 42.4014 21.4117 41.2607 23.0334 41.2607 23.6789 41.2607 24.3017 41.376 24.8396 41.6243L24.9621 40.1524C24.2567 39.8706 23.3665 39.739 22.5397 39.739" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M31.7308 39.8706 32.2391 45.1478C32.3376 46.1731 32.1158 46.7858 31.1722 46.7858 29.9312 46.7858 28.8957 45.4786 28.7364 43.8242L28.3553 39.8706 26.5849 39.8706 27.7474 51.9462 29.5181 51.9462 29.1582 48.2083C29.1091 47.6949 29.0098 47.0175 28.8502 46.5538L28.8811 46.5368C29.4614 47.5792 30.5032 48.2574 31.8431 48.2574 33.7128 48.2574 34.1782 47.0665 34.0397 45.6277L33.4852 39.8706 31.7308 39.8706" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M41.0585 39.8706 41.5665 45.1478C41.6651 46.1731 41.4433 46.7858 40.4997 46.7858 39.259 46.7858 38.2231 45.4786 38.0642 43.8242L37.6831 39.8706 35.9123 39.8706 36.7043 48.092 38.3921 48.092C38.3489 47.6458 38.2471 46.9338 38.1195 46.4712L38.1358 46.4712C38.7179 47.5294 39.7808 48.2574 41.1705 48.2574 43.0406 48.2574 43.506 47.0665 43.3675 45.6277L42.813 39.8706 41.0585 39.8706" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M47.057 49.5482C46.4281 49.5482 45.9619 50.0275 46.0222 50.6554 46.0811 51.2681 46.6415 51.7644 47.2705 51.7644 47.8825 51.7644 48.3482 51.2681 48.2894 50.6554 48.2301 50.0438 47.6691 49.5482 47.057 49.5482ZM45.2317 39.8706 46.0237 48.092 47.7941 48.092 47.0025 39.8706 45.2317 39.8706" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M50.819 39.7052C50.19 39.7052 49.5202 39.7888 49.0217 39.9371L49.2983 41.4425C49.7918 41.2432 50.443 41.128 51.0713 41.128 51.9985 41.128 52.684 41.5414 52.7476 42.2032 52.9101 43.8904 49.2035 42.8649 49.4772 45.7095 49.6162 47.1495 50.8153 48.2574 53.0825 48.2574 53.5789 48.2574 54.1515 48.1912 54.6221 48.092L54.3853 46.6702C53.9203 46.8186 53.3822 46.9011 52.852 46.9011 51.876 46.9011 51.3746 46.504 51.3143 45.8757 51.1583 44.2551 54.8838 45.1478 54.6181 42.385 54.4679 40.8298 53.0036 39.7052 50.819 39.7052" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M59.4211 39.739C57.303 39.739 55.8642 40.7808 56.146 43.7086 56.3979 46.3222 57.9207 48.2246 60.6678 48.2246 61.3627 48.2246 62.0321 48.1246 62.5564 47.9101L62.1143 46.4048C61.6369 46.6029 61.0387 46.752 60.4271 46.752 59.0374 46.752 58.1803 45.5939 58.0178 43.9078 57.8728 42.4014 58.2931 41.2607 59.9148 41.2607 60.5602 41.2607 61.1831 41.376 61.7209 41.6243L61.8434 40.1524C61.138 39.8706 60.2478 39.739 59.4211 39.739" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M68.6121 39.8706 69.1204 45.1478C69.2189 46.1731 68.9972 46.7858 68.0536 46.7858 66.8126 46.7858 65.777 45.4786 65.6177 43.8242L65.2366 39.8706 63.4663 39.8706 64.6287 51.9462 66.3995 51.9462 66.0395 48.2083C65.9905 47.6949 65.8911 47.0175 65.7316 46.5538L65.7625 46.5368C66.3428 47.5792 67.3845 48.2574 68.7244 48.2574 70.5942 48.2574 71.0596 47.0665 70.9211 45.6277L70.3666 39.8706 68.6121 39.8706" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M76.4883 46.9338C75.4957 46.9338 74.7284 46.1895 74.4696 45.0484L77.9609 45.0484C78.106 46.2066 77.5311 46.9338 76.4883 46.9338ZM79.5477 43.8242 74.319 43.8242C74.0885 41.9552 74.8036 41.128 76.4916 41.128 77.286 41.128 78.1293 41.2934 78.9041 41.6079L79.0038 40.2342C78.1112 39.9045 77.0665 39.7052 76.0404 39.7052 73.5085 39.7052 72.2297 41.0287 72.5085 43.9242 72.746 46.3884 74.3321 48.2574 76.7149 48.2574 79.0645 48.2574 79.891 46.7022 79.711 44.8332 79.6856 44.5685 79.6311 44.1714 79.5477 43.8242" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M3.90485 19.8519C0.396703 19.8519-0.163263 21.771 0.0345433 23.8225L0.743227 31.1831 2.54675 31.1831 1.85079 23.9545C1.70753 22.4663 2.0955 21.3409 4.16338 21.3409 5.98399 21.3409 6.88466 22.1008 7.08538 24.1861L7.75916 31.1831 9.52996 31.1831 8.8689 24.3181C8.58237 21.3409 6.83376 19.8519 3.90485 19.8519" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M16.0747 20.0173 16.5826 25.2944C16.6811 26.3198 16.4593 26.9325 15.5158 26.9325 14.2751 26.9325 13.2392 25.6253 13.0796 23.9709L12.6992 20.0173 10.9284 20.0173 11.72 28.2386 13.4083 28.2386C13.365 27.7924 13.2628 27.0805 13.1355 26.618L13.1519 26.618C13.7341 27.6761 14.7969 28.4041 16.1867 28.4041 18.0566 28.4041 18.5218 27.2125 18.3832 25.7744L17.8287 20.0173 16.0747 20.0173" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M22.0732 29.6949C21.4441 29.6949 20.9776 30.1741 21.0383 30.802 21.0973 31.4147 21.6576 31.9111 22.287 31.9111 22.8986 31.9111 23.3644 31.4147 23.3054 30.802 23.2461 30.1905 22.6847 29.6949 22.0732 29.6949ZM20.2479 20.0173 21.0394 28.2386 22.8106 28.2386 22.0186 20.0173 20.2479 20.0173" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M28.323 20.0173 26.5195 20.0173 24.233 28.2386 26.1857 28.2386 27.3056 23.888C27.4332 23.3255 27.5765 22.7462 27.6732 22.2008L27.6896 22.2008C27.8706 22.7135 28.1092 23.2927 28.3255 23.8225L30.3228 28.2386 32.2252 28.2386 28.323 20.0173" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M36.3832 27.0805C35.3905 27.0805 34.6237 26.3362 34.3648 25.1952L37.8562 25.1952C38.0012 26.3532 37.4261 27.0805 36.3832 27.0805ZM39.4427 23.9709 34.2139 23.9709C33.9837 22.1008 34.699 21.2747 36.3868 21.2747 37.1814 21.2747 38.0245 21.4401 38.7994 21.7546L38.8991 20.3809C38.0064 20.0511 36.9617 19.8519 35.9356 19.8519 33.4038 19.8519 32.1249 21.1754 32.4038 24.0698 32.6412 26.5351 34.2273 28.4041 36.6101 28.4041 38.9597 28.4041 39.7862 26.8489 39.6062 24.9799 39.5808 24.7152 39.5263 24.3181 39.4427 23.9709" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M45.9539 26.6507C44.3463 26.9653 43.4427 25.8242 43.2053 23.3589L42.8835 20.0173 41.1131 20.0173 41.9047 28.2386 43.593 28.2386C43.5482 27.7761 43.4278 27.0477 43.2518 26.4198L43.2846 26.4198C43.7551 27.5278 44.682 28.5531 46.204 28.3877L45.9539 26.6507" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M48.4966 19.8519C47.8675 19.8519 47.1974 19.9347 46.6989 20.0839L46.9756 21.5892C47.4694 21.3899 48.1206 21.2747 48.7486 21.2747 49.6758 21.2747 50.3612 21.6881 50.4252 22.3499 50.5874 24.0371 46.8807 23.0117 47.1549 25.8562 47.2934 27.2961 48.493 28.4041 50.7601 28.4041 51.2565 28.4041 51.8291 28.3379 52.2997 28.2386L52.0622 26.8161C51.5979 26.9653 51.059 27.0477 50.5292 27.0477 49.5529 27.0477 49.0518 26.6507 48.9915 26.0224 48.8355 24.4018 52.5611 25.2944 52.2953 22.5317 52.1454 20.9765 50.6808 19.8519 48.4966 19.8519" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M55.7194 29.6949C55.09 29.6949 54.6238 30.1741 54.6842 30.802 54.7435 31.4147 55.3038 31.9111 55.9329 31.9111 56.5444 31.9111 57.0106 31.4147 56.9513 30.802 56.8925 30.1905 56.331 29.6949 55.7194 29.6949ZM53.8941 20.0173 54.6856 28.2386 56.4565 28.2386 55.6645 20.0173 53.8941 20.0173" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M60.9126 19.8682C59.1588 19.8682 58.6945 20.5464 58.8712 22.3826L59.3032 26.8652 57.7313 26.8652 57.8637 28.2386 59.4356 28.2386 59.6868 30.8522 61.5038 31.3323 61.206 28.2386 63.3572 28.2386 63.2248 26.8652 61.074 26.8652 60.6947 22.9281C60.5766 21.7045 60.793 21.3736 61.6202 21.3736 61.9849 21.3736 62.3372 21.4237 62.6405 21.4899L62.6528 20.0675C62.1452 19.9511 61.4587 19.8682 60.9126 19.8682" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M70.0778 29.7931C69.5153 29.7931 69.1109 30.2403 69.1651 30.802 69.2179 31.3486 69.708 31.7947 70.2705 31.7947 70.816 31.7947 71.2206 31.3486 71.1679 30.802 71.1138 30.2403 70.6232 29.7931 70.0778 29.7931ZM66.818 29.7931C66.2555 29.7931 65.8686 30.2403 65.9228 30.802 65.9756 31.3486 66.4482 31.7947 67.0108 31.7947 67.5736 31.7947 67.9773 31.3486 67.9245 30.802 67.8703 30.2403 67.3809 29.7931 66.818 29.7931ZM69.1353 23.7891C66.6863 23.7891 65.9447 23.1273 65.8697 22.3499 65.809 21.7208 66.1926 21.2419 66.8882 21.2419 68.079 21.2419 69.0015 22.4001 69.1142 23.5734L69.1353 23.7891ZM68.8885 20.0173C68.9393 20.5464 69.0085 21.0929 69.1176 21.5391L69.1022 21.5553C68.6117 20.5802 67.5155 19.8519 66.2083 19.8519 64.8018 19.8519 63.9993 20.7947 64.1284 22.1346 64.3065 23.9872 66.2381 24.9799 69.2498 24.9799L69.2833 25.3272C69.3946 26.4852 69.0339 27.0307 67.826 27.0307 67.0649 27.0307 66.0483 26.7834 65.2883 26.4514L65.1061 27.8252C65.9649 28.1561 67.1144 28.4041 68.2062 28.4041 70.6062 28.4041 71.245 27.3125 71.0734 25.5261L70.7596 22.2674C70.6912 21.5553 70.6262 20.7129 70.5927 20.0173L68.8885 20.0173" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M75.7669 19.8682C74.0135 19.8682 73.5492 20.5464 73.7259 22.3826L74.1575 26.8652 72.586 26.8652 72.718 28.2386 74.2899 28.2386 74.5412 30.8522 76.3586 31.3323 76.0607 28.2386 78.2115 28.2386 78.0791 26.8652 75.9284 26.8652 75.5495 22.9281C75.4313 21.7045 75.6477 21.3736 76.4749 21.3736 76.8392 21.3736 77.1916 21.4237 77.4952 21.4899L77.5075 20.0675C76.9995 19.9511 76.3134 19.8682 75.7669 19.8682" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M39.7826 9.95824C39.3027 9.95824 38.8209 9.94046 38.4224 9.92483L38.1016 6.59886C38.3987 6.58287 38.6794 6.58287 39.0601 6.58287 40.7309 6.58287 41.5749 7.26173 41.6829 8.38602 41.7705 9.29651 41.3214 9.95824 39.7826 9.95824ZM38.9641 5.24258C38.7987 5.24258 38.2194 5.24258 37.97 5.22658L37.6253 1.65335C37.9034 1.62172 38.5114 1.57117 38.9412 1.57117 40.5793 1.57117 41.4192 2.38203 41.5243 3.47287 41.6451 4.73134 40.6357 5.24258 38.9641 5.24258ZM38.7016 0.115265C37.9409 0.115265 36.918 0.149081 35.6789 0.164717L36.7541 11.3302C37.6325 11.3469 38.8765 11.3808 40.2332 11.3808 42.6162 11.3808 43.7784 10.3885 43.6122 8.66819 43.5024 7.52608 42.7468 6.55123 41.5476 6.12035L41.5443 6.08762C42.814 5.87163 43.577 4.86261 43.4496 3.53905 43.2951 1.93516 41.9941 0.115265 38.7016 0.115265" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M48.9845 7.22791C47.9919 7.22791 47.2247 6.48323 46.9658 5.34294L50.4572 5.34294C50.6023 6.50104 50.0275 7.22791 48.9845 7.22791ZM52.0441 4.11793 46.8153 4.11793C46.5847 2.24895 47.3 1.42246 48.9879 1.42246 49.7824 1.42246 50.6255 1.5879 51.4005 1.9017L51.5001 0.528695C50.6074 0.19817 49.5627 0 48.5366 0 46.0048 0 44.7259 1.32282 45.0048 4.21756 45.2422 6.6825 46.8283 8.55183 49.2111 8.55183 51.5608 8.55183 52.3873 6.99629 52.2072 5.12695 52.1818 4.86261 52.1273 4.46518 52.0441 4.11793" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M58.5542 6.79813C56.9467 7.11265 56.0431 5.97126 55.8056 3.50669L55.4838 0.164717 53.713 0.164717 54.5046 8.38602 56.1929 8.38602C56.1481 7.92351 56.0281 7.19555 55.8522 6.56614L55.8845 6.56614C56.355 7.67588 57.2819 8.70055 58.804 8.53401L58.5542 6.79813" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M59.5298 0.164717 60.6926 12.2407 62.4634 12.2407 61.3009 0.164717 59.5298 0.164717" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M65.5607 9.84263C64.9316 9.84263 64.4651 10.3212 64.5255 10.9495 64.5847 11.5622 65.1451 12.0589 65.7741 12.0589 66.3861 12.0589 66.8519 11.5622 66.7926 10.9495 66.7336 10.3379 66.1722 9.84263 65.5607 9.84263ZM63.7349 0.164717 64.5269 8.38602 66.2977 8.38602 65.5061 0.164717 63.7349 0.164717" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/><path d="M73.0766 0.164717 73.5845 5.44184C73.683 6.4676 73.4613 7.07992 72.5177 7.07992 71.277 7.07992 70.2411 5.77237 70.0822 4.11793L69.7011 0.164717 67.9303 0.164717 68.7219 8.38602 70.4101 8.38602C70.3668 7.93914 70.2651 7.22791 70.1375 6.76467L70.1538 6.76467C70.7359 7.82388 71.7988 8.55183 73.1885 8.55183 75.0586 8.55183 75.524 7.36027 75.3854 5.92218L74.8307 0.164717 73.0766 0.164717" fill="#C50E1F" transform="matrix(1.00181 0 0 -1 366 145.86)"/></g></svg>
\ No newline at end of file
diff --git a/docs/assets/images/logos/TUBS.svg b/docs/assets/images/logos/TUBS.svg
new file mode 100644
index 0000000000000000000000000000000000000000..34deff14aa9a77ead84059b047c2c762cb328bde
--- /dev/null
+++ b/docs/assets/images/logos/TUBS.svg
@@ -0,0 +1 @@
+<svg width="243" height="90" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" overflow="hidden"><defs><clipPath id="clip0"><rect x="627" y="15" width="243" height="90"/></clipPath></defs><g clip-path="url(#clip0)" transform="translate(-627 -15)"><path d="M123.014 43.9979-119.625 43.9979-119.625-46.1256 123.014-46.1256 123.014 43.9979Z" fill="#BE1E3C" transform="matrix(1.00161 0 0 1 746.818 61.1256)"/><path d="M0 0C0.527649 0.311821 1.16535 0.66644 1.53342 0.970924 1.98832 1.3445 2.60829 2.16501 2.61135 2.4805 1.91189 3.27412 2.02867 4.06039 1.98954 4.80876 1.98098 4.97629 1.77065 5.15177 1.47717 5.00931 0.673777 4.62045-0.260462 4.33247-0.260462 4.33247-0.260462 4.33247-0.456114 3.17079-0.195652 2.8981 0.0727582 2.61257 0.685394 2.71284 0.637704 2.29769 0.605299 2.02989 0.209103 1.57011-0.0464674 1.36834-0.478736 1.02595-0.998438 0.736753-1.26562 0.61019-1.26562 0.61019-2.0574 0.892052-3.13227 0.789334-3.55353 0.750204-3.57677 0.404755-3.57677 0.404755-3.57677 0.404755-3.71861 0.398641-3.82622 0.352174-3.94789 0.299592-4.0341 0.180367-4.0341 0.180367-4.0341 0.180367-3.94545 0.0690897-3.80116 0.0116168-3.70577-0.0262908-3.56821-0.0189538-3.56821-0.0189538-3.52785-0.174253-3.38173-0.338111-3.16957-0.368071-2.63641-0.444497-2.28302-0.387024-1.9981-0.317935-1.83546-0.27697-1.72174-0.300815-1.67894-0.429823-1.63736-0.557609-1.75537-0.65788-1.86053-0.721467-2.27018-0.962364-2.55815-1.14151-2.72507-1.34694-2.89321-1.54993-2.97819-1.8214-2.89443-2.03356-2.93662-2.09959-2.99592-2.17724-3.02466-2.28668-3.05462-2.39674-3.04728-2.50679-3.01671-2.62235-2.93662-2.62602-2.86141-2.61379-2.77643-2.58077-2.69022-2.54715-2.60584-2.50068-2.53981-2.39796-2.3252-2.46827-2.04579-2.41936-1.8428-2.12221-1.6716-1.87459-1.46984-1.43315-1.41175-1.25523-1.35428-1.07609-1.27785-1.03635-1.17514-1.05836-1.08404-1.07731-1.01005-1.13784-1.06141-1.42337-1.09871-1.6288-1.09382-2.05985-1.05774-2.25673-0.929959-2.95924-0.547826-2.91522-0.547826-2.91522-0.547826-2.91522-0.519701-3.03933-0.440829-3.13838-0.358288-3.23743-0.253125-3.30285-0.157745-3.32914-0.114334-3.23376-0.0788723-3.09069-0.0929348-2.97208-0.107609-2.85408-0.143071-2.77398-0.143071-2.77398-0.048913-2.70122 0.073981-2.55448 0.0165082-2.25673-0.0886549-1.74681-0.287976-1.50958-0.433492-1.28519-0.526427-1.13539-0.49341-1.02106-0.403533-0.955639-0.313044-0.892052-0.177921-0.911005-0.0599185-1.08342 0.0764266-1.27541 0.262908-1.54076 0.630367-1.71746 0.879212-1.83668 1.07486-1.79511 1.19164-1.69789 1.19164-1.69789 1.29803-1.76148 1.38852-1.79144 1.4784-1.82262 1.58111-1.83424 1.68872-1.82262 1.6716-1.72052 1.64348-1.62147 1.60251-1.52853 1.55971-1.43927 1.51447-1.38302 1.44477-1.31821 1.46311-1.18125 1.43193-0.920788 1.31698-0.80462 0.912228-0.396196 0 0 0 0" fill="#FFFFFF" fill-rule="evenodd" transform="matrix(1.00161 0 0 -1 677.239 55.7189)"/><path d="M0 0C0 0 0.60163-0.796671 0.942188-0.55394 1.21427-0.359511 1.06875-0.0415761 0.859647 0.176698 0.57534 0.476291 0.278193 0.258016 0 0M11.8712-18.4763C11.7611-18.4867 11.6584-18.4763 11.5692-18.4463 11.4781-18.4139 11.3723-18.351 11.3723-18.351 11.2549-18.45 11.0592-18.4904 10.8098-18.3699 10.4429-18.1932 10.2565-17.9291 10.1195-17.7346 10.0003-17.5653 9.86637-17.5445 9.77527-17.6093 9.68478-17.6747 9.65238-17.7897 9.74592-17.9389 9.89022-18.1645 10.0908-18.3999 10.1959-18.9122 10.2552-19.2069 10.1287-19.3561 10.0357-19.4277 10.0357-19.4277 10.073-19.5102 10.0871-19.6276 10.1018-19.7456 10.0645-19.8887 10.0241-19.9846 9.92568-19.9584 9.81991-19.8923 9.73981-19.7933 9.65849-19.6942 9.63098-19.5701 9.63098-19.5701 9.63098-19.5701 9.24885-19.6141 9.12106-18.9122 9.08376-18.7147 9.08071-18.2812 9.11739-18.0764 9.16875-17.7933 9.09477-17.731 9.00428-17.712 8.90034-17.6882 8.82391-17.7298 8.76522-17.9077 8.70774-18.0868 8.50476-18.5276 8.33539-18.7771 8.13118-19.0743 7.85054-19.1244 7.63777-19.0529 7.57235-19.1556 7.48492-19.202 7.40054-19.2357 7.31433-19.2693 7.23913-19.2821 7.16148-19.2772 7.12785-19.1592 7.12113-19.0492 7.15048-18.9422 7.17921-18.8321 7.23913-18.7545 7.27948-18.6885 7.19755-18.4751 7.28193-18.2042 7.4519-18 7.62004-17.7946 7.90679-17.6166 8.31766-17.3739 8.42099-17.3122 8.54205-17.2107 8.49986-17.0829 8.45584-16.9527 8.34273-16.93 8.17887-16.9704 7.89457-17.0407 7.53995-17.0957 7.00741-17.0217 6.79341-16.9918 6.64667-16.8273 6.60632-16.6708 6.60632-16.6708 6.46997-16.6775 6.37337-16.6396 6.2303-16.5809 6.14287-16.4715 6.14287-16.4715 6.14287-16.4715 6.22663-16.3529 6.34952-16.299 6.45713-16.2526 6.59898-16.2465 6.59898-16.2465 6.59898-16.2465 6.61794-15.9316 7.03736-15.8717 7.85421-15.7592 8.62765-16.0319 8.88322-16.1071 9.0911-15.6326 9.36257-14.3872 9.23906-13.6743 9.11128-12.9338 8.1373-13.1368 7.79185-12.4465 7.35958-11.582 7.45496-10.2724 6.86433-10.1599 5.89096-9.9752 6.67785-10.7395 3.24721-11.5802 2.1962-11.8376 1.37568-11.6908 0.790557-12.2937 0.561277-12.5315 0.161413-13.6363-0.397418-14.3529-1.38179-15.6149-2.12466-15.9805-2.12466-15.9805-1.98342-16.0398-1.4411-16.2874-1.14151-16.6494-1.03635-16.7723-0.995992-17.0242-1.01372-17.1636-0.94341-17.226-0.899389-17.2822-0.858424-17.3739-0.815625-17.465-0.786889-17.5653-0.767935-17.668-0.877378-17.6772-0.980095-17.668-1.06997-17.6368-1.16046-17.6044-1.26685-17.5414-1.26685-17.5414-1.38424-17.6405-1.57989-17.6808-1.82935-17.5628-2.1962-17.3837-2.38329-17.1196-2.51963-16.9251-2.63886-16.7552-2.77276-16.735-2.86386-16.7998-2.95435-16.864-2.9892-16.9802-2.89321-17.1293-2.75014-17.355-2.54837-17.5904-2.44321-18.1021-2.38329-18.3986-2.50985-18.5466-2.6034-18.6181-2.6034-18.6181-2.56732-18.7007-2.55326-18.8187-2.53981-18.9361-2.57466-19.0804-2.61746-19.177-2.71284-19.1495-2.81923-19.0828-2.90054-18.9838-2.98064-18.8847-3.0106-18.7606-3.0106-18.7606-3.0106-18.7606-3.39151-18.8046-3.52052-18.1021-3.55476-17.9052-3.56087-17.4717-3.52418-17.2675-3.47283-16.9832-3.54558-16.9215-3.6373-16.9025-3.74001-16.8805-3.81644-16.9202-3.87391-17.0982-3.93261-17.2773-4.13438-17.72-4.30374-17.9676-4.50795-18.2647-4.78981-18.3137-5.0038-18.2433-5.06923-18.3461-5.15421-18.3925-5.23859-18.4262-5.32602-18.4592-5.4-18.4738-5.4801-18.4702-5.51128-18.351-5.518-18.2409-5.49049-18.1321-5.45992-18.0226-5.4-17.945-5.35965-17.8789-5.44402-17.6656-5.35842-17.3941-5.18967-17.1899-5.01909-16.9869-4.73234-16.8053-4.32391-16.5644-4.21753-16.502-4.09952-16.4005-4.1411-16.2715-4.18451-16.1425-4.2964-16.1211-4.46026-16.1609-4.74579-16.2287-5.10163-16.2874-5.63417-16.211-5.84755-16.1823-5.99246-16.0172-6.03404-15.8607-6.03404-15.8607-6.17038-15.868-6.26698-15.8289-6.41005-15.7726-6.49871-15.6613-6.49871-15.6613-6.49871-15.6613-6.41372-15.5421-6.29205-15.4895-6.182-15.4431-6.0426-15.4357-6.0426-15.4357-6.0426-15.4357-5.95761-15.1025-5.56019-15.0499-4.48288-14.9056-3.5517-15.2865-3.5517-15.2865-3.5517-15.2865-2.24755-14.4183-1.84035-13.8271-1.51753-13.3594-1.25523-12.8005-1.16658-12.2974-1.05652-11.6755-1.23383-11.6132-1.42459-11.4677-1.68872-11.272-2.10999-11.0018-2.63213-10.3879-2.93173-10.037-3.32303-9.16997-3.3377-8.31766-3.75591-7.94959-4.30007-7.31556-4.68587-6.81175-4.67486-7.03736-4.65224-7.48981-4.84117-7.98077-4.89864-8.13241-5.12914-8.26019-5.26366-8.29932-5.29606-8.38798-5.33091-8.45095-5.39878-8.52493-5.46542-8.59952-5.54674-8.66372-5.63417-8.7212-5.68553-8.6252-5.71671-8.52738-5.72222-8.432-5.72955-8.33539-5.71182-8.21495-5.71182-8.21495-5.84755-8.14402-5.96372-7.97955-5.95027-7.7038-5.92887-7.2966-5.75951-7.02147-5.63539-6.8197-5.52412-6.643-5.55774-6.51155-5.65313-6.45346-5.74851-6.39477-5.86957-6.41128-5.96617-6.55496-6.12024-6.77568-6.25842-7.05387-6.68702-7.34919-6.93832-7.52099-7.12174-7.4623-7.22568-7.4036-7.22568-7.4036-7.28804-7.46963-7.39076-7.52833-7.49348-7.58641-7.64022-7.61148-7.74416-7.60904-7.757-7.50999-7.73804-7.38832-7.67874-7.27276-7.61882-7.15904-7.51488-7.08505-7.51488-7.08505-7.51488-7.08505-7.70503-6.75306-7.1089-6.35992-6.94137-6.25048-6.54395-6.07622-6.34219-6.02792-6.06033-5.96495-6.03159-5.87385-6.04932-5.78213-6.06889-5.67819-6.13431-5.62561-6.32201-5.64151-6.51033-5.65679-6.99518-5.64273-7.29049-5.58404-7.64511-5.51372-7.79918-5.27221-7.81814-5.05027-7.93859-5.02887-8.01379-4.96895-8.0786-4.90353-8.1428-4.83628-8.18499-4.77208-8.2125-4.6981-8.11529-4.62167-8.01746-4.57398-7.90557-4.55808-7.79307-4.54035-7.69891-4.56664-7.62126-4.57826-7.4574-4.41868-7.17554-4.39117-6.91997-4.4676-6.66807-4.54158-6.38988-4.73478-6.00774-5.01787-5.9087-5.09063-5.76807-5.16094-5.66719-5.07289-5.56508-4.98118-5.5877-4.8699-5.6892-4.73478-5.86345-4.49939-6.05421-4.19491-6.193-3.67459-6.25048-3.46549-6.15448-3.26739-6.02792-3.17079-6.02792-3.17079-6.08662-3.04606-6.08906-2.94395-6.09273-2.78865-6.02548-2.66393-6.02548-2.66393-6.02548-2.66393-5.88118-2.69511-5.7858-2.78865-5.70082-2.86936-5.63906-2.99715-5.63906-2.99715-5.63906-2.99715-5.23614-2.91277-5.0356-3.28512-4.64552-4.00659-4.71705-4.57948-4.75741-4.81121-4.46148-5.3676-4.16067-5.63295-3.80482-5.97473-3.59939-6.17038-3.26372-6.36726-2.87303-6.55741-2.6199-6.15571-2.26773-5.77602-1.82323-5.34008-1.30048-4.82588-0.928125-4.60211-0.539878-4.24504-0.073981-3.81644 0.158967-3.38173 0.158967-3.38173 0.158967-3.38173-0.638927-3.14205-1.47595-3.40007-1.56889-3.24721-1.74436-2.92072-1.5909-2.71223-0.96481-2.45543-0.0360734-2.49701 0.385802-2.6248 0.525204-2.40774 0.810734-1.86909 0.472622-1.57867 0.0403533-1.20754-1.05469-1.12255-1.83913-1.53098-2.03234-1.42704-2.30564-1.04735-2.12221-0.634035-2.54715-0.17303-2.26773-0.0189538-2.11732 0.0440217-1.62514 0.256793-1.2216 0.179144-0.766712 0.199321-0.759375 0.382133-0.760598 0.483628-0.674389 0.698845-0.463451 1.21916 0.893274 1.05469 1.40197 1.05774 1.7517 1.06019 2.04823 1.12622 2.34783 1.18431 2.75258 1.27052 2.77398 0.865761 2.6676 0.703125L2.39796 0.344837C2.80639 0.180367 3.22643-0.066644 3.3805-0.509919 3.49789-0.849253 3.40924-1.23505 3.49789-1.54198 3.59694-1.88804 3.77731-2.00727 3.93505-2.29524 4.18084-2.74647 4.22853-3.09314 4.28601-3.57188 4.33492-3.98274 3.93139-3.98764 3.77609-3.8678 3.68988-3.80238 3.44409-3.47955 3.17507-3.51196 3.00571-3.53091 2.87303-3.77486 2.80761-3.95156 2.80761-3.95156 3.19096-4.63573 3.31508-5.22575 3.42147-5.72711 3.37622-6.13798 3.32242-6.54885 3.27351-6.95849 2.85285-6.84844 2.74891-6.68764 2.6676-6.56169 2.53614-6.24069 2.26529-6.20034 1.97853-6.16182 1.72785-6.47364 1.69361-6.79097 1.65632-7.13519 1.69361-7.43356 1.88193-7.70747 2.71223-8.92296 6.50849-6.61671 8.15258-7.92452 8.25408-7.4837 8.30299-7.01474 8.21128-6.61671 8.01073-5.74056 6.49993-5.32113 5.7858-4.32024L5.7858-4.31719C5.64701-4.11603 5.53268-3.89042 5.47276-3.63607 5.19823-2.4695 5.97901-0.841916 6.38376-0.108832 6.06889 0.388247 6.2144 1.37446 6.39355 1.80306 6.60754 2.32276 6.78057 2.58505 7.03247 2.93417 7.2856 3.2839 7.91352 3.24232 7.91352 3.02955 7.91352 3.02955 7.18288 2.18274 7.4574 1.88682 7.7038 1.62147 9.0483 2.54715 8.07126 0.488519 7.71909-0.245788 7.25931-0.473234 6.87595-0.418207 6.47486-1.21549 5.97901-2.46583 6.2144-3.39885 6.30978-3.77731 6.55251-4.06406 6.857-4.31719L6.86067-4.31719C7.62738-4.95122 8.79395-5.37004 9.03363-6.51889 9.17364-7.20183 8.9731-8.10978 8.77255-8.76399 9.06359-9.42677 9.07704-10.1537 9.25374-10.7774 9.34056-11.0232 9.52092-11.4188 9.81501-11.3863 10.0798-11.3576 10.2198-11.0855 10.3249-10.9278 10.4588-10.7248 10.8251-10.6881 10.8862-11.0965 10.948-11.5056 11.0996-11.9048 11.0996-12.3475 11.0953-14.1163 10.5243-15.5109 10.0908-16.5993 10.0908-16.5993 10.5982-16.7258 11.2946-17.2009 11.7862-17.5365 11.6456-17.8337 11.6266-17.9725 11.6957-18.0355 11.7397-18.0929 11.7832-18.1822 11.8235-18.2745 11.8535-18.3748 11.8712-18.4763" fill="#FFFFFF" fill-rule="evenodd" transform="matrix(1.00161 0 0 -1 673.084 38.9754)"/><path d="M0 0C0.989878-0.416984 2.21393 0.226834 2.2127 0.363179 0.6964 0.140014 0.132677 0.57106 0.494633 1.31821-0.592459 1.1892-0.501359 0.211549 0 0" fill="#FFFFFF" fill-rule="evenodd" transform="matrix(1.00161 0 0 -1 669.283 41.3984)"/><path d="M0 0C0.527649 0.311821 1.16535 0.66644 1.53342 0.970924 1.98832 1.3445 2.60829 2.16379 2.61135 2.47928 1.91189 3.27412 2.02867 4.06039 1.98954 4.80876 1.98098 4.97507 1.77065 5.15177 1.47717 5.00808 0.673777 4.62045-0.260462 4.33125-0.260462 4.33125-0.260462 4.33125-0.456114 3.16957-0.195652 2.89688 0.0727582 2.61257 0.685394 2.71284 0.637704 2.29769 0.605299 2.02989 0.209103 1.56889-0.0464674 1.36712-0.478736 1.02473-0.998438 0.736753-1.26562 0.608967-1.26562 0.608967-2.0574 0.890829-3.13227 0.789334-3.55353 0.750204-3.57677 0.404755-3.57677 0.404755-3.57677 0.404755-3.71861 0.397418-3.82622 0.352174-3.94789 0.29837-4.0341 0.180367-4.0341 0.180367-4.0341 0.180367-3.94545 0.0678669-3.80238 0.0116168-3.70577-0.0275136-3.56821-0.0201766-3.56821-0.0201766-3.52785-0.175476-3.38173-0.338111-3.16957-0.368071-2.63641-0.444497-2.28302-0.387024-1.9981-0.319158-1.83546-0.278193-1.72174-0.300815-1.67894-0.429823-1.63736-0.557609-1.75537-0.65788-1.86053-0.72269-2.27018-0.963587-2.55693-1.14151-2.72507-1.34694-2.89321-1.55115-2.97819-1.82262-2.89443-2.03478-2.93539-2.09959-2.99592-2.17846-3.02466-2.28668-3.05462-2.39674-3.04728-2.50679-3.01671-2.62357-2.93539-2.62724-2.86141-2.61379-2.77643-2.58077-2.69022-2.54715-2.60584-2.5019-2.53981-2.39918-2.3252-2.4695-2.04579-2.41936-1.84158-2.12221-1.6716-1.87459-1.47106-1.43438-1.41175-1.25523-1.35428-1.07609-1.27785-1.03757-1.17514-1.05897-1.08404-1.07853-1.01005-1.13784-1.06141-1.42337-1.09871-1.6288-1.09382-2.06107-1.05774-2.25673-0.929959-2.96046-0.547826-2.91644-0.547826-2.91644-0.547826-2.91644-0.519701-3.03933-0.440829-3.13838-0.359511-3.23743-0.253125-3.30285-0.157745-3.32914-0.114334-3.23499-0.0788723-3.09069-0.0929348-2.97208-0.107609-2.8553-0.143071-2.77398-0.143071-2.77398-0.048913-2.70122 0.073981-2.55448 0.0165082-2.25673-0.0886549-1.74681-0.287976-1.5108-0.433492-1.28519-0.526427-1.13662-0.49341-1.02228-0.403533-0.956861-0.313044-0.892052-0.177921-0.911005-0.0599185-1.08342 0.0764266-1.27663 0.262908-1.54076 0.630367-1.71746 0.879212-1.83668 1.07486-1.79511 1.19164-1.69789 1.19164-1.69789 1.29803-1.76148 1.38852-1.79144 1.4784-1.82323 1.58111-1.83424 1.68872-1.82323 1.6716-1.72113 1.64348-1.62147 1.60251-1.52976 1.55971-1.43927 1.51447-1.38302 1.44477-1.31943 1.46189-1.18125 1.43193-0.920788 1.31698-0.805842 0.912228-0.396196 0 0 0 0" fill="#FFFFFF" fill-rule="evenodd" transform="matrix(1.00161 0 0 -1 677.239 78.9673)"/><path d="M0 0C-0.340557-0.241508-0.942188 0.555163-0.942188 0.555163-0.663995 0.813179-0.366848 1.03023-0.0825408 0.731861 0.126563 0.512364 0.270856 0.194429 0 0M10.841-17.627C10.7976-17.5378 10.7535-17.4815 10.6844-17.4167 10.7034-17.2785 10.844-16.982 10.3524-16.6469 9.65727-16.1713 9.14857-16.0447 9.14857-16.0447 9.58207-14.9558 10.1519-13.5624 10.1574-11.7935 10.1574-11.3497 10.0058-10.9504 9.94402-10.5408 9.88288-10.1323 9.51664-10.1696 9.38274-10.3738 9.27758-10.5316 9.13757-10.8024 8.8716-10.8324 8.57874-10.8648 8.39837-10.4692 8.31155-10.2234 8.17276-9.73492 8.11895-9.18893 7.97466-8.65272 8.48702-8.53716 8.90523-8.26936 9.26902-7.96182 9.93669-7.39321 9.88166-6.51277 9.52215-5.80842 9.22867-5.2447 8.8606-5.02031 7.08139-4.35999 6.37215-4.09586 5.85734-3.78893 5.49171-3.38906 5.35598-3.23132 5.21719-3.02833 5.12425-2.83757 4.94022-2.46216 5.08023-2.03234 5.39144-1.7462 5.46603-1.68016 5.6195-1.57011 5.79986-1.44599 6.34708-1.84402 7.83832-1.6337 8.41793-1.42948 9.08621-1.19287 9.5998-0.889606 10.0755-0.61875 10.5469-0.339334 10.4717 0.215829 10.2161 0.213995 10.2161 0.213995 8.4748-0.520924 8.17765-0.231726 7.90802 0.0311821 8.51698 0.972147 6.66929 0.157745 6.00285-0.136345 5.51128-0.539878 5.54246-0.926902 4.8962-1.27541 4.27378-1.8428 4.36732-2.6034 4.39484-2.85652 4.51895-3.17323 4.69076-3.4288L4.6981-3.4288C5.20313-4.15088 6.21073-4.69443 7.30944-5.05272 8.36291-5.39755 8.77011-5.58893 8.95292-6.28838 9.19382-7.20428 8.69735-7.76433 7.69158-7.91963 7.5699-7.69525 7.42683-7.50754 7.29783-7.37548 5.87507-5.90747 1.77004-8.3678 0.939742-7.1517 0.751427-6.87962 0.71413-6.58003 0.751427-6.2358 0.784443-5.91848 1.03635-5.60666 1.3231-5.64579 1.59395-5.68675 1.72541-6.00652 1.80673-6.13186 1.91067-6.29327 2.3301-6.40333 2.38023-5.99491 2.43404-5.58404 2.47928-5.17317 2.37289-4.67058 2.24878-4.08057 1.86542-3.39762 1.86542-3.39762 1.93084-3.22092 2.06352-2.97575 2.23288-2.95679 2.5019-2.92561 2.74769-3.24721 2.8339-3.31264 2.9892-3.43308 3.39273-3.42758 3.3426-3.01671 3.28635-2.53736 3.23865-2.1913 2.99287-1.7413 2.83512-1.45211 2.65476-1.3341 2.55571-0.987432 2.46705-0.680503 2.55571-0.295313 2.43832 0.0452446 2.28424 0.487296 1.86298 0.73553 1.45577 0.900611L1.72541 1.25768C1.83179 1.42031 1.81039 1.82629 1.40564 1.73947 1.10605 1.68077 0.809511 1.61535 0.459783 1.61413-0.0476902 1.61046-1.40564 1.77493-1.61658 1.25401-1.70279 1.03757-1.70156 0.937296-1.7089 0.754484-2.16379 0.733084-2.56732 0.811957-3.05951 0.597962-3.20992 0.534986-3.48933 0.38091-3.0644-0.0788723-3.24783-0.49341-2.97452-0.871875-2.78132-0.977038-1.99688-0.567391-0.901834-0.651766-0.469565-1.02473-0.131454-1.31454-0.416984-1.85197-0.556386-2.07086-0.978261-1.94307-1.907-1.90027-2.53308-2.15645-2.68655-2.36556-2.5123-2.69144-2.41814-2.84552-1.58111-2.58811-0.78322-2.82656-0.78322-2.82656-0.78322-2.82656-1.01617-3.2625-1.48207-3.6911-1.87092-4.04817-2.24266-4.27011-2.76542-4.78492-3.27167-5.28322-3.65992-5.70693-3.91671-6.17405-4.56298-6.01875-5.1695-5.83349-5.50639-5.60299-5.91603-5.32602-6.25598-5.11569-6.64178-4.61678-6.64056-4.38261-6.66563-3.80482-7.17065-3.15856-7.43111-2.82412-7.81447-2.97452-7.81447-2.97452-7.81447-2.97452-7.89701-2.86019-7.99361-2.79293-8.10367-2.71895-8.25041-2.71223-8.25041-2.71223-8.25041-2.71223-8.29565-2.84429-8.26569-2.99715-8.24796-3.09864-8.16909-3.21114-8.16909-3.21114-8.2767-3.32792-8.33784-3.53947-8.24674-3.73512-8.02357-4.22609-7.78451-4.49389-7.57235-4.69688-7.45007-4.81243-7.40849-4.9176-7.4947-5.02643-7.57908-5.13037-7.72887-5.0839-7.83832-5.0301-8.26386-4.81365-8.57079-4.67058-8.83186-4.6394-9.09599-4.607-9.36929-4.67976-9.50319-4.86624-9.58207-4.86746-9.67989-4.85645-9.7875-4.89375-9.89511-4.92738-9.98438-4.99158-10.0657-5.08268-10.026-5.15177-9.97459-5.20679-9.89939-5.26182-9.82541-5.31624-9.74103-5.36332-9.61875-5.36454-9.56311-5.58037-9.36929-5.79192-9.00978-5.80231-8.70774-5.81087-8.22901-5.743-8.04497-5.69592-7.86338-5.64946-7.7894-5.69042-7.75272-5.79069-7.72031-5.87751-7.73315-5.97228-7.99973-6.08173-8.19171-6.16304-8.55367-6.40088-8.69918-6.53601-9.22255-7.02391-8.97982-7.32045-8.97982-7.32045-8.97982-7.32045-9.0697-7.40972-9.10883-7.53261-9.14857-7.65611-9.14735-7.77901-9.11739-7.87439-9.01467-7.8591-8.87405-7.81019-8.78295-7.73438-8.69124-7.66039-8.6411-7.58519-8.6411-7.58519-8.52982-7.62615-8.33784-7.65245-8.12018-7.44212-7.7466-7.07772-7.65673-6.78057-7.54117-6.53662-7.46963-6.37948-7.35347-6.34341-7.24953-6.38499-7.14558-6.42717-7.09117-6.55007-7.17065-6.74327-7.25931-6.96338-7.38098-7.26175-7.33329-7.66651-7.29966-7.94103-7.15904-8.08471-7.01352-8.13118-7.01352-8.13118-7.00985-8.25285-6.98723-8.34823-6.96583-8.44178-6.91753-8.53105-6.85088-8.61726-6.77446-8.54817-6.70537-8.46929-6.65156-8.38431-6.59776-8.30177-6.57391-8.23268-6.55741-8.14096-6.43084-8.0786-6.22541-7.91352-6.193-7.75516-6.08906-7.23913-6.18689-6.79708-6.23702-6.57636-5.65557-7.11624-4.79959-7.81447-4.33981-8.00217-4.31474-8.01318-4.28845-8.02357-4.26338-8.03458-4.18329-8.79395-3.84273-9.51848-3.57432-9.83275-3.05217-10.4478-2.63091-10.7162-2.36678-10.9137-2.17602-11.058-1.99871-11.1204-2.10876-11.7434-2.19742-12.246-2.45971-12.8036-2.78254-13.2719-3.18974-13.8644-4.49389-14.7314-4.49389-14.7314-4.49389-14.7314-5.42507-14.3517-6.50238-14.4948-6.8998-14.5486-6.98478-14.8818-6.98478-14.8818-6.98478-14.8818-7.12419-14.8891-7.23424-14.9344-7.35591-14.9882-7.44212-15.1062-7.44212-15.1062-7.44212-15.1062-7.35224-15.2175-7.20917-15.2749-7.11257-15.3141-6.97622-15.3067-6.97622-15.3067-6.93587-15.462-6.78974-15.6271-6.57636-15.6571-6.04382-15.7335-5.68798-15.6748-5.40245-15.6057-5.23981-15.5672-5.1267-15.5874-5.08329-15.7176-5.04171-15.8466-5.15971-15.9469-5.2661-16.0092-5.67452-16.2514-5.9625-16.4317-6.13186-16.6359-6.30061-16.8389-6.38621-17.1098-6.30183-17.325-6.34219-17.3892-6.40211-17.4681-6.43268-17.5769-6.46019-17.687-6.45346-17.797-6.42228-17.915-6.34219-17.9187-6.26821-17.904-6.18077-17.871-6.0964-17.8374-6.01141-17.7909-5.94599-17.6882-5.732-17.7597-5.45014-17.7096-5.24592-17.4137-5.07656-17.1648-4.8748-16.7221-4.8161-16.543-4.75741-16.3651-4.6822-16.3253-4.57948-16.3467-4.48777-16.3663-4.41501-16.4281-4.46637-16.7136-4.50306-16.9178-4.49694-17.3513-4.4627-17.5469-4.3337-18.2507-3.95279-18.2048-3.95279-18.2048-3.95279-18.2048-3.92283-18.3296-3.84273-18.4286-3.76141-18.5276-3.65503-18.5955-3.55965-18.6218-3.51685-18.5264-3.482-18.3809-3.49667-18.2647-3.50951-18.1455-3.54558-18.0642-3.54558-18.0642-3.45204-17.9914-3.32548-17.8447-3.38662-17.5469-3.49056-17.0358-3.69232-16.801-3.83539-16.5742-3.93139-16.4244-3.89654-16.3101-3.80605-16.244-3.71495-16.181-3.58105-16.2-3.46182-16.37-3.32548-16.5644-3.13838-16.8285-2.77154-17.0071-2.52208-17.1269-2.32643-17.0847-2.20904-16.9857-2.20904-16.9857-2.10265-17.0505-2.01216-17.0817-1.92228-17.1135-1.81957-17.122-1.71012-17.1135-1.72908-17.0107-1.75781-16.9092-1.80061-16.82-1.84158-16.7276-1.8856-16.6708-1.95591-16.6096-1.93818-16.4702-1.97853-16.2177-2.0837-16.0936-2.38329-15.7323-2.92561-15.4859-3.06685-15.4253-3.06685-15.4253-2.32398-15.0609-1.33838-13.7971-0.780774-13.0812-0.38091-11.9764-0.15163-11.7397 0.433492-11.1369 1.25401-11.2824 2.30503-11.0244 5.73567-10.1837 4.94878-9.41943 5.92215-9.60469 6.51277-9.71719 6.41739-11.0281 6.84966-11.8914 7.19511-12.5817 8.16909-12.3787 8.29688-13.1203 8.42038-13.8332 8.14891-15.0774 7.94103-15.5531 7.68546-15.4767 6.91202-15.2052 6.09518-15.3177 5.67575-15.3764 5.65679-15.6913 5.65679-15.6913 5.65679-15.6913 5.51495-15.6986 5.40611-15.7439 5.28444-15.7977 5.20068-15.9157 5.20068-15.9157 5.20068-15.9157 5.28811-16.0257 5.43118-16.0844 5.52779-16.1236 5.66413-16.1162 5.66413-16.1162 5.70448-16.2715 5.85122-16.4366 6.06522-16.4678 6.59776-16.5418 6.95116-16.4868 7.23669-16.4152 7.40054-16.3743 7.51365-16.3969 7.55768-16.5283 7.59986-16.6561 7.4788-16.7564 7.37548-16.8188 6.96461-17.0609 6.67785-17.24 6.50972-17.4454 6.33974-17.6484 6.25414-17.9199 6.3373-18.1345 6.29694-18.1993 6.23702-18.2782 6.20829-18.3876 6.17894-18.494 6.18567-18.6053 6.21929-18.7233 6.29694-18.727 6.37215-18.7141 6.45836-18.6805 6.54273-18.6469 6.63016-18.6004 6.69558-18.4977 6.90836-18.5692 7.18899-18.5191 7.39321-18.2232 7.56257-17.9725 7.76678-17.5317 7.82303-17.3537 7.88173-17.1746 7.95815-17.1342 8.06209-17.1569 8.15258-17.177 8.22656-17.2376 8.1752-17.5219 8.13852-17.7261 8.14158-18.1608 8.17887-18.3571 8.30544-19.059 8.68879-19.0149 8.68879-19.0149 8.68879-19.0149 8.7163-19.1391 8.79762-19.2381 8.87772-19.3372 8.98349-19.4026 9.08193-19.4289 9.12228-19.3335 9.15958-19.1904 9.14491-19.0718 9.13084-18.955 9.09355-18.8737 9.09355-18.8737 9.18648-18.801 9.31304-18.6518 9.25251-18.3571 9.14857-17.8459 8.94925-17.6105 8.80374-17.3837 8.70897-17.2345 8.7426-17.1196 8.83308-17.0541 8.92418-16.9906 9.05808-17.0095 9.17731-17.1795 9.31427-17.3739 9.50075-17.6393 9.8676-17.816 10.1171-17.9364 10.3127-17.8961 10.4301-17.7958 10.4301-17.7958 10.5359-17.86 10.627-17.8912 10.7162-17.9224 10.819-17.9315 10.929-17.9224 10.9113-17.8209 10.8813-17.7206 10.841-17.627" fill="#FFFFFF" fill-rule="evenodd" transform="matrix(1.00161 0 0 -1 674.028 62.7789)"/><path d="M0 0C0.997215-0.399864 2.21393 0.225611 2.2127 0.361957 0.6964 0.138791 0.132677 0.57106 0.494633 1.31821-0.592459 1.1892-0.541101 0.21644 0 0" fill="#FFFFFF" fill-rule="evenodd" transform="matrix(1.00161 0 0 -1 669.283 64.6468)"/><path d="M0 0C-0.0336277 0.457337-0.348505 0.681726-1.9394 0.372351-3.84518 0.101495-4.82711 0.857201-4.26827 1.71868-5.71182 1.63492-5.77235-0.313044-4.20591-0.366848-2.6413-0.419429-1.70768 0.248234 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 701.91 45.7082)"/><path d="M0 0C-0.255571 0.0849864-1.04735 0.338111-1.04735 0.338111-1.04735 0.338111-2.38818-1.34083-4.83383-2.18397-6.89368-2.89321-7.81692-3.49545-8.28526-4.27622-8.68145-4.93899-8.88567-5.59015-8.91563-5.99491-8.96576-6.68274-8.90707-7.13274-8.82636-7.67874-8.74137-8.25041-8.09878-8.18376-8.01196-7.78023-7.94837-7.48736-7.75944-7.15659-7.46474-7.12296-7.17004-7.08995-6.89307-7.41461-6.89307-7.41461-6.89307-7.41461-7.18288-8.61726-8.09144-9.79484-8.38064-10.1684-9.67867-11.5355-10.1623-11.7807-10.7645-11.5031-11.5643-11.2084-11.9641-11.1656-12.2857-11.1296-12.7846-11.1057-12.9387-11.3527-13.1552-11.3387-13.3722-11.445-13.5575-11.5954-13.382-11.8149-13.0573-11.9262-13.0573-11.9262-13.0011-12.3169-12.6342-12.4991-12.2007-12.5401-11.7495-12.5841-11.3815-12.5652-11.1895-12.5517-10.9914-12.5376-10.874-12.6495-10.8514-12.7767-10.8263-12.9161-10.9137-13.0726-11.1308-13.1038-12.2533-13.2634-12.6544-13.8308-12.6202-14.4361-12.7443-14.5773-12.9234-14.8616-12.8898-15.1551-12.7107-15.1575-12.3597-15.0933-12.1806-14.9258-11.4463-15.0261-10.9241-14.2545-10.7144-13.851-10.6105-13.648-10.509-13.5489-10.3463-13.6204-10.2088-13.6816-10.1745-13.8106-10.2601-14.0399-10.3628-14.3168-10.4802-14.6812-10.4851-15.0157-10.4906-15.5372-10.2876-15.8081-10.0015-15.953-10.0015-15.953-9.81991-16.3993-9.59735-16.5008-9.46039-16.2899-9.47935-15.9016-9.47935-15.9016-9.22622-15.7628-9.09966-15.333-9.15346-14.9356-9.18648-14.6849-9.35523-14.3321-9.49035-14.0448-9.57473-13.862-9.53927-13.7152-9.42188-13.6602-9.27636-13.5899-9.14124-13.6651-9.02568-13.931-8.95414-14.0986-8.74993-14.477-8.60136-14.6213-8.40082-14.8158-7.95693-15.0823-7.63777-14.8922-7.63777-14.8922-7.35041-15.0799-7.05387-15.045-7.05876-14.7944-7.15292-14.6201-7.29538-14.441-7.20917-14.1542-7.19939-13.8344-7.60109-13.4548-7.93431-13.1393-8.32928-12.8495-8.76766-12.5878-7.93675-12.3132-6.62649-11.3338-6.12514-10.745-5.69287-10.2387-5.23553-9.34912-5.23553-9.34912-4.86135-9.4341-4.75741-9.84681-4.73234-10.1183-4.71094-10.3463-4.25727-10.4515-4.14844-10.0455-4.04022-9.64321-3.96563-9.23906-3.97908-8.7163-3.98886-8.37452-4.02921-7.63655-4.36366-7.01719-4.27378-6.82826-4.14477-6.66929-3.97174-6.68397-3.69721-6.70292-3.51318-7.03003-3.4392-7.19022-3.21236-7.67996-2.53981-7.51365-2.55815-7.01474-2.57221-6.59654-2.57466-6.2731-2.71467-5.71427-2.7801-5.4538-3.07357-4.91026-3.32242-4.70605-3.17507-3.75836-2.55571-3.72962-1.30781-2.72996-0.843139-2.35944-0.187704-1.82201 0.284307-1.2051 0.422486-1.02351 0.647486-0.665217 0.613859-0.38947 0.591236-0.194429 0.27697-0.091712 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 703.999 63.9987)"/><path d="M0 0C0 0 0.686617-1.11155 1.2106-0.772826 1.58478-0.531318 1.39952-0.102717 1.13662 0.191984 0.77466 0.599185 0.373573 0.328329 0 0M9.55211-19.6374C9.33383-20.7526 8.47969-21.4838 7.31923-21.9577 7.37609-24.0713 6.08173-25.1022 6.0591-25.8402 6.04137-26.3831 6.53539-26.5457 7.08261-27.2874 7.60904-28.0015 7.80591-29.1656 7.6555-30.0864 7.54361-30.7681 7.39198-31.124 7.12785-31.6076 6.86311-32.0937 6.27982-31.8968 6.31345-31.5232 6.40761-30.4826 5.66841-30.8446 5.66841-30.8446 5.66841-30.8446 5.69592-31.9445 4.94022-33.4229 4.48533-34.3113 3.2087-35.4815 3.2087-35.4815 3.2087-35.4815 4.25727-35.6454 4.57031-35.7811 5.07779-36.0037 5.18601-36.4035 5.18967-36.7019 5.37982-36.8297 5.5339-36.9935 5.61399-37.232 5.38899-37.3207 4.99769-37.2357 4.99769-37.2357 4.99769-37.2357 4.62717-37.5713 3.96318-37.1702 3.72228-37.0247 3.52541-36.7991 3.40435-36.664 3.23376-36.4726 3.06991-36.4573 2.95312-36.5613 2.85897-36.645 2.8394-36.8058 2.98308-36.9636 3.19524-37.1978 3.47405-37.5634 3.56209-37.723 3.69844-37.9761 3.7712-38.5545 3.57065-38.7599 3.57065-38.7599 3.71984-39.1787 3.65075-39.419 3.40924-39.3903 3.0748-38.9831 3.0748-38.9831 2.7587-38.9317 2.45054-38.6175 2.36433-38.2543 2.26529-37.8391 2.32031-37.4937 2.32643-37.2014 2.33193-36.9312 2.26284-36.8034 2.08981-36.7906 1.8856-36.7747 1.80917-36.9098 1.78655-37.1128 1.72785-37.6478 1.35306-38.5099 0.621807-38.6321 0.501359-38.8419 0.230503-38.9935 0.0586957-39.0448-0.0599185-38.774 0.0262908-38.4505 0.102717-38.2781-0.110054-37.7101 0.149185-37.1366 1.12989-36.5625 1.27052-36.4812 1.33594-36.3198 1.26073-36.1877 1.19531-36.0752 1.06875-36.044 0.898166-36.1015 0.712908-36.1614 0.384579-36.2519-0.0599185-36.3436-0.484851-36.431-0.888383-36.3675-1.05958-36.0104-1.05958-36.0104-1.40197-36.0012-1.63492-35.8423-1.50224-35.6442-1.32921-35.4779-1.11644-35.4277-1.04246-35.1459-0.605299-34.9429-0.281861-34.9074 0.608967-34.8108 1.74681-35.0126 1.74681-35.0126 1.74681-35.0126 2.33315-34.4415 2.88893-33.5397 3.60367-32.3804 3.50095-31.1075 3.50095-31.1075 3.50095-31.1075 3.35666-30.8996 3.11454-30.8868 2.84063-30.8709 2.64497-31.1454 2.52208-31.2707 2.38451-31.412 1.99443-31.4272 1.99565-31.0072 1.99565-30.7553 2.03356-30.3683 2.19986-29.8736 2.30808-29.5478 2.47806-29.261 2.74769-28.8721 2.60829-28.6832 2.36067-28.5151 2.2017-28.5603 1.97853-28.6257 1.85564-28.7969 1.77554-29.0213 1.6661-29.3246 1.17269-29.3772 1.0712-28.9278 0.978872-28.5194 0.95197-28.1385 1.01128-27.6047 1.11399-26.6845 1.2589-25.7423 2.2928-24.3306 2.79049-23.6513 3.9644-22.2585 3.98702-21.4166 4.01087-20.6181 1.31087-20.5245-0.695177-19.1953-2.3466-18.1009-2.73118-16.3614-2.73118-16.3614-2.73118-16.3614-3.32242-17.1324-4.61189-17.9065-5.46236-18.4176-7.07772-18.801-7.07772-18.801-6.79158-19.1715-6.57391-19.6111-6.44613-19.9859-6.24925-20.563-6.39232-20.8791-6.6051-21.087-6.56535-21.3151-6.64056-21.5627-6.75795-21.7834-6.98111-21.6404-7.12296-21.32-7.12296-21.32-7.4947-21.3322-7.68791-21.1121-7.78696-20.6645-7.84443-20.4102-7.88173-19.9895-7.87683-19.8079-7.8695-19.5243-7.96732-19.3977-8.10856-19.3977-8.23023-19.3977-8.32683-19.5004-8.33906-19.6863-8.35924-20.0018-8.41671-20.4505-8.47174-20.6272-8.55856-20.8999-8.80557-21.3285-9.09477-21.3285-9.09477-21.3285-9.28003-21.7596-9.50442-21.8776-9.64871-21.6832-9.58818-21.1598-9.58818-21.1598-9.77527-21.0118-9.87921-20.6859-9.61997-20.1045-9.42921-19.6685-9.28614-19.5548-9.08743-19.3414-8.90584-19.1452-8.82758-19.0137-8.95537-18.8835-9.05564-18.7796-9.15346-18.8132-9.31916-18.9238-9.69762-19.18-10.6343-19.6062-11.231-19.166-11.4664-19.2253-11.6982-19.1134-11.8547-19.0253-11.741-18.7508-11.4952-18.5588-11.272-18.5228-11.0164-18.1406-10.4607-17.9101-9.32527-18.0715-9.17242-18.0929-8.99572-18.074-8.94803-17.9187-8.90523-17.7726-8.95048-17.638-9.14491-17.5482-9.32038-17.4668-9.61936-17.3189-9.99416-17.0621-10.3537-16.8175-10.5872-16.4831-10.449-16.1107-10.449-16.1107-10.6796-15.8582-10.7272-15.58-10.4931-15.5385-10.2522-15.5495-10.0706-15.6662-9.81501-15.5232-9.37418-15.665-9.08438-15.9255-8.78417-16.1939-8.34395-16.7289-7.94715-17.2626-7.94715-17.2626-6.46019-17.0694-5.28689-15.7751-4.56542-14.9784-4.41746-13.6853-4.37894-12.5468-4.3716-12.3585-4.44925-12.1769-4.60455-12.1078-4.85645-11.9965-5.13404-12.1879-5.29239-12.2643-5.47154-12.3499-5.84572-12.2307-5.69837-11.8376-5.55163-11.4438-5.43974-11.2372-5.09796-10.844-4.90659-10.6257-4.4731-10.18-3.92405-9.87677-4.39361-9.52582-4.93288-9.03852-5.42629-8.55611-5.84878-8.14402-6.55251-7.06488-6.91569-6.22296-6.99518-6.4926-7.07527-6.86189-7.17371-7.10279-7.38342-7.61637-7.64389-7.71909-7.94103-7.74416-8.0572-7.93981-8.27303-8.08349-8.50598-8.17887-8.58485-7.92452-8.4644-7.54606-8.4644-7.54606-8.75666-7.318-8.69735-6.96094-8.5445-6.59164-8.40815-6.26698-8.22534-6.06766-8.09756-5.93866-7.88662-5.72588-7.86583-5.57058-7.98444-5.46909-8.09756-5.37126-8.24124-5.39878-8.3678-5.55408-8.56834-5.79986-8.92052-6.09151-9.07459-6.18933-9.31671-6.34463-9.87432-6.42595-10.0944-6.23947-10.0944-6.23947-10.4802-6.40883-10.726-6.35747-10.7144-6.11535-10.3628-5.79192-10.3628-5.79192-10.3341-5.47276-10.2724-5.32724-9.70496-5.03132-9.44694-4.89497-9.01223-4.80082-8.7212-4.80876-8.41427-4.81855-8.28404-4.6822-8.28281-4.54647-8.28281-4.38383-8.41671-4.28356-8.64232-4.29273-9.1822-4.3178-10.0767-4.01821-10.2497-3.29735-10.4692-3.19219-10.5744-2.95802-10.6368-2.78927-10.3738-2.65109-10.0455-2.71529-9.8676-2.77887-9.31671-2.52819-8.72731-2.74769-8.08716-3.68376-7.91963-3.92772-7.48981-3.79504-7.64144-3.42024-7.71298-3.23988-7.82792-2.91827-7.95082-2.48173-8.06882-2.06352-8.03213-1.65632-7.68791-1.46067-7.68791-1.46067-7.70136-1.11889-7.5589-0.876766-7.35469-0.994769-7.17554-1.15618-7.11135-1.36345-6.82337-1.41603-6.56413-1.84647-6.4877-2.18152-6.41005-2.52819-6.32079-3.15611-6.46875-3.93567-6.25292-4.69565-5.74545-5.33764-5.37371-5.74606-4.7036-6.48404-3.35116-7.33207-2.40774-7.87928-2.30136-7.76189-2.18764-7.64511-2.06474-7.52711-1.96325-7.42989-1.98587-7.26542-2.0519-7.1517-2.18764-6.91325-2.52575-6.90591-2.69878-6.87351-2.89382-6.83927-3.11821-6.53417-2.77643-6.28961-2.43587-6.04626-2.04579-5.91236-1.53709-5.7962-1.19531-5.71794-0.543546-5.62439 0.199321-5.82065 0.199321-5.82065 0.619973-5.33213 0.414538-5.17317-0.349728-4.58315-1.81529-4.95-1.81529-4.95-2.39063-4.16617-1.88315-3.9589-1.07364-3.93139-0.408424-3.90632 0.330774-4.01698 1.1091-4.29885 1.62758-3.88492 1.46861-2.6627 0.750815-2.3252-0.827853-1.57867-2.04334-2.34171-2.04334-2.34171-2.39552-2.28791-2.72018-2.11488-2.88893-1.73519-3.08091-1.30292-2.9519-0.827853-2.9519-0.827853-3.31508-0.569837-3.30408 0.240285-0.929348 0.0715353-0.929348 0.0715353-1.17514 0.740421-0.991101 1.27785-0.748981 1.99076 1.83424 1.61352 2.42792 1.74558 2.57711 1.77921 2.86569 1.88071 3.01304 1.92351 3.38173 2.03478 3.50584 1.67649 3.38662 1.46739 3.1873 1.11766 3.12004 0.670109 3.12004 0.670109 3.12004 0.670109 4.08668 0.418207 4.92799-0.612636 5.38105-1.1678 5.55163-2.04823 5.63539-2.45788 5.71977-2.86936 5.29851-2.90421 5.14565-2.78254 5.00808-2.67126 4.78125-2.42303 4.51039-2.47561 4.3502-2.50557 4.16861-2.78376 4.11359-2.95435 5.05149-3.45448 5.39389-4.59049 5.47031-5.06433 5.55163-5.5767 5.53023-5.98757 5.47643-6.40455 5.42385-6.81726 5.01298-6.71576 4.90659-6.54885 4.81243-6.40088 4.67853-6.09151 4.40768-6.05299 4.15944-6.01875 3.98947-6.22174 3.88125-6.45469 4.24871-7.01107 4.38016-7.66895 4.41929-7.99239 4.48288-8.51209 4.44803-8.92052 4.37894-9.33261 4.31107-9.74531 3.90387-9.62853 3.80482-9.45917 3.71495-9.30632 3.59327-8.99327 3.32242-8.94558 3.0644-8.89912 2.84674-9.20115 2.73363-9.43533 3.30408-10.0119 3.5034-10.8648 3.56454-11.2476 3.64708-11.7624 3.62568-12.172 3.5731-12.5878 3.51929-13.0035 3.09497-12.9748 3.00204-12.7345 2.92194-12.5291 2.80027-12.2521 2.53064-12.213 2.37534-12.1891 2.14851-12.3475 2.05374-12.46 1.95836-13.0317 2.08003-13.5489 2.18152-14.0576 2.35577-14.9283 2.81923-15.7653 3.91793-16.5632 5.14076-17.4528 6.65523-18.9037 7.15292-20.6645 8.20272-20.1986 9.15897-19.1965 7.93614-17.517 6.75061-15.8918 5.81882-15.3746 5.31991-13.4713 5.02887-12.3622 5.21963-11.1986 6.16794-9.98315 6.03648-9.78872 5.97656-9.5356 5.95761-9.25618 5.92643-8.76766 5.97779-8.0786 6.44246-7.30211 6.86067-6.59898 7.61882-5.67086 8.74626-5.16216 9.02874-5.32846 9.05075-5.86712 8.98838-5.98635 8.64783-6.64178 7.34674-7.5803 7.32962-7.96732 7.32045-8.18621 7.84076-8.51087 8.02846-8.44851 8.38186-8.3305 8.78295-7.37609 8.92969-7.18166 9.04952-7.02269 9.49096-7.02391 9.45795-7.44212 9.4231-7.85971 9.35768-8.26508 9.1712-8.75177 8.98594-9.23111 8.36535-10.1776 7.11624-10.3592 6.98111-10.3787 6.85944-10.3763 6.74939-10.3579 6.00652-11.3753 6.12024-12.4099 6.22541-13.0035 6.44368-14.2355 7.27092-14.9258 8.35068-16.3137 9.32283-17.5628 9.82174-18.2684 9.55211-19.6374" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 701.987 42.4219)"/><path d="M0 0C-0.369905 0.569837-0.862092 1.12989-1.27052 1.72174-1.72174 2.37779-1.64531 3.2197-0.849253 3.37378-0.604076 3.42024-0.274524 3.31753-0.0391304 3.07602-0.017731 3.05462 0.0152853 3.05462 0.0403533 3.07602 0.27697 3.31753 0.606522 3.42024 0.850476 3.37378 1.64776 3.2197 1.72418 2.37779 1.27174 1.72174 0.864538 1.12989 0.372351 0.569837 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 692.392 34.5775)"/><path d="M0 0C-0.371128 0.57106-0.863315 1.12989-1.27174 1.72052-1.72296 2.37901-1.64776 3.2197-0.850476 3.37255-0.606522 3.42024-0.275747 3.31753-0.0403533 3.07602-0.0189538 3.05584 0.0140625 3.05584 0.0391304 3.07602 0.275747 3.31753 0.605299 3.42024 0.849253 3.37255 1.64654 3.2197 1.72296 2.37901 1.27052 1.72052 0.863315 1.12989 0.371128 0.57106 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 692.392 89.3411)"/><path d="M0 0C-0.371128 0.569837-0.863315 1.12989-1.27174 1.72174-1.72296 2.37901-1.64654 3.2197-0.850476 3.37255-0.605299 3.42024-0.275747 3.31875-0.0397418 3.07602-0.0189538 3.05584 0.0152853 3.05584 0.0391304 3.07602 0.275747 3.31875 0.605299 3.42024 0.850476 3.37255 1.64654 3.2197 1.72296 2.37901 1.27174 1.72174 0.863315 1.12989 0.371128 0.569837 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 698.241 86.646)"/><path d="M0 0C-0.371128 0.57106-0.863315 1.13111-1.27174 1.72296-1.72418 2.37901-1.64654 3.2197-0.850476 3.37439-0.606522 3.42147-0.27697 3.31875-0.0403533 3.07724-0.0189538 3.05584 0.0152853 3.05584 0.0391304 3.07724 0.275747 3.31875 0.605299 3.42147 0.849253 3.37439 1.64654 3.2197 1.72296 2.37901 1.27052 1.72296 0.862092 1.13111 0.371128 0.57106 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 692.392 55.8858)"/><path d="M0 0C-0.371128 0.57106-0.863315 1.13111-1.27174 1.72174-1.72296 2.38023-1.64654 3.2197-0.850476 3.37378-0.605299 3.42024-0.275747 3.31875-0.0403533 3.07724-0.0189538 3.05584 0.0152853 3.05584 0.0391304 3.07724 0.275747 3.31875 0.605299 3.42024 0.850476 3.37378 1.64654 3.2197 1.72296 2.38023 1.27052 1.72174 0.863315 1.13111 0.371128 0.57106 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 698.241 37.6737)"/><path d="M0 0C-0.371128 0.569837-0.863315 1.12989-1.27174 1.72174-1.72418 2.37779-1.64654 3.21848-0.850476 3.37255-0.606522 3.42024-0.275747 3.31753-0.0403533 3.07602-0.0189538 3.05462 0.0140625 3.05462 0.0391304 3.07602 0.275747 3.31753 0.605299 3.42024 0.849253 3.37255 1.64654 3.21848 1.72296 2.37779 1.27052 1.72174 0.863315 1.12989 0.371128 0.569837 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 698.653 65.3695)"/><path d="M0 0C0 0 0.313044-0.0311821 0.473845-0.0911006L0.473845-58.5721C0.149185-58.6773-0.00611413-58.6773-0.00611413-58.6773-0.00611413-58.6773-0.149185-58.6688-0.483628-58.5721L-0.483628-0.0911006C-0.330774-0.0348505 0 0 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 687.513 30.7824)"/><path d="M0 0C-0.0611413 0.191984-0.131454 0.38091-0.192595 0.572283L-1.63003 0.11678-1.47962-0.358288C-1.34572-0.781997-0.885938-0.869429-0.51481-0.751427-0.162636-0.64015 0.131454-0.413315 0 0M-2.03111-0.61019-2.20353-0.0654212-3.62201-0.51481C-3.90265-0.604076-3.89776-0.725136-3.77364-1.11889-3.6159-1.61352-3.23376-1.94796-2.63091-1.75537-2.1375-1.60007-1.87154-1.11522-2.03111-0.61019M-4.19185-1.71746C-4.35876-1.19287-4.50061-0.672554-4.66814-0.146739L-5.20068 1.46189-4.70727 1.6178-4.3551 0.752038-0.645041 1.9284-0.979484 2.87792-0.46712 3.04056C-0.0788723 2.06352 0.300815 1.07364 0.61875 0.073981 0.963587-1.01617 0.71413-1.9394-0.0397418-2.17846-0.522147-2.33132-1.01861-2.05618-1.3341-1.68995-1.30659-2.3356-1.53954-2.99837-2.20231-3.2087-3.2087-3.52785-3.92283-2.56488-4.19185-1.71746" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 660.579 72.8079)"/><path d="M0 0-0.137568 0.261685-1.8642-0.646875-1.75048-0.863315C-1.46433-1.40686-0.896943-1.44232-0.439606-1.20143-0.038519-0.991101 0.291644-0.55394 0 0M-3.12188-4.91148-3.41535-4.01332C-3.67948-3.24355-2.43159-1.65265-2.06719-1.03023L-2.1803-0.814402-3.6269-1.57622-3.40129-2.16379-3.8678-2.40836-4.47677-1.18553-5.21963 0.157745-4.75374 0.403533-4.29334-0.311821-0.832133 1.51202-1.32921 2.38696-0.852921 2.63825C-0.573505 2.1748-0.22928 1.58967-0.0140625 1.24789 0.0641984 1.12255 0.46712 0.448777 0.600408 0.195652 1.4197-1.36039 1.14762-2.08859 0.373573-2.49701-0.316712-2.86019-0.905503-2.73913-1.3769-2.1375-1.48573-2.33927-2.70856-4.15577-2.70122-4.3074-2.69511-4.54402-2.68594-4.53913-2.59973-4.81732L-3.12188-4.91148Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 663.115 78.7979)"/><path d="M0 0-1.58723-0.478736-0.874321-1.37446 0 0ZM-1.70523-4.10686-2.75747-2.81923-2.35394-2.49701-1.8483-3.02955-1.20143-1.94552-2.23655-0.645041-3.45082-1.01617-2.94029-1.75904-3.34504-2.08125-4.05428-1.1574-4.65836-0.447554-4.26338-0.132677-3.91427-0.45 0.715353 0.879823C0.974592 0.706793 1.30292 0.617527 1.55115 0.557609L1.68995 0.383356-0.925679-4.19063-0.660326-4.64185-1.06386-4.96406-1.70523-4.10686Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 665.965 84.3184)"/><path d="M0 0-1.71868-2.05496C-2.50863-3.00326-3.60489-2.99348-4.75129-2.03601-5.82249-1.14029-6.1765 0.0892663-5.51923 0.874321L-3.6801 3.07602-4.31352 3.68743-3.98274 4.08424-2.82656 3.09069-1.5536 2.05374-1.88438 1.65754-2.58322 2.1589-4.28845 0.119226C-4.91637-0.632812-4.54035-1.30537-4.19857-1.5909-3.85007-1.88193-2.9195-2.28913-2.29769-1.54382L-0.593682 0.495856-1.18553 1.07364-0.854755 1.46984 0.00855978 0.73553 0.96481-0.0501359 0.634035-0.446332 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 672.982 90.3561)"/><path d="M0 0-1.85931-4.18329-2.67126-3.82255-3.9216 0.692731-5.13037-2.02561-4.44008-2.40163-4.65346-2.88404-5.64701-2.40774-6.78302-1.93818-6.57269-1.46495-5.83105-1.72541-4.28967 1.74497C-4.3502 1.94552-4.57948 2.08125-5.05394 2.29158L-4.83505 2.78376-2.9195 1.93207-1.77004-2.15645-0.676834 0.300815-1.36834 0.676834-1.15863 1.14885-0.155299 0.692731 0.961141 0.20788 0.751427-0.265353 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 679.73 93.8002)"/><path d="M0 0C-0.459783 0.0715353-0.776495 0.174253-1.34939 0.412092L-1.39463 0.259239-1.9284 0.343003-1.82018 0.698845-1.57011 1.88804-1.05774 1.80795C-1.14029 1.13784-0.74409 0.660326-0.188927 0.572894 0.376019 0.486073 0.675 0.748981 0.73553 1.14518 0.808288 1.61352 0.0611413 2.03967-0.536209 2.61257-0.993546 3.04606-1.36162 3.5731-1.26562 4.18818-1.12745 5.07412-0.336889 5.47398 0.814402 5.29484 1.12745 5.24592 1.75659 5.08329 1.99076 5.00503L2.09837 5.2123 2.57955 5.13709 2.3356 3.57554 1.82323 3.65442C1.8428 4.25971 1.56889 4.63329 1.01372 4.7195 0.438383 4.80876 0.243342 4.38016 0.20788 4.15088 0.137568 3.70333 0.717799 3.30285 1.27418 2.81128 1.79939 2.33438 2.29402 1.78899 2.18764 1.11155 2.0409 0.163859 1.17269-0.182812 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 683.256 99.3127)"/><path d="M0 0C-1.70768-0.158967-3.07357 0.80462-3.22092 2.38023-3.34749 3.7339-2.41569 5.15666-0.57106 5.32846 0.273302 5.40734 0.422486 5.4 0.979484 5.36637L0.992323 5.56936 1.49857 5.61644 1.54198 5.14321 1.68995 3.90754 1.1837 3.86046C1.04735 4.63084 0.38091 4.82344-0.367459 4.75374-1.15802 4.67976-1.83179 3.80238-1.71746 2.57344-1.60863 1.39708-0.697622 0.528872 0.114946 0.604076 0.915897 0.67928 1.31943 0.918342 1.31821 0.928125 1.36712 1.08098 1.37568 1.79144 1.37446 1.91923L1.88071 1.96569 2.00849 0.590014C1.26135 0.287976 1.0339 0.0966033 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 690.526 99.4869)"/><path d="M0 0-1.47962-0.634035-1.67649-0.156522-0.912228 0.240285-1.55238 1.78899-3.83356 0.845584-3.19219-0.703125-2.38145-0.447554-2.18397-0.925679-3.62079-1.49613-5.07045-2.11977-5.26732-1.64226-4.51284-1.25034-6.01264 2.37534-6.81848 2.10999-7.01719 2.5875-5.55041 3.17201-4.13071 3.7822-3.93261 3.30408-4.69076 2.92194-4.06284 1.40197-1.78288 2.34416-2.4108 3.86535-3.22765 3.59572-3.42636 4.07323-1.99932 4.64062-0.528872 5.27099-0.331997 4.79348-1.09993 4.40768 0.398641 0.781997 1.21916 1.04124 1.41726 0.563723 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 700.49 96.5124)"/><path d="M0 0 1.62514-4.71583 1.02473-5.23553-1.12867-4.16739-0.353397-6.42595-1.00333-6.98723-5.50394-4.75618-5.93866-5.04783-6.27677-4.65591-5.38899-3.91793-4.46637-3.09192-4.12826-3.48322-4.39789-3.78526-1.36712-5.34986-1.9822-3.74735-3.47711-3.00448-3.82378-3.2197-4.16189-2.82901-3.36155-2.16624-2.29402-1.21549-1.95591-1.6074-2.4108-2.06963 0.611413-3.63974-0.569837-0.492188-1.11522-0.880435-1.45333-0.489742-0.622419 0.200543 0.00733696 0.80034 0.359511 0.393139 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 707.129 86.1153)"/><path d="M0 0-0.424932-0.581454-1.38424-1.96569-1.8055-1.6661-1.33166-0.873098-4.53791 1.40686-5.09674 0.765489-5.518 1.06386-4.56664 2.34905-3.95156 3.25027-3.26372 4.2163-3.46549 4.42541-3.16467 4.84851-2.83023 4.60944-1.78777 3.90815-2.08247 3.49423-2.78743 3.81399-3.68254 2.55326-2.38573 1.63125-1.71746 2.57099-2.14606 2.96719-1.85197 3.38173-0.382133 2.33682-0.675611 1.92228-1.21793 2.2176-1.88682 1.27663-0.674389 0.414538C-0.606522 0.365625-0.537432 0.316101-0.522758 0.318546-0.452446 0.399864-0.373573 0.473845-0.226834 0.680503-0.017731 0.974592 0.279416 1.37323 0.303261 1.40808 0.38947 1.52976 0.536209 1.73641 0.525204 1.75659 0.512364 1.79266 0.0476902 2.21393-0.048913 2.29524L0.251902 2.71773 1.36834 1.92351 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 713.134 85.4984)"/><path d="M0 0-0.67928-1.42337-1.14273-1.19531-0.833356-0.40231-4.35265 1.3341-4.7837 0.60163-5.24715 0.83091-4.53057 2.23655-3.86535 3.63241-3.4019 3.40435-3.71984 2.61624-0.201766 0.879212 0.240285 1.60618 0.703125 1.37812 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 716.427 79.9682)"/><path d="M0 0C0.140625-0.0440217 0.348505-0.120448 0.591236-0.196875L0.771603-0.253125C1.12011-0.340557 1.45211-0.412092 1.73397-0.322215 1.54015-0.938519 1.56644-0.890829 1.4784-1.41848 1.39096-1.97976 1.38057-2.18764 1.17514-2.84307 0.51481-4.94511-1.00211-5.41223-2.33132-4.99524-3.51807-4.62289-4.58438-3.30041-3.97541-1.36039-3.80482-0.814402-3.52785-0.180367-3.34993 0.174253L-3.55292 0.304484-3.40924 0.759375-3.07724 0.654212-1.75659 0.284307-1.90944-0.200543C-2.66515-0.073981-3.11698-0.598573-3.37745-1.42582-3.58716-2.09348-3.00448-3.19708-1.87704-3.55048-0.670109-3.93016 0.401087-3.33404 0.626698-2.61624 0.74409-2.24266 0.759375-1.98098 0.725747-1.70401L-0.412092-1.34694-0.742867-2.1534-1.23505-1.99932-0.733084-0.469565-0.334443 0.870652 0.158967 0.715353 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 717.854 71.0452)"/><path d="M0 0C0.0403533-1.72357-1.01495-3.02527-2.59606-3.06257-3.95645-3.09436-5.31073-2.06413-5.35476-0.202989-5.37493 0.647486-5.3572 0.796671-5.28628 1.35061L-5.48743 1.37812-5.49905 1.88804-5.0252 1.89966-3.7822 1.96202-3.76997 1.45088C-4.5483 1.36834-4.78614 0.71413-4.76841-0.0403533-4.74946-0.837636-3.91916-1.57317-2.68594-1.54443-1.50469-1.51569-0.57534-0.662772-0.594905 0.155299-0.613859 0.963587-0.824185 1.38424-0.834579 1.38424-0.983764 1.44355-1.69239 1.50102-1.81895 1.50836L-1.83057 2.0195-0.45 2.05251C-0.199321 1.28152-0.0250679 1.04124 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 659.418 60.7857)"/><path d="M0 0 1.44966-0.805842 1.59395 0.33322 0 0ZM4.13315 1.6502 3.943-0.00855978 3.43064 0.0574728 3.4606 0.793003 2.23288 0.498913 2.02194-1.1574 3.13471-1.77065 3.31141-0.881046 3.82378-0.947079 3.65564-2.10387 3.56821-3.03689 3.06685-2.97208 3.05217-2.49946-1.12989-0.102717C-1.18553 0.204212-1.34939 0.503804-1.48084 0.725136L-1.45333 0.945856 3.64952 2.27018 3.7877 2.77765 4.30007 2.71223 4.13315 1.6502Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 655.673 54.6263)"/><path d="M0 0-0.0849864-0.28553 1.7841-0.846807 1.85319-0.612636C2.03111-0.0213995 1.65265 0.403533 1.1574 0.551495 0.72269 0.681726 0.180367 0.600408 0 0M5.67452 1.32677 5.25448 0.475068C4.89986-0.261685 2.89321-0.525204 2.19742-0.715353L2.12711-0.949524 3.69232-1.4197 3.94423-0.840693 4.44925-0.992323 4.02432-2.29647 3.61101-3.78342 3.10598-3.63179 3.27901-2.79416-0.468342-1.66977-0.728193-2.6462-1.243-2.4909C-1.11766-1.96325-0.953193-1.3017-0.866984-0.905503-0.833356-0.759375-0.647486 0.00611413-0.564946 0.280639-0.0574728 1.97181 0.648709 2.30319 1.48696 2.05129 2.2341 1.8269 2.56855 1.32677 2.48295 0.564946 2.70122 0.63159 4.84973 1.07486 4.95 1.1892 5.11202 1.36223 5.10285 1.36467 5.23553 1.62514L5.67452 1.32677Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 656.666 46.9127)"/><path d="M0 0C-0.434715-0.85231 0.300815-1.70523 1.24056-2.18519 2.17113-2.65965 3.32242-2.76787 3.75713-1.91556 4.18818-1.07242 3.38906-0.199321 2.48723 0.260462 1.59518 0.715353 0.429823 0.843139 0 0M4.26461-2.1748C3.36033-3.94545 1.72418-4.13866 0.558832-3.54436-0.605299-2.95068-1.41175-1.51325-0.507473 0.259239 0.387024 2.01216 2.01338 2.20904 3.17874 1.61474 4.31596 1.03512 5.1591-0.421264 4.26461-2.1748" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 659.35 39.8699)"/><path d="M0 0-1.3555-1.77432-1.80183-2.34416-2.76542-3.64096-3.17629-3.32792-2.71895-2.60707-5.83838-0.226834-6.40455-0.864538-6.81481-0.550272-5.82493 0.712908-4.9127 1.94307-4.50183 1.63003-4.96773 0.914674-1.80673-1.49735C-1.75414-1.42948-1.09504-0.528872-1.06141-0.487296-0.972147-0.369293-0.841916-0.146739-0.853533-0.110054-0.866984-0.073981-1.33043 0.587568-1.40319 0.682948L-1.08098 1.10605 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 668.181 34.8997)"/><path d="M0 0C-0.712908-0.637704-0.334443-1.69912 0.369293-2.48478 1.06386-3.26372 2.09837-3.78159 2.8125-3.14389 3.51685-2.51352 3.08825-1.41114 2.41325-0.656658 1.7462 0.0898777 0.705571 0.630367 0 0M3.19219-3.56943C1.7089-4.89375 0.113723-4.48166-0.758152-3.50584-1.63003-2.53186-1.86175-0.900611-0.379688 0.424932 1.08648 1.73641 2.67615 1.33166 3.54681 0.355842 4.39789-0.596128 4.65836-2.25795 3.19219-3.56943" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 667.714 28.9017)"/><path d="M0 0-0.613859 1.02106 1.68383 2.40163 2.29769 1.37935 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 672.922 28.357)"/><path d="M0 0-0.254348-4.98302-1.00883-5.24226-2.61379-3.45143-2.73852-5.83594-3.55292-6.11658-6.90836-2.37289-7.42194-2.48295-7.59008-1.99443-6.48648-1.63736-5.31624-1.21304-5.14932-1.70156-5.51495-1.88315-3.27901-4.46026-3.25027-2.74402-4.36488-1.4998-4.76719-1.57011-4.93533-1.0822-3.943-0.763044-2.59239-0.27697-2.42425-0.765489-3.02038-1.02717-0.795448-3.60734-0.71413-0.244565-1.36834-0.403533-1.53709 0.0862092-0.503804 0.418207 0.306929 0.741644 0.482405 0.232948 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 681.808 21.5703)"/><path d="M0 0-1.57989-0.130231-1.61596 0.384579-0.771603 0.518478-1.0449 4.43274-1.89721 4.43641-1.93329 4.95245-0.350951 5.04049 1.19531 5.1695 1.23139 4.65469 0.387024 4.53179 0.660326 0.617527 1.51447 0.602853 1.54993 0.0874321 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 685.818 25.7884)"/><path d="M0 0-2.20414 0.357065-2.91583 0.483628-4.51529 0.720245-4.43274 1.23139-3.57982 1.1678-2.95312 5.04049-3.78281 5.23859-3.70088 5.74851-2.11855 5.47154-0.602853 5.24837-0.685394 4.73723-1.53587 4.81121-2.17235 0.885938C-2.08736 0.873098-0.982541 0.715353-0.929959 0.706793-0.78322 0.682948-0.525204 0.673777-0.500136 0.700679-0.473845 0.728193-0.110054 1.44966-0.0599185 1.55971L0.465897 1.47473 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 693.42 26.4029)"/><path d="M0 0-1.46617 0.680503-1.24178 1.1464-0.434715 0.840693 0.292867 2.35149-1.94063 3.42514-2.66637 1.91433-1.93207 1.4784-2.15645 1.0125-3.54681 1.70523-4.98302 2.37289-4.75863 2.83879-3.96073 2.53614-2.26039 6.07255-2.99959 6.49871-2.7752 6.96461-1.35673 6.25842 0.0513587 5.60421-0.17303 5.13832-0.967255 5.45014-1.68016 3.96685 0.552717 2.89321 1.26562 4.37649 0.517255 4.80632 0.740421 5.27221 2.12099 4.5856 3.57799 3.90876 3.35299 3.44287 2.55082 3.75897 0.850476 0.221943 1.59395-0.217663 1.37079-0.682948 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 699.575 28.9745)"/><path d="M0 0-0.544769 0.476291-1.84769 1.5536-1.51325 1.94796-0.759375 1.40564 1.78533 4.40523 1.19042 5.02031 1.52486 5.41406 2.72996 4.35143 3.5786 3.6587 4.48777 2.88893 4.71216 3.07113 5.10958 2.73485 4.84361 2.42058 4.0555 1.44232 3.66603 1.7731 4.0445 2.4481 2.86019 3.45204 1.82935 2.23777 2.71284 1.48818 3.14511 1.88193 3.53458 1.55238 2.368 0.176698 1.97853 0.507473 2.31787 1.02228 1.43438 1.77188 0.471399 0.637704C0.416984 0.573505 0.363179 0.508696 0.364402 0.494633 0.438383 0.418207 0.505027 0.331997 0.699457 0.166916 0.975815-0.066644 1.35061-0.397418 1.38302-0.424932 1.49613-0.522147 1.69117-0.686617 1.71257-0.676834 1.74925-0.667663 2.20904-0.241508 2.29891-0.150408L2.69633-0.488519 1.80917-1.53342 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 703.517 31.8591)"/><path d="M0 0-1.39708 1.74253-1.84035 2.31298-2.86814 3.56087-2.46461 3.88492-1.87459 3.26739 1.18492 5.72222 0.701902 6.42595 1.10605 6.74939 2.09348 5.48376 3.06807 4.30129 2.66515 3.97785 2.08247 4.60211-1.01861 2.11365C-0.96481 2.04823-0.250679 1.1892-0.217052 1.14885-0.124117 1.03207 0.0611413 0.852921 0.0978261 0.855978 0.136345 0.859647 0.889606 1.15007 1.00088 1.19776L1.33288 0.78322 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 709.094 37.8993)"/><path d="M0 0-0.616304 1.1788-0.155299 1.41053 0.174253 0.898166 3.10842 2.43342-1.42092 2.35577 1.09382 5.87262-1.68016 4.58315-1.42704 3.93689-1.88804 3.70455-2.25245 4.4731-2.87303 5.66046-2.4108 5.89341-1.99688 5.20863 1.58845 6.85944 1.2589 7.65673 1.7199 7.88967 2.31787 6.67908 2.70489 5.93254 0.651766 3.11454 4.0769 3.20747 4.37283 2.59484 5.19579 0.984986 4.73356 0.752038 4.27622 1.52242 0.80462-0.355842 1.15007-1.18247 0.689062-1.4142 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 712.67 44.3815)"/><path d="M0 0-0.472622 1.51325 0.0226223 1.65999 0.336889 0.865761 4.09708 1.98342 3.91549 2.81678 4.41135 2.96413 4.84239 1.43865 5.30462-0.0427989 4.80999-0.190149 4.50673 0.607745 0.745313-0.509919 0.91712-1.34572 0.421264-1.49368 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 714.086 48.5085)"/><path d="M0 0-4.53302-0.630367-4.65591 0.254348-1.48451 3.71128-4.4303 3.30285-4.38505 2.51474-4.90659 2.44198-5.02765 3.54192-5.22942 4.75863-4.71705 4.82894-4.54647 4.05917-0.785666 4.58071C-0.648709 4.73967-0.652989 5.00686-0.725136 5.52412L-0.191984 5.5981 0.0978261 3.51196-2.76542 0.366848-0.102717 0.736753-0.147962 1.52486 0.364402 1.59518 0.505027 0.498913 0.684171-0.710462 0.171807-0.781997 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 720.148 56.1414)"/><path d="M0 0-1.52486 0.650544-1.55115-0.49769 0 0ZM-3.93811-2.07147-3.9216-0.401087-3.40557-0.413315-3.35788-1.14823-2.16746-0.728804-2.13016 0.940965-3.30041 1.43438-3.38417 0.532541-3.90143 0.544769-3.85374 1.71379-3.86413 2.64986-3.3591 2.63764-3.29613 2.16868 1.11277 0.219497C1.20143-0.0800951 1.39586-0.361957 1.54871-0.567391L1.54382-0.789946-3.39151-2.63702-3.47711-3.15673-3.99314-3.14511-3.93811-2.07147Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 719.658 60.867)"/><path d="M0 0 0-10.2161-2.21882-10.2161-2.21882 0-5.77724 0-5.77724 1.88927 3.57677 1.88927 3.57677 0 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 740.354 36.1977)"/><path d="M0 0C-0.275747 0-0.862092-0.201766-0.936073-0.257405-0.972147-0.29409-1.52242-0.826019-1.63247-1.59579L1.66855-1.59579C1.59518-0.642595 1.43071 0 0 0M-1.70645-2.97147C-1.65143-4.1087-0.82663-5.22758 0.45856-5.22758 1.33899-5.22758 2.31114-4.86073 3.33832-4.01698L3.54008-6.18139C2.54959-6.76834 1.6502-7.11685 0.017731-7.11685-2.31175-7.11685-4.05428-5.46664-4.05428-2.75136-4.05428 5.43044e-16-2.36678 1.6502 0 1.6502 2.84185 1.6502 3.66848 0.146128 3.66848-2.97147L-1.70645-2.97147Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 747.684 39.5354)"/><path d="M0 0C-2.4212 0-4.1087 1.63247-4.1087 4.45659-4.1087 7.46474-2.09103 8.76705-0.221332 8.76705 1.48573 8.76705 2.91644 8.38186 2.91644 7.04348L2.91644 6.56597C2.91644 6.41923 2.91644 6.27249 2.8981 6.08906L0.750815 6.08906C0.750815 6.85944 0.550272 7.00618-0.0366848 7.00618-0.423098 7.00618-0.605299 6.9695-0.734919 6.91508-0.91712 6.84171-1.76087 6.38315-1.76087 4.51162-1.76087 2.36556-0.550272 1.88927 0.383967 1.88927 0.952582 1.88927 1.61291 1.92534 2.82473 2.95251L3.02649 0.898777C1.8697 0.219497 1.02717 0 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 757.496 46.6523)"/><path d="M0 0-2.21943 0C-2.18274 2.10938-2.14606 2.54959-2.14606 3.66848-2.14606 6.0163-2.21943 6.60326-3.13655 6.60326-3.48505 6.60326-4.03533 6.52989-4.18207 6.41984-4.31046 6.32813-4.89742 5.88791-5.28261 5.42935L-5.28261-1.08609e-15-7.50204-1.08609e-15-7.50204 13.3893-5.28261 13.3893-5.28261 7.55645C-4.64062 8.19844-3.90693 8.5286-3.00815 8.5286-0.165082 8.5286 0.091712 6.76773 0.091712 4.91576 0.091712 4.5856 0.0733696 4.23709 0.0733696 3.90693 0.0550272 2.71406 0.0550272 2.09103 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 770.373 46.4138)"/><path d="M0 0-2.21943 0C-2.1644 2.4212-2.14728 2.64069-2.14728 4.21814-2.14728 4.53057-2.14728 4.89742-2.18274 5.24592-2.25734 6.30917-2.47622 6.60326-3.13655 6.60326-3.48505 6.60326-4.07201 6.52989-4.18207 6.41984-4.31046 6.32813-4.91576 5.88791-5.28261 5.42935L-5.28261-1.08609e-15-7.50204-1.08609e-15-7.50204 5.85061C-7.50204 6.58431-7.63043 7.85054-7.72215 8.3091L-5.74117 8.3091-5.52106 7.33635C-4.78736 8.16236-3.96196 8.5286-3.00815 8.5286-0.166304 8.5286 0.0904891 6.76773 0.0904891 4.91576L0.0904891 3.90693C0.0733696 2.71406 0.0550272 2.09103 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 780.553 46.4138)"/><path d="M537.18 266.329 539.4 266.329 539.4 258.02 537.18 258.02 537.18 266.329ZM538.281 267.906C537.584 267.906 536.978 268.511 536.978 269.245 536.978 269.979 537.584 270.566 538.281 270.566 538.996 270.566 539.565 269.997 539.565 269.264 539.565 268.53 538.996 267.906 538.281 267.906" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 245.097 304.434)"/><path d="M0 0C-1.04429 0-2.10815 0.219497-3.04361 0.806454L-2.80639 2.64069C-1.83302 2.07269-1.2644 1.8159-0.0550272 1.8159 1.00883 1.8159 1.24851 2.14606 1.24851 2.4212 1.24851 3.74124-3.06318 3.375-3.06318 6.3642-3.06318 7.84993-1.81467 8.76705 0.368071 8.76705 1.43071 8.76705 2.07269 8.54755 3.22948 8.03336L2.97269 6.08906C1.8538 6.91508 0.862092 6.98845 0.258016 6.98845-0.110054 6.98845-0.842527 6.89613-0.842527 6.43757-0.842527 5.19029 3.5034 5.39205 3.5034 2.60462 3.5034 1.2106 2.2928 0 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 790.454 46.6523)"/><path d="M0 0C-2.4212 0-4.1087 1.63247-4.1087 4.45659-4.1087 7.46474-2.09103 8.76705-0.220109 8.76705 1.48573 8.76705 2.91644 8.38186 2.91644 7.04348L2.91644 6.56597C2.91644 6.41923 2.91644 6.27249 2.8981 6.08906L0.750815 6.08906C0.750815 6.85944 0.550272 7.00618-0.0366848 7.00618-0.423098 7.00618-0.605299 6.9695-0.733696 6.91508-0.91712 6.84171-1.76087 6.38315-1.76087 4.51162-1.76087 2.36556-0.550272 1.88927 0.38519 1.88927 0.952582 1.88927 1.61413 1.92534 2.82473 2.95251L3.02649 0.898777C1.8697 0.219497 1.02717 0 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 799.842 46.6523)"/><path d="M0 0-2.21821 0C-2.18152 2.10938-2.14606 2.54959-2.14606 3.66848-2.14606 6.0163-2.21821 6.60326-3.13533 6.60326-3.48505 6.60326-4.03533 6.52989-4.18207 6.41984-4.30924 6.32813-4.89742 5.88791-5.28139 5.42935L-5.28139 0-7.50204 0-7.50204 13.3893-5.28139 13.3893-5.28139 7.55645C-4.64062 8.19844-3.90571 8.5286-3.00815 8.5286-0.165082 8.5286 0.091712 6.76773 0.091712 4.91576 0.091712 4.5856 0.0745924 4.23709 0.0745924 3.90693 0.0550272 2.71406 0.0550272 2.09103 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 812.352 46.4138)"/><path d="M0 0C-0.276359 0-0.862092-0.201766-0.936685-0.257405-0.972147-0.29409-1.52364-0.826019-1.63247-1.59579L1.66793-1.59579C1.59457-0.642595 1.43071 0 0 0M-1.70707-2.97147C-1.65204-4.1087-0.82663-5.22758 0.45856-5.22758 1.33777-5.22758 2.30992-4.86073 3.33709-4.01698L3.53886-6.18139C2.54959-6.76834 1.64959-7.11685 0.0171196-7.11685-2.31236-7.11685-4.05489-5.46664-4.05489-2.75136-4.05489 5.43044e-16-2.36739 1.6502 0 1.6502 2.84185 1.6502 3.66848 0.146128 3.66848-2.97147L-1.70707-2.97147Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 818.398 39.5354)"/><path d="M0 0C0-3.15367-2.16379-4.52935-5.13587-4.52935-7.61148-4.52935-9.95931-3.08091-9.95931-0.45856L-9.95931 7.77779-7.73988 7.77779-7.73988 0.05625C-7.73988-2.09103-6.21807-2.62235-5.06189-2.62235-3.66848-2.62235-2.22004-2.07208-2.22004 0.073981L-2.22004 7.77779-2.4437e-15 7.77779 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 745.7 61.6698)"/><path d="M0 0-2.21821 0C-2.16318 2.42058-2.14484 2.6413-2.14484 4.21875-2.14484 4.53057-2.14484 4.89742-2.18152 5.24592-2.25489 6.30978-2.475 6.60265-3.13533 6.60265-3.48383 6.60265-4.07079 6.52989-4.17962 6.41984-4.30924 6.32813-4.91454 5.8873-5.28139 5.42874L-5.28139 0-7.5002 0-7.5002 5.85122C-7.5002 6.58431-7.62921 7.85054-7.72092 8.3091L-5.73995 8.3091-5.51984 7.33696C-4.78614 8.16236-3.96073 8.5286-3.00693 8.5286-0.163859 8.5286 0.0929348 6.76834 0.0929348 4.91515L0.0929348 3.90754C0.0745924 2.71406 0.05625 2.09103 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 755.583 65.9796)"/><path d="M512.38 246.763 514.599 246.763 514.599 238.454 512.38 238.454 512.38 246.763ZM513.481 248.34C512.784 248.34 512.178 248.945 512.178 249.68 512.178 250.413 512.784 251 513.481 251 514.196 251 514.763 250.431 514.763 249.698 514.763 248.964 514.196 248.34 513.481 248.34" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 245.097 304.434)"/><path d="M0 0-1.66793 0-4.7678 8.54755-2.38329 8.54755-0.7875 3.48567 0.844973 8.54755 3.08274 8.54755 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 767.029 66.2181)"/><path d="M0 0C-0.275136 0-0.862092-0.201766-0.935462-0.256793-0.972147-0.29409-1.52242-0.825408-1.63247-1.5964L1.66916-1.5964C1.59579-0.642595 1.43071 0 0 0M-1.70584-2.97086C-1.65082-4.10931-0.82663-5.22819 0.45856-5.22819 1.33899-5.22819 2.31114-4.86012 3.33832-4.01698L3.54008-6.18077C2.54959-6.76834 1.65082-7.11746 0.0183424-7.11746-2.31114-7.11746-4.05367-5.46603-4.05367-2.75136-4.05367 0-2.36617 1.6502 0 1.6502 2.84185 1.6502 3.66848 0.146739 3.66848-2.97086L-1.70584-2.97086Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 775.444 59.1012)"/><path d="M0 0C-0.0183424 0.403533 0.0195652 0.862092-0.330163 0.862092-0.623641 0.862092-0.84375 0.476291-1.19226-0.146739L-1.19226-5.81454-3.41046-5.81454-3.41046 0.0550272C-3.41046 0.862092-3.50217 1.6875-3.63179 2.49457L-1.65082 2.49457-1.43071 1.50346C-1.11889 2.09103-0.347283 2.69633 0.330163 2.69633 1.43071 2.69633 1.79878 2.01766 1.79878 1.00883 1.79878 0.752038 1.77921 0.476291 1.74253 0.219497L0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 784.906 60.1651)"/><path d="M0 0C-1.04429 0-2.10815 0.22072-3.04361 0.807065L-2.80639 2.6413C-1.83302 2.0733-1.2644 1.81651-0.0550272 1.81651 1.01005 1.81651 1.24851 2.14606 1.24851 2.42181 1.24851 3.74246-3.06196 3.37439-3.06196 6.36481-3.06196 7.85054-1.81467 8.76766 0.368071 8.76766 1.43193 8.76766 2.07391 8.54755 3.22948 8.03397L2.97269 6.09029C1.8538 6.91508 0.862092 6.98845 0.256793 6.98845-0.108832 6.98845-0.842527 6.89613-0.842527 6.43757-0.842527 5.1909 3.50462 5.39266 3.50462 2.60462 3.50462 1.2106 2.2928 0 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 791.206 66.2181)"/><path d="M551.027 246.763 553.246 246.763 553.246 238.454 551.027 238.454 551.027 246.763ZM552.127 248.34C551.431 248.34 550.826 248.945 550.826 249.68 550.826 250.413 551.431 251 552.127 251 552.842 251 553.411 250.431 553.411 249.698 553.411 248.964 552.842 248.34 552.127 248.34" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 245.097 304.434)"/><path d="M0 0C-1.24606 0-2.16318 0.789334-2.16318 2.32948L-2.16318 7.06243-3.375 7.06243-3.375 8.52921-2.16318 8.52921-2.16318 11.3539 0.0195652 11.3539 0.0195652 8.54755 1.83424 8.54755 1.83424 7.08016 0.0195652 7.08016 0.0195652 2.77031C0.0195652 1.96325 0.238451 1.92595 0.44144 1.92595 0.936685 1.92595 1.57745 2.2928 1.98098 2.53186L2.20109 0.697622C1.48573 0.293478 0.697011 0 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 804.691 66.2181)"/><path d="M0 0C-0.660326 0-1.17391 0.550272-1.17391 1.21121-1.17391 1.88927-0.697011 2.47622 0 2.47622 0.660326 2.47622 1.17391 1.88927 1.17391 1.22894 1.17391 0.550272 0.660326 0 0 0M-0.697011-6.0163C-1.57745-6.2358-2.05435-6.38254-2.86141-6.73166-2.95312-6.98845-2.97147-7.08016-2.97147-7.35469-2.97147-7.83159-2.86141-8.23512-2.31114-8.23512-1.90639-8.23512-1.33899-7.95999-0.697011-7.24524L-0.697011-6.0163ZM-3.09986 0C-3.76019 0-4.27378 0.550272-4.27378 1.21121-4.27378 1.88927-3.79565 2.47622-3.09986 2.47622-2.43954 2.47622-1.92595 1.88927-1.92595 1.22894-1.92595 0.550272-2.43954 0-3.09986 0M-0.183424-9.64749C-0.293478-9.29898-0.311821-9.15224-0.403533-8.67534-0.807065-9.26169-1.64959-9.88655-2.71467-9.88655-4.16372-9.88655-5.13587-9.00489-5.13587-7.81325-5.13587-7.08016-4.98913-6.38254-4.73234-6.07133-4.29212-5.48376-1.83424-4.8051-0.697011-4.5856L-0.697011-3.96196C-0.697011-3.06318-0.825408-2.76909-1.75965-2.76909-2.12772-2.76909-2.82351-2.78865-2.93356-2.97086-3.04484-3.17262-3.02527-3.30163-3.04484-3.61345L-4.84239-3.77853C-4.84239-3.64952-4.85951-3.53947-4.85951-3.42942-4.85951-2.97086-4.78736-2.58628-4.67731-2.18274-4.5856-1.85258-3.26495-1.11889-1.57745-1.11889 0.366848-1.11889 1.54076-2.01827 1.54076-3.5034L1.54076-7.19022C1.54076-8.10734 1.70584-9.02446 1.83424-9.64749L-0.183424-9.64749Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 813.675 56.3322)"/><path d="M0 0C-1.24728 0-2.1644 0.789334-2.1644 2.32948L-2.1644 7.06243-3.375 7.06243-3.375 8.52921-2.1644 8.52921-2.1644 11.3539 0.0183424 11.3539 0.0183424 8.54755 1.83424 8.54755 1.83424 7.08016 0.0183424 7.08016 0.0183424 2.77031C0.0183424 1.96325 0.238451 1.92595 0.440217 1.92595 0.935462 1.92595 1.57745 2.2928 1.98098 2.53186L2.19986 0.697622C1.48451 0.293478 0.697011 0 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 820.289 66.2181)"/><path d="M0 0-1.97976 0-1.97976-3.70577-0.110054-3.70577C1.63247-3.70577 2.31175-3.13716 2.31175-1.83424 2.31175-0.605299 1.43193 0 -2.71522e-16 0M-0.219497 4.87785-1.97976 4.86012-1.97976 1.79694-0.384579 1.79694C1.06386 1.79694 1.57745 2.42058 1.57745 3.3377 1.57745 4.18207 0.97337 4.87785-0.219497 4.87785M0.569837-5.50272-4.1998-5.50272-4.1998 6.51033C-2.76909 6.60265-1.33899 6.67663 0.111277 6.67663 2.84307 6.67663 3.94423 5.17194 3.94423 3.5945 3.94423 2.54959 3.41168 1.39341 2.40408 1.00883 3.77976 0.825408 4.67731-0.495856 4.67731-2.0733 4.67731-4.12704 2.99042-5.50272 0.569837-5.50272" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 740.207 80.0421)"/><path d="M0 0C-0.0171196 0.403533 0.0195652 0.862092-0.32894 0.862092-0.622419 0.862092-0.842527 0.476291-1.19103-0.146739L-1.19103-5.81454-3.40985-5.81454-3.40985 0.0550272C-3.40985 0.862092-3.50217 1.6875-3.63118 2.49457L-1.64959 2.49457-1.4301 1.50346C-1.11827 2.09103-0.347283 2.69633 0.331386 2.69633 1.43071 2.69633 1.79878 2.01705 1.79878 1.00883 1.79878 0.752038 1.77921 0.476291 1.74253 0.219497L0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 750.328 79.7303)"/><path d="M0 0C-0.880435-0.219497-1.35734-0.366848-2.1644-0.715353-2.25611-0.972147-2.27446-1.06386-2.27446-1.33838-2.27446-1.81529-2.1644-2.21882-1.61413-2.21882-1.2106-2.21882-0.641984-1.94429 0-1.22894L0 0ZM0.512364-3.63118C0.403533-3.28268 0.38519-3.13594 0.293478-2.65965-0.110054-3.24599-0.953804-3.87024-2.01766-3.87024-3.46671-3.87024-4.43886-2.9892-4.43886-1.79694-4.43886-1.06386-4.29212-0.366848-4.03533-0.0550272-3.59511 0.532541-1.13723 1.2106 0 1.43071L0 2.05374C0 2.95312-0.128397 3.24721-1.06386 3.24721-1.43071 3.24721-2.12772 3.22765-2.23777 3.04484-2.34783 2.84307-2.32948 2.71406-2.34783 2.40285L-4.14538 2.23777C-4.14538 2.36678-4.16372 2.47683-4.16372 2.58628-4.16372 3.04484-4.09035 3.42942-3.9803 3.83356-3.88859 4.16433-2.56793 4.89742-0.880435 4.89742 1.06386 4.89742 2.23777 3.99803 2.23777 2.5123L2.23777-1.17391C2.23777-2.09103 2.40163-3.00815 2.53125-3.63118L0.512364-3.63118Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 757.568 81.9131)"/><path d="M0 0-0.220109 0.972147C-0.880435 0.201766-1.70462-0.239063-2.73302-0.239063-4.9341-0.239063-5.74117 0.77038-5.74117 2.86141L-5.74117 8.3091-3.52174 8.3091-3.52174 3.04484C-3.52174 2.2928-3.46671 1.6875-2.58628 1.6875-2.34783 1.6875-1.79755 1.72418-1.57745 1.85197-1.28397 2.0733-0.715353 2.54959-0.45856 2.86141L-0.45856 8.3091 1.76087 8.3091 1.76087 2.45727C1.76087 1.63247 1.85258 0.807065 1.98098 0L0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 767.947 85.5449)"/><path d="M0 0-2.21943 0C-2.1644 2.42058-2.14606 2.6413-2.14606 4.21875-2.14606 4.53057-2.14606 4.89742-2.18274 5.24592-2.25611 6.30978-2.47622 6.60265-3.13655 6.60265-3.48505 6.60265-4.07201 6.52989-4.18207 6.41984-4.31046 6.32813-4.91576 5.8873-5.28261 5.42874L-5.28261 0-7.50082 0-7.50082 5.85122C-7.50082 6.58431-7.63043 7.85054-7.72215 8.3091L-5.74117 8.3091-5.52106 7.33696C-4.78736 8.16236-3.96196 8.5286-3.00815 8.5286-0.165082 8.5286 0.091712 6.76834 0.091712 4.91515L0.091712 3.90754C0.0733696 2.71406 0.0550272 2.09103 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 779.725 85.5449)"/><path d="M0 0C-1.04552 0-2.10938 0.22072-3.04361 0.807065L-2.80639 2.6413C-1.83302 2.0733-1.2644 1.81651-0.0550272 1.81651 1.00883 1.81651 1.24728 2.14606 1.24728 2.42181 1.24728 3.74246-3.06318 3.37439-3.06318 6.36481-3.06318 7.85054-1.81467 8.76766 0.368071 8.76766 1.43193 8.76766 2.07269 8.54755 3.22948 8.03458L2.97269 6.09029C1.8538 6.91508 0.862092 6.98845 0.256793 6.98845-0.110054 6.98845-0.84375 6.89613-0.84375 6.43757-0.84375 5.1909 3.5034 5.39266 3.5034 2.60462 3.5034 1.2106 2.2928 0 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 784.906 85.7839)"/><path d="M0 0C-2.4212 0-4.1087 1.63247-4.1087 4.45781-4.1087 7.46597-2.09103 8.76766-0.220109 8.76766 1.48573 8.76766 2.91644 8.38308 2.91644 7.04287L2.91644 6.56658C2.91644 6.41984 2.91644 6.2731 2.8981 6.09029L0.750815 6.09029C0.750815 6.86067 0.550272 7.00741-0.0366848 7.00741-0.423098 7.00741-0.605299 6.97011-0.733696 6.91508-0.91712 6.8411-1.76087 6.38254-1.76087 4.51284-1.76087 2.36678-0.550272 1.88927 0.38519 1.88927 0.952582 1.88927 1.61413 1.92595 2.82473 2.95312L3.02649 0.899389C1.8697 0.22072 1.02717 0 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 793.871 85.7839)"/><path d="M0 0-2.21821 0C-2.18152 2.10876-2.14606 2.54959-2.14606 3.66848-2.14606 6.0163-2.21821 6.60265-3.13533 6.60265-3.48383 6.60265-4.03533 6.52989-4.18207 6.41984-4.30924 6.32813-4.89742 5.8873-5.28139 5.42874L-5.28139 0-7.50204 0-7.50204 13.3887-5.28139 13.3887-5.28139 7.55645C-4.64062 8.19905-3.90571 8.5286-3.00815 8.5286-0.165082 8.5286 0.091712 6.76834 0.091712 4.91515 0.091712 4.5856 0.0745924 4.23709 0.0745924 3.90754 0.0550272 2.71406 0.0550272 2.09103 0 0" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 806.326 85.5449)"/><path d="M0 0-1.24851 0-2.93601 3.90754-4.47554 0-5.74239 0-9.06114 8.54755-6.71454 8.54755-4.95245 3.76019-2.93601 8.82269-0.789946 3.66848 0.915897 8.54755 3.06318 8.54755 0 0Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 816.708 85.7839)"/><path d="M0 0C-0.276359 0-0.862092-0.201766-0.936685-0.256793-0.972147-0.29409-1.52242-0.825408-1.63247-1.5964L1.66793-1.5964C1.59457-0.642595 1.43071 0 0 0M-1.70707-2.97086C-1.65204-4.10931-0.82663-5.22819 0.45856-5.22819 1.33899-5.22819 2.30992-4.86012 3.33709-4.01698L3.53886-6.18077C2.54959-6.76834 1.64959-7.11746 0.0171196-7.11746-2.31236-7.11746-4.05489-5.46603-4.05489-2.75136-4.05489 0-2.36739 1.6502 0 1.6502 2.84185 1.6502 3.66848 0.146739 3.66848-2.97086L-1.70707-2.97086Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 824.461 78.6665)"/><path d="M584.282 227.198 586.5 227.198 586.5 218.889 584.282 218.889 584.282 227.198ZM585.382 228.775C584.686 228.775 584.08 229.381 584.08 230.114 584.08 230.848 584.686 231.435 585.382 231.435 586.097 231.435 586.666 230.867 586.666 230.132 586.666 229.399 586.097 228.775 585.382 228.775" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 245.097 304.434)"/><path d="M0 0C-0.586957 0-0.990489-0.201766-1.0822-0.292255-1.17391-0.384579-1.50408-0.86087-1.50408-1.50346-1.50408-2.40285-0.953804-3.04361 0-3.04361 0.495245-3.04361 0.972147-2.80639 1.04552-2.75014 1.13723-2.65965 1.46739-2.31053 1.46739-1.50346 1.46739-0.62303 1.06386 0 0 0M1.17391-7.68424C0.293478-7.68424-0.183424-7.75822-1.02717-7.77656-1.54076-8.1428-1.92595-8.50965-1.92595-8.98716-1.92595-9.68356-1.37568-9.88533-0.183424-9.88533 1.54076-9.88533 2.34783-8.95048 2.34783-8.25285 2.34783-7.77656 2.2928-7.68424 1.17391-7.68424M3.65014-0.531318C3.76019-0.86087 3.81522-1.08159 3.81522-1.48573 3.81522-3.44776 2.31114-4.76841-0.0550272-4.76841-0.38519-4.76841-0.715353-4.75007-1.15557-4.62167-1.44905-4.91515-1.6875-5.09796-1.6875-5.46542-1.6875-5.77724-1.41236-5.86957-1.22894-5.86957-0.311821-5.86957 0.476902-5.77724 1.39402-5.77724 3.37378-5.77724 4.60394-6.05177 4.60394-7.97833 4.60394-10.3806 1.99932-11.5918-0.403533-11.5918-2.34783-11.5918-3.99864-11.2433-3.99864-9.59246-3.99864-8.38186-3.09864-7.90435-2.51291-7.5748-2.98981-7.42745-3.77853-7.06121-3.77853-6.10679-3.77853-5.20863-2.78804-4.76841-2.10938-4.1998-3.19158-3.5945-3.8519-2.9519-3.8519-1.48573-3.8519 0.330774-2.2928 1.66977-0.0366848 1.66977 1.11889 1.66977 1.66916 1.37568 2.18274 1.06386 2.60462 1.06386 3.92527 1.06386 5.02582 1.35795L5.02582-0.531318 3.65014-0.531318Z" fill="#FFFFFF" transform="matrix(1.00161 0 0 -1 838.551 78.6854)"/></g></svg>
\ No newline at end of file
diff --git a/docs/assets/images/logos/TUHH.svg b/docs/assets/images/logos/TUHH.svg
new file mode 100644
index 0000000000000000000000000000000000000000..35b7b5ca2d77e0ca2c6138ec05d8afdf01172920
--- /dev/null
+++ b/docs/assets/images/logos/TUHH.svg
@@ -0,0 +1 @@
+<svg width="178" height="122" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" overflow="hidden"><defs><clipPath id="clip0"><rect x="879" y="109" width="178" height="122"/></clipPath></defs><g clip-path="url(#clip0)" transform="translate(-879 -109)"><path d="M59.6834 106.325 66.7846 106.325 66.7846 83.4186 75.1016 83.4186 75.1016 77.1463 51.3664 77.1463 51.3664 83.4186 59.6834 83.4186Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M112.321 94.8855 121.826 94.8855 121.826 106.325 128.955 106.325 128.955 77.1463 121.826 77.1463 121.826 88.6132 112.321 88.6132 112.321 77.1463 105.22 77.1463 105.22 106.325 112.321 106.325Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M139.62 94.8855 149.098 94.8855 149.098 106.325 156.227 106.325 156.227 77.1463 149.098 77.1463 149.098 88.6132 139.62 88.6132 139.62 77.1463 132.492 77.1463 132.492 106.325 139.62 106.325Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M89.8014 106.739C96.35 106.739 101.683 101.462 101.683 94.9684L101.683 77.1463 94.6092 77.1463 94.6092 94.9684C94.6092 97.5934 92.454 99.721 89.8014 99.721 87.1764 99.721 85.0212 97.5934 84.9935 94.9684L84.9935 77.1463 77.92 77.1463 77.92 94.9684C77.9476 101.462 83.2528 106.739 89.8014 106.739Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M151.474 177.088C146.777 177.088 143.351 180.404 143.351 185.046 143.351 189.66 146.777 193.031 151.474 193.031 156.171 193.031 159.57 189.66 159.57 185.046 159.57 180.432 156.171 177.088 151.474 177.088ZM151.474 190.904C148.186 190.904 145.782 188.445 145.782 185.018 145.782 181.62 148.158 179.188 151.474 179.188 154.735 179.188 157.139 181.647 157.139 185.018 157.111 188.472 154.735 190.904 151.474 190.904Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M78.4726 177.088C73.7753 177.088 70.349 180.404 70.349 185.046 70.349 189.66 73.7753 193.031 78.4726 193.031 82.2857 193.031 85.5185 190.545 86.3475 187.118L83.8883 187.118C83.2252 189.384 81.0699 191.042 78.5002 191.042 75.3503 191.042 73.0016 188.832 72.6977 185.792L86.5133 185.792C86.5409 185.543 86.5685 185.295 86.5685 185.046 86.5685 180.432 83.1699 177.088 78.4726 177.088ZM72.7529 183.941C73.2227 181.04 75.4884 179.078 78.5002 179.078 81.512 179.078 83.8607 181.095 84.2751 183.941L72.7529 183.941Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M97.2065 179.188C99.942 179.188 102.208 181.04 102.705 183.637L105.137 183.637C104.639 179.824 101.296 177.061 97.2342 177.061 92.5369 177.061 89.1106 180.376 89.1106 185.018 89.1106 189.633 92.5369 193.004 97.2342 193.004 101.324 193.004 104.639 190.241 105.137 186.4L102.705 186.4C102.208 188.997 99.9696 190.904 97.2065 190.904 93.9184 190.904 91.5145 188.445 91.5145 185.018 91.5145 181.647 93.9184 179.188 97.2065 179.188Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M162.969 171.065 165.373 171.065 165.373 192.728 162.969 192.728Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M71.399 171.065 55.0413 171.065 55.0413 173.358 61.9491 173.358 61.9491 192.728 64.4912 192.728 64.4912 173.358 71.399 173.358Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M201.293 180.155C199.939 178.276 197.756 177.116 195.104 177.116 190.71 177.116 187.505 180.349 187.505 184.853 187.505 189.357 190.71 192.589 195.104 192.589 197.729 192.589 199.939 191.429 201.293 189.522L201.293 191.926C201.293 195.104 198.945 197.397 195.684 197.397 193.363 197.397 191.153 196.016 190.489 194.164L188.196 194.137C188.942 197.149 192.12 199.359 195.767 199.359 200.381 199.359 203.669 196.181 203.669 191.816L203.669 177.392 201.293 177.392 201.293 180.155ZM195.656 190.655C192.368 190.655 189.964 188.196 189.964 184.825 189.964 181.399 192.341 178.94 195.656 178.94 198.917 178.94 201.321 181.399 201.321 184.825 201.293 188.224 198.917 190.655 195.656 190.655Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M214.114 188.555 208.809 177.337 206.267 177.337 212.981 190.959 208.975 198.889 211.517 198.889 221.906 177.337 219.364 177.337Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M133.956 177.088C131.607 177.088 129.756 178.194 128.789 180.072L128.789 177.337 126.357 177.337 126.357 192.728 128.789 192.728 128.789 183.747C128.789 180.846 130.557 178.995 133.265 178.995 135.973 178.995 137.686 180.846 137.686 183.747L137.686 192.728 140.062 192.728 140.062 183.471C140.09 179.603 137.603 177.088 133.956 177.088Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M176.895 177.088C172.198 177.088 168.771 180.404 168.771 185.046 168.771 189.66 172.198 193.031 176.895 193.031 181.592 193.031 184.991 189.66 184.991 185.046 184.991 180.432 181.592 177.088 176.895 177.088ZM176.895 190.904C173.607 190.904 171.203 188.445 171.203 185.018 171.203 181.62 173.579 179.188 176.895 179.188 180.155 179.188 182.559 181.647 182.559 185.018 182.532 188.472 180.155 190.904 176.895 190.904Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M116.079 177.088C113.73 177.088 111.879 178.194 110.912 180.072L110.912 171.065 108.48 171.065 108.48 192.728 110.912 192.728 110.912 183.747C110.912 180.846 112.68 178.995 115.388 178.995 118.096 178.995 119.809 180.846 119.809 183.747L119.809 192.728 122.185 192.728 122.185 183.471C122.185 179.603 119.726 177.088 116.079 177.088Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M93.7526 148.49 96.1289 148.49 96.1289 163.881 93.7526 163.881Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M94.9408 142.881C93.9737 142.881 93.3105 143.516 93.3105 144.401 93.3105 145.312 93.9737 145.948 94.9408 145.948 95.8802 145.948 96.5434 145.312 96.5434 144.401 96.5434 143.516 95.8802 142.881 94.9408 142.881Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M223.84 143.986C224.117 143.986 224.559 144.041 224.946 144.207L224.946 142.052C224.559 141.997 224.117 141.969 223.813 141.969 221.271 141.969 219.475 143.599 219.475 145.948L219.475 148.49 217.209 148.49 217.209 150.535 219.475 150.535 219.475 163.853 221.878 163.853 221.878 150.507 224.918 150.507 224.918 148.462 221.878 148.462 221.878 145.92C221.906 144.76 222.68 143.986 223.84 143.986Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M170.595 163.853 170.595 150.507 174.132 150.507 174.132 148.49 170.595 148.49 170.595 144.566 168.219 144.566 168.219 148.49 165.373 148.49 165.373 150.507 168.219 150.507 168.219 163.853Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M150.756 150.01C152.8 150.01 154.182 151.087 154.237 152.69L156.475 152.69C156.475 150.065 154.154 148.241 150.783 148.241 147.385 148.241 145.064 149.982 145.064 152.607 145.064 156.089 148.352 156.724 150.728 157.139 152.718 157.525 154.486 157.802 154.486 159.764 154.486 161.311 153.022 162.333 150.894 162.333 148.656 162.333 147.136 161.2 147.053 159.515L144.705 159.515C144.76 162.25 147.247 164.157 150.839 164.157 154.375 164.157 156.835 162.306 156.835 159.625 156.835 156.089 153.325 155.481 151.06 155.039 149.07 154.624 147.44 154.32 147.44 152.358 147.468 150.949 148.822 150.01 150.756 150.01Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M161.532 145.92C162.471 145.92 163.135 145.285 163.135 144.373 163.135 143.489 162.471 142.853 161.532 142.853 160.565 142.853 159.902 143.489 159.902 144.373 159.902 145.312 160.565 145.92 161.532 145.92Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M136.885 152.22 136.885 148.49 134.481 148.49 134.481 163.853 136.885 163.853 136.885 156.061C136.885 152.524 139.095 150.479 142.853 150.479L142.853 148.131C139.952 148.131 137.852 149.595 136.885 152.22Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M160.344 148.49 162.72 148.49 162.72 163.881 160.344 163.881Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M130.889 158.244 128.43 158.244C127.767 160.51 125.611 162.167 123.042 162.167 119.892 162.167 117.543 159.957 117.239 156.918L131.055 156.918C131.082 156.669 131.11 156.42 131.11 156.171 131.11 151.557 127.711 148.214 123.014 148.214 118.317 148.214 114.89 151.529 114.89 156.171 114.89 160.786 118.317 164.157 123.014 164.157 126.8 164.157 130.032 161.67 130.889 158.244ZM123.042 150.203C126.053 150.203 128.402 152.22 128.817 155.066L117.294 155.066C117.764 152.193 120.03 150.203 123.042 150.203Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M207.538 164.157C212.235 164.157 215.634 160.786 215.634 156.171 215.634 151.557 212.235 148.214 207.538 148.214 202.841 148.214 199.414 151.529 199.414 156.171 199.414 160.786 202.841 164.157 207.538 164.157ZM207.538 150.341C210.798 150.341 213.202 152.8 213.202 156.171 213.202 159.598 210.826 162.057 207.538 162.057 204.25 162.057 201.846 159.598 201.846 156.171 201.846 152.773 204.25 150.341 207.538 150.341Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M63.2754 164.157C68.249 164.157 71.5648 160.869 71.5648 155.868L71.5648 142.218 69.0227 142.218 69.0227 155.757C69.0227 159.432 66.757 161.808 63.2478 161.808 59.7663 161.808 57.5005 159.432 57.5005 155.757L57.5005 142.218 54.9308 142.218 54.9308 155.868C54.9032 160.841 58.2742 164.157 63.2754 164.157Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M178.525 148.49 175.983 148.49 182.697 162.085 178.691 170.015 181.233 170.015 191.622 148.49 189.08 148.49 183.83 159.681Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M89.6356 163.853 89.6356 154.597C89.6356 150.728 87.1488 148.214 83.5015 148.214 81.1528 148.214 79.3015 149.319 78.3068 151.198L78.3068 148.462 75.9029 148.462 75.9029 163.853 78.3068 163.853 78.3068 154.873C78.3068 151.972 80.0752 150.12 82.8107 150.12 85.5185 150.12 87.2317 151.972 87.2317 154.873L87.2317 163.853 89.6356 163.853Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M111.381 148.49 106.297 161.477 101.185 148.49 98.6433 148.49 104.86 163.853 107.706 163.853 113.923 148.49Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M176.287 134.923C178.912 134.923 181.122 133.763 182.476 131.856L182.476 134.26C182.476 137.438 180.128 139.731 176.867 139.731 174.546 139.731 172.336 138.349 171.673 136.498L169.379 136.47C170.125 139.482 173.303 141.693 176.95 141.693 181.565 141.693 184.853 138.515 184.853 134.149L184.853 119.726 182.476 119.726 182.476 122.517C181.122 120.638 178.94 119.477 176.287 119.477 171.894 119.477 168.688 122.71 168.688 127.214 168.688 131.69 171.894 134.923 176.287 134.923ZM176.84 121.329C180.1 121.329 182.504 123.788 182.504 127.214 182.504 130.613 180.128 133.044 176.84 133.044 173.551 133.044 171.148 130.585 171.148 127.214 171.148 123.788 173.524 121.329 176.84 121.329Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M98.0355 122.019 98.0355 119.726 95.6039 119.726 95.6039 135.117 98.0355 135.117 98.0355 125.39C98.0355 122.931 99.4723 121.439 101.766 121.439 104.114 121.439 105.496 122.959 105.496 125.39L105.496 135.117 107.872 135.117 107.872 125.39C107.872 122.931 109.309 121.439 111.63 121.439 113.951 121.439 115.333 122.959 115.333 125.39L115.333 135.117 117.709 135.117 117.709 125.086C117.709 121.633 115.609 119.477 112.404 119.477 110.027 119.477 108.204 120.638 107.375 122.6 106.629 120.665 104.916 119.477 102.622 119.477 100.578 119.477 98.9197 120.389 98.0355 122.019Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M71.2885 135.117 71.2885 113.454 68.7188 113.454 68.7188 123.263 57.6939 123.263 57.6939 113.454 55.1519 113.454 55.1519 135.117 57.6939 135.117 57.6939 125.556 68.7188 125.556 68.7188 135.117Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M154.928 128.789 154.928 119.754 152.497 119.754 152.497 128.789C152.497 131.58 150.783 133.403 148.103 133.403 145.423 133.403 143.71 131.58 143.71 128.789L143.71 119.754 141.306 119.754 141.306 128.789C141.306 132.768 144.041 135.42 148.131 135.42 152.193 135.393 154.928 132.768 154.928 128.789Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M82.7831 135.393C85.3804 135.393 87.5909 134.232 88.9448 132.326L88.9448 135.117 91.3211 135.117 91.3211 119.726 88.9448 119.726 88.9448 122.544C87.5909 120.638 85.408 119.477 82.7831 119.477 78.3621 119.477 75.1568 122.793 75.1568 127.435 75.1568 132.049 78.3621 135.393 82.7831 135.393ZM83.308 121.577C86.5685 121.577 88.9724 124.036 88.9724 127.407 88.9724 130.834 86.5961 133.293 83.308 133.293 80.0199 133.293 77.616 130.834 77.616 127.407 77.616 124.036 79.9923 121.577 83.308 121.577Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M124.396 122.572 124.396 113.454 121.992 113.454 121.992 135.117 124.396 135.117 124.396 132.326C125.75 134.205 127.905 135.393 130.557 135.393 134.951 135.393 138.184 132.022 138.184 127.407 138.184 122.793 134.951 119.45 130.557 119.45 127.905 119.477 125.75 120.638 124.396 122.572ZM130.06 121.577C133.348 121.577 135.724 124.036 135.724 127.407 135.724 130.834 133.376 133.293 130.06 133.293 126.772 133.293 124.396 130.834 124.396 127.407 124.396 124.036 126.744 121.577 130.06 121.577Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/><path d="M161.504 127.325C161.504 123.788 163.715 121.743 167.473 121.743L167.473 119.394C164.571 119.394 162.471 120.859 161.504 123.484L161.504 119.754 159.1 119.754 159.1 135.117 161.504 135.117 161.504 127.325Z" fill="#00C1D4" transform="matrix(1.00557 0 0 1 827.848 31.5332)"/></g></svg>
\ No newline at end of file
diff --git a/docs/assets/images/logos/TUM.svg b/docs/assets/images/logos/TUM.svg
new file mode 100644
index 0000000000000000000000000000000000000000..165bdb7b9681b6722b735c0a8d5ce1ba35b6b032
--- /dev/null
+++ b/docs/assets/images/logos/TUM.svg
@@ -0,0 +1 @@
+<svg width="266" height="90" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" overflow="hidden"><defs><clipPath id="clip0"><rect x="541" y="137" width="266" height="90"/></clipPath></defs><g clip-path="url(#clip0)" transform="translate(-541 -137)"><path d="M122.816 0 266 0 266 89.68 122.816 89.68Z" fill="#0065BD" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M0 0 114.152 0 114.152 89.68 0 89.68Z" fill="#0065BD" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M194.408 15.2 194.408 63.84 182.248 63.84 182.248 15.2 138.168 15.2 138.168 25.84 148.808 25.84 148.808 74.48 159.448 74.48 159.448 25.84 171.608 25.84 171.608 74.48 205.048 74.48 205.048 25.84 217.208 25.84 217.208 74.48 227.848 74.48 227.848 25.84 240.008 25.84 240.008 74.48 250.648 74.48 250.648 15.2Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M19.8512 16.72 15.352 16.72 15.352 15.2 26.1592 15.2 26.1592 16.72 21.66 16.72 21.66 28.728 19.8664 28.728 19.8664 16.72Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M33.7592 25.612C33.5464 26.6912 33.0752 27.5272 32.3304 28.0896 31.6008 28.652 30.6736 28.9408 29.564 28.9408 28.7736 28.9408 28.1048 28.804 27.5272 28.5456 26.9496 28.2872 26.4632 27.9376 26.0832 27.4816 25.688 27.0256 25.3992 26.4784 25.2016 25.8552 25.004 25.2168 24.8976 24.5328 24.8672 23.788 24.8672 23.0584 24.9736 22.3744 25.2016 21.7512 25.4296 21.128 25.7488 20.5808 26.1592 20.1248 26.5696 19.6688 27.056 19.3192 27.6184 19.0608 28.1808 18.8024 28.7888 18.6808 29.4576 18.6808 30.324 18.6808 31.0536 18.8632 31.6312 19.228 32.2088 19.5928 32.6648 20.0488 33.0144 20.596 33.364 21.1584 33.6072 21.7512 33.7288 22.42 33.8656 23.0736 33.9112 23.6968 33.896 24.2896L26.5696 24.2896C26.5544 24.7152 26.6 25.1256 26.7216 25.5056 26.828 25.8856 27.0256 26.2352 27.2688 26.524 27.5272 26.828 27.8464 27.056 28.2416 27.2384 28.6368 27.4208 29.0928 27.4968 29.6248 27.4968 30.2936 27.4968 30.856 27.3448 31.2968 27.0256 31.7376 26.7064 32.0264 26.2352 32.1632 25.5816L33.7592 25.5816ZM32.1784 22.8912C32.148 22.5112 32.072 22.1464 31.92 21.812 31.768 21.4776 31.5856 21.1736 31.3272 20.9304 31.084 20.6872 30.78 20.4896 30.4456 20.3376 30.1112 20.1856 29.7312 20.1248 29.3512 20.1248 28.9408 20.1248 28.5608 20.2008 28.2264 20.3376 27.892 20.4896 27.6032 20.6872 27.36 20.9304 27.1168 21.1888 26.9344 21.4776 26.7976 21.812 26.6608 22.1464 26.5696 22.496 26.5544 22.876L32.1784 22.876Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M42.3016 22.0704C42.18 21.4472 41.9064 20.976 41.496 20.6264 41.0856 20.292 40.5536 20.1096 39.8696 20.1096 39.292 20.1096 38.8056 20.216 38.4104 20.4288 38.0152 20.6416 37.7112 20.9304 37.468 21.28 37.24 21.6296 37.0728 22.04 36.9664 22.496 36.86 22.952 36.8144 23.4384 36.8144 23.9248 36.8144 24.3808 36.8752 24.8216 36.9816 25.2472 37.088 25.6728 37.2552 26.0528 37.4832 26.3872 37.7112 26.7216 38 26.9952 38.3648 27.1928 38.7296 27.3904 39.1704 27.4968 39.6872 27.4968 40.4624 27.4968 41.0856 27.284 41.5416 26.8584 41.9976 26.4328 42.2712 25.8552 42.3776 25.1104L44.0192 25.1104C43.8368 26.3112 43.3808 27.2384 42.6512 27.9072 41.9216 28.576 40.9336 28.9104 39.7024 28.9104 38.9576 28.9104 38.304 28.7888 37.7264 28.5456 37.1488 28.3024 36.6776 27.9528 36.2824 27.512 35.9024 27.0712 35.6136 26.5392 35.416 25.9312 35.2184 25.3232 35.1272 24.6544 35.1272 23.9096 35.1272 23.18 35.2184 22.496 35.416 21.8576 35.5984 21.2192 35.8872 20.672 36.2824 20.1856 36.6624 19.7144 37.1488 19.3344 37.7264 19.076 38.304 18.8024 38.9728 18.6656 39.7632 18.6656 40.3256 18.6656 40.8424 18.7264 41.3288 18.8632 41.8152 19 42.2408 19.1976 42.6208 19.4712 43.0008 19.7448 43.3048 20.0944 43.5328 20.52 43.7608 20.9456 43.9128 21.4472 43.9736 22.0248L42.3016 22.0248Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M45.9192 15.2 47.5304 15.2 47.5304 20.368 47.5608 20.368C47.6824 20.0792 47.8648 19.8208 48.108 19.608 48.336 19.3952 48.5944 19.2128 48.868 19.0912 49.1416 18.9544 49.4456 18.8632 49.7496 18.8024 50.0536 18.7416 50.3576 18.7112 50.6464 18.7112 51.2848 18.7112 51.832 18.8024 52.2576 18.9696 52.6832 19.152 53.0328 19.3952 53.3064 19.7144 53.5648 20.0336 53.7624 20.3984 53.8688 20.8392 53.9752 21.28 54.036 21.7512 54.036 22.2832L54.036 28.728 52.4248 28.728 52.4248 22.1008C52.4248 21.4928 52.2424 21.0216 51.8928 20.6568 51.5432 20.3072 51.0568 20.1248 50.4336 20.1248 49.9472 20.1248 49.5216 20.2008 49.1568 20.3528 48.792 20.5048 48.5032 20.7176 48.26 20.9912 48.0168 21.2648 47.8344 21.5992 47.7128 21.964 47.5912 22.344 47.5304 22.7392 47.5304 23.18L47.5304 28.7128 45.9192 28.7128 45.9192 15.2Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M56.5288 18.924 58.0488 18.924 58.0488 20.4744 58.0792 20.4744C58.4136 19.8664 58.8544 19.4256 59.4016 19.1368 59.9336 18.848 60.5568 18.696 61.2712 18.696 61.9096 18.696 62.4568 18.7872 62.8824 18.9544 63.308 19.1368 63.6576 19.38 63.9312 19.6992 64.1896 20.0184 64.3872 20.3832 64.4936 20.824 64.6 21.2648 64.6608 21.736 64.6608 22.268L64.6608 28.7128 63.0496 28.7128 63.0496 22.0856C63.0496 21.4776 62.8672 21.0064 62.5176 20.6416 62.168 20.292 61.6816 20.1096 61.0584 20.1096 60.572 20.1096 60.1464 20.1856 59.7816 20.3376 59.4168 20.4896 59.128 20.7024 58.8848 20.976 58.6416 21.2496 58.4592 21.584 58.3376 21.9488 58.216 22.3288 58.1552 22.724 58.1552 23.1648L58.1552 28.6976 56.544 28.6976 56.544 18.924Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M68.856 17.176 67.2448 17.176 67.2448 15.2 68.856 15.2 68.856 17.176ZM67.2448 18.924 68.856 18.924 68.856 28.7128 67.2448 28.7128 67.2448 18.924Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M78.0976 22.0704C77.976 21.4472 77.7024 20.976 77.292 20.6264 76.8816 20.292 76.3496 20.1096 75.6656 20.1096 75.088 20.1096 74.6016 20.216 74.2064 20.4288 73.8112 20.6416 73.5072 20.9304 73.264 21.28 73.036 21.6296 72.8688 22.04 72.7624 22.496 72.656 22.952 72.6104 23.4384 72.6104 23.9248 72.6104 24.3808 72.6712 24.8216 72.7776 25.2472 72.884 25.6728 73.0512 26.0528 73.2792 26.3872 73.5072 26.7216 73.796 26.9952 74.1608 27.1928 74.5256 27.3904 74.9664 27.4968 75.4832 27.4968 76.2584 27.4968 76.8816 27.284 77.3376 26.8584 77.7936 26.4328 78.0672 25.8552 78.1736 25.1104L79.8152 25.1104C79.6328 26.3112 79.1768 27.2384 78.4472 27.9072 77.7176 28.576 76.7296 28.9104 75.4984 28.9104 74.7536 28.9104 74.1 28.7888 73.5224 28.5456 72.9448 28.3024 72.4736 27.9528 72.0784 27.512 71.6984 27.0712 71.4096 26.5392 71.212 25.9312 71.0144 25.3232 70.9232 24.6544 70.9232 23.9096 70.9232 23.18 71.0144 22.496 71.212 21.8576 71.3944 21.2192 71.6832 20.672 72.0784 20.1856 72.4584 19.7144 72.9448 19.3344 73.5224 19.076 74.1 18.8024 74.7688 18.6656 75.5592 18.6656 76.1216 18.6656 76.6384 18.7264 77.1248 18.8632 77.6112 19 78.0368 19.1976 78.4168 19.4712 78.7968 19.7448 79.1008 20.0944 79.3288 20.52 79.5568 20.9456 79.7088 21.4472 79.7696 22.0248L78.0976 22.0248Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M90.3944 28.6824C90.1056 28.8648 89.7256 28.9408 89.2392 28.9408 88.8288 28.9408 88.4944 28.8192 88.2512 28.576 88.008 28.3328 87.8864 27.9528 87.8864 27.4208 87.4456 27.9528 86.9288 28.3328 86.336 28.576 85.7432 28.8192 85.12 28.9408 84.436 28.9408 83.9952 28.9408 83.5696 28.8952 83.1744 28.7888 82.7792 28.6824 82.4296 28.5304 82.1408 28.3024 81.852 28.0744 81.624 27.8008 81.4568 27.4512 81.2896 27.1016 81.1984 26.6912 81.1984 26.1896 81.1984 25.6272 81.2896 25.1864 81.4872 24.8216 81.6696 24.472 81.928 24.1832 82.232 23.9704 82.536 23.7576 82.9008 23.5904 83.296 23.4688 83.6912 23.3472 84.1016 23.256 84.512 23.18 84.9528 23.0888 85.3784 23.028 85.7736 22.9824 86.1688 22.9368 86.5184 22.876 86.8224 22.8 87.1264 22.724 87.3696 22.6024 87.5368 22.4352 87.7192 22.2832 87.7952 22.04 87.7952 21.7512 87.7952 21.4016 87.7344 21.1128 87.5976 20.9 87.4608 20.6872 87.2936 20.52 87.0808 20.4136 86.868 20.3072 86.64 20.2312 86.3816 20.1856 86.1232 20.1552 85.8648 20.1248 85.6216 20.1248 84.9376 20.1248 84.3752 20.2616 83.9192 20.52 83.4632 20.7784 83.22 21.2648 83.1744 21.9944L81.5632 21.9944C81.5936 21.3864 81.7152 20.8696 81.9432 20.4592 82.1712 20.0488 82.4752 19.6992 82.8552 19.4408 83.2352 19.1824 83.676 19 84.1624 18.8784 84.6488 18.772 85.1656 18.7112 85.7128 18.7112 86.1536 18.7112 86.5944 18.7416 87.0352 18.8024 87.476 18.8632 87.8712 19 88.2208 19.1976 88.5704 19.3952 88.8592 19.6688 89.072 20.0184 89.2848 20.368 89.3912 20.8392 89.3912 21.4016L89.3912 26.4328C89.3912 26.8128 89.4064 27.0864 89.452 27.2688 89.4976 27.4512 89.6496 27.5272 89.8928 27.5272 90.0448 27.5272 90.212 27.4968 90.3792 27.436L90.3792 28.6824ZM87.78 23.6664C87.628 23.7728 87.4456 23.864 87.2176 23.9248 86.9896 23.9856 86.7464 24.0464 86.5032 24.092 86.2448 24.1376 85.9864 24.168 85.6976 24.1984 85.4088 24.2288 85.1352 24.2744 84.8768 24.32 84.6184 24.3656 84.36 24.4264 84.1168 24.5024 83.8736 24.5784 83.676 24.6848 83.4936 24.8216 83.3112 24.9584 83.1744 25.1256 83.068 25.3232 82.9616 25.5208 82.9008 25.7792 82.9008 26.0832 82.9008 26.3416 82.9616 26.5696 83.068 26.752 83.1744 26.9344 83.3112 27.0864 83.4784 27.1928 83.6456 27.2992 83.8432 27.3904 84.0712 27.436 84.2992 27.4816 84.5424 27.512 84.7856 27.512 85.3176 27.512 85.7736 27.436 86.1536 27.2992 86.5336 27.1472 86.8376 26.9648 87.0808 26.752 87.324 26.524 87.4912 26.296 87.6128 26.0376 87.7192 25.7792 87.78 25.536 87.78 25.308L87.78 23.6664Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M92.0816 15.2 93.6928 15.2 93.6928 28.7128 92.0816 28.7128 92.0816 15.2Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M27.284 46.6792C27.284 48.3968 26.8128 49.6888 25.8856 50.5704 24.9584 51.452 23.6512 51.8928 21.964 51.8928 21.0976 51.8928 20.3072 51.7864 19.6232 51.5888 18.9392 51.3912 18.3616 51.072 17.8752 50.6464 17.404 50.2208 17.0392 49.6736 16.7808 49.02 16.5224 48.3664 16.4008 47.5912 16.4008 46.6944L16.4008 38.0608 18.1944 38.0608 18.1944 46.6944C18.1944 47.8952 18.5136 48.8072 19.1672 49.4456 19.8208 50.084 20.748 50.388 21.9336 50.388 23.0888 50.388 23.9552 50.0688 24.5632 49.4456 25.156 48.8072 25.46 47.8952 25.46 46.6944L25.46 38.0608 27.2536 38.0608 27.2536 46.6792Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M29.7008 41.7696 31.2208 41.7696 31.2208 43.32 31.2664 43.32C31.6008 42.712 32.0416 42.2712 32.5888 41.9824 33.1208 41.6936 33.744 41.5416 34.4584 41.5416 35.0968 41.5416 35.644 41.6328 36.0696 41.8 36.4952 41.9824 36.8448 42.2256 37.1184 42.5448 37.3768 42.864 37.5744 43.2288 37.6808 43.6696 37.7872 44.1104 37.848 44.5816 37.848 45.1136L37.848 51.5584 36.2368 51.5584 36.2368 44.9312C36.2368 44.3232 36.0544 43.852 35.7048 43.4872 35.3552 43.1376 34.8688 42.9552 34.2456 42.9552 33.7592 42.9552 33.3336 43.0312 32.9688 43.1832 32.604 43.3352 32.3152 43.548 32.072 43.8216 31.8288 44.0952 31.6464 44.4296 31.5248 44.7944 31.4032 45.1744 31.3424 45.5696 31.3424 46.0104L31.3424 51.5432 29.7312 51.5432 29.7312 41.7696Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M41.7544 40.0064 40.1432 40.0064 40.1432 38.0304 41.7544 38.0304 41.7544 40.0064ZM40.1432 41.7696 41.7544 41.7696 41.7544 51.5584 40.1432 51.5584 40.1432 41.7696Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M48.6552 51.5584 46.9376 51.5584 43.3048 41.7696 45.0984 41.7696 47.8496 49.932 47.88 49.932 50.5552 41.7696 52.2424 41.7696 48.6552 51.5584Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M62.092 48.4576C61.8792 49.5368 61.408 50.3728 60.6632 50.9352 59.9336 51.4976 59.0064 51.7864 57.8968 51.7864 57.1064 51.7864 56.4376 51.6496 55.86 51.3912 55.2824 51.1328 54.796 50.7832 54.416 50.3272 54.0208 49.8712 53.732 49.324 53.5344 48.7008 53.3368 48.0624 53.2304 47.3784 53.2 46.6336 53.2 45.904 53.3064 45.22 53.5344 44.5968 53.7624 43.9736 54.0816 43.4264 54.492 42.9704 54.9024 42.5144 55.3888 42.1648 55.9512 41.9064 56.5136 41.648 57.1216 41.5264 57.7904 41.5264 58.6568 41.5264 59.3864 41.7088 59.964 42.0736 60.5416 42.4384 60.9976 42.8944 61.3472 43.4416 61.6968 44.004 61.94 44.5968 62.0616 45.2656 62.1984 45.9192 62.244 46.5424 62.2288 47.1352L54.9024 47.1352C54.8872 47.5608 54.9328 47.9712 55.0544 48.3512 55.1608 48.7312 55.3584 49.0808 55.6016 49.3696 55.86 49.6736 56.1792 49.9016 56.5744 50.084 56.9696 50.2664 57.4256 50.3424 57.9576 50.3424 58.6264 50.3424 59.1888 50.1904 59.6296 49.8712 60.0704 49.552 60.3592 49.0808 60.496 48.4272L62.092 48.4272ZM60.5112 45.7368C60.4808 45.3568 60.4048 44.992 60.2528 44.6576 60.1008 44.3232 59.9184 44.0192 59.66 43.776 59.4168 43.5328 59.1128 43.3352 58.7784 43.1832 58.444 43.0312 58.064 42.9704 57.684 42.9704 57.2736 42.9704 56.8936 43.0464 56.5592 43.1832 56.2248 43.3352 55.936 43.5328 55.6928 43.776 55.4496 44.0344 55.2672 44.3232 55.1304 44.6576 54.9936 44.992 54.9024 45.3416 54.8872 45.7216L60.5112 45.7216Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M64.0224 41.7696 65.5424 41.7696 65.5424 43.8368 65.5728 43.8368C65.968 43.0464 66.4392 42.4536 67.0168 42.0736 67.5792 41.6936 68.3088 41.5112 69.1752 41.5416L69.1752 43.244C68.5368 43.244 67.9896 43.3352 67.5336 43.5024 67.0776 43.6848 66.7128 43.9432 66.4392 44.2776 66.1656 44.612 65.9528 45.0376 65.8312 45.524 65.7096 46.0104 65.6488 46.5728 65.6488 47.196L65.6488 51.5584 64.0376 51.5584 64.0376 41.7696Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M71.5464 48.4728C71.5616 48.8376 71.6376 49.1416 71.7896 49.3848 71.9416 49.628 72.1392 49.8104 72.3824 49.9624 72.6256 50.1144 72.8992 50.2056 73.2184 50.2816 73.5224 50.3424 73.8416 50.3728 74.176 50.3728 74.4344 50.3728 74.6928 50.3576 74.9664 50.312 75.24 50.2816 75.4984 50.2056 75.7264 50.0992 75.9544 49.9928 76.152 49.856 76.304 49.6584 76.456 49.4608 76.532 49.2176 76.532 48.9136 76.532 48.5944 76.4408 48.336 76.2584 48.1536 76.076 47.956 75.8328 47.804 75.544 47.6672 75.24 47.5456 74.9056 47.4392 74.5256 47.348 74.1456 47.272 73.7504 47.1808 73.34 47.0896 72.9296 46.9984 72.5496 46.892 72.1696 46.7704 71.7896 46.6488 71.4552 46.4816 71.1512 46.284 70.8472 46.0864 70.604 45.828 70.4216 45.5088 70.2392 45.1896 70.148 44.8096 70.148 44.3384 70.148 43.852 70.2544 43.4264 70.4824 43.0768 70.7104 42.7272 70.984 42.4384 71.3336 42.2104 71.6832 41.9824 72.0784 41.8304 72.504 41.724 72.9448 41.6176 73.3704 41.5568 73.796 41.5568 74.3432 41.5568 74.8448 41.6024 75.316 41.6936 75.7872 41.7848 76.2128 41.952 76.5624 42.18 76.9272 42.408 77.216 42.7272 77.4288 43.1224 77.6416 43.5176 77.7632 44.0192 77.8088 44.612L76.1976 44.612C76.1672 44.2928 76.0912 44.0344 75.9392 43.8216 75.7872 43.6088 75.62 43.4416 75.4072 43.32 75.1944 43.1984 74.9664 43.1072 74.708 43.0464 74.4496 42.9856 74.1912 42.9552 73.9176 42.9552 73.6744 42.9552 73.4312 42.9704 73.188 43.016 72.9448 43.0616 72.7168 43.1224 72.5192 43.2136 72.3216 43.3048 72.1544 43.4416 72.0328 43.6088 71.9112 43.776 71.8504 43.9736 71.8504 44.2168 71.8504 44.5056 71.9416 44.7488 72.1392 44.916 72.3368 45.0984 72.58 45.2504 72.884 45.3568 73.188 45.4784 73.5224 45.5848 73.9024 45.6608 74.2824 45.7368 74.6624 45.828 75.0424 45.9192 75.4528 46.0104 75.848 46.1168 76.228 46.2384 76.608 46.36 76.9576 46.5272 77.2464 46.74 77.5504 46.9528 77.7784 47.2112 77.9608 47.5304 78.1432 47.8496 78.2344 48.2296 78.2344 48.7008 78.2344 49.2784 78.1128 49.7648 77.8696 50.16 77.6264 50.5552 77.3072 50.8744 76.8968 51.1176 76.5016 51.3608 76.0456 51.528 75.5592 51.6344 75.0576 51.7408 74.5712 51.7864 74.0696 51.7864 73.5072 51.7864 72.9904 51.7256 72.504 51.604 72.0176 51.4824 71.592 51.3 71.212 51.0416 70.832 50.7832 70.528 50.4488 70.3 50.0232 70.072 49.5976 69.9504 49.0808 69.92 48.4728L71.5464 48.4728Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M81.548 40.0064 79.9368 40.0064 79.9368 38.0304 81.548 38.0304 81.548 40.0064ZM79.9368 41.7696 81.548 41.7696 81.548 51.5584 79.9368 51.5584 79.9368 41.7696Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M86.0928 41.7696 88.0384 41.7696 88.0384 43.1832 86.0928 43.1832 86.0928 49.2632C86.0928 49.4456 86.108 49.5976 86.1384 49.7192 86.1688 49.8256 86.2296 49.9168 86.3208 49.9776 86.412 50.0384 86.5336 50.084 86.6856 50.0992 86.8376 50.1144 87.0504 50.1296 87.2936 50.1296L88.0384 50.1296 88.0384 51.5432 86.8072 51.5432C86.3968 51.5432 86.032 51.5128 85.7432 51.452 85.4392 51.3912 85.2112 51.2848 85.0288 51.1328 84.8464 50.9808 84.7096 50.768 84.6184 50.4944 84.5272 50.2208 84.4816 49.856 84.4816 49.4L84.4816 43.168 82.8096 43.168 82.8096 41.7544 84.4816 41.7544 84.4816 38.8208 86.0928 38.8208 86.0928 41.7696Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M93.86 52.8656C93.6776 53.352 93.48 53.7472 93.2976 54.0816 93.1152 54.416 92.9176 54.6744 92.7048 54.8872 92.492 55.1 92.2488 55.252 91.96 55.3432 91.6864 55.4344 91.3672 55.48 91.0176 55.48 90.8352 55.48 90.6376 55.4648 90.4552 55.4496 90.2728 55.4192 90.0752 55.3736 89.908 55.3128L89.908 53.8384C90.06 53.884 90.212 53.9448 90.3792 53.9904 90.5312 54.036 90.6984 54.0664 90.8656 54.0664 91.2 54.0664 91.4584 53.9904 91.656 53.8384 91.8536 53.6864 92.036 53.4584 92.188 53.1696L92.8568 51.4976 88.9808 41.7696 90.8048 41.7696 93.6624 49.78 93.6928 49.78 96.444 41.7696 98.1464 41.7696 93.86 52.8656Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M16.5832 69.5248C16.5832 68.8104 16.6896 68.1264 16.8872 67.5032 17.0848 66.88 17.3888 66.3328 17.7992 65.8768 18.2096 65.4208 18.696 65.056 19.2888 64.7824 19.8816 64.524 20.5656 64.3872 21.3408 64.3872 22.116 64.3872 22.7848 64.524 23.3928 64.7824 23.9856 65.0408 24.4872 65.4056 24.8824 65.8768 25.2928 66.3328 25.5968 66.88 25.7944 67.5032 25.992 68.1264 26.0984 68.7952 26.0984 69.5248 26.0984 70.2392 25.992 70.908 25.7944 71.5312 25.5968 72.1544 25.2928 72.6864 24.8824 73.1576 24.472 73.6136 23.9856 73.9784 23.3928 74.252 22.8 74.5104 22.116 74.6472 21.3408 74.6472 20.5656 74.6472 19.8664 74.5104 19.2888 74.252 18.696 73.9936 18.2096 73.6288 17.7992 73.1576 17.3888 72.7016 17.0848 72.1544 16.8872 71.5312 16.6896 70.908 16.5832 70.2392 16.5832 69.5248ZM18.3008 69.5248C18.3008 70.1176 18.3768 70.6496 18.544 71.1056 18.696 71.5616 18.924 71.9568 19.1976 72.2608 19.4712 72.5648 19.8056 72.808 20.1704 72.9752 20.5352 73.1424 20.9304 73.2184 21.356 73.2184 21.7664 73.2184 22.1616 73.1424 22.5416 72.9752 22.9064 72.808 23.2408 72.58 23.5144 72.2608 23.788 71.9568 24.016 71.5616 24.168 71.1056 24.32 70.6496 24.4112 70.1176 24.4112 69.5248 24.4112 68.932 24.3352 68.4 24.168 67.944 24.016 67.488 23.788 67.0928 23.5144 66.7736 23.2408 66.4544 22.9064 66.2112 22.5416 66.0592 22.1616 65.892 21.7816 65.816 21.356 65.816 20.9456 65.816 20.5504 65.892 20.1704 66.0592 19.7904 66.2264 19.4712 66.4696 19.1976 66.7736 18.924 67.0928 18.696 67.4728 18.544 67.944 18.3768 68.4 18.3008 68.932 18.3008 69.5248Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M28.4696 66.0288 26.828 66.0288 26.828 64.6152 28.4696 64.6152 28.4696 63.156C28.4696 62.3656 28.6976 61.7576 29.1536 61.3472 29.6096 60.9368 30.2936 60.7392 31.1752 60.7392 31.3272 60.7392 31.4944 60.7544 31.692 60.7696 31.8896 60.8 32.0568 60.8304 32.2088 60.876L32.2088 62.2744C32.072 62.2288 31.92 62.1832 31.7528 62.168 31.5856 62.1528 31.4336 62.1376 31.2968 62.1376 30.9016 62.1376 30.5976 62.2136 30.3848 62.3656 30.172 62.5176 30.0656 62.8064 30.0656 63.232L30.0656 64.6 31.9656 64.6 31.9656 66.0136 30.0656 66.0136 30.0656 74.3888 28.4544 74.3888 28.4544 66.0288Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M38.5928 60.8912 41.0552 60.8912 45.3112 72.2456 49.5976 60.8912 52.06 60.8912 52.06 74.404 50.3576 74.404 50.3576 63.156 50.312 63.156 46.0864 74.404 44.5512 74.404 40.3256 63.156 40.2952 63.156 40.2952 74.404 38.5928 74.404 38.5928 60.8912Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M62.7 74.404 61.18 74.404 61.18 72.8536 61.1496 72.8536C60.8152 73.4616 60.3744 73.9024 59.8272 74.1912 59.2952 74.48 58.672 74.632 57.9576 74.632 57.3192 74.632 56.772 74.5408 56.3464 74.3736 55.9208 74.1912 55.5712 73.948 55.2976 73.6288 55.0392 73.3096 54.8416 72.9448 54.7352 72.504 54.6288 72.0632 54.568 71.592 54.568 71.06L54.568 64.6152 56.1792 64.6152 56.1792 71.2424C56.1792 71.8504 56.3616 72.3216 56.7112 72.6864 57.0608 73.036 57.5472 73.2184 58.1704 73.2184 58.6568 73.2184 59.0824 73.1424 59.4472 72.9904 59.812 72.8384 60.1008 72.6256 60.344 72.352 60.5872 72.0784 60.7696 71.744 60.8912 71.3792 61.0128 71.0144 61.0736 70.604 61.0736 70.1632L61.0736 64.6304 62.6848 64.6304 62.6848 74.404Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M64.9344 64.6152 66.4544 64.6152 66.4544 66.1656 66.5 66.1656C66.8344 65.5576 67.2752 65.1168 67.8224 64.828 68.3544 64.5392 68.9776 64.3872 69.692 64.3872 70.3304 64.3872 70.8776 64.4784 71.3032 64.6456 71.7288 64.828 72.0784 65.0712 72.352 65.3904 72.6104 65.7096 72.808 66.0744 72.9144 66.5152 73.0208 66.956 73.0816 67.4272 73.0816 67.9592L73.0816 74.404 71.4704 74.404 71.4704 67.7768C71.4704 67.1688 71.288 66.6976 70.9384 66.3328 70.5888 65.9832 70.1024 65.8008 69.4792 65.8008 68.9928 65.8008 68.5672 65.8768 68.2024 66.0288 67.8376 66.1808 67.5488 66.3936 67.3056 66.6672 67.0624 66.9408 66.88 67.2752 66.7584 67.64 66.6368 68.02 66.576 68.4152 66.576 68.856L66.576 74.3888 64.9648 74.3888 64.9648 64.6152Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M76.9728 62.852 75.3616 62.852 75.3616 60.876 76.9728 60.876 76.9728 62.852ZM75.3616 64.6152 76.9728 64.6152 76.9728 74.404 75.3616 74.404 75.3616 64.6152Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M85.9256 67.7616C85.804 67.1384 85.5304 66.6672 85.12 66.3176 84.7096 65.9832 84.1776 65.8008 83.4936 65.8008 82.916 65.8008 82.4296 65.9072 82.0344 66.12 81.6392 66.3328 81.3352 66.6216 81.092 66.9712 80.864 67.3208 80.6968 67.7312 80.5904 68.1872 80.484 68.6432 80.4384 69.1296 80.4384 69.616 80.4384 70.072 80.4992 70.5128 80.6056 70.9384 80.712 71.364 80.8792 71.744 81.1072 72.0784 81.3352 72.4128 81.624 72.6864 81.9888 72.884 82.3536 73.0816 82.7944 73.188 83.3112 73.188 84.0864 73.188 84.7096 72.9752 85.1656 72.5496 85.6216 72.124 85.8952 71.5464 86.0016 70.8016L87.6432 70.8016C87.4608 72.0024 87.0048 72.9296 86.2752 73.5984 85.5456 74.2672 84.5576 74.6016 83.3264 74.6016 82.5816 74.6016 81.928 74.48 81.3504 74.2368 80.7728 73.9936 80.3016 73.644 79.9064 73.2032 79.5264 72.7624 79.2376 72.2304 79.04 71.6224 78.8424 71.0144 78.7512 70.3456 78.7512 69.6008 78.7512 68.8712 78.8424 68.1872 79.04 67.5488 79.2224 66.9104 79.5112 66.3632 79.9064 65.8768 80.2864 65.4056 80.7728 65.0256 81.3504 64.7672 81.928 64.4936 82.5968 64.3568 83.3872 64.3568 83.9496 64.3568 84.4664 64.4176 84.9528 64.5544 85.4392 64.6912 85.8648 64.8888 86.2448 65.1624 86.6248 65.436 86.9288 65.7856 87.1568 66.2112 87.3848 66.6368 87.5368 67.1384 87.5976 67.716L85.9256 67.716Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/><path d="M89.2544 60.8912 90.8656 60.8912 90.8656 66.0592 90.896 66.0592C91.0176 65.7704 91.2 65.512 91.4432 65.2992 91.6712 65.0864 91.9296 64.904 92.2032 64.7824 92.4768 64.6456 92.7808 64.5544 93.0848 64.4936 93.3888 64.4328 93.6928 64.4024 93.9816 64.4024 94.62 64.4024 95.1672 64.4936 95.5928 64.6608 96.0184 64.8432 96.368 65.0864 96.6416 65.4056 96.9 65.7248 97.0976 66.0896 97.204 66.5304 97.3104 66.9712 97.3712 67.4424 97.3712 67.9744L97.3712 74.4192 95.76 74.4192 95.76 67.792C95.76 67.184 95.5776 66.7128 95.228 66.348 94.8784 65.9984 94.392 65.816 93.7688 65.816 93.2824 65.816 92.8568 65.892 92.492 66.044 92.1272 66.196 91.8384 66.4088 91.5952 66.6824 91.352 66.956 91.1696 67.2904 91.048 67.6552 90.9264 68.0352 90.8656 68.4304 90.8656 68.8712L90.8656 74.404 89.2544 74.404 89.2544 60.8912Z" fill="#FFFFFF" transform="matrix(1 0 0 1.00357 541 137)"/></g></svg>
\ No newline at end of file
diff --git a/docs/assets/images/logos/TUW.png b/docs/assets/images/logos/TUW.png
new file mode 100644
index 0000000000000000000000000000000000000000..b598df1b3cc8a20c891e2fd20edbf1ffa0f9c972
--- /dev/null
+++ b/docs/assets/images/logos/TUW.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:aba9357a2f59ec7b43185b66774e43f9c6f6861dd8135250b0ae73c8b2c270ab
+size 12228
diff --git a/docs/assets/images/logos/USTUTT.svg b/docs/assets/images/logos/USTUTT.svg
new file mode 100644
index 0000000000000000000000000000000000000000..7155f497f9d972f92bb7772d86d189fd7a7a5404
--- /dev/null
+++ b/docs/assets/images/logos/USTUTT.svg
@@ -0,0 +1 @@
+<svg width="367" height="82" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" overflow="hidden"><defs><clipPath id="clip0"><rect x="59" y="153" width="367" height="82"/></clipPath></defs><g clip-path="url(#clip0)" transform="translate(-59 -153)"><path d="M36.9836 47.0929C35.8734 47.0929 34.9792 46.1941 34.9792 45.0879 34.9792 43.9825 35.8734 43.0852 36.9836 43.0852 38.089 43.0852 38.987 43.9825 38.987 45.0879 38.987 46.1941 38.089 47.0929 36.9836 47.0929" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M42.0371 48.2062C42.0371 49.3132 41.1375 50.2137 40.0305 50.2137 38.9251 50.2137 38.0293 49.3132 38.0293 48.2062 38.0293 47.1024 38.9251 46.205 40.0305 46.205 41.1375 46.205 42.0371 47.1024 42.0371 48.2062" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M42.0371 41.9665C42.0371 43.0719 41.1375 43.9723 40.0305 43.9723 38.9251 43.9723 38.0293 43.0719 38.0293 41.9665 38.0293 40.8595 38.9251 39.9668 40.0305 39.9668 41.1375 39.9668 42.0371 40.8595 42.0371 41.9665" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M43.4847 47.1912C42.3817 47.1912 41.4813 46.2922 41.4813 45.186 41.4813 44.0814 42.3817 43.1833 43.4847 43.1833 44.5925 43.1833 45.4907 44.0814 45.4907 45.186 45.4907 46.2922 44.5925 47.1912 43.4847 47.1912" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M47.2547 50.3402C46.1509 50.3402 45.2527 49.4372 45.2527 48.3326 45.2527 47.228 46.1509 46.33 47.2547 46.33 48.3609 46.33 49.2629 47.228 49.2629 48.3326 49.2629 49.4372 48.3609 50.3402 47.2547 50.3402" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M47.2258 43.9048C46.1226 43.9048 45.2214 43.0036 45.2214 41.892 45.2214 40.7928 46.1226 39.8978 47.2258 39.8978 48.3318 39.8978 49.2316 40.7928 49.2316 41.892 49.2316 43.0036 48.3318 43.9048 47.2258 43.9048" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M43.3483 36.7786C44.4559 36.7786 45.3548 37.6814 45.3548 38.783 45.3548 39.886 44.4559 40.7888 43.3483 40.7888 42.2437 40.7888 41.3463 39.886 41.3463 38.783 41.3463 37.6814 42.2437 36.7786 43.3483 36.7786" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M42.2286 34.8992C42.2286 36.006 41.3274 36.9026 40.2204 36.9026 39.1158 36.9026 38.2176 36.006 38.2176 34.8992 38.2176 33.7961 39.1158 32.8949 40.2204 32.8949 41.3274 32.8949 42.2286 33.7961 42.2286 34.8992" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M37.0982 28.6357C38.206 28.6357 39.1064 29.5371 39.1064 30.6417 39.1064 31.7487 38.206 32.6491 37.0982 32.6491 35.996 32.6491 35.0978 31.7487 35.0978 30.6417 35.0978 29.5371 35.996 28.6357 37.0982 28.6357" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M51.491 47.1872C50.3856 47.1872 49.486 46.2852 49.486 45.1798 49.486 44.0744 50.3856 43.1762 51.491 43.1762 52.5964 43.1762 53.4962 44.0744 53.4962 45.1798 53.4962 46.2852 52.5964 47.1872 51.491 47.1872" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M51.283 40.4881C50.1784 40.4881 49.2794 39.5877 49.2794 38.4861 49.2794 37.3799 50.1784 36.4812 51.283 36.4812 52.3892 36.4812 53.2889 37.3799 53.2889 38.4861 53.2889 39.5877 52.3892 40.4881 51.283 40.4881" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M55.9698 43.506C54.8652 43.506 53.9673 42.6032 53.9673 41.5008 53.9673 40.3963 54.8652 39.4959 55.9698 39.4959 57.0752 39.4959 57.975 40.3963 57.975 41.5008 57.975 42.6032 57.0752 43.506 55.9698 43.506" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M57.4334 34.7123C57.4334 35.8231 56.5336 36.7197 55.4266 36.7197 54.3236 36.7197 53.4232 35.8231 53.4232 34.7123 53.4232 33.6116 54.3236 32.7142 55.4266 32.7142 56.5336 32.7142 57.4334 33.6116 57.4334 34.7123" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M52.5775 31.7093C52.5775 32.8147 51.6771 33.7112 50.5717 33.7112 49.4679 33.7112 48.5665 32.8147 48.5665 31.7093 48.5665 30.6047 49.4679 29.7075 50.5717 29.7075 51.6771 29.7075 52.5775 30.6047 52.5775 31.7093" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M43.659 28.8972C44.7652 28.8972 45.6674 29.7978 45.6674 30.9031 45.6674 32.0116 44.7652 32.9105 43.659 32.9105 42.5568 32.9105 41.6572 32.0116 41.6572 30.9031 41.6572 29.7978 42.5568 28.8972 43.659 28.8972" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M40.5219 24.2103C41.6281 24.2103 42.5293 25.1069 42.5293 26.2123 42.5293 27.3193 41.6281 28.218 40.5219 28.218 39.4197 28.218 38.5199 27.3193 38.5199 26.2123 38.5199 25.1069 39.4197 24.2103 40.5219 24.2103" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M37.0746 19.2329C38.1839 19.2329 39.0837 20.1278 39.0837 21.2364 39.0837 22.3394 38.1839 23.2424 37.0746 23.2424 35.9715 23.2424 35.0743 22.3394 35.0743 21.2364 35.0743 20.1278 35.9715 19.2329 37.0746 19.2329" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M48.8226 35.3601C48.8226 36.4655 47.922 37.3635 46.8152 37.3635 45.712 37.3635 44.8146 36.4655 44.8146 35.3601 44.8146 34.2569 45.712 33.3565 46.8152 33.3565 47.922 33.3565 48.8226 34.2569 48.8226 35.3601" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M60.6663 39.8389C59.5615 39.8389 58.6636 38.94 58.6636 37.8392 58.6636 36.7324 59.5615 35.835 60.6663 35.835 61.7739 35.835 62.6721 36.7324 62.6721 37.8392 62.6721 38.94 61.7739 39.8389 60.6663 39.8389" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M59.9213 32.6185C58.8151 32.6185 57.9161 31.7187 57.9161 30.6103 57.9161 29.5112 58.8151 28.6106 59.9213 28.6106 61.0251 28.6106 61.9231 29.5112 61.9231 30.6103 61.9231 31.7187 61.0251 32.6185 59.9213 32.6185" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M64.8524 28.3085C63.747 28.3085 62.8488 27.4071 62.8488 26.3017 62.8488 25.1955 63.747 24.2981 64.8524 24.2981 65.9585 24.2981 66.8605 25.1955 66.8605 26.3017 66.8605 27.4071 65.9585 28.3085 64.8524 28.3085" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M58.7711 25.4837C57.6689 25.4837 56.7683 24.5847 56.7683 23.4777 56.7683 22.3709 57.6689 21.4744 58.7711 21.4744 59.8797 21.4744 60.7777 22.3709 60.7777 23.4777 60.7777 24.5847 59.8797 25.4837 58.7711 25.4837" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M56.5814 27.5978C56.5814 28.701 55.6818 29.6054 54.5772 29.6054 53.471 29.6054 52.5729 28.701 52.5729 27.5978 52.5729 26.491 53.471 25.5936 54.5772 25.5936 55.6818 25.5936 56.5814 26.491 56.5814 27.5978" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M51.5947 20.255C52.7009 20.255 53.6005 21.1564 53.6005 22.2594 53.6005 23.364 52.7009 24.2668 51.5947 24.2668 50.4885 24.2668 49.5903 23.364 49.5903 22.2594 49.5903 21.1564 50.4885 20.255 51.5947 20.255" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M44.3146 19.5014C45.424 19.5014 46.322 20.3963 46.322 21.5057 46.322 22.6103 45.424 23.5115 44.3146 23.5115 43.2108 23.5115 42.315 22.6103 42.315 21.5057 42.315 20.3963 43.2108 19.5014 44.3146 19.5014" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M49.4538 26.7163C49.4538 27.8217 48.5557 28.7221 47.4503 28.7221 46.3433 28.7221 45.4475 27.8217 45.4475 26.7163 45.4475 25.6117 46.3433 24.7166 47.4503 24.7166 48.5557 24.7166 49.4538 25.6117 49.4538 26.7163" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M63.4415 20.7928C62.3345 20.7928 61.4373 19.8924 61.4373 18.7893 61.4373 17.6824 62.3345 16.7811 63.4415 16.7811 64.5461 16.7811 65.4483 17.6824 65.4483 18.7893 65.4483 19.8924 64.5461 20.7928 63.4415 20.7928" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M55.8309 19.342C54.7264 19.342 53.8282 18.4439 53.8282 17.3369 53.8282 16.2339 54.7264 15.3365 55.8309 15.3365 56.9379 15.3365 57.8383 16.2339 57.8383 17.3369 57.8383 18.4439 56.9379 19.342 55.8309 19.342" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M52.5469 13.5049C51.4431 13.5049 50.5419 12.6068 50.5419 11.4999 50.5419 10.3968 51.4431 9.49789 52.5469 9.49789 53.6499 9.49789 54.5521 10.3968 54.5521 11.4999 54.5521 12.6068 53.6499 13.5049 52.5469 13.5049" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M48.2644 18.5216C47.159 18.5216 46.2576 17.625 46.2576 16.5165 46.2576 15.4135 47.159 14.5098 48.2644 14.5098 49.3698 14.5098 50.271 15.4135 50.271 16.5165 50.271 17.625 49.3698 18.5216 48.2644 18.5216" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M44.7873 12.5C43.6803 12.5 42.7829 11.6019 42.7829 10.4926 42.7829 9.38956 43.6803 8.48907 44.7873 8.48907 45.8919 8.48907 46.7939 9.38956 46.7939 10.4926 46.7939 11.6019 45.8919 12.5 44.7873 12.5" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M40.7072 18.0215C39.6026 18.0215 38.7036 17.1163 38.7036 16.0156 38.7036 14.911 39.6026 14.0097 40.7072 14.0097 41.8134 14.0097 42.713 14.911 42.713 16.0156 42.713 17.1163 41.8134 18.0215 40.7072 18.0215" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M37.1068 12.1138C36.0006 12.1138 35.1024 11.2094 35.1024 10.1079 35.1024 8.99936 36.0006 8.10359 37.1068 8.10359 38.2146 8.10359 39.1134 8.99936 39.1134 10.1079 39.1134 11.2094 38.2146 12.1138 37.1068 12.1138" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M33.2606 18.0215C32.1561 18.0215 31.2579 17.121 31.2579 16.0156 31.2579 14.911 32.1561 14.0097 33.2606 14.0097 34.366 14.0097 35.2688 14.911 35.2688 16.0156 35.2688 17.121 34.366 18.0215 33.2606 18.0215" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M29.2324 12.4765C28.127 12.4765 27.2312 11.5784 27.2312 10.469 27.2312 9.36836 28.127 8.46708 29.2324 8.46708 30.3394 8.46708 31.2384 9.36836 31.2384 10.469 31.2384 11.5784 30.3394 12.4765 29.2324 12.4765" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M21.6792 13.5112C20.5738 13.5112 19.6764 12.6123 19.6764 11.5014 19.6764 10.4 20.5738 9.50181 21.6792 9.50181 22.7862 9.50181 23.6859 10.4 23.6859 11.5014 23.6859 12.6123 22.7862 13.5112 21.6792 13.5112" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M65.6836 35.915C64.5798 35.915 63.681 35.0146 63.681 33.9076 63.681 32.803 64.5798 31.9032 65.6836 31.9032 66.793 31.9032 67.6896 32.803 67.6896 33.9076 67.6896 35.0146 66.793 35.915 65.6836 35.915" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M70.6995 31.78C69.5965 31.78 68.6969 30.8796 68.6969 29.7765 68.6969 28.6672 69.5965 27.7683 70.6995 27.7683 71.8081 27.7683 72.7087 28.6672 72.7087 29.7765 72.7087 30.8796 71.8081 31.78 70.6995 31.78" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M71.713 39.3914C70.607 39.3914 69.708 38.4988 69.708 37.3894 69.708 36.284 70.607 35.3874 71.713 35.3874 72.8178 35.3874 73.7158 36.284 73.7158 37.3894 73.7158 38.4988 72.8178 39.3914 71.713 39.3914" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M66.1414 43.3742C65.036 43.3742 64.1395 42.4712 64.1395 41.3674 64.1395 40.2628 65.036 39.3638 66.1414 39.3638 67.2468 39.3638 68.1488 40.2628 68.1488 41.3674 68.1488 42.4712 67.2468 43.3742 66.1414 43.3742" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M72.0475 47.1677C70.9407 47.1677 70.0479 46.2655 70.0479 45.1585 70.0479 44.0539 70.9407 43.1565 72.0475 43.1565 73.1536 43.1565 74.055 44.0539 74.055 45.1585 74.055 46.2655 73.1536 47.1677 72.0475 47.1677" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M66.1382 50.7883C65.036 50.7883 64.1395 49.8871 64.1395 48.7818 64.1395 47.678 65.036 46.7782 66.1382 46.7782 67.2468 46.7782 68.145 47.678 68.145 48.7818 68.145 49.8871 67.2468 50.7883 66.1382 50.7883" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M69.6837 52.9049C69.6837 51.7987 70.5819 50.8999 71.6865 50.8999 72.7927 50.8999 73.6923 51.7987 73.6923 52.9049 73.6923 54.0095 72.7927 54.9125 71.6865 54.9125 70.5819 54.9125 69.6837 54.0095 69.6837 52.9049" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M63.64 56.3639C63.64 55.2578 64.5406 54.3598 65.6444 54.3598 66.7522 54.3598 67.6518 55.2578 67.6518 56.3639 67.6518 57.4709 66.7522 58.3707 65.6444 58.3707 64.5406 58.3707 63.64 57.4709 63.64 56.3639" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M70.6965 58.6093C71.8035 58.6093 72.7022 59.5099 72.7022 60.6129 72.7022 61.7221 71.8035 62.6203 70.6965 62.6203 69.5927 62.6203 68.6937 61.7221 68.6937 60.6129 68.6937 59.5099 69.5927 58.6093 70.6965 58.6093" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M62.8385 63.8921C62.8385 62.7907 63.7367 61.8917 64.8389 61.8917 65.9475 61.8917 66.8465 62.7907 66.8465 63.8921 66.8465 65.0007 65.9475 65.8997 64.8389 65.8997 63.7367 65.8997 62.8385 65.0007 62.8385 63.8921" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M63.4258 69.3955C64.5328 69.3955 65.4318 70.2945 65.4318 71.3991 65.4318 72.5053 64.5328 73.4035 63.4258 73.4035 62.3188 73.4035 61.4214 72.5053 61.4214 71.3991 61.4214 70.2945 62.3188 69.3955 63.4258 69.3955" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M56.8061 66.7593C56.8061 65.6547 57.7065 64.7565 58.8103 64.7565 59.9133 64.7565 60.8155 65.6547 60.8155 66.7593 60.8155 67.8646 59.9133 68.7675 58.8103 68.7675 57.7065 68.7675 56.8061 67.8646 56.8061 66.7593" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M54.5364 64.6301C53.4333 64.6301 52.5353 63.7319 52.5353 62.6243 52.5353 61.5219 53.4333 60.6191 54.5364 60.6191 55.644 60.6191 56.5454 61.5219 56.5454 62.6243 56.5454 63.7319 55.644 64.6301 54.5364 64.6301" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M48.5557 58.5418C48.5557 57.4364 49.4538 56.5368 50.5598 56.5368 51.666 56.5368 52.5658 57.4364 52.5658 58.5418 52.5658 59.6456 51.666 60.5478 50.5598 60.5478 49.4538 60.5478 48.5557 59.6456 48.5557 58.5418" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M47.477 65.5142C46.3708 65.5142 45.4742 64.6168 45.4742 63.5074 45.4742 62.4012 46.3708 61.5078 47.477 61.5078 48.5846 61.5078 49.4836 62.4012 49.4836 63.5074 49.4836 64.6168 48.5846 65.5142 47.477 65.5142" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M44.2935 70.6989C43.1897 70.6989 42.2891 69.7967 42.2891 68.6929 42.2891 67.5867 43.1897 66.6879 44.2935 66.6879 45.4005 66.6879 46.2968 67.5867 46.2968 68.6929 46.2968 69.7967 45.4005 70.6989 44.2935 70.6989" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M40.5494 66.059C39.4456 66.059 38.545 65.1609 38.545 64.0514 38.545 62.9469 39.4456 62.0473 40.5494 62.0473 41.6524 62.0473 42.5544 62.9469 42.5544 64.0514 42.5544 65.1609 41.6524 66.059 40.5494 66.059" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M33.4176 66.0158C32.3116 66.0158 31.4142 65.1152 31.4142 64.0068 31.4142 62.9014 32.3116 62.0041 33.4176 62.0041 34.5224 62.0041 35.4252 62.9014 35.4252 64.0068 35.4252 65.1152 34.5224 66.0158 33.4176 66.0158" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M30.4007 61.3101C29.2969 61.3101 28.3987 60.4087 28.3987 59.3019 28.3987 58.1965 29.2969 57.3013 30.4007 57.3013 31.5061 57.3013 32.4057 58.1965 32.4057 59.3019 32.4057 60.4087 31.5061 61.3101 30.4007 61.3101" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M31.7611 55.272C31.7611 54.1704 32.6593 53.2725 33.7655 53.2725 34.8701 53.2725 35.7721 54.1704 35.7721 55.272 35.7721 56.3804 34.8701 57.2802 33.7655 57.2802 32.6593 57.2802 31.7611 56.3804 31.7611 55.272" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M25.256 54.8779C25.256 53.7709 26.1558 52.8705 27.2612 52.8705 28.3674 52.8705 29.2654 53.7709 29.2654 54.8779 29.2654 55.9833 28.3674 56.8845 27.2612 56.8845 26.1558 56.8845 25.256 55.9833 25.256 54.8779" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M22.794 53.7363C21.6886 53.7363 20.7904 52.8359 20.7904 51.732 20.7904 50.626 21.6886 49.727 22.794 49.727 23.901 49.727 24.7992 50.626 24.7992 51.732 24.7992 52.8359 23.901 53.7363 22.794 53.7363" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M18.0969 46.6188C19.2023 46.6188 20.1051 47.5178 20.1051 48.6208 20.1051 49.727 19.2023 50.629 18.0969 50.629 16.9907 50.629 16.0933 49.727 16.0933 48.6208 16.0933 47.5178 16.9907 46.6188 18.0969 46.6188" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M16.6005 55.5255C16.6005 54.4257 17.4986 53.5267 18.6048 53.5267 19.7118 53.5267 20.6083 54.4257 20.6083 55.5255 20.6083 56.6349 19.7118 57.5347 18.6048 57.5347 17.4986 57.5347 16.6005 56.6349 16.6005 55.5255" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M11.3789 52.4103C11.3789 51.3049 12.2779 50.4085 13.3801 50.4085 14.4879 50.4085 15.3876 51.3049 15.3876 52.4103 15.3876 53.5173 14.4879 54.4187 13.3801 54.4187 12.2779 54.4187 11.3789 53.5173 11.3789 52.4103" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M7.88691 46.8182C8.99387 46.8182 9.89515 47.7172 9.89515 48.8201 9.89515 49.9296 8.99387 50.8261 7.88691 50.8261 6.78387 50.8261 5.88497 49.9296 5.88497 48.8201 5.88497 47.7172 6.78387 46.8182 7.88691 46.8182" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M2.34347 50.914C3.44808 50.914 4.35012 51.816 4.35012 52.9191 4.35012 54.0275 3.44808 54.9241 2.34347 54.9241 1.23886 54.9241 0.340724 54.0275 0.340724 52.9191 0.340724 51.816 1.23886 50.914 2.34347 50.914" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M8.4082 54.3441C9.51518 54.3441 10.4141 55.2413 10.4141 56.3436 10.4141 57.4529 9.51518 58.3543 8.4082 58.3543 7.30359 58.3543 6.40547 57.4529 6.40547 56.3436 6.40547 55.2413 7.30359 54.3441 8.4082 54.3441" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M3.3829 62.6502C2.27908 62.6502 1.37938 61.7528 1.37938 60.6426 1.37938 59.5372 2.27908 58.6407 3.3829 58.6407 4.48594 58.6407 5.39035 59.5372 5.39035 60.6426 5.39035 61.7528 4.48594 62.6502 3.3829 62.6502" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M9.27965 61.8823C10.3866 61.8823 11.2863 62.7788 11.2863 63.885 11.2863 64.9936 10.3866 65.8924 9.27965 65.8924 8.17739 65.8924 7.27927 64.9936 7.27927 63.885 7.27927 62.7788 8.17739 61.8823 9.27965 61.8823" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M14.1377 61.6821C13.0331 61.6821 12.1342 60.7785 12.1342 59.6731 12.1342 58.5693 13.0331 57.6673 14.1377 57.6673 15.2463 57.6673 16.1436 58.5693 16.1436 59.6731 16.1436 60.7785 15.2463 61.6821 14.1377 61.6821" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M17.5528 62.6438C17.5528 61.5384 18.4502 60.6396 19.5563 60.6396 20.6618 60.6396 21.563 61.5384 21.563 62.6438 21.563 63.7492 20.6618 64.6514 19.5563 64.6514 18.4502 64.6514 17.5528 63.7492 17.5528 62.6438" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M21.4744 58.5347C21.4744 57.4326 22.3723 56.5298 23.4763 56.5298 24.5839 56.5298 25.4845 57.4326 25.4845 58.5347 25.4845 59.6393 24.5839 60.5413 23.4763 60.5413 22.3723 60.5413 21.4744 59.6393 21.4744 58.5347" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M13.1312 43.1865C14.2366 43.1865 15.134 44.0846 15.134 45.186 15.134 46.2962 14.2366 47.1942 13.1312 47.1942 12.0235 47.1942 11.1277 46.2962 11.1277 45.186 11.1277 44.0846 12.0235 43.1865 13.1312 43.1865" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M37.1114 61.5456C36.0052 61.5456 35.1089 60.6466 35.1089 59.5372 35.1089 58.4326 36.0052 57.5347 37.1114 57.5347 38.2176 57.5347 39.1198 58.4326 39.1198 59.5372 39.1198 60.6466 38.2176 61.5456 37.1114 61.5456" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M51.5812 70.022C50.4774 70.022 49.577 69.1208 49.577 68.0146 49.577 66.9092 50.4774 66.0126 51.5812 66.0126 52.6852 66.0126 53.5864 66.9092 53.5864 68.0146 53.5864 69.1208 52.6852 70.022 51.5812 70.022" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M53.8322 72.9519C53.8322 71.8451 54.7296 70.9469 55.8342 70.9469 56.9379 70.9469 57.8399 71.8451 57.8399 72.9519 57.8399 74.0566 56.9379 74.9586 55.8342 74.9586 54.7296 74.9586 53.8322 74.0566 53.8322 72.9519" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M48.2831 71.7359C49.3885 71.7359 50.2891 72.6339 50.2891 73.7393 50.2891 74.8455 49.3885 75.7469 48.2831 75.7469 47.1769 75.7469 46.279 74.8455 46.279 73.7393 46.279 72.6339 47.1769 71.7359 48.2831 71.7359" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M52.5596 76.7564C53.6658 76.7564 54.5646 77.6554 54.5646 78.7576 54.5646 79.8662 53.6658 80.7674 52.5596 80.7674 51.455 80.7674 50.5552 79.8662 50.5552 78.7576 50.5552 77.6554 51.455 76.7564 52.5596 76.7564" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M44.8038 77.737C45.91 77.737 46.8057 78.6344 46.8057 79.7406 46.8057 80.8506 45.91 81.7472 44.8038 81.7472 43.6951 81.7472 42.7978 80.8506 42.7978 79.7406 42.7978 78.6344 43.6951 77.737 44.8038 77.737" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M37.0833 78.1422C38.1903 78.1422 39.0899 79.0402 39.0899 80.1441 39.0899 81.2509 38.1903 82.1531 37.0833 82.1531 35.9801 82.1531 35.0805 81.2509 35.0805 80.1441 35.0805 79.0402 35.9801 78.1422 37.0833 78.1422" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M29.2191 77.7567C30.3261 77.7567 31.2257 78.6595 31.2257 79.7609 31.2257 80.8711 30.3261 81.7693 29.2191 81.7693 28.1145 81.7693 27.2156 80.8711 27.2156 79.7609 27.2156 78.6595 28.1145 77.7567 29.2191 77.7567" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M21.6713 76.7369C22.7799 76.7369 23.6781 77.6349 23.6781 78.7403 23.6781 79.8457 22.7799 80.7479 21.6713 80.7479 20.5651 80.7479 19.6694 79.8457 19.6694 78.7403 19.6694 77.6349 20.5651 76.7369 21.6713 76.7369" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M33.2058 72.2076C34.312 72.2076 35.2116 73.1098 35.2116 74.2128 35.2116 75.3174 34.312 76.2194 33.2058 76.2194 32.102 76.2194 31.2038 75.3174 31.2038 74.2128 31.2038 73.1098 32.102 72.2076 33.2058 72.2076" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M25.7741 71.7162C26.8803 71.7162 27.7809 72.6128 27.7809 73.719 27.7809 74.8244 26.8803 75.7272 25.7741 75.7272 24.6687 75.7272 23.7714 74.8244 23.7714 73.719 23.7714 72.6128 24.6687 71.7162 25.7741 71.7162" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M22.4847 69.9946C21.3833 69.9946 20.4827 69.0973 20.4827 67.9911 20.4827 66.8849 21.3833 65.9845 22.4847 65.9845 23.5917 65.9845 24.4913 66.8849 24.4913 67.9911 24.4913 69.0973 23.5917 69.9946 22.4847 69.9946" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M15.2392 64.7376C16.3438 64.7376 17.2458 65.6366 17.2458 66.742 17.2458 67.8474 16.3438 68.7494 15.2392 68.7494 14.1338 68.7494 13.2364 67.8474 13.2364 66.742 13.2364 65.6366 14.1338 64.7376 15.2392 64.7376" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M11.0021 69.4255C12.1075 69.4255 13.0088 70.3242 13.0088 71.4304 13.0088 72.5358 12.1075 73.4372 11.0021 73.4372 9.89672 73.4372 8.99701 72.5358 8.99701 71.4304 8.99701 70.3242 9.89672 69.4255 11.0021 69.4255" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M18.2672 70.9193C19.3726 70.9193 20.2739 71.8183 20.2739 72.9245 20.2739 74.0283 19.3726 74.9273 18.2672 74.9273 17.1611 74.9273 16.2629 74.0283 16.2629 72.9245 16.2629 71.8183 17.1611 70.9193 18.2672 70.9193" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M24.5958 63.5333C24.5958 62.4287 25.4954 61.5322 26.5994 61.5322 27.7062 61.5322 28.6051 62.4287 28.6051 63.5333 28.6051 64.6403 27.7062 65.5415 26.5994 65.5415 25.4954 65.5415 24.5958 64.6403 24.5958 63.5333" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M29.7043 70.7246C28.6013 70.7246 27.7039 69.825 27.7039 68.7204 27.7039 67.6134 28.6013 66.7144 29.7043 66.7144 30.8073 66.7144 31.7109 67.6134 31.7109 68.7204 31.7109 69.825 30.8073 70.7246 29.7043 70.7246" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M40.6945 72.2108C41.7985 72.2108 42.7005 73.1098 42.7005 74.2128 42.7005 75.3214 41.7985 76.2234 40.6945 76.2234 39.5891 76.2234 38.6895 75.3214 38.6895 74.2128 38.6895 73.1098 39.5891 72.2108 40.6945 72.2108" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M37.0941 71.0325C35.9896 71.0325 35.093 70.1319 35.093 69.0243 35.093 67.9181 35.9896 67.0207 37.0941 67.0207 38.2011 67.0207 39.1017 67.9181 39.1017 69.0243 39.1017 70.1319 38.2011 71.0325 37.0941 71.0325" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M48.7526 54.9006C48.7526 56.0076 47.8538 56.905 46.7476 56.905 45.6437 56.905 44.7449 56.0076 44.7449 54.9006 44.7449 53.7944 45.6437 52.8948 46.7476 52.8948 47.8538 52.8948 48.7526 53.7944 48.7526 54.9006" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M43.3913 53.4489C42.2891 53.4489 41.3909 52.5501 41.3909 51.4423 41.3909 50.3402 42.2891 49.4412 43.3913 49.4412 44.4975 49.4412 45.4005 50.3402 45.4005 51.4423 45.4005 52.5501 44.4975 53.4489 43.3913 53.4489" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M38.2452 55.3598C38.2452 54.2561 39.1441 53.3571 40.2479 53.3571 41.3557 53.3571 42.2561 54.2561 42.2561 55.3598 42.2561 56.4644 41.3557 57.368 40.2479 57.368 39.1441 57.368 38.2452 56.4644 38.2452 55.3598" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M37.0793 53.581C35.9763 53.581 35.0773 52.6828 35.0773 51.5782 35.0773 50.4728 35.9763 49.57 37.0793 49.57 38.1871 49.57 39.0853 50.4728 39.0853 51.5782 39.0853 52.6828 38.1871 53.581 37.0793 53.581" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M31.9267 48.2062C31.9267 47.1024 32.8249 46.205 33.9319 46.205 35.0357 46.205 35.9371 47.1024 35.9371 48.2062 35.9371 49.3132 35.0357 50.2137 33.9319 50.2137 32.8249 50.2137 31.9267 49.3132 31.9267 48.2062" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M30.7217 53.4121C29.6203 53.4121 28.7221 52.5132 28.7221 51.4054 28.7221 50.3032 29.6203 49.4004 30.7217 49.4004 31.8303 49.4004 32.7307 50.3032 32.7307 51.4054 32.7307 52.5132 31.8303 53.4121 30.7217 53.4121" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M30.542 43.1465C31.6442 43.1465 32.5518 44.043 32.5518 45.1492 32.5518 46.2552 31.6442 47.1566 30.542 47.1566 29.4342 47.1566 28.5368 46.2552 28.5368 45.1492 28.5368 44.043 29.4342 43.1465 30.542 43.1465" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M26.7955 46.2717C27.8993 46.2717 28.7975 47.1707 28.7975 48.2745 28.7975 49.3807 27.8993 50.2835 26.7955 50.2835 25.6893 50.2835 24.7913 49.3807 24.7913 48.2745 24.7913 47.1707 25.6893 46.2717 26.7955 46.2717" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M26.8104 39.8452C27.9166 39.8452 28.8188 40.7456 28.8188 41.8409 28.8188 42.9525 27.9166 43.8499 26.8104 43.8499 25.7082 43.8499 24.8078 42.9525 24.8078 41.8409 24.8078 40.7456 25.7082 39.8452 26.8104 39.8452" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M22.5741 43.1897C23.6781 43.1897 24.5801 44.0909 24.5801 45.1963 24.5801 46.3033 23.6781 47.2012 22.5741 47.2012 21.4679 47.2012 20.5691 46.3033 20.5691 45.1963 20.5691 44.0909 21.4679 43.1897 22.5741 43.1897" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M22.8961 36.4396C23.9999 36.4396 24.8997 37.3383 24.8997 38.4453 24.8997 39.5499 23.9999 40.4513 22.8961 40.4513 21.7867 40.4513 20.8901 39.5499 20.8901 38.4453 20.8901 37.3383 21.7867 36.4396 22.8961 36.4396" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M18.1008 39.5067C19.2046 39.5067 20.1051 40.4103 20.1051 41.5151 20.1051 42.6181 19.2046 43.5201 18.1008 43.5201 16.9962 43.5201 16.0973 42.6181 16.0973 41.5151 16.0973 40.4103 16.9962 39.5067 18.1008 39.5067" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M18.6574 32.6382C19.7644 32.6382 20.6634 33.5332 20.6634 34.6362 20.6634 35.7448 19.7644 36.646 18.6574 36.646 17.5528 36.646 16.6523 35.7448 16.6523 34.6362 16.6523 33.5332 17.5528 32.6382 18.6574 32.6382" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M14.1456 28.5454C15.2502 28.5454 16.1522 29.4468 16.1522 30.5498 16.1522 31.6544 15.2502 32.5596 14.1456 32.5596 13.041 32.5596 12.142 31.6544 12.142 30.5498 12.142 29.4468 13.041 28.5454 14.1456 28.5454" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M10.3795 33.8644C10.3795 34.9738 9.48063 35.8742 8.37445 35.8742 7.27063 35.8742 6.37092 34.9738 6.37092 33.8644 6.37092 32.7614 7.27063 31.8608 8.37445 31.8608 9.48063 31.8608 10.3795 32.7614 10.3795 33.8644" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M4.36584 37.3448C4.36584 38.4556 3.46378 39.3481 2.35838 39.3481 1.2522 39.3481 0.354071 38.4556 0.354071 37.3448 0.354071 36.2432 1.2522 35.3458 2.35838 35.3458 3.46378 35.3458 4.36584 36.2432 4.36584 37.3448" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M7.88691 39.3325C8.99387 39.3325 9.89515 40.2339 9.89515 41.3385 9.89515 42.4414 8.99387 43.3442 7.88691 43.3442 6.78387 43.3442 5.88497 42.4414 5.88497 41.3385 5.88497 40.2339 6.78387 39.3325 7.88691 39.3325" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M2.00274 43.1833C3.10893 43.1833 4.01097 44.0814 4.01097 45.1822 4.01097 46.289 3.10893 47.1912 2.00274 47.1912 0.902056 47.1912 0 46.289 0 45.1822 0 44.0814 0.902056 43.1833 2.00274 43.1833" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M13.3888 35.8545C14.4957 35.8545 15.397 36.7497 15.397 37.8565 15.397 38.9659 14.4957 39.8649 13.3888 39.8649 12.2857 39.8649 11.3868 38.9659 11.3868 37.8565 11.3868 36.7497 12.2857 35.8545 13.3888 35.8545" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M3.35935 31.7863C2.25476 31.7863 1.3574 30.8851 1.3574 29.7821 1.3574 28.6735 2.25476 27.7761 3.35935 27.7761 4.46633 27.7761 5.36602 28.6735 5.36602 29.7821 5.36602 30.8851 4.46633 31.7863 3.35935 31.7863" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M11.2211 26.2884C11.2211 27.3938 10.323 28.2926 9.21371 28.2926 8.10988 28.2926 7.21096 27.3938 7.21096 26.2884 7.21096 25.1814 8.10988 24.2841 9.21371 24.2841 10.323 24.2841 11.2211 25.1814 11.2211 26.2884" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M35.9371 41.9665C35.9371 43.0719 35.0357 43.9723 33.9303 43.9723 32.8249 43.9723 31.9267 43.0719 31.9267 41.9665 31.9267 40.8595 32.8249 39.9668 33.9303 39.9668 35.0357 39.9668 35.9371 40.8595 35.9371 41.9665" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M37.0746 36.6852C38.1809 36.6852 39.0812 37.5817 39.0812 38.6911 39.0812 39.7933 38.1809 40.6961 37.0746 40.6961 35.9685 40.6961 35.0703 39.7933 35.0703 38.6911 35.0703 37.5817 35.9685 36.6852 37.0746 36.6852" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M35.7534 34.8992C35.7534 36.006 34.8528 36.9026 33.7474 36.9026 32.6404 36.9026 31.7424 36.006 31.7424 34.8992 31.7424 33.7961 32.6404 32.8949 33.7474 32.8949 34.8528 32.8949 35.7534 33.7961 35.7534 34.8992" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M30.4188 28.8972C31.5256 28.8972 32.4246 29.7978 32.4246 30.9031 32.4246 32.0116 31.5256 32.9105 30.4188 32.9105 29.3118 32.9105 28.4168 32.0116 28.4168 30.9031 28.4168 29.7978 29.3118 28.8972 30.4188 28.8972" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M33.4508 24.1868C34.5562 24.1868 35.4558 25.0856 35.4558 26.1887 35.4558 27.2988 34.5562 28.2002 33.4508 28.2002 32.3468 28.2002 31.4494 27.2988 31.4494 26.1887 31.4494 25.0856 32.3468 24.1868 33.4508 24.1868" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M29.734 19.5171C30.841 19.5171 31.74 20.4136 31.74 21.5206 31.74 22.6284 30.841 23.5288 29.734 23.5288 28.6272 23.5288 27.7299 22.6284 27.7299 21.5206 27.7299 20.4136 28.6272 19.5171 29.734 19.5171" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M22.4368 20.2747C23.543 20.2747 24.4442 21.1759 24.4442 22.2791 24.4442 23.3899 23.543 24.2889 22.4368 24.2889 21.3331 24.2889 20.4325 23.3899 20.4325 22.2791 20.4325 21.1759 21.3331 20.2747 22.4368 20.2747" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M19.583 25.6053C20.6885 25.6053 21.5889 26.5067 21.5889 27.6113 21.5889 28.7167 20.6885 29.6171 19.583 29.6171 18.4769 29.6171 17.5803 28.7167 17.5803 27.6113 17.5803 26.5067 18.4769 25.6053 19.583 25.6053" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M26.5953 24.7339C27.6991 24.7339 28.5973 25.6312 28.5973 26.7374 28.5973 27.839 27.6991 28.7418 26.5953 28.7418 25.4891 28.7418 24.5896 27.839 24.5896 26.7374 24.5896 25.6312 25.4891 24.7339 26.5953 24.7339" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M25.5002 31.7274C25.5002 32.8336 24.5974 33.7334 23.492 33.7334 22.3882 33.7334 21.4884 32.8336 21.4884 31.7274 21.4884 30.6204 22.3882 29.7232 23.492 29.7232 24.5974 29.7232 25.5002 30.6204 25.5002 31.7274" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M27.2196 33.3603C28.3272 33.3603 29.227 34.2593 29.227 35.3663 29.227 36.4709 28.3272 37.3713 27.2196 37.3713 26.1164 37.3713 25.2176 36.4709 25.2176 35.3663 25.2176 34.2593 26.1164 33.3603 27.2196 33.3603" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M30.7195 36.8124C31.8271 36.8124 32.726 37.7136 32.726 38.8167 32.726 39.9213 31.8271 40.8201 30.7195 40.8201 29.6171 40.8201 28.7175 39.9213 28.7175 38.8167 28.7175 37.7136 29.6171 36.8124 30.7195 36.8124" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M17.2294 23.4739C17.2294 24.5809 16.3265 25.4797 15.2219 25.4797 14.1173 25.4797 13.2199 24.5809 13.2199 23.4739 13.2199 22.3709 14.1173 21.4695 15.2219 21.4695 16.3265 21.4695 17.2294 22.3709 17.2294 23.4739" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M18.206 19.342C17.1038 19.342 16.2009 18.4439 16.2009 17.3369 16.2009 16.2339 17.1038 15.3326 18.206 15.3326 19.3122 15.3326 20.2134 16.2339 20.2134 17.3369 20.2134 18.4439 19.3122 19.342 18.206 19.342" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M10.9495 20.8007C9.84177 20.8007 8.94284 19.9018 8.94284 18.7987 8.94284 17.6878 9.84177 16.7873 10.9495 16.7873 12.0526 16.7873 12.9538 17.6878 12.9538 18.7987 12.9538 19.9018 12.0526 20.8007 10.9495 20.8007" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M25.7506 18.5185C24.646 18.5185 23.7478 17.6211 23.7478 16.5142 23.7478 15.4111 24.646 14.5098 25.7506 14.5098 26.8584 14.5098 27.7572 15.4111 27.7572 16.5142 27.7572 17.6211 26.8584 18.5185 25.7506 18.5185" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M43.667 61.2888C42.5646 61.2888 41.6634 60.3884 41.6634 59.2814 41.6634 58.1768 42.5646 57.2802 43.667 57.2802 44.773 57.2802 45.6728 58.1768 45.6728 59.2814 45.6728 60.3884 44.773 61.2888 43.667 61.2888" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M57.8604 59.619C57.8604 58.5128 58.7592 57.6155 59.8654 57.6155 60.9724 57.6155 61.869 58.5128 61.869 59.619 61.869 60.7252 60.9724 61.628 59.8654 61.628 58.7592 61.628 57.8604 60.7252 57.8604 59.619" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M55.4282 57.5174C54.3236 57.5174 53.4232 56.6144 53.4232 55.5098 53.4232 54.4052 54.3236 53.507 55.4282 53.507 56.5336 53.507 57.4334 54.4052 57.4334 55.5098 57.4334 56.6144 56.5336 57.5174 55.4282 57.5174" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M60.6199 50.4147C61.7269 50.4147 62.6265 51.3113 62.6265 52.4183 62.6265 53.5251 61.7269 54.4257 60.6199 54.4257 59.5145 54.4257 58.6171 53.5251 58.6171 52.4183 58.6171 51.3113 59.5145 50.4147 60.6199 50.4147" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M60.9348 47.1982C59.8294 47.1982 58.9305 46.2962 58.9305 45.1892 58.9305 44.0846 59.8294 43.1865 60.9348 43.1865 62.0408 43.1865 62.939 44.0846 62.939 45.1892 62.939 46.2962 62.0408 47.1982 60.9348 47.1982" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M53.8933 48.6521C53.8933 47.5508 54.7915 46.6534 55.9001 46.6534 57.0047 46.6534 57.9029 47.5508 57.9029 48.6521 57.9029 49.7615 57.0047 50.6603 55.9001 50.6603 54.7915 50.6603 53.8933 49.7615 53.8933 48.6521" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M51.2578 49.7435C52.3656 49.7435 53.2644 50.6424 53.2644 51.7446 53.2644 52.8538 52.3656 53.7504 51.2578 53.7504 50.1541 53.7504 49.2551 52.8538 49.2551 51.7446 49.2551 50.6424 50.1541 49.7435 51.2578 49.7435" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M108.452 14.5004 108.428 5.32912C106.442 4.91303 104.456 4.47103 102.34 4.47103 98.6319 4.47103 96.7242 5.80174 95.6275 6.94952 94.4773 8.15148 93.1458 10.1927 93.1458 14.0553 93.1458 17.4782 94.3736 19.5681 95.1823 20.5872 95.5505 21.0322 96.4619 22.1024 97.952 22.7815 98.6052 23.0679 100.042 23.5382 101.975 23.5382 104.196 23.5382 106.599 22.7815 107.828 20.7991 108.375 19.9316 108.479 18.9675 108.532 18.6551L105.711 18.6551C105.633 19.101 105.581 19.437 105.399 19.8288 104.509 21.5268 102.104 21.5268 101.687 21.5268 101.141 21.5268 99.7821 21.4744 98.5282 20.6413 98.0573 20.3217 97.6395 19.9316 97.3256 19.4896 95.8881 17.5819 95.8622 15.1034 95.8622 14.3709 95.8622 13.8449 95.8881 12.281 96.3842 10.7658 96.6189 10.0608 97.1929 8.62017 98.9445 7.57758 99.5466 7.21096 100.773 6.63784 102.549 6.63784 103.413 6.63784 104.196 6.76974 105.895 7.15993L105.895 12.3587 101.715 12.3587 101.715 14.5004 108.452 14.5004" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M120.503 12.438C120.478 12.6987 120.478 12.9601 120.452 13.2223 120.373 13.7177 120.267 14.8144 119.093 15.598 118.361 16.0682 117.683 16.1193 117.369 16.1193 117.029 16.1193 116.427 16.0926 115.723 15.6506 114.495 14.8914 114.285 13.7962 114.052 12.4121L120.503 12.438ZM114.103 10.5813C114.129 10.2414 114.154 9.9022 114.208 9.58739 114.285 9.0402 114.443 7.8139 115.696 6.89692 116.481 6.32146 117.186 6.27278 117.577 6.27278 118.597 6.27278 119.588 6.76974 120.085 7.70949 120.242 7.9984 120.373 8.30849 120.529 8.96405L122.958 8.93655C122.751 7.91989 122.566 7.13402 121.941 6.29477 121.232 5.40527 119.955 4.51971 117.343 4.51971 116.715 4.51971 115.226 4.57701 113.79 5.69812 112.091 7.00292 111.517 9.0928 111.517 11.207 111.517 13.6627 112.43 15.2619 113.059 16.0156 114.103 17.2977 115.802 17.9493 117.474 17.9493 118.441 17.9493 119.172 17.7153 119.536 17.5819 121.785 16.7222 122.539 14.6041 122.751 13.7962 123.01 12.7772 123.01 11.6529 123.01 10.5813L114.103 10.5813" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M128.462 17.5308 128.565 15.9646C130.289 17.4782 130.812 17.6878 133.086 17.8472L133.086 15.2839C132.902 15.3114 132.248 15.4402 131.674 15.4402 129.792 15.4402 128.956 14.2649 128.67 13.5348 128.486 13.0402 128.486 12.5142 128.462 11.996L128.462 4.83452 126.006 4.83452 126.006 17.5308 128.462 17.5308" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M137.657 16.1711C138.02 16.5887 138.205 16.7442 138.439 16.9287 139.223 17.5057 140.477 17.8959 141.498 17.8959 142.044 17.8959 143.143 17.7663 144.266 16.9287 144.529 16.7222 144.813 16.4851 145.31 16.0156 146.616 17.1108 147.688 17.9234 149.463 17.9234 151.24 17.9234 153.043 16.8988 153.59 15.2321 153.853 14.5263 153.853 13.7389 153.853 12.9326L153.853 4.78349 151.451 4.78349 151.451 13.5073C151.451 13.5607 151.396 14.133 151.266 14.4729 150.899 15.4402 149.933 15.9905 148.915 15.9905 148.392 15.9905 147.348 15.8351 146.538 14.7344 145.859 13.8449 145.834 12.9601 145.834 11.8586L145.834 4.78349 143.376 4.78349C143.35 6.32146 143.35 7.86493 143.376 9.3817 143.401 10.5554 143.508 11.6231 143.219 13.8983 143.117 14.2398 143.04 14.5004 142.907 14.787 142.699 15.2321 142.252 16.0431 140.895 16.0431 139.98 16.0431 139.146 15.6506 138.545 14.9966 137.864 14.2649 137.76 13.4798 137.629 12.438L137.629 4.81097 135.173 4.81097 135.173 17.5308 137.523 17.5308 137.657 16.1711" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M163.337 11.2839C162.997 11.2839 162.108 11.2839 161.221 10.9739 160.122 10.5813 159.156 9.80171 159.156 8.51576 159.156 7.0563 160.384 6.34973 161.741 6.34973 162.131 6.34973 162.344 6.40076 162.707 6.47927 163.649 6.76974 164.588 7.50143 164.956 8.46316 165.034 8.6971 165.112 8.96405 165.112 9.46021 165.14 10.0357 165.14 10.608 165.112 11.207 164.51 11.262 163.936 11.2839 163.337 11.2839ZM157.38 14.0294C157.404 14.3709 157.432 15.2839 158.033 16.1193 158.972 17.4248 160.568 17.6627 161.009 17.7412 161.272 17.7663 161.847 17.8472 162.551 17.8472 163.074 17.8472 163.466 17.8472 163.991 17.7412 164.538 17.6627 166.391 17.3989 167.096 15.6231 167.413 14.8144 167.436 13.9509 167.436 13.0661L167.436 7.8924C167.462 6.53421 167.513 6.13933 167.905 4.83452L165.373 4.83452 165.14 6.19428C163.858 5.12265 162.942 4.44356 161.221 4.44356 160.931 4.44356 160.149 4.47103 159.363 4.75524 157.146 5.53874 156.805 7.60114 156.805 8.43569 156.805 10.0082 157.639 11.313 158.998 12.073 160.329 12.8266 161.953 12.8816 165.112 12.7772 165.163 14.0804 165.163 15.0476 164.068 15.7565 163.807 15.912 163.125 16.2512 162.288 16.2512 161.009 16.2512 160.356 15.5446 160.122 15.1034 159.992 14.8631 159.914 14.5789 159.782 14.0019L157.38 14.0294" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M173.408 16.226C174.715 17.1618 175.735 17.8472 177.431 17.8472 179.052 17.8472 180.777 16.9554 181.374 15.3891 181.635 14.6833 181.663 13.9744 181.715 13.1681L181.715 4.81097 179.366 4.81097 179.366 12.4121C179.258 13.5858 179.128 14.7611 178.186 15.5195 177.953 15.7039 177.431 16.0431 176.677 16.0431 176.359 16.0431 175.654 15.9646 174.978 15.4402 173.722 14.5263 173.617 13.1681 173.566 11.6231L173.566 4.83452 171.136 4.83452 171.136 11.8586 171.008 17.5544 173.408 17.5544 173.408 16.226" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M188.379 10.5318C188.871 9.17208 189.028 8.51576 189.317 7.13402L193.129 17.5544 195.796 17.5544 188.557 0 186.02 0 188.061 5.12265 183.331 17.5308 185.97 17.5308C186.44 16.0431 186.936 14.5789 187.435 13.1187L188.379 10.5318" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M106.527 43.4353C106.527 41.5346 106.319 40.803 105.924 40.2236 104.883 38.6039 102.924 38.5788 102.27 38.5788 98.3289 38.5788 98.1711 41.168 98.1711 43.2265L98.1711 55.0733 94.1217 55.0733 94.1217 43.4353C94.1217 41.6823 94.1766 40.2236 95.0856 38.7932 96.8671 35.9393 100.31 35.5249 102.193 35.5249 106.005 35.5249 110.468 37.3211 110.468 42.9415L110.468 55.0733 106.527 55.0733 106.527 43.4353" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M121.339 49.7097C118.465 49.7097 117.424 48.0084 117.055 47.4117L116.949 49.3972 113.241 49.3972C113.319 48.4787 113.319 47.0491 113.319 46.9918L113.319 36.1554 117.216 36.1554 117.216 43.8875C117.216 44.9081 117.447 45.5582 117.68 45.9021 118.1 46.5278 118.858 46.9211 119.686 46.9211 120.686 46.9211 121.288 46.3708 121.573 45.8 121.778 45.38 121.778 44.9081 121.778 44.3578L121.778 36.1554 125.726 36.1554 125.726 43.2902C125.726 45.7419 125.647 46.4218 125.361 47.2312 125.021 48.1451 123.921 49.7097 121.339 49.7097" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M128.667 36.1568 132.528 36.1568 132.528 49.3728 128.667 49.3728 128.667 36.1568" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M141.486 40.3908 138.505 49.3461 134.379 49.3461 139.213 36.1554 143.496 36.1554 148.249 49.3461 144.514 49.3461 141.486 40.3908" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M152.816 44.2C152.894 45.7419 153.597 47.1534 155.298 47.1534 157.539 47.1534 157.595 44.803 157.595 44.2L152.816 44.2ZM155.424 49.7913C153.989 49.7913 152.736 49.3728 151.719 48.6907 149.5 47.1534 148.974 44.5957 148.974 42.4517 148.974 40.3358 149.471 38.5607 150.672 37.3046 152.053 35.8726 154.201 35.6638 155.326 35.6638 157.255 35.6638 158.975 36.1827 159.945 37.2011 161.016 38.3276 161.145 39.4448 161.197 40.0783L157.672 40.0783C157.308 38.6118 156.34 38.2492 155.373 38.2492 152.682 38.2492 152.682 40.9128 152.682 41.7702L161.537 41.7702C161.591 42.8717 161.639 44.803 160.755 46.6055 159.555 49.0565 157.308 49.7913 155.424 49.7913" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M167.54 46.8638 167.462 49.3972 163.834 49.3972C163.911 48.6427 164.014 46.7342 164.014 46.1101L164.014 36.1568 167.878 36.1568 167.878 42.6613C167.878 44.3059 168.116 46.3165 172.031 45.9516L172.031 49.4239C168.902 49.5801 168.041 47.9881 167.54 46.8638" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M181.244 43.992 178.872 44.6436C177.722 44.9607 177.078 45.142 177.078 46.0307 177.078 46.8403 177.855 47.3371 178.895 47.3371 179.5 47.3371 180.674 47.228 180.781 45.7717L184.304 45.7717C184.199 48.4041 182.008 49.657 179.292 49.657 175.87 49.657 173.521 48.09 173.521 45.5361 173.521 42.8496 175.79 42.194 176.866 41.8777L179.266 41.2245C180.781 40.8061 181.091 40.3358 181.091 39.7344 181.091 38.9518 180.44 38.1706 179.054 38.1706 177.431 38.1706 176.917 39.1299 176.866 39.9708L173.229 39.9708C173.259 39.3427 173.338 38.2986 174.197 37.3856 175.398 36.1317 177.019 35.7705 178.719 35.7705 182.818 35.7705 184.773 38.0371 184.773 40.3114 184.773 42.1156 183.649 43.341 181.244 43.992" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M187.231 36.1568 191.095 36.1568 191.095 49.3728 187.231 49.3728 187.231 36.1568" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M199.619 53.9648 195.778 53.2644 195.778 49.2661 193.243 49.2661 193.243 46.7074 195.778 46.7074 195.778 39.4762C195.778 38.3762 195.778 35.9212 199.674 35.9212 200.302 35.9212 201.425 36.0038 202.673 36.3375L202.673 38.8756C202.208 38.8206 201.943 38.7932 201.368 38.7932 199.651 38.7932 199.651 39.5523 199.619 40.755L199.619 46.7074 202.757 46.7074 202.757 49.2661 199.619 49.2661 199.619 53.9648" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M189.203 55.2069C188.051 55.2069 187.123 54.2758 187.123 53.1296 187.123 51.9832 188.051 51.0458 189.203 51.0458 190.354 51.0458 191.281 51.9832 191.281 53.1296 191.281 54.2758 190.354 55.2069 189.203 55.2069" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M130.597 55.2069C129.447 55.2069 128.514 54.2758 128.514 53.1296 128.514 51.9832 129.447 51.0458 130.597 51.0458 131.745 51.0458 132.678 51.9832 132.678 53.1296 132.678 54.2758 131.745 55.2069 130.597 55.2069" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M208.336 49.4207 211.729 40.306 215.025 49.4207 219.02 49.4207 211.419 31.2916 207.5 31.2916 209.828 36.5415 204.315 49.4207 208.336 49.4207" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M229.333 46.5748C228.967 46.2633 228.784 46.001 228.68 45.8706 228.233 45.1617 227.946 44.0947 227.946 42.4712 227.946 42.3434 227.841 40.4065 228.862 39.232 228.941 39.1558 229.202 38.8654 229.409 38.7398 229.701 38.5529 230.221 38.2922 230.922 38.2922 231.055 38.2922 231.344 38.3197 231.658 38.4256 232.548 38.7122 233.067 39.3897 233.304 39.806 233.955 40.9341 233.929 42.8677 233.929 42.9463 233.929 43.1527 233.929 44.4866 233.485 45.4789 233.28 45.9499 233.043 46.2106 232.884 46.3668 232.647 46.625 232.414 46.7844 232.287 46.8355 232.072 46.9643 231.475 47.2012 230.792 47.1504 230.09 47.0994 229.594 46.7844 229.333 46.5748ZM235.836 47.9314C236.07 47.6967 236.62 47.0451 236.988 46.34 237.247 45.8165 237.432 45.1382 237.454 45.0353 237.563 44.6703 237.744 43.9118 237.744 42.9188 237.744 42.3944 237.696 41.8958 237.611 41.3801 237.432 40.1215 236.988 38.7398 235.708 37.5072 234.687 36.5415 233.25 35.7604 230.898 35.7604 228.651 35.7604 227.295 36.408 226.276 37.274 225.803 37.7176 225.492 38.0866 225.385 38.2138 224.68 39.1793 224.133 40.5926 224.133 42.8128 224.133 43.3647 224.133 44.4323 224.762 45.844 224.996 46.4454 225.229 46.8873 225.753 47.4627 226.718 48.5603 228.286 49.577 230.663 49.683 231.135 49.7097 233.043 49.7883 234.765 48.7448 235.002 48.6121 235.157 48.4825 235.366 48.3255L235.836 47.9314" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M247.174 52.1379C246.314 52.1655 245.634 52.1379 245.293 52.0618 244.539 51.8497 244.539 51.0169 244.539 50.5709L244.539 49.3698 246.991 49.3698 246.991 46.8355 244.559 46.8355 244.559 36.1238 240.801 36.1238 240.801 46.8355 238.371 46.8355 238.371 49.3698 240.829 49.3698 240.829 50.8842C240.829 50.9885 240.855 52.0069 241.14 52.7409 241.741 54.2561 243.048 54.7523 245.371 54.7523 245.974 54.7523 246.577 54.7004 247.202 54.6737L247.174 52.1379" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M264.522 47.0586C261.807 47.7415 260.428 48.0462 260.428 49.7983 260.428 51.3386 261.652 52.3562 263.534 52.3562 266.325 52.3562 266.538 50.136 266.588 49.4844L270.477 49.4844C270.477 50.1155 270.477 51.6315 269.408 52.9875 267.993 54.7625 265.672 55.2069 263.712 55.2069 258.469 55.2069 256.246 52.4661 256.246 49.3556 256.246 46.0959 258.696 44.7613 263.192 43.6387 265.598 43.0647 266.777 42.7751 266.777 41.1067 266.777 39.5131 265.389 38.4689 263.192 38.4689 259.719 38.4689 259.771 41.164 259.771 42.0511L255.649 42.0511C255.669 40.2158 255.723 35.5703 262.957 35.5703 268.178 35.5703 271.002 38.3143 271.002 41.7058 271.002 45.3862 267.788 46.2765 264.522 47.0586" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M278.726 53.1193 274.887 51.7076 274.887 49.1154 272.357 49.1154 272.357 46.5639 274.887 46.5639 274.887 39.3286C274.887 38.2349 274.887 35.7799 278.78 35.7799 279.403 35.7799 280.534 35.8561 281.779 36.1946L281.779 38.7279C281.31 38.6785 281.049 38.6534 280.478 38.6534 278.752 38.6534 278.752 39.407 278.726 40.6121L278.726 46.5639 281.861 46.5639 281.861 49.1154 278.726 49.1154 278.726 53.1193" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M296.273 40.5022 296.273 49.201 292.3 49.201 292.3 42.5395C292.3 40.2982 292.3 38.4415 289.82 38.4415 287.756 38.4415 287.756 40.1882 287.756 41.3407L287.756 49.201 283.843 49.201 283.843 40.9968C283.843 40.3492 283.843 38.5199 284.703 37.4483 285.434 36.4812 286.895 35.674 288.674 35.674 291.18 35.674 292.173 37.1932 292.565 37.7624L292.692 36.0139 296.456 36.0139C296.4 36.375 296.378 36.6098 296.352 36.9772 296.352 37.3172 296.323 37.6579 296.273 40.5022" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M314.315 53.1193 310.473 51.7076 310.473 49.1186 304.805 49.1186 304.805 53.1193 300.97 51.7076 300.97 49.1186 298.432 49.1186 298.432 46.5615 300.97 46.5615 300.97 39.3286C300.97 38.2349 300.97 35.7815 304.861 35.7815 305.486 35.7815 306.612 35.8561 307.86 36.1946L307.86 38.7319C307.397 38.6755 307.13 38.6495 306.557 38.6495 304.837 38.6495 304.837 39.407 304.805 40.6121L304.805 46.5615 310.473 46.5615 310.473 39.3286C310.473 38.2349 310.473 35.7815 314.366 35.7815 314.993 35.7815 316.116 35.8561 317.372 36.1946L317.372 38.7319C316.898 38.6755 316.637 38.6495 316.064 38.6495 314.341 38.6495 314.341 39.407 314.315 40.6121L314.315 46.5615 317.451 46.5615 317.451 49.1186 314.315 49.1186 314.315 53.1193" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M325.643 38.9124C323.058 38.9124 323.058 42.0984 323.058 42.7507 323.058 45.5739 324.262 46.6934 325.717 46.6934 328.072 46.6934 328.358 44.16 328.358 42.673 328.358 42.0984 328.358 38.9124 325.643 38.9124ZM328.517 47.3984C328.125 47.9738 327.238 49.2786 324.835 49.2786 321.05 49.2786 319.195 46.0959 319.195 42.7507 319.195 39.5626 320.972 36.2729 324.758 36.2729 325.699 36.2729 327.08 36.4536 328.31 38.0788 328.279 36.0627 328.279 35.5954 328.125 34.9463 327.865 33.7701 326.87 33.2207 325.717 33.2207 323.661 33.2207 323.478 34.6534 323.43 35.0435L319.718 35.0435C319.953 31.0483 323.637 30.8129 325.518 30.8129 328.044 30.8129 332.098 31.2854 332.098 36.1411L332.098 45.8878C332.098 47.2147 332.178 48.1043 332.277 49.1492L328.645 49.1492 328.517 47.3984" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M341.687 38.9619C341.321 38.5474 340.746 38.2082 340.043 38.2082 338.756 38.2082 338.16 39.1952 338.16 40.0886 338.16 41.6548 339.934 42.4382 342.42 42.2318 342.42 40.8201 342.36 39.7981 341.687 38.9619ZM346.076 44.656C346.076 45.2568 346.048 46.8222 345.156 47.8946 343.857 49.4098 341.554 49.5935 340.457 49.5935 339.209 49.5935 337.665 49.3839 336.461 48.5203 335.079 47.5272 334.996 46.1226 334.976 45.4105L338.756 45.4105C338.756 45.7277 338.756 46.1469 339.05 46.5875 339.39 47.0859 339.958 47.3238 340.513 47.3238 340.875 47.3238 341.902 47.1912 342.237 46.2247 342.392 45.7552 342.42 45.336 342.42 44.4772 341.138 44.4772 338.819 44.4772 337.195 43.7408 334.759 42.6181 334.399 40.6907 334.399 39.6371 334.399 38.6009 334.759 37.5252 335.551 36.7418 336.071 36.2472 336.932 35.7016 338.837 35.7016 339.57 35.7016 341.321 35.7016 342.782 37.8173 342.782 37.4223 342.782 36.8242 342.915 36.0139L346.418 36.0139C346.179 37.1106 346.102 38.2349 346.102 39.3522L346.076 44.656" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/><path d="M365.951 46.5615 365.951 49.1186 362.816 49.1186 362.816 53.1193 358.973 51.7117 358.973 49.1186 356.439 49.1186 356.443 49.1075C353.941 49.0165 353.155 47.7447 352.711 46.7169L352.634 49.2488 348.998 49.2488C349.083 48.4928 349.183 46.5875 349.183 45.9656L349.183 36.0139 353.05 36.0139 353.05 42.5128C353.05 44.16 352.988 46.5615 357.198 46.5615L358.973 46.5615 358.973 39.3286C358.973 38.2349 358.973 35.7815 362.864 35.7815 363.495 35.7815 364.621 35.8561 365.871 36.1946L365.871 38.7319C365.404 38.6755 365.139 38.6534 364.564 38.6534 362.838 38.6534 362.838 39.407 362.816 40.6121L362.816 46.5615 365.951 46.5615" fill="#FFFFFF" transform="matrix(1.00112 0 0 -1 59 235.161)"/></g></svg>
\ No newline at end of file
diff --git a/docs/assets/images/logos/bmwk.png b/docs/assets/images/logos/bmwk.png
new file mode 100644
index 0000000000000000000000000000000000000000..984e4c7ebc53f6c54ab2f375359dc1da04116152
--- /dev/null
+++ b/docs/assets/images/logos/bmwk.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:555f9bf46a20eac600d935819842d89968800211cc4e91d99411fd5687586927
+size 26109
diff --git a/docs/assets/images/logos/unicado-icon.png b/docs/assets/images/logos/unicado-icon.png
new file mode 100644
index 0000000000000000000000000000000000000000..c7682aebab6e3d59dec4ae2a785c8ba652e7b22e
--- /dev/null
+++ b/docs/assets/images/logos/unicado-icon.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:07d9e9f8e6b2601b4e72b2f8f73951f1dc4df9fa967fa37baa4c9bab0b78b693
+size 17039
diff --git a/docs/assets/images/logos/unicado.png b/docs/assets/images/logos/unicado.png
new file mode 100644
index 0000000000000000000000000000000000000000..67f96d7a6e5a8dd48f94c0e5772170a63f97043e
--- /dev/null
+++ b/docs/assets/images/logos/unicado.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4dc9ba3931e07144e0d8545d5a3bbe188cdbe370613f7b8a2e478ac44ff7d2a6
+size 43501
diff --git a/docs/assets/images/merge_request_workflow.png b/docs/assets/images/merge_request_workflow.png
new file mode 100644
index 0000000000000000000000000000000000000000..0a2a9590acf078fb7ed52809a56a95225ade5560
--- /dev/null
+++ b/docs/assets/images/merge_request_workflow.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:16cb99407e055542adabfb9a2ed30cfd5342bcba8455fbf1a89e0bb5a2e101a9
+size 564863
diff --git a/docs/assets/images/screenshots/cmake-gui.png b/docs/assets/images/screenshots/cmake-gui.png
new file mode 100644
index 0000000000000000000000000000000000000000..5ab6cb0a45203bfcd336e3d28e1987d7f8b96809
--- /dev/null
+++ b/docs/assets/images/screenshots/cmake-gui.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:212a282280ddf11616e720c08a4fe4ec9a40eb24c691f552dd23ac6125ec9070
+size 49802
diff --git a/docs/assets/images/screenshots/download-build-tools.png b/docs/assets/images/screenshots/download-build-tools.png
new file mode 100644
index 0000000000000000000000000000000000000000..dc123ffc351c3d10a17534de6e98488b8e12674a
--- /dev/null
+++ b/docs/assets/images/screenshots/download-build-tools.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b5d5e124c80f0df42d51c8168c8b082bcdddc6284cf50186096c6a3562e38c5f
+size 47556
diff --git a/docs/assets/images/screenshots/rce.png b/docs/assets/images/screenshots/rce.png
new file mode 100644
index 0000000000000000000000000000000000000000..970576537a867bd1b04462c4d96e3fc3e5a09da4
--- /dev/null
+++ b/docs/assets/images/screenshots/rce.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9a4c5e941db0fc035d83a536db5de09c59d7b619eb3112d7f8b57b9914e45734
+size 108843
diff --git a/docs/assets/images/screenshots/tigl.png b/docs/assets/images/screenshots/tigl.png
new file mode 100644
index 0000000000000000000000000000000000000000..c968f4215badeadf1489d30a90d516629f70f76e
--- /dev/null
+++ b/docs/assets/images/screenshots/tigl.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:377ad5b9274486aa4ee833c9c6f3c22974cd7c356e937bd27922bf2c9c31f599
+size 209966
diff --git a/docs/assets/images/tutorials/ISA.svg b/docs/assets/images/tutorials/ISA.svg
new file mode 100644
index 0000000000000000000000000000000000000000..85484dc02719769286317721238df12263f695fd
--- /dev/null
+++ b/docs/assets/images/tutorials/ISA.svg
@@ -0,0 +1,1649 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<svg
+   width="500pt"
+   height="620pt"
+   viewBox="0 0 500 620"
+   version="1.1"
+   id="svg170"
+   sodipodi:docname="ISA.svg"
+   inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns:xlink="http://www.w3.org/1999/xlink"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg"
+   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
+   xmlns:cc="http://creativecommons.org/ns#"
+   xmlns:dc="http://purl.org/dc/elements/1.1/">
+  <sodipodi:namedview
+     id="namedview170"
+     pagecolor="#ffffff"
+     bordercolor="#666666"
+     borderopacity="1.0"
+     inkscape:showpageshadow="2"
+     inkscape:pageopacity="0.0"
+     inkscape:pagecheckerboard="0"
+     inkscape:deskcolor="#d1d1d1"
+     inkscape:document-units="pt"
+     inkscape:zoom="1"
+     inkscape:cx="596.5"
+     inkscape:cy="444.5"
+     inkscape:window-width="2400"
+     inkscape:window-height="1271"
+     inkscape:window-x="2391"
+     inkscape:window-y="-9"
+     inkscape:window-maximized="1"
+     inkscape:current-layer="figure_1" />
+  <metadata
+     id="metadata1">
+    <rdf:RDF>
+      <cc:Work>
+        <dc:type
+           rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
+        <dc:date>2025-01-02T12:04:39.805810</dc:date>
+        <dc:format>image/svg+xml</dc:format>
+        <dc:creator>
+          <cc:Agent>
+            <dc:title>Matplotlib v3.6.3, https://matplotlib.org/</dc:title>
+          </cc:Agent>
+        </dc:creator>
+      </cc:Work>
+    </rdf:RDF>
+  </metadata>
+  <defs
+     id="defs1">
+    <style
+       type="text/css"
+       id="style1">*{stroke-linejoin: round; stroke-linecap: butt}</style>
+    <clipPath
+       id="pcafb47f5b0-3">
+      <rect
+         x="72"
+         y="86.400002"
+         width="446.39999"
+         height="554.40002"
+         id="rect170-5" />
+    </clipPath>
+    <clipPath
+       id="pcafb47f5b0-2">
+      <rect
+         x="72"
+         y="86.400002"
+         width="446.39999"
+         height="554.40002"
+         id="rect170-1" />
+    </clipPath>
+    <clipPath
+       id="pcafb47f5b0-5">
+      <rect
+         x="72"
+         y="86.400002"
+         width="446.39999"
+         height="554.40002"
+         id="rect170-7" />
+    </clipPath>
+  </defs>
+  <g
+     id="figure_1">
+    <g
+       id="axes_1"
+       transform="translate(-44.25,-54.75)">
+      <g
+         id="patch_2"
+         transform="matrix(1.1008065,0,0,1.1082251,-32.758064,-36.350649)"
+         style="stroke-width:0.905379">
+        <path
+           d="M 72,640.8 H 518.4 V 86.4 H 72 Z"
+           style="fill:#ffffff;stroke-width:0.859888"
+           id="path2" />
+      </g>
+      <g
+         id="matplotlib.axis_1">
+        <g
+           id="xtick_1">
+          <g
+             id="line2d_1">
+            <path
+               d="M 72,640.8 V 86.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path3" />
+          </g>
+          <g
+             id="line2d_2">
+            <defs
+               id="defs3">
+              <path
+                 id="m851d0a4cd9"
+                 d="M 0,0 V -3.5"
+                 style="stroke:#1a1a1a;stroke-width:0.8" />
+            </defs>
+            <g
+               id="g3">
+              <use
+                 xlink:href="#m851d0a4cd9"
+                 x="72"
+                 y="640.79999"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use3" />
+            </g>
+          </g>
+          <g
+             id="text_1">
+            <!-- −60 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,59.337187,653.41813)"
+               id="g6">
+              <defs
+                 id="defs4">
+                <path
+                   id="DejaVuSans-2212"
+                   d="M 678,2272 H 4684 V 1741 H 678 Z"
+                   transform="scale(0.015625)" />
+                <path
+                   id="DejaVuSans-36"
+                   d="m 2113,2584 q -425,0 -674,-291 -248,-290 -248,-796 0,-503 248,-796 249,-292 674,-292 425,0 673,292 248,293 248,796 0,506 -248,796 -248,291 -673,291 z m 1253,1979 v -575 q -238,112 -480,171 -242,60 -480,60 -625,0 -955,-422 -329,-422 -376,-1275 184,272 462,417 279,145 613,145 703,0 1111,-427 408,-426 408,-1160 0,-719 -425,-1154 -425,-434 -1131,-434 -810,0 -1238,620 -428,621 -428,1799 0,1106 525,1764 525,658 1409,658 238,0 480,-47 242,-47 505,-140 z"
+                   transform="scale(0.015625)" />
+                <path
+                   id="DejaVuSans-30"
+                   d="m 2034,4250 q -487,0 -733,-480 -245,-479 -245,-1442 0,-959 245,-1439 246,-480 733,-480 491,0 736,480 246,480 246,1439 0,963 -246,1442 -245,480 -736,480 z m 0,500 q 785,0 1199,-621 414,-620 414,-1801 0,-1178 -414,-1799 -414,-620 -1199,-620 -784,0 -1198,620 -414,621 -414,1799 0,1181 414,1801 414,621 1198,621 z"
+                   transform="scale(0.015625)" />
+              </defs>
+              <use
+                 xlink:href="#DejaVuSans-2212"
+                 id="use4" />
+              <use
+                 xlink:href="#DejaVuSans-36"
+                 x="83.789062"
+                 id="use5" />
+              <use
+                 xlink:href="#DejaVuSans-30"
+                 x="147.41211"
+                 id="use6" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="xtick_2">
+          <g
+             id="line2d_3">
+            <path
+               d="M 161.28,640.8 V 86.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path6" />
+          </g>
+          <g
+             id="line2d_4">
+            <g
+               id="g7">
+              <use
+                 xlink:href="#m851d0a4cd9"
+                 x="161.28"
+                 y="640.79999"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use7" />
+            </g>
+          </g>
+          <g
+             id="text_2">
+            <!-- −40 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,148.61719,653.41813)"
+               id="g10">
+              <defs
+                 id="defs7">
+                <path
+                   id="DejaVuSans-34"
+                   d="M 2419,4116 825,1625 h 1594 z m -166,550 h 794 V 1625 h 666 V 1100 H 3047 V 0 H 2419 V 1100 H 313 v 609 z"
+                   transform="scale(0.015625)" />
+              </defs>
+              <use
+                 xlink:href="#DejaVuSans-2212"
+                 id="use8" />
+              <use
+                 xlink:href="#DejaVuSans-34"
+                 x="83.789062"
+                 id="use9" />
+              <use
+                 xlink:href="#DejaVuSans-30"
+                 x="147.41211"
+                 id="use10" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="xtick_3">
+          <g
+             id="line2d_5">
+            <path
+               d="M 250.56,640.8 V 86.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path10" />
+          </g>
+          <g
+             id="line2d_6">
+            <g
+               id="g11">
+              <use
+                 xlink:href="#m851d0a4cd9"
+                 x="250.56"
+                 y="640.79999"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use11" />
+            </g>
+          </g>
+          <g
+             id="text_3">
+            <!-- −20 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,237.89719,653.41813)"
+               id="g14">
+              <defs
+                 id="defs11">
+                <path
+                   id="DejaVuSans-32"
+                   d="M 1228,531 H 3431 V 0 H 469 v 531 q 359,372 979,998 621,627 780,809 303,340 423,576 121,236 121,464 0,372 -261,606 -261,235 -680,235 -297,0 -627,-103 -329,-103 -704,-313 v 638 q 381,153 712,231 332,78 607,78 725,0 1156,-363 431,-362 431,-968 0,-288 -108,-546 -107,-257 -392,-607 -78,-91 -497,-524 Q 1991,1309 1228,531 Z"
+                   transform="scale(0.015625)" />
+              </defs>
+              <use
+                 xlink:href="#DejaVuSans-2212"
+                 id="use12" />
+              <use
+                 xlink:href="#DejaVuSans-32"
+                 x="83.789062"
+                 id="use13" />
+              <use
+                 xlink:href="#DejaVuSans-30"
+                 x="147.41211"
+                 id="use14" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="xtick_4">
+          <g
+             id="line2d_7">
+            <path
+               d="M 339.84,640.8 V 86.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path14" />
+          </g>
+          <g
+             id="line2d_8">
+            <g
+               id="g15">
+              <use
+                 xlink:href="#m851d0a4cd9"
+                 x="339.84"
+                 y="640.79999"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use15" />
+            </g>
+          </g>
+          <g
+             id="text_4">
+            <!-- 0 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,336.0225,653.41813)"
+               id="g16">
+              <use
+                 xlink:href="#DejaVuSans-30"
+                 id="use16" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="xtick_5">
+          <g
+             id="line2d_9">
+            <path
+               d="M 429.12,640.8 V 86.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path16" />
+          </g>
+          <g
+             id="line2d_10">
+            <g
+               id="g17">
+              <use
+                 xlink:href="#m851d0a4cd9"
+                 x="429.12"
+                 y="640.79999"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use17" />
+            </g>
+          </g>
+          <g
+             id="text_5">
+            <!-- 20 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,421.485,653.41813)"
+               id="g19">
+              <use
+                 xlink:href="#DejaVuSans-32"
+                 id="use18" />
+              <use
+                 xlink:href="#DejaVuSans-30"
+                 x="63.623047"
+                 id="use19" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="xtick_6">
+          <g
+             id="line2d_11">
+            <path
+               d="M 518.4,640.8 V 86.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path19" />
+          </g>
+          <g
+             id="line2d_12">
+            <g
+               id="g20">
+              <use
+                 xlink:href="#m851d0a4cd9"
+                 x="518.40002"
+                 y="640.79999"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use20" />
+            </g>
+          </g>
+          <g
+             id="text_6">
+            <!-- 40 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,510.765,653.41813)"
+               id="g22">
+              <use
+                 xlink:href="#DejaVuSans-34"
+                 id="use21" />
+              <use
+                 xlink:href="#DejaVuSans-30"
+                 x="63.623047"
+                 id="use22" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="text_7">
+          <!-- Temperature (°C) -->
+          <g
+             style="fill:#1a1a1a"
+             transform="matrix(0.12,0,0,-0.12,243.41812,669.03188)"
+             id="g38">
+            <defs
+               id="defs22">
+              <path
+                 id="DejaVuSans-54"
+                 d="M -19,4666 H 3928 V 4134 H 2272 V 0 H 1638 V 4134 H -19 Z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-65"
+                 d="M 3597,1894 V 1613 H 953 q 38,-594 358,-905 320,-311 892,-311 331,0 642,81 311,81 618,244 V 178 Q 3153,47 2828,-22 2503,-91 2169,-91 1331,-91 842,396 353,884 353,1716 q 0,859 464,1363 464,505 1252,505 706,0 1117,-455 411,-454 411,-1235 z m -575,169 q -6,471 -264,752 -258,282 -683,282 -481,0 -770,-272 -289,-272 -333,-766 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-6d"
+                 d="m 3328,2828 q 216,388 516,572 300,184 706,184 547,0 844,-383 297,-382 297,-1088 V 0 h -578 v 2094 q 0,503 -179,746 -178,244 -543,244 -447,0 -707,-297 -259,-296 -259,-809 V 0 h -578 v 2094 q 0,506 -178,748 -178,242 -550,242 -441,0 -701,-298 -259,-298 -259,-808 V 0 H 581 v 3500 h 578 v -544 q 197,322 472,475 275,153 653,153 382,0 649,-194 267,-193 395,-562 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-70"
+                 d="M 1159,525 V -1331 H 581 v 4831 h 578 v -531 q 182,312 458,463 277,152 661,152 638,0 1036,-506 399,-506 399,-1331 0,-825 -399,-1332 -398,-506 -1036,-506 -384,0 -661,152 -276,152 -458,464 z m 1957,1222 q 0,634 -261,995 -261,361 -717,361 -457,0 -718,-361 -261,-361 -261,-995 0,-634 261,-995 261,-361 718,-361 456,0 717,361 261,361 261,995 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-72"
+                 d="m 2631,2963 q -97,56 -211,82 -114,27 -251,27 -488,0 -749,-317 -261,-317 -261,-911 V 0 H 581 v 3500 h 578 v -544 q 182,319 472,473 291,155 707,155 59,0 131,-8 72,-7 159,-23 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-61"
+                 d="m 2194,1759 q -697,0 -966,-159 -269,-159 -269,-544 0,-306 202,-486 202,-179 548,-179 479,0 768,339 289,339 289,901 v 128 z m 1147,238 V 0 H 2766 V 531 Q 2569,213 2275,61 1981,-91 1556,-91 q -537,0 -855,302 -317,302 -317,808 0,590 395,890 396,300 1180,300 h 807 v 57 q 0,397 -261,614 -261,217 -733,217 -300,0 -585,-72 -284,-72 -546,-216 v 532 q 315,122 612,182 297,61 578,61 760,0 1135,-394 375,-393 375,-1193 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-74"
+                 d="M 1172,4494 V 3500 H 2356 V 3053 H 1172 V 1153 q 0,-428 117,-550 117,-122 477,-122 h 590 V 0 H 1766 Q 1100,0 847,248 594,497 594,1153 V 3053 H 172 v 447 h 422 v 994 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-75"
+                 d="m 544,1381 v 2119 h 575 V 1403 q 0,-497 193,-746 194,-248 582,-248 465,0 735,297 271,297 271,810 v 1984 h 575 V 0 H 2900 V 538 Q 2691,219 2414,64 2138,-91 1772,-91 1169,-91 856,284 544,659 544,1381 Z m 1447,2203 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-20"
+                 transform="scale(0.015625)"
+                 d="" />
+              <path
+                 id="DejaVuSans-28"
+                 d="m 1984,4856 q -418,-718 -622,-1422 -203,-703 -203,-1425 0,-721 205,-1429 205,-708 620,-1424 h -500 q -468,735 -701,1444 -233,709 -233,1409 0,697 231,1403 232,707 703,1444 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-b0"
+                 d="m 1600,4347 q -250,0 -422,-174 -172,-173 -172,-423 0,-247 172,-417 172,-170 422,-170 250,0 422,170 172,170 172,417 0,247 -174,422 -173,175 -420,175 z m 0,403 q 200,0 384,-77 185,-76 319,-220 144,-140 216,-319 72,-178 72,-384 0,-412 -289,-698 -289,-286 -708,-286 -422,0 -704,281 -281,281 -281,703 0,419 287,709 288,291 704,291 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-43"
+                 d="m 4122,4306 v -665 q -319,297 -680,443 -361,147 -767,147 -800,0 -1225,-489 -425,-489 -425,-1414 0,-922 425,-1411 425,-489 1225,-489 406,0 767,147 361,147 680,444 V 359 Q 3791,134 3420,21 3050,-91 2638,-91 1578,-91 968,557 359,1206 359,2328 q 0,1125 609,1773 610,649 1670,649 418,0 788,-111 371,-111 696,-333 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-29"
+                 d="m 513,4856 h 500 q 468,-737 701,-1444 233,-706 233,-1403 0,-700 -233,-1409 -233,-709 -701,-1444 H 513 q 415,716 620,1424 205,708 205,1429 0,722 -205,1425 -205,704 -620,1422 z"
+                 transform="scale(0.015625)" />
+            </defs>
+            <use
+               xlink:href="#DejaVuSans-54"
+               id="use23" />
+            <use
+               xlink:href="#DejaVuSans-65"
+               x="44.083984"
+               id="use24" />
+            <use
+               xlink:href="#DejaVuSans-6d"
+               x="105.60742"
+               id="use25" />
+            <use
+               xlink:href="#DejaVuSans-70"
+               x="203.01953"
+               id="use26" />
+            <use
+               xlink:href="#DejaVuSans-65"
+               x="266.49609"
+               id="use27" />
+            <use
+               xlink:href="#DejaVuSans-72"
+               x="328.01953"
+               id="use28" />
+            <use
+               xlink:href="#DejaVuSans-61"
+               x="369.13281"
+               id="use29" />
+            <use
+               xlink:href="#DejaVuSans-74"
+               x="430.41211"
+               id="use30" />
+            <use
+               xlink:href="#DejaVuSans-75"
+               x="469.62109"
+               id="use31" />
+            <use
+               xlink:href="#DejaVuSans-72"
+               x="533"
+               id="use32" />
+            <use
+               xlink:href="#DejaVuSans-65"
+               x="571.86328"
+               id="use33" />
+            <use
+               xlink:href="#DejaVuSans-20"
+               x="633.38672"
+               id="use34" />
+            <use
+               xlink:href="#DejaVuSans-28"
+               x="665.17383"
+               id="use35" />
+            <use
+               xlink:href="#DejaVuSans-b0"
+               x="704.1875"
+               id="use36" />
+            <use
+               xlink:href="#DejaVuSans-43"
+               x="754.1875"
+               id="use37" />
+            <use
+               xlink:href="#DejaVuSans-29"
+               x="824.01172"
+               id="use38" />
+          </g>
+        </g>
+      </g>
+      <g
+         id="matplotlib.axis_2">
+        <g
+           id="ytick_1">
+          <g
+             id="line2d_13">
+            <path
+               d="M 72,640.8 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path38" />
+          </g>
+          <g
+             id="line2d_14">
+            <defs
+               id="defs38">
+              <path
+                 id="m0a80696462"
+                 d="M 0,0 H 3.5"
+                 style="stroke:#1a1a1a;stroke-width:0.8" />
+            </defs>
+            <g
+               id="g39">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="640.79999"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use39" />
+            </g>
+          </g>
+          <g
+             id="text_8">
+            <!-- 0 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,328.705,645.35906)"
+               id="g40" />
+          </g>
+        </g>
+        <g
+           id="ytick_2">
+          <g
+             id="line2d_15">
+            <path
+               d="M 72,585.36 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path40" />
+          </g>
+          <g
+             id="line2d_16">
+            <g
+               id="g41">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="585.35999"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use41" />
+            </g>
+          </g>
+          <g
+             id="text_9">
+            <!-- 2 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,328.705,589.91906)"
+               id="g42">
+              <use
+                 xlink:href="#DejaVuSans-32"
+                 id="use42" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="ytick_3">
+          <g
+             id="line2d_17">
+            <path
+               d="M 72,529.92 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path42" />
+          </g>
+          <g
+             id="line2d_18">
+            <g
+               id="g43">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="529.91998"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use43" />
+            </g>
+          </g>
+          <g
+             id="text_10">
+            <!-- 4 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,328.705,534.47906)"
+               id="g44">
+              <use
+                 xlink:href="#DejaVuSans-34"
+                 id="use44" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="ytick_4">
+          <g
+             id="line2d_19">
+            <path
+               d="M 72,474.48 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path44" />
+          </g>
+          <g
+             id="line2d_20">
+            <g
+               id="g45">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="474.48001"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use45" />
+            </g>
+          </g>
+          <g
+             id="text_11">
+            <!-- 6 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,328.705,479.03906)"
+               id="g46">
+              <use
+                 xlink:href="#DejaVuSans-36"
+                 id="use46" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="ytick_5">
+          <g
+             id="line2d_21">
+            <path
+               d="M 72,419.04 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path46" />
+          </g>
+          <g
+             id="line2d_22">
+            <g
+               id="g47">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="419.04001"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use47" />
+            </g>
+          </g>
+          <g
+             id="text_12">
+            <!-- 8 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,328.705,423.59906)"
+               id="g48">
+              <defs
+                 id="defs47">
+                <path
+                   id="DejaVuSans-38"
+                   d="m 2034,2216 q -450,0 -708,-241 -257,-241 -257,-662 0,-422 257,-663 258,-241 708,-241 450,0 709,242 260,243 260,662 0,421 -258,662 -257,241 -711,241 z m -631,268 q -406,100 -633,378 -226,279 -226,679 0,559 398,884 399,325 1092,325 697,0 1094,-325 397,-325 397,-884 0,-400 -227,-679 -226,-278 -629,-378 456,-106 710,-416 255,-309 255,-755 Q 3634,634 3220,271 2806,-91 2034,-91 1263,-91 848,271 434,634 434,1313 q 0,446 256,755 257,310 713,416 z m -231,997 q 0,-362 226,-565 227,-203 636,-203 407,0 636,203 230,203 230,565 0,363 -230,566 -229,203 -636,203 -409,0 -636,-203 -226,-203 -226,-566 z"
+                   transform="scale(0.015625)" />
+              </defs>
+              <use
+                 xlink:href="#DejaVuSans-38"
+                 id="use48" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="ytick_6">
+          <g
+             id="line2d_23">
+            <path
+               d="M 72,363.6 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path48" />
+          </g>
+          <g
+             id="line2d_24">
+            <g
+               id="g49">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="363.60001"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use49" />
+            </g>
+          </g>
+          <g
+             id="text_13">
+            <!-- 10 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,321.07,368.15906)"
+               id="g51">
+              <defs
+                 id="defs49">
+                <path
+                   id="DejaVuSans-31"
+                   d="M 794,531 H 1825 V 4091 L 703,3866 v 575 l 1116,225 h 631 V 531 H 3481 V 0 H 794 Z"
+                   transform="scale(0.015625)" />
+              </defs>
+              <use
+                 xlink:href="#DejaVuSans-31"
+                 id="use50" />
+              <use
+                 xlink:href="#DejaVuSans-30"
+                 x="63.623047"
+                 id="use51" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="ytick_7">
+          <g
+             id="line2d_25">
+            <path
+               d="M 72,308.16 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path51" />
+          </g>
+          <g
+             id="line2d_26">
+            <g
+               id="g52">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="308.16"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use52" />
+            </g>
+          </g>
+          <g
+             id="text_14">
+            <!-- 12 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,321.07,312.71906)"
+               id="g54">
+              <use
+                 xlink:href="#DejaVuSans-31"
+                 id="use53" />
+              <use
+                 xlink:href="#DejaVuSans-32"
+                 x="63.623047"
+                 id="use54" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="ytick_8">
+          <g
+             id="line2d_27">
+            <path
+               d="M 72,252.72 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path54" />
+          </g>
+          <g
+             id="line2d_28">
+            <g
+               id="g55">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="252.72"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use55" />
+            </g>
+          </g>
+          <g
+             id="text_15">
+            <!-- 14 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,321.07,257.27906)"
+               id="g57">
+              <use
+                 xlink:href="#DejaVuSans-31"
+                 id="use56" />
+              <use
+                 xlink:href="#DejaVuSans-34"
+                 x="63.623047"
+                 id="use57" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="ytick_9">
+          <g
+             id="line2d_29">
+            <path
+               d="M 72,197.28 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path57" />
+          </g>
+          <g
+             id="line2d_30">
+            <g
+               id="g58">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="197.28"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use58" />
+            </g>
+          </g>
+          <g
+             id="text_16">
+            <!-- 16 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,321.07,201.83906)"
+               id="g60">
+              <use
+                 xlink:href="#DejaVuSans-31"
+                 id="use59" />
+              <use
+                 xlink:href="#DejaVuSans-36"
+                 x="63.623047"
+                 id="use60" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="ytick_10">
+          <g
+             id="line2d_31">
+            <path
+               d="M 72,141.84 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path60" />
+          </g>
+          <g
+             id="line2d_32">
+            <g
+               id="g61">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="141.84"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use61" />
+            </g>
+          </g>
+          <g
+             id="text_17">
+            <!-- 18 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,321.07,146.39906)"
+               id="g63">
+              <use
+                 xlink:href="#DejaVuSans-31"
+                 id="use62" />
+              <use
+                 xlink:href="#DejaVuSans-38"
+                 x="63.623047"
+                 id="use63" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="ytick_11">
+          <g
+             id="line2d_33">
+            <path
+               d="M 72,86.4 H 518.4"
+               clip-path="url(#pcafb47f5b0)"
+               style="fill:none;stroke:#b0b0b0;stroke-width:0.6;stroke-dasharray:2.22, 0.96;stroke-dashoffset:0;stroke-opacity:0.5"
+               id="path63" />
+          </g>
+          <g
+             id="line2d_34">
+            <g
+               id="g64">
+              <use
+                 xlink:href="#m0a80696462"
+                 x="339.84"
+                 y="86.400002"
+                 style="fill:#1a1a1a;stroke:#1a1a1a;stroke-width:0.8"
+                 id="use64" />
+            </g>
+          </g>
+          <g
+             id="text_18">
+            <!-- 20 -->
+            <g
+               style="fill:#1a1a1a"
+               transform="matrix(0.12,0,0,-0.12,321.07,90.959062)"
+               id="g66">
+              <use
+                 xlink:href="#DejaVuSans-32"
+                 id="use65" />
+              <use
+                 xlink:href="#DejaVuSans-30"
+                 x="63.623047"
+                 id="use66" />
+            </g>
+          </g>
+        </g>
+        <g
+           id="text_19">
+          <!-- Altitude (km) -->
+          <g
+             style="fill:#1a1a1a"
+             transform="matrix(0,-0.12,-0.12,0,62.967438,397.54303)"
+             id="g79">
+            <defs
+               id="defs66">
+              <path
+                 id="DejaVuSans-41"
+                 d="M 2188,4044 1331,1722 h 1716 z m -357,622 h 716 L 4325,0 H 3669 L 3244,1197 H 1141 L 716,0 H 50 Z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-6c"
+                 d="m 603,4863 h 575 V 0 H 603 Z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-69"
+                 d="m 603,3500 h 575 V 0 H 603 Z m 0,1363 h 575 V 4134 H 603 Z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-64"
+                 d="m 2906,2969 v 1894 h 575 V 0 H 2906 V 525 Q 2725,213 2448,61 2172,-91 1784,-91 1150,-91 751,415 353,922 353,1747 q 0,825 398,1331 399,506 1033,506 388,0 664,-152 277,-151 458,-463 z M 947,1747 q 0,-634 261,-995 261,-361 717,-361 456,0 718,361 263,361 263,995 0,634 -263,995 -262,361 -718,361 -456,0 -717,-361 -261,-361 -261,-995 z"
+                 transform="scale(0.015625)" />
+              <path
+                 id="DejaVuSans-6b"
+                 d="m 581,4863 h 578 V 1991 l 1716,1509 h 734 L 1753,1863 3688,0 H 2938 L 1159,1709 V 0 H 581 Z"
+                 transform="scale(0.015625)" />
+            </defs>
+            <use
+               xlink:href="#DejaVuSans-41"
+               id="use67" />
+            <use
+               xlink:href="#DejaVuSans-6c"
+               x="68.408203"
+               id="use68" />
+            <use
+               xlink:href="#DejaVuSans-74"
+               x="96.191406"
+               id="use69" />
+            <use
+               xlink:href="#DejaVuSans-69"
+               x="135.40039"
+               id="use70" />
+            <use
+               xlink:href="#DejaVuSans-74"
+               x="163.18359"
+               id="use71" />
+            <use
+               xlink:href="#DejaVuSans-75"
+               x="202.39258"
+               id="use72" />
+            <use
+               xlink:href="#DejaVuSans-64"
+               x="265.77148"
+               id="use73" />
+            <use
+               xlink:href="#DejaVuSans-65"
+               x="329.24805"
+               id="use74" />
+            <use
+               xlink:href="#DejaVuSans-20"
+               x="390.77148"
+               id="use75" />
+            <use
+               xlink:href="#DejaVuSans-28"
+               x="422.55859"
+               id="use76" />
+            <use
+               xlink:href="#DejaVuSans-6b"
+               x="461.57227"
+               id="use77" />
+            <use
+               xlink:href="#DejaVuSans-6d"
+               x="519.48242"
+               id="use78" />
+            <use
+               xlink:href="#DejaVuSans-29"
+               x="616.89453"
+               id="use79" />
+          </g>
+        </g>
+      </g>
+      <g
+         id="line2d_35">
+        <path
+           d="M 406.8,640.8 87.624,335.88 V 86.4"
+           clip-path="url(#pcafb47f5b0)"
+           style="fill:none;stroke:#0000ff;stroke-width:2;stroke-linecap:square"
+           id="path79" />
+      </g>
+      <g
+         id="line2d_35-3"
+         style="stroke:#00ffff;stroke-linecap:butt;stroke-linejoin:round"
+         transform="translate(49.841413,-0.81247633)">
+        <path
+           d="M 406.8,640.8 87.624,335.88 V 86.4"
+           clip-path="url(#pcafb47f5b0-2)"
+           style="fill:none;stroke:#00ffff;stroke-width:2;stroke-linecap:square;stroke-linejoin:round"
+           id="path79-2" />
+      </g>
+      <g
+         id="line2d_36">
+        <path
+           d="M 72,335.88 H 518.4"
+           clip-path="url(#pcafb47f5b0)"
+           style="fill:#666666;stroke:#919191;stroke-dasharray:3.7, 1.6;stroke-dashoffset:0;stroke-opacity:1"
+           id="path80" />
+      </g>
+      <g
+         id="line2d_36-9"
+         style="fill:#666666;stroke-width:1.20756;stroke-linecap:butt;stroke-linejoin:round"
+         transform="matrix(-0.00236438,0.68577482,-0.9999972,-0.00162144,423.92732,291.29755)">
+        <path
+           d="M 72,335.88 H 518.4"
+           clip-path="url(#pcafb47f5b0-3)"
+           style="fill:#b8b8b8;fill-opacity:1;stroke:#656565;stroke-width:1.20756;stroke-linecap:butt;stroke-linejoin:round;stroke-dasharray:4.46797, 1.9321;stroke-dashoffset:0;stroke-opacity:1"
+           id="path80-1" />
+      </g>
+      <g
+         id="patch_3">
+        <path
+           d="M 339.84,640.8 V 86.4"
+           style="fill:none;stroke:#000000;stroke-width:1.5;stroke-linecap:square;stroke-linejoin:miter"
+           id="path81" />
+      </g>
+      <g
+         id="patch_4">
+        <path
+           d="M 72,640.8 H 518.4"
+           style="fill:none;stroke:#1a1a1a;stroke-linecap:square;stroke-linejoin:miter"
+           id="path82" />
+      </g>
+      <g
+         id="text_20"
+         transform="translate(-8.7398844,10.404624)">
+        <!-- TROPOPAUSE = 36089 ft -->
+        <g
+           style="fill:#333333"
+           transform="matrix(0.1,0,0,-0.1,384.48,322.02)"
+           id="g102">
+          <defs
+             id="defs82">
+            <path
+               id="DejaVuSans-52"
+               d="m 2841,2188 q 203,-69 395,-294 192,-225 386,-619 L 4263,0 h -679 l -596,1197 q -232,469 -449,622 -217,153 -592,153 H 1259 V 0 H 628 v 4666 h 1425 q 800,0 1194,-335 394,-334 394,-1009 0,-441 -205,-732 -205,-290 -595,-402 z M 1259,4147 V 2491 h 794 q 456,0 689,211 233,211 233,620 0,409 -233,617 -233,208 -689,208 z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-4f"
+               d="m 2522,4238 q -688,0 -1093,-513 -404,-512 -404,-1397 0,-881 404,-1394 405,-512 1093,-512 687,0 1089,512 402,513 402,1394 0,885 -402,1397 -402,513 -1089,513 z m 0,512 q 981,0 1568,-658 588,-658 588,-1764 0,-1103 -588,-1761 -587,-658 -1568,-658 -984,0 -1574,656 -589,657 -589,1763 0,1106 589,1764 590,658 1574,658 z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-50"
+               d="M 1259,4147 V 2394 h 794 q 441,0 681,228 241,228 241,650 0,419 -241,647 -240,228 -681,228 z m -631,519 h 1425 q 785,0 1186,-355 402,-355 402,-1039 0,-691 -402,-1044 -401,-353 -1186,-353 H 1259 V 0 H 628 Z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-55"
+               d="m 556,4666 h 635 V 1831 q 0,-750 271,-1080 272,-329 882,-329 606,0 878,329 272,330 272,1080 v 2835 h 634 V 1753 Q 4128,841 3676,375 3225,-91 2344,-91 1459,-91 1007,375 556,841 556,1753 Z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-53"
+               d="m 3425,4513 v -616 q -359,172 -678,256 -319,85 -616,85 -515,0 -795,-200 -280,-200 -280,-569 0,-310 186,-468 186,-157 705,-254 l 381,-78 q 706,-135 1042,-474 336,-339 336,-907 0,-679 -455,-1029 -454,-350 -1332,-350 -331,0 -705,75 -373,75 -773,222 v 650 q 384,-215 753,-325 369,-109 725,-109 540,0 834,212 294,213 294,607 0,343 -211,537 -211,194 -692,291 l -385,75 q -706,140 -1022,440 -315,300 -315,835 0,619 436,975 436,356 1201,356 329,0 669,-60 341,-59 697,-177 z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-45"
+               d="M 628,4666 H 3578 V 4134 H 1259 V 2753 H 3481 V 2222 H 1259 V 531 H 3634 V 0 H 628 Z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-3d"
+               d="M 678,2906 H 4684 V 2381 H 678 Z m 0,-1275 H 4684 V 1100 H 678 Z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-33"
+               d="m 2597,2516 q 453,-97 707,-404 255,-306 255,-756 0,-690 -475,-1069 -475,-378 -1350,-378 -293,0 -604,58 -311,58 -642,174 v 609 q 262,-153 574,-231 313,-78 654,-78 593,0 904,234 311,234 311,681 0,413 -289,645 -289,233 -804,233 h -544 v 519 h 569 q 465,0 712,186 247,186 247,536 0,359 -255,551 -254,193 -729,193 -260,0 -557,-57 -297,-56 -653,-174 v 562 q 360,100 674,150 314,50 592,50 719,0 1137,-327 419,-326 419,-882 0,-388 -222,-655 -222,-267 -631,-370 z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-39"
+               d="m 703,97 v 575 q 238,-113 481,-172 244,-59 479,-59 625,0 954,420 330,420 377,1277 -181,-269 -460,-413 -278,-144 -615,-144 -700,0 -1108,423 -408,424 -408,1159 0,718 425,1152 425,435 1131,435 810,0 1236,-621 427,-620 427,-1801 Q 3622,1225 3098,567 2575,-91 1691,-91 1453,-91 1209,-44 966,3 703,97 Z m 1256,1978 q 425,0 673,290 249,291 249,798 0,503 -249,795 -248,292 -673,292 -425,0 -673,-292 -248,-292 -248,-795 0,-507 248,-798 248,-290 673,-290 z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-66"
+               d="m 2375,4863 v -479 h -550 q -309,0 -430,-125 -120,-125 -120,-450 v -309 h 947 V 3053 H 1275 V 0 H 697 V 3053 H 147 v 447 h 550 v 244 q 0,584 272,851 272,268 862,268 z"
+               transform="scale(0.015625)" />
+          </defs>
+          <use
+             xlink:href="#DejaVuSans-54"
+             id="use82" />
+          <use
+             xlink:href="#DejaVuSans-52"
+             x="61.083984"
+             id="use83" />
+          <use
+             xlink:href="#DejaVuSans-4f"
+             x="130.56641"
+             id="use84" />
+          <use
+             xlink:href="#DejaVuSans-50"
+             x="209.27734"
+             id="use85" />
+          <use
+             xlink:href="#DejaVuSans-4f"
+             x="269.58008"
+             id="use86" />
+          <use
+             xlink:href="#DejaVuSans-50"
+             x="348.29102"
+             id="use87" />
+          <use
+             xlink:href="#DejaVuSans-41"
+             x="402.21875"
+             id="use88" />
+          <use
+             xlink:href="#DejaVuSans-55"
+             x="470.62695"
+             id="use89" />
+          <use
+             xlink:href="#DejaVuSans-53"
+             x="543.82031"
+             id="use90" />
+          <use
+             xlink:href="#DejaVuSans-45"
+             x="607.29688"
+             id="use91" />
+          <use
+             xlink:href="#DejaVuSans-20"
+             x="670.48047"
+             id="use92" />
+          <use
+             xlink:href="#DejaVuSans-3d"
+             x="702.26758"
+             id="use93" />
+          <use
+             xlink:href="#DejaVuSans-20"
+             x="786.05664"
+             id="use94" />
+          <use
+             xlink:href="#DejaVuSans-33"
+             x="817.84375"
+             id="use95" />
+          <use
+             xlink:href="#DejaVuSans-36"
+             x="881.4668"
+             id="use96" />
+          <use
+             xlink:href="#DejaVuSans-30"
+             x="945.08984"
+             id="use97" />
+          <use
+             xlink:href="#DejaVuSans-38"
+             x="1008.7129"
+             id="use98" />
+          <use
+             xlink:href="#DejaVuSans-39"
+             x="1072.3359"
+             id="use99" />
+          <use
+             xlink:href="#DejaVuSans-20"
+             x="1135.959"
+             id="use100" />
+          <use
+             xlink:href="#DejaVuSans-66"
+             x="1167.7461"
+             id="use101" />
+          <use
+             xlink:href="#DejaVuSans-74"
+             x="1201.2012"
+             id="use102" />
+        </g>
+      </g>
+      <g
+         id="text_21"
+         transform="translate(-34.543353,-20.809249)">
+        <!-- TROPOSPHERE -->
+        <g
+           style="fill:#333333"
+           transform="matrix(0.12,0,0,-0.12,429.17156,474.48)"
+           id="g113">
+          <defs
+             id="defs102">
+            <path
+               id="DejaVuSans-48"
+               d="m 628,4666 h 631 V 2753 h 2294 v 1913 h 631 V 0 H 3553 V 2222 H 1259 V 0 H 628 Z"
+               transform="scale(0.015625)" />
+          </defs>
+          <use
+             xlink:href="#DejaVuSans-54"
+             id="use103" />
+          <use
+             xlink:href="#DejaVuSans-52"
+             x="61.083984"
+             id="use104" />
+          <use
+             xlink:href="#DejaVuSans-4f"
+             x="130.56641"
+             id="use105" />
+          <use
+             xlink:href="#DejaVuSans-50"
+             x="209.27734"
+             id="use106" />
+          <use
+             xlink:href="#DejaVuSans-4f"
+             x="269.58008"
+             id="use107" />
+          <use
+             xlink:href="#DejaVuSans-53"
+             x="348.29102"
+             id="use108" />
+          <use
+             xlink:href="#DejaVuSans-50"
+             x="411.76758"
+             id="use109" />
+          <use
+             xlink:href="#DejaVuSans-48"
+             x="472.07031"
+             id="use110" />
+          <use
+             xlink:href="#DejaVuSans-45"
+             x="547.26562"
+             id="use111" />
+          <use
+             xlink:href="#DejaVuSans-52"
+             x="610.44922"
+             id="use112" />
+          <use
+             xlink:href="#DejaVuSans-45"
+             x="679.93164"
+             id="use113" />
+        </g>
+      </g>
+      <g
+         id="text_22"
+         transform="translate(-37.080189,25.897275)">
+        <!-- STRATOSPHERE -->
+        <g
+           style="fill:#333333"
+           transform="matrix(0.12,0,0,-0.12,426.63937,197.28)"
+           id="g125">
+          <use
+             xlink:href="#DejaVuSans-53"
+             id="use114" />
+          <use
+             xlink:href="#DejaVuSans-54"
+             x="63.476562"
+             id="use115" />
+          <use
+             xlink:href="#DejaVuSans-52"
+             x="124.56055"
+             id="use116" />
+          <use
+             xlink:href="#DejaVuSans-41"
+             x="190.04297"
+             id="use117" />
+          <use
+             xlink:href="#DejaVuSans-54"
+             x="250.70117"
+             id="use118" />
+          <use
+             xlink:href="#DejaVuSans-4f"
+             x="311.78516"
+             id="use119" />
+          <use
+             xlink:href="#DejaVuSans-53"
+             x="390.49609"
+             id="use120" />
+          <use
+             xlink:href="#DejaVuSans-50"
+             x="453.97266"
+             id="use121" />
+          <use
+             xlink:href="#DejaVuSans-48"
+             x="514.27539"
+             id="use122" />
+          <use
+             xlink:href="#DejaVuSans-45"
+             x="589.4707"
+             id="use123" />
+          <use
+             xlink:href="#DejaVuSans-52"
+             x="652.6543"
+             id="use124" />
+          <use
+             xlink:href="#DejaVuSans-45"
+             x="722.13672"
+             id="use125" />
+        </g>
+      </g>
+      <g
+         id="text_23"
+         transform="translate(20.393063,563.93063)">
+        <!-- -56.5°C -->
+        <g
+           style="fill:#333333"
+           transform="matrix(0.1,0,0,-0.1,68.695875,72.54)"
+           id="g132">
+          <defs
+             id="defs125">
+            <path
+               id="DejaVuSans-2d"
+               d="M 313,2009 H 1997 V 1497 H 313 Z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-35"
+               d="M 691,4666 H 3169 V 4134 H 1269 V 2991 q 137,47 274,70 138,23 276,23 781,0 1237,-428 457,-428 457,-1159 Q 3513,744 3044,326 2575,-91 1722,-91 1428,-91 1123,-41 819,9 494,109 v 635 q 281,-153 581,-228 300,-75 634,-75 541,0 856,284 316,284 316,772 0,487 -316,771 -315,285 -856,285 -253,0 -505,-56 -251,-56 -513,-175 z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-2e"
+               d="m 684,794 h 660 V 0 H 684 Z"
+               transform="scale(0.015625)" />
+          </defs>
+          <use
+             xlink:href="#DejaVuSans-2d"
+             id="use126" />
+          <use
+             xlink:href="#DejaVuSans-35"
+             x="36.083984"
+             id="use127" />
+          <use
+             xlink:href="#DejaVuSans-36"
+             x="99.707031"
+             id="use128" />
+          <use
+             xlink:href="#DejaVuSans-2e"
+             x="163.33008"
+             id="use129" />
+          <use
+             xlink:href="#DejaVuSans-35"
+             x="195.11719"
+             id="use130" />
+          <use
+             xlink:href="#DejaVuSans-b0"
+             x="258.74023"
+             id="use131" />
+          <use
+             xlink:href="#DejaVuSans-43"
+             x="308.74023"
+             id="use132" />
+        </g>
+      </g>
+      <g
+         id="text_24">
+        <!-- 15°C -->
+        <g
+           style="fill:#333333"
+           transform="matrix(0.1,0,0,-0.1,394.44609,626.94)"
+           id="g136">
+          <use
+             xlink:href="#DejaVuSans-31"
+             id="use133" />
+          <use
+             xlink:href="#DejaVuSans-35"
+             x="63.623047"
+             id="use134" />
+          <use
+             xlink:href="#DejaVuSans-b0"
+             x="127.24609"
+             id="use135" />
+          <use
+             xlink:href="#DejaVuSans-43"
+             x="177.24609"
+             id="use136" />
+        </g>
+      </g>
+      <g
+         id="text_24-9"
+         style="stroke-linecap:butt;stroke-linejoin:round"
+         transform="translate(54.9375,-3)">
+        <!-- 15°C -->
+      </g>
+      <g
+         id="text_25"
+         transform="translate(0,-7.0628932)">
+        <!-- ISA Temperature-Altitude Profile -->
+        <g
+           style="fill:#333333"
+           transform="matrix(0.14,0,0,-0.14,183.50078,80.4)"
+           id="g168">
+          <defs
+             id="defs136">
+            <path
+               id="DejaVuSans-49"
+               d="m 628,4666 h 631 V 0 H 628 Z"
+               transform="scale(0.015625)" />
+            <path
+               id="DejaVuSans-6f"
+               d="m 1959,3097 q -462,0 -731,-361 -269,-361 -269,-989 0,-628 267,-989 268,-361 733,-361 460,0 728,362 269,363 269,988 0,622 -269,986 -268,364 -728,364 z m 0,487 q 750,0 1178,-488 429,-487 429,-1349 Q 3566,888 3137,398 2709,-91 1959,-91 1206,-91 779,398 353,888 353,1747 q 0,862 426,1349 427,488 1180,488 z"
+               transform="scale(0.015625)" />
+          </defs>
+          <use
+             xlink:href="#DejaVuSans-49"
+             id="use137" />
+          <use
+             xlink:href="#DejaVuSans-53"
+             x="29.492188"
+             id="use138" />
+          <use
+             xlink:href="#DejaVuSans-41"
+             x="94.84375"
+             id="use139" />
+          <use
+             xlink:href="#DejaVuSans-20"
+             x="163.25195"
+             id="use140" />
+          <use
+             xlink:href="#DejaVuSans-54"
+             x="195.03906"
+             id="use141" />
+          <use
+             xlink:href="#DejaVuSans-65"
+             x="239.12305"
+             id="use142" />
+          <use
+             xlink:href="#DejaVuSans-6d"
+             x="300.64648"
+             id="use143" />
+          <use
+             xlink:href="#DejaVuSans-70"
+             x="398.05859"
+             id="use144" />
+          <use
+             xlink:href="#DejaVuSans-65"
+             x="461.53516"
+             id="use145" />
+          <use
+             xlink:href="#DejaVuSans-72"
+             x="523.05859"
+             id="use146" />
+          <use
+             xlink:href="#DejaVuSans-61"
+             x="564.17188"
+             id="use147" />
+          <use
+             xlink:href="#DejaVuSans-74"
+             x="625.45117"
+             id="use148" />
+          <use
+             xlink:href="#DejaVuSans-75"
+             x="664.66016"
+             id="use149" />
+          <use
+             xlink:href="#DejaVuSans-72"
+             x="728.03906"
+             id="use150" />
+          <use
+             xlink:href="#DejaVuSans-65"
+             x="766.90234"
+             id="use151" />
+          <use
+             xlink:href="#DejaVuSans-2d"
+             x="828.42578"
+             id="use152" />
+          <use
+             xlink:href="#DejaVuSans-41"
+             x="862.25977"
+             id="use153" />
+          <use
+             xlink:href="#DejaVuSans-6c"
+             x="930.66797"
+             id="use154" />
+          <use
+             xlink:href="#DejaVuSans-74"
+             x="958.45117"
+             id="use155" />
+          <use
+             xlink:href="#DejaVuSans-69"
+             x="997.66016"
+             id="use156" />
+          <use
+             xlink:href="#DejaVuSans-74"
+             x="1025.4434"
+             id="use157" />
+          <use
+             xlink:href="#DejaVuSans-75"
+             x="1064.6523"
+             id="use158" />
+          <use
+             xlink:href="#DejaVuSans-64"
+             x="1128.0312"
+             id="use159" />
+          <use
+             xlink:href="#DejaVuSans-65"
+             x="1191.5078"
+             id="use160" />
+          <use
+             xlink:href="#DejaVuSans-20"
+             x="1253.0312"
+             id="use161" />
+          <use
+             xlink:href="#DejaVuSans-50"
+             x="1284.8184"
+             id="use162" />
+          <use
+             xlink:href="#DejaVuSans-72"
+             x="1343.3711"
+             id="use163" />
+          <use
+             xlink:href="#DejaVuSans-6f"
+             x="1382.2344"
+             id="use164" />
+          <use
+             xlink:href="#DejaVuSans-66"
+             x="1443.416"
+             id="use165" />
+          <use
+             xlink:href="#DejaVuSans-69"
+             x="1478.6211"
+             id="use166" />
+          <use
+             xlink:href="#DejaVuSans-6c"
+             x="1506.4043"
+             id="use167" />
+          <use
+             xlink:href="#DejaVuSans-65"
+             x="1534.1875"
+             id="use168" />
+        </g>
+      </g>
+      <g
+         id="PathCollection_1">
+        <defs
+           id="defs168">
+          <path
+             id="m31f8f2b223"
+             d="m -3,3 6,-6 m -6,0 6,6"
+             style="stroke:#000000;stroke-width:1.5" />
+        </defs>
+        <g
+           clip-path="url(#pcafb47f5b0)"
+           id="g169">
+          <use
+             xlink:href="#m31f8f2b223"
+             x="87.624001"
+             y="335.88"
+             style="stroke:#000000;stroke-width:1.5"
+             id="use169" />
+        </g>
+      </g>
+      <g
+         id="PathCollection_2">
+        <g
+           clip-path="url(#pcafb47f5b0)"
+           id="g170">
+          <use
+             xlink:href="#m31f8f2b223"
+             x="406.79999"
+             y="640.79999"
+             style="stroke:#000000;stroke-width:1.5"
+             id="use170" />
+        </g>
+      </g>
+      <g
+         id="PathCollection_2-8"
+         style="stroke-linecap:butt;stroke-linejoin:round"
+         transform="translate(51.75,0.5625)">
+        <g
+           clip-path="url(#pcafb47f5b0-5)"
+           id="g170-6"
+           style="stroke-linecap:butt;stroke-linejoin:round">
+          <use
+             xlink:href="#m31f8f2b223"
+             x="406.79999"
+             y="640.79999"
+             style="stroke:#000000;stroke-width:1.5;stroke-linecap:butt;stroke-linejoin:round"
+             id="use170-5" />
+        </g>
+      </g>
+    </g>
+    <text
+       xml:space="preserve"
+       style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;letter-spacing:0px;word-spacing:0px;fill:#333333;fill-opacity:1;stroke:none;stroke-width:0.75px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
+       x="413.69003"
+       y="573.2934"
+       id="text170"><tspan
+         sodipodi:role="line"
+         id="tspan170"
+         style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#333333;stroke-width:0.75px"
+         x="413.69003"
+         y="573.2934">25°C</tspan></text>
+    <text
+       xml:space="preserve"
+       style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:14px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;letter-spacing:0px;word-spacing:0px;fill:#00ffff;fill-opacity:1;stroke:none;stroke-width:0.75px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
+       x="184.02602"
+       y="359.76154"
+       id="text170-1"><tspan
+         sodipodi:role="line"
+         id="tspan170-0"
+         style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:14px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#00ffff;stroke-width:0.75px"
+         x="184.02602"
+         y="359.76154">ISA+10</tspan></text>
+    <text
+       xml:space="preserve"
+       style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:14px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;letter-spacing:0px;word-spacing:0px;fill:#0000ff;fill-opacity:1;stroke:none;stroke-width:0.75px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
+       x="90.151886"
+       y="363.05078"
+       id="text170-1-9"><tspan
+         sodipodi:role="line"
+         id="tspan170-0-7"
+         style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:14px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#0000ff;stroke-width:0.75px"
+         x="90.151886"
+         y="363.05078">ISA</tspan></text>
+  </g>
+  <defs
+     id="defs170">
+    <clipPath
+       id="pcafb47f5b0">
+      <rect
+         x="72"
+         y="86.400002"
+         width="446.39999"
+         height="554.40002"
+         id="rect170" />
+    </clipPath>
+  </defs>
+</svg>
diff --git a/docs/assets/images/unicado_module_chain_v3.jpg b/docs/assets/images/unicado_module_chain_v3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..940247b458760c17bba76bc730064986875d0918
--- /dev/null
+++ b/docs/assets/images/unicado_module_chain_v3.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4959ca5437635eac37e1827fdc52909293062f635989320842939267134a09c6
+size 411615
diff --git a/docs/assets/javascripts/katex.js b/docs/assets/javascripts/katex.js
new file mode 100644
index 0000000000000000000000000000000000000000..8c642137489081579950e765655a96cd18d93374
--- /dev/null
+++ b/docs/assets/javascripts/katex.js
@@ -0,0 +1,10 @@
+document$.subscribe(({ body }) => { 
+  renderMathInElement(body, {
+    delimiters: [
+      { left: "$$",  right: "$$",  display: true },
+      { left: "$",   right: "$",   display: false },
+      { left: "\\(", right: "\\)", display: false },
+      { left: "\\[", right: "\\]", display: true }
+    ],
+  })
+})
diff --git a/docs/assets/javascripts/mathjax.js b/docs/assets/javascripts/mathjax.js
new file mode 100644
index 0000000000000000000000000000000000000000..0679bf6cd918eea6a1b468830d62d664d9292541
--- /dev/null
+++ b/docs/assets/javascripts/mathjax.js
@@ -0,0 +1,19 @@
+window.MathJax = {
+  tex: {
+    inlineMath: [["$", "$"]],
+    displayMath: [["$$", "$$"]],
+    processEscapes: true,
+    processEnvironments: true
+  },
+  options: {
+    ignoreHtmlClass: ".*",
+    processHtmlClass: "mathjax-render"
+  }
+};
+
+document$.subscribe(() => {
+  MathJax.startup.output.clearCache()
+  MathJax.typesetClear()
+  MathJax.texReset()
+  MathJax.typesetPromise()
+})
\ No newline at end of file
diff --git a/docs/contact.md b/docs/contact.md
new file mode 100644
index 0000000000000000000000000000000000000000..c36684a5e5961b5b1bd7fce9e066f6a827ebfe2d
--- /dev/null
+++ b/docs/contact.md
@@ -0,0 +1,5 @@
+# Contact
+
+You want to get in touch with us to clarify your questions or share your feedback about UNICADO? Awesome! Feel free to write us a mail, and we'll respond to your inquiry as soon as possible.
+
+:email: **E-Mail:** [contacts@unicado.io](mailto:contacts@unicado.io)
diff --git a/docs/description.md b/docs/description.md
new file mode 100644
index 0000000000000000000000000000000000000000..914418f3994b22ec2f2362275fa7b3265834a754
--- /dev/null
+++ b/docs/description.md
@@ -0,0 +1,24 @@
+@ todo needs revision
+## General Description
+The general overview of the UNICADO process chain is shown below.
+<figure markdown>
+  ![Overview UNICADO Process](assets/images/unicado_module_chain_v3.jpg){width="500"}
+  <figcaption>Overview UNICADO Process</figcaption>
+</figure>
+
+
+
+## Module Descriptions
+
+UNICADO comprises a variety of different program modules grouped into
+**set up steps**, **sizing loop**, and **post processing steps**. All of
+the modules of the predecessor MICADO are controlled by the *convergenceLoop* program,
+whereas the workflow of UNICADO is programmed in **RCE** (remote control
+environment by DLR).
+
+!!! note
+    You can refer to the [Module Overview](documentation/overview.md) for a list of all available modules.
+
+
+## Training videos
+> :construction: *tbd:* Add link
diff --git a/docs/documentation/additional-software.md b/docs/documentation/additional-software.md
new file mode 100644
index 0000000000000000000000000000000000000000..8b2e78018ec086cb72b171bbbd6486707111166f
--- /dev/null
+++ b/docs/documentation/additional-software.md
@@ -0,0 +1,56 @@
+---
+title: Additional Software
+summary: Overview of the additionalSoftware repository
+authors:
+    - Sebastian Oberschwendtner
+date: 2023-09-08
+glightbox: false
+---
+
+## cpacsInterface
+![Icon](site:assets/images/documentation/cpacs-interface.svg){.overview-img  align=left}
+The **cpacsInterface** is an additional module of the UNICADO toolchain.
+Its purpose is to transform the UNICADO aircraft XML file into CPACS format and vice Versa.
+The module consists of two modules convertUNICADO2CPACS which is responsible for converting the UNICADO aircraft exchange file into a CPACS format document, and convertCPACS2UNICADO which does the exact opposite and convert the data of the CPACS file into UNICADO format file.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|2.1.0|:simple-cplusplus: |GPLv3|-|
+
+---
+
+## designEvaluator
+![Icon](site:assets/images/documentation/design-evaluator.svg){.overview-img  align=left}
+The **deignEvaluator** can be used to perform all available analysis on a designed aircraft and create all available reports for it.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|2.1.0|:simple-cplusplus: |GPLv3|-|
+
+---
+
+## reportGenerator
+![Icon](site:assets/images/documentation/report-generator.svg){.overview-img  align=left}
+The program collects all reports of the programs and compiles a total report.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|2.1.0|:simple-cplusplus: |GPLv3|-|
+
+---
+
+## testFramework
+![Icon](site:assets/images/documentation/test-framework.svg){.overview-img  align=left}
+The **testFramework** is the heart of the **UNICADO** test pipeline.
+It can perform all required test at the different hierarchy levels.
+It is mainly an automation tool written specifically for the **UNICADO** project.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|2.1.0|:simple-python: |GPLv3|-|
+
+---
diff --git a/docs/documentation/analysis/aerodynamic_analysis/aerodynamic_principles.md b/docs/documentation/analysis/aerodynamic_analysis/aerodynamic_principles.md
new file mode 100644
index 0000000000000000000000000000000000000000..277daf16fcef79bf129c9e249c80b93c3d26d8eb
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/aerodynamic_principles.md
@@ -0,0 +1,123 @@
+
+# Aerodynamic principles {#aerodynamicprinciples}
+
+All methods for calculationg the properties of an aircraft face a trade off between accuracy on one hand and complexity and computing effort on the other hand.
+
+A typical aircraft in UNICADO takes roughly 20 to 30 iterations to converge in the design loop.
+For each iteration, the full aerodynamic properties have to be calculated.
+To enable extensive design space exploration and optimization studies in a reasonable time frame, the whole design process in UNICADO should takes less then an hour.
+The aerodynamic analysis therefore should be finished in under a minute.
+As a consequence of this requirement, the preliminary aircraft design in general, including UNICADO, is limited to lower fidelity methods, ranging from semi-empirical formulas to analytical approaches.
+
+**aerodynamic_analysis** contains a set off different methods and will be expanded in future.
+
+
+## Methods
+
+Currently there are **methods** with differing levels of fidelity implemented. These methods are listed in the table below.
+
+| Aerodynamic value                               | Methods                       | Fidelity level                    | Application                               |
+|-------------------------------------------------|-------------------------------|-----------------------------------|-------------------------------------------|
+|Lift, induced drag and pitching moment           | Lifting Line                  | analytical                        | Lifting surfaces in general               |
+|Lift, induced drag and pitching moment with corrections for TAW   | Lifting Line | analytical/semi-empirical         | Wing and stabilizer for TAW               |
+|Viscous drag                                     | According to Raymer           | semi-empirical                    | Lifting surfaces, fuselages and nacelles  |
+|Wave drag                                        | According to Mason            | semi-empirical                    | Lifting surfaces                          |
+|High lift adaptions                              | According to Raymer and Howe  | semi-empirical                    | TAW configuration                         |
+|Trim function                                    | Linear interpolation          |             -                     | Trimming via all movable horizontal stabilizer |
+
+The aim is to extend the method set with new calculation methods of variing fidelites for conventional TAW and and conventional configurations like the BWB.
+
+## Strategies
+
+The methods shown above have certain limitations:
+- No method can provide all aerodynamic values needed
+- The methods are only valid for certain flight conditions and aircraft configurations
+- Most methods need other aerodynamic values as input for their calculation
+  
+Because of these shortcommings, the engineer has to select a suitable set of methods for their aircraft and bundle them together into a **strategy**.
+Due to the complexitiy in the fields of aerodynamics, the individual methods cannot be pluged in and out of a strategy, rather the strategies are tailor made for a given case.
+For illustration, the default strategy for calculation of the polars for the TAW is explained in the next chapter.
+
+
+## Example strategy for tube and wing
+
+### Lifting Line
+Lifting Line is a method to calculate the lift distribution and the induced drag.
+For this purpose, the potential equations are used, i.e. the flow is simplified and assumed to be frictionless, rotationless and incompressible.
+The wing is reduced to its skeletal lines.
+This simplified geometry is divided into trapezoidal elementary wings, which are covered with free and bound vortices.
+A system of equations is constructed from the vortex system and the boundary conditions, the solution of which is used to calculate the lift distribution.
+For a more in-depth discussion, the  dissertation by Horstmann [Horstmann 1987: Ein Mehrfach-Traglinienverfahren und seine Verwendung für Entwurf und Nachrechnung nichtplanarer Flügelanordnungen](references/Horstmann_1987_Mehrfachtraglinienverfahren.pdf) is recommended or the [user-documentation of Lifting Line](references/LIFTING_LINE_V3.2_UserDoc.pdf).
+
+The following picture shows the lifting surfaces of a typical TAW aircraft discretized into elementary wings according to the lifting line method:
+![A wing and horizontal tailplane broken down into elementary wings](figures/ll_geom.png)
+
+The Prandtl-Glauert transformation is applied to the polars from Lifting Line.
+Lift coefficients, induced drag and pitch moment coefficients are thus transformed to include the compressibility effects.
+The lift distribution calculated using lifting line agrees well with CFD results for both the conventional wing and the blended wing body.
+Since the concept of the induced drag is based on the lifting line theory, it cannot be validated by CFD methods, which are based on the Navier-Stokes-Equations.
+Several semi-empirical corrections are integrated into the lifting line methodology in UNICADO.
+Based on Roskam, induced drag is calculated for the fuselage and nacelles.
+The pitching moment is corrected for fuselage and nacelle influences based on Torenbeek (Torenbeek, E. - Advanced Aircraft Design, 2013, ISBN: 9781119969303).
+
+### Viscous drag according to Raymer
+The frictional drag/viscous drag/zero lift drag is calculated based on the method of Raymer (Raymer 1992: Aircraft Design: A Conceptual Approach, page 280 ff).
+Contrary to what the name suggests, the viscous drag also regards influences of the boundary layer, which makes validation by CFD calculations difficult.
+
+For this purpose, the aircraft is broken down into its individual components, whose drag is calculated from a form factor, interference factor, friction coefficient and the wetted area:
+
+$
+    C_{D0} = \frac{\sum(C_{fc}FF_{c}Q_{c}S_{wet,c})}{S_{ref}}+C_{Dmisc}+C_{DLP}
+$
+
+The form factors are calculated using semi-empirical formulas, the interference factors are derived from the recommendations in the text (page 284 f).
+The friction coefficient is derived from the flow around a flat plate and depends on the Reynolds number and the surface roughness.
+
+In addition to the drags for the individual components, a 'miscellaneous drag' is calculated.
+This includes resistance caused by gas entering and leaving the hull through leaks and resistance caused by antennas, protrusions and the like.
+In total, the viscous drag depends only on the geometry, Reynolds number and Mach number and is thus constant over an entire aircraft polar.
+A calibration method is built in which the viscous drag is calibrated using an exponential function based on the lift coefficient.
+Thus, the viscous drag slightly increases with increasing lift.
+
+### Wave drag according to Mason
+The wave drag is the pressure drag generated by the occurrence of a shock wave.
+A compression shock reduces the static pressure of the fluid, which results in the surface pressure at the trailing edge of the profile being weaker than at the leading edge.
+The wave drag therefore only occurs when a compression shock occurs.
+From flight data it could be deduced that with increasing Mach number the wave drag is only between 0 and 10 drag counts and increases slightly linearly up to a Mach divergence number, above which the wave drag increases exponentially.
+This behavior of the wave drag is approximated by a fourth degree polynomial.
+
+The following picture shows the drag creep in the flight test data of a DC-9-30, according to Gur, Full-COnfiguration Drag Estimation, 2010:
+![The rise of the wave drag for a typical aircraft](figures/Drag_creep.png)
+
+To calculate the wave drag, the critical Mach number is required, which is calculated according to the Korn-Mason equation (Mason 1990: Analytic Models for Technology Integration in Arcraft Design).
+To calculate the critical Mach number, the wing sweep, the profile thickness ratio, the local lift coefficient and the "profile technology factor" are required.
+Two values ​​are given for the profile technology factor, 0.87 for conventional and 0.95 for transonic profiles.
+Since the local lift coefficient is included in the formula for the critical Mach number, the wing is divided into individual strips for the drag calculation.
+
+For each strip, the local critical Mach number and the local wave drag are calculated and then summed up.
+In Gur 2010: Full-Configuration Drag Estimation a simple, area-weighted summation over all wing strips is proposed.
+The wave drag is then calibrated like the viscous drag using an exponential function based on the lift coefficient.
+
+### High lift polars
+Analysis of the aircraft in high lift configurations, with extended leading and trailing edge high lift devices, poses difficulties, even in numerical or experimental setups.
+In the interest of saving computing time and ressources in the aerodynamic analysis, the only valid option is to rely on semi-empirical calculations.
+
+The high lift polars are calculated for the following cases:
+
+- Take Off
+
+- Take Off landing gear retracted
+
+- Climb
+
+- Approach
+
+- Approach with landing gear
+
+- Landing
+
+For this, the number, type, postions and areas of all leading and trailing edge devices are read in.
+The geometric parameters of the high lift devices are used to calculate a maximum lift coefficient and shifts of the drag and moment coefficients, based on a set of semi-empirical formulas.
+
+The following picture shows the shifts in lift and drag in the high lift polars for a typical short medium range passernger aircraft according to the method:
+![An example of a clean polar and transformed high lift polars at Mach 0.2](figures/high_lift_shift.png)
\ No newline at end of file
diff --git a/docs/documentation/analysis/aerodynamic_analysis/figures/Drag_creep.png b/docs/documentation/analysis/aerodynamic_analysis/figures/Drag_creep.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e6bbd7991b75c4078cd19fd847677409b9925b8
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/figures/Drag_creep.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9a03315158b9b8f6d25fc2cd18287a39d8264860a2d7bb334ca5f69bd63c3e14
+size 47521
diff --git a/docs/documentation/analysis/aerodynamic_analysis/figures/high_lift_shift.png b/docs/documentation/analysis/aerodynamic_analysis/figures/high_lift_shift.png
new file mode 100644
index 0000000000000000000000000000000000000000..5f84dc219859ee9ddc4b852516828914128cb4ac
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/figures/high_lift_shift.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:897191cc2a021f6bf1b484d760fd7e5bcefbf8478d107d516ed4c74b82b699c7
+size 264228
diff --git a/docs/documentation/analysis/aerodynamic_analysis/figures/ll_geom.png b/docs/documentation/analysis/aerodynamic_analysis/figures/ll_geom.png
new file mode 100644
index 0000000000000000000000000000000000000000..b283bdfdc968cfedd71b2f1bbee6d2fc343148ff
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/figures/ll_geom.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1b4564b37808587a4a9d3980c6d228895a4b279d221c987403b2a17aae581dad
+size 41658
diff --git a/docs/documentation/analysis/aerodynamic_analysis/getting_started.md b/docs/documentation/analysis/aerodynamic_analysis/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..8ac0b42b0603c0228ba91337988d48b7d4795f3d
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/getting_started.md
@@ -0,0 +1,29 @@
+# Getting started {#getting-started}
+This guide will show you the basic usage of **aerodynamic_analysis**. Following steps are necessary (if you are new to UNICADO check out the [settings and outputs](#settingsandoutputs) first!)
+
+## Step-by-step
+
+It is assumed that you have the `UNICADO Package` installed including the executables. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build-instructions/build/cpp.md)).
+
+1. Take an `aircraft_exchange_file` with a fully designed aircraft (fuselage, wing, empennage and nacelles already sized)
+2. Fill out the configuration file - change at least:
+    - in `control_settings`
+        - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings
+        - `console_output` at least to `mode_1`
+        - `plot_output` to false (or define `inkscape_path` and `gnuplot_path`)
+    - in `program_settings`
+        - `Trim` enable/disable and tune the trim calculations
+        - `FlightConditions`define your flight conditions with altitude and mach number
+        - The different methods, like `ViscDragRaymer` which are listed can be fine tuned, and customized
+        - Enable/disable and set individual calibration factors in the different methods and for the overall polars in `DragCorrection`
+3. Open terminal and run **aerodynamic_analysis**
+
+
+Following will happen:
+
+- you see output in the console window
+- csv- files containing the raw lift, drag and moment data for all calculations are created in the `aerodynamic_analysis` folder
+- results are saved via xml-file in the `/aircraft_exchange_file/aero_data` for later use in e.g. **mission_analysis**
+
+## Settings and outputs {#settingsandoutputs}
+> :construction: tbd
\ No newline at end of file
diff --git a/docs/documentation/analysis/aerodynamic_analysis/index.md b/docs/documentation/analysis/aerodynamic_analysis/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..20c4f732880a4d78d95a187f22f8b456d58b9b70
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/index.md
@@ -0,0 +1,9 @@
+# Introduction {#mainpage}
+The tool aerodynamic_analysis is on of the core tools in UNICADO. The overall goal is to calculate the lift and drag for all flight phases ranging from take off to cruise and landing.
+The gool of the tool is to...
+- Enable aerodynamic analysis for conventional and unconventional aircraft configurations
+- calculate the lift to drag polars for all flight phases regarding the aircraft geometry and the altitude and flight speed
+
+
+The [getting started](getting_started.md) gives you a first insight in how to execute the tool and how it generally works. To understand how the aerodynamic analysis works in detail, the documentation is split into a [aerodynamic principles](aerodynamic_principles.md) and a [software architecture](software_architecture.md) section. 
+
diff --git a/docs/documentation/analysis/aerodynamic_analysis/references/Horstmann_1987_Mehrfachtraglinienverfahren.pdf b/docs/documentation/analysis/aerodynamic_analysis/references/Horstmann_1987_Mehrfachtraglinienverfahren.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..c40dfca217910563da5ed048a599b71538e932c7
Binary files /dev/null and b/docs/documentation/analysis/aerodynamic_analysis/references/Horstmann_1987_Mehrfachtraglinienverfahren.pdf differ
diff --git a/docs/documentation/analysis/aerodynamic_analysis/references/LIFTING_LINE_V3.2_UserDoc.pdf b/docs/documentation/analysis/aerodynamic_analysis/references/LIFTING_LINE_V3.2_UserDoc.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..68da3749c4b6921ff6fb877ceba3aa852697e4cf
Binary files /dev/null and b/docs/documentation/analysis/aerodynamic_analysis/references/LIFTING_LINE_V3.2_UserDoc.pdf differ
diff --git a/docs/documentation/analysis/aerodynamic_analysis/software_architecture.md b/docs/documentation/analysis/aerodynamic_analysis/software_architecture.md
new file mode 100644
index 0000000000000000000000000000000000000000..72fdf81cb3d91f99f9568f4ba5e0503aa9bf6851
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/software_architecture.md
@@ -0,0 +1,13 @@
+# Software architecture {#softwarearchitecture}
+
+The software architecture is structured into various modules and packages, each handling specific tasks. Below is a description of the main components
+
+- strategies:
+  - **Strategies** define the procedure of calculating the polars by initializing the aircraft geometry, calling methods and copying and processing data.
+  - There are different strategies implemented, stored in the folders corresponding to the aircraft configuration (e.g., `taw`, `bwb`).
+  - Each Strategy has a corresponding `data.cpp` for reading and writing data into the `aircraft.xml` and a `config.cpp`file for reading from the `config.xml`.
+
+- methods:
+  - **Methods** are either derived from literature or rely on external calculation sofwares, data bases or surrogate models.
+  - Methods are structured in a general way, so that they can be accessed by all strategies ranging over different aircraft configurations.
+  - Methods are stored in the `methods` folder and need to be initialized, by **geometry input**, **flight conditions** and **input parameters** from the config file.
\ No newline at end of file
diff --git a/docs/documentation/analysis/constraint_analysis/figures/constraint_plot.png b/docs/documentation/analysis/constraint_analysis/figures/constraint_plot.png
new file mode 100644
index 0000000000000000000000000000000000000000..fad6579272fda062d27dd5268c41c04a0634ae11
--- /dev/null
+++ b/docs/documentation/analysis/constraint_analysis/figures/constraint_plot.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f501cef1872a29aaf3dd543f5887c60f8cc1bf75320a4b49f8e51f0bc73b4333
+size 63391
diff --git a/docs/documentation/analysis/constraint_analysis/figures/constraint_plot.svg b/docs/documentation/analysis/constraint_analysis/figures/constraint_plot.svg
new file mode 100644
index 0000000000000000000000000000000000000000..8374871a156f4f6887c3945ff722b10c52bf0e85
--- /dev/null
+++ b/docs/documentation/analysis/constraint_analysis/figures/constraint_plot.svg
@@ -0,0 +1,1840 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<svg
+   width="800"
+   height="600"
+   viewBox="0 0 800 600"
+   version="1.1"
+   id="svg162"
+   sodipodi:docname="constraint_plot.svg"
+   inkscape:export-filename="constraint_plot.svg"
+   inkscape:export-xdpi="100"
+   inkscape:export-ydpi="100"
+   inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns:xlink="http://www.w3.org/1999/xlink"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <defs
+     id="defs162" />
+  <sodipodi:namedview
+     id="namedview162"
+     pagecolor="#ffffff"
+     bordercolor="#000000"
+     borderopacity="0.25"
+     inkscape:showpageshadow="2"
+     inkscape:pageopacity="0.0"
+     inkscape:pagecheckerboard="0"
+     inkscape:deskcolor="#d1d1d1"
+     inkscape:zoom="1.46"
+     inkscape:cx="400"
+     inkscape:cy="299.65753"
+     inkscape:window-width="1920"
+     inkscape:window-height="1137"
+     inkscape:window-x="-8"
+     inkscape:window-y="-8"
+     inkscape:window-maximized="1"
+     inkscape:current-layer="svg162"
+     inkscape:export-bgcolor="#ffffffff" />
+  <title
+     id="title1">Gnuplot</title>
+  <desc
+     id="desc1">Produced by GNUPLOT 6.0 patchlevel 1 </desc>
+  <g
+     id="gnuplot_canvas">
+    <rect
+       x="0"
+       y="0"
+       width="800"
+       height="600"
+       fill="none"
+       id="rect1" />
+    <defs
+       id="defs2">
+      <circle
+         id="gpPt5"
+         stroke-width="0.267"
+         stroke="currentColor"
+         cx="0"
+         cy="0"
+         r="1" />
+      <use
+         xlink:href="#gpPt5"
+         id="gpPt6"
+         fill="currentColor"
+         stroke="none" />
+    </defs>
+    <g
+       fill="none"
+       color="#ffffff"
+       stroke="currentColor"
+       stroke-width="1"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g2" />
+    <g
+       fill="none"
+       color="#ffffff"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g3" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g4" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g5">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 103.99,534.01 h 620"
+         id="path4" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g7">
+      <path
+         stroke="#000000"
+         d="m 103.99,534.01 h 5.62"
+         id="path5" />
+      <g
+         transform="translate(96.99,539.86)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="end"
+         id="g6">
+        <text
+           id="text5"><tspan
+             font-family="Sans"
+             id="tspan5">0</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g8" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g9">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 103.99,436.21 h 620"
+         id="path8" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g11">
+      <path
+         stroke="#000000"
+         d="m 103.99,436.21 h 5.62"
+         id="path9" />
+      <g
+         transform="translate(96.99,442.06)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="end"
+         id="g10">
+        <text
+           id="text9"><tspan
+             font-family="Sans"
+             id="tspan9">0.2</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g12" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g13">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 103.99,338.41 h 620"
+         id="path12" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g15">
+      <path
+         stroke="#000000"
+         d="m 103.99,338.41 h 5.62"
+         id="path13" />
+      <g
+         transform="translate(96.99,344.26)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="end"
+         id="g14">
+        <text
+           id="text13"><tspan
+             font-family="Sans"
+             id="tspan13">0.4</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g16" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g17">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 103.99,240.61 h 620"
+         id="path16" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g19">
+      <path
+         stroke="#000000"
+         d="m 103.99,240.61 h 5.62"
+         id="path17" />
+      <g
+         transform="translate(96.99,246.46)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="end"
+         id="g18">
+        <text
+           id="text17"><tspan
+             font-family="Sans"
+             id="tspan17">0.6</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g20" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g21">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 103.99,142.81 h 7 m 207.44,0 h 405.56"
+         id="path20" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g23">
+      <path
+         stroke="#000000"
+         d="m 103.99,142.81 h 5.62"
+         id="path21" />
+      <g
+         transform="translate(96.99,148.66)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="end"
+         id="g22">
+        <text
+           id="text21"><tspan
+             font-family="Sans"
+             id="tspan21">0.8</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g24" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g25">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 103.99,45.01 h 620"
+         id="path24" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g27">
+      <path
+         stroke="#000000"
+         d="m 103.99,45.01 h 5.62"
+         id="path25" />
+      <g
+         transform="translate(96.99,50.86)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="end"
+         id="g26">
+        <text
+           id="text25"><tspan
+             font-family="Sans"
+             id="tspan25">1</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g28" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g29">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 137.5,534.01 v -349.5 m 0,-132 v -7.5"
+         id="path28" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g31">
+      <path
+         stroke="#000000"
+         d="m 137.5,534.01 v -5.62"
+         id="path29" />
+      <g
+         transform="translate(137.5,554.86)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="middle"
+         id="g30">
+        <text
+           id="text29"><tspan
+             font-family="Sans"
+             id="tspan29">1000</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g32" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g33">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 221.29,534.01 v -349.5 m 0,-132 v -7.5"
+         id="path32" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g35">
+      <path
+         stroke="#000000"
+         d="m 221.29,534.01 v -5.62"
+         id="path33" />
+      <g
+         transform="translate(221.29,554.86)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="middle"
+         id="g34">
+        <text
+           id="text33"><tspan
+             font-family="Sans"
+             id="tspan33">2000</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g36" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g37">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 305.07,534.01 v -349.5 m 0,-132 v -7.5"
+         id="path36" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g39">
+      <path
+         stroke="#000000"
+         d="m 305.07,534.01 v -5.62"
+         id="path37" />
+      <g
+         transform="translate(305.07,554.86)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="middle"
+         id="g38">
+        <text
+           id="text37"><tspan
+             font-family="Sans"
+             id="tspan37">3000</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g40" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g41">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 388.85,534.01 v -489"
+         id="path40" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g43">
+      <path
+         stroke="#000000"
+         d="m 388.85,534.01 v -5.62"
+         id="path41" />
+      <g
+         transform="translate(388.85,554.86)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="middle"
+         id="g42">
+        <text
+           id="text41"><tspan
+             font-family="Sans"
+             id="tspan41">4000</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g44" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g45">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 472.64,534.01 v -489"
+         id="path44" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g47">
+      <path
+         stroke="#000000"
+         d="m 472.64,534.01 v -5.62"
+         id="path45" />
+      <g
+         transform="translate(472.64,554.86)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="middle"
+         id="g46">
+        <text
+           id="text45"><tspan
+             font-family="Sans"
+             id="tspan45">5000</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g48" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g49">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 556.42,534.01 v -489"
+         id="path48" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g51">
+      <path
+         stroke="#000000"
+         d="m 556.42,534.01 v -5.62"
+         id="path49" />
+      <g
+         transform="translate(556.42,554.86)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="middle"
+         id="g50">
+        <text
+           id="text49"><tspan
+             font-family="Sans"
+             id="tspan49">6000</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g52" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g53">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 640.21,534.01 v -489"
+         id="path52" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g55">
+      <path
+         stroke="#000000"
+         d="m 640.21,534.01 v -5.62"
+         id="path53" />
+      <g
+         transform="translate(640.21,554.86)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="middle"
+         id="g54">
+        <text
+           id="text53"><tspan
+             font-family="Sans"
+             id="tspan53">7000</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g56" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g57">
+      <path
+         stroke="#262626"
+         opacity="0.15"
+         class="gridline"
+         d="m 723.99,534.01 v -489"
+         id="path56" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g59">
+      <path
+         stroke="#000000"
+         d="m 723.99,534.01 v -5.62"
+         id="path57" />
+      <g
+         transform="translate(723.99,554.86)"
+         stroke="none"
+         fill="#262626"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="middle"
+         id="g58">
+        <text
+           id="text57"><tspan
+             font-family="Sans"
+             id="tspan57">8000</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g60" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g61">
+      <path
+         stroke="#000000"
+         d="m 103.99,45.01 v 489 h 620 v -489 z"
+         id="path60" />
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g62" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g63">
+      <path
+         stroke="#000000"
+         d="m 110.99,184.51 v -132 h 207.44 v 132 z"
+         id="path62" />
+    </g>
+    <g
+       id="gnuplot_plot_1a"
+       fill="none">
+      <title
+         id="title63">gnuplot_plot_1a</title>
+      <g
+         fill="none"
+         color="#ffffff"
+         stroke="#000000"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g64" />
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g66">
+        <g
+           stroke="none"
+           shape-rendering="crispEdges"
+           id="g65">
+          <polygon
+             fill="#ff0000"
+             fill-opacity="0.3"
+             points="104.68,534.01 105.5,534.01 106.32,534.01 107.14,534.01 107.97,534.01 108.79,534.01 109.61,534.01 110.43,534.01 111.25,534.01 112.08,534.01 112.9,534.01 113.72,534.01 114.54,534.01 115.36,534.01 116.19,534.01 117.01,534.01 117.83,534.01 118.65,534.01 119.47,534.01 120.3,534.01 121.12,534.01 121.94,534.01 122.76,534.01 123.58,534.01 124.4,534.01 125.23,534.01 126.05,534.01 126.87,534.01 127.69,534.01 128.51,534.01 129.34,534.01 130.16,534.01 130.98,534.01 131.8,534.01 132.62,534.01 133.45,534.01 134.27,534.01 135.09,534.01 135.91,534.01 136.73,534.01 137.56,534.01 138.38,534.01 139.2,534.01 140.02,534.01 140.84,534.01 141.67,534.01 142.49,534.01 143.31,534.01 144.13,534.01 144.95,534.01 145.77,534.01 146.6,534.01 147.42,534.01 148.24,534.01 149.06,534.01 149.88,534.01 150.71,534.01 151.53,534.01 152.35,534.01 153.17,534.01 153.99,534.01 154.82,534.01 155.64,534.01 156.46,534.01 157.28,534.01 158.1,534.01 158.93,534.01 159.75,534.01 160.57,534.01 161.39,534.01 162.21,534.01 163.03,534.01 163.86,534.01 164.68,534.01 165.5,534.01 166.32,534.01 167.14,534.01 167.97,534.01 168.79,534.01 169.61,534.01 170.43,534.01 171.25,534.01 172.08,534.01 172.9,534.01 173.72,534.01 174.54,534.01 175.36,534.01 176.19,534.01 177.01,534.01 177.83,534.01 178.65,534.01 179.47,534.01 180.3,534.01 181.12,534.01 181.94,534.01 182.76,534.01 183.58,534.01 184.4,534.01 185.23,534.01 186.05,534.01 186.87,534.01 187.69,534.01 188.51,534.01 189.34,534.01 190.16,534.01 190.98,534.01 191.8,534.01 192.62,534.01 193.45,534.01 194.27,534.01 195.09,534.01 195.91,534.01 196.73,534.01 197.56,534.01 198.38,534.01 199.2,534.01 200.02,534.01 200.84,534.01 201.67,534.01 202.49,534.01 203.31,534.01 204.13,534.01 204.95,534.01 205.77,534.01 206.6,534.01 207.42,534.01 208.24,534.01 209.06,534.01 209.88,534.01 210.71,534.01 211.53,534.01 212.35,534.01 213.17,534.01 213.99,534.01 214.82,534.01 215.64,534.01 216.46,534.01 217.28,534.01 218.1,534.01 218.93,534.01 219.75,534.01 220.57,534.01 221.39,534.01 222.21,534.01 223.04,534.01 223.86,534.01 224.68,534.01 225.5,534.01 226.32,534.01 227.14,534.01 227.97,534.01 228.79,534.01 229.61,534.01 230.43,534.01 231.25,534.01 232.08,534.01 232.9,534.01 233.72,534.01 234.54,534.01 235.36,534.01 236.19,534.01 237.01,534.01 237.83,534.01 238.65,534.01 239.47,534.01 240.3,534.01 241.12,534.01 241.94,534.01 242.76,534.01 243.58,534.01 244.4,534.01 245.23,534.01 246.05,534.01 246.87,534.01 247.69,534.01 248.51,534.01 249.34,534.01 250.16,534.01 250.98,534.01 251.8,534.01 252.62,534.01 253.45,534.01 254.27,534.01 255.09,534.01 255.91,534.01 256.73,534.01 257.56,534.01 258.38,534.01 259.2,534.01 260.02,534.01 260.84,534.01 261.67,534.01 262.49,534.01 263.31,534.01 264.13,534.01 264.95,534.01 265.77,534.01 266.6,534.01 267.42,534.01 268.24,534.01 269.06,534.01 269.88,534.01 270.71,534.01 271.53,534.01 272.35,534.01 273.17,534.01 273.99,534.01 274.82,534.01 275.64,534.01 276.46,534.01 277.28,534.01 278.1,534.01 278.93,534.01 279.75,534.01 280.57,534.01 281.39,534.01 282.21,534.01 283.04,534.01 283.86,534.01 284.68,534.01 285.5,534.01 286.32,534.01 287.14,534.01 287.97,534.01 288.79,534.01 289.61,534.01 290.43,534.01 291.25,534.01 292.08,534.01 292.9,534.01 293.72,534.01 294.54,534.01 295.36,534.01 296.19,534.01 297.01,534.01 297.83,534.01 298.65,534.01 299.47,534.01 300.3,534.01 301.12,534.01 301.94,534.01 302.76,534.01 303.58,534.01 304.41,534.01 305.23,534.01 306.05,534.01 306.87,534.01 307.69,534.01 308.51,534.01 309.34,534.01 310.16,534.01 310.98,534.01 311.8,534.01 312.62,534.01 313.45,534.01 314.27,534.01 315.09,534.01 315.91,534.01 316.73,534.01 317.56,534.01 318.38,534.01 319.2,534.01 320.02,534.01 320.84,534.01 321.67,534.01 322.49,534.01 323.31,534.01 324.13,534.01 324.95,534.01 325.77,534.01 326.6,534.01 327.42,534.01 328.24,534.01 329.06,534.01 329.88,534.01 330.71,534.01 331.53,534.01 332.35,534.01 333.17,534.01 333.99,534.01 334.82,534.01 335.64,534.01 336.46,534.01 337.28,534.01 338.1,534.01 338.93,534.01 339.75,534.01 340.57,534.01 341.39,534.01 342.21,534.01 343.04,534.01 343.86,534.01 344.68,534.01 345.5,534.01 346.32,534.01 347.14,534.01 347.97,534.01 348.79,534.01 349.61,534.01 350.43,534.01 351.25,534.01 352.08,534.01 352.9,534.01 353.72,534.01 354.54,534.01 355.36,534.01 356.19,534.01 357.01,534.01 357.83,534.01 358.65,534.01 359.47,534.01 360.3,534.01 361.12,534.01 361.94,534.01 362.76,534.01 363.58,534.01 364.41,534.01 365.23,534.01 366.05,534.01 366.87,534.01 367.69,534.01 368.51,534.01 369.34,534.01 370.16,534.01 370.98,534.01 371.8,534.01 372.62,534.01 373.45,534.01 374.27,534.01 375.09,534.01 375.91,534.01 376.73,534.01 377.56,534.01 378.38,534.01 379.2,534.01 380.02,534.01 380.84,534.01 381.67,534.01 382.49,534.01 383.31,534.01 384.13,534.01 384.95,534.01 385.77,534.01 386.6,534.01 387.42,534.01 388.24,534.01 389.06,534.01 389.88,534.01 390.71,534.01 391.53,534.01 392.35,534.01 393.17,534.01 393.99,534.01 394.82,534.01 395.64,534.01 396.46,534.01 397.28,534.01 398.1,534.01 398.93,534.01 399.75,534.01 400.57,534.01 401.39,534.01 402.21,534.01 403.04,534.01 403.86,534.01 404.68,534.01 405.5,534.01 406.32,534.01 407.14,534.01 407.97,534.01 408.79,534.01 409.61,534.01 410.43,534.01 411.25,534.01 412.08,534.01 412.9,534.01 413.72,534.01 414.54,534.01 415.36,534.01 416.19,534.01 417.01,534.01 417.83,534.01 418.65,534.01 419.47,534.01 420.3,534.01 421.12,534.01 421.94,534.01 422.76,534.01 423.58,534.01 424.41,534.01 425.23,534.01 426.05,534.01 426.87,534.01 427.69,534.01 428.51,534.01 429.34,534.01 430.16,534.01 430.98,534.01 431.8,534.01 432.62,534.01 433.45,534.01 434.27,534.01 435.09,534.01 435.91,534.01 436.73,534.01 437.56,534.01 438.38,534.01 439.2,534.01 440.02,534.01 440.84,534.01 441.67,534.01 442.49,534.01 443.31,534.01 444.13,534.01 444.95,534.01 445.78,534.01 446.6,534.01 447.42,534.01 448.24,534.01 449.06,534.01 449.88,534.01 450.71,534.01 451.53,534.01 452.35,534.01 453.17,534.01 453.99,534.01 454.82,534.01 455.64,534.01 456.46,534.01 457.28,534.01 458.1,534.01 458.93,534.01 459.75,534.01 460.57,534.01 461.39,534.01 462.21,534.01 463.04,534.01 463.86,534.01 464.68,534.01 465.5,534.01 466.32,534.01 467.14,534.01 467.97,534.01 468.79,534.01 469.61,534.01 470.43,534.01 471.25,534.01 472.08,534.01 472.9,534.01 473.72,534.01 474.54,534.01 475.36,534.01 476.19,534.01 477.01,534.01 477.83,534.01 478.65,534.01 479.47,534.01 480.3,534.01 481.12,534.01 481.94,534.01 482.76,534.01 483.58,534.01 484.41,534.01 485.23,534.01 486.05,534.01 486.87,534.01 487.69,534.01 488.51,534.01 489.34,534.01 490.16,534.01 490.98,534.01 491.8,534.01 492.62,534.01 493.45,534.01 494.27,534.01 495.09,534.01 495.91,534.01 496.73,534.01 497.56,534.01 498.38,534.01 499.2,534.01 500.02,534.01 500.84,534.01 501.67,534.01 502.49,534.01 503.31,534.01 504.13,534.01 504.95,534.01 505.78,534.01 506.6,534.01 507.42,534.01 508.24,534.01 509.06,534.01 509.88,534.01 510.71,534.01 511.53,534.01 512.35,534.01 513.17,534.01 513.99,534.01 514.82,534.01 515.64,534.01 516.46,534.01 517.28,534.01 518.1,534.01 518.93,534.01 519.75,534.01 520.57,534.01 521.39,534.01 522.21,534.01 523.04,534.01 523.86,534.01 524.68,534.01 525.5,534.01 526.32,534.01 527.15,534.01 527.97,534.01 528.79,534.01 529.61,534.01 530.43,534.01 531.25,534.01 532.08,534.01 532.9,534.01 533.72,534.01 534.54,534.01 535.36,534.01 536.19,534.01 537.01,534.01 537.83,534.01 538.65,534.01 539.47,534.01 540.3,534.01 541.12,534.01 541.94,534.01 542.76,534.01 543.58,534.01 544.41,534.01 545.23,534.01 546.05,534.01 546.87,534.01 547.69,534.01 548.51,534.01 549.34,534.01 550.16,534.01 550.98,534.01 551.8,534.01 552.62,534.01 553.45,534.01 554.27,534.01 555.09,534.01 555.91,534.01 556.73,534.01 557.56,534.01 558.38,534.01 559.2,534.01 560.02,534.01 560.84,534.01 561.67,534.01 562.49,534.01 563.31,534.01 564.13,534.01 564.95,534.01 565.78,534.01 566.6,534.01 567.42,534.01 568.24,534.01 569.06,534.01 569.88,534.01 570.71,534.01 571.53,534.01 572.35,534.01 573.17,534.01 573.99,534.01 574.82,534.01 575.64,534.01 576.46,534.01 577.28,534.01 578.1,534.01 578.93,534.01 579.75,534.01 580.57,534.01 581.39,534.01 582.21,534.01 583.04,534.01 583.86,534.01 584.68,534.01 585.5,534.01 586.32,534.01 587.15,534.01 587.97,534.01 588.79,534.01 589.61,534.01 590.43,534.01 591.25,534.01 592.08,534.01 592.9,534.01 593.72,534.01 594.54,534.01 595.36,534.01 596.19,534.01 597.01,534.01 597.83,534.01 598.65,534.01 599.47,534.01 600.3,534.01 601.12,534.01 601.94,534.01 602.76,534.01 603.58,534.01 604.41,534.01 605.23,534.01 606.05,534.01 606.87,534.01 607.69,534.01 608.52,534.01 609.34,534.01 610.16,534.01 610.98,534.01 611.8,534.01 612.62,534.01 613.45,534.01 614.27,534.01 615.09,534.01 615.91,534.01 616.73,534.01 617.56,534.01 618.38,534.01 619.2,534.01 620.02,534.01 620.84,534.01 621.67,534.01 622.49,534.01 623.31,534.01 624.13,534.01 624.95,534.01 625.78,534.01 626.6,534.01 627.42,534.01 628.24,534.01 629.06,534.01 629.88,534.01 630.71,534.01 631.53,534.01 632.35,534.01 633.17,534.01 633.99,534.01 634.82,534.01 635.64,534.01 636.46,534.01 637.28,534.01 638.1,534.01 638.93,534.01 639.75,534.01 640.57,534.01 641.39,534.01 642.21,534.01 643.04,534.01 643.86,534.01 644.68,534.01 645.5,534.01 646.32,534.01 647.15,534.01 647.97,534.01 648.79,534.01 649.61,534.01 650.43,534.01 651.25,534.01 652.08,534.01 652.9,534.01 653.72,534.01 654.54,534.01 655.36,534.01 656.19,534.01 657.01,534.01 657.83,534.01 658.65,534.01 659.47,534.01 660.3,534.01 661.12,534.01 661.94,534.01 662.76,534.01 663.58,534.01 664.41,534.01 665.23,534.01 666.05,534.01 666.87,534.01 667.69,534.01 668.52,534.01 669.34,534.01 670.16,534.01 670.98,534.01 671.8,534.01 672.62,534.01 673.45,534.01 674.27,534.01 675.09,534.01 675.91,534.01 676.73,534.01 677.56,534.01 678.38,534.01 679.2,534.01 680.02,534.01 680.84,534.01 681.67,534.01 682.49,534.01 683.31,534.01 684.13,534.01 684.95,534.01 685.78,534.01 686.6,534.01 687.42,534.01 688.24,534.01 689.06,534.01 689.88,534.01 690.71,534.01 691.53,534.01 692.35,534.01 693.17,534.01 693.99,534.01 694.82,534.01 695.64,534.01 696.46,534.01 697.28,534.01 698.1,534.01 698.93,534.01 699.75,534.01 700.57,534.01 701.39,534.01 702.21,534.01 703.04,534.01 703.86,534.01 704.68,534.01 705.5,534.01 706.32,534.01 707.15,534.01 707.97,534.01 708.79,534.01 709.61,534.01 710.43,534.01 711.25,534.01 712.08,534.01 712.9,534.01 713.72,534.01 714.54,534.01 715.36,534.01 716.19,534.01 717.01,534.01 717.83,534.01 718.65,534.01 719.47,534.01 720.3,534.01 721.12,534.01 721.94,534.01 722.76,534.01 723.58,534.01 723.99,534.01 723.99,45.01 714.54,45.01 714.54,380.67 713.72,380.72 712.9,380.77 712.08,380.82 711.25,380.87 710.43,380.91 709.61,380.96 708.79,381.01 707.97,381.06 707.15,381.11 706.32,381.16 705.5,381.2 704.68,381.25 703.86,381.3 703.04,381.35 702.21,381.39 701.39,381.44 700.57,381.49 699.75,381.53 698.93,381.58 698.1,381.63 697.28,381.67 696.46,381.72 695.64,381.76 694.82,381.81 693.99,381.85 693.17,381.9 692.35,381.94 691.53,381.99 690.71,382.03 689.88,382.07 689.06,382.12 688.24,382.16 687.42,382.21 686.6,382.25 685.78,382.29 684.95,382.34 684.13,382.38 683.31,382.42 682.49,382.46 681.67,382.51 680.84,382.55 680.02,382.59 679.2,382.63 678.38,382.67 677.56,382.71 676.73,382.75 675.91,382.79 675.09,382.83 674.27,382.87 673.45,382.91 672.62,382.95 671.8,382.99 670.98,383.03 670.16,383.07 669.34,383.11 668.52,383.15 667.69,383.19 666.87,383.23 666.05,383.27 665.23,383.3 664.41,383.34 663.58,383.38 662.76,383.42 661.94,383.45 661.12,383.49 660.3,383.53 659.47,383.56 658.65,383.6 657.83,383.63 657.01,383.67 656.19,383.7 655.36,383.74 654.54,383.77 653.72,383.81 652.9,383.84 652.08,383.88 651.25,383.91 650.43,383.95 649.61,383.98 648.79,384.01 647.97,384.05 647.15,384.08 646.32,384.11 645.5,384.14 644.68,384.18 643.86,384.21 643.04,384.24 642.21,384.27 641.39,384.3 640.57,384.33 639.75,384.36 638.93,384.39 638.1,384.42 637.28,384.45 636.46,384.48 635.64,384.51 634.82,384.54 633.99,384.57 633.17,384.6 632.35,384.63 631.53,384.65 630.71,384.68 629.88,384.71 629.06,384.74 628.24,384.76 627.42,384.79 626.6,384.82 625.78,384.84 624.95,384.87 624.13,384.89 623.31,384.92 622.49,384.94 621.67,384.97 620.84,384.99 620.02,385.02 619.2,385.04 618.38,385.06 617.56,385.09 616.73,385.11 615.91,385.13 615.09,385.16 614.27,385.18 613.45,385.2 612.62,385.22 611.8,385.24 610.98,385.26 610.16,385.29 609.34,385.31 608.52,385.33 607.69,385.35 606.87,385.37 606.05,385.38 605.23,385.4 604.41,385.42 603.58,385.44 602.76,385.46 601.94,385.48 601.12,385.49 600.3,385.51 599.47,385.53 598.65,385.54 597.83,385.56 597.01,385.58 596.19,385.59 595.36,385.61 594.54,385.62 593.72,385.64 592.9,385.65 592.08,385.67 591.25,385.68 590.43,385.69 589.61,385.71 588.79,385.72 587.97,385.73 587.15,385.74 586.32,385.75 585.5,385.77 584.68,385.78 583.86,385.79 583.04,385.8 582.21,385.81 581.39,385.82 580.57,385.83 579.75,385.84 578.93,385.84 578.1,385.85 577.28,385.86 576.46,385.87 575.64,385.87 574.82,385.88 573.99,385.89 573.17,385.89 572.35,385.9 571.53,385.9 570.71,385.91 569.88,385.91 569.06,385.92 568.24,385.92 567.42,385.93 566.6,385.93 565.78,385.93 564.95,385.93 564.13,385.94 563.31,385.94 562.49,385.94 561.67,385.94 560.84,385.94 560.02,385.94 559.2,385.94 558.38,385.94 557.56,385.94 556.73,385.94 555.91,385.94 555.09,385.93 554.27,385.93 553.45,385.93 552.62,385.92 551.8,385.92 550.98,385.92 550.16,385.91 549.34,385.91 548.51,385.9 547.69,385.89 546.87,385.89 546.05,385.88 545.23,385.87 544.41,385.87 543.58,385.86 542.76,385.85 541.94,385.84 541.12,385.83 540.3,385.82 539.47,385.81 538.65,385.8 537.83,385.79 537.01,385.78 536.19,385.77 535.36,385.75 534.54,385.74 533.72,385.73 532.9,385.71 532.08,385.7 531.25,385.68 530.43,385.67 529.61,385.65 528.79,385.64 527.97,385.62 527.15,385.6 526.32,385.59 525.5,385.57 524.68,385.55 523.86,385.53 523.04,385.51 522.21,385.49 521.39,385.47 520.57,385.45 519.75,385.43 518.93,385.41 518.1,385.38 517.28,385.36 516.46,385.34 515.64,385.31 514.82,385.29 513.99,385.26 513.17,385.24 512.35,385.21 511.53,385.18 510.71,385.16 509.88,385.13 509.06,385.1 508.24,385.07 507.42,385.04 506.6,385.01 505.78,384.98 504.95,384.95 504.13,384.92 503.31,384.89 502.49,384.85 501.67,384.82 500.84,384.79 500.02,384.75 499.2,384.72 498.38,384.68 497.56,384.65 496.73,384.61 495.91,384.57 495.09,384.54 494.27,384.5 493.45,384.46 492.62,384.42 491.8,384.38 490.98,384.34 490.16,384.3 489.34,384.25 488.51,384.21 487.69,384.17 486.87,384.12 486.05,384.08 485.23,384.03 484.41,383.99 483.58,383.94 482.76,383.9 481.94,383.85 481.12,383.8 480.3,383.75 479.47,383.7 478.65,383.65 477.83,383.6 477.01,383.55 476.19,383.5 475.36,383.44 474.54,383.39 473.72,383.34 472.9,383.28 472.08,383.22 471.25,383.17 470.43,383.11 469.61,383.05 468.79,383 467.97,382.94 467.14,382.88 466.32,382.82 465.5,382.75 464.68,382.69 463.86,382.63 463.04,382.57 462.21,382.5 461.39,382.44 460.57,382.37 459.75,382.3 458.93,382.24 458.1,382.17 457.28,382.1 456.46,382.03 455.64,381.96 454.82,381.89 453.99,381.82 453.17,381.75 452.35,381.67 451.53,381.6 450.71,381.52 449.88,381.45 449.06,381.37 448.24,381.29 447.42,381.21 446.6,381.13 445.78,381.05 444.95,380.97 444.13,380.89 443.31,380.81 442.49,380.73 441.67,380.64 440.84,380.56 440.02,380.47 439.2,380.38 438.38,380.3 437.56,380.21 436.73,380.12 435.91,380.03 435.09,379.94 434.27,379.84 433.45,379.75 432.62,379.66 431.8,379.56 430.98,379.47 430.16,379.37 429.34,379.27 428.51,379.17 427.69,379.07 426.87,378.97 426.05,378.87 425.23,378.77 424.41,378.66 423.58,378.56 422.76,378.45 421.94,378.35 421.12,378.24 420.3,378.13 419.47,378.02 418.65,377.91 417.83,377.8 417.01,377.68 416.19,377.57 415.36,377.45 414.54,377.34 413.72,377.22 412.9,377.1 412.08,376.98 411.25,376.86 410.43,376.74 409.61,376.62 408.79,376.49 407.97,376.37 407.14,376.24 406.32,376.12 405.5,375.99 404.68,375.86 403.86,375.73 403.04,375.6 402.21,375.39 401.39,375.12 400.57,374.85 399.75,374.57 398.93,374.3 398.1,374.02 397.28,373.74 396.46,373.46 395.64,373.18 394.82,372.89 393.99,372.61 393.17,372.32 392.35,372.03 391.53,371.74 390.71,371.44 389.88,371.15 389.06,370.85 388.24,370.55 387.42,370.26 386.6,369.95 385.77,369.65 384.95,369.35 384.13,369.04 383.31,368.73 382.49,368.42 381.67,368.11 380.84,367.79 380.02,367.48 379.2,367.16 378.38,366.84 377.56,366.52 376.73,366.19 375.91,365.87 375.09,365.54 374.27,365.21 373.45,364.88 372.62,364.54 371.8,364.21 370.98,363.87 370.16,363.53 369.34,363.19 368.51,362.84 367.69,362.5 366.87,362.15 366.05,361.8 365.23,361.44 364.41,361.09 363.58,360.73 362.76,360.37 361.94,360.01 361.12,359.65 360.3,359.28 359.47,358.91 358.65,358.54 357.83,358.17 357.01,357.8 356.19,357.42 355.36,357.04 354.54,356.66 353.72,356.27 352.9,355.88 352.08,355.49 351.25,355.1 350.43,354.71 349.61,354.31 348.79,353.91 347.97,353.51 347.14,353.1 346.32,352.7 345.5,352.29 344.68,351.87 343.86,351.46 343.04,351.04 342.21,350.62 341.39,350.2 340.57,349.77 339.75,349.34 338.93,348.91 338.1,348.47 337.28,348.04 336.46,347.6 335.64,347.15 334.82,346.71 333.99,346.26 333.17,345.8 332.35,345.35 331.53,344.89 330.71,344.43 329.88,343.96 329.06,343.5 328.24,343.03 327.42,342.55 326.6,342.07 325.77,341.59 324.95,341.11 324.13,340.62 323.31,340.13 322.49,339.64 321.67,339.14 320.84,338.64 320.02,338.14 319.2,337.63 318.38,337.12 317.56,336.61 316.73,336.09 315.91,335.57 315.09,335.04 314.27,334.51 313.45,333.98 312.62,333.44 311.8,332.9 310.98,332.36 310.16,331.81 309.34,331.26 308.51,330.7 307.69,330.14 306.87,329.58 306.05,329.01 305.23,328.44 304.41,327.86 303.58,327.28 302.76,326.7 301.94,326.11 301.12,325.52 300.3,324.92 299.47,324.32 298.65,323.71 298.64,45.01 103.99,45.01 103.99,534.01 "
+             id="polygon64" />
+          <polygon
+             fill="#ff0000"
+             fill-opacity="0.3"
+             points="103.99,534.01 723.99,534.01 103.99,534.01 "
+             id="polygon65" />
+        </g>
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_2a"
+       fill="none">
+      <title
+         id="title66">gnuplot_plot_2a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g67">
+        <path
+           stroke="#000000"
+           d="m 103.99,534.01 h 0.69 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.41"
+           id="path66" />
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_3a"
+       fill="none">
+      <title
+         id="title67">gnuplot_plot_3a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g68">
+        <path
+           stroke="#000000"
+           d="m 298.64,45.01 0.01,278.7 0.82,0.61 0.83,0.6 0.82,0.6 0.82,0.59 0.82,0.59 0.82,0.58 0.83,0.58 0.82,0.58 0.82,0.57 0.82,0.57 0.82,0.56 0.82,0.56 0.83,0.56 0.82,0.55 0.82,0.55 0.82,0.54 0.82,0.54 0.83,0.54 0.82,0.53 0.82,0.53 0.82,0.53 0.82,0.52 0.83,0.52 0.82,0.51 0.82,0.51 0.82,0.51 0.82,0.5 0.83,0.5 0.82,0.5 0.82,0.49 0.82,0.49 0.82,0.49 0.82,0.48 0.83,0.48 0.82,0.48 0.82,0.48 0.82,0.47 0.82,0.46 0.83,0.47 0.82,0.46 0.82,0.46 0.82,0.45 0.82,0.46 0.83,0.45 0.82,0.44 0.82,0.45 0.82,0.44 0.82,0.43 0.83,0.44 0.82,0.43 0.82,0.43 0.82,0.43 0.82,0.42 0.83,0.42 0.82,0.42 0.82,0.41 0.82,0.42 0.82,0.41 0.82,0.4 0.83,0.41 0.82,0.4 0.82,0.4 0.82,0.4 0.82,0.39 0.83,0.39 0.82,0.39 0.82,0.39 0.82,0.39 0.82,0.38 0.83,0.38 0.82,0.38 0.82,0.37 0.82,0.37 0.82,0.37 0.83,0.37 0.82,0.37 0.82,0.36 0.82,0.36 0.82,0.36 0.83,0.36 0.82,0.35 0.82,0.36 0.82,0.35 0.82,0.35 0.82,0.34 0.83,0.35 0.82,0.34 0.82,0.34 0.82,0.34 0.82,0.33 0.83,0.34 0.82,0.33 0.82,0.33 0.82,0.33 0.82,0.32 0.83,0.33 0.82,0.32 0.82,0.32 0.82,0.32 0.82,0.31 0.83,0.32 0.82,0.31 0.82,0.31 0.82,0.31 0.82,0.31 0.82,0.3 0.83,0.3 0.82,0.31 0.82,0.29 0.82,0.3 0.82,0.3 0.83,0.29 0.82,0.3 0.82,0.29 0.82,0.29 0.82,0.29 0.83,0.28 0.82,0.29 0.82,0.28 0.82,0.28 0.82,0.28 0.83,0.28 0.82,0.27 0.82,0.28 0.82,0.27 0.82,0.27 0.83,0.21 0.82,0.13 0.82,0.13 0.82,0.13 0.82,0.13 0.82,0.12 0.83,0.13 0.82,0.12 0.82,0.13 0.82,0.12 0.82,0.12 0.83,0.12 0.82,0.12 0.82,0.12 0.82,0.12 0.82,0.11 0.83,0.12 0.82,0.11 0.82,0.12 0.82,0.11 0.82,0.11 0.83,0.11 0.82,0.11 0.82,0.11 0.82,0.1 0.82,0.11 0.83,0.1 0.82,0.11 0.82,0.1 0.82,0.1 0.82,0.1 0.82,0.1 0.83,0.1 0.82,0.1 0.82,0.1 0.82,0.09 0.82,0.1 0.83,0.09 0.82,0.09 0.82,0.1 0.82,0.09 0.82,0.09 0.83,0.09 0.82,0.09 0.82,0.08 0.82,0.09 0.82,0.09 0.83,0.08 0.82,0.09 0.82,0.08 0.82,0.08 0.82,0.08 0.83,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.83,0.07 0.82,0.08 0.82,0.07 0.82,0.08 0.82,0.07 0.83,0.07 0.82,0.07 0.82,0.07 0.82,0.07 0.82,0.07 0.83,0.07 0.82,0.06 0.82,0.07 0.82,0.07 0.82,0.06 0.83,0.07 0.82,0.06 0.82,0.06 0.82,0.06 0.82,0.07 0.82,0.06 0.83,0.06 0.82,0.06 0.82,0.05 0.82,0.06 0.82,0.06 0.83,0.05 0.82,0.06 0.82,0.06 0.82,0.05 0.82,0.05 0.83,0.06 0.82,0.05 0.82,0.05 0.82,0.05 0.82,0.05 0.83,0.05 0.82,0.05 0.82,0.05 0.82,0.05 0.82,0.04 0.83,0.05 0.82,0.04 0.82,0.05 0.82,0.04 0.82,0.05 0.82,0.04 0.83,0.04 0.82,0.05 0.82,0.04 0.82,0.04 0.82,0.04 0.83,0.04 0.82,0.04 0.82,0.04 0.82,0.03 0.82,0.04 0.83,0.04 0.82,0.03 0.82,0.04 0.82,0.03 0.82,0.04 0.83,0.03 0.82,0.03 0.82,0.04 0.82,0.03 0.82,0.03 0.83,0.03 0.82,0.03 0.82,0.03 0.82,0.03 0.82,0.03 0.82,0.03 0.83,0.03 0.82,0.02 0.82,0.03 0.82,0.03 0.82,0.02 0.83,0.03 0.82,0.02 0.82,0.03 0.82,0.02 0.82,0.02 0.83,0.03 0.82,0.02 0.82,0.02 0.82,0.02 0.82,0.02 0.83,0.02 0.82,0.02 0.82,0.02 0.82,0.02 0.82,0.02 0.83,0.01 0.82,0.02 0.82,0.02 0.82,0.01 0.82,0.02 0.82,0.01 0.83,0.02 0.82,0.01 0.82,0.02 0.82,0.01 0.82,0.01 0.83,0.02 0.82,0.01 0.82,0.01 0.82,0.01 0.82,0.01 0.83,0.01 0.82,0.01 0.82,0.01 0.82,0.01 0.82,0.01 0.83,0.01 h 0.82 l 0.82,0.01 0.82,0.01 h 0.82 l 0.82,0.01 0.83,0.01 h 0.82 l 0.82,0.01 h 0.82 0.82 l 0.83,0.01 h 0.82 0.82 l 0.82,0.01 h 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 l 0.82,-0.01 h 0.83 0.82 0.82 l 0.82,-0.01 h 0.82 l 0.82,-0.01 h 0.83 l 0.82,-0.01 h 0.82 l 0.82,-0.01 h 0.82 l 0.83,-0.01 0.82,-0.01 h 0.82 l 0.82,-0.01 0.82,-0.01 0.83,-0.01 h 0.82 l 0.82,-0.01 0.82,-0.01 0.82,-0.01 0.83,-0.01 0.82,-0.01 0.82,-0.01 0.82,-0.01 0.82,-0.02 0.83,-0.01 0.82,-0.01 0.82,-0.01 0.82,-0.01 0.82,-0.02 0.82,-0.01 0.83,-0.01 0.82,-0.02 0.82,-0.01 0.82,-0.02 0.82,-0.01 0.83,-0.02 0.82,-0.01 0.82,-0.02 0.82,-0.02 0.82,-0.01 0.83,-0.02 0.82,-0.02 0.82,-0.01 0.82,-0.02 0.82,-0.02 0.83,-0.02 0.82,-0.02 0.82,-0.02 0.82,-0.01 0.82,-0.02 0.83,-0.02 0.82,-0.02 0.82,-0.02 0.82,-0.03 0.82,-0.02 0.82,-0.02 0.83,-0.02 0.82,-0.02 0.82,-0.02 0.82,-0.03 0.82,-0.02 0.83,-0.02 0.82,-0.03 0.82,-0.02 0.82,-0.02 0.82,-0.03 0.83,-0.02 0.82,-0.03 0.82,-0.02 0.82,-0.03 0.82,-0.02 0.83,-0.03 0.82,-0.02 0.82,-0.03 0.82,-0.03 0.82,-0.02 0.82,-0.03 0.83,-0.03 0.82,-0.03 0.82,-0.02 0.82,-0.03 0.82,-0.03 0.83,-0.03 0.82,-0.03 0.82,-0.03 0.82,-0.03 0.82,-0.03 0.83,-0.03 0.82,-0.03 0.82,-0.03 0.82,-0.03 0.82,-0.03 0.83,-0.03 0.82,-0.03 0.82,-0.03 0.82,-0.04 0.82,-0.03 0.83,-0.03 0.82,-0.03 0.82,-0.04 0.82,-0.03 0.82,-0.03 0.82,-0.04 0.83,-0.03 0.82,-0.04 0.82,-0.03 0.82,-0.04 0.82,-0.03 0.83,-0.04 0.82,-0.03 0.82,-0.04 0.82,-0.03 0.82,-0.04 0.83,-0.03 0.82,-0.04 0.82,-0.04 0.82,-0.03 0.82,-0.04 0.83,-0.04 0.82,-0.04 0.82,-0.03 0.82,-0.04 0.82,-0.04 0.83,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.83,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.83,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.83,-0.04 0.82,-0.05 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.83,-0.05 0.82,-0.04 0.82,-0.04 0.82,-0.05 0.82,-0.04 0.82,-0.05 0.83,-0.04 0.82,-0.04 0.82,-0.05 0.82,-0.04 0.82,-0.05 0.83,-0.04 0.82,-0.05 0.82,-0.04 0.82,-0.05 0.82,-0.04 0.83,-0.05 0.82,-0.05 0.82,-0.04 0.82,-0.05 0.82,-0.05 0.83,-0.04 0.82,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.04 0.83,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.04 0.83,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.05 V 45.01"
+           id="path67" />
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_4a"
+       fill="none">
+      <title
+         id="title68">gnuplot_plot_4a</title>
+      <g
+         fill="none"
+         color="#ffffff"
+         stroke="#000000"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g69" />
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g70">
+        <path
+           stroke="#d85218"
+           d="m 103.99,524.32 0.69,-0.14 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.15 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.82,-0.16 0.83,-0.16 0.82,-0.16 0.82,-0.15 0.82,-0.16 0.82,-0.16 0.41,-0.07"
+           id="path69" />
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_5a"
+       fill="none">
+      <title
+         id="title70">gnuplot_plot_5a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g71">
+        <path
+           stroke="#ecb01f"
+           d="m 103.99,430.79 h 0.69 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.41"
+           id="path70" />
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_6a"
+       fill="none">
+      <title
+         id="title71">gnuplot_plot_6a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g72">
+        <path
+           stroke="#7d2e8d"
+           d="m 153.53,45.01 0.46,2.2 0.83,3.89 0.82,3.83 0.82,3.76 0.82,3.7 0.82,3.65 0.83,3.58 0.82,3.53 0.82,3.48 0.82,3.42 0.82,3.37 0.82,3.31 0.83,3.27 0.82,3.21 0.82,3.17 0.82,3.12 0.82,3.08 0.83,3.03 0.82,2.99 0.82,2.94 0.82,2.9 0.82,2.86 0.83,2.82 0.82,2.78 0.82,2.74 0.82,2.7 0.82,2.66 0.83,2.63 0.82,2.59 0.82,2.56 0.82,2.52 0.82,2.49 0.83,2.46 0.82,2.42 0.82,2.39 0.82,2.37 0.82,2.32 0.82,2.31 0.83,2.27 0.82,2.24 0.82,2.21 0.82,2.18 0.82,2.16 0.83,2.13 0.82,2.11 0.82,2.08 0.82,2.05 0.82,2.03 0.83,2 0.82,1.98 0.82,1.96 0.82,1.93 0.82,1.91 0.83,1.89 0.82,1.86 0.82,1.84 0.82,1.83 0.82,1.8 0.83,1.78 0.82,1.76 0.82,1.74 0.82,1.72 0.82,1.7 0.82,1.68 0.83,1.66 0.82,1.65 0.82,1.63 0.82,1.6 0.82,1.6 0.83,1.57 0.82,1.56 0.82,1.54 0.82,1.52 0.82,1.51 0.83,1.49 0.82,1.48 0.82,1.46 0.82,1.44 0.82,1.43 0.83,1.42 0.82,1.4 0.82,1.38 0.82,1.37 0.82,1.36 0.83,1.35 0.82,1.33 0.82,1.32 0.82,1.3 0.82,1.29 0.82,1.28 0.83,1.27 0.82,1.25 0.82,1.24 0.82,1.23 0.82,1.22 0.83,1.2 0.82,1.19 0.82,1.19 0.82,1.17 0.82,1.16 0.83,1.15 0.82,1.14 0.82,1.12 0.82,1.12 0.82,1.11 0.83,1.09 0.82,1.09 0.82,1.07 0.82,1.07 0.82,1.06 0.82,1.04 0.83,1.04 0.82,1.03 0.82,1.02 0.82,1.01 0.82,1 0.83,0.99 0.82,0.98 0.82,0.98 0.82,0.96 0.82,0.96 0.83,0.95 0.82,0.94 0.82,0.93 0.82,0.93 0.82,0.91 0.83,0.91 0.82,0.9 0.82,0.89 0.82,0.89 0.82,0.88 0.83,0.87 0.82,0.86 0.82,0.86 0.82,0.85 0.82,0.84 0.82,0.83 0.83,0.83 0.82,0.82 0.82,0.82 0.82,0.81 0.82,0.8 0.83,0.79 0.82,0.79 0.82,0.78 0.82,0.78 0.82,0.77 0.83,0.76 0.82,0.76 0.82,0.75 0.82,0.74 0.82,0.74 0.83,0.73 0.82,0.73 0.82,0.72 0.82,0.72 0.82,0.71 0.83,0.71 0.82,0.7 0.82,0.69 0.82,0.69 0.82,0.68 0.82,0.68 0.83,0.67 0.82,0.67 0.82,0.67 0.82,0.65 0.82,0.66 0.83,0.65 0.82,0.64 0.82,0.64 0.82,0.63 0.82,0.63 0.83,0.62 0.82,0.62 0.82,0.62 0.82,0.61 0.82,0.61 0.83,0.6 0.82,0.6 0.82,0.59 0.82,0.59 0.82,0.58 0.83,0.58 0.82,0.58 0.82,0.57 0.82,0.57 0.82,0.56 0.82,0.56 0.83,0.56 0.82,0.55 0.82,0.55 0.82,0.54 0.82,0.54 0.83,0.54 0.82,0.53 0.82,0.53 0.82,0.53 0.82,0.52 0.83,0.52 0.82,0.51 0.82,0.51 0.82,0.51 0.82,0.5 0.83,0.5 0.82,0.5 0.82,0.49 0.82,0.49 0.82,0.49 0.82,0.48 0.83,0.48 0.82,0.48 0.82,0.48 0.82,0.47 0.82,0.46 0.83,0.47 0.82,0.46 0.82,0.46 0.82,0.45 0.82,0.46 0.83,0.45 0.82,0.44 0.82,0.45 0.82,0.44 0.82,0.43 0.83,0.44 0.82,0.43 0.82,0.43 0.82,0.43 0.82,0.42 0.83,0.42 0.82,0.42 0.82,0.41 0.82,0.42 0.82,0.41 0.82,0.4 0.83,0.41 0.82,0.4 0.82,0.4 0.82,0.4 0.82,0.39 0.83,0.39 0.82,0.39 0.82,0.39 0.82,0.39 0.82,0.38 0.83,0.38 0.82,0.38 0.82,0.37 0.82,0.37 0.82,0.37 0.83,0.37 0.82,0.37 0.82,0.36 0.82,0.36 0.82,0.36 0.83,0.36 0.82,0.35 0.82,0.36 0.82,0.35 0.82,0.35 0.82,0.34 0.83,0.35 0.82,0.34 0.82,0.34 0.82,0.34 0.82,0.33 0.83,0.34 0.82,0.33 0.82,0.33 0.82,0.33 0.82,0.32 0.83,0.33 0.82,0.32 0.82,0.32 0.82,0.32 0.82,0.31 0.83,0.32 0.82,0.31 0.82,0.31 0.82,0.31 0.82,0.31 0.82,0.3 0.83,0.3 0.82,0.31 0.82,0.29 0.82,0.3 0.82,0.3 0.83,0.29 0.82,0.3 0.82,0.29 0.82,0.29 0.82,0.29 0.83,0.28 0.82,0.29 0.82,0.28 0.82,0.28 0.82,0.28 0.83,0.28 0.82,0.27 0.82,0.28 0.82,0.27 0.82,0.27 0.83,0.27 0.82,0.27 0.82,0.27 0.82,0.26 0.82,0.27 0.82,0.26 0.83,0.26 0.82,0.26 0.82,0.26 0.82,0.26 0.82,0.25 0.83,0.25 0.82,0.26 0.82,0.25 0.82,0.25 0.82,0.24 0.83,0.25 0.82,0.25 0.82,0.24 0.82,0.24 0.82,0.24 0.83,0.24 0.82,0.24 0.82,0.24 0.82,0.23 0.82,0.24 0.83,0.23 0.82,0.23 0.82,0.23 0.82,0.23 0.82,0.23 0.82,0.23 0.83,0.22 0.82,0.23 0.82,0.22 0.82,0.22 0.82,0.22 0.83,0.22 0.82,0.22 0.82,0.22 0.82,0.22 0.82,0.21 0.83,0.21 0.82,0.22 0.82,0.21 0.82,0.21 0.82,0.21 0.83,0.2 0.82,0.21 0.82,0.21 0.82,0.2 0.82,0.2 0.83,0.21 0.82,0.2 0.82,0.2 0.82,0.2 0.82,0.19 0.82,0.2 0.83,0.2 0.82,0.19 0.82,0.19 0.82,0.2 0.82,0.19 0.83,0.19 0.82,0.19 0.82,0.19 0.82,0.18 0.82,0.19 0.83,0.19 0.82,0.18 0.82,0.18 0.82,0.19 0.82,0.18 0.83,0.18 0.82,0.18 0.82,0.18 0.82,0.18 0.82,0.17 0.82,0.18 0.83,0.17 0.82,0.18 0.82,0.17 0.82,0.17 0.82,0.17 0.83,0.17 0.82,0.17 0.82,0.17 0.82,0.17 0.82,0.17 0.83,0.16 0.82,0.17 0.82,0.16 0.82,0.17 0.82,0.16 0.83,0.16 0.82,0.16 0.82,0.16 0.82,0.16 0.82,0.16 0.83,0.16 0.82,0.15 0.82,0.16 0.82,0.15 0.82,0.16 0.82,0.15 0.83,0.15 0.82,0.15 0.82,0.16 0.82,0.15 0.82,0.15 0.83,0.14 0.82,0.15 0.82,0.15 0.82,0.15 0.82,0.14 0.83,0.15 0.82,0.14 0.82,0.14 0.82,0.15 0.82,0.14 0.83,0.14 0.82,0.14 0.82,0.14 0.82,0.14 0.82,0.14 0.83,0.13 0.82,0.14 0.82,0.14 0.82,0.13 0.82,0.14 0.82,0.13 0.83,0.13 0.82,0.14 0.82,0.13 0.82,0.13 0.82,0.13 0.83,0.13 0.82,0.13 0.82,0.13 0.82,0.12 0.82,0.13 0.83,0.13 0.82,0.12 0.82,0.13 0.82,0.12 0.82,0.13 0.83,0.12 0.82,0.12 0.82,0.13 0.82,0.12 0.82,0.12 0.83,0.12 0.82,0.12 0.82,0.12 0.82,0.11 0.82,0.12 0.82,0.12 0.83,0.12 0.82,0.11 0.82,0.12 0.82,0.11 0.82,0.12 0.83,0.11 0.82,0.11 0.82,0.11 0.82,0.12 0.82,0.11 0.83,0.11 0.82,0.11 0.82,0.11 0.82,0.11 0.82,0.1 0.83,0.11 0.82,0.11 0.82,0.11 0.82,0.1 0.82,0.11 0.82,0.1 0.83,0.11 0.82,0.1 0.82,0.1 0.82,0.11 0.82,0.1 0.83,0.1 0.82,0.1 0.82,0.1 0.82,0.1 0.82,0.1 0.83,0.1 0.82,0.1 0.82,0.1 0.82,0.1 0.82,0.09 0.83,0.1 0.82,0.1 0.82,0.09 0.82,0.1 0.82,0.09 0.83,0.1 0.82,0.09 0.82,0.09 0.82,0.1 0.82,0.09 0.82,0.09 0.83,0.09 0.82,0.09 0.82,0.09 0.82,0.09 0.82,0.09 0.83,0.09 0.82,0.09 0.82,0.09 0.82,0.08 0.82,0.09 0.83,0.09 0.82,0.08 0.82,0.09 0.82,0.08 0.82,0.09 0.83,0.08 0.82,0.09 0.82,0.08 0.82,0.08 0.82,0.09 0.83,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.83,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.83,0.07 0.82,0.08 0.82,0.08 0.82,0.07 0.82,0.08 0.83,0.07 0.82,0.08 0.82,0.07 0.82,0.08 0.82,0.07 0.83,0.08 0.82,0.07 0.82,0.07 0.82,0.07 0.82,0.08 0.83,0.07 0.82,0.07 0.82,0.07 0.82,0.07 0.82,0.07 0.82,0.07 0.83,0.07 0.82,0.07 0.82,0.07 0.82,0.06 0.82,0.07 0.83,0.07 0.82,0.07 0.82,0.06 0.82,0.07 0.82,0.06 0.83,0.07 0.82,0.06 0.82,0.07 0.82,0.06 0.82,0.07 0.83,0.06 0.82,0.06 0.82,0.07 0.82,0.06 0.82,0.06 0.82,0.06 0.83,0.07 0.82,0.06 0.82,0.06 0.82,0.06 0.82,0.06 0.83,0.06 0.82,0.06 0.82,0.06 0.82,0.06 0.82,0.06 0.83,0.05 0.82,0.06 0.82,0.06 0.82,0.06 0.82,0.05 0.83,0.06 0.82,0.06 0.82,0.05 0.82,0.06 0.82,0.05 0.83,0.06 0.82,0.05 0.82,0.06 0.82,0.05 0.82,0.06 0.82,0.05 0.83,0.05 0.82,0.06 0.82,0.05 0.82,0.05 0.82,0.05 0.83,0.05 0.82,0.06 0.82,0.05 0.82,0.05 0.82,0.05 0.83,0.05 0.82,0.05 0.82,0.05 0.82,0.05 0.82,0.05 0.83,0.04 0.82,0.05 0.82,0.05 0.82,0.05 0.82,0.05 0.83,0.04 0.82,0.05 0.82,0.05 0.82,0.04 0.82,0.05 0.82,0.05 0.83,0.04 0.82,0.05 0.82,0.04 0.82,0.05 0.82,0.04 0.83,0.05 0.82,0.04 0.82,0.04 0.82,0.05 0.82,0.04 0.83,0.04 0.82,0.04 0.82,0.05 0.82,0.04 0.82,0.04 0.83,0.04 0.82,0.04 0.82,0.05 0.82,0.04 0.82,0.04 0.82,0.04 0.83,0.04 0.82,0.04 0.82,0.04 0.82,0.04 0.82,0.03 0.83,0.04 0.82,0.04 0.82,0.04 0.82,0.04 0.82,0.04 0.83,0.03 0.82,0.04 0.82,0.04 0.82,0.03 0.82,0.04 0.83,0.04 0.82,0.03 0.82,0.04 0.82,0.03 0.82,0.04 0.83,0.03 0.82,0.04 0.82,0.03 0.82,0.04 0.82,0.03 0.82,0.04 0.83,0.03 0.82,0.03 0.82,0.04 0.82,0.03 0.82,0.03 0.83,0.04 0.82,0.03 0.82,0.03 0.82,0.03 0.82,0.03 0.83,0.03 0.82,0.04 0.82,0.03 0.82,0.03 0.82,0.03 0.41,0.02"
+           id="path71" />
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_7a"
+       fill="none">
+      <title
+         id="title72">gnuplot_plot_7a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g73">
+        <path
+           stroke="#76ab2f"
+           d="m 132.28,45.01 0.34,1.98 0.83,4.78 0.82,4.68 0.82,4.59 0.82,4.49 0.82,4.4 0.83,4.31 0.82,4.23 0.82,4.14 0.82,4.06 0.82,3.98 0.83,3.91 0.82,3.83 0.82,3.76 0.82,3.68 0.82,3.62 0.82,3.56 0.83,3.48 0.82,3.43 0.82,3.36 0.82,3.3 0.82,3.25 0.83,3.18 0.82,3.13 0.82,3.08 0.82,3.02 0.82,2.98 0.83,2.92 0.82,2.87 0.82,2.83 0.82,2.78 0.82,2.73 0.83,2.69 0.82,2.64 0.82,2.61 0.82,2.56 0.82,2.52 0.82,2.48 0.83,2.44 0.82,2.4 0.82,2.37 0.82,2.33 0.82,2.29 0.83,2.26 0.82,2.23 0.82,2.19 0.82,2.16 0.82,2.13 0.83,2.1 0.82,2.06 0.82,2.04 0.82,2.01 0.82,1.98 0.83,1.95 0.82,1.92 0.82,1.89 0.82,1.87 0.82,1.85 0.83,1.81 0.82,1.8 0.82,1.76 0.82,1.75 0.82,1.72 0.82,1.69 0.83,1.68 0.82,1.65 0.82,1.63 0.82,1.61 0.82,1.59 0.83,1.57 0.82,1.54 0.82,1.53 0.82,1.51 0.82,1.48 0.83,1.47 0.82,1.45 0.82,1.44 0.82,1.41 0.82,1.4 0.83,1.37 0.82,1.37 0.82,1.34 0.82,1.33 0.82,1.31 0.83,1.3 0.82,1.28 0.82,1.27 0.82,1.25 0.82,1.23 0.82,1.23 0.83,1.2 0.82,1.19 0.82,1.18 0.82,1.17 0.82,1.15 0.83,1.14 0.82,1.12 0.82,1.11 0.82,1.1 0.82,1.09 0.83,1.07 0.82,1.07 0.82,1.05 0.82,1.03 0.82,1.03 0.83,1.02 0.82,1 0.82,0.99 0.82,0.99 0.82,0.97 0.83,0.96 0.82,0.95 0.82,0.94 0.82,0.93 0.82,0.92 0.82,0.91 0.83,0.9 0.82,0.89 0.82,0.88 0.82,0.87 0.82,0.87 0.83,0.85 0.82,0.85 0.82,0.83 0.82,0.83 0.82,0.82 0.83,0.81 0.82,0.8 0.82,0.79 0.82,0.79 0.82,0.78 0.83,0.77 0.82,0.76 0.82,0.75 0.82,0.75 0.82,0.74 0.82,0.73 0.83,0.73 0.82,0.71 0.82,0.71 0.82,0.71 0.82,0.69 0.83,0.69 0.82,0.68 0.82,0.68 0.82,0.67 0.82,0.66 0.83,0.66 0.82,0.65 0.82,0.64 0.82,0.64 0.82,0.63 0.83,0.62 0.82,0.62 0.82,0.62 0.82,0.6 0.82,0.61 0.83,0.59 0.82,0.59 0.82,0.59 0.82,0.58 0.82,0.57 0.82,0.57 0.83,0.56 0.82,0.56 0.82,0.55 0.82,0.55 0.82,0.54 0.83,0.54 0.82,0.53 0.82,0.53 0.82,0.52 0.82,0.52 0.83,0.51 0.82,0.51 0.82,0.5 0.82,0.5 0.82,0.5 0.83,0.49 0.82,0.48 0.82,0.48 0.82,0.48 0.82,0.47 0.83,0.47 0.82,0.47 0.82,0.46 0.82,0.45 0.82,0.45 0.82,0.45 0.83,0.45 0.82,0.44 0.82,0.43 0.82,0.43 0.82,0.43 0.83,0.43 0.82,0.42 0.82,0.41 0.82,0.42 0.82,0.41 0.83,0.4 0.82,0.41 0.82,0.4 0.82,0.39 0.82,0.39 0.83,0.39 0.82,0.39 0.82,0.38 0.82,0.38 0.82,0.37 0.83,0.38 0.82,0.37 0.82,0.36 0.82,0.36 0.82,0.36 0.82,0.36 0.83,0.35 0.82,0.35 0.82,0.35 0.82,0.34 0.82,0.35 0.83,0.33 0.82,0.34 0.82,0.33 0.82,0.33 0.82,0.33 0.83,0.32 0.82,0.33 0.82,0.31 0.82,0.32 0.82,0.31 0.83,0.31 0.82,0.31 0.82,0.31 0.82,0.3 0.82,0.3 0.82,0.3 0.83,0.29 0.82,0.3 0.82,0.29 0.82,0.28 0.82,0.29 0.83,0.28 0.82,0.28 0.82,0.28 0.82,0.28 0.82,0.27 0.83,0.27 0.82,0.27 0.82,0.27 0.82,0.26 0.82,0.27 0.83,0.26 0.82,0.25 0.82,0.26 0.82,0.25 0.82,0.25 0.83,0.25 0.82,0.25 0.82,0.25 0.82,0.24 0.82,0.24 0.82,0.24 0.83,0.24 0.82,0.23 0.82,0.23 0.82,0.23 0.82,0.23 0.83,0.23 0.82,0.23 0.82,0.22 0.82,0.22 0.82,0.22 0.83,0.22 0.82,0.21 0.82,0.22 0.82,0.21 0.82,0.21 0.83,0.21 0.82,0.21 0.82,0.2 0.82,0.21 0.82,0.2 0.83,0.2 0.82,0.2 0.82,0.19 0.82,0.2 0.82,0.19 0.82,0.19 0.83,0.19 0.82,0.19 0.82,0.19 0.82,0.19 0.82,0.18 0.83,0.18 0.82,0.18 0.82,0.18 0.82,0.18 0.82,0.18 0.83,0.17 0.82,0.17 0.82,0.17 0.82,0.18 0.82,0.16 0.83,0.17 0.82,0.17 0.82,0.16 0.82,0.16 0.82,0.17 0.82,0.16 0.83,0.15 0.82,0.16 0.82,0.16 0.82,0.15 0.82,0.16 0.83,0.15 0.82,0.15 0.82,0.15 0.82,0.15 0.82,0.14 0.83,0.15 0.82,0.14 0.82,0.15 0.82,0.14 0.82,0.14 0.83,0.14 0.82,0.14 0.82,0.13 0.82,0.14 0.82,0.13 0.83,0.14 0.82,0.13 0.82,0.13 0.82,0.13 0.82,0.13 0.82,0.12 0.83,0.13 0.82,0.12 0.82,0.13 0.82,0.12 0.82,0.12 0.83,0.12 0.82,0.12 0.82,0.12 0.82,0.12 0.82,0.11 0.83,0.12 0.82,0.11 0.82,0.12 0.82,0.11 0.82,0.11 0.83,0.11 0.82,0.11 0.82,0.11 0.82,0.1 0.82,0.11 0.83,0.1 0.82,0.11 0.82,0.1 0.82,0.1 0.82,0.1 0.82,0.1 0.83,0.1 0.82,0.1 0.82,0.1 0.82,0.09 0.82,0.1 0.83,0.09 0.82,0.09 0.82,0.1 0.82,0.09 0.82,0.09 0.83,0.09 0.82,0.09 0.82,0.08 0.82,0.09 0.82,0.09 0.83,0.08 0.82,0.09 0.82,0.08 0.82,0.08 0.82,0.08 0.83,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.82,0.08 0.83,0.07 0.82,0.08 0.82,0.07 0.82,0.08 0.82,0.07 0.83,0.07 0.82,0.07 0.82,0.07 0.82,0.07 0.82,0.07 0.83,0.07 0.82,0.06 0.82,0.07 0.82,0.07 0.82,0.06 0.83,0.07 0.82,0.06 0.82,0.06 0.82,0.06 0.82,0.07 0.82,0.06 0.83,0.06 0.82,0.06 0.82,0.05 0.82,0.06 0.82,0.06 0.83,0.05 0.82,0.06 0.82,0.06 0.82,0.05 0.82,0.05 0.83,0.06 0.82,0.05 0.82,0.05 0.82,0.05 0.82,0.05 0.83,0.05 0.82,0.05 0.82,0.05 0.82,0.05 0.82,0.04 0.83,0.05 0.82,0.04 0.82,0.05 0.82,0.04 0.82,0.05 0.82,0.04 0.83,0.04 0.82,0.05 0.82,0.04 0.82,0.04 0.82,0.04 0.83,0.04 0.82,0.04 0.82,0.04 0.82,0.03 0.82,0.04 0.83,0.04 0.82,0.03 0.82,0.04 0.82,0.03 0.82,0.04 0.83,0.03 0.82,0.03 0.82,0.04 0.82,0.03 0.82,0.03 0.83,0.03 0.82,0.03 0.82,0.03 0.82,0.03 0.82,0.03 0.82,0.03 0.83,0.03 0.82,0.02 0.82,0.03 0.82,0.03 0.82,0.02 0.83,0.03 0.82,0.02 0.82,0.03 0.82,0.02 0.82,0.02 0.83,0.03 0.82,0.02 0.82,0.02 0.82,0.02 0.82,0.02 0.83,0.02 0.82,0.02 0.82,0.02 0.82,0.02 0.82,0.02 0.83,0.01 0.82,0.02 0.82,0.02 0.82,0.01 0.82,0.02 0.82,0.01 0.83,0.02 0.82,0.01 0.82,0.02 0.82,0.01 0.82,0.01 0.83,0.02 0.82,0.01 0.82,0.01 0.82,0.01 0.82,0.01 0.83,0.01 0.82,0.01 0.82,0.01 0.82,0.01 0.82,0.01 0.83,0.01 h 0.82 l 0.82,0.01 0.82,0.01 h 0.82 l 0.82,0.01 0.83,0.01 h 0.82 l 0.82,0.01 h 0.82 0.82 l 0.83,0.01 h 0.82 0.82 l 0.82,0.01 h 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.82 0.82 l 0.82,-0.01 h 0.83 0.82 0.82 l 0.82,-0.01 h 0.82 l 0.82,-0.01 h 0.83 l 0.82,-0.01 h 0.82 l 0.82,-0.01 h 0.82 l 0.83,-0.01 0.82,-0.01 h 0.82 l 0.82,-0.01 0.82,-0.01 0.83,-0.01 h 0.82 l 0.82,-0.01 0.82,-0.01 0.82,-0.01 0.83,-0.01 0.82,-0.01 0.82,-0.01 0.82,-0.01 0.82,-0.02 0.83,-0.01 0.82,-0.01 0.82,-0.01 0.82,-0.01 0.82,-0.02 0.82,-0.01 0.83,-0.01 0.82,-0.02 0.82,-0.01 0.82,-0.02 0.82,-0.01 0.83,-0.02 0.82,-0.01 0.82,-0.02 0.82,-0.02 0.82,-0.01 0.83,-0.02 0.82,-0.02 0.82,-0.01 0.82,-0.02 0.82,-0.02 0.83,-0.02 0.82,-0.02 0.82,-0.02 0.82,-0.01 0.82,-0.02 0.83,-0.02 0.82,-0.02 0.82,-0.02 0.82,-0.03 0.82,-0.02 0.82,-0.02 0.83,-0.02 0.82,-0.02 0.82,-0.02 0.82,-0.03 0.82,-0.02 0.83,-0.02 0.82,-0.03 0.82,-0.02 0.82,-0.02 0.82,-0.03 0.83,-0.02 0.82,-0.03 0.82,-0.02 0.82,-0.03 0.82,-0.02 0.83,-0.03 0.82,-0.02 0.82,-0.03 0.82,-0.03 0.82,-0.02 0.82,-0.03 0.83,-0.03 0.82,-0.03 0.82,-0.02 0.82,-0.03 0.82,-0.03 0.83,-0.03 0.82,-0.03 0.82,-0.03 0.82,-0.03 0.82,-0.03 0.83,-0.03 0.82,-0.03 0.82,-0.03 0.82,-0.03 0.82,-0.03 0.83,-0.03 0.82,-0.03 0.82,-0.03 0.82,-0.04 0.82,-0.03 0.83,-0.03 0.82,-0.03 0.82,-0.04 0.82,-0.03 0.82,-0.03 0.82,-0.04 0.83,-0.03 0.82,-0.04 0.82,-0.03 0.82,-0.04 0.82,-0.03 0.83,-0.04 0.82,-0.03 0.82,-0.04 0.82,-0.03 0.82,-0.04 0.83,-0.03 0.82,-0.04 0.82,-0.04 0.82,-0.03 0.82,-0.04 0.83,-0.04 0.82,-0.04 0.82,-0.03 0.82,-0.04 0.82,-0.04 0.83,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.83,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.83,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.83,-0.04 0.82,-0.05 0.82,-0.04 0.82,-0.04 0.82,-0.04 0.83,-0.05 0.82,-0.04 0.82,-0.04 0.82,-0.05 0.82,-0.04 0.82,-0.05 0.83,-0.04 0.82,-0.04 0.82,-0.05 0.82,-0.04 0.82,-0.05 0.83,-0.04 0.82,-0.05 0.82,-0.04 0.82,-0.05 0.82,-0.04 0.83,-0.05 0.82,-0.05 0.82,-0.04 0.82,-0.05 0.82,-0.05 0.83,-0.04 0.82,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.04 0.83,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.04 0.83,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.05 0.83,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.05 0.83,-0.05 0.82,-0.05 0.82,-0.05 0.82,-0.06 0.82,-0.05 0.41,-0.02"
+           id="path72" />
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_8a"
+       fill="none">
+      <title
+         id="title73">gnuplot_plot_8a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g74">
+        <path
+           stroke="#4cbded"
+           d="m 715.19,534.01 v -489"
+           id="path73" />
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_9a"
+       fill="none">
+      <title
+         id="title74">gnuplot_plot_9a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g75">
+        <path
+           stroke="#a1132e"
+           d="m 298.58,534.01 v -489"
+           id="path74" />
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_10a"
+       fill="none">
+      <title
+         id="title75">gnuplot_plot_10a</title>
+      <g
+         fill="none"
+         color="#ffffff"
+         stroke="#a1132e"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g76" />
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g77">
+        <use
+           xlink:href="#gpPt6"
+           transform="matrix(3.12,0,0,3.12,560.02,378.54)"
+           color="#0071bc"
+           id="use76" />
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_11a"
+       fill="none">
+      <title
+         id="title77">gnuplot_plot_11a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g80">
+        <g
+           transform="translate(560.02,357.34)"
+           stroke="none"
+           fill="#000000"
+           font-family="Helvetica"
+           font-size="10px"
+           text-anchor="start"
+           id="g78">
+          <text
+             id="text77"><tspan
+               font-family="Helvetica"
+               id="tspan77">W/S = 616.00</tspan></text>
+        </g>
+        <g
+           transform="translate(560.02,372.34)"
+           stroke="none"
+           fill="#000000"
+           font-family="Helvetica"
+           font-size="10px"
+           text-anchor="start"
+           id="g79">
+          <text
+             id="text78"><tspan
+               font-family="Helvetica"
+               id="tspan78">T/W = 0.3179</tspan></text>
+        </g>
+      </g>
+    </g>
+    <g
+       id="gnuplot_plot_12a">
+      <title
+         id="title80">Infeasible Area</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g81" />
+    </g>
+    <g
+       id="gnuplot_plot_13a">
+      <title
+         id="title81">Takeoff Ground Roll</title>
+      <g
+         fill="none"
+         color="#ffffff"
+         stroke="#000000"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g82" />
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g83" />
+    </g>
+    <g
+       id="gnuplot_plot_14a">
+      <title
+         id="title83">Takeoff Climb Angle</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g84" />
+    </g>
+    <g
+       id="gnuplot_plot_15a">
+      <title
+         id="title84">OEI Climb</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g85" />
+    </g>
+    <g
+       id="gnuplot_plot_16a">
+      <title
+         id="title85">Service Ceiling</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g86" />
+    </g>
+    <g
+       id="gnuplot_plot_17a">
+      <title
+         id="title86">Landing</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g87" />
+    </g>
+    <g
+       id="gnuplot_plot_18a">
+      <title
+         id="title87">Gust</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g88" />
+    </g>
+    <g
+       id="gnuplot_plot_19a">
+      <title
+         id="title88">Design Point</title>
+      <g
+         fill="none"
+         color="#ffffff"
+         stroke="#a1132e"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g89" />
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g90" />
+    </g>
+    <g
+       stroke="none"
+       shape-rendering="crispEdges"
+       id="g91">
+      <polygon
+         fill="#ffffff"
+         points="318.43,52.51 110.99,52.51 110.99,184.51 318.43,184.51 "
+         id="polygon90" />
+    </g>
+    <g
+       fill="none"
+       color="#ffffff"
+       stroke="#ffffff"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g92" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g93">
+      <path
+         stroke="#000000"
+         d="m 110.99,184.51 v -132 h 207.44 v 132 z"
+         id="path92" />
+    </g>
+    <g
+       id="g96"
+       fill="none">
+      <title
+         id="title93">gnuplot_plot_1a</title>
+      <g
+         fill="none"
+         color="#ffffff"
+         stroke="#000000"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g94" />
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g95" />
+    </g>
+    <g
+       id="g98"
+       fill="none">
+      <title
+         id="title96">gnuplot_plot_2a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g97" />
+    </g>
+    <g
+       id="g100"
+       fill="none">
+      <title
+         id="title98">gnuplot_plot_3a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g99" />
+    </g>
+    <g
+       id="g103"
+       fill="none">
+      <title
+         id="title100">gnuplot_plot_4a</title>
+      <g
+         fill="none"
+         color="#ffffff"
+         stroke="#000000"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g101" />
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g102" />
+    </g>
+    <g
+       id="g105"
+       fill="none">
+      <title
+         id="title103">gnuplot_plot_5a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g104" />
+    </g>
+    <g
+       id="g107"
+       fill="none">
+      <title
+         id="title105">gnuplot_plot_6a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g106" />
+    </g>
+    <g
+       id="g109"
+       fill="none">
+      <title
+         id="title107">gnuplot_plot_7a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g108" />
+    </g>
+    <g
+       id="g111"
+       fill="none">
+      <title
+         id="title109">gnuplot_plot_8a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g110" />
+    </g>
+    <g
+       id="g113"
+       fill="none">
+      <title
+         id="title111">gnuplot_plot_9a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g112" />
+    </g>
+    <g
+       id="g116"
+       fill="none">
+      <title
+         id="title113">gnuplot_plot_10a</title>
+      <g
+         fill="none"
+         color="#ffffff"
+         stroke="#a1132e"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g114" />
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g115" />
+    </g>
+    <g
+       id="g118"
+       fill="none">
+      <title
+         id="title116">gnuplot_plot_11a</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g117" />
+    </g>
+    <g
+       id="g122">
+      <title
+         id="title118">Infeasible Area</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g120">
+        <g
+           transform="translate(164.63,64.34)"
+           stroke="none"
+           fill="#000000"
+           font-family="Helvetica"
+           font-size="11px"
+           text-anchor="start"
+           id="g119">
+          <text
+             id="text118"><tspan
+               font-family="Helvetica"
+               id="tspan118">Infeasible Area</tspan></text>
+        </g>
+      </g>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g121">
+        <path
+           stroke="#000000"
+           d="m 118.68,60.76 h 38.26"
+           id="path120" />
+      </g>
+    </g>
+    <g
+       id="g127">
+      <title
+         id="title122">Takeoff Ground Roll</title>
+      <g
+         fill="none"
+         color="#ffffff"
+         stroke="#000000"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g123" />
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g125">
+        <g
+           transform="translate(164.63,80.84)"
+           stroke="none"
+           fill="#000000"
+           font-family="Helvetica"
+           font-size="11px"
+           text-anchor="start"
+           id="g124">
+          <text
+             id="text123"><tspan
+               font-family="Helvetica"
+               id="tspan123">Takeoff Ground Roll</tspan></text>
+        </g>
+      </g>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g126">
+        <path
+           stroke="#d85218"
+           d="m 118.68,77.26 h 38.26"
+           id="path125" />
+      </g>
+    </g>
+    <g
+       id="g131">
+      <title
+         id="title127">Takeoff Climb Angle</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g129">
+        <g
+           transform="translate(164.63,97.34)"
+           stroke="none"
+           fill="#000000"
+           font-family="Helvetica"
+           font-size="11px"
+           text-anchor="start"
+           id="g128">
+          <text
+             id="text127"><tspan
+               font-family="Helvetica"
+               id="tspan127">Takeoff Climb Angle</tspan></text>
+        </g>
+      </g>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g130">
+        <path
+           stroke="#ecb01f"
+           d="m 118.68,93.76 h 38.26"
+           id="path129" />
+      </g>
+    </g>
+    <g
+       id="g135">
+      <title
+         id="title131">OEI Climb</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g133">
+        <g
+           transform="translate(164.63,113.84)"
+           stroke="none"
+           fill="#000000"
+           font-family="Helvetica"
+           font-size="11px"
+           text-anchor="start"
+           id="g132">
+          <text
+             id="text131"><tspan
+               font-family="Helvetica"
+               id="tspan131">OEI Climb</tspan></text>
+        </g>
+      </g>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g134">
+        <path
+           stroke="#7d2e8d"
+           d="m 118.68,110.26 h 38.26"
+           id="path133" />
+      </g>
+    </g>
+    <g
+       id="g139">
+      <title
+         id="title135">Service Ceiling</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g137">
+        <g
+           transform="translate(164.63,130.34)"
+           stroke="none"
+           fill="#000000"
+           font-family="Helvetica"
+           font-size="11px"
+           text-anchor="start"
+           id="g136">
+          <text
+             id="text135"><tspan
+               font-family="Helvetica"
+               id="tspan135">Service Ceiling</tspan></text>
+        </g>
+      </g>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g138">
+        <path
+           stroke="#76ab2f"
+           d="m 118.68,126.76 h 38.26"
+           id="path137" />
+      </g>
+    </g>
+    <g
+       id="g143">
+      <title
+         id="title139">Landing</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g141">
+        <g
+           transform="translate(164.63,146.84)"
+           stroke="none"
+           fill="#000000"
+           font-family="Helvetica"
+           font-size="11px"
+           text-anchor="start"
+           id="g140">
+          <text
+             id="text139"><tspan
+               font-family="Helvetica"
+               id="tspan139">Landing</tspan></text>
+        </g>
+      </g>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g142">
+        <path
+           stroke="#4cbded"
+           d="m 118.68,143.26 h 38.26"
+           id="path141" />
+      </g>
+    </g>
+    <g
+       id="g147">
+      <title
+         id="title143">Gust</title>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g145">
+        <g
+           transform="translate(164.63,163.34)"
+           stroke="none"
+           fill="#000000"
+           font-family="Helvetica"
+           font-size="11px"
+           text-anchor="start"
+           id="g144">
+          <text
+             id="text143"><tspan
+               font-family="Helvetica"
+               id="tspan143">Gust</tspan></text>
+        </g>
+      </g>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="2"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g146">
+        <path
+           stroke="#a1132e"
+           d="m 118.68,159.76 h 38.26"
+           id="path145" />
+      </g>
+    </g>
+    <g
+       id="g152">
+      <title
+         id="title147">Design Point</title>
+      <g
+         fill="none"
+         color="#ffffff"
+         stroke="#a1132e"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g148" />
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g150">
+        <g
+           transform="translate(164.63,179.84)"
+           stroke="none"
+           fill="#000000"
+           font-family="Helvetica"
+           font-size="11px"
+           text-anchor="start"
+           id="g149">
+          <text
+             id="text148"><tspan
+               font-family="Helvetica"
+               id="tspan148">Design Point</tspan></text>
+        </g>
+      </g>
+      <g
+         fill="none"
+         color="#000000"
+         stroke="currentColor"
+         stroke-width="1"
+         stroke-linecap="butt"
+         stroke-linejoin="miter"
+         id="g151">
+        <use
+           xlink:href="#gpPt6"
+           transform="matrix(3.12,0,0,3.12,137.81,176.26)"
+           color="#0071bc"
+           id="use150" />
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#ffffff"
+       stroke="#0071bc"
+       stroke-width="2"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g153" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="2"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g154" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="#000000"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g155" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g157">
+      <path
+         stroke="#000000"
+         d="m 103.99,45.01 v 489 h 620 v -489 z"
+         id="path155" />
+      <g
+         transform="rotate(-90,179.3,110.21)"
+         stroke="none"
+         fill="#000000"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="middle"
+         id="g156">
+        <text
+           id="text155"><tspan
+             font-family="Sans"
+             id="tspan155">Thrust to Weight [-]</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g160">
+      <g
+         transform="translate(413.99,577.36)"
+         stroke="none"
+         fill="#000000"
+         font-family="Sans"
+         font-size="18px"
+         text-anchor="middle"
+         id="g159">
+        <text
+           id="text159"><tspan
+             font-family="Sans"
+             id="tspan157">Wing Loading [N/m</tspan><tspan
+             font-family="Sans"
+             font-size="14.4px"
+             dy="-9"
+             id="tspan158">2</tspan><tspan
+             font-family="Sans"
+             font-size="18px"
+             dy="9"
+             id="tspan159">]</tspan></text>
+      </g>
+    </g>
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g161" />
+    <g
+       fill="none"
+       color="#000000"
+       stroke="currentColor"
+       stroke-width="0.5"
+       stroke-linecap="butt"
+       stroke-linejoin="miter"
+       id="g162" />
+  </g>
+</svg>
diff --git a/docs/documentation/analysis/constraint_analysis/index.md b/docs/documentation/analysis/constraint_analysis/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..2bad38713602ef5d6bd9c3a5dbd4a89207075f79
--- /dev/null
+++ b/docs/documentation/analysis/constraint_analysis/index.md
@@ -0,0 +1,37 @@
+# Constraint Analysis {#mainpage}
+One of the essential aspects of aircraft design is to size the aircraft to meet the point performance requirement. This process involves the evaluation of the constraints within the Thrust to Weight and Wing Loading design space. As the tool is "sizing" the aircraft, it requires information about the aerodynamic performance of the aircraft and the change of weight throughout the mission. Therefore this tool gets executed at the end of each loop to correctly size the aircraft.
+
+# Module Configuration
+The module can be configured to meet specific user needs by selecting desired parameters within the program_settings section of the module config file.
+A summary of possible selections can be found below:
+
+- `method`: This defines the method of constraint analysis
+    - Energy_Based
+
+- `aero_method`: This defines the method of getting information about the aerodynamic characteristics of the aircraft
+    - Calculate_Polar: Calculates the aerodynamic performance based on simple quadratic fit
+    - Read_Polar: Reads the polar infomration from the output of aerodynamic_analysis
+
+- `Mach_TO`: The mach number at takeoff
+
+- `takeoff_climb_angle`: The takeoff climb angle for which the constraint shall be evaluated
+
+- `gust_speed`: The gust speed at takeoff for which the constraint shall be evaluated
+
+- `gust_load_factor`: The additional gust load factor for which the constraint shall be evaluated
+
+- `oswald_factor`: The Oswald factor for calculating the polar, effective only if the aero_method is selected to be Calculate_Polar
+
+- `climb_gradient_OEI`: The minimum climb rate required for which the constraint shall be evaluated, CS25 defines this parameter to be 2.4% for the second climb segment
+
+- `minimum_climb_rate`: The minimum climb rate required at the service ceiling, CS25 defines this parameter to be 100 ft/min which is equal to 0.508 m/s
+
+- `safety_factor`: The additional percentage increment that is added to the Thrust to Weight ratio
+
+# Module Output
+
+- `Updated Design Point`: An updated Thrust to Weight and Wing Loading pair
+
+- `Constraint Plot`: The constraint plot if plotting is enabled
+
+- `Design Points`: The list of design points throughout the loop, to check for convergence performance
\ No newline at end of file
diff --git a/docs/documentation/analysis/constraint_analysis/principles.md b/docs/documentation/analysis/constraint_analysis/principles.md
new file mode 100644
index 0000000000000000000000000000000000000000..db95518a9ea33ee27fe0fd47c4c70b100e65d211
--- /dev/null
+++ b/docs/documentation/analysis/constraint_analysis/principles.md
@@ -0,0 +1,268 @@
+# Constraint Analysis
+
+# Aerodynamic and Performance Equations for Constraint Analysis Module
+
+## Function
+
+Adjust the design point based on the point performance requirements.
+
+## Rationale
+
+The end-of-the-loop aircraft’s aerodynamic performance is different to that of the beginning-of-the-loop aircraft. Therefore, it is necessary to size the aircraft based on the most up to date data from the design loop. This way, the design is ensured to have the best fitting characteristics to the mission and performance requirements.
+
+## Logic
+
+Point performance requirements are evaluated as constraints within the $T_{SL}/W_{TO}$ – $W_{TO}/S_{Ref}$ design space. The point is selected to have the minimum $T_{SL}/W_{TO}$ possible value that lies in the feasible space.
+
+# Baseline Implementation
+The constraint analysis tool is established with an energy based approach which is coming from Jack D. Mattingly's Aircraft Engine Design book.
+
+## Derivation
+
+1\. Lift Equation (getCL):
+
+$ L=n\\cdot W=\\frac{1}{2}\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2\\cdot C_L\\cdot S $
+
+$ C_L=\\frac{n}{\\frac{1}{2}\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2}\\cdot\\left(W/S\\right) $
+
+2\. Drag Equation:
+
+$ D=\\frac{1}{2}\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2\\cdot C_D\\cdot S $
+
+where:
+
+$ C_D=f\\left(C_L\\right) $
+
+3\. Thrust-Difference Equation:
+
+$ T-D=W\\cdot\\frac{d}{dt}\\left(h+\\frac{\\left(M\\cdot a\\right)^2}{2\\cdot g}\\right) $
+
+4\. Weight and Thrust Relationships:
+
+$ W=\\beta\\cdot W_{TO} $
+
+$ T=\\alpha\\cdot T_{SL} $
+
+where:
+
+$ \\alpha=f\\left(M,h\\right) $
+
+5\. Substituted Thrust-Difference Equation:
+
+$ T-\\left(\\frac{1}{2}\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2\\cdot f\\left(C_L\\right)\\cdot S\\right)=W\\cdot\\frac{d}{dt}\\left(h+\\frac{\\left(M\\cdot a\\right)^2}{2\\cdot g}\\right) $
+
+## Final Substituted Equation
+
+$ \\frac{T_{SL}}{W_{TO}}=\\frac{\\beta\\cdot\\frac{d}{dt}\\left(h+\\frac{V^2}{2\\cdot g}\\right)+\\frac{1}{2}\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2\\cdot f\\left(C_L\\right)}{\\alpha\\cdot\\left(W_{TO}/S\\right)} $
+
+$ f\\left(C_L\\right)=C_D\\left(\\frac{\\beta\\cdot n}{\\frac{1}{2}\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2}\\cdot\\left(W_{TO}/S\\right)\\right) $
+
+## Parameter Meanings
+
+L: Lift (N)
+
+n: Load factor (dimensionless)
+
+W: Weight (N)
+
+ρ: Air density (kg/m^3)
+
+M: Mach number (dimensionless)
+
+a: Speed of sound (m/s)
+
+$C_L$: Lift coefficient (dimensionless)
+
+$C_D$: Drag coefficient (dimensionless)
+
+S: Reference area (m^2)
+
+T: Thrust (N)
+
+D: Drag (N)
+
+h: Altitude (m)
+
+g: Gravitational acceleration (9.81 m/s^2)
+
+β: Weight fraction (dimensionless)
+
+$W_{TO}$: Takeoff weight (N)
+
+α: Thrust fraction (dimensionless), α = f(M, h)
+
+$T_{SL}$: Sea-level thrust (N)
+
+$f(C_L)$: Functional relationship defining drag coefficient in terms of lift coefficient
+
+## Cases
+
+Equation 1 (constant_altitude_speed_cruise):
+
+$ \\frac{T_{SL}}{W_{TO}}=\\frac{\\beta}{\\alpha}\\cdot\\left(\\frac{0.5\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2}{\\beta}\\cdot\\frac{1.0}{W/S}\\right)\\cdot C_D $
+
+Equation 2 (constant_speed_climb):
+
+$ \\frac{T_{SL}}{W_{TO}}=\\frac{\\beta}{\\alpha}\\cdot\\left(\\frac{C_D}{\\frac{\\beta}{q\\cdot W/S}}+\\frac{1}{u}\\cdot\\frac{dh}{dt}\\right) $
+
+where:
+ 
+$ u=M\\cdot a $
+
+$ q=0.5\\cdot\\rho\\cdot u^2 $
+
+Equation 3 (constant_altitude_speed_turn):
+
+$ \\frac{T_{SL}}{W_{TO}}=\\frac{\\beta}{\\alpha}\\cdot\\left(K_1\\cdot n^2\\cdot\\frac{\\beta}{0.5\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2}\\cdot W/S+\\frac{C_{D0}}{\\frac{\\beta}{0.5\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2}\\cdot W/S}\\right) $
+
+Equation 4 (horizontal_acceleration):
+
+$ \\frac{T_{SL}}{W_{TO}}=\\frac{\\beta}{\\alpha}\\cdot\\frac{0.5\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2}{\\beta}\\cdot\\frac{1.0}{W/S}\\cdot C_D\\cdot\\frac{1}{g_0}\\cdot\\frac{dv}{dt} $
+
+Equation 5 (takeoff_ground_roll):
+
+$ \\frac{T_{SL}}{W_{TO}} = \\frac{\\beta^2}{\\alpha} \\cdot \\frac{k_{T0}^2}{s_G \\cdot \\rho \\cdot g_0 \\cdot C_{L_{max,TO}}} \\cdot W/S $
+
+Equation 6 (braking_roll):
+
+$ W/S=\\frac{s_G\\cdot\\rho\\cdot\\ g_0\\cdot\\mathrm{\\ }\\ \\left(C_{D_L}-\\mu_B\\cdot\\ C_{L_L}\\right)}{\\beta\\cdot\\ l\\ n\\left(1+\\frac{C_{D_L}-\\mu_B\\cdot\\ C_{L_L}}{\\frac{\\mu_B\\cdot\\ C_{L_L}}{k_{T0}^2}}\\right)} $
+
+Equation 7 (service_ceiling):
+
+$ \\frac{T_{SL}}{W_{TO}}=\\frac{\\beta}{\\alpha}\\cdot\\left(K_1\\cdot\\frac{\\beta}{0.5\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2}\\cdot W/S+K_2+\\frac{C_{D0}}{\\frac{\\beta}{0.5\\cdot\\rho\\cdot\\left(M\\cdot a\\right)^2}\\cdot W/S}+\\frac{1}{M\\cdot a}\\cdot\\mathrm{SEP}\\ \\right) $
+
+Equation 8 (takeoff_climb_angle):
+
+$ \\frac{T_{SL}}{W_{TO}}=
+\\frac{\\beta}{\\alpha} \\cdot 
+\\left( 
+K_1 \\cdot \\frac{C_{L_{max,TO}}}{k_{T0}^2} 
++ K_2 
++ \\frac{C_{D0}}{\\frac{C_{L_{max,TO}}}{k_{T0}^2}} 
++ \\sin \\gamma
+\\right) $
+
+Equation 9 (gust):
+
+$ W/S=\\frac{C_{L_\\alpha}\\cdot\\rho\\cdot V_{TO_L}\\cdot w_g}{d_{n_G}\\cdot2\\cdot\\beta} $
+
+## Building the Cases for Constraint Analysis
+
+Constraint 1: One Engine Inoperative
+
+Inputs are:
+
+W_over_S_data, 
+
+CD_vector (taken from the polar or calculated based on quadratic fit), 
+
+weight_fraction_TO (taken from the mission analysis results), 
+
+alpha_TO (taken from the engine library and modified to account for OEI), 
+
+M_TO, 
+
+altitude = 0.0, 
+
+load_factor = 1.0,
+
+2.4 / 100.0 \* climb_speed;
+
+Climb speed is taken from the aircraft XML file. The OEI climb gradient is 2.4%.
+
+Output is the minimum Thrust to Weight ratio that the aircraft shall have as a vector.
+
+Constraint 2: Service Ceiling (SEP)
+
+Inputs are:
+
+W_over_S_data,
+
+CD_vector (taken from the polar or calculated based on quadratic fit),
+
+weight_fraction_segment (taken from the mission analysis results),
+
+alpha_segment (taken from the engine library),
+
+M_max (taken from the aircraft XML file),
+
+altitude_cruise,
+
+load_factor = 1.0,
+
+climb_gradient = 0.508;
+
+The climb rate is 100 ft/min which corresponds to 0.508 m per second.
+
+Output is the minimum Thrust to Weight ratio that the aircraft shall have as a vector.
+
+Constraint 3: Landing Field Length
+
+Inputs are:
+
+CD_max_L (taken from the polar or calculated based on quadratic fit), 
+
+CL_max_L (C_LmaxLanding node of the aircraft XML), 
+
+weight_fraction_landing (taken from the mission analysis results),
+
+alpha_landing (taken from the engine library), 
+
+M_TO (taken from the aircraft XML file), 
+
+altitude = 0.0, 
+
+my_B (breaking_coefficient node of the aircraft XML), 
+
+s_G_L (takeoff or landing field length)
+
+Output is the maximum Wing Loading value that the aircraft shall have.
+
+Constraint 4: Gust
+
+Inputs are:
+
+CL_alpha (the slope of the linear segment of the CL-AoA polar), 
+
+altitude = 0.0, 
+
+V_TO_L (taken from the aircraft XML file), 
+
+w_g (taken from the gust_speed node of the module config), 
+
+dn_G (taken from the gust_load_factor node of the module config), 
+
+weight_fraction_TO (taken from the mission analysis results),
+
+## Updating the Design Point
+
+Steps:
+
+1. Find the dominant curve: Takes the max $T_{SL}/W_{TO}$ required at each $W_{TO}/S_{Ref}$, hence gets the constraining curve
+2. Read the “safety factor” which adds the desired increment to the minimum $T_{SL}/W_{TO}$ for additional safety.
+3. Find the minimum $T_{SL}/W_{TO}$ from the dominant curve, get the $W_{TO}/S_{Ref}$ value corresponding to this $T_{SL}/W_{TO}$
+    1. Not an “optimization”, just a sorting algorithm
+    2. Does not interpolate between points
+4. Update the design point
+
+## Functional Flow
+
+1. Initialize the Aircraft XML, Polar XML, Engine, and the Config XML
+2. Initialize the wing loading vector
+3. For each case:
+    1. Read the polar that corresponds to the desired Mach number and the flight configuration
+    2. Get the CL based on the Lift Equation
+    3. Get the CD that corresponds to the CL by either:
+        1. Getting the CD directly from the polar or,
+        2. Calculating the CD based on quadratic fit
+    4. Evaluate the constraint
+4. Assemble the constraints
+5. Find the dominant curve
+6. Evaluate the feasible area
+7. Find the minimum $T_{SL}/W_{TO}$ from the dominant curve and get the W/S that corresponds to this $T_{SL}/W_{TO}$
+8. Update the design point
+9. Plot the results
+10. Save the plots
+
+## Example Output
+![](figures/constraint_plot.png)
\ No newline at end of file
diff --git a/docs/documentation/analysis/cost_estimation/getting_started.md b/docs/documentation/analysis/cost_estimation/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..7e1c20500c264e656b72a694e2c7e34eefa149d2
--- /dev/null
+++ b/docs/documentation/analysis/cost_estimation/getting_started.md
@@ -0,0 +1,114 @@
+# Getting started
+This section will guide you through the necessary steps to get the _cost\_estimation_ module up and running. It contains information on tool requirements and design parameters.
+
+- [Aircraft exchange file](#aircraft-exchange-file) - Get information on necessary parameters from the _acXML_.
+- [Module configuration file](#module-configuration-file) - Dive into cost estimation specific parameters.
+- [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running?
+- [Next steps](#next-steps) - How to proceed?
+
+!!! note 
+    It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries.
+
+Generally, we use two files to set or configure modules in UNICADO:
+
+- The aircraft exchange file (or _acXML_) includes
+    - data related inputs (e.g., aircraft configuration, transport task) and
+    - data related outputs (e.g., annual direct operating costs).
+- The module configuration file `cost_estimation_conf.xml` (also _configXML_) includes
+    - control settings (e.g., enable/disable generating plots) and
+    - program settings (e.g., fees, usage information).
+
+In the following sections you will find more information on how to configure these files to suit your needs.
+
+## Aircraft exchange file requirements {#aircraft-exchange-file}
+Since the _cost\_estimation_ module is an assessment tool, it is assumed that a converged aircraft design and therefore all the necessary data are already available.
+
+The following information is needed from the _acXML_:
+
+1. Design specification
+    - Configuration information: Configuration type
+    - Transport task: Passenger definition, passenger class definition, and cargo definition
+    - Energy carrier(s)
+2. Top level aircraft requirements (for design and study mission - if desired)
+    - Initial cruise mach number
+    - Initial cruise altitude
+    - Payload fractions (seat load factor, only required for study mission assessment)
+3. Component design
+    - Fuselage: Number of required cabin crew, number of required flight crew
+    - Propulsion: Sea level static thrust per engine
+4. Analysis
+    - Masses: Maximum takeoff mass (certified), takeoff mass (for design and study - if desired), operating mass empty, maximum payload mass
+    - Mission (for design and study mission - if desired)
+        - Stage length
+        - Flight time
+5. Assessment (aka. payload range data)
+    - Range at maximum payload and fuel mass till maximum take off mass limit
+    - Range at full tanks and payload till maximum take off mass limit
+    - Range for no payload and full tanks (ferry range)
+    - Payload at full tanks and payload till maximum take off mass limit
+
+## Module configuration file {#module-configuration-file}
+The _configXML_ is structured into two blocks: the control and program settings.
+
+The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least
+
+- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings,
+- the `console_output` at least to `mode_1`, and
+- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`).
+
+!!! note 
+    If the tool is executed via the workflow, those settings are set by the workflow settings.
+
+The program settings are structured like this (descriptions can be found in the `cost_estimation_conf.xml`):
+
+```plaintext
+Program Settings
+|- Configuration (ID="tube_and_wing")
+|  |- Fidelity name
+|  |- Method name
+|  |- Fidelity (ID="empirical")
+|  |  |- Operating cost estimation tu berlin
+|  |  |  |- General direct operating costs parameter
+|  |  |  |  | - Capital
+|  |  |  |  |  | - Depreciation period
+|  |  |  |  |  | - Price per operating empty mass
+|  |  |  |  |  | - Rate insurance
+|  |  |  |  |  | - Rate interest
+|  |  |  |  | - Flight cycles
+|  |  |  |  |  | - Block time supplement per flight
+|  |  |  |  |  | - Daily night curfew time
+|  |  |  |  |  | - Potential annual operation time
+|  |  |  |  |  | - Annual lay hours overhaul
+|  |  |  |  |  | - Annual lay hours reserve
+|  |  |  |  |  | - Annual lay hours maintenance
+|  |  |  |  | - Handling
+|  |  |  |  |  | - Fees handling
+|  |  |  |  | - Landing
+|  |  |  |  |  | - Fees landing
+|  |  |  |  | - Air traffic control
+|  |  |  |  |  | - Air traffic control price factor design
+|  |  |  |  |  | - Air traffic control price factor study
+|  |  |  |  | - Maintenance
+|  |  |  |  |  | - Airframe repair cost per flight
+|  |  |  |  |  | - Cost burden
+|  |  |  |  |  | - Rate labor
+|  |  |  |  | - Related direct operating costs
+|  |  |  |  |  | - Revenue per freight km design
+|  |  |  |  |  | - Revenue per freight km study
+|  |  |  |  | - Miscellaneous
+|  |  |  |  |  | - Rate inflation
+|  |  |  |- Fuel type (ID="kerosene")
+|  |  |  |  | - Factor engine maintenance
+|  |  |  |  | - Fuel price
+|  |  |  |  | - Ratio operating empty mass
+|  |  |  |- Fuel type (ID="liquid_hydrogen")
+|  |  |  |  | - Factor engine maintenance
+|  |  |  |  | - Fuel price
+|  |  |  |  | - Ratio operating empty mass
+```
+
+## Additional requirements {#additional-requirements}
+The tool requires mission-dependent data. Please make sure that the `mission_data` folder, located in the directory of the aircraft exchange file, contains at least the `design_mission.xml` file (this should be the case if the design is valid). If data for an off-design analysis is available and you wish to calculate the associated costs, the `study_mission.xml` file must also be provided.
+
+## Next steps {#next-steps}
+The next step is to [run the _cost\_estimation_ module](run_your_first_cost_estimation.md).
\ No newline at end of file
diff --git a/docs/documentation/analysis/cost_estimation/index.md b/docs/documentation/analysis/cost_estimation/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..3a2b1a6b891f5e64d556f9d5238d637d2e7a6ec5
--- /dev/null
+++ b/docs/documentation/analysis/cost_estimation/index.md
@@ -0,0 +1,42 @@
+# Introduction {#mainpage}
+Welcome to the _cost\_estimation_ module in UNICADO – where we take your aircraft operating costs from “hmm… probably a lot?” to laser-accurate precision! This tool is like a financial :crystal_ball: for your aircraft, crunching numbers on fuel, maintenance, crew costs, and just about (almost) every other expense you can imagine. Think of it as your budgeting co-pilot, always ready to calculate so you can focus on the skies instead of spreadsheets. With _cost\_estimation_, you stay in control, keep the accountants happy, and land at your bottom line without any turbulence. So buckle up, and let’s start calculating!
+
+## Summary of features
+Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned:
+
+ Configuration    | Energy carrier  |Cost share               | Status                               |
+------------------|-----------------|-------------------------|:------------------------------------:|
+Tube-and-wing     |Kerosene         |Direct operating cost    |running :white_check_mark:      |
+Tube-and-wing     |Kerosene         |Indirect operating cost  |under development :construction:|
+Tube-and-wing     |Liquid hydrogen  |Direct operating cost    |running :white_check_mark:      |
+Tube-and-wing     |Liquid hydrogen  |Indirect operating cost  |under development :construction:|
+Blended-wing-body |...              |...                      |under development :construction:|
+
+## A user's guide to cost calculation
+The _cost\_estimation_ tool is your key to accurately calculating the operating costs of an aircraft. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a cost analysis from the ground up.
+The following sections will walk you through the cost estimation process in UNICADO:
+
+- [Getting started](getting_started.md)
+- [Run your first cost estimation](run_your_first_cost_estimation.md)
+
+For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections:
+
+- A [method description](operating_cost_method.md) and
+- a [software architecture](software_architecture.md)
+section.
+
+Ready to dive in? Let’s get started! :money_with_wings:
+
+
+<!-- ## You are a Developer?
+If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO!
+
+The following pages will help you understand the code structure:
+
+- [Prerequisites](prerequisites.md)
+- [Build the code](build-the-code.md)
+- [Cost estimation module structure](wing-module-structure.md)
+- [Available methods](available-methods.md)
+- [Method template](method-template.md)
+
+We appreciate it! -->
\ No newline at end of file
diff --git a/docs/documentation/analysis/cost_estimation/operating_cost_method.md b/docs/documentation/analysis/cost_estimation/operating_cost_method.md
new file mode 100644
index 0000000000000000000000000000000000000000..44c3da530fad282569fee50c1c419d1fc2df7b73
--- /dev/null
+++ b/docs/documentation/analysis/cost_estimation/operating_cost_method.md
@@ -0,0 +1,330 @@
+# Calculation method
+The total operating costs of an aircraft are split into direct operating costs (DOC) and indirect operating costs (IOC).
+$$
+  TOC = DOC + IOC
+$$
+
+## Direct operating costs
+The Direct Operating Costs (DOC) are directly influenced by the parameters and the aircraft's performance and are commonly used for aircraft evaluation. Therefore, a simplified method for DOC estimation, based on „From Aircraft Performance to Aircraft Assessment“ by J. Thorbeck <sup>[1]</sup>, is provided. The DOC are determined for one year and the entire depreciation period.
+
+!!! note
+    In many ways, this method reflects a European cost scenario, for example in terms of assumptions on annual utilization, night curfews, but also with regard to personnel costs and fees incurred. The price factors used are therefore stated in EUR. However, as the aviation market is a dollar market, the cost shares are converted into US dollars using an exchange rate of EUR $e$ (user input).
+
+Two elements are required for the simplified DOC model: The route independent (fixed) costs $C_1$ and route dependent (variable) costs $C_2$:
+$$
+  DOC = C_1 + C_2
+$$
+
+
+### Route independent costs
+Route-independent costs include all cost components apart from the operation of the aircraft.
+Hence, the route-independent costs are the sum of the capital costs and the crew costs:
+$$
+  C_1 = C_{\text{capital}} + C_{\text{crew}}
+$$
+
+Those are calculated both, for one year and for the depreciation period.
+
+#### Capital costs
+The capital costs can be assumed to be a linear function of the operating empty mass if the influence of the aircraft market is considered negligible:
+$$
+  C_{\text{capital}} = (P_{\text{OE}} \cdot  m_{\text{OE}} \cdot (a + f_{\text{I}})) \cdot e
+$$
+
+In which
+
+- $P_{\text{OE}}$ - price per kg operating empty mass in EUR
+- $m_{\text{OE}}$ - operating empty mass in kg
+- $a$ - annuity factor in percent
+- $f_{\text{I}}$ - insurance rate in percent
+- $e$ - exchange rate (EUR to USD)
+
+The annuity formula, which is based on a modified mortgage equation, addresses both yearly depreciation and interest:
+$$
+  a = f_{\text{IR}} \cdot \frac{1 - f_{\text{RV}} \cdot \left( \frac{1}{1 + f_{\text{IR}}} \right)^{t_{\text{DEP}}}}{1 - \left( \frac{1}{1 + f_{\text{IR}}} \right)^{t_{\text{DEP}}}}
+$$
+
+In which
+
+- $f_{\text{IR}}$ - interest rate in percent
+- $f_{\text{RV}}$ - residual value factor in percent
+- $t_{\text{DEP}}$ - depreciation period in years
+
+The reason for the annuity method modification is to include the residual aircraft value at the end of the depreciation period into the capital costs, which is occasionally relevant. This assumes that an operator is purchasing an aircraft at a constant price per kilogram and spends the corresponding capital cost consistently per year throughout the depreciation period.
+
+The residual value factor depends on the depreciation period and can be determined based on the following information:
+
+Depreciation period         | Residual value factor |
+----------------------------|:---------------------:|
+up to 5 years               |          0.7%         |
+up to 10 years              |          0.5%         |
+up to 15 years              |          0.3%         |
+more than 15 years          |          0.1%         |
+
+#### Crew costs
+This method is based on the lecture "J Flugzeugbewertung" by A. Bardenhagen <sup>[2]</sup>.
+The annual crew costs are assumed to be the sum of the flight and cabin crew costs:
+$$
+  C_{\text{crew}} = C_{\text{FC}} + C_{\text{CC}}
+$$
+
+both of which are of different levels. There are different approaches here, which must be adapted to the respective cost structure of the airline:
+
+- Some airlines (mainly low-cost carriers) employ and pay pilots and flight attendants on a time basis (block hours).
+- Other airlines hire their personnel permanently and must pay them irrespective of the time they are deployed.
+
+In the first case, the personnel costs belong to the variable in the second case to the fixed direct operating costs. Here, crew costs are assumed to be fixed (route independent) because an airline must provide enough crews to ensure flight operations over the entire service time and therefore are proportional to the payload. 50 passengers per flight attendant are assumed based on certification requirements.
+
+Crew costs are constant per year. To calculate the crew cost for several years, the expected salary increase should be considered by an escalation factor. Accordingly, past price levels can be extrapolated to the current level changed according to inflation, price, or salary increase.
+
+Both cost shares are determined by the same variables:
+
+- The flight/cabin crew complement (the number of crews per aircraft, dependent on the stage length): $n_{\text{FCC}}$/$n_{\text{CCC}}$,
+- the number of flight/cabin crew members: $n_{\text{FC}}$/$n_{\text{CC}}$,
+- the annual salary of a flight/cabin crew member (dependent on the stage length): $S_{\text{FC}}$/$S_{\text{CC}}$, and
+- the escalation factor in percent: $f_{\text{ESC}}$.
+
+<!-- NOTE: The values of these drivers depend on the stage length. Two modes are implemented. Mode 1 (salary_variation = False, default): To ensure that the values of the above-mentioned parameters are the same for the design mission and mission study, the stage length of the design mission is used to determine the values for the study mission as well. Mode 2 (salary_variation = True): The above-mentioned values are obtained for different stage lengths for the design mission and mission study. -->
+
+That results in the following calculations:
+$$
+  C_{\text{FC}} = (n_{\text{FCC}} \cdot n_{\text{FC}} \cdot S_{\text{FC}} \cdot f_{\text{ESC}}) \cdot e
+$$
+
+$$
+  C_{\text{CC}} = (n_{\text{CCC}} \cdot n_{\text{CC}} \cdot S_{\text{CC}} \cdot f_{\text{ESC}}) \cdot e
+$$
+
+The escalation factor
+$$
+  f_{\text{ESC}} = (1 + r_{\text{INF}})^{y}
+$$
+
+incorporates the inflation rate ($r_{\text{INF}}$), which encompasses both price and salary adjustments, and the number of years elapsed between the calculation year and the base year for salaries ($y$).
+If the depreciation period is used as the time difference, resulting costs are related to the whole depreciation period, whereas a time difference of one year solely results in the costs for the base year.
+
+The crew complements as well as the average annual salaries (employer gross amount) are dependent on the stage length:
+
+- Regional: ranges less than 500 km
+- Short haul: ranges between 500 km and 1000 km
+- Medium haul: ranges between 1000 km and 4000 km
+- Long haul: ranges between 4000 km and 6500 km
+- Ultra-long haul: ranges above 6500 km
+
+and can be taken from the following tables:
+
+Segment         | Crew complement | $S_{\text{FC}}$ in EUR/y | $S_{\text{CC}}$ in EUR/y |
+----------------|:---------------:|:------------------------:|:------------------------:|
+Regional        |        5        |          80,000          |          50,000          |
+Short haul      |        5        |         120,000          |          50,000          |
+Medium haul     |        5        |         160,000          |          50,000          |
+Long haul       |        8        |         200,000          |          65,000          |
+Ultra-long haul |        8        |         200,000          |          65,000          |
+
+### Route dependent costs
+Route dependent costs $C_2$ include all cost components that are directly attributable to flight operations. These include
+
+- fuel $C_\text{F}$,
+- fees (handling $C_\text{H}$, landing $C_\text{LDG}$, air traffic control (ATC) $C_{\text{ATC}}$), and
+- maintenance $C_{\text{MRO}}$.
+
+Thus, the **annual** route dependent costs can be calculated by
+$$
+  C_2 = C_\text{F} + C_\text{H} + C_\text{LDG} + C_{\text{ATC}} + C_{\text{MRO}}
+$$
+
+#### Flights per year
+Knowing the number of annual flights is mandatory to calculate the above-mentioned cost shares.
+A reliable approximation of the number of annual flights can be found using the following analytical basis:
+
+- Potential flight hours per year: $365 \cdot 24 = 8760$
+- Maintenance lay days per year (C-Check every 15 months for 4 days): $4 \cdot 12/15 = 3.2$
+- Overhaul lay days per year (D-Check every 5 years for 4 weeks): $4 \cdot 7/5 = 5.6$
+- Lay days for repairs, technical and operational reserve: $2.6$
+- Lay hours per year: $(3.2+5.6+2.6) \cdot 24 = 273.6$
+- Potential operation days per year: $365-(3.2+5.6+2.6) = 353.6$
+- Daily night curfew hours: $7$
+- Yearly  night curfew hours: $354 \cdot 7 = 2475$
+- Yearly operation time in hours: $OT = 8760-2475-273.6 = 6011.4$
+
+Knowing the time for one flight $FT$ and the block time supplement $BT$ (turn around time) per flight, the number of flights per year $n_{\text{flights}}$ can be calculated:
+$$
+  n_{\text{flights}} = \frac{OT}{(FT + BT)}
+$$
+
+#### Fuel costs
+The fuel costs depend on the fuel price $P_\text{F}$ (in EUR), the trip fuel mass $m_{\text{TF}}$ in kg (which can be obtained from the payload range diagram (PRD)), and the number of yearly flights $n_{\text{flights}}$:
+$$
+  C_\text{F} = (P_{\text{F}} \cdot m_{\text{TF}} \cdot n_{\text{flights}}) \cdot e
+$$
+
+#### Handling costs
+Handling charges $F_\text{H}$ (in EUR) include charges for loading and unloading, use of terminals and passenger boarding bridges, security checks, and ground energy supply.
+The annual handling fees are charged based on the payload mass $m_{\text{PL}}$ (given in kg) and the number of flights per year. The resulting handling costs are calculated as follows:
+$$
+  C_\text{H} = (m_{\text{PL}} \cdot F_{\text{H}} \cdot n_{\text{flights}}) \cdot e
+$$
+
+#### Landing costs
+The annual landing fees $F_{\text{LDG}}$ (in EUR) are charged based on the maximum (certified) takeoff mass $m_{\text{TO}}$ in kg and number of flights per year. The resulting landing costs are calculated as follows:
+$$
+  C_{\text{LDG}} = (m_{\text{TO}} \cdot F_\text{LDG} \cdot n_{\text{flights}}) \cdot e
+$$
+
+#### Air traffic control costs
+The calculation of the ATC costs is based on the EUROCONTROL route charge formula <sup>[3]</sup>, more precisely the aircraft weight factor.
+
+> "The weight factor (expressed to two decimals) is determined by dividing, by fifty (50), the certificated Maximum Take-Off Weight (MTOW) of the aircraft (in metric tonnes, to one decimal) and subsequently taking the square root of the result rounded to the second decimal [...]".
+
+The ATC price factor $f_{\text{ATC}}$ considers the fact that the price scenarios are varying strongly for each continent (or even region):
+
+- $f_{\text{ATC}} = 1.0$ for domestic europe
+- $f_{\text{ATC}} = 0.7$ for transatlantic flights
+- $f_{\text{ATC}} = 0.6$ for far east flights (only half of the landings at european airports)
+
+The ATC costs are calculated as follows:
+$$
+  C_{\text{ATC}} = (R \cdot f_{\text{ATC}} \cdot \sqrt{\frac{m_{\text{TO}}[\text t]}{50}} \cdot n_{\text{flights}}) \cdot e
+$$
+
+with
+
+- $R$ - range in km
+- $m_{\text{TO}}$ - maximum takeoff mass (in tonnes)
+
+#### Maintenance costs
+Maintenance costs are categorized into three components:
+
+- Flight cycle dependent cost: This component primarily accounts for structural fatigue and overhaul burdens.
+- Flight hour dependent cost: This component primarily reflects wear and the associated line maintenance work.
+- Calendar time dependent cost: This component represents a constant share, such as the rectification of corrosion during overhaul.
+
+In the following, only the maintenance costs per flight cycle are considered. Following the JADC method, an approximation for those costs is given by the sum of three parts:
+
+- Airframe material maintenance cost (repair and replacement): $C_{\text{MRO,AF,MAT}}$
+- Airframe personnel maintenance cost (inspection and repair): $C_{\text{MRO,AF,PER}}$
+- Engine total maintenance cost: $C_{\text{MRO,ENG}}$
+
+In which
+$$
+  C_{\text{MRO,AF,MAT}} = (m_{\text{OE}}[\text t] \cdot (0.2 \cdot t_{\text{flight}} + 13.7) + C_{\text{MRO,AF,REP}}) \cdot e
+$$
+
+$$
+  C_{\text{MRO,AF,PER}} = (f_{\text{LR}} \cdot (1+C_\text{B}) \cdot \left[ (0.655 + 0.01 \cdot m_{\text{OE}}[\text t]) \cdot t_{\text{flight}} + 0.254 + 0.01 \cdot m_{\text{OE}}[\text t] \right]) \cdot e
+$$
+
+$$
+  C_{\text{MRO,ENG}} = \left(n_{\text{ENG}} \cdot \left( 1.5 \cdot \frac{T_{0} [\text t]}{n_{\text{ENG}}} + 30.5 \cdot t_{\text{flight}} + 10.6 \cdot f_{\text{MRO,ENG}}\right)\right) \cdot e
+$$
+
+with
+
+- $C_{\text{MRO,AF,REP}}$ - airframe repair cost per flight in EUR
+- $f_{\text{LR}}$ - labor rate in EUR/h
+- $C_\text{B}$ - cost burden in EUR
+- $n_{\text{ENG}}$ - number of engines
+- $T_{0}$ - sea level static thrust per engine
+- $f_{\text{MRO,ENG}}$ - engine maintenance factor
+
+The airframe repair cost per flight $C_{\text{MRO,AF,REP}}$ equal `57.5` for kerosene-powered aircraft. For hydrogen-powered aircraft, this value is multiplied by the operating empty mass factor $f_{\text{OEM}} = 1.1$ to account for an approx. 10% higher operating empty mass.
+The engine maintenance factor is considered $f_{\text{ENG}} = 1$ for kerosene-powered aircraft and $f_{\text{ENG}} = 0.7$ for hydrogen-powered aircraft.
+
+Thus, the annual maintenance costs result in
+$$
+  C_{\text{MRO}} = (C_{\text{MRO,AF,MAT}} + C_{\text{MRO,AF,PER}} + C_{\text{MRO,ENG}}) \cdot n_{\text{flights}}
+$$
+
+## Related direct operating costs
+Absolute DOC are generally unsuitable as an assessment measure because aircraft size and technology strongly influence this figure. They are therefore expressed in differently related quantities, depending on the purpose of the evaluation:
+
+  - DOC/Range (Flight Kilometer): Flight Kilometer Costs (FKC)
+  - DOC/Seat Kilometer Offered (SKO): Seat Kilometer Costs (SKC)
+  - DOC/Seat Kilometer Offered Corrected: Corrected SKC to take account of any freight revenue
+  - DOC/Ton Kilometers Offered (TKO): Ton Kilometer Costs (TKC)
+  - DOC/Revenue Passenger Kilometer (RPK): Revenue Seat Kilometer Costs (RSKC)
+
+These are described below.
+
+### Flight kilometer costs
+The flight kilometer costs are very flexible and suitable for an extended consideration of changed route structures. This parameter allows the range potential of the aircraft to be assessed:
+$$
+  FKC = \frac{DOC}{R}.
+$$
+
+### Seat kilometer costs
+The seat kilometer offered (SKO) (or available) is a measure of an aircraft's passenger carrying capacity or, in other words, its potential to generate revenue by providing available seats to passengers. They are calculated by multiplying the number of seats available $n_{\text{seats}}$ by the range:
+$$
+  SKO = n_{\text{seats}} \cdot R.
+$$
+
+The seat kilometer costs allow the analysis of a change in seat capacity and thus the assessment of the passenger kilometer potential:
+$$
+  SKC = \frac{DOC}{SKO}
+$$
+
+### Corrected seat kilometer costs
+
+!!! note 
+    The calculation of this cost share is not implemented at the moment and set to `0` instead.
+
+A method of freight equivalent passenger seats is applied.
+Cargo revenue from residual cargo payload at maximum zero fuel mass ($m_{\text{PL,max}} - m_{\text{PL}}$) can be calculated using
+$$
+  I_{\text{cargo}} = I_{\text{FR}} \cdot (W_{\text{PL,max}} - W_{\text{PAX}})
+$$
+
+with
+
+- $I_{\text{FR}}$ - revenue per freight kilometer
+- $W_{\text{PL,max}}$ - maximum payload weight
+- $W_{\text{PAX}}$ - pax weight
+
+The equivalent seat revenue can be derived using the following formula:
+$$
+  n_{\text{PAX,cargo}} = \frac{I_{\text{cargo}}}{I_{\text{PAX}}}
+$$
+
+with $I_{\text{PAX}}$ as revenue per seat and flight (see following table).
+
+Segment         | $I_{\text{PAX,multi-class}}$ in EUR/SO | $I_{\text{PAX,all-economy}}$ in EUR/SO |
+----------------|:--------------------------------------:|:--------------------------------------:|
+Short haul      |                  400                   |                  250                   |
+Medium haul     |                  450                   |                  300                   |
+Long haul       |                  550                   |                  400                   |
+Ultra long haul |                  700                   |                  550                   |
+
+Finally, the SKC correction can be determined as follows:
+$$
+  SKC_{\text{cor}} = SKC \cdot \frac{n_{\text{PAX}}}{n_{\text{PAX}} + n_{\text{PAX,cargo}}}
+$$
+
+### Ton kilometer costs
+The ton kilometer costs (TKC) allow the analysis of a change in payload capacity and thus the assessment of the payload kilometer potential. The Ton Kilometers Offered (TKO) are the product of the payload and the range:
+$$
+  TKO = m_{\text{PL}} \cdot R
+$$
+
+The Ton Kilometer Costs (TKC) are the DOC related to the TKO:
+$$
+  TKC = \frac{DOC}{TKO}
+$$
+
+### Revenue seat kilometer costs
+Revenue passenger kilometers (RPK) are a measure of how many kilometers the aircraft has carried paying passengers. It is often referred to as "traffic" as it represents the actual demand for air transport. The RPK are determined by multiplying the range by the number of paying passengers. The revenue passenger kilometers are calculated by multiplying the number of revenue passengers with the maximum number of seats and the seat load factor $f_{\text{SL}}$:
+$$
+  RPK = n_{\text{PAX}} \cdot f_{\text{SL}} \cdot R
+$$
+
+The DOC per revenue passenger kilometer additionally take into account the overall performance of an airline. Note that revenue is strongly dependent on market situation and therefore varying.
+$$
+  RSKC = \frac{DOC}{RPK}
+$$
+
+## Indirect operating costs (IOC)
+tbd. :construction:
+
+---
+<sup>[1]</sup> J. Thorbeck, 2007. *From Aircraft Performance to Aircraft Assessment*. DLR.<br>
+<sup>[2]</sup> A. Bardenhagen, 2017. *J Flugzeugbewertung*. Technische Universität Berlin.<br>
+<sup>[3]</sup> EUROCONTROL Central Route Charge Office (CRCO), 2022. *Customer Guide to Charges*. URL: https://www.eurocontrol.int/sites/default/files/2022-11/eurocontrol-customer-guide-to-charges.pdf.
\ No newline at end of file
diff --git a/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md b/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md
new file mode 100644
index 0000000000000000000000000000000000000000..595234bdf9588970ec6ce5e9b88c35f22b3b73ed
--- /dev/null
+++ b/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md
@@ -0,0 +1,82 @@
+# Run your first cost estimation
+Let's dive into the fun part and crunch some numbers! :moneybag:
+
+## Tool single execution
+The tool can be executed from the console directly if all paths are set. The following will happen:
+
+- [Console output](#console-output)
+- [Generation of reports and plots](#reporting)
+- [Writing output to aircraft exchange file](#write-data-to-acxml)
+
+Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices. Also, if you need some additional information on the underlying methodology, check out the page on the [cost estimation method](operating_cost_method.md).
+
+So, feel free to open the terminal and run `python.exe cost_estimation.py` to see what happens...
+
+### Console output {#console-output}
+Firstly, you see output in the console window. Let's go through it step by step...
+
+```
+2024-12-06 11:37:30,205 - PRINT - Cost estimation started...
+2024-12-06 11:37:30,224 - PRINT - ----------------------------------------------------------
+2024-12-06 11:37:30,224 - PRINT - Operating cost estimation results for design mission.   
+2024-12-06 11:37:30,224 - PRINT - ----------------------------------------------------------
+2024-12-06 11:37:30,226 - PRINT - Capital costs: 5,852,515 €
+2024-12-06 11:37:30,226 - PRINT - Crew costs (per year): 4,779,200 €
+2024-12-06 11:37:30,227 - PRINT - ROUTE INDEPENDENT COSTS (per year): 10,631,715 €
+2024-12-06 11:37:30,227 - PRINT -                              *                            
+2024-12-06 11:37:30,319 - PRINT - Fuel costs (per year): 22,744,718 €
+2024-12-06 11:37:30,322 - PRINT - Handling costs (per year): 3,119,900 €
+2024-12-06 11:37:30,322 - PRINT - Landing costs (per year): 1,290,968 €
+2024-12-06 11:37:30,348 - PRINT - Air traffic control costs (per year): 9,271,834 €
+2024-12-06 11:37:30,351 - PRINT - Maintenance costs (per year): 8,038,461 €
+2024-12-06 11:37:30,377 - PRINT - ROUTE DEPENDENT COSTS (per year): 44,465,883 €
+2024-12-06 11:37:30,377 - PRINT -                              *                            
+2024-12-06 11:37:30,420 - PRINT - DIRECT OPERATING COSTS (per year): 55,097,598 €
+2024-12-06 11:37:30,420 - PRINT - ----------------------------------------------------------
+2024-12-06 11:37:30,607 - WARNING - No calculation method for indirect operating costs (IOC) implemented. IOC set to 0.
+```
+To this point, the module started and calculated the operating costs for the design mission.
+There is also a warning that the indirect operating cost method is not implemented yet.
+
+```
+2024-12-06 11:37:30,607 - WARNING - Warning: Operating cost estimation of study mission not possible due to missing data. No operating costs calculated.
+2024-12-06 11:37:30,608 - PRINT - ----------------------------------------------------------
+```
+The tool continues to check if an off-design study exists and tries to calculate the respective costs. In this example, there is no off-design data available and thus, the direct operating costs cannot be determined for the study mission.
+
+```
+2024-12-06 11:37:30,641 - PRINT - Plots are generated and saved...
+2024-12-06 11:37:38,187 - PRINT - HTML report is generated and saved...
+2024-12-06 11:37:38,188 - PRINT - Method-specific data are written to 'cost_estimation_results.xml'...
+2024-12-06 11:37:38,192 - WARNING - Warning: "tex_output" switch in module configuration file set to "False". No TeX report file generated.
+2024-12-06 11:37:38,192 - PRINT - Cost estimation finished.
+```
+Finally, you receive information about the reports and plots created (depending on your settings, see next section) and the tool is successfully completed.
+
+### Reporting {#reporting}
+In the following, a short overview is given on the generated reports:
+
+- A `cost_estimation.log` file is written within the directory of the executable
+- Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file:
+    - an HTML report in the `report_html` folder
+    - a TeX report in the `report_tex` folder (not implemented yet)
+    - an XML file with additional output data in the `report_xml` folder
+    - plots in the `plots` folder
+
+### Write data to the aircraft exchange file {#write-data-to-acxml}
+!!! note 
+    The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool!
+
+Results are saved in the aircraft exchange file at the `aircraft_exchange_file/assessment/cost_estimation/operating_cost` node. The following information is written to the _acXML_:
+```
+Direct operating cost
+|- Flights per year (design mission)
+|- Flights per year (study mission) - only if off-design analysis available
+|- Route independent cost annual
+|- Route dependent cost annual
+|- Direct operating cost annual
+```
+When implemented, the indirect operating costs are going to be saved at `aircraft_exchange_file/assessment/cost_estimation/operating_cost/indirect_operating_cost`.
+
+## Troubleshooting {#troubleshooting}
+- The tool does not run properly? *Make sure you have all the paths set up correctly and the specified elements exist.*
diff --git a/docs/documentation/analysis/cost_estimation/software_architecture.md b/docs/documentation/analysis/cost_estimation/software_architecture.md
new file mode 100644
index 0000000000000000000000000000000000000000..b947e4a0893287c0fc138f3b4c718447ee9a827d
--- /dev/null
+++ b/docs/documentation/analysis/cost_estimation/software_architecture.md
@@ -0,0 +1,34 @@
+# Software architecture
+This site is currently under development. :construction:
+
+<!-- 
+## Module structure
+'main.py' runs the following functions:
+1. 'data_preprocessing' (from 'datapreprocessing.py')<sup>1</sup>
+   - 1.1  
+2. 'run_module' (from 'methodexecutionpackage' library)<sup>2</sup>
+   - 2.1
+3. 'data_postprocessing' (from 'datapostprocessing.py')<sup>3</sup>
+
+<sup>1</sup> data preprocessing runs: \
+<sup>2</sup> \
+<sup>3</sup> data_postprocessing runs: ...
+
+...
+
+
+### Routing layers
+The tank design module has the following layer structure:
+
+1. Aircraft configuration
+   - Implemented: 'tube_and_wing'
+   - Not yet implemented: 'blended_wing_body'
+2. Calculation method fidelity
+   - Implemented: 'empirical'
+3. Calculation method
+   - Implemented: 'tank_design_tu_berlin'
+4. Energy carrier <sup>1</sup>
+   - Implemented: 'kerosene'
+   - Not yet implemented: 'liquid_hydrogen', 'hybrid'
+
+<sup>1</sup> The used energy carrier is determined automatically in the 'read_energy_carrier_and_tank_configuration' function. -->
diff --git a/docs/documentation/analysis/ecological_assessment/basic-concepts.md b/docs/documentation/analysis/ecological_assessment/basic-concepts.md
new file mode 100644
index 0000000000000000000000000000000000000000..6993cbae19f3ee8e0564c97d66c96e7370b36483
--- /dev/null
+++ b/docs/documentation/analysis/ecological_assessment/basic-concepts.md
@@ -0,0 +1,953 @@
+# Basic concepts {#basic-concepts}
+This chapter provides some insight in the implemented calculation routines. The module is split into several submodules which are responsible to calculate parts of the ecological assessment. Following submodules are implemented:
+
+- [Mission Emissions](#mission-emissions)
+- [Life Cycle Emissions (Schaefer)](#lca-schaefer)
+- [Air Quality Index (Schaefer)](#aqi-schaefer)
+- [Climate Model (Dallara)](#climate-model-dallara)
+
+The next sections will describe the submodules in detail, with information about in- and outputs as well as calculation routines. If you'd like to get more information about the values named in the input xml files, you can have an look into the files and read the corresponding description. The inputs from configuration file are shown in their original format, so that you can check the default values and boundaries within this documentation.
+
+## Mission Emissions {#mission-emissions}
+The submodule _mission_emissions_ is the only part of _ecological\_assessment_ which can not be deactivated by the user, as its results are needed by all other submodules. It provides various options to calculate the emissions of kerosene or hydrogen-burning engines during a mission. Both the design and the study mission will be calculated (in the following, file names including *mission* will always mean *study_mission* and *design_mission*).
+
+### General principles {#mission-emissions-generalprinciples}
+Depending on the defined engine carrier, the emissions will be calculated for every mission step defined in the `mission.csv` file. Currently, only pure kerosene or pure liquid hydrogen combustion is supported, other energy carriers or hybrid variants are not implemented and will lead to a program abortion!
+
+The needed engine thermodynamics during the landing and takeoff phase (LTO) according to ICAO definition are calculated by the engine library. If you're interested to see a comparison between the standard ICAO LTO cycle and your aircraft design, you need to switch on the `info` mode for console or log file output inside your configuration file to get those information. Following thrust settings in percent of take-off thrust are used for LTO:
+
+Taxiing | Take-off | Climb | Approach |
+--------|----------|-------|----------|
+7%      |100%      |85%    |30%       |
+
+If the taxiing thrust can not be set (which happens sometimes because of a lack of engine data), you will see a warning and the engine will automatically set to idle conditions.
+
+Then, the main task of this submodule is executed: the emission calculation. Following formula is used for determination:
+
+$ m_{emission} = EI \cdot m_{fuel}$,
+
+where
+
+- $ m_{emission}$: emission mass $[kg]$
+- $ EI $: emission index $[\frac{kg_{emission}}{kg_{fuel}}]$
+- $ m_{fuel} $: fuel mass  $[kg]$
+
+#### Kerosene Emissions
+Kerosene combustion emissions will be calculated as following:
+
+The emissions of CO2, H2O, SO2, SO4 and (in a low fidelity approach) soot are considered to be proportional to the fuel flow. Following emission indices are used:
+
+Emission | EI [kg/kg] |
+---------|------------|
+CO2      | 3.149      |
+H2O      | 1.2        |
+SO2      | 0.84e-3    |
+SO4      | 2e-4       |
+Soot     | 0.025e-3   |
+
+All other emissions are considered to be non-proportional and are calculated with following methods:
+
+- For NOx emissions, there are
+    - a P3T3 Method[@Nor03],
+    - Boeing Fuel Flow Method 2[@Sch13]
+    - and the calculation based on data generated by GasTurb available.
+- For HC as well as CO emissions, the
+    - DLR Omega method
+    - and Boeing Fuel Flow Method 2[@Sch13] are implemented.
+    - Additionally, there is the option to calculate the landing and takeoff cycle emissions based on constants provided by ICAO.
+- Soot emissions can be determined via
+    - a DLR correlation based on ICAO smoke numbers
+    - or a correlation by R.B. Whyte[@Kug05].
+    - Alternatively, it can be assumed to be proportional to the consumed fuel.
+
+#### Hydrogen Combustion Emissions
+When hydrogen is burned in an engine, only H2O and NOx emissions are produced. H2O is again assumed to be proportional to the fuel flow. For NOx emissions, there are two methods implemented. As the determination of NOx emissions when burning hydrogen is subject to great uncertainty, a the low-fidelity method of using constant emission indices for different flight phases is the default method. The emission indices were determined by K. Kossarev (2022)[@Koss22] for one engine type and are listed in this table:
+
+Phase   | EI [g/kg]|
+--------|----------|
+Taxi    | 1.1      |
+Takeoff | 8.02     |
+Climb   | 6.17     |
+Cruise  | 3.14     |
+Approach| 2.4      |
+
+Alternatively, you can choose to follow the method described in Kossarev (2022)[@Koss22] and calculate the emission index in every mission step. For that, the emissions of kerosene-burning engines are calculated via the P3T3 method and a correction factor is used to derive the emissions due to hydrogen combustion. If the calculation of a correction factor fails, the first method is used as a fallback method.
+
+
+
+
+
+### Input data {#mission-emissions-input}
+For the mission emission calculation (including used libraries), the following parameters are needed in the `aircraft_exchange_file`:
+```
+├── requirements_and_specifications/
+│   ├── general/
+│   │   ├── type
+│   │   └── model
+│   ├── mission_files/
+│   │   ├── design_mission_file
+│   │   └── study_mission_file
+│   ├── design_specification/
+│   │   ├── configuration/
+│   │   │   ├── configuration_type
+│   │   │   └── aerodynamic_technologies
+│   │   ├── energy_carriers/
+│   │   |    └── energy_carrier (ID="0")/
+│   │   |       └── type
+│   |   └── transport_task/
+│   |       ├── cargo_definition/
+│   |       |   └── additional_cargo_mass
+│   |       └── passenger_definition/
+│   |           ├── total_number_passengers
+│   |           ├── mass_per_passenger
+│   |           └── luggage_mass_per_passenger
+│   ├── requirements/
+│   │   └── top_level_aircraft_requirements/
+│   │       ├── design_mission/
+│   │       │   └── delta_ISA
+│   │       └── study_mission/
+|   |           ├── delta_ISA
+│   │           └── payload_fractions/
+│   │               ├── cargo_fraction
+│   │               └── passenger_mass_fraction
+│   └── assessment_scenario/
+│       └── duration_operation
+├── analysis/
+│   └── mission/
+│       ├── design_mission/
+│       │    └── cruise/
+│       │        └── cruise_step@{i}/
+│       │            └── cruise_steps/
+│       │                ├── relative_end_of_cruise_step
+│       │                └── altitude
+│       └── study_mission/
+│            └── cruise/
+│                └── cruise_step@{i}/
+│                    └── cruise_steps/
+│                        ├── relative_end_of_cruise_step
+│                        └── altitude
+├── component_design/
+│   └── propulsion/
+│       └── specific/
+│           └── propulsion (ID="0")/
+│               └── engine/
+│                   ├── scale_factor
+│                   └── model
+└── assessment/
+    └── cost_estimation/
+        └── operating_cost/
+            └── direct_operating_cost/
+                └── flights_per_year_study_mission
+```
+
+In the `ecological_assessment_conf.xml`, next to the control settings block, you can set the emission calculation methods and relative humidity of the air within the program settings:
+```xml
+<standard_strategy description="Settings for standard strategy. Different methods can be used by defining them in this block.">
+    <emission_calculation description="Settings for the emission calculation">
+        <mission_emissions>
+            <emission_methods description="Methods for calculation of emission indices">
+                <kerosene description="Calculation methods for kerosene combustion emission indices">
+                    <HC_method_selector description="Select method for calculation of hydrocarbon emission index. Selector: mode_0 (DLR Omega Method) / mode_1 (Boeing Fuel Flow Method 2) / mode_2 (ICAO Emission indices)">
+                        <value>mode_0</value>
+                    </HC_method_selector>
+                    <CO_method_selector description="Select method for calculation of carbon monoxide emission index. Selector: mode_0 (DLR Omega Method) / mode_1 (Boeing Fuel Flow Method 2) / mode_2 (ICAO Emission indices)">
+                        <value>mode_0</value>
+                    </CO_method_selector>
+                    <NOx_method_selector description="Select method for calculation of nitrogen oxide emission index. Selector: mode_0 (pressure and temperature dependent (P3T3) method by P.D.Norman) / mode_1 (Boeing Fuel Flow Method 2)  / mode_2 (NOx values from GasTurb will be used)">
+                        <value>mode_0</value>
+                    </NOx_method_selector>
+                    <soot_method_selector description="Select method for calculation of soot emission index. Selector: mode_0 (DLR correlation based on ICAO smoke number) / mode_1 (Correlation by R.B.Whyte) / mode_2 (Use constant factor defined in engine.xml)">
+                        <value>mode_0</value>
+                    </soot_method_selector>
+                </kerosene>
+                <hydrogen_combustion description="Calculation methods for hydrogen combustion emission indices">
+                    <NOx_method_selector description="Select method for calculation of nitrogen oxide emission index. Selector: mode_0 (Use constant EI for different mission segments (Kossarev 2022)) / mode_1 (P3T3 correlation based on experiments by Marek 2005 and correction factor derived of kerosene P3T3 method)">
+                        <value>mode_0</value>
+                    </NOx_method_selector>
+                </hydrogen_combustion>
+            </emission_methods>
+            <relative_humidity description="Relative humidity of air">
+                <value>0.6</value>
+                <unit>1</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>1</upper_boundary>
+            </relative_humidity>
+        </mission_emissions>
+    </emission_calculation>
+```
+
+From `mission.xml`, the taxi time and mission range will be read :
+```
+├── taxi_time_origin
+├── taxi_time_destination
+├── range
+```
+Additionally, you need to provide the `mission.csv` file written by the UNICADO [mission analysis](../mission_analysis/index.md) module and located in _aircraft\_exchange\_file\_directory/mission_data_.
+
+And last but not least, the engine library will be used, so you can check the documentation page of the [engine library](../../libraries/index.md) to get information about its input files.
+
+### Output data {#mission-emissions-output}
+The central output of the mission submodule is the `ecological_assessment_results.xml` which you will find in the *aircraft\_exchange\_file\_directory/reporting/report_xml* directory. It contains all calculated emission masses. Additionally, there is a `...emissionspath.csv` file in the folder *aircraft_exchange_file_directory/mission_data/* including mission and engine data for every mission step.  As described in [Module usage](usage.md/#usage), an HTML report including plots with emission flows will be generated.
+
+
+## Life Cycle Emissions (Schaefer) {#lca-schaefer}
+The method is based on the dissertation by Katharina Schäfer (2011)[@Sch17]. It is highly recommended to refer to this work for detailed insights. The method calculates the energy demand and emissions across the aircraft's life cycle phases: development, production, operation, and end-of-life. The following image shows the processes considered.
+
+![](figures/lifeCyclePhases.png "Life cycle phases according to K.Schaefer")
+
+The method is only applicable for conventional tube and wing aircraft, powered by kerosene. This will be checked and the program skips the life cycle emission calculation in case you try to assess fancy unconventional aircraft designs :wink:
+
+### General principles {#lca-schaefer-generalprinciples}
+For all processes within the four phases, an inventory analysis is conducted. In a first step, all relevant inputs are collected, such as materials, fuel and energy demand. Next, the resulting emissions are determined. For background processes, data provided primarily by [GaBi Software](https://ghgprotocol.org/gabi-databases) is used, offering emission data for material extraction, fuel production, energy production, and more. With this data, emissions resulting of the determined resources are calculated as follows:
+
+$ Em_{energy} = Em_{energy}^* \cdot E $
+
+$ Em_{fuel} = Em_{fuel}^* \cdot f + Em_{com}$
+
+$ Em_{mat} = Em_{mat}^* \cdot m_{mat} $
+
+where
+
+- $ Em_{energy} $: Emissions due to energy production (both electric and heat energy) [kg]
+- $ Em_{fuel} $: Emissions due to fuel production and combustion [kg]
+- $ Em_{mat} $: Emissions due to material extraction [kg]
+- $ Em_{com} $: Emissions due to fuel combustion [kg]
+- $ Em_{energy}^* $: Specific energy production emissions [kg/MJ]
+- $ Em_{fuel}^* $:  Specific fuel production emissions [kg/kg]
+- $ Em_{mat}^* $: Specific material extraction emissions [kg/kg]
+- $ E $: Energy demand [MJ]
+- $ f $: Fuel demand [kg]
+- $ m_{mat} $: Material demand [kg]
+
+The emissions of CO2, H2O, NOx, CO, SO2, CH4, HC and soot are determined. For the testing phase during development, perfluorinated hydrocarbons (PFC), non methane volatile organic compounds (NMVOC) and nitrous oxide emissions (N2O) are calculated in addition.
+
+If recycling is enabled, emissions in the end-of-life phase can be negative, as the emissions saved in the production phase due to recycling are accounted for here.
+
+#### Development resources
+The development phase includes engineering and testing.
+
+Both electric and heat energy demand for engineering is determined by:
+
+$  E = E^*  \cdot A \cdot \frac{t}{h} $
+
+where
+
+- $E$: (Electric and heat) energy $[MJ]$
+- $E^*$: Specific energy per area $[\frac{MJ}{m^2 \cdot a}]$
+- $A$: Gross floor area $[m^2]$
+- $t$: Engineering hours $[h]$
+- $h$: Hours per year $[h/a]$
+
+Testing is split into wind tunnel test, structure tests, system tests, ground tests, engine tests and flight tests.
+
+The wind tunnel tests (index: wt) only use energy $E$ [MJ], depending on the time spend in the wind tunnel $t$ [s] and power demand $P$ [MW]:
+
+$ E_{wt} = t_{wt} \cdot P_{wt}$.
+
+For structure tests (index: struc), production and end of life of the test components are considered. As the emissions resulting from energy, material and fuel demand of those components are calculated within the according phases, the resources are not determined here - instead, the emissions are directly summed up from existing data. Additionally, there is some energy needed for carrying out the tests. The energy $E$ [MJ] is calculated using a linear correlation for the needed hydraulic and pneumatic power, depending on the number of load cycles $n$ [-] and the maximum take off mass $MTOM$ [kg]:
+
+$E_{struc} = n \cdot MTOM \cdot 1.45 \frac{MJ}{kg}$
+
+The system tests (index: sys) are divided into integration tests and iron bird tets. The needed energy $E$ [MJ] is estimated using the maximum design power of the electric, pneumatic and hydraulic aircraft systems $P$ [MW] and the testing time $t$ [s]:
+
+$E_{sys} = P \cdot t_{sys}$
+
+In the same way, the energy for ground tests (index: gt) is determined:
+
+$E_{gt} = P \cdot t_{gt}$
+
+Additionally, emissions for taxi tests are considered. As they are calculated in the mission submodule anyway, the are summed up directly instead of calculating the resources here. It is assumed, that the total ground test time equals the flight test time, and the taxi test time is 5% of the total ground test time.
+
+Engine tests are divided into rig tests (index: rig) and test on an flying test bed (index: ftb). For the fuel demand $f$ [kg], the number of test engines $n$ [-], their thrust specific fuel consumption $TSFC$ [(kg/s)/kN] and thrust $T$ [kN] both for cruise condition $c$, and maximum $max$ as well as share of those values $x$ [-] and total time $t$ [s] are needed:
+
+$ f_{rig} = n \cdot t_{rig} (\cdot (TSFC_{max} \cdot T_{max} \cdot x  +  TSFC_{c} \cdot T_{c} \cdot (1 - x))) $
+
+For the flying test bed, the fuel consumption is estimated with the fuel flow per engine, test time and number of tested engines.
+Energy and material demand for the engine tests are not calculated here, but the emissions are taken from production and end of life phase of the engine.
+
+The same is valid for the material and energy demand of the aircraft for flight tests (index: ft). The needed amount of fuel is strongly simplified and calculated with the known fuel demand of one mission (index: mission) and the flight times t [h]:
+
+$f_{ft} = f_{mission} \cdot \frac{t_{ft}}{t_{mission}}$
+
+
+#### Production resources
+For the production resources, following processes are considered:
+
+- raw material extraction (material and energy)
+- material processing (energy)
+- labour production (electric and heat energy)
+- transport to assembly location (fuel)
+- final assembly (electric and heat energy)
+- final flight test (fuel)
+
+The energy of labour is determined based on the actual working hours, the yearly working hours and the database value of energy per worker and year. The hour spend on the production is derived of the aircraft components' recurring costs:
+
+$ labourCosts = 0.41 \cdot (recurringCosts - finalAssemblyCosts) $
+
+<div class="mathjax-render">
+$ energy [MJ] = specificEnergy [MJ/a] \cdot \frac{labourCosts [\$]}{wage [\$/h] \cdot hoursPerYear [h/a]} $
+</div>
+
+For the material demand $m$ [kg] of one aircraft component (index: ac), the component weight $m_{comp}$ [kg], the material ration $mr$ [-] and the scrap ratio $sr$ [-] are needed:
+
+$ m_{ac} = \frac{mr \cdot m_{comp}}{1-sr} $
+
+This is done for all components and all considered materials (aluminum, CFRP, steel, titanium, nickel) and summed up for a total value. Whereas the component masses are read from the aircraft exchange file, all other values can be found in the module database. Also part of the database are the values for recycling of primary scrap. The raw material demand (index: raw) per material (index: mat) per component is:
+
+$ m_{mat, raw} = m_{ac} \cdot (1- sr \cdot recoveryRate) $
+
+Therefor, the whole raw material demand for a component is:
+
+$ m_{ac,raw} = \sum m_{mat, raw} $
+
+The energy demand for material processing does not consider the scrap ratio, as the values for specific energy demand $E^{*}_{mat}$ are valid per aircraft component. The energy demand is calculated per material and summed up:
+
+<div class="mathjax-render">
+$ E_{comp} = \sum E^{*}_{mat} \cdot mr \cdot m_{comp} $
+</div>
+
+The fuel demand for transportation is based on a Airbus transportation network scenario which is defined in source code of the module. For every transportation/fuel type, the amount of fuel $f$ [kg] is calculated based on the components weight $m_{comp}$ [t], the transport distance $d$ [km] and a fuel specific fuel consumption $f^*$ [kg/(km$\cdot$t)]:
+
+$f = m_{comp} \cdot d \cdot f^* $
+
+For the final assembly, mainly personnel work and therefor electrical and heat energy is required. Again, the working hours are derived from costs:
+
+<div class="mathjax-render">
+$energy [MJ] = specificEnergy[MJ/a] \cdot \frac{finalAssemblyCosts [\$]}{wage [\$/h] \cdot hoursPerYear [h/a]} $
+</div>
+
+The fuel for final flight tests (index: ft) are determined as the first flight tests:
+
+$f_{ft} = f_{mission} \cdot \frac{t_{ft}}{t_{mission}}$
+
+#### Operation resources
+During the operation phase, flights are performed and maintenance is necessary. The needed fuel for operation can be read from the mission calculation and is not calculates in this phase. Resources for maintenance are production resources for spare parts and labour energy (heat and electricity). For the spare parts, resources determined in the production phase are used. It is assumed, that the ratio of the maintenance material costs of a certain component and the corresponding recurring costs of that component is equal to the ratio of resources of the spare parts and of manufacturing of the specific component. For labour energy, direct maintenance costs are used and the amount of operating years t considered:
+
+$energy [MJ] = specificEnergy[MJ/a] \cdot \frac{directMaintenanceCosts [\$]}{wage [\$/h] \cdot hoursPerYear [h/a]} \cdot t [a]$
+
+
+#### End of life resources
+In the end of life (EoL) phase, the transport to EoL-site, disassembly, dismantling and recycling/incineration/landfill are considered.
+The transport to EoL-site is handled like a flight with a certain distance and the fuel demand $f$ [kg] is determined via the range $R$ [NM] of this flight compared to the range of the known mission:
+
+$f_{EoL} = f_{mission} \cdot \frac{R_{EoL}}{R_{mission}}$
+
+Resources for disassembly and dismantling are determined as for the final assembly, but no heat energy is required as the the process typically takes place outdoors.
+
+$energy [MJ] = specificEnergy[MJ/a] \cdot \frac{costs [\$]}{wage [\$/h] \cdot hoursPerYear [h/a]} \cdot t [a]$
+
+The EoL scenario defined in the module contains recycling, incineration and landfill rates for the aircraft components. The energy needed for all materials/components and all cases is summed up. With the ratios of incineration and landfill, the energy for all components and materials are calculated like this:
+
+$ E = E^*\cdot m_{comp} $
+
+where
+
+- $E$: Energy $[MJ]$
+- $E^*$: Specific energy $[MJ/kg]$
+- $m_{comp}$: Mass of component $[kg]$
+
+For recycling, the energy rate $ER$ [-] is needed additionally:
+
+$ E = \frac{1}{ER} \cdot E^*\cdot m_{comp} $
+
+### Input data {#lca-schaefer-input}
+The calculation results depend on following user inputs the aircraft exchange file:
+```
+requirements_and_specifications/
+├── general/
+│   ├── type
+│   └── model
+├── design_specification/
+│   └── transport_task/
+│       └── passenger_definition/
+│           └── total_number_passengers
+├── requirements/
+│   └── top_level_aircraft_requirements/
+│       ├── flight_envelope/
+│       │   └── maximum_operating_velocity
+│       └── study_mission/
+│           ├── range
+│           └── payload_fractions/
+│               └── passenger_mass_fraction
+├── assessment_scenario/
+│   └── duration_operation
+└── mission_files/
+    └── design_mission_file
+```
+Additionally, results from other Unicado tools are needed:
+```
+├──component_design/
+│  ├── propulsion/
+│  │   ├── specific/
+│  │   ├── propulsion (ID="0")/
+│  │   │   ├── engine/
+│  │   │   │   ├── scale_factor
+│  │   │   │   ├── model
+│  │   │   │   ├── bucket_point/
+│  │   │   │   │   ├── thrust
+│  │   │   │   │   └── tsfc
+│  │   │   │   └── mass_properties/
+│  │   │   │       └── mass
+│  │   │   ├── nacelle (ID="0")/
+│  │   │   │   └── mass_properties/
+│  │   │   │       └── mass
+│  │   │   └── pylon (ID="0")/
+│  │   │       └── mass_properties/
+│  │   │           └── mass
+│  │   └── mass_properties/
+│  │       └── mass
+│  ├── systems/
+│  │   └── specific/
+│  │       ├── maximium_power_demand
+│  │       ├── geometry/
+│  │       │   └── mass_properties/
+│  │       │       ├── bleed_air_system
+│  │       │       └── fuel_system
+│  │       └── mass_properties/
+│  │           └── mass
+│  ├── wing/
+│  │   └── mass_properties/
+│  │       └── mass
+│  ├── fuselage/
+│  │   └── mass_properties/
+│  │       └── mass
+│  ├── landing_gear/
+│  │   └── mass_properties/
+│  │       └── mass
+│  └── empennage/
+│      └── specific/
+│          └── geometry/
+│              ├── aerodynamic_surface (ID="0")/
+│              │   ├── name
+│              │   └── mass_properties/
+│              │       └── mass
+│              └── aerodynamic_surface (ID="1")/
+│                  ├── name
+│                  └── mass_properties/
+│                      └── mass
+├── analysis/
+│   ├── aerodynamics/
+│   │   └── reference_values/
+│   │       └── S_ref
+│   ├── masses_cg_inertia/
+│   │   ├── maximum_takeoff_mass/
+│   │   │   └── mass_properties/
+│   │   │       └── mass
+│   │   ├── operating_mass_empty/
+│   │   │   └── mass_properties/
+│   │   │       └── mass
+│   │   └── manufacturer_mass_empty/
+│   │       └── mass_properties/
+│   │           └── mass
+│   └── mission/
+│       ├── design_mission/
+│       │   ├── range
+│       │   ├── block_time
+│       │   ├── flight_time
+│       │   ├── trip_energy
+│       │   │    └── consumed_energy
+│       │   ├── takeoff_energy
+│       │   │   └── consumed_energy
+│       │   ├── landing_energy
+│       │   │   └── consumed_energy
+│       │   └── taxi_energy (ID="0")/
+│       │       ├── taxi_out_energy (ID="0")/
+│       │       │   └── consumed_energy
+│       │       └── taxi_in_energy (ID="0")/
+│       │           └── consumed_energy
+│       └── study_mission/
+│           ├── range
+│           ├── flight_time
+│           ├── taxi_energy (ID="0")/
+│           │   ├── taxi_out_energy (ID="0")/
+│           │   │   └── consumed_energy
+│           │   └── taxi_in_energy (ID="0")/
+│           │       └── consumed_energy
+│           └── in_flight_energy/
+│               └── trip_energy (ID="0")/
+│                   └── consumed_energy
+└── assessment/
+    └── cost_estimation/
+        └── operating_cost/
+            └── direct_operating_cost/
+                └── flights_per_year_study_mission
+```
+In the `ecological_assessment_conf.xml`, you can specify calculation modes and input parameters like testing hours for the different phases. Next to the control settings block, the following program settings can be set:
+```xml
+<standard_strategy description="Settings for standard strategy. Different methods can be used by defining them in this block.">
+    <emission_calculation description="Settings for the emission calculation">
+        <life_cycle_emissions_methods description="Settings for life cylce emission calculation">
+            <schaefer description="Settings for the emission calculations according to K.Schäfer(2018)">
+                <engine_mode_switch description="Includes engine life cycle in calculation (Dev+Production+Maintenance+EoL). Switch: true (engine included) / false (engine not included)">
+                    <value>true</value>
+                </engine_mode_switch>
+                <engine_engineering_ratio description="Engineering effort for engines relative to whole aircraft (derived from Micado CSR-02 costs)">
+                    <value>0.2113</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1</upper_boundary>
+                </engine_engineering_ratio>
+                <development_phase description="Settings for the calculation of the development phase">
+                    <test_phase description="Settings for calculation of test emissions">
+                        <development_emission_setting description="Selects scope of development emission calculation. Selector: mode_0 (no development emissions) / mode_1 (development emissions without production/endOfLife emissions of test components) / mode_2 (development emissions with production/endOfLife emissions of test components)">
+                            <value>mode_2</value>
+                        </development_emission_setting>
+                        <aircraft_specs description="Aircraft specifications needed for development calculations">
+                            <ETOPS_switch description="Aircraft and engine(s) will be tested for ETOPS (Extended-range Twin-engine Operations Performance Standards) approval, engine test: additional 3000 test cycles (a 0.5h). Switch: true (test) / false (no test)">
+                                <value>false</value>
+                            </ETOPS_switch>
+                            <engine_options description="Number of engine options for this aircraft">
+                                <value>2</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </engine_options>
+                        </aircraft_specs>
+                        <wind_tunnel_test description="Settings for wind tunnel test">
+                            <test_hours description="Number of wind tunnel hours in aircraft development">
+                                <value>15000</value>
+                                <unit>h</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>150000</upper_boundary>
+                            </test_hours>
+                        </wind_tunnel_test>
+                        <structural_test description="Settings for structural test">
+                            <test_cycles description="Number of tested flight cycles in aircraft development (twice the number of flight cycles for which the aircraft will be certified)">
+                                <value>160000</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>500000</upper_boundary>
+                            </test_cycles>
+                            <number_of_structural_test_aircraft description="Number of aircraft for structural tests">
+                                <value>2</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </number_of_structural_test_aircraft>
+                        </structural_test>
+                        <system_test description="Settings for system tests">
+                            <system_integration_test_hours description="Test hours at the system integration test rig">
+                                <value>5000</value>
+                                <unit>h</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10000</upper_boundary>
+                            </system_integration_test_hours>
+                            <iron_bird_test_hours description="Test hours on the Iron-Bird test rig">
+                                <value>5000</value>
+                                <unit>h</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10000</upper_boundary>
+                            </iron_bird_test_hours>
+                        </system_test>
+                        <engine_test description="Specify engine tests">
+                            <enable description="Switch to enable engine tests. Switch: true (engine tests on (only if new engine/s for aircraft has to be certified)) / false (engine tests off)">
+                                <value>true</value>
+                            </enable>
+                            <number_of_new_engines description="Number of new engine(s) to be certified">
+                                <value>1</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </number_of_new_engines>
+                            <number_of_test_engines description="Number of engine for test rig (approx. 5) and flight test (approx. 1)">
+                                <value>6</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>100</upper_boundary>
+                            </number_of_test_engines>
+                            <rig_test>
+                                <test_hours description="Test hours on the engine rig within aircraft development without/with ETOPS (Extended-range Twin-engine Operations Performance Standards) hours (s.inclETOPS)">
+                                    <value>1500</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>15000</upper_boundary>
+                                </test_hours>
+                                <incl_ETOPS_switch description="Adds ETOPS (Extended-range Twin-engine Operations Performance Standards) certification in test hours. Switch: true (is included) / false (is not included)">
+                                    <value>false</value>
+                                </incl_ETOPS_switch>
+                                <max_continuous_thrust_percentage description="Percentage of test hours on the engine rig with Maximum Continuous Thrust in aircraft development">
+                                    <value>0.1</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </max_continuous_thrust_percentage>
+                            </rig_test>
+                            <flying_testbed description="Settings for the flying testbed ">
+                                <test_hours description="Test hours on flying testbed aircraft development">
+                                    <value>225</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1000</upper_boundary>
+                                </test_hours>
+                                <flying_testbed_engines description="Information about the engine at the flying_test_bed_engines (!), not to be tested engine">
+                                    <engine_number description="Number of engines on flying testbed (without tested engine)">
+                                        <value>3</value>
+                                        <unit>1</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>20</upper_boundary>
+                                    </engine_number>
+                                    <flying_testbed_fuel_consumption_per_engine description="Fuel consumption of the flying testbed engines of (one!) engine in cruise flight">
+                                        <value>3000</value>
+                                        <unit>kg/h</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>10000</upper_boundary>
+                                    </flying_testbed_fuel_consumption_per_engine>
+                                </flying_testbed_engines>
+                            </flying_testbed>
+                        </engine_test>
+                        <flight_test description="Settings for the flight tests">
+                            <test_hours description="Flight test hours in aircraft development for one / all Engine(s)-Option/s (s. incl_engine_options)">
+                                <value>2500</value>
+                                <unit>h</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10000</upper_boundary>
+                                <incl_engine_options description="Defines if all engine options are included in tests. Switch: true (include all engine options) / false (only one engine)">
+                                    <value>false</value>
+                                </incl_engine_options>
+                            </test_hours>
+                            <number_of_flight_test_aircraft description="Number of aircraft for flight tests">
+                                <value>6</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </number_of_flight_test_aircraft>
+                        </flight_test>
+                    </test_phase>
+                </development_phase>
+                <production_phase description="Settings for the calculation of the production phase">
+                    <production_mode description="Selects the production calculation mode. Selector: mode_0 (material mode) / mode_1 (main parts mode)">
+                        <value>mode_1</value>
+                    </production_mode>
+                    <primary_material_recycling_switch description="Enables primary material recycling. Switch: true (primary material will be recycled) / false (no recyling)">
+                        <value>true</value>
+                    </primary_material_recycling_switch>
+                    <number_produced_aircraft description="Number of produced aircraft per programm">
+                        <value>1500</value>
+                        <unit>1</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </number_produced_aircraft>
+                </production_phase>
+                <operating_phase description="Settings for the calculation of the opeerating phase">
+                </operating_phase>
+                <end_of_life_phase description="Settings for the calculation of the end of life phase">
+                    <distance_to_end_of_life_site description="Distance to be flown to the demolition location">
+                        <value>1000</value>
+                        <unit>NM</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </distance_to_end_of_life_site>
+                </end_of_life_phase>
+            </schaefer>
+        </life_cycle_emissions_methods>
+    </emission_calculation>
+```
+Other inputs are mission related. The design mission taxi time is needed and read from the *design_mission.xml*:
+
+```
+├── taxi_time_origin
+├── taxi_time_destination
+```
+
+And last but not least, the emissions provided by the submodule [mission_emissions](#mission-emissions) will be read from *ecological_assessment_results.xml*:
+
+```
+mission_emissions/
+├── design_mission/
+│   └── emissions/
+│       ├── LTO_cycle/
+│       │   ├── CO2
+│       │   ├── H2O
+│       │   ├── SO2
+│       │   ├── SO4
+│       │   ├── HC
+│       │   ├── CH4
+│       │   ├── CO
+│       │   ├── NOx
+│       │   ├── soot
+│       │   └── c_soot_LTO_max
+│       └── cruise/
+│           ├── CO2
+│           ├── H2O
+│           ├── SO2
+│           ├── SO4
+│           ├── HC
+│           ├── CH4
+│           ├── CO
+│           ├── NOx
+│           └── soot
+└── study_mission/
+    └── emissions/
+        ├── LTO_cycle/
+        │   ├── CO2
+        │   ├── H2O
+        │   ├── SO2
+        │   ├── SO4
+        │   ├── HC
+        │   ├── CH4
+        │   ├── CO
+        │   ├── NOx
+        │   ├── soot
+        │   └── c_soot_LTO_max
+        └── cruise/
+            ├── CO2
+            ├── H2O
+            ├── SO2
+            ├── SO4
+            ├── HC
+            ├── CH4
+            ├── CO
+            ├── NOx
+            └── soot
+```
+### Output data {#lca-schaefer-output}
+The Method writes data to CSV files in the *aircraft\_exchange\_file\_directory/reporting/plots/csv_files* folder containing emissions, energy demand, fuel demand and GWP100 for all processes. Additionally, total emissions of the four phases are written to the `ecological_assessment_results.xml`. As described in [Usage of the ecological_assessment tool](usage.md/#usage), an HTML report including a plot will be generated.
+
+## Air Quality Index (Schaefer) {#aqi-schaefer}
+This method provides a single indicator - called the Air Quality Index (AQI) - for the assessment of air quality. The AQI can take values between 0 and 1, with 1 indicating that the allowable limits defined by ICAO are reached by all species. Therefore, low values are preferable.
+
+### General principles {#aqi-schaefer-generalprinciples}
+The calculation method, including all required inputs, is described in Schaefer (2017)[@Sch17]. It is:
+
+$ AQI = 1/n \cdot \sum x_i/x_{i,max}$
+
+where:
+
+- $ x_i $: emission mass [g] ( for CO, HC, NOx) or maximum concentration [mg/m^3] ( for soot) during the landing and takeoff cycle,
+- $ x_{i,max}$: regulatory value defined by ICAO (the ratio of emission mass $Dp$ [g] emitted during LTO and the rated thrust $F00$ [kN]),
+- $ n $: number of emission species.
+
+### Input data {#aqi-schaefer-input}
+Only engine and emission data are needed. To construct the engine object, the following is required from aircraft exchange file:
+```
+component_design/
+└── propulsion/
+    ├── specific
+    └── propulsion (ID="0")/
+        └── engine/
+            ├── engine_model
+            └── scale_factor
+```
+
+From `ecological_assessment_results.xml` the emissions during LTO of the study mission are needed:
+```
+mission_emissions/
+└── study_mission/
+    └── emissions/
+        └── LTO_cycle/
+            ├── HC
+            ├── CO
+            ├── NOx
+            └── c_soot_LTO_max
+```
+### Output data {#aqi-schaefer-output}
+The submodule writes its calculation results into the HTML report located in *aircraft_exchange_file_directory/reporting/report_html*.
+
+## Climate Model (Dallara) {#climate-model-dallara}
+The climate model calculates key climate impact metrics: Radiative Forcing (RF), Absolute Global Warming Potential (AGWP), Absolute Global Temperature Potential (AGTP), and Average Temperature Response (ATR). The calculation methodology is derived from Dallara's work in 2011[@Dal11], providing a systematic approach to assess the environmental effects of various emissions.
+
+The key metrics are:
+
+- **RF**: quantifies the change in energy flux in the Earth's atmosphere due to emissions, specifically related to greenhouse gases, aerosols, and other components like soot or water vapor.
+- **AGWP**: measures the cumulative RF of an emission over a specific time horizon (typically 20, 100, or 500 years).
+- **AGTP**: calculates the temperature change due to emissions at a given point in time, typically looking at how gases contribute to warming.
+- **ATR**: ATR evaluates the mean temperature change over time.
+
+The model assesses the climate impact of following emissions:
+
+- COâ‚‚ (Carbon dioxide)
+- Hâ‚‚O (Water vapor)
+- Soot (Black carbon)
+- Ozone (O₃) (both long-lived and short-lived forms) and CH₄ (Methane), which are influenced by NOₓ emissions
+
+Additionally aircraft induced cloudiness (AIC) is considered.
+
+A particular feature of the method is the usage of forcing factors, which are unitless parameters. These factors modify the radiative forcing for emissions at different altitudes by normalizing the RF values to a fleet wide average. The altitude is the only flight trajectory parameter considered, meaning the geographic location is not factored into the calculations. This altitude dependency recognizes that emissions at higher altitudes (such as those from aviation) have a different forcing impact compared to emissions at ground level, as atmospheric processes and the distribution of pollutants vary with height.
+
+In the model, you can explore how the influence of time effects climate impact by adjusting the rate of devaluation for temperature response. A value of zero indicates that the temperature changes occurring after operations are given equal weight compared to changes during the operational period. Higher values of the rate, however, signify that postoperation impacts become progressively less important over time, with each subsequent year's temperature change being less significant than that of the previous year.
+
+### General principles {#climate-model-generalprinciples}
+The submodules is based on the emissions calculated by the mission submodule. Following metrics are calculated, always for one kilogram of one emission species, for the annual amount of this emission and finally for all emission species together:
+
+<pre class='mermaid'>
+  graph LR;
+  A[Emissions]-->B[RF]
+  B-->C[Normalized RF]
+  C-->D[Temperature Change]
+  D-->E[Weighted Temperature Change]
+  E-->F[ATR]
+</pre>
+
+In a first step, the emission masses are read and scaled to annual emissions.
+
+Afterwards, following formulas are used to calculate the radiative forcing:
+
+$ RF(t, h) = s_i(h) \cdot \int_{0}^{t} G_i(t-\tau)E_i(\tau)d\tau$  for  $i \in [CO_2, O_{3L}, CH_4]$
+
+$ RF(t, h) = s_i(h) \cdot \left(\frac{RF_{ref}}{E_{ref}}\right)\cdot E_i(t)$  for  $i \in [H_2O, O_{3S}, soot, SO_4]$
+
+$ RF_{AIC}(t, h) = s_{AIC}(h) \cdot \left(\frac{RF_{ref}}{L_{ref}}\right)_{AIC}\cdot L(t)$
+
+where
+
+- $RF$: radiative forcing [W/m^2]
+- $s_i$: forcing factor [-]
+- $G_i$: response function [W/m2/kg]
+- $t$: current year [a]
+- $\tau$: considered time frame [a]
+- $\frac{RF_{ref}}{E_{ref}}$: reference parameter (radiative forcing per emission unit) [W/m2/kg]
+- $E_i$: yearly emission mass [kg]
+- $L$: yearly flown range [NM]
+- $\frac{RF_{ref}}{L_{ref}}$: reference parameter (radiative forcing per flown NM) [W/m2/NM]
+
+The forcing factors can be interpolated from given data and average values per mission are determined, considering climb, cruise and approach phase.
+
+In a next step, the radiative forcing is normalized with the species' efficacy f and $RF_{2\times CO_2}$, the RF which would result from a doubling of CO2:
+
+<div class="mathjax-render">
+$ RF^{*}_{i}(t,h) = f_i \cdot \frac{RF_i(t,h)}{RF_{\left(2 \times CO_2\right)}} $
+</div>
+
+With these values, a temperature change can be determined:
+
+$\Delta T(t) = \int_{0}^{t} G_t(t-\tau)\left[\sum_{i} RF^*_i (\tau)\right]d\tau$
+
+with the response function:
+
+$G_T(t) = S\cdot \left[\frac{\alpha_t}{\tau_{t1}} \exp\left(-\frac{t}{\tau_{t1}}\right) + \frac{1 - \alpha_t}{\tau_{t2}}
+\exp\left(-\frac{t}{\tau_{t2}}\right)\right]$
+
+All parameters $\alpha$, $\tau$ and $S$ are constants taken from literature.
+
+The temperature change is weighted afterwards:
+
+$\Delta T_{weighted}(t) = \Delta T(t) \cdot w(t)$
+
+with the weighting function:
+
+<div class="mathjax-render">
+  $ w(t) = \begin{cases}
+        1, & t < H \\
+        \frac{1}{(1 + r)^{(t - H)}}, & H < t\le t_{max}\\
+        0, & t > t_{max}
+        \end{cases}
+  $
+</div>
+
+where
+
+- $t$: current year
+- $t_{max}$: considered time frame
+- $H$: years of operation
+- $r$: devaluation rate [-]
+
+In a last step, the average temperature response ATR is calculated:
+
+$ ATR_i = \frac{1}{H} \cdot \int_{0}^{t_{max}} \Delta T_{weighted}(t) $
+
+The overall ATR is then:
+
+$ATR = \sum_{i} ATR_i$
+
+### Input data {#climate-model-input}
+From the aircraft exchange file following parameter are needed:
+```
+├── analysis/
+│    └── mission/
+│       └── study_mission/
+│           ├── range
+│           └── cruise/
+│               ├── top_of_climb_range
+│               ├── top_of_descent_range
+│               └── cruise_steps/
+│                   └── cruise_step (ID="0")/
+│                       ├── relative_end_of_cruise_step
+│                       └── altitude
+└── assessment/
+    └── cost_estimation/
+        └── operating_cost/
+            └── direct_operating_cost/
+                └── flights_per_year_study_mission
+```
+The submodule reads following data from the program settings in the configuration file:
+```xml
+<standard_strategy description="Settings for standard strategy. Different methods can be used by defining them in this block.">
+    <impact_calculation description="Settings for impact calculation">
+        <climate_model_methods description="Settings for climate model">
+            <dallara description="Settings for the climate impact calculation according to E.Schwartz-Dallara(2011)">
+                <forcing_factors>
+                    <data_set_selector description="Selects data set for forcing factor calculation. Selector: mode_0 (Data set by E.Schwartz-Dallara (2011)) / mode_1 (Data set by K.Dahlmann (2011))">
+                        <value>mode_0</value>
+                    </data_set_selector>
+                    <variations description="Forcing factors (S_i_height) are within a certain likelihood range (Reference Dallara_2011_Metric for comparing...). Here you can vary the forcing factors.">
+                        <aircraft_induced_cloudiness description="Variation of AIC forcing factor">
+                            <value>1</value>
+                            <unit>1</unit>
+                            <lower_boundary>0.67</lower_boundary>
+                            <upper_boundary>1.33</upper_boundary>
+                        </aircraft_induced_cloudiness>
+                        <short_lived_ozone description="Variation of short-lived ozone forcing factor">
+                            <value>1</value>
+                            <unit>1</unit>
+                            <lower_boundary>0.67</lower_boundary>
+                            <upper_boundary>1.33</upper_boundary>
+                        </short_lived_ozone>
+                        <methan_and_long_lived_ozone description="Variation of methan and long-live ozone forcing factor">
+                            <value>1</value>
+                            <unit>1</unit>
+                            <lower_boundary>0.67</lower_boundary>
+                            <upper_boundary>1.33</upper_boundary>
+                        </methan_and_long_lived_ozone>
+                    </variations>
+                </forcing_factors>
+                <fuel_factor_AIC description="Set a factor to scale radiative forcing of aircraft induced cloudiness (AIC) relative to kerosene depending on fuel type. liquidHydrogen=0.3...0.8">
+                    <value>0.6</value>
+                    <unit>1</unit>
+                    <lower_boundary>0.3</lower_boundary>
+                    <upper_boundary>1</upper_boundary>
+                </fuel_factor_AIC>
+                <max_integration_period description="Time over which radiative forcing is to be integrated">
+                    <value>200</value>
+                    <unit>a</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </max_integration_period>
+                <devaluation_rate description="Rate of devaluation of temperature response. Zero means, that postoperation impacts are equally important compared with impacts during operating years, higher values mean that temperature change each postoperation year is less important than the temperature change experienced the previous year">
+                    <value>0.03</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>10^10</upper_boundary>
+                </devaluation_rate>
+            </dallara>
+        </climate_model_methods>
+    </impact_calculation>
+</standard_strategy>
+```
+
+Additionally, the emission masses of the study missions are needed:
+```
+mission_emissions/
+└── study_mission/
+    └── emissions/
+        ├── LTO_cycle/
+        │   ├── CO2
+        │   ├── H2O
+        │   ├── SO4
+        │   ├── NOx
+        │   └── soot
+        └── cruise/
+            ├── CO2
+            ├── H2O
+            ├── SO4
+            ├── NOx
+            └── soot
+```
+
+
+### Output data {#climate-model-output}
+The results are saved within the following files:
+
+- acXML parameter: The average temperature response is written to `/aircraft_exchange_file/assessment/ecological_assessment/average_temperature_response`
+- html report: AGWP, AGWP100, AGTP, AGTP100 and ATR are written to `aircraft_exchange_file_directory/reporting/reportHTML/ecological_assessment_report.html`
+- tex report: `aircraft_exchange_file_directory/reporting/reportTeX/ecological_assessment_report.tex`
+- csv file: Emission masses, (normalized) radiative forcing, (weighted) temperature change, AGTP, AGWP and ATR both per emission species and total are written for all considered years into `aircraft_exchange_file_directory/reporting/plots/csv_files/ecological_assessment_climate_impact.csv`
\ No newline at end of file
diff --git a/docs/documentation/analysis/ecological_assessment/changelog.md b/docs/documentation/analysis/ecological_assessment/changelog.md
new file mode 100644
index 0000000000000000000000000000000000000000..4967d86d45541cda4d5ec4db6187b9a7e1ff5e67
--- /dev/null
+++ b/docs/documentation/analysis/ecological_assessment/changelog.md
@@ -0,0 +1,18 @@
+# Changelog {#changelog}
+## v3.0.0
+The *v3.0.0* release is a **major** release with many changes including the *modularization*.
+
+
+### Changes
+The following changes have been introduced:
+
+- The software architecture has been completely refactored.
+- Cost calculation methods have been integrated to be independent of cost modules.
+
+
+### Bugfixes
+During the development of this release the following bugs were found and fixed:
+- SFCContThrustSL was used before calculated
+
+
+
diff --git a/docs/documentation/analysis/ecological_assessment/figures/lifeCyclePhases.png b/docs/documentation/analysis/ecological_assessment/figures/lifeCyclePhases.png
new file mode 100644
index 0000000000000000000000000000000000000000..64bc73c33ccf4e0fbbb77a823976eb8d76d71ebe
--- /dev/null
+++ b/docs/documentation/analysis/ecological_assessment/figures/lifeCyclePhases.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:34ca03c01c2a6270d049e5dd09b8afc9b2745f5c66ce700e49bba640bd918569
+size 73981
diff --git a/docs/documentation/analysis/ecological_assessment/index.md b/docs/documentation/analysis/ecological_assessment/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..6420e2926ca45dad809827cf69bf939e8d8188cb
--- /dev/null
+++ b/docs/documentation/analysis/ecological_assessment/index.md
@@ -0,0 +1,39 @@
+# Introduction {#mainpage}
+## Overview
+The tool _ecological\_assessment_ is one of the last modules in the UNICADO toolchain, serving as an assessment module executed after the aircraft sizing loop. As its name suggests, it is made to evaluate the ecological performance of your aircraft design. By using this tool, you gain the opportunity to contribute to the development of environmentally friendly aircraft, playing a part in shaping a sustainable future for aviation. ✈️🌱🌎
+
+The module enables you to assess various ecological factors, including aircraft emission masses and their broader environmental impacts. These impacts are analyzed, for example, in terms of their contributions to climate change and air quality, helping you understand the environmental footprint of your design in a comprehensive way.
+
+The _ecological\_assessment_ tool offers flexibility in how you approach these evaluations. You can choose to perform a complete life cycle assessment (LCA), which evaluates the environmental impact across the entire lifespan of the aircraft — from development and production through operation to end-of-life, including eventual disposal. Alternatively, if you're focusing on the operational phase, you can limit the analysis to the impact of the flown mission alone. The following table provides information about the implemented methods:
+
+Topic                      | Configuration | Energy carrier   | Fidelity  | Method    |
+---------------------------|---------------|------------------|-----------|-----------|
+Emissions of flown mission | All           | Kerosene or LH2  | Empirical | Unicado   |
+Life cycle emissions/energy| Tube and wing | Kerosene         | Empirical | Schaefer  |
+Air quality index          | All           | Kerosene or LH2  | Empirical | Schaefer  |
+Climate impact             | All           | Kerosene or LH2  | Empirical | Dallara   |
+
+If you want to explore the details of the _ecological\_assessment_ module and discover how to optimize your aircraft designs for environmental sustainability, check out the next section of this documentation.
+
+## A User's Guide to Ecological Assessment
+This user documentation will guide you through all necessary steps to understand the tool as well as the necessary inputs and configurations to determine the ecological impact of your aircraft design.
+
+The following pages will guide you through the theory behind the calculations and the process of computing and analyzing the ecological impact within UNICADO:
+
+- [Basic Concepts](basic-concepts.md)
+- [Usage of the Ecological Assessment Tool](usage.md)
+
+So let's get started! ✈️
+
+
+## You are a Developer?
+
+If you are familiar with the above mentioned concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO!
+
+The following pages will help you to get into coding:
+
+- [Developer Guide](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/get-involved/developer-installation/)
+- [Tool Structure of ecological_assessment ](software-architecture.md)
+
+!!!note
+    The methods of this module will not be extended by the UNICADO team. We are currently working on an additional assessment module, which combines economical and ecological assessment (including noise). You are nevertheless encouraged to improve and extend this module until the new one is published. We appreciate your ideas and will merge the modules afterwards - so no work will be lost! 💪
diff --git a/docs/documentation/analysis/ecological_assessment/software-architecture.md b/docs/documentation/analysis/ecological_assessment/software-architecture.md
new file mode 100644
index 0000000000000000000000000000000000000000..57dda6f05b189440c78e2a6f69d65976365fe30d
--- /dev/null
+++ b/docs/documentation/analysis/ecological_assessment/software-architecture.md
@@ -0,0 +1,30 @@
+# Software Architecture {#softwarearchitecture}
+
+If you're interested in developing this module, reading this chapter could be helpful. It provides some insights into the software (folder) structure and shall help you to find a way around :flashlight:
+
+The following graph shows a rough overview of the module structure, with every end point standing for a submodule described in [Basic Concepts](basic-concepts.md):
+<pre class='mermaid'>
+  graph TD;
+    A[ecological_assessment/src]-->C[standard_strategy]
+	C-->D[emission_calculation]
+    D-->F[life_cycle_emissions]
+    F-->H[LCA_schaefer]
+    D-->G[mission_emissions]
+	C-->E[impact_calculation]
+    E-->I[air_quality_index_schaefer]
+    E-->J[climate_impact_dallara]
+</pre>
+
+As you have for sure carefully read our [developer guide](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/get-involved/developer-installation/), you already know everything about the modularized structure of the UNICADO and the top, intermediate and low level of its modules. So, here is how the *ecological_assessment* tool looks like:
+
+- On the top level, nothing fancy happens. Within the *src* directory, you will find the `main_ecological_assessment.cpp` which executes the module and the `ecolocical_assessment.cpp`/`ecolocical_assessment.h`, where the class EcologicalAssessment, which is inherited from the class Module, is defined. Therefor, it will run the functions `initialize`, `run`, `update`, `report` and `save` of the strategy. The save function will save and close the aircraft XML file and close the configuration file.
+
+- The intermediate level is structured by the implemented strategies. This section is a short one: there is only one strategy implemented in the module. It is called **STANDARD** and provides access to all the submodules. It will be set according to the method defined in the `strategy_selector` node of the configuration file.
+
+- On the low level, you'll find all in [basic concepts](basic-concepts.md) described methods. The folder structure is like the module structure. So the *standard_strategy* is subdivided into *emission_calculation* and *impact_calulation*. In the directory, there is the class StandardStrategy, which contains the definition of `initialize`, `run`, `update`, `report` and `save`. The class can be seen as the coordinator of the submodules: in `initialize` it reads from the configuration file, which submodules shall be executed and prepares the `ecological_assessment_results.xml`. In `run`, the submodule's `run` functions are executed. In `update`, the aircraft exchange file will be updated and `report` calls the both the plotting and report functions of all executed submodules and generates the overall module reports. In a last step, `save` will save the `ecological_assessment_results.xml`. The *standard_strategy* directory additionally contains the definition of emissionsClass, which provides a collection all emissions calculated by the module. Within the folder *emission_calculation* there are directories for *mission_emissions* and *life_cycle_emissions* which contain the corresponding methods. In addition, the class ecoDatabase offers access to database data used for calculations. The directory *impact_calculation* contains all methods to determine the impact of the emissions.
+
+    All submodules have a class _IOData_, which contains all data from acXML and functions to read or write the data. Additionally, the class has a member _configuration_, which provides access to configuration file data. The `run` function of the submodules shall call functions to
+
+    - initialize the data,
+    - perform the calculation routines
+    - and update the `ecological_assessment_results.xml` (in case there are results that are needed by other parts of *ecological_assessment*).
diff --git a/docs/documentation/analysis/ecological_assessment/usage.md b/docs/documentation/analysis/ecological_assessment/usage.md
new file mode 100644
index 0000000000000000000000000000000000000000..605b4c4823975b4fca41e1f831b66aaff6825c15
--- /dev/null
+++ b/docs/documentation/analysis/ecological_assessment/usage.md
@@ -0,0 +1,179 @@
+# Usage of the ecological_assessment tool {#usage}
+You have carefully read the [basic-concepts](basic-concepts.md) and feel ready to assess your first aircraft? Great! :fire: This guide will show you step by step the basic usage of the _ecological\_assessment_ tool.
+
+## Prerequisites
+1. It is assumed that you have the `UNICADO Package` installed, including the executables and UNICADO libraries. If you are a developer, you need to build the tool first (see [build instructions on the UNICADO website](../../../get-involved/build-instructions/build/cpp.md)).
+2. Fill out the configuration file `ecological_assessment_conf.xml`. Check and change if needed at least following settings:
+    - change in `control_settings`:
+        ```
+        control_settings/
+        ├── aircraft_exchange_file_name/
+        ├── aircraft_exchange_file_directory/
+        ├── console_output/
+        ├── plot_output/
+        │   └── enable/
+        ├── inkscape_path/
+        └── gnuplot_path/
+        ```
+        - set `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings
+        - set `console_output` at least to `mode_1`
+        - set `plot_output` to false **or** define `inkscape_path` and `gnuplot_path`
+    - define in the `program_settings` which submodules you would like to execute:
+        ```
+        program_settings/
+        ├── strategy_selector/
+        └── standard_strategy/
+            ├── emission_calculation/
+            │   └── life_cycle_emissions_methods/
+            │       └── method/
+            └── impact_calculation/
+                ├── climate_model_methods/
+                │   └── method/
+                └── air_quality_methods/
+                    └── method/
+        ```
+    - all other parameters can be left at default values
+3. You need to provide all necessary input data. What is necessary depends on the chosen methods (or executed submodule). In general, you need a (shortened) project environment as described in [Seperate Tool Execution](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/tutorials/seperate-tool-execution/). The aircraft exchange file need to located at the path you defined in the configuration file. Here is an example with an aircraft exchange file in the projects directory:
+
+
+    ```
+    project environment
+    ├── ecological_assessment/
+    │   ├── ecological_assessment.exe
+    │   └── ecological_assessment_conf.xml
+    ├── projects/
+    │   └──  aircraft-type/
+    │        └──aircraft-name
+    │           └── aircraft-name.xml
+    ├── databases/
+    │   └── engine/
+    └── libs/
+    ```
+
+    If you used the UNICADO installer, you will automatically have this environment in your UNICADOworkflow directory. But make sure, that the aircraft exchange file includes all nodes defined in the input data sections of the submodule you would like to execute (remember: you'll find the information [here](basic-concepts.md)). If the tool is executed via the workflow, all data will be available anyway.
+
+## Tool execution
+If you have prepared everything, you can open a terminal and run *ecological_assessment.exe*.
+
+=== "cmd"
+
+    ``` { .sh .copy }
+    ecological_assessment.exe
+    ```
+
+=== "powershell"
+
+    ``` { .sh .copy }
+    ecological_assessment.exe
+    ```
+=== "git bash"
+
+    ``` { .sh .copy }
+    ./ecological_assessment.exe
+    ```
+
+You will see output in the console window. If you chose `mode_1` for console output, you'll only be informed about the ongoing calculation step. For more information, choose a higher mode. At `mode_1`, you will get following output:
+```xml
+*******************************************************************************
+27.01.2025 14:33:32 - Start ecological_assessment
+27.01.2025 14:33:33 - [MODULE RUNTIMEINFO] - ecological_assessment
+27.01.2025 14:33:33 -    [CONSOLE  ] - [ON]
+27.01.2025 14:33:33 -    [LOG      ] - [ON]
+27.01.2025 14:33:33 -    [PLOT     ] - [ON]
+27.01.2025 14:33:33 -       [COPY  ] - [ON]
+27.01.2025 14:33:33 -       [DELETE] - [ON]
+27.01.2025 14:33:33 -    [REPORT   ] - [ON]
+27.01.2025 14:33:33 -    [TEX      ] - [ON]
+27.01.2025 14:33:33 -    [INFOFILES] - [OFF]
+27.01.2025 14:33:33 -    [GNUPLOT]
+27.01.2025 14:33:33 -       [PATH    ] - ../gnuplot
+27.01.2025 14:33:33 -       [FILENAME] -
+27.01.2025 14:33:33 -    [INKSCAPE]
+27.01.2025 14:33:33 -       [PATH    ] - ../inkscape
+27.01.2025 14:33:33 -       [FILENAME] -
+27.01.2025 14:33:33 -    [LOGFILE]
+27.01.2025 14:33:33 -       [PATH    ] -
+27.01.2025 14:33:33 -       [FILENAME] - ecological_assessment.log
+27.01.2025 14:33:33 -    [IO/ACXML]
+27.01.2025 14:33:33 -       [PATH    ] - ../projects
+27.01.2025 14:33:33 -       [FILENAME] - csmr-2020.xml
+27.01.2025 14:33:33 -    [MODCONFIG]
+27.01.2025 14:33:33 -       [PATH    ] - .
+27.01.2025 14:33:33 -       [FILENAME] - ecological_assessment_conf.xml
+27.01.2025 14:33:33 - Checking directory... [REPORT]
+27.01.2025 14:33:33 - Checking directory... [TEX]
+27.01.2025 14:33:33 - Checking directory... [HTML]
+27.01.2025 14:33:33 - Checking directory... [PLOT]
+27.01.2025 14:33:33 - Checking directory... [CSVFILES]
+27.01.2025 14:33:33 - Checking directory... [CSVFILESTOOL]
+27.01.2025 14:33:33 - Creating directory... [CSVFILESTOOL]
+27.01.2025 14:33:33 - Checking directory... [PLOTFILES]
+27.01.2025 14:33:33 - Checking directory... [PLOTFILESTOOL]
+27.01.2025 14:33:33 - Creating directory... [PLOTFILESTOOL]
+27.01.2025 14:33:33 - Checking directory... [LOGFILES]
+```
+To this point, the module is in the top level stage and creates folders and checks the configuration file settings from the control block. Here you can see some common information.
+
+Then, the standard strategy is initialized. You can see, which methods were chosen in the configuration file:
+```xml
+27.01.2025 14:33:33 - Initialize standard strategy
+27.01.2025 14:33:33 -   Method SCHAEFER will be used for life cycle emission calculation
+27.01.2025 14:33:33 -   Method DALLARA will be used for climate model
+27.01.2025 14:33:33 -   Method SCHAEFER will be used for air quality calculation
+```
+
+Afterwards, the strategy is run. Here, the calculation routines are executed. You can track, which method is currently running.
+```xml
+27.01.2025 14:33:33 - Run standard strategy
+27.01.2025 14:33:34 -   Calculation of design mission emissions
+27.01.2025 14:33:52 -   Update ecological_assessment_results.xml
+27.01.2025 14:33:53 -   Calculation of study mission emissions
+27.01.2025 14:34:06 -   Update ecological_assessment_results.xml
+27.01.2025 14:34:06 -   Calculation of life cycle emissions
+27.01.2025 14:34:07 -      Calculation of production phase...
+27.01.2025 14:34:07 -      Calculation of operation phase...
+27.01.2025 14:34:07 -      Calculation of end of life phase...
+27.01.2025 14:34:07 -      Calculation of development phase...
+27.01.2025 14:34:07 -   Update ecological_assessment_results.xml
+27.01.2025 14:34:07 -   Calculation of climate impact
+27.01.2025 14:34:07 -   Calculation of air quality index
+```
+After successful calculation, the aircraft exchange file will be updated, plots generated and the reports written. Finally, the module execution is finished.
+```xml
+27.01.2025 14:34:08 - Update csmr-2020.xml
+27.01.2025 14:34:08 - Generate plots
+27.01.2025 14:34:08 -   Generate study mission plots
+27.01.2025 14:34:16 -   Generate design mission plots
+27.01.2025 14:34:23 -   Generate SCHAEFER emissions plots
+27.01.2025 14:34:23 -   Generate DALLARA plots
+27.01.2025 14:34:25 - Write reports
+27.01.2025 14:34:25 -   Write mission report body
+27.01.2025 14:34:25 -   Write SCHAEFER emissions report body
+27.01.2025 14:34:25 -   Write DALLARA climate report body
+27.01.2025 14:34:25 -   Write SCHAEFER air quality report body
+27.01.2025 14:34:25 - CSS code written to style.css successfully.
+27.01.2025 14:34:25 - Finish ecological_assessment
+```
+You will find
+
+- a `.log` file within the directory of the executable,
+- an HTML report in the directory of  `aircraft_exchange_file_directory/reporting/report_html`,
+- an xml file in `aircraft_exchange_file_directory/reporting/report_xml`
+- and depending on your chosen methods, additional results are saved in
+    - `/aircraft_exchange_file/assessment/average_temperature_response`
+    - and/or in the files you'll find in the `aircraft_exchange_file_directory/reporting/plots/` directory
+    - and/or in the files you'll find in the `aircraft_exchange_file_directory/reporting/plots/csv_files` directory.
+
+Check the Output data sections of [Basic Concepts](basic-concepts.md) to see, which outputs you can expect.
+Be aware of the files' timestamp as there could be leftovers of earlier program executions!
+
+## Changing user input
+If you want to adapt the tool's execution, you can modify the parameters within the configuration file. There, you can enable or disable specific aspects of the ecological assessment and select the methods to be used for the calculations. At the [Basic Concepts](basic-concepts.md), you can check which parameters are available. Start with changing only one parameter at once, so you can track the influence of this parameter!
+
+## Troubleshooting
+If something does not work as expected:
+
+- Check the log file for error messages or warnings. Most probably it will tell you what went wrong.
+- Make sure you have all the paths set up correctly and the specified elements exist.
+- Check your settings in the config file. Maybe you've accidentally disabled an output which you expect to see now?
+
diff --git a/docs/documentation/analysis/index.md b/docs/documentation/analysis/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..ac2d5943c8a220c23ab8ec019eaf056687a7bd49
--- /dev/null
+++ b/docs/documentation/analysis/index.md
@@ -0,0 +1,105 @@
+---
+title: Analysis
+summary: Overview of the analysis modules of aircraftDesign repository
+authors:
+    - Sebastian Oberschwendtner
+    - Kristina Mazur
+date: 2024-11-28
+glightbox: false
+---
+# Analysis Tools
+
+---
+
+## Aerodynamic analysis
+![Icon](site:assets/images/documentation/calculate-polar.svg){.overview-img  align=left}
+The tool `aerodynamic_analysis` calculates, as the tool name suggests, the polars of an aircraft.
+It uses the tool Lifting Line from DLR to calculate force, lift and moment coefficients for each lifting surface of the aircraft.
+These coefficients are used to calculate induced, viscous and wave drag as well as the moment coefficients for the overall aircraft.
+Furthermore polars are not only calculated for off-design mach numbers but also for high
+lift mach numbers.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](aerodynamic_analysis/index.md)|
+
+---
+
+## Constraint analysis
+![Icon](site:assets/images/documentation/constraint_analysis.svg){.overview-img  align=left}
+The `constraint_analysis` module updates the performance criteria wing loading and thrust-to-weight-ratio based on the calculated aircraft data.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](constraint_analysis/index.md)|
+
+
+---
+
+## Cost estimation
+![Icon](site:assets/images/documentation/cost-estimation.svg){.overview-img  align=left}
+This modules calculates the direct operating cost (DOC) of an aircraft.
+Direct costs include all expenses incurred in operating and financing the aircraft:
+
+- Fuel
+- Crew
+- Maintenance
+- Fees
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-python: |GPLv3|[Link](cost_estimation/index.md)|
+
+---
+
+## Ecological assessment
+![Icon](site:assets/images/documentation/calculate-emissions.svg){.overview-img  align=left}
+The `ecological_assessment` is the last module of the UNICADO toolchain.
+Its purpose is to calculate the emissions and energy demand within the aircraft's lifecycle and to determine the missions based climate impact as well as impact on the local air quality. While the life cycle assessment is only valid for conventional kerosene powered tube and wing aircraft, the mission and impact calculations can be performed for all aircraft configurations and kerosene or hydrogen powered engines.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](ecological_assessment/index.md)|
+
+---
+
+## Mission analysis
+![Icon](site:assets/images/documentation/mission-analysis.png){.overview-img  align=left}
+The module `mission_analysis` is the key module of the aircraft performance analysis.
+Its purpose is to calculate the flight trajectory, based on the inputs of the preliminary aircraft design cycle, by solving the aircraft equations of motion being simplified as a point mass model.
+Depending on the method, the fuel consumption is calculated either:
+
+- in segments by using the Breguet range formula, or
+- in a full-mission time-history simulation (the flight mission is divided into increments. For each increment the movement equations are solved, followed by the thrust requirements and fuel consumption)
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](mission_analysis/index.md)|
+
+---
+
+## Performance assessment
+![Icon](site:assets/images/documentation/calculate-performance.svg){.overview-img  align=left}
+The module `calculatePerformance` is used to evaluate the mission performance of the design.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus:| GPLv3 |[Link](performance_assessment/index.md)|
+
+---
+
+## Weight and balance analysis
+![Icon](site:assets/images/documentation/mass-estimation.svg){.overview-img  align=left}
+The `weight_and_balance_analysis` module calculates sub-masses and total masses of the aircraft including center of gravities.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-python: |GPLv3|[Link](weight_and_balance_analysis/index.md)|
+
+---
+
diff --git a/docs/documentation/analysis/mission_analysis/figures/acceleration/PP_for_gif.pptx b/docs/documentation/analysis/mission_analysis/figures/acceleration/PP_for_gif.pptx
new file mode 100644
index 0000000000000000000000000000000000000000..4bde5657badf3751e3d952b276529995f7c4db8b
Binary files /dev/null and b/docs/documentation/analysis/mission_analysis/figures/acceleration/PP_for_gif.pptx differ
diff --git a/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.drawio b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.drawio
new file mode 100644
index 0000000000000000000000000000000000000000..e2c9f9e4e859540a3704b6c09cc603bb52f480e2
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.drawio
@@ -0,0 +1,77 @@
+<mxfile host="Electron" modified="2025-01-23T11:02:38.911Z" agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/22.0.2 Chrome/114.0.5735.289 Electron/25.8.4 Safari/537.36" etag="3bY63jl8jJOAUaerBc7u" version="22.0.2" type="device">
+  <diagram id="C5RBs43oDa-KdzZeNtuy" name="Page-1">
+    <mxGraphModel dx="1036" dy="1783" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
+      <root>
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-0" />
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-1" parent="WIyWlLk6GJQsqaUBKTNV-0" />
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-2" value="" style="rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;edgeStyle=orthogonalEdgeStyle;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="WIyWlLk6GJQsqaUBKTNV-3" target="WIyWlLk6GJQsqaUBKTNV-6" edge="1">
+          <mxGeometry relative="1" as="geometry" />
+        </mxCell>
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-3" value="&lt;font style=&quot;font-size: 18px;&quot;&gt;Compute performance&lt;br&gt;data using set_segment_end_conditions&lt;/font&gt;" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="430" y="-60" width="270" height="70" as="geometry" />
+        </mxCell>
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-4" value="&lt;font style=&quot;font-size: 18px;&quot;&gt;Yes&lt;/font&gt;" style="rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;edgeStyle=orthogonalEdgeStyle;entryX=0.5;entryY=0;entryDx=0;entryDy=0;exitX=0.5;exitY=1;exitDx=0;exitDy=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="WIyWlLk6GJQsqaUBKTNV-6" target="VD6oQmZdT0cPyfVzGxJv-10" edge="1">
+          <mxGeometry x="0.0456" y="-20" relative="1" as="geometry">
+            <mxPoint x="41" as="offset" />
+            <mxPoint x="219.71" y="210" as="sourcePoint" />
+            <mxPoint x="219.71" y="270" as="targetPoint" />
+            <Array as="points">
+              <mxPoint x="830" y="40" />
+              <mxPoint x="830" y="40" />
+            </Array>
+          </mxGeometry>
+        </mxCell>
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-5" value="&lt;font style=&quot;font-size: 18px;&quot;&gt;No&lt;/font&gt;" style="edgeStyle=orthogonalEdgeStyle;rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;entryX=0.5;entryY=0;entryDx=0;entryDy=0;exitX=0.5;exitY=0;exitDx=0;exitDy=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="WIyWlLk6GJQsqaUBKTNV-6" target="VD6oQmZdT0cPyfVzGxJv-5" edge="1">
+          <mxGeometry x="-0.9379" y="-20" relative="1" as="geometry">
+            <mxPoint as="offset" />
+            <mxPoint x="298.97" y="175" as="sourcePoint" />
+            <mxPoint x="308.97" y="-40" as="targetPoint" />
+            <Array as="points">
+              <mxPoint x="830" y="-100" />
+              <mxPoint x="130" y="-100" />
+            </Array>
+          </mxGeometry>
+        </mxCell>
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-6" value="&lt;font style=&quot;&quot;&gt;&lt;font style=&quot;font-size: 18px; border-color: var(--border-color);&quot;&gt;h&lt;/font&gt;&lt;font style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color); font-size: 9px;&quot;&gt;end, i&lt;/font&gt;&lt;font style=&quot;font-size: 18px; border-color: var(--border-color);&quot;&gt;&amp;nbsp;&lt;/font&gt;&lt;span style=&quot;font-size: 18px;&quot;&gt;= h&lt;/span&gt;&lt;font style=&quot;border-color: var(--border-color); font-size: 9px;&quot;&gt;end, i-1&lt;/font&gt;&lt;/font&gt;&lt;span style=&quot;font-size: 18px;&quot;&gt;?&lt;/span&gt;&lt;/font&gt;" style="rhombus;whiteSpace=wrap;html=1;shadow=0;fontFamily=Helvetica;fontSize=12;align=center;strokeWidth=1;spacing=6;spacingTop=-4;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="740" y="-55" width="180" height="60" as="geometry" />
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-1" value="&lt;font style=&quot;&quot;&gt;&lt;font style=&quot;font-size: 18px;&quot;&gt;h&lt;/font&gt;&lt;font style=&quot;&quot;&gt;&lt;font style=&quot;font-size: 9px;&quot;&gt;end, i&lt;/font&gt;&lt;font style=&quot;font-size: 18px;&quot;&gt;&amp;nbsp;&lt;/font&gt;&lt;span style=&quot;font-size: 18px;&quot;&gt;= h&lt;/span&gt;&lt;font style=&quot;font-size: 9px;&quot;&gt;start&lt;/font&gt;&lt;span style=&quot;font-size: 18px;&quot;&gt;&amp;nbsp;+ Δh&lt;/span&gt;&lt;font style=&quot;font-size: 9px;&quot;&gt;i&lt;/font&gt;&lt;/font&gt;&lt;/font&gt;" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="230" y="-40" width="160" height="30" as="geometry" />
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-3" value="" style="rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;edgeStyle=orthogonalEdgeStyle;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="VD6oQmZdT0cPyfVzGxJv-1" target="WIyWlLk6GJQsqaUBKTNV-3" edge="1">
+          <mxGeometry relative="1" as="geometry">
+            <mxPoint x="230" y="130" as="sourcePoint" />
+            <mxPoint x="220" y="80" as="targetPoint" />
+          </mxGeometry>
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-5" value="&lt;font style=&quot;&quot;&gt;&lt;span style=&quot;font-size: 18px;&quot;&gt;Compute Δh&lt;/span&gt;&lt;font style=&quot;font-size: 9px;&quot;&gt;i&lt;/font&gt;&lt;/font&gt;" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="70" y="-40" width="120" height="30" as="geometry" />
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-6" value="" style="rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;edgeStyle=orthogonalEdgeStyle;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="VD6oQmZdT0cPyfVzGxJv-5" target="VD6oQmZdT0cPyfVzGxJv-1" edge="1">
+          <mxGeometry relative="1" as="geometry">
+            <mxPoint x="230" y="60" as="sourcePoint" />
+            <mxPoint x="220" y="20" as="targetPoint" />
+          </mxGeometry>
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-7" value="" style="rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;edgeStyle=orthogonalEdgeStyle;entryX=0;entryY=0.5;entryDx=0;entryDy=0;exitX=1;exitY=0.5;exitDx=0;exitDy=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="VD6oQmZdT0cPyfVzGxJv-9" target="VD6oQmZdT0cPyfVzGxJv-5" edge="1">
+          <mxGeometry relative="1" as="geometry">
+            <mxPoint x="220" y="-60" as="sourcePoint" />
+            <mxPoint x="230" y="30" as="targetPoint" />
+            <Array as="points">
+              <mxPoint x="30" y="-25" />
+            </Array>
+          </mxGeometry>
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-9" value="" style="ellipse;whiteSpace=wrap;html=1;aspect=fixed;fillColor=#000000;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="10" y="-35" width="20" height="20" as="geometry" />
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-10" value="" style="ellipse;whiteSpace=wrap;html=1;aspect=fixed;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="820" y="50" width="20" height="20" as="geometry" />
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-11" value="" style="ellipse;whiteSpace=wrap;html=1;aspect=fixed;fillColor=#000000;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="825" y="55" width="10" height="10" as="geometry" />
+        </mxCell>
+      </root>
+    </mxGraphModel>
+  </diagram>
+</mxfile>
diff --git a/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.png b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.png
new file mode 100644
index 0000000000000000000000000000000000000000..f9fea516b41e2dd9395ba8660218fc1556a24f5a
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2e8c81a6e85a4f82e8347ad7891ef5262b8cc6bdc09c4601d478b910f6a496e4
+size 32131
diff --git a/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.svg b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.svg
new file mode 100644
index 0000000000000000000000000000000000000000..19adb8b8811499df8ea2600158f248a664b9461c
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.svg
@@ -0,0 +1,4 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!-- Do not edit this file with editors other than draw.io -->
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" width="912px" height="180px" viewBox="-0.5 -0.5 912 180" content="&lt;mxfile host=&quot;Electron&quot; modified=&quot;2025-01-22T15:10:02.927Z&quot; agent=&quot;Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/22.0.2 Chrome/114.0.5735.289 Electron/25.8.4 Safari/537.36&quot; etag=&quot;Nayg6E22_kPXE1fj6PBs&quot; version=&quot;22.0.2&quot; type=&quot;device&quot;&gt;&lt;diagram id=&quot;C5RBs43oDa-KdzZeNtuy&quot; name=&quot;Page-1&quot;&gt;7Vpbd5s4EP41nLP7YB8uBtuPsXPpdrs97Uk22fQlRwYZ2AhEhXzrr69khLkaMIY0aZsXM8NoJM3lk2aCpM297Q0BgfMPtiCSVNnaStqlpKrKaCKzH87ZRRxV1o2IYxPXElIJ49b9BgVTDLRXrgXDjCDFGFE3yDJN7PvQpBkeIARvsmJLjLKzBsCGBcatCVCR++Ba1Im4E3Wc8N9B13bimRVjGr3xQCwsdhI6wMKbFEu7krQ5wZhGT952DhG3XmyXh792D+jDs3Hz/nP4Ffw7+/vu4/0gUnZ9ypDDFgj0abeq1Uj1GqCVsJfYK93FBiR45VuQK5ElbeZQD7FHhT3+DyndCYeDFcWMhQl1sI19gD5gHAi5JfapEFM4DX3rgjuW0QuEzeeIde0iJOZglJCfMCqkBD8ffMcVHBzBhRFYQDQD5rO9X+gcI0zYKx/7kKuyWDCIvSSLu0q4s4a2FT4I8YqYsEJOEyEOiA2r9Ikk4utLxanw3A3EHqRkxwQIRIC662wwA5ET9kEu8Tt7EK4/IQy0kjAwEBXOy8SD8XWF4xeDcO+mCyagTILt3prxe/Zk89859oIVhdzGkCwx8YDPDCi0L0gsZgEKmMwqdH2bzwfpUwhtjznliYXDE0MHy6Uu9sN4KNtntLZofEXY8pDZOC6FtwHY+27DoC4byukQZV6Y2QiEoQiwmvg7LX7WkFC4rfS4eDvSBOwI4B0Ygt4kKKaOBc9JIVjM6zxIRv0FySNs4defEo5YFJHdf1zZUI/Jx8NCGHG5zVC7mNq6NDWMUY9iefw5GcSJXavQrYU+owh995cG/ux9se5k89Nuef/tZvt+PYhvBrXYJzJBHsqj+NIRJ0N8JjeGR6H9E3b3oRonWW4EXi4Z8mSP0dwQVZkOx0pmNYe7TqwmMpUYeKKufPpG5izoYiELdimxgAuEx3c6ycHJSK5cWbU4e4jmT8Dk4Lb2+KL3hy8fcVN4qc/Qtw1AncKL/BrhRT8NXQbycKqNp93Cyyl4Mp0Mp+PM9MpYb4cnmlzQNRi9DJ4wVK9GFKVmQD+YYpyOKUX0aA1D8gITC5KBGSXhxX4l5I/BIM3/s3RO5yhg1ayl/ZQdqpZzFpkewWWGbJI6505su90eTM9+gccLBH8RBqk1HFlaGAD/rMNpP0hOOzxS+Qq8wsG5cvP92eS6xh61dYKDvcUqrK/9MqcnV3kNPBdxlHoH0RpS1wQlFSJAru0zwmSHGyTlxzKbklez2qWRUHf7awCrpfqrHMejHNLqeqFyVCYllaPRQeVYfuP/oSjcGbSev6aXx8E3Dm4N7ReyWw3tfSsF03FMleZX0nTU9wbr4qIp+4c2yQoQ1hT9jkKdmr9UjopNMsUogTqtL6gr66T+Yh0sUSrGvafHTNlYXiomZamULkqTGvVIWVpa6rWrOasOrtpuvlYepWd2p/LRreSjtnGfSc0qmjSrCVsUYVUVeTfH/9kwnvxD4pVC90+G0eMGEK2+JESX9QR+Q/RbhWi9CNHHobx3iM6XUG0RWn1ZhB7/TomW4d0mlfpOiWnDlND7SYlcKA9a50Qut/IHQked7HwJoeq5DDuvLV3loap8Y1rcIIT1Rz4Ig+i7qaW75fk5W7IUiuNfYtvb//V4wCs5A2rFdlPZ+Z6HuO66TXKf1u3LipNc2ugln3u8qBXLmnZvNkYnIqsP1i1piZZYN/+P/QbWZWTySWCEF8mXldrVdw==&lt;/diagram&gt;&lt;/mxfile&gt;" style="background-color: rgb(255, 255, 255);"><defs/><g><path d="M 690 84 L 719.88 84" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 728.88 84 L 719.88 88.5 L 719.88 79.5 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><rect x="420" y="49" width="270" height="70" rx="10.5" ry="10.5" fill="rgb(255, 255, 255)" stroke="rgb(0, 0, 0)" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 268px; height: 1px; padding-top: 84px; margin-left: 421px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 12px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: normal; overflow-wrap: normal;"><font style="font-size: 18px;">Compute performance<br />data using set_segment_end_conditions</font></div></div></div></foreignObject><text x="555" y="88" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="12px" text-anchor="middle">Compute performance...</text></switch></g><path d="M 820 114 L 820 149 L 820 148.88" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 820 157.88 L 815.5 148.88 L 824.5 148.88 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 1px; height: 1px; padding-top: 137px; margin-left: 841px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 11px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: nowrap;"><font style="font-size: 18px;">Yes</font></div></div></div></foreignObject><text x="841" y="140" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="11px" text-anchor="middle">Yes</text></switch></g><path d="M 820 54 L 820 9 L 120 9 L 120 58.88" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 120 67.88 L 115.5 58.88 L 124.5 58.88 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 1px; height: 1px; padding-top: 30px; margin-left: 840px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 11px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: nowrap;"><font style="font-size: 18px;">No</font></div></div></div></foreignObject><text x="840" y="33" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="11px" text-anchor="middle">No</text></switch></g><path d="M 820 54 L 910 84 L 820 114 L 730 84 Z" fill="rgb(255, 255, 255)" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 170px; height: 1px; padding-top: 82px; margin-left: 735px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 12px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: normal; overflow-wrap: normal;"><font style=""><font style="font-size: 18px; border-color: var(--border-color);">h</font><font style="border-color: var(--border-color);"><font style="border-color: var(--border-color); font-size: 9px;">end, i</font><font style="font-size: 18px; border-color: var(--border-color);"> </font><span style="font-size: 18px;">= h</span><font style="border-color: var(--border-color); font-size: 9px;">end, i-1</font></font><span style="font-size: 18px;">?</span></font></div></div></div></foreignObject><text x="820" y="86" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="12px" text-anchor="middle">hend, i = hend, i-1?</text></switch></g><rect x="220" y="69" width="160" height="30" rx="4.5" ry="4.5" fill="rgb(255, 255, 255)" stroke="rgb(0, 0, 0)" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 158px; height: 1px; padding-top: 84px; margin-left: 221px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 12px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: normal; overflow-wrap: normal;"><font style=""><font style="font-size: 18px;">h</font><font style=""><font style="font-size: 9px;">end, i</font><font style="font-size: 18px;"> </font><span style="font-size: 18px;">= h</span><font style="font-size: 9px;">start</font><span style="font-size: 18px;"> + Δh</span><font style="font-size: 9px;">i</font></font></font></div></div></div></foreignObject><text x="300" y="88" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="12px" text-anchor="middle">hend, i = hstart + Δhi</text></switch></g><path d="M 380 84 L 409.88 84" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 418.88 84 L 409.88 88.5 L 409.88 79.5 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><rect x="60" y="69" width="120" height="30" rx="4.5" ry="4.5" fill="rgb(255, 255, 255)" stroke="rgb(0, 0, 0)" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 118px; height: 1px; padding-top: 84px; margin-left: 61px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 12px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: normal; overflow-wrap: normal;"><font style=""><span style="font-size: 18px;">Compute Δh</span><font style="font-size: 9px;">i</font></font></div></div></div></foreignObject><text x="120" y="88" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="12px" text-anchor="middle">Compute Δhi</text></switch></g><path d="M 180 84 L 209.88 84" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 218.88 84 L 209.88 88.5 L 209.88 79.5 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><path d="M 20 84 L 49.88 84" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 58.88 84 L 49.88 88.5 L 49.88 79.5 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><ellipse cx="10" cy="84" rx="10" ry="10" fill="#000000" stroke="rgb(0, 0, 0)" pointer-events="all"/><ellipse cx="820" cy="169" rx="10" ry="10" fill="rgb(255, 255, 255)" stroke="rgb(0, 0, 0)" pointer-events="all"/><ellipse cx="820" cy="169" rx="5" ry="5" fill="#000000" stroke="rgb(0, 0, 0)" pointer-events="all"/></g><switch><g requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility"/><a transform="translate(0,-5)" xlink:href="https://www.drawio.com/doc/faq/svg-export-text-problems" target="_blank"><text text-anchor="middle" font-size="10px" x="50%" y="100%">Text is not SVG - cannot display</text></a></switch></svg>
\ No newline at end of file
diff --git a/docs/documentation/analysis/mission_analysis/figures/acceleration/iteration.gif b/docs/documentation/analysis/mission_analysis/figures/acceleration/iteration.gif
new file mode 100644
index 0000000000000000000000000000000000000000..bf95add9286a42ac935dc38e38ed7da0be351da4
Binary files /dev/null and b/docs/documentation/analysis/mission_analysis/figures/acceleration/iteration.gif differ
diff --git a/docs/documentation/analysis/mission_analysis/figures/mission_profile.png b/docs/documentation/analysis/mission_analysis/figures/mission_profile.png
new file mode 100644
index 0000000000000000000000000000000000000000..f39a710ce4fd20a9ab6dfc822dfbedac73e477d9
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/figures/mission_profile.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:38988f840774e65c1645ce9584394aed3beb50469cffe08ee0c96ca955017719
+size 60706
diff --git a/docs/documentation/analysis/mission_analysis/figures/transition_altitude.png b/docs/documentation/analysis/mission_analysis/figures/transition_altitude.png
new file mode 100644
index 0000000000000000000000000000000000000000..c1aa28b66e9dfc38176773ff2859d3bb1f81701d
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/figures/transition_altitude.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b6abf3139435c76d8c9118a2fe7e31790fe74a8befdd026fa7ad50481da4ddf6
+size 150526
diff --git a/docs/documentation/analysis/mission_analysis/getting_started.md b/docs/documentation/analysis/mission_analysis/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..dfb3d21fbf1d3e99d124121ad58ad44a3623c46f
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/getting_started.md
@@ -0,0 +1,479 @@
+
+# Getting started {#getting_started}
+
+Tickets :ticket: please: We are about to start! In this guide, we will show you how to set up your first mission using our **mission_analysis** tool.
+
+
+## Step-by-step
+
+To be able to execute **mission_analysis**, you have to provide the following data beside your [Aircraft Exchange File](#acxml):
+
+- `mission_data` (e.g. `design_mission.xml`)
+- `aero_data` (polar files)
+- `engine_data` (engine maps)
+
+!!! note 
+    Those files are generated by [Create Mission XML](../../sizing/create_mission_xml/index.md), [Aerodynamic Assessment](../../analysis/aerodynamic_analysis/index.md) and [Propulsion Design](../../sizing/propulsion_design/index.md) and shall not be edited manually!
+
+To do so, you can either use:
+
+- a pre-calculated aircraft configuration (e.g. from the `Aircraft References` repository),
+- an aircraft project in which the [Sizing Tools](../../sizing/index.md) and the [Aerodynamic Assessment](../../analysis/aerodynamic_analysis/index.md) tool have already been executed at least once.
+
+Once your aircraft is ready, you only need to follow these steps to start your calculation:
+
+1. Head over to `mission_analysis_conf` (more details [here](#config_file)). Assuming this file represents the version of the develop branch, edit the following nodes within `control_settings`:
+    - set `aircraft exchange file_name` and `aircraft exchange file_directory` to your respective settings,
+    - set the `plot_output` to false if you don't have `inkscape` or `gnuplot` installed or define `inkscape_path` and `gnuplot_path` if their directories are not registered in your system environments.
+2. Open your terminal within the `mission_analysis` folder and run the **mission_analysis** executable.
+3. Fasten your seatbelt: We are ready for takeoff! :airplane:
+
+If everything is set up correctly, your first `design_mission` should land a few seconds later :star:
+
+## First iteration results
+
+!!! note
+    If you are using a pre-calculated aircraft, **mission_analysis** will generate its results using parameters from the previous calculations. Therefore, the behavior for an initial execution can not be observed. Continue with [Further Iterations](#further_iterations).
+
+Due to many dependencies between the [sizing tools](../../sizing/index.md), performance data and component parameters are quite off within the first iteration. This can lead to an unstable aircraft configuration that will fail the `design_mission` (e.g. wrongly sized engines can't climb to the initial cruise altitude). To avoid this, the [low-fidelity 3D Standard Mission](methods.md/#lowfi) (`design_mission::breguet`) is triggered if no previous mission calculation can be found. Unlike the ordinary mission calculation, this sub-version of the `design_mission` finishes after a rough estimation of the fuel consumption. Once this method is finished, the `masses_cg_inertia/maximum_takeoff_mass/mass_properties/mass` node is updated and this block is written into the [Aircraft Exchange File](#acxml):
+
+```xml
+<mission description="Mission data" tool_level="0">
+    <design_mission description="Data of design mission">
+        <range description="Traveled range from break release to end of taxi at destination">
+            <value>4500000</value>
+            <unit>m</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>5000000</upper_boundary>
+        </range>
+        <loaded_mission_energy description="Amount of energy loaded into tanks (including reserves) for the mission">
+            <mission_energy ID="0" description="Amount of energy loaded into tanks (including reserves) for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>7.0e+11</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </mission_energy>
+        </loaded_mission_energy>
+        <in_flight_energy description="Amount of energy needed for in-flight segments (all segments from takeoff to landing)">
+            <trip_energy ID="0" description="Amount of energy needed for trip segments (all segments from takeoff to landing) for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>5.5e+11</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </trip_energy>
+        </in_flight_energy>
+        <taxi_energy description="Amount of energy needed for taxiing specified energy carrier">
+            <taxi_out_energy ID="0" description="Amount of energy needed for taxiing at origin for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>1.0+10</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </taxi_out_energy>
+            <taxi_in_energy ID="0" description="Amount of energy needed for taxiing at destination for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>5.0e9</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </taxi_in_energy>
+        </taxi_energy>
+    </design_mission>
+</mission>
+```
+
+
+## Further iterations {#further_iterations}
+
+After the initial loop, we expect a robuster behavior which we can use to calculate the flight segments with an increased resolution. To achieve this, every segment is split into little time and way increments (only a few seconds/meters per increment) aiming for the trajectory points that were written into the `mission file`. In each increment, all relevant parameters are saved into a `mission profile`. After the calculation is done, said `mission profile` is exported as a [CSV file](#csv_file) into the `mission_data` directory. Within the [Aircraft Exchange File](#acxml) the `masses_cg_inertia/maximum_takeoff_mass/mass_properties/mass` node is updated when calculating a `design_mission`; for a `study_mission` it's the `mission/study_mission/takeoff_mass` node. Having a higher resolution also increases the amount of data in the `mission` block:
+
+
+```xml
+<mission description="Mission data" tool_level="0">
+    <design_mission description="Data of design mission">
+        <range description="Traveled range from break release to end of taxi at destination">
+            <value>4500000</value>
+            <unit>m</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>5000000</upper_boundary>
+        </range>
+        <loaded_mission_energy description="Amount of energy loaded into tanks (including reserves) for the mission">
+            <mission_energy ID="0" description="Amount of energy loaded into tanks (including reserves) for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>7.0e+11</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </mission_energy>
+        </loaded_mission_energy>
+        <in_flight_energy description="Amount of energy needed for in-flight segments (all segments from takeoff to landing)">
+            <trip_energy ID="0" description="Amount of energy needed for trip segments (all segments from takeoff to landing) for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>5.5e+11</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </trip_energy>
+            <takeoff_energy ID="0" description="Amount of energy needed for takeoff segment for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>8.9e+9</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </takeoff_energy>
+            <landing_energy ID="0" description="Amount of energy needed for landing segment for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>8.9e+9</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </landing_energy>
+        </in_flight_energy>
+        <taxi_energy description="Amount of energy needed for taxiing specified energy carrier">
+            <taxi_out_energy ID="0" description="Amount of energy needed for taxiing at origin for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>1.0e+10</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </taxi_out_energy>
+            <taxi_in_energy ID="0" description="Amount of energy needed for taxiing at destination for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>5.6e+10</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </taxi_in_energy>
+        </taxi_energy>
+        <block_time description="Block time for the whole mission: Time from break release to end of taxiing after landing">
+            <value>21000.0</value>
+            <unit>s</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>45000</upper_boundary>
+        </block_time>
+        <flight_time description="Flight time for the whole mission">
+            <value>20000.0</value>
+            <unit>s</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>44500</upper_boundary>
+        </flight_time>
+        <takeoff_engine_derate description="Engine power demand">
+            <value>1</value>
+            <unit>1</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>1</upper_boundary>
+        </takeoff_engine_derate>
+        <cruise description="Characteristics of the cruise segment">
+            <average_lift_coefficient description="Lift coefficient CL_average: Arithmetic mean over the entire cruise flight">
+                <value>0.52</value>
+                <unit>1</unit>
+                <lower_boundary>-0.01</lower_boundary>
+                <upper_boundary>1</upper_boundary>
+            </average_lift_coefficient>
+            <minimum_lift_coefficient description="Minimum cruise flight lift coefficient CL_min">
+                <value>0.49</value>
+                <unit>1</unit>
+                <lower_boundary>-0.01</lower_boundary>
+                <upper_boundary>1</upper_boundary>
+            </minimum_lift_coefficient>
+            <maximum_lift_coefficient description="Maximum cruise flight lift coefficient CL_max">
+                <value>0.56</value>
+                <unit>1</unit>
+                <lower_boundary>-0.01</lower_boundary>
+                <upper_boundary>1</upper_boundary>
+            </maximum_lift_coefficient>
+            <top_of_climb_mass description="Total aircraft mass at top of climb (= start of initial cruise altitude (ICA))">
+                <value>77000.0</value>
+                <unit>kg</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>150000</upper_boundary>
+            </top_of_climb_mass>
+            <top_of_descend_mass description="Total aircraft mass at top of descend (TOD)">
+                <value>66000.0</value>
+                <unit>kg</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>150000</upper_boundary>
+            </top_of_descend_mass>
+            <top_of_climb_range description="Flown range from takeoff to top of climb (= start of initial cruise altitude (ICA))">
+                <value>220000.0</value>
+                <unit>kg</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>500000</upper_boundary>
+            </top_of_climb_range>
+            <top_of_descend_range description="Flown range from takeoff to top of descend">
+                <value>4300000.0</value>
+                <unit>kg</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>5000000</upper_boundary>
+            </top_of_descend_range>
+            <cruise_steps description="Cruise step information">
+                <cruise_step ID="0" description="Data of a cruise step">
+                    <relative_end_of_cruise_step description="End of cruise step relative to total cruise length">
+                        <value>0.5</value>
+                        <unit>1</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>1</upper_boundary>
+                    </relative_end_of_cruise_step>
+                    <altitude description="Altitude of cruise step">
+                        <value>10058.4</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>15000</upper_boundary>
+                    </altitude>
+                </cruise_step>
+                <cruise_step ID="1" description="Data of a cruise step">
+                    <relative_end_of_cruise_step description="End of cruise step relative to total cruise length">
+                        <value>1</value>
+                        <unit>1</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>1</upper_boundary>
+                    </relative_end_of_cruise_step>
+                    <altitude description="Altitude of cruise step">
+                        <value>10668.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>15000</upper_boundary>
+                    </altitude>
+                </cruise_step>
+            </cruise_steps>
+        </cruise>
+    </design_mission>
+</mission>
+```
+
+## Additional Output
+
+Beside the output written into the [aircraft XML](#acxml), **mission_analysis** generates a few more files you and even other tools can work with
+
+
+### Mission Data CSV {#csv_file}
+
+Remember that nice graph from this tool's [introduction](index.md)? This is a simple visualization of this CSV file we described above. Depending on the amount of engines, used energy carriers and other inputs, the CSV file may differ a bit, but usually you can expect the following parameters there:
+
+- Time [s]
+- Range [m]
+- Altitude [m]
+- FL [100 ft]
+- Mode name [-]
+- Total mass [kg]
+- Energy carrier (ID)
+- Thrust [N]
+- Fuelflow [kg/s]
+- Fuel consumed (kerosene | ID = 0) [kg]
+- Energy consumed (kerosene | ID = 0) [J]
+- Mach [-]
+- CAS [m/s]
+- TAS [m/s]
+- TAS [kts]
+- ROC [fpm]
+- SAR [m/kg]
+- Aero Config [-]
+- C_L [-]
+- L over D [-]
+- Spoiler Factor [-]
+- Reynolds Number [-]
+- Engine Rating [-]
+- Engine N1 (PW1127G-JM | ID = 0) [-]
+- Engine N1 (PW1127G-JM | ID = 1) [-]
+- Shaft power offtake [W]
+- Bleed [kg/s]
+- Angle of attack [deg]
+- Glidepath angle [deg]
+- Incidence angle (stabilizer) [deg]
+
+Beside being a neat dataset to show-off, [Ecological Assessment](../ecological_assessment/index.md) can go through it to calculate the ecological impact of an aircraft flying the displayed mission.
+
+
+### Reporting
+
+If you don't want to edit your data on your own, but need to see some basic characteristics of your mission, you can simply go to the `reporting` directory next to your [Aircraft Exchange File](#acxml). Within `report_html`, we already provide many graphs and useful insights which might come in handy. If something went wrong or you need to know what **mission_analysis** has done in detail, there is also a `.log` file next to your executable in which the shell output is tracked. 
+
+
+## Mission Configuration {#configuration}
+
+Now that we have successfully generated our first mission output, let's see how you can tweak our tool a little bit :sunglasses:
+
+
+### Aircraft Exchange File {#acxml}
+
+Within the `requirements_and_specifications` block of the `aircraft_exchange_file`, the following nodes can affect the behavior of **mission_analysis** (descriptions to be found within that file):
+
+```plaintext
+requirements_and_specifications
+└── mission_files
+    ├── design_mission_file
+    ├── study_mission_file
+    ├── requirements_mission_file
+└── design_specification
+    ├── propulsion
+    ├── skinning
+    │   ├── thickness
+    ├── configuration
+    │   ├── tank_definition
+    ├── energy_carriers
+└── requirements
+    ├── top_level_aircraft_requirements
+    │   ├── maximum_structrual_payload_mass
+    │   ├── design_mission
+    │   ├── study_mission
+    │   ├── takeoff_distance
+    │   ├── landing_field_length
+    │   ├── icao_aerodrome_reference_code (once 4D missions are ready)
+    │   ├── flight_envelope
+    │   │   ├── maximum_operating_mach_number
+    │   │   ├── maximum_operating_velocity
+    │   │   ├── maximum_approach_speed
+    │   │   ├── maximum_operating_altitude
+    │   │   ├── maximum_altitude_one_engine_inoperative
+    │   │   ├── climb_or_descend_segment_gradient
+    ├── additional_requirements
+    │   ├── landing_gear
+```
+
+The `mission_files` node simply saves the names of said files. Within `design_specification`, we extract everything from the propulsion system (including tanks) in order to analyze fuel consumption and thrust generation. In the `top_level_aircraft_requirements` node, we can find performance maxima and characteristics for `design_mission` and `study_mission`. The later provide nodes for the mission planning (initial cruise altitude and speed, fuel planning etc.). In `additional_requirements`, the `landing_gear` node tells us with which `friction_coefficient` and `braking_coefficient` our aircraft will be slowed down after touchdown.
+
+
+### Configuration File {#config_file}
+
+The `control_settings` are standardized in UNICADO and will not be described in detail here. The program settings are structured like this (descriptions are in the `mission_analysis_conf.xml`):
+
+```plaintext
+Program Settings
+└── Program Specific
+    ├── Specific Air Range Plot
+    ├── Exit If Fuel Limit Reached
+    │   ├── Enable
+    │   ├── Allowed Relative Overshoot
+    ├── Exit If Maximum Takeoff Mass Limit Reached
+    │   ├── Enable
+    │   ├── Allowed Relative Overshoot
+└── General
+    ├── Fuel Planning
+    │   ├── Fuel Estimation
+    │   │   ├── Fuel Estimation Switch
+    │   │   ├── Joint Aviation Requirements Parameters
+    │   │   │   ├── Contingency Fuel
+    │   │   │   ├── Use Additional Fuel
+    │   │   │   ├── Extra Fuel
+    │   │   ├── Federal Aviation Regulations Parameter
+    │   │   │   ├── Use Additional Fuel
+    │   ├── Fuel Flow Factor Taxiing
+    │   ├── Holding
+    │   │   ├── Holding Mach Number
+    │   │   ├── Holding Altitude
+    │   │   ├── Use Economical Speed
+    ├── Increase Engine Rating During Climb
+    ├── Glideslope Interception Distance
+    ├── Use Breguet Estimation In Cruise
+    ├── Iterate Top Of descend Mass
+    ├── Landing
+    │   ├── Rotation Time
+    │   ├── Thrust Reverser
+    │   │   ├── Enable
+    │   │   ├── Deactivation Speed
+    │   │   ├── Efficiency
+    │   ├── Runway Exit Speed
+└── Mode
+    ├── Mission Methods
+    │   ├── Fidelity Level
+    │   ├── Mission Type
+    │   ├── Center Of Gravity Method
+    ├── Rate Of Climb Switch
+└── Precision
+    ├── Acceleration Increment
+    ├── Mach Acceleration Increment
+    ├── Altitude Increment
+    ├── Way Increment
+    ├── Specific Air Range Check Increment
+```
+<!-- 
+Config nodes which have no effect, because aero does not differentiate between CD and CD alternative
+    ├── Polar Switch Mission Point
+    │   ├── Polar Switch Selector
+    │   ├── Absolute Range Flown
+    │   ├── Relative Range Flown
+    │   ├── Absolute Time Passed
+    │   ├── Relative Time Passed -->
+
+In the `program_specific` node, you can specify if the specific air range (SAR) is plotted (when plotting is turned on in the `control_Settings`). In addition, you can allow the tool to exceed the maximum takeoff mass and fuel mass during the design loop. This can be useful when operating at extreme conditions where fluctuation above the maxima shall not trigger an exit immediately. 
+
+
+In `general` you can decide how the needed fuel is estimated and you can tell **mission_analysis** in which way it shall behave in different flight segments.
+
+
+The `mode` node lets you choose the methods that are applied. Using the keyword `low`/`mid` you will trigger the low-fidelity/mid-fidelity version of the [Standard Mission](methods.md) method. It also has three sub-methods to differentiate between `design_mission`, `study_mission` and `requirements_mission` which can be selected in the `mission_type` node. Please mind that the low-fidelity method only accepts the `design_mission`. The `rate_of_climb_switch` will only affect the [Climb to Ceiling](mission_steps.md/#climb_to_ceiling_subparagraph) step of the `requirements_mission`. With this option, **mission_analysis** calculates the optimum rate of climb towards service ceiling.
+
+
+Finally, in `precision` you can set the parameters which will define the before mentioned increments of your mission profile.
diff --git a/docs/documentation/analysis/mission_analysis/index.md b/docs/documentation/analysis/mission_analysis/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..8fad77ed00dd8ef6bb6fe5fe86f014dd27280a47
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/index.md
@@ -0,0 +1,61 @@
+
+# Introduction {#mainpage}
+
+**mission_analysis** is an assessment tool that outputs the flown mission profile, saves characteristic parameters within that profile and checks if performance requirements are met. The following mission types can be analyzed:
+
+- `design_mission`:
+    - Defines the mission for which the aircraft shall be optimized
+    - $MTOM$ is altered during the design process
+    - Exports the `mission profile` as a CSV file
+    - Except $MTOM$, all other results for the [Aircraft Exchange File](getting_started.md/#acxml) are saved in the `design_mission` node
+- `study_mission`:
+    - Calculates off-design missions
+    - Exports a `mission profile` as a CSV file
+    - All results for the [Aircraft Exchange File](getting_started.md/#acxml) are saved in the `study_mission` node
+- `requirements_mission`:
+    - Checks top-level aircraft requirements and possible maxima (like maximum operating altitude)
+    - In the [Aircraft Exchange File](getting_started.md/#acxml) only the `requirement_compliance` block is edited
+
+Mentioned parameters include the energy consumptions which has a high impact on how the aircraft is sized. That's the reason why (unlike many other assessment tools) its `design_mission` calculation takes place within the design loop of our [RCE Workflow](../../../workflow.md).
+
+Once your mission is calculated, you can choose from a wide range of profile data which allows you to further investigate what your aircraft actually does. Here's a little example graph which visualizes the engines' total fuelflow during a `design_mission`:
+
+<p align="center">
+  <img src="figures/mission_profile.png" alt="Mission Profile" width="85%">
+  <br>
+  <em>Visualization of an example mission profile.</em>
+</p>
+
+
+## Quick Overview
+
+| Mission method                   | mission type              | Status                                 |
+|----------------------------------|---------------------------|----------------------------------------|
+| [3D Standard Mission (low-fidelity)](methods.md/#midfi)|`design_mission::breguet`| running  :white_check_mark:|
+| [3D Standard Mission (mid-fidelity)](methods.md/#midfi)|`design_mission`         | running :white_check_mark:|
+| [3D Standard Mission (mid-fidelity)](methods.md/#midfi)|`study_mission`          | running :white_check_mark:|
+| [3D Standard Mission (mid-fidelity)](methods.md/#midfi)|`requirements_mission`   | running :white_check_mark:|
+| [4D_trajectory (high-fidelity)](methods.md/#highfi)    |None                     | under development :construction:|
+
+By now, only a [standard (3D) mission method](methods.md/#midfi) is implemented. Its mid-fidelity version can trigger the three missions mentioned above while the low-fidelity sub-version is only used for the `design_mission`. The later is a Breguet-based estimation of the consumed mission fuel and it is triggered automatically if no initial values where given for the `design_mission`. A 4D trajectory mission is also planned, but it is still in the making.
+
+<pre class='mermaid'>
+  graph TD;
+    A[mission_analysis]-->B[design_mission]
+    B-->E[low-fidelity]
+    B-->F[mid-fidelity]
+    B-->G["(high-fidelity)"]
+    A-->C[study_mission]
+    C-->H[mid-fidelity]
+    C-->I["(high-fidelity)"]
+    A-->D[requirements_mission]
+    D-->J[mid-fidelity]
+    D-->K["(high-fidelity)"]
+</pre>
+
+
+## Where to start
+
+If you want a step-by-step guide to start your first calculation, head over to the [Getting Started](getting_started.md) section. We will show you some basic functionalities and how to get your airplane into the air.
+
+Further details about the methods can be found [here](methods.md).
diff --git a/docs/documentation/analysis/mission_analysis/methods.md b/docs/documentation/analysis/mission_analysis/methods.md
new file mode 100644
index 0000000000000000000000000000000000000000..6bf67e8c90e8f19ef1ab3a56b670329abae505b9
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/methods.md
@@ -0,0 +1,112 @@
+
+# Mission Methods {#missions}
+
+Depending on computing resources and needed level of detail, we have set up three different approaches to calculate a mission. Okay... it's only two by now, but the third will come for sure! Let's see, what we can find here.
+
+
+## Breguet Estimation (Low Fidelity) {#lowfi}
+
+In this method, the trip fuel mass $ m_{fuel,\,trip} $ (consumed fuel from takeoff until taxi-in) is calculated using the Breguet range equation. To do so, the time needed for climb and cruise are derived from the `mission file`. The approach segment is neglected since its share is rather small and the engines are set to `maximum_continuous` which will overestimate the needed fuel anyway. Up next, it is calculated how much lift $ \overline{L} $, drag $ \overline{D} $, thrust $ \overline{T} $ and fuel massflow $ \overline{\dot{m}}_{fuel} $ are needed on average to reach the top of climb and the end of cruise. After those values are set, the trip fuel mass is computed in the following way:
+
+$ m_{fuel,\,trip} \approx \sum_{i=0}^{n} m_{fuel,\,i} $
+
+$ m_{fuel,\,0} = 0 $
+
+$ m_{fuel,\,i} = (m_{zero\textrm{-}fuel\,mass} + m_{fuel,\,i-1}) \cdot e^{t_{i} \cdot TSFC_i \cdot g \cdot \frac{\overline{D_i}}{\overline{L_i}}} $
+
+$ TSFC_i = \frac{\overline{\dot{m}}_{fuel,\,i}}{\overline{T}_i} $
+
+
+To get the total fuel carried for the mission $ m_{fuel,\,mission} $, taxi-out $ m_{fuel,\,taxi\textrm{-}out}  $ and reserve fuel $ m_{fuel,\,reserve} $ are added:
+
+$ m_{fuel,\,mission} =  m_{fuel,\,trip} + m_{fuel,\,taxi\textrm{-}out} + m_{fuel,\,reserve} $
+
+Depending on taxiing procedures and reserve fuel methods like JAR or FAR, the fuel quantities may differ (for more details, [click here](#fuel_planning)).
+
+
+
+!!! note
+    The Breguet Estimation is a sub-method of the 3D Standard Mission and therefore uses the same functions for e.g. taxi fuel calculations. When calculating a `design_mission` without having any mission data yet (first loop), the Breguet Estimation is activated automatically to ensure greater robustness. To trigger this method manually, set the [Configuration File's](getting_started.md/#config_file) `fidelity_level` node to `low`.
+
+
+## 3D Standard Mission (Mid Fidelity) {#midfi}
+
+This standard method for the **mission_analysis** tool calculates a `mission profile` that consists of two space dimension plus one time dimension (range, altitude & time). Due to that, it will not handle more complex trajectories like specific flight paths between two airports. To set up its 2D profile, this method derives various target points from [departure, cruise and approach steps](mission_steps.md) stated in the `mission file`. There, every steps' `mode` indicates how _FlightConditions_ and _OperatingConditions_ shall be manipulated to reach those target points. _FlightConditions_ are used to save performance-related values (like true airspeed and current altitude) while _OperatingConditions_ will tell **mission_analysis** in which conditions the aircraft is operated (e.g. high-lift configuration or engine rating).
+
+
+The following `modes` can be found in the steps of the `mission file`:
+
+- `takeoff`
+- `climb`
+- `climb_to_cruise`
+- `climb_to_ceiling`
+- `change_flight_level_constant_ROC`
+- `accelerate`
+- `change_speed`
+- `change_speed_to_CAS`
+- `change_speed_to_Mach`
+- `cruise`
+- `descend_to_approach`
+- `descend`
+- `level_glide_slope_interception`
+- `landing`
+
+
+!!! note
+    Which `mode` is used will be determined by the steps in the `mission file`. If you want to alter them, check out [Create Mission XML](../../sizing/create_mission_xml/index.md).
+
+
+For each step, the start conditions are initialized using the exit data of the previous one (for `TAKEOFF`, an initial step is given manually where most values are set to $0$). Depending on the `mode` different functions are used to change the current conditions of the aircraft iteratively until the required end conditions of the [steps](mission_steps.md) are reached. Since those iterations are split into many small increments, processing the data takes much longer than the [Breguet Estimation](#lowfi). On the upside, this method offers a superior resolution without which a valid analysis of the mission would not be possible. Also, for each increment the relevant flight parameters are saved into a `mission profile` CSV sheet which can be further analyzed.
+
+
+!!! note
+    [The Breguet Estimation](#lowfi) only estimates the aircraft performance using average values for each flight step. Whether the aircraft is able to deliver the needed thrust or lift throughout the whole mission cannot be assured! To get valid mission profiles, always use the [3D Standard Mission](#midfi)! To use this method, set the [Configuration File's](getting_started.md/#config_file) `fidelity_level` node to `mid`.
+
+
+As you might have noticed, we have only discussed the `mission profile` from takeoff until touchdown, but what about taxiing and reserve fuel? Like the others, taxiing steps are described in the [Mission Steps](mission_steps.md/#taxiing) section while fuel planning will be tackled in the following subparagraph.
+
+
+### Fuel Planning Procedures {#fuel_planning}
+
+If you want to set a specific fuel planning procedure, head over to the [Aircraft Exchange File](getting_started.md/#acxml). There, you can select between EASA's fuel planning (_JAR_), FAA's domestic fuel planning (_FAR_DOMESTIC_) and FAA's flag or supplemental fuel planning (_FAR_FLAG_). How the fuel quantities for the different procedures shall be calculated can be changed in the [Configuration File](getting_started.md/#config_file).
+
+_JAR_ consists of:
+
+- Extra fuel:
+    - Fuel mass that shall be carried at the discretion of the captain
+- Alternate Fuel:
+    - Estimated fuel needed to fly the `alternate_distance` (from `mission_file`) on $FL200$
+- Final Reserve Fuel:
+    - $30\,min$ holding at $1500\,ft$ above destination airport at holding speed and ISA-Conditions
+- Additional Fuel:
+    - $15\,min$ holding at $1500\,ft$ above destination airport at holding speed and ISA-Conditions
+- Contingency Fuel using the maximum of the following quantities:
+    - $5\,min$ holding at $1500\,ft$ above destination airport at holding speed and ISA-Conditions
+    - $5\,\%$ of trip-fuel or $3\,\%$ if en-route alternate is available
+
+
+_FAR_DOMESTIC_ consists of:
+
+- Alternate Fuel:
+    - Estimated fuel needed to fly the `alternate_distance` (from `mission_file`) on $FL200$
+- Final Reserve Fuel:
+    - $45\,min$ at mean cruise fuel consumption
+  
+
+_FAR_FLAG_ consists of:
+
+- Alternate Fuel:
+    - Estimated fuel needed to fly the `alternate_distance` (from `mission_file`) on $FL200$
+- Final Reserve Fuel:
+    - $30\,min$ holding at $1500\,ft$ above destination airport at holding speed and ISA-Conditions
+- Additional Fuel:
+    - $15\,min$ holding at $1500\,ft$ above destination airport at holding speed and ISA-Conditions
+- Contingency Fuel:
+    - $10\,\%$ of the total required time from brake release (departure airport) to landing (destination airport) at mean cruise fuel consumption
+  
+!!! danger "Important"
+    Only Extra Fuel and Contingency Fuel can be modified by the user. The others are pre-defined by the chosen procedure.
+
+## 4D Trajectory (High Fidelity) {#highfi}
+
+Oops, that is not ready yet. An industrious UNICADO coder is probably working on that right now :unicorn:
diff --git a/docs/documentation/analysis/mission_analysis/mission_steps.md b/docs/documentation/analysis/mission_analysis/mission_steps.md
new file mode 100644
index 0000000000000000000000000000000000000000..48b80983f9bb4e0f9af31da0e15e6044f77cc62b
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/mission_steps.md
@@ -0,0 +1,231 @@
+# Mission Steps {#mission_steps}
+
+In this section, you will learn how **mission_analysis** interprets the different mission steps from the `mission file`. Beside that, we show you how the taxiing procedures are implemented. 
+
+
+## Mission Step Input Parameters
+
+A mission step can consist of the following nodes:
+
+- `configuration`: Aircraft configuration to identify the right polars for aerodynamic calculations (mandatory)
+- `derate`: Thrust derate to (de)throttle the engines during the step (mandatory)
+- `mode`: Defines the mode of the step (mandatory)
+- `rating`: The engine's thrust rating (mandatory)
+- `shaft_power_takeoff_schedule`: Defines the power the engines must provide for the aircraft systems (mandatory)
+- `bleed_air_takeoff` Schedule: Defines bleed air offtakes the engines must provide for the aircraft systems (mandatory)
+- `altitude`: Altitude at the end of this step.
+- `calibrated_airspeed`: Airspeed at the end of this step
+- `mach_number`: Mach number at the end of this step
+- `rate_of_climb_limit`: Maximum rate of climb during this step
+- `flight_management_system`: Indicator if a flight management system is implemented and what its cost index is (`cruise_step` only)
+- `round_to_regular_flight_level`: Rounded flight levels to the multiples of 10 (`cruise_step` only)
+- `auto_select_optimum_flight_level`: Switch to let **mission_analysis** decide what FL is the best (`cruise_step` only)
+- `glide_path`: Angle between glide path and runway (`approach_step` only)
+
+If you need further information about these, please head other to [Create Mission XML](../../sizing/create_mission_xml/index.md).
+
+
+## Step Modes {#step_modes}
+
+In the following paragraphs, we focus on how the steps' `mode` will manipulate the `mission_profile` from start to landing.
+
+
+### Takeoff {#takeoff_subparagraph}
+
+The `takeoff` is composed of ground run (break release until lift-off) and first climb segment to screen height ($35\,ft$). First, the aircraft is accelerated from $ 0\,\frac{m}{s} $ to the lift-off velocity $ v_{LOF} $ utilizing the `acceleration increments` of the [Configuration File](getting_started.md/#config_file). According to [EASA's CS-25 rules](https://www.easa.europa.eu/en/document-library/easy-access-rules/easy-access-rules-large-aeroplanes-cs-25), $ v_{LOF} $ equals $ 110\,\%$ $v_{MU}$ (minimum unstick speed) for aerodynamically limited aircraft and $ 108\,\%$ $v_{MU}$ for geometry limited aircraft. To generalize the $v_{LOF}$ calculation, a more conservative approach has been implemented. Since the minimum safe climb speed at screen height $v_2$ should always be (moderately) greater than the lift-off speed, the following approximation is used (all velocities are calibrated airspeeds):
+
+$$
+v_{LOF} \approx v_2 \geq 1.2 \cdot v_{stall} = 1.2 \cdot 0.94 \cdot v_{stall,\,1g} = 1.128 \cdot v_{stall,\,1g}
+$$
+
+The 1-g stall speed $v_{stall,\,1g}$ is the speed where lift $L$ is equal to the aircraft's weight $ m_{aircraft} \cdot g $ when operating at maximum lift coefficient $C_{L,\,max}$:
+
+
+$$
+L = m_{aircraft} \cdot g = \frac{1}{2} \cdot \rho \cdot v_{stall,\,1g}^2 \cdot C_{L,\,max} \cdot S_{ref} 
+\iff v_{stall,\,1g} = \sqrt{\frac{2 \cdot m_{aircraft} \cdot g}{\rho \cdot C_{L,\,max}\cdot S_{ref}}}
+$$
+
+After the aircraft's lift-off, it [climbs with constant speed](#climb_subparagraph) towards screen height to finish this segment.
+
+
+### Accelerate {#accelerate_subparagraph}
+
+`acceleration` segments activate the _change_speed_at_constant_ROC_ function. This mode is usually used for altitudes below $10\,000\,ft$ where the aircraft's speed is increased while retaining a given rate of climb (departure steps). To do so, the speed gap $\Delta v$ between segment start and end is divided into $n$ smaller steps using the [Configuration File's](getting_started.md/#config_file) `acceleration increment`. Then, for $n$ steps the aircraft's velocity is increased using the `acceleration increment`. For each increment, an iterative loop is initiated in which its end altitude is set like this:
+
+
+$$
+h_{end} = h_{start} + \Delta h = h_{start} + \sin(\frac{\gamma}{2 \cdot \overline{a}} \cdot (v_{start}^2 - v_{end}^2))
+$$
+
+before adapting the other _FlightConditions_ using the _set_segment_end_conditions_ function. Once the end altitude within the iteration loop doesn't change anymore, the parameters have converged. Hence, they are saved into the `mission profile` and the next increment will be calculated.
+
+<p align="center">
+  <img src="../figures/acceleration/iteration.gif" alt="Acceleration flow chart" width="95%">
+  <br>
+  <em>Flow chart displaying the iterative pattern to identify the increment's height change.</em>
+</p>
+
+
+### Change Speed {#change_speed_subparagraph}
+
+See [Accelerate](#accelerate_subparagraph). Unlike `accelerate`, `change_speed` uses a (constant) given glide path angle from the `mission file` to derive a rate of climb. Because ATC regulations demand that you can maintain glide path angles between $0°$ and $3°$ at lower altitudes, it is used for deceleration during approach steps below $10\,000\,ft$. .
+
+
+### Change Speed to CAS {#change_speed_to_CAS_subparagraph}
+
+`change_speed_to_CAS` alters the calibrated airspeed while a given rate of climb from the `mission file` is maintained. It's an adaption of [Accelerate](#accelerate_subparagraph) for altitudes between $10\,000\,ft$ and the transition height $h_{transition}$.
+
+
+### Change Speed to Mach {#change_speed_to_Mach_subparagraph}
+
+`change_speed_to_Mach` alters the Mach number while a given rate of climb from the `mission file` is maintained. It's an adaption of [Accelerate](#accelerate_subparagraph) for altitudes above the transition height $h_{transition}$.
+
+
+### Climb {#climb_subparagraph}
+
+The `climb` mode activates the _change_altitude_at_constant_speed_ function.
+To ensure that the aircraft maintains an efficient aerodynamic behavior, the calibrated airspeed is kept constant while the aircraft's altitude is increased/decreased by $\Delta h$. To achieve this, $\Delta h$ is split into $n$ steps by dividing it by the [Configuration File's](getting_started.md/#config_file) `altitude increment`. By default, the minimum rate of climb $ROC$ with which the new altitudes are reached is set to $100\,\frac{ft}{min}$. The actual $ROC$ is calculated using the glide path $\gamma$ while maintaining the total available thrust $T$:
+
+$$
+\gamma = \arcsin \left(\frac{T-D}{g\cdot m_{aircraft}}\right);
+$$
+
+$$
+ROC = \sin(\gamma) \cdot v_{TAS};
+$$
+
+If no maximum $ROC$ is given by the `mission file`, $ROC$ will be taken from the equation above. Else, it is checked if the given $ROC$ limit is exceeded. If this is the case, $ROC$ is set to the maximum while adapting $\gamma$ and $T$ to it. Analogous to [Change Speed](#change_speed_subparagraph), the increment's _FlightConditions_ are looped until $\gamma$ has converged. Afterwards, they are saved into the `mission profile` and the next increment will be calculated.
+
+
+### Climb to Cruise {#climb_to_cruise_subparagraph}
+
+The `climb_to_cruise` mode adapts [Climb](#climb_subparagraph) with the difference that its minimum rate of climb is set to $ 0\,\frac{ft}{min}$. While climbing towards the initial cruise altitude, the air becomes thinner and colder which leads to an increasing Mach number. Once the design cruise Mach number $M_{cruise}$ is exceeded, a constant CAS climb would lead to compressibility effects which could worsen the aircraft's performance. Therefore, the Mach number is kept constant as soon as $M_{cruise}$ is reached. Therefore, $M_{cruise} \approx M_{transition}$.
+
+The altitude at which this occurs is called transition altitude $h_{transition}$ (aka crossover altitude). $h_{transition}$ is defined as the geopotential pressure altitude at which calibrated airspeed and Mach number are representing the same value of true airspeed ($TAS_{Mach} = TAS_{CAS}$). Using the barometric formula, $h_{transition}$ is computed in the following way:
+
+<p align="center">
+  <img src="../figures/transition_altitude.png" alt="Transition Altitude" width="85%">
+</p>
+*Climb profile at given IAS/MACH Law*[\@Air02].
+
+$$
+h_{transition} = \frac{T_{h=0}}{\frac{\delta T}{\delta h}} \cdot \left(\frac{p_{transition}}{p_{h=0}}\right)^{\frac{R\cdot \frac{\delta T}{\delta h}}{g} - 1}
+$$
+
+$R$ represents the Gas Constant and $g$ the gravitational acceleration. Within the tropopause, the temperature gradient $\frac{\delta T}{\delta h}$ equals $-0.0065\,[K/m]$; above it is defined as $0\,[K/m]$. For $TAS_{Mach}$, you can simply use Mach number $M_{transition}$ and speed of sound $a_{transition}$ which can also be displayed in relation to sea-level conditions:
+
+$$
+TAS_{Mach} = M_{transition}\cdot a_{transition} = M_{transition}\cdot a_{z=0} \cdot\sqrt{\frac{T_{transition}}{T_{z=0}}}
+$$
+
+$TAS_{CAS}$ is computed using isentropic flow equations:
+
+$$
+TAS_{CAS} = a_{h=0} \sqrt{\frac{2}{\kappa - 1} \cdot \frac{\sqrt{T_{transition}}}{T_{h=0}}\cdot\left(\frac{q}{p_{transition}}+1\right)^{\frac{\kappa -1}{\kappa}}-1}
+$$
+
+Where the the stagnation pressure $q$ is derived from the calibrated airspeed:
+
+$$
+CAS = a_{h=0} \sqrt{\frac{2}{\kappa - 1} \cdot \left(\frac{q}{p_{z=0}}+1\right)^{\frac{\kappa -1}{\kappa}}-1}
+$$
+
+
+Finally, the following statement can be derived for the needed pressure ratio characterizing $h_{transition}$:
+
+$$
+\frac{p_{transition}}{p_{h=0}} = \frac{\left(1 + \frac{\kappa-1}{2} \cdot \left(\frac{CAS}{a_{h=0}}\right)^{2} \right)^{\frac{\kappa}{\kappa-1}} - 1}{\left(1 + \frac{\kappa-1}{2} \cdot M_{transition}^{2} \right)^{\frac{\kappa}{\kappa-1}} - 1}
+$$
+
+
+!!! note
+    To determine the cruise range for the [Cruise](#cruise_subparagraph) segment, the index on the `mission profile` where the aircraft reaches the `initial_cruise_altitude` is saved for later usage.
+
+
+### Climb to Ceiling {#climb_to_ceiling_subparagraph}
+
+This mode should only be used for `requirements missions`! This mode contains four segments:
+
+1. [Climb to Cruise](#climb_to_cruise_subparagraph).
+2. From there, climb to maximum operating altitude with $ROC = 100\,\frac{ft}{min}$ or with a automated maximum rate of climb by turning on the `rate_of_climb_switch`. Either way, the engines are set to `maximum continuous`.
+3. Keep on climbing with $ROC = 100\,\frac{ft}{min}$. Once the engines fail, climb with $ROC = 50\,\frac{ft}{min}$ until they ultimately fail (end altitude = ceiling altitude).
+4. Reset to cruise altitude and repeat step 2 with one engine inoperative.
+
+
+### Change Flight Level {#change_flight_level_constant_ROC_subparagraph}
+
+The `change_flight_level_constant_ROC` segment adapts the [Climb](#climb_subparagraph) mode using a minimum rate of climb from the `mission file`. Typically, this option is used in cruise steps to initiate a flight level change. Due to the fact that the cruise altitude usually is way above the transition altitude, the Mach Number is kept constant during this altitude change (see [Climb to Cruise](#climb_to_cruise_subparagraph) for the explanation).
+
+
+### Cruise {#cruise_subparagraph}
+
+In this segment, the aircraft is moved forward with constant speed and $ROC = 0\,\frac{ft}{min}$. How long this `cruise` segment shall last, is determined by the `relative_segment_length` (`mission_file`) which will be applied to the estimated cruise range. To get the latter, the descend range $R_{descend}$ is estimated using the [Breguet method](methods.md/#lowfi). Then, the afore saved mission segment for reaching `initial_cruise_altitude` (ICA) provides $R_{ICA}$ leading us to the current `cruise` segment's range:
+
+$$
+R_{cruise} = R_{descend} - R_{ICA}
+$$
+
+
+To iterate through this range, it is split into $n$ steps using the [Configuration File's](getting_started.md/#config_file) `way_increment`. Analogous to [Change Speed](#change_speed_subparagraph), the increment's _FlightConditions_ are looped until its consumed fuel mass has converged. Afterwards, they are saved into the `mission profile` and the next increment will be calculated.
+
+
+Even though this mode is not used to climb, the `auto_select_optimum_flight_level` option (see `cruise_steps` in the `mission file`) can be switched on to alter the flight level during `cruise`. If a better specific air range can be obtained on another flight level, **mission_analysis** will test whether the aircraft would consume less fuel there. If this is the case, [Change Flight Level](#change_flight_level_constant_ROC_subparagraph) will take care of the altitude change. Since for regularity reasons discrete flight levels are mandatory, `round_to_regular_flight_level` assures that only permitted altitudes are applied.
+ 
+!!! note
+    Even if the specific air range of another flight level might be better, a flight level change can cost more fuel than it saves until the end of cruise! Of course, **mission_analysis** is smart enough to take this into account :nerd:
+
+
+### Descend to Approach {#descend_to_approach_subparagraph}
+
+`descend_to_approach` is used to initiate a descend segment from the current cruise altitude towards approach $(10\,000\,ft)$. It uses the same functions the [Climb](#climb_subparagraph) mode does with the difference that its minimum rate of climb is set to $0\,\frac{ft}{min}$. Like in [Climb to Cruise](#climb_subparagraph), the transition altitude $h_{transition}$ will presumably be crossed in this segment. Therefore, the aircraft first descends with a constant Mach number. When $h_{transition}$ is reached, it continues with a constant CAS climb.
+
+!!! note
+    Since the calibrated airspeed won't further decrease below $h_{transition}$, the demanded velocity for the segment's end (segment's `calibrated_airspeed` node in the `mission file`) must be reached before that altitude. If this is not the case, the aircraft will be automatically decelerated by activating a [Change Speed](#change_speed_subparagraph) segment in between.
+
+
+### Descend {#descend_subparagraph}
+
+This mode adapts [Climb](#climb_subparagraph) with the difference that its minimum rate of climb is set to $0\,\frac{ft}{min}$ and a glide path angle $\gamma$ is read from the `mission file`. This comes in handy to meet ATC regulations for lower altitudes. Hence, `descend` should be used for approach steps below $10\,000\,ft$.
+
+!!! note
+    After the last descend segment, **mission_analysis** expects the aircraft to be at threshold crossing height ($50\,ft = 15.24\,m$). Otherwise, [Landing](#landing_subparagraph) might cause problems!
+
+
+### Glide Slope Interception {#level_glide_slope_interception_subparagraph}
+
+With `level_glide_slope_interception` the final approach slope is initiated by [cruising](#cruise_subparagraph) at glide slope interception altitude ($3000\,ft$) with constant calibrated airspeed. The distance until the aircraft reaches the interception point $\Delta x$ is derived from the landing glide slope $\gamma$ (usually it's about $3°$), total range $R_{total}$ and the aircraft's current position:
+
+$$
+\Delta x = R_{total} - \frac{h_{current}}{\tan(-\gamma)} - R_{current}
+$$
+
+!!! warning
+    If $\Delta x$ becomes negative, the interception was overflown. This can happen if e.g. the engine produces too much thrust while decelerating or the drag is too low. Either way, **mission_analysis** will try to land the aircraft, but the result may not be ATC conform.
+
+
+### Landing {#landing_subparagraph}
+
+Like [Descend](#descend_subparagraph), the `landing` mode changes the altitude using a constant calibrated airspeed while maintaining a given glide path angle. After touchdown, the aircraft is decelerated to the dedicated taxi speed. Beside the aircraft's brakes, you can also turn on the `thrust_reverser` in the [Configuration File](getting_started.md/#config_file). This may shorten the needed runway length drastically, but you must be sure your engines/aircraft configuration is capable of this.
+
+
+## Taxiing procedures {#taxiing}
+
+Unlike the other mission steps, taxi-out and taxi-in are defined in the overall `mission` block within the `mission file`. The taxi fuel consumption for both the origin and destination is determined based on the type of `taxiing_procedure` used. If electric taxiing is used, fuel is only needed for engine warm-up at the origin airport, while no fuel is allocated for taxiing at the destination. The warm-up fuel is calculated using the `engine_warmup_time` $t_{warm\textrm{-}up}$ time and fuelflow rate $\dot{m}_{warm\textrm{-}up}$ which is derived from the [Configuration File's](getting_started.md/#config_file) `fuel_flow_factor_taxiing` which is applied to the engine running in `idle`:
+
+$$
+m_{fuel,\,warm\textrm{-}up} = t_{warm\textrm{-}up} \cdot \dot{m}_{warm\textrm{-}up}
+$$
+
+If electric taxiing is not used, fuel is needed for both origin and destination taxi operations. In this case, the required fuel mass is based on the taxiing time $t_{taxi}$ at each airport (`taxi_time_origin` & `taxi_time_destination`). Analogous to $\dot{m}_{warm\textrm{-}up}$, we get the taxi fuels:
+
+$$
+m_{fuel,\,taxi\textrm{-}out} = t_{taxi\textrm{-}out} \cdot \dot{m}_{taxi\textrm{-}out}
+$$
+
+$$
+m_{fuel,\,taxi\textrm{-}in} = t_{taxi\textrm{-}in} \cdot \dot{m}_{taxi\textrm{-}in}
+$$
+
+!!!node
+    The fuelflow is computed the same way for the three procedures above. Therefore all of these are equal.
diff --git a/docs/documentation/analysis/performance_assessment/ceiling_performance.md b/docs/documentation/analysis/performance_assessment/ceiling_performance.md
new file mode 100644
index 0000000000000000000000000000000000000000..0fe15692f4a094c1d8c38994d92019da76301e39
--- /dev/null
+++ b/docs/documentation/analysis/performance_assessment/ceiling_performance.md
@@ -0,0 +1,34 @@
+# Ceiling Performance
+This site is currently under development. :construction:
+
+<!-- 
+## Module structure
+'main.py' runs the following functions:
+1. 'data_preprocessing' (from 'datapreprocessing.py')<sup>1</sup>
+   - 1.1  
+2. 'run_module' (from 'methodexecutionpackage' library)<sup>2</sup>
+   - 2.1
+3. 'data_postprocessing' (from 'datapostprocessing.py')<sup>3</sup>
+
+<sup>1</sup> data preprocessing runs: \
+<sup>2</sup> \
+<sup>3</sup> data_postprocessing runs: ...
+
+...
+
+
+### Routing layers
+The tank design module has the following layer structure:
+
+1. Aircraft configuration
+   - Implemented: 'tube_and_wing'
+   - Not yet implemented: 'blended_wing_body'
+2. Calculation method fidelity
+   - Implemented: 'empirical'
+3. Calculation method
+   - Implemented: 'tank_design_tu_berlin'
+4. Energy carrier <sup>1</sup>
+   - Implemented: 'kerosene'
+   - Not yet implemented: 'liquid_hydrogen', 'hybrid'
+
+<sup>1</sup> The used energy carrier is determined automatically in the 'read_energy_carrier_and_tank_configuration' function. -->
diff --git a/docs/documentation/analysis/performance_assessment/flight_envelope.md b/docs/documentation/analysis/performance_assessment/flight_envelope.md
new file mode 100644
index 0000000000000000000000000000000000000000..47828d3f07aa337531e96c373fdb3c32b5f8f65f
--- /dev/null
+++ b/docs/documentation/analysis/performance_assessment/flight_envelope.md
@@ -0,0 +1,34 @@
+# Flight Envelope
+This site is currently under development. :construction:
+
+<!-- 
+## Module structure
+'main.py' runs the following functions:
+1. 'data_preprocessing' (from 'datapreprocessing.py')<sup>1</sup>
+   - 1.1  
+2. 'run_module' (from 'methodexecutionpackage' library)<sup>2</sup>
+   - 2.1
+3. 'data_postprocessing' (from 'datapostprocessing.py')<sup>3</sup>
+
+<sup>1</sup> data preprocessing runs: \
+<sup>2</sup> \
+<sup>3</sup> data_postprocessing runs: ...
+
+...
+
+
+### Routing layers
+The tank design module has the following layer structure:
+
+1. Aircraft configuration
+   - Implemented: 'tube_and_wing'
+   - Not yet implemented: 'blended_wing_body'
+2. Calculation method fidelity
+   - Implemented: 'empirical'
+3. Calculation method
+   - Implemented: 'tank_design_tu_berlin'
+4. Energy carrier <sup>1</sup>
+   - Implemented: 'kerosene'
+   - Not yet implemented: 'liquid_hydrogen', 'hybrid'
+
+<sup>1</sup> The used energy carrier is determined automatically in the 'read_energy_carrier_and_tank_configuration' function. -->
diff --git a/docs/documentation/analysis/performance_assessment/getting_started.md b/docs/documentation/analysis/performance_assessment/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..742b34860f51b4d73e87d23d028bbe7fcbf9a242
--- /dev/null
+++ b/docs/documentation/analysis/performance_assessment/getting_started.md
@@ -0,0 +1,164 @@
+# Getting started
+This section will guide you through the necessary steps to get the performance assessment module up and running. It contains all information on tool requirements and design parameters. First, it is essential to ensure that all necessary input data are available. The performance assessment module requires the following files to be provided:
+
+- [Module configuration file](#module-configuration-file) 
+- [Aircraft exchange file](#aircraft-exchange-file)
+- [Additional requirements](#additional-requirements) 
+
+!!! note 
+    It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries.
+
+## Module configuration file {#module-configuration-file}
+The module configuration file (_configXML_) is the file through which the user controls the performance assessment tool. the configXML is split into two main parts. The control and the program settings. The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least
+
+- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings,
+- the `console_output` at least to `mode_1`, and
+- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`).
+
+!!! note 
+    If the tool is executed via the workflow, those settings are set by the workflow settings.
+
+The program settings in the `performance_assessment_conf.xml` can further be divided into:
+
+- the `module_strategy`
+- the `performance_checks`
+- the `constants_for_performance_checks`
+- the `modes`
+
+Under module_strategy you can chose the strategy that you would like to use. Currently only the `default_methods` as a strategy is available. Under the tab `performance_checks` the fidelity level of the checks for the climb, takeoff and landing performance as well as for the payload range diagram can be selected. Currently the selection is reduced to only `low`. The tab `constants_for_performance_checks` provides the ability to set a `runway_slop` as well as a `head_wind` speed. Finally, under `modes` the user can chose if the study mission instead of the design mission shell be used for the performance assessment and wether the MTOM of the aircraft shall be redetermined.
+
+## Aircraft exchange file {#aircraft-exchange-file}
+
+Since the performance assessment module is an assessment tool, it is assumed that a converged aircraft design and therefore all the necessary data are already available. Due to the abundance of data read in by the module not all parameters will be covered in this section. Only the essential parameters for the overall functionality of the workflow will be covered here. For a more profound description of the relevant parameters please refer to the different capabilities. One of the main task of the performance assessment module is to validate, that the aircraft configuration designed achieves the requirements set be the user through the definition in the acXML. The performance characteristics checked are divided into top level aircraft requirements and certification. 
+
+The following top level aircraft requirements are checked:
+
+- the `design takeoff distance`
+- the `design landing field length`
+- the `design approach speed`
+- the `span limit`
+
+As well as the following certification requirements:
+
+- the `climb gradient of the second takeoff segment`
+- the `climb gradient of the final takeoff segment`
+- the `climb gradient approach one engine inoperative`
+- the `climb gradient all engine operative`
+
+The checked parameters are saved in the acXML under `requirement_compliance`:
+
+```xml
+    <requirement_compliance description="Compliance of given requirements">
+        <top_level_aircraft_requirements description="Compliance of top level aircraft requirements">
+            <initial_cruise_altitude description="Compliance check of the initial cruise altitude.">
+                <maintainable description="Value shows if the requirement can be achieved by the aircraft.">
+                    <value>true</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </initial_cruise_altitude>
+            <initial_cruise_mach_number description="Compliance check of the initial cruise mach number.">
+                <maintainable description="Value shows if the requirement can be achieved by the aircraft.">
+                    <value>true</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </initial_cruise_mach_number>
+            <maximum_operating_altitude description="Compliance check of the maximum operating altitude.">
+                <maintainable description="Value shows if the requirement can be achieved by the aircraft.">
+                    <value>false</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </maximum_operating_altitude>
+            <maximum_altitude_one_engine_inoperative description="Compliance check of the maximum altitude one engine inoperative.">
+                <maintainable description="Value shows if the requirement can be achieved by the aircraft.">
+                    <value>true</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </maximum_altitude_one_engine_inoperative>
+            <design_time_to_climb description="Compliance check of the design time to climb.">
+                <maintainable description="Value shows if the requirement can be achieved by the aircraft.">
+                    <value>true</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </design_time_to_climb>
+            <design_takeoff_distance description="Compliance check of the design takeoff distance.">
+                <maintainable description="Switch indicating if design takeoff distance can be maintained.">
+                    <value>false</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </design_takeoff_distance>
+            <design_landing_field_length description="Compliance check of the design landing field length.">
+                <maintainable description="Switch indicating if landing field length can be maintained.">
+                    <value>true</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </design_landing_field_length>
+            <design_approach_speed description="Compliance check of the design approach speed.">
+                <maintainable description="Switch indicating if approach speed can be maintained.">
+                    <value>false</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </design_approach_speed>
+            <span_limit>
+                <maintainable description="Switch indicating if the span limit according to ICAO aerodrome ref code is maintained.">
+                    <value>true</value>
+                </maintainable>
+            </span_limit>
+        </top_level_aircraft_requirements>
+        <certification>
+            <climb_gradient_of_second_takeoff_segment>
+                <maintainable description="Switch indicating if climb gradient of second takeoff segment can be maintained.">
+                    <value>true</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </climb_gradient_of_second_takeoff_segment>
+            <climb_gradient_of_final_takeoff_segment>
+                <maintainable description="Switch indicating if climb gradient of final takeoff segment can be maintained.">
+                    <value>true</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </climb_gradient_of_final_takeoff_segment>
+            <climb_gradient_approach_one_engine_inoperative>
+                <maintainable description="Switch indicating if climb gradient approach one engine inoperative can be maintained.">
+                    <value>true</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </climb_gradient_approach_one_engine_inoperative>
+            <climb_gradient_all_engines_operative>
+                <maintainable description="Switch indicating if climb gradient with all engines operative can be maintained.">
+                    <value>true</value>
+                </maintainable>
+                <checked description="Indicates if the value has been checked against the requirement.">
+                    <value>true</value>
+                </checked>
+            </climb_gradient_all_engines_operative>
+        </certification>          
+```
+The checks of the performance characteristics will be conducted based on calculation capabilities implemented in this module. A description of those capabilities can be found under the tab `capabilities`. 
+
+
+## Additional requirements {#additional-requirements}
+
+The tool requires aerodynamic data, mission-dependent data as well as engine-dependent data of the designed aircraft configuration. To run the code smoothly please ensure, that the `aero_data`,`mission_data` ,and `engine_data` folder, are located in the directory of the aircraft exchange file.
+
diff --git a/docs/documentation/analysis/performance_assessment/index.md b/docs/documentation/analysis/performance_assessment/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..e44dbe8b5c82aa777ed944d0a879dfa1d53c229b
--- /dev/null
+++ b/docs/documentation/analysis/performance_assessment/index.md
@@ -0,0 +1,57 @@
+# Introduction {#mainpage}
+
+Welcome to the **performance_assessment** module in UNICADO. The module will give you a set of tools to analyze the performance of your aircraft in order to compare it with other aircraft designs. Furthermore, it will calculate performance characteristics within the design loop to check and validate performance requirements set by other tools within UNICADO.
+
+
+## Summary of features
+Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned:
+
+| Configuration    | Energy carrier  | Status                      |
+|------------------|-----------------|:------------------------------------:|
+|Tube-and-wing     |Kerosene         |running :white_check_mark:      |
+|                  |Liquid hydrogen  |under development :construction:|
+|Blended-wing-body |Kerosene         |under development :construction:|
+|                  |Liquid hydrogen  |under development :construction:|
+
+Performance Assessment has the capabilities of evaluating the following performances:
+
+- Payload Range Diagram
+- Takeoff Performance
+- Landing Performance
+- Flight Envelope
+- Ceiling Performance
+
+Coming soon! The following performance assessments are in the making and will be available soon:
+
+- Fuel Planning
+- Engine Performance
+- Specific Air Range (SAR) Performance
+- Balanced Field Length
+- V-n-Diagram
+
+## A user's guide to performance assessment
+The performance_assessment tool is your key to accurately calculating and visualizing the performance of an aircraft. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a performance assessment from the ground up.
+[Getting started](getting_started.md) will give you an introduction to and walk you through the performance assessment process in UNICADO.
+For a comprehensive description of the individual performance assessment capabilities please refer to the one of interest:
+
+- [Payload Range Diagram](payload_range_diagram.md) 
+- [Takeoff Performance](takeoff_performance.md)
+- [Landing Performance](landing_performance.md)
+- [Flight Envelope](flight_envelope.md)
+- [Ceiling Performance](ceiling_performance.md)
+
+
+
+
+<!-- ## You are a Developer?
+If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO!
+
+The following pages will help you understand the code structure:
+
+- [Prerequisites](prerequisites.md)
+- [Build the code](build-the-code.md)
+- [Cost estimation module structure](wing-module-structure.md)
+- [Available methods](available-methods.md)
+- [Method template](method-template.md)
+
+We appreciate it! -->
\ No newline at end of file
diff --git a/docs/documentation/analysis/performance_assessment/landing_performance.md b/docs/documentation/analysis/performance_assessment/landing_performance.md
new file mode 100644
index 0000000000000000000000000000000000000000..ea255ad8c7314fad2e8bd68269b48e27fb2ba697
--- /dev/null
+++ b/docs/documentation/analysis/performance_assessment/landing_performance.md
@@ -0,0 +1,34 @@
+# Landing Performance
+This site is currently under development. :construction:
+
+<!-- 
+## Module structure
+'main.py' runs the following functions:
+1. 'data_preprocessing' (from 'datapreprocessing.py')<sup>1</sup>
+   - 1.1  
+2. 'run_module' (from 'methodexecutionpackage' library)<sup>2</sup>
+   - 2.1
+3. 'data_postprocessing' (from 'datapostprocessing.py')<sup>3</sup>
+
+<sup>1</sup> data preprocessing runs: \
+<sup>2</sup> \
+<sup>3</sup> data_postprocessing runs: ...
+
+...
+
+
+### Routing layers
+The tank design module has the following layer structure:
+
+1. Aircraft configuration
+   - Implemented: 'tube_and_wing'
+   - Not yet implemented: 'blended_wing_body'
+2. Calculation method fidelity
+   - Implemented: 'empirical'
+3. Calculation method
+   - Implemented: 'tank_design_tu_berlin'
+4. Energy carrier <sup>1</sup>
+   - Implemented: 'kerosene'
+   - Not yet implemented: 'liquid_hydrogen', 'hybrid'
+
+<sup>1</sup> The used energy carrier is determined automatically in the 'read_energy_carrier_and_tank_configuration' function. -->
diff --git a/docs/documentation/analysis/performance_assessment/payload_range_diagram.md b/docs/documentation/analysis/performance_assessment/payload_range_diagram.md
new file mode 100644
index 0000000000000000000000000000000000000000..eb7b28589274b087eec6b21d13acbf2972e4b87b
--- /dev/null
+++ b/docs/documentation/analysis/performance_assessment/payload_range_diagram.md
@@ -0,0 +1,45 @@
+# The payload-range diagram
+
+UNICADO has the ability to generate a payload-range diagram based on the performance characteristics of your aircraft design. The payload-range diagram is one of the most essential ways of visualizing the transport capabilities of your configuration. Furthermore, it combines performance characteristics from aerodynamic, engine to payload. With an abundance of information it is a fundamental tool in comparing aircraft designs as well as airline fleet planing.
+
+## Input 
+
+In order to perform the payload-range diagram generation the following input parameters or input files are needed:
+
+- Payload capabilities 
+- Mission profile
+- Initial cruise Mach number
+- Aerodynamic polars
+- Engine decks
+
+## Calculation method
+The calculation of the payload-range diagram is based on the Breguet range equation as stated below.
+
+$$
+  R = \frac{V \cdot \frac{L}{D}}{g \cdot SFC} \cdot ln\left(\frac{m_{initial}}{m_{final}} \right)
+$$
+
+The used parameters are defined as follows:
+
+- $V$ - speed
+- $L$ - lift 
+- $D$ - drag
+- $g$ - gravitational constant
+- $SFC$ - specific fuel consumption
+- $m_{initial}$ - mass at the beginning of the cruise segment 
+- $m_{final}$ - mass at the end of the cruise segment 
+
+The equation is valid for steady, level flight and is based on the assumption, that the change in mass of an aircraft is proportional to the fuel mass flow.
+For the use in UNICADO the Breguet range equation is adapted as follows:
+
+$$
+  R = \frac{V \cdot \frac{L}{D}}{g \cdot SFC} \cdot ln\left(\frac{0.9065 \cdot TOM}{OME + m_{payload}} \right) \cdot CF
+$$
+
+In contrast to the original Breguet range equation the initial mass of the cruise segment $m_{initial}$  is approximated through 90.65% of the take off mass (TOM). Hence, accounting for the fuel consumed until reaching cruise altitude. Furthermore, a calibration factor (CF) is introduced. The calibration factor is calculated based on the ratio of the design range, as defined in the acXML by the user, and the range calculated from the adapted Breguet range equation (assuming a CF of 1 for this purpose) under design point conditions.
+
+In order to approximate the ambient condition for a multi step cruise flight, the cruise altitude is averaged over the weighted segment lengths. Thereafter, the ambient condition is calculated following the International Standard Atmosphere. Based on the previously mentioned assumptions, and for the cruise Mach number at the initial cruise altitude the lift, drag as well as SFC are calculated.
+
+## Output
+
+The output of the payload-range diagram generation can be found in the folder `reporting` where beside the individual plot in .svg format a html report depicting the plot as well as the data of the corner points and design point. Furthermore the ranges of the corner points of the payload-range diagram can be found under the tab `performance/range`.
\ No newline at end of file
diff --git a/docs/documentation/analysis/performance_assessment/run_your_first_cost_estimation.md b/docs/documentation/analysis/performance_assessment/run_your_first_cost_estimation.md
new file mode 100644
index 0000000000000000000000000000000000000000..595234bdf9588970ec6ce5e9b88c35f22b3b73ed
--- /dev/null
+++ b/docs/documentation/analysis/performance_assessment/run_your_first_cost_estimation.md
@@ -0,0 +1,82 @@
+# Run your first cost estimation
+Let's dive into the fun part and crunch some numbers! :moneybag:
+
+## Tool single execution
+The tool can be executed from the console directly if all paths are set. The following will happen:
+
+- [Console output](#console-output)
+- [Generation of reports and plots](#reporting)
+- [Writing output to aircraft exchange file](#write-data-to-acxml)
+
+Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices. Also, if you need some additional information on the underlying methodology, check out the page on the [cost estimation method](operating_cost_method.md).
+
+So, feel free to open the terminal and run `python.exe cost_estimation.py` to see what happens...
+
+### Console output {#console-output}
+Firstly, you see output in the console window. Let's go through it step by step...
+
+```
+2024-12-06 11:37:30,205 - PRINT - Cost estimation started...
+2024-12-06 11:37:30,224 - PRINT - ----------------------------------------------------------
+2024-12-06 11:37:30,224 - PRINT - Operating cost estimation results for design mission.   
+2024-12-06 11:37:30,224 - PRINT - ----------------------------------------------------------
+2024-12-06 11:37:30,226 - PRINT - Capital costs: 5,852,515 €
+2024-12-06 11:37:30,226 - PRINT - Crew costs (per year): 4,779,200 €
+2024-12-06 11:37:30,227 - PRINT - ROUTE INDEPENDENT COSTS (per year): 10,631,715 €
+2024-12-06 11:37:30,227 - PRINT -                              *                            
+2024-12-06 11:37:30,319 - PRINT - Fuel costs (per year): 22,744,718 €
+2024-12-06 11:37:30,322 - PRINT - Handling costs (per year): 3,119,900 €
+2024-12-06 11:37:30,322 - PRINT - Landing costs (per year): 1,290,968 €
+2024-12-06 11:37:30,348 - PRINT - Air traffic control costs (per year): 9,271,834 €
+2024-12-06 11:37:30,351 - PRINT - Maintenance costs (per year): 8,038,461 €
+2024-12-06 11:37:30,377 - PRINT - ROUTE DEPENDENT COSTS (per year): 44,465,883 €
+2024-12-06 11:37:30,377 - PRINT -                              *                            
+2024-12-06 11:37:30,420 - PRINT - DIRECT OPERATING COSTS (per year): 55,097,598 €
+2024-12-06 11:37:30,420 - PRINT - ----------------------------------------------------------
+2024-12-06 11:37:30,607 - WARNING - No calculation method for indirect operating costs (IOC) implemented. IOC set to 0.
+```
+To this point, the module started and calculated the operating costs for the design mission.
+There is also a warning that the indirect operating cost method is not implemented yet.
+
+```
+2024-12-06 11:37:30,607 - WARNING - Warning: Operating cost estimation of study mission not possible due to missing data. No operating costs calculated.
+2024-12-06 11:37:30,608 - PRINT - ----------------------------------------------------------
+```
+The tool continues to check if an off-design study exists and tries to calculate the respective costs. In this example, there is no off-design data available and thus, the direct operating costs cannot be determined for the study mission.
+
+```
+2024-12-06 11:37:30,641 - PRINT - Plots are generated and saved...
+2024-12-06 11:37:38,187 - PRINT - HTML report is generated and saved...
+2024-12-06 11:37:38,188 - PRINT - Method-specific data are written to 'cost_estimation_results.xml'...
+2024-12-06 11:37:38,192 - WARNING - Warning: "tex_output" switch in module configuration file set to "False". No TeX report file generated.
+2024-12-06 11:37:38,192 - PRINT - Cost estimation finished.
+```
+Finally, you receive information about the reports and plots created (depending on your settings, see next section) and the tool is successfully completed.
+
+### Reporting {#reporting}
+In the following, a short overview is given on the generated reports:
+
+- A `cost_estimation.log` file is written within the directory of the executable
+- Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file:
+    - an HTML report in the `report_html` folder
+    - a TeX report in the `report_tex` folder (not implemented yet)
+    - an XML file with additional output data in the `report_xml` folder
+    - plots in the `plots` folder
+
+### Write data to the aircraft exchange file {#write-data-to-acxml}
+!!! note 
+    The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool!
+
+Results are saved in the aircraft exchange file at the `aircraft_exchange_file/assessment/cost_estimation/operating_cost` node. The following information is written to the _acXML_:
+```
+Direct operating cost
+|- Flights per year (design mission)
+|- Flights per year (study mission) - only if off-design analysis available
+|- Route independent cost annual
+|- Route dependent cost annual
+|- Direct operating cost annual
+```
+When implemented, the indirect operating costs are going to be saved at `aircraft_exchange_file/assessment/cost_estimation/operating_cost/indirect_operating_cost`.
+
+## Troubleshooting {#troubleshooting}
+- The tool does not run properly? *Make sure you have all the paths set up correctly and the specified elements exist.*
diff --git a/docs/documentation/analysis/performance_assessment/takeoff_performance.md b/docs/documentation/analysis/performance_assessment/takeoff_performance.md
new file mode 100644
index 0000000000000000000000000000000000000000..f53ec3686ce55c8a92ea5b989a46b805147bcc44
--- /dev/null
+++ b/docs/documentation/analysis/performance_assessment/takeoff_performance.md
@@ -0,0 +1,34 @@
+# Takeoff Performance
+This site is currently under development. :construction:
+
+<!-- 
+## Module structure
+'main.py' runs the following functions:
+1. 'data_preprocessing' (from 'datapreprocessing.py')<sup>1</sup>
+   - 1.1  
+2. 'run_module' (from 'methodexecutionpackage' library)<sup>2</sup>
+   - 2.1
+3. 'data_postprocessing' (from 'datapostprocessing.py')<sup>3</sup>
+
+<sup>1</sup> data preprocessing runs: \
+<sup>2</sup> \
+<sup>3</sup> data_postprocessing runs: ...
+
+...
+
+
+### Routing layers
+The tank design module has the following layer structure:
+
+1. Aircraft configuration
+   - Implemented: 'tube_and_wing'
+   - Not yet implemented: 'blended_wing_body'
+2. Calculation method fidelity
+   - Implemented: 'empirical'
+3. Calculation method
+   - Implemented: 'tank_design_tu_berlin'
+4. Energy carrier <sup>1</sup>
+   - Implemented: 'kerosene'
+   - Not yet implemented: 'liquid_hydrogen', 'hybrid'
+
+<sup>1</sup> The used energy carrier is determined automatically in the 'read_energy_carrier_and_tank_configuration' function. -->
diff --git a/docs/documentation/analysis/weight_and_balance_analysis/basic-concepts.md b/docs/documentation/analysis/weight_and_balance_analysis/basic-concepts.md
new file mode 100644
index 0000000000000000000000000000000000000000..fb10b53995cd12515527db679a1abbc521d96d92
--- /dev/null
+++ b/docs/documentation/analysis/weight_and_balance_analysis/basic-concepts.md
@@ -0,0 +1,232 @@
+# Basic Concepts {#basic-concepts}
+This chapter introduces the definitions and theoretical concepts used in UNICADO for performing the weight and balance (w&b) analysis. The masses of the aircraft's components are calculated in the corresponding design modules. Each component has a _mass properties_ information containing the component's mass, center of gravity position and moments of inertia. All mass properties are gathered in this module and summed up to the different total aircraft's masses, CG positions and mass moments of inertia. Given the airplane design with its requirements and the mass breakdown of its components, the weight and balance of the aircraft is computed considering the mission data and transport task information from the _Aircraft Exchange File_ (acxml). Finally, the loading diagramm is plotted to show different loading cases and the CG-shift during flight. 
+
+ For some calculations there are more available methods. These can be selected by the user in the w&b tool configuration file [_weight\_and\_balance\_analysis\_conf.xml_](usage.md). 
+
+!!! note 
+    In this beta release of UNICADO the w&b analysis module is laid out for the _tube and wing_ configuration of a look-a-like A320. This will be extended in the future to support also a blended wing body configuration.
+
+
+## Masses of the Aircraft {#masses}
+ 
+Let us start defining the different masses calculated by the tool and how they are determined: 
+
+- The **Manufacture Empty Mass (MEM)** is the mass of the aircraft which includes the mass of the main components, i.e. the airframe structure (wing, fuselage, landing gear, empennage, pylons), the propulsion group (nacelles and engines) mass and the fixed equipment mass like the furnishings or the navigation systems.
+  
+!!! note 
+    The tanks don't have an own mass as they are integrated in the main components. Only for the case of additional tanks a mass is added.  
+
+- The **Operating Empty Mass (OEM)** represents the mass of the aircraft which includes the crew, all essential operational fluids and all operator-required items and equipment for flight. It coresponds to the MEM with addition of the operator items mass. 
+
+    $$ OEM = MEM + operator\_items\_mass $$ 
+
+!!! note
+    The operator items are calculated by both the fueselage design and the systems design module.
+
+- The **Maximum Zero Fuel Mass (MZFM)** is the total mass of the aircraft without any fuel. It is calculated with 
+    
+    $$ MZFM = OEM + maximum\_payload\_mass $$
+
+    - The ***maximum payload mass*** is refering to the maximum allowed payload which can be taken on board without violation of the structural limits and capacity constraints. This is defined in the TLARs.
+
+- The **Ferry Range Mass (FRM)** is the mass at which the aircraft can reach the maximum range. For this, no payload is carried and the tanks are filled up with the maximum fuel mass. 
+  
+    $$ FRM = OEM + maximum\_fuel\_mass $$
+
+    - The ***maximum fuel mass*** is the maximum fuel that can be carried and fits in all tanks up to the maximum capacity, i.e all tanks are full. The tank design module outputs the maximum energy per each designed tank. These are transformed here with the corresponding gravimetric density to a maximum fuel mass per tank and then summed up for all tanks.  
+
+- The **Maximum Take-Off Mass (MTOM)** is the mass at which the aircraft takes off. For the design mission this corresponds to the design mass at take-off. Starting with the previously determined OEM, the calculated design fuel at takeoff and the design payload mass are added:
+  
+    $$ MTOM = OEM + design\_fuel\_mass\_takeoff + design\_payload\_mass $$
+
+!!! note
+    The estimated MTOM is an input of the weight and balance analysis tool and is initially written by the _initial\_sizing_ module. Here, it is updated to a mass based on more exact calculation, as the components design and its mass breakdown is now known.
+
+  - The ***design payload mass*** consists of the passenger, luggage and additional cargo mass defined by the user in the transport task. 
+  - The ***design fuel mass mission*** is the fuel mass determined from the mission information and is equal to the mission energy (including taxi and reserves) divided by the gravimetric density of the energy provider. If the energy needed to complete the mission is not available or unknown, the design fuel mass is calculated from the difference between the estimated MTOM, OEM and the design payload mass.
+  - The ***design fuel mass takeoff*** corresponds to the remaining fuel in the tanks after the taxi at the origin, just before the take-off. The design fuel mass at takeoff is equal to the ***design fuel mass*** written in the acxml. 
+  - The ***design fuel mass midflight*** is calculated by substracting from the design fuel mass at takeoff the fuel consumed during the take-off segment and half of the fuel needed for the cruise segment. These data are provided by the mission module. If not, the design fuel mass midflight is approximated to be half of the design fuel mass at takeoff. 
+  - The ***design fuel mass landing*** corresponds to the remaining fuel in the tanks just after the plane touched down. The minimum fuel mass at landing is determined by substracting from the mission fuel mass the trip fuel mass (containing all flight segments) and the taxi fuel mass before the take-off. If no mission information is available, the minimum design fuel mass at landing is calculated by multiplying the design fuel mass at takeoff with factors for the contingency fuel, alternate fuel and the final fuel reserve. 
+
+With the knowledge about the OEM, the design payload mass and the design fuel masses at different points during flight, the total design masses of the aircraft at specific times can be calculated: 
+
+  - **Maximum Ramp Mass (MRM)** is the mass of the aircraft in the parking position before the start:
+  
+    $$ MRM = OEM + design\_fuel\_mass\_mission + design\_payload\_mass. $$
+
+  - ***design mass at take-off*** (equal with the MTOM and to the ***design mass*** written in the acxml)
+  - ***design mass at midflight*** 
+  - ***design mass at landing***
+
+The **Maximum Landing Mass (MLM)** is the maximum mass at which the pilot of the aircraft is allowed to attempt to land due to structural or other limits. 
+The following calculation mode is available:
+        
+  - via the `RWTH regression method`: This calculation uses different formulas depending on whether the maximum takeoff mass exceeds a threshold value of 15,000 kg.
+  
+    1. For Aircraft with *MTOM > 15,000 kg* the following empirical formula is used:  
+      $MLM = 1.9689 \times MTOM^{0.9248}$
+    2. For Aircraft with *MTOM ≤ 15,000 kg* a linear approximation is used:  
+      $MLM = 0.9009 \times MTOM + 410.85 $
+
+Additionally, two masses are calculated for the case that the aircraft flies either with maximum payload mass or with maximum fuel mass. In both cases the difference up to MTOM is completed with fuel or payload respectively. Based on the loading diagramm, the masses at the most forward and most aft CG positions are also determined. 
+
+---
+## Center of Gravity {#cg}
+
+The knowledge of the center of gravity (CG) position and movement is necessary to ensure the static stability and controllability of the aircraft on the ground and in the air. Based on the results of the detailed mass breakdown of the components with their _mass properties_ information, the total center of gravity of the aircraft can now be determined. The position of the overall CG can generally be determined from the position of the individual centers of gravity w.r.t. a global reference point. 
+
+The calculation involves determining the weighted average of the CG positions for all components. For each axis (_x, y ,z_), the function sums the scaled masses, which are the product of a component’s mass and its CG coordinate for the respective axis. This sum is then divided by the total mass of all components to yield the final CG coordinate for that axis. The global center of gravity ($CG$) for a specific axis ($ax$) is calculated as:
+
+$
+CG_{ax} = \frac{\sum_{i=1}^n (m_i \cdot x_i)}{\sum_{i=1}^n m_i}
+$
+
+Where:
+
+- $ m_i $ is the mass of the $ i $-th component.
+- $ x_i $ is the coordinate of the $ i $-th component along the $ \text{ax} $.
+- $ n $ is the total number of components.
+
+!!! note 
+    It is often common to specify the center of gravity as %MAC. 
+
+### Center of Gravity Shift and the Loading Diagramm
+
+The various operational centre of gravity positions must always be within a range limited by safe operation. Since different loading and mission conditions can occur, proof of admissibility must be provided independently for each one. Possible extreme variants can be found in the following matrix:
+
+| **Loading case**                | Mass | Fuel | Payload |
+|---------------------------------|-----------|-----------|-----------|
+| Design mission                  | MTOM      | design      | design      |
+| Ferry range mission             | FRM       | maximum      | 0      |
+|                                 | MZFM      | 0           | maximum      |
+|                                 | MTOM      | rest        | maximum      |
+|                                 | MTOM      | maximum     | rest         |
+
+The loadind diagramm is used to display the permissible range of aircraft mass and CG positions, accounting for CG migration during loading and unloading. The shift in the CG is crucial for evaluating different loading cases from which potential loading restrictions can be determined. 
+
+Below is a detailed breakdown of idealized key loading processes and their effects on the CG used to construct the loading diagramm. Given the vast number of possible loading combinations and scenarios, a pre-selection of critical cases—often configuration-dependent— has been made to reduce complexity. The following loading scenarios are considered within UNICADO:
+
+**1. Passenger Boarding**
+
+  - Critical Scenario: Boarding passengers in a _front-to-rear_ or _rear-to-front_ sequence. These sequences represent extreme cases and can significantly affect the CG position.
+  - Realistic Scenario: Passengers boarding with free seat selection, typically filling _window seats first, followed by middle and aisle seats_. This simulates common boarding patterns and provides a practical estimation of CG shifts.
+
+**2. Loading of Baggage and Cargo**
+
+- For aircraft with similarly sized forward and aft cargo holds, the CG can be deliberately influenced by distributing containers or pallets to achieve a CG favorable for cruise flight. For rear-engine aircraft, the larger cargo hold is typically located forward of the wings. The loading scenario for cargo assumes a symmetric _front-to-rear_ or _rear-to-front_ loading sequence.
+
+**3. Refueling**
+
+  - Low-/Mid-Wing Aircraft: Fuel is loaded in the following order: inner tank → outer tank → central or fuselage tanks.
+  - High-Wing Aircraft: Fuel is loaded in reverse: outer tank → inner tank → central or fuselage tanks.
+  
+!!! note 
+    It is assumed that the tanks are filled up symmetrically in the mentioned order up to the maximum capacity of each tank with the fuel mass calculated based on the mission information. 
+
+**4. Defueling (Fuel Consumption During Flight)**
+
+  - Low-/Mid-Wing Aircraft:
+    - Fuel is consumed in the order: central or fuselage tanks → inner tank → outer tank.
+  - High-Wing Aircraft:
+    - Fuel is consumed in the reverse order: central or fuselage tanks → inner tank → outer tank.
+
+The sequence between the different loading scenarios can be made in the _weight\_and\_balance\_analysis\_conf.xml_ file. The shift in CG due to the different loading scenarios is considered only for the longitudinal axis, as it is assumed that the aircraft is loaded symmetrically. Finally, the **most forward and most aft _x_-CG positions** and the corresponding masses are depicted from the resulting diagramm.  
+
+---
+## Mass Moments of Inertia {#inertia}
+
+Inertia forces arise from the tendency of mass to resist accelerations. For rotational accelerations, these forces are represented by the **mass moment of inertia** terms.These are critical parameters in the analysis and design of aircraft, as they determine the rotational dynamics about the principal axes: roll, pitch, and yaw. These values influence stability, control responsiveness, and handling qualities. The moments of inertia are calculated relative to an axis and depend on the mass distribution of the aircraft. The cross products of inertia (e.g., $ I_{xy} $) arise when the axes are not aligned with the principal axes of the mass distribution.
+
+In this context the mass moments of inertia about the three principal axes
+
+- $ I_{xx} $: About the roll axis  
+- $ I_{yy} $: About the pitch axis  
+- $ I_{zz} $: About the yaw axis
+
+!!! note
+    The mass moments of inertia are calculated only for the total masses.  
+  
+are determined determined by means of the following ***calculation methods:***
+
+#### 1. Using Raymer's Empirical Equations 
+*Raymer* provides empirical formulas to estimate the moments of inertia based on the aircraft's geometry and mass distribution. These equations are derived from historical data based on nondimensional radii of gyration ($ R_x $, $ R_y $, $ R_z $) and are suitable for early design phases where detailed component-level data may not be available. The mass moments of inertia are given as follows:
+
+- **Roll**: $I_{xx} = \frac{b^2 M R_x^2}{4} \cdot f_{xx}$
+- **Pitch**: $I_{yy} = \frac{l^2 M R_y^2}{4} \cdot f_{yy} $
+- **Yaw:** $I_{zz} = \frac{\left( \frac{b + l}{2} \right)^2 M R_z^2}{4}$
+
+Where:
+
+- $ b $: Wingspan  
+- $ l $: Fuselage length  
+- $ M $: Aircraft mass
+- $f_{xx}$ and $f_{yy}$: Technology factors set to $1.25$ respectively $1.15$   
+- $ R_x, R_y, R_z $: Nondimensional radii of gyration. The following values are implemented:
+
+| **Aircraft Configuration**                    | $ R_x $ | $ R_y $ | $ R_z $ |
+|---------------------------------------------|-----------|-----------|-----------|
+| Single prop engine                          | 0.25      | 0.38      | 0.39      |
+| Twin prop engine                            | 0.30      | 0.40      | 0.44      |
+| 2 fuselage-mounted jet engines              | 0.24      | 0.34      | 0.42      |
+| 2 wing-mounted jet engines                  | 0.23      | 0.33      | 0.45      |
+| 4 wing-mounted jet engines                  | 0.24      | 0.36      | 0.44      |
+| Blended wing body                           | 0.28      | 0.40      | 0.46      |
+
+The aircraft configuration is determined based on the data from the TLARs. For this, the information about the possible propulsion types, mounting positions and number of engines are used.
+
+!!! note 
+    If no matching radii of gyration are found, a critical message is shown and the values for the radii are set to the ones for a jet with two wing mounted engines to keep the workflow running. It is the user's responsability to check the validity of the chosen calculation methods and the results.
+
+#### 2. Using the LTH Tables (*Luftfahrttechnisches Handbuch*) 
+The LTH provides tabulated values and empirical methods specific to various aircraft configurations. These tables account for typical mass distributions and structural layouts. They are more accurate than Raymer’s approach but require knowledge of the specific aircraft class and design. The `calculate_inertia_by_lth_method` function is tailored specifically for conventional tube-and-wing configurations. This method uses aircraft mass properties like the OEM, the payload mass ($m_{payload}$) and the fuel mass ($m_{fuel}$) and geometric dimensions such as wing span $b$ and fuselage length $l$. All cross-product terms ($I_{xy}$, $I_{xz}$, etc.) are set to $0$, assuming symmetry.
+
+The mass moments of inertia around the principal axes are given as follows:
+
+- **Roll**:
+  $
+  I_{xx} = f_{xx} \cdot K_x^2 \cdot b^2 \cdot m_m
+  $
+
+- **Pitch**:
+  $
+  I_{yy} = f_{yy} \cdot K_y^2 \cdot l^2 \cdot m_m
+  $
+
+- **Yaw**:
+  $
+  I_{zz} = 0.96 \cdot (I_{xx} + I_{yy})
+  $
+
+Here, $f_{xx}$ and $f_{yy}$ are technology factors set to $0.8$ respectively $0.9$. The expected mass $M$ and the scaling factors $K_x$ and $K_y$, derived from empirical LTH tables, are defined as:
+
+  $ M = OME + m_{payload} + m_{fuel} $
+
+  $ K_x = \frac{1}{12} \left( \left[ - \frac{2}{3} \cdot \left(\frac{M}{OME}- 1\right) + \frac{m_{fuel}}{OME} \right] +1 \right) + 0.065 $
+
+  $ K_y = -\frac{0.065}{1.72} \left[ 0.2 \cdot \left(\frac{M}{OME}- 1\right) + \frac{m_{fuel}}{OME} \right] + 0.2025 $
+
+
+#### 3. Using the Component's Inertia
+This method involves calculating the total inertia tensor of the aircraft based on its components' individual mass properties. For each inertia component ($I_{xx}$, $I_{xy}$, etc.), the function adds the component's intrinsic inertia and the inertia due to its offset from the reference CG (using the Steiner theorem). The mass moments of inertia are given exemplary    
+
+- around the principal axes ($I_{xx}$, $I_{yy}$,$I_{zz}$):
+  
+    $
+    I_{xx} = \sum (I_{xx,\text{component}} + m_{\text{component}} \cdot (p^2 + q^2))
+    $  
+
+- around the deviation axes (cross-product terms $I_{xy}$, $I_{xz}$, etc.):
+    
+    $
+    I_{xy} = \sum (I_{xy,\text{component}} + m_{\text{component}} \cdot -(p \cdot q))
+    $  
+
+
+with $p$ and $q$ representing the relative distances between the reference center of gravity (CG) and the current component's CG along the specified axes. Specifically:
+
+- $ p $: The distance along the first axis (e.g., x, y, or z).
+- $ q $: The distance along the second axis (e.g., x, y, or z). 
+ 
+!!! note
+    The component's moments of inertia, if available, are calculated in the component's design modules. Otherwise, these are 0.
+
diff --git a/docs/documentation/analysis/weight_and_balance_analysis/index.md b/docs/documentation/analysis/weight_and_balance_analysis/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..9337091206b7bf4a23c95e8f5c036f1897c886df
--- /dev/null
+++ b/docs/documentation/analysis/weight_and_balance_analysis/index.md
@@ -0,0 +1,31 @@
+# Introduction {#mainpage}
+The aircraft’s mass plays a crucial role in determining the flight performance and evaluating the design, with the ultimate goal being to minimize the operating empty mass. 🏋️‍♀️ Knowing individual masses is essential for calculating the center of gravity (CG) and determining the placement of critical components like the landing gear and wings. ✈️  The CG significantly affects the aircraft's stability and controllability. An improperly located CG can compromise flight safety, requiring careful planning to ensure it remains within allowable limits throughout the flight, including during fuel consumption and payload variations. This analysis is typically conducted through a weight and balance evaluation using a loading diagram :chart_with_upwards_trend:, which defines the permissible range for combinations of aircraft mass and CG positions. Mass considerations are also fundamental to cost estimation. As an aircraft’s mass increases, it requires more lift, which leads to higher drag, increased thrust demands, elevated fuel consumption, and ultimately greater fuel and operating costs. <sup>[1]</sup> 💸
+
+In UNICADO, the _weight\_and\_balance_analysis_ tool is used to compute the aircraft's masses, determine the CG positions, calculate mass moments of inertia, and generate the loading diagram. The terms "mass" and "weight" are often used interchangeably in aircraft design, though they are scientifically distinct. In this context, both terms are used to refer to the aircraft's mass.
+
+## A User's Guide to Weight & Balance Analysis
+This user documentation will guide you through all necessary steps to understand the tool as well as the necessary inputs and configurations to calculate the aircraft masses, CG positions, aircraft's moments of inertia and determine the loading diagramm with the most forward and most aft CG positions.
+
+The following pages will guide you through the theory behind and the process of computing and analysing the weight and balance within UNICADO:
+
+- [Basic Concepts](basic-concepts.md)
+- [Usage of the Weight & Balance Analysis Tool](usage.md)
+
+So let's get started! 💪
+
+
+## You are a Developer?
+
+If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO!
+
+The following pages will help you understand the code structure:
+
+- [Developer Guide](../../../get-involved/developer-installation.md)
+- [Build Instructions](../../../get-involved/build-instructions/build/python.md)
+- [How to Python in UNICADO](../../../get-involved/modularization/python-modularization.md)
+- [Weight & Balance Analysis Tool Structure](usage.md)
+
+We appreciate it!
+
+---
+<sup>[1]</sup> SCHOLZ, Dieter, 2015. Aircraft Design. Lecture Notes. Hamburg University of Applied Sciences. URL: http://LectureNotes.AircraftDesign.org.
\ No newline at end of file
diff --git a/docs/documentation/analysis/weight_and_balance_analysis/usage.md b/docs/documentation/analysis/weight_and_balance_analysis/usage.md
new file mode 100644
index 0000000000000000000000000000000000000000..6c568a70d17f33d79df95e35d402a8d2ca597623
--- /dev/null
+++ b/docs/documentation/analysis/weight_and_balance_analysis/usage.md
@@ -0,0 +1,211 @@
+# Usage of the Weight & Balance Analysis Tool {#usage}
+Let's see now how the magic happens. In this guide we will go through the step-by-step process of running the weight and balance (w&b) analysis tool. The different possible execution modes and calculation methods are listed. Tool dependencies between the w&b analysis tool and other UNICADO modules are described, including necessary tool inputs and generated outputs. While we navigate through this guide we will find the answers to the following questions:
+
+- [Requirements](#requirements) - What is necessary to get the tool running?
+- [Tool Structure](#architecture) - How is the tool built and which files are relevant for me as an user?
+- [Configuration File](#module-configuration-file) - What is with this _weight\_and\_balance\_analysis\_conf.xml_ file?
+- [Method Selection](#method-selection) - Where to find and how to select the calculation methodes and execution modes described in the [Basic Concepts](basic-concepts.md)?
+- [Tool Execution](#tool) - How to start the tool and what happens then?
+- [Troubleshooting](#trouble) - What do I do if the tool is not working?
+
+---
+
+## Requirements {#requirements}
+The following requirements are needed for the tool to run:
+
+1. **First**, it is assumed that you have the UNICADO *package* installed including the executables, the database, and the UNICADO *libraries*.
+
+2. As the w&b analysis tool is an analysis tool, the **second requirement** is that the ***sizing modules***, as well that the ***aerodynamic analysis*** and ***mission analysis*** tools were successfully executed beforehand and that the results are written in the Aircraft Exchange File (acXML). The following information must be available (the subcomponents of the required nodes are not listed here):
+
+    - `aircraft_exchange_file/requirements_and_specifications/requirements/top_level_aircraft_requirements`: `maximum_structrual_payload_mass`
+    - `aircraft_exchange_file/requirements_and_specifications/design_specification`: `configuration`, `transport_task`, `energy_carriers`
+    - `aircraft_exchange_file/component_design` : the `global_reference_point` and the components `wing`, `empennage`, `tank`, `propulsion`, `landing gear`, `systems` each at least with the nodes `position` and `mass_properties`
+    - `aircraft_exchange_file/analysis/aerodynamics/reference_values`: `neutral_point`
+    - `aircraft_exchange_file/analysis/masses_cg_inertia`: `maximum_takeoff_mass`
+    - `aircraft_exchange_file/analysis/mission/design_mission`: `loaded_mission_energy`, `in_flight_energy`, `taxi_energy`
+
+    !!! note
+        When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway.
+
+3. The `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` are correctly set in the `control settings` part of the _weight\_and\_balance\_analysis\_conf.xml_ file (configXML). The `console_output` should be set at least to `mode_1`.
+
+4. The structure of the acXML remains unchanged, otherwise the paths to the nodes must be updated in the data reading functions of the tool.
+
+___
+## Tool Structure {#architecture}
+
+<pre class='mermaid'>
+  graph LR;
+    A[W & B Analysis] -->B[Tube and Wing _datapostprocessing.py_ _datapreprocessing.py_];
+    B-->C[Standard];
+	C-->D[Basic _methodbasic.py_]
+	C-->E[General _methodplot.py_ _methodhtmlreport.py_]
+	C-->H[_usermethoddatapreparation.py_]
+    A-->F[Blended Wing body - _under development_]
+	A-->G[_weight\_and\_balance\_analysis\_conf.xml_ _main.py_ _weight_and_balance_analysis.txt_ ]
+	A-->I[doc]
+</pre>
+
+!!! danger "Important"
+    Since the documentation might be delayed to the development progress - this graph might not have all information yet.
+
+Let's break down the tool structure and see what happens in the most relevant files:
+
+
+
+## Configuration File {#module-configuration-file}
+
+The _weight\_and\_balance\_analysis\_conf.xml_ is structured into two blocks: the control and program settings. The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least
+
+- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings,
+- the `console_output` at least to `mode_1`, and
+- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`).
+
+!!! note
+    If the tool is executed via the workflow, those settings are set by the workflow settings.
+
+## Method Selection {#method-selection}
+By changing the program settings im the configXML we can manipulate how the w&b analysis tool is running. The program settings are structured like this:
+
+```xml
+    <program_settings description="program settings">
+        <tube_and_wing description="Weight and balance analysis">
+            <category description="Category name">
+                <value>standard</value>
+            </category>
+            <standard description="Standard weight and balance">
+                <method description="Method name">
+                    <value>basic</value>
+                </method>
+                <basic description="Basic configuration">
+                    <calculation_methods description="Calculation methods for basic configuration">
+                        <inertia description="Selector for the calculation method of the mass moments of inertia. Selector: mode_0 (by_lth_table) / mode_1 (by_components) / mode_2 (by_Raymer)">
+                            <method description="selected method">
+                                <value>mode_0</value>
+                            </method>
+                        </inertia>
+                        <aircraft_type description="Aircraft configuration for determination of the nondimensional radii of gyration by Raymer. Selector: blended_wing / jet_fuselage_eng / jet_two_wing_eng / jet_four_wing_eng">
+                            <value>jet_two_wing_eng</value>
+                        </aircraft_type>
+                        <refueling_mode description="Selector to specify if refueling should be done for the design or ferry range mission. Selector: mode_0 (design mission) / mode_1 (ferry range)">
+                            <method description="selected method">
+                                <value>mode_0</value>
+                            </method>
+                        </refueling_mode>
+                        <defueling_mode description="Selector to specify if defueling should be considered or not in the loading diagramm. Selector: mode_0: not active / mode_1: active">
+                            <method description="selected method">
+                                <value>mode_1</value>
+                            </method>
+                        </defueling_mode>
+                        <passengers_boarding_mode description="Selector to specify the order how the passengers occupy the seats. Selector: mode_0 (each row at a time) / mode_1 (from window to aisle)">
+                            <method description="selected method">
+                                <value>mode_0</value>
+                            </method>
+                        </passengers_boarding_mode>
+                        <loading_mode description="Selector to specify the loading scenario: Selector: mode_0: ref_pass_cargo_def / mode_1: ref_cargo_pass_def / mode_2: cargo_ref_pass_def / mode_3: pass_ref_cargo_def / mode_4: pass_cargo_ref_def">
+                            <method description="selected method">
+                                <value>mode_0</value>
+                            </method>
+                        </loading_mode>
+                    </calculation_methods>
+                </basic>
+            </standard>
+        </tube_and_wing>
+    </program_settings>
+```
+
+In this part of the configXML we can select the calculation methods and aircraft configuration for the inertia, the maximum landing mass and the modes for the loading scenarios. Each mode has a description and the selection is made by changing the respective `value`. Most of the default modes coming with the package are set to `mode_0`. This means that:
+
+- the mass moments of inertia are calculated using the LTH Tables
+- the selected scenario for refueling is to fill up the tanks with the fuel for the design mission
+- the passengers should board each row at a time from the front to back and back to front
+- the cg shift due to defueling (fuel consumption during flight) should also be considered in the loading diagram
+- the loading sequence is first refueling (ref), then boarding the passengers, after that adding the cargo and finally defueling (def).
+
+## Tool Execution {#tool}
+Once the desired methods are selected and the requirements are in place, the tool can run. In order to start the w&b analysis tool, we can execute it directly from the console if all paths are set (see [How to run a tool](../../../tutorials/seperate-tool-execution.md)) or run the _main.py_ inside the tool folder.
+
+Following will happen:
+
+- First, the necessary data and paths are acquired with ***datapreprocessing.py*** and ***usermethoddatapreparation.py***
+- Then the ***methodbasic.py*** is executed and you see the output in the console window: The mass properties of the components are first read, then the total masses are calculated, afterwards the cg shift due to refueling, passangers boarding, cargo loading and finally defueling is determined together with the most fwd and aft CG positions
+- Next, the calculated data is postprocessed and the outputs are written to the acXML with ***datapostprocessing.py*** and ***usermethoddatapreparation.py***
+- the loading cases and the loading diagram are plotted inside ***methodplot.py***
+- a HTML report is created by ***methodhtmlreport.py*** in the directory of `aircraft_exchange_file_directory`. It contains a detailed mass breakdown and the generated plots.
+
+The following results are saved in the acXML under `aircraft_exchange_file/analysis/masses_cg_inertia`:
+
+```xml
+    <analysis>
+        <masses_cg_inertia description="Masses, Center of Gravity, Inertias." tool_level="3">
+            <maximum_takeoff_mass description="MTOM">
+                <mass_properties description="maximum takeoff mass properties">
+                    <inertia description="Inertia with regard to the total center of gravity.">
+                        <j_xx description="Inertia in x.">
+                        </j_xx>
+                        <j_yy description="Inertia in y.">
+                        </j_yy>
+                        <j_zz description="Inertia in z.">
+                        </j_zz>
+                        <j_xy description="Inertia in xy.">
+                        </j_xy>
+                        <j_xz description="Inertia in xz.">
+                        </j_xz>
+                        <j_yx description="Inertia in yx.">
+                        </j_yx>
+                        <j_yz description="Inertia in yz.">
+                        </j_yz>
+                        <j_zx description="Inertia in zx.">
+                        </j_zx>
+                        <j_zy description="Inertia in zy.">
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="Center of gravity w.r.t global coordinate system.">
+                        <x description="Center of gravity in x-direction with regard to the global reference point.">
+                        </x>
+                        <y description="Center of gravity in y-direction with regard to the global reference point.">
+                        </y>
+                        <z description="Center of gravity in z-direction with regard to the global reference point.">
+                        </z>
+                    </center_of_gravity>
+                    <mass description="Mass">
+                    </mass>
+                </mass_properties>
+            </maximum_takeoff_mass>
+            <operating_mass_empty description="OME">
+            </operating_mass_empty>
+            <manufacturer_mass_empty description="MME">
+           </manufacturer_mass_empty>
+            <maximum_zero_fuel_mass description="MZFM">
+            </maximum_zero_fuel_mass>
+            <maximum_payload_mass description="">
+            </maximum_payload_mass>
+            <maximum_landing_mass description="MLM">
+            </maximum_landing_mass>
+            <maximum_fuel_mass description="">
+            </maximum_fuel_mass>
+            <ferry_range_mass description="">
+            </ferry_range_mass>
+            <most_forward_mass description="">
+            </most_forward_mass>
+            <most_afterward_mass description="">
+            </most_afterward_mass>
+            <design_mass description="">
+            </design_mass>
+            <design_fuel_mass description="">
+            </design_fuel_mass>
+        </masses_cg_inertia>
+```
+
+!!! tip
+    If you are missing some of the terms in here - take a look at [basic concepts](basic-concepts.md).
+
+---
+
+## Troubleshooting {#trouble}
+If the tool does not run properly:
+
+ - Make sure you have all the paths set up correctly and the specified elements exist
+ - Go through the log file `weight_and_balance_analysis.txt` and check for warnings and critical messages.
+
+## Soo ... Now it is your turn to carry the weight!
\ No newline at end of file
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/airfoil_surface.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/airfoil_surface.png
new file mode 100644
index 0000000000000000000000000000000000000000..09161d1827a63120efb507a61eaed8f79117c95c
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/airfoil_surface.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1c9a9b9dc3670e47b2f4dbb11955410863684e0c0d9dd06704f49b7752b4b6a0
+size 535690
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/spar.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/spar.png
new file mode 100644
index 0000000000000000000000000000000000000000..1358b623b3dc8757a77bed725ac1d53ea7af4720
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/spar.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:438f1e754de68cb79c715ff18e4274fb5bc0643c878ace75c8bc382ccfaf6ef0
+size 1387097
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step001.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step001.png
new file mode 100644
index 0000000000000000000000000000000000000000..a74eb28f5a71eccc1dd848793b8195084b474500
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step001.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:98677c36ebf8ba60af113ebac1c501d1eb415df53acdd3b1fe54f582361d1ed0
+size 622716
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step003.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step003.png
new file mode 100644
index 0000000000000000000000000000000000000000..510ed14c68658c316e909f0657980abc7cb8e4b1
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step003.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ca88e353720fb6ab3d37ed4e1c0294edc197b502c45474c98f22db4c96fab26f
+size 832849
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step004.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step004.png
new file mode 100644
index 0000000000000000000000000000000000000000..d987368c4bda9afd63e4782d03a18a1b9aacc9b0
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step004.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:29de9f9833750519bdd85d4743cf3f0c660f7fef3c8f132148f11cf4f9cddb9c
+size 835782
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step005.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step005.png
new file mode 100644
index 0000000000000000000000000000000000000000..1e11ddb29a82194ee8dac8eff3e3b7e19d331d9b
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step005.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:11901d664e9927a0cbbcbabd8d26fc2d30ec48f67bdbceb9e607eeb11b907738
+size 831370
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step006.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step006.png
new file mode 100644
index 0000000000000000000000000000000000000000..b2bfa234892df2f4b2e7b90b8637fd9650073330
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step006.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:371bfa92b7cc26f7dabcebd7b4b15ae5fec68f72deb7395374aa37edadc61d76
+size 842354
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step007.png b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step007.png
new file mode 100644
index 0000000000000000000000000000000000000000..3653a30cf4b44877726ecea419d61e9a9d97e056
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/Tutorial/step007.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ed47dce79d4b4393785c789fb61825f7bf9e9e2c6b28cecfd0431fdbb96fda3a
+size 846902
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.png b/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.png
new file mode 100644
index 0000000000000000000000000000000000000000..d0979085d380f45c38f2ffb8ecb842fa8a1427a1
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0b0b74dec107b32d6e94e716ee6ee39652146a233d631221ced439ed439e6e1c
+size 387546
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.puml b/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.puml
new file mode 100644
index 0000000000000000000000000000000000000000..9efddf8d0e751e432eeb02c4f3494d8ba4a709c2
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/class_diagram.puml
@@ -0,0 +1,249 @@
+@startuml class_diagram
+title Class Diagram aircraftGeometry2
+caption (c) 2024 UNICADO
+hide empty members
+
+entity Entity3D {
+    + string name
+    + Point_3 origin
+    + Direction_3 normal
+    + double rotation_z
+}
+
+interface Section {
+    # Aff_transformation_2 scale
+    # Aff_transformation_2 rotate
+    # Polygon_2 contour
+    + get_contour()
+    + set_contour()
+    + size()
+}
+
+class PolygonSection {
+    + set_width()
+    + set_height()
+    + set_beta_angle()
+    + set_scale()
+}
+
+interface SectionBuilder <<SectionType>> {
+    # vector<SectionType> sections
+    + get_result()
+    + peek()
+    + insert_back()
+    + arrange()
+}
+
+class PolygonBuilder <<PolygonSection>> {
+}
+
+class AirfoilBuilder <<AirfoilSection>> {
+}
+
+annotation build {
+    + ellipse()
+}
+
+class "AirfoilSection" as Airfoil {
+    + set_chord_length()
+    + set_dihedral_angle()
+    + set_twist_angle()
+    + scale_thickness()
+    + get_chord_length()
+    + get_thickness_scale()
+}
+
+interface MultisectionSurface <<SectionType>> {
+    + vector<SectionType> sections
+    + bool is_symmetric
+}
+
+class "MultisectionSurface" as tube <<PolygonSection>> {
+}
+
+class "MultisectionSurface" as lift <<Airfoil>> {
+
+}
+
+annotation Measure {
+    + area()
+    + bottom()
+    + center()
+    + centroid()
+    + centroids()
+    + height()
+    + height_max()
+    + inertia()
+    + left()
+    + length()
+    + right()
+    + top()
+    + volume()
+    + width()
+    + width_max()
+}
+
+annotation "Measure" as meas_airfoil {
+    + area()
+    + aspect_ratio()
+    + centroid()
+    + centroids()
+    + chord()
+    + dihedral()
+    + mean_aerodynamic_chord()
+    + mean_aerodynamic_chord_position()
+    + inertia()
+    + offset_LE()
+    + reference_area()
+    + span()
+    + sweep()
+    + taper_ratio()
+    + thickness()
+    + thickness_max()
+    + top_and_bottom()
+    + volume()
+}
+
+annotation Transform {
+    + to_parent()
+    + to_local()
+    + to_mesh()
+    + get_reflection_point_top()
+    + get_reflection_point_bottom()
+    + outline_3d()
+    + outline_2d()
+    + resample()
+}
+
+annotation "Transform" as transform_sepcific {
+    + to_absolute()
+}
+
+Measure -> tube
+tube <- build
+Section <--- Transform
+Transform -> Entity3D
+PolygonSection <-- transform_sepcific
+Airfoil <-- transform_sepcific
+lift <- meas_airfoil
+
+Section --|> Entity3D
+PolygonSection ---|> Section
+Airfoil ---|> Section
+tube *-- PolygonSection
+MultisectionSurface --|> Entity3D
+tube ----|> MultisectionSurface
+lift ----|> MultisectionSurface
+lift *-- Airfoil
+
+PolygonBuilder ---|> SectionBuilder
+PolygonBuilder *--- PolygonSection
+AirfoilBuilder ---|> SectionBuilder
+AirfoilBuilder *--- Airfoil
+
+package convert <<frame>>
+{
+    interface converter as "Converter" <<ReturnType>> {
+        + operator()(Hull surface) -> ReturnType
+        + operator()(Fuselage surface) -> ReturnType
+        + operator()(AirfoilSurface surface) -> ReturnType
+        + operator()(Wing surface) -> ReturnType
+        + operator()(Spar surface) -> ReturnType
+        + operator()(ControlDevice surface) -> ReturnType
+    }
+
+    class aixml_converter as "AixmlConverter" <<std::shared_ptr<node>>> {
+        - node* parent
+        - insert_string()
+        - insert_point()
+        - insert_direction()
+    }
+
+    MultisectionSurface --* Hull
+    MultisectionSurface --* Fuselage
+    MultisectionSurface --* AirfoilSurface
+    MultisectionSurface --* Wing
+    MultisectionSurface --* Spar
+    MultisectionSurface --* ControlDevice
+    Hull --* converter
+    Fuselage --* converter
+    AirfoilSurface --* converter
+    Wing --* converter
+    Spar --* converter
+    ControlDevice --* converter
+    converter <|- aixml_converter
+}
+
+package factory <<frame>>
+{
+    interface Factory <<SurfaceType>> {
+        - unique_ptr<SurfaceBuilder> builder
+        + Factory( std::shared_ptr<node> input, data_dir )
+        + create( name ) -> SurfaceType = 0
+    }
+
+    interface SurfaceBuilder {
+        + build_hull( name ) = 0
+        + build_airfoil_surface( name ) = 0
+        + build_fuselage( name ) = 0
+        + build_spar( name ) = 0
+        + build_control_device( name ) = 0
+        + build_wing( name ) = 0
+    }
+
+    class HullFactory <<InputType>> {
+        + HullFactory( InputType input, data_dir )
+        + create( name ) -> MultisectionSurface<PolygonSection>
+    }
+
+    class FuselageFactory <<InputType>> {
+        + FuselageFactory( InputType input, data_dir )
+        + create( name ) -> MultisectionSurface<PolygonSection>
+    }
+
+    class SparFactory <<InputType>> {
+        + SparFactory( InputType input, data_dir )
+        + create( name ) -> MultisectionSurface<PolygonSection>
+    }
+
+    class ControlDeviceFactory <<InputType>> {
+        + ControlDeviceFactory( InputType input, data_dir )
+        + create( name ) -> MultisectionSurface<PolygonSection>
+    }
+
+    class WingFactory <<InputType>> {
+        + WingFactory( InputType input, data_dir )
+        + create( name ) -> MultisectionSurface<PolygonSection>
+    }
+
+    class AIXMLv2{
+        + AIXMLv2( acxml, data_dir )
+        - shared_ptr<node> aircraft
+        - path data_dir
+        - get_point( id )
+        ' - get_surface_description( id ) = 0
+        ' - build_first_segment() = 0
+        ' - build_segment() = 0
+    }
+
+    class AIXMLv3{
+        - shared_ptr<node> aircraft
+        - path data_dir
+        + AIXMLv3( acxml, data_dir )
+        - get_point( id )
+        - get_direction( id )
+    }
+
+    Factory *---- MultisectionSurface
+    SurfaceBuilder *---- MultisectionSurface
+    HullFactory ---|> Factory
+    FuselageFactory ---|> Factory
+    SparFactory ---|> Factory
+    ControlDeviceFactory ---|> Factory
+    WingFactory ---|> Factory
+    Factory *- SurfaceBuilder
+    AIXMLv2 --|> SurfaceBuilder
+    AIXMLv3 --|> SurfaceBuilder
+}
+
+@enduml
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.png b/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.png
new file mode 100644
index 0000000000000000000000000000000000000000..5adaecd7ad39cb51e97556fa70f609b83b9f2fe6
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:dfdc04b65c0139e930eb5515cf42ed989a656855a403a77297c4d955433c98a2
+size 47045
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.svg b/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.svg
new file mode 100644
index 0000000000000000000000000000000000000000..626b039829d9f95270788686b4407404c50e530a
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/coordinate_example.svg
@@ -0,0 +1,234 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   version="1.1"
+   id="svg1"
+   width="380.84399"
+   height="253.78267"
+   viewBox="0 0 380.84399 253.78267"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <defs
+     id="defs1" />
+  <g
+     id="g1">
+    <path
+       id="path1"
+       d="M -85.04045,-42.52022 0,0 56.69363,56.69363"
+       style="fill:none;stroke:#808080;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:2.98883, 2.98883;stroke-dashoffset:0;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" />
+    <path
+       id="path2"
+       d="M 0,0 H 24.76025"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" />
+    <path
+       id="path3"
+       d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       transform="matrix(1.3333333,0,0,-1.3333333,199.18167,133.532)" />
+    <path
+       id="path4"
+       d="m 2.7650703,-2.5674609 1.6640625,-2.390625 H 3.5385078 L 2.3431953,-3.1651172 1.1596016,-4.9580859 H 0.25725781 L 1.9096016,-2.5323047 0.16350781,-0.00105469 H 1.0541328 l 1.265625,-1.89843751 1.2421875,1.89843751 h 0.9140625 z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="x"
+       transform="matrix(1.3333333,0,0,1.3333333,200.80933,129.06)" />
+    <path
+       id="path5"
+       d="M 0,0 V 24.76025"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" />
+    <path
+       id="path6"
+       d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       transform="matrix(0,-1.3333333,-1.3333333,0,166.168,100.51833)" />
+    <path
+       id="path7"
+       d="M 3.6801563,-4.956125 2.2973438,-1.1006563 1.0317188,-4.956125 H 0.18796875 L 1.86375,0.02434375 1.5590625,0.8095 C 1.441875,1.1610625 1.254375,1.2899687 0.92625,1.2899687 c -0.1171875,0 -0.24609375,-0.023437 -0.41015625,-0.058594 v 0.714844 C 0.6684375,2.02825 0.8325,2.0634062 1.0434375,2.0634062 c 0.2578125,0 0.5273438,-0.082031 0.7382813,-0.234375 C 2.0278125,1.65325 2.1684375,1.4423125 2.3207813,1.043875 l 2.203125,-6 z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="y"
+       transform="matrix(1.3333333,0,0,1.3333333,170.64,97.670667)" />
+    <path
+       id="path8"
+       d="M 3.9851,0 C 3.9851,2.20093 2.20093,3.9851 0,3.9851 -2.20093,3.9851 -3.9851,2.20093 -3.9851,0 c 0,-2.20093 1.78417,-3.9851 3.9851,-3.9851 2.20093,0 3.9851,1.78417 3.9851,3.9851 z"
+       style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" />
+    <path
+       id="path9"
+       d="M 4.1953516,-4.9582969 H 0.49222656 v 0.6914063 H 3.2578516 l -2.96484379,3.55078122 v 0.71484375 H 4.3242578 V -0.69267188 H 1.2539453 L 4.1953516,-4.2668906 Z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="z"
+       transform="matrix(1.3333333,0,0,1.3333333,155.38667,144.572)" />
+    <path
+       id="path10"
+       d="M 0.99628,0 C 0.99628,0.55023 0.55023,0.99628 0,0.99628 -0.55023,0.99628 -0.99628,0.55023 -0.99628,0 c 0,-0.55023 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" />
+    <g
+       id="g10"
+       aria-label="O&#10;child&#10;=&#10;&#10;&#10;2.0&#10;1.0&#10;0.0&#10;&#10;"
+       transform="matrix(1.3333333,0,0,1.3333333,170.64,151.97067)">
+      <path
+         id="path11"
+         d="m 7.3715625,-4.3490938 c 0,-1.59375 -1.0546875,-2.671875 -2.5429687,-2.671875 -2.1445313,0 -4.33593755,2.2617188 -4.33593755,4.5820313 0,1.65234375 1.11328125,2.66015625 2.54296875,2.66015625 2.109375,0 4.3359375,-2.17968755 4.3359375,-4.57031255 z m -4.2773437,4.31250005 c -0.984375,0 -1.6757813,-0.80859375 -1.6757813,-2.12109375 0,-0.4453125 0.140625,-1.8984375 0.9023438,-3.0585938 C 3.0121875,-6.25925 3.9848438,-6.774875 4.77,-6.774875 c 0.8203125,0 1.7109375,0.5625 1.7109375,2.0390625 0,0.7148437 -0.2695312,2.2734375 -1.2539062,3.5039062 -0.4804688,0.5976563 -1.2890625,1.19531255 -2.1328125,1.19531255 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path12"
+         d="m 10.658672,-1.1791719 c -0.257813,0.046875 -0.363281,0.23437502 -0.363281,0.38671877 0,0.1875 0.152343,0.2578125 0.269531,0.2578125 0.164062,0 0.398437,-0.10546875 0.398437,-0.4453125 0,-0.46874997 -0.539062,-0.59765627 -0.914062,-0.59765627 -1.0429689,0 -2.0156251,0.96093752 -2.0156251,1.92187502 0,0.609375 0.421875,1.21874998 1.2890625,1.21874998 1.1835936,0 1.7343746,-0.69140623 1.7343746,-0.78515623 0,-0.046875 -0.07031,-0.1171875 -0.128906,-0.1171875 -0.03516,0 -0.04687,0.0117188 -0.105469,0.0703125 C 10.271953,1.3637969 9.4633594,1.3637969 9.3344531,1.3637969 c -0.5039062,0 -0.7265625,-0.3398438 -0.7265625,-0.77343753 0,-0.19921875 0.1054688,-0.9609375 0.46875,-1.44140625 0.2578125,-0.33984372 0.6210938,-0.53906252 0.9726564,-0.53906252 0.09375,0 0.433594,0.011719 0.609375,0.2109375 z m 2.680664,-1.9570312 c 0.01172,-0.011719 0.03516,-0.1054688 0.03516,-0.1171875 0,-0.035156 -0.03516,-0.09375 -0.117187,-0.09375 -0.140625,0 -0.714844,0.058594 -0.890625,0.070312 -0.05859,0.011719 -0.152344,0.011719 -0.152344,0.1640625 0,0.09375 0.09375,0.09375 0.175781,0.09375 0.339844,0 0.339844,0.046875 0.339844,0.1054687 0,0.046875 -0.01172,0.09375 -0.03516,0.1523438 l -0.972657,3.9492187 c -0.03516,0.1289063 -0.03516,0.140625 -0.03516,0.1523438 0,0.1054687 0.08203,0.2226562 0.234375,0.2226562 0.07031,0 0.210938,-0.035156 0.28125,-0.1875 0.02344,-0.035156 0.08203,-0.2929687 0.117188,-0.43359373 l 0.164062,-0.62109375 c 0.02344,-0.10546875 0.09375,-0.36328125 0.117188,-0.46875 0.07031,-0.26953125 0.07031,-0.28125 0.199218,-0.50390625 0.222657,-0.33984375 0.574219,-0.73828127 1.125,-0.73828127 0.386719,0 0.410157,0.328125 0.410157,0.49218752 0,0.421875 -0.304688,1.1953125 -0.410157,1.48828125 -0.08203,0.1875 -0.105468,0.2578125 -0.105468,0.375 0,0.36328123 0.304687,0.59765623 0.65625,0.59765623 0.703125,0 1.007812,-0.96093748 1.007812,-1.06640623 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.046875 -0.128907,0.1171875 -0.164062,0.56250003 -0.46875,0.84375003 -0.738281,0.84375003 -0.140625,0 -0.175781,-0.09375 -0.175781,-0.2460938 0,-0.15234373 0.03516,-0.24609373 0.164062,-0.56249998 0.08203,-0.2109375 0.363282,-0.94921875 0.363282,-1.34765625 0,-0.10546875 0,-0.39843747 -0.257813,-0.59765627 -0.117187,-0.09375 -0.316406,-0.1875 -0.644531,-0.1875 -0.503906,0 -0.878906,0.2695313 -1.136719,0.5742188 z m 4.746094,0.2695312 c 0,-0.1054687 -0.08203,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386719,0.1757813 -0.386719,0.375 0,0.1171875 0.08203,0.2695313 0.269531,0.2695313 0.210938,0 0.398438,-0.1992188 0.398438,-0.3867188 z m -1.429688,3.53906252 c -0.02344,0.09375 -0.05859,0.17578125 -0.05859,0.29296875 0,0.32812503 0.28125,0.59765623 0.667969,0.59765623 0.691406,0 0.996094,-0.96093748 0.996094,-1.06640623 0,-0.09375 -0.08203,-0.09375 -0.105469,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 C 17.862777,1.0825469 17.55809,1.3637969 17.27684,1.3637969 c -0.140625,0 -0.175781,-0.082031 -0.175781,-0.2460938 0,-0.15234373 0.05859,-0.29296873 0.117187,-0.44531248 0.07031,-0.1875 0.140625,-0.375 0.222656,-0.55078125 0.05859,-0.1640625 0.316407,-0.80859375 0.339844,-0.890625 0.02344,-0.0703125 0.04687,-0.15234375 0.04687,-0.22265625 0,-0.32812502 -0.28125,-0.58593752 -0.667969,-0.58593752 -0.691406,0 -1.007812,0.94921877 -1.007812,1.06640627 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0351563 0.128907,-0.10546875 0.175781,-0.59765632 0.480468,-0.85546882 0.738281,-0.85546882 0.117187,0 0.175781,0.058594 0.175781,0.2460938 0,0.16406252 -0.03516,0.26953127 -0.210937,0.70312502 z M 20.61082,-3.1362031 c 0,-0.011719 0.02344,-0.1054688 0.02344,-0.1171875 0,-0.035156 -0.02344,-0.09375 -0.105469,-0.09375 -0.140625,0 -0.726562,0.058594 -0.902344,0.070312 -0.04687,0.011719 -0.140625,0.011719 -0.140625,0.1640625 0,0.09375 0.09375,0.09375 0.175782,0.09375 0.328125,0 0.328125,0.046875 0.328125,0.1054687 0,0.046875 -0.01172,0.09375 -0.02344,0.1523438 l -0.867187,3.44531247 c -0.02344,0.0703125 -0.02344,0.140625 -0.02344,0.2109375 0,0.45703123 0.398438,0.66796873 0.726563,0.66796873 0.175781,0 0.375,-0.058594 0.5625,-0.375 0.140625,-0.25781248 0.246093,-0.66796873 0.246093,-0.69140623 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.046875 -0.140625,0.1640625 -0.08203,0.3515625 -0.222656,0.79687503 -0.515625,0.79687503 -0.1875,0 -0.234375,-0.1757813 -0.234375,-0.3398438 0,-0.0703125 0.01172,-0.21093748 0.03516,-0.28124998 z m 4.576172,0 c 0,-0.011719 0.02344,-0.1054688 0.02344,-0.1171875 0,-0.035156 -0.02344,-0.09375 -0.105469,-0.09375 -0.140625,0 -0.726563,0.058594 -0.902344,0.070312 -0.04687,0.011719 -0.152344,0.011719 -0.152344,0.1640625 0,0.09375 0.105469,0.09375 0.1875,0.09375 0.328125,0 0.328125,0.046875 0.328125,0.1054687 0,0.046875 -0.01172,0.09375 -0.02344,0.1523438 l -0.398438,1.59375 c -0.140625,-0.234375 -0.386718,-0.4101563 -0.714843,-0.4101563 -0.890625,0 -1.804688,0.97265627 -1.804688,1.98046877 0,0.67968753 0.457031,1.16015623 1.054688,1.16015623 0.375,0 0.714843,-0.2109375 0.996093,-0.4921875 0.128907,0.421875 0.527344,0.4921875 0.714844,0.4921875 0.246094,0 0.421875,-0.1523437 0.550781,-0.375 0.152344,-0.26953123 0.246094,-0.66796873 0.246094,-0.69140623 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.0351563 -0.152344,0.22265625 -0.08203,0.328125 -0.210938,0.73828128 -0.503906,0.73828128 -0.1875,0 -0.234375,-0.1523438 -0.234375,-0.3398438 0,-0.12890623 0.01172,-0.19921873 0.03516,-0.28124998 z m -1.488281,3.76171872 c -0.04687,0.1875 -0.199219,0.328125 -0.351563,0.45703128 -0.07031,0.058594 -0.339843,0.28125 -0.644531,0.28125 -0.257812,0 -0.515625,-0.1757813 -0.515625,-0.66796878 0,-0.375 0.210938,-1.13671875 0.363281,-1.41796875 0.328125,-0.56249997 0.679688,-0.66796877 0.878907,-0.66796877 0.480468,0 0.621093,0.52734377 0.621093,0.60937502 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path13"
+         d="m 35.458477,-3.25925 c 0.152343,0 0.339843,0 0.339843,-0.1992188 0,-0.1992187 -0.1875,-0.1992187 -0.328125,-0.1992187 h -5.964843 c -0.140625,0 -0.328125,0 -0.328125,0.1992187 0,0.1992188 0.1875,0.1992188 0.339843,0.1992188 z m 0.01172,1.9335937 c 0.140625,0 0.328125,0 0.328125,-0.1992187 0,-0.1992188 -0.1875,-0.1992188 -0.339843,-0.1992188 H 29.51707 c -0.152343,0 -0.339843,0 -0.339843,0.1992188 0,0.1992187 0.1875,0.1992187 0.328125,0.1992187 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path14"
+         d="m 42.378398,-2.4946016 h 0.691407 V -19.721164 h 2.625 v -0.691406 h -3.316407 z m 0,17.9208986 h 3.316407 v -0.679688 h -2.625 V -2.4916719 h -0.691407 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path15"
+         d="m 47.039531,-12.815891 1.054688,-1.03125 c 1.558594,-1.371093 2.15625,-1.910156 2.15625,-2.90625 0,-1.136718 -0.902344,-1.933593 -2.121094,-1.933593 -1.125,0 -1.851562,0.914062 -1.851562,1.804687 0,0.550781 0.492187,0.550781 0.527343,0.550781 0.164063,0 0.515625,-0.117187 0.515625,-0.527343 0,-0.257813 -0.1875,-0.515625 -0.527343,-0.515625 -0.08203,0 -0.105469,0 -0.128907,0.01172 0.222657,-0.644531 0.761719,-1.019531 1.335938,-1.019531 0.914062,0 1.335937,0.808594 1.335937,1.628906 0,0.796875 -0.492187,1.582032 -1.042968,2.203125 l -1.910157,2.132813 c -0.105468,0.105469 -0.105468,0.128906 -0.105468,0.363281 h 3.691406 l 0.28125,-1.734375 h -0.257813 c -0.04687,0.304688 -0.117187,0.738281 -0.210937,0.890625 -0.07031,0.08203 -0.726563,0.08203 -0.949219,0.08203 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path16"
+         d="m 52.664531,-12.581516 c 0,-0.292968 -0.234375,-0.527343 -0.527343,-0.527343 -0.28125,0 -0.527344,0.234375 -0.527344,0.527343 0,0.292969 0.246094,0.527344 0.527344,0.527344 0.292968,0 0.527343,-0.234375 0.527343,-0.527344 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path17"
+         d="m 58.104961,-15.241672 c 0,-0.796875 -0.04687,-1.59375 -0.398438,-2.332031 -0.457031,-0.960938 -1.277343,-1.113281 -1.6875,-1.113281 -0.597656,0 -1.335937,0.257812 -1.734375,1.183593 -0.328125,0.691407 -0.375,1.464844 -0.375,2.261719 0,0.75 0.04687,1.640625 0.445313,2.402344 0.433594,0.808594 1.160156,1.007812 1.652344,1.007812 0.539062,0 1.289062,-0.210937 1.734375,-1.160156 0.316406,-0.691406 0.363281,-1.464844 0.363281,-2.25 z m -2.097656,3.1875 c -0.386719,0 -0.984375,-0.246094 -1.160157,-1.207031 -0.105468,-0.597656 -0.105468,-1.511719 -0.105468,-2.097656 0,-0.644532 0,-1.300782 0.08203,-1.839844 0.1875,-1.183594 0.925781,-1.265625 1.183594,-1.265625 0.328125,0 0.984375,0.175781 1.171875,1.160156 0.09375,0.5625 0.09375,1.3125 0.09375,1.945313 0,0.75 0,1.417968 -0.105469,2.0625 -0.152344,0.9375 -0.714844,1.242187 -1.160155,1.242187 z m -7.303711,5.5781251 c 0,-0.234375 0,-0.2578125 -0.234375,-0.2578125 -0.609375,0.6328125 -1.488281,0.6328125 -1.804688,0.6328125 v 0.3164063 c 0.199219,0 0.785157,0 1.300782,-0.2578125 v 5.15624997 c 0,0.3515625 -0.03516,0.48046875 -0.925782,0.48046875 h -0.316406 v 0.3046875 c 0.351563,-0.0351563 1.207031,-0.0351563 1.605469,-0.0351563 0.398437,0 1.265625,0 1.617187,0.0351563 v -0.3046875 h -0.316406 c -0.902344,0 -0.925781,-0.1171875 -0.925781,-0.48046875 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path18"
+         d="m 52.664531,-0.62839063 c 0,-0.29296875 -0.234375,-0.52734377 -0.527343,-0.52734377 -0.28125,0 -0.527344,0.23437502 -0.527344,0.52734377 0,0.29296875 0.246094,0.52734375 0.527344,0.52734375 0.292968,0 0.527343,-0.234375 0.527343,-0.52734375 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path19"
+         d="m 58.104961,-3.2885469 c 0,-0.796875 -0.04687,-1.59375 -0.398438,-2.3320312 -0.457031,-0.9609375 -1.277343,-1.1132813 -1.6875,-1.1132813 -0.597656,0 -1.335937,0.2578125 -1.734375,1.1835938 -0.328125,0.6914062 -0.375,1.4648437 -0.375,2.2617187 0,0.75 0.04687,1.640625 0.445313,2.40234377 0.433594,0.80859375 1.160156,1.0078125 1.652344,1.0078125 0.539062,0 1.289062,-0.2109375 1.734375,-1.16015627 0.316406,-0.6914062 0.363281,-1.4648437 0.363281,-2.25 z m -2.097656,3.18750002 c -0.386719,0 -0.984375,-0.24609375 -1.160157,-1.20703122 -0.105468,-0.5976563 -0.105468,-1.5117188 -0.105468,-2.0976563 0,-0.6445312 0,-1.3007812 0.08203,-1.8398437 0.1875,-1.1835938 0.925781,-1.265625 1.183594,-1.265625 0.328125,0 0.984375,0.1757812 1.171875,1.1601562 0.09375,0.5625 0.09375,1.3125 0.09375,1.9453125 0,0.75 0,1.4179688 -0.105469,2.0625 -0.152344,0.93750002 -0.714844,1.24218752 -1.160155,1.24218752 z M 50.355938,8.6675078 c 0,-0.796875 -0.04687,-1.59375 -0.398438,-2.3320312 C 49.500469,5.3745391 48.680156,5.2221953 48.27,5.2221953 c -0.597656,0 -1.335937,0.2578125 -1.734375,1.1835938 -0.328125,0.6914062 -0.375,1.4648437 -0.375,2.2617187 0,0.75 0.04687,1.6406252 0.445313,2.4023442 0.433593,0.808593 1.160156,1.007812 1.652343,1.007812 0.539063,0 1.289063,-0.210937 1.734375,-1.160156 0.316407,-0.691406 0.363282,-1.4648439 0.363282,-2.2500002 z m -2.097657,3.1875002 c -0.386718,0 -0.984375,-0.246094 -1.160156,-1.207031 -0.105469,-0.597657 -0.105469,-1.5117192 -0.105469,-2.0976567 0,-0.6445312 0,-1.3007812 0.08203,-1.8398437 0.1875,-1.1835938 0.925781,-1.265625 1.183593,-1.265625 0.328125,0 0.984375,0.1757812 1.171875,1.1601562 0.09375,0.5625 0.09375,1.3125 0.09375,1.9453125 0,0.75 0,1.4179688 -0.105468,2.0624997 -0.152344,0.9375 -0.714844,1.242188 -1.160157,1.242188 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path20"
+         d="m 52.664531,11.327664 c 0,-0.292969 -0.234375,-0.527344 -0.527343,-0.527344 -0.28125,0 -0.527344,0.234375 -0.527344,0.527344 0,0.292969 0.246094,0.527344 0.527344,0.527344 0.292968,0 0.527343,-0.234375 0.527343,-0.527344 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path21"
+         d="m 58.104961,8.6675078 c 0,-0.796875 -0.04687,-1.59375 -0.398438,-2.3320312 -0.457031,-0.9609375 -1.277343,-1.1132813 -1.6875,-1.1132813 -0.597656,0 -1.335937,0.2578125 -1.734375,1.1835938 -0.328125,0.6914062 -0.375,1.4648437 -0.375,2.2617187 0,0.75 0.04687,1.6406252 0.445313,2.4023442 0.433594,0.808593 1.160156,1.007812 1.652344,1.007812 0.539062,0 1.289062,-0.210937 1.734375,-1.160156 0.316406,-0.691406 0.363281,-1.4648439 0.363281,-2.2500002 z m -2.097656,3.1875002 c -0.386719,0 -0.984375,-0.246094 -1.160157,-1.207031 C 54.74168,10.05032 54.74168,9.1362578 54.74168,8.5503203 c 0,-0.6445312 0,-1.3007812 0.08203,-1.8398437 0.1875,-1.1835938 0.925781,-1.265625 1.183594,-1.265625 0.328125,0 0.984375,0.1757812 1.171875,1.1601562 0.09375,0.5625 0.09375,1.3125 0.09375,1.9453125 0,0.75 0,1.4179688 -0.105469,2.0624997 -0.152344,0.9375 -0.714844,1.242188 -1.160155,1.242188 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path22"
+         d="m 61.198711,-2.4946016 h 0.691406 V -20.41257 h -3.316406 v 0.691406 h 2.625 z m 0,17.2412106 h -2.625 v 0.679688 h 3.316406 V -2.4916719 h -0.691406 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+    <path
+       id="path23"
+       d="m 57.68991,56.69363 c 0,0.55024 -0.44604,0.99628 -0.99628,0.99628 -0.55024,0 -0.99627,-0.44604 -0.99627,-0.99628 0,-0.55024 0.44603,-0.99627 0.99627,-0.99627 0.55024,0 0.99628,0.44603 0.99628,0.99627 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" />
+    <g
+       id="g23"
+       aria-label="p&#10;local,2d&#10;=&#10;&#10;0.5&#10;0.5&#10;"
+       transform="matrix(1.3333333,0,0,1.3333333,246.23067,61.262667)">
+      <path
+         id="path24"
+         d="m 0.44516406,1.2180391 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796879,0.035156 0.98437499,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054687,-0.1054688 -0.2460937,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609374 0.4804687,-1.99218749 0.140625,0.29296875 0.4101563,0.6328125 0.9257813,0.6328125 1.1484375,0 2.4023437,-1.45312501 2.4023437,-2.91796871 0,-0.9375 -0.5742187,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726562,0.3632812 -1.3007812,0.75 -0.09375,-0.5390625 -0.5273438,-0.75 -0.890625,-0.75 -0.45703129,0 -0.65625004,0.3867187 -0.73828129,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656249,-1.1835938 0.1757813,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.2029766,-3.1061797 c 0.070312,-0.2695312 0.3398437,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085937,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039062,2.109375 -0.3398438,0.70312501 -0.8203125,1.03125001 -1.1835938,1.03125001 -0.65625,0 -0.7851562,-0.83203125 -0.7851562,-0.890625 0,-0.0234375 0,-0.0351562 0.023437,-0.16406251 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path25"
+         d="m 6.9812969,-3.1354766 c 0,-0.011719 0.023437,-0.1054687 0.023437,-0.1171875 0,-0.035156 -0.023437,-0.09375 -0.1054688,-0.09375 -0.140625,0 -0.7265625,0.058594 -0.9023437,0.070312 -0.046875,0.011719 -0.140625,0.011719 -0.140625,0.1640625 0,0.09375 0.09375,0.09375 0.1757812,0.09375 0.328125,0 0.328125,0.046875 0.328125,0.1054688 0,0.046875 -0.011719,0.09375 -0.023437,0.1523437 L 5.4695781,0.68483594 c -0.023437,0.0703125 -0.023437,0.140625 -0.023437,0.2109375 0,0.45703126 0.3984375,0.66796876 0.7265625,0.66796876 0.1757813,0 0.375,-0.058594 0.5625,-0.375 0.140625,-0.25781251 0.2460938,-0.66796876 0.2460938,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.1171875,-0.09375 -0.09375,0 -0.1054688,0.046875 -0.140625,0.1640625 -0.082031,0.3515625 -0.2226563,0.79687496 -0.515625,0.79687496 -0.1875,0 -0.234375,-0.1757812 -0.234375,-0.3398437 0,-0.0703125 0.011719,-0.21093751 0.035156,-0.28125001 z m 4.2949221,2.77734379 c 0,-0.77343749 -0.574219,-1.21874999 -1.265625,-1.21874999 -1.0312503,0 -2.0039065,0.96093749 -2.0039065,1.92187499 0,0.69140621 0.5039062,1.21875001 1.265625,1.21875001 0.9960935,0 2.0039065,-0.92578126 2.0039065,-1.92187501 z M 9.2840312,1.3645234 c -0.3515625,0 -0.703125,-0.2226562 -0.703125,-0.77343746 0,-0.28125 0.140625,-0.9609375 0.4101563,-1.359375 0.2929687,-0.43359374 0.703125,-0.62109374 1.0195315,-0.62109374 0.375,0 0.691406,0.2578125 0.691406,0.77343749 0,0.17578125 -0.08203,0.85546875 -0.386719,1.34765625 C 10.04575,1.1418672 9.6355937,1.3645234 9.2840312,1.3645234 Z m 5.2792968,-2.5429687 c -0.257812,0.046875 -0.363281,0.23437499 -0.363281,0.38671874 0,0.1875 0.152344,0.2578125 0.269531,0.2578125 0.164063,0 0.398438,-0.10546875 0.398438,-0.4453125 0,-0.46875004 -0.539063,-0.59765624 -0.914063,-0.59765624 -1.042969,0 -2.015625,0.96093749 -2.015625,1.92187499 0,0.609375 0.421875,1.21875001 1.289063,1.21875001 1.183593,0 1.734375,-0.69140626 1.734375,-0.78515626 0,-0.046875 -0.07031,-0.1171875 -0.128907,-0.1171875 -0.03516,0 -0.04687,0.0117188 -0.105468,0.0703125 -0.550782,0.63281246 -1.359375,0.63281246 -1.488282,0.63281246 -0.503906,0 -0.726562,-0.3398437 -0.726562,-0.77343746 0,-0.19921875 0.105469,-0.9609375 0.46875,-1.44140625 0.257812,-0.33984379 0.621094,-0.53906249 0.972656,-0.53906249 0.09375,0 0.433594,0.011719 0.609375,0.2109375 z m 3.445313,0.011719 c -0.140625,-0.234375 -0.386719,-0.4101562 -0.714844,-0.4101562 -0.890625,0 -1.804688,0.97265624 -1.804688,1.98046874 0,0.67968746 0.457032,1.16015626 1.054688,1.16015626 0.375,0 0.714844,-0.2109375 0.996094,-0.4921875 0.128906,0.421875 0.527343,0.4921875 0.714843,0.4921875 0.246094,0 0.421875,-0.1523438 0.550782,-0.375 0.152343,-0.26953126 0.246093,-0.66796876 0.246093,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.0351563 -0.152344,0.22265625 -0.08203,0.328125 -0.210937,0.73828121 -0.503906,0.73828121 -0.1875,0 -0.234375,-0.1523437 -0.234375,-0.3398437 0,-0.11718751 0.05859,-0.36328126 0.105469,-0.55078126 0.04687,-0.1875 0.117187,-0.46875 0.152343,-0.62109375 l 0.140625,-0.5390625 c 0.04687,-0.17578125 0.128907,-0.50390629 0.128907,-0.53906249 0,-0.1523438 -0.128907,-0.2226563 -0.246094,-0.2226563 -0.117188,0 -0.269531,0.082031 -0.316406,0.28125 z m -0.445313,1.79296879 c -0.04687,0.1875 -0.199219,0.328125 -0.351562,0.45703121 -0.07031,0.058594 -0.339844,0.28125 -0.644532,0.28125 -0.257812,0 -0.515625,-0.1757812 -0.515625,-0.66796871 0,-0.375 0.210938,-1.13671875 0.363282,-1.41796875 0.328125,-0.56250004 0.679687,-0.66796874 0.878906,-0.66796874 0.480469,0 0.621094,0.52734374 0.621094,0.60937499 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 3.793945,-3.76171879 c 0,-0.011719 0.02344,-0.1054687 0.02344,-0.1171875 0,-0.035156 -0.02344,-0.09375 -0.105469,-0.09375 -0.140625,0 -0.726562,0.058594 -0.902344,0.070312 -0.04687,0.011719 -0.140625,0.011719 -0.140625,0.1640625 0,0.09375 0.09375,0.09375 0.175782,0.09375 0.328125,0 0.328125,0.046875 0.328125,0.1054688 0,0.046875 -0.01172,0.09375 -0.02344,0.1523437 l -0.867187,3.44531254 c -0.02344,0.0703125 -0.02344,0.140625 -0.02344,0.2109375 0,0.45703126 0.398438,0.66796876 0.726563,0.66796876 0.175781,0 0.375,-0.058594 0.5625,-0.375 0.140625,-0.25781251 0.246093,-0.66796876 0.246093,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.046875 -0.140625,0.1640625 -0.08203,0.3515625 -0.222656,0.79687496 -0.515625,0.79687496 -0.1875,0 -0.234375,-0.1757812 -0.234375,-0.3398437 0,-0.0703125 0.01172,-0.21093751 0.03516,-0.28125001 z m 2.06836,4.5117188 c 0,0.3867187 -0.07031,0.8320312 -0.550781,1.2773437 -0.02344,0.035156 -0.04687,0.058594 -0.04687,0.09375 0,0.046875 0.05859,0.09375 0.09375,0.09375 0.105468,0 0.691406,-0.5625 0.691406,-1.3945312 0,-0.421875 -0.164063,-0.75000001 -0.480469,-0.75000001 -0.234375,0 -0.398437,0.17578125 -0.398437,0.38671871 0,0.234375 0.152343,0.4101563 0.398437,0.4101563 0.164063,0 0.28125,-0.1171875 0.292969,-0.1171875 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path26"
+         d="m 27.828953,0.22780469 h -0.234375 c -0.02344,0.15234375 -0.08203,0.5625 -0.175781,0.6328125 -0.05859,0.0351563 -0.597656,0.0351563 -0.691406,0.0351563 h -1.289063 c 0.738281,-0.64453125 0.984375,-0.84375 1.394531,-1.171875 0.515625,-0.41015625 0.996094,-0.84374999 0.996094,-1.49999999 0,-0.8437501 -0.738281,-1.3593751 -1.628906,-1.3593751 -0.867188,0 -1.453125,0.609375 -1.453125,1.2421876 0,0.3632813 0.304687,0.3984375 0.375,0.3984375 0.164062,0 0.375,-0.1171875 0.375,-0.375 0,-0.1289062 -0.05859,-0.3632812 -0.421875,-0.3632812 0.222656,-0.5039064 0.691406,-0.65625 1.019531,-0.65625 0.703125,0 1.066406,0.5507811 1.066406,1.1132812 0,0.609375 -0.433593,1.08984374 -0.65625,1.33593749 l -1.6875,1.66406251 c -0.07031,0.058594 -0.07031,0.070312 -0.07031,0.2695313 h 2.882812 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path27"
+         d="m 32.26743,-3.1354766 c 0,-0.011719 0.02344,-0.1054687 0.02344,-0.1171875 0,-0.035156 -0.02344,-0.09375 -0.105469,-0.09375 -0.140625,0 -0.726562,0.058594 -0.902343,0.070312 -0.04687,0.011719 -0.152344,0.011719 -0.152344,0.1640625 0,0.09375 0.105469,0.09375 0.1875,0.09375 0.328125,0 0.328125,0.046875 0.328125,0.1054688 0,0.046875 -0.01172,0.09375 -0.02344,0.1523437 l -0.398437,1.59375 c -0.140625,-0.234375 -0.386719,-0.4101562 -0.714844,-0.4101562 -0.890625,0 -1.804687,0.97265624 -1.804687,1.98046874 0,0.67968746 0.457031,1.16015626 1.054687,1.16015626 0.375,0 0.714844,-0.2109375 0.996094,-0.4921875 0.128906,0.421875 0.527344,0.4921875 0.714844,0.4921875 0.246093,0 0.421875,-0.1523438 0.550781,-0.375 0.152344,-0.26953126 0.246094,-0.66796876 0.246094,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105469,0.0351563 -0.152344,0.22265625 -0.08203,0.328125 -0.210937,0.73828121 -0.503906,0.73828121 -0.1875,0 -0.234375,-0.1523437 -0.234375,-0.3398437 0,-0.12890626 0.01172,-0.19921876 0.03516,-0.28125001 z m -1.488282,3.76171879 c -0.04687,0.1875 -0.199218,0.328125 -0.351562,0.45703121 -0.07031,0.058594 -0.339844,0.28125 -0.644531,0.28125 -0.257813,0 -0.515625,-0.1757812 -0.515625,-0.66796871 0,-0.375 0.210937,-1.13671875 0.363281,-1.41796875 0.328125,-0.56250004 0.679687,-0.66796874 0.878906,-0.66796874 0.480469,0 0.621094,0.52734374 0.621094,0.60937499 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path28"
+         d="m 42.538914,-3.2585234 c 0.152344,0 0.339844,0 0.339844,-0.1992188 0,-0.1992187 -0.1875,-0.1992187 -0.328125,-0.1992187 h -5.964844 c -0.140625,0 -0.328125,0 -0.328125,0.1992187 0,0.1992188 0.1875,0.1992188 0.339844,0.1992188 z m 0.01172,1.9335937 c 0.140625,0 0.328125,0 0.328125,-0.1992187 0,-0.1992188 -0.1875,-0.1992188 -0.339844,-0.1992188 h -5.941406 c -0.152344,0 -0.339844,0 -0.339844,0.1992188 0,0.1992187 0.1875,0.1992187 0.328125,0.1992187 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path29"
+         d="m 56.053562,-9.2643828 c 0,-0.7968752 -0.04687,-1.5937502 -0.398437,-2.3320312 -0.457031,-0.960938 -1.277344,-1.113281 -1.6875,-1.113281 -0.597656,0 -1.335938,0.257812 -1.734375,1.183593 -0.328125,0.691407 -0.375,1.464844 -0.375,2.2617192 0,0.75 0.04687,1.640625 0.445312,2.4023437 0.433594,0.8085938 1.160157,1.0078125 1.652344,1.0078125 0.539063,0 1.289063,-0.2109375 1.734375,-1.1601562 0.316406,-0.6914063 0.363281,-1.4648438 0.363281,-2.25 z m -2.097656,3.1875 c -0.386719,0 -0.984375,-0.2460938 -1.160156,-1.2070313 -0.105469,-0.5976562 -0.105469,-1.5117187 -0.105469,-2.0976562 0,-0.6445317 0,-1.3007817 0.08203,-1.8398437 0.1875,-1.183594 0.925782,-1.265625 1.183594,-1.265625 0.328125,0 0.984375,0.175781 1.171875,1.160156 0.09375,0.5625 0.09375,1.3125 0.09375,1.9453127 0,0.75 0,1.4179687 -0.105469,2.0625 -0.152343,0.9375 -0.714843,1.2421875 -1.160155,1.2421875 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path30"
+         d="m 58.362156,-6.6042266 c 0,-0.2929687 -0.234375,-0.5273437 -0.527344,-0.5273437 -0.28125,0 -0.527343,0.234375 -0.527343,0.5273437 0,0.2929688 0.246093,0.5273438 0.527343,0.5273438 0.292969,0 0.527344,-0.234375 0.527344,-0.5273438 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path31"
+         d="m 63.694187,-8.0807891 c 0,-1.1835937 -0.820312,-2.1796879 -1.898437,-2.1796879 -0.480469,0 -0.902344,0.164063 -1.265625,0.5039067 v -1.9335937 c 0.199219,0.05859 0.527344,0.128906 0.84375,0.128906 1.230469,0 1.933594,-0.914062 1.933594,-1.042969 0,-0.05859 -0.03516,-0.105468 -0.105469,-0.105468 -0.01172,0 -0.03516,0 -0.08203,0.02344 -0.199219,0.09375 -0.679688,0.292969 -1.347657,0.292969 -0.398437,0 -0.855468,-0.07031 -1.324218,-0.28125 -0.08203,-0.02344 -0.105469,-0.02344 -0.128907,-0.02344 -0.09375,0 -0.09375,0.08203 -0.09375,0.234375 v 2.9531254 c 0,0.1757813 0,0.2578125 0.140625,0.2578125 0.07031,0 0.08203,-0.035156 0.128907,-0.09375 0.105468,-0.1523437 0.480468,-0.6914059 1.277343,-0.6914059 0.527344,0 0.773438,0.4570309 0.855469,0.6328122 0.152344,0.375 0.175781,0.7617187 0.175781,1.2539062 0,0.3515625 0,0.9492188 -0.234375,1.3710938 -0.246093,0.3867187 -0.609375,0.6445312 -1.066406,0.6445312 -0.726562,0 -1.300781,-0.5273437 -1.464844,-1.1132812 0.02344,0.011719 0.05859,0.011719 0.164063,0.011719 0.328125,0 0.503906,-0.2460937 0.503906,-0.4804687 0,-0.2460938 -0.175781,-0.4921875 -0.503906,-0.4921875 -0.140625,0 -0.480469,0.070312 -0.480469,0.5273437 0,0.8554688 0.679688,1.828125 1.792969,1.828125 1.160156,0 2.179687,-0.9609375 2.179687,-2.2265625 z M 56.053562,2.6887422 c 0,-0.796875 -0.04687,-1.59375 -0.398437,-2.33203126 -0.457031,-0.9609375 -1.277344,-1.11328125 -1.6875,-1.11328125 -0.597656,0 -1.335938,0.2578125 -1.734375,1.18359375 -0.328125,0.69140626 -0.375,1.46484376 -0.375,2.26171876 0,0.75 0.04687,1.640625 0.445312,2.4023437 0.433594,0.8085938 1.160157,1.0078125 1.652344,1.0078125 0.539063,0 1.289063,-0.2109375 1.734375,-1.1601562 0.316406,-0.6914063 0.363281,-1.4648438 0.363281,-2.25 z m -2.097656,3.1875 c -0.386719,0 -0.984375,-0.2460938 -1.160156,-1.2070313 -0.105469,-0.5976562 -0.105469,-1.5117187 -0.105469,-2.0976562 0,-0.6445313 0,-1.3007813 0.08203,-1.83984376 0.1875,-1.18359375 0.925782,-1.265625 1.183594,-1.265625 0.328125,0 0.984375,0.17578125 1.171875,1.16015625 0.09375,0.56250001 0.09375,1.31250001 0.09375,1.94531251 0,0.75 0,1.4179687 -0.105469,2.0625 -0.152343,0.9375 -0.714843,1.2421875 -1.160155,1.2421875 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path32"
+         d="m 58.362156,5.3488984 c 0,-0.2929687 -0.234375,-0.5273437 -0.527344,-0.5273437 -0.28125,0 -0.527343,0.234375 -0.527343,0.5273437 0,0.2929688 0.246093,0.5273438 0.527343,0.5273438 0.292969,0 0.527344,-0.234375 0.527344,-0.5273438 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path33"
+         d="m 63.694187,3.8723359 c 0,-1.1835937 -0.820312,-2.1796875 -1.898437,-2.1796875 -0.480469,0 -0.902344,0.1640625 -1.265625,0.5039063 V 0.26296094 c 0.199219,0.0585938 0.527344,0.12890625 0.84375,0.12890625 1.230469,0 1.933594,-0.9140625 1.933594,-1.04296875 0,-0.0585938 -0.03516,-0.10546875 -0.105469,-0.10546875 -0.01172,0 -0.03516,0 -0.08203,0.0234375 -0.199219,0.09375 -0.679688,0.29296875 -1.347657,0.29296875 -0.398437,0 -0.855468,-0.0703125 -1.324218,-0.28125 -0.08203,-0.0234375 -0.105469,-0.0234375 -0.128907,-0.0234375 -0.09375,0 -0.09375,0.0820313 -0.09375,0.234375 V 2.4426484 c 0,0.1757813 0,0.2578125 0.140625,0.2578125 0.07031,0 0.08203,-0.035156 0.128907,-0.09375 0.105468,-0.1523437 0.480468,-0.6914062 1.277343,-0.6914062 0.527344,0 0.773438,0.4570312 0.855469,0.6328125 0.152344,0.375 0.175781,0.7617187 0.175781,1.2539062 0,0.3515625 0,0.9492188 -0.234375,1.3710938 -0.246093,0.3867187 -0.609375,0.6445312 -1.066406,0.6445312 -0.726562,0 -1.300781,-0.5273437 -1.464844,-1.1132812 0.02344,0.011719 0.05859,0.011719 0.164063,0.011719 0.328125,0 0.503906,-0.2460937 0.503906,-0.4804687 0,-0.2460938 -0.175781,-0.4921875 -0.503906,-0.4921875 -0.140625,0 -0.480469,0.070312 -0.480469,0.5273437 0,0.8554688 0.679688,1.828125 1.792969,1.828125 1.160156,0 2.179687,-0.9609375 2.179687,-2.2265625 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+    <path
+       id="path34"
+       d="m -85.04045,-42.52022 h 24.76027"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" />
+    <path
+       id="path35"
+       d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       transform="matrix(1.3333333,0,0,-1.3333333,85.794427,190.22563)" />
+    <path
+       id="path36"
+       d="m 2.7650313,-2.5659766 1.6640625,-2.390625 H 3.5384688 L 2.3431563,-3.1636328 1.1595625,-4.9566016 H 0.25721875 L 1.9095625,-2.5308203 0.16346875,4.296875e-4 H 1.0540938 L 2.3197188,-1.8980078 3.5619063,4.296875e-4 h 0.9140625 z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="x"
+       transform="matrix(1.3333333,0,0,1.3333333,87.422667,185.75333)" />
+    <path
+       id="path37"
+       d="m -85.04045,-42.52022 v 24.76027"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" />
+    <path
+       id="path38"
+       d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       transform="matrix(0,-1.3333333,-1.3333333,0,52.780733,157.21193)" />
+    <path
+       id="path39"
+       d="M 3.6791172,-4.9565703 2.2963047,-1.1011016 1.0306797,-4.9565703 H 0.18692969 L 1.8627109,0.02389844 1.5580234,0.80905469 C 1.4408359,1.1606172 1.2533359,1.2895234 0.92521094,1.2895234 c -0.1171875,0 -0.24609375,-0.023437 -0.41015625,-0.058594 v 0.7148437 c 0.15234375,0.082031 0.31640625,0.1171875 0.52734371,0.1171875 0.2578125,0 0.5273438,-0.082031 0.7382813,-0.234375 C 2.0267734,1.6528047 2.1673984,1.4418672 2.3197422,1.0434297 l 2.203125,-6 z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="y"
+       transform="matrix(1.3333333,0,0,1.3333333,57.254667,154.36267)" />
+    <path
+       id="path40"
+       d="m -81.05534,-42.52022 c 0,2.20095 -1.78417,3.98511 -3.98511,3.98511 -2.20095,0 -3.98511,-1.78416 -3.98511,-3.98511 0,-2.20094 1.78416,-3.98511 3.98511,-3.98511 2.20094,0 3.98511,1.78417 3.98511,3.98511 z"
+       style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" />
+    <path
+       id="path41"
+       d="m 4.1943125,-4.9558125 h -3.703125 v 0.6914062 h 2.765625 L 0.29196875,-0.713625 V 0.00121875 H 4.3232187 V -0.6901875 H 1.2529062 l 2.9414063,-3.5742188 z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="z"
+       transform="matrix(1.3333333,0,0,1.3333333,42.001333,201.264)" />
+    <path
+       id="path42"
+       d="m -84.04417,-42.52022 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55023,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,166.168,133.532)" />
+    <g
+       id="g42"
+       aria-label="O&#10;parent"
+       transform="matrix(1.3333333,0,0,1.3333333,57.254667,207.98133)">
+      <path
+         id="path43"
+         d="m 7.3705234,-4.3483047 c 0,-1.59375 -1.0546875,-2.671875 -2.5429687,-2.671875 -2.1445313,0 -4.33593751,2.2617188 -4.33593751,4.5820313 0,1.65234371 1.11328121,2.66015621 2.54296871,2.66015621 2.109375,0 4.3359375,-2.17968751 4.3359375,-4.57031251 z m -4.2773437,4.31250001 c -0.984375,0 -1.6757813,-0.80859375 -1.6757813,-2.12109371 0,-0.4453125 0.140625,-1.8984375 0.9023438,-3.0585938 0.6914062,-1.0429687 1.6640625,-1.5585937 2.4492187,-1.5585937 0.8203125,0 1.7109375,0.5625 1.7109375,2.0390625 0,0.7148437 -0.2695312,2.2734375 -1.2539062,3.5039062 -0.4804688,0.59765626 -1.2890625,1.19531251 -2.1328125,1.19531251 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path44"
+         d="m 8.1263828,2.3489609 c -0.058594,0.1875 -0.070312,0.2460938 -0.3515625,0.2460938 -0.082031,0 -0.1875,0 -0.1875,0.1523437 0,0.070312 0.070312,0.09375 0.1054688,0.09375 0.1757812,0 0.4101562,-0.023437 0.5976562,-0.023437 0.234375,0 0.5039063,0.023437 0.7265625,0.023437 0.070312,0 0.140625,-0.011719 0.140625,-0.1523437 0,-0.09375 -0.09375,-0.09375 -0.1757812,-0.09375 -0.1523438,0 -0.3398438,0 -0.3398438,-0.082031 0,-0.035156 0.046875,-0.2226562 0.070312,-0.3164062 0.082031,-0.375 0.1875,-0.75 0.2578125,-1.0429688 0.082031,0.140625 0.3046875,0.4101563 0.7265625,0.4101563 0.8437502,0 1.7812502,-0.93750001 1.7812502,-1.98046876 0,-0.82031254 -0.5625,-1.16015624 -1.042969,-1.16015624 -0.433593,0 -0.7968749,0.2929687 -0.9843749,0.4804687 C 9.3334136,-1.4947888 8.9349761,-1.57682 8.7240386,-1.57682 c -0.2695313,0 -0.4335938,0.1757812 -0.5507813,0.3632812 -0.140625,0.23437504 -0.2460937,0.65625004 -0.2460937,0.70312504 0,0.0820313 0.09375,0.0820313 0.1171875,0.0820313 0.09375,0 0.1054687,-0.0117188 0.1523437,-0.19921875 0.1054688,-0.41015619 0.234375,-0.76171869 0.515625,-0.76171869 0.1757813,0 0.2226563,0.1523437 0.2226563,0.3398437 0,0.0820313 -0.011719,0.17578124 -0.023437,0.21093749 z m 1.3125,-3.09374996 C 9.8490391,-1.2838516 10.188883,-1.3893203 10.411539,-1.3893203 c 0.28125,0 0.515625,0.2109375 0.515625,0.67968749 0,0.28125 -0.152344,0.99609375 -0.363281,1.40625 -0.175781,0.33984371 -0.515625,0.66796871 -0.8671877,0.66796871 -0.5039062,0 -0.6210937,-0.53906246 -0.6210937,-0.59765621 0,-0.0351563 0.011719,-0.0820313 0.011719,-0.10546875 z M 14.647867,-1.1666641 c -0.140625,-0.234375 -0.386719,-0.4101562 -0.714844,-0.4101562 -0.890625,0 -1.804687,0.97265624 -1.804687,1.98046874 0,0.67968746 0.457031,1.16015626 1.054687,1.16015626 0.375,0 0.714844,-0.2109375 0.996094,-0.4921875 0.128906,0.421875 0.527344,0.4921875 0.714844,0.4921875 0.246094,0 0.421875,-0.1523438 0.550781,-0.375 0.152344,-0.26953126 0.246094,-0.66796876 0.246094,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105468,0.0351563 -0.152343,0.22265625 -0.08203,0.328125 -0.210938,0.73828121 -0.503907,0.73828121 -0.1875,0 -0.234375,-0.1523437 -0.234375,-0.3398437 0,-0.11718751 0.05859,-0.36328126 0.105469,-0.55078126 0.04687,-0.1875 0.117188,-0.46875 0.152344,-0.62109375 l 0.140625,-0.5390625 c 0.04687,-0.17578125 0.128906,-0.50390629 0.128906,-0.53906249 0,-0.1523438 -0.128906,-0.2226563 -0.246094,-0.2226563 -0.117187,0 -0.269531,0.082031 -0.316406,0.28125 z m -0.445312,1.79296879 c -0.04687,0.1875 -0.199219,0.328125 -0.351563,0.45703121 -0.07031,0.058594 -0.339844,0.28125 -0.644531,0.28125 -0.257813,0 -0.515625,-0.1757812 -0.515625,-0.66796871 0,-0.375 0.210937,-1.13671875 0.363281,-1.41796875 0.328125,-0.56250004 0.679688,-0.66796874 0.878906,-0.66796874 0.480469,0 0.621094,0.52734374 0.621094,0.60937499 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 3.46582,-0.5390625 c 0,-0.046875 0.164062,-0.66796875 0.175781,-0.703125 0.01172,-0.0585938 0.222656,-0.41015629 0.445313,-0.57421879 0.07031,-0.058594 0.257812,-0.1992187 0.5625,-0.1992187 0.07031,0 0.246093,0.011719 0.386718,0.1054687 -0.222656,0.058594 -0.304687,0.2578125 -0.304687,0.37500004 0,0.15234375 0.117187,0.2578125 0.269531,0.2578125 0.164063,0 0.398438,-0.12890625 0.398438,-0.42187504 0,-0.3632812 -0.386719,-0.5039062 -0.738282,-0.5039062 -0.363281,0 -0.679687,0.140625 -0.984375,0.4921875 -0.128906,-0.421875 -0.550781,-0.4921875 -0.726562,-0.4921875 -0.257813,0 -0.421875,0.1523437 -0.539063,0.3515625 -0.164062,0.26953124 -0.257812,0.67968749 -0.257812,0.71484374 0,0.0820313 0.09375,0.0820313 0.117187,0.0820313 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.43359379 0.234375,-0.76171869 0.515625,-0.76171869 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062499 -0.05859,0.39843749 -0.105468,0.58593749 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 L 16.883219,1.0598984 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.105469,0 0.246094,-0.058594 0.292969,-0.1992188 0.02344,-0.046875 0.09375,-0.3515625 0.140625,-0.52734371 z m 3.832031,-0.1875 c 0.199219,0 0.75,-0.0117188 1.125,-0.140625 0.515625,-0.1875 0.609375,-0.515625 0.609375,-0.7265625 0,-0.38671879 -0.375,-0.60937499 -0.855469,-0.60937499 -0.84375,0 -1.96875,0.63281249 -1.96875,1.82812499 0,0.703125 0.433594,1.31250001 1.253907,1.31250001 1.183593,0 1.734375,-0.69140626 1.734375,-0.78515626 0,-0.046875 -0.07031,-0.1171875 -0.128907,-0.1171875 -0.03516,0 -0.04687,0.0117188 -0.105468,0.0703125 -0.550782,0.63281246 -1.359375,0.63281246 -1.488282,0.63281246 -0.421875,0 -0.691406,-0.28125 -0.691406,-0.84374996 0,-0.09375 0,-0.234375 0.08203,-0.62109375 z m -0.375,-0.1875 c 0.28125,-1.01953129 1.054688,-1.10156249 1.253906,-1.10156249 0.304688,0 0.5625,0.1523437 0.5625,0.42187499 0,0.6796875 -1.183593,0.6796875 -1.476562,0.6796875 z m 3.451172,1.34765621 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117187,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128906,-0.43359371 0.03516,-0.12890625 0.105469,-0.45703125 0.152344,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117187,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199219,-0.28125004 0.527344,-0.64453124 1.042969,-0.64453124 0.410156,0 0.410156,0.3632812 0.410156,0.49218749 0,0.421875 -0.292969,1.1953125 -0.410156,1.48828125 -0.07031,0.1875 -0.105469,0.2578125 -0.105469,0.375 0,0.36328126 0.304688,0.59765626 0.667969,0.59765626 0.691406,0 1.007812,-0.96093751 1.007812,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.046875 -0.128906,0.1171875 -0.164063,0.56249996 -0.46875,0.84374996 -0.738282,0.84374996 -0.152343,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234376 0.03516,-0.24609376 0.152344,-0.56250001 0.09375,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.66796874 -0.539063,-0.78515624 -0.902344,-0.78515624 -0.585937,0 -0.972656,0.3515625 -1.183594,0.63281249 -0.04687,-0.48046879 -0.457031,-0.63281249 -0.75,-0.63281249 -0.292968,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781249 -0.246094,0.65624999 -0.246094,0.69140624 0,0.0820313 0.09375,0.0820313 0.117188,0.0820313 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105468,-0.42187499 0.234375,-0.76171869 0.515625,-0.76171869 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062499 -0.05859,0.39843749 -0.105469,0.58593749 -0.04687,0.1875 -0.117187,0.46875 -0.152344,0.62109375 z m 5.780274,-2.3203125 h 0.714843 c 0.128907,0 0.222657,0 0.222657,-0.1523437 0,-0.09375 -0.09375,-0.09375 -0.210938,-0.09375 h -0.65625 l 0.257813,-1.0429688 c 0,-0.023437 0.02344,-0.058594 0.02344,-0.09375 0,-0.1289062 -0.105469,-0.2226562 -0.246094,-0.2226562 -0.175781,0 -0.28125,0.1171875 -0.328125,0.3046875 -0.04687,0.1757812 0.04687,-0.1640625 -0.257812,1.0546875 h -0.714844 c -0.128906,0 -0.222656,0 -0.222656,0.1523437 0,0.09375 0.08203,0.09375 0.210937,0.09375 h 0.65625 l -0.410156,1.64062504 c -0.03516,0.17578125 -0.105469,0.43359375 -0.105469,0.515625 0,0.42187496 0.351563,0.66796876 0.75,0.66796876 0.773438,0 1.21875,-0.97265626 1.21875,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.08203,0 -0.09375,0.0117188 -0.140625,0.12890625 -0.199219,0.4453125 -0.550781,0.83203121 -0.9375,0.83203121 -0.152344,0 -0.246094,-0.082031 -0.246094,-0.3398437 0,-0.0703125 0.02344,-0.21093751 0.04687,-0.28125001 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+  </g>
+</svg>
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/section2d.svg b/docs/documentation/libraries/aircraftGeometry2/figures/section2d.svg
new file mode 100644
index 0000000000000000000000000000000000000000..db0b7b6526330e9038858298a8c5bc4dc0bc7e2b
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/section2d.svg
@@ -0,0 +1,170 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   version="1.1"
+   id="svg1"
+   width="427.29068"
+   height="338.75732"
+   viewBox="0 0 427.29068 338.75732"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <defs
+     id="defs1" />
+  <g
+     id="g1">
+    <path
+       id="path1"
+       d="M 113.38728,0 C 113.38728,46.96715 62.62285,85.04045 0,85.04045 -62.62285,85.04045 -113.38728,46.96715 -113.38728,0 c 0,-46.96715 50.76443,-85.04045 113.38728,-85.04045 62.62285,0 113.38728,38.0733 113.38728,85.04045 z"
+       style="fill:none;stroke:#000000;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:1.19553, 3.9851;stroke-dashoffset:0;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <path
+       id="path2"
+       d="M 113.38728,0 C 113.38728,46.96715 62.62285,85.04045 0,85.04045 -62.62285,85.04045 -113.38728,46.96715 -113.38728,0 c 0,-46.96715 50.76443,-85.04045 113.38728,-85.04045 62.62285,0 113.38728,38.0733 113.38728,85.04045 z"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <path
+       id="path3"
+       d="M -113.38728,0 H 113.38728"
+       style="fill:none;stroke:#808080;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:2.98883, 1.99255;stroke-dashoffset:0;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <path
+       id="path4"
+       d="m -111.39473,0 c 0,1.10046 -0.89207,1.99255 -1.99255,1.99255 -1.10047,0 -1.99256,-0.89209 -1.99256,-1.99255 0,-1.10046 0.89209,-1.99255 1.99256,-1.99255 1.10048,0 1.99255,0.89209 1.99255,1.99255 z"
+       style="fill:#808080;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <g
+       id="g4"
+       aria-label="p&#10;x,min"
+       transform="matrix(1.3333333,0,0,1.3333333,45.189333,161.10667)">
+      <path
+         id="path5"
+         d="m 0.4439375,1.2178516 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796875,0.035156 0.98437495,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054687,-0.1054688 -0.2460937,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609374 0.4804687,-1.99218749 0.140625,0.29296875 0.4101563,0.6328125 0.9257813,0.6328125 1.1484375,0 2.4023437,-1.45312501 2.4023437,-2.91796871 0,-0.9375 -0.5742187,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726562,0.3632812 -1.3007812,0.75 -0.09375,-0.5390625 -0.5273438,-0.75 -0.890625,-0.75 -0.45703125,0 -0.65625,0.3867187 -0.73828125,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656245,-1.1835938 0.1757813,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.20175,-3.1063672 c 0.070312,-0.2695312 0.3398437,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085937,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039062,2.109375 -0.3398438,0.70312501 -0.8203125,1.03125001 -1.1835938,1.03125001 -0.65625,0 -0.7851562,-0.83203125 -0.7851562,-0.890625 0,-0.0234375 0,-0.0351562 0.023437,-0.16406251 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path6"
+         d="m 6.7456953,0.75496094 c -0.070312,0.234375 -0.2929687,0.60937496 -0.65625,0.60937496 -0.023437,0 -0.2226562,0 -0.375,-0.09375 0.28125,-0.09375 0.3046875,-0.33984371 0.3046875,-0.38671871 0,-0.15234375 -0.1171875,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.3867187,0.1640625 -0.3867187,0.43359371 0,0.3398438 0.3867187,0.5039063 0.7265625,0.5039063 0.3164062,0 0.609375,-0.1992188 0.7851562,-0.4921875 0.1640625,0.3632812 0.5507813,0.4921875 0.8203125,0.4921875 0.8085938,0 1.2304688,-0.86718751 1.2304688,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.1054688,-0.09375 -0.1054687,0 -0.1054687,0.0351563 -0.140625,0.1171875 -0.140625,0.48046876 -0.5625,0.84374996 -0.9492187,0.84374996 -0.28125,0 -0.421875,-0.1875 -0.421875,-0.44531246 0,-0.1875 0.1640625,-0.8203125 0.3632812,-1.59375 0.1289063,-0.53906254 0.4453125,-0.71484374 0.6796875,-0.71484374 0.011719,0 0.2226563,0 0.375,0.1054687 -0.2226562,0.058594 -0.3046875,0.2578125 -0.3046875,0.37500004 0,0.15234375 0.1171875,0.2578125 0.28125,0.2578125 0.1523438,0 0.3867188,-0.12890625 0.3867188,-0.42187504 0,-0.3867187 -0.4453125,-0.5039062 -0.7265625,-0.5039062 -0.3515625,0 -0.6328125,0.2226562 -0.7851563,0.4921875 -0.1171875,-0.2929688 -0.4453125,-0.4921875 -0.8320312,-0.4921875 -0.7851563,0 -1.2304688,0.85546874 -1.2304688,1.06640624 0,0.0820313 0.1054688,0.0820313 0.1171875,0.0820313 0.09375,0 0.1054688,-0.0234375 0.140625,-0.1171875 0.1757813,-0.53906244 0.609375,-0.84374994 0.9492188,-0.84374994 0.234375,0 0.421875,0.1289062 0.421875,0.46874994 0,0.12890625 -0.082031,0.48046875 -0.1523438,0.71484375 z M 11.005461,1.3760547 c 0,0.3867187 -0.07031,0.8320312 -0.550781,1.2773437 -0.02344,0.035156 -0.04687,0.058594 -0.04687,0.09375 0,0.046875 0.05859,0.09375 0.09375,0.09375 0.105468,0 0.691406,-0.5625 0.691406,-1.3945312 0,-0.421875 -0.164063,-0.75000001 -0.480469,-0.75000001 -0.234375,0 -0.398437,0.17578125 -0.398437,0.38671871 0,0.234375 0.152343,0.4101563 0.398437,0.4101563 0.164063,0 0.28125,-0.1171875 0.292969,-0.1171875 z m 3.914062,-0.44531251 c -0.03516,0.14062501 -0.09375,0.37500001 -0.09375,0.41015621 0,0.1523438 0.128907,0.2226563 0.234375,0.2226563 0.128907,0 0.234375,-0.09375 0.269532,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128906,-0.43359371 0.03516,-0.12890625 0.117187,-0.45703125 0.152344,-0.6328125 0.04687,-0.15234375 0.08203,-0.3046875 0.117187,-0.45703125 0.08203,-0.3046875 0.08203,-0.31640625 0.222656,-0.5390625 0.222657,-0.33984375 0.5625,-0.73828124 1.113282,-0.73828124 0.386718,0 0.410156,0.328125 0.410156,0.49218749 0,0.421875 -0.304688,1.1953125 -0.410156,1.48828125 -0.08203,0.1875 -0.105469,0.2578125 -0.105469,0.375 0,0.36328126 0.304687,0.59765626 0.65625,0.59765626 0.703125,0 1.007812,-0.96093751 1.007812,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.105468,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249996 -0.457032,0.84374996 -0.738282,0.84374996 -0.140625,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234376 0.03516,-0.24609376 0.164063,-0.56250001 0.08203,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.10546875 0,-0.39843754 -0.257813,-0.59765624 -0.128906,-0.09375 -0.328125,-0.1875 -0.65625,-0.1875 -0.621094,0 -1.007812,0.4101562 -1.230469,0.70312499 -0.05859,-0.59765629 -0.550781,-0.70312499 -0.902343,-0.70312499 -0.585938,0 -0.972657,0.3515625 -1.183594,0.63281249 -0.04687,-0.48046879 -0.457031,-0.63281249 -0.75,-0.63281249 -0.292969,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781249 -0.246094,0.65624999 -0.246094,0.69140624 0,0.0820313 0.09375,0.0820313 0.117187,0.0820313 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187499 0.234375,-0.76171869 0.515625,-0.76171869 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062499 -0.05859,0.39843749 -0.105468,0.58593749 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 L 12.751555,1.0596484 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128907,-0.43359371 0.03516,-0.12890625 0.105468,-0.45703125 0.152343,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199218,-0.28125004 0.527343,-0.64453124 1.042968,-0.64453124 0.410157,0 0.410157,0.3632812 0.410157,0.49218749 0,0.17578125 -0.01172,0.26953125 -0.117188,0.65625 z m 6.307618,-3.79687499 c 0,-0.1054688 -0.08203,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386719,0.1757812 -0.386719,0.375 0,0.1171875 0.08203,0.2695312 0.269531,0.2695312 0.210938,0 0.398438,-0.1992187 0.398438,-0.3867187 z m -1.429688,3.53906249 c -0.02344,0.09375 -0.05859,0.17578125 -0.05859,0.29296875 0,0.32812496 0.28125,0.59765626 0.667969,0.59765626 0.691406,0 0.996094,-0.96093751 0.996094,-1.06640626 0,-0.09375 -0.08203,-0.09375 -0.105469,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249996 -0.457031,0.84374996 -0.738281,0.84374996 -0.140625,0 -0.175781,-0.082031 -0.175781,-0.2460937 0,-0.15234376 0.05859,-0.29296876 0.117187,-0.44531251 0.07031,-0.1875 0.140625,-0.375 0.222656,-0.55078125 0.05859,-0.1640625 0.316407,-0.80859375 0.339844,-0.890625 0.02344,-0.0703125 0.04687,-0.15234375 0.04687,-0.22265625 0,-0.32812499 -0.28125,-0.58593749 -0.667969,-0.58593749 -0.691406,0 -1.007812,0.94921874 -1.007812,1.06640624 0,0.0820313 0.09375,0.0820313 0.117187,0.0820313 0.09375,0 0.105469,-0.0351563 0.128907,-0.10546875 0.175781,-0.59765619 0.480468,-0.85546869 0.738281,-0.85546869 0.117187,0 0.175781,0.058594 0.175781,0.2460937 0,0.16406249 -0.03516,0.26953124 -0.210937,0.70312499 z M 22.63925,1.0596484 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.128907,0 0.234375,-0.09375 0.269532,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128906,-0.43359371 0.03516,-0.12890625 0.105469,-0.45703125 0.152344,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117187,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199219,-0.28125004 0.527344,-0.64453124 1.042969,-0.64453124 0.410156,0 0.410156,0.3632812 0.410156,0.49218749 0,0.421875 -0.292969,1.1953125 -0.410156,1.48828125 -0.07031,0.1875 -0.105469,0.2578125 -0.105469,0.375 0,0.36328126 0.304687,0.59765626 0.667969,0.59765626 0.691406,0 1.007812,-0.96093751 1.007812,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.117187,-0.09375 -0.09375,0 -0.105469,0.046875 -0.128907,0.1171875 -0.164062,0.56249996 -0.46875,0.84374996 -0.738281,0.84374996 -0.152344,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234376 0.03516,-0.24609376 0.152344,-0.56250001 0.09375,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.66796874 -0.539063,-0.78515624 -0.902344,-0.78515624 -0.585938,0 -0.972656,0.3515625 -1.183594,0.63281249 -0.04687,-0.48046879 -0.457031,-0.63281249 -0.75,-0.63281249 -0.292969,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781249 -0.246094,0.65624999 -0.246094,0.69140624 0,0.0820313 0.09375,0.0820313 0.117188,0.0820313 0.09375,0 0.105468,-0.0117188 0.152343,-0.19921875 0.105469,-0.42187499 0.234375,-0.76171869 0.515625,-0.76171869 0.175782,0 0.222657,0.1523437 0.222657,0.3398437 0,0.14062499 -0.05859,0.39843749 -0.105469,0.58593749 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+    <path
+       id="path7"
+       d="m 115.37984,0 c 0,1.10046 -0.89209,1.99255 -1.99256,1.99255 -1.10048,0 -1.99255,-0.89209 -1.99255,-1.99255 0,-1.10046 0.89207,-1.99255 1.99255,-1.99255 1.10047,0 1.99256,0.89209 1.99256,1.99255 z"
+       style="fill:#808080;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <g
+       id="g7"
+       aria-label="p&#10;x,max"
+       transform="matrix(1.3333333,0,0,1.3333333,347.552,161.10667)">
+      <path
+         id="path8"
+         d="m 0.44439844,1.2178516 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796871,0.035156 0.98437501,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054688,-0.1054688 -0.2460938,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609374 0.4804688,-1.99218749 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312501 2.4023438,-2.91796871 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632812 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703121,0 -0.65624996,0.3867187 -0.73828121,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656251,-1.1835938 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.2022109,-3.1063672 c 0.070312,-0.2695312 0.3398438,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312501 -0.8203125,1.03125001 -1.1835937,1.03125001 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351562 0.023437,-0.16406251 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path9"
+         d="m 6.7461563,0.75496094 c -0.070312,0.234375 -0.2929688,0.60937496 -0.65625,0.60937496 -0.023437,0 -0.2226563,0 -0.375,-0.09375 0.28125,-0.09375 0.3046875,-0.33984371 0.3046875,-0.38671871 0,-0.15234375 -0.1171875,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.3867188,0.1640625 -0.3867188,0.43359371 0,0.3398438 0.3867188,0.5039063 0.7265625,0.5039063 0.3164063,0 0.609375,-0.1992188 0.7851563,-0.4921875 0.1640625,0.3632812 0.5507812,0.4921875 0.8203125,0.4921875 0.8085937,0 1.2304687,-0.86718751 1.2304687,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.1054687,-0.09375 -0.1054688,0 -0.1054688,0.0351563 -0.140625,0.1171875 -0.140625,0.48046876 -0.5625,0.84374996 -0.9492188,0.84374996 -0.28125,0 -0.421875,-0.1875 -0.421875,-0.44531246 0,-0.1875 0.1640625,-0.8203125 0.3632813,-1.59375 0.1289062,-0.53906254 0.4453125,-0.71484374 0.6796875,-0.71484374 0.011719,0 0.2226562,0 0.375,0.1054687 -0.2226563,0.058594 -0.3046875,0.2578125 -0.3046875,0.37500004 0,0.15234375 0.1171875,0.2578125 0.28125,0.2578125 0.1523437,0 0.3867187,-0.12890625 0.3867187,-0.42187504 0,-0.3867187 -0.4453125,-0.5039062 -0.7265625,-0.5039062 -0.3515625,0 -0.6328125,0.2226562 -0.7851562,0.4921875 -0.1171875,-0.2929688 -0.4453125,-0.4921875 -0.8320313,-0.4921875 -0.7851562,0 -1.2304687,0.85546874 -1.2304687,1.06640624 0,0.0820313 0.1054687,0.0820313 0.1171875,0.0820313 0.09375,0 0.1054687,-0.0234375 0.140625,-0.1171875 C 5.9375625,-1.0848828 6.3711563,-1.3895703 6.711,-1.3895703 c 0.234375,0 0.421875,0.1289062 0.421875,0.46874999 0,0.12890625 -0.082031,0.48046875 -0.1523437,0.71484375 z M 11.005922,1.3760547 c 0,0.3867187 -0.07031,0.8320312 -0.550781,1.2773437 -0.02344,0.035156 -0.04687,0.058594 -0.04687,0.09375 0,0.046875 0.05859,0.09375 0.09375,0.09375 0.105468,0 0.691406,-0.5625 0.691406,-1.3945312 0,-0.421875 -0.164063,-0.75000001 -0.480469,-0.75000001 -0.234375,0 -0.398437,0.17578125 -0.398437,0.38671871 0,0.234375 0.152343,0.4101563 0.398437,0.4101563 0.164063,0 0.28125,-0.1171875 0.292969,-0.1171875 z m 3.914062,-0.44531251 c -0.03516,0.14062501 -0.09375,0.37500001 -0.09375,0.41015621 0,0.1523438 0.128907,0.2226563 0.234375,0.2226563 0.128907,0 0.234375,-0.09375 0.269532,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128906,-0.43359371 0.03516,-0.12890625 0.117187,-0.45703125 0.152344,-0.6328125 0.04687,-0.15234375 0.08203,-0.3046875 0.117187,-0.45703125 0.08203,-0.3046875 0.08203,-0.31640625 0.222656,-0.5390625 0.222657,-0.33984375 0.5625,-0.73828124 1.113282,-0.73828124 0.386718,0 0.410156,0.328125 0.410156,0.49218749 0,0.421875 -0.304688,1.1953125 -0.410156,1.48828125 -0.08203,0.1875 -0.105469,0.2578125 -0.105469,0.375 0,0.36328126 0.304687,0.59765626 0.65625,0.59765626 0.703125,0 1.007812,-0.96093751 1.007812,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.105468,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249996 -0.457032,0.84374996 -0.738282,0.84374996 -0.140625,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234376 0.03516,-0.24609376 0.164063,-0.56250001 0.08203,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.10546875 0,-0.39843754 -0.257813,-0.59765624 -0.128906,-0.09375 -0.328125,-0.1875 -0.65625,-0.1875 -0.621094,0 -1.007812,0.4101562 -1.230469,0.70312499 -0.05859,-0.59765629 -0.550781,-0.70312499 -0.902343,-0.70312499 -0.585938,0 -0.972657,0.3515625 -1.183594,0.63281249 -0.04687,-0.48046879 -0.457031,-0.63281249 -0.75,-0.63281249 -0.292969,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781249 -0.246094,0.65624999 -0.246094,0.69140624 0,0.0820313 0.09375,0.0820313 0.117187,0.0820313 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187499 0.234375,-0.76171869 0.515625,-0.76171869 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062499 -0.05859,0.39843749 -0.105468,0.58593749 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 L 12.752016,1.0596484 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128907,-0.43359371 0.03516,-0.12890625 0.105468,-0.45703125 0.152343,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199218,-0.28125004 0.527343,-0.64453124 1.042968,-0.64453124 0.410157,0 0.410157,0.3632812 0.410157,0.49218749 0,0.17578125 -0.01172,0.26953125 -0.117188,0.65625 z m 6.987305,-2.09765629 c -0.140625,-0.234375 -0.386719,-0.4101562 -0.714844,-0.4101562 -0.890625,0 -1.804687,0.97265624 -1.804687,1.98046874 0,0.67968746 0.457031,1.16015626 1.054687,1.16015626 0.375,0 0.714844,-0.2109375 0.996094,-0.4921875 0.128906,0.421875 0.527344,0.4921875 0.714844,0.4921875 0.246094,0 0.421875,-0.1523438 0.550781,-0.375 0.152344,-0.26953126 0.246094,-0.66796876 0.246094,-0.69140626 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105468,0.0351563 -0.152343,0.22265625 -0.08203,0.328125 -0.210938,0.73828121 -0.503907,0.73828121 -0.1875,0 -0.234375,-0.1523437 -0.234375,-0.3398437 0,-0.11718751 0.05859,-0.36328126 0.105469,-0.55078126 0.04687,-0.1875 0.117188,-0.46875 0.152344,-0.62109375 l 0.140625,-0.5390625 c 0.04687,-0.17578125 0.128906,-0.50390629 0.128906,-0.53906249 0,-0.1523438 -0.128906,-0.2226563 -0.246094,-0.2226563 -0.117187,0 -0.269531,0.082031 -0.316406,0.28125 z m -0.445312,1.79296879 c -0.04687,0.1875 -0.199219,0.328125 -0.351563,0.45703121 -0.07031,0.058594 -0.339844,0.28125 -0.644531,0.28125 -0.257813,0 -0.515625,-0.1757812 -0.515625,-0.66796871 0,-0.375 0.210937,-1.13671875 0.363281,-1.41796875 0.328125,-0.56250004 0.679688,-0.66796874 0.878906,-0.66796874 0.480469,0 0.621094,0.52734374 0.621094,0.60937499 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 3.55957,0.12890625 c -0.07031,0.234375 -0.292969,0.60937496 -0.65625,0.60937496 -0.02344,0 -0.222656,0 -0.375,-0.09375 0.28125,-0.09375 0.304687,-0.33984371 0.304687,-0.38671871 0,-0.15234375 -0.117187,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386718,0.1640625 -0.386718,0.43359371 0,0.3398438 0.386718,0.5039063 0.726562,0.5039063 0.316406,0 0.609375,-0.1992188 0.785156,-0.4921875 0.164063,0.3632812 0.550782,0.4921875 0.820313,0.4921875 0.808594,0 1.230469,-0.86718751 1.230469,-1.06640626 0,-0.09375 -0.09375,-0.09375 -0.105469,-0.09375 -0.105469,0 -0.105469,0.0351563 -0.140625,0.1171875 -0.140625,0.48046876 -0.5625,0.84374996 -0.949219,0.84374996 -0.28125,0 -0.421875,-0.1875 -0.421875,-0.44531246 0,-0.1875 0.164063,-0.8203125 0.363281,-1.59375 0.128907,-0.53906254 0.445313,-0.71484374 0.679688,-0.71484374 0.01172,0 0.222656,0 0.375,0.1054687 -0.222656,0.058594 -0.304688,0.2578125 -0.304688,0.37500004 0,0.15234375 0.117188,0.2578125 0.28125,0.2578125 0.152344,0 0.386719,-0.12890625 0.386719,-0.42187504 0,-0.3867187 -0.445312,-0.5039062 -0.726562,-0.5039062 -0.351563,0 -0.632813,0.2226562 -0.785157,0.4921875 -0.117187,-0.2929688 -0.445312,-0.4921875 -0.832031,-0.4921875 -0.785156,0 -1.230469,0.85546874 -1.230469,1.06640624 0,0.0820313 0.105469,0.0820313 0.117188,0.0820313 0.09375,0 0.105469,-0.0234375 0.140625,-0.1171875 0.175781,-0.53906244 0.609375,-0.84374994 0.949219,-0.84374994 0.234375,0 0.421875,0.1289062 0.421875,0.46874994 0,0.12890625 -0.08203,0.48046875 -0.152344,0.71484375 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+    <path
+       id="path10"
+       d="M 0,-85.04045 V 85.04045"
+       style="fill:none;stroke:#808080;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:2.98883, 1.99255;stroke-dashoffset:0;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <path
+       id="path11"
+       d="m 1.99255,-85.04045 c 0,1.10046 -0.89209,1.99255 -1.99255,1.99255 -1.10046,0 -1.99255,-0.89209 -1.99255,-1.99255 0,-1.10048 0.89209,-1.99255 1.99255,-1.99255 1.10046,0 1.99255,0.89207 1.99255,1.99255 z"
+       style="fill:#808080;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <g
+       id="g11"
+       aria-label="p&#10;y,min"
+       transform="matrix(1.3333333,0,0,1.3333333,196.37067,292.956)">
+      <path
+         id="path12"
+         d="m 0.44563281,1.2195234 c -0.0820313,0.3398438 -0.09375,0.4101563 -0.5390625,0.4101563 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796874,0.035156 0.98437504,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992188 0,-0.1054687 -0.1054688,-0.1054687 -0.2460938,-0.1054687 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609376 0.4804688,-1.99218751 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312499 2.4023438,-2.91796879 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632813 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703124,0 -0.65624999,0.3867188 -0.73828124,0.5742188 -0.1875,0.3398437 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054687 0.10546875,0.1054687 0.12890625,0.1054687 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835937 0.72656254,-1.1835937 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570312 0,0.234375 -0.023437,0.3398438 -0.070312,0.5039063 z M 2.2034453,-3.1046953 c 0.070312,-0.2695313 0.3398438,-0.5507813 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312499 -0.8203125,1.03124999 -1.1835937,1.03124999 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351563 0.023437,-0.16406249 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path13"
+         d="m 8.8919219,-1.1300859 c 0.023437,-0.1054688 0.023437,-0.1171875 0.023437,-0.1523438 0,-0.140625 -0.1054688,-0.2226562 -0.2226563,-0.2226562 -0.082031,0 -0.2109375,0.035156 -0.2929687,0.1640625 -0.023437,0.035156 -0.070312,0.2578125 -0.1054688,0.39843746 l -0.1523437,0.5859375 c -0.035156,0.1640625 -0.2578125,1.04296875 -0.28125,1.125 0,0 -0.3046875,0.59765624 -0.8554688,0.59765624 -0.46875,0 -0.46875,-0.44531249 -0.46875,-0.57421874 0,-0.375 0.1523438,-0.8203125 0.3632813,-1.359375 0.082031,-0.22265625 0.1171875,-0.3046875 0.1171875,-0.421875 0,-0.32812496 -0.28125,-0.58593746 -0.65625,-0.58593746 -0.703125,0 -1.0195313,0.94921871 -1.0195313,1.06640621 0,0.0820312 0.09375,0.0820312 0.1171875,0.0820312 0.09375,0 0.1054688,-0.0351563 0.1289063,-0.10546875 0.1757812,-0.58593756 0.46875,-0.85546876 0.75,-0.85546876 0.1171875,0 0.1757812,0.082031 0.1757812,0.2460937 0,0.16406256 -0.058594,0.31640631 -0.09375,0.41015631 -0.3398437,0.84375 -0.4101562,1.1015625 -0.4101562,1.40625 0,0.1171875 0,0.44531249 0.2695312,0.67968749 0.2226563,0.1757812 0.515625,0.2109375 0.703125,0.2109375 0.28125,0 0.5273438,-0.1054688 0.7617188,-0.3164063 -0.09375,0.3867188 -0.1757813,0.6796875 -0.46875,1.03125 -0.1875,0.2109375 -0.4570313,0.4453125 -0.8320313,0.4453125 -0.046875,0 -0.375,0 -0.5273437,-0.234375 0.375,-0.035156 0.375,-0.375 0.375,-0.3867187 0,-0.2226563 -0.1992188,-0.2578125 -0.2695313,-0.2578125 -0.1757812,0 -0.3984375,0.140625 -0.3984375,0.4570312 0,0.3515625 0.328125,0.609375 0.8320313,0.609375 0.703125,0 1.5585937,-0.5390625 1.7695312,-1.40625 z M 10.78157,1.3777266 c 0,0.3867187 -0.07031,0.8320312 -0.550781,1.2773437 -0.02344,0.035156 -0.04687,0.058594 -0.04687,0.09375 0,0.046875 0.05859,0.09375 0.09375,0.09375 0.105469,0 0.691406,-0.5625 0.691406,-1.3945312 0,-0.421875 -0.164062,-0.75000004 -0.480468,-0.75000004 -0.234375,0 -0.398438,0.17578125 -0.398438,0.38671874 0,0.234375 0.152344,0.4101563 0.398438,0.4101563 0.164062,0 0.28125,-0.1171875 0.292968,-0.1171875 z m 3.911133,-0.44531254 c -0.03516,0.14062504 -0.09375,0.37500004 -0.09375,0.41015624 0,0.1523438 0.128906,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128907,-0.43359374 0.03516,-0.12890625 0.117187,-0.45703125 0.152343,-0.6328125 0.04687,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.3046875 0.08203,-0.31640625 0.222656,-0.5390625 0.222656,-0.33984375 0.5625,-0.73828121 1.113281,-0.73828121 0.386719,0 0.410157,0.328125 0.410157,0.49218746 0,0.421875 -0.304688,1.1953125 -0.410157,1.48828125 -0.08203,0.1875 -0.105468,0.2578125 -0.105468,0.375 0,0.36328129 0.304687,0.59765629 0.65625,0.59765629 0.703125,0 1.007812,-0.96093754 1.007812,-1.06640629 0,-0.09375 -0.09375,-0.09375 -0.105469,-0.09375 -0.105468,0 -0.105468,0.046875 -0.140625,0.1171875 -0.152343,0.56249999 -0.457031,0.84374999 -0.738281,0.84374999 -0.140625,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234379 0.03516,-0.24609379 0.164062,-0.56250004 0.08203,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.10546875 0,-0.39843751 -0.257812,-0.59765621 -0.128906,-0.09375 -0.328125,-0.1875 -0.65625,-0.1875 -0.621094,0 -1.007813,0.4101562 -1.230469,0.70312496 -0.05859,-0.59765626 -0.550781,-0.70312496 -0.902344,-0.70312496 -0.585937,0 -0.972656,0.3515625 -1.183593,0.63281246 -0.04687,-0.48046876 -0.457032,-0.63281246 -0.75,-0.63281246 -0.292969,0 -0.457032,0.2109375 -0.550782,0.375 -0.152343,0.25781246 -0.246093,0.65624996 -0.246093,0.69140621 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187506 0.234375,-0.76171876 0.515625,-0.76171876 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062506 -0.05859,0.39843756 -0.105469,0.58593756 -0.04687,0.1875 -0.117187,0.46875 -0.152343,0.62109375 L 12.524734,1.0613203 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117187,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128906,-0.43359374 0.03516,-0.12890625 0.105469,-0.45703125 0.152344,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292968,-0.6328125 0.199219,-0.28125001 0.527344,-0.64453121 1.042969,-0.64453121 0.410156,0 0.410156,0.3632812 0.410156,0.49218746 0,0.17578125 -0.01172,0.26953125 -0.117187,0.65625 z M 21.00032,-2.8644609 c 0,-0.1054688 -0.08203,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386718,0.1757812 -0.386718,0.375 0,0.1171875 0.08203,0.2695312 0.269531,0.2695312 0.210937,0 0.398437,-0.1992187 0.398437,-0.3867187 z m -1.429687,3.53906246 c -0.02344,0.09375 -0.05859,0.17578125 -0.05859,0.29296875 0,0.32812499 0.28125,0.59765629 0.667969,0.59765629 0.691406,0 0.996094,-0.96093754 0.996094,-1.06640629 0,-0.09375 -0.08203,-0.09375 -0.105469,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249999 -0.457031,0.84374999 -0.738281,0.84374999 -0.140625,0 -0.175782,-0.082031 -0.175782,-0.2460937 0,-0.15234379 0.05859,-0.29296879 0.117188,-0.44531254 0.07031,-0.1875 0.140625,-0.375 0.222656,-0.55078125 0.05859,-0.1640625 0.316406,-0.80859375 0.339844,-0.890625 0.02344,-0.0703125 0.04687,-0.15234375 0.04687,-0.22265625 0,-0.32812496 -0.28125,-0.58593746 -0.667969,-0.58593746 -0.691406,0 -1.007812,0.94921871 -1.007812,1.06640621 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0351563 0.128906,-0.10546875 0.175782,-0.59765626 0.480469,-0.85546876 0.738282,-0.85546876 0.117187,0 0.175781,0.058594 0.175781,0.2460937 0,0.16406256 -0.03516,0.26953131 -0.210938,0.70312506 z M 22.41243,1.0613203 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128907,-0.43359374 0.03516,-0.12890625 0.105468,-0.45703125 0.152343,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199218,-0.28125001 0.527343,-0.64453121 1.042968,-0.64453121 0.410157,0 0.410157,0.3632812 0.410157,0.49218746 0,0.421875 -0.292969,1.1953125 -0.410157,1.48828125 -0.07031,0.1875 -0.105468,0.2578125 -0.105468,0.375 0,0.36328129 0.304687,0.59765629 0.667968,0.59765629 0.691407,0 1.007813,-0.96093754 1.007813,-1.06640629 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105468,0.046875 -0.128906,0.1171875 -0.164062,0.56249999 -0.46875,0.84374999 -0.738281,0.84374999 -0.152344,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234379 0.03516,-0.24609379 0.152343,-0.56250004 0.09375,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.66796871 -0.539062,-0.78515621 -0.902343,-0.78515621 -0.585938,0 -0.972657,0.3515625 -1.183594,0.63281246 -0.04687,-0.48046876 -0.457031,-0.63281246 -0.75,-0.63281246 -0.292969,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781246 -0.246094,0.65624996 -0.246094,0.69140621 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187506 0.234375,-0.76171876 0.515625,-0.76171876 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062506 -0.05859,0.39843756 -0.105468,0.58593756 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+    <path
+       id="path14"
+       d="M 1.99255,85.04045 C 1.99255,86.14093 1.10046,87.033 0,87.033 c -1.10046,0 -1.99255,-0.89207 -1.99255,-1.99255 0,-1.10046 0.89209,-1.99255 1.99255,-1.99255 1.10046,0 1.99255,0.89209 1.99255,1.99255 z"
+       style="fill:#808080;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <g
+       id="g14"
+       aria-label="p&#10;y,max"
+       transform="matrix(1.3333333,0,0,1.3333333,196.37067,47.721333)">
+      <path
+         id="path15"
+         d="m 0.44563281,1.2197422 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796874,0.035156 0.98437504,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054688,-0.1054688 -0.2460938,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609371 0.4804688,-1.99218746 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312504 2.4023438,-2.91796874 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632812 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703124,0 -0.65624999,0.3867187 -0.73828124,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656254,-1.1835938 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.2034453,-3.1044766 c 0.070312,-0.2695312 0.3398438,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312504 -0.8203125,1.03125004 -1.1835937,1.03125004 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351562 0.023437,-0.16406254 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path16"
+         d="m 8.8919219,-1.1298672 c 0.023437,-0.1054687 0.023437,-0.1171875 0.023437,-0.1523437 0,-0.140625 -0.1054688,-0.2226563 -0.2226563,-0.2226563 -0.082031,0 -0.2109375,0.035156 -0.2929687,0.1640625 -0.023437,0.035156 -0.070312,0.2578125 -0.1054688,0.39843751 l -0.1523437,0.5859375 c -0.035156,0.1640625 -0.2578125,1.04296875 -0.28125,1.125 0,0 -0.3046875,0.59765629 -0.8554688,0.59765629 -0.46875,0 -0.46875,-0.44531254 -0.46875,-0.57421879 0,-0.375 0.1523438,-0.8203125 0.3632813,-1.359375 0.082031,-0.22265625 0.1171875,-0.3046875 0.1171875,-0.421875 0,-0.32812501 -0.28125,-0.58593751 -0.65625,-0.58593751 -0.703125,0 -1.0195313,0.94921876 -1.0195313,1.06640626 0,0.0820313 0.09375,0.0820313 0.1171875,0.0820313 0.09375,0 0.1054688,-0.0351563 0.1289063,-0.10546875 0.1757812,-0.58593751 0.46875,-0.85546881 0.75,-0.85546881 0.1171875,0 0.1757812,0.082031 0.1757812,0.2460938 0,0.16406251 -0.058594,0.31640626 -0.09375,0.41015626 -0.3398437,0.84375 -0.4101562,1.1015625 -0.4101562,1.40625 0,0.1171875 0,0.44531244 0.2695312,0.67968744 0.2226563,0.1757813 0.515625,0.2109375 0.703125,0.2109375 0.28125,0 0.5273438,-0.1054687 0.7617188,-0.3164062 -0.09375,0.3867187 -0.1757813,0.6796875 -0.46875,1.03125 -0.1875,0.2109375 -0.4570313,0.4453125 -0.8320313,0.4453125 -0.046875,0 -0.375,0 -0.5273437,-0.234375 0.375,-0.035156 0.375,-0.375 0.375,-0.3867188 0,-0.2226562 -0.1992188,-0.2578125 -0.2695313,-0.2578125 -0.1757812,0 -0.3984375,0.140625 -0.3984375,0.4570313 0,0.3515625 0.328125,0.609375 0.8320313,0.609375 0.703125,0 1.5585937,-0.5390625 1.7695312,-1.40625 z M 10.78157,1.3779453 c 0,0.3867188 -0.07031,0.8320313 -0.550781,1.2773438 -0.02344,0.035156 -0.04687,0.058594 -0.04687,0.09375 0,0.046875 0.05859,0.09375 0.09375,0.09375 0.105469,0 0.691406,-0.5625 0.691406,-1.3945313 0,-0.421875 -0.164062,-0.74999999 -0.480468,-0.74999999 -0.234375,0 -0.398438,0.17578125 -0.398438,0.38671879 0,0.234375 0.152344,0.4101562 0.398438,0.4101562 0.164062,0 0.28125,-0.1171875 0.292968,-0.1171875 z m 3.911133,-0.44531249 c -0.03516,0.14062499 -0.09375,0.37499999 -0.09375,0.41015629 0,0.1523437 0.128906,0.2226562 0.234375,0.2226562 0.128906,0 0.234375,-0.09375 0.269531,-0.1523437 0.03516,-0.058594 0.09375,-0.2929688 0.128907,-0.43359379 0.03516,-0.12890625 0.117187,-0.45703125 0.152343,-0.6328125 0.04687,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.3046875 0.08203,-0.31640625 0.222656,-0.5390625 0.222656,-0.33984375 0.5625,-0.73828126 1.113281,-0.73828126 0.386719,0 0.410157,0.328125 0.410157,0.49218751 0,0.421875 -0.304688,1.1953125 -0.410157,1.48828125 -0.08203,0.1875 -0.105468,0.2578125 -0.105468,0.375 0,0.36328124 0.304687,0.59765624 0.65625,0.59765624 0.703125,0 1.007812,-0.96093749 1.007812,-1.06640624 0,-0.09375 -0.09375,-0.09375 -0.105469,-0.09375 -0.105468,0 -0.105468,0.046875 -0.140625,0.1171875 -0.152343,0.56250004 -0.457031,0.84375004 -0.738281,0.84375004 -0.140625,0 -0.175781,-0.09375 -0.175781,-0.2460938 0,-0.15234374 0.03516,-0.24609374 0.164062,-0.56249999 0.08203,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.10546875 0,-0.39843746 -0.257812,-0.59765626 -0.128906,-0.09375 -0.328125,-0.1875 -0.65625,-0.1875 -0.621094,0 -1.007813,0.4101563 -1.230469,0.70312501 -0.05859,-0.59765621 -0.550781,-0.70312501 -0.902344,-0.70312501 -0.585937,0 -0.972656,0.3515625 -1.183593,0.63281251 -0.04687,-0.48046871 -0.457032,-0.63281251 -0.75,-0.63281251 -0.292969,0 -0.457032,0.2109375 -0.550782,0.375 -0.152343,0.25781251 -0.246093,0.65625001 -0.246093,0.69140626 0,0.0820313 0.09375,0.0820313 0.117187,0.0820313 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187491 0.234375,-0.76171871 0.515625,-0.76171871 0.175781,0 0.222656,0.1523438 0.222656,0.3398438 0,0.14062491 -0.05859,0.39843741 -0.105469,0.58593741 -0.04687,0.1875 -0.117187,0.46875 -0.152343,0.62109375 L 12.524734,1.0615391 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523437 0.117187,0.2226562 0.234375,0.2226562 0.128906,0 0.234375,-0.09375 0.269531,-0.1523437 0.03516,-0.058594 0.09375,-0.2929688 0.128906,-0.43359379 0.03516,-0.12890625 0.105469,-0.45703125 0.152344,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292968,-0.6328125 0.199219,-0.28124996 0.527344,-0.64453126 1.042969,-0.64453126 0.410156,0 0.410156,0.3632813 0.410156,0.49218751 0,0.17578125 -0.01172,0.26953125 -0.117187,0.65625 z m 6.987305,-2.09765621 c -0.140625,-0.234375 -0.386719,-0.4101563 -0.714844,-0.4101563 -0.890625,0 -1.804687,0.97265626 -1.804687,1.98046876 0,0.67968754 0.457031,1.16015624 1.054687,1.16015624 0.375,0 0.714844,-0.2109375 0.996094,-0.4921875 0.128906,0.421875 0.527344,0.4921875 0.714844,0.4921875 0.246093,0 0.421875,-0.1523437 0.550781,-0.375 0.152344,-0.26953124 0.246094,-0.66796874 0.246094,-0.69140624 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105469,0.0351563 -0.152344,0.22265625 -0.08203,0.328125 -0.210937,0.73828129 -0.503906,0.73828129 -0.1875,0 -0.234375,-0.1523438 -0.234375,-0.3398438 0,-0.11718749 0.05859,-0.36328124 0.105469,-0.55078124 0.04687,-0.1875 0.117187,-0.46875 0.152344,-0.62109375 l 0.140625,-0.5390625 c 0.04687,-0.17578125 0.128906,-0.50390621 0.128906,-0.53906251 0,-0.1523437 -0.128906,-0.2226562 -0.246094,-0.2226562 -0.117187,0 -0.269531,0.082031 -0.316406,0.28125 z m -0.445313,1.79296871 c -0.04687,0.1875 -0.199218,0.328125 -0.351562,0.45703129 -0.07031,0.058594 -0.339844,0.28125 -0.644531,0.28125 -0.257813,0 -0.515625,-0.1757813 -0.515625,-0.66796879 0,-0.375 0.210937,-1.13671875 0.363281,-1.41796875 0.328125,-0.56249996 0.679687,-0.66796876 0.878906,-0.66796876 0.480469,0 0.621094,0.52734376 0.621094,0.60937501 0,0.0234375 -0.01172,0.0820313 -0.02344,0.09375 z m 3.559571,0.12890625 c -0.07031,0.234375 -0.292969,0.60937504 -0.65625,0.60937504 -0.02344,0 -0.222657,0 -0.375,-0.09375 0.28125,-0.09375 0.304687,-0.33984379 0.304687,-0.38671879 0,-0.15234375 -0.117187,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386719,0.1640625 -0.386719,0.43359379 0,0.3398437 0.386719,0.5039062 0.726563,0.5039062 0.316406,0 0.609375,-0.1992187 0.785156,-0.4921875 0.164063,0.3632813 0.550781,0.4921875 0.820313,0.4921875 0.808593,0 1.230468,-0.86718749 1.230468,-1.06640624 0,-0.09375 -0.09375,-0.09375 -0.105468,-0.09375 -0.105469,0 -0.105469,0.0351563 -0.140625,0.1171875 -0.140625,0.48046874 -0.5625,0.84375004 -0.949219,0.84375004 -0.28125,0 -0.421875,-0.1875 -0.421875,-0.44531254 0,-0.1875 0.164062,-0.8203125 0.363281,-1.59375 0.128906,-0.53906246 0.445313,-0.71484376 0.679688,-0.71484376 0.01172,0 0.222656,0 0.375,0.1054688 -0.222657,0.058594 -0.304688,0.2578125 -0.304688,0.37499996 0,0.15234375 0.117188,0.2578125 0.28125,0.2578125 0.152344,0 0.386719,-0.12890625 0.386719,-0.42187496 0,-0.3867188 -0.445313,-0.5039063 -0.726563,-0.5039063 -0.351562,0 -0.632812,0.2226563 -0.785156,0.4921875 -0.117187,-0.2929687 -0.445312,-0.4921875 -0.832031,-0.4921875 -0.785156,0 -1.230469,0.85546876 -1.230469,1.06640626 0,0.0820313 0.105469,0.0820313 0.117188,0.0820313 0.09375,0 0.105468,-0.0234375 0.140625,-0.1171875 0.175781,-0.53906256 0.609375,-0.84375006 0.949218,-0.84375006 0.234375,0 0.421875,0.1289063 0.421875,0.46875006 0,0.12890625 -0.08203,0.48046875 -0.152343,0.71484375 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+    <path
+       id="path17"
+       d="M 0,0 H 24.76025"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <path
+       id="path18"
+       d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       transform="matrix(1.3333333,0,0,-1.3333333,224.91233,169.37867)" />
+    <path
+       id="path19"
+       d="m 2.7659219,-2.5667187 1.6640625,-2.390625 H 3.5393594 L 2.3440469,-3.164375 1.1604531,-4.9573437 H 0.25810938 l 1.65234372,2.4257812 -1.74609372,2.53125 H 1.0549844 L 2.3206094,-1.89875 3.5627969,-3.125e-4 h 0.9140625 z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="x"
+       transform="matrix(1.3333333,0,0,1.3333333,226.53867,164.90667)" />
+    <path
+       id="path20"
+       d="M 0,0 V 24.76025"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <path
+       id="path21"
+       d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       transform="matrix(0,-1.3333333,-1.3333333,0,191.89867,136.365)" />
+    <path
+       id="path22"
+       d="M 3.6800078,-4.9583125 2.2971953,-1.1028438 1.0315703,-4.9583125 H 0.18782031 L 1.8636016,0.02215625 1.5589141,0.8073125 C 1.4417266,1.158875 1.2542266,1.2877812 0.92610156,1.2877812 c -0.1171875,0 -0.24609375,-0.023437 -0.41015625,-0.058594 v 0.7148437 c 0.15234375,0.082031 0.31640625,0.1171875 0.52734379,0.1171875 0.2578125,0 0.5273437,-0.082031 0.7382812,-0.234375 C 2.0276641,1.6510625 2.1682891,1.440125 2.3206328,1.0416875 l 2.203125,-6 z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="y"
+       transform="matrix(1.3333333,0,0,1.3333333,196.37067,133.51733)" />
+    <path
+       id="path23"
+       d="M 3.9851,0 C 3.9851,2.20093 2.20093,3.9851 0,3.9851 -2.20093,3.9851 -3.9851,2.20093 -3.9851,0 c 0,-2.20093 1.78417,-3.9851 3.9851,-3.9851 2.20093,0 3.9851,1.78417 3.9851,3.9851 z"
+       style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <path
+       id="path24"
+       d="M 4.1952031,-4.9575547 H 0.49207813 v 0.6914063 H 3.2577031 L 0.29285938,-0.71536719 V -5.234375e-4 H 4.3241094 V -0.69192969 H 1.2537969 L 4.1952031,-4.2661484 Z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="z"
+       transform="matrix(1.3333333,0,0,1.3333333,181.11733,180.41867)" />
+    <path
+       id="path25"
+       d="M 0.99628,0 C 0.99628,0.55023 0.55023,0.99628 0,0.99628 -0.55023,0.99628 -0.99628,0.55023 -0.99628,0 c 0,-0.55023 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,191.89867,169.37867)" />
+    <g
+       id="g25"
+       aria-label="p&#10;origin"
+       transform="matrix(1.3333333,0,0,1.3333333,195.872,185.456)">
+      <path
+         id="path26"
+         d="m 0.44463281,1.2195234 c -0.0820313,0.3398438 -0.09375,0.4101563 -0.5390625,0.4101563 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796874,0.035156 0.98437504,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992188 0,-0.1054687 -0.1054688,-0.1054687 -0.2460938,-0.1054687 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609376 0.4804688,-1.99218751 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312499 2.4023438,-2.91796879 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632813 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703124,0 -0.65624999,0.3867188 -0.73828124,0.5742188 -0.1875,0.3398437 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054687 0.10546875,0.1054687 0.12890625,0.1054687 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835937 0.72656254,-1.1835937 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570312 0,0.234375 -0.023437,0.3398438 -0.070312,0.5039063 z M 2.2024453,-3.1046953 c 0.070312,-0.2695313 0.3398438,-0.5507813 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312499 -0.8203125,1.03124999 -1.1835937,1.03124999 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351563 0.023437,-0.16406249 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path27"
+         d="m 8.7151406,-0.35664844 c 0,-0.77343746 -0.5742187,-1.21874996 -1.265625,-1.21874996 -1.03125,0 -2.0039062,0.96093746 -2.0039062,1.92187496 0,0.69140624 0.5039062,1.21875004 1.265625,1.21875004 0.9960937,0 2.0039062,-0.92578129 2.0039062,-1.92187504 z M 6.7229531,1.3660078 c -0.3515625,0 -0.703125,-0.2226562 -0.703125,-0.77343749 0,-0.28125 0.140625,-0.9609375 0.4101563,-1.359375 0.2929687,-0.43359371 0.703125,-0.62109371 1.0195312,-0.62109371 0.375,0 0.6914063,0.2578125 0.6914063,0.77343746 0,0.17578125 -0.082031,0.85546875 -0.3867188,1.34765625 C 7.4846719,1.1433516 7.0745156,1.3660078 6.7229531,1.3660078 Z M 10.584281,0.08866406 c 0,-0.046875 0.164063,-0.66796875 0.175782,-0.703125 0.01172,-0.0585938 0.222656,-0.41015626 0.445312,-0.57421876 0.07031,-0.058594 0.257813,-0.1992187 0.5625,-0.1992187 0.07031,0 0.246094,0.011719 0.386719,0.1054687 -0.222656,0.058594 -0.304688,0.2578125 -0.304688,0.37500001 0,0.15234375 0.117188,0.2578125 0.269532,0.2578125 0.164062,0 0.398437,-0.12890625 0.398437,-0.42187501 0,-0.3632812 -0.386719,-0.5039062 -0.738281,-0.5039062 -0.363281,0 -0.679688,0.140625 -0.984375,0.4921875 -0.128906,-0.421875 -0.550781,-0.4921875 -0.726563,-0.4921875 -0.2578122,0 -0.4218747,0.1523437 -0.5390622,0.3515625 -0.1640625,0.26953121 -0.2578125,0.67968746 -0.2578125,0.71484371 0,0.0820312 0.09375,0.0820312 0.1171875,0.0820312 0.09375,0 0.1054687,-0.0117188 0.1523437,-0.19921875 0.1054688,-0.43359376 0.234375,-0.76171876 0.5156255,-0.76171876 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062506 -0.05859,0.39843756 -0.105469,0.58593756 -0.04687,0.1875 -0.117187,0.46875 -0.152344,0.62109375 L 9.799125,1.0613203 c -0.035156,0.082031 -0.070312,0.2578125 -0.070312,0.28125 0,0.1523438 0.1171875,0.2226563 0.234375,0.2226563 0.105469,0 0.246094,-0.058594 0.292969,-0.1992188 0.02344,-0.046875 0.09375,-0.3515625 0.140625,-0.52734374 z m 4.538086,-2.95312496 c 0,-0.1054688 -0.08203,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386719,0.1757812 -0.386719,0.375 0,0.1171875 0.08203,0.2695312 0.269532,0.2695312 0.210937,0 0.398437,-0.1992187 0.398437,-0.3867187 z M 13.69268,0.67460156 c -0.02344,0.09375 -0.05859,0.17578125 -0.05859,0.29296875 0,0.32812499 0.28125,0.59765629 0.667969,0.59765629 0.691406,0 0.996093,-0.96093754 0.996093,-1.06640629 0,-0.09375 -0.08203,-0.09375 -0.105468,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249999 -0.457032,0.84374999 -0.738282,0.84374999 -0.140625,0 -0.175781,-0.082031 -0.175781,-0.2460937 0,-0.15234379 0.05859,-0.29296879 0.117188,-0.44531254 0.07031,-0.1875 0.140625,-0.375 0.222656,-0.55078125 0.05859,-0.1640625 0.316406,-0.80859375 0.339844,-0.890625 0.02344,-0.0703125 0.04687,-0.15234375 0.04687,-0.22265625 0,-0.32812496 -0.28125,-0.58593746 -0.667969,-0.58593746 -0.691406,0 -1.007813,0.94921871 -1.007813,1.06640621 0,0.0820312 0.09375,0.0820312 0.117188,0.0820312 0.09375,0 0.105469,-0.0351563 0.128906,-0.10546875 0.175781,-0.59765626 0.480469,-0.85546876 0.738281,-0.85546876 0.117188,0 0.175782,0.058594 0.175782,0.2460937 0,0.16406256 -0.03516,0.26953131 -0.210938,0.70312506 z m 5.701172,-1.75781246 c 0.02344,-0.09375 0.02344,-0.1289063 0.02344,-0.140625 0,-0.1523438 -0.128906,-0.2226563 -0.234375,-0.2226563 -0.164062,0 -0.292969,0.1289063 -0.328125,0.2695313 -0.117187,-0.1992188 -0.351562,-0.3984375 -0.714844,-0.3984375 -0.867187,0 -1.78125,0.92578121 -1.78125,1.92187496 0,0.72656254 0.480469,1.14843754 1.054688,1.14843754 0.328125,0 0.632812,-0.1640625 0.878906,-0.375 L 18.12823,1.7410078 c -0.07031,0.2929688 -0.117188,0.4804688 -0.386719,0.7265625 -0.304688,0.2578125 -0.609375,0.2578125 -0.785156,0.2578125 -0.316407,0 -0.410157,-0.023437 -0.527344,-0.046875 0.175781,-0.09375 0.222656,-0.2578125 0.222656,-0.3515625 0,-0.1640625 -0.140625,-0.2578125 -0.269531,-0.2578125 -0.199219,0 -0.398438,0.1523438 -0.398438,0.421875 0,0.421875 0.597657,0.421875 0.984375,0.421875 1.089844,0 1.558594,-0.5507812 1.664063,-0.9492187 z m -0.972657,1.65234371 c -0.02344,0.10546875 -0.02344,0.1171875 -0.140625,0.2578125 -0.246093,0.29296879 -0.574218,0.46874999 -0.84375,0.46874999 -0.351562,0 -0.527343,-0.2929687 -0.527343,-0.65624999 0,-0.3046875 0.1875,-1.08984375 0.375,-1.39453125 0.292968,-0.49218746 0.621093,-0.63281246 0.855468,-0.63281246 0.492188,0 0.621094,0.52734371 0.621094,0.59765621 0,0.0117188 0,0.0234375 -0.02344,0.10546875 z m 3.65625,-3.43359371 c 0,-0.1054688 -0.08203,-0.2578125 -0.28125,-0.2578125 -0.1875,0 -0.386718,0.1757812 -0.386718,0.375 0,0.1171875 0.08203,0.2695312 0.269531,0.2695312 0.210937,0 0.398437,-0.1992187 0.398437,-0.3867187 z m -1.429687,3.53906246 c -0.02344,0.09375 -0.05859,0.17578125 -0.05859,0.29296875 0,0.32812499 0.28125,0.59765629 0.667969,0.59765629 0.691406,0 0.996094,-0.96093754 0.996094,-1.06640629 0,-0.09375 -0.08203,-0.09375 -0.105469,-0.09375 -0.105469,0 -0.105469,0.046875 -0.140625,0.1171875 -0.152344,0.56249999 -0.457031,0.84374999 -0.738281,0.84374999 -0.140625,0 -0.175782,-0.082031 -0.175782,-0.2460937 0,-0.15234379 0.05859,-0.29296879 0.117188,-0.44531254 0.07031,-0.1875 0.140625,-0.375 0.222656,-0.55078125 0.05859,-0.1640625 0.316406,-0.80859375 0.339844,-0.890625 0.02344,-0.0703125 0.04687,-0.15234375 0.04687,-0.22265625 0,-0.32812496 -0.28125,-0.58593746 -0.667969,-0.58593746 -0.691406,0 -1.007812,0.94921871 -1.007812,1.06640621 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0351563 0.128906,-0.10546875 0.175782,-0.59765626 0.480469,-0.85546876 0.738282,-0.85546876 0.117187,0 0.175781,0.058594 0.175781,0.2460937 0,0.16406256 -0.03516,0.26953131 -0.210938,0.70312506 z m 2.841797,0.38671874 c -0.03516,0.082031 -0.07031,0.2578125 -0.07031,0.28125 0,0.1523438 0.117188,0.2226563 0.234375,0.2226563 0.128906,0 0.234375,-0.09375 0.269531,-0.1523438 0.03516,-0.058594 0.09375,-0.2929687 0.128907,-0.43359374 0.03516,-0.12890625 0.105468,-0.45703125 0.152343,-0.6328125 0.03516,-0.15234375 0.08203,-0.3046875 0.117188,-0.45703125 0.08203,-0.29296875 0.09375,-0.3515625 0.292969,-0.6328125 0.199218,-0.28125001 0.527343,-0.64453121 1.042968,-0.64453121 0.410157,0 0.410157,0.3632812 0.410157,0.49218746 0,0.421875 -0.292969,1.1953125 -0.410157,1.48828125 -0.07031,0.1875 -0.105468,0.2578125 -0.105468,0.375 0,0.36328129 0.304687,0.59765629 0.667968,0.59765629 0.691407,0 1.007813,-0.96093754 1.007813,-1.06640629 0,-0.09375 -0.09375,-0.09375 -0.117188,-0.09375 -0.09375,0 -0.105468,0.046875 -0.128906,0.1171875 -0.164062,0.56249999 -0.46875,0.84374999 -0.738281,0.84374999 -0.152344,0 -0.175781,-0.09375 -0.175781,-0.2460937 0,-0.15234379 0.03516,-0.24609379 0.152343,-0.56250004 0.09375,-0.2109375 0.375,-0.94921875 0.375,-1.34765625 0,-0.66796871 -0.539062,-0.78515621 -0.902343,-0.78515621 -0.585938,0 -0.972657,0.3515625 -1.183594,0.63281246 -0.04687,-0.48046876 -0.457031,-0.63281246 -0.75,-0.63281246 -0.292969,0 -0.457031,0.2109375 -0.550781,0.375 -0.152344,0.25781246 -0.246094,0.65624996 -0.246094,0.69140621 0,0.0820312 0.09375,0.0820312 0.117187,0.0820312 0.09375,0 0.105469,-0.0117188 0.152344,-0.19921875 0.105469,-0.42187506 0.234375,-0.76171876 0.515625,-0.76171876 0.175781,0 0.222656,0.1523437 0.222656,0.3398437 0,0.14062506 -0.05859,0.39843756 -0.105468,0.58593756 -0.04687,0.1875 -0.117188,0.46875 -0.152344,0.62109375 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+  </g>
+</svg>
diff --git a/docs/documentation/libraries/aircraftGeometry2/figures/surface_top.svg b/docs/documentation/libraries/aircraftGeometry2/figures/surface_top.svg
new file mode 100644
index 0000000000000000000000000000000000000000..dee7819abe7794ada5b5c6520b7cc497a89fd9e8
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/figures/surface_top.svg
@@ -0,0 +1,164 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   version="1.1"
+   id="svg1"
+   width="281.14801"
+   height="337.28799"
+   viewBox="0 0 281.14801 337.28799"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <defs
+     id="defs1" />
+  <g
+     id="g1">
+    <path
+       id="path1"
+       d="m 56.69362,0 5.66926,85.04042 22.67754,85.04044 h 28.34682 L 136.06476,85.04042 141.73404,0 Z"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path2"
+       d="m 62.36288,85.04042 h 73.70188"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path3"
+       d="m 57.6899,0 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55025,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44603,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path4"
+       d="m 63.35916,85.04042 c 0,0.55023 -0.44604,0.99628 -0.99628,0.99628 -0.55023,0 -0.99627,-0.44605 -0.99627,-0.99628 0,-0.55023 0.44604,-0.99628 0.99627,-0.99628 0.55024,0 0.99628,0.44605 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path5"
+       d="m 86.0367,170.08086 c 0,0.55023 -0.44605,0.99627 -0.99628,0.99627 -0.55023,0 -0.99628,-0.44604 -0.99628,-0.99627 0,-0.55025 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44603 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path6"
+       d="m 142.73032,0 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55024,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44604,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path7"
+       d="m 137.06104,85.04042 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55025,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44603,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path8"
+       d="m 114.38351,170.08086 c 0,0.55023 -0.44604,0.99627 -0.99627,0.99627 -0.55025,0 -0.99628,-0.44604 -0.99628,-0.99627 0,-0.55025 0.44603,-0.99628 0.99628,-0.99628 0.55023,0 0.99627,0.44603 0.99627,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <g
+       id="g8"
+       aria-label="p&#10;1"
+       transform="matrix(1.3333333,0,0,1.3333333,178.744,274.492)">
+      <path
+         id="path9"
+         d="m 0.44395313,1.2188906 c -0.0820313,0.3398438 -0.09375,0.4101563 -0.5390625,0.4101563 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796872,0.035156 0.98437502,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992188 0,-0.1054687 -0.1054688,-0.1054687 -0.2460938,-0.1054687 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609378 0.4804688,-1.99218753 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312497 2.4023438,-2.91796877 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632813 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703122,0 -0.65624997,0.3867188 -0.73828122,0.5742188 -0.1875,0.3398437 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054687 0.10546875,0.1054687 0.12890625,0.1054687 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835937 0.72656252,-1.1835937 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570312 0,0.234375 -0.023437,0.3398438 -0.070312,0.5039063 z M 2.2017656,-3.1053281 c 0.070312,-0.2695313 0.3398438,-0.5507813 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312497 -0.8203125,1.03124997 -1.1835937,1.03124997 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351563 0.023437,-0.16406247 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path10"
+         d="m 7.3462969,-2.9354063 c 0,-0.1875 -0.011719,-0.1992187 -0.2109375,-0.1992187 -0.4453125,0.4335937 -1.078125,0.4453125 -1.359375,0.4453125 v 0.2460937 c 0.1640625,0 0.6210937,0 1.0078125,-0.1875 v 3.5507813 c 0,0.234375 0,0.328125 -0.6914063,0.328125 H 5.8228594 v 0.2460937 c 0.1289062,-0.011719 0.984375,-0.023437 1.2421875,-0.023437 0.2109375,0 1.0898437,0.011719 1.2421875,0.023437 V 1.2481875 H 8.0494219 c -0.703125,0 -0.703125,-0.09375 -0.703125,-0.328125 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+    <path
+       id="path11"
+       d="m 100.2101,0 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55023,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <g
+       id="g11"
+       aria-label="p&#10;2"
+       transform="matrix(1.3333333,0,0,1.3333333,178.744,161.10667)">
+      <path
+         id="path12"
+         d="m 0.44395313,1.2178516 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796872,0.035156 0.98437502,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054688,-0.1054688 -0.2460938,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.74609374 0.4804688,-1.99218749 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312501 2.4023438,-2.91796871 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632812 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703122,0 -0.65624997,0.3867187 -0.73828122,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656252,-1.1835938 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.2017656,-3.1063672 c 0.070312,-0.2695312 0.3398438,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312501 -0.8203125,1.03125001 -1.1835937,1.03125001 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234375 0,-0.0351562 0.023437,-0.16406251 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path13"
+         d="m 8.5298906,0.22761719 h -0.234375 c -0.023437,0.15234375 -0.082031,0.5625 -0.1757812,0.6328125 -0.058594,0.0351563 -0.5976563,0.0351563 -0.6914063,0.0351563 H 6.1392656 c 0.7382813,-0.64453125 0.984375,-0.84375 1.3945313,-1.171875 0.515625,-0.41015625 0.9960937,-0.84374999 0.9960937,-1.49999999 0,-0.8437501 -0.7382812,-1.3593751 -1.6289062,-1.3593751 -0.8671875,0 -1.453125,0.609375 -1.453125,1.2421876 0,0.3632813 0.3046875,0.3984375 0.375,0.3984375 0.1640625,0 0.375,-0.1171875 0.375,-0.375 0,-0.1289062 -0.058594,-0.3632812 -0.421875,-0.3632812 0.2226562,-0.5039064 0.6914062,-0.65625 1.0195312,-0.65625 0.703125,0 1.0664063,0.5507811 1.0664063,1.1132812 0,0.609375 -0.4335938,1.08984374 -0.65625,1.33593749 l -1.6875,1.66406251 c -0.070312,0.058594 -0.070312,0.070312 -0.070312,0.2695313 h 2.8828125 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+    <path
+       id="path14"
+       d="m 100.2101,85.04042 c 0,0.55023 -0.44605,0.99628 -0.99628,0.99628 -0.55023,0 -0.99628,-0.44605 -0.99628,-0.99628 0,-0.55023 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44605 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <g
+       id="g14"
+       aria-label="p&#10;3"
+       transform="matrix(1.3333333,0,0,1.3333333,178.744,47.72)">
+      <path
+         id="path15"
+         d="m 0.44395313,1.2178125 c -0.0820313,0.3398437 -0.09375,0.4101562 -0.5390625,0.4101562 -0.1171875,0 -0.22265625,0 -0.22265625,0.1875 0,0.082031 0.046875,0.1171875 0.12890625,0.1171875 0.26953125,0 0.55078125,-0.035156 0.83203125,-0.035156 0.328125,0 0.66796872,0.035156 0.98437502,0.035156 0.058594,0 0.1875,0 0.1875,-0.1992187 0,-0.1054688 -0.1054688,-0.1054688 -0.2460938,-0.1054688 -0.4921875,0 -0.4921875,-0.070312 -0.4921875,-0.1640625 0,-0.1171875 0.421875,-1.7460937 0.4804688,-1.99218745 0.140625,0.29296875 0.4101562,0.6328125 0.9257812,0.6328125 1.1484375,0 2.4023438,-1.45312505 2.4023438,-2.91796875 0,-0.9375 -0.5742188,-1.59375 -1.3359375,-1.59375 -0.4921875,0 -0.9726563,0.3632812 -1.3007813,0.75 -0.09375,-0.5390625 -0.5273437,-0.75 -0.890625,-0.75 -0.45703122,0 -0.65624997,0.3867187 -0.73828122,0.5742187 -0.1875,0.3398438 -0.31640625,0.9375 -0.31640625,0.9609375 0,0.1054688 0.10546875,0.1054688 0.12890625,0.1054688 0.09375,0 0.10546875,-0.011719 0.1640625,-0.234375 0.1640625,-0.703125 0.36328125,-1.1835938 0.72656252,-1.1835938 0.1757812,0 0.3046875,0.082031 0.3046875,0.4570313 0,0.234375 -0.023437,0.3398437 -0.070312,0.5039062 z M 2.2017656,-3.1064063 c 0.070312,-0.2695312 0.3398438,-0.5507812 0.515625,-0.703125 0.3515625,-0.3046875 0.6328125,-0.375 0.8085938,-0.375 0.3984375,0 0.6328125,0.3515625 0.6328125,0.9375 0,0.5859375 -0.328125,1.734375 -0.5039063,2.109375 -0.3398437,0.70312505 -0.8203125,1.03125005 -1.1835937,1.03125005 -0.65625,0 -0.7851563,-0.83203125 -0.7851563,-0.890625 0,-0.0234374 0,-0.0351563 0.023437,-0.16406255 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+      <path
+         id="path16"
+         d="m 6.9127031,-0.83589844 c 0.5507813,0 0.9375,0.375 0.9375,1.125 0,0.86718754 -0.5039062,1.12500004 -0.9023437,1.12500004 -0.28125,0 -0.890625,-0.082031 -1.1835938,-0.49218754 0.328125,-0.0117188 0.3984375,-0.24609375 0.3984375,-0.38671875 0,-0.22265625 -0.1640625,-0.38671875 -0.3867187,-0.38671875 -0.1875,0 -0.3867188,0.1171875 -0.3867188,0.41015625 0,0.65624999 0.7265625,1.07812499 1.5703125,1.07812499 0.9726563,0 1.640625,-0.64453124 1.640625,-1.34765624 0,-0.5390625 -0.4453125,-1.08984375 -1.21875,-1.2421875 0.7382813,-0.26953126 0.9960938,-0.79687496 0.9960938,-1.21874996 0,-0.5507813 -0.6328125,-0.9609375 -1.40625,-0.9609375 -0.7734375,0 -1.359375,0.375 -1.359375,0.9375 0,0.234375 0.1523437,0.3632812 0.3632812,0.3632812 0.2109375,0 0.3515625,-0.1640625 0.3515625,-0.3515625 0,-0.1992187 -0.140625,-0.3515625 -0.3515625,-0.3632812 0.234375,-0.3046875 0.7148438,-0.3867188 0.9726563,-0.3867188 0.3164062,0 0.7617187,0.1523438 0.7617187,0.7617188 0,0.2929687 -0.1054687,0.609375 -0.28125,0.8320312 -0.234375,0.2578125 -0.421875,0.28125 -0.7734375,0.2929688 -0.1757812,0.023437 -0.1875,0.023437 -0.2226562,0.023437 -0.011719,0 -0.070312,0.011719 -0.070312,0.09375 0,0.09375 0.058594,0.09375 0.1757812,0.09375 z m 0,0"
+         style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" />
+    </g>
+    <path
+       id="path17"
+       d="m 100.2101,170.08086 c 0,0.55023 -0.44605,0.99627 -0.99628,0.99627 -0.55023,0 -0.99628,-0.44604 -0.99628,-0.99627 0,-0.55025 0.44605,-0.99628 0.99628,-0.99628 0.55023,0 0.99628,0.44603 0.99628,0.99628 z"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path18"
+       d="M 0,0 H 24.76025"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path19"
+       d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       transform="matrix(1.3333333,0,0,-1.3333333,85.796333,281.54667)" />
+    <path
+       id="path20"
+       d="m 2.7650313,-2.5667422 1.6640625,-2.390625 H 3.5384688 L 2.3431563,-3.1643984 1.1595625,-4.9573672 H 0.25721875 L 1.9095625,-2.5315859 0.16346875,-3.359375e-4 H 1.0540938 L 2.3197188,-1.8987734 3.5619063,-3.359375e-4 h 0.9140625 z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="x"
+       transform="matrix(1.3333333,0,0,1.3333333,87.422667,277.07467)" />
+    <path
+       id="path21"
+       d="M 0,0 V 24.76025"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path22"
+       d="M 3.58653,0 C 2.52383,0.19925 0.797,0.797 -0.3985,1.49438 V -1.49438 C 0.797,-0.797 2.52383,-0.19925 3.58653,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       transform="matrix(0,-1.3333333,-1.3333333,0,52.782667,248.533)" />
+    <path
+       id="path23"
+       d="M 4.1947422,-4.9576641 H 0.49161719 v 0.6914063 H 3.2572422 L 0.29239844,-0.71547656 V -6.328125e-4 H 4.3236484 V -0.69203906 H 1.2533359 L 4.1947422,-4.2662578 Z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="z"
+       transform="matrix(1.3333333,0,0,1.3333333,57.254667,247.036)" />
+    <path
+       id="path24"
+       d="M 2.98883,0 C 2.98883,1.6507 1.6507,2.98883 0,2.98883 -1.6507,2.98883 -2.98883,1.6507 -2.98883,0 c 0,-1.6507 1.33813,-2.98883 2.98883,-2.98883 1.6507,0 2.98883,1.33813 2.98883,2.98883 z"
+       style="fill:#ffffff;fill-opacity:1;fill-rule:nonzero;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path25"
+       d="M 3.6786875,-4.9575781 2.295875,-1.1021094 1.03025,-4.9575781 H 0.1865 L 1.8622813,0.02289062 1.5575938,0.80804687 C 1.4404063,1.1596094 1.2529063,1.2885156 0.92478125,1.2885156 c -0.1171875,0 -0.24609375,-0.023437 -0.41015625,-0.058594 v 0.7148437 c 0.15234375,0.082031 0.31640625,0.1171875 0.5273438,0.1171875 0.2578125,0 0.5273437,-0.082031 0.7382812,-0.234375 C 2.0263438,1.6517969 2.1669688,1.4408594 2.3193125,1.0424219 l 2.203125,-6 z m 0,0"
+       style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+       aria-label="y"
+       transform="matrix(1.3333333,0,0,1.3333333,42.001333,292.58667)" />
+    <path
+       id="path26"
+       d="M 2.11342,2.11342 -2.11342,-2.11342"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+    <path
+       id="path27"
+       d="M -2.11342,2.11342 2.11342,-2.11342"
+       style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+       transform="matrix(1.3333333,0,0,-1.3333333,52.782667,281.54667)" />
+  </g>
+</svg>
diff --git a/docs/documentation/libraries/aircraftGeometry2/getting-started.md b/docs/documentation/libraries/aircraftGeometry2/getting-started.md
new file mode 100644
index 0000000000000000000000000000000000000000..83f617b946c2b060ef352397bdd039372d7c1bf8
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/getting-started.md
@@ -0,0 +1,97 @@
+# Getting Started {#getting_started}
+This guide will show you the basic usage of the geometry objects.
+
+&rarr; Only the most important operations are shown here.
+You can refer to the *unit tests* within the test folder located in the source code for more examples.
+The library is completely *test driven* so you can find most functionality in the tests and see how they are supposed to be used.
+
+&rarr; The following examples assume you execute them in a sequential manner. That means that the objects which appear in the example, which are not directly instantiated, are assumed to already exists and are created in the previous code examples.
+
+---
+
+## Install CGAL
+The **CGAL** library is an external dependency we do not provide within the copy of **UNICADO**. So you need to make sure the library is installed and can be found by *CMake*. You can refer to the [&rarr; Getting Started Guide](https://doc.cgal.org/latest/Manual/general_intro.html) of **CGAL** to find instructions for your machine.
+
+If you use the **MSYS2** environment as the **UNICADO** build setup requires, you can install **CGAL** with this command in your terminal:
+```{ .sh .copy }
+pacman -S mingw-w64-ucrt-x86_64-cgal
+```
+
+---
+
+## Create Sections
+
+```cpp
+/* Includes */
+#include <aircraftGeometry2/geometry/section.h>
+
+/* Create the shape */
+geom2::Polygon_2 shape;
+shape.push_back(geom2::Point_2(0, 0));
+shape.push_back(geom2::Point_2(1, 0));
+shape.push_back(geom2::Point_2(1, 1));
+shape.push_back(geom2::Point_2(0, 1));
+
+/* Create the section */
+geom2::PolygonSection section(shape);
+```
+
+---
+
+## Create Surfaces
+```cpp
+/* Includes */
+#include <aircraftGeometry2/geometry/surface.h>
+#include <aircraftGeometry2/geometry/factory.h>
+
+/* Setup the surface builder */
+geom2::SectionBuilder<geom2::PolygonSection> builder;
+
+/* Insert section using different methods */
+geom2::Vector_3 offset_z{0.0, 0.0, 0.5};
+geom2::Vector_3 offset_y{0.0, 0.5, 0.5};
+builder.arrange(shape, offset_z, 2);
+builder.insert_back(shape, offset_y);
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::PolygonSection> surface;
+surface.sections = builder.get_result();
+```
+
+---
+
+## Use Surfaces
+### Measure
+```cpp
+/* Includes */
+#include <aircraftGeometry2/processing/measure.h>
+
+/* Measure the surface area of a surface */
+double area = geom2::measure::area(surface);
+```
+
+### Transform
+```cpp
+/* Includes */
+#include <aircraftGeometry2/processing/transform.h>
+
+/* Create a triangulated surface mesh */
+geom2::Mesh mesh = geom2::transform::to_mesh(surface.sections);
+```
+
+---
+
+## Import Surfaces
+```cpp
+/* Includes */
+#include <aircraftGeometry2/hull_surface.h>
+
+/* Create the nacelle surface as defined in the Aircraft XML file.
+ * => Assuming the XML file is loaded and exists as a node object.
+ * => And assuming you have the path `data_dir` where the dat files are stored.
+ */
+geom2::HullFactory factory{AcXml, data_dir};
+geom2::MultisectionSurface<geom2::PolygonSection> surface = factory.create("Nacelle@ID");
+```
+
+---
\ No newline at end of file
diff --git a/docs/documentation/libraries/aircraftGeometry2/index.md b/docs/documentation/libraries/aircraftGeometry2/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..315725f2df92734b45f2505557c9dc721db1b6ad
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/index.md
@@ -0,0 +1,138 @@
+# Introduction {#mainpage}
+This library is based on the older *aircraftGeometry* library and extends it to be more modular.
+The modularity and flexibility is achieved by using the high performance [Computational Geometry Algorithms Library](https://www.cgal.org/) also known as **CGAL**.
+
+The library tries to model the shapes needed for aircraft design as flexibel as possible and tries to limit the assumptions about the shapes as far as possible.
+It does not assume a specific orientation of components in the 3D space, but models every component in its own local coordinate space which then can be transformed to any parent coordinate system.
+This flexibility is great to very freely define complex shapes which have an arbitrary location/orientation in the 3D space, but is makes it a bit harder to use since you have to remember in which coordinate space you are currently working in.
+This documentation explains the different coordinate systems and how they are derived from each other in a later section.
+
+Each geometry object in this library is referred to as an entity and derives from Entity3D.
+This class defines the general properties of the location and orientation of the geometry.
+It is used to determine the transformation in between the different coordinate spaces.
+
+Before we dive into the coordinate systems however, let's get to know how the actual geometry and shapes are represented using **CGAL**.
+
+!!!
+    attention &rarr; This library does only support discrete shapes. Meaning the shapes are **always** polygons where the discrete vertices of the polygon are connected with lines which form the edges of the polygon.
+
+!!! note
+    The Python binding of this library does __not__ include a complete implementation of **CGAL**!
+If you want to use the full flexibility of **CGAL** you need to implement your tool in C++.
+
+---
+
+## 2D Geometry
+The base of every geometry are 2D sections. The base properties of such a shape are shown here:
+
+![Section 2D](figures/section2d.svg){html: width=30%}
+
+A section **always** defines its local axes as `X` and `Y`. Where `X` is the *horizontal* axis and `Y` the *vertical* axis.
+The origin point of the section is the origin point of the local coordinate system.
+The local coordinate system in the scope of a section always refers to the shown *X* and *Y* axes.
+
+The shape of the section consists of vertices which form the outline polygon. The polygon can have an arbitrary shape. It only needs to be simple, meaning no edges connecting the vertices should intersect each other.
+A concrete implementation of this described polygon concept which is used in the library is the [Polygon_2](https://doc.cgal.org/latest/Polygon/index.html#Chapter_2D_Polygon) class from **CGAL**.
+
+The concept of the polygon shape is formalized with the *C++* concept `Shape`.
+You can use any shape class which satisfies this concept to create the surfaces.
+This library currently implements two main types:
+
+- `PolygonSection`: For creating general "tube" based surfaces, i.e. fuselages or nacelles.
+- `AirfoilSection`: For creating aerodynamic surfaces which have an airfoil shape.
+
+Those two section types mainly differ via the applied terminology how their geometric parameters are called.
+For example: An **AirfoilSection** can only set the *chord length* as opposed to a **PolygonSection** where you can set the *width* and *height* of the section independently.
+&rarr; Refer to the documentation of each section type to see what parameters you can set.
+
+---
+
+## 3D Geometry
+The connection from the 2D section to create 3D surfaces are `multi-section surfaces`. A multi-section surface consists of multiple sections which form the single segments of the the surface. A projected view of such a surface might look like this:
+
+![View of multi-section surface](figures/surface_top.svg){html: width=30%}
+
+The example consists of three surface sections which result in **two** surface segments.
+Note, that the library rather uses sections and not segments and therefore does not allow for disconnected steps in between the sections directly. You can however insert two section at the same location, which have different shapes. This effectively gives a stepped shape when viewed from any side, but the data structure itself is still connected.
+
+The main extrusion direction of the surface is along the local `Z` axis.
+The origin points of each section are 3D coordinates and define the location of the section within the surface coordinate space. By moving the origin point, the complete section gets moved as well.
+
+!!! note
+    The order how you insert the sections in the surface **does** matter as it defines how the sections are connected.
+
+The surfaces themselves have an origin point which defines their location in the 3D space of some parent entity.
+
+The multi-section surface is basically just a `std::vector` which contains multiple section objects.
+You can use this vector as a regular iterator and apply **STL** algorithms as you are used to.
+
+---
+
+## Coordinate Systems
+You should have a basic idea of how the geometry is build up.
+Now, comes the part where we position the geometry within one space and actually build up a complete aircraft in its final shape.
+
+> Keep your right hand ready to always do the "three finger dance" to visualize the right hand coordinate space. Also be aware, **Euler angles** will be involved! :-)
+
+The library currently differentiates three coordinate spaces:
+
+1. `2D` : The local coordinate system of a 2D section profile/shape.
+2. `3D` : The local coordinate system of a multi-section surface which can include multiple 2D sections.
+3. `3D` : The global body-fixed coordinate system of the aircraft where all the surfaces finally live and are positioned.
+
+Whenever one entity is contained within another parent entity, the **parent coordinate system** refers to this parent entity.
+
+### Transform from 2D to 3D
+Let's look at a simple example, which mainly uses 2D coordinates:
+
+![Example coordinate transform](figures/coordinate_example.png){html: width=30%}
+
+The *local point* `p` has 2D coordinates and is defined within the *local coordinate* system of `child`. The `child` represents a 2D section here, so it technically does not have a `Z` axis in its local coordinate space. It is just shown here for completeness to always remember the right-hand convention.
+
+The `child` entity is then contained within the 3D entity `parent`. The `child` has an offset within the `parent` coordinate space as defined by its **origin** point.
+Within the scope of `child`, point `p` has the coordinates as they are shown in the figure.
+In the scope of `parent`, you have to add the offset of the `child` origin `O` to the coordinates of point `p`.
+The resulting coordinates of `p` will then be:
+
+$$
+{align*}{
+p_{parent, 3d} &= \begin{bmatrix} 2.5 \\1.5 \\0.0 \end{bmatrix}}
+$$
+
+An additional offset of the `child` in `Z` direction is applied to the coordinate transform in the same manner. It just adds the offset to the resulting `Z` coordinate.
+
+> The **origin** point of a *parent* is always `[0, 0, 0]` when dealing with the **parent scope**! When the *parent* is contained within another parent, its scope becomes the *child scope*. &rarr; This paradigm shift is probably the most confusing and hard to imagine part of this library, but it is important to keep the library flexible!
+
+### Transform from 3D to 3D {#euler_angles}
+So far no rotation was involved. The coordinate system had always the same orientation but where just translated within the 3D space.
+That is not enough to represent arbitrary geometry. You need a mechanism to orient surfaces which should be extruded in a different direction than the global `Z` axis. For this reason, the idea of the **normal direction** is introduced.
+
+The normal direction basically defines the direction where the local `Z` axis should point to within a parent scope.
+The direction is defined using the `Direction_3`class of **CGAL** and is a vector in 3D space. Although, this class is technically not concerned about the length of the vector, it is a good idea to make sure, that the resulting length of the normal direction is equal to **1.0**.
+
+The definition of this normal direction is not enough to unambiguously define the three Euler angles which are needed for the coordinate transform. The normal direction can only define **two** of the three angles. As a consequence, the third Euler angle $\gamma$ has to be set manually using the `rotation_z` property of the geom2::Entity3D class.
+This angle applies a rotation around the local `Z` axis whenever the coordinates of the geometry are transformed to another coordinate system.
+
+!!! note
+    The handling of the third Euler angle can still be subjected to change.
+
+The usage of the Euler angles can lead to unintuitive results, but that is unfortunately the nature of those angles. Here are some results of Euler angles with different normal directions:
+
+|Normal Direction | Euler Angle $\alpha$ | Euler Angle $\beta$ | Euler Angle $\gamma$ |
+| --- | :---: | :---: | :---: |
+|`[0, 0, 1]` | 0° | 0° | 0° |
+|`[0, 1, 1]` | -45° | 0° | 0° |
+|`[1, 0, 1]` | 45° | 0° | 90° |
+
+Understanding the relationship of the normal direction and the Euler angles of this table is key to understand the 3D coordinate transformation with rotation.
+**Most importantly,** the last case, where a "simple" rotation around the `Y` axis leads to *two* non-zero angles, especially the third angle $\gamma$ is not zero any more as opposed to the initial assumption! That is again due to the fact how Euler angles work...
+
+In the end, you do not need to understand this in great detail to use the library, just be aware, that certain normal directions can lead to a final orientation which was not the one you expected. In such cases, you can use the `rotation_z` parameter to adjust.
+
+## Class Diagram
+Here is an overview how the library is structured:
+
+![](figures/class_diagram.png){html: width=1000}
+
+!!! note
+    This is still work in progress and can change!
diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md b/docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md
new file mode 100644
index 0000000000000000000000000000000000000000..d94d0d7d7b26422c768e6700034e2ff8e8ee78f4
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/tutorial-convert.md
@@ -0,0 +1,160 @@
+# Convert to Different Format {#tutorial_convert}
+The library provides conversion functions which can translate the geometry to different output formats.
+It is up to the used converter to define the in- and outputs of this conversion.
+The converters do **not** access or write files on the hard drive!
+There are just means to translate the geometry to other class concepts.
+It is up to those concepts to provide the file access!
+
+The converters are implemented using the *visitor design pattern*.
+The converters inherit from a common base class geom2\:\:io\:\:Converter, for future polymorphic use.
+You can "visit" a specific converter with a surface object and the object gets converted to the converter specific return type.
+You have the specify how the converter "treats" this surface, since certain formats might treat the same surface geometry differently based on their function (for example wings or stabilizers are both airfoil surfaces, but might get treated differently in the export format).
+You can select the surface function base on type by using the surface type variant geom2\:\:io\:\:SurfaceType.
+Depending on which type you select for the variant the converter will treat the surface accordingly.
+
+!!! note
+    The python bindings do work differently. They use the same underlying functions, but the interface does not enable the polymorphic use (yet)!
+
+## Convert to aixml::node Object
+The following tutorial will show you how you can convert a multi-section surface as a wing surface node to the aircraft XML using the geom2\:\:io\:\:AixmlConverter class.
+The *aixml* library will not be discussed in detail in this tutorial.
+Refer to its [documentation](../index.md) if you need further information.
+
+!!! note
+    The Python examples assume that you imported the following modules:
+    ```python
+    import pyaircraftGeometry2 as geom2
+    import pyaixml as aixml
+    ```
+
+### Create Node
+The *aixml* converter can only insert nodes into an **existing** node!
+This is a precaution, so that the user has to take care of memory management and not the library.
+The user can provide heap and/or stack allocated node objects.
+The library treats both the same and does not leak memory. :wink:
+
+For this tutorial, we will show two use cases of inserting a node:
+
+- Create a completely new node.
+- Update an existing node which has additional, non geometry related nodes as children.
+
+To create the node objects:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+#include <filesystem>
+#include <aixml/node.h>
+
+/* First create an empty node on the stack */
+node new_node{};
+
+/* Load an aircraft exchange file to update */
+std::shared_ptr<node> AcXML = aixml::openDocument("path/to/your/aircraft.xml");
+```
+- <span class="tab-title">Python</span>
+```python
+# First create an empty node on the stack
+new_node = aixml.Node()
+
+# Load an aircraft exchange file to update
+AcXML = aixml.openDocument("path/to/your/aircraft.xml")
+```
+
+</div>
+
+### Convert To Node
+
+!!!
+    attention The following steps assume that you have created a surface which contains valid geometry!
+    Refer to [tutorial_geometry](tutorial-geometry.md) to learn how to do that.
+
+You can convert an existing surface by visiting the *aixml* converter.
+
+Convert surface to an *aerodynamic surface node*:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+#include <aircraftGeometry2/io/convert.h>
+
+/* Assume this surface has some valid geometry */
+geom2::MultisectionSurface<geom2::AirfoilSection> surface = <<some-geometry>>...
+
+/* Treat the surface as an airfoil surface */
+geom2\:\:io\:\:SurfaceType wing = geom2\:\:io\:\:AirfoilSurface{surface};
+
+/* Convert using the aixml format */
+node& created_node = std::visit(geom2\:\:io\:\:AixmlConverter{new_node, {"aerodynamic_surface", "0", "description"}}, wing);
+```
+- <span class="tab-title">Python</span>
+```python
+# Convert the surface specifically to an aerodynamic surface
+created_node = geom2.convert.aixml.to_aerodynamic_surface(new_node, ("aerodynamic_surface", "0", "description"), wing)
+```
+
+</div>
+
+Now what is happening here:
+
+- You tell the converter to create a node **inside** `new_node`.
+- The created node will have the **name** `"aerodynamic_surface"`.
+- The created node will have the **id** `"0"`.
+- The created node will have the description attribute with convent** `"description"`.
+- The created node will contain the **geometry** of `wing`.
+- You get direct access of the **created node** by `created_node`.
+- *Be aware*: The `new_node` is also modified! In this case `new_node` is equal to `created_node`.
+
+That's it.
+Now you can save the node as an XML file or further use the node object.
+
+### Add Another Node
+You can add different nodes by specifying different IDs.
+
+Add another node using the same surface:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Add another node */
+node& created_node = std::visit(geom2\:\:io\:\:AixmlConverter{new_node, {"aerodynamic_surface", "1", "main wing"}}, wing);
+```
+- <span class="tab-title">Python</span>
+```python
+# Add another node
+created_node = geom2.convert.aixml.to_aerodynamic_surface(new_node, ("aerodynamic_surface", "1", "main wing"), wing)
+```
+
+</div>
+
+This will add another node inside `new_node`.
+However, the `created_node` will just contain the second inserted node!
+
+### Updating A Node
+Let's assume we imported the geometry from an existing aircraft XML file and modified the geometry.
+Now, we want to update the data inside the imported node tree.
+
+Update an existing node tree with the surface geometry:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Update the existing node */
+node& created_node = std::visit(geom2\:\:io\:\:AixmlConverter{AcXML->at("path/to/wing/geometry/"), {"aerodynamic_surface", "0", "main wing"}}, wing);
+```
+- <span class="tab-title">Python</span>
+```python
+# Update the existing node
+created_node = geom2.convert.aixml.to_aerodynamic_surface(AcXML.at("path/to/wing/geometry/"), ("aerodynamic_surface", "0", "main wing"), wing)
+```
+
+</div>
+
+This will search for `"path/to/wing/geometry/aerodynamic_surface@0"` and update all geometry specific nodes there.
+Existing nodes, which are not written by this library, are not touched and their values are unchanged.
+Should the node not exist at the specified node path, it will be created just the same as explained in the previous examples.
+The `created_node` contains again a reference to the updated or inserted node.
diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md b/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md
new file mode 100644
index 0000000000000000000000000000000000000000..76cfef1b91e9ff8cec4b37dd373e1a7ed4d4ed8b
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md
@@ -0,0 +1,557 @@
+# Using the Factory Classes {#tutorial_factory}
+
+!!! remark
+    You only need to use the factories when you quickly want to create geometry which **is already** existing in the aircraft XML file.
+
+If you start geometry from scratch you just need to use the geom2::MultisectionSurface and the geom2::SectionBuilder itself.
+The surface provides all the necessary tools to build your geometry.
+
+The factory classes follow the *factory design pattern*, hence the name.
+The idea is, that you give this "factory" a **build plan** of what you want and the factory produces or creates the **item** for you.
+In our case, the build plan is the *aircraft XML file* and the items are the *resulting surfaces*.
+
+!!! note
+    The concept how the geometry is encoded in den aircraft XML file **differs** from the concept used in this library!
+    The main difference is, that the library uses sections rather than segments!
+    The factories translate the data of the aircraft XML to the surface concept of this library.
+    Although, this might change in future release if the aircraft XML structure.
+
+The library has factories for all major components of the aircraft geometry as they are currently defined in the aircraft XML file:
+
+- [hull_factory](#hull-factory)
+- [fuselage_factory](#fuselage-factory)
+- [airfoil_surface_factory](#airfoil-surface-factory)
+- [wing_factory](#wing-factory)
+- [spar_factory](#spar-factory)
+- [control_device_factory](#control-device-factory)
+
+!!! note
+    The Python examples assume that you imported the following modules:
+    ```python
+    import pyaircraftGeometry2 as geom2
+    import pyaixml as aixml
+    ```
+
+---
+
+## Preface
+Before you can get started extracting the surfaces from the aircraft XML file, you need to have the file loaded as a `node` object/pointer.
+It is best if you use the `std::filesystem::path` class to specify the file path.
+
+Load the aircraft XML file:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+#include <filesystem>
+#include <aixml/node.h>
+std::filesystem::path file{"path/to/your/aircraft.xml"};
+std::shared_ptr<node> AcXML = aixml::openDocument(file);
+```
+Since a `std::filesystem::path` can be constructed from a string, this is also possible:
+```cpp
+#include <aixml/node.h>
+std::shared_ptr<node> AcXML = aixml::openDocument("path/to/your/aircraft.xml");
+```
+- <span class="tab-title">Python</span>
+```python
+AcXML = aixml.openDocument("path/to/your/aircraft.xml")
+```
+
+</div>
+
+!!! attention
+    Please always use `/` as the separator! The `std::filesystem` library takes care of converting this separator to the OS appropriate one. However, it does not deal very well with strings where you use `\` or `\\` as the separator, since these are valid characters for file names on *UNIX* systems.
+
+**Please note:**
+
+For the sake of maintainability of this documentation, the following examples do not provide the content of the aircraft XML file. Instead, each example lists the XML file which is used for *unit testing* the class, since those files directly set the requirements of the XML content and are always up to date.
+
+Due to changes in the format of the aircraft exchange file, there are subtle differences when using the factories with the newer version.
+You can jump to [tutorial_aixml_v3](#tutorial_aixml_v3) to directly get started with the newer version.
+The factories support both versions and automatically deduce from the input data which version of the aircraft XML you are using.
+
+---
+
+## Aircraft XML Version 2.0.0 {#tutorial_aixml_v2}
+
+!!! attention
+    The factories **always** assume a relative path to `"AcftExchangeFile/Geometry"` when specifying paths to geometry nodes!
+    At least for now...
+
+Most of the surfaces defined in the aircraft XML **version 2.0.0** file use `*.dat` files to specify the shape of the surface sections.
+The paths to those files are denoted as *relative* paths.
+The factories automatically deduce the *parent* path of the proved aircraft XML file and search for the geometry data **relative** to this parent path.
+
+To illustrate this, let's assume you have the following directory structure:
+```
+/some/path/to/Project_Folder
+├── aircraft.xml
+└── geometryData
+    ├── airfoilData
+    │   ├── F15_11.dat
+    │   └── n0012.dat
+    ├── fuselage.dat
+    └── nacelle.dat
+```
+
+By passing the node of the `aircraft.xml` file, the factories automatically deduce the parent path to be `/some/path/to/Project_Folder/` and remember this path internally.
+It is then enough to specify the path, to i.e. the `n0012.dat` file, by adding this to the content of the aircraft XML file:
+```xml
+<SegmentPointData ToolLevel="1">geometryData/airfoilData/n0012.dat</SegmentPointData>
+```
+
+If the specified data file does not exist or the path is wrong, the library does **not** throw an error in the current implementation! When loading a `*.dat` file which does not exist, the library just returns a shape which contains a single point with the coordinates `[0.0, 0.0, 0.0]`. See geom2.io.read_dat_file for more information.
+
+### Hull Factory {#hull_factory}
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/hull.xml`
+
+The hull factory is the most basic factory of the library and can be used to create simple hulls or tube surfaces, for example **nacelles**.
+All described functionality of this factory does also apply to all other factories since they are all derived from the same base factory class.
+
+Create a hull factory:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the hull factory */
+#include <aircraftGeometry2/hull_surface.h>
+geom2::HullFactory factory{AcXML, "./geometryData"};
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the hull factory
+factory = geom2.factory.HullFactory(AcXML, "./geometryData")
+```
+
+</div>
+
+!!! note
+    You can omit the path `"./geometryData"` for the *version 2.0.0* aircraft exchange files and just give an empty string. The factories then will search for the directory as explained before.
+
+After creating the factory with the existing aircraft XML data, the factory knows what to do and you can ask it to create the complete surface for you.
+The aircraft XML can contain several surfaces of the same type, but with a different id.
+You can have multiple *nacelles* for example.
+That is why you have to tell the factory which surface you want to extract from the aircraft XML.
+You can do this by specifying the **surface name** and its **id**.
+You can use the id notation as provided by the **aixml** library.
+
+You are not limited to just creating *nacelles* with this factory.
+As long as the data structure of the custom surface follows the convention as defined in `aircraftGeometry2/test/stubs/acxml-v2/hull.xml` it can be created with this factory.
+
+Get **nacelle** with the id `SimpleHull` from the factory:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the nacelle surface */
+geom2::MultisectionSurface<geom2::PolygonSection> nacelle = factory.create("Nacelle@SimpleHull");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the nacelle surface
+nacelle = factory.create("Nacelle@SimpleHull")
+```
+
+</div>
+
+!!! attention
+    The current aircraft XML does not define the orientation of those surfaces, yet.Therefore, the normal direction when retrieving the surface from the factory is always the default direction. The origin point, however, is extracted from the aircraft XML file.
+
+The resulting multi-section surface is **moved** from the factory!
+This means you can use the same factory multiple times and create different surfaces by passing different surface id's.
+
+If you only need the factory **once**, you can abbreviate the process as follows:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the nacelle surface */
+geom2::MultisectionSurface<geom2::PolygonSection> nacelle = geom2::HullFactory{AcXML, ""}.create("Nacelle@SimpleHull");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the nacelle surface
+nacelle = geom2.factory.HullFactory(AcXML, "").create("Nacelle@SimpleHull")
+```
+
+</div>
+
+### Fuselage Factory {#fuselage_factory}
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/fuselage.xml`
+
+The fuselage factory does basically the same thing as the hull factory.
+But since the aircraft XML currently defines the data structure for fuselages a bit differently than for nacelles, this specialized factory exists.
+
+Create the fuselage surface:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the factory */
+#include <aircraftGeometry2/fuselage.h>
+geom2::FuselageFactory factory{AcXML, ""};
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::PolygonSection> fuselage = factory.create("Fuselage@SimpleFuselage");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the factory
+factory = geom2.factory.FuselageFactory(AcXML, "")
+
+# Create the surface
+fuselage = factory.create("Fuselage@SimpleFuselage")
+```
+
+</div>
+
+### Airfoil Surface Factory {#airfoil_surface_factory}
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/pylon.xml`
+
+The airfoil surface factory can be used to create the following surfaces from the aircraft XML file:
+
+- **Pylon**
+- **VerticalSurface**
+
+The main difference of this factory is, that is uses geom2::AirfoilSection when creating the multi-section surface.
+
+Create a pylon surface:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the factory */
+#include <aircraftGeometry2/airfoil_surface.h>
+geom2::AirfoilSurfaceFactory factory{AcXML, ""};
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::AirfoilSection> pylon = factory.create("Pylon@SimplePylon");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the factory
+factory = geom2.factory.AirfoilSurfaceFactory(AcXML, "")
+
+# Create the surface
+pylon = factory.create("Pylon@SimplePylon")
+```
+
+</div>
+
+!!! attention
+    As recommended in [tutorial_airfoil_surface](tutorial-geometry.md/#tutorial_airfoil_surface) , the airfoil factories use the **negative** local `Z` direction as the extrusion or span direction!
+
+### Wing Factory {#wing_factory}
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/wing.xml`
+
+The wing factory specializes the airfoil surface factory.
+Again, due to a slight different data structure in the aircraft XML file.
+The functionality is otherwise the same.
+
+Create a wing surface:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the factory */
+#include <aircraftGeometry2/airfoil_surface.h>
+geom2::WingFactory factory{AcXML, ""};
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::AirfoilSection> wing = factory.create("LiftingSurface@MainWing");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the factory
+factory = geom2.factory.WingFactory(AcXML, "")
+
+# Create the surface
+wing = factory.create("LiftingSurface@MainWing")
+```
+
+</div>
+
+!!! note
+    The wing factory does **not** produces discontinuous sections!
+    It takes the inner length of the first segment as the length for the first section and then continuous by using the outer length of the following segments from the aircraft XML file!
+
+### Spar Factory {#spar_factory}
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/wing.xml`
+
+The aircraft XML file provides the relative positions of the front and rear spar location of the lifting surfaces.
+The spar factory creates a planar surface using those relative coordinates.
+Each section of the spar contains two coordinates:
+The **front** and the **rear** position in relative coordinates ranging from *0* to *1*.
+The position is defined by the local `X` direction, the `Y` coordinate of the section points is **always** *0.0*!
+The `Z` offset of these sections corresponds to the relative span position and also ranges from *0* to *1*.
+
+Create the spar of a wing:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the factory */
+#include <aircraftGeometry2/airfoil_surface.h>
+geom2::SparFactory factory{AcXML, ""};
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::PolygonSection> spar = factory.create("LiftingSurface@MainWing");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the factory
+factory = geom2.factory.SparFactory(AcXML, "")
+
+# Create the surface
+spar = factory.create("LiftingSurface@MainWing")
+```
+
+</div>
+
+!!! note
+    This factory returns a multi-section surface which contains geom2::PolygonSection as the section type.
+    Be aware, that the spar geometry is **not** considered an airfoil shape in the context of this library.
+    The extrusion direction, however, is the **negative** local `Z` direction as for the airfoil surfaces, so that the spar geometry is at the same location as the wing geometry.
+    The origin point of the spar is the same as the wing origin as well.
+
+The spar factory just returns the spar surface and **not** the wing surface.
+You have to use the wing factory separately to create the wing surface.
+
+### Control Device Factory {#control_device_factory}
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/wing.xml`
+
+As for the spar geometry, the control device geometry is coupled to the wing geometry it belongs to.
+The handling of control devices is different from the other geometry objects in the way, that all dimensions are normalized between [0, 1].
+The local `Z` coordinates are normalized using the **span** of the corresponding wing and the local `X` coordinates are normalized using the **chord length** of the wing at the corresponding location of the control device.
+Since the control devices are modelled as "flat plates", they do **not** have a *thickness* or local `Y` coordinates greater than 0.
+
+You can use the control device factory to extract single devices from the aircraft XML file using geom2::ControlDeviceFactory::create.
+
+Create the geometry of a control device of a wing:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the factory */
+#include <aircraftGeometry2/airfoil_surface.h>
+geom2::ControlDeviceFactory factory{AcXML, ""};
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::PolygonSection> flap = factory.create("LiftingSurface@MainWing/SurfaceParameters/HalfSurfaceDescription/ControlDeviceSetup/TEDevice@1");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the factory
+factory = geom2.factory.ControlDeviceFactory(AcXML, "")
+
+# Create the surface
+flaps = factory.create("LiftingSurface@MainWing/SurfaceParameters/HalfSurfaceDescription/ControlDeviceSetup/TEDevice@1")
+```
+
+</div>
+
+---
+
+## Aircraft XML Version 3.0.0 {#tutorial_aixml_v3}
+
+!!! attention
+    The factories **always** assume a relative path to `"aircraft_exchange_file/component_design/"` when specifying paths to geometry nodes!
+    At least for now...
+
+The newer version of the aircraft XML file does not expect the geometry files at a certain location as a result of the modularization of the whole project.
+Instead, each surface factory of this library expects a path where to find the geometry files.
+So when using the factories, you **must** specify this *data directory* otherwise the factories will not know where to look for the geometry.
+The node defining the geometry file in the aircraft XML simply looks like this:
+```xml
+<value>n0012</value>
+```
+The library will then try to use a `n0012.dat` file from the `data_directory` you have given it.
+
+!!! note
+    In the following examples it is assumed, that you have the same directory structure for the *version 3.0.0* XML files as for the *version 2.0.0* files in [tutorial_aixml_v2](#tutorial_aixml_v2) !
+
+### Hull Factory
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/hull.xml`
+
+The hull factory is the most basic factory of the library and can be used to create simple hulls or tube surfaces, for example **nacelles**.
+All described functionality of this factory does also apply to all other factories since they are all derived from the same base factory class.
+
+Create a hull factory:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the hull factory */
+#include <aircraftGeometry2/hull_surface.h>
+geom2::HullFactory factory{AcXML, "./geometryData"};
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the hull factory
+factory = geom2.factory.HullFactory(AcXML, "./geometryData")
+```
+
+</div>
+
+!!! note
+    You **cannot** omit the path `"./geometryData"` for the *version 3.0.0* aircraft exchange files!
+
+Get **nacelle** with the id `0` from the factory:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the nacelle surface */
+geom2::MultisectionSurface<geom2::PolygonSection> nacelle = factory.create("propulsion/specific/geometry/nacelle@0");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the nacelle surface
+nacelle = factory.create("propulsion/specific/geometry/nacelle@0")
+```
+
+</div>
+
+Note that the path to the nacelle node needs more information than in [tutorial_aixml_v2](#tutorial_aixml_v2) since the structure of the aircraft exchange file *version 3.0.0* allows for a more flexible arrangement for different components.
+Since those components still use the some geometry encoding throughout the file, the same factories can be used to create the geometry surfaces.
+However, the factories cannot know where to find each individual component.
+That is why you have to give the more detailed node path when creating the surfaces, so that the factory knows where to find the specific nodes.
+This makes the factory more flexible, since you are not confined to certain locations within the exchange file to extract geometry from, but you can use any node from the exchange file as long as its content structure satisfies the requirements of the surface. (Remember: The requirements are documented in the given XML example files.)
+
+### Fuselage Factory
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/fuselage.xml`
+
+The fuselage factory does basically the same thing as the hull factory.
+But since the aircraft XML currently defines the data structure for fuselages a bit differently than for nacelles, this specialized factory exists.
+
+Create the fuselage surface:
+
+`tbd`
+
+### Airfoil Surface Factory
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/pylon.xml`
+
+`tbd`
+
+!!! attention
+    As recommended in [tutorial_airfoil_surface](tutorial-geometry.md/#tutorial_airfoil_surface) , the airfoil factories use the **negative** local `Z` direction as the extrusion or span direction!
+
+### Wing Factory
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/wing.xml`
+
+The wing factory creates the aerodynamic surfaces of the wings.
+
+Create a wing surface:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the factory */
+#include <aircraftGeometry2/airfoil_surface.h>
+geom2::WingFactory factory{AcXML, "./geometryData/airfoilData"};
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::AirfoilSection> wing = factory.create("wing/specific/geometry/aerodynamic_surface@0");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the factory
+factory = geom2.factory.WingFactory(AcXML, "./geometryData/airfoilData")
+
+# Create the surface
+wing = factory.create("wing/specific/geometry/aerodynamic_surface@0")
+```
+
+</div>
+
+### Spar Factory
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/wing.xml`
+
+The aircraft XML file provides the relative positions of the front and rear spar location of the lifting surfaces.
+The spar factory creates a planar surface using those relative coordinates.
+Each section of the spar contains two coordinates:
+The **front** and the **rear** position in relative coordinates ranging from *0* to *1*.
+The position is defined by the local `X` direction, the `Y` coordinate of the section points is **always** *0.0*!
+The `Z` offset of these sections corresponds to the relative span position and also ranges from *0* to *1*.
+
+Create the spar of a wing:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the factory */
+#include <aircraftGeometry2/airfoil_surface.h>
+geom2::SparFactory factory{AcXML, "./geometryData/airfoilData"};
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::PolygonSection> spar = factory.create("wing/specific/geometry/aerodynamic_surface@0/spars/spar@0");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the factory
+factory = geom2.factory.SparFactory(AcXML, "./geometryData/airfoilData")
+
+# Create the surface
+spar = factory.create("wing/specific/geometry/aerodynamic_surface@0/spars/spar@0")
+```
+
+</div>
+
+!!! note
+    This factory returns a multi-section surface which contains geom2::PolygonSection as the section type.
+    Be aware, that the spar geometry is **not** considered an airfoil shape in the context of this library.
+    The extrusion direction, however, is the **negative** local `Z` direction as for the airfoil surfaces, so that the spar geometry is at the same location as the wing geometry.
+    The origin point of the spar is the same as the wing origin as well.
+
+The spar factory just returns the spar surface and **not** the wing surface.
+You have to use the wing factory separately to create the wing surface.
+
+### Control Device Factory
+> **XML Example:** `aircraftGeometry2/test/stubs/aixml-v3/wing.xml`
+
+As for the spar geometry, the control device geometry is coupled to the wing geometry it belongs to.
+The handling of control devices is different from the other geometry objects in the way, that all dimensions are normalized between [0, 1].
+The local `Z` coordinates are normalized using the **span** of the corresponding wing and the local `X` coordinates are normalized using the **chord length** of the wing at the corresponding location of the control device.
+Since the control devices are modelled as "flat plates", they do **not** have a *thickness* or local `Y` coordinates greater than 0.
+
+You can use the control device factory to extract single devices from the aircraft XML file using geom2::ControlDeviceFactory::create.
+
+Create the geometry of a control device of a wing:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+/* Create the factory */
+#include <aircraftGeometry2/airfoil_surface.h>
+geom2::ControlDeviceFactory factory{AcXML, "./geometryData/airfoilData"};
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::PolygonSection> flap = factory.create("wing/specific/geometry/aerodynamic_surface@0/control_devices/control_device@0");
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the factory
+factory = geom2.factory.ControlDeviceFactory(AcXML, "./geometryData/airfoilData")
+
+# Create the surface
+flaps = factory.create("wing/specific/geometry/aerodynamic_surface@0/control_devices/control_device@0")
+```
+
+</div>
+
+---
diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md b/docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md
new file mode 100644
index 0000000000000000000000000000000000000000..e66677817cd97c2e2e7d93f5addc9a6dd8624aee
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/tutorial-geometry.md
@@ -0,0 +1,337 @@
+# Using the Geometry Classes {#tutorial_geometry}
+The following tutorial provides you with the basic usage to create your own shapes.
+For each instruction the C++ and Python code is available.
+The resulting images of each step are not part of the library, though.
+Those images are rendered with a 3D animation software after the geometry is exported as a `*.ply` file after each step.
+The tutorial will show as a last step, how this is done.
+
+!!! note
+    The Python examples assume that you imported the module with:
+    ```python
+    import pyaircraftGeometry2 as geom2
+    ```
+
+---
+
+## Hull Surface
+This tutorial shows you how you can define a simple hull surface.
+The hull surface is basically a tube where you can define the shape of the cross sections.
+
+### Step 1 - Loading DAT files
+The simplest way to start with a shape for the sections is to load the 2D data from a `*.dat` file.
+An example file which defines the shape of a circle is provided as part of the unit tests.
+The file can be found here: `aircraftGeometry2/test/stubs/circle-tab.dat`.
+
+Load the geometry:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+#include <aircraftGeometry2/io/dat.h>
+geom2::Polygon_2 shape = geom2::io::read_dat_file("aircraftGeometry2/test/stubs/dat-files/circle-tab.dat");
+```
+- <span class="tab-title">Python</span>
+```python
+shape = geom2.io.read_dat_file("aircraftGeometry2/test/stubs/dat-files/circle-tab.dat")
+```
+
+</div>
+
+!!! note
+    Make sure the path to the file is correct according to your current working directory!
+
+This will give you the following 2D polygon:
+
+![Tutorial Step 1](figures/Tutorial/step001.png){html: width=600}
+
+The 2D polygon is **always** oriented in the `XY`-Plane.
+The 2D geometry gets oriented in the 3D space when you use it as the section of a surface.
+
+### Step 2 - Create Section
+The imported shape just contains the coordinates of the vertices of the polygon.
+You have to create a `geom2::PolygonSection` from this shape to further create geometry.
+
+Create a section:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+#include <aircraftGeometry2/geometry/section.h>
+geom2::PolygonSection section(shape);
+```
+- <span class="tab-title">Python</span>
+```python
+section = geom2.PolygonSection(shape)
+```
+
+</div>
+
+This does not change the shape of the polygon, but it gives the shape an orientation in the 3D space.
+The geom2::PolygonSection class has also methods to manipulate the shape of the polygon.
+
+### Step 3 - Create Surface
+After converting the imported polygon to a section, you can use this section to build a surface.
+This surface is basically a container for different PolygonSections, see geom2::MultisectionSurface.
+
+This library uses the *builder design pattern* to build a surface.
+This builder has some convenient methods to quickly create a surface.
+The key concept is, that you first create the builder, perform the build steps and then you can retrieve the result from the builder to further use the surface.
+
+Create a surface with two sections:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+#include <aircraftGeometry2/geometry/factory.h>
+/* Create builder */
+geom2::SectionBuilder<geom2::PolygonSection> builder;
+
+/* Instruct the builder to insert sections */
+builder.insert_back(section, geom2::Vector_3(0,0,0)); // Section 0
+builder.insert_back(section, geom2::Vector_3(0,0,1)); // Section 1 with offset in Z direction
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::PolygonSection> surface;
+surface.sections = builder.get_result();
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the builder
+builder = geom2.PolygonBuilder()
+
+# Instruct the builder to insert sections
+builder.insert_back(section, geom2.Vector_3(0,0,0)) # Section 0
+builder.insert_back(section, geom2.Vector_3(0,0,1)) # Section 1 with offset on Z direction
+
+# Create the surface
+surface = geom2.PolygonSurface()
+surface.sections = builder.get_result()
+```
+
+</div>
+
+!!! remark
+    There is also the geom2::SectionBuilder::arrange function which can be used to insert multiple equidistant sections of the same shape.
+
+A few things to note about the builder:
+
+1. The section gets copy-constructed within the builder. So you can use the same section multiple times and even change some parameters in between without affecting the already inserted sections.
+2. The result of the builder gets **moved**! This means, after you retrieve the result, the builder is "empty" and does not contain a valid surface anymore.
+3. Instead of providing a geom2::PolygonSection as the shape input, you can directly use a geom2::Polygon_2. The builder converts the polygon to a section automatically in this case.
+
+The resulting surface has two circular sections and looks like a cylinder.
+The length of the cylinder is 1 as the defined by the offset of the second section.
+
+![Tutorial Step 3](figures/Tutorial/step003.png){html: width=600}
+
+### Step 4 - Modify Section
+The builder is only intended to create the basic structure of the multi-section surface with the necessary section count.
+It does not provide all the flexibility which is needed to form any surface.
+You can access and modify each section of the surface instead.
+
+Set the width of the second section:
+
+- <span class="tab-title">C++</span>
+```cpp
+surface.sections.back().set_width(0.5);
+```
+- <span class="tab-title">Python</span>
+```python
+surface.sections[-1].set_width(0.5)
+```
+
+The top section looks like this now:
+
+![Tutorial Step 4](figures/Tutorial/step004.png){html: width=600}
+
+The **width** refers to the dimension in the local `X` direction of the section.
+Whereas the **height** refers to the `Y` direction.
+You can set the width and height separately for geom2::PolygonSection.
+The **scale** methods applies an **uniform** scaling with the origin point of the section as the scaling center.
+
+### Step 5 - Move Section
+You also change the location of the section within the surface afterwards, but **not the order of the sections!**
+The location of the section within the local coordinate system of the section is defined by the origin point of the section.
+
+Change the location of a section:
+
+- <span class="tab-title">C++</span>
+```cpp
+surface.sections[0].origin = geom2::Point_3(-0.5,0,0);
+```
+- <span class="tab-title">Python</span>
+```python
+surface.sections[0].origin = geom2.Point_3(-0.5,0,0);
+```
+
+!!! note
+    **CGAL** does not supply a mechanism to change single components of points or vectors. You always have to assign a complete new set of coordinates. However, you can read the value of single coordinate components.
+
+As you can see, the bottom section moved in negative X direction:
+
+![Tutorial Step 5](figures/Tutorial/step005.png){html: width=600}
+
+### Step 6 - Orient Surface
+So far, we only operated in the local coordinate system of the multi-section surface.
+The surface can be aligned in the global 3D space using its **origin** and, most importantly, its **normal** direction.
+The main extrusion axis within the **local coordinate** system of the surface is always the `Z` direction, as you can see in the previous steps.
+You can specify the orientation of the *local* `Z` axis within the *global* 3D space by defining the direction of the **normal**.
+The **normal** defacto represents the orientation of the `Z` axis.
+
+!!! attention
+    It is not enough to just specify the `Z` direction to fully define the orientation of geometry within the 3D space. This only defines 2 of the 3 necessary Euler angles, the third is technically undefined! See [euler_angles](index.md/#euler_angles) for more details. The library assumes the third angle to be 0°, which leads most of the times to the expected result.
+
+Orient the surface along global X direction:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+surface.normal = geom2::Direction_3(1,0,0);
+```
+- <span class="tab-title">Python</span>
+```python
+surface.normal = geom2.Direction_3(1,0,0);
+```
+
+</div>
+
+In this example the result is this:
+
+![Tutorial Step 6](figures/Tutorial/step006.png){html: width=600}
+
+The highlighted coordinate system in the figure is now the **global** coordinate space and not the local any more.
+The local coordinate system of the surface remains unchanged.
+You can also see that the orientation introduced a rotation around the local `Z` axis in this case, again see [euler_angles](index.md/#euler_angles) why this is.
+For the expected result you need to set the parameter `rotate_z` of the surface.
+
+!!! note
+    This behavior is admittedly not the most intuitive result. In further release this might get fixed. In a practical point of view, you are most often interested in properties within the local coordinate system of the surface rather then global properties in between multiple surfaces.
+
+### Step 7 - Move Surface
+As for moving the location of a section, the same principle applies when moving the surface within the global 3D space.
+The **origin** of the surface defines the global position.
+The **origin** is located at the origin of the first section.
+
+Move surface:
+
+- <span class="tab-title">C++</span>
+```cpp
+surface.origin = geom2::Point_3(0,-0.25,0);
+```
+- <span class="tab-title">Python</span>
+```python
+surface.normal = geom2.Point_3(0,-0.25,0);
+```
+
+This moves the surface *0.25* in negative `Y` direction:
+
+![Tutorial Step 7](figures/Tutorial/step007.png){html: width=600}
+
+### Step 8 - Measure Surface
+After creating the geometry, you can use different measurement tools to extract dimensions.
+The measurement tools always reference the surface in its local coordinate system.
+So the results do not depend on the global orientation of the surface.
+
+Measure the width of the surface at local `Z` position 0.5:
+
+- <span class="tab-title">C++</span>
+```cpp
+#include <aircraftGeometry2/processing/measure.h>
+double width = geom2::measure::width(surface, 0.5);
+```
+- <span class="tab-title">Python</span>
+```python
+width = geom2.measure.width(surface, 0.5)
+```
+
+This should result in `width = 0.75`.
+
+!!! note
+    There are measurement functions which use additional properties of the geom2::MultisectionSurface as their input, because their result depends on more information than contained in the *sections* vector. See the documentation of each measurement for more information.
+
+### Step 9 - Export PLY (optional)
+As an optional step, you can export your surface as a triangulated surface mesh in the **PLY** format.
+
+Export mesh:
+
+- <span class="tab-title">C++</span>
+```cpp
+#include <CGAL/Surface_mesh/IO/PLY.h>
+geom2::Mesh mesh = geom2::transform::to_mesh(surface);
+CGAL::IO::write_PLY("./mesh.ply", mesh);
+```
+- <span class="tab-title">Python</span>
+```python
+geom2.io.export_ply(surface, "./mesh.ply")
+```
+
+!!! note
+    This function is rather a debugging tool than a fully tested tool for production use!
+
+---
+
+## Airfoil Surface {#tutorial_airfoil_surface}
+An airfoil surface works similar to the hull surface.
+Instead of using polygon sections, the airfoil surface expects geom2::AirfoilSection as inputs.
+Those sections follow the same principle as the polygon sections, but offer different methods which are more suitable/intuitive for airfoil shapes.
+
+You can load an airfoil files with the corresponding function:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+#include <aircraftGeometry2/io/dat.h>
+geom2::Polygon_2 shape = geom2::io::read_airfoil("aircraftGeometry2/test/stubs/n0012-tab.dat");
+```
+- <span class="tab-title">Python</span>
+```python
+shape = geom2.io.read_airfoil("aircraftGeometry2/test/stubs/n0012-tab.dat")
+```
+
+</div>
+
+This reads the dat file **and** additionally sorts the points that the resulting polygon does not intersect itself, because airfoil coordinate files specify first the upper coordinates and then the lower coordinates which would result in a discontinuity in between the upper and lower part.
+
+Create an initial airfoil surface:
+
+<div class="tabbed">
+
+- <span class="tab-title">C++</span>
+```cpp
+#include <aircraftGeometry2/geometry/factory.h>
+/* Create builder */
+geom2::SectionBuilder<geom2::AirfoilSection> builder;
+
+/* Instruct the builder to arrange 3 sections */
+builder.arrange(section, geom2::Vector_3(0,0,-1), 3);
+
+/* Create the surface */
+geom2::MultisectionSurface<geom2::AirfoilSection> surface;
+surface.sections = builder.get_result();
+```
+- <span class="tab-title">Python</span>
+```python
+# Create the builder
+builder = geom2.AirfoilBuilder()
+
+# Instruct the builder to arrange 3 sections
+builder.arrange(section, geom2.Vector_3(0,0,-1), 3)
+
+# Create the surface
+surface = geom2.AirfoilSurface()
+surface.sections = builder.get_result()
+```
+
+</div>
+
+This gives a planar rectangular wing shape:
+
+![Tutorial Airfoil Surface](figures/Tutorial/airfoil_surface.png){html: width=600}
+
+!!! attention
+    You should always use the **negative** `Z` direction as the main span direction of an airfoil surface. Only then do the angles like twist or dihedral rotate in the direction you would expect.
diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial.md b/docs/documentation/libraries/aircraftGeometry2/tutorial.md
new file mode 100644
index 0000000000000000000000000000000000000000..0d840be71f75fa6b159d95e65e0adb0f5da447a8
--- /dev/null
+++ b/docs/documentation/libraries/aircraftGeometry2/tutorial.md
@@ -0,0 +1,6 @@
+# Tutorial {#Tutorial}
+There are tutorial available for the following topics:
+
+- [tutorial_geometry](tutorial-geometry.md)
+- [tutorial_factory](tutorial-factory.md)
+- [tutorial_convert](tutorial-convert.md)
\ No newline at end of file
diff --git a/docs/documentation/libraries/engine/index.md b/docs/documentation/libraries/engine/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..fd5c6edaf2e14e5995f3a5192475c8c0c34c7dd2
--- /dev/null
+++ b/docs/documentation/libraries/engine/index.md
@@ -0,0 +1,50 @@
+# The `engine` Library in UNICADO
+
+The `engine` library serves as the core analysis tool for engine data within UNICADO. It provides access to all possible engine data for every tool in UNICADO. The data can be fixed for an engine or at a given operating point. The data output depends on various factors such as the scale factor and power and bleed offtakes from the engine. The primary objective is to establish a **single source of truth** for engine data retrieval.
+
+## Role in `propulsion_design`
+Within the `propulsion_design` module:
+
+- Engines for the aircraft are selected, and their respective files are copied to the engine directory.
+- The **scale factor** is calculated, determining how the engine's thrust is adjusted to meet aircraft requirements (refer to the `propulsion_design` documentation).
+
+The `engine` library applies this scale factor, ensuring that aircraft parameters can be accessed without further manual adjustments.
+
+## Engine Data Formats
+The engine data is stored in:
+
+- `engine.xml` — Contains data **independent** of the operating point.
+- CSV files — Store values **dependent** on:
+
+  - **Mach number**
+  - **Altitude**
+  - **Engine power setting**
+
+> **Note:** The data in these files is **raw and unscaled**. The only modification made in `propulsion_design` is to the fuel flow CSV file, reflecting user-defined efficiency improvements.
+
+## Functionality of the `engine` Library
+The library is responsible for:
+
+- **Reading engine data**
+- **Applying scaling factors to the data**
+- **Modifying values based on performance-influencing factors like bleed and power offtakes**
+
+### Factors Affecting Engine Performance
+The `engine` library incorporates the following factors, either by default or as optional parameters:
+
+- **Scale factor** from `propulsion_design`
+- **Temperature variations** (non-ISA standard conditions)
+- **Engine derating**
+- **Bleed air extraction** (for turbofan engines)
+- **Spool shaft offtake** (for turbofan engines)
+
+## How the Library Retrieves Data
+- If data is **not dependent** on the operating point → Uses `engine.xml` in a simple readout.
+- If data is **dependent** on the operating point → Uses CSV files and requires:
+
+    - Mach number
+    - Altitude
+    - Engine power setting (e.g., N1 for turbofan engines)
+
+A **linear interpolation** is performed between existing operating points in the deck when retrieving values from CSV files.
+
diff --git a/docs/documentation/libraries/index.md b/docs/documentation/libraries/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..479b8dd7febc3e2b36d5a8ef3c7fe212edb8d525
--- /dev/null
+++ b/docs/documentation/libraries/index.md
@@ -0,0 +1,199 @@
+---
+title: Libraries
+summary: Overview of the libraries respository
+authors:
+    - Sebastian Oberschwendtner
+    - Kristina Mazur
+date: 2024-11-28
+glightbox: false
+---
+
+As mentioned in the [build instructions](../../get-involved/build-instructions/build/general.md), we have some external dependencies to:
+
+- :simple-cplusplus: [Eigen3 :octicons-link-external-16:](https://eigen.tuxfamily.org/index.php?title=Main_Page){:target="_blank"}
+- :simple-cplusplus: [Boost :octicons-link-external-16:](https://www.boost.org/){:target="_blank"}
+- :simple-cplusplus: [CGAL :octicons-link-external-16:](https://www.cgal.org/){:target="_blank"}
+- :simple-python: [pipenv :octicons-link-external-16:](https://pipenv.pypa.io/en/latest/){:target="_blank"} (not really a library, more a environment manager tool)
+
+
+!!! note
+    Currently, only `aircraftGeometry2` and `engine` are documented.
+
+## aerodynamics
+![Icon](site:assets/images/documentation/aerodynamics.svg){.overview-img  align=left}
+This library helps with interacting with polar data.
+It has helper functions to extract and interpolate data of provided airfoil polars.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|-|-|
+
+---
+
+## aircraftGeometry2
+![Icon](site:assets/images/documentation/aircraft-geometry.svg){.overview-img  align=left}
+This library is based on the older aircraftGeometry library and extends it to be more modular.
+The modularity and flexibility is achieved by using the high performance [:octicons-link-external-16: Computational Geometry Algorithms Library](https://www.cgal.org/) also known as **CGAL**.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](aircraftGeometry2/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)|
+
+---
+
+## airfoils
+![Icon](site:assets/images/documentation/airfoil.svg){.overview-img  align=left}
+The **airfoils** libary provides a database for different airfoils.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|-|-|
+
+---
+
+## aixml
+![Icon](site:assets/images/documentation/aixml.svg){.overview-img  align=left}
+The **aixml** library is the central library which handles the XML files and data access.
+It uses a simple XML library, namely *tinyxml*, to read and parse the XML files.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|-|-|
+
+---
+
+## atmosphere
+![Icon](site:assets/images/documentation/atmosphere.svg){.overview-img  align=left}
+The **atmosphere** library provides helper functions to calculate atmospheric properties according to the International Standard Atmosphere (*ISA*).
+You can set different atmospheric conditions (e.g. *ISA+25*) and calculate the physical properties of the air at different altitudes.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|-||
+
+---
+
+## blackboxTest
+![Icon](site:assets/images/documentation/blackbox.svg){.overview-img  align=left}
+The **blackboxTest** library provides an interface to run a complete module with different test cases and then checks whether a specific result is calculated or set compared to expected values defined in a `blackBoxTestCases.xml`. The tests are realized with the help of the _googleTest_ framework .
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|-|[googleTest](https://google.github.io/googletest/)|
+
+---
+
+## engine
+![Icon](site:assets/images/documentation/engine.svg){.overview-img  align=left}
+This library helps with interacting with engine data.
+It has helper functions to extract and interpolate data of provided engine data decks.
+The engine decks can originate from different softwaretools as long as they provide the same file format.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](engine/index.md)|-|
+
+---
+
+## extern
+UNICADO currently uses two external libaries as submodules:
+
+- `doxygen-awesome-css` for documentation formation [(see here)](https://github.com/jothepro/doxygen-awesome-css.git)
+- `pybind11` to use C++ libraries in the python tools [(see here)](https://github.com/pybind/pybind11.git)
+
+---
+
+## liftingLineInterface
+![Icon](site:assets/images/documentation/lifting-line.svg){.overview-img  align=left}
+This library helps with interacting with results provided by the tools **Lifting Line** from DLR.
+It has helper functions to extract and interpolate data of the results from the tool.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|-|-|
+
+---
+
+## moduleBasics
+![Icon](site:assets/images/documentation/module-basics.svg){.overview-img  align=left}
+This library provides the basis structure for the modular approach of the **UNICADO** tools.
+The tools are intended to follow the *Strategy Design Pattern* to execute at different fidelity levels.
+The library gives a template how modules should be structured and gives helpers which can be used to select and implement the different fidelity methods.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|-|-|
+
+---
+
+## pymodulepackage
+![Icon](site:assets/images/documentation/pymodulepackage.svg){.overview-img  align=left}
+This library provides standardized UNICADO data preprocessing, run, and postprocessing functions for Python modules.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-python: |GPLv3|-|-|
+
+---
+
+## runtimeInfo
+![Icon](site:assets/images/documentation/runtime-info.svg){.overview-img  align=left}
+This library handles the user interface during the modules execution.
+In provides custom output streams, which automatically handle the log files and error outputs according to the configuration files.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|-|-|
+
+---
+
+## standardFiles
+![Icon](site:assets/images/documentation/standard-files.svg){.overview-img  align=left}
+This library provides file interfaces and interacts with the operating system.
+It can handle process execution with a simple interface.
+The library can handle *UNIX* and *Windows* systems alike.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|-|-|
+
+!!! warning
+    Some functions of this library are a bit outdated! When using this library, please look first at the wonderful [STL :octicons-link-external-16:](https://en.cppreference.com/w/) whether the function you are seeking is already there.
+
+---
+
+## svl
+![Icon](site:assets/images/documentation/svl.svg){.overview-img  align=left}
+The `simple vector library` by Andrew Willmott provides vector and matrix classes.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: | |[Link](https://www.cs.cmu.edu/~ajw/doc/svl.html)|-|
+
+!!! note
+    This will soon be replaced by `Eigen`.
+
+---
+
+## unitConversion
+![Icon](site:assets/images/documentation/unit-conversion.svg){.overview-img  align=left}
+The **unitConversion** groups the most commonly used unit in aerospace and let's you convert values from one unit to another.
+In addition, it defines some common **constants** which are useful for calculations.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|Dependencies|
+|:---:|:---:|:---:|---|---|
+|0.5.0|:simple-cplusplus: |GPLv3|-|-|
\ No newline at end of file
diff --git a/docs/documentation/overview.md b/docs/documentation/overview.md
new file mode 100644
index 0000000000000000000000000000000000000000..e9e1f507607227358089be3d82bf4a9aa009ee80
--- /dev/null
+++ b/docs/documentation/overview.md
@@ -0,0 +1,41 @@
+---
+title: Overview
+summary: Overview of the software groups.
+authors:
+    - Sebastian Oberschwendtner
+date: 2023-09-08
+glightbox: false
+---
+
+**UNICADO** collects several modules and data which are grouped into repostories:
+
+- [:simple-gitlab: Aircraft Design :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/aircraft-design):
+
+    The aircraft design repository collect all the [sizing tools](sizing/index.md) and [analysis tools](analysis/index.md) which are needed for the preliminary design process.
+
+- [:simple-gitlab: Libraries :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/libraries):
+
+    Whenever some functionality is used in several modules, the functions are collected and made available within the project via [libraries](libraries/index.md).
+
+- [:simple-gitlab: Utilities :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/utilities):
+
+    Tools which are not directly needed for the aircraft design process, like our test framework are grouped in [utilities](additional-software.md). Some helper tools which are used to convert file types and analyse results can be found here as well.
+
+- [:simple-gitlab: Aircraft References :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/aircraft-references):
+
+    Here you can found different designed aircraft. The designs are made using the **UNICADO** workflow and are generally in a *valid* and *converged* state.
+
+🔔 This repository will be translated to a actual database in the future!
+
+
+- [:simple-gitlab: Engines :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/engines):
+
+    This collect different engines and their operating data as lookup tables which is used by several tools to analyse and estimate the engine performance.
+
+- [:simple-gitlab: WorkflowOnRCE :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/rce-workflow):
+
+    Here are all the files which are relevant for executing the **UNICADO** workflow with [:octicons-link-external-16: RCE](https://rcenvironment.de/).
+
+- [:simple-gitlab: UNICADO Package:octicons-link-external-16:](https://git.rwth-aachen.de/unicado/unicado-package):
+
+    This repository is a container which collects all **UNICADO** repositories as submodules. It is used to create the **UNICADO** releases and is a **good** starting point to get developing.
\ No newline at end of file
diff --git a/docs/documentation/sizing/create_mission_xml/figures/flight_path.png b/docs/documentation/sizing/create_mission_xml/figures/flight_path.png
new file mode 100644
index 0000000000000000000000000000000000000000..1f5c8ff062c20cb839f6a9975adfa73345aa1df5
--- /dev/null
+++ b/docs/documentation/sizing/create_mission_xml/figures/flight_path.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2b8a41cfe089727a6116f2252b6755310e498bd380b5ec2b476dec80586998ae
+size 191274
diff --git a/docs/documentation/sizing/create_mission_xml/getting_started.md b/docs/documentation/sizing/create_mission_xml/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..09a1284039baa0b073626a7021837aae57100dd1
--- /dev/null
+++ b/docs/documentation/sizing/create_mission_xml/getting_started.md
@@ -0,0 +1,288 @@
+# Getting started
+
+Because **create_mission_xml** only needs the user input from the [aircraft XML's](#acxml) `requirements_and_specifications` block it can operate without other tools being executed first. Only if [Mission Analysis](../../analysis/mission_analysis/index.md) was run in between, **create_mission_xml** would adapt given cruise steps, but it is not needed to generate a functioning `mission file`.
+
+
+## Run Create Mission XML
+
+Sounds easy? It gets better! Since the `mission file` is this tool's sole output no plots or reports must be written and therefore, you can simply ignore those settings within the [Configuration File](#config_file). Once you set the path to your aircraft XML and provide its name, you can simply open a terminal and execute **create_mission_xml**. Et voilà, it's done!
+
+Even though, you could happily head over to the next tool, we should take a look at what happens in detail and how you can manipulate the mission for your needs.
+
+
+## Mission Configuration
+
+Like we mentioned before, **create_mission_xml** only needs input from the [aircraft XML's](#acxml) `requirements_and_specifications` block and it's own [Configuration File](#config_file). So, let's see what we can do here!
+
+
+### Aircraft Exchange File {#acxml}
+
+Since we don't need all information from the `requirements_and_specifications` block, we have filtered it a little bit to only show you the relevant nodes:
+
+```plaintext
+requirements_and_specifications
+└── mission_files
+    ├── design_mission_file
+    ├── study_mission_file
+    ├── requirements_mission_file
+└── design_specification
+    ├── transport_task
+    │   ├── cargo_definition
+    │   │   ├── additional_cargo_mass
+    │   ├── passenger_definition
+    │   │   ├── total_number_passengers
+    │   │   ├── mass_per_passenger
+    │   │   ├── luggage_mass_per_passenger
+└── requirements
+    ├── top_level_aircraft_requirements
+    │   ├── maximum_structrual_payload_mass
+    │   ├── design_mission*
+    │   ├── study_mission*
+    │   ├── flight_envelope
+    │   │   ├── maximum_operating_altitude
+    │   │   ├── maximum_approach_speed
+```
+<em>* including its subnodes.</em>
+
+The `mission_files` node simply saves the names of said files. Within `design_specification`, **create_mission_xml** gets the information about the transport task from which we can derive the needed payload mass. In the `top_level_aircraft_requirements` node, the `maximum_structrual_payload_mass` is checked against the calculated payload. Also, we can find other performance maxima and characteristics (e.g. initial cruise altitude & Mach number) for `design_mission` and `study_mission` there.
+
+
+### Configuration File {#config_file}
+
+Since the control settings are equal for all tool's, we will skip it and focus on the tool-specific `program_settings`:
+
+```plaintext
+program_settings
+├── mission_selector
+├── maximum_operating_mach_number
+│   ├── enable
+│   ├── delta
+├── adapt_climb_speed_schedule
+│   ├── enable
+│   ├── crossover_altitude
+├── climb_thrust_setting
+├── maximum_rate_of_climb
+├── design_mission
+│   ├── output_file_name
+│   ├── terminal_operation_time
+│   ├── takeoff_procedure
+│   ├── approach_procedure
+│   ├── taxi_time_origin
+│   ├── taxi_time_destination
+│   ├── auto_select_initial_cruise_altitude
+│   ├── auto_select_flight_level
+│   ├── round_to_regular_flight_level
+│   ├── auto_climb_altitude_steps
+│   ├── auto_rate_of_climb_steps
+│   ├── alternate_distance
+│   ├── engine_warmup_time
+│   ├── taxiing_procedure
+│   ├── origin_airport
+│   ├── destination_airport
+├── study_mission
+│   ├── copy_mach_number
+│   ├── copy_initial_cruise_altitude
+│   ├── output_file_name
+│   ├── terminal_operation_time
+│   ├── takeoff_procedure
+│   ├── approach_procedure
+│   ├── taxi_time_origin
+│   ├── taxi_time_destination
+│   ├── auto_select_initial_cruise_altitude
+│   ├── auto_select_flight_level
+│   ├── round_to_regular_flight_level
+│   ├── auto_climb_altitude_steps
+│   ├── auto_rate_of_climb_steps
+│   ├── alternate_distance
+│   ├── engine_warmup_time
+│   ├── taxiing_procedure
+│   ├── origin_airport
+│   ├── destination_airport
+```
+
+In this config, you can decide what takeoff and approach procedure you want to use and how the aircraft shall operate at the airport and while cruising. In the `mission_selector`, you can choose if the `mission file` shall be generated for a `design_mission`, `study_mission` or `requirements_mission`. For more details, check the descriptions in `create_mission_xml_conf.xml`.
+
+!!!node
+    `maximum_operating_mach_number` and the nodes starting with `auto` will lead to **mission_analysis** ignoring user input from the aircraft XML. In those cases, the tool will try to find an own optimum.
+
+
+## Output
+
+Like we have already discussed, the output of **create_mission_xml** is the mission_file which generally looks like this:
+
+```xml
+<mission>
+    <range description="Mission range">
+        <value>5000000</value>
+        <unit>m</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>100000000</upper_boundary>
+    </range>
+    <payload description="Payload mass">
+        <value>20000</value>
+        <unit>kg</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>100000</upper_boundary>
+    </payload>
+    <number_of_pax description="Number of passenger (Mass per PAX = 95 kg)">
+        <value>200</value>
+        <unit>1</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>1000</upper_boundary>
+    </number_of_pax>
+    <cargo_mass description="Cargo mass">
+        <value>2000</value>
+        <unit>kg</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>100000</upper_boundary>
+    </cargo_mass>
+    <desired_cruise_speed description="Planned cruise Mach number for fuel calculation">
+        <value>0.78</value>
+        <unit>1</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>1</upper_boundary>
+    </desired_cruise_speed>
+    <alternate_distance description="Distance from destination to alternate aerodrome">
+        <value>370400.2</value>
+        <unit>m</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>10000000</upper_boundary>
+    </alternate_distance>
+    <taxi_time_origin description="Taxi time at departure airport">
+        <value>540</value>
+        <unit>s</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>10000</upper_boundary>
+    </taxi_time_origin>
+    <taxi_time_destination description="Taxi time at destination">
+        <value>300</value>
+        <unit>s</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>10000</upper_boundary>
+    </taxi_time_destination>
+    <engine_warmup_time description="Running time of the engines before take-off">
+        <value>0</value>
+        <unit>s</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>10000</upper_boundary>
+    </engine_warmup_time>
+    <terminal_operation_time description="Time at the terminal for stopovers">
+        <value>1500</value>
+        <unit>s</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>10000</upper_boundary>
+    </terminal_operation_time>
+    <taxiing_procedure description="Taxiing procedure for start and landing.">
+        <value>propulsion_taxiing</value>
+    </taxiing_procedure>
+    <departure description="Departure procedure; Additional nodes neded for mode... 
+                                Takeoff: No additional nodes. 
+                                climb: End Point Altitude [m] (double).
+                                accelerate: Rate of climb [m/s] (double), End point CAS [m/s] (double).">
+        <departure_step ID="0" description="Single departure step">
+            <configuration description="Configuration of the aircraft during this step">
+                <value>e.g. clean</value>
+            </configuration>
+            <derate description="Derate during this step">
+                <value>1</value>
+                <unit>1</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>1.5</upper_boundary>
+            </derate>
+            <mode description="Mode during this step">
+                <value>e.g. accelerate</value>
+            </mode>
+            <rating description="Sets thrust rating within climb/acceleration segments to Takeoff, Climb, Maximum continuous, Cruise">
+                <value>e.g. idle</value>
+            </rating>
+            <additional_nodes>...</additional_nodes>
+        </departure_step>
+    </departure>
+    <cruise description="Cruise procedure: Additional nodes needed for mode...
+                            change_speed_to_CAS: Rate of climb [m/s] (double), end point CAS [m/s] (double)
+                            change_speed_to_Mach: Rate of climb [m/s] (double), Mach [-] (double)
+                            climb_to_cruise: End Point Altitude [m] (double), Mach [-] (double)
+                            cruise: Range [%] (double, relative distance at the end of the cruise segment without climb and descend)
+                            change_flight_level_constant_ROC: Rate of climb [m/s] (double), end Point Altitude [m] (double)
+                            descend_to_approach: End Point Altitude [m] (double), end point CAS [m/s] (double).">
+        <cruise_step ID="0" description="Single cruise step">
+            <configuration description="Configuration of the aircraft during this step">
+                <value>e.g. clean</value>
+            </configuration>
+            <derate description="Derate during this step">
+                <value>1</value>
+                <unit>1</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>1.5</upper_boundary>
+            </derate>
+            <mode description="Mode during this step">
+                <value>e.g. change_speed_to_CAS</value>
+            </mode>
+            <rating description="Sets thrust rating within climb/acceleration segments to Takeoff, Climb, Maximum continuous, Cruise">
+                <value>e.g. idle</value>
+            </rating>
+            <auto_select_optimum_flight_level description="Parameters to handle automatized flight_level changes">
+                <enabled description="Switch for automatic selection of the optimum flight level of the cruise step">
+                    <value>false</value>
+                </enabled>
+                <auto_climb_step_height description="Height difference for an automatic altitude change step.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5000</upper_boundary>
+                </auto_climb_step_height>
+            </auto_select_optimum_flight_level>
+            <flight_management_system description="Flight management system settings">
+                <enabled description="Switch to indicate if a flight management system is equipped">
+                    <value>false</value>
+                </enabled>
+                <cost_index description="Cost index [kg/min], scaled 0 to 999 according to Sperry/Honeywell">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>999</upper_boundary>
+                </cost_index>
+            </flight_management_system>
+            <additional_nodes>...</additional_nodes>
+        </cruise_step>
+    </cruise>
+    <approach description="Approach procedure: Additional nodes needed for mode... : 
+                            descend: End Point Altitude [m] (double), glide_path [deg] (double).
+                            change_speed: End point CAS [m/s] (double), glide_path [deg] (double).
+                            level_glide_slope_interception: No additional nodes.
+                            landing: End Point Altitude [m] (double), glide_path [deg] (double).">
+        <approach_step ID="0" description="Single approach step">
+            <configuration description="Configuration of the aircraft during this step">
+                <value>e.g. clean</value>
+            </configuration>
+            <derate description="Derate during this step">
+                <value>1</value>
+                <unit>1</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>1.5</upper_boundary>
+            </derate>
+            <mode description="Mode during this step">
+                <value>e.g. change_speed</value>
+            </mode>
+            <rating description="Sets thrust rating within climb/acceleration segments to Takeoff, Climb, Maximum continuous, Cruise">
+                <value>e.g. idle</value>
+            </rating>
+            <additional_nodes>...</additional_nodes>
+        </approach_step>
+    </approach>
+</mission>
+```
+
+!!!node
+    Bleed air and power offtakes are not displayed here, but every step will include these, too. Offtakes are written and explained by [Systems Design](../systems_design/index.md).
+
+
+While the most parameters like `range` and `alternate_distance` are copied directly from [Aircraft Exchange File](#acxml) and [Configuration File](#config_file), the `payload` is derived from the given number of passengers, their luggage and the mass per passenger. Each step (`departure_step`, `cruise_step` or `approach_step`) contains the nodes `configuration`, `mode`, `derate` and `rating`. The `configuration` node will tell [Mission Analysis](../../analysis/mission_analysis/index.md) which polar (generated by [Aerodynamic Assessment](../../analysis/aerodynamic_analysis/index.md)) shall be used. `derate` and `rating` characterize the engine operations and `mode` specifies what shall happen during the segment between two steps (more infos about `modes`, [click here](../../analysis/mission_analysis/mission_steps.md/#step_modes)). Furthermore, `cruise_steps` always include `flight_management_system` and `auto_select_optimum_flight_level` nodes.
+
+Other entries within these steps can differ depending on which `mode` is used. What input nodes are needed can be found in the descriptions of `departure`, `cruise` and `approach`. As a rule of thumb, the following input nodes can usually be expected:
+
+- `mode` that changes speed: Target speed (Mach or CAS), rate of climb or target speed
+- `mode` that changes altitude: Target altitude, rate of climb or target speed
+
+!!!node
+    For an `approach_step`, the rate of climb cannot be determined up-front, because the glide path angle must be kept constant at $3°$ due to regulatory requirements. Therefore, the rate of climb will be derived from the `glide_path` node by [Mission Analysis](../../analysis/mission_analysis/index.md).
diff --git a/docs/documentation/sizing/create_mission_xml/index.md b/docs/documentation/sizing/create_mission_xml/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..18a21ddec2ae43499682733ac839a9483587246b
--- /dev/null
+++ b/docs/documentation/sizing/create_mission_xml/index.md
@@ -0,0 +1,18 @@
+# Introduction
+
+Good news first: **create_mission_xml** is quite slim... or perhaps the slimmest tool of the whole UNICADO chain. It's sole purpose is to define some basic parameters and target points on the mission's trajectory. Nonetheless, this is critical to the whole operation, because we all know *if you fail planning, you'll be planning your failure!* But no worries, we'll help you out :wink:
+
+
+## What a Mission Looks Like {#typical_mission}
+
+In short, a mission contains a handful of so-called segments with which you can define a basic mission profile. Depending on the aircraft size, regulation and flight path planning philosophy, some details may differ, but in general it should look something like this:
+
+<p align="center">
+  <img src="figures/flight_path.png" alt="Flight segments" width="97.5%">
+</p>
+*Flight segments with typical speeds: IAS (blue), Mach (green), and TAS (violet)*[@Ple24].
+
+**create_mission_xml** sets the target/end points of these flight segments which will later be connected by [Mission Analysis](../../analysis/mission_analysis/index.md). Those target points are saved into the `mission file` in which they are categorized as `departure_steps`, `cruise_steps` and `approach_steps`. What this `mission_file` contains in detail can be found in the [Getting Started](getting_started.md). 
+
+
+To fill and order `departure_steps` and `approach_steps`, departure and approach procedures based on regulatory requirements were implemented. Since cruise segments are pretty much straight forward and automatic/optimized flight level changes will be handled by [Mission Analysis](../../analysis/mission_analysis/index.md), there are no pre-defined procedures for cruise. Still, there are a few thing to take into account which we will describe in the [Mission Steps](mission_steps.md) section.
diff --git a/docs/documentation/sizing/create_mission_xml/mission_steps.md b/docs/documentation/sizing/create_mission_xml/mission_steps.md
new file mode 100644
index 0000000000000000000000000000000000000000..d8c4d81c9d9fe236b3c25ff0275c305ddd068cc9
--- /dev/null
+++ b/docs/documentation/sizing/create_mission_xml/mission_steps.md
@@ -0,0 +1,126 @@
+# Mission Steps
+
+The steps in the `mission_file` can be filled and arranged in different ways, depending on what departure and approach procedures you want to implement and how you want the aircraft to behave during cruise. Let's see what **create_mission_xml** can do with the `departure`, `cruise` and `approach` nodes.
+
+
+## Departure
+
+| Procedure                 | Description                                  | Status                          |
+|---------------------------|----------------------------------------------|---------------------------------|
+| Standard                  | FAA/ICAO compliant standard                  | running :white_check_mark:      |
+| Standard 19 seat commuter | FAA/ICAO compliant standard 19 seat commuter | running :white_check_mark:      |
+| ICAO-A                    | Noise reduced takeoff according to ICAO      | under development :construction:|
+| ICAO-B                    | Noise reduced takeoff according to ICAO      | under development :construction:|
+
+
+### Standard
+
+| Mode       | Thrust Rating        | Config                         | End Altitude [m] | Rate of Climb [m/s]     | End CAS [m/s]         |
+|------------|----------------------|--------------------------------|------------------|-------------------------|-----------------------|
+| takeoff    | takeoff              | takeoff                        | N/A              | N/A                     | N/A                   |
+| climb      | climb thrust setting | takeoff landing gear retracted | 457.2 (1500 ft)  | maximum rate of climb   | N/A                   |
+| climb      | climb thrust setting | takeoff landing gear retracted | 914.4 (3000 ft)  | maximum rate of climb   | N/A                   |
+| accelerate | climb thrust setting | climb                          | N/A              | 5.08 (1000 fpm)         | 108.0 (210 kt)        |
+| accelerate | climb thrust setting | clean                          | N/A              | 6.10 (1200 fpm)         | CAS ATC limit climb   |
+| climb      | climb thrust setting | clean                          | 3048 (10,000 ft) | maximum rate of climb   | N/A                   |
+
+In the standard procedure, we assume that the thrust-to-weight ratio is high enough to maintain minimum safe climb speed $v_2$ (see [What a Mission Looks Like](index.md/#typical_mission)) from takeoff until en-route transition (`climb` configuration) at $3\,000\,ft$. Please mind, that EASA's CS-25 only allows extrapolation of the propulsion system's takeoff performance data up to that altitude. To do so, the aircraft shall climb with the given `maximum_rate_of_climb` and `climb_thrust_setting` from the [Configuration File](getting_started.md/#config_file) without an acceleration in between. Since the landing gear gets retracted between screen height ($35\,ft$) and $1\,500\,ft$, climbing up to $3\,000\,ft$ is divided into two segments. Like this, it's easier for [Systems Design](../systems_design/index.md) to simulate the retraction and to put the power/bleed air demand into the `mission file`. Once en-route transition is reached, flaps are set to `climb` while accelerating to $210\,kt$ calibrated airspeed. Just after that, the aircraft accelerates further in `clean` configuration (least drag) until the _CAS_ATC_limit_climb_ is obtained. Since the air space below $10,000\,ft$ is more crowded, institutions like FAA and ICAO limit the speed to $250 kt$ calibrated airspeed, but you can change that in the `climb_speed_below_FL100` node of our [Aircraft Exchange File](getting_started.md/#acxml). Then, the aircraft finishes the departure procedure by climbing up to $10,000\,ft$ using the `maximum_rate_of_climb`.
+
+!!!node
+    Although `maximum_rate_of_climb` can be set as a constant value, we usually set it to $-1$ to indicate that the aircraft shall use all possible thrust of its current engine settings to achieve altitude gains. Therefore, rate of climb varies within these climb segments. Since acceleration is most effective and saver when keeping a constant rate of climb, it is manually set to $1\,000\,\frac{ft}{min}$/$1\,200\,\frac{ft}{min}$ which follows the ICAO's recommendations.
+
+
+### Standard 19 seat commuter
+
+| Mode         | Thrust Rating        | Config                         | End Altitude [m] | Rate of Climb [m/s]     | End CAS [m/s]       |
+|--------------|----------------------|--------------------------------|------------------|-------------------------|---------------------|
+| takeoff      | takeoff              | takeoff                        | N/A              | N/A                     | N/A                 |
+| climb        | climb thrust setting | takeoff landing gear retracted | 60.96 (200 ft)   | maximum rate of climb   | N/A                 |
+| accelerate   | climb thrust setting | clean                          | N/A              | 6.10 (1200 fpm)         | CAS ATC limit climb |
+| climb        | climb thrust setting | clean                          | 3048 (10000 ft)  | maximum rate of climb   | N/A                 |
+
+Using a smaller aircraft, an acceleration segment at lower altitudes is needed. Analogous to the procedure above, it accelerates to the maximum allowed speed (normally $250\,kts$ calibrated airspeed) before climbing with maximum rate of climb towards $10\,000\,ft$.
+
+
+### Minimal Noise Takeoff
+
+ICAO-A and ICAO-B should tackle this, but it is not ready yet :construction:
+
+
+## Cruise
+
+| Mode                 | Thrust Rating        | Config  | End Altitude [m] | Rate of Climb [m/s]       | End CAS [m/s] / Mach [-]          |
+|----------------------|----------------------|---------|------------------|---------------------------|-----------------------------------|
+| change speed to CAS  | climb thrust setting | clean   | N/A              | 1.524 (300 ft/min)        | CAS over flight level 100 climb   |
+| climb to cruise      | climb thrust setting | clean   | initial cruise altitude   | maximum rate of climb   | N/A                        |
+| change speed to Mach | climb thrust setting | clean   | N/A              | 0                         | initial_cruise_mach_number        |
+| cruise               | cruise               | clean   | N/A              | N/A                       | N/A                               |
+| change flight level constant_ROC / change flight level | cruise | clean | auto / cruise FL + 20  | N/A / auto | N/A        |
+| cruise               | cruise               | clean   | N/A              | N/A                       | N/A                               |
+| descend to approach  | idle                 | clean   | 10000 ft         | N/A                       | CAS over flight level 100 descend |
+
+After reaching $10\,000\,ft$ the aircraft accelerates to the next higher speed limit `CAS_over_flight_level_100_climb`. Then the aircraft keeps on climbing until the `initial_cruise_altitude` from where it accelerates to the `initial_cruise_mach_number` without climbing any further. In the table above, only one flight level change is displayed. How many of them will be initiated can be determined in the following way:
+
+- Short Range ($\leq 1\,000\,NM$):
+    - 1 cruise climb step
+- Medium Range ($1\,000 - 5\,000\,NM$):
+    - 2 cruise climb steps
+- Long Range ($\ge 5\,000\,NM$):
+    - 3 cruise climb steps
+
+!!! node
+    If climbs during cruise are disabled (`no_steps` node in the [Configuration File](getting_started.md/#config_file)), then only 1 climb step is generated. Also when automatic flight level changes are activated, [Mission Analysis](../../analysis/mission_analysis/index.md) will try to find an optimum by itself.
+
+Once the end of cruise is reached, the aircraft shall descend to approach ($10\,000\,ft$) using the maximum descend speed.
+
+!!!node
+    For the `requirements_mission`, `climb_to_cruise` gets replaced by `climb_to_ceiling` where [Missionis Analysis](../../analysis/mission_analysis/index.md) searches for the maximum altitude. After this segment, the mission ends. Thus, the `mission_file` will not have any more entries after `climb_to_ceiling`.
+
+
+## Approach
+
+| Procedure                 | Description                                  | Status                          |
+|---------------------------|----------------------------------------------|---------------------------------|
+| Standard                  | FAA/ICAO compliant standard                  | running :white_check_mark:      |
+| Standard 19 seat commuter | FAA/ICAO compliant standard 19 seat commuter | running :white_check_mark:      |
+| Continuous ICAO           | Continuous descent approach                  | under development :construction:|
+| Steep Continuous ICAO     | Steep Continuous descent approach            | under development :construction:|
+
+
+### Standard
+
+| Mode                           | Thrust rating  | Config                        | End Altitude [m] | Glide Path Angle [°] | End CAS [m/s]                 |          
+|--------------------------------|----------------|-------------------------------|------------------|----------------------|-------------------------------|
+| change speed                   | idle           | clean                         | N/A              | 0                    | CAS ATC limit descend         |
+| descend                        | cruise         | clean                         | 914.4 (3000 ft)  | -3                   | N/A                           |
+| change speed                   | idle           | approach                      | N/A              | 0                    | $v_{approach}$                |
+| level glide slope interception | cruise         | approach landing gear out     | N/A              | -3                   | N/A                           |
+| change speed                   | idle           | approach landing gear out     | N/A              | -3                   | $v_{max, approach + 5\,kt}$   |
+| descend                        | cruise         | approach landing gear out     | 457.2 (1500 ft)  | -3                   | N/A                           |
+| change speed                   | idle           | landing                       | N/A              | -3                   | $v_{max, approach}$           |
+| descend                        | cruise         | landing                       | 304.8 (1000 ft)  | -3                   | N/A                           |
+| descend                        | cruise         | landing                       | 15.24 (50 ft)    | -3                   | N/A                           |
+| landing                        | takeoff        | landing                       | 0                | -3                   | N/A                           |
+
+The first approach segment starts at $10\,000\,ft$ where the descend speed limit from the [Aircraft Exchange File](getting_started.md/#acxml) has to be followed. Like in departure, ICAO and FAA dictate $250 kt$ calibrated airspeed. Once this speed limit is met, the aircraft descends to $3,000\,ft$ maintaining a glide path angle of $-3°$. There, high-lift systems are activated (`approach` config) while decelerating to $v_{approach}$. With $v_{approach}$ the aircraft extends its landing gear and cruises to glide slope interception where instrument landing systems start operating. After decelerating to $v_{max, approach + 5\,kt}$, the aircraft descends to visual approach at $1\,500\,ft$. Lastly, the aircraft changes its speed to $v_{max, approach}$ being in `landing` configuration. Tensions rise, while we descend lower and lower until we finally touch the ground. Congratulations, we have landed! You need more braking power? We set the engines' rating to `takeoff` so you can use them as thrust reversers.
+
+!!!node
+    The `maximum_approach_speed` $v_{max, approach}$ (to be found in the [Aircraft Exchange File](getting_started.md/#acxml)) limits the calibrated airspeed below $1,000\,ft$. Above that, $v_{max, approach + 5\,kts} = v_{approach} + 5\,kt$ and $v_{approach} = max\left(v_{max,\,approach + 5\,kts}, 170\,kts\right)$.
+
+
+### Standard 19 seat commuter
+
+| mode         | rating  | config   | End Altitude [m] | Glide Path Angle [°] | End CAS [m/s]         |
+|--------------|---------|----------|------------------|----------------------|-----------------------|
+| change speed | idle    | clean    | N/A              | 0                    | CAS ATC limit descend |
+| descend      | cruise  | clean    | 609.6 (2000 ft)  | -3                   | N/A                   |
+| change speed | idle    | approach | N/A              | -3                   | $v_{max, approach}$   |
+| descend      | cruise  | landing  | 15.24 (50 ft)    | -3                   | N/A                   |
+| landing      | takeoff | landing  | 0                | -3                   | N/A                   |
+
+For smaller aircraft, the approach procedure becomes less complicated. You can simply decelerate to the before mentioned CAS limit of $250\,kt$ before descending towards initial approach fix at $2\,000\,ft$. Next, the aircraft's configuration is set to `approach` while decelerating to $v_{max, approach}$ with which we bring it to the ground using its `landing` configuration. Easy peasy lemon squeezy! :lemon:
+
+
+### (Steep) Continuous Descent Approach
+
+Continuous descent has not been implemented yet, but that's just a matter of time :clock:
diff --git a/docs/documentation/sizing/empennage_design/basic-concepts.md b/docs/documentation/sizing/empennage_design/basic-concepts.md
new file mode 100644
index 0000000000000000000000000000000000000000..758980d916ebb98bb93417087b2b0db4b2e3fd26
--- /dev/null
+++ b/docs/documentation/sizing/empennage_design/basic-concepts.md
@@ -0,0 +1,64 @@
+# Basic Concepts {#BasicConcepts}
+
+Designing an empennage for an aircraft is a challenging tasks. This topic provides basic information for empennages.
+
+If you are already familiar with the basic concepts, you can move on to the [:octicons-arrow-right-16: Getting Started](getting-started.md).
+
+
+### Available configurations
+Here you can find available empennage build methods from the _empennage\_design_ tool inside UNICADO.
+
+- _UNICADO is shipped natively with a conventional method for a tube and wing configuration._
+- _A basic Blended Wing body experimental method called vertical\_tails!_
+
+```mermaid
+  graph LR;
+    A[Empennage Design] -->B[Tube and Wing];
+    B-->C[Conventional]
+    B-->F[T-Tail]
+    A-->D[Blended Wing body]
+    D-->H[Vertical Tails]
+```
+
+!!! danger "Important"
+    Since the documentation might be delayed to the development progress - this graph might not have all information yet.
+
+___
+
+### Empennage Geometry
+Understanding the empennage geometry is an essential part. Below are key terms and their meanings:
+
+- Aspect Ratio (AR): The ratio of the span to the average chord length
+  - _AR = b&sup2; / S_
+  - _b : span_
+  - _S : reference area (projected area on ground from top view)_
+  - _High AR (e.g. gliders) &rarr; increased aerodynamic efficiency (higher drag) but slender and more flexible._
+  - _Low AR (e.g., fighter jets) &rarr; decreased aerodynmic efficiency and stiffer._
+
+- Taper Ratio (&lambda;): The ratio of the tip chord to the root chord.
+  - _&lambda;_ = _c_<sub>_tip_</sub> / _c_<sub>_root_</sub>
+  - _A taper ratio of one indicates a rectangular aerodynamic surface._
+  - _Reduced taper ratio can improve aerodynamic efficiency and reduce structural weight._
+
+- Sweep Angle (&Phi;): The angle between the chord at a given position and a line perpendicular to the chord
+  - _Increased sweep leads to higher overall speeds due to reduction of the mach number normal to the leading edge_
+  - _Normally close to wing sweep for empennages with a certain delta_
+
+- Dihedral / Anhedral Angle (&nu;): Effects stability
+  - _dihedral angle (positive)_
+  - _anhedral angle (negative)_
+
+### Airfoil selection
+An airfoil defines the cross-sectional shape of an aerodynamic surface. The key characteristics include:
+
+- Camber: Airfoil curvature
+  - _High camber  - generates more lift but comes with increased drag_
+  - _No camber (symmetrical) often used for empennages_
+  - _Chord: Defines the length of the line from leading to trailing edge_
+  - _Thickness to Chord Ratio (t/c): maximum airfoil thickness in relation to its chord length_
+  - _affects lift, drag and cross section_
+
+### Spar Placements
+Spars are the one of the main structural elements inside the empennage to provide strength and rigidity
+
+- _Has effects on the control surface sizes_
diff --git a/docs/documentation/sizing/empennage_design/design-methods.md b/docs/documentation/sizing/empennage_design/design-methods.md
new file mode 100644
index 0000000000000000000000000000000000000000..dbef141d41067aaa1ff7ab55949668c75831c167
--- /dev/null
+++ b/docs/documentation/sizing/empennage_design/design-methods.md
@@ -0,0 +1,34 @@
+# Design methods
+On this page you get information about the methods used to design an empennage
+
+
+## Volume coefficient method
+
+??? danger "Important"
+    This method does not take any stability requirements into account!
+
+
+The volume coefficient method which is used to generate the empennage. It is a classic method by selecting an appropriate volume coefficient where it creates a relation between the reference area and the empennage area.
+
+E.g. the volume coefficient for a conventional tail (vertical stabilizer ($vs$) and horizontal stabilizer ($hs$)) is given for the vertical stabilizer by:
+$$
+    C_{vs} = \frac{S_{vs}\cdot l_{vs}}{S_{ref}\cdot b} \qquad    C_{hs} = \frac{S_{hs}\cdot l_{hs}}{S_{ref}\cdot \overline{c}}
+$$
+
+where:
+
+- $C_{vs}$: Volumecoefficient
+- $S_{ref}$: Wing Reference Area
+- $S_{vs}$: Area vertical stabilizer
+- $b$: Wing span
+- $\overline{c}$: Wing Mac
+- $l_{vs}$: Distance between neutral point of wing and neutral point of vertical stabilizer
+
+This equation is the starting point for determining the geometry of a vertical stabilizer. A crucial part is to determine the root chord and the position of the neutral point of the vertical stabilizer based on it's geometry. In this case to keep the surface of the vertical stabilizer small to reduce the drag of the stabilizer, the leverarm $l_{vs}$ must be maximized. This leads to an root finding problem, when aspect ratio, taper ratio and sweep are predefined based on delta values or factors of the main wing properties.
+
+In this case the root chord is found by a newton algorithm, which maximizes the leverarm $l_{vs}$. As a predefined parameter, the maximum distance from the end of the fuselage most backward point which can be varied by the `rear_x_offset` parameter.
+
+From this point on, the geometry is fixed and the mass is computed by a method from the Flight Optimization System (Flops) which are empirical calculation methods. The spar positions and control device(s) positions can be determined by user in a relative position frame from the configuration file.
+
+!!! note
+    For a conventional tail or T-Tail, empirical volume coefficients are calculated when the volume coefficient of a tail element is set to a value of zero.
diff --git a/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design.png b/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design.png
new file mode 100644
index 0000000000000000000000000000000000000000..f592e3045746280e415ca13f8d882a4c1ba771b3
--- /dev/null
+++ b/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9390c1b3488594d51e4d6f836f09d221ca858f8bbef957f74d068adec6206ce0
+size 232624
diff --git a/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design_change.png b/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design_change.png
new file mode 100644
index 0000000000000000000000000000000000000000..325f0e91a8c0b2ebd24f9534abf29ba369f4025c
--- /dev/null
+++ b/docs/documentation/sizing/empennage_design/figures/Report_page_empennage_design_change.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f162450dc31cfe91d16db75b5b4ffb3691ef09beeec53e90c252a8b46613eb22
+size 225876
diff --git a/docs/documentation/sizing/empennage_design/getting-started.md b/docs/documentation/sizing/empennage_design/getting-started.md
new file mode 100644
index 0000000000000000000000000000000000000000..535094369465e2f42a9f54cd2d065651c8432ef6
--- /dev/null
+++ b/docs/documentation/sizing/empennage_design/getting-started.md
@@ -0,0 +1,171 @@
+# Getting started {#getting-started}
+Welcome to the Empennage Design Tool! This section will guide you through the initial steps to access and begin using the tool.
+This guide gives you a step-by-step overview of the parameters which affects the basic module behavior.
+
+## Method selection
+The main method selection, _which_ empennage shall be designed comes from the _Aircraft Exchange File_. This is defined in the Block `requirements_and_specification` of the _Aircraft Exchange File_.
+
+Here you have a main element which will affect the empennage design inside `design_specification/configuration`:
+
+- `configuration_type`: This defines the aircraft configuration which the wing is build for
+    - `tube_and_wing`
+    - `blended_wing_body`
+
+- `empennage_definition`: This defines what type of empennage shall be designed
+    - for _Tube and Wing_: `conventional` or `t_tail`
+    - for _Blended Wing Body_: `vertical_tails`
+
+
+The configuration file of the Empennage Design tool `empennage\_design_conf.xml`, gives you then more specified parameters to chose which will tailor the empennage to your desire in the `program_settings` Block.
+
+The file comes with mode selectors and associated parameters to set which can vary.
+
+Parameters to chose:
+
+- `design_mode`:
+    - `mode_0: design`: Designs an empennage from scratch
+    - `mode_1: redesign`: Redesigns an existing empennage (not implemented - planned in a future release)
+
+As an example selection:
+
+- `configuration_type` &rarr; `tube_and_wing`
+- `empennage_type` &rarr; `conventional`
+
+This selects a conventional tail for a tube and wing configuration.
+```mermaid
+graph LR;
+  A[Empennage Design] ==> B[Tube and Wing];
+  B==>C[Conventional];
+  B-->E[T-Tail];
+  A-->D[Blended Wing body];
+  D-->F[Vertical Tails];
+  style B stroke-width:4px
+  style C stroke:#0f0, stroke-width:4px
+```
+
+
+Each `empennage_type` will have it's own block to chose parameters from.
+
+!!! note
+    For default values or ranges, you should check the description of the parameters or the allowed ranges inside the configuration file
+
+!!! tip
+    If you are missing some of the terms in here - take a look at [:octicons-arrow-right-16: basic concepts](basic-concepts.md).
+
+
+## Configuration parameters &rarr; General
+In this section you find parameters for an empennage. To keep it simple, a so called ID `tail_element` is part of each existing configuration. It defines basic parts for a classic volume coefficient method (low-fidelity).
+### The Tail Elements parameters (ID Element)
+Each tail element has the following parameter which may differ from empennage type
+
+- `name`: Name of the element
+- `parameter`:
+    - `offset`: Offset in multiple directions (differs for empennage type)
+    - `volume_coefficent`: Associated volume coefficient, if coefficient is set to 0 automatic values are used based on empirical data
+    - `factor_aspect_ratio`: A factor on how to scale the aspect ratio of a part of the empennage according to the wing aspect ratio
+    - `factor_taper_ratio`: A factor on how to scale the taper ratio of a part of the empennage according to the wing aspect ratio
+    - `delta_sweep`: Additional sweep to a part of the empennage according to the wing sweep
+- `profiles`: Tail profile used (root and tip)
+    - `profile`: Tail profile name - ID Element
+- `spars`: Spar for a tail
+    - `spar`: Spar Element - ID Element
+        - `param: name`: Set spar name (e.g. front spar, rear spar etc.)
+        - `param: position`: Set position parameters like chordwise and spanwise position for inner and outer dimension of a spar
+- `control_devices`: Control devices for a tail
+    - `control_device`: Control device Element - ID Element
+        - `param: type`: Sets type of control device (e.g. aileron, rudder, elevator...)
+        - `param: deflection`: Set positive and negative deflection limits
+        - `param: position`: Set position parameters like chordwise and spanwise position for inner and outer dimension of a control device
+
+### Tube and Wing: The Conventional Tail (low fidelity &rarr; Volume Coefficient Method)
+For a conventional tail, two tail elements are required! Here specific parts should be mentioned:
+
+- `tail_element ID="0"`:
+    - `name`: vertical_stabilizer
+    - `offset`: Offset of the vertical stabilizer
+        - `rear_x_offset`: Set offset to between vertical stabilizer at root chord trailing edge to the fuselage end
+        - `centerline_y_offset`: Set offset from the centerline of the fuselage in y direction - should be zero
+        - `centerline_z_offset`: Set offset from the centerline of the fuselage in z direction - should be zero
+- `tail_element ID="1"`:
+    - `name`: horizontal_stabilizer
+    - `offset`: Offset of the horizontal stabilizer
+        - `rear_x_offset`: Set offset to between horizontal stabilizer at root chord trailing edge to the fuselage end
+        - `centerline_y_offset`: Set offset from the centerline of the fuselage in y direction - should be zero
+        - `centerline_z_offset`: Set offset from the centerline of the fuselage in z direction - should be zero
+
+!!! note
+    Control surfaces should be named here according to its usage e.g. horizontal stabilizer has an elevator and vertical stabilizer has a rudder.
+
+!!! danger "Important"
+    The user must be careful! You can choose values in a certain range, however always keep in mind _with great power comes great responsibility!_
+
+
+### Tube and Wing: The T-Tail (low fidelity &rarr; Volume Coefficient Method)
+For a T-tail, two tail elements are required! Here specific parts should be mentioned:
+
+- `tail_element ID="0"`:
+    - `name`: vertical_stabilizer
+    - `offset`: Offset of the vertical stabilizer
+        - `param: rear_x_offset`: Set offset between vertical stabilizer at root chord trailing edge to the fuselage end
+        - `param: centerline_y_offset`: Set offset from the centerline of the fuselage in y direction - should be zero
+        - `param: centerline_z_offset`: Set offset from the centerline of the fuselage in z direction - should be zero
+- `tail_element ID="1"`:
+    - `name`: horizontal_stabilizer
+    - `offset`: Offset of the horizontal stabilizer trailing
+        - `param: rear_x_offset`: Set offset between horizontal stabilizer at root chord trailing edge to the tip chord of the vertical stabilizer trailing edge.
+        - `param: centerline_y_offset`: Set offset from the centerline of the fuselage in y direction - should be zero
+        - `param: centerline_z_offset`: Set offset from the centerline of the fuselage in z direction - should be zero
+
+!!! note
+    Control surfaces should be named here according to its usage e.g. horizontal stabilizer has an elevator and vertical stabilizer has a rudder.
+
+
+!!! danger "Important"
+    The user must be careful! You can choose values in a certain range, however always keep in mind _with great power comes great responsibility!_.
+
+
+
+### Blended Wing Body: The Vertical Tails method (low fidelity &rarr; Volume Coefficient Method)
+For a blended wing body, only one tail element is required! This method is experimental and will only be applyable on the center body, so no checking of values is active to give you freedom to design!
+It will create a tail and it's symmetric partner mirrored on the centerline of the Blended Wing Body. So keep in mind to keep the `offset` section correctly.
+
+- `offset`:
+    - `param: rear_x_offset`: Set offset between vertical stabilizer at root chord trailing edge to the end of the fuselage (center body wing) at specified y offset.
+    - `param: centerline_y_offset`: Set offset from the centerline of the fuselage in y direction - should be NONE zero
+    - `param: centerline_z_offset`: Set offset from the centerline of the fuselage in z direction - should be zero
+
+A copied version will be generated automatically.
+
+!!! warning
+    Do not create a second element on the other side, it will be mirrored automatically.
+
+!!! danger "Important"
+    The user must be careful! You can choose values in a certain range, however always keep in mind _with great power comes great responsibility!_.
+
+
+
+### Mass Calculation methods - general
+_Mass Calculation Methods_
+
+- `mass`: How to calculate the mass methods
+    - `mode_0: flops`: Calculate the empennage mass according to FLOPS (_NASA Flight Optimization System_)
+
+## Additional configurations
+Additionally, one has to define the common airfoil data paths inside the configuration file:
+
+- `common_airfoil_data_paths`: Defines the path, where to look for airfoils - normally a database
+
+## Additional information and requirements
+The methods in the empennage design tool also require additional information on the wing and the fuselage from the requirements and specification block of the _Aircraft Exchange File_.
+
+!!! danger "Important"
+    Keep in mind that the _empennage\_design_ tool generates an empennage as a part of an aircraft. This lets it rely on specific values, e.g. for defining the area inside the fuselage etc. This leads to mandatory items at this point:
+
+    - A specified fuselage - here length and width and height are necessary to determine wing geometry and wing position
+    - Initial Maximum Takeoff Mass (MTOM) - for determination of the wing area necessary based on the wing loading (only if method is selected)
+
+
+Please keep in mind, that the module is still in beta phase and you can gratefully contribute to the
+
+## Next Steps
+The next step is to run the _empennage\_design_ tool. So let's get your empennage from [:octicons-arrow-right-16: Run your first   design](run-your-first-empennage-design.md)
diff --git a/docs/documentation/sizing/empennage_design/index.md b/docs/documentation/sizing/empennage_design/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..67240c12dbf83c6db62c1ce332b428f609c9c188
--- /dev/null
+++ b/docs/documentation/sizing/empennage_design/index.md
@@ -0,0 +1,51 @@
+# Introduction {#mainpage}
+The empennage is an essential part of the aircraft. The _empennage\_design_ tool is one of the core design tools in UNICADO and enables the workflow to design an empennage according to specified requirements and design specifications.
+
+According to the workflow, the tool requires a valid _Aircraft Exchange File_ with inputs from the tools _initial\_sizing_, _fuselage\_design_ and _wing\_design_.
+
+```mermaid
+	flowchart LR
+		A@{ shape: sm-circ } --> B["..."]
+		B --> D@{ shape: rounded, label: "Wing Design"}
+    D --> E@{ shape: rounded, label: "Empennage Design"} --> F["..."]
+
+		style F stroke: none, fill: none
+		style B stroke: none, fill: none
+    style D stroke: #9e0f0f,fill: #9e0f0f
+```
+
+
+## Summary of features
+Here is a quick overview of what the tool is currently capable of including a preview which is planned:
+
+| Configuration     | Empennage Type | Method            |                 Status                  |
+|-------------------|----------------|-------------------|:---------------------------------------:|
+| tube-and-wing     | Conventional   | Volumecoefficient | running :octicons-feed-issue-closed-16: |
+| tube-and-wing     | T-Tail         | Volumecoefficient | running :octicons-beaker-16: |
+| blended-wing-body | Vertical-Tails | Volumecoefficient |    running (experimental)  :octicons-beaker-16:    |
+
+## A User's Guide to Empennage Design
+The _empennage\_design_ tool will help you design various empennages for classical configurations to blended wing body confiugartions. This user documentation will guide you through all necessary steps to understand the tool as well as the necessary inputs and configurations to create a new empennage from scratch.
+
+The following pages will guide you through the process of generating your first empennage within UNICADO:
+
+[:octicons-arrow-right-16: Basic Concepts](basic-concepts.md)  
+[:octicons-arrow-right-16: Getting Started](getting-started.md)  
+[:octicons-arrow-right-16: Design Methods](design-methods.md)  
+[:octicons-arrow-right-16: Design your first empennage](run-your-first-empennage-design.md)
+
+So let's get started!
+
+
+## You are a Developer?
+
+If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO!
+
+The following pages will help you understand the code structure:
+
+[:octicons-arrow-right-16: Prerequisites](prerequisites.md)  
+[:octicons-arrow-right-16: Build the code](../../../get-involved/build-instructions/build/cpp.md)  
+[:octicons-arrow-right-16: Empennage module structure](module-structure.md)  
+[:octicons-arrow-right-16: Method template](method-template.md)
+
+We appreciate it!
diff --git a/docs/documentation/sizing/empennage_design/method-template.md b/docs/documentation/sizing/empennage_design/method-template.md
new file mode 100644
index 0000000000000000000000000000000000000000..dc713ebd182509859e8cc6033c3917c93768438e
--- /dev/null
+++ b/docs/documentation/sizing/empennage_design/method-template.md
@@ -0,0 +1 @@
+> :construction: This site is currently under construction.
\ No newline at end of file
diff --git a/docs/documentation/sizing/empennage_design/module-structure.md b/docs/documentation/sizing/empennage_design/module-structure.md
new file mode 100644
index 0000000000000000000000000000000000000000..dc713ebd182509859e8cc6033c3917c93768438e
--- /dev/null
+++ b/docs/documentation/sizing/empennage_design/module-structure.md
@@ -0,0 +1 @@
+> :construction: This site is currently under construction.
\ No newline at end of file
diff --git a/docs/documentation/sizing/empennage_design/prerequisites.md b/docs/documentation/sizing/empennage_design/prerequisites.md
new file mode 100644
index 0000000000000000000000000000000000000000..dc713ebd182509859e8cc6033c3917c93768438e
--- /dev/null
+++ b/docs/documentation/sizing/empennage_design/prerequisites.md
@@ -0,0 +1 @@
+> :construction: This site is currently under construction.
\ No newline at end of file
diff --git a/docs/documentation/sizing/empennage_design/run-your-first-empennage-design.md b/docs/documentation/sizing/empennage_design/run-your-first-empennage-design.md
new file mode 100644
index 0000000000000000000000000000000000000000..6787ef3aac77ec721f2e73c13802f6c142b7ecd5
--- /dev/null
+++ b/docs/documentation/sizing/empennage_design/run-your-first-empennage-design.md
@@ -0,0 +1,197 @@
+# Design your first empennage {#design-your-first-empennage}
+Let's dive into the fun part. In this guide we will create an empennage for a classic tube and wing configuration with a conventional empennage design method.
+
+[:octicons-arrow-right-16: Requirements:](#requirements) - Information on tool requirements
+
+[:octicons-arrow-right-16: Design parameters:](#design-parameters) - Information on design parameters
+
+[:octicons-arrow-right-16: Tool execution:](#tool-execution) - Tool execution information
+
+[:octicons-arrow-right-16: Reporting](#reporting) - Wing Design tool report information
+
+[:octicons-arrow-right-16: Changing parameters](#changing-parameters) - The fun part! Let's change parameters
+
+[:octicons-arrow-right-16: Troubleshooting](#troubleshooting) - Something went wrong? Maybe you are not the first one!
+
+The empennage will be part of a generic tube and wing aircraft which is a look-a-like A320.
+
+## Requirements
+Therefor we use an _Aircraft Exchange File_ where the tools _initial\_sizing_, _fuselage\_design_ and _wing\_design_ already run.
+
+```mermaid
+	flowchart LR
+		A@{ shape: sm-circ } --> B["..."]
+		B --> D@{ shape: rounded, label: "Wing Design"}
+    D --> E@{ shape: rounded, label: "Empennage Design"} --> F["..."]
+
+		style F stroke: none, fill: none
+		style B stroke: none, fill: none
+    style D stroke: #9e0f0f,fill: #9e0f0f
+```
+
+From the _Aircraft Exchange File_ we have the following information:
+
+From the Requirements block:
+
+Parameter            |         Value
+:--------------------|-------------:
+A/C Type             |         CeraS
+A/C Model            |      SMR-2020
+Configuration Type   | Tube and Wing
+Empennage definition |  conventional
+
+From _initial\_sizing_ tool
+
+Parameter    |           Value
+:------------|---------------:
+MTOM         |        64232 kg
+Wing loading | 619.8444 kg/m^2
+
+Wing Parameters (excerpt):
+
+Parameter | Value
+:----|----:
+Ref. Area | 103.63
+Span  | 32.67
+Aspect Ratio | 10.30
+Taper Ratio | 0.17
+Quarter-Chord Sweep | 27°
+Dihedral | 5°
+
+!!! note
+    Parameters of the fuselage are not listed - however, it has a length of ~37m and a width of ~4m.
+
+
+## Design parameters
+Empennage Design tool parameters for conventional low method
+
+_Design and mass mode_
+
+Parameter     |                    Value
+:-------------|------------------------:
+`design_mode` | `mode_0` &rarr; `design`
+`mass_mode`   |  `mode_0` &rarr; `flops`
+
+_Tail Element `ID = 0`_
+
+Parameter | Value
+:-- | --:
+`name` | `vertical_stabilizer`
+`rear_x_offset`| `1.5m`
+`centerline_y_offset` | `0.0m`
+`centerline_z_offset` | `0.0m`
+`volume_coefficient` | `0.0` &rarr; `automatic determination`
+`factor_aspect_ratio`| `0.2`
+`factor_taper_ratio`| `1.56`
+`delta_sweep` | `12°`
+`profiles` | `((n0012),(n0012))`
+`spars` | `((front_spar,0.0,0.2,0.2, 1.0,0.2,0.2),(rear_spar,0.0,0.6,0.6,1.0,0.6,0.6) `
+`control_devices` | `((rudder, -25°, 25°,0.2,0.7,1.0,0.9,0.7,1.0))`
+
+_Tail Element `ID = 1`_
+
+Parameter | Value
+:-- | --:
+`name` | `horizontal_stabilizer`
+`rear_x_offset`| `1.0m`
+`centerline_y_offset` | `0.0m`
+`centerline_z_offset` | `0.0m`
+`volume_coefficient` | `0.0` &rarr; `automatic determination`
+`factor_aspect_ratio`| `0.53`
+`factor_taper_ratio`| `1.66`
+`delta_sweep` | `5°`
+`profiles` | `((n0012),(n0012))`
+`spars` | `((front_spar,0.0,0.2,0.2, 1.0,0.2,0.2),(rear_spar,0.0,0.6,0.6,1.0,0.6,0.6) `
+`control_devices` | `((elevator, -25°, 25°,0.2,0.7,1.0,0.9,0.7,1.0))`
+
+## Tool execution
+The tool can be executed from console directly if all paths are set (see [:octicons-arrow-right-16: How to run a tool](../../../tutorials/seperate-tool-execution.md)).
+
+We go through the tool output step by step
+```
+*******************************************************************************
+25.11.2024 16:23:36 - Start empennage_design
+25.11.2024 16:23:36 - [MODULE RUNTIMEINFO] - empennage_design
+25.11.2024 16:23:36 -    [CONSOLE  ] - [ON]
+25.11.2024 16:23:36 -    [LOG      ] - [ON]
+25.11.2024 16:23:36 -    [PLOT     ] - [OFF]
+25.11.2024 16:23:36 -       [COPY  ] - [ON]
+25.11.2024 16:23:36 -       [DELETE] - [ON]
+25.11.2024 16:23:36 -    [REPORT   ] - [ON]
+25.11.2024 16:23:36 -    [TEX      ] - [OFF]
+25.11.2024 16:23:36 -    [INFOFILES] - [OFF]
+25.11.2024 16:23:36 -    [GNUPLOT]
+25.11.2024 16:23:36 -       [PATH    ] -
+25.11.2024 16:23:36 -       [FILENAME] - DEFAULT
+25.11.2024 16:23:36 -    [INKSCAPE]
+25.11.2024 16:23:36 -       [PATH    ] -
+25.11.2024 16:23:36 -       [FILENAME] - DEFAULT
+25.11.2024 16:23:36 -    [LOGFILE]
+25.11.2024 16:23:36 -       [PATH    ] -
+25.11.2024 16:23:36 -       [FILENAME] - empennage_design.log
+25.11.2024 16:23:36 -    [IO/ACXML]
+25.11.2024 16:23:36 -       [PATH    ] - ../projects
+25.11.2024 16:23:36 -       [FILENAME] - csmr-2020.xml
+25.11.2024 16:23:36 -    [MODCONFIG]
+25.11.2024 16:23:36 -       [PATH    ] - .
+25.11.2024 16:23:36 -       [FILENAME] - empennage_design_conf.xml
+25.11.2024 16:23:36 - Checking directory... [REPORT]
+25.11.2024 16:23:36 - Checking directory... [TEX]
+25.11.2024 16:23:36 - Checking directory... [HTML]
+25.11.2024 16:23:36 - Checking directory... [LOGFILES]
+```
+To this point, the module is in the top level stage and creates folders and checks the configuration file settings from the control block. Here you can see some common information.
+```
+25.11.2024 16:23:36 - Initializing empennage
+25.11.2024 16:23:36 - Empennage type -> conventional tail (vertical_stabilizer/horizontal_stabilizer)
+25.11.2024 16:23:36 - Checking directory... [AIRFOILDATA]
+25.11.2024 16:23:36 - Running empennage -> conventional tail
+25.11.2024 16:23:36 - Mode active -> Design
+25.11.2024 16:23:36 - Empennage position (x y z) -> 30.4154 0 0.924292
+```
+Afterwards the module progresses and starts with the empennage design. It tells you what empennage type will be designed and which mode is used. Also the position and will be shown (most forward point of the empennage). Afterwards the mass information is given:
+```
+25.11.2024 16:23:36 - Mode active -> Mass computation - FLOPS
+25.11.2024 16:23:36 - Vertical stabilizer mass ... 393.37855570692426
+25.11.2024 16:23:36 - Horizontal stabilizer mass ... 502.10
+25.11.2024 16:23:36 - Empennage mass ... 895.4748333992579
+25.11.2024 16:23:36 - Empennage cog  ... 34.55, 0.00, 3.05
+```
+
+It ends with updating and writing the report
+```
+25.11.2024 16:23:36 - Updating empennage -> conventional tail
+25.11.2024 16:23:36 - Reporting empennage -> conventional tail
+25.11.2024 16:23:40 - CSS code written to style.css successfully.
+25.11.2024 16:23:40 - Finish empennage_design
+```
+
+Let's have a look at it.
+## Reporting
+The HTML report is splitted - on the left half, one can see numerical information of the empennage design. The right side contains plots and visual information.
+
+![Report Page](figures/Report_page_empennage_design.png)
+
+It starts with general information for the vertical stabilizer by section parameters. Then you get information on spars and control devices. It concludes with mass information.
+
+The plot side starts with a general wing planfrom view, followed by the airfoil shape and the thickness and twist distribution
+
+
+## Changing parameters
+Lets change a parameter for the vertical stabilizer &rarr; we reduce the rudder chord length to only 10% of the chord length.
+
+The resulted output in the console will not change, however you see that the rudder area is quite small:
+
+![Report Page after change](figures/Report_page_empennage_design_change.png)
+
+Soo .... Now it is your turn!
+
+!!! tip
+    Start by changing only one parameter at once. There might be interactions with other parameters, so don't rush!
+
+
+## Troubleshooting
+- Tool does not run properly:
+  - Make sure you have all the paths set up correctly and the specified elements exist!
+- Tool is not there:
+  - You can build the tool directly from scratch - see therefor [:octicons-arrow-right-16: How to build a tool](../../../get-involved/build-instructions/build/cpp.md)
\ No newline at end of file
diff --git a/docs/documentation/sizing/fuselage_design/design_method.md b/docs/documentation/sizing/fuselage_design/design_method.md
new file mode 100644
index 0000000000000000000000000000000000000000..045b78e0b758df4264f85faf78beaced90add548
--- /dev/null
+++ b/docs/documentation/sizing/fuselage_design/design_method.md
@@ -0,0 +1,211 @@
+# Calculation method
+
+- [Determination of cabin geometry](#cabin-geometry)
+- [Determination of fuselage geometry](#fuselage-geometry)
+- [Estimation of masses](#mass-estimation)
+- [Generation of fuselage shape](#generate-shape)
+
+!!! note 
+    Currently the tool supports only one fuselage with one payload tube.
+
+## Determine cabin geometry {#cabin-geometry}
+### Cabin width
+The cabin width is estimated using the given class definition.
+
+#### Determine width of seat row per aircraft side
+The width of one seat row/bench $w_{\text{bench}}$ (in inch) can be determined for the left and right side of the aircraft using the following equation:
+$$
+    w_{\text{bench}} = n_{\text{seats}} \cdot w_{\text{seat}} + 2 \cdot w_{\text{armrest}}
+$$
+
+In which
+
+- $n_{\text{seats}}$ - number of seats per seat bench
+- $w_{\text{seat}}$ - seat width (taken from lowest class seat)
+- $w_{\text{armrest}}$ - armrest width (taken from lowest class seat)
+
+#### Calculate cabin width
+The cabin width $w_{\text{cabin}}$ (in inch) can then be calculated:
+$$
+    w_{\text{cabin}} = w_{\text{aisle}} + w_{\text{bench,left}} + w_{\text{bench,right}} + 2 \cdot w_{\text{seat space}}
+$$
+
+In which
+
+- $w_{\text{aisle}}$ - passenger aisle width
+- $w_{\text{seat space}}$ - lowest class seat space
+
+In case of a **wide-body aircraft configuration** there is an additional row in the middle of the aircraft as well as an additional passenger aisle. The width of the seat bench $w_{\text{bench,center}}$ can be calculated using an equation similar to that in the previous section.
+$$
+    w_{\text{bench,center}} = n_{\text{seats}} \cdot w_{\text{seat}} + 2 \cdot w_{\text{armrest,outer}} + (n_{\text{seats}} - 1) \cdot w_{\text{armrest,inner}}
+$$
+
+In which
+
+- $w_{\text{seat}}$ - seat width (from lowest class seat parameters of right side)
+- $w_{\text{armrest,outer}}$ - width of outer armrest (from lowest class seat parameters of right side)
+- $w_{\text{armrest,inner}}$ - width of inner armrest (from lowest class seat parameters of right side)
+
+The equation for the cabin width estimation must be adapted accordingly:
+$$
+    w_{\text{cabin}} = w_{\text{aisle}} + w_{\text{bench,left}} + w_{\text{bench,right}} + 2 \cdot w_{\text{seat space}} + w_{\text{aisle}} + w_{\text{bench,center}}
+$$
+
+### Cabin slenderness ratio <sup>[1]</sup>
+The cabin slenderness ratio describes the ratio of cabin width to cabin length and can be determined using the following equation:
+$$
+    \frac{w_{\text{cabin}}}{l_{\text{cabin}}} = \frac{n_{\text{PAX per class}}}{ab} \cdot \left[ sp + \frac{a_{\text{service}}}{w_{\text{seat}}} + \frac{a_{\text{bulk}}}{\frac{w_{\text{aisle}}}{ab} + w_{\text{seat}}} + x \cdot w_{\text{exit}} \cdot \left( \frac{ab}{n_{\text{PAX per class}}} + \frac{sp}{d_{\text{exits}}} \right)  \right]
+$$
+
+In which
+
+- $x$ - factor (1 for single-aisle, 2 for wide-body)
+- $n_{\text{PAX per class}}$ - number of PAX per class
+- $ab$ - seat abreast
+- $sp$ - seat pitch
+- $a_{\text{service}}$ - service area per PAX
+- $a_{\text{bulk}}$ - bulk area per PAX
+- $w_{\text{exit}}$ - exit width
+- $d_{\text{exits}}$ - maximum distance between two exits
+
+### Cabin length
+Knowing the cabin width and the cabin slenderness ratio, the cabin length (in inch) can be calculated:
+$$
+    l_{\text{cabin}} = \frac{w_{\text{cabin}}}{\frac{w_{\text{cabin}}}{l_{\text{cabin}}}}
+$$
+
+### Cabin wall thickness
+The cabin wall thickness can be estimated using the following calculation:
+$$
+    t_{\text{wall}} = 0.02 \cdot w_{\text{cabin}} + 2.5"
+$$
+
+### Cabin floor thickness
+With the use of the cabin wall thickness, the cabin floor thickness can be calculated:
+$$
+    t_{\text{floor}} = 1.5 \cdot t_{\text{wall}}
+$$
+
+## Determine fuselage geometry {#fuselage-geometry}
+With the calculated cabin the fuselage dimensions can be estimated.
+
+### Fuselage length<sup>[2]</sup>
+The fuselage length can be determined via regression formulas using the cabin length (in meter).
+
+For single-aisle aircraft:
+$$
+    l_{\text{fuselage}} = \frac{l_{\text{cabin}}}{0.23482756 \cdot \log l_{\text{cabin}} - 0.05106017}
+$$
+
+For wide-body aircraft:
+$$
+    l_{\text{fuselage}} = \frac{l_{\text{cabin}}}{0.1735 \cdot \log l_{\text{cabin}} - 0.0966}
+$$
+
+### Fuselage diameters
+The fuselage does not necessarily have a circular cross-section. It is more common to design elliptical cross-sections. Because of that, there are several values that must be determined:
+
+- Fuselage diameter in y-direction
+- Fuselage diameter in negative z-direction
+- Fuselage diameter in positive z-direction
+
+#### Fuselage diameter in y-direction
+The fuselage diameter in y-direction $d_{\text{fuselage,y}}$ can be calculated in the following way:
+$$
+    d_{\text{fuselage,y}} = w_{\text{cabin}} + 2 \cdot t_{\text{wall}}
+$$
+
+#### Fuselage diameter in negative z-direction
+The fuselage diameter in negative z-direction $d_{\text{fuselage,z,neg}}$ is determined by the cargo accommodation. It can be calculated in the following way.
+
+At first, the distance to the cargo bottom is calculated:
+$$
+    d_{\text{to cargo bottom}} = h_{\text{ULD,max}} + t_{\text{floor}} + d_{\text{container to ceil}} + o_{\text{cabin floor}}
+$$
+
+In which
+
+- $h_{\text{ULD,max}}$ - maximum height of unit load device
+- $t_{\text{floor}}$ - floor thickness
+- $d_{\text{container to ceil}}$ - distance from the container to the ceiling
+- $o_{\text{cabin floor}}$ - offset cabin floor
+
+Afterwards, the distance to the lower compartment edge is estimated:
+$$
+    d_{\text{to lower compartment edge}} = d_{\text{container to wall}} + 0.5 \cdot w_{\text{base,max}}
+$$
+In which
+- $d_{\text{container to wall}}$ - distance from container to wall
+- $w_{\text{base,max}}$ - maximum width at container base
+
+Based on the Pythagorean theorem, the inner fuselage diameter (that equals the hypotenuse) can be calculated:
+$$
+    d_{\text{fuselage,z,neg,inner}} = \sqrt{(d_{\text{to cargo bottom}})^2 + (d_{\text{to lower compartment edge}})^2}
+$$
+
+Adding the wall thickness results in the fuselage diameter in negative z-direction:
+$$
+    d_{\text{fuselage,z,neg}} = d_{\text{fuselage,z,neg,inner}} + t_{\text{wall}}
+$$
+
+#### Fuselage diameter in positive z-direction
+The fuselage diameter in positive z-direction $d_{\text{fuselage,z,pos}}$ is determined by the passenger accommodation. It can be calculated in the following way.
+
+Firstly, the inner fuselage height (equals outer cabin height) can be determined:
+$$
+    d_{\text{fuselage,z,pos,inner}} = h_{\text{aisle,standing}} - o_{\text{cabin floor}} + h_{\text{system bay}}
+$$
+
+In which
+
+- $h_{\text{aisle,standing}}$ - passenger aisle standing height
+- $o_{\text{cabin floor}}$ - cabin floor offset
+- $h_{\text{system bay}}$ - system bay height above cabin
+
+Adding the wall thickness leads to the fuselage diameter in positive z-direction.
+$$
+    d_{\text{fuselage,z,pos}} = d_{\text{fuselage,z,pos,inner}} + t_{\text{wall}}
+$$
+
+### Fuselage height
+The total height of the fuselage can be determined by summing up the fuselage diameters in positive and negative z-direction:
+$$
+    h_{\text{fuselage}} = d_{\text{fuselage,z,pos}} + d_{\text{fuselage,z,neg}}
+$$
+
+!!! note 
+    If the `force_circle_cross_section` mode is selected, fuselage height and width are set to the maximum of both.
+
+## Mass estimation {#mass-estimation}
+The following masses are estimated:
+
+- Fuselage structure
+- Operator items
+- Furnishing
+
+Please refer to _Synthesis of Subsonic Airplane Design_ by E. Torenbeek<sup>[3]</sup> and the Certification Specifications<sup>[4]</sup> for further information.
+
+!!! note 
+    All masses are estimated in accordance with the CPACS mass standard.
+<!-- ## Estimate positions and COG -->
+
+## Generate fuselage shape {#generate-shape}
+The fuselage shape is generated using the calculated data and the reference ellipses (see the [getting started](getting_started.md) page for more information). The final geometry is written to the `fuselage_design_ellipses.json` file.
+
+The aircraft is divided into three sections: A cockpit section, followed by a constant section, and the tail section. 
+The steps of the shape generation are basically the same for all aircraft sections:
+
+1. Calculate the section length as a percentage of the fuselage length<sup>*</sup>.
+2. Proportionally adjust the given reference geometry to match the actual geometry using scaling factors. Therefore, separate scaling factors are calculated for
+    - the x-direction (lengthwise),
+    - the y-direction (widthwise), and
+    - the z-directions (upper and lower heights).
+3. Calculate new coordinates as well as ellipses for visualization purposes.
+
+<sup>*</sup> The length of the constant section is determined by subtracting the length of the cockpit and the tail section from the entire fuselage length.
+
+___
+<sup>[1]</sup> Prof. Dr.-Ing. Juergen Thorbeck TU Berlin (2006), Script "Flugzeugentwurf I und II" chapter A.<br>
+<sup>[2]</sup> M.Sc. Andreas Gobbin (2015), Master Thesis "Numerische Modellierung des Auslegungsprozesses für Passagierkabinen von Verkehrsflugzeugen unter Berücksichtigung der wichtigsten Auslegungsforderungen und Implementierung in MatLab".<br>
+<sup>[3]</sup> Egbert Torenbeek, Synthesis of Subsonic Airplane Design (1982), Delft University Press.<br>
+<sup>[4]</sup> European Union Aviation Safety Agency (2024),  CS-25 Large Aeroplanes - Amendment 28.
\ No newline at end of file
diff --git a/docs/documentation/sizing/fuselage_design/getting_started.md b/docs/documentation/sizing/fuselage_design/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..ce1373f473346b76e4d452af02eba713c79e53c1
--- /dev/null
+++ b/docs/documentation/sizing/fuselage_design/getting_started.md
@@ -0,0 +1,232 @@
+# Getting started
+This section will guide you through the necessary steps to get the _fuselage\_design_ module up and running. It contains information on tool requirements and design parameters.
+
+- [Design method selection](#design-method-selection) - How to set the design method?
+- [Aircraft exchange file](#aircraft-exchange-file) - Get information on necessary parameters from the _acXML_.
+- [Module configuration file](#module-configuration-file) - Dive into fuselage design specific parameters.
+- [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running?
+- [Next steps](#next-steps) - How to proceed?
+
+!!! note 
+    It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries.
+
+Generally, we use two files to set or configure modules in UNICADO:
+
+- The aircraft exchange file (or _acXML_) includes
+    - data related inputs (e.g., configuration type) and
+    - data related outputs (e.g., component design data).
+- The module configuration file `fuselage_design_conf.xml` (also _configXML_) includes
+    - control settings (e.g., enable/disable generating plots) and
+    - program settings (e.g., information on cargo and passenger accommodation).
+
+In the following sections you will find more information on how to configure these files to suit your needs.
+
+## Design method selection {#design-method-selection}
+The calculation method is automatically chosen based on the following data from the aircraft exchange and module configuration file:
+
+Parameter            | File          | Example <sup>*</sup>      |
+:--------------------|---------------|:--------------------------|
+Configuration type   | _acXML_       | tube_and_wing             |
+Calculation fidelity | _configXML_   | empirical                 |
+Method name          | _configXML_   | fuselage_design_tu_berlin |
+Energy carrier type  | _acXML_       | kerosene                  |
+
+<sup>*</sup> This example defines a generic short and medium range tube-and-wing aircraft.
+
+Thus, it must be ensured that this data is available. More information on required data can be found in the following sections.
+
+## Aircraft exchange file requirements {#aircraft-exchange-file}
+_fuselage\_design_ can be single executed without the execution of any other module. The only prerequisite is a complete `requirements_and_specifications` block in the aircraft exchange file.
+
+<!-- To single execute the _fuselage\_design_ module, we need an _acXML_ file that already contains the output data from the following tools:
+- _module\_name_
+- ... -->
+
+The following data should be available in the _acXML_ (2. and 3. are optional):
+
+1. Requirements and specifications
+    - Design specification
+        - Configuration information
+            - Configuration type
+            - Fuselage definition: Fuselage type, fuselage pressurization
+            - Undercarriage definition: Main gear mounting
+            - Wing definition: Wing mounting
+        - Transport task
+            - Cargo definition: Additional cargo mass, cargo density
+            - Passenger class definition: Class distribution
+            - Passenger definition: Total number passengers, luggage mass per passenger
+            - Multi-passenger deck layout information
+        - Energy carrier(s)
+        - Propulsion: Positioning of propulsor element(s)
+    - Requirements
+        - Top level aircraft requirements: Range
+2. Analysis
+    - Mission: Flight time of design mission
+    - Masses, CG, inertia
+        - Maximum takeoff mass
+        - Most afterward mass: COG position
+        - Most forward mass: COG position
+3. Component design: Geometrical data of
+    - Tank: Additional fuselage length
+    - Wing
+        - Position
+        - Information for wing sections
+            - (Name)
+            - (Position)
+            - Chord origin
+            - Chord length
+    - Global reference point position
+
+!!! note 
+    When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway.
+
+## Module configuration file {#module-configuration-file}
+The _configXML_ is structured into two blocks: the control and program settings.
+
+The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least
+
+- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings,
+- the `console_output` at least to `mode_1`, and
+- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`).
+
+!!! note 
+    If the tool is executed via the workflow, those settings are set by the workflow settings.
+
+The program settings are structured like this (descriptions can be found in the `fuselage_design_conf.xml`):
+
+```plaintext
+Program Settings
+|- Program mode
+|  | - Setting use existing geometry
+|  |  | - Path to existing geometry_file
+|  |  | - Use as starting point
+|- Configuration (ID="tube_and_wing")
+|  |- Fidelity name
+|  |- Method name
+|  |- Fidelity (ID="empirical")
+|  |  |- Fuselage design tu berlin
+|  |  |  |- General
+|  |  |  |  |- Flight attendant mass
+|  |  |  |  |- Flight crew member mass
+|  |  |  |  |- Force circular cross section
+|  |  |  |  |- High density seat pitch
+|  |  |  |  |- Length of flight deck
+|  |  |  |  |- Mass technology factors
+|  |  |  |  |  |- Fuselage structural mass technology factor
+|  |  |  |  |- Name of fuselage
+|  |  |  |  |- On board service load
+|  |  |  |  |  |- PAX per full size trolley long range
+|  |  |  |  |  |- PAX per full size trolley medium range
+|  |  |  |  |  |- PAX per full size trolley short range
+|  |  |  |  |  |- PAX per full size trolley regional range
+|  |  |  |  |- Sizing mode
+|  |  |  |  |  |- Setting use existing fuselage
+|  |  |  |  |  |  |- Name of existing geometry file
+|  |  |  |  |  |  |- Use as starting point
+|  |  |  |  |- System bay height above cabin
+|  |  |  |- Specific
+|  |  |  |  |- Cabin floor offset
+|  |  |  |  |- Cargo accommodation
+|  |  |  |  |  |- ULD type
+|  |  |  |  |  |  |- Container
+|  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |- Use specific number of LD container
+|  |  |  |  |  |  |  |  |- Specific number of LD container
+|  |  |  |  |  |  |- Pallet
+|  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |- Use specific number of cargo pallet
+|  |  |  |  |  |  |  |  |- Specific number of cargo pallet
+|  |  |  |  |  |- Use internal bulk area
+|  |  |  |  |  |  |- Specific internal bulk area
+|  |  |  |  |- Dead end cabin arrangement
+|  |  |  |  |  |- Dead end cabin arrangement in front
+|  |  |  |  |  |- Dead end cabin arrangement in aft
+|  |  |  |  |- Exit definition
+|  |  |  |  |  |- Auto-select exit types
+|  |  |  |  |  |  |- Select specific exit types
+|  |  |  |  |  |  |  |- Exit (ID="0")
+|  |  |  |  |  |- Plus certification allowed
+|  |  |  |  |- Fuselage frame distance
+|  |  |  |  |- Passenger accommodation
+|  |  |  |  |  |- Divider definition
+|  |  |  |  |  |  |- Set divider automatically
+|  |  |  |  |  |  |- Use soft divider
+|  |  |  |  |  |  |  |- Hard divider thickness
+|  |  |  |  |  |  |- Divider width
+|  |  |  |  |  |  |  |- Set divider width automatically
+|  |  |  |  |  |  |  |- Specific class divider width  
+|  |  |  |  |  |- Galley definition
+|  |  |  |  |  |  |- Use specific number of full size trolleys
+|  |  |  |  |  |  |  |- Specific number of full size trolleys
+|  |  |  |  |  |  |- Use specific number of half size trolleys
+|  |  |  |  |  |  |  |- Specific number of half size trolleys
+|  |  |  |  |  |  |- Use specific number of standard units
+|  |  |  |  |  |  |  |- Specific number of standard units
+|  |  |  |  |  |- In-flight entertainment
+|  |  |  |  |  |  |- Use in-flight entertainment
+|  |  |  |  |  |- Passenger classes
+|  |  |  |  |  |  |- Class (ID="0")
+|  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |- Abreast
+|  |  |  |  |  |  |  |- Seats
+|  |  |  |  |  |  |  |  |- Seat on left side
+|  |  |  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |  |  |- Seat pitch
+|  |  |  |  |  |  |  |  |- Seat on right side
+|  |  |  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |  |  |- Seat pitch
+|  |  |  |  |  |  |  |  |- Seat in the center
+|  |  |  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |  |  |- Seat pitch
+|  |  |  |  |  |  |  |- Seat space
+|  |  |  |  |  |  |  |- Lavatories
+|  |  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |  |- PAX per lavatory
+|  |  |  |  |  |  |  |  |- Use specific number of class lavatories
+|  |  |  |  |  |  |  |  |  |- Specific number of class lavatories
+|  |  |  |  |  |  |  |- Wardrobe
+|  |  |  |  |  |  |  |  |- Use wardrobe for passenger class
+|  |  |  |  |  |  |  |  |  | - Space per passenger
+|  |  |  |  |- Passenger aisle
+|  |  |  |  |  |- Width
+|  |  |  |  |  |- Standing height
+|  |  |  |  |  |- Standing height seat row
+```
+
+## Additional requirements {#additional-requirements}
+
+### Fuselage design library
+The fuselage design library contains files that are necessary to generate a valid fuselage and cabin design.
+
+#### Reference ellipses
+The reference aircraft ellipses are used to create the outer shape of the aircraft.
+There are reference ellipses for the following sections:
+
+- Cockpit section
+- Constant section
+- Tail sections
+
+Furthermore, there is data for the reference diameter and information on scaling factors.
+
+#### Accommodation definitions
+The `accommodation_definitions.xml` file contains information on the passenger and cargo definition for the following categories:
+
+- Cabin interior such as seats, galleys, trolleys, lavatories, and wardrobes as well as respective masses
+- Cargo accommodation such as containers or pallets
+- Emergency slides
+- Safety equipment masses
+
+#### Fuselage design certification requirements
+The `fuselage_design_cs_requirements.xml` file contains necessary design requirements regarding the following topics:
+
+- Emergency exit definition and positioning (according to CS-25.807ff)
+- Cabin design specifications such as the aisle dimensions and cross aisle overlaps (according to CS-25.807ff)
+- Container arrangement
+- Maximum number of PAX per flight attendant
+- Maximum crew duty time
+
+!!! note 
+    Please do not change any values that are set in accordance with the CS-25. Otherwise compliance of the design with the certification requirements cannot be guaranteed.
+
+## Next steps {#next-steps}
+The next step is to [run the _fuselage\_design_ module](run_your_first_design.md).
\ No newline at end of file
diff --git a/docs/documentation/sizing/fuselage_design/index.md b/docs/documentation/sizing/fuselage_design/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..b470af3b9b33012e55f30d758bc82499eaf73e11
--- /dev/null
+++ b/docs/documentation/sizing/fuselage_design/index.md
@@ -0,0 +1,42 @@
+# Introduction {#mainpage}
+The _fuselage\_design_ module is your go-to tool in the UNICADO sizing loop for all things aircraft fuselage! From sculpting the cockpit section to shaping the constant and tail section, this module handles it all with precision and flexibility. Need parametric ellipses for those fuselage cross-sections? Done. Want to adapt to a unique aircraft configuration? No problem! Ok, you got me... coming soon. :soon:
+
+Seamlessly integrated into the design workflow, _fuselage\_design_ empowers you to create efficient, certifiable fuselage geometries — all while keeping your design process smooth and adaptable.
+
+## Summary of features
+Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned:
+
+Configuration     | Energy carrier   | Fidelity  | Methods   | Status                               |
+------------------|------------------|-----------|-----------|:------------------------------------:|
+Tube-and-wing     |Kerosene          |Empirical  |TUB        |running :white_check_mark:      |
+Tube-and-wing     |Liquid hydrogen   |Empirical  |TUB        |? |
+Blended-wing-body |...               |...        |...        |under development :construction:|
+
+## A user's guide to fuselage design
+The _fuselage\_design_ tool is your key to designing the aircraft's fuselage. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a fuselage design from the ground up.
+The following sections will walk you through the process:
+
+- [Getting started](getting_started.md)
+- [Run your first fuselage design](run_your_first_design.md)
+
+For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections:
+
+- A [method description](design_method.md) and
+- a [software architecture](software_architecture.md)
+section.
+
+Ready to dive in? Let’s get started! :airplane:
+
+
+<!-- ## You are a Developer?
+If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO!
+
+The following pages will help you understand the code structure:
+
+- [Prerequisites](prerequisites.md)
+- [Build the code](build-the-code.md)
+- [Tank design module structure](wing-module-structure.md)
+- [Available methods](available-methods.md)
+- [Method template](method-template.md)
+
+We appreciate it! -->
\ No newline at end of file
diff --git a/docs/documentation/sizing/fuselage_design/run_your_first_design.md b/docs/documentation/sizing/fuselage_design/run_your_first_design.md
new file mode 100644
index 0000000000000000000000000000000000000000..f29d05baab25f3a5218c36ff66928030234794d2
--- /dev/null
+++ b/docs/documentation/sizing/fuselage_design/run_your_first_design.md
@@ -0,0 +1,145 @@
+# Design your first fuselage
+Let's dive into the fun part and design a fuselage!
+
+## Tool single execution
+The tool can be executed from the console directly if all paths are set. The following will happen:
+
+- [Console output](#console-output)
+- [Generation of reports and plots](#reporting)
+- [Writing output to aircraft exchange file](#acxml)
+- [Writing geometry data to .json file](#geometry-data)
+
+Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices.
+Also, if you need some additional information on the underlying methodology, check out the page on the [fuselage design method](design_method.md).
+
+So, feel free to open the terminal and run `python.exe fuselage_design.py` to see what happens...
+
+### Console output {#console-output}
+Firstly, you see output in the console window. Let's go through it step by step...
+
+```
+2024-11-11 17:34:30,743 - PRINT - Fuselage design started...
+2024-11-11 17:34:30,803 - PRINT - Import of fuselage design cs requirements xml-file and accommodation definition xml-file successfully.
+2024-11-11 17:34:30,805 - PRINT - Current iteration of fuselage design is: 1
+```
+To this point, the module started, found the required XML files and printed the iteration counter.
+
+```
+2024-11-11 17:34:30,812 - PRINT - Total length of fuselage is: 37.0553 meter.
+2024-11-11 17:34:30,812 - PRINT - Total width of fuselage is: 3.968 meter.
+2024-11-11 17:34:30,813 - PRINT - Total height of fuselage is: 4.1425 meter.
+```
+Afterwards, the fuselage design starts and prints values for the whole fuselage.
+
+```
+2024-11-11 17:34:30,813 - PRINT - Total length of cabin is: 26.6847 meter.
+2024-11-11 17:34:30,813 - PRINT - Total width of cabin is: 3.6932 meter.
+2024-11-11 17:34:30,813 - PRINT - Wall thickness of cabin is: 0.1374 meter.
+2024-11-11 17:34:30,813 - PRINT - Floor thickness of cabin is: 0.2062 meter.
+2024-11-11 17:34:30,814 - PRINT - Fuselage design successful after 1 iterations!
+```
+The tool continues with the print of cabin parameters and the information that the fuselage design was successful after one iteration.
+
+```
+2024-11-11 17:34:32,356 - PRINT - Plots for fuselage design are successfully generated and saved.
+2024-11-11 17:34:32,356 - PRINT - Moin! This is the "method_html_report" function from the fuselage_design tool speaking... [Imagine fancy reports are generated here (you can find me in the "methodhtmlreport.py" file).]
+2024-11-11 17:34:32,359 - PRINT - Method-specific data are written to 'fuselage_design_results.xml'...
+2024-11-11 17:34:32,371 - PRINT - Moin! This is the "method_tex_output" function from the fuselage_design tool speaking... [Imagine fancy reports are generated here (you can find me in the "methodtexoutput.py" file).]
+2024-11-11 17:34:32,372 - PRINT - Fuselage design finished.
+```
+Finally, you receive information about the reports and plots created (depending on your settings) and the tool is successfully completed.
+
+### Reporting {#reporting}
+In the following, a short overview is given on the generated reports:
+
+- A `fuselage_design.log` file is written within the directory of the executable
+- Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file:
+    - an HTML report in the `report_html` folder
+    - a TeX report in the `report_tex` folder (not implemented yet)
+    - an XML file with additional output data in the `report_xml` folder
+    - plots in the `plots` folder
+
+### Write data to the aircraft exchange file {#acxml}
+!!! note 
+    The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool!
+
+Results are saved in the aircraft exchange file at the `/aircraft_exchange_file/component_design/fuselage` node. The following information is written to the _acXML_:
+```plaintext
+Aircraft exchange file
+|- Component design
+|  |- Fuselage
+|  |  |- Position*
+|  |  |- Mass properties**
+|  |  |- Specific
+|  |  |  |- Geometry
+|  |  |  |  |- Fuselage (ID="0")
+|  |  |  |  |  |- Name
+|  |  |  |  |  |- Position*
+|  |  |  |  |  |- Direction*
+|  |  |  |  |  |- Mass properties**
+|  |  |  |  |  |- Sections
+|  |  |  |  |  |  |- Section (ID="0")
+|  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |- Section shape
+|  |  |  |  |  |  |  |- Origin*
+|  |  |  |  |  |  |  |- Upper height
+|  |  |  |  |  |  |  |- Lower height
+|  |  |  |  |  |  |  |- Width
+|  |  |  |  |  |- Number of required cabin crew
+|  |  |  |  |  |- Number of required flight crew
+|  |  |  |  |  |- Mass breakdown
+|  |  |  |  |  |  |- Fuselage structure
+|  |  |  |  |  |  |  |- Component mass (ID="0")
+|  |  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |  |- Mass
+|  |  |  |  |  |  |- Fuselage furnishing
+|  |  |  |  |  |  |  |- Component mass (ID="0")
+|  |  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |  |- Mass
+|  |  |  |  |  |  |- Fuselage operator items
+|  |  |  |  |  |  |  |- Component mass (ID="0")
+|  |  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |  |- Mass
+|  |  |  |  |  |- Fuselage accommodation
+|  |  |  |  |  |  |- Position*
+|  |  |  |  |  |  |- Mass properties
+|  |  |  |  |  |  |- Payload tube (ID="0")
+|  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |- Payload tube reference points
+|  |  |  |  |  |  |  |  |- Front reference points
+|  |  |  |  |  |  |  |  |  |- x
+|  |  |  |  |  |  |  |  |  |- y
+|  |  |  |  |  |  |  |  |  |- z
+|  |  |  |  |  |  |  |  |  |- Upper z
+|  |  |  |  |  |  |  |  |  |- Lower z
+|  |  |  |  |  |  |  |  |- Aft reference points
+|  |  |  |  |  |  |  |  |  |- (see 'Front reference points')
+|  |  |  |  |  |  |  |- Payload tube wall reference points
+|  |  |  |  |  |  |  |  |- Front reference points
+|  |  |  |  |  |  |  |  |  |- x
+|  |  |  |  |  |  |  |  |  |- Left y
+|  |  |  |  |  |  |  |  |  |- Right y
+|  |  |  |  |  |  |  |  |  |- z
+|  |  |  |  |  |  |  |  |- Aft reference points
+|  |  |  |  |  |  |  |  |  |- (see 'Front reference points')
+|  |  |  |  |  |  |  |- Payload tube structural wall thickness
+|  |  |  |  |  |  |  |- Payload tube water volume
+|  |  |  |  |  |  |  |- Payload decks
+|  |  |  |  |  |  |  |  |- Payload deck (ID="0")
+|  |  |  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |  |  |- Position*
+|  |  |  |  |  |  |  |  |  |- Payload deck structural floor thickness
+|  |  |  |  |  |  |  |  |  |- Payload deck water volume
+|  |  |  |  |  |  |  |  |  |- Payload deck length
+|  |  |  |  |  |  |  |  |  |- Payload deck required galley power 
+```
+
+<sup>*</sup> Node has been shortened. It contains the following sub-nodes: x, y, z
+
+<sup>*</sup> Node has been shortened. It contains sub-nodes with information on the mass, inertia, and center of gravity.
+
+### Write geometry data to .json file {#geometry-data}
+The calculated geometry data is written to the `fuselage_design_ellipses.json` file and can then be used if the `use_existing_geometry` flag is set to `true`.
+
+## Troubleshooting {#troubleshooting}
+- The tool does not run properly? *Make sure you have all the paths set up correctly and the specified elements exist.*
diff --git a/docs/documentation/sizing/fuselage_design/software_architecture.md b/docs/documentation/sizing/fuselage_design/software_architecture.md
new file mode 100644
index 0000000000000000000000000000000000000000..4c59c73cfb3028d3f7c62ff82b4e39b698c7612c
--- /dev/null
+++ b/docs/documentation/sizing/fuselage_design/software_architecture.md
@@ -0,0 +1,2 @@
+# Software architecture
+This site is currently under development. :construction:
\ No newline at end of file
diff --git a/docs/documentation/sizing/index.md b/docs/documentation/sizing/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..1b24fab2263a9cc4e428fb4e63b88717dd3eaa18
--- /dev/null
+++ b/docs/documentation/sizing/index.md
@@ -0,0 +1,127 @@
+---
+title: Sizing
+summary: Overview of the sizing modules of aircraftDesign repository
+authors:
+    - Sebastian Oberschwendtner
+    - Kristina Mazur
+date: 2024-11-28
+glightbox: false
+---
+# Sizing Tools
+The sizing tools design and estimate aircraft parameters.
+They mainly change the dimensions of the aircraft and systems.
+The following sizing tools are available:
+
+---
+
+## Create mission XML
+![Icon](site:assets/images/documentation/create-mission.png){.overview-img  align=left}
+The **create_mission_XML** is the third module of the UNICADO tool chain.
+Its purpose is to set up the overall flight mission including e.g. a flight segment table, speed and altitude schedules, number of passengers (PAX), total payload or the engine warm up time.
+For the user, possible changes in the module run configuration can be made in the related create_mission_xml_conf.xml file.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](create_mission_xml/index.md)|
+
+---
+
+## Empennage design
+![Icon](site:assets/images/documentation/empennage-sizing.png){.overview-img  align=left}
+The **empennage_design** module calculates characteristic parameter of the empennage of the aircraft.
+It takes takes the controllability as wells as the static margin of the aircraft into account and sizes the empennage accordingly.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](empennage_design/index.md)|
+
+---
+
+## Fuselage design
+![Icon](site:assets/images/documentation/fuselage-design.png){.overview-img align=left}
+The **fuselage_design** module calculates characteristic parameters and generates the passenger cabin and fuselage layout for the entire aircraft project.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](fuselage_design/index.md)|
+
+---
+
+## Initial sizing
+![Icon](site:assets/images/documentation/initial-sizing.svg){.overview-img  align=left}
+The module **initial_sizing** is used to determine a design chart regarding Top Level Aircraft Requirements and Certification Specification Requirements.
+The wing-loading ($\frac{W}{S}$) and thrust to weight ratio ($\frac{T}{W}$) can be derived as the design point for further modules from the Design Chart.
+Furthermore an initial estimation of the takeoff mass is done.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](initial_sizing/index.md)|
+
+---
+
+## Landing gear design
+![Icon](site:assets/images/documentation/landing-gear-design.svg){.overview-img  align=left}
+The **landing_gear_design** module calculates characteristic parameters for the landing gear of entire aircraft project.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](landing_gear_design/index.md)|
+
+---
+
+## Propulsion design
+![Icon](site:assets/images/documentation/propulsion-design.svg){.overview-img  align=left}
+The **propulsion_design** module designs, integrates and analyzes the propulsion system to the aircraft.
+It uses engine performance deck containing serval parameters (like thrust, fuel-flow, ...) as a function of the flight Mach number and the altitude.
+The engine will be scaled by the module to match the specific thrust requirements.
+Moreover, an engine bucket curve and several engine deck plots can be created.
+Additionally, the propulsion is integrated in relation to the user settings (e.g. integration of the propulsion on the wing or fuselage, ...).
+Depending on the location of the integration, the tool calculates the nacelle and pylon geometry.
+Also the mass properties are analyzed.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](propulsion_design/index.md)|
+
+---
+
+## Systems design
+![Icon](site:assets/images/documentation/systems-design.png){.overview-img  align=left}
+The **systems_design** is part of the tool chain in the UNICADO aircraft design environment.
+It dimensions ATA chapter systems in terms of mass and energy requirement divided by hydraulic- electric- and bleed air energy requirement.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](systems_design/index.md)|
+
+---
+
+## Tank design
+![Icon](site:assets/images/documentation/hydrogen-tank.svg){.overview-img  align=left}
+The **tank_design** module performs calculations regarding the tank. For kerosene tanks, the maximum fuel capacity of the aircraft is determined by using its geometry. Liquid hydrogen tanks will be sized according to the required amount of fuel.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-python: |GPLv3|[Link](tank_design/index.md)|
+
+---
+
+## Wing design
+![Icon](site:assets/images/documentation/wing-design.svg){.overview-img  align=left}
+The **wing_design** module calculates characteristic parameter of the aircraft main wing.
+{.overview-item}
+
+|Module Version|Language|License|Documentation|
+|:---:|:---:|:---:|---|
+|0.5.0|:simple-cplusplus: |GPLv3|[Link](wing_design/index.md)|
+
+---
+
diff --git a/docs/documentation/sizing/initial_sizing/changelog.md b/docs/documentation/sizing/initial_sizing/changelog.md
new file mode 100644
index 0000000000000000000000000000000000000000..2e8daec65cae8c5d7d06d2fbbb94c1d9b5034649
--- /dev/null
+++ b/docs/documentation/sizing/initial_sizing/changelog.md
@@ -0,0 +1,21 @@
+# Changelog {#changelog}
+## v3.0.0
+The *v3.0.0* release is a **major** release with many changes including the *modularization*.
+
+
+### Changes
+The following changes are introduced:
+
+- The empty mass fraction is determined by a new method which was derived from data of modern airliners
+
+### Bugfixes
+During the development of this release the following bugs were found and fixed:
+
+
+
+### Changes in the CSR designs
+The implemented changes and bugfixes lead to the following changes in the results of the CSR designs.
+!!! note 
+    Only changes which exceed a 10 % change are listed.
+
+
diff --git a/docs/documentation/sizing/initial_sizing/figures/sizing_chart.svg b/docs/documentation/sizing/initial_sizing/figures/sizing_chart.svg
new file mode 100644
index 0000000000000000000000000000000000000000..bbf67df77a6545c7af514bc392b2216ffb24107e
--- /dev/null
+++ b/docs/documentation/sizing/initial_sizing/figures/sizing_chart.svg
@@ -0,0 +1,60 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   version="1.1"
+   id="svg1"
+   width="781.59998"
+   height="668.79999"
+   viewBox="0 0 781.59998 668.79999"
+   sodipodi:docname="sizing_chart.svg"
+   inkscape:version="1.4 (86a8ad7, 2024-10-11)"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns:xlink="http://www.w3.org/1999/xlink"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <defs
+     id="defs1" />
+  <sodipodi:namedview
+     id="namedview1"
+     pagecolor="#ffffff"
+     bordercolor="#666666"
+     borderopacity="1.0"
+     inkscape:showpageshadow="2"
+     inkscape:pageopacity="0.0"
+     inkscape:pagecheckerboard="0"
+     inkscape:deskcolor="#d1d1d1"
+     inkscape:zoom="1.1707536"
+     inkscape:cx="390.34687"
+     inkscape:cy="334.4"
+     inkscape:window-width="1920"
+     inkscape:window-height="1001"
+     inkscape:window-x="1911"
+     inkscape:window-y="-9"
+     inkscape:window-maximized="1"
+     inkscape:current-layer="g1" />
+  <g
+     inkscape:groupmode="layer"
+     inkscape:label="Image"
+     id="g1">
+    <image
+       width="781.59998"
+       height="668.79999"
+       preserveAspectRatio="none"
+       style="image-rendering:optimizeQuality"
+       xlink:href="&#10;BwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwM&#10;DAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCANEA9EDASIA&#10;AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA&#10;AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3&#10;ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm&#10;p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA&#10;AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx&#10;BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK&#10;U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3&#10;uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK&#10;KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo&#10;AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA&#10;ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi&#10;iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK&#10;KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo&#10;AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsvxP410jwWLD+19TsNM/tS8TT7P7VcJD9quHD&#10;FIk3EbnIViFHJ2njitSv52P+DqD/AIK761pP7WHhD4a/DvXbizPwv1K312+ktriaPZqkSy+UcrtB&#10;HlXI+6T9e1AH9EwO4ZFLXz1/wS5/bU0f9vj9ijwX8Q9KnEj6haNb3cZZi8c0E0ls5bcqt8zQseR3&#10;6nrX0LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU&#10;AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA&#10;UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR&#10;RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF&#10;FABRRRQAUUUUAFFFFABRRRQBR8SLqTaHcDSGsk1Lb+4a8VmgDZH3gpDYxnoa/mF/4KBf8Gzfxw+H&#10;fxR8BeIvG/xY8BeI9b+NnxA07wPHcwR3pNvd3cE7RzymRMmNVtSDgluRgV/URXxT/wAFl/8AkYP2&#10;Pf8As47wz/6RapQB5n/wQV/4JCfGX/gkrY+KNA8X/EHwX4v8Ia80U0Frpsd4JrKRPNPyeYFQKzSs&#10;W4JJx0r9IqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK&#10;ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA&#10;KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii&#10;igAooooAKKKKACiiigAooooAKKKKACvin/gsv/yMH7Hv/Zx3hn/0i1Svtavin/gsv/yMH7Hv/Zx3&#10;hn/0i1SgD7WooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArjf2g/jBb/AL4M6/4wu4GubfQrcTy&#10;RL1cF1X/ANmrsq8K/wCCmH/JifxI/wCwav8A6Ojr0smw0MRmFDD1fhnOKfo5JM8jiDF1MLleJxVH&#10;SUKc5L1UW1+Jc/Yp/bJ079s3wdrGr6bYS2EekXi2bq5J3EoHz+te018Ff8EDf+SG+Of+w7H/AOk6&#10;19616fGOW0Mvzmvg8MrQg0l16JnjcAZvic04fw2PxjvUmm27W+01t8gooor5o+wCiiigAooooAKK&#10;KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo&#10;oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqpreu2nhvTnu764jtraLG+RzwuSB/&#10;MigC3RXIj49eDiuf+Eg0/H+8f8KT/hfng7/oYdP/AO+j/hQB19FYHhv4oeH/ABfffZtM1W1vJ8Z2&#10;Rkk4rfoAKKKKACiiigAorA8ZfFHw/wDD0p/bWq2uneZynnMRurDH7TngEoT/AMJTpeB1O8/4UAd3&#10;RXB/8NPeAP8AoatK/wC+z/hR/wANPeAP+hq0r/vs/wCFAHeUVwf/AA094A/6GrSv++z/AIUf8NPe&#10;AP8AoatK/wC+z/hQB3lFcH/w094A/wChq0r/AL7P+FH/AA094A/6GrSv++z/AIUAd5RXJ+Gfjp4R&#10;8ZaoLLS9fsL27YZEUbEseCfT2NdZQAUUVk+DfHGk/ELQ49S0W/g1GxlLKk0JyrFWKn8mUj8KANai&#10;iigAr4p/4LL/APIwfse/9nHeGf8A0i1Svtavin/gsv8A8jB+x7/2cd4Z/wDSLVKAPtaiiigAoorP&#10;svFenalrU+nQXcUt7bLulhU/MgyBk/mPzrGriaNKUY1ZKLk7K7Su+y7vyRcac5JuKvbfyNCiiiti&#10;AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC&#10;iiigAooooAKKKKACiiigArwr/gph/wAmJ/Ej/sGr/wCjo691rwr/AIKYf8mJ/Ej/ALBq/wDo6OvZ&#10;4c/5G2F/6+Q/9KR8/wAW/wDIjxv/AF6qf+kM+f8A/ggb/wAkN8c/9h2P/wBJ1r71r4K/4IG/8kN8&#10;c/8AYdj/APSda+9a9vxE/wCSjxX+Jf8ApKPm/Cf/AJJLBf4X/wClSCiiiviz9ECiiigAooooAKKK&#10;KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo&#10;AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArwD/AIKJeGdL8W/BqCy1ld+myXSecnmt&#10;EG/eRkZZSD1A717/AF8+f8FH/wDkhQ/6+ov/AEdFQB3I/ZB+HQH/ACLcf/gZcf8Axyj/AIZB+HP/&#10;AELcf/gZcf8AxyvSqKAPmLUv2Ovh54j+Nms2Nro0ml6lbQwSWt/De3DNbN5WQwQybTyBwQRxWjJ4&#10;k+K37MMgXU7Wf4i+EYfkS4srYvqltGvyqPJijVCB8mSW6Bj2r0nSdFeH9oTV73I2TQQgD0xFiu81&#10;P/kG3GQCPLbgjrwaAPJfDP7d3w08UaL9sj8QWlqUbZLb3NxDHPbvgEq6bztYZGQanvv24fhlptlL&#10;cTeKtJSKFC7sbyAAAf8AA6u/BXwH4d1jwxdTyeHNE8x7xt5NhFlzsTk/LVn4z/D3w1pXwo8QXI8N&#10;6ETDYyuB9gi5wv8Au0AcHF+2VrPxLuFi+H/gTxDqMUmQmo6pYyQafJ2BWaPeCM5ycdjU6fBv4p/F&#10;NH/4SvxhF4fspjltP0mKK4RlPO0vJErjt0PrXr/w8hgi8Gaf9mtoLWMwqRHDGEVfwAAraoA+W7j9&#10;kbwN4R/aN8Lp/ZT3lzPCwmuJbufMp8qXJ2+ZtHPPA717X/wzb4Jx/wAgKH/v/L/8XVDxlonnfH/w&#10;ze7v9Wrrt9f3cv8AjXpFAHDf8M1+CP8AoAw/9/5f/i6P+Ga/BH/QBh/7/wAv/wAXXc0UAcN/wzX4&#10;I/6AMP8A3/l/+Lo/4Zr8Ef8AQBh/7/y//F13NFAHDf8ADNfgj/oAw/8Af+X/AOLo/wCGa/BH/QBh&#10;/wC/8v8A8XXc0UAfMXiP9lTwB4s/aXlsLrw/8q2SmN0vLhPLJibkbZBnoOvpW+n7O3xB+EMQHgTx&#10;j9ssI2JTSdTijjgVegHmiN5DgY7/AMI9a9Fm0qFPjlFdBf3zwFS3qBGQP513NAHgcP7YOt/D68eD&#10;4geBde0xF4OoaXZST6cp95pNgHRu3pXpnwLh8Jj4b2MvgmazuPDs5ke2ktbj7RExMj78PubPz7we&#10;eCCO1dJrthb6lpkkdzbwXMWMlJow6n8DxXiv/BN3Qk8Pfsj+HLeNiyCW9Iz2zfXB/rQB7tRRRQAV&#10;8U/8Fl/+Rg/Y9/7OO8M/+kWqV9rV8U/8Fl/+Rg/Y9/7OO8M/+kWqUAfa1FFFABXiOjn/AIRv9rC+&#10;6j+1bc9e+ZF/+Jr26vEvjGP7B/aQ8J34+WKREjk9/nkP9K/J/Fn9zhsBmK/5c4mi/lJ8j/CR9Nwx&#10;79Sth/56cvwV/wBD22ikVtyg+vNLX6wfMhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA&#10;FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXhX/BTD/kxP4kf9g1f/R0d&#10;e614V/wUw/5MT+JH/YNX/wBHR17PDn/I2wv/AF8h/wClI+f4t/5EeN/69VP/AEhnz/8A8EDf+SG+&#10;Of8AsOx/+k619618Ff8ABA3/AJIb45/7Dsf/AKTrX3rXt+In/JR4r/Ev/SUfN+E//JJYL/C//SpB&#10;RRRXxZ+iBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR&#10;QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8/f8ABRqF&#10;5vgYAilv9Kizj/rtFXv1zcJaW7yyNtjiUuzHsByTXyl+2h+158Pdc8Jr4as9ch1DV57tYlgiRwUZ&#10;JFLZyoHRTQB9YUUUUAcBYa0D8fL6yxz5CNn/ALZ5rur7/jym/wBxv5Vwtvp8cfx9nuAD5j24DH6R&#10;gV3V8C1lMB12Nj8qAOX+DShPDFxgAf6U3Qf7CVZ+MGnLq/wu162YlVnspEJHbIrM+BJuR4c1FLrZ&#10;vi1GRF2Z+6Ejx/WtL4x3L2fwr1+WP78djIy59cUAaHgiAWvhOxjHRIgorVrH8ATNceDtPdvvNECa&#10;2KAPOvHGpNbfHTwnAB8twZAT6YikP9K9Frzjx9p8snx18HXAH7tHlBP/AGxl/wAa9HoAKKKKACii&#10;igAooooA464/5LDb/wDXE/8AoBrsa464/wCSw2//AFxP/oBrsaAIdQGbKT6V4/8AsBx+T+y14eX0&#10;kvP/AEsnr2K65t2+leVfsTIYv2dtFUqUxJdfKe3+lTUAes0UUUAFfFP/AAWX/wCRg/Y9/wCzjvDP&#10;/pFqlfa1fFP/AAWX/wCRg/Y9/wCzjvDP/pFqlAH2tRRRQAV4v+15H/Y9roWsAcwXqR7h2+SU/Wva&#10;K82/ar0T+1/hJdPjP2JvtH0wrD+tfnHi5gp4rhHHKl8UIc69YNS/Q9/hesqeaUXLZuz+eh6HYSeb&#10;Ywt/eRT+lTVzXwe1z/hI/htpd5nPmo3P0dl/pXS19tk+OhjcBQxlP4akIyXpKKa/M8fFUXRrzpS3&#10;i2vudgooor0TAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo&#10;AKKKKACiiigAooooAKKKKACiiigArwr/AIKYf8mJ/Ej/ALBq/wDo6Ovda8K/4KYf8mJ/Ej/sGr/6&#10;Ojr2eHP+Rthf+vkP/SkfP8W/8iPG/wDXqp/6Qz5//wCCBv8AyQ3xz/2HY/8A0nWvvWvgr/ggb/yQ&#10;3xz/ANh2P/0nWvvWvb8RP+SjxX+Jf+ko+b8J/wDkksF/hf8A6VIKKKK+LP0QKKKKACiiigAooooA&#10;KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPnn9unyNR1vwHpWvXElr4H1K6uBrb8CMspg&#10;NsrsegaQ46jrVn9qDwzongP9mjydAt4bTRka3MYhYsmwywhSCSeMY717V4s8H6b450ObTtVtI7yz&#10;uF2vG+R+RGCD7g18i/to/sjaN8MvhDPqGhapqmnWVvcwsLF5pblHzPGuN0kjEAAj8qAPs2iiigDg&#10;47hB8d3jz85t8gf9sxXc3P8Ax7yf7p/lXGPYRj42xz/8tPIYf+OCuzn5gf8A3TQBynwgmWbStU2k&#10;HbqUgOOx2R1e+Koz8N9b/wCvOT+VZ/wdiWGy1wIcg6vKT7HZHxV74s2zXvwz1yJTtaSzkUH04oAu&#10;eBhjwnY/9c61q5z4Th1+H+nCRt7hWBb1+Y10dAHC+OryOH4s+EI2OHlmmCj1xDIa7qvP/iHpMt38&#10;Y/BNwuPLtricv+NvIP616BQAUUUUAFFFFABRRRQBxVzdIPjRbx5+cwtx/wBszXa1w95Bj432b+sL&#10;D/yGa7igBk/MR+leY/sdZ/4ULpOeT5lz/wClMteny/6s/SvMf2PP+SD6V/10uf8A0ploA9QooooA&#10;K+Kf+Cy//Iwfse/9nHeGf/SLVK+1q+Kf+Cy//Iwfse/9nHeGf/SLVKAPtaiiigArD+JGj/8ACQeB&#10;dTssZ+0QFMVuUjKHXB5FcmYYOGLwtTC1PhnFxfpJWf5mtCq6VSNWO6af3Hln7JGsfbPhp9jz/wAg&#10;6Vo/pl3b+teqV4h+zC58M+OfEmhNw3mCfaTzjaD9f4q9vr888HMZOvwlhKVX46KlSl5OnJwt9yR7&#10;vFdJQzSrKO07SX/byTCiiiv04+dCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC&#10;iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8K/4KYf8AJifxI/7Bq/8Ao6Ovda8K/wCC&#10;mH/JifxI/wCwav8A6Ojr2eHP+Rthf+vkP/SkfP8AFv8AyI8b/wBeqn/pDPyv/ZG8S/tBaH4V1VPg&#10;7H4qfSXu1a//ALKsEuIxPsGNxKNg7ccV63/wsH9uL/nh8Sf/AATRf/Gq91/4IG/8kN8c/wDYdj/9&#10;J1r71r9Z4v44p4LOK+FeBo1OVr3pRvJ6Ldn4ZwH4cVcxyDDY2OZYikppvlhNqK95rRfK5+Sv/Cwf&#10;24v+eHxJ/wDBNF/8ao/4WD+3F/zw+JP/AIJov/jVfrVRXzf/ABEal/0LcP8A+AH1/wDxCSv/ANDf&#10;Ff8Agxn5K/8ACwf24v8Anh8Sf/BNF/8AGq6T4OeOv2y7n4t+GI9fg+IQ0N9Vtl1Az6RGkYtzKvmb&#10;j5Ywu3OTmv1GorOr4h0pwcP7OoK6tdQNaHhTWp1I1P7WxLs07Oo7O3RkGmGRtNtzNnzTEu/I53YG&#10;f1qeiivzV6u5+vJWVgooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA&#10;BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXhP/BQ//k3W&#10;+/672/8A6UQ17tXiH/BQK1F1+zxfgttxNbn/AMmIaAPb6KKKAOHm1OFPjhDalv3z27sox2CLn+dd&#10;rP8A6h/90151faZKP2kdPudv7r7JMN2f+maCvRpOYz9KAOI+Bl8L6z8SYUr5OuTxnPciOLn9a3/i&#10;N/yImrf9ez/yrH+Ft7aWn/CQR+dbI39sTFlDqDnZH15qx8WNdtYfhprjLd24K2chz5o44+tAFr4X&#10;/wDIjWP0f/0Nq6CuT+B90bz4Y6a5dXJEnIbOf3jV1lAHJ+Lj/wAXD8Nf9dpf/RT11lcn4u/5KH4a&#10;/wCu0v8A6KeusoAKKKKACiiigAooooA4y9/5LJZf9cX/APRZrs64y9/5LJZf9cX/APRZrs6AGyDc&#10;hFeUfsVarDq/wA0qSE5XzbkdP+nmYV6vLMsCbnZUHqxwK8T/AOCfc0U/7NultDnZ591j/wACp6AP&#10;bqKKKACvin/gsv8A8jB+x7/2cd4Z/wDSLVK+1q+Kf+Cy/wDyMH7Hv/Zx3hn/ANItUoA+1qKKKACi&#10;iigDw67H/CC/tZfaPux67GsKr0GT5Kf0r3GvFv2p7P8AsbxB4Z8Qgbf7PvI1Lj/f3fX+GvYNGvP7&#10;Q0e1n6+dCkmfqoNfknh7/sOeZzkr0Sre2ivKsuZ/+TqR9Rnv77B4TF948j9YaL8LFmiiiv1s+XCi&#10;iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK&#10;KACiiigAooooAK8K/wCCmH/JifxI/wCwav8A6Ojr3WvCv+CmH/JifxI/7Bq/+jo69nhz/kbYX/r5&#10;D/0pHz/Fv/Ijxv8A16qf+kM+f/8Aggb/AMkN8c/9h2P/ANJ1r71r4K/4IG/8kN8c/wDYdj/9J1r7&#10;1r2/ET/ko8V/iX/pKPm/Cf8A5JLBf4X/AOlSCiiiviz9ECiiigAooooAKKKKACiiigAooooAKKKK&#10;ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA&#10;KKKKACiiigAooooAKKKKACiiigArwf8A4KMalb6N+zNqt3eSJDa28tu0sr/dQfaYRz+Jr3iqus6L&#10;a+ItNls72BLm2mADxuOG5z/MCgDibL9qf4eajD5kPizSZE9Q5/wqb/hpnwF/0NGl/wDfZ/wqPwn+&#10;zB4E8DLejS/D8NqNRuDdXH+kTP5khULu+ZzjhRwMDjpWv/wpvwz/ANAmH/vt/wDGgDyTxz+2V4A8&#10;O/F3TY7fW4NYv3t5hFY2TBp5W2JhQGwMnIxzTprn4r/tFMVt1Hw88MyMSJJN8WsSRnlcY8yLkBQf&#10;Zm9q9j0b4Z6D4evTcWmmW0U5434LH9Sa3AMCgDwrwR/wTy+H3g27u7qS3udWvr+Uz3N1eFDLPIcZ&#10;ZtqgZOPStLU/2Cvhjq+m3VpP4ctXgvYjFKu37ynqK9kooA8F0n9kDWfhJpUdt8P/ABprGn2lvkw6&#10;ZeyoLFOS2MJFvwSTnnuatJ8Tvix8OZhH4g8K2PiS1jHM3h6OV5CB1J851Gen5GvcKDzQB8zeK/25&#10;vBsXxY8Gwavdy+FZWuZ1ng1XajriB+PkZhndx+Fesn9qj4eKMnxbpPP+2f8ACtnxt8G/DPxF1TSr&#10;3WdIt7260SZ57KRmZDC7oUY/KQGypI+bNXT8O9EYf8g63/X/ABoA5j/hqv4df9DdpH/fw/4Uf8NV&#10;/Dr/AKG7SP8Av4f8K6b/AIVxof8A0Dbf9f8AGj/hXGh/9A23/X/GgDmf+Gq/h1/0N2kf9/D/AIUh&#10;/as+HQH/ACN2kf8Afw/4V0//AArjQ/8AoG2/6/40f8K40P8A6Btv+v8AjQBjH9onwQLUzf8ACS6b&#10;5SjJbecAflVW4/ai+H1pIFk8V6UjEZALn/Cum/4QDR9uPsEOPTn/ABprfDrRGPOnQH8/8aAPG9f/&#10;AGwvhxY/Fy2MfijTrydIX/cQvl2/dnAGcDn61pP+0D41+IzoPBXg6a3t5OFv9ciItn75UwyFsEYx&#10;x3Feo6b8OdD0i/a6t9Mto524L7cn9frWzHGsS4VQoHQAYoA8Nb9l/wAUfEuFh488Z30sLnLadpUo&#10;+xN+EsW7ue/pXq/w3+Gui/CTwfaaD4fsIdN0uyDCGCIYVdzM7fmzMfxrdooAKKKKACvin/gsv/yM&#10;H7Hv/Zx3hn/0i1Svtavin/gsv/yMH7Hv/Zx3hn/0i1SgD7WooooAKKKKAOA/aZ8Pf8JF8I9QGM/Y&#10;1a7/AO+Ec/1q58APEf8AwlHwr0y4zkqphP8AwA7f6V0/iDSl13Qryyb7t3C8J+jAj+teR/soaqdO&#10;v/EegzZQ2FyPJU8ZBeUkjv2FfkWZ/wDCZ4g4TEv4MbRnSf8Ajp/vI/8AkvMl5s+pw/8AtGRVafWj&#10;NS+Uvdf42PaKKKK/XT5YKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii&#10;igAooooAKKKKACiiigAooooAKKKKACiiigArwr/gph/yYn8SP+wav/o6Ovda8K/4KYf8mJ/Ej/sG&#10;r/6Ojr2eHP8AkbYX/r5D/wBKR8/xb/yI8b/16qf+kM+f/wDggb/yQ3xz/wBh2P8A9J1r71r4K/4I&#10;G/8AJDfHP/Ydj/8ASda+9a9vxE/5KPFf4l/6Sj5vwn/5JLBf4X/6VIKKKK+LP0QKKKKACiiigAoo&#10;ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii&#10;gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA&#10;CiiigAooooAKKKKACiiigAooooAKKKKACvin/gsv/wAjB+x7/wBnHeGf/SLVK+1q+Kf+Cy//ACMH&#10;7Hv/AGcd4Z/9ItUoA+1qKKKACiiigArwu5/4tx+1Osn3LHWIwoHQM+xR/N690rxr9rLSGs/+Ef8A&#10;EEY2/wBkXQMjL3DPFjPc/dNflHjDQnTyWnnNFfvMFVp1l/hUrT+XJJt+h9NwpNSxcsJP4a0ZQ+bV&#10;1+KR7LRWf4U1geIfDGn3ykEXltHNkf7Shv61oV+o4fEQr0o16bvGSTXo9UfOVIOEnCW6CiiitiAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii&#10;igAooooAK8K/4KYf8mJ/Ej/sGr/6Ojr3WvCv+CmH/JifxI/7Bq/+jo69nhz/AJG2F/6+Q/8ASkfP&#10;8W/8iPG/9eqn/pDPn/8A4IG/8kN8c/8AYdj/APSda+9a+Cv+CBv/ACQ3xz/2HY//AEnWvvWvb8RP&#10;+SjxX+Jf+ko+b8J/+SSwX+F/+lSCiiiviz9ECiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo&#10;ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii&#10;gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA&#10;CiiigAr4p/4LL/8AIwfse/8AZx3hn/0i1Svtavin/gsv/wAjB+x7/wBnHeGf/SLVKAPtaiiigAoo&#10;ooAK5j4xeGY/Fnw41S1kGdsDzL/vKpI/UV09eH/Gzx7d/EzxRF4M8PkuGfF9Ooyqr8p4Iz0G7OR2&#10;r4PxHz3BZdklWni4e0lXTpQpr4qkpqyivv1fRant5Bgq2IxkZUnyqHvOXSKWt2b/AOyj4qfWfh39&#10;inP+kaZIYCPRFAVf5GvUa+e/ghpr/Bn45T+GppCy6lDlWPQhVkbPb+76V9CV4vgzmmIxXDNPCY1W&#10;r4WUqFRN3alDa/8A264s6+LcNCnmMqtHWFRKcX5S/wCDcKKKK/Vj5kKKKKACiiigAooooAKKKKAC&#10;iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCv+CmH/ACYn&#10;8SP+wav/AKOjr3WvCv8Agph/yYn8SP8AsGr/AOjo69nhz/kbYX/r5D/0pHz/ABb/AMiPG/8AXqp/&#10;6Qz5/wD+CBv/ACQ3xz/2HY//AEnWvvWvgr/ggb/yQ3xz/wBh2P8A9J1r71r2/ET/AJKPFf4l/wCk&#10;o+b8J/8AkksF/hf/AKVIKKKK+LP0QKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo&#10;AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA&#10;ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv&#10;in/gsv8A8jB+x7/2cd4Z/wDSLVK+1q+Kf+Cy/wDyMH7Hv/Zx3hn/ANItUoA+1qKKKACiiuT+L3xT&#10;tfhb4Ze6kxJdSfLBCDzI2CR2PHB5xXm5vm+EyvB1MfjpqFKmrtvt/n2XVnRhcLVxNWNCirylokc5&#10;+0D8XH8N2i6Do/8ApGuan+4VI8MYQwxkjBOcspAxWh8CfhGnw70I3N0PN1fUMS3ErZyD8xAxnj72&#10;OAK5z4A/Cy6v79/F3iLM2pXhzCkoz5IBwD1PPyDBwK9ir8x4LynF55mH+uOdwcW01hqT/wCXVN/b&#10;a/5+TWr6pOx9Fm+KpYOh/ZWDd/8An5Jfal2/wr8WeI/tSaXL4b8R6H4ntQd9vIY53A+6pwoyen8Z&#10;r2TRNWi17Sbe8gO6G5QSIQeoNYfxf8Hr45+Huo6eQNzoHU45BVlfj/vmuT/ZQ8Xvrvw8NhcEi60q&#10;Y2+wnkIqR4P5k0YC+Sce18I9KOYU1Vj29tT92a/7ejyy8/kFf/bMkhV+3Qlyv/DLVfc7o9Sooor9&#10;gPlQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK&#10;KACiiigAooooAK8K/wCCmH/JifxI/wCwav8A6Ojr3WvCv+CmH/JifxI/7Bq/+jo69nhz/kbYX/r5&#10;D/0pHz/Fv/Ijxv8A16qf+kM+FP8Agld+334A/ZD+GXifSvF76wt3quqJdwfY7Pz12CJUOTuGDkV9&#10;S/8AD7T4I/8APbxV/wCCr/7OvmH/AIJSfsH/AA8/a0+GHijVPGVlqNzd6VqiWluba9eALGYlY5C9&#10;Tk19Vf8ADl74F/8AQJ17/wAG8tfrPF74Q/tiv/aCre1uubl5eW9ltfyPwzgOPHryDDf2U8P7Cz5e&#10;fm5rcz3tpvcp/wDD7T4I/wDPbxV/4Kv/ALOj/h9p8Ef+e3ir/wAFX/2dXP8Ahy98C/8AoE69/wCD&#10;eWj/AIcvfAv/AKBOvf8Ag3lr5vm4D7Yj/wAlPr+XxN/mwv8A5P8A5FP/AIfafBH/AJ7eKv8AwVf/&#10;AGdafgz/AILEfBzx54v0vRLCXxMb7V7uKyt/M0zanmSOEXJ38DJHNQf8OXvgX/0Cde/8G8taXg//&#10;AIJD/BbwN4s0zWtP0vW0vtJuory3Z9VkZVkjYOpIPUZA4rOrLgbkfs1X5raX5d+hrQj4k+0j7V4b&#10;lur2572620Ppm1uFu7aOVM7ZVDrn0IzUlR21utpbRxJ9yNQi59AMCpK/NXvofryvbUKKKKBhRRRQ&#10;AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB&#10;RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF&#10;FFABRRRQAUUUUAFFFFABRRRQAV8U/wDBZf8A5GD9j3/s47wz/wCkWqV9rV8U/wDBZf8A5GD9j3/s&#10;47wz/wCkWqUAfa1FFFAFbVtRXSdOluHyViXJArw34d+Gr79oHx2/iTW42GkWbbba2c5UkYIBU54w&#10;zdhXvZ5pkMK28YRAFUdAO1fE8T8Gxz3G4WeMqv6tRbk6VtKk9ORyd/hjq+W2rPYy7NngqNRUo/vJ&#10;6KX8q62833HIgjQKowAMADtS0UV9ttojxxHQSIVPIIwa8L8OMfhP+0zdWB/d2niJDLEv8K5dugHA&#10;/wBXXuteP/taeFpm0G08QWXy3WlON7ekfzD+b1+U+LWEq0stpZ/hY3q4Goqum7gtKi+cGz6bherG&#10;WIlgar92snH5/Zf3nsFFZHgbxXF428K2mpw/6u6UsB6YJH9K16/TcHi6WLw8MVh3zQmlJPumrp/c&#10;fO1aUqU3TmrNOz9UFFFFdJmFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA&#10;BRRRQAUUUUAFFFFABRRRQAUUUUAFeFf8FMP+TE/iR/2DV/8AR0de614V/wAFMP8AkxP4kf8AYNX/&#10;ANHR17PDn/I2wv8A18h/6Uj5/i3/AJEeN/69VP8A0hnz/wD8EDf+SG+Of+w7H/6TrX3rXwV/wQN/&#10;5Ib45/7Dsf8A6TrX3rXt+In/ACUeK/xL/wBJR834T/8AJJYL/C//AEqQUUUV8WfogUUUUAFFFFAB&#10;RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF&#10;FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU&#10;UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfFP8AwWX/AORg/Y9/7OO8M/8ApFqlfa1fFP8AwWX/&#10;AORg/Y9/7OO8M/8ApFqlAH2tRRRQAUUUUAFFFFABVPxBokHiTR57G5G6C4Xa49RnP9KuUVlWo061&#10;OVGqrxkmmns09GioTlCSnF2aPFP2Wdbm8Narq3hC/bF1Yt50atwVXCcY4PV69rrw746Wb/DH4r6P&#10;4tgBW1nlSC82jG/J3YJ+iDtXtenXqajYwzxkMkqBwQc9a/KfCqtPA08VwriHeeCnaN93Rl71N/JX&#10;j6o+m4lgq0qeZ01pWV35TWkv8/mTUUUV+tny4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF&#10;FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4V/wAFMP8AkxP4kf8AYNX/ANHR17rXhX/B&#10;TD/kxP4kf9g1f/R0dezw5/yNsL/18h/6Uj5/i3/kR43/AK9VP/SGfP8A/wAEDf8Akhvjn/sOx/8A&#10;pOtfetfBX/BA3/khvjn/ALDsf/pOtfete34if8lHiv8AEv8A0lHzfhP/AMklgv8AC/8A0qQUUUV8&#10;WfogUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF&#10;FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU&#10;AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfFP/BZf/kYP2Pf+zjvDP8A6Rap&#10;X2tXxT/wWX/5GD9j3/s47wz/AOkWqUAfa1FFFABRRRQAUUUUAFFFFAHLfGPwKvxC8A3thsV59hkt&#10;8gfLJtIB5+prl/2XfHMmveEZdJu2JvtGkMTlicsC7kfkAO9eo14N4rh/4Up+0LZahECmm6+6wsv8&#10;Kk+WhbAx3LHvX47x3fIc8wfFtP8AhtqhiP8Ar3N+5N/4J217Ox9Xkv8AtuDq5XL4vjh/iW6+a/I9&#10;5opkE63MCSIcpIoZT6g8in1+wppq6PlNtGFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAoooo&#10;AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCv8Agph/yYn8SP8AsGr/AOjo691rwr/gph/y&#10;Yn8SP+wav/o6OvZ4c/5G2F/6+Q/9KR8/xb/yI8b/ANeqn/pDPn//AIIG/wDJDfHP/Ydj/wDSda+9&#10;a+Cv+CBv/JDfHP8A2HY//Sda+9a9vxE/5KPFf4l/6Sj5vwn/AOSSwX+F/wDpUgooor4s/RAooooA&#10;KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAoor5A/wCCxP8AwUV8df8ABMz9n4fEbw38PdA8d6JZSqmp&#10;Lfa8+my24IfmNVgk38hO4+8fTnGvXhRjzVHZXS+/RfiaUqM6j5Yb6v7j6/or4I+CX7bv7anx8+FW&#10;i+MNF/Zu+D8Ola7Abi2S++JtzBcKoZl+dP7OO05U966n/gmV/wAFGvil+2f8YviX4S+IHwl0j4fH&#10;4bXR026u9P1ybU4ri78u2lEal7eIYMdxnPX5Oneuz2E1WlQkrTim2no0otJ/c2l8zlVeDoxrx1hJ&#10;pJrVe9t959nUUUVibBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA&#10;FFFFABRRRQAV8U/8Fl/+Rg/Y9/7OO8M/+kWqV9rV8U/8Fl/+Rg/Y9/7OO8M/+kWqUAfa1FFFABRR&#10;RQAUUUUAFFFFABXC/tCeAj47+HN2kf8Ax82am5jPclFLYH1wK7qvMv2gvi0fC+nDQ9M/0jWtVBt0&#10;jTDGIOAuSMHn5gRxzXxPiLicro8OYr+2P4MouLS3blpFRXWTe3mexkNPEzx9L6p8ad/JW3b8u5a/&#10;Zv8AH/8AwmPgSO1m4vtJAtpk7qF+Vf8A0E16HXzR4Ds9V/Z7+I2nTaoXNn4gUGcldo8wr0PHGGk9&#10;q+lY5BKgZSGVhkEHIIr53wf4kxOY5IsBmcXDF4W1OpGXxWteEn/ihb5pnfxVl9OhjPb4Zp0qnvRa&#10;2818mOooor9YPmAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii&#10;igAooooAKKKKACvCv+CmH/JifxI/7Bq/+jo691rwr/gph/yYn8SP+wav/o6OvZ4c/wCRthf+vkP/&#10;AEpHz/Fv/Ijxv/Xqp/6Qz5//AOCBv/JDfHP/AGHY/wD0nWvvWvgr/ggb/wAkN8c/9h2P/wBJ1r71&#10;r2/ET/ko8V/iX/pKPm/Cf/kksF/hf/pUgooor4s/RAooooAKKKKACiiigAooooAKKKKACiiigAoo&#10;ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii&#10;gAr8gv8Ag7v+NEWl/st+A/h2NbsdJPi7xDH9vM80aYtPs138zbiCqeZGo3cDPGa/X2vxu/bF0Oz/&#10;AG/v+DjD4e+Ab6ztdc8KfCzQRfaxZXUSywGQXFwnzLjDcXKcNWKpqtjcNh5JNOak09nGmnUaa8+U&#10;2VZ4fDV8THRxg0v8U7Qj+MvkfU3xK/4K/wDwP/Zx8FeBfBPwd8X/AA4+LvifXdQGjaXofhzxdaXx&#10;hzHNNvlNu0zon7sjcVIy6juK+2dB8KaX4enurnT9L0/T7jUpBPdyW1ukTXMm0LukKgF2wqjJ5wB6&#10;V8z/ABn/AOCR/wAMfiV+0B8MfH+h6N4a8EXnw31ZdU+z6R4fggGqARTx+U7RlMA+eDkhv9WOPT6p&#10;HArslU54OpUbdSUpNt9nay+dnLvd67I4oUlSkqNL+HGEEvVc1/uXKu2mnUWvzN8XeN/Ev7bv/Bd3&#10;TfCOjeI9X0/wH8CtJGrapDp9y62+oags1vthlMbKDmG9J2uWHyg7TgEfev7T37QGjfstfAfxJ498&#10;QTJDpXhu0a7nLOFyARwM9+a+Lf8Ag3R+Bes6H+yrq3xY8Y2t0vjT4vanLq13Lewsl1HGhFssZ3YY&#10;ArbxnGAOnHescF7+LlV+zQjzPznO8YL5Lnn/ANuo3xXu4Tk61pci/wAK96b+7lj58/qfocBgUtFF&#10;ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHyv+2l/wV8+F/7C/wAY/DvgHxPo/wARvEPizxUsjabp&#10;3hXw5JrE9xsEJICRtvJ/fx4AB6mvVv2WP2qbP9qzwrd6tZ+CPih4HSzdUNt438LXOgXUuS4ykU4D&#10;MBs5I6bl9a/M3/gqR/ysC/sxf791/PS6/YSjA/vMAsVU1cp1Y+nJPlT89N/vFi/cxrw8NFGNOXrz&#10;wu/x/wAgooooGFfKf7UX/BW7wn+yT4p1iw8SfCn9onUNP0KNprvXdF+HN9faKiKW3OLxQItoCkk5&#10;xjBr6sr5/wD+Cp3/ACj4+LP/AGLd7/6JeuHMcRPD4eeIj9lN272R14GhGvXjQl9ppX7HbfslftWe&#10;FP21PgXo3xE8FNqLeHddiSa1N9b+ROVaNJBuTJx8rr3r0qvhv/g3Q/5RM/DH/sH2/wD6SW9fcle5&#10;mWHhQxM6MNkzx8uryr4aFWe7QUUUVwnaFFFFABXxT/wWX/5GD9j3/s47wz/6RapX2tXxT/wWX/5G&#10;D9j3/s47wz/6RapQB9rUUUUAFFFFABRRRQAUUVR8R+IrTwro819eyiG3gGXYgnHbtzWWIxFKhSlW&#10;rSUYxTbb0SS3bfZFQhKclCCu2Yfxb+J9r8LvC8l5MQ9w/wAlvDnmR8MR2PHynnFcL8Bvhjd67qr+&#10;L/EQaW+uzuto5Ru8kAkA9euFUjgVjeAdBvf2jPHh8Q6ujLodiR9mt2OVZgVOCDkY+/2Fe9wxLbxK&#10;iAKqAKoA6AV+McP0KvGmax4ix0WsDQb+rQenPLZ15Lr2pp7b7n12OnHKMM8BRf76f8SXZfyL/wBu&#10;+44347fD9fHvgS4RABeWg86CTHKFSGOOnXbVH9nL4gHxj4Fjtrk41DSsWsyMcsdiqNx+pzXoLKHU&#10;gjIPBB714R40ST4AfGeLWocromts32lR08w7zgAe5XqDXZxrfh3PMPxbTX7mdqOI8ot/u6j/AMEn&#10;Zv8AlfkjHKP9vwc8rl8avOn6/aj81+J7xRTIJ0uYVkjO5GGQR3p9fr6aautj5XbRhRRRTAKKKKAC&#10;iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCv+CmH/ACYn&#10;8SP+wav/AKOjr3WvCv8Agph/yYn8SP8AsGr/AOjo69nhz/kbYX/r5D/0pHz/ABb/AMiPG/8AXqp/&#10;6Qz4j/4JL/txfDj9lX4W+KdM8bazc6ZeanqqXVukdhPcB4xCqk5jUgcg8GvrH/h8T8A/+hrv/wDw&#10;S3n/AMbr42/4Jef8E9vAv7Y/w18S6t4sufEMF1pGppZwDTrqOFChiV/mDRtk5PrX0/8A8OM/g1/z&#10;/wDjr/wZQf8Axiv1ni+lwg84rvMJ1lVuubl5eW9ltddj8M4Dr8exyDDLKqeHdCz5XPm5rcz3tJLe&#10;51X/AA+J+Af/AENd/wD+CW8/+N0f8PifgH/0Nd//AOCW8/8Ajdcr/wAOM/g1/wA//jr/AMGUH/xi&#10;j/hxn8Gv+f8A8df+DKD/AOMV837DgP8A5+Yj/wAl/wDkT6/6z4m/8+sL/wCT/wDyR1X/AA+J+Af/&#10;AENd/wD+CW8/+N1oeE/+CsXwP8beKNO0fTvE99Nf6rcx2dtGdIukDySMFUZMeBkkcmuF/wCHGfwa&#10;/wCf/wAdf+DKD/4xWp4I/wCCMPwk8AeM9J12xvvGjXujXkV7AJdQhaMyRuHXcBCCRkDPIrOrQ4G5&#10;H7OpX5raX5d+n2TWhiPEn2kfa0sNy3V7c97dbe8fWdvcLdW6Spykih1OOoPIp9R2lstnaxwrnbEg&#10;Rc9cAYqSvzV76H68r21CiiigYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU&#10;UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1y0ur/AEmeGyuxY3Ui4juDEJfKPrtJ&#10;ANfmn+y3/wAECvib+zZ+3Jqfx4f9qa58ReKPEamHXIrj4fW6JqEJ2Hy0JvHEPzRocovY+pr9N6KK&#10;P7qusTD40rX306qz0166a6J3SQVf3lF4efwvVrz6arXTp2eqsFFFIzBRk8D1NDaSuwPzY/4OBPH9&#10;78Z1+GP7MXh6V01n4w63DDqLwtue201obxHkZByV81IhnKjJHNfdF14j8GfsjfBjT11nVdJ8NeH9&#10;JiFtE93cR20bPhn2JvYAscOdoOeCe1fnt/wT70+P/goD/wAFe/ip8drrzNU8IfD22/4RfwpcbzLa&#10;+YfsN15sTj5DgtOvGf4ue1fpp4v8C6J8QdLFjr+j6VrlkriUW+oWkdzEHAIDbXBGcEjOO59amhGc&#10;cBC2kqz9o/R2UPuppNJ7OTHiGnjZReqor2a/xbz/APJrRf8AhPmv9nv/AILGfBr9oL4keJfChm8U&#10;+ANZ8I6VJrepx+O9Hfw2Lezjkhjacm6K/JuuIvmOBhutZmjf8FtPgxqP7ROh/DS9t/H/AIf1jxPO&#10;lvo+oa14bm0/SNVZiFH2e7kIjlGSRlCfuP8A3TXxJ+zZ8LI/2/v+Dgb4z63fxwf8IJ4C0pNPltAg&#10;kg1aTbpUn2ebG0PCVd8xsGUlFJHAxn/8F2/hJB+1n/wVI/Zr+BnhqZdDhgaO/vrnSX+z3GkQi4eM&#10;lPKKOn/Hwp4Zeoow0pVvqUkv946X+y+Z89+nuR5uXfdb2CtFQeKhzfwVe/8AeUY+5bq+Z8t772sf&#10;c37Q3/BcP4Gfs16xEusTeMNY8Py3C2o8VaDocmp+G1lIJ8s6jGTbhhtfI3ZHlv8A3TX1n4Z8SWXj&#10;Dw9Z6pp1xHdWN/Cs8EsbBldWGRyOK/Kf/g5J8I+GPgJ/wS68LfCjwhoOlRXvijxPa6TY2kAS3cvJ&#10;Z3+Z8BSWO/Ofd+tfo1+z3pFl8Av2WPDNvrepW1hY6Fo6S3d7e3Aiit1xvZnkc4VRu6k4GKqi4PD1&#10;asnpCpyqW11yqUtOnLdLfVPyJrcyrUoRXxwcnHdxtLljr15tei1i7HplFfHNh/wXL+CNx4y0vTry&#10;2+Iui6NrOpJpVl4r1Xwrc2Xhi5nZiuF1OQC2IBV8kPx5b/3Tj7AsL+HVLGK5tpY7i3nQSRSxsGSR&#10;SMggjggjvTUW4KpbR9QbSnyPcmopHJCnAyew9a/Pn/gmH+1p+1N8a/23fi74a+MXgvUdC+HugzBf&#10;D13caMbOIjau0RzGBPtAbJYkMdh+XmppP2mI+rrfllK72tG116u+i++2l3V/d0HXe3NGNut5Xs7d&#10;lbV9D9B6bNMtvEzuyoiAszMcBQOpJp1fDv8AwcFftd6n+yf/AME7PEv/AAj91NaeJPHAfwrp0sEn&#10;lzQyXkE0SyIwGQysVIIwQehFYYqtKnTvBc0m0ku7bsl82zfDUVVqKMnZbt9ktW/kjrviv/wWd+EH&#10;w5+IWqeG9EsfiF8Vb3Qjt1Sb4c+GZ/Fdrpb7QdlxLZ71if7w2vg5jcfwmuq/Zg/4Kl/CH9r/AOIk&#10;XhXwPq97qOvG1lubu0e2CyaV5eN0V0oYmCXJICOAcow/hNcj/wAEm/2T/DX7D3/BPrQGmtrG31HV&#10;NJbxB4j1e4RRcXrTCS6d7iZiWcIJnALscDPQcV8ff8G3fwq07xX+09+1F8VrbT44bTV/FItNKniX&#10;9xIiXGoRSsjDCvuKKTjpXoQoxjjquDk+ZU4Sm5LTW/JFJdnOUdd7RfVnFUq8+DWLpe7zzhGMXu0/&#10;ebfmoRk2tldau2v680UUVzmx+Pf/AAVI/wCVgX9mL/fuv56XX6zfE7WPEGg+A9Uu/C2jWniHxBb2&#10;0j2GnXV/9hhvJgpKRtNsfywzYBbacZzg4r8mf+CpH/KwL+zF/v3X89Lr9hKjApyyamk7fvcR/wCn&#10;QxTtm1RtX/d0P/TZ8Zf8NP8A7bn/AEaj8Lv/AA8Y/wDlbR/w0/8Atuf9Go/C7/w8Y/8AlbX2bRVg&#10;eA/sufGL9ofx/wCMLi2+LHwU8G/DrRkQGG90nx6NellbD5Bi+yQ45CDO4/ePpy3/AIKnf8o+Piz/&#10;ANi3e/8Aol6+gK+f/wDgqd/yj4+LP/Yt3v8A6JevMz6SeW1kltCXz3/4Y78mTWPpO/2l8tv+HPG/&#10;+DdD/lEz8Mf+wfb/APpJb19yV8N/8G6H/KJn4Y/9g+3/APSS3r7kr6jO/wDfqnr+h87k3+5U/QKK&#10;KK8o9MKKKKACvin/AILL/wDIwfse/wDZx3hn/wBItUr7Wr4p/wCCy/8AyMH7Hv8A2cd4Z/8ASLVK&#10;APtaiiigAooooAKKKKAEd9iEnoBk14H45udQ/aJ+JTaBab7fQ9LYi5foWYFgSOo/iXtXvtQ29hDa&#10;SO0cao0rbnIH3jXxXGnCdTiGjSwNSs4YfmvVilrUitoXvom9+60PXyjNFgJyrRhepa0X/K+9ur7E&#10;WiaLbeHdLis7SMRW8AwiDoBnP9at0UV9jRowpU40qSSjFWSWyS2SPKlKUpOUndsK5z4p+AofiN4N&#10;utOlwruAY37oQwPHB9K6OiuXM8uw+YYSpgcXHmp1IuMl3TVmaYfEVKFWNak7Si7r5Hkn7MHj6a70&#10;248M6n8mp6PkBD18sbevPXLV63Xh/wAf/D9z8NfGtl410uNtisEvEUE7/vMWPXA4X0r1/wAK+Jbb&#10;xdoFvqFpIJILhcqwIPQkHp7g1+a+GmZ18I63CWZSvXwduVvepRf8OfnZe7Ls15n0PEOHhVUM0w69&#10;yruv5Z/aX6o0aKKK/WD5gKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi&#10;iigAooooAKKKKACvCv8Agph/yYn8SP8AsGr/AOjo691rwr/gph/yYn8SP+wav/o6OvZ4c/5G2F/6&#10;+Q/9KR8/xb/yI8b/ANeqn/pDPn//AIIG/wDJDfHP/Ydj/wDSda+9a+Cv+CBv/JDfHP8A2HY//Sda&#10;+9a9vxE/5KPFf4l/6Sj5vwn/AOSSwX+F/wDpUgooor4s/RAooooAKKKKACiiigAooooAKKKKACii&#10;igAooooAKKKKACiiigAooooAKKKKACiiigAoqDUdSt9Js3uLqeK3gjBZ5JHCqoHJJJ4rxf4lfthW&#10;ttqB0nwjaS6/qrEoDABJHn1UoTnuenavMzPOcHl8OfFTt2W7fot2YV8TToq9RnsWv+IrLwvpz3d/&#10;cR2tvH96RzwK8x8K/tY6b49+JcGh6NZ3V1A/El1tXYvIGQQ3Tkdq4nw/+zf4r+Neppq3jzUpIISc&#10;x2aJsZVPIVhtUjG4/lXu3gv4eaP8PdMW00myjtYQc4BZjn6sSf1rxMNi83zGrGrTj7Cinf3tZyXp&#10;tFP7zkhUxNaSklyR893/AJG3RRRX1x6QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfMP/BX&#10;39sY/sQ/sL+LvGNovm62YfsukwLN5bz3JBcKvysSdqPwAelfT1eN/td/sI/D79uLT/D1n8QbXVtQ&#10;svDWorqlpa22oyW8EkyxyxjzUU7ZF2zPwwI6egrmxWHWIh7CbtCTSlbfkb963ny3S216nRhq/san&#10;trXcbtLo5L4b+V7X8jzX/gi9+x5N+xT+wH4O8LanEq+I5o5bvWJNuGmnaaQqScnJ8vYOvavpnxv4&#10;hPhPwlf6iLa6vDZxGQQW0bSSy47Kqgkn6CtK3gW1gSNAFSMBVA7AU+uzM6ksZKpJe7zXSt9lWsrf&#10;4VZL0OLAUlQhCM/etq/7zbvJ/N3fzPzG/wCDar9nfxX4B+FnxM8eePvDviTw/wCLPHHiBpmj1ywn&#10;s7toVRIxlJgGx+5THHTFZn7Nvwh8V/GH/g42+Knj/XfBview8HeFvCn9n6Hqmp6PPBZ3U5bSJd0E&#10;0iBGIKzDCE/db0Ir9TKKtVEsRSrxjZUockV0XuKHN6pc2n95lTUp0q8Ju7rT5pP/ALf57fekr9kf&#10;lZ/wX98B+Kbr9qz9mvxePBXjHxr8PPCPia0vdftvDug3OszxKjTsXMECMxGwkdOrAd6P+C1P7Yfj&#10;rxP/AMEkPFOp2vg6/wDh7o3ifUI9A0qbUL17bUL2zksrsSvPbPFG9oVliICsTuUK4IDAV+qdfLn/&#10;AAWM/Ym1T9vr9g3xd4C8PtbjxI0Ul7pCzquya7WCaONCzMoQEy/ePT0rzqrVDCunJc0VUU2vJyg5&#10;ertGy6Wumno16GGkp46nWb5bR5Pu5uX0V5a/LVK9/HP+CkX7PWgav/wQX8R6VHpNgIfDHgufW7BY&#10;lVVtLpbSZ/OjIHD7pXORzlia9v8A+CPPxHv/AIsf8E2vhbrupvLJe3Nlcwu0kplYiG9uIVyx5Pyx&#10;iviPxv8AtiePP2w/+CdcH7Odj8Jvinofxd8U2U3hLU5dQ8L39pommwv59utyL97dIJF2mBtu5R8z&#10;fN8pNfpX+yF8Abb9lz9mvwj4CtCpj8PWXluVXaDI7tLJgZP8cjd69eScZYycndVKsHF9JcsZ80l5&#10;Pmjr1+R4lGLjSwlCStOlCakv5bunaL87xn+fVX9IooorjO4K/OD/AIOM/gzq/wC0f+y3Y2/w/ex8&#10;UeOPhprtp4sn8K2rrcaleW1qrXDBbdS0hZgECqI23bxgHIB/R+vyO8G+J/Gf/BNb/grZ8U/GfxZ8&#10;I/Fbx54W+INtC/hzXvDOi6h4gWwSK3iSS3e2to5fKyzKAS658onHphbnxVKm3y2vNSe3NTtKMfNy&#10;a2/lUra2Nub2dCdXl59oOOusZvlk9NUknuurWqN79pL9vTxX+0L/AMEv/FGj+F/BXxB+G1l4Z+H9&#10;wvjLV/FPh+70N7VI9NkEttZx3EUZnMipN+9jcGMonB3DHrv/AAbffAmX4I/8ExfC32nc93r15fai&#10;0zj5545Ly4liZskkkpIDye9eVftq/GX4hf8ABZ2z0j4N/CbwD8Q/CPw6vtTtj468TeLNHvPDkqaa&#10;zKk9vBa3UUTXG+F7gHZKMbFBB3jH6Q/A/wCE2nfAr4Q+G/B+koiWHhzToNPi2ps3iONU3Ec8nGTy&#10;evU13UG1DEYiSs60opd3GN+Z+UXJ2invyt6qzOKrZ+wwsXdUrt9k2koq/WXLdy6K6WjudVRRRWBu&#10;fjz/AMFjtM8TfDz/AILF/AP4lR/D/wCJHinwj4X+1Sald+GfC97rP2cf8S4jIgjbk+W+B32n0r9N&#10;P2Wf2s9E/a28K3er6H4d+IHh2CzdY3h8V+GbvQrhyS4ykdwisw+Q5IHdfUV6lRRhf3OF+qvVKU5L&#10;1nPmfrbZfeGI/eYn6ytG1CL9IR5V6d39wUUUUAFfBX/BWH9vjRbX4I/Ev4UWXw6+OWv+J9S0a5sr&#10;afRvh3qmoabNI6Oi7bqKJoyM9wehBr71ormxeGWIpyozfuyTT76+Z0Yau6NRVYr3k018j4z/AOCB&#10;Xw+1/wCF/wDwS++HOjeJdE1fw7rFpYQLPY6nZyWlzCRawAho5AGU5BHI6g19mUUV6WMxLxFaVZq1&#10;zz8Jh1h6MaKd7BRRRXMdAUUUUAFfFP8AwWX/AORg/Y9/7OO8M/8ApFqlfa1fFP8AwWX/AORg/Y9/&#10;7OO8M/8ApFqlAH2tRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFHxFoFt4o0aexu4xJBcLtYGvFvgr4&#10;guvg98Q7nwdqzkWszA2cr8KWbaQq/i579q93rzH9pP4Zv4n8ODWNPXZquj5uEkTAYqgLEZ4Ocgd6&#10;/K/ErJcVBUeKMojfFYO7sv8Al5Sf8Sm++msezWm59Lw/i6cubLcU/wB1V/8AJZfZl+j8j00HIpa4&#10;f4DfE1PiL4Nj807dQsgIriM5yCCVB987Sa7ivvchzvC5vl9HM8FLmp1YqS/yfmno10aseJjcJUwt&#10;eWHrK0ouwUUUV65yhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF&#10;FFFABXhX/BTD/kxP4kf9g1f/AEdHXuteFf8ABTD/AJMT+JH/AGDV/wDR0dezw5/yNsL/ANfIf+lI&#10;+f4t/wCRHjf+vVT/ANIZ8/8A/BA3/khvjn/sOx/+k619618Ff8EDf+SG+Of+w7H/AOk619617fiJ&#10;/wAlHiv8S/8ASUfN+E//ACSWC/wv/wBKkFFFFfFn6IFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF&#10;FFABRRRQAUUUUAFFFFABRSM21cngDqT2rgPit+0h4c+Fds6z3Qur/H7u1iVmLnOD8wUgY5PPpXLj&#10;Mdh8JSdbEzUYrq2Z1asKceao7I76aZLeMu7KiLyWY4Aryn4p/taaH4HdrPS1OvaqeEgtW3KeD/Eo&#10;YdcDp3rzi01b4iftVSs1lO3h3w9u2+ZDcAOCOdrBXVjww/hr1n4VfsyeGvhhGsq2kWoX/Vri5jWR&#10;gc5ypIyOg718os3zLNdMqh7Ok/8Al5Nb/wCGPX1eh5/1mviP93XLH+Z/ojy+w+GvxA/aRvVu/EV9&#10;NoGiFtyWyL87L0KsAUPO3qR3r2b4a/A7w98LbFY9PsYjNgb55Bvdm7kFskZye9deBtGBwB0FLXqZ&#10;Zw3hcJP6xO9Sq95y1fy6JeSN6GBp03zv3pd2FFFFfQnaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA&#10;FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU&#10;UUUAFFFFABRRRQAV8U/8Fl/+Rg/Y9/7OO8M/+kWqV9rV8U/8Fl/+Rg/Y9/7OO8M/+kWqUAfa1FFF&#10;ABRRRQAUUUUAFFFFABRRRQAUUUUAFI6CRCrDIIwQe9LRRvowPAfHekT/ALPHxTg1/Twf7F1WTbdR&#10;npGflBJAx3diOte6aLq8OvaRbXtud0N1EsyH1VgCP0NVPGnhS38a+GrrTrpQ0dwhAyfutjg/ga8d&#10;+A/jk/DXxzfeCdSnUwrPILOXIwNu/wC8Tjsg6A8mvxDDSjwTxGsFJ2y/HzvDtSrveP8AhqbrtLQ+&#10;xqJ5xgPbLWvQXvf3odH6x/I93ooor9vPjgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA&#10;CiiigAooooAKKKKACiiigArwr/gph/yYn8SP+wav/o6Ovda8K/4KYf8AJifxI/7Bq/8Ao6OvZ4c/&#10;5G2F/wCvkP8A0pHz/Fv/ACI8b/16qf8ApDPn/wD4IG/8kN8c/wDYdj/9J1r71r4K/wCCBv8AyQ3x&#10;z/2HY/8A0nWvvWvb8RP+SjxX+Jf+ko+b8J/+SSwX+F/+lSCiiiviz9ECiiigAooooAKKKKACiiig&#10;AooooAKKKKACiiigAooooAKKKxvGfj/SPh/pputWvYLOIdPMcKW+mTWdWrClB1KjSS6sUpKKvLY2&#10;a5X4m/GLQ/hPppn1a6EblSY4gDulIGcDjFeOeI/2mfE3xiv20z4f6XdJDnD380XMfY/dLjHK9q2P&#10;hr+xpa2mpjV/FtyNY1RmEjIrHygwPBB2qegH618jPiPEY6To5JT5+9SWkF6dZfI8142dV8uFjf8A&#10;vPb/AIJzt58XvHf7SV21n4Utf7I0TcUe9yVkAPHJDnj5W/hrtvhp+x7ofhKN7zVS+taxOpMslwVe&#10;MOyncV+QN1J6n0r1yysotOtUhhQRxRKFVR2A6VLXRhOFqXtFicxm69XvL4V/hjsvzLp5fHm9pXfP&#10;Lz2+SPnz9lW7k8KfGHxj4WkJ2W00lwmT1O6NP6elfQdfO3jdT8Ov2y9GueltrlsDM/YEvMcf+Oiv&#10;okHNTwi3ToVsE96VSS+T95fgxZb7sJUv5W1+oUUUV9YeiFFFFABRRRQAUUUUAFFFFABRRRQAUUUU&#10;AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA&#10;UUUUAFFFFABRRRQAUUUUAFfFP/BZf/kYP2Pf+zjvDP8A6RapX2tXxT/wWX/5GD9j3/s47wz/AOkW&#10;qUAfa1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc/8AEr4hWfw28L3GoXTAsqkRRZ5lfaSB0PXH&#10;XFcWY5jhsBhZ4zGTUKcE3JvZJG1ChUr1FSpK8nokc/8AHj4tp8P9DFpZkTaxqGYreJCCyk4GSOT/&#10;ABAjjmvOIv2Zr6+8Avrk00n/AAlEzC9XOQRuKsQRnAOC3G2tr4KfD+8+IviWXxl4iVn3vmygkGQg&#10;+YZxn2TnAr2zaNuMcdMV+IYHhR8eyqZ5xBBxw0ouOGpvRwi/+X77VJbx/lVj7Gtmf9iKODwLTqJp&#10;1Jd3/J/hWz7s8++Afxb/AOFgaCbS+/c61YHy7iJ8K7YC5bbxjkkdO1ehV4d8cPBN98MvFkfjPw8r&#10;ADi8t04DkliWPqOV4x2r1jwJ43s/iB4dh1GycNHKOVzyhyRg9D29K+q4B4ixkK1ThfPZf7Zh1pJ/&#10;8vqW0ai7vpPs/U8zO8BScI5jgl+6nuv5JdYv9PI2aKKK/Uj5sKKKKACiiigAooooAKKKKACiiigA&#10;ooooAKKKKACiiigAooooAKKKKACiiigArwr/AIKYf8mJ/Ej/ALBq/wDo6Ovda8K/4KYf8mJ/Ej/s&#10;Gr/6Ojr2eHP+Rthf+vkP/SkfP8W/8iPG/wDXqp/6Qz5//wCCBv8AyQ3xz/2HY/8A0nWvvWvgr/gg&#10;b/yQ3xz/ANh2P/0nWvvWvb8RP+SjxX+Jf+ko+b8J/wDkksF/hf8A6VIKKKK+LP0QKKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKivL6HT4TJPNFBGOrSOFA/E0m0ldgS1R1/xLYeF9Pe51C8trOBFLF5&#10;pVjBxzxkivIviX+2HYaVdHTfDFpLr2pt8v7oMFiJHB+4Q3Ud+9c34f8A2f8Axl8b9RXVPHGqT2di&#10;xDDT4m+SRen8L4XgD+HvXymK4ojUqPC5VD29Tq18Ef8AFLb5LU86pj05ezw655fgvVmj47/a3vPE&#10;upvo/gLTLrVLokobtIi6xH1ACsCOG5qHwb+ybqfjvUhrHxA1KS+nl+Y2aEonPPVCuDknt2r2TwJ8&#10;L9E+HGnJb6VYW8GwY83yx5rcY5bGT/8AXroKzpcNVcXNV86qe0fSC0pr5fa+ZMcDKo+fFPm8ui/z&#10;M/w94V0/wpYpb6faRW0SDACjnHueprQoor66EIwioQVkux6SSSsgoooqhngP7dOlS6doujeIbQH7&#10;TYXIRiB91Nsh/m1e5aBq0euaPBdQnMcy5U/p/Ssj4qfDi2+Kng+50i6fy0nHDhclD69RV/wb4ZTw&#10;b4ZtNMikeVLRSodjy2ST/Wvn8Hl9ahm1fEL+HUjH/wACjdPTzRx06MoYic/syS+9GpRRRX0B2BRR&#10;RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF&#10;ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXxT/wWX/5GD9j3/s47wz/6RapX&#10;2tXxT/wWX/5GD9j3/s47wz/6RapQB9rUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBW1fV7fQtNlu7q&#10;QRQQLudiOgrwjQrK8/ab+I39oXSvH4a0uRTHET8spBXgg5znDdu9dF8dvD3iL4meLLLw9awyW+jM&#10;BLcXIGAeWXrzxgjtXpnhLwta+DNAt9Os4xHBbqQAPckn9Sa/G80wWL4vzx5fiYShl2EknO6a9vVW&#10;qj/17hu/5np6fWYatSyrBqvTaliKq0/uR7/4n+CLtnZx6faRwwoEiiUIqgYAA4FS0UV+xRioxUYq&#10;yR8o227shvrGLU7R4J40lhkGGRxkMPcV4DYSXf7LvxH8iVpH8MamwCszZERO35iB3AVu3evoSsXx&#10;/wCBrP4heGZ9NvFykgJRu8bYIDD35Nfn/HvCNbNadLMMsl7PG4ZuVKXR94S7wns+257mSZpDDSlQ&#10;xK5qNTSS/KS80alhfxanZxzwsHilUMrDuKmrwv4QeNr34P8AjA+DdfP+ju4Wxn/hO4525OOpkHav&#10;c1bcMjoa9Hgni6ln+B9s4+zr03yVab3p1Fun5dYvqtTDN8rlga3LfmhLWMukl0f+YtFFFfYnkhRR&#10;RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4V/wUw/5MT+JH/YNX/0dHXut&#10;eFf8FMP+TE/iR/2DV/8AR0dezw5/yNsL/wBfIf8ApSPn+Lf+RHjf+vVT/wBIZ8Z/8EgP2xfht+zX&#10;8J/FmneN/E8OhXmo6slzbxva3E3mxiFVLZjjYDkEc19ef8PVvgB/0US0/wDBbe//ABmvgv8A4Jp/&#10;8E5fCf7anw78Rax4h1rxFpk+j6itnEmnPCqOpiD5bfGxzk9jX0p/w4W+GX/Q2+O/+/tp/wDGK/We&#10;L8HwjPOK8swr1Y1brmUUrJ2W3uvp5n4ZwHj+O6eQYaGVYahKgk+Vyb5muZ7++ut+h7B/w9W+AH/R&#10;RLT/AMFt7/8AGaP+Hq3wA/6KJaf+C29/+M14/wD8OFvhl/0Nvjv/AL+2n/xij/hwt8Mv+ht8d/8A&#10;f20/+MV839Q4E/6Ca/3L/wCQPr/7T8S/+gPDf+BS/wDlh7B/w9W+AH/RRLT/AMFt7/8AGau+G/8A&#10;gpp8DfF/iGx0rTvHtrc6hqVwlrbQjT7xTLI7BVXJhAGSQOTivEv+HC3wy/6G3x3/AN/bT/4xWv4A&#10;/wCCI3w6+HnjrRtftfFPjWa60W9hvoY5Zbby3eJw4DYhBwSOcEVnVwPA6g3TxNbmtpot+n2DWhmX&#10;iQ6kVVwmHUbq9pSvbr/y8PsuCdbmBJEO5JFDKfUHkU+orO2FlaRQqSViQICepAGKlr81e+h+vK9t&#10;QooooGFFFFABRRRQAUjyCNcsQAOpNcH8Wf2ivDvwjt3F7cedegEraw4Mh4yOCQPTv3FeRyar8Rf2&#10;opilqg8PeHJDjewZPtCH1++M4X/x6vm8x4mw+Hq/VcOnVrfyR1+97L5nDXx8IS9nD3pdl+vY9E+L&#10;37WHh/4ZmS0hc6lqiHb9niDDYc45JG3179q87sPBPxC/abcXes3raFoMn3IIJSFnXqDgOwz83cfw&#10;11sf7Ieg+DfhtqEUCNd6s8Ac3cpBZWGC20gDjhuo71a/Yi8Uv4i+DnkyE+Zpl0bTB9FjjP8A7NXz&#10;NSjjsfmVPCZy+WE4uShB2WjV1J7vR9LI4XGrWrxp4rRNXsttO/c7D4Z/Afw38KrZRptjGbgf8vMy&#10;I055z94KD6fkK7Kiiv0LC4Sjhqao4eKjFdEezTpxpx5YKyCiiiugsKKKKACiiigAooooAKKKKACi&#10;iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK&#10;KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvin/gsv8A8jB+x7/2cd4Z/wDS&#10;LVK+1q+Kf+Cy/wDyMH7Hv/Zx3hn/ANItUoA+1qKKKACiiigAooooAKKKKACiiigAooooATHNLRRQ&#10;AUUUUAFFFFAHFfGv4UQfE3w0yqPL1G1BktZQTkMBkD8SB2rmvgP8W5hO3hXxAfs+r6f+5iMoCeeq&#10;7gMZwTwvXHevWq80+O3wa/4S22XWNJP2bW7D94joMGX7vB5HYH1zmvyjjLh/HZfjv9bOHo81eKtW&#10;pbKvTX/uSK1g+vwn02U46jXo/wBmY92g37kv5Jf/ACL6/eel0V5v8CvjN/wmdodK1X/Rdcsf3Usc&#10;hwZdoAJAwOchuO2K9Ir7rhviPA55gIZjl8rwl98X1jJdGno0eNmGArYOu8PXVmvx815MKKKK904g&#10;ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArwr/AIKYf8mJ/Ej/ALBq/wDo6Ovd&#10;a8K/4KYf8mJ/Ej/sGr/6Ojr2eHP+Rthf+vkP/SkfP8W/8iPG/wDXqp/6Qz5//wCCBv8AyQ3xz/2H&#10;Y/8A0nWvvWvgr/ggb/yQ3xz/ANh2P/0nWvvWvb8RP+SjxX+Jf+ko+b8J/wDkksF/hf8A6VIKKKK+&#10;LP0QKKKKACiiigAooooAKKx/F/jzSfAunPc6pfW9qiKW2vIA7YGeBnJ/CvDvFf7TniP4qai2k+Ad&#10;Kn8tmKHUZFOzH0ZMDgH+LvXi5pxBg8B7lWV5vaEdZP0S/WyOXEYylR0k7vstz2H4ifGLw/8AC+zM&#10;mrahBFJjKwCRPOfnHCkgn/6xrxLVPjJ49/aFujZeENPn0jSX4N9PCdkg7gsUYA8g8HtXQfD39j1b&#10;i9XVvGmoT61qDHeYGZgkJI5AIcgjJPavbNM0i10a2ENpbw20Q6LEgUfkK8X6rm+a64qX1ek/sxfv&#10;tecvs+i1OX2eJxH8R8key3+b6HlHwn/ZD0XwTcR6hqrPrGrA7/MkZgI2ByMAEA9B1FeuwQJbRhI1&#10;VFUYAAxin0V9Jl2VYTAU/ZYSCivxfq92d1HD06MeWmrEd1D9ptpI/wC+pX8xXz7+zHM3gr47eMfD&#10;MnyQpJJPDngOd0a8Z68LX0NXzt8Tc/Dj9r/QNRX5LPVrcC4foNxeYkf+OivC4n/c1cLjv5KiT9J+&#10;7+djkx/uyp1ez/PQ+iaKQHIpa+tPRCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK&#10;ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA&#10;KKKKACiiigAooooAKKKKACiiigAooooAK+Kf+Cy//Iwfse/9nHeGf/SLVK+1q+Kf+Cy//Iwfse/9&#10;nHeGf/SLVKAPtaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyD48/CC4i&#10;vB4p8OH7Jqtr80qxERedkkE5yvPzHJ74roPgh8dLL4r6Z5bFYdUhXMsOD8w4+YHGOrAYzXNftAfF&#10;C71LVYvB/h4l9RvOJnXIMYBJIByOfkOevFYXib9nG/8AhbpFnrXhm5mfVLBB9oQuNsw5JxgKf7vU&#10;9q/mTF5vi8q4qxeZcIUHVwlO31yK+F1O9Jf8/Ix1nbR6K1z9FpYWlictpYfNZqNWX8JvdR/vf3W9&#10;j6Borivgz8YbT4qaEGGItQgytxDg/KQSPftjv3rta/obJM7wWb4GnmOXzU6VRXTX5Ps1s10Z8HjM&#10;HWwtaVCurSiFFFFeqcwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXhX/BTD/kxP4kf&#10;9g1f/R0de614V/wUw/5MT+JH/YNX/wBHR17PDn/I2wv/AF8h/wClI+f4t/5EeN/69VP/AEhnz/8A&#10;8EDf+SG+Of8AsOx/+k619618Ff8ABA3/AJIb45/7Dsf/AKTrX3rXt+In/JR4r/Ev/SUfN+E//JJY&#10;L/C//SpBRRRXxZ+iBRRRQAUUyaZbeFpHO1EUsx9AOteNfFX9sXSfC16+maDH/bGrFjGoC/u0cHBD&#10;ZKnsehrzsyzbCYCn7XFzUV07v0W7MK+Ip0Y81R2PXtW1u00K1aa8uIreJRks7Yrw3x5+2DJrl+dJ&#10;8B2L6veyHalyyMkYJ45Dhe5HesnSfgN4z+P92uoeOdQm03T2ORYW0hUr3yobeB94jr2r3HwD8LND&#10;+Gdj5GkWMVtxh5AoDyf7xAGe35V859YzfNdKC+r0X9p/xH6LaPz1OLnxOI+D3I9+vy7Hjng79lnW&#10;/iHqKav8QdUvLkswkXTxPvSIg9PvMuCAOPevcPC3gzS/BWnrbaXYWllEoAIhhWPfjudoGTWpRXt5&#10;XkODwCvRjeb3k9ZP1f8ASOrD4OlR1ite73CiiivZOoKKKKACuG+L3wRtfixd6bPLcPazafJvDpwz&#10;DDDGev8AEa7miubF4OjiqTo143i+noRUpxqR5Zq6EUbVA9KWiiuksKKKKACiiigAooooAKKKKACi&#10;iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK&#10;KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4p/4LL/APIwfse/9nHe&#10;Gf8A0i1Svtavin/gsv8A8jB+x7/2cd4Z/wDSLVKAPtaiiigAooooAKKKKACiiigAooooAKKKKACi&#10;iigAooooAKKKKACvPfj38Xk+HuhiztP32r6h+6gjGDtyVBJGc9G44PSug+JvxDs/ht4Xnv7l08wI&#10;whiLANK+DgAfXH515r8Efh3eePfEsvjPxEjF5XLWUMikbEO7twMYK4OOcV+Wcd8R4ytiIcK5A/8A&#10;a66vKfShS+1Uf95rSC6s+lyXAUoU3mWOX7qGy/nl0ivLv5HQfs+fCJ/B2nPq+p/vNa1T99KxzlNw&#10;BwRgYOS3avTKBxRX2vDPDmDyLLqeW4FWhDr1k3vJvq29Wzx8xx9XG4iWIrPV/guiXkjxr4xfB688&#10;O65/wl3hb93f2xElxAMnzlUAkAYP9wDt1rr/AIO/GWy+J2lbM+RqduNtxbvgMG5BwMk/wmu1ZQ64&#10;IyDwQe9eP/GD4J3WmaoPE3hTNtqNuTLPCmSJwMdjkZwG6DvX5xnWRY/hbG1OIOHaftKE3zV8Ouve&#10;pSWymt5R2l6nv4TG0MyoxwOPlyzWkKn/ALbLy7Poew0V5/8ABj4323xDtBZXuLPW7YeXNbykK8jK&#10;PmIU4OchsgDjFegV+l8P8QYDOsDDMMuqc9OX3p9U10a6p7Hz2OwNfB1nQxCtJf1deQUUUV7RyBRR&#10;RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4V/wUw/5MT+JH/YNX/0dHXuteFf8FMP+TE/iR/2D&#10;V/8AR0dezw5/yNsL/wBfIf8ApSPn+Lf+RHjf+vVT/wBIZ8//APBA3/khvjn/ALDsf/pOtfetfBX/&#10;AAQN/wCSG+Of+w7H/wCk619617fiJ/yUeK/xL/0lHzfhP/ySWC/wv/0qQUUZrhvih+0L4a+Fds32&#10;2+hmuhx9mgkV5Qc45UHI/LtXwWLxlDC03WxE1GK6s/QalWFOPNN2R3OcV5d8WP2q/Dvw4DWsEv8A&#10;auqH5I7e2Kvtcj5Q/wAwIGcdPWvObrxB8SP2mZmt7K2m8M6C3LtLHtaQdMqzICfvdj2r0v4Ufsue&#10;HvhptuZIzqmp9Wupy3POfulivp+VfKvOMwzN8mUw5Kf/AD8mrf8AgMd36uyPO+s1q+mHVl/M/wBE&#10;eU6r4W+Iv7R+nz32rY0TQoY2mS0dWR5RjI25Q5ztH8X8VdZ+xjZ6KNO1KGDTIbXVdLuHt5pQW3SB&#10;TsDMCSMnDdh1r3PyE8ny9oCY27QMDFfPXwSk/wCEA/as8V6O3yLrs0txCh443zycZ9hXmVMnhlmZ&#10;4XFVJOpKpJxlKWru17tv5ddNDB4ZUK9OpJ8zbs2/w9D6Iooor9GPbCiiigAooooAKKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii&#10;igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK&#10;ACiiigAr4p/4LL/8jB+x7/2cd4Z/9ItUr7Wr4p/4LL/8jB+x7/2cd4Z/9ItUoA+1qKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAooooA8g8SfCnW/ib8YBPrI8vw/prI8EQcMspwhIIB7kHq&#10;O9etWdpHp9rHDCixxRKERVGAoAwKlor5fh/hLBZRXxOLouU6uIm5znJ3k+0b2VoxWkV0PSx2aVsV&#10;CnSnZRgrJLbzfq+oUUUV9QeaFIRuGDS0UAeTfGf4FS316PEPhlvsWs25LskXyCfJ55yADgtnrmrX&#10;wd+PyeKm/srXF/s7W4PlZZPlEuMfMOABznjPavT688+MXwEs/iIv22zb+z9Zi/1dxGAu48/eIGT9&#10;496/Ic94RzHJcdPiDhFLmnrWw70hV/vR/kqee0uvW/1WCzTD4uisDmmy+Cp1j5PvH8j0OivGvhV8&#10;db3RdaHhrxgjW2oodsU7Et5hJGFJBbJ565xxXsccglQMpypGQR3r7XhPi/L+IMJ9ZwTalF2nCWk6&#10;clvGcd01+J4+Z5VXwNX2dXZ6praS7pjqKKK+pPNCiiigAooooAKKKKACiiigAooooAKKKKACvCv+&#10;CmH/ACYn8SP+wav/AKOjr3WvBP8AgpxqMNt+wz8Q43kVZJtOVUUnlj50f+Fexw60s2wrf/PyH/pS&#10;PnuLf+RHjf8Ar1U/9IZ4L/wQN/5Ib45/7Dsf/pOtfaPj/wCLOhfDXT3n1S+ihKgkRg7nY4z90ZP6&#10;V+av/BJP4ieLdI+Fnirw94SsEuLzUtVSZ5mOPJXyVQ4O5cHJWvtfwB+yE2qalHrPjnUbnW9RyH8m&#10;WTzI15+6wYNngKOvauLxSzrGT4qxmCyyjzTjJJylpCPux/8AAn5I+M8LcVVfCuDpUI3ai9Xsvel9&#10;5i6z8b/G3x91BtN8G6ZLpunMSr3kjYLr2ZSwQjgE4B7113wv/ZC0vw3dLqXiG4fxDqrfMz3ILICR&#10;yCrMwPJPPvXrGjaHZ+HbBLWxtoLS3jGFjiQIo/AVbr4rCcMQlUWKzObr1fP4Y/4Y7fN6n6JTwCcv&#10;aYh88vwXoiO1tIrKERwxxxRrwFRQoH4CpKKK+qSsrI9AK+dv2gP+LeftL+FvE/3EnV7ZiOAx8p1/&#10;9qV9E149+2T4FuPFvgK0urOAz3WlXCSxqCAfmkjU9fbNfMcX4edTLZVaSvOm4zXrF3/K5wZlByoO&#10;Ud42a+R7CDkUVk+BLu5vvB2nTXaNHcyQK0qsclW781rV9JSqc8FNdVc7ou6uFFFFWMKKKKACiiig&#10;AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC&#10;iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK&#10;KKACiiigAooooAK+Kf8Agsv/AMjB+x7/ANnHeGf/AEi1Svtavin/AILL/wDIwfse/wDZx3hn/wBI&#10;tUoA+1qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAO&#10;V+KXwm034p6MYLtNs6D91Ov3ozg+x9fSvLvD3xF179nzW49G8Sq13o7uEgu1GdgJz1JUYG7njtXv&#10;deP/ALTHj+O5t4/Cmnwre6tqLCIqoDGAMABnGSPvg9K/FvFLKcJldKXFmBrfVsZCyTirqs3tSnDT&#10;n5tl1W59dw3iquJkssrQ9pSetnpyd5J9Lfcz1TQtdtfEmlxXlnKs1vMoZWWrlfOGm+F/F/7Nsdtq&#10;FsH1HS540a7gRCxjOBnPy5XBY45HSvZ/hr8W9I+JumJLZXEYuNo8y3Z18xDgE/LknHP6V7fBniND&#10;M6iyvOKTwuOSTdOW0l/NTf2k+262fd8ebZA8PH6zhJe1o9JLp5SXR/gzqKKKK/Tj50KKKKACiiig&#10;AooooAKKKZc3MdnA0krrHGgyzMcBR7mi9tWA+q2q6tbaHYSXV3MkFvENzyP0UV5N8Tv2vNJ8OXL6&#10;b4ejbxFq7fLEloRLGWI4GUJOckDp61x+l/A/xt+0DfpqPjO+k03TC2+KyVNkig9VYbVOPlXvXyuL&#10;4ng6jwuWQder5fDH/FLb7rs8+pj1zezoLnl+C9WbXxA/bEF7qjaN4JsX1rU2Yosm3dEcHkjDg9Ax&#10;6eleG/tr/ATxPrH7Jfjrxb4z1V3vLKwWW2tUb/V/vY/lYFf9puhr7G+Hvwo0P4ZaWttpVkkOAA7k&#10;szOcYJ+YnGfavLv+CmH/ACYn8SP+wav/AKOjr1uFOH8Tic7weKzerzyVWm1COkItTVvOTXd/cfO8&#10;U4Oc8lxlTEyu1SqaLZe4/vPn/wD4IG/8kN8c/wDYdj/9J1r71r8Ov2Rv2EviP+1l4V1XVPBWo6TZ&#10;Wel3Ytbhbu/ltmaQoGBARGBGCOa9b/4cx/Hv/oPeGP8Awd3H/wAar+huL+FMpxWcV8RiMyhSnJq8&#10;XG7Wi/vL8j8e4D43z3BZBhsLhcnqVoRTtNSspe89UuR+m/Q/WqivyV/4cx/Hv/oPeGP/AAd3H/xq&#10;j/hzH8e/+g94Y/8AB3cf/Gq+b/1JyP8A6G9P/wAB/wDtz6//AIiNxL/0Iav/AIH/APcz9aqK/JX/&#10;AIcx/Hv/AKD3hj/wd3H/AMarpPg5/wAEjPjf4H+LfhjWtR1vw5JYaTqtteXKx6xO7NHHKrsADEAT&#10;gHjNZ1eDMkhByjm0G0tuXfy+M1oeIfEc6kYTyKrFNpN8+3n8HQ/UaioNMt2tNNt4n5eOJUYj1AAN&#10;T1+avc/Xk7q7CiiigYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA&#10;BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF&#10;FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfFP/AAWX/wCRg/Y9/wCzjvDP/pFq&#10;lfa1fC3/AAXg0a58YfDD9n/w3p14+ka34r+NWiaPpOsREiXQ7uWy1Ly7yMqQ4dMHBRlbngit8NTh&#10;UqxhUlyp7t3dvu1LpxjKajJ2Xc+6aK/Nr/hz3+0h/wBHeeOf/A/VP/kuj/hz3+0h/wBHeeOf/A/V&#10;P/kuvf8A7Gy7/oOj/wCAz/yPQ+p4b/n+vul/kfpLRX5tf8Oe/wBpD/o7zxz/AOB+qf8AyXR/w57/&#10;AGkP+jvPHP8A4H6p/wDJdH9jZd/0HR/8Bn/kH1PDf8/190v8j9JaK/Nlv+CPv7R6KSf2vfHAA5JN&#10;/qnH/k3XzJc/DL436n+2LB8IPDn7T/xF8SXgBN9qdvq+qRwWB2K2GDT4bqw4b+A+tdWG4ZwuI5vY&#10;4yL5Vd+7PRLrsa0sspVL8lZO2r0Z+4NFfm1/w57/AGkP+jvPHP8A4H6p/wDJdH/Dnv8AaQ/6O88c&#10;/wDgfqn/AMl1y/2Nl3/QdH/wGf8AkZfU8N/z/X3S/wAj9JaK/Nr/AIc9/tIf9HeeOf8AwP1T/wCS&#10;6P8Ahz3+0h/0d545/wDA/VP/AJLo/sbLv+g6P/gM/wDIPqeG/wCf6+6X+R+ktFfm1/w57/aQ/wCj&#10;vPHP/gfqn/yXR/w57/aQ/wCjvPHP/gfqn/yXR/Y2Xf8AQdH/AMBn/kH1PDf8/wBfdL/I/SWivza/&#10;4c9/tIf9HeeOf/A/VP8A5Lo/4c9/tIf9HeeOf/A/VP8A5Lo/sbLv+g6P/gM/8g+p4b/n+vul/kfp&#10;LRX5Y/Gf/gm38dfgT8N9V8T69+2N41tdP0q3edi1/quZCqkhBi6JycY6d680/Ya/ZV/aI/be8F6l&#10;4gsP2lviPoGl2l29tazXOr6nJ9uVTxIo+0KVBBBwR3rpjwzhZUJYlYyPInZvlnu/karLKTpuqqy5&#10;V1sz9maK/Nr/AIc9/tIf9HeeOf8AwP1T/wCS6P8Ahz3+0h/0d545/wDA/VP/AJLrm/sbLv8AoOj/&#10;AOAz/wAjL6nhv+f6+6X+R+ktFfm1/wAOe/2kP+jvPHP/AIH6p/8AJdH/AA57/aQ/6O88c/8Agfqn&#10;/wAl0f2Nl3/QdH/wGf8AkH1PDf8AP9fdL/I/SWivza/4c9/tIf8AR3njn/wP1T/5Lo/4c9/tIf8A&#10;R3njn/wP1T/5Lo/sbLv+g6P/AIDP/IPqeG/5/r7pf5H6S0V+bX/Dnv8AaQ/6O88c/wDgfqn/AMl0&#10;f8Oe/wBpD/o7zxz/AOB+qf8AyXR/Y2Xf9B0f/AZ/5B9Tw3/P9fdL/I/SWivxO/be+DHxq/YvvtE0&#10;uX9qr4g+J/EeuziKDSrTVNVilA3ICxb7QygAMx5I+4a9mk/4Jj/tD6Z8O4PEGqftbeO9NWWFZXt3&#10;1HVHaMn+HK3XJ+gp5hkmXYHB/wBoYzHQhSs3zSjJK0d3tsu50xyeEuXlqp82i0ev4H6MfGj4sQfC&#10;/wAMtKCJdQn/AHdtCDlmYhiDjB4yMdO9cv8As/8Awonimk8Ua9mbVr87kWQZMC5IHf0C9hivz4+H&#10;f/BJz9oH43aeNVv/ANpPxhCsRxby3d7f3DEf7ObnK85/Ku8T/gjx+0dGgVf2u/HAAGABfapgD/wL&#10;r8swPBeVcR5tR4mxGaQq4SCvh4eyqxSk96slOKbl0jpZLVdz26yoZfhZ5dCoo1ZP949Xp/KrXsu5&#10;+kV1ax3sDRSoskbjDKwyDXj/AMR/2c57DUm1vwhcvYX6ne1upOyUknPVsDr0x2r4+/4c9/tIf9He&#10;eOf/AAP1T/5Lo/4c9/tIf9HeeOf/AAP1T/5Lr6jirw04a4gw6oZhio80dYzjGcZwfSUJJXTX3Pqm&#10;ebluJ+o1OehiFZ7pxbTXZqx9l/DD9o/7fejSfFEB0rVF48yb5El6c8qoHU/lXrEUqzRhkYMp5BBy&#10;DX5j6p/wRC+OuuXfn3v7UniS8n6eZPJqEj/mbomuP+IH/BOX9pj4W3iRXP7SvxB/s3cFW6i1fUdg&#10;Xudi3RIxz+VeBgMLT4Wy+UuKc6hVoxdo1VRrOVunteSEkv8AHon11O6tlmBzKullslGT3j0v/dvZ&#10;/I/Wqivy98Ef8EwPj18QdLW5039sfxtKCPmU32qqynnjDXQPY9q3T/wR8/aPH/N3vjn/AMD9U/8A&#10;kuvvcDhslxtCOKweZU6lOSupRUmmvJpHiVsspUZunVqqMlunGSf5H6S0V+H3xy+Gfxu+FH7T2g/C&#10;rSP2oPiJ4u1/V1DXBtNX1SJdP5mB3lpypwYuzfxivpsf8Eff2jyuf+GvPHP/AIH6p/8AJderiOGc&#10;LQjCdbGRSmrr3Z6rvsFTLKVNJzrJX20Z+k1I7iNCzEAAZJJ4FflP8T/+Cenxt+FVkWv/ANsnxs1y&#10;QfKt473VnaRscDK3JxnI6+tdt+yN+yf8Z9SkM998VfiXriHKPdX/AIkuntcEMAfIkm3HP+FfF57m&#10;WUYD9zhcSsRX6U6cZN/NtJRXmzyMZVwlFctOrzz/AJYp3+fY+2Pir+1F4e+GwNvHKNW1JuI7a2ff&#10;k55BKhsdD27V5nF4e+I/7TdwJNQmn8LaCTxGF/ej2I/dsRhj+VeF/GL/AIJD/F34ma6bmx+OVv4f&#10;jVy8bWOnXMNxyT96RLgEnBrEX/gjz+0ci4H7XfjgAdAL7VOP/JuuDDcJTzaCqZ1j40oP/l1BT/8A&#10;J5pa+i0MqeV/WY82LrqK/lSf4ux9u+Gv2btC+H/g6+t9NtxJqM9tIgu5AWfeQcMMklSOOh7Vzf7G&#10;njG61ix8R6RfXE08+iXmzdK5ZiGkm9f92vkf/hz3+0h/0d545/8AA/VP/kuqfiH9iH4p3fiu1+HO&#10;mfGvxD4X8SRxedc6/Y3N3CdT+VXHmCOYOxAyMs5++fU1GbZFlmVZhl88HiYqlKTpytGSS5o+62ra&#10;+8vUWJwOGw1ei6VVcrbi7J6XWn4n6Y14V/wUw/5MT+JH/YNX/wBHR18n/wDDnv8AaQ/6O88c/wDg&#10;fqn/AMl151+1P/wTp+M3wB+C2seIfF/7T/inxZpFtGPM0K8vdQaLVfmH7srJcsh/vcqfu1+p5BlG&#10;AjmeHlDGRk1OGnLPX3lpsc3F+Dw6yHGuNZN+xq9H/JLyPdf+CBv/ACQ3xz/2HY//AEnWvvWvxa/Y&#10;M/Yp+LP7U/hvWr3wB8ZPEXwv0nTboQXcWn3l1El3OUVgzLDNHk7TjJB6da+gP+HPf7SH/R3njn/w&#10;P1T/AOS69fjrK8FUz3EVKuLjCTa0cZO3ursrHzPhFhaEuD8DKVZJ8r0s/wCeR+ktFfm1/wAOe/2k&#10;P+jvPHP/AIH6p/8AJdH/AA57/aQ/6O88c/8Agfqn/wAl18l/Y2Xf9B0f/AZ/5H6P9Tw3/P8AX3S/&#10;yP0lor82v+HPf7SH/R3njn/wP1T/AOS6P+HPf7SH/R3njn/wP1T/AOS6P7Gy7/oOj/4DP/IPqeG/&#10;5/r7pf5H6S0V+bX/AA57/aQ/6O88c/8Agfqn/wAl0f8ADnv9pD/o7zxz/wCB+qf/ACXR/Y2Xf9B0&#10;f/AZ/wCQfU8N/wA/190v8j9JaK/Nr/hz3+0h/wBHeeOf/A/VP/kuvFP23v2XfjR+w78Mf7f1z9rj&#10;x5qV7cSiCx0uHUdWWa9kKSMqgi4bbnyyMkYGeTW2G4dweIqqjRxkXJ7Lkn/kXTy6jUkoQrJt+Uv8&#10;j9kKK/Jb9l7/AIJ0ftSftCfCLTvFOqftIfETwc+pKzx2Nzrl/dSBQ7KCWS6A5ChuR/F7V6J/w57/&#10;AGkP+jvPHP8A4H6p/wDJdTWyHAUpunPGwutH7s3+SsKeAw8ZOMq6uvJn6S0V+bX/AA57/aQ/6O88&#10;c/8Agfqn/wAl0f8ADnv9pD/o7zxz/wCB+qf/ACXWf9jZd/0HR/8AAZ/5E/U8N/z/AF90v8j9JaK/&#10;Nr/hz3+0h/0d545/8D9U/wDkuj/hz3+0h/0d545/8D9U/wDkuj+xsu/6Do/+Az/yD6nhv+f6+6X+&#10;R+ktFfm1/wAOe/2kP+jvPHP/AIH6p/8AJdH/AA57/aQ/6O88c/8Agfqn/wAl0f2Nl3/QdH/wGf8A&#10;kH1PDf8AP9fdL/I/SWivxv8A23v2XfjR+w98Mf7f1z9rnx5qN7cSiCx0uHUdWWa9kKSMqgi4bbny&#10;yMkYGeTXT/su/wDBOj9qP9oX4Rad4p1P9pD4ieDn1JWeOxudcv7qQKHZQSyXQHIUNyP4vaut8MYW&#10;OHWKljIqDdk+WWr8la7NnldJU/ausuX0Z+tNFfm1/wAOe/2kP+jvPHP/AIH6p/8AJdH/AA57/aQ/&#10;6O88c/8Agfqn/wAl1yf2Nl3/AEHR/wDAZ/5GP1PDf8/190v8j9JaK/Nr/hz3+0h/0d545/8AA/VP&#10;/kuj/hz3+0h/0d545/8AA/VP/kuj+xsu/wCg6P8A4DP/ACD6nhv+f6+6X+R+ktFfm1/w57/aQ/6O&#10;88c/+B+qf/JdH/Dnv9pD/o7zxz/4H6p/8l0f2Nl3/QdH/wABn/kH1PDf8/190v8AI/SWivza/wCH&#10;Pf7SH/R3njn/AMD9U/8Akuj/AIc9/tIf9HeeOf8AwP1T/wCS6P7Gy7/oOj/4DP8AyD6nhv8An+vu&#10;l/kfpLRX4j/tbfCP41/su/Fbwr4Jh/am+IXivxL4nvI7T7FaatqsTWYd4lDsxuGXGJVOMivpPwH/&#10;AMEm/wBo120bVbv9q/xyUPkXc1nJqGptx8rNGT9qwe46Yrpr8M4WjShWqYuKjPb3Z62+RrPLKUIK&#10;cqys9tGfpLRWd4S0m40HwxYWV3dPfXNrAkUtw5JadgMFjkk8+5rRr5F6OyPHYUUUUgCiiigAoooo&#10;AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA&#10;ooooAKKKKACiiigAooooAKKKKACiiigAr4p/4LL/APIwfse/9nHeGf8A0i1Svtavin/gsv8A8jB+&#10;x7/2cd4Z/wDSLVKAPtaiiigAoorwz9vf9tvQf2IvgtdeINRdJtWn/c6ZZblzcTFWYAgsp24RunPH&#10;St8NhquIqxo0VeUtEaUqcqk1CCu2eT/8FXP287n4EeFrb4deCv8ASviN45zptmihg1sJlaMOpDLi&#10;QO8ZU5IGeQa6D/gl9+wPafsnfDV9d1kG+8eeLAt7qt3KVcxsxlcKp2hs4mIbJbJHHv5J/wAEqv2J&#10;dd8T+Mb34+/FdJLjxl4kbfYQTq0ctqiMqK0i7VAYCCMrjcCpBNfoNX0Wa4mng6H9lYR3/wCfkl9q&#10;XZf3V+J6GLqxo0/qlJ/4n3fb0QUUUV8seWFFFFABRRRQAVDqOoQ6TYTXVw4igt0MkjnoigZJ/Kpq&#10;/Oj/AIKeftda3+0N8TLX9nH4TSG61fXJEtfEN7EokjtbaZVjcMV3lY9lwpY7MjHHv6WVZbUx1f2U&#10;dEtZPol1bOnCYaVepyLRdX2RxXx5+IWvf8FgP2uIvht4XlktfhZ4JvQdauUYp9rbKMVfJYMd1vME&#10;/djGTmv0o+EXwp0b4I/DnSPC+gWq2ul6PaxWsKgAM4jjVAzYABYhRkgDntXBfsRfsjaJ+xv8D9O8&#10;M6VGDdmJZNQuNxJnmO5m644DO+OBwea9hrsznM4VuXCYTSjT+HzfWT83+RtjcTGdqVLSEdvPzfqF&#10;FFFeCcAUUUUAFFFFABXkn7af7WWi/sd/A7VPFWrODOkTR2EBUnz5yMIDgjjey55HB613XxU+KGjf&#10;BrwBqviXX7pbPStHtpLqeQsoJWNGcgbiBnCnGSK/ND4LeBvEP/BYn9r4/EPxLFJa/CjwLef8SaB1&#10;KC7bO0mMgMGBe0Qv+843DHWvdyXLIVubFYp2o09ZPv2ivN/kd+Cw0Z3q1dIR38/Jep2P/BNz9lTV&#10;f2ifihqH7SnxbRp7vU5JbvQLGQh4ra2mWVk+Vg7CMR3A2APkbRnPf6cv7i6/al+Iv2aNni8MaWxD&#10;MhwZSCeRnIzh17dq90i8MWMHhyLSUt1XT4YFt44QThI1ACr68AD8qi8JeD9P8D6QLLTYFt7fdvKg&#10;k5OAM8+wFfmniTk2P4ux+HoYiooYCOtSmr3nyv3Kfbk6y6s9fB57Ch7TEKP73aHaC6tefYu6bp0G&#10;kWMdtbRrDBEMIijAXvU9FFfWU4RpxUIKyWiS2SPmm23d7hRRRVCCob/T4dVs5Le4iSaGVSro4yGB&#10;4INTUVM4RnFwmrp7pjTad1ueNeNv2dLrw1qba14Lu5LG7UmSS237UkxjCqFA6/NnJ714F+2h/wAF&#10;Sbn9mf4S3WjT6Yv/AAsS/wBtnp8JQmEt5kaOzYkDZ2lyMN1A+h+pP2jfjvYfs/8Aw2vtYuVe5vvJ&#10;cWFpGAZLmbGFABYZXcVzg5wa/Mr4W/s8+Mf2o/2k9R+JfjKw/tvXb6WRtOsY1fy9Jt381kibCqQU&#10;WQjndyvU9a/PMDwrk3DGZvO8HiHShq3hI6xrzt7qjHV07ytzTirWvofR/wCsuHnQ5M3Sm1blf2/T&#10;+8vX7z3z/gmv+yppv7L/AIMuPi58U743PxD8Ysbt5bkiVreORYm252bvM3rJk7iMH1r2TVf2gvGP&#10;x91B9M8DWBsbHpJevkSxdicq+MfMD93tXGT/ALJPiXwN9n1bUrOy8QKg+e0heVsdeuFUj8697+EH&#10;x38N+IrKLTYh/ZFzCNot5iFBJPRfmJPXv714uN8SMTn2c/2dn1T6hOSVoarn8oVJKMbLay1PHxWU&#10;5pmNN4+OlLtGzkl05kr8phfDH9j3S9Cvl1XxHPJrursQ7mYq8IYHggFA2Rx37V7Ja2sdjbpFEixx&#10;xgKqqMBQOgp6tuGR0PSlr9Ny3KcJgKfs8LBLu+r9XuzzKGGp0Vy01YKKKK9I3Cvnn9qCJ/BHxy8F&#10;6/F/y+3DQTN/dXMCfyJr6GrhPj18JB8WPDlvCtwlrLZTLOsrHAUBlY9j/d9K+f4nwFXF5fKnQV6i&#10;cZR9YtP/AIBx4+jKpRahurNfJnV6x4ltNC8NzarcyiOygh+0PIegXGc1+Ov7Z3x88W/8FKvFvivx&#10;F4ckFv8ACr4UwmWNgWVL+ZZSm/buOXMd1HztXha9c/bt+PXiP9tf4qaX+zN8MJvtVpZbbXxRqYUN&#10;bhrY72RnQOVIe0bHyDlgD7fQn7RP7Neg/sof8ErvGvg/QIttvZaUjTTEktdS+ZAhkb3IRemBx0r9&#10;i4VpRyzEYWtiF+/qyhaP8kXJXb83svvHxVFYXhzGzqL95OjUsuycHr6vocJ/wQN/5Ib45/7Dsf8A&#10;6TrX3rXwV/wQN/5Ib45/7Dsf/pOtfetcPiJ/yUeK/wAS/wDSUfDeE/8AySWC/wAL/wDSpBRRRXxZ&#10;+iBRRRQAUUVV1rWLfw/pNxe3cqw21qhkkdjgKBQk27IDn/jT8ZND+Afw31LxV4juhZ6TpUYknkIJ&#10;wMgdvqK/OL9j34TeIP8Agq5+003xq+IkBi8DaC6/2FpQP7uR0eIgFHMg8skTZAKnJ61n/F7X9d/4&#10;LUftYJ4R8PSTWfwe8GSH7bfbRsu5kaRS8bqJFZik8XBZRgfn+oHgTwNpnw18JWWh6NapZaZp6FII&#10;UJIQEljyST1JPXvX18rZNhuRf7xUWv8Aci+n+KXXsj2H/sVLlX8SX/kq/wA2adpax2FpFBCgjihQ&#10;RoijhVAwAPwqSiivkDxwooooAKKKKACuV+NPxk0P4B/DfUvFXiO6FnpOlRiSeQgnAyB2+oroNZ1i&#10;38P6VcXt3KsNtaoZJHY4CqK/LL4v+INd/wCC0/7WEfhDw7JNafB/wZKftt9tGy7mRpFLxuokVmKT&#10;xcEqMD8/ZybK1i6jnWfLShrKXl2Xm+h24LC+2k5TdoLd/wBdTQ/Y++E/iD/gq5+00fjT8RIDF4G0&#10;F1/sLSgf3cjo8RAKOZB5ZKzZAKnJ6iv1DtLSOwtIoIUEcUKCNEUcKoGAB+FZngPwNpnw18I2Wh6N&#10;apZaZp6GOCFCSEBJY8kk9ST+Na9TnGaPGVVyLlpx0jHsv831JxmK9tPRWitEuyCiiivIOQKKKKAC&#10;iiigArwn/goF+2vpP7EnwMvPEFz5c+sXWbbSrV1LLNcNHIybgCvy5jIOGBr0n42/Gzw9+z58OdQ8&#10;U+JrxbPStNTfK25QzcgYXcQM8+or85P2OPg94k/4Kn/tQ/8AC8PiHavbeB9CZf8AhH9PdWj8x0eJ&#10;htwMNGSs2T5hOTj6e/kuW06iljcZpRp7/wB59Ir169kehgsNGSdet8EfxfZHo/8AwSw/Yj1XxR4p&#10;vPj38VFlvvGPiV/O06CdlkFnErOik5DHOxISuH4A5r9AajtLWOxtY4YlCRRKERR/CAMAVJXDmmZV&#10;MdXdapp0S6JdEjnxWJlXqc8vkuy7BRRRXnHOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR&#10;RQAUUUUAFFFFABRRRQAUUUUAFFFFAEV8xSxmI4IRiD6cV418KPhNpfj+z1zUL641Cef+27yIkXUs&#10;YUCToArgYGfSvZNQGbCb/rm38q4H9m2FoPDGvB1Kk+Ib84Pp5lAHP/ET4D6RpTaWLa41K3ae5KGQ&#10;Xcz7RsJ6F8dquaj4g8c/CGeJbuMeLtMnmWCOZIxFcRsQT/q40OR8p5z3Fdn8RLqO2k0rzE37rkhe&#10;Oh2NVnxyM21gdxXbeoRg4/hagDita+O2vaXZh18IX7vI6xxhklUFm6ZOzgZ6mrFrYfEDxsEkuby1&#10;8MW0q7vKgWO7YgjODvUEH/H2rqPiFbPdeH7cJIYyLmJsg9cGtvTxiwh7/u159eKAPHPD3wLsNU+J&#10;OqQ6reajqLR2yuH+0SwDcXYHhHArqf8Ahmnwuf8AllqP/gzuf/jlbGhXSv8AErVIggDLbIxb1+dq&#10;6igDz/8A4Zp8L/8APLUf/Bnc/wDxyj/hmnwv/wA8tR/8Gdz/APHK9AooA851L9mvwymnTlItS3iN&#10;iv8AxMrnrg/9NKw/h78Jte0LwTZTaD4jubKVoVMlvPAs4dsDOXkLEdvy969dvP8Aj0l/3D/Ks3wR&#10;/wAi7B9B/IUAeeQeN9SXx/o2k+L9HNtdtIr2d3aXLyRyPuwocAKo6twc9K9arzv4oQmT4neFTjIW&#10;5j/A7mr0SgAooooAKKKKACiiigAr4p/4LL/8jB+x7/2cd4Z/9ItUr7Wr4p/4LL/8jB+x7/2cd4Z/&#10;9ItUoA+1qKKKAOT+Nnxp8P8AwB+HOoeJ/Et/b6fpmnoGd5ZFTcSwUAbiM8sK/OX9lH4TeI/+CsX7&#10;Tcnxh+IVpdWvw70FzHoWlzxsiXBUo6gFRHvTE0v7w7uRjtx9V/8ABQv9g3Vv24v+Eb00eLptD8OW&#10;FwZdRskgZ1vBgkbsSpkbgpwQele+/DX4aaL8IvBll4f8P2EGnaVp6eXDDEgUKPwAr6PCY+hgcE5Y&#10;d3r1Lpv+SPl5vutkelSr06FC9N/vJfgv82bNnaRafaxwwoscUShUVRgKBUtFFfOHmhRRRQAUUUUA&#10;FFFNkUvGQDgkYB9KAPkP/gqZ/wAFBT+zJ4Ki8J+DW/tT4k+JcQ2FnaBbie2VhJiTysOWO6PGCuPm&#10;qX/glv8A8E/V/Ze8CP4o8U/8TD4h+Jd01/cyFma2G9tqAlsHKCM/dGCMU/4Rf8ExY9G/bF8QfFrx&#10;xr//AAmF5O7f2Pa3Nr8mnDMbKV3SOOCsgwFX75/H61UbRgcAcADtX0mMx9DD4NYHAu/NZzltzP8A&#10;l9F+LPSrV4U6KoUHvrJ9/L0QtFFFfNnmhRRRQAUUUUAFRXl7Dp1q81xLHBDGNzySMFVB6kngVLXm&#10;f7Xfwc1z49/AXXPC/h7xBL4a1HU4TEl7EhZ0yD0w6Ec453dq1oQjOpGM5cqb1fbzKgk5JSdkfAv7&#10;THxc8Qf8Faf2pbX4TeBJ7iP4X+H7qGbXtUhXfDdL+7Eg8xRwwWaUBBIN20+nH6NfBP4N6J8BPhrp&#10;fhjQLSO1sNMgWIBQcyMB8znJJyTk9T1rz79hn9ibw/8AsTfCKDQdN8m+1WUtJqOpmARy3rmR2BPL&#10;HhWC8sfu17bXs5zmVOqo4PB6UYbf3n1k/N/gjuxuJjK1Gj8EdvPzYUUUV4J54UUUUAFFMuLmO0hM&#10;krpHGvJZjgD8a8m+Kv7W+jeCppLDSIn13VgcCC33YBzj7wVgehrz8wzXCYGn7XFTUV+L9Fu/kY1s&#10;RTox5qjseqanq9rolo095c29pAv3pJpBGg+pPFeB/G79u3SfBOlXx0UJdCziZ7i+kkVLe1UKWMhf&#10;lcL1OcDg1y3inQvFHjjThr3xD1m48PeH3falvAjSebwTgrG2Rxu5K9qT9rH/AIJ6Wv7SnwT0nw14&#10;P1//AIRnTJryOTUJ0tjLNe2/zrIjOJEbaQ5BBJ6DjivAwOOxudYpYalP6rS0cpS1qcr6qHS/Rs5K&#10;FWpi6qpp+zj1b+K3p0PGf2aPF+v/APBRr4t3l632uTwfos6i61WWHZFcnLARQbQEcEwsrMrZX5T1&#10;Nffng7wFpPgHSYrPSrKK1hhUKuMs2AAOWOSenrXPfs7fAHQP2avhTpXhTw9aQW1pp8KpI8cQQ3En&#10;VnOPVix5J613NfQ0skyzB1nLBQb/AL8nzTl5uT79lZI7fquHpTbor5vVv1YjLuGCMj3rgfiV+zxo&#10;nj8m4RDp2o/w3MJbjg/whgPT8q7+iuTPeHcszrDPB5pRjVpvpJbeae6fmmmd+Cx+IwlT2uGm4y8v&#10;61PBIdT8e/ASdY7iGXxDoinjy48tGvUliqEjqep7V6N8PvjxoHj+IKl1HaXnAa3uHWN93cAE5PQ9&#10;q7KaFLmJkkRXRhhlYZBHuK8C/ac8LeHfDktu+lwtbeI7p/3KWjGPByuSQo44J61+O55hc54Cwc8y&#10;y7F+2wVP/lzXbcktlGlU1k30jB36JH1eDqYTO6qw+IpclaX24LR+co7erR7+DkUtfPugeLfiN8Jd&#10;KtpdSsJNX01o1bb5oaYZGME/M3p2r0XwJ+0RoHjVxC032C9/ignDLt6fxMAO9fXcPeKuT5hOOExy&#10;lhMQ7fu68XBu/wDK37svk7+R5eO4ZxdBOrRtVpr7UHf70tUd7XxD/wAFV/28r34fWtp8JPhyTqnx&#10;C8ZFrF1tNs76dG/lKS6hXK7kmJ3EDGwkHjNfbkUyzxhkZXU9CpyDXjGgfsG+AtE/aW1D4qPZTX/i&#10;a9RER7uTzkt9qFMqrZAOMdMYwK/YcnxGEo1vrGJXMoq8V0cul/LqeRhJ0qdTnrK9tl5+Zx//AATR&#10;/YSsf2QfhHDeakv23x14jjjvdavpNxdZnRWeIZYj5ZGk+YBSc8jtXSf8FMP+TE/iR/2DV/8AR0de&#10;614V/wAFMP8AkxP4kf8AYNX/ANHR135TjKuKz3D16zvJ1Yf+lI+Z4zrTq5Njqk93Sqf+kM+f/wDg&#10;gb/yQ3xz/wBh2P8A9J1r71r4K/4IG/8AJDfHP/Ydj/8ASda+9a9HxE/5KPFf4l/6Sj5bwn/5JLBf&#10;4X/6VIKKKK+LP0QKKKKAEdxGhZiAoGSSeAK/N/8A4KS/tZeIv2qvi9B+zt8I3lup7ydo/EOo2mJY&#10;7YQuZWjZ1VvLKm2cY3KTnB64r9G7+zXUbGa3k3BJ42jYqcHBGDg9jXkP7PP7DPgX9m3x/wCJ/E+h&#10;2Ty654qvpr66u7pvOlQySO5Cs2SvMjDg8g17OTYzDYScsTVjzTivcXTm7v03O3B1qdJupNXktu1/&#10;P0L/AOx3+yd4e/Y7+DNh4U0KFC8YEl7dkNvvJ9iI0h3MxGQi/KDjivVaKK8uvXqVqjq1XeT1bOWp&#10;UlOTnN3bCiiisiAooooAKR3EaFmICgZJJ4Apaiv7NdRsZreTcEnRo2KnBwRg4PY0AfnH/wAFJv2s&#10;/EX7VPxeg/Z1+EbyXVxeTtF4h1G0xLHbiFzI0bOqt5ZU2zj7yk5weuK+y/2O/wBk3w9+x38GbDwp&#10;oUKF4wJL27IbfeT7ERpDuZsZCL8oOOKo/s9fsM+Bf2bfiB4o8UaHZPLrniq+mvrq7um86VDJI7kK&#10;zZK8yMODyDXsle9mWZ0pUIYHBJqlHV33lLq36bI78TioumqFHSK3833YUUUV4JwBRRRQAUUUUAFV&#10;Nd1208M6PcX9/cRWtpaoZJZZXCKgHqTxVuvHv25P2edd/ag+AOp+EdA8SzeF7nUWhEl1FGzOUWeK&#10;RgMSIRlUYdf4q3w0ITrRhVlyxbV32XculGMppSdl3Pg74q+J/EH/AAWg/as/4Q/w9NdWfwZ8JSEX&#10;19Gm6G9lRnBYSKBuYpNF+7EmMDNfpz4A+H+kfC/wnZ6JodlFYabYqUhhjzhQSSeTknknqe9cD+xz&#10;+yT4d/Y3+DVh4U0KGB5IgHvb1YRG97NsRGc9TyEXgk9Oter162dZnCu44bCq1GnpFd+8n5s68biY&#10;1GqdLSEdv8/mFFFFeEcIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF&#10;FABRRRQAUUUUAFFFFAHnXxN8d61J4ytfDOhNZ2dxdQyvLdXaMyIAqkbcMDnBP6VJ+zfZ3Vh4N1OG&#10;8uUvLqPWLtZZVzh2DjJGeeua3fiJ8NNI+IOn/wDEythJJboxhlH34s4zt7dh+Vcv+yxpEeg+CNYt&#10;IWkeKDXr2NWkxuIDgc4+lAHU/EEKW0zcBxcHGR/sGpfiBCJrGyySNt4jDB/2Wpvj2BZo7HcM7ZyR&#10;/wB8mj4hso06z3f8/aY+u1qAG/ECIy+GoQrFcTRnINbemcabb/8AXJf5CsP4gwfaPC8I3Ff30ZyK&#10;29KG3TLcekSj9BQBg6Jbxp8R9ScH941sgI9t7V01c3o2niL4iajcZOXtkXHp87H+tdJQAUUUUARX&#10;n/HnL/uH+VZvgdg3hyDHPA/kK0r0brOUf7B/lWX4Di8nw1Ao7AfyFAGD8RY93jnw43PF1H/Nq7eu&#10;L+If/I6+Hf8Ar7j/AJtXaUAFFFFABRRRQAUUUUAFfFP/AAWX/wCRg/Y9/wCzjvDP/pFqlfa1fFP/&#10;AAWX/wCRg/Y9/wCzjvDP/pFqlAH2tRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA&#10;BRRRQAUUUUAFFFFABRRXIfE344eH/hPaltVuwJsbkt0I8yQZI4BIHY9+1c+JxVHDU3WryUYrq9CJ&#10;1IwjzTdkdczbRk8D1NedfFz9pjw98KkeB5je6nj5LWJW3E4yOcbe47968vufiH8QP2mpvs3h62Og&#10;6DJw13IGUyL0KsQXHc9v4a9C+En7KHh/4byR3twranqoIczzEHY2c/LgD26+lfKPO8dmXuZPT5Yf&#10;8/ZrT/t2O8vXY8/61Wr6YZWX8z/RdTz2Gy+I37Ttx5ksr+G/DchyvlylTMh5wwDnnAHUfxV6x8LP&#10;2cfDXwrt0a2s0ur7q11cIjyg4wcNtBA6/ma71RtGB0HFLXoZfw1h8PU+s4hurW/mlr9y2ivQ2o4G&#10;EJc8/el3f6djz79p/wAKjxX8F9Yj27pbeEzRDH8QBH9TVf8AZP8AE58TfBDSGkbdcwCVJevB86TH&#10;6AV6Fqenx6tYS20ozHMu1h7V4J+xRfSaBqXibw7cn97bXIkjX0Ujcf8A0IVyYz/Zs/oV+laEoP1j&#10;aS/VGVX93jIT/mTX3an0FRRRX1x6QUUVT17XLfw3pE97duI7e3Qu7HsBzWdatTo05VartGKu29kl&#10;1KhGU5KMVdsyPih8RLX4a+FLjULhhvCkQpgne+DtHHvivN/gd8O7rx14il8Z+IVMsk7brOGQhhGp&#10;3Y657FcdMYrL8MaXeftK/En+2b1Wj8P6XIDbxnjzCCM46jBMZzz3r3y2t0s7eOKNdscShFUdgBgC&#10;vxbJqNTjbNo57ilbL8PJ/V4P/l7Nae2kv5V/y7X/AG8fXYuUcnwrwVJ/v5r33/Kv5F5/zfcOZQ64&#10;IyPSuF8efs8eG/HILtaLY3PXzbVUjZjz1O0k9f0Fd3RX6rnWQZbm9B4bM6MasO0lf7u3yPmcJjsR&#10;hZ+0w83F+R4Y/hH4i/B+QvpV5/wkGnx8+VPIW8tOpxudR69q1fCv7WOny3Qs9ftJtJuVO15GBZCf&#10;YKD/AJNevVj+LPAWk+N7bytTsoroYIUv1XPp+Q/Kvzl+H+c5P+84UzCUYr/lzXvVpeil/Eh8m/kj&#10;3/7cwmL93M6Cb/nh7svmvhf4FrRPElj4jskuLK5SeKQZVhkZ79DzXjH/AAUw/wCTE/iR/wBg1f8A&#10;0dHVrXf2U59BvWvvCWrS6fdEkhJXAQew2oT0JFeLft4eLPiBoX7IXjnSdd09LuxubBUe+2sSv71O&#10;5I/u+nevoeDvEDNcLn+BwPEeWzpSnWpRVSl+9pNucUnde9FXf2lZdz5zjPI8NV4fx1bAYhSSo1Xy&#10;y92WkJfJ/L7jnv8Aggb/AMkN8c/9h2P/ANJ1r71r86v+CGvxP0XwZ8KfGNhqd5HaS3WsxyRmQ4DD&#10;yUGK/Q7TtTg1a1Wa2lWaJuQy9DX7Fx5muCr8VY7C0asZVISXNFNc0fdi9Vutz888KsNWhwfgKs4t&#10;RlF2dtH78upPRRRXzR96FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR&#10;RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF&#10;ABRRRQAUUUUARXgzZy/7h/lXCfs7p5fh3Xsc/wDFQX5/8iV30iCSMqejDBrzbQfgdrnhbWtVfT/F&#10;5g0zUbyW9WzOmq5hkkcs37wyZI5A6Dp70AdJ8TbCa+sbPyesc244HbaayPjR8SPD/hm0tIdQvEe4&#10;S7RvssDq1wPlbnZuBx/iKg8R/BnXPE9ktvP4vlWLdlvLsAjH8RICK3PDHwd0HwvlktPtkzfelvGN&#10;w/4FySOlAHJfEP45aWvhiLyrbVTiaLJW3B2r6nngDvXa+DviJoniTTbVbPVbCeZoUzElwhkU7ehU&#10;Hg9ePatV9AsZE2tZWjKeCDCpB/SsLXPg3oGuyb2tDauOjWkjW/8A6ARQBd035fG16O/2dTj23NW5&#10;Xl+j/s+6p4b8Y3mo6f4uuorO5gWFbSa1M5jIYnPmNJk8EDGO3vW3/wAK68Qf9DWf/Bev/wAXQB2t&#10;FcV/wrrxB/0NZ/8ABev/AMXUlt8P9ehly/igyD0+wKP/AGegDrbv/j1k/wBw/wAqyPC93FpnhiOS&#10;5kSCMAEtI20DgdzWPffDvXrtGVfFJjDAj/jwU4z/AMDqjoX7P1rb2yrq2p3+rSKMZEskCH/gAcj1&#10;oAyfGXjTT/G3xO8NW+jT/wBqG1u4555bQiaKJASDuZScfeHX1r1es/RvC2neH4wtnZW1vgY3JEAx&#10;+pxmtCgAooooAKKKKACiiigAr4p/4LL/APIwfse/9nHeGf8A0i1Svtavin/gsv8A8jB+x7/2cd4Z&#10;/wDSLVKAPtaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorP8Q+KtO8K&#10;WLXGo3lvaRKM5lkC5+mTzUznGEeabskJtJXZoVg+OPiXovw605rjVtQtrUBSyxvKqvJjsoJGTyPz&#10;FeO+Mf2sdT8a6i2k+ANKuL2aQ7Bfsp2Rk8cgoRjJ657VJ4E/ZKvPE2ojWPHmpz6ldSMJBZAkRxH6&#10;q+P7vG3tXyVXiSpi5uhktP2r6zelOPz+16RPOljpVHyYVc3n0X+fyM7Xf2gvGHxtv5NO8CaZc2li&#10;WKHUpYCVwDnk7XUZAx/wKui+GX7Hen6Tdf2l4nnbW9Uc72DOypGxA6bSM9+o7167oXhyx8M2KW1h&#10;awWsUahQI0C5AGOcdavVphuGI1KixOaz9tUWyfwR9I7fN6jp4BOXtMQ+Z/gvREdtax2cQSJFjUdA&#10;owKkoor6tK2iPRCiiigAr52tl/4Vx+2tcN/q7XX4UijQ9CxECcZ9819E1kan4F0vWPENrqlxapJf&#10;Wf8AqZD1TkH+YFeJnWVzxioypO0qc4yT9NGvmmcuKoOryuO8Wma9FFFe2dQjuI1yxAA6k14H478R&#10;3f7RnjuPw7pDMNCs3WS6uFGVfGAcMM84k6ZHSveLy0S/tnikzscYODg/nWJ8P/hppXw2097fTYdn&#10;mHc7sSWY/U5Nfn3HPDWY5/LD5bGooYNtuvZvnmlblpr+7LXmd9lY93JswoYFTxDjestIdl3l6roa&#10;Hhfw1a+EdDt7CzjEcEC4AGeT1J59ya0KKK+7w2HpYelGhQiowikkloklokl5Hi1Kkpyc5u7e4UUU&#10;VsQFFFFABXhX/BTEZ/YT+JHtpq/+jo691rwr/gph/wAmJ/Ej/sGr/wCjo69nhz/kbYX/AK+Q/wDS&#10;kfP8W/8AIjxv/Xqp/wCkM+Lv+CR/iT4Wab8GfF1p4/8AEnhnQr6XV0ktF1PVks5GTyANyqzruGc8&#10;19Fah4w+GHhq7a58MfHDwHBJ1WObX7TYpHTq7d6+I/2Av+Caiftw+Bdd1l/GT+Gf7Fv1svJGlfbP&#10;OzGH3bvOjx1xjB+te+/8Q/EP/RWJf/CaH/yVXveKHhB4aZ/n1fH5zWlSxbablThOM0+VJe/COult&#10;2z8m8NOPfETLeHsNhcnwMKuGSfLzVIWa5nf3ZS01v0R61H/wUGsPh7IqX3j/AMAeI0U7c22tWzcd&#10;P4AP8iuz8Kf8FPvhZqoVNQ8TaLZzHqVv4DGPxMgr5y/4h+If+isS/wDhND/5Ko/4h+If+isS/wDh&#10;ND/5Kr47KfC3h/Lav+z8UYmdL+SrS9p/5O4KX3s+0xXHfHeIj+84foqXeNaMfwVSx9kWf7cHwevI&#10;A/8Aws/wHFn+GTXrVWH4b6u6V+2D8KNd1S3srL4leBLu8u5Vhggh122eSZ2OFVVD5JJIAAr8/fi3&#10;/wAEUdN+FGg/aZvio91dSHbDbDw8FaU4J/5+SQODzitj4P8A/BFXXNGutC8Vw+NDHfaddx30VpJp&#10;IXJik3AFjPxnaP4e9e5icy8PKOJq5XSzSpVxVKnzuEaFRu3S7VNxTk9k2n12OfDY3xIqKniK2UU4&#10;UZSUeZ1qfzaXtLuy7I/S6ORZYwykMrDIIOQRTq8Msdf+KngO0jgvbGDVIrdAoMRjBZVH+ypq1Z/t&#10;TarYybNV8G6laqvBlBkYH/yEP8mvwheMWRUpezzKFfCy7VaNRfjFSj97P3L/AFUxso81BwqL+7OL&#10;/BtM9porzHS/2r/C118l093ZT/3Hgbp9SBXT6Z8ZPDWqkeXq9kuf+ekyp/M19Nl3H/DeP/3THUpP&#10;tzxv9zd0efXyPMKH8WjJfJnT0VnW/i3Srv8A1Wp6fL/uXCH+tXobiO4XMbo49VOa+oo4qhV/hTUv&#10;Rpnmypzh8SaH0UUVuQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ&#10;AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB&#10;RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8U/wDBZf8A5GD9j3/s47wz/wCkWqV9rV8U/wDB&#10;Zf8A5GD9j3/s47wz/wCkWqUAfa1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUE4FA&#10;BUN/qMGl2zTXEscMaAks7YAFeVfFv9rfQvh/M1hp/wDxNdXY+WsMY4RyBt3ZK8ZI6GvP5vhv8Qf2&#10;hbSbUPEl0dH0cI00VjC7L5owWXAJcdl/OvlcdxTSjUeGy+Dr1Vuo7L/FLZfmefVzCKk6dFc0vLb5&#10;s634k/thWdnfNpfhO1k1zUiSm9UdEiYHnO5QD09e9Yfh/wDZt8V/F++XUfiDqt1FAxz/AGbDPlF9&#10;xh2UdWHStX9jSXTRbavp6aZZWmoaTcvA0sceJJEXaoLnPJznOMV7rXmZZlss6pRx2Z1eeL2px92C&#10;t36yfroYUKDxUVVryuuy0X/BMXwb8PdG8AaetvpWnWlmqjBeOFEd+c/MQBmtqiivuaVGFKCp00kl&#10;0R60YqKtFaBRRRWgwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCv+CmH/ACYn8SP+&#10;wav/AKOjr3WvCv8Agph/yYn8SP8AsGr/AOjo69nhz/kbYX/r5D/0pHz/ABb/AMiPG/8AXqp/6Qz5&#10;/wD+CBv/ACQ3xz/2HY//AEnWvvWvgr/ggb/yQ3xz/wBh2P8A9J1r71r2/ET/AJKPFf4l/wCko+b8&#10;J/8AkksF/hf/AKVIKzPF3iyz8FaDPqF9KIoIBkkgnOSBwACe9X7u6SxtZJpDtjiUux9AOa8C1m7u&#10;/wBp/wCI50+3dovDWluwkdDgykFsEZyOfl7V+HcecYTybDwwuAh7XGYh8tGHeXWUu0IbyfyP1/Jc&#10;qWLnKrXfLRhrN+XZeb2RY+GXhe++PXjZvFOuxsNKtziztpCGQkEEcEnjlu1e8IgjQKoAAGAB2qvp&#10;OlW+h6dFa2saw28I2oijAUVZro4H4QhkOCcas/a4iq+erUe85vf0itorojPOM1eNqpxXLTjpGPZf&#10;59wqG7sIL+PbPDFMvpIgYfrU1FfZzhGa5ZK6PJTad0c/qfwr8N6uD5+haQzH+P7FFu/PbXM6l+yx&#10;4Q1JcGzlhyMfuSqfyWvRqK+YzHgjh/H/AO+YKlP1hH/I9GhnGOofwq0l82eR3H7JGmWv/IO1TVrP&#10;kbf9Jbj8sVRm/Zp8UWzD7B481W2QH7pnmOR2HDivaqK+ZreDfCU/4eGdP/r3OpT/APSJI9GPFmaL&#10;4qnN/iUZfmmeJt8IPiLZTFo/FlxcbD8oaR8P+Bkpg8L/ABY0754ryO5Y8bXlGB78y17fRXM/B/K4&#10;/wC74vFU/wDDXn/7dzGn+tWJfx0qcvWC/Sx4gL3406Z8sWm6ddA8lnkh4/OWj/hIPjd/0A9K/wC/&#10;kH/x2vb6KX/EKai0hnWOS7KtD9aTYf6yxe+Eov8A7cf/AMkeIp4g+Nu8Z0PSsZ5/eQf/AB2vYPDU&#10;l9LoFo2pIsV+YwZ0XGFfvjBI/Wr1FfT8McITyarOpPH4jE8ytatOM0vOPLCNn9552Y5osXFRVCnT&#10;t/Imr+t2wooor7I8kKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA&#10;ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi&#10;iigAooooAKKKKACiiigAr4p/4LL/APIwfse/9nHeGf8A0i1Svtavin/gsv8A8jB+x7/2cd4Z/wDS&#10;LVKAPtaiiigAooooAKKKKACiiigAooooAKKKKACiiigAozXJfEj42eHvhdYvJqWoW4mAO23SRWmY&#10;8fwZz3FeNan8SviB+0ZeNZ+GrKfQtCkODdTxYEyZ3BgzJwcAcBu9fP5nxJhcJP2Eb1Kr2hHV/Pol&#10;5s46+Op03yL3pdlueofFf9pfwz8KEaO5uftd8P8Al1tijyjkjkFh6GvK5LX4j/tQS7JlHhvw45yy&#10;SIyGZeh25Rsn5j37V33wo/ZN0PwHMt9qJfWtW73E5bjgcbdxU85PTvXq0USwIFRVRR0CjAFeZ/ZW&#10;ZZp72aT9nT/59wer/wAUuvotDD6vXxGuIfLH+VfqzgvhJ+zn4f8AhJEr2kJnv8fPdSE725J6Zx39&#10;O1d8V3LjseKWivqcHgcPhKSoYaCjFdEd9KlCnHkgrI+dvhi4+Hn7X/iDTm+UeIi88YPcGSV//Za+&#10;ia+d/wBqA/8ACA/HTwp4sxsABtS/Y/LL+H8dfQ4O4cV85wt+5qYrAP8A5d1G1/hn7y/G5xZf7rqU&#10;ez/B6i0UUV9aeiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeFf8ABTD/AJMT&#10;+JH/AGDV/wDR0de614V/wUw/5MT+JH/YNX/0dHXs8Of8jbC/9fIf+lI+f4t/5EeN/wCvVT/0hnz/&#10;AP8ABA3/AJIb45/7Dsf/AKTrX3rXwV/wQN/5Ib45/wCw7H/6TrX3rXt+In/JR4r/ABL/ANJR834T&#10;/wDJJYL/AAv/ANKkeJ/HXxjqPj/xZD4J0RXHmENeSleAow3BGf7rdq9O+HHgK1+HPhW3021HEYBk&#10;fP8ArH2gFvxwK1Y9Itor9rpYIxcOADIF+Y/5zVmvxDIuDXhs4xOfZjV9tiKj5YO1lTpLaEVr6yfV&#10;n69jc2VTCU8FQjywjq/70urf6dgooor7s8UKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii&#10;gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA&#10;CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK&#10;+Kf+Cy//ACMH7Hv/AGcd4Z/9ItUr7Wr4p/4LL/8AIwfse/8AZx3hn/0i1SgD7WooooAKKKKACiii&#10;gAooooAKKKKACiqeua/Z+G9Okur2dIIIhlmbnA+g5rw3xv8Atd3fiXVm0bwFp39q3jEqtxICIzgn&#10;OAxQ9Bn8a8jNM8weXpfWJe89orWT9EtTmxGLpUV7717dX8j2Txj8Q9H8A6e1zqt9Daxp1BOXP0Uc&#10;np6V4fr/AO0Z4q+MuotpXgTSpYbeT5Gv5ThWU4BI3KuCCfXtVvwd+yZqHjPUF1Xx/qt5qM+dyWnm&#10;7li9ju3Aj73Q969w8PeGdP8ACenLaabZ29lbp0jhjCL+Q+prw+TN81/iP6tR7L+JL1e0flqclsTi&#10;Pi9yP/kz/wAjyL4bfsh21rerqvi69m8QaoSHCzElIjzkEFmBHQfhXsunaZb6RaLBawQ20KABY4kC&#10;KB06Dip6K+gy3J8JgIcmFhbu92/VvVnbQw1OirU0FFFFembhRRRQB5P+1/8ADy58e/DZTZQG4u7C&#10;USxIOpJZQf0zXf8Aw/ku5vBmntfoY7wxfvVLbipye9bNFeZSyyFPHVMdFu84pNdPdvZ+utjCNBRq&#10;uquqS+4KKKK9M3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvCv8Agph/yYn8&#10;SP8AsGr/AOjo691rwr/gph/yYn8SP+wav/o6OvZ4c/5G2F/6+Q/9KR8/xb/yI8b/ANeqn/pDPn//&#10;AIIG/wDJDfHP/Ydj/wDSda+9a+Cv+CBv/JDfHP8A2HY//Sda+9a9vxE/5KPFf4l/6Sj5vwn/AOSS&#10;wX+F/wDpUgooor4s/RAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK&#10;ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA&#10;KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Kf+Cy//Iwf&#10;se/9nHeGf/SLVK+1q+Kf+Cy//Iwfse/9nHeGf/SLVKAPtaiiigAooooAKKKKACimySLEhZiFVRkk&#10;ngV5Z8Uv2sfD/gOb7HYONc1R+Ehs2WUA88NtbIPB7elcOPzPC4Kn7XFTUV59fRdTKtXp0o81R2R6&#10;jd3cdhbPNM4jijG5mPRRXifxW/bL0zQZpdO8NxHWdT2kK6qGhQ474YN1Pp2Nc3a/DX4hftI3KT+J&#10;riXQNE3Ai08rZMpHHQopIwW71694N+Afh7wH4YudP0+zVXuoHhlmZmZn3AjPJOPvHpXzE8dm2aRa&#10;wEfYU/55r3n/AIY9PVnA6uJxC/crkj3e79EeMeAfg9q/7Tsq654q15ZtOSQ7LO1c5hbPzIQyHuFH&#10;Xsa+g/BHw+0n4d6UtnpNpHaxAANt6ucAZPvwK8Z/Y81B9C8ceNfD0x2izvc26n+IGSbJHfoBX0BT&#10;4NwWFeDjjuW9aV1KT1ldNp6vZabBllKm6Sq2957vroFFFFfaHqBRRRQAUUUUAFFFFABRRRQAUUUU&#10;AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeFf8FMP+TE/iR/2DV/9HR17rXh&#10;X/BTD/kxP4kf9g1f/R0dezw5/wAjbC/9fIf+lI+f4t/5EeN/69VP/SGfP/8AwQN/5Ib45/7Dsf8A&#10;6TrX3rXwV/wQN/5Ib45/7Dsf/pOtfete34if8lHiv8S/9JR834T/APJJYL/C/wD0qQUUUV8WfogU&#10;UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR&#10;RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF&#10;ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfFP/BZf/kYP2Pf+zjvDP/pFqlfa1fFP&#10;/BZf/kYP2Pf+zjvDP/pFqlAH2tRRRQAUUVzHxD+L+gfDHTzPq1/HD2VFVpGY88YUEjoaxxGJpUKb&#10;q15KMV1bsiZzjBc03ZHTE4FcF8Uv2jPDnwugKz3Ud5fNkR21u29i3GAduSucjtXld/8AFrx7+0Ve&#10;PZeE7KbRdIY7ZLwyhJUB4LA7kbuTwOwrt/hd+yXo3hG4Goa0f+Eg1eTDSTXiiZQwzyA4Jzz1z2r5&#10;N57jcxfJk9P3P+fs01H/ALdW8vyPO+t1a2mGWn8z2+Xc4Z7z4i/tO3JSJJvC/h1mzlh+9K9QQSEY&#10;5wvfvXqPwt/Zp8O/DKPzBANR1BuZLq4BYueMkBi2Onr3r0C3t0tIVjiRI40AVVRcBQOgAp9d2A4a&#10;oUqn1rFydat/NLp/hW0V6GtHAwjL2lR80u7/AEXQQDaOOKWiivpDuPnaZf8AhW/7acR+5YazAzMe&#10;gZ/Kc/zevomvAP2z9Lk0bXvCPiG2+RrS7ZZ3HHyloVA9fWvddE1Rda0e1u0+5cxLKv0IzXyPD3+z&#10;43GYDop869JpP8Gebgvcq1aPndfMtUUUV9cekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR&#10;RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4V/wUw/5MT+JH/YNX/0dHXuteFf8FMP+TE/iR/2&#10;DV/9HR17PDn/ACNsL/18h/6Uj5/i3/kR43/r1U/9IZ+V/wCyL+0p8bfgh4V1Wz+FtlqV1pt7drNe&#10;m20H+0QswQAZby22naBxmvXP+HgP7Xv/AECPEH/hF/8A2mvdP+CBv/JDfHP/AGHY/wD0nWvvWv1n&#10;i/jDAYTOK+Gq5dSqSi1eUkrvRb+6z8M4D4BzPH5BhsXQzatRjJO0It8sfea095eux+S3/DwH9r3/&#10;AKBHiD/wi/8A7TR/w8B/a9/6BHiD/wAIv/7TX600V83/AK+5Z/0KaP3L/wCRPr/+IYZx/wBDzEfe&#10;/wD5M/Jb/h4D+17/ANAjxB/4Rf8A9prpPg7+3P8AtVeI/i14Y0/WtL11NHvtVtre+Z/CAiVYGlVZ&#10;CX8kbRtJ5zxX6i0VnV46y2cHBZVRTa3stPP4TWh4aZvTqRnLO8Q0mnZt2fl8XUg0yV59Nt3l/wBY&#10;8Ss+RjkgZ4qeiivzV7n68tFYKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF&#10;ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA&#10;FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8U/8Fl/+Rg/Y9/7O&#10;O8M/+kWqV9rV8Vf8FnFMN9+yXeMCLXTf2hvDl3dS/wANvEtlqm52PZRkZPvSlJRXNJ2QNpK7PtWs&#10;rxf4103wJpD3uqXSWtugJ3MDz7cD3H514344/a5m8Rak+jeBNNudWvmPlm48sNFHuAAZSrHpnuO1&#10;VfCH7Jmp+OtXTW/H+o/brliJFtYj8oBydrfKpGOPyr5OtxLPETeHyen7WWzltTj6vr6I86WOc3yY&#10;aPM+/RfMg8Q/tQeIvi1qsukfD/TN6ZKyXko+ZQCfmUhxwcDqO9bXw8/Y9tjfrq/jK9n17Vm+8sjh&#10;4ex5DJuz17969i8O+GrHwnpUdlp9uttbQgBEUkgAADvz0Aq9Tw/DHtaixGbVPbT6LaEfSP6sIYDm&#10;fPiXzP8ABfIg0/ToNJs0t7aJIYIhhEQYC96noor6tJJWWx6O2iCiiimAUUUUAYnj34f6d8SNE+wa&#10;nGZLfer4XGcqwYdQe4FaWj6VDoWlW9nbrtgtY1ijHoqjAqzRWKw9JVXWUVzNWb62RPJHm5rahRRR&#10;WxQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF&#10;ABXhX/BTD/kxP4kf9g1f/R0de614V/wUw/5MT+JH/YNX/wBHR17PDn/I2wv/AF8h/wClI+f4t/5E&#10;eN/69VP/AEhnz/8A8EDf+SG+Of8AsOx/+k619618Ff8ABA3/AJIb45/7Dsf/AKTrX3rXt+In/JR4&#10;r/Ev/SUfN+E//JJYL/C//SpBRRRXxZ+iBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF&#10;FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV5N8U/24fhd8EfjHovgTxd4v0bw74j8R&#10;Kx023v7uOE3hXywVQM25jmWMYA6sKAPWaKjs7uPULSKeF1lhmQSRupyHUjIIPoRUlABRRRQAUUUU&#10;AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA&#10;UUUUAFFFFABRRRQAV55+0r8HIvjF8PjbjT7bVNQ0yYX9hbXMxhjluER1QFxyn3z8wBIr0OisMThq&#10;WIpOjXjzRe6ZM4RnHlmro+EfC3j39sz4bRPZ6F+y58FUtInYRSv8VJvMkXcSGJaxJBOc4zxWx/w0&#10;Z+3b/wBGz/Bj/wAOtL/8gV9rUVVGhTowVOlFRitklZBGMYrlirI+Kf8Ahoz9u3/o2f4Mf+HWl/8A&#10;kCj/AIaM/bt/6Nn+DH/h1pf/AJAr7WorUo+Kf+GjP27f+jZ/gx/4daX/AOQKP+GjP27f+jZ/gx/4&#10;daX/AOQK+1qKAPin/hoz9u3/AKNn+DH/AIdaX/5Ao/4aM/bt/wCjZ/gx/wCHWl/+QK+1qKAPin/h&#10;oz9u3/o2f4Mf+HWl/wDkCj/hoz9u3/o2f4Mf+HWl/wDkCvtaigD4p/4aM/bt/wCjZ/gx/wCHWl/+&#10;QKP+GjP27f8Ao2f4Mf8Ah1pf/kCvtaigD4p/4aM/bt/6Nn+DH/h1pf8A5Ao/4aM/bt/6Nn+DH/h1&#10;pf8A5Ar7WooA+Kf+GjP27f8Ao2f4Mf8Ah1pf/kCj/hoz9u3/AKNn+DH/AIdaX/5Ar7WooA+Kf+Gj&#10;P27f+jZ/gx/4daX/AOQKP+GjP27f+jZ/gx/4daX/AOQK+1qKAPin/hoz9u3/AKNn+DH/AIdaX/5A&#10;o/4aM/bt/wCjZ/gx/wCHWl/+QK+1qKAPin/hoz9u3/o2f4Mf+HWl/wDkCj/hoz9u3/o2f4Mf+HWl&#10;/wDkCvtaigD4p/4aM/bt/wCjZ/gx/wCHWl/+QKP+GjP27f8Ao2f4Mf8Ah1pf/kCvtaigD4p/4aM/&#10;bt/6Nn+DH/h1pf8A5Ao/4aM/bt/6Nn+DH/h1pf8A5Ar7WooA+Kf+GjP27f8Ao2f4Mf8Ah1pf/kCj&#10;/hoz9u3/AKNn+DH/AIdaX/5Ar7WooA+Kf+GjP27f+jZ/gx/4daX/AOQKP+GjP27f+jZ/gx/4daX/&#10;AOQK+1qKAPin/hoz9u3/AKNn+DH/AIdaX/5Ao/4aM/bt/wCjZ/gx/wCHWl/+QK+1qKAPin/hoz9u&#10;3/o2f4Mf+HWl/wDkCj/hoz9u3/o2f4Mf+HWl/wDkCvtaigD4p/4aM/bt/wCjZ/gx/wCHWl/+QKP+&#10;GjP27f8Ao2f4Mf8Ah1pf/kCvtaigD4p/4aM/bt/6Nn+DH/h1pf8A5Ao/4aM/bt/6Nn+DH/h1pf8A&#10;5Ar7WooA+Kf+GjP27f8Ao2f4Mf8Ah1pf/kCj/hoz9u3/AKNn+DH/AIdaX/5Ar7WooA+Kf+GjP27f&#10;+jZ/gx/4daX/AOQKP+GjP27f+jZ/gx/4daX/AOQK+1qKAPin/hoz9u3/AKNn+DH/AIdaX/5Arjf2&#10;g/EP7cf7Rnwa1/wTe/s9fB7RrXxDbi3kvYvidJO9uA6vkIbFd33cdR1r9CKK2w2IqYetCvSdpRaa&#10;9U7o58XhaWKoTw1ZXhNOLXdNWf4H5gfsU/Cv9tj9hvwdrGi6V8D/AISeKYtavFvXmuPiM9mYSECb&#10;Qos3z0znIr2n/hoz9u3/AKNn+DH/AIdaX/5Ar7WorfMsxr4/EzxeKd5y3e3l0OXKMpwuWYOGAwUe&#10;WnDRK7fW+716nxT/AMNGft2/9Gz/AAY/8OtL/wDIFH/DRn7dv/Rs/wAGP/DrS/8AyBX2tRXEekfF&#10;P/DRn7dv/Rs/wY/8OtL/APIFH/DRn7dv/Rs/wY/8OtL/APIFfa1FAHxT/wANGft2/wDRs/wY/wDD&#10;rS//ACBR/wANGft2/wDRs/wY/wDDrS//ACBX2tRQB8U/8NGft2/9Gz/Bj/w60v8A8gUf8NGft2/9&#10;Gz/Bj/w60v8A8gV9rUUAfFP/AA0Z+3b/ANGz/Bj/AMOtL/8AIFH/AA0Z+3b/ANGz/Bj/AMOtL/8A&#10;IFfa1FAHxT/w0Z+3b/0bP8GP/DrS/wDyBR/w0Z+3b/0bP8GP/DrS/wDyBX2tRQB8U/8ADRn7dv8A&#10;0bP8GP8Aw60v/wAgUf8ADRn7dv8A0bP8GP8Aw60v/wAgV9rUUAfFP/DRn7dv/Rs/wY/8OtL/APIF&#10;H/DRn7dv/Rs/wY/8OtL/APIFfa1FAHxT/wANGft2/wDRs/wY/wDDrS//ACBR/wANGft2/wDRs/wY&#10;/wDDrS//ACBX2tRQB8U/8NGft2/9Gz/Bj/w60v8A8gUf8NGft2/9Gz/Bj/w60v8A8gV9rUUAfFP/&#10;AA0Z+3b/ANGz/Bj/AMOtL/8AIFH/AA0Z+3b/ANGz/Bj/AMOtL/8AIFfa1FAHxT/w0Z+3b/0bP8GP&#10;/DrS/wDyBR/w0Z+3b/0bP8GP/DrS/wDyBX2tRQB8U/8ADRn7dv8A0bP8GP8Aw60v/wAgUf8ADRn7&#10;dv8A0bP8GP8Aw60v/wAgV9rUUAfFP/DRn7dv/Rs/wY/8OtL/APIFH/DRn7dv/Rs/wY/8OtL/APIF&#10;fa1FAHxT/wANGft2/wDRs/wY/wDDrS//ACBR/wANGft2/wDRs/wY/wDDrS//ACBX2tRQB8U/8NGf&#10;t2/9Gz/Bj/w60v8A8gUf8NGft2/9Gz/Bj/w60v8A8gV9rUUAfFP/AA0Z+3b/ANGz/Bj/AMOtL/8A&#10;IFH/AA0Z+3b/ANGz/Bj/AMOtL/8AIFfa1FAHxT/w0Z+3b/0bP8GP/DrS/wDyBX4a/wDB0h8Tvjb4&#10;i/aP+HV98V/A/hr4ba3a2l4dPTw54ofVxMNtnuYyeTCUIxGRgHO4+nP9UFfG37dv/BFX4Zf8FE/2&#10;kfCHjz4kPd6haeEI5RBpcTNGk7P9n5dt2GXMAypUghiKAPw3/wCCGH/BS39tnQfGmleF/AXh/wAT&#10;fE/wKZUhmgvNMP2K3UK4Bk1AWsrp0yMsMlMdzX9O3w51XW9b8D6Xd+I9MtdH1y4to5L2ytrk3MVt&#10;KVBZFkKqWAORnaM46VhfA39m3wJ+zZ4Tt9F8D+FNA8M2MESQkadp8Ns0wRcAyGNV3t1yTyST613F&#10;ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA&#10;FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUV5d&#10;x6fZyzysEihQyOx6KoGSaAJaK+PLj/gpH4l+PfjrVtH+A/hOHxbZ+HLt7DU9Z1CJm09bhMF4kaGX&#10;fuCvC3Kjh6f+wt+3p8R/2k/2k/FXgvxN4R0W10TwxYPI+u6RHN9le6DW+2DdJITkpM7Y2D7nX1AP&#10;sCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA&#10;KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii&#10;igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK&#10;ACiiigAooooAKKKKACvnv/goZ8ZL/wAGfDG28JeG5P8AisfG8httOjQK7eVC8ct2duCeLYTHhTjG&#10;eMZHv2o6hDpOnz3VxIsVvbRtLK7HARVGSSfQAV+b/i74h+Nf2i/20pda0fSoZdBu7u68N+HL17xS&#10;dOaz877ZdCMqNyXFswUHIHOQzYoAsaB4F0z4C/B7V7nw6jWtvrQ/4RHTriJ2YXVrH5dyl+ckglzu&#10;TIyPl619Af8ABJf4OWPww/ZM0vUbWCW3n8Us19cJLuLqyu0QB3Enogr5j/a6+KGg674wb4W+FbqX&#10;+0UtF8KaHDCpdDdwyPMZw3QkxZXr2+8elfpN4K8JWfgXwtZ6Tp8Sw2dkmyNFHCgkk/qTQBqUUUUA&#10;FFFFABRRXkv7VP7Ynhz9lTQrc31lq/ibxLqmV0fwxoiRy6vrbjP7u2jkdFZiRjBYckVMpqO41FvY&#10;9aor42+Bv/Bbr4WfHD4E6n4yTRvF/h7UrDXG8NxeFNWhtY9cv79YEuDBDEk7Rl/JffgyDhWqj+z7&#10;/wAF1vhX8ZL/AOIGn+JPD3jj4Sa38N/JXVNK8aW9paXbyTSmGKKNYp5RveX92AxGWOKrS7XZKXyd&#10;ndd9GnZXdmu6Frppu+X53tZ9tU0r7tWWp9r0V8cfs6f8Fn/Bnx6/a5HwY1D4e/E74d+Krq1e+0yT&#10;xTZWltbaxbqMrLbmK4kdlZSjKSo4kXpmvsenyvkjV6Svb5Np/c001uieZc8qfVWv80mvk07p7MKK&#10;KKRQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF&#10;FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU&#10;AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA&#10;UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTJ51toHkc7UQFmJ&#10;7AUAfP8A/wAFA/jDL4S8A2Hg/S5gmt+N5GtMB9rR2IaNLyUHgZSKbdjOT2B6V5V8Oraw+BPwR1zx&#10;nJDDHaaFFb+GNFLhU8/EiWZvgeqyTJMrM2Ax/iNcX4+8MP8AtoftBR+IpptYs3/tFtM8Li0lRAlr&#10;DIINW37g3DiOLG0jIzkHjHpv7XVl4U1CfRfhvq3ky+F/A+hPfatbTru89FtW+x5GNpInt4z06jtQ&#10;B8S+IfjJ8KP2Rf8Agpv4V/4Sm+vZ9P8AA3haHU9Z1HbLqPk6wbq7t5j5cMUju3lmP5kDcH7xxX7G&#10;eHvEFp4q0aDULGQzWlyu6NyjIWGSOjAEdO4r83/+CHn7FPgn4p/AXW/jB4x8JaXq+v8AxE8QT61p&#10;txfQLJLa6fNbWjRwqcZAEglOMn7x9a/Sm1tY7KBYokWONBhVUcCgCSiiigAooooAKwPiJfab4Z8O&#10;3Wv39rZyto0TXCTTRqWhx3DEfLW/Xy1/wWj+Llx8F/8Agmf8V9XsZLqLU30We3sWtlkaTzyjMuNg&#10;3D7p54+tcGaVp0sJUnT+Kzt6vRfidmX0Y1sTTpz+FtX9Ov4Hxr/wbLfAwfEL4c+Pvjn4miiuLvxT&#10;r1wumQypmO2t1jgG8DhS26OQbtu7BxuxxXFf8E6P2cNJ/bS/4L2/tB/FjWI477Q/hxqk2naWiSsb&#10;e8lMl0pLhGVG2iZGG4PggEY619of8Ek/hnb/ALKf/BIHwhBcxzWk0Gi3V5dhkLP5jSy4yFBJP3fW&#10;vHP+DXfwfPefsf8Ajvx/qNk9vq3jrxte37STRbJnia3tGUMW+Y4Yt19TXuzoQw+ZTpUl7uFo8i8p&#10;Plppr1Ualn007I8iOIlXy/203riaqk/OPvVNF2+BNdnZ7nG+LLVP2h/+DnrQbbTLe3/s74VeGGkv&#10;LmGbpLLHGUjKrgDBtXGCfXiv0M/a3/ba8EfsYeFrHUfFb6vf3eqXAtbDRtCsm1LV79yGP7m0jPmy&#10;D5cEqDyyjqRX5b/seftKaZ+yt/wWV/axPjDRtQ1T4jeMNXs7XwDpMdtJv1xRcaqohju9jwW+7zrV&#10;cyyRqPMBPCnHs2meNNX/AGgP+Di3TdJ8TaS9tYeAPh62o2mm3M8dwumXs39kTkjkoZEaSRRIg7nB&#10;5rz8FGU8FgcNTdudTlJ7rml7SvO3d2tB/wArO3GyjDG42tPX2ahFLvGKp04/fKTfnZpbH2V+xt/w&#10;UT+HP7cR1u28Jvruka54dm8nUdB8Sac2k6za/Kjb3tJT5qpiRPmKgfMK91r8uvilZL8BP+DlPwNN&#10;otvJp8fxT8GMur+Q4jS+kWd8SSKuN522yLlsnCj0FfqLWsbVMPSxEVbmTut9YycH8m43XrYzknCv&#10;Oi3e3K0/KUVL8L2+R87/APBTH9vSH/gnx+zyPFsWiL4o17UdQt9K0bRftBhbUrqaRYo0DKrN990H&#10;Cn71ezfCHxbqHj74V+G9c1XTRo+pazpltfXNgJDJ9jkliV2i3EKTtLEcgdOgr88P+Cgt437av/BY&#10;X4FfBO1JOkfDOR/GniDJzE7q9rc2iMpwCd1pMB97Ge3f9LreBbWBI41CpGoVVAwFA4AqMN72F9vL&#10;7cpcv+CPuX/7emp/JK3nWI93EKjH7ME5f4p+8l8ocr/7e16D6KKKACiiigDh/wBob9orwn+y38Mr&#10;vxf401KPSdBsSBNcyMoCEgnqxA7HvXB/AD/gon8NP2mPF1vovhS91K7u7tGkiaS02ROoVmJD5I6K&#10;a+Zf+DoT/lEd42/67R/+gSV9Ff8ABOb4PeEfDX7Kvw/1bTvC3hzT9VbSwWvbbTYYrg5ZwcyKoboS&#10;OtAH0JRX5Nf8F+bTxX4P/bD/AGcZvAPxU+LPhrxB468T22mX2haP4svLDSbm0gu7QyMbaNliLGOa&#10;XcWPzAAYOK/VfwzYS6T4b0+1nlknntraOKSWRtzyMqgFmPckjJNFD97h/rG3vyh84pNteWqXrddA&#10;r/u60aO94KfpdtWa+Tt3WpeooooAKKKKAEZtoyeB6mue+HPxd8KfGHS577wl4n8PeKbK2mNvNcaR&#10;qMN9FFIACUZomYBsMDgnPI9a8F/4K6/tln9h/wDYj8TeLLE7/Ed4P7N0GAFg1xevHJIiAjpkRPyS&#10;Bx1o/wCCRn7FUH7Cv7FHhrwk8MY1y5D6hrNwFTfdXMjffZlzuOwRjJJPyjmjD/vPbSekYcqXnJ3b&#10;X/bsbN+corqFf937OK+Kd36RWl/nJ2XpLsfTlFFFABXyx/wUP/4KN3v7IHiHwp4L8G+Crn4gfE/x&#10;1IE0TRmkktbOVcSszS3KRyeUAIZOqHnHrX1PXOeLPA3hOfXbXxXrWiaDPqugRs1rq11YxSXWnphs&#10;+XKyl04ZvukfePrWdTeLbtFNOXotWrva+1+iuUnpJJXk1Zevfzt27nxp8CP+CsfxA039uzR/gF8f&#10;/hTo/wAMfFXi/Sjqfhu50PxA+u2V/sS5kkjklMESxsEtXIHJOV9a+kf2jP23PAn7LWp2dr4tuNRg&#10;kvkeSM29qZVCoFLEnIx94V8SfAGyT/gqv/wVo039oDw/Hj4TfBG3ufDulX0sRU+INQaC7jldEcLI&#10;iLHeW7jdHjrhicgfffx9+E/hbx94A1u513w14f1q4tdMuvJlv9OhuXh/dH7pdSR0HT0FdC1w1Kc4&#10;2m021rtzPkbT2bhZtefTYiouXE1IQd4x5V/2/b30vJPT1ujN/Zd/bB8B/ti+Fb3WfAWsJrFjp8/2&#10;e4dSuYpMsu0hWODlGHPpXp9flZ/wazW0dl8H/jfDDGkUMXju+RERQqoovr8AADgACv1TrMYUUUUA&#10;FFFFABRRRQAUUUUAFFFFABXFfF79oHwt8Dre1PiDUhaz3zFLWBIZZpJyBk4WNWPQE8jtXXalqEek&#10;6dPdTNshto2lkb+6qgkn8hXwn4v8RWnxw+MWq/EuaSCS28JNJa6NcICPLj3OquuckOVnIJGBg9KA&#10;Ppj4A/toeC/2j/GuteH/AA7dXMuqaAGN7G9ncRrFgxgje8aoT+9TgE9fY163XgP/AATr+GTeCvgV&#10;Hq13Ev8AaviiU6heTfxSuVVMk/SMflXv1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU&#10;AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA&#10;UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV83f8FKv2gbX&#10;4WfB+Pw0s7R33jeX+yZmj2l7GymR45rsgnhI8qS2CBkV9IMwRckgAdSa+EJtdn/ay/aE1PV4B5+l&#10;6oy6BopeEOF0uURx30oGMErOh+bkjsy9KAPXP2MfCFhoXgS78dThP7OtbBUsGJ+aFII3S4l9P3u1&#10;W6n/AIDXxb/wUk1Lwz8S/hPcagVh1Hxl8QvE7adpN6snzWFjBfW8yAhWx80LyL91uvXvX37+0Xc2&#10;/wANfgrpPhDTmijm1qSDSFiXCmSBmSKdwOTwr5OOmeo61+dHxl/Y7/4ai/bHh+HngWQ6HZeF7c2e&#10;p3P2l7lXeJZlEq72OxmeHOFI6gZNAH6o/AP4Yx/Bf4NeG/CsQTy9CsY7MbCSvyjHGea6+vF/2HP2&#10;VdR/ZI+Ej+HdU8Yah4zuZrtrs3d5D5bxAxxJ5Y+dsgeWTnP8Zr2igAooooAKKKKACiiigAooooAK&#10;/LD9ty9j/wCCev8AwW28IftDeLIY7D4X+PtCbwnqniCX5bTRrljYeX9okbaiZjspmHzMcKTjrj9T&#10;6zfFHg/SPG+miz1rS9O1e0DiQQXtslxGGAIB2uCM4J59zUrmjXp14bwb+alGUGn8pP52LvGVKpRn&#10;8M1Z230akn8nFH5x/BKbTP8Ago//AMFmLX41eCr2LxB8LvhZ4VbR7HxBbOJLHUdQacSFIJF3K4Ed&#10;w+clTlG4wMn9HvFevxeFPC+papcHbBptrLdSE9lRCx/QU3wv4N0jwRp5tNF0rTdItS24w2VqlvGT&#10;67UAGa+SP+C637Scn7P3/BP7xLaaZJJ/wlHjWa00DSIYhmSZri9toJcDB+7FK56duo6jLGVfZYSN&#10;GgtUrRXVznJv8ZysuysVhKTq4rnrO3M1d9FGKSv8oq7+bPHv+CHfhG4+PX7R/wC0d+0Zq0s10fGn&#10;i240PQWk6Q6fY3l+ItnGMNFcp0Zug6d/0qrw3/gmt+z1H+y7+wp8K/BvkeTf6X4X0xNTJUhpbwWc&#10;Kzu2STuLqxPNU/8AgoH/AMFDvBv/AAT4+GNtrHiGK/1fXNcuBYaBoWnQPc3ur3bKxSNI4w0m0lcF&#10;gjYLLxyK7saoYeUcNDWNNRpxt1tpolu5Su7LVt+ZzYL2mKcsQ171Vub8k9r+UY2V+y1PfqK/Nf8A&#10;aU/4KzftZ/sqfADUfif4r/ZJ8IxeD9LiS4nlt/if513HE7AKxgFhuB+YZHbNfef7Onxbf48/A7wz&#10;4xfTZdHfxDYpeGylLF7bdn5TlVPbuBWUYOUJzjtBpPybTaTW+yY3UipQj/Om12aVk2nt1X3na0UU&#10;VJZ+eP8AwdB/8ojvG3/XaP8A9Akr6t/YB/5M1+Hv/YKX/wBDavlL/g6D/wCUR3jb/rtH/wCgSV9V&#10;/sETC2/Yu8ASN91NIDH6BmpNpK7DfRHwd+1o/wDw0n/wccfBbwVL82m/DfQbrXXZOvmzQSlR3HDW&#10;ozwPqe0P7cl/+0B+2b/wU90bwJ+zf8bPGXhXwd4eA/4WDdWUsQ0rRwDbgQwyLBMwu3UXRCygKXjb&#10;kAGvl3TvA/xk/bG/b/8A23PiV8MfiRL8OD8O7W/0SNh4ettY/t6GFtTUwJLNt+zHZkbowzDzQeqi&#10;v0K/4N0PH9n8Rv8Agm/ol61vbx+I7fUb6z1ybeJLi5uYrmWN3lbAbllcgHgZIHFPLIP6th5S0dKP&#10;tXH+Z1pTcZPpyqPLdb83KmkvirMJuGLrctnz8tFS/l9nCLa/xt81nskmtXovtS0u4vhl8OoJNc1d&#10;549ItEF5qN2wDSlQA0jkADJPPQda/M/9lf4wfHD/AILmeIfEnj7w58R/FvwA+CWh3TaV4cPhoxwa&#10;7rkyJHKZ7lJ47m3MRE5UNFIDmH7vGT9Ef8F8finqnwg/4JTfFjV9HlMF9/ZjRJIMZTILZGQf7oqP&#10;/glppHhz9jL/AIJDeCL2eexsdN0jQpL67uDOBFJIZHUfOSRkkIo564FZ05RmsViq/wANLkS6e9Pm&#10;k5eijGy829AknTjh8JR+OrzPu+SHKrLzlKSv1svM+bf+CXv7Tfx58a/8FTfH3wX8YeNtS8V+Dvgs&#10;09tJqU77rnW0cXUEMl4Qip5ge3D/ACKg3MevSv1cr8pP+DbW/H7RXxG/aQ+Pxhltl+I3jO5ht4JF&#10;O6COOV5gMnH/AD89NoxX6P8A7T/xz0z9mj9nnxp491e4jt7Hwnot5qrl2A3+RA8u1c9WOw4GCT6V&#10;riarw+Coyr/FGnGUtLNuV5u67rm5fkkTRpKrja0KGzqOMV25Uofc3Fv53Pz8/bE0hf8AgpP/AMFm&#10;fA3whieW58FfAmCPxd4lQ4+zT3wFsYISRu+Ywag5wwT7p5wOfvj9pTQ/iRrfw6XTvhfd+F9N1a4k&#10;EU93rM08YtYMctCYkf8AejtuG2vkD/ggH+zrqmk/BnxT8cPFwnk8ZfGvVrnUpGuIyksFnDczW1sm&#10;M4w0EFu33V7dep++PE2provhy/u3O1LW3klJ9Aqk/wBKVei8NhYYav8AFG86munPJ80433tHSnfe&#10;0RRrKviZ16Xwv3IP+7G6Uv8At5tzW/xL0PyP/ZL/AGpPj14H/bw+Mv7OeifErWPi7q9r5MOia140&#10;kDLoaLPOLqS4e0jQoxghbydsbAzABsLzXL/FL9sb4/f8E5/+Cs2g/CmL4i+L/jgfiRpbRado+tmO&#10;ez0bVrhYlgaTyEhkWwSa4G5hvkEUeQrNwfUP+Dc7QrX4wfFj9pD43mB5pPGXje8tbK8lU5NuhWVQ&#10;pPGP37dB3rO/ZI0GH9rH/g46+M/j2e0juLT4Raba6DCzPvEM0n2qLcBwAd1mD0JGOtPBwm8Vg41X&#10;q6TnU0+z7J+7bZO8oLm35lfrYeKcY0Ma4rSNRQh/j9rGN297e7J225dLXZmfthfFL9of9gr9tj9n&#10;3V9V+L3ijxPZ/FTXoLHX/BolSTRbEs3KWg8mObbhDnzHJyxr2P8A4L0eO/jH4i8B+D/h98Ovhz8V&#10;vFHhfxNcx3Hi/UPBWlJeXUVkFmPkRl3CeYZUhJDjG1j82cCvNP22bD/hq/8A4OKPgt4JMXn2fwi0&#10;tvElygmO3d5tg4YqMdBckck9elfrCq7FAHQcCsoUo1sBSlLb2k2lbTkhLlUHfWUeaMnrunZ3RpOb&#10;o42ah8Xs4Xe1pyTlzR6J8so7Ws1tofA37Kn7bPiXStR+G3wj+Gf7Jvx4+Gvg2wV7G61Hxx4YhsdN&#10;0u1ihLRhZILyUhiU2jcuMso75r7d+KH/ACTPxF/2DLn/ANFNW7WF8UP+SZ+Iv+wZc/8Aopq6alVz&#10;vKesm223u72/DS/q2c1OkoWUdIpJJejevq7/AII/Mz/g1v8A+SUfHP8A7H2//wDS+/r9UK/K/wD4&#10;Nb/+SUfHP/sfb/8A9L7+v1QrI1CiiigAooooAKKKKACiiigAooqprutW/hvRLzULuRYbWxge4mdi&#10;AERFLMSTx0BoA8Q/bi+LKaL4bsPBtlcKuseK5DEgBBZERo2YEdfmViOh/Cvi/wDbxuNK+BHwW0Lw&#10;np2rw6TBHcrdahZ27q91Ncnakke1/TYp6g8Gvo3wXpVr8efjBrHxI1VBc2mgGWLTHMhWNhiRIiu0&#10;hTnCevbrXn3wA8EyftTft63WteIdESOz8EQNeMJFMsFxeSNNDIpyAuQrg7ecccDrQB9sfB3VtG1z&#10;4aaRc+H8/wBjSw5tckH5Mn0JHXPeumqKzsodPtlhgijghQYVI1Cqo9gOKloAKKKKACiiigAooooA&#10;KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii&#10;igAooooAKKKR3EaFjwAMk0AeAf8ABRP4+3vwe+Cf9leHke58Z+MrgaPodvFLskNw6SOrZwcDETDJ&#10;IHvTP2KvgNe+BNPXUdV0hNGW1hMGl2ZkSZ7aORt82XXqTKC3Qfe/GvBPi7c3v7Vv7WKaxpt1f2g8&#10;J6mPD2gS2s3lILkKZ1vGB5I2yumRtPSvvmyjeKziWRt0ioAzepxyaAPlX/gop8WfDsITw0+j63q3&#10;iqKwu59OfTriW1azfy43DmRUIAzsPLD7przn/gjF4UvtXufGPi7X7fytduTHp7+ZMLiQiJn/AHhk&#10;7u29t3f1JzXZ/td+O7f4VftE3F7qkd5BZa3pU9jBcxnKl2tkjwQAT1cDmvkX9lHXP2k9D+MGuR/B&#10;vSbK/wDDv9qv9vl1iQS2gQyuG2xCeJg23PODzt9KAP18oqHT2maxiNxtE+0b9o4z7VNQAUUUUAFF&#10;FFABRRRQAUUUUAFFFFABX5mft1TH9tr/AILSfBj4MRZl8N/DbT5fGOvbjmJpJIr+OBGRuCVmtImz&#10;g4yDxjI/SPxV4htvCfhu91K8mjt7ayhaWSR2CqoA7k1+cH/BA7w7L+0P8RPjZ+01qU0lxP8AEXxF&#10;Npmjlh8q6ZEkNxEVwMEb7iXkMw96MJrjoz6UU6n/AG98NP7pPmXfkYYl8uDnHrVap/J61P8AyRON&#10;+nMj9LlUIoAGAOAB2r8ev+DknVvEP7M/7V37Nf7QNxp1zrvw/wDh3rynVbRHBEcnmxTKVUk4YrBL&#10;hgpxk+vP7BXd3HYWks8zrFDChkkdjhUUDJJPoBXFad4g8AftdfCbVLex1DRPG3g/V/tOk3xtLkT2&#10;05R3gnhZkPVXR0YA5BUjtWb9rGpDEULc9KSkr7dVZ+TTav03WqNabpqMqdVe5UTg7b6rp5re36HI&#10;fAD9oH4Rf8FLf2botZ0B9C+IPgXxBD5d1Z6hpxmtZirfNHJBcRjcFde64yoI7V7BpWk2ug6dDZ2N&#10;tb2dpbrsiggjEccS+iqMAD6V+KX7Pv7On/Doj/g4E0T4efDi8ux8OvjJpL3c+jKAyWDbkBI4BA3W&#10;/dm+/wDl+2tdHuTw9PE0rpVE7p7qUW4tedmnZ9vvOVc8Ks8NV1cLWfdSSkn5XVr+aCiiiszU/PH/&#10;AIOg/wDlEd42/wCu0f8A6BJX09+xXpk+t/sG+DrO1mFtc3egNDFKc4iZt4Dcc8E54o/4KGfsL6F/&#10;wUV/Zl1b4YeI9Z1bQdL1d1eS800Rm4TAYceYrL/F6Vi/slfsKeIP2V5tJt2+NvxE8ZaBo8Bt4dH1&#10;eKyW1KkMBkxQq/BbPXqBUzipRcXsxxk4u6OD/wCCXf8AwS+1D9hr4d/E3S/GPiTTvGup/E3Xb3VN&#10;QvLe2dPMiuCxMb+ZuLH53ySSDmvNv2Sf+CQHxT/ZF+NHi+z8O/Fyy0/4K+K/ETeIm0SwiurbWrOQ&#10;3EsxhiuUkESQt58gZBHhsJ/d5/Q+iqj7s4zXSCh5cseWya625U15omaU4yjLrJz/AO3pc12u1+Zr&#10;0Z8X/t9/Gr4X/tDePx+xz4hjvtW1r4i6KWupIz8+mQho081meMqW/epyDn5/rXzzc/sM/Fn9jD/g&#10;n/f6D8ePjF4W8VfCX4aaO/2Cy0bTr21udQleTZEuoNJJKlzEJJVZU8sYdUbjbXsv7cX/AATf+Kt9&#10;+2/4c/aN/Z71XwTb/ES1tho2t6X4wvLm10jVNPOxmy1tBLL5m+2tQANo2h+cgZ5j4x/sDftTf8FH&#10;7zTPC/7Ret/CLwZ8MLGeO8vNP+G2p393ca3JG+9Irhb61VRGHEbZRg2UHvXNCjOrh5U4vlnVk+dv&#10;4Y8spck0urjB3VtXJ29OiVWNOspSXNTppOKXxNyjHnjfdKUlZ30UdfXrP+DdH4On4Xf8ExvCWpy2&#10;S2N148ceKZo0VVXN1bwNkBeg+Xoea8//AOC8XjjV/j98Tfgn+y54bluFPxX15bjxLJbzGJoNJt57&#10;SO4R+QGV4rx8qdwIXBU9K/Rvwj4UsPAvhew0bS7dLTTdLgS2toUztijQYVRnngCuLtv2S/hzZ/tE&#10;XHxZj8KaevxFu7NbCbXA0n2h4AoURkbtuMAD7vavRxc6dfGwqtfuoyTt1agvcj96jzeSas7nHg/a&#10;UcNNX/etOz6KUn7z+ScnH+9bodP8LvAVp8LfhvofhywjSKz0SxisolRQowiBc4AA5xnp3qr8aPCO&#10;q+PfhVrui6JfW+mapqdo1vb3U6M8cJbgkhSCeM9D3rqKK5cVBYmM4VtVO9/nua4b9xy+z+za3y2P&#10;l7/gk/8A8E/b/wD4JvfsbW/w2u9d07X9ZF1LfT6lbWzRQyzPDFGTtY7sZizye/Wuf/4Jo/8ABNPX&#10;P2Ivjj8e/HPiXxRpXifUvjL4k/tqI2drJCbCEXN9MkLlyS21bwKMHHyH1r7BoreVecq0q7+KUeV/&#10;4bxdvLWKM/ZpUlR+zzc3rLXV9/ib1669D4F/aO/4JW/FXWv+ClN3+0N8JfiN4S8K3ut6F/YGq2mt&#10;6XcXjmDbZgtA0Ukflv8A6GmCSep4r7S+DPw0Pwf+Gul+HW13xF4lbToyralruoPf39yzMWJkmf5m&#10;wWwM9FCjtXUUVlS/d0VQj8Kv+Lcrel5SaXS7NKv7yt7efxWS+5KK+dklfyCsL4of8kz8Rf8AYMuf&#10;/RTVu141+0/+y54k/aEkiXSPi745+HdmIJbe4tdDjtGjuw6qvz+dE54AOMEffNAHwp/wa3/8ko+O&#10;f/Y+3/8A6X39fqhXzV/wTU/4JoeH/wDgmj4C8S6HoPinxF4s/wCEp1N9VvLvWFhWbznlmkbHlKo5&#10;aZu3YV9K0AFFFFABRRRQAUUUUAFFFFABXg/7bXj2Y6Hp/grTSWvvFDmGYJJgiAlUkU+m5ZO5/Ovb&#10;9X1WHQ9MnvLl/Lt7ZDJIx/hUck18ufsweHJ/2gv2gfFHxC19rxo7KeKDR7dJR9lRUUxu3ltk7iYV&#10;OQRyTQAvxj8O6X+z1+zNpfhNJbqwi1O3ku5rlCweKSJY5QhkHTLfKOec8Zrh/wDgl3+zn430fU7v&#10;4jXPi6UeHfFVzJfDR7qzaSaVJUV1bzjJkfeXgp/CfWtL/gqfqJv9BubG61a6tbS0jiuIrOFnX7UQ&#10;6MwPBXjaOuOtenf8E6P2i7H45/ATRrey0q803+wrGGzczkYlZI0BZcDoc0AfQdFFFABRRRQAU2SQ&#10;RIWYhVAySTgCnV4d+0H8Q7rxf42tvBGi31xYw26f2jr97bu0clvZqdkkasP4yJEYHDDjoaAPaLPW&#10;bTUZCtvdW07L1EcqsR+RqzXyd+w14MYfHXxxqNtrWu3VhYG3hFpd3XmRLvibDBcAZO0k+5r6xoAK&#10;KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo&#10;ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiv&#10;Hv2hf2vNM+Cl/Hpdpp97rusyqHMdpH5sNoMsMzspzGMqRkjqVHegD2GiviT4T/Er49/tYfGGRrXU&#10;tO8NfD2yIS4uLNEuVumymfJd4cONrN0ccqa77WP2BNa8V/Eb7bq3xC1a70RF+S2FtFGWbC5yUweo&#10;PfvQB9O15X+2J8YLn4PfBTULrTIxca5ebYLC3xkzMZEEmBkdIyx69q4uX/gnF4Udtw1PVVk7t58v&#10;P4eZWN4m/wCCVvgnxfeabcX+o6rcTaTI01oxmlHlOylGOBJg5Ukc5oAf+wT8GYtDQ6kUL2mgWx0T&#10;T5X/AOXtAyTCfpycsy546dO9fT1edeE/ghqvgfwxbaRpfjC+tbKzj8qFBYwNsHXqwJP4msnw18C/&#10;iHpGrtPe/GXXNUtypC28mg6fGqkkc7ljB/8A10Abf7T7Ffgxqw/vKFPuDnNePf8ABL/RbfTPh74l&#10;kh3bpdbugwPQfP2/OvWfE3wP1nxlocunan411C6tJvvobCBN34qAf1rJ+G37LNx8INMns/Dni7UN&#10;Mtbmd7mWMWUMu+Rjlmy+48/lQB69RXC/8K18V/8ARQNS/wDBZa//ABNZ/iT4JeIvFmiXWnXvj/VJ&#10;LO9iaGaMadbJvQ8EblUEfUGgD0qivnu0/wCCfum6fLHJB4o1iOaJgyvtz0OehbFcbrPgj4jfCrxy&#10;1lcfHnSdH0xizWlrfRafFPIuCQuHjzgZXnJPNAH1bqurQaLarNcOI43migBPd5JFjQfizKPxqzXx&#10;9rHj3xxrHxt+Henan4k8IeIvD9vq1s90bTUY2ubly4Eb7I4x92QRvgHB2kHjivsGgAooooAKKKKA&#10;CiiigCO7tIr+2eGeKOaKQYdJFDKw9CDwapeF/COk+CNJSw0XS9P0ixjOVtrK2S3iU4A4RAB0A7dq&#10;0aKAOd+L3h++8W/CfxPpWmOI9S1PSbu0tHOMLNJC6oeePvEda/LP/gm98NP28f8Agm94O8W+Dm+A&#10;vg/4o+Hb7XrzU9Hnl+JFjor2iT3VxO+VFvMzF2m3fM3y4xX63UVNNOFSVSL+KKi10snzL536/Lqx&#10;1Gp0405LSMuZetrfkfDP7EP/AAT78eeIP2pL39pD4/vZxfEq9sW0zSvDVq8dxb+FLfzIyEW6hZUu&#10;SxiL7jCpHnlf4efuaiitLpQjSgrRirJLprd73bbbbbbbbd2yOX35VJO8pO7f4LySSsklokgoooqS&#10;gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK+ZP2tf2h/FOleL28M+G&#10;72Dw/wDZY/tNxczBDc3qAspjt43VhISSpGMH5G9KAPobxR440nwXAJNVv7exRujStgGvP/EX7bvw&#10;p8K3CQ3vjjQ4Z5CQsZm+ZsYz29xXy9+xp+x9pv7QfxCf4meJ9T1e9k0y5QWWnXW63eEqwyZURhjL&#10;RZAIOVbNfXVl+zP4J0/xqPEEehW/9pquxZWkkYAYx90sV6e1AHIv/wAFCfhLHMVbxdpox/F5gwal&#10;X/goB8I2XP8Awmujgeplr1Y+F9NI/wCQfY/9+F/wpj+D9Kcc6bZf9+V/woA+R/2zP+Ckfw6Hgq38&#10;N6L4ktru68QTC2mkicGOOB1dWJOc9dvY11vwA/ba+BfgjwTZaJZ/EXw1PfxpunRLglyxJbngdN2K&#10;+i28H6SyAHTLAgcDNupx+lYmk/AjwhoerG+tdAsYrps5cKT168E4oA+Wf+CgH7U/ws8ffBjy7TxD&#10;pWpXi3MOzy5Mug8+Ldj8Afyr0/4I/tp/Crw/8HvC9lL4y0eCS20u3jaNpeUIQDBr3EeDNJx/yDbE&#10;/WFT/SmnwRo5/wCYbZf9+hQB5u37d/wlVwP+E30Xn/ptSN+3l8JFUk+OdEGPWavSf+EI0fH/ACDb&#10;L/v0Ka3gLRXPOmWX/foUAedWn7dvwlvJ0RPHGiZkOF/fdTXW6J8fPBviMIbHxFp1zvO1dj5yevpW&#10;xJ4B0WSLYdMs9voIgK+T/wBqTwB8H/gp8TFvtS+F/jLXtQ1jdK15pqXr2MDEszF3SdVUnceMdxig&#10;D6R+OPxktvg/8PJtZ2fbLl/ksrZBlruTrtUZGTjJ6jpXl2l+B7n4VfDaO21W5S58T+K7pZ9dmBJE&#10;sWGjJGQDgKIxyO1fOHiOHwrrniPSPEHhKxTQZ9FxJafa9QmfyG+ccrI7qeH7g1zPxj/aX+IM8V49&#10;74q1fVJtUtH0aKHw/pNrftAsvzbzhAQAV6+4oA+2P2JfDR0/4Vy6tPbi2vdYu5xKo7rDPLHGfxTB&#10;/GvZK+GPgZ+3xrvgjQfDGlXOkQ6paXWoW2lSxFtmqxNNNs837Mq/dGSWOeOPWvuKzuPtdpFLtZPN&#10;QPtYYZcjOCPWgCWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK&#10;KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo&#10;AKKKKACiiigAr58/aa/ZP1jxrrs3iDwjqEUN7dRCG+0+aJSNQXez4EzN+65KnhT933r6DooA+Df2&#10;e/2gvGP7H/xDPgbxH8OdYt/Bk0yrb6lavJdrZbtudxWE7hzIclx6V9BeGv2+PBfib4kSeH0+326h&#10;N8d3cW8kUb/KpIyygDk469q9p1DTbfV7VoLq3huYX+9HLGHVvqDxWA/wX8HSyb28J+Gmb+8dLgJ/&#10;9BoAhT43eF5OmsWX/f1f8agvP2g/BunXVvBP4h0qGa7YpBG90itMQMkKCckgAnjtWgPhB4SH/Mr+&#10;HeOn/Eth4/8AHa8Y/bp/ZY03xx8FLi/8LeHNIg8V6A63WmSW1rDBIpZ0SXD4XH7oyfxD056UAe46&#10;f470/VrI3FsZpoAMh0iLK4/2SOv4Vz2hftC+H9f1KS1RNXtpY1LN9q0+WBcDHdgB3ryj9hf4yW3i&#10;q3k05biWTT9atzreipMWJtrTckIi+Ydd4c4wvX7vevoW68P2F85aeytJmYYJeFWJH4igDNh+I+l3&#10;EUkiSStFCpZ5BESigckk9Oxqjo/xt8OeIb6a20+/S+ubZVeWK3HmvErZCswXJAODgnrg1b8a6RZ6&#10;V8Odejt7a3tYjp9xuWKMIP8AVt2A+tfGH/BMHUXvP2wvi5BvaS3g0XTBFubOB590P5AUAfak/j+z&#10;t8Zh1Dn0tHP9KYPiLYkf6jUv/AOT/Ct4oD2H5UBAOw/KgDhfFv7RvhnwOyDVJb60aRSyK9o4Lgdc&#10;DHPUdK+Yfix8UPhV+038SfO1Lwh4/vLmwWSK2v7Wz1BIiQMH5UQKfujBzX2J4g8D6L4tmik1XR9L&#10;1OS3BETXdpHMYgcZ2lgcZwOnpU+k+GtO0GMJY6fZWSjosECxgfkBQB8LeDtOufD3xy+H1ho3hHUb&#10;LTL7WbYrqOpTSRMkcbiRgUlTO4ouAN2SzADmvvesfxh4Ls/GcFmLqJDJYXtvewS7QXieKZJPlPUZ&#10;2bTjqCRWxQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU&#10;UUUAFFFFABRRRQAUUUUAFFFFABXCfGj9nbw18dNOji1i1YXEDB4bqB2iljIDAfMpBI+Y8ZxXd0UA&#10;fGn/AAwt8Uvgh8YovFXgDx1/aOmtNFJd6DcWaQRXSJsynmvK20sEI3BMjeT9fQNK+IPx6074j/at&#10;S8F6XJ4fZCr2cesQlkYLgMHEW4884xX0XRQB5inxi8Zcb/AQXPpqucf+QqbN8ZvGKH5fAO71/wCJ&#10;rj/2lXqFFAHzd8VP26vEPwe1/TbPWfhtdJFqsiw29zFqLSRb2JADMIML0PU9q2vCXx6+LOo3vmaj&#10;8LbG306Rd0U0XiRJmYHlflEAI4967b9pr4XD4q/Cm8tIw322zzeWZUgHzlRwvJ7fN6isP9jr4oH4&#10;gfDlrSVpJLnRXNvLI5YljvkHU+m3FAHM/GP9szxH8EfCx1jWPh6RY+bHCGTVyx3O6oOBCe7iuh0P&#10;9oHxv4h0C01G2+HMbQXsSzR51sAlWGR/yxrx7/gqr8Ur/TvhreaTBpMk2n6bLZ3l3eLMo2Dz4nVQ&#10;n3iSUI4B6161+wn+0bpv7R3wJ0zUNNsr6xj0+NLJ1uopEZmSOMkjei5HzjkDHHWgDSuvjL4/jRTF&#10;8OIZSeoOuBcf+Qah/wCF1/EX/omVv/4Px/8AGa9dooA8bufjJ8U7r5LX4X2W7H3n8SIuD+MFcPD4&#10;a/aE8Z+KprnVf+Eb0vSZZH8uxeC0v/JQ7inzkAnGV7c7a+nKKAPi39ov9l3xZo2k6Zr/AIi8UWep&#10;6BaSj+2NP0zw5FZSLFtb5lkhcsTuKjAFWvin+xj4L0e3e80SS7+z6vo81nZTxXUjol4zDy3DB8ZG&#10;1v8AGvsHUdNt9YspLa7t4bq3lGJIpkDo49CDwa+btO0S58BnU/hzqEtxLHpKHWfDszS/NcRIApQt&#10;k8mWVsAkHA6d6AOw/ZT+DHg2x+HWnavYaTazXTlkeedvtLeZFIyFgzZwdynp0/CvaAMCvB/2DfEc&#10;EvgfV/D8Jl/4kF2xdZCSVaeWaU84x1J6V7xQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF&#10;FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU&#10;UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2aITxMjcq4Kn6GnUUAfBHjia2/Y8+O&#10;d7YXGoG0trG5/wCEn0cXBLI1kMQCxTaBgeYHkxwOD83avu/SdQXVdMguU5WeMOMe4r5x/wCClvwq&#10;mvvhZafEjQ7C1vPF/wAMrhda05Z2cLMY0lURkLnjMxPT8a6/9kb9ovUvjJoktn4ij0m3120RX/4l&#10;8rPb3SEZLRl8MQuVU8DDZFAFT9rvxZ4sF3Y+G/DFzpVmuraTqk95LeLKTthhRgE2MOoZuoPavzK+&#10;E37efiH9iL9rjxiuneGYvF82r6JpUU9lbRk3k8gmmDNGWljQDLFvm5wp71+lX7adnrXhg2njHT20&#10;QadoukapBfnUZpI9omhRVKbVIzhW6kdq+fP+COfjrSvH3xT+Il3bxyx3TWdoreYq7JlEkxDxnJJQ&#10;8kE4yMUAfb3wl8cXHxK+Gui69daVeaHcaraJcyafdlfOtGYZKPtLLkexIroqOlFABRRRQAUUUUAF&#10;FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU&#10;UUAFFFFABRRRQAUUUUAFFFFABRRRQAV8xSre/syftVeVbTPH4U8YujR2rH93E6iNXZQMAZeRievJ&#10;r6dryv8Aa8+FjfEf4R301pHG2raLG1/ZlyQC0alwvGepVe1AHgn/AAU+0HWL/T7W68PEzm8e2nvI&#10;pzm3eGCSKTIAwc7d/U9cV9P/ALP/AIhtvFfwR8KajaKsdteaXbzRoowEVo1IAH41866zcP8AtC/s&#10;pIt3P9m13w3ELO4aPGIFk2RSDnttRgcjOK4D/gj78HPD3hbxD43lsNZuLi+0TWrmwitoyjWz2ieW&#10;I5VP3jks3twKAPvmiiigAooooAK4b42/BO2+L+l2hW7utK1fS51urG+tXVJYpFDbQWKt8uWyQBnI&#10;HNdzRQB4z+yp+yvd/s66h4gurzxLqmvz6/LHLIbqcSBCm/p8i/3/AH6V7NRRQAUUUUAFFFFABRRR&#10;QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA&#10;BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQ&#10;39hDqlnJb3ESTQSja6OMqw9CK+FfhXNefsufHufwoWuFh8LXSJbSyx4F5pU5S5u5tzZyI3k2ZycY&#10;+8vSvvCvlz/gpb8KtRfwXZ+PfDhS21XQCYNVmMYcf2SQ0l1lcjccRpxyeMAGgDsP22/C8fj/AOCW&#10;n6tF51xZ6be2mpTxxFiJrVZEklyAeRsU9fWvhoftEeGv2Ev2+9K8U3cksfgXx1YHUJE06MTtawyw&#10;3ElujIDxhpYx1GOfTFfa37InjJfid8HtR8F6xeLfX9vYIJJ2GBPBdpI0YVTn7keAQCccZx0r4E/b&#10;x/ZU0TTP2cPFuo/ab9tR8A+K2F6J5maWTTpNSt7eBIiTlIwN+FXcAvGAKAP0y/Z1/a9+Hv7VWm3d&#10;x4I8TaVrMmnyGK7tYbuJ7m0YBCRJGrFkI3r97HWvS68N/YQ+Cfw08AfBrS/Efw78O6bo9v4rtUvp&#10;Z4Yk8+53qnMkgVWcnYvLegr3KgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKbJGJYyr&#10;AMrDBB6EU6igD5M13S739nz9qC4sW8pfCHjNZm3PgZmdJCQAQeFeReh/AV4UPixr37Dv7aE97Z+F&#10;LzxFpPiyE+HYrfSkeaWWSB5pzc+WiMfmXHTjjrxX2j+2D8KZviR8J7mfTolOuaMDdWMnAKYZGcAk&#10;jqqY618j+M9Tn+IHgXwd46kum0nxD4WZYr3y88P5YRicEfNmUgtzmgD9AfDWrvr2hW15JbzWjzpu&#10;MMqlXj9iDyKvVS8O6/beKNEt9QtH8y2ul3xsO46VdoAKKKKACiiigAooooAKKKKACiiigAooooAK&#10;KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo&#10;ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqHi&#10;nw1Z+M/DWoaRqEK3FhqdvJa3MTAESRupVlIOQcgnqKv0UAfBfwm8Qz/s4fHDUNA1PdDe+DNQSNHk&#10;bP8AaVnqDsyZI6i2iCgA4wGwB2rp/wBsv9nvQ/in8ZtNkvb7VP7D+JWjz2qwW06x2k0ttbS3MMki&#10;MpBzIYyM9wDxW3/wU/8A2ftO8Z6X4X8d3FhDfHwlcvBdxvnH2a5eBZpeO8aRFhyB6g1kXunW/wC0&#10;V+yBq/hKGe5FxoS2V9os9vt8xdJE8LwMucj5oISDxjB4oAyP+CD/AMS9S1L9lTXPh/4jlP8Awkvw&#10;l8Sz+ELqNpN5ItrSzYsDkjG6Yjg9q+4K/Fz4h/BHx38PP+ChHh+H4DeK38FWnxs8LQ60st7JshGq&#10;zXV0ZGJjjchvItohxu6V+t/7PnhjxZ4N+Eej6d441e213xPbRst9fW7M0c7F2IILKp+6VHKjpQB2&#10;lFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU&#10;UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2aJbiJkdQyOCrKRkMD1FfEX7RHwZ1&#10;r4U/FjVYk0wXXw/8U7rppV2lbK5Z3cpsznaAsQGEPXr6fb9FAHz5/wAE5finq/jn4Gx6TrunNY6p&#10;4ZkNhM4+5cEBX3KMkgfPjk9q+g6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK&#10;KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo&#10;AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAzvF3hm28aeF&#10;dS0i9QPaapay2kynukiFT+hNfnt4N+Jt9+zF+0u3gi/0XWbmLQbu5hmlhtGaCTQ5RLb6ajPxjZgn&#10;PU92av0ar5Q/4KRfDe58KjRvivo1n9qm8NMbXWLRF+bUre4KWsW488QtO0v3W+7/AA/eAB82/tO/&#10;Ba5/Z9+NLeLPCltpdvaeBZD4rtQL6Saee1lZ7RdiPuG3Ldjjg1+nWm6hDqthFcQSJNFKuVdGDK30&#10;Ir4P1m10/wCIfwvs0udQ+12uguNLuLzbuOqaKihops5+607nnLcr9417l/wTI+J998Q/2VdFt9YV&#10;013Q99pqKu+5hIXd1zwP4GWgD6FooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo&#10;oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii&#10;igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK&#10;ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA&#10;KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArP8U+GrTxj4dvNLv4Iri0vomikjkQOpB7&#10;4IIyDyPcCtCigD82ZfhF4l/Yj+Imvad410jXfFfwtv7X+zNCvNPvlVtPs1l3xW0sIMkjldjNuEar&#10;+8HAINVv+Cc3x+8V/Db9qPUPB9pp+oeKfBvjWVb86rJby2h0yUGCAIyzAMw27m4Ar9L6KACiiigA&#10;ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi&#10;iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK&#10;KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo&#10;AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA&#10;ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi&#10;iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK&#10;KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=&#10;"
+       id="image1" />
+    <text
+       xml:space="preserve"
+       style="font-size:24px;font-family:Sans;-inkscape-font-specification:'Sans, Normal';font-variant-ligatures:none;fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
+       x="309.20255"
+       y="160.58034"
+       id="text3"><tspan
+         sodipodi:role="line"
+         id="tspan3"
+         x="309.20255"
+         y="160.58034"
+         style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24px;font-family:Arial;-inkscape-font-specification:'Arial, Normal';font-variant-ligatures:none;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#000000;fill-opacity:1">Design Window</tspan></text>
+  </g>
+</svg>
diff --git a/docs/documentation/sizing/initial_sizing/getting-started.md b/docs/documentation/sizing/initial_sizing/getting-started.md
new file mode 100644
index 0000000000000000000000000000000000000000..bfa1b4c516c1e91789c263abeb6fb7eff6d0a628
--- /dev/null
+++ b/docs/documentation/sizing/initial_sizing/getting-started.md
@@ -0,0 +1,189 @@
+# Getting started {#getting-started}
+This guide will show you the basic usage of **initial_sizing**. Following steps are necessary (if you are new to UNICADO check out the [settings and outputs](#settingsandoutputs) first!)
+
+## Step-by-step
+
+It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build-instructions/build/cpp.md)).
+
+1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#acXML))
+2. Fill out the configuration file - change at least:
+    - in `control_settings`
+        - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings
+        - `console_output` at least to `mode_1`
+        - `plot_output` to false (or define `inkscape_path` and `gnuplot_path`)
+    - in `program_settings`
+        - the initial assumptions of values for the stated parameters
+3. Open terminal and run **initialSizing**
+
+Following will happen
+
+- you see output in the console window
+- a HTML report is created in the directory of `aircraft_exchange_file_directory` (no plots if they are turned off)
+- results are saved in the _acXML_ file
+
+
+## Settings and outputs {#settingsandoutputs}
+Generally, we use 2 files to set our configuration in UNICADO:
+
+- the aircraft exchange file (or _acXML_) includes
+    - data related inputs (e.g. range, pax number, cargo)
+    - data related outputs (e.g. MTOM, OME)
+- the configuration file `initial_sizing_conf.xml` (or _configXML_) includes
+    - control settings (e.g. enable/disable generating plots)
+    - program settings (e.g. set parameters to consider for specific technologies or change of methods)
+
+### Aircraft exchange file {#acXML}
+!!! note
+    _acXML_ is an exchange file - that only safes the data as output which is needed by another tool!
+
+**Inputs**:
+
+The following is needed from the _acXML_:
+
+1) the accomodation requirements (pax number, pax mass, luggage mass, cargo mass)
+2) the mission requirements (range, reserves, TOFL, cruise speed and altitude, approach speed)
+3) the user settings of the energy carrier
+
+Naturally, the initial_sizing needs an assumption for the initial MTOM to start the iteration of MTOM. This initial MTOM is calculated from the pax number requirement in the _acXML_ .
+
+Additionally, the user settings need to be defined. In the node `/aircraft_exchange\_file/requirements_and_specifications/design_specification` (for more information on the variables, please read the description in the _acXML_).
+
+**Outputs**:
+
+The following is written into the _acXML_:
+1) the Maximum Takeoff Mass (MTOM)
+2) the Operating Mass Empty (OME)
+3) the Design Sizing Point which consists of the wing loading and the Thrust to weight ratio needed to fulfill the TLARs
+
+### Configuration file
+The _configXML_ is structured into two blocks: the ^^control^^ and ^^program^^ settings.
+
+The ^^control settings^^ are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least
+
+- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings
+- the `console_output` at least to `mode_1`
+- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`).
+
+!!! note
+    If the tool is executed via the workflow, those settings are set by the workflow settings.
+
+The ^^program settings^^ are special settings and input parameters only needed for the individual module. For your convenience there is always a default value given. For initial sizing they are structured like this(descriptions are in the `initialSizing_conf.xml`):
+
+At first the aircraft configuration for which the initial sizing shall be done needs to be set. The second setting is the approach how the initial sizing shall be done. There is an analytical method and there will be a database method.
+
+```
+<tube_and_wing description="settings for tube and wing (TAW)">
+    <approach_selection description="selection of approach level">
+		<value>analytical</value>
+	</approach_selection>
+```
+
+For the analytical approach of the initial sizing module further parameter assumptions and requirements needs to be set in the program settings.
+
+```
+<General>
+    <OswaldFactor description="Oswald efficency factor in clean configuration" Unit="-">
+		<value>0.85</value>
+	    <default>0.85</default>
+	</OswaldFactor>
+    <AspectRatio description="aspect ratio" Unit="count">
+	    <value>9.5</value>
+	    <default>9.5</default>
+    </AspectRatio>
+    <n_pilots description="Number of Pilots" Unit="count">
+	    <value>2</value>
+	    <default>2</default>
+	</n_pilots>
+	<n_engines description="Number of engines" Unit="count">
+	    <value>2</value>
+	    <default>2</default>
+    </n_engines>
+    <Cf description="equivalent friction coefficient" Unit="count">
+	    <value>0.002</value>
+	    <default>0.002</default>
+    <SFC_kerosene description="Specific Fuel Consumption factor for Kerosene">
+	    <value>0.0001389</value>
+	    <default>0.0001389</default>
+```
+
+For the TLARs takeoff, climb, cruise and landing set in the _acXML_ further parameter assumptions are necessary for initial sizing in order to determine a sizing chart. These parameters are set in the initial sizing program settings and as are followed
+
+```
+<TOFL description="takeoff distance requirement">
+    <CLmax_TO description="Maximum lift coefficient at takeoff" Unit="-">
+	    <value>2.55</value>
+        <default>2.28</default>
+    </CLmax_TO>
+</TOFL>
+<LDN description="landing distance requirement">
+    <CLmax_L description="Maximum lift coefficient at landing" Unit="-">
+    	<value>2.9</value>
+	    <default>2.85</default>
+    </CLmax_L>
+    <mlmo description="ratio between maximum landing mass and takeoff mass" Unit="-">
+	    <value>0.82</value>
+	    <default>0.82</default>
+    </mlmo>
+</LDN>
+<Climb description="climb performance requirement">
+    <deltaCD_HL description="Delta CD0 with TO-Flaps" Unit="-">
+        <value>0.07</value>
+        <default>0.07</default>
+    </deltaCD_HL>
+</Climb>
+<Cruise description="maximum cruise speed requirement">
+    <mcr_mto description="ratio between cruise mass and takeoff mass - default for mid- and short-range: 0.956, default for long range: 0.924">
+        <value>0.956</value>
+	    <default>0.956</default>
+    </mcr_mto>
+    <optimalCL description="design CL for initial cruise">
+        <value>0.57</value>
+		<default>0.57</default>
+    </optimalCL>
+</Cruise>
+<LiftToDragRatios description="initial cruise and loiter lift to drag ratios ">
+    <LD_initial_cruise description="cruise requirements">
+        <value>15</value>
+        <default>15</default>
+    </LD_initial_cruise>
+    <LD_initial_loiter description="loiter requirements">
+        <value>16</value>
+        <default>16</default>
+<LiftToDragRatios>
+```
+
+In order to provide further input for the mass estimation methodology in the analytical approach of the initial sizing module fuel mass fractions for mission phases needs to be set.
+
+```
+<Fractions description="fuel mass fractions">
+    <mf_warmup description="Warmup (according to Raymer: 0.97(A340)-0.99(A320))" Unit="-">
+        <value>0.99</value>
+        <default>0.99</default>
+    </mf_warmup>
+    <mf_taxi description="Taxi (according to Raymer: 0.97(A340)-0.99(A320))" Unit="-">
+        <value>0.99</value>
+        <default>0.99</default>
+    </mf_taxi>
+    <mf_to description="Takeoff (according to Raymer: 0.97(A340)-0.99(A320))" Unit="-">
+        <value>0.995</value>
+        <default>0.995</default>
+    </mf_to>
+    <mf_climb description="Climb (according to Raymer: 0.97(A340)-0.99(A320))" Unit="-">
+        <value>0.98</value>
+        <default>0.98</default>
+    </mf_climb>
+    <mf_descent description="Descent (according to Raymer: 0.99(A340)-0.995(A320))" Unit="-">
+        <value>0.99</value>
+        <default>0.99</default>
+    </mf_descent>
+    <mf_missedandclimb description="missed approach and climb to alternate airport (according to Raymer: 0.992(A340)-0.997(A320))" Unit="-">
+        <value>0.988</value>
+        <default>0.988</default>
+    </mf_missedandclimb>
+    <mf_land description="Landing and Taxi out (according to Raymer: 0.992(A340)-0.997(A320))" Unit="-">
+        <value>0.995</value>
+        <default>0.995</default>
+    </mf_land>
+```
+
+As soon as the reference aircraft database exists the program settings for the database approach of initial sizing will be described here.
\ No newline at end of file
diff --git a/docs/documentation/sizing/initial_sizing/index.md b/docs/documentation/sizing/initial_sizing/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..fb13afe1c75595b4212fcbeb54108a914737d1b4
--- /dev/null
+++ b/docs/documentation/sizing/initial_sizing/index.md
@@ -0,0 +1,18 @@
+# Introduction {#mainpage}
+The tool _initialSizing_ is the first aircraft design tool in the UNICADO workflow.
+The overall goal is the initial takeoff mass estimation based on the Top Level Aircraft Requirements "TLARs" range and payload.
+Moreover an initial sizing chart is derived from further TLARs like the desired cruise speed, approach speed or takeoff field lenght.
+
+The design window is then automatically investigated for an optimum design point resulting in the wing loading and thrust to weight ratio for the aircraft.
+Together with the initial takeoff mass and empty mass estimation, the tool delivers the first important parameters for further UNICADO design modules.
+
+This tool is existing because it starts the clean sheet aircraft design and you will get a first idea how large and heavy your aircraft will be for the desired mission.
+
+To remind you of the concept of an initial sizing chart and design window, here is the diagram where each border is derived from a different TLAR - hence every combination of wing loading
+and thrust to weight ratio within the borders are possible design points for the aircraft.
+![](figures/sizing_chart.svg)
+
+The [Getting Started](getting-started.md) gives you a first insight in how to execute the tool and how it generally works.
+
+So let's get started!
+
diff --git a/docs/documentation/sizing/initial_sizing/initialSizing.md b/docs/documentation/sizing/initial_sizing/initialSizing.md
new file mode 100644
index 0000000000000000000000000000000000000000..d86785bae284c9d10896db822647b4e0484ca34b
--- /dev/null
+++ b/docs/documentation/sizing/initial_sizing/initialSizing.md
@@ -0,0 +1,154 @@
+# Implemented Aircraft Sizing Methods and Models
+
+## Initial Takeoff Mass Estimation (MTOM) 
+The MTOM is initially iterated from Top Level Aircraft Requirements (TLARs), user assumptions and certification requirements.
+
+
+**Methods**
+
+Like its name suggests, the *Payload* is the mass that pays for a trip. It is calculated from the number of passengers (PAX) and additional cargo requirement.
+It is a fixed value for the whole iteration.
+For the determination the following parameters from the acXML are necessary:
+
+1) acXML:
+
+  - Number of PAX  [-]
+  - Mass per person   [kg]
+  - Luggage per PAX  [kg]
+  - Additional cargo mass  [kg]
+  
+
+
+The *Crew mass* is not part of the payload but once determined it is also a fixed value for the iteration of the MTOM.
+The crew mass is dependent on the different seating classes (FC, BC, EC) and number of PAX in each class the aircraft shall have.
+Furthermore, the certification requirements define the number of pilots.
+For the determination the following parameters are necessary:
+
+1) acXML:
+
+  - Number of PAX in each class  [-]
+  - Mass per person  [kg] and luggage per crew are the same than for the passengers
+
+2) initialSizing_conf:
+
+  - Number of pilots  [-]
+
+3) in source code:
+
+  -  Ratio for flight attendants per PAX amount in each class  [-]: e.g. 1 Flight Attendant per 14 PAX in FC, 1 per 40 in EC
+  
+
+
+The *fuel* which is needed for individual mission segments is not calculated in absolute values but as mass fractions from the total remaining fuel. The fuel fractions of the cruise segment, the reserve needed to the flight to an alternate distance and the reserve for a holding time are calculated with the Breguet equation.
+For the determination the following parameters are necessary:
+
+1) acXML:
+
+  - Design range  [m]
+  - Crusie flight speed $[\frac{m}{s}]$: automatically calculated from the design mach number
+  - Contingency  [-]: percentage for the reserve of the trip fuel (the fuel necessary for the design range without reserves)
+  - Cruise flight altitutde  [m]: to calculate the air density
+
+2) initialSizing_conf:
+
+  - SFC of the engine with regard to fuel type  [-]
+  - Glide Ratio $\frac{L}{D}_{cr}$ in cruise  [-]: Initial assumption given by user
+  - Glide Ratio $\frac{L}{D}_{loi}$ in Loiter  [-]: Initial assumption given by user
+
+
+
+The fuel fractions (i.e. engine warm up, taxi, takeoff, climb....) are set as an static input by the user in the config file.
+Together with the fuel fractions from the segments calculated with the Breguet equation, the overall fuel fraction of the aircraft is calculated.
+In this way of calculating the necessary fuel, the method and also the same static fuel fractions are applicable for various aircraft sizes.
+
+The *MTOM* is calculated in an iteration because the absolute amount of fuel and the *Operating Mass Empty* (OME) or ($m_e$) changes with the aircraft MTOM ($m_0$).
+The initial value for MTOM to start the MTOM iteration is estimated with a simple formula depending on the payload and a static factor only.
+
+For the *OME* a mass ratio $\frac{m_e}{m_0}$ is used in order to take into account the total aircraft size. Larger aircraft usually have a smaller $\frac{OME}{MTOM}$ ratio.
+In each iteration a new $\frac{m_e}{m_0}$ ratio is calculated. Together with the fuel mass fraction, the payload and the crew mass the MTOM is determined. This iteration goes on until the convergence criteria is reached.
+
+
+
+## Initial Constraint Analysis - Sizing Chart
+A constraint analysis is conducted in order to set the initial *Design Point* for the aircraft. The Desing Point is defined as a wing loading $\frac{m_0}{S}$ and thrust to weight ratio $\frac{F}{m_0 \cdot g}$.
+The constraint analysis is a method to make sure Top Level Aircraft Requirements and certification requirements will be fulfilled by the designed aircraft.
+For this a sizing chart is determined and printed by the module.
+
+**Methods**
+
+The *Takeoff* constraint makes sure to respect the takeoff field lengt TLAR.
+For the determination the following parameters are necessary:
+
+1) acXML:
+
+  - Takeoff field lenght (TOFL)  [m]
+
+2) initialSizing_conf:
+
+  - Number of engines  [-]: is used to set an engine proportional factor
+  - $CL_{takeoff}$  [-]
+  
+  
+
+The *Climb* constraint makes sure to respect the climb ability in the 2nd segment with one engine inoperative (OEI) by the certification standards.
+For the determination the following parameters are necessary:
+
+1) acXML:
+
+  - Minimum climb angle  [rad]: according to the certification standards and the total number of engines
+  - $\frac{L}{D}_{climb}$  [-]: with the highlift system in the state of the 2nd climb segment
+
+2) in source code:
+
+  - Mass ratio $\frac{m_{climb}}{m_0}$  [-]
+  
+
+
+The *Cruise Flight* constraint makes sure to respect the design cruise speed and altitude TLAR.
+For the determination the following parameters are necessary:
+
+1) initialSizing_conf:
+
+  - $C_{feq}$  [-]: Equivalent friction coefficient to estimate parasetic drag coefficient
+  - Oswald efficency factor $e$  [-]
+  - Wing Aspect Ratio  [-]
+    
+2) in source code:
+
+  - Thrust ratio $\frac{F_{total}}{F_{cruise}}$  [-]
+  - $\frac{S_{wet}}{S_{ref}}$ ratio  [-]: Ratio of wetted surface to wing reference area to estimate parasetic drag coefficient
+  - Mass ratio $\frac{m_{cruise}}{m_0}$  [-]
+  
+
+
+The *Landing* constraint makes sure to respect the maximum approach speed TLAR.
+For the determination the following parameters are necessary:
+
+1) acXML:
+
+  - $v_{appr}$  [$\frac{m}{s}$]: Approach speed TLAR
+    
+2) initialSizing_conf:
+
+  - $CL_{Landing}$  [-]
+  - Mass ratio $\frac{m_{land}}{m_0}$  [-]
+  
+
+
+These constraints open up the design or sizing window of the aircraft where it can fulfill the TLARs and certification standards.
+
+
+## Initial Constraint Analysis - Design Point
+The constraints from the section before open up the design or sizing window, where the aircraft can fulfill the TLARs and certification standards.
+Selecting the optimal design point within the window is again dependent on various requirements and the constellation of the design window itself.
+This would be quite complex to implement in the module. In order to keep the module and the methods simple, only the borders of the desing window are investigated - since in many cases they deliver an optimal design point.
+In general, a design point with a wing loading as high as possible and a thrust to weight ratio as low as possible is a good choice.
+
+**Methods**
+
+* This investigation is done by calculating the intersections of the borders.
+* It is checked how many intersection points of constraints the borders of the desing window has.
+* It is checked if the $CL_{optimal}$ is within the design window. $CL_{optimal}$ is a user input in the initialSizing_conf.xml and describes the design lift coefficient at initial cruise speed and altitude.
+* If $CL_{optimal}$ is in the design window the intersection of $CL_{optimal}$ and the design window border is used as design point.
+* If $CL_{optimal}$ is not in the design window and there is only one intersection from borders in the window this intersection is used as design point.
+* If $CL_{optimal}$ is not in the design window and there are two intersection from borders in the window, an interpolated point between these two is used as design point.
\ No newline at end of file
diff --git a/docs/documentation/sizing/landing_gear_design/design_method.md b/docs/documentation/sizing/landing_gear_design/design_method.md
new file mode 100644
index 0000000000000000000000000000000000000000..a4dfa7401bc3461d4eb962b30951568217480c6f
--- /dev/null
+++ b/docs/documentation/sizing/landing_gear_design/design_method.md
@@ -0,0 +1,438 @@
+# Calculation method
+
+- [Initial position estimation](#initial-positions)
+- [Calculation of geometric distances](#distances)
+- [Estimation of landing gear loads](#loads)
+- [Tire selection](#tires)
+- [Limitation check](#limitations)
+- [Clearance compliance check](#clearances)
+- [Estimation of landing gear mass](#mass)
+- [Estimation of aircraft classification number](#acn)
+
+
+## Initial positions {#initial-positions}
+First, initial x axis positions for the nose $x_{\text{NLG}}$ and main landing gear $x_{\text{MLG}}$ are estimated. If any of the required values are missing, default values are used, such as a minimum distance of 2 meters between the main landing gear and the aft-most center of gravity.
+
+The nose gear position is determined either from module configuration data or input parameters, such as the front reference point of the payload area or existing landing gear positions. If no relevant data is available, a default starting position, such as 5 meters, is applied.
+
+Similarly, the main landing gear position is estimated. Depending on the aircraft type, default positions of 19 meters (single-aisle) and 32 meters (wide-body) are assigned. Additional factors, including wing reference points, center of gravity data, and wing chord lengths, are incorporated into the estimation if available. A temporary center of gravity is also calculated based on the main landing gear position and the safety margin from the aft-most center of gravity.
+
+These positions are recalculated on an ongoing basis.
+
+## Distances {#distances}
+Afterwards, critical distances (lever arms) and tipping points for estimating loads on the landing gear are calculated.
+Default values are assigned if parameters are not explicitly provided.
+
+### Horizontal distances
+![](figures/horizontal_distances.png)
+
+#### Distance between nose and main landing gear
+The distance between the nose and the main landing gear can be estimated using the following equation:
+$$
+  d_{\text{NLG-MLG}} = |x_{\text{MLG}} - x_{\text{NLG}}|
+$$
+
+In which
+
+- $x_{\text{MLG}}$ - x position of main landing gear
+- $x_{\text{NLG}}$ - x position of nose landing gear
+
+#### Distance between nose gear and foremost center of gravity position
+If the foremost center of gravity position is already known, the distance to the nose gear can be determined according to the following formula:
+$$
+  d_{\text{NLG front CG}} = |x_{\text{front CG}} - x_{\text{NLG}}|
+$$
+
+In which
+
+- $x_{\text{front CG}}$ - x position of foremost center of gravity
+
+Otherwise, $d_{\text{NLG front CG}}$ is determined by using a first estimation:
+$$
+  d_{\text{NLG front CG}} = |(x_{\text{MLG}} - 2) - x_{\text{NLG}}|
+$$
+
+#### Distance between nose gear and rearmost center of gravity
+The distance between the nose gear position and the rearmost center of gravity in x direction can be calculated as follows:
+$$
+  d_{\text{NLG rear CG}} = |x_{\text{rear CG}} - x_{\text{NLG}}|
+$$
+
+In which
+
+- $x_{\text{rear CG}}$ - x position of rearmost center of gravity
+
+Otherwise, $d_{\text{NLG rear CG}}$ is determined by using a first estimation:
+$$
+  d_{\text{NLG rear CG}} = |(x_{\text{MLG}} - 1) - x_{\text{NLG}}|
+$$
+
+#### Distance between main landing gear and rearmost center of gravity position
+If no distance between the main landing gear and the rearmost center of gravity is available from earlier iterations, it equals `1.0`.
+
+### Vertical distances
+![](figures/vertical_distances.png)
+
+#### Vertical distance between ground and center of gravity position
+Starting with the second iteration loop, the vertical distance between ground and center of gravity $\Delta h_{\text{GND-CG}}$ is known.
+
+In the first loop, however, the vertical distance must be calculated as sum of the following heights:
+
+1. Vertical distance from fuselage center line to center of gravity $\Delta h_{\text{FCL-CG}}$
+2. z position of tail tipping point (equals vertical distance between fuselage center line and tail tipping point) $z_{\text{TP}}$
+3. Vertical distance from tail tipping point to ground $\Delta h_{\text{TP-GND}}$
+
+**1. Vertical distance from fuselage center line to center of gravity**<br>
+The distance between global center of gravity in z-direction and the fuselage center line $\Delta h_{\text{FCL-CG}}$ is either estimated by subtracting the z position of the fuselage center line $z_{\text{FCL}}$ from the z position of the most aft CG position $z_{\text{rear CG}}$
+$$
+  \Delta h_{\text{FCL-CG}} = |z_{\text{rear CG}} - z_{\text{FCL}}|
+$$
+
+or, if those values are not given, set to `0.5` for single-aisle and `1.0` for wide-body configurations.
+
+**2. z position of tail tipping point**<br>
+If the position of the tail tipping point in z direction is not known, it is assumed to equal $z_{\text{TP}} = -0.3 \cdot h_{\text{fuselage}}$. The fuselage height $h_{\text{fuselage}}$ in meter is known or assumed to be `3.8` for single-aisle and `5.8` for wide-body aircraft.
+
+**3. Vertical distance from tail tipping point to ground**<br>
+The vertical distance from the tail tipping point to the ground $\Delta h_{\text{TP-GND}}$ is estimated in the following way:
+
+$$
+  \Delta h_{\text{TP-GND}} = |\tan(\theta_{\text{LDG}}) \cdot d_{\text{MLG-TP}}| - h_{\text{susp}}
+$$
+
+The vertical distance between the main landing gear and the tail tipping point $d_{\text{MLG-TP}}$ is either known or set to `15.0` for single-aisle or `25.0` for wide-body aircraft configurations.
+
+If a strut suspension system is implemented, the vertical distance between ground and CG decreases by the suspension travel $h_{\text{susp}}$ that equals `0.0` if no suspension system is implemented.
+
+**Vertical distance between ground and center of gravity position**<br>
+Finally, the vertical distance between the ground and the CG position can be calculated by summing up these values:
+$
+  \Delta h_{\text{GND-CG}} = \Delta h_{\text{FCL-CG}} + |z_{\text{TP}}| + \Delta h_{\text{TP-GND}}
+$
+
+## Load estimation {#loads}
+Subsequently, the loads on the nose and main landing gear are calculated based on Norman S. Currey's work<sup>[1]</sup>, unless explicitly stated otherwise. It considers the static and dynamic loads during takeoff, landing, and taxiing, while ensuring the loads conform to the permissible percentages as per aviation regulations.
+
+The following data is necessary:
+
+- Maximum aft position of nose landing gear
+- Minimum foremost position of nose landing gear
+- Minimum foremost position of main landing gear
+- Maximum ramp weight
+
+If no values are available, initial values are set.
+
+### Nose landing gear loads
+**Minimum static nose gear load**
+$$
+  L_{\text{NLG,stat,min}} = \frac{MRW \cdot (d_{\text{NLG-MLG}} - d_{\text{NLG rear CG}})}{d_{\text{NLG-MLG}}}
+$$
+
+In which
+
+- $MRW$ - maximum ramp weight
+- $d_{\text{NLG-MLG}}$ - distance between nose and main gear
+- $d_{\text{NLG rear CG}}$ - distance between nose gear and rearmost center of gravity
+
+**Maximum static nose gear load**
+$$
+  L_{\text{NLG,stat,max}} = \frac{MRW \cdot (d_{\text{NLG-MLG}} - d_{\text{NLG front CG}})}{d_{\text{NLG-MLG}}}
+$$
+
+In which
+
+- $MRW$ - maximum ramp weight
+- $d_{\text{NLG-MLG}}$ - distance between nose and main gear
+- $d_{\text{NLG front CG}}$ - distance between nose gear and foremost center of gravity
+
+**Maximum dynamic nose gear load**
+$$
+  L_{\text{NLG,dyn,max}} = L_{\text{NLG,stat,max}} + \frac{10 \cdot d_{\text{GND rear CG}} \cdot MRW}{32.2 \cdot d_{\text{NLG-MLG}}}
+$$
+
+In which
+
+- $d_{\text{GND rear CG}}$ - vertical distance between ground and aft center of gravity
+
+The static loads on the nose landing gear should be between 6% and 20% of the maximum ramp weight for all CG positions. These values are absolute limits and must not be exceeded at any time. Ideally, the static loads for the minimum and maximum nose landing gear load should be between 8% and 15%. If the limits are violated, the landing gear positions and/or the empty mass center of gravity must be varied. This leads to a renewed check of the center of gravity movement and the limits to be adhered to (iterative process).
+
+#### Dynamic nose gear loads for takeoff and landing condition
+The calculation of the dynamic nose gear loads for takeoff and landing conditions is in accordance with CS 25.733 (b)(2) and (b)(3)<sup>[2]</sup>.
+
+**Maximum static nose gear landing load**<br>
+In order to calculate the maximum static nose gear load at landing, the maximum static nose gear landing load $ L_{\text{NLG,stat,max,LDG}}$ has to be estimated first.
+
+$$
+  L_{\text{NLG,stat,max,LDG}} = \frac{MLM \cdot g \cdot (d_{\text{NLG-MLG}} - d_{\text{NLG front CG}})}{d_{\text{NLG-MLG}}}
+$$
+
+In which
+
+- $MLM$ - maximum landing mass
+- $ g$ - gravitational acceleration
+- $d_{\text{NLG-MLG}}$ - distance between nose and main gear
+- $d_{\text{NLG front CG}}$ - distance between nose gear and foremost center of gravity
+
+!!! note
+    If no maximum landing mass exists, 90% of the maximum ramp weight are initially assumed for the calculation.
+
+Subsequently, the maximum dynamic load at landing $ L_{\text{NLG,dyn,max,LDG}} $ can be calculated based on CS 25.733 (b)(2):
+$$
+  L_{\text{NLG,dyn,max,LDG}} = L_{\text{NLG,stat,max,LDG}} + 0.31 \cdot L_{\text{NLG,stat,max,LDG}}
+$$
+
+**Maximum dynamic nose gear takeoff load**<br>
+The maximum dynamic nose gear load at takeoff can be calculated in accordance with CS 52.733 (b)(3):
+$$
+  L_{\text{NLG,dyn,max,TO}} = L_{\text{NLG,stat,max}} + 0.2 \cdot L_{\text{NLG,stat,max}}
+$$
+
+### Main landing gear loads
+The total main gear load can be estimated using the following equation:
+$$
+  L_{\text{MLG,max}} = \frac{100 - L_{\text{NLG,stat,min}}}{100} \cdot MRW
+$$
+
+In which
+
+- $L_{\text{NLG,stat,min}}$ - minimum static nose gear load **in percent**
+
+### Nose landing gear position
+The maximum possible foremost and aft position of the nose landing gear can be determined based on the loads.
+
+#### Foremost nose landing gear position
+A maximum of 20 percent of the maximum ramp weight is allowed as the maximum static nose gear load $L_{\text{NLG,stat,max,possible}}$:
+$$
+  L_{\text{NLG,stat,max,possible}} = 0.06 \cdot MRW
+$$
+
+The foremost nose landing gear position therefore results in:
+$$
+  d_{\text{NLG front CG min}} = \frac{MRW \cdot d_{\text{NLG-MLG}} - L_{\text{NLG,stat,max,possible}} \cdot d_{\text{NLG-MLG}}}{MRW}
+$$
+
+In which
+
+- $MRW$ - maximum ramp weight
+- $d_{\text{NLG-MLG}}$ - distance between nose and main gear
+
+#### Aft nose landing gear position
+A minimum of 6 percent of the maximum ramp weight is allowed as the minimum static nose gear load $L_{\text{NLG,stat,min,possible}}$:
+$$
+  L_{\text{NLG,stat,min,possible}} = 0.2 \cdot MRW
+$$
+
+The aft nose landing gear position therefore results in:
+$$
+  d_{\text{NLG aft CG max}} = \frac{MRW \cdot d_{\text{NLG-MLG}} - L_{\text{NLG,stat,min,possible}} \cdot d_{\text{NLG-MLG}}}{MRW}
+$$
+
+## Tires {#tires}
+Tire selection in accordance to CS 25.733<sup>[2]</sup> und EASA ETSO tire list<sup>[3]</sup>, bridgestone aircraft tires<sup>[4]</sup>  from landing gear lib (see [getting started](getting_started.md) page for more information).
+ 
+If a maximum takeoff stall speed exists, the maximum design speed **(in miles per hour)** corresponds to the greater of the two values maximum approach speed or maximum takeoff stall speed*1.3:
+$$
+  v_{\text{max,des}} = max(v_{\text{app,max}},v_{\text{s,TO}} \cdot 1.3)
+$$
+
+In which
+
+- $v_{\text{app,max}}$ - maximum approach speed (in mph)
+- $v_{\text{s,TO}}$ - takeoff stall speed (in mph)
+
+Otherwise, the following applies:
+$$
+  v_{\text{max,des}} = v_{\text{app,max}}
+$$
+
+### Nose gear
+For both, the number of nose gear struts $n_{\text{NLG struts}}$ as well as the number of nose gear tires per strut $n_{\text{NLG tires per strut}}$, the user can define specific values. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used.
+
+#### Design load estimation
+The **single tire design load** $v_{\text{NLG,tire,des}}$ is calculated according to CS 25.733 (b)(1):
+$$
+  v_{\text{NLG,tire,des}} = \frac{\frac{L_{\text{NLG,stat,max}}}{g} \cdot 2.2}{n_{\text{NLG tires per strut}} \cdot n_{\text{NLG struts}}}
+$$
+
+In which
+
+- $L_{\text{NLG,stat,max}}$ - maximum static nose gear load
+- $g$ - gravitational acceleration
+
+Subsequently, the **single tire dynamic landing load** $v_{\text{NLG tire LDG}}$ is estimated based on CS 25.733 (b)(2):
+$$
+  v_{\text{NLG tire LDG}} = \frac{\frac{L_{\text{NLG,dyn,max,LDG}}}{g} \cdot 2.2}{n_{\text{NLG tires per strut}} \cdot n_{\text{NLG struts}}}
+$$
+
+In which
+
+- $L_{\text{NLG,dyn,max,LDG}}$ - maximum dynamic load at landing
+
+Afterwards, the calculation of the **single tire dynamic takeoff load** $v_{\text{NLG tire TO}}$ for nose gear tires is in accordance to CS 25.733 (b)(3):
+$$
+  v_{\text{NLG tire TO}} = \frac{\frac{L_{\text{NLG,dyn,max,TO}}}{g} \cdot 2.2}{n_{\text{NLG tires per strut}} \cdot n_{\text{NLG struts}}}
+$$
+
+In which
+
+- $L_{\text{NLG,dyn,max,TO}}$ - maximum dynamic load at takeoff
+
+#### Tire selection
+Knowing the design speed and loads, a suitable tire is selected from the database.
+
+### Main gear tire selection
+Similar to the nose landing gear, the number of main gear struts $n_{\text{MLG struts}}$ as well as the number of main gear tires per strut $n_{\text{MLG tires per strut}}$ can be defined by the user. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used.
+
+#### Design load estimation
+The **single tire design load** is calculated according to CS 25.733 (a)(1):
+$$
+  v_{\text{MLG tire des}} = \frac{\frac{L_{\text{MLG,max}}}{g} \cdot 2.2}{n_{\text{MLG tires per outer strut}} \cdot n_{\text{MLG outer struts}} + n_{\text{MLG tires per inner strut}} \cdot n_{\text{MLG inner struts}}} \cdot f_{\text{safety}}
+$$
+
+In which
+
+- $L_{\text{MLG,max}}$ - maximum main gear load
+- $g$ - gravitational acceleration
+- $n_{\text{MLG tires per outer strut}}$ - number of tires per outer strut
+- $n_{\text{MLG outer struts}}$ - number of outer struts
+- $n_{\text{MLG tires per inner strut}}$ - number of tires per inner strut
+- $n_{\text{MLG inner struts}}$ - number of inner struts
+- $f_{\text{safety}}$ - safety factor
+
+If only one main gear tyre is mounted to one main landing gear strut, $f_{\text{safety}} = 1$. If more than one tire is mounted to one main landing gear strut, an additional safety load margin according to CS 25.733 (c)(1) is required that results in $f_{\text{safety}} = 1.07$.
+
+#### Tire selection
+Knowing the design speed and loads, a suitable tire is selected from the database.
+
+## Limitations {#limitations}
+Estimation of ground strike limitations in accordance to Sforza<sup>[5]</sup> and CS-25<sup>[2]</sup>.
+
+The safest and highest permissible rotation angle during takeoff, considering both landing constraints and tail tipping risks, is calculated, considering different constraints and configurations.
+
+**Maximum Rotation Angle for Landing**<br>
+If the maximum angle of attack during landing is provided, it is compared to the defined tail strike limit and the greater of the two is selected.
+If this value is not provided, it defaults to using only the given tail strike limit.
+
+**Maximum Tail Tipping Angle**<br>
+The calculated maximum rotation angle at landing is compared with the maximum rotation angle during takeoff. The larger of these values is taken as the maximum tail tipping angle.
+
+**Turn over Angle**<br>
+The turnover angle defines how much an aircraft can tilt before it loses lateral stability and tips over. It depends on the center of gravity height and the landing gear track width. A higher center of gravity or a narrower landing gear stance reduces the turnover angle, making the aircraft more prone to tipping during sharp turns, braking, or uneven ground contact.
+For **commercial aircraft**, a turnover angle between 40–60° is generally required to ensure stability during taxiing, ground handling, and takeoff/landing rollouts. This ensures that lateral forces from crosswinds, asymmetric thrust, or sharp turns do not cause the aircraft to tip. If the turnover angle is too small (e.g., below 30°), the aircraft becomes unstable, increasing the risk of accidents on the ground.
+The turnover angle (\theta) is calculated using the formula:
+$$
+  \theta = \tan^{-1} \left( \frac{h}{\frac{T}{2}} \right)
+$$
+In which
+
+- $h$ - height of the center of gravity (CG) above the ground
+- $T$ - track width (distance between main landing gear contact points)
+- $\theta$ - turnover angle (in degrees)
+
+With the known values, the landing gear placement and dimensions are estimated meeting constraints like stability, retractability, turnover limits, and tail strike prevention. If the criteria aren't met, the design is refined in an iterative process.
+
+## Clearances {#clearances}
+Ground clearance angles for nacelles and wing tips are calculated and verified in accordance to Torenbeek<sup>[6]</sup> and CS-25<sup>[2]</sup>.
+
+### Nacelle clearance
+The ground clearance $c_\text{nacelle}$ for each nacelle can be specified via the module configuration file. A value of 0.45 meters is set by default. 
+This value is usually used by the manufacturers as the nacelle safety clearance; a specification by certification regulations is not given.
+
+The implemented method checks for each existing propulsor whether it is mounted on the wing and if the nacelle used complies with the required safety distance. If the check fails, the necessary delta length of the main landing gear struts is calculated and the dimensioning of these is restarted. The repositioning in the direction of the span resulting due to the change in length is also performed. If there is a collision with the innermost propulsor mounted on to the wing, an error message is displayed and repositioning is terminated.
+
+### Wing tip clearance
+The wing tip ground clearance $c_{\text{wing tip}}$ is known from the positions of the wing tip section.
+$$
+  c_{\text{wing tip}} = d_{\text{GND to FCL}} - z_{\text{wing tip}}
+$$
+
+In which
+
+- $d_{\text{GND to FCL}}$ - vertical distance between ground and fuselage center line
+- $z_{\text{wing tip}}$ - z position of wing tip
+
+The wing tip clearance angle is calculated using the wing tip's position relative to the main gear outer strut:
+$$
+    \theta_{\text{wing tip}} = \arctan\left(\frac{c_{\text{wing tip}}}{|y_{\text{wing tip}}| - y_{\text{MLG outer strut}}}\right) \cdot \frac{180}{\pi}
+$$
+
+In which:
+
+- $y_{\text{wing tip}}$ - y position of wing tip
+- $y_{\text{MLG outer strut}}$ - y position of outer main landing gear strut
+
+This value is then validated against the minimum required clearance angle of 5 degree, defined by CS 25.149, and the user-specified wing tip clearance angle.
+
+## Masses {#mass}
+The undercarriage masses are calculated in accordance to Torenbeek<sup>[6]</sup> using the following coefficients (taken from Table 8-6):
+
+| Gear Type      | Position | A       | B       | C       | D           |
+|----------------|----------|---------|---------|---------|-------------|
+| Fixed          | Main     | 9.1     | 0.082   | 0.019   | 0           |
+| Fixed          | Nose     | 11.3    | 0       | 0.0024  | 0           |
+| Retractable    | Main     | 18.1    | 0.131   | 0.019   | 0.0000223   |
+| Retractable    | Nose     | 9.1     | 0.082   | 0       | 0.00000297  |
+
+Under the use of these coefficients, the mass for the nose as well as the main landing gear can be calculated using the following equation:
+
+$$
+  m = c_{\text{wing}} \cdot \left( A + B \cdot MTOM^{0.75} + C \cdot MTOM + D \cdot MTOM^{1.5} \right) \cdot f_{\text{corr}}
+$$
+
+In which:
+
+- $c_{\text{wing}}$ - wing position coefficient (`1.0`for low or mid wing position, `1.8`for high wing position)
+- $MTOM$ - maximum takeoff mass
+- $f_{\text{corr}}$ - landing gear correction factor (taken from user specification)
+- $ A,B,C,D$ - coefficients from above table
+
+!!! note 
+    If the maximum takeoff mass is not available, it is calculated by dividing the maximum ramp weight by the gravitational acceleration.
+
+The total nose/main landing gear mass divided by the number of struts per nose/main landing gear results in the per-strut mass.
+
+## Aircraft classification number {#acn}
+The calculation is based on the COMFAA Tool developed by the Federal Aviation Administration (FAA) that is specifically used for computing the ACN (Aircraft Classification Number) in line with ICAO standards.
+Detailed information can be taken from the website:
+
+!!! note 
+    By clicking on the following link, you will leave the UNICADO website. Please note that we are not responsible for the content of the linked website and do not assume any liability.<br>
+    [External link to FAA COMFAA 3.0](https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/comfaa-30)
+
+The Aircraft Classification Number (ACN) is a standardized measure that describes the load a particular aircraft imposes on the surface of a runway or taxiway. It is defined by the International Civil Aviation Organization (ICAO) in Annex 14<sup>[7]</sup> and is used to assess whether an aircraft is compatible with a specific pavement's structural capacity, expressed as the Pavement Classification Number (PCN).
+The subsequent section provides some information on the method.
+
+### Key characteristics of ACN
+1. Definition
+  - The ACN represents the relative structural impact of an aircraft on a pavement.
+  - It is calculated based on the aircraft's weight, landing gear configuration, wheel spacing, and maximum takeoff weight.
+2. Calculation
+  - The ACN is determined for two types of pavements:
+    - Rigid pavements: Concrete surfaces with a stiff structure.
+    - Flexible pavements: Asphalt or other elastic materials.
+    !!! note 
+        Currently only flexible pavement implemented. 
+  - Subgrade strength (the strength of the ground beneath the pavement) is divided into four categories: High (H), Medium (M), Low (L), Very Low (VL).
+3. Standardization
+  - The ACN is normalized to a reference Single Wheel Load (SWL) of 10 tons.
+  - As a result, it is independent of specific airport conditions.
+4. Comparison
+  - The ACN of an aircraft is compared to the PCN of a pavement:
+    - ACN ≤ PCN: The aircraft can use the pavement without causing damage.
+    - ACN > PCN: Using the pavement may lead to structural damage and is generally restricted.
+
+### Factors influencing ACN
+- **Aircraft weight:** Heavier aircraft have higher ACNs.
+- **Landing gear configuration:** Aircraft with more wheels or better weight distribution have lower ACNs.
+- **Wheel spacing:** Wider spacing reduces the load concentration and lowers the ACN.
+- **Pavement type:** The ACN for rigid and flexible pavements differs for the same aircraft.
+
+___
+
+<sup>[1]</sup> N. S. Currey. *Aircraft Landing Gear Design: Principles and Practices*. Washington DC: American Institute of Aeronautics und Astronautics, 1988.<br>
+<sup>[2]</sup> European Union Aviation Safety Agency (EASA). *Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes (CS-25). Amendment 27*. 2021.<br>
+<sup>[3]</sup> European Union Aviation Safety Agency (EASA). *List of ETSO Authorisations*. 2022.<br>
+<sup>[4]</sup> Bridgestone. *Aircraft Tires*. Online. URL: https://www.bridgestone.com/products/aircraft/products/applications/.<br>
+<sup>[5]</sup> P. Sforza. *Commercial Airplane Design Principles*. Elsevier Inc., 2014.<br>
+<sup>[6]</sup> E. Torenbeek, 1982. *Synthesis of Subsonic Airplane Design*.<br>
+<sup>[7]</sup> ICAO, 2022. *ICAO Annex 14, Aerodromes, Volume I - Aerodrome Design and Operations*.<br>
\ No newline at end of file
diff --git a/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.png b/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.png
new file mode 100644
index 0000000000000000000000000000000000000000..9907a9f4351e285667c6068a2f15dc98a29b69be
--- /dev/null
+++ b/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:aef872150d330c6d029c7214d8b5dda51cab48546528338ed3e8b3d8c5baacf2
+size 869538
diff --git a/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.svg b/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.svg
new file mode 100644
index 0000000000000000000000000000000000000000..671327b06866ff05a2ea2a76135d88d8e68f9b95
--- /dev/null
+++ b/docs/documentation/sizing/landing_gear_design/figures/horizontal_distances.svg
@@ -0,0 +1 @@
+<svg width="4408" height="1962" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xml:space="preserve" overflow="hidden"><defs><clipPath id="clip0"><rect x="-0.0909091" y="-2770.82" width="665018" height="279862"/></clipPath><image width="158" height="65" xlink:href="" preserveAspectRatio="none" id="img1"></image><clipPath id="clip2"><rect x="0" y="0" width="665018" height="273583"/></clipPath><image width="2596" height="616" xlink:href="" preserveAspectRatio="none" id="img3"></image><clipPath id="clip4"><rect x="0" y="0" width="10965078" height="2601883"/></clipPath><image width="43" height="45" xlink:href="" preserveAspectRatio="none" id="img5"></image><clipPath id="clip6"><rect x="0" y="0" width="145627" height="152400"/></clipPath><clipPath id="clip7"><rect x="0" y="0" width="145627" height="152400"/></clipPath><clipPath id="clip8"><rect x="0" y="0" width="145627" height="152400"/></clipPath></defs><g transform="translate(4 -256)"><g><rect x="0.499836" y="263.5" width="4400" height="1949" stroke="#FFFFFF" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#FFFFFF" fill-opacity="1"/><g clip-path="url(#clip0)" transform="matrix(0.000360892 0 0 0.000360892 2080 1429)"><g clip-path="url(#clip2)" transform="matrix(1 0 0 1.01282 -0.414062 -0.131104)"><use width="100%" height="100%" xlink:href="#img1" opacity="1" transform="scale(4208.97 4208.97)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 221 544)"><g clip-path="url(#clip4)" transform="matrix(1.0002 0 0 1 0.0218173 -0.0316939)"><use width="100%" height="100%" xlink:href="#img3" opacity="1" transform="scale(4223.84 4223.84)"></use></g></g><path d="M3394 383 3394 2040.28" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M313 1169 3749.78 1169" stroke="#A6A6A6" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875 2.29167 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3558.35 1699)">Tipping point</text><path d="M3498.5 1681C3498.5 1674.65 3503.65 1669.5 3510 1669.5 3516.35 1669.5 3521.5 1674.65 3521.5 1681 3521.5 1687.35 3516.35 1692.5 3510 1692.5 3503.65 1692.5 3498.5 1687.35 3498.5 1681Z" stroke="#00252D" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#006374" fill-rule="evenodd" fill-opacity="1"/><g transform="matrix(0.000360892 0 0 0.000360892 3471 1745)"><g clip-path="url(#clip6)" transform="matrix(1.02749 0 0 1 -0.761208 0.254284)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3556.09 1795)">Center of gravity (CG)</text><path d="M478 383 478.001 1669.54" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 309.266 1687)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 335.712 1697)">NLG</text><path d="M2197 383 2197 1941.66" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><g transform="matrix(0.000360892 0 0 0.000360892 1808 1091)"><g clip-path="url(#clip7)" transform="matrix(1.00846 0 0 1 0.193714 -0.0130726)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><path d="M1.14584 22.9172 1.14619 957-1.14547 957-1.14582 22.9172ZM-13.75 27.5 0 0 13.75 27.5Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(1 0 0 -1 241 2138)"/><path d="M13.7498-1.14581 239.424-1.14547 239.424 1.14619 13.7498 1.14585ZM18.3333 9.16669 0 0 18.3333-9.16664Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 479.424 1631)"/><path d="M2184.42 1910.15 240 1910.15 240 1907.85 2184.42 1907.85ZM2179.84 1899.83 2198.17 1909 2179.84 1918.17Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1163.56 1959)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1190 1969)">MLG</text><path d="M1835 586 1835 1745.21" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M2013 492 2013 1826.47" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 947.093 1772)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 973.539 1782)">front</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1062.91 1782)">_</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1076.66 1782)">CG</text><path d="M13.7542-1.14583 1591.86-1.14547 1591.86 1.14619 13.7542 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 1832.86 1725)"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1044.38 1864)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1070.82 1875)">rear</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1145.3 1875)">_</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1159.05 1875)">CG</text><path d="M13.7542-1.14583 1771.98-1.14547 1771.98 1.14619 13.7542 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 2012.98 1815)"/><path d="M13.7565-1.14583 3146.27-1.14547 3146.27 1.14619 13.7565 1.14583ZM18.3333 9.16667 0 0 18.3333-9.16666Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 3386.27 2011)"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1775.35 2061)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1801.8 2072)">TP</text><path d="M241 1167.85 338.64 1167.85 338.64 1170.15 241 1170.15ZM334.057 1155.25 361.557 1169 334.057 1182.75Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 208.757 2183)">−</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 246.569 2183)">𝑧</text><path d="M229 1169C229 1161.82 234.82 1156 242 1156 249.18 1156 255 1161.82 255 1169 255 1176.18 249.18 1182 242 1182 234.82 1182 229 1176.18 229 1169Z" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#FFFFFF" fill-rule="evenodd" fill-opacity="1"/><path d="M233 1160 251.766 1178.77" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M0 0 18.766 18.766" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 251.766 1160)"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3560.47 1910)">Fuselage center line</text><path d="M3467 1888 3533 1888" stroke="#A6A6A6" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875 2.29167 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 347.903 1149)">𝑥</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 183.259 1184)">𝑦</text><path d="M0 0 3899.61 0.000360892" stroke="#00171E" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 359.5 1479.5)"/><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1020.66 651)">𝑑</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1049.87 661)">NLG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1124.93 661)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1138.68 661)">front</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1228.05 661)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1241.8 661)">CG</text><path d="M13.7507-1.14583 1342.74-1.14548 1342.74 1.14619 13.7507 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666ZM1338.15-9.16631 1356.49 0.000360892 1338.15 9.16702Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 1834.49 600)"/><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1189.62 463)">𝑑</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1218.84 473)">NLG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1293.89 473)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1307.64 473)">MLG</text><path d="M13.753-1.14583 1707.97-1.14548 1707.97 1.14619 13.753 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666ZM1703.39-9.16631 1721.72 0.000360892 1703.39 9.16702Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 2197.72 412)"/><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1109.19 556)">𝑑</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1138.41 567)">NLG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1213.46 567)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1227.21 567)">rear</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1301.69 567)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1315.44 567)">CG</text><path d="M13.7503-1.14583 1519.8-1.14548 1519.8 1.14619 13.7503 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666ZM1515.22-9.16631 1533.56 0.000360892 1515.22 9.16702Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 2011.56 505)"/><rect x="1696" y="838" width="278" height="166" fill="#FFFFFF" fill-opacity="1"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1729.92 906)">foremost</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1802.11 972)">CG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2708.76 651)">𝑑</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2737.98 661)">MLG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2818.19 661)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2831.94 661)">TP</text><path d="M13.7499-1.14583 1182.93-1.14548 1182.93 1.14619 13.7499 1.14584ZM18.3333 9.16667 0 0 18.3333-9.16666ZM1178.35-9.16631 1196.68 0.000360892 1178.35 9.16702Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1" transform="matrix(-1 0 0 1 3393.68 600)"/><path d="M0 0 1302.07 291.125" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 2274 1529.13)"/><path d="M0 0 1214.07 0.000360892" stroke="#00171E" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 3287.57 1529.5)"/><path d="M3387.5 1275C3387.5 1268.65 3392.65 1263.5 3399 1263.5 3405.35 1263.5 3410.5 1268.65 3410.5 1275 3410.5 1281.35 3405.35 1286.5 3399 1286.5 3392.65 1286.5 3387.5 1281.35 3387.5 1275Z" stroke="#00252D" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#006374" fill-rule="evenodd" fill-opacity="1"/><g transform="matrix(0.000360892 0 0 0.000360892 1986 1073)"><g clip-path="url(#clip8)" transform="matrix(1.02749 0 0 1 -0.19225 -0.0504039)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><rect x="1874" y="698" width="278" height="167" fill="#FFFFFF" fill-opacity="1"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1908.54 766)">rea</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1983.02 766)">r</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2001.93 766)">most</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1980.43 832)">CG</text></g></g></svg>
\ No newline at end of file
diff --git a/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.png b/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.png
new file mode 100644
index 0000000000000000000000000000000000000000..5f3aebb7cc96653b139e3c918c8f0cb03ed89515
--- /dev/null
+++ b/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d1e92ecd985c003c4e2988ca959ca57b8037cfb4b8c301dbd7f578be4e4c8ddb
+size 824656
diff --git a/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.svg b/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.svg
new file mode 100644
index 0000000000000000000000000000000000000000..f9174370699f91dc8f0e2f93625d8c88049dc716
--- /dev/null
+++ b/docs/documentation/sizing/landing_gear_design/figures/vertical_distances.svg
@@ -0,0 +1 @@
+<svg width="4408" height="1641" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xml:space="preserve" overflow="hidden"><defs><clipPath id="clip0"><rect x="-0.0909091" y="-2770.82" width="665018" height="279862"/></clipPath><image width="158" height="65" xlink:href="" preserveAspectRatio="none" id="img1"></image><clipPath id="clip2"><rect x="0" y="0" width="665018" height="273583"/></clipPath><image width="2596" height="616" xlink:href="" preserveAspectRatio="none" id="img3"></image><clipPath id="clip4"><rect x="0" y="0" width="10965078" height="2601883"/></clipPath><image width="43" height="45" xlink:href="" preserveAspectRatio="none" id="img5"></image><clipPath id="clip6"><rect x="0" y="0" width="145627" height="152400"/></clipPath><clipPath id="clip7"><rect x="0" y="0" width="145627" height="152400"/></clipPath><clipPath id="clip8"><rect x="0" y="0" width="145627" height="152400"/></clipPath></defs><g transform="translate(4 -412)"><g><rect x="0.499836" y="418.5" width="4400" height="1628" stroke="#FFFFFF" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#FFFFFF" fill-opacity="1"/><g clip-path="url(#clip0)" transform="matrix(0.000360892 0 0 0.000360892 2080 1429)"><g clip-path="url(#clip2)" transform="matrix(1 0 0 1.01282 -0.414062 -0.131104)"><use width="100%" height="100%" xlink:href="#img1" opacity="1" transform="scale(4208.97 4208.97)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 221 544)"><g clip-path="url(#clip4)" transform="matrix(1.0002 0 0 1 0.0218173 -0.0316939)"><use width="100%" height="100%" xlink:href="#img3" opacity="1" transform="scale(4223.84 4223.84)"></use></g></g><path d="M881 1098 3846.27 1098" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M0 0 3899.61 0.000360892" stroke="#00171E" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 359.5 1479.5)"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3394.74 1728)">Tipping point</text><path d="M0 0 1302.07 291.125" stroke="#00A5C0" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 2274 1529.13)"/><g transform="matrix(0.000360892 0 0 0.000360892 1986 1073)"><g clip-path="url(#clip6)" transform="matrix(1.02749 0 0 1 -0.19225 -0.0504039)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><path d="M3335.5 1710C3335.5 1703.65 3340.65 1698.5 3347 1698.5 3353.35 1698.5 3358.5 1703.65 3358.5 1710 3358.5 1716.35 3353.35 1721.5 3347 1721.5 3340.65 1721.5 3335.5 1716.35 3335.5 1710Z" stroke="#00252D" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#006374" fill-rule="evenodd" fill-opacity="1"/><g transform="matrix(0.000360892 0 0 0.000360892 3308 1774)"><g clip-path="url(#clip7)" transform="matrix(1.00846 0 0 1 -0.241211 -0.210094)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3392.48 1824)">Center of gravity (CG)</text><g transform="matrix(0.000360892 0 0 0.000360892 1808 1091)"><g clip-path="url(#clip8)" transform="matrix(1.00846 0 0 1 0.193714 -0.0130726)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="scale(3386.67 3386.67)"></use></g></g><path d="M1.1459 22.9167 1.14619 131.38-1.14547 131.38-1.14577 22.9167ZM-13.7499 27.5 0 0 13.7501 27.5Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(1 0 0 -1 241 1299.38)"/><path d="M1835 1004 1835 1096.43" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M2013 865 2013 1073.33" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 940.237 1145)">𝑧</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 963.635 1156)">rear</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1038.11 1156)">_</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1051.86 1156)">CG</text><path d="M1.14588 13.75 1.14619 105.447-1.14547 105.447-1.14579 13.75ZM-9.1666 18.3334 0 0 9.16673 18.3333Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1" transform="matrix(1 0 0 -1 676 1277.45)"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 591.024 1228)">𝑧</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 614.422 1238)">TP</text><path d="M241 1168.85 338.64 1168.85 338.64 1171.15 241 1171.15ZM334.057 1156.25 361.557 1170 334.057 1183.75Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 197.023 1351)">−</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 234.835 1351)">𝑧</text><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 347.903 1149)">𝑥</text><path d="M229 1169.5C229 1162.04 234.82 1156 242 1156 249.18 1156 255 1162.04 255 1169.5 255 1176.96 249.18 1183 242 1183 234.82 1183 229 1176.96 229 1169.5Z" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#FFFFFF" fill-rule="evenodd" fill-opacity="1"/><path d="M233 1160 251.766 1178.77" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M0 0 18.766 18.766" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 251.766 1160)"/><text fill="#00171E" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 183.259 1185)">𝑦</text><path d="M255 1169 3719.38 1169" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M902.146 1111.75 902.146 1167.77 899.854 1167.77 899.854 1111.75ZM891.833 1116.33 901 1098 910.167 1116.33Z" fill="#00171E" fill-rule="nonzero" fill-opacity="1"/><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3481.61 1391)">Δ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3511.41 1391)">ℎ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3539.48 1401)">TP</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3587.03 1401)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3600.78 1401)">GND</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3269.31 1151)">Δ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3299.1 1151)">ℎ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3327.17 1161)">FCL</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3393.63 1161)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3407.38 1161)">CG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3794.91 1329)">Δ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3824.7 1329)">ℎ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3852.77 1339)">GND</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3932.98 1339)">_</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3946.73 1339)">CG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3280.72 1517)">ℎ</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3308.79 1527)">susp</text><path d="M3476.15 1290.75 3476.15 1468.85 3473.85 1468.85 3473.85 1290.75ZM3465.83 1295.33 3475 1277 3484.17 1295.33ZM3484.17 1464.26 3475 1482.6 3465.83 1464.26Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><path d="M3254.15 1491.75 3254.15 1516.18 3251.85 1516.18 3251.85 1491.75ZM3243.83 1496.33 3253 1478 3262.17 1496.33ZM3262.17 1511.6 3253 1529.93 3243.83 1511.6Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><path d="M0 0 1214.07 0.000360892" stroke="#00A5C0" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 3287.57 1529.5)"/><path d="M2782.17 1427.52 2785.55 1443.76 2788.1 1458.73 2790.21 1473.76 2791.87 1488.84 2793.08 1503.98 2793.79 1520.55 2791.5 1520.65 2790.79 1504.1 2790.79 1504.14 2789.58 1489.04 2789.59 1489.08 2787.93 1474.02 2787.94 1474.06 2785.84 1459.06 2785.84 1459.1 2783.3 1444.17 2783.3 1444.21 2779.93 1427.99ZM2773.12 1434.26 2778 1414.35 2791 1430.2ZM2801.69 1515.78 2792.99 1534.34 2783.37 1516.25Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2813.44 1462)">𝜃</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2840.32 1472)">LDG</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="50" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3286.56 1234)">𝑧</text><text fill="#00A5C0" fill-opacity="1" font-family="Cambria Math,Cambria Math_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="37" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3309.96 1245)">TP</text><path d="M3254.15 1181.75 3254.15 1261.16 3251.85 1261.16 3251.85 1181.75ZM3243.83 1186.33 3253 1168 3262.17 1186.33ZM3262.17 1256.58 3253 1274.91 3243.83 1256.58Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><path d="M3254.15 1111.75 3254.15 1155.41 3251.85 1155.41 3251.85 1111.75ZM3243.83 1116.33 3253 1098 3262.17 1116.33ZM3262.17 1150.82 3253 1169.16 3243.83 1150.82Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><path d="M3766.15 1111.75 3766.15 1462.4 3763.85 1462.4 3763.85 1111.75ZM3755.83 1116.33 3765 1098 3774.17 1116.33ZM3774.17 1457.81 3765 1476.15 3755.83 1457.81Z" fill="#00A5C0" fill-rule="nonzero" fill-opacity="1"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3385.61 1912)">(fuselage center</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 3779.78 1912)">line equals x</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 4081.13 1912)">-</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 4101.19 1912)">axis)</text><path d="M0 0 2839.48 0.000360892" stroke="#00171E" stroke-width="2.29167" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-dasharray="9.16667 6.875" stroke-opacity="1" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 3498.48 1275)"/><path d="M3387.5 1275C3387.5 1268.65 3392.65 1263.5 3399 1263.5 3405.35 1263.5 3410.5 1268.65 3410.5 1275 3410.5 1281.35 3405.35 1286.5 3399 1286.5 3392.65 1286.5 3387.5 1281.35 3387.5 1275Z" stroke="#00252D" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#006374" fill-rule="evenodd" fill-opacity="1"/><rect x="1874" y="698" width="278" height="167" fill="#FFFFFF" fill-opacity="1"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1908.54 766)">rea</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1983.02 766)">r</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2001.93 766)">most</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1980.43 832)">CG</text><rect x="1696" y="838" width="278" height="166" fill="#FFFFFF" fill-opacity="1"/><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1729.92 906)">foremost</text><text fill="#001A1E" fill-opacity="1" font-family="PT Sans,PT Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="400" font-stretch="normal" font-size="55" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 1802.11 972)">CG</text></g></g></svg>
\ No newline at end of file
diff --git a/docs/documentation/sizing/landing_gear_design/getting_started.md b/docs/documentation/sizing/landing_gear_design/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..9877fbe378b0792fc66937f86967a8c6f03a0f15
--- /dev/null
+++ b/docs/documentation/sizing/landing_gear_design/getting_started.md
@@ -0,0 +1,184 @@
+# Getting started
+This section will guide you through the necessary steps to get the _landing\_gear\_design_ module up and running. It contains information on tool requirements and design parameters.
+
+- [Design method selection](#design-method-selection) - How to set the design method?
+- [Aircraft exchange file](#aircraft-exchange-file) - Get information on necessary parameters from the _acXML_.
+- [Module configuration file](#module-configuration-file) - Dive into landing gear design specific parameters.
+- [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running?
+- [Next steps](#next-steps) - How to proceed?
+
+!!! note 
+    It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries.
+
+Generally, we use two files to set or configure modules in UNICADO:
+
+- The aircraft exchange file (or _acXML_) includes
+    - data related inputs (e.g., configuration type) and
+    - data related outputs (e.g., component design data).
+- The module configuration file `landing_gear_design_conf.xml` (also _configXML_) includes
+    - control settings (e.g., enable/disable generating plots) and
+    - program settings (e.g., information on limitations and clearances).
+
+In the following sections you will find more information on how to configure these files to suit your needs.
+
+## Design method selection {#design-method-selection}
+The calculation method is automatically chosen based on the following data from the aircraft exchange and module configuration file:
+
+Parameter                  | File          | Example <sup>*</sup>          |
+:--------------------------|---------------|:------------------------------|
+Undercarriage definition   | _acXML_       | wing_mounted                  |
+Calculation fidelity       | _configXML_   | empirical                     |
+Method name                | _configXML_   | landing_gear_design_tu_berlin |
+Energy carrier type        | _acXML_       | kerosene                      |
+
+<sup>*</sup> This example defines a generic short and medium range tube-and-wing aircraft.
+
+Thus, it must be ensured that this data is available. More information on required data can be found in the following sections.
+
+## Aircraft exchange file requirements {#aircraft-exchange-file}
+_landing\_gear\_design_ can be single executed without the execution of any other module. The only prerequisite is a complete `requirements_and_specifications` block in the aircraft exchange file.
+
+<!-- To single execute the _fuselage\_design_ module, we need an _acXML_ file that already contains the output data from the following tools:
+- _module\_name_
+- ... -->
+
+The following data should be available in the _acXML_ (2. and 3. are optional):
+
+1. Requirements and specifications
+    - Design specification
+        - Configuration information
+            - Fuselage definition: Fuselage type
+            - Undercarriage definition: Undercarriage definition, undercarriage retractability
+            - Wing definition: Wing mounting
+        - Energy carrier(s)
+        - Propulsion: Positioning of propulsor element(s)
+    - Requirements
+        - Top level aircraft requirements
+            - Flight envelope information: Maximum approach speed, maximum takeoff stall speed
+            - Pavement classification number
+2. Analysis
+    - Mission: Taxi fuel takeoff for design mission
+    - Masses, CG, inertia
+        - Manufacturer mass empty
+        - Maximum takeoff mass
+        - Maximum landing mass
+        - Most afterward mass: COG position
+        - Most forward mass: COG position
+        - Design mass: COG position
+3. Component design: Geometrical data of
+    - Fuselage
+        - Position
+        - Information on fuselage sections
+            - Upper height
+            - Lower height
+            - Width
+        - Information on payload tubes
+            - Payload tube front reference points
+            - Payload tube aft reference points
+    - Wing
+        - (Position)
+        - Symmetry information
+        - Information for wing sections
+            - Chord origin
+            - Chord length
+    - Propulsion
+        - Information on nacelle sections
+            - Width
+            - Height
+        - Information on engine: Position
+    - Landing gear<sup>*</sup>
+        - Position
+        - Tool level
+
+<sup>*</sup> Available from the second iteration loop.
+
+!!! note 
+    When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway.
+
+## Module configuration file {#module-configuration-file}
+The _configXML_ is structured into two blocks: the control and program settings.
+
+The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least
+
+- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings,
+- the `console_output` at least to `mode_1`, and
+- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`).
+
+!!! note 
+    If the tool is executed via the workflow, those settings are set by the workflow settings.
+
+The program settings are structured like this (descriptions can be found in the `landing_gear_design_conf.xml`):
+
+```plaintext
+Program Settings
+|- program_mode
+|  |- Setting use existing geometry
+|  |  |- Path to existing geometry file
+|  |  |- Use as starting point
+|- Configuration (ID="wing_mounted")
+|  |- Fidelity name
+|  |- Method name
+|  |- Fidelity (ID="empirical")
+|  |  |- Landing gear design tu berlin
+|  |  |  |- General
+|  |  |  |  |- Ground strike limitations
+|  |  |  |  |  |- Tail strike limit
+|  |  |  |  |  |- Turnover limit
+|  |  |  |  |  |- Wing strike limit
+|  |  |  |  |- Nacelle clearance
+|  |  |  |  |- Strut suspension
+|  |  |  |  |  |- Strut suspension travel
+|  |  |  |  |- Landing gear bay keel beam width
+|  |  |  |  |- Landing gear mass correction factor
+|  |  |  |- Specific
+|  |  |  |  |- ACN method
+|  |  |  |  |  |- Use target PCN
+|  |  |  |  |  |- Coverages
+|  |  |  |  |  |- Use specific california bearing ratio for flexible pavement
+|  |  |  |  |  |  |- Specific california bearing ratio for flexible pavement
+|  |  |  |  |  |- Use specific alpha value
+|  |  |  |  |  |  |- Specific alpha value
+|  |  |  |  |  |- Select new alpha from curve
+|  |  |  |  |  |  |- Use Boeing proposals
+|  |  |  |  |- Nose gear parameter
+|  |  |  |  |  |- Minimum number of nose gear tires per strut
+|  |  |  |  |  |- Use specific number of nose gear struts
+|  |  |  |  |  |  |- Specific number of nose gear struts
+|  |  |  |  |  |- Use specific number of nose gear tires per strut
+|  |  |  |  |  |  |- Specific number of nose gear tires per strut
+|  |  |  |  |  |- Use specific nose gear starting x-position
+|  |  |  |  |  |  |- Specific nose gear starting x-position
+|  |  |  |  |- Main gear parameter
+|  |  |  |  |  |- Minimum number of main gear tires per strut
+|  |  |  |  |  |- Dynamic range of number of main gear struts
+|  |  |  |  |  |  |- Maximum number of main gear struts
+|  |  |  |  |  |- Use specific number of main gear struts
+|  |  |  |  |  |  |- Specific number of main gear struts
+|  |  |  |  |  |- Use specific number of main gear tires per strut
+|  |  |  |  |  |  |- Specific number of main gear tires per strut
+|  |  |  |  |  |- Dynamic change of number of main gear tires per strut
+|  |  |  |  |  |  |- Maximum number of main gear tires per strut
+|  |  |  |  |  |- Minimum required wheel track
+|  |  |  |  |  |- Minimum required wheel  base
+```
+
+## Additional requirements {#additional-requirements}
+
+### Landing gear library
+The landing gear library contains files that are necessary to generate a valid landing gear design.
+
+#### Tire list
+The EASA ETSO (European Technical Standard Order) tire list (`EASA_ETSO_tire_list_2022.xml`) contains data on several nose and main landing gear tires. The following values are provided:
+
+- Tire size
+- Diameters
+- Rated pressure, speed, load, and ply
+- Tire weight
+
+The data is used to find matching tires for the main and nose gear.
+
+#### Bridgestone manuals
+Valuable information on the tire selection can be found in the Bridgestone manuals. There you can find information on cut depths, lengths limits, and useful terminology, as well as tire specifications.
+
+## Next steps {#next-steps}
+The next step is to [run the _landing\_gear\_design_ module](run_your_first_design.md).
\ No newline at end of file
diff --git a/docs/documentation/sizing/landing_gear_design/index.md b/docs/documentation/sizing/landing_gear_design/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..7e9913dd57f5f24c6d1e045eb5717d6b24558ac0
--- /dev/null
+++ b/docs/documentation/sizing/landing_gear_design/index.md
@@ -0,0 +1,40 @@
+# Introduction {#mainpage}
+The _landing\_gear\_design_ module is part of the UNICADO sizing loop. It ensures the aircraft's landing gear not only rolls safely on the ground but also meets all regulations as well as the airline and airport operator requirements. It guarantees perfect compatibility with the operational surfaces of the airports while making sure everything runs smoothly.
+
+## Summary of features
+Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned:
+
+Undercarriage definition     | Energy carrier   | Fidelity  | Methods   | Status                                |
+-----------------------------|------------------|-----------|-----------|:-------------------------------------:|
+Wing-mounted                 | Kerosene         | Empirical | TUB       | running :white_check_mark:      |
+Wing-mounted                 | Liquid hydrogen  | ...       | ...       | under development :construction:|
+Body-mounted                 | ...              | ...       | ...       | under development :construction:|
+
+## A user's guide to landing gear design
+The _landing\_gear\_design_ tool is your key to designing the aircraft's landing gear. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a landing gear design from the ground up.
+The following sections will walk you through the process:
+
+- [Getting started](getting_started.md)
+- [Run your first landing gear design](run_your_first_design.md)
+
+For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections:
+
+- A [method description](design_method.md) and
+- a [software architecture](software_architecture.md)
+section.
+
+Ready to dive in? Let’s get started! :airplane:
+
+
+<!-- ## You are a Developer?
+If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO!
+
+The following pages will help you understand the code structure:
+
+- [Prerequisites](prerequisites.md)
+- [Build the code](build-the-code.md)
+- [Tank design module structure](wing-module-structure.md)
+- [Available methods](available-methods.md)
+- [Method template](method-template.md)
+
+We appreciate it! -->
\ No newline at end of file
diff --git a/docs/documentation/sizing/landing_gear_design/run_your_first_design.md b/docs/documentation/sizing/landing_gear_design/run_your_first_design.md
new file mode 100644
index 0000000000000000000000000000000000000000..785d01bd457ba98b266fca2cc79645bcd2a3e84d
--- /dev/null
+++ b/docs/documentation/sizing/landing_gear_design/run_your_first_design.md
@@ -0,0 +1,145 @@
+# Design your first landing gear
+Let's dive into the fun part and design a landing gear!
+
+## Tool single execution
+The tool can be executed from the console directly if all paths are set. The following will happen:
+
+- [Console output](#console-output)
+- [Generation of reports and plots](#reporting)
+- [Writing output to aircraft exchange file](#acxml)
+- [Generation of geometry file](#existing-geometry-file)
+
+Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices.
+Also, if you need some additional information on the underlying methodology, check out the page on the [landing gear design method](design_method.md).
+
+So, feel free to open the terminal and run `landing_gear_design.exe` to see what happens...
+
+### Console output {#console-output}
+Firstly, you see output in the console window. Let's go through it step by step...
+
+```
+2024-11-11 17:36:51,541 - PRINT - Landing gear design started...
+2024-11-11 17:36:51,614 - PRINT - Current run of landing gear iteration is: 1
+```
+To this point, the module started and printed the iteration counter.
+
+```
+2024-11-11 17:36:51,626 - WARNING - Attention: No engines available in the aircraft exchange file, nacelle ground clearance could not be checked!
+2024-11-11 17:36:51,626 - PRINT - The resulting wing tip angle conforms the specified clearance angle of: 8.0 degrees!
+2024-11-11 17:36:51,627 - PRINT - Total mass of landing gear is: 2558.0104kg!
+```
+Subsequently, some restrictions that must be met are checked and the mass of the landing gear ist calculated.
+
+```
+2024-11-11 17:36:51,627 - PRINT - ----- Nose gear results of current loop -----
+2024-11-11 17:36:51,627 - PRINT - Nose gear x-position is: 5.75 meter behind reference point.
+2024-11-11 17:36:51,628 - PRINT - Nose gear y-position is: 0.0 meter from reference center line.
+2024-11-11 17:36:51,628 - PRINT - Nose gear z-position is: -1.4712 meter below reference center line.
+2024-11-11 17:36:51,628 - PRINT - Number of nose gear struts is: 1.
+2024-11-11 17:36:51,629 - PRINT - Nose gear strut length is: 0.8264 meter.
+2024-11-11 17:36:51,629 - PRINT - Number of nose gear axis per strut is: 1.
+2024-11-11 17:36:51,629 - PRINT - Number of nose gear tires per strut is: 2.
+2024-11-11 17:36:51,629 - PRINT - Nose gear tires design load is: 8771.8989 pound.
+2024-11-11 17:36:51,629 - PRINT - Selected nose gear tire type is: APS01203.
+2024-11-11 17:36:51,630 - PRINT - ----- Main gear results of current loop -----
+2024-11-11 17:36:51,630 - PRINT - Outer main gear x-position is: 22.4023 meter behind reference point.
+2024-11-11 17:36:51,630 - PRINT - Outer main gear strut y-position is: 2.961 meter from reference center line.
+2024-11-11 17:36:51,630 - PRINT - Outer main gear strut z-position is: -0.9536 meter below reference center line.
+2024-11-11 17:36:51,630 - PRINT - Number of outer main gear struts is: 2.
+2024-11-11 17:36:51,631 - PRINT - Outer main gear strut length is: 1.344 meter.
+2024-11-11 17:36:51,631 - PRINT - Number of main gear axis per outer strut is: 1.
+2024-11-11 17:36:51,631 - PRINT - Number of main gear tires per outer strut is: 2.
+2024-11-11 17:36:51,631 - PRINT - Main gear tires design load is: 36727.855 pound.
+2024-11-11 17:36:51,631 - PRINT - Selected main gear tire type is: APS01347-A.
+```
+Afterwards, the calculation results of the nose and main gear are printed.
+
+As the landing gear design is an integrative process, several runs may be required to achieve a valid design. Each run generates log file entries similar to those just explained. In the present example, 5 runs are needed. For the sake of clarity, the results of the fifth run are shown before the final messages are explained.
+
+```
+2024-11-11 17:36:51,644 - PRINT - Current run of landing gear iteration is: 5
+2024-11-11 17:36:51,645 - WARNING - Attention: No engines available in the aircraft exchange file, nacelle ground clearance could not be checked!
+2024-11-11 17:36:51,645 - PRINT - The resulting wing tip angle conforms the specified clearance angle of: 8.0 degrees!
+2024-11-11 17:36:51,645 - PRINT - Total mass of landing gear is: 2558.0104kg!
+2024-11-11 17:36:51,646 - PRINT - ----- Nose gear results of current loop -----
+2024-11-11 17:36:51,646 - PRINT - Nose gear x-position is: 5.75 meter behind reference point.
+2024-11-11 17:36:51,646 - PRINT - Nose gear y-position is: 0.0 meter from reference center line.
+2024-11-11 17:36:51,646 - PRINT - Nose gear z-position is: -1.4712 meter below reference center line.
+2024-11-11 17:36:51,646 - PRINT - Number of nose gear struts is: 1.
+2024-11-11 17:36:51,646 - PRINT - Nose gear strut length is: 1.4339 meter.
+2024-11-11 17:36:51,647 - PRINT - Number of nose gear axis per strut is: 1.
+2024-11-11 17:36:51,647 - PRINT - Number of nose gear tires per strut is: 2.
+2024-11-11 17:36:51,647 - PRINT - Nose gear tires design load is: 9295.5602 pound.
+2024-11-11 17:36:51,647 - PRINT - Selected nose gear tire type is: APS01203.
+2024-11-11 17:36:51,647 - PRINT - ----- Main gear results of current loop -----
+2024-11-11 17:36:51,647 - PRINT - Outer main gear x-position is: 21.465 meter behind reference point.
+2024-11-11 17:36:51,647 - PRINT - Outer main gear strut y-position is: 3.6161 meter from reference center line.
+2024-11-11 17:36:51,647 - PRINT - Outer main gear strut z-position is: -0.906 meter below reference center line.
+2024-11-11 17:36:51,647 - PRINT - Number of outer main gear struts is: 2.
+2024-11-11 17:36:51,648 - PRINT - Outer main gear strut length is: 1.9991 meter.
+2024-11-11 17:36:51,648 - PRINT - Number of main gear axis per outer strut is: 1.
+2024-11-11 17:36:51,648 - PRINT - Number of main gear tires per outer strut is: 2.
+2024-11-11 17:36:51,648 - PRINT - Main gear tires design load is: 36587.776 pound.
+2024-11-11 17:36:51,648 - PRINT - Selected main gear tire type is: APS01347-A.
+```
+
+```
+2024-11-11 17:36:51,648 - PRINT - Landing gear design successful after 5 iterations!
+2024-11-11 17:36:51,740 - PRINT - ACN for CBR =  3 (ultra-low) is: 44.2
+2024-11-11 17:36:51,740 - PRINT - ACN for CBR =  6 (low) is:       38.6
+2024-11-11 17:36:51,740 - PRINT - ACN for CBR = 10 (medium) is:    35.3
+2024-11-11 17:36:51,740 - PRINT - ACN for CBR = 15 (high) is:      34.0
+2024-11-11 17:36:53,410 - PRINT - Plots for landing gear design are successfully generated and saved.
+2024-11-11 17:36:53,410 - PRINT - Moin! This is the "method_html_report" function from the landing_gear_design tool speaking... [Imagine fancy reports are generated here (you can find me in the "methodhtmlreport.py" file).]
+2024-11-11 17:36:53,413 - PRINT - Method-specific data are written to 'landing_gear_design_results.xml'...
+2024-11-11 17:36:53,418 - PRINT - Moin! This is the "method_tex_output" function from the landing_gear_design tool speaking... [Imagine fancy reports are generated here (you can find me in the "methodtexoutput.py" file).]
+2024-11-11 17:36:53,418 - PRINT - Landing gear design finished.
+```
+Finally, you receive information about the reports and plots created (depending on your settings) and the tool is successfully completed.
+
+### Reporting {#reporting}
+In the following, a short overview is given on the generated reports:
+
+- A `landing_gear_design.log` file is written within the directory of the executable
+- Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file:
+    - an HTML report in the `report_html` folder
+    - a TeX report in the `report_tex` folder (not implemented yet)
+    - an XML file with additional output data in the `report_xml` folder
+    - plots in the `plots` folder
+
+### Write data to the aircraft exchange file {#acxml}
+!!! note 
+    The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool!
+
+Results are saved in the aircraft exchange file at the `/aircraft_exchange_file/component_design/landing_gear` node. The following information is written to the _acXML_:
+```plaintext
+Aircraft exchange file
+|- Component design
+|  |- Landing gear
+|  |  |- Position*
+|  |  |- Mass properties**
+|  |  |- Aircraft classification number
+|  |  |- Specific
+|  |  |  |- Geometry
+|  |  |  |  |- Landing gear assembly (ID="0")
+|  |  |  |  |  |- Name
+|  |  |  |  |  |- Position*
+|  |  |  |  |  |- Mass properties**
+|  |  |  |  |  |- Assembly components
+|  |  |  |  |  |  |- Strut diameter
+|  |  |  |  |  |  |- Strut length
+|  |  |  |  |  |  |- Tire description (ID="0")
+|  |  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |  |- Position*
+|  |  |  |  |  |  |  |- Tire diameter
+|  |  |  |  |  |  |  |- Tire section width
+```
+<sup>*</sup> Node has been shortened. It contains the following sub-nodes: x, y, z
+
+<sup>*</sup> Node has been shortened. It contains sub-nodes with information on the mass, inertia, and center of gravity.
+
+### Generation of geometry file {#existing-geometry-file}
+The calculated geometry data is written to the `existing_landing_gear_geometry.xml` file and can then be used if the `use_existing_geometry` flag is set to `true`.
+
+## Troubleshooting {#troubleshooting}
+- The tool does not run properly? *Make sure you have all the paths set up correctly and the specified elements exist.*
diff --git a/docs/documentation/sizing/landing_gear_design/software_architecture.md b/docs/documentation/sizing/landing_gear_design/software_architecture.md
new file mode 100644
index 0000000000000000000000000000000000000000..4c59c73cfb3028d3f7c62ff82b4e39b698c7612c
--- /dev/null
+++ b/docs/documentation/sizing/landing_gear_design/software_architecture.md
@@ -0,0 +1,2 @@
+# Software architecture
+This site is currently under development. :construction:
\ No newline at end of file
diff --git a/docs/documentation/sizing/propulsion_design/additional.md b/docs/documentation/sizing/propulsion_design/additional.md
new file mode 100644
index 0000000000000000000000000000000000000000..63d4ae2c0605fac4718793d669c566a4634650fd
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/additional.md
@@ -0,0 +1,5 @@
+# Additional information {#additional}
+Here, you can find additional documentation on specific comments on the code:
+
+- @subpage propulsion
+- @subpage technology_factors_mass
\ No newline at end of file
diff --git a/docs/documentation/sizing/propulsion_design/changelog.md b/docs/documentation/sizing/propulsion_design/changelog.md
new file mode 100644
index 0000000000000000000000000000000000000000..7403ff41ee9a50ae4b9369bf7c29ae5a0f94a78b
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/changelog.md
@@ -0,0 +1,33 @@
+# Changelog {#changelog}
+## v3.0.0
+The *v3.0.0* release is a **major** release with many changes including the *modularization*.
+
+
+### Changes
+The following changes are introduced:
+
+- The nacelle cross section is **always** assumed to be a circle and **not** an ellipse.
+- The pylon when the engine is attached to a wing starts now at the leading edge of the wing.
+- The pylon chord length stays constant.
+- The pylon starts at the top (or bottom) of the nacelle.
+
+### Bugfixes
+During the development of this release the following bugs were found and fixed:
+
+- When designing a *rubber* engine, the engine length was scaled incorrectly. The correct formula with \f${scale_{engine}}^{0.4} \f$ is now implemented.
+
+### Changes in the CSR designs
+The implemented changes and bugfixes lead to the following changes in the results of the CSR designs.
+@note Only changes which exceed a 10 % change are listed.
+
+#### CSR-02
+|Parameter|Changed introduced by|Old Value|New Value|Unit|
+|---|---|---|---|:---|
+|Nacelle Mass|The default technology factor changed from `0.65` to `1.0`.|705.1|1085.0|*kg*|
+|Pylon Mass|The default technology factor changed from `1.2` to `1.0`.|641.3|534.5|*kg*|
+|Engine Length|Bugfix in length scaling|2.674|2.641|*m*|
+|Nacelle Inlet Width|Change nacelle cross section to circle shape|1.951|2.259|*m*|
+|Pylon Chord Length at Nacelle|Pylon shape and wing attachment changed|4.012|2.641|*m*|
+|Pylon Chord Length at Wing|Pylon shape and wing attachment changed|2.077|2.641|*m*|
+|Pylon Length/Span|Pylon shape and wing attachment changed|1.186|1.129|*m*|
+|Pylon Leading Edge Position at Wing|Pylon shape and wing attachment changed|2.441|1.948|*m*|
diff --git a/docs/documentation/sizing/propulsion_design/engineering_principles.md b/docs/documentation/sizing/propulsion_design/engineering_principles.md
new file mode 100644
index 0000000000000000000000000000000000000000..77a3b89ecf0f22333e76031c5ed298ed77387958
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/engineering_principles.md
@@ -0,0 +1,179 @@
+
+# Engineering principles {#engineeringprinciples}
+
+Designing the propulsion with this tool includes different steps shown below (with more information in their respective sections):
+
+* [Engine designer](#enginedesigner): Calculates the performance of one individual engine based on the required thrust.
+* [Propulsor integrator](#propulsionintegrator): Places the engine acc. to the user's settings.
+* [Nacelle designer](#nacelledesigner): Calculates the nacelle geometry.
+* [Pylon designer](#pylondesigner): Calculates the pylon geometry.
+* [Mass analyzer](#massanalyzer): Calculates the mass properties (center of gravity, mass, and inertia) of engine, nacelle, and pylon.
+
+For these five disciplines, you can choose different methods of calculating their output. The following methods are integrated (details in the sections):
+
+| Discipline              | Methods                                                           |
+|-------------------------|-------------------------------------------------------------------|
+| **Engine designer**      | *Rubber* (*Empirical* and *PropulsionSystem* are in preparation)  |
+| **Propulsor integrator** | *Default*                                                         |
+| **Nacelle designer**     | *Default*                                                         |
+| **Pylon designer**       | *Default*                                                         |
+| **Mass analyzer**        | *Default*                                                         |
+
+
+
+If you want to learn more about how to configure methods or generally the settings and outputs, go to the [getting started](getting-started.md).
+
+!!! important
+    These disciplines are executed sequentially for EACH engine. That means that the engines are not aware of each other while designing and analyzing. More information, see the [software architecture](software_architecture.md) section.
+
+## Engine designer {#enginedesigner}
+This section describes the principles of the engine designer.
+
+### General principles {#generalprinciples}
+
+In the engine design a dataset needs to be written into the projects directory. The following data is needed:
+
+* An engine dataset (operating point independent)
+* An engine deck (operating point dependent)
+* A scale factor
+
+
+The _dataset_ (also called _engine_xml_) includes parameter which are independent of the flight condition such as outer engine dimensions or the mass of the unscaled engine.
+
+The three-dimensional \( \text{\textit{engine deck}} \) contains engine performance data for different values of altitude \( h \), Mach number \( M_a \), and low-pressure engine spool speed \( N_1 \).
+ The most important performance parameter are thrust and fuel/energy flow. In UNICADO, the deck is split into multiple csv files. The figure shows an example with values for thrust in kilo newtons. The first block contains data for \( N_1 = 1 \) for \( M_a = 0 \ldots 0.9 \) and \( h = 0 \ldots 14000 \). The second block below is for \( N_1 = 0.95 \).
+
+![](figures/deck_example_thrust.svg)
+
+
+The _scale factor_ is necessary for the rubber method as it uses the concept of a so-called _rubber engine_. That means that (depending on the method, see later) we create or assume an engine deck and provide a _scale factor_ to scale all engine data acc. to the required thrust the engine shall provide. The figure visualized the concept:
+![](figures/scale_factor.svg)
+
+!!! attention
+    **As mentioned and highlighted in the figure**, there is ONE _scale factor_ **BUT** the scaling of the base values is not always linear.
+    **So important to remember** that whenever you want to use engine data, you need to access it via the `engine` library. In the following, a brief explanation of the scaling concept will be given - however details are given in the library documentation.
+
+The scaling is based on continuity principle assuming that the engine characteristics are constant.
+
+\[
+T = \dot{m} \cdot (V_9 - V_0)
+\]
+
+Therefore, thrust $T$ is proportional to the mass flow $\dot{m}$, which is linearly related to the cross-sectional area $A$ of the engine.
+
+\[
+\dot{m} = \rho \cdot V \cdot A = \rho \cdot V \cdot \pi \frac{d}{2}^2
+\]
+
+Because area $A$ is proportional to the square of the diameter $d$, it follows that the diameter should be proportional to the square root of the scale factor.  
+
+\[
+d_{\text{new}} = d_{\text{ref}} \cdot \left( \frac{T_{\text{new}}}{T_{\text{ref}}} \right)^{0.5}
+\]
+
+An exemplary simplified calculation (data from the V2527-A5): the current engine provides $127.27~\text{kN}$ as sea level static thrust, but for the design only $100~\text{kN}$ are needed. The scaling factor would be $0.7857$. Assuming an initial diameter $2~\text{m}$, the new diameter would be $1.773~\text{m}$ with the scaling factor of $(0.7857)^{0.5} = 0.8864$.
+
+
+The general scaling is therefore a linear scaling of the thrust. The fuel flow is scaled in the same way leading to a scaling with constant TSFC. 
+
+The engine data is always accessed via the `engine` library to ensure that you have the correctly scaled data for every value. This is valid for both the non operating condition dependent variables and the values that are directly read from the deck values. 
+
+!!! Note
+    Actually, the sea level static thrust is not at $N1=1$ if you compare the dataset for this engine (for $110.31~\text{kN}$ around $N1=0.95$). So the scaling factor is slightly lower.
+
+
+### Methods description
+The **engine designer** includes different methods which create/use this deck in various ways.
+
+* *empirical*: the initial deck is calculated based on empirical equations.
+* *rubber*: (most common approach) based on an existing deck (usually created with GasTurb), the deck is "rubberized".
+* *propulsionsystem*: with the help of the library `propulsionsystem`, different architecture can be defined and a deck created (for more information see documentation of the library)
+
+!!! note
+    *empirical* and *propulsionsystem* is in preparation - not implemented yet!
+
+For these methods, the approach of using the _scale factor_ is the same (see explanation [here](#generalprinciples)). A deck is either first created or an existing dataset is taken and then data is provided using the `engine` library with the scaling approach.
+
+## Propulsion integrator {#propulsionintegrator}
+Additionally to calculating the engine performance parameter, the engine has to be placed on the aircraft. The **propulsion integrator** uses the user settings from the aircraft exchange file - the following needs to be defined:
+
+- parent component: wing, fuselage, empennage
+- x-position (aircraft coordinate system): front or rear
+- y position (aircraft coordinate system): left or right
+- z position (aircraft coordinate system): over, mid, under, in
+
+### Methods description
+
+Here, currently only one method is implemented:
+
+ - *default* is based on a thesis of RWTH Aachen [@Ata10]
+
+This method includes multiple empirical functions for different propulsion integration. These are the options that are currently implemented:
+
+| Parent     | Lateral | Longitudinal | Vertical |
+|------------|---------|--------------|----------|
+| Wing       | Right   | Front        | Under    |
+| Wing       | Left    | Front        | Under    |
+| Wing       | Right   | Front        | Over     |
+| Wing       | Left    | Front        | Over     |
+| Fuselage   | Right   | Rear         | Mid      |
+| Fuselage   | Left    | Rear         | Mid      |
+| Empennage  | Mid     | Front        | In       |
+
+
+For detailed information, it is referred to the thesis.
+
+!!! note 
+    The implementation include currently Turbofan Kerosene only
+
+## Nacelle designer {#nacelledesigner}
+After the integration, the nacelle geometry is defined.
+
+### Methods description 
+
+For the **nacelle designer**, only one method is implemented:
+
+ - *default* uses the `aircraftGeometry2` library.
+ 
+The library uses the `.dat` file defined in the _configXML_ to extrude a polygon in different sections. These sections including the origin, width, height and its profile are saved in the _acXML_. With that, every other tool can "rebuild" the geometry using the same library.
+
+There is no differentiation between short and long ducted nacelle. It is a polygon with 3 segments (1. and 3. segments is 25% of engine length). The diameter for the 1. and 3. segment is chosen as the maximum between fan diameter, engine width or height. The 2. segments is 25% larger.
+
+Keep in mind that the library defines a surface without a thickness. For more information, it is referred to the library. 
+
+!!! note 
+    Currently, only a kerosene turbofan engine is included.
+
+## Pylon designer {#pylondesigner}
+The pylon is the structural component to connect the engine to the aircraft. 
+
+### Methods description
+
+For the **pylon designer**, only one method is implemented:
+
+ - *default* uses the `aircraftGeometry2` library.
+ 
+In the current method, the mounting is attached to the beginning to the nacelle to the leading edge of the wing. The length is the engine length which is extruded to the wing. The profile is, likewise for the nacelle, defined in the _configXML_.
+
+![Engine Mount](figures/engine_mount.svg)
+
+## Mass analyzer {#massanalyzer}
+Lastly, the mass properties for engine, nacelle and pylon are calculated separately for center of gravity, mass and inertia. 
+
+### Methods description
+
+Here, only one method is implemented:
+
+ - *default* using: 
+    - for engine
+        - CG: calculating local CG assuming a circular cylinder
+        - mass: empirical estimation
+        - inertia: wrt. CG assuming solid cylinder
+    - for nacelle & pylon
+        - CG: calculating local CG with `aircraftGeometry2`lib
+        - mass: empirical estimation
+        - inertia: wrt. CG with `aircraftGeometry2`lib
+
+!!! note 
+    Currently, only a kerosene turbofan engine is included.
+
diff --git a/docs/documentation/sizing/propulsion_design/figures/class_diagram.png b/docs/documentation/sizing/propulsion_design/figures/class_diagram.png
new file mode 100644
index 0000000000000000000000000000000000000000..8e33aa10b39c78e16df62ca5e9b6d975f3634420
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/class_diagram.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c09d393c420c7c1a2b89ca2cbbe192c5aac75703ee1d38fe87342286214a4ebb
+size 451430
diff --git a/docs/documentation/sizing/propulsion_design/figures/class_diagram.puml b/docs/documentation/sizing/propulsion_design/figures/class_diagram.puml
new file mode 100644
index 0000000000000000000000000000000000000000..77ee909656da45bd7d2908f3b8727474c97a4125
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/class_diagram.puml
@@ -0,0 +1,441 @@
+@startuml class_diagram
+title Class Diagram propulsionDesign
+caption UNICADO (c) 2024
+hide empty members
+
+' The extracted report functions
+package report <<rectangle>> {
+
+    annotation "propulsionDesign::create_plots()" as plot
+    {
+    }
+
+    annotation "propulsionDesign::create_html_report()" as html
+    {
+    }
+
+    class "report::BucketCurve" as BucketCurve
+    {
+        - bucket_point_valid_
+        - bucket_point_
+        - thrust_
+        - fuel_flow_
+        - find_bucket_point()
+        + {static} from_engine_data()
+        + bucket_point()
+        + set_fuel_flow()
+        + set_thrust()
+        + fuel_flow()
+        + thrust()
+        + tsfc()
+        + update_bucket_point()
+    }
+
+    class "report::Data" as ReportData
+    {
+        + SLST_total
+        + thrust_takeoff
+        + fuel_flow_takeoff
+        + bucket_curves
+        + {static} generate_data
+    }
+
+    annotation "file_names" as file_names
+    {
+        {static} name_bucket_curve()
+        {static} name_top_view()
+        {static} name_front_view()
+        {static} name_side_view()
+    }
+
+    plot -- ReportData
+    html -- ReportData
+    file_names -- html
+    file_names -- plot
+
+}
+
+' from moduleBasics
+package "moduleBasics" {
+    class RuntimeIO
+    class Module {
+        # rtIO_
+        + {abstract} initialize()
+        + {abstract} run()
+        + {abstract} update()
+        + {abstract} report()
+        + {abstract} save()
+        # execute()
+    }
+}
+
+' propulsionDesign Module
+annotation utility {
+    to_energy_carrier()
+    create_energy_carrier_map()
+    create_engine()
+    print()
+}
+
+enum Component {
+    Nacelle
+    Pylon
+    Engine
+    Other
+}
+
+stereotype ParentComponent {
+
+}
+
+enum Parent {
+    Wing
+    Fuselage
+}
+
+enum Lateral {
+    Left
+    Mid
+    Right
+}
+
+enum Longitudinal {
+    Front
+    Rear
+}
+
+enum Vertical {
+    Over
+    Mid
+    Under
+    In
+}
+
+class propulsionDesign {
+    - aircraft_xml
+    - aircraft_geometry
+    - report_data
+    - configuration_xml
+    - std::vector<variant> engines
+    - engine_designer
+    - propulsion_integrator
+    - nacelle_designer
+    - pylon_designer
+    - mass_analyzer
+    - create_aircraft_geometry()
+    - create_html_report()
+    - create_plots()
+    - create_propulsors()
+    - get_design_condition()
+    - select_engine_designer()
+    - select_propulsion_integrator()
+    - select_nacelle_designer()
+    - select_pylon_designer()
+    - select_mass_analyzer()
+    + propulsionDesign()
+}
+
+struct "geometry::Aircraft" as AircraftGeometry
+{
+    + fuselages
+    + wings
+    + empennage
+    + {static} is_vertical()
+}
+
+' The propulsion strategy which defines the different propulsions types which have to be considered
+interface Strategy {
+    + {abstract} initialize()
+    + {abstract} run()
+    + {abstract} update()
+    + {abstract} report()
+    + {abstract} save()
+}
+
+interface PropulsionStrategy {
+    - configuration_
+    + configuration()
+    + {abstract} operator() (Turbofan<Kerosene> engine)
+    + {abstract} operator() (Turbofan<Hydrogen> engine)
+    + {abstract} operator() (Turboprop<Kerosene> engine)
+    + {abstract} operator() (Turboprop<Hydrogen> engine)
+}
+
+' The types of propulsion systems
+class Propulsion <<EnergyCarrier>>{
+    + {static} energy_carrier
+    - bucket_point_
+    - dimension_
+    - required_thrust_
+    - id_
+    - model_
+    - nacelle_
+    - offtakes_
+    - parent_
+    - pointmasses_
+    - position_
+    - pylon_
+    - scale_
+    + bucket_point()
+    + dimension()
+    + required_thrust()
+    + id()
+    + model()
+    + nacelle()
+    + offtakes()
+    + parent()
+    + pointmass()
+    + position()
+    + pylon()
+    + scale()
+    + set_bucket_point()
+    + set_dimension()
+    + set_required_thrust()
+    + set_model()
+    + set_nacelle()
+    + set_offtakes()
+    + set_parent()
+    + set_pointmass()
+    + set_scale()
+    + change_to_global_reference_frame()
+    + revert_to_local_reference_frame()
+}
+
+struct BucketPoint {
+    + thrust
+    + tsfc
+}
+
+struct Dimension_3 {
+    + width
+    + height
+    + length
+}
+
+struct FlightCondition {
+    + ambiance
+    + altitude
+    + mach
+}
+
+struct Offtakes {
+    + bleed_air
+    + shaft_power
+}
+
+struct "PointMass" as Mass {
+    + CG
+    + inertia
+    + weight
+}
+
+struct Fan {
+    + diameter
+}
+
+struct Propeller {
+    + diameter
+}
+
+class Turbofan <<EnergyCarrier>>{
+    - bypass_ratio_
+    - fan_
+    + bypass_ratio()
+    + fan()
+    + set_bypass_ratio()
+    + set_fan()
+}
+
+class Turboprop <<EnergyCarrier>> {
+    - propeller_
+    + propeller()
+    + set_propeller()
+}
+
+' The variants of the propulsion systems based on the energy carrier
+package "std::variant" as variant {
+    class "Turbofan" as fan_kerosene < Kerosene >
+    class "Turbofan" as fan_hydrogen < Liquid_Hydrogen >
+    class "Turboprop" as turbo_kerosene < Kerosene >
+    class "Turboprop" as turbo_hydrogen < Liquid_Hydrogen >
+}
+
+' The different design domains of the module
+package design <<Rectangle>> {
+    interface EngineDesigner {
+        - technology_factors
+        - engine_database_
+        - engine_directory_
+        - engine_models_
+        - flight_condition_
+        + initialize()
+        + technology_factor()
+        + designed_engines()
+        + engine_database()
+        + engine_directory()
+        + add_designed_engine()
+        + write_deck_value()
+        + flight_condition()
+    }
+
+    class Rubber {
+        - preselected_engines_
+        - preselected_engine()
+        - calculate_bucket_point()
+        + Rubber()
+        + initialize()
+        + save()
+    }
+
+    class Empirical {
+    }
+
+    class Gasturb {
+    }
+
+    interface PropulsionIntegrator {
+        - aircraft_
+        + aircraft()
+    }
+
+    class "integration::Default" as PositionDefault {
+        - n_engines_
+        - engines_done
+        - parents_placed
+        - integrate_into_wing()
+        - integrate_into_fuselage()
+        - integrate_into_empennage()
+        - calculate_span_position()
+        - select_fuselage()
+        - select_wing()
+        - select_vertical_tail()
+    }
+}
+
+package geometry <<Rectangle>> {
+    interface NacelleDesigner {
+        - geometry_directory_
+        + geometry_directory()
+    }
+
+    interface PylonDesigner {
+        - aircraft_
+        - geometry_directory_
+        + aircraft()
+        + geometry_directory()
+    }
+
+    class "nacelle::Default" as DefaultNacelle {
+        - section_shapes
+        - get_section_shape()
+        + initialize()
+    }
+
+    class "pylon::Default" as DefaultPylon {
+        - section_profiles
+        - get_section_profile()
+        + initialize()
+    }
+}
+
+package mass <<Rectangle>> {
+    interface MassAnalyzer {
+        - technology_factors
+        + technology_factor()
+    }
+
+    class "Default" as MassDefault {
+    }
+}
+
+package io {
+    ' The interface to the exchange file format
+    annotation EngineXML {
+        load_engine_data()
+        load_engine_scaled()
+    }
+
+    ' The interface to the aicraft exchange file format
+    interface AircraftXMLInterface {
+        + {abstract} insert(geom2::Point_3 reference_position)
+        + {abstract} insert(PointMass mass_properties)
+        + {abstract} insert(Turbofan<Kerosene> engine)
+        + {abstract} insert(Turbofan<Liquid_Hydrogen> engine)
+        + {abstract} insert(Turboprop<Kerosene> engine)
+        + {abstract} insert(Turboprop<Liquid_Hydrogen> engine)
+    }
+
+    class AircraftXML {
+        - xml_interface
+        + insert(Turbofan<> engine)
+        + insert(Turboprop<> engine)
+    }
+
+    class AircraftXMLv3 {
+        - aircraft_data
+        - insert_bucket_point()
+        - insert_point()
+        - insert_point_mass()
+        - insert_string()
+        - insert_propulsion<carrier>()
+        + AircraftXMLv3( aircraft_xml )
+    }
+}
+
+' Start the diagram
+Module *-- RuntimeIO
+Module <|- propulsionDesign
+AircraftGeometry --* propulsionDesign
+propulsionDesign ---- utility
+propulsionDesign *- PropulsionStrategy: std::visit()
+BucketCurve -* ReportData
+ReportData ---* propulsionDesign
+
+Turbofan *-- Fan
+Turbofan ---|> Propulsion
+Turboprop *-- Propeller
+Turboprop ---|> Propulsion
+Propulsion --- ParentComponent
+Propulsion *-- BucketPoint
+Propulsion *-- Dimension_3
+Propulsion *-- Offtakes
+Propulsion *-- Mass
+Component - Propulsion
+ParentComponent -- Parent
+ParentComponent -- Lateral
+ParentComponent -- Longitudinal
+ParentComponent -- Vertical
+fan_kerosene --|> Turbofan
+fan_hydrogen --|> Turbofan
+turbo_kerosene --|> Turboprop
+turbo_hydrogen --|> Turboprop
+
+PropulsionStrategy -|> Strategy
+EngineDesigner *-- FlightCondition
+EngineDesigner ---|> PropulsionStrategy
+PropulsionStrategy *---- fan_kerosene
+PropulsionStrategy *---- fan_hydrogen
+PropulsionStrategy *---- turbo_kerosene
+PropulsionStrategy *---- turbo_hydrogen
+
+MassAnalyzer ---|> PropulsionStrategy
+MassDefault --|> MassAnalyzer
+
+PropulsionIntegrator ---|> PropulsionStrategy
+PositionDefault --|> PropulsionIntegrator
+
+Rubber --|> EngineDesigner
+Empirical --|> EngineDesigner
+Gasturb --|> EngineDesigner
+
+NacelleDesigner ---|> PropulsionStrategy
+DefaultNacelle --|> NacelleDesigner
+
+PylonDesigner ---|> PropulsionStrategy
+DefaultPylon --|> PylonDesigner
+
+variant ------- io
+AircraftXML *- AircraftXMLInterface
+AircraftXMLv3 --|> AircraftXMLInterface
+
+@enduml
diff --git a/docs/documentation/sizing/propulsion_design/figures/deck_example.PNG b/docs/documentation/sizing/propulsion_design/figures/deck_example.PNG
new file mode 100644
index 0000000000000000000000000000000000000000..1d74dd7a6572ccbcdc5356f477b7986504519fd3
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/deck_example.PNG
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ff540fd124e3b1f05103206aee52cc46fe50bdce9d2d237d184e36332c89d37
+size 101219
diff --git a/docs/documentation/sizing/propulsion_design/figures/deck_example_thrust.svg b/docs/documentation/sizing/propulsion_design/figures/deck_example_thrust.svg
new file mode 100644
index 0000000000000000000000000000000000000000..7690ce506d64ac9f7ac3227304c532597691b93e
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/deck_example_thrust.svg
@@ -0,0 +1,340 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   version="1.1"
+   id="svg1"
+   width="1280"
+   height="720"
+   viewBox="0 0 1280 720"
+   sodipodi:docname="deck_example_thrust.svg"
+   inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns:xlink="http://www.w3.org/1999/xlink"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <defs
+     id="defs1">
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath3">
+      <path
+         d="M 0,1.2207e-4 H 960 V 540.00012 H 0 Z"
+         clip-rule="evenodd"
+         id="path3" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath4">
+      <path
+         d="M 41.28,8.4001 H 891 v 466.2 H 41.28 Z"
+         transform="matrix(0.00117686,0,0,-0.002145,-0.04858071,1.0180182)"
+         clip-rule="evenodd"
+         id="path4" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath11">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-637.78001,504.65001)"
+         clip-rule="evenodd"
+         id="path11" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath12">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-667.54001,504.65001)"
+         clip-rule="evenodd"
+         id="path12" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath13">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-673.06001,504.65001)"
+         clip-rule="evenodd"
+         id="path13" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath14">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-837.84002,504.65001)"
+         clip-rule="evenodd"
+         id="path14" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath15">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-843.36002,504.65001)"
+         clip-rule="evenodd"
+         id="path15" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath17">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-416.45001,504.58001)"
+         clip-rule="evenodd"
+         id="path17" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath18">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-512.35001,504.58001)"
+         clip-rule="evenodd"
+         id="path18" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath19">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-517.87001,504.58001)"
+         clip-rule="evenodd"
+         id="path19" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath21">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-152.4,504.58001)"
+         clip-rule="evenodd"
+         id="path21" />
+    </clipPath>
+  </defs>
+  <sodipodi:namedview
+     id="namedview1"
+     pagecolor="#ffffff"
+     bordercolor="#666666"
+     borderopacity="1.0"
+     inkscape:showpageshadow="2"
+     inkscape:pageopacity="0.0"
+     inkscape:pagecheckerboard="0"
+     inkscape:deskcolor="#d1d1d1"
+     showgrid="false"
+     inkscape:zoom="0.7921875"
+     inkscape:cx="640"
+     inkscape:cy="360.39448"
+     inkscape:window-width="1920"
+     inkscape:window-height="1137"
+     inkscape:window-x="1912"
+     inkscape:window-y="-8"
+     inkscape:window-maximized="1"
+     inkscape:current-layer="g1">
+    <inkscape:page
+       x="0"
+       y="0"
+       inkscape:label="1"
+       id="page1"
+       width="1280"
+       height="720"
+       margin="0"
+       bleed="0" />
+  </sodipodi:namedview>
+  <g
+     id="g1"
+     inkscape:groupmode="layer"
+     inkscape:label="1">
+    <g
+       id="g3">
+      <image
+         width="1"
+         height="1"
+         style="image-rendering:optimizeSpeed"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(1132.96,0,0,621.6,55.04,87.199867)"
+         id="image3"
+         clip-path="url(#clipPath4)" />
+    </g>
+    <g
+       id="g4">
+      <path
+         id="path5"
+         d="m 61.5,436.38 h 84.84 V 453.3 H 61.5 Z"
+         style="fill:none;stroke:#2f528f;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g5">
+      <path
+         id="path6"
+         d="m 61.62,136.26 h 84.72 V 156.9 H 61.62 Z"
+         style="fill:none;stroke:#2f528f;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g6">
+      <path
+         id="path7"
+         d="m 61.5,158.7 h 84.84 V 432.66 H 61.5 Z"
+         style="fill:none;stroke:#ffc000;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g7">
+      <path
+         id="path8"
+         d="m 154.62,432.66 h 736.44 v 30.72 H 154.62 Z"
+         style="fill:none;stroke:#00b0f0;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g8">
+      <path
+         id="path9"
+         d="m 154.5,133.74 h 736.56 v 30.72 H 154.5 Z"
+         style="fill:none;stroke:#00b0f0;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g9">
+      <path
+         id="path10"
+         d="m 620.34,495.18 h 246 v 30.84 h -246 z"
+         style="fill:none;stroke:#44546a;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g10">
+      <text
+         id="text10"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,850.37333,47.133333)"
+         clip-path="url(#clipPath11)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 7.5599999 16.92"
+           y="0"
+           sodipodi:role="line"
+           id="tspan10">Low</tspan></text>
+    </g>
+    <g
+       id="g11">
+      <text
+         id="text11"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,890.05333,47.133333)"
+         clip-path="url(#clipPath12)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan11">-</tspan></text>
+    </g>
+    <g
+       id="g12">
+      <text
+         id="text12"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,897.41333,47.133333)"
+         clip-path="url(#clipPath13)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 9.4499998 15.48 24.444 31.535999 38.574001 48.077999 54.071999 63.035999 67.248001 74.286003 83.790001 93.276001 102.762 106.83 110.898 117.972 127.422 136.44 145.40401 154.908 159.084"
+           y="0"
+           sodipodi:role="line"
+           id="tspan12">pressure spool speed [</tspan></text>
+    </g>
+    <g
+       id="g13">
+      <text
+         id="text13"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,1117.12,47.133333)"
+         clip-path="url(#clipPath14)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan13">-</tspan></text>
+    </g>
+    <g
+       id="g14">
+      <text
+         id="text14"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,1124.48,47.133333)"
+         clip-path="url(#clipPath15)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan14">]</tspan></text>
+    </g>
+    <g
+       id="g15">
+      <path
+         id="path16"
+         d="m 346.98,495.18 h 246 v 30.72 h -246 z"
+         style="fill:none;stroke:#00b0f0;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g16">
+      <text
+         id="text16"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,555.26667,47.226667)"
+         clip-path="url(#clipPath17)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 15.39 24.011999 28.08 37.529999 47.051998 61.433998 70.938004 79.902 86.183998 90.360001"
+           y="0"
+           sodipodi:role="line"
+           id="tspan16">Ma number [</tspan></text>
+    </g>
+    <g
+       id="g17">
+      <text
+         id="text17"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,683.13333,47.226667)"
+         clip-path="url(#clipPath18)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan17">-</tspan></text>
+    </g>
+    <g
+       id="g18">
+      <text
+         id="text18"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,690.49333,47.226667)"
+         clip-path="url(#clipPath19)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan18">]</tspan></text>
+    </g>
+    <g
+       id="g19">
+      <path
+         id="path20"
+         d="M 73.62,495.18 H 319.5 V 525.9 H 73.62 Z"
+         style="fill:none;stroke:#ffc000;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g20">
+      <text
+         id="text20"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,203.2,47.226667)"
+         clip-path="url(#clipPath21)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 10.422 14.562 20.52 24.606001 30.636 40.085999 49.535999 58.554001 62.73 68.255997 82.638"
+           y="0"
+           sodipodi:role="line"
+           id="tspan20">Altitude [m]</tspan></text>
+    </g>
+  </g>
+</svg>
diff --git a/docs/documentation/sizing/propulsion_design/figures/different_engines.svg b/docs/documentation/sizing/propulsion_design/figures/different_engines.svg
new file mode 100644
index 0000000000000000000000000000000000000000..454694a537308d1b18b5a4a6b4121fd7b217cf35
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/different_engines.svg
@@ -0,0 +1,957 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   version="1.1"
+   id="svg1"
+   width="1280"
+   height="720"
+   viewBox="0 0 1280 720"
+   sodipodi:docname="different_engines.svg"
+   inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns:xlink="http://www.w3.org/1999/xlink"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <defs
+     id="defs1">
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath3">
+      <path
+         d="M 0,1.2207e-4 H 960 V 540.00012 H 0 Z"
+         clip-rule="evenodd"
+         id="path3" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath4">
+      <path
+         d="M 57.6,183.6 H 253.8 V 356.4 H 57.6 Z"
+         transform="matrix(0.00398184,0,0,-0.00578704,-0.11998089,2.0625)"
+         clip-rule="evenodd"
+         id="path4" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath6">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-75.720002,218.33001)"
+         clip-rule="evenodd"
+         id="path6" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath7">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-140.06001,203.21001)"
+         clip-rule="evenodd"
+         id="path7" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath8">
+      <path
+         d="m 273.84,183.6 h 196.2 v 172.8 h -196.2 z"
+         transform="matrix(0.00339789,0,0,-0.00578704,-0.76381244,2.0625)"
+         clip-rule="evenodd"
+         id="path8" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath10">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-288.82,218.33001)"
+         clip-rule="evenodd"
+         id="path10" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath11">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-356.26001,203.21001)"
+         clip-rule="evenodd"
+         id="path11" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath12">
+      <path
+         d="m 489.96,183.6 h 196.2 v 172.8 h -196.2 z"
+         transform="matrix(0.00509684,0,0,-0.00370961,-2.4972477,1.5016139)"
+         clip-rule="evenodd"
+         id="path12" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath14">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-499.63001,218.33001)"
+         clip-rule="evenodd"
+         id="path14" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath15">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-537.79001,218.33001)"
+         clip-rule="evenodd"
+         id="path15" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath16">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-542.11001,218.33001)"
+         clip-rule="evenodd"
+         id="path16" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath17">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-590.47001,218.33001)"
+         clip-rule="evenodd"
+         id="path17" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath18">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-543.31001,203.21001)"
+         clip-rule="evenodd"
+         id="path18" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath19">
+      <path
+         d="M 706.2,183.6 H 902.4 V 356.4 H 706.2 Z"
+         transform="matrix(0.00398184,0,0,-0.00578704,-2.7025962,2.0625)"
+         clip-rule="evenodd"
+         id="path19" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath21">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-731.78002,218.33001)"
+         clip-rule="evenodd"
+         id="path21" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath22">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-762.65004,218.33001)"
+         clip-rule="evenodd"
+         id="path22" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath23">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-766.97004,218.33001)"
+         clip-rule="evenodd"
+         id="path23" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath24">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-780.53004,203.21001)"
+         clip-rule="evenodd"
+         id="path24" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath25">
+      <path
+         d="m 57.6,6.6002 h 196.2 v 172.8 H 57.6 Z"
+         transform="matrix(0.0030338,0,0,-0.00578704,0.02763182,1.0381944)"
+         clip-rule="evenodd"
+         id="path25" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath27">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-64.080002,41.280001)"
+         clip-rule="evenodd"
+         id="path27" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath28">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-142.58001,26.136001)"
+         clip-rule="evenodd"
+         id="path28" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath29">
+      <path
+         d="m 273.84,6.6002 h 196.2 v 172.8 h -196.2 z"
+         transform="matrix(0.0029292,0,0,-0.00578704,-0.58950173,1.0381944)"
+         clip-rule="evenodd"
+         id="path29" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath31">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-296.26,41.280001)"
+         clip-rule="evenodd"
+         id="path31" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath32">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-350.02001,26.136001)"
+         clip-rule="evenodd"
+         id="path32" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath33">
+      <path
+         d="m 489.96,6.6002 h 196.2 v 172.8 h -196.2 z"
+         transform="matrix(0.00411032,0,0,-0.00578704,-1.9171359,1.038195)"
+         clip-rule="evenodd"
+         id="path33" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath35">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-534.79001,33.696001)"
+         clip-rule="evenodd"
+         id="path35" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath36">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-576.43001,33.696001)"
+         clip-rule="evenodd"
+         id="path36" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath37">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-580.75001,33.696001)"
+         clip-rule="evenodd"
+         id="path37" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath40">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-799.49004,33.696001)"
+         clip-rule="evenodd"
+         id="path40" />
+    </clipPath>
+    <mask
+       maskUnits="userSpaceOnUse"
+       x="0"
+       y="0"
+       width="1"
+       height="1"
+       id="mask40">
+      <image
+         width="1"
+         height="1"
+         style="image-rendering:optimizeSpeed"
+         preserveAspectRatio="none"
+         xlink:href=""
+         id="image40" />
+    </mask>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath41">
+      <path
+         d="M 57.6,360.6 H 253.8 V 533.52 H 57.6 Z"
+         transform="matrix(0.00369331,0,0,-0.00578302,-0.0750554,3.0853574)"
+         clip-rule="evenodd"
+         id="path41" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath43">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-71.280002,387.86001)"
+         clip-rule="evenodd"
+         id="path43" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath44">
+      <path
+         d="m 273.84,360.6 h 196.2 v 172.92 h -196.2 z"
+         transform="matrix(0.00417781,0,0,-0.00578302,-1.0538937,3.0853574)"
+         clip-rule="evenodd"
+         id="path44" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath46">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-298.66,387.86001)"
+         clip-rule="evenodd"
+         id="path46" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath47">
+      <path
+         d="m 489.96,360.6 h 196.2 v 172.92 h -196.2 z"
+         transform="matrix(0.00392065,0,0,-0.00578302,-1.8055752,3.0853574)"
+         clip-rule="evenodd"
+         id="path47" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath49">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-533.23001,387.86001)"
+         clip-rule="evenodd"
+         id="path49" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath50">
+      <path
+         d="M 706.2,360.6 H 902.4 V 533.52 H 706.2 Z"
+         transform="matrix(0.00335323,0,0,-0.00578302,-2.1970022,3.0853574)"
+         clip-rule="evenodd"
+         id="path50" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath52">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 540 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-770.45004,387.86001)"
+         clip-rule="evenodd"
+         id="path52" />
+    </clipPath>
+  </defs>
+  <sodipodi:namedview
+     id="namedview1"
+     pagecolor="#ffffff"
+     bordercolor="#666666"
+     borderopacity="1.0"
+     inkscape:showpageshadow="2"
+     inkscape:pageopacity="0.0"
+     inkscape:pagecheckerboard="0"
+     inkscape:deskcolor="#d1d1d1"
+     showgrid="false"
+     inkscape:zoom="0.7921875"
+     inkscape:cx="640"
+     inkscape:cy="360.39448"
+     inkscape:window-width="1920"
+     inkscape:window-height="1137"
+     inkscape:window-x="1912"
+     inkscape:window-y="-8"
+     inkscape:window-maximized="1"
+     inkscape:current-layer="g1">
+    <inkscape:page
+       x="0"
+       y="0"
+       inkscape:label="1"
+       id="page1"
+       width="1280"
+       height="720"
+       margin="0"
+       bleed="0" />
+  </sodipodi:namedview>
+  <g
+     id="g1"
+     inkscape:groupmode="layer"
+     inkscape:label="1">
+    <g
+       id="g2">
+      <path
+         id="path2"
+         d="M 0,6.1035e-5 H 960 V 540.00006 H 0 Z"
+         style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)"
+         clip-path="url(#clipPath3)" />
+    </g>
+    <g
+       id="g3">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(334.85333,0,0,230.4,40.176,244.8)"
+         id="image3"
+         clip-path="url(#clipPath4)" />
+    </g>
+    <g
+       id="g4">
+      <path
+         id="path5"
+         d="m 57.6,193.92 h 196.2 v 41.52 H 57.6 Z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g5">
+      <text
+         id="text5"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,100.96,428.89333)"
+         clip-path="url(#clipPath6)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 5.99508 13.30992 18.209881 25.580879 32.979961 40.35096 44.984161 52.38324 59.754238 62.87112 69.863037 77.149803 83.762642 86.991837 94.306679 101.2986 104.61204 108.81 116.12484 123.43968 126.66888 129.89809 136.89 141.78996 145.14552 152.5446 159.9156"
+           y="0"
+           sodipodi:role="line"
+           id="tspan5">Turboprop engine (puller on </tspan></text>
+    </g>
+    <g
+       id="g6">
+      <text
+         id="text6"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,186.74667,449.05333)"
+         clip-path="url(#clipPath7)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 10.0386 13.30992 20.62476 27.2376"
+           y="0"
+           sodipodi:role="line"
+           id="tspan6">wing)</tspan></text>
+    </g>
+    <g
+       id="g7">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(392.4,0,0,230.4,299.72,244.8)"
+         id="image7"
+         clip-path="url(#clipPath8)" />
+    </g>
+    <g
+       id="g8">
+      <path
+         id="path9"
+         d="m 273.84,193.92 h 196.2 v 41.52 h -196.2 z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g9">
+      <text
+         id="text9"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,385.09333,428.89333)"
+         clip-path="url(#clipPath10)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 5.99508 13.30992 18.209881 25.580879 32.979961 40.35096 44.984161 52.38324 59.754238 62.87112 69.863037 77.149803 83.762642 86.991837 94.306679 101.2986 104.61204 108.81 116.12484 123.43968 128.92932 136.30032 143.23608 148.13605 151.50565 158.90472 166.27573"
+           y="0"
+           sodipodi:role="line"
+           id="tspan9">Turboprop engine (pusher on </tspan></text>
+    </g>
+    <g
+       id="g10">
+      <text
+         id="text10"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,475.01333,449.05333)"
+         clip-path="url(#clipPath11)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 10.0386 13.30992 20.62476 27.2376"
+           y="0"
+           sodipodi:role="line"
+           id="tspan10">wing)</tspan></text>
+    </g>
+    <g
+       id="g11">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(261.6,4.0690667e-5,0,359.42667,653.28,180.28)"
+         id="image11"
+         clip-path="url(#clipPath12)" />
+    </g>
+    <g
+       id="g12">
+      <path
+         id="path13"
+         d="m 489.96,193.92 h 196.2 v 41.52 h -196.2 z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g13">
+      <text
+         id="text13"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,666.17333,428.89333)"
+         clip-path="url(#clipPath14)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 7.4411998 14.84028 22.084921 26.788321 31.4496"
+           y="0"
+           sodipodi:role="line"
+           id="tspan13">Contra</tspan></text>
+    </g>
+    <g
+       id="g14">
+      <text
+         id="text14"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,717.05333,428.89333)"
+         clip-path="url(#clipPath15)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan14">-</tspan></text>
+    </g>
+    <g
+       id="g15">
+      <text
+         id="text15"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,722.81333,428.89333)"
+         clip-path="url(#clipPath16)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 4.6753201 12.0744 16.67952 23.27832 27.98172 31.21092 38.511719"
+           y="0"
+           sodipodi:role="line"
+           id="tspan15">rotating</tspan></text>
+    </g>
+    <g
+       id="g16">
+      <text
+         id="text16"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,787.29333,428.89333)"
+         clip-path="url(#clipPath17)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 7.3148398 11.99016 19.38924 26.633881 30.719521 37.444679 44.759521 47.8764 54.86832 62.155079 68.767921 71.997124 79.311958 86.303879"
+           y="0"
+           sodipodi:role="line"
+           id="tspan16">propfan engine </tspan></text>
+    </g>
+    <g
+       id="g17">
+      <text
+         id="text17"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,724.41333,449.05333)"
+         clip-path="url(#clipPath18)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 4.1979599 11.5128 18.827641 22.056841 25.286039 32.277962 37.177921 40.40712 47.806198 55.1772 58.294079 68.33268 71.603996 78.918839 85.531677"
+           y="0"
+           sodipodi:role="line"
+           id="tspan17">(puller on wing)</tspan></text>
+    </g>
+    <g
+       id="g18">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(334.85333,0,0,230.4,904.97333,244.8)"
+         id="image18"
+         clip-path="url(#clipPath19)" />
+    </g>
+    <g
+       id="g19">
+      <path
+         id="path20"
+         d="m 706.2,193.92 h 196.2 v 41.52 H 706.2 Z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g20">
+      <text
+         id="text20"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,975.70667,428.89333)"
+         clip-path="url(#clipPath21)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 9.2383204 16.55316 23.54508"
+           y="0"
+           sodipodi:role="line"
+           id="tspan20">Open</tspan></text>
+    </g>
+    <g
+       id="g21">
+      <text
+         id="text21"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,1016.8667,428.89333)"
+         clip-path="url(#clipPath22)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan21">-</tspan></text>
+    </g>
+    <g
+       id="g22">
+      <text
+         id="text22"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,1022.6267,428.89333)"
+         clip-path="url(#clipPath23)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 4.6753201 12.0744 16.67952 24.0786 29.020679 34.440121 41.740921 49.055759 56.370602 63.68544 69.568199 74.131203 81.123123 88.409882 91.751404 95.837044 102.5622 109.87704"
+           y="0"
+           sodipodi:role="line"
+           id="tspan22">rotor/unducted fan </tspan></text>
+    </g>
+    <g
+       id="g23">
+      <text
+         id="text23"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,1040.7067,449.05333)"
+         clip-path="url(#clipPath24)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 4.1979599 11.5128 18.827641 24.31728 31.68828 38.624039 43.523998"
+           y="0"
+           sodipodi:role="line"
+           id="tspan23">(pusher)</tspan></text>
+    </g>
+    <g
+       id="g24">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(439.49333,0,0,230.4,-12.144,480.8)"
+         id="image24"
+         clip-path="url(#clipPath25)" />
+    </g>
+    <g
+       id="g25">
+      <path
+         id="path26"
+         d="M 57.6,16.92 H 253.8 V 58.44 H 57.6 Z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g26">
+      <text
+         id="text26"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,85.44,664.96)"
+         clip-path="url(#clipPath27)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.064px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 8.6493597 11.88408 17.284657 21.996096 26.904432 30.139153 37.43837 44.751648 49.308384 56.270065 63.583344 66.930573 73.892258 77.126976 84.130852 89.967407 94.678848 99.587181 102.82191 108.68659 111.90725 119.22053 123.90384 131.31557 138.69917 145.61865 148.85338 152.08809 159.09196 164.00031 167.17877 171.44016 183.16954"
+           y="0"
+           sodipodi:role="line"
+           id="tspan26">Distributed electric propeller (© </tspan></text>
+    </g>
+    <g
+       id="g27">
+      <text
+         id="text27"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,190.10667,685.152)"
+         clip-path="url(#clipPath28)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 8.6345997 14.5314 22.183201"
+           y="0"
+           sodipodi:role="line"
+           id="tspan27">DLR)</tspan></text>
+    </g>
+    <g
+       id="g28">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(455.18667,0,0,230.4,268.33333,480.8)"
+         id="image28"
+         clip-path="url(#clipPath29)" />
+    </g>
+    <g
+       id="g29">
+      <path
+         id="path30"
+         d="m 273.84,16.92 h 196.2 v 41.52 h -196.2 z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g30">
+      <text
+         id="text30"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,395.01333,664.96)"
+         clip-path="url(#clipPath31)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.064px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 8.6493597 11.88408 17.284657 21.996096 26.904432 30.139153 37.43837 44.751648 49.308384 56.270065 63.583344 66.930573 73.892258 77.126976 84.130852 89.967407 94.678848 99.587181 102.82191 108.68659 111.90725 119.22053 126.53381 132.41257 136.9693 143.93097 151.24426"
+           y="0"
+           sodipodi:role="line"
+           id="tspan30">Distributed electric ducted </tspan></text>
+    </g>
+    <g
+       id="g31">
+      <text
+         id="text31"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,466.69333,685.152)"
+         clip-path="url(#clipPath32)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 6.99192 14.27868 20.89152 24.12072 31.43556 38.427479"
+           y="0"
+           sodipodi:role="line"
+           id="tspan31">engines</tspan></text>
+    </g>
+    <g
+       id="g32">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(324.38667,0,0,230.4,621.89333,480.79987)"
+         id="image32"
+         clip-path="url(#clipPath33)" />
+    </g>
+    <g
+       id="g33">
+      <path
+         id="path34"
+         d="m 489.96,16.92 h 196.2 v 41.52 h -196.2 z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g34">
+      <text
+         id="text34"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,713.05333,675.072)"
+         clip-path="url(#clipPath35)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 6.8515201 10.08072 17.072639 22.91328 27.61668 32.51664 35.745838"
+           y="0"
+           sodipodi:role="line"
+           id="tspan34">Electric</tspan></text>
+    </g>
+    <g
+       id="g35">
+      <text
+         id="text35"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,768.57333,675.072)"
+         clip-path="url(#clipPath36)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan35">-</tspan></text>
+    </g>
+    <g
+       id="g36">
+      <text
+         id="text36"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,774.33333,675.072)"
+         clip-path="url(#clipPath37)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 7.3148398 14.62968 20.51244 25.075439 32.06736 39.354118 42.695641 46.781281 53.506439"
+           y="0"
+           sodipodi:role="line"
+           id="tspan36">ducted fan</tspan></text>
+    </g>
+    <g
+       id="g37">
+      <path
+         id="path38"
+         d="M 706.2,6.6 H 902.4 V 179.4 H 706.2 Z"
+         style="fill:#cfd5ea;fill-opacity:1;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g38">
+      <path
+         id="path39"
+         d="M 706.2,16.92 H 902.4 V 58.44 H 706.2 Z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g39">
+      <text
+         id="text39"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,1065.9867,675.072)"
+         clip-path="url(#clipPath40)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan39">…</tspan></text>
+    </g>
+    <g
+       id="g40">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         mask="url(#mask40)"
+         id="image41"
+         transform="matrix(361.01333,0,0,230.56,27.096,8.64)"
+         clip-path="url(#clipPath41)" />
+    </g>
+    <g
+       id="g41">
+      <path
+         id="path42"
+         d="m 57.6,371.04 h 196.2 v 41.4 H 57.6 Z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g42">
+      <text
+         id="text42"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,95.04,202.85333)"
+         clip-path="url(#clipPath43)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 5.99508 13.30992 18.209881 25.580879 32.979961 37.065601 43.79076 51.105598 54.222481 61.214401 68.50116 75.113998 78.343201 85.658043 92.649963 95.963402 100.16136 107.4762 114.79104 122.10588 129.09779 133.99776 137.32524 147.36385 150.63516 157.95 164.56284"
+           y="0"
+           sodipodi:role="line"
+           id="tspan42">Turbofan engine (under wing)</tspan></text>
+    </g>
+    <g
+       id="g43">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(319.14667,0,0,230.56,336.34667,8.64)"
+         id="image43"
+         clip-path="url(#clipPath44)" />
+    </g>
+    <g
+       id="g44">
+      <path
+         id="path45"
+         d="m 273.84,371.04 h 196.2 v 41.4 h -196.2 z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g45">
+      <text
+         id="text45"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,398.21333,202.85333)"
+         clip-path="url(#clipPath46)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 5.99508 13.30992 18.209881 25.580879 32.979961 37.065601 43.79076 51.105598 54.222481 61.214401 68.50116 75.113998 78.343201 85.658043 92.649963 95.963402 100.16136 104.83668 111.8286 118.55376 123.45372 126.66888 133.26768 137.54988 142.25328"
+           y="0"
+           sodipodi:role="line"
+           id="tspan45">Turbofan engine (rear aft)</tspan></text>
+    </g>
+    <g
+       id="g46">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(340.08,0,0,230.56,614.04,8.64)"
+         id="image46"
+         clip-path="url(#clipPath47)" />
+    </g>
+    <g
+       id="g47">
+      <path
+         id="path48"
+         d="m 489.96,371.04 h 196.2 v 41.4 h -196.2 z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g48">
+      <text
+         id="text48"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,710.97333,202.85333)"
+         clip-path="url(#clipPath49)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 7.2025199 11.87784 19.27692 26.647921 33.962761 37.191959 42.681599 45.952919 52.18668 59.1786 62.351639 66.690002 74.004837 79.494476 86.486397 89.715599 96.440758 102.92724"
+           y="0"
+           sodipodi:role="line"
+           id="tspan48">Propulsive fuselage</tspan></text>
+    </g>
+    <g
+       id="g49">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(397.62667,0,0,230.56,873.58667,8.64)"
+         id="image49"
+         clip-path="url(#clipPath50)" />
+    </g>
+    <g
+       id="g50">
+      <path
+         id="path51"
+         d="m 706.2,371.04 h 196.2 v 41.4 H 706.2 Z"
+         style="fill:#c0c9e4;fill-opacity:0.70196;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,720)" />
+    </g>
+    <g
+       id="g51">
+      <text
+         id="text51"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,1027.2667,202.85333)"
+         clip-path="url(#clipPath52)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:14.04px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 12.4956 19.34712 26.184601 29.385719 36.37764 43.664398 50.277241 53.506439 60.821281"
+           y="0"
+           sodipodi:role="line"
+           id="tspan51">WET engine</tspan></text>
+    </g>
+  </g>
+</svg>
diff --git a/docs/documentation/sizing/propulsion_design/figures/engine_mount.svg b/docs/documentation/sizing/propulsion_design/figures/engine_mount.svg
new file mode 100644
index 0000000000000000000000000000000000000000..efdb17bdfd12a32f54a240c127c0deb4c6e8c9aa
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/engine_mount.svg
@@ -0,0 +1,244 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<svg
+   id="Ebene_1"
+   data-name="Ebene 1"
+   width="118.98mm"
+   height="55.57mm"
+   viewBox="0 0 337.25 157.51"
+   version="1.1"
+   sodipodi:docname="engine-mount_modified2.svg"
+   inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <sodipodi:namedview
+     id="namedview78"
+     pagecolor="#ffffff"
+     bordercolor="#666666"
+     borderopacity="1.0"
+     inkscape:showpageshadow="2"
+     inkscape:pageopacity="0.0"
+     inkscape:pagecheckerboard="0"
+     inkscape:deskcolor="#d1d1d1"
+     inkscape:document-units="mm"
+     inkscape:zoom="4.2429398"
+     inkscape:cx="145.53589"
+     inkscape:cy="127.15241"
+     inkscape:window-width="1920"
+     inkscape:window-height="1121"
+     inkscape:window-x="-9"
+     inkscape:window-y="-9"
+     inkscape:window-maximized="1"
+     inkscape:current-layer="g78" />
+  <defs
+     id="defs1">
+    <style
+       id="style1">
+      .cls-1 {
+        fill: none;
+      }
+
+      .cls-1, .cls-2, .cls-3, .cls-4, .cls-5 {
+        stroke: #000;
+      }
+
+      .cls-1, .cls-2, .cls-3, .cls-4, .cls-5, .cls-7 {
+        stroke-width: 0.75px;
+      }
+
+      .cls-2 {
+        fill: #d9d9d9;
+      }
+
+      .cls-3, .cls-4 {
+        fill: #787878;
+      }
+
+      .cls-3, .cls-4, .cls-7 {
+        stroke-miterlimit: 1;
+      }
+
+      .cls-4 {
+        stroke-dasharray: 1 3 10 3;
+      }
+
+      .cls-5 {
+        fill: #bdbdbd;
+      }
+
+      .cls-6 {
+        fill: #2c2a28;
+      }
+
+      .cls-7 {
+        stroke: #fff;
+      }
+    </style>
+  </defs>
+  <title
+     id="title1">engine-mounts</title>
+  <g
+     id="g78">
+    <path
+       class="cls-1"
+       d="m 146.18589,67.695085 -0.77047,-11.762142 c 0,0 -48.330078,-11.068261 -83.771869,-9.040896 -15.133109,0.855429 -51.019157,9.94765 -52.0994949,12.317187 -0.2093678,0.444823 -1.6749429,1.565434 -1.6749429,1.822063 0.6532277,4.901605 -1.6749429,50.906553 3.2912628,74.422283 v 0 c 0.108872,0.48759 28.140721,12.69548 28.819073,12.82379 7.629365,1.41145 66.930531,-0.83177 73.714041,-0.42971 24.27229,-7.85654 31.79731,-9.51984 31.79731,-9.51984 0,-26.49476 0.0715,-31.62754 0.69508,-70.632735 z"
+       id="path1"
+       sodipodi:nodetypes="cccccssccccc" />
+    <path
+       class="cls-2"
+       d="m 288.26189,19.24 c 0.47,7.21 8.31,-10.51 8.31,-10.51 0,0 -86.5,-13.3 -128.84,-6.83 -10.37,0.85 -29.53,2.32 -46.36,7.32 -21.3,6.26 -10.78,22.63 14.49,20.93 18.66,-1.26 144.12,-0.43 144.12,-0.43 0,0 7.81,-17.68 8.28,-10.48 z"
+       id="path2" />
+    <path
+       class="cls-5"
+       d="m 382.36625,368.91003 c 0,0 -85.75181,-0.88003 -103.83181,0.24997 -23.43,1.46 -25.3197,-9.35015 -25.3197,-9.35015 0,0 -1.05249,-1.68944 -31.86249,5.39056 -24,5.48 -66.31781,22.94359 -69.70781,34.11359 60.12819,-27.15248 124.13579,-5.12884 136.56282,-4.00901 z"
+       id="path53"
+       sodipodi:nodetypes="ccccccc"
+       transform="translate(-142.92,-339.32)" />
+    <g
+       id="g59">
+      <text
+         xml:space="preserve"
+         style="font-style:normal;font-weight:normal;font-size:10.99947322px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.749964px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
+         x="81.749542"
+         y="132.0347"
+         id="text1"><tspan
+           sodipodi:role="line"
+           id="tspan1"
+           style="stroke-width:0.749964px;font-size:10.99947322px"
+           x="81.749542"
+           y="132.0347">Nacelle</tspan></text>
+    </g>
+    <g
+       id="g64">
+      <path
+         class="cls-6"
+         d="M267.47,375.61h3.77a2.85,2.85,0,0,1,2,.63,2.21,2.21,0,0,1,.7,1.74,2.56,2.56,0,0,1-.7,1.92,2.69,2.69,0,0,1-2,.69c-1.1,0-2,0-2.6,0v3.62h-1.17Zm1.17,4H271a2,2,0,0,0,1.33-.38,1.57,1.57,0,0,0,.42-1.21,1.29,1.29,0,0,0-.42-1.06,2.14,2.14,0,0,0-1.33-.34h-2.31Z"
+         transform="translate(-142.92 -339.32)"
+         id="path60" />
+      <path
+         class="cls-6"
+         d="M277.92,384.43a6,6,0,0,1-1,1.89,1.7,1.7,0,0,1-1.29.44,1.38,1.38,0,0,1-.51-.06v-1a2,2,0,0,0,.6.1.74.74,0,0,0,.6-.3,4.42,4.42,0,0,0,.55-1.09v-.1h0L274.58,378h1.2l1.68,5.19h0l1.69-5.19h1.16Z"
+         transform="translate(-142.92 -339.32)"
+         id="path61" />
+      <path
+         class="cls-6"
+         d="M281.25,375.61h1.05v8.61h-1.05Z"
+         transform="translate(-142.92 -339.32)"
+         id="path62" />
+      <path
+         class="cls-6"
+         d="M284.34,383.48a4,4,0,0,1,0-4.8,2.66,2.66,0,0,1,2.1-.92,2.69,2.69,0,0,1,2.12.92,4,4,0,0,1,0,4.8,2.68,2.68,0,0,1-2.12.91A2.66,2.66,0,0,1,284.34,383.48Zm3.43-.65a3.37,3.37,0,0,0,0-3.5,1.66,1.66,0,0,0-2.65,0,3.37,3.37,0,0,0,0,3.5,1.68,1.68,0,0,0,2.65,0Z"
+         transform="translate(-142.92 -339.32)"
+         id="path63" />
+      <path
+         class="cls-6"
+         d="M290.56,378h1v.93l.24-.31a2.16,2.16,0,0,1,1.72-.81,2.12,2.12,0,0,1,1.59.57,2.14,2.14,0,0,1,.57,1.6v4.29h-1.06v-3.94a1.76,1.76,0,0,0-.32-1.19,1.3,1.3,0,0,0-1-.36,1.46,1.46,0,0,0-1.21.57,2.55,2.55,0,0,0-.44,1.56v3.36h-1.06Z"
+         transform="translate(-142.92 -339.32)"
+         id="path64" />
+    </g>
+    <g
+       id="g77">
+      <path
+         class="cls-6"
+         d="M344.07,359.87l-2.25-8.62h1.26l1.53,6.81c0,.12.05.22.07.33a1,1,0,0,1,0,.22h0a1.52,1.52,0,0,1,0-.24c0-.1,0-.21.07-.31l1.83-6.81h1.31l1.81,6.78a3,3,0,0,1,.07.32,1.52,1.52,0,0,1,0,.24h0a1.58,1.58,0,0,1,0-.23c0-.11,0-.22.07-.33l1.55-6.78h1.25l-2.25,8.62h-1.25l-1.87-6.66c0-.12-.06-.23-.09-.34a1.43,1.43,0,0,1,0-.23h0a1.52,1.52,0,0,1,0,.24c0,.11-.05.22-.08.33l-1.82,6.66h-1.26Z"
+         transform="translate(-142.92 -339.32)"
+         id="path65" />
+      <path
+         class="cls-6"
+         d="M353.75,351.25h1.08v1.2h-1.08Zm0,2.35h1.06v6.27h-1.06Z"
+         transform="translate(-142.92 -339.32)"
+         id="path66" />
+      <path
+         class="cls-6"
+         d="M356.39,353.6h1v.92l.23-.31a2.13,2.13,0,0,1,3.88,1.36v4.3h-1.06v-3.94a1.75,1.75,0,0,0-.32-1.19,1.27,1.27,0,0,0-1-.37,1.44,1.44,0,0,0-1.21.58,2.51,2.51,0,0,0-.44,1.56v3.36h-1.06Z"
+         transform="translate(-142.92 -339.32)"
+         id="path67" />
+      <path
+         class="cls-6"
+         d="M365.36,361.64a1.71,1.71,0,0,0,1.39-.57,2.58,2.58,0,0,0,.47-1.67v-.2h0a2.08,2.08,0,0,1-1.7.83,2.46,2.46,0,0,1-2-.94,4,4,0,0,1-.74-2.54,3.41,3.41,0,0,1,.73-2.28,2.39,2.39,0,0,1,1.92-.87,2.07,2.07,0,0,1,1.79,1l.08.11v-.9h1v5.8a3.4,3.4,0,0,1-.72,2.35,2.83,2.83,0,0,1-2.18.77,2.66,2.66,0,0,1-1.69-.5,2.08,2.08,0,0,1-.76-1.43H364a1.19,1.19,0,0,0,.45.78A1.46,1.46,0,0,0,365.36,361.64Zm.21-7.27a1.49,1.49,0,0,0-1.29.56,4,4,0,0,0,0,3.57,1.45,1.45,0,0,0,1.26.62,1.54,1.54,0,0,0,1.24-.57,2.34,2.34,0,0,0,.46-1.52,3.78,3.78,0,0,0-.42-2A1.4,1.4,0,0,0,365.57,354.37Z"
+         transform="translate(-142.92 -339.32)"
+         id="path68" />
+      <path
+         class="cls-6"
+         d="M372.5,351l-2.94,9.07h-.8l2.93-9.07Z"
+         transform="translate(-142.92 -339.32)"
+         id="path69" />
+      <path
+         class="cls-6"
+         d="M374.39,354.47v5.4h-1.06v-5.4h-.86v-.87h.86v-1.07a1.33,1.33,0,0,1,.41-1,1.9,1.9,0,0,1,1.23-.35l.47,0v1l-.42,0a.59.59,0,0,0-.47.2.83.83,0,0,0-.16.56v.76h1.05v.87Z"
+         transform="translate(-142.92 -339.32)"
+         id="path70" />
+      <path
+         class="cls-6"
+         d="M377.5,357.64a1.73,1.73,0,0,0,.3,1.14,1.28,1.28,0,0,0,1,.35,1.45,1.45,0,0,0,1.21-.59,2.56,2.56,0,0,0,.45-1.6V353.6h1.05v6.27h-1v-1a1.91,1.91,0,0,1-.24.32,2.09,2.09,0,0,1-1.68.81,1.9,1.9,0,0,1-2.14-2.14v-4.3h1.06Z"
+         transform="translate(-142.92 -339.32)"
+         id="path71" />
+      <path
+         class="cls-6"
+         d="M386.67,355.41a1.08,1.08,0,0,0-.42-.8,1.59,1.59,0,0,0-1-.29,1.83,1.83,0,0,0-1,.23.74.74,0,0,0-.34.67.57.57,0,0,0,.24.5,3.12,3.12,0,0,0,.95.34l1.09.26a2.81,2.81,0,0,1,1.31.61,1.47,1.47,0,0,1,.39,1.09,1.78,1.78,0,0,1-.67,1.47,2.75,2.75,0,0,1-1.81.55,3.1,3.1,0,0,1-2-.53,2.21,2.21,0,0,1-.72-1.65h1a1.35,1.35,0,0,0,.47,1,2,2,0,0,0,1.22.3,1.78,1.78,0,0,0,1.07-.27.9.9,0,0,0,.37-.79.56.56,0,0,0-.24-.49,2.84,2.84,0,0,0-1-.34l-1.09-.26a2.64,2.64,0,0,1-1.26-.59,1.43,1.43,0,0,1-.37-1.06,1.71,1.71,0,0,1,.63-1.4,2.54,2.54,0,0,1,1.7-.52,2.73,2.73,0,0,1,1.75.53,1.91,1.91,0,0,1,.68,1.47Z"
+         transform="translate(-142.92 -339.32)"
+         id="path72" />
+      <path
+         class="cls-6"
+         d="M391.64,360a2.64,2.64,0,0,1-2.09-.85,3.34,3.34,0,0,1-.77-2.33,3.69,3.69,0,0,1,.81-2.51,2.7,2.7,0,0,1,2.16-.94,2.46,2.46,0,0,1,2,.91,3.63,3.63,0,0,1,.76,2.41l0,.37h-4.57a2.7,2.7,0,0,0,.42,1.43,1.65,1.65,0,0,0,1.41.6,1.67,1.67,0,0,0,1.05-.34,1.37,1.37,0,0,0,.55-.87h1.05a2.7,2.7,0,0,1-.94,1.58A2.89,2.89,0,0,1,391.64,360Zm1.76-3.79a2.34,2.34,0,0,0-.44-1.36,1.49,1.49,0,0,0-1.25-.54,1.61,1.61,0,0,0-1.33.63,2.34,2.34,0,0,0-.47,1.27Z"
+         transform="translate(-142.92 -339.32)"
+         id="path73" />
+      <path
+         class="cls-6"
+         d="M395.78,351.25h1.05v8.62h-1.05Z"
+         transform="translate(-142.92 -339.32)"
+         id="path74" />
+      <path
+         class="cls-6"
+         d="M400.08,360a2.11,2.11,0,0,1-1.46-.49,1.73,1.73,0,0,1-.54-1.33,1.84,1.84,0,0,1,.5-1.35,2.53,2.53,0,0,1,1.48-.62l1.44-.18a1.61,1.61,0,0,0,.33-.06.48.48,0,0,0,.32-.21.7.7,0,0,0,.11-.4v0a.94.94,0,0,0-.38-.79,1.73,1.73,0,0,0-1.06-.28,1.59,1.59,0,0,0-1,.3,1.34,1.34,0,0,0-.44.9h-1a2.06,2.06,0,0,1,.72-1.55,2.93,2.93,0,0,1,1.87-.52,2.67,2.67,0,0,1,1.74.5,1.76,1.76,0,0,1,.6,1.44v3.45a.35.35,0,0,0,.09.25.38.38,0,0,0,.26.1h.14l.2,0v.76l-.33.1-.28,0a1.06,1.06,0,0,1-.87-.33,1.32,1.32,0,0,1-.25-.61,2.37,2.37,0,0,1-.27.28A2.8,2.8,0,0,1,400.08,360Zm2.18-2.66v-.68a2.15,2.15,0,0,1-.65.2l-1,.14a2.68,2.68,0,0,0-1.11.35.8.8,0,0,0-.35.68,1.06,1.06,0,0,0,.29.81,1.09,1.09,0,0,0,.81.28,2.24,2.24,0,0,0,1.41-.45,1.58,1.58,0,0,0,.52-.71,1.09,1.09,0,0,0,0-.24C402.25,357.65,402.26,357.52,402.26,357.38Z"
+         transform="translate(-142.92 -339.32)"
+         id="path75" />
+      <path
+         class="cls-6"
+         d="M407.39,361.64a1.71,1.71,0,0,0,1.39-.57,2.58,2.58,0,0,0,.47-1.67v-.2h0a2.08,2.08,0,0,1-1.7.83,2.46,2.46,0,0,1-2-.94,4,4,0,0,1-.74-2.54,3.41,3.41,0,0,1,.73-2.28,2.39,2.39,0,0,1,1.92-.87,2.07,2.07,0,0,1,1.79,1l.08.11v-.9h1v5.8a3.4,3.4,0,0,1-.72,2.35,2.83,2.83,0,0,1-2.18.77,2.66,2.66,0,0,1-1.69-.5,2.08,2.08,0,0,1-.76-1.43H406a1.19,1.19,0,0,0,.45.78A1.44,1.44,0,0,0,407.39,361.64Zm.21-7.27a1.49,1.49,0,0,0-1.29.56,4,4,0,0,0,0,3.57,1.45,1.45,0,0,0,1.26.62,1.51,1.51,0,0,0,1.23-.57,2.28,2.28,0,0,0,.47-1.52,3.78,3.78,0,0,0-.42-2A1.4,1.4,0,0,0,407.6,354.37Z"
+         transform="translate(-142.92 -339.32)"
+         id="path76" />
+      <path
+         class="cls-6"
+         d="M414.33,360a2.67,2.67,0,0,1-2.1-.85,3.38,3.38,0,0,1-.76-2.33,3.69,3.69,0,0,1,.81-2.51,2.68,2.68,0,0,1,2.16-.94,2.49,2.49,0,0,1,2,.91,3.68,3.68,0,0,1,.75,2.41v.37h-4.58a2.78,2.78,0,0,0,.43,1.43,1.65,1.65,0,0,0,1.41.6,1.67,1.67,0,0,0,1.05-.34,1.41,1.41,0,0,0,.55-.87h1a2.68,2.68,0,0,1-.93,1.58A2.91,2.91,0,0,1,414.33,360Zm1.75-3.79a2.34,2.34,0,0,0-.43-1.36,1.49,1.49,0,0,0-1.25-.54,1.6,1.6,0,0,0-1.33.63,2.42,2.42,0,0,0-.48,1.27Z"
+         transform="translate(-142.92 -339.32)"
+         id="path77" />
+      <text
+         xml:space="preserve"
+         style="font-style:normal;font-weight:normal;font-size:7.99962px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.749964px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
+         x="168.89421"
+         y="75.285164"
+         id="text78"><tspan
+           sodipodi:role="line"
+           style="font-size:7.99962px;stroke-width:0.749964px"
+           x="168.89421"
+           y="75.285164"
+           id="tspan79">nacelle attachment: engine/nacelle start</tspan></text>
+      <text
+         xml:space="preserve"
+         style="font-style:normal;font-weight:normal;font-size:7.99962px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.749964px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
+         x="169.33449"
+         y="84.31498"
+         id="text78-6"><tspan
+           sodipodi:role="line"
+           id="tspan78-2"
+           style="font-size:7.99962px;stroke-width:0.749964px"
+           x="169.33449"
+           y="84.31498">wing attachment: LE</tspan><tspan
+           sodipodi:role="line"
+           style="font-size:7.99962px;stroke-width:0.749964px"
+           x="169.33449"
+           y="94.314507"
+           id="tspan79-2" /></text>
+    </g>
+    <polygon
+       class="cls-7"
+       points="88.65 42.14 81.58 48.57 84.89 48.57 84.89 70.42 92.02 70.42 92.02 48.57 95.61 48.57 88.65 42.14"
+       id="polygon77" />
+    <polygon
+       class="cls-7"
+       points="180.65 20.14 173.57 26.57 176.89 26.57 176.89 48.42 184.02 48.42 184.02 26.57 187.61 26.57 180.65 20.14"
+       id="polygon78" />
+  </g>
+</svg>
diff --git a/docs/documentation/sizing/propulsion_design/figures/engine_sizing.png b/docs/documentation/sizing/propulsion_design/figures/engine_sizing.png
new file mode 100644
index 0000000000000000000000000000000000000000..14717b1782761e3d55e05f74b3ff9d6b3e9fd6c0
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/engine_sizing.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d13c05a05f589a9d7d339e91ee9186da2edd6f667e92e39fd8413b124d7b9f46
+size 131823
diff --git a/docs/documentation/sizing/propulsion_design/figures/propulsion_design_flow.png b/docs/documentation/sizing/propulsion_design/figures/propulsion_design_flow.png
new file mode 100644
index 0000000000000000000000000000000000000000..ddbf1002f28bad0ff16f1fb91a031cea44c1b632
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/propulsion_design_flow.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:40488e9ef73109ffa6d52b0635104a4366655b4b9fb2bbbf1d50a0dfdbafa4b2
+size 157371
diff --git a/docs/documentation/sizing/propulsion_design/figures/scale_factor.svg b/docs/documentation/sizing/propulsion_design/figures/scale_factor.svg
new file mode 100644
index 0000000000000000000000000000000000000000..ebf362b0ebb33432345f3dd5582323303945eebd
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/scale_factor.svg
@@ -0,0 +1,557 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   version="1.1"
+   id="svg1"
+   width="1280"
+   height="379.84"
+   viewBox="0 0 1280 379.84"
+   sodipodi:docname="scale_factor.svg"
+   inkscape:version="1.3.2 (091e20e, 2023-11-25, custom)"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns:xlink="http://www.w3.org/1999/xlink"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:svg="http://www.w3.org/2000/svg">
+  <defs
+     id="defs1">
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath3">
+      <path
+         d="M 0,9.1553e-5 H 960 V 284.88009 H 0 Z"
+         clip-rule="evenodd"
+         id="path3" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath4">
+      <path
+         d="M 0,6.1035e-5 H 474.84 V 284.88006 H 0 Z"
+         transform="matrix(-0.00210597,0,0,0.00351025,1,0)"
+         clip-rule="evenodd"
+         id="path4" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath5">
+      <path
+         d="M 594.48,41.04 H 960 V 260.4 H 594.48 Z"
+         transform="matrix(-0.00273583,0,0,0.00455872,2.6263953,-0.18708972)"
+         clip-rule="evenodd"
+         id="path5" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath7">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-585.07001,27.336001)"
+         clip-rule="evenodd"
+         id="path7" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath8">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-588.67001,8.1120002)"
+         clip-rule="evenodd"
+         id="path8" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath9">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-56.448001,257.09001)"
+         clip-rule="evenodd"
+         id="path9" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath10">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-591.26002,257.09001)"
+         clip-rule="evenodd"
+         id="path10" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath11">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-591.26002,235.46001)"
+         clip-rule="evenodd"
+         id="path11" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath12">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-676.85002,240.86001)"
+         clip-rule="evenodd"
+         id="path12" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath13">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-450.22001,172.87)"
+         clip-rule="evenodd"
+         id="path13" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath14">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-495.94001,172.87)"
+         clip-rule="evenodd"
+         id="path14" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath15">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-450.22001,151.27)"
+         clip-rule="evenodd"
+         id="path15" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath16">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-511.42001,151.27)"
+         clip-rule="evenodd"
+         id="path16" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath17">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-69.144002,152.47)"
+         clip-rule="evenodd"
+         id="path17" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath18">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-117.29001,117.43)"
+         clip-rule="evenodd"
+         id="path18" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath19">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-134.74,182.93001)"
+         clip-rule="evenodd"
+         id="path19" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath20">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-244.63,102.14001)"
+         clip-rule="evenodd"
+         id="path20" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath21">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-174,76.008002)"
+         clip-rule="evenodd"
+         id="path21" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath22">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-649.22002,141.58)"
+         clip-rule="evenodd"
+         id="path22" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath23">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-666.46001,104.76)"
+         clip-rule="evenodd"
+         id="path23" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath24">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-671.69002,169.25001)"
+         clip-rule="evenodd"
+         id="path24" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath25">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-775.56002,123.38001)"
+         clip-rule="evenodd"
+         id="path25" />
+    </clipPath>
+    <clipPath
+       clipPathUnits="userSpaceOnUse"
+       id="clipPath26">
+      <path
+         d="M 1.4305e-5,0 H 960.00001 V 284.88 H 1.4305e-5 Z"
+         transform="matrix(1,0,0,-1,-723.86002,74.688002)"
+         clip-rule="evenodd"
+         id="path26" />
+    </clipPath>
+  </defs>
+  <sodipodi:namedview
+     id="namedview1"
+     pagecolor="#ffffff"
+     bordercolor="#666666"
+     borderopacity="1.0"
+     inkscape:showpageshadow="2"
+     inkscape:pageopacity="0.0"
+     inkscape:pagecheckerboard="0"
+     inkscape:deskcolor="#d1d1d1"
+     showgrid="false"
+     inkscape:zoom="0.753125"
+     inkscape:cx="640"
+     inkscape:cy="190.53942"
+     inkscape:window-width="1920"
+     inkscape:window-height="1137"
+     inkscape:window-x="1912"
+     inkscape:window-y="-8"
+     inkscape:window-maximized="1"
+     inkscape:current-layer="g1">
+    <inkscape:page
+       x="0"
+       y="0"
+       inkscape:label="1"
+       id="page1"
+       width="1280"
+       height="379.84"
+       margin="0"
+       bleed="0" />
+  </sodipodi:namedview>
+  <g
+     id="g1"
+     inkscape:groupmode="layer"
+     inkscape:label="1">
+    <g
+       id="g2">
+      <path
+         id="path2"
+         d="M 0,3.0518e-5 H 960 V 284.88003 H 0 Z"
+         style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:none"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,379.84)"
+         clip-path="url(#clipPath3)" />
+    </g>
+    <g
+       id="g3">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(-633.12,0,0,-379.84,633.12,379.84)"
+         id="image3"
+         clip-path="url(#clipPath4)" />
+    </g>
+    <g
+       id="g4">
+      <image
+         width="1"
+         height="1"
+         preserveAspectRatio="none"
+         xlink:href=""
+         transform="matrix(-487.36,0,0,-292.48,1280,325.12)"
+         id="image4"
+         clip-path="url(#clipPath5)" />
+    </g>
+    <g
+       id="g5">
+      <path
+         id="path6"
+         d="m 482.52,137.67 h 76.62 v 4.77 l 9.54,-9.54 -9.54,-9.54 v 4.77 h -76.62 z"
+         style="fill:#4472c4;fill-opacity:1;fill-rule:evenodd;stroke:#2f528f;stroke-width:0.96;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
+         transform="matrix(1.3333333,0,0,-1.3333333,0,379.84)" />
+    </g>
+    <g
+       id="g6">
+      <text
+         id="text6"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,780.09333,343.392)"
+         clip-path="url(#clipPath7)"><tspan
+           style="font-style:italic;font-variant:normal;font-weight:normal;font-size:15.96px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 6.2084398 12.72012 20.923559 24.59436 32.271118 35.878078 40.554359 48.757801 55.31736 60.472439 68.65992 74.134201 77.98056 85.928642 89.599442 95.073723 102.7824 110.98584 119.10948 122.8122 128.28648 135.99516 144.19859 147.75768 153.1362 161.33965 166.81392 175.01736 181.09811 186.47664 190.17937 196.37184 199.97881 208.18224 214.82159 220.1682 228.37164 236.49529 240.198 244.0284 249.40692 257.61035 265.73401 271.20828 277.41672 282.76331 286.48199 294.66949 299.53729 303.14423 310.82101 319.02444 327.14807 330.8508 339.05423"
+           y="0"
+           sodipodi:role="line"
+           id="tspan6">scale factor = required thrust / actual thurst of engine</tspan></text>
+    </g>
+    <g
+       id="g7">
+      <text
+         id="text7"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,784.89333,369.024)"
+         clip-path="url(#clipPath8)"><tspan
+           style="font-style:italic;font-variant:normal;font-weight:normal;font-size:15.96px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 7.3256402 14.26824 22.47168 30.59532 38.798759 46.427639 54.471481 59.849998 63.680401 67.383118 73.59156 77.10276 85.306198 92.935081 101.13852 108.7674 116.97084 125.11044 132.77124 140.81508 146.1936 150.024 158.21149 166.35107 170.18147 175.56 183.76344 191.39232 194.99928 202.11745 210.24107 215.71536 219.46596 227.6694 235.79305 239.49576 247.15656 250.85928 256.01437 264.20184 267.87265 276.07608 283.70496 287.31192 293.52036 300.03204 308.23547 311.90628 319.58304"
+           y="0"
+           sodipodi:role="line"
+           id="tspan7">exponent is dependent on the variable to be scaled</tspan></text>
+    </g>
+    <g
+       id="g8">
+      <text
+         id="text8"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,75.264,37.053333)"
+         clip-path="url(#clipPath9)"><tspan
+           style="font-variant:normal;font-weight:700;font-size:18.024px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 8.7957125 18.4746 27.017977 31.45188 41.130768 50.268936 53.98188 67.40976 71.843666 78.097992 87.776878 91.778206 101.45709 110.25281 116.38097 125.28482 132.47639 141.34421 147.59854 151.41962 160.32349 170.00237 179.7173 183.68259 193.36147 202.49963 210.03368"
+           y="0"
+           sodipodi:role="line"
+           id="tspan8">Engine with dataset and deck</tspan></text>
+    </g>
+    <g
+       id="g9">
+      <text
+         id="text9"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,788.34667,37.053333)"
+         clip-path="url(#clipPath10)"><tspan
+           style="font-variant:normal;font-weight:700;font-size:18.024px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 8.7957125 18.4746 27.017977 31.45188 41.130768 50.268936 53.98188 67.40976 71.843666 78.097992 87.776878 91.778206 98.969788 107.87364 122.52715 131.59323 135.45036 145.12924 153.92496 160.05312 168.95697 176.14856 185.1245 191.37883 195.09178 203.99564 213.67451 223.38945 227.35474 237.03363 246.1718 253.70583 262.35733 266.21448 276.32596 288.09561 296.92737 301.10895 314.53683 318.97073 325.22507 334.90393"
+           y="0"
+           sodipodi:role="line"
+           id="tspan9">Engine with same dataset and deck BUT with </tspan></text>
+    </g>
+    <g
+       id="g10">
+      <text
+         id="text10"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,788.34667,65.893333)"
+         clip-path="url(#clipPath11)"><tspan
+           style="font-style:italic;font-variant:normal;font-weight:700;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 7.092 14.4 23.903999 28.332001 37.169998 41.237999 46.799999 56.304001 63.720001 69.713997 79.199997"
+           y="0"
+           sodipodi:role="line"
+           id="tspan10">scale factor</tspan></text>
+    </g>
+    <g
+       id="g11">
+      <text
+         id="text11"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,902.46667,58.693333)"
+         clip-path="url(#clipPath12)"><tspan
+           style="font-style:italic;font-variant:normal;font-weight:700;font-size:12px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 5.6399999 11.148 17.507999 23.832001 30.216 36.108002 42.335999"
+           y="0"
+           sodipodi:role="line"
+           id="tspan11">exponent</tspan></text>
+    </g>
+    <g
+       id="g12">
+      <text
+         id="text12"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,600.29333,149.34667)"
+         clip-path="url(#clipPath13)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 10.422 19.872 29.375999 33.462002 41.616001"
+           y="0"
+           sodipodi:role="line"
+           id="tspan12">Apply </tspan></text>
+    </g>
+    <g
+       id="g13">
+      <text
+         id="text13"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,661.25333,149.34667)"
+         clip-path="url(#clipPath14)"><tspan
+           style="font-style:italic;font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 6.1739998 15.354 24.606001 33.858002 42.462002 48.636002 52.776001 61.380001 70.632004 79.884003 84.024002 93.222 101.826"
+           y="0"
+           sodipodi:role="line"
+           id="tspan13">rubber engine </tspan></text>
+    </g>
+    <g
+       id="g14">
+      <text
+         id="text14"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,600.29333,178.14667)"
+         clip-path="url(#clipPath15)"><tspan
+           style="font-style:italic;font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 7.3260002 16.559999 25.812 33.119999 41.723999 50.886002 56.916"
+           y="0"
+           sodipodi:role="line"
+           id="tspan14">concept </tspan></text>
+    </g>
+    <g
+       id="g15">
+      <text
+         id="text15"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,681.89333,178.14667)"
+         clip-path="url(#clipPath16)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 12.87 16.92 22.950001"
+           y="0"
+           sodipodi:role="line"
+           id="tspan15">with</tspan></text>
+    </g>
+    <g
+       id="g16">
+      <text
+         id="text16"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,92.192,176.54667)"
+         clip-path="url(#clipPath17)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 6.0300002 15.48 24.93 30.834 37.674"
+           y="0"
+           sodipodi:role="line"
+           id="tspan16">thurst</tspan></text>
+    </g>
+    <g
+       id="g17">
+      <text
+         id="text17"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,156.38667,223.26667)"
+         clip-path="url(#clipPath18)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 8.2620001 17.712 26.747999 30.834 35.009998 40.5 44.639999 53.964001"
+           y="0"
+           sodipodi:role="line"
+           id="tspan17">Fuel flow</tspan></text>
+    </g>
+    <g
+       id="g18">
+      <text
+         id="text18"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,179.65333,135.93333)"
+         clip-path="url(#clipPath19)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18.024px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 11.931888 19.916519 28.892471 34.804344 43.43784 47.529289 51.602711 55.676136 65.138733 71.158752 80.134705 87.21814 94.265518 103.72812 109.78419 118.76014 122.83356 128.74544 137.27078 143.30882 147.34621"
+           y="0"
+           sodipodi:role="line"
+           id="tspan18">Overall pressure ratio</tspan></text>
+    </g>
+    <g
+       id="g19">
+      <text
+         id="text19"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,326.17333,243.65333)"
+         clip-path="url(#clipPath20)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 11.07 15.12 23.742001 38.124001 47.088001 52.793999 61.757999"
+           y="0"
+           sodipodi:role="line"
+           id="tspan19">Diameter</tspan></text>
+    </g>
+    <g
+       id="g20">
+      <text
+         id="text20"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,232,278.496)"
+         clip-path="url(#clipPath21)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan20">…</tspan></text>
+    </g>
+    <g
+       id="g21">
+      <text
+         id="text21"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,865.62667,191.06667)"
+         clip-path="url(#clipPath22)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 6.0300002 15.48 24.93 30.834 37.674"
+           y="0"
+           sodipodi:role="line"
+           id="tspan21">thurst</tspan></text>
+    </g>
+    <g
+       id="g22">
+      <text
+         id="text22"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,888.61333,240.16)"
+         clip-path="url(#clipPath23)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 8.2620001 17.712 26.747999 30.834 35.009998 40.5 44.639999 53.964001"
+           y="0"
+           sodipodi:role="line"
+           id="tspan22">Fuel flow</tspan></text>
+    </g>
+    <g
+       id="g23">
+      <text
+         id="text23"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,895.58667,154.17333)"
+         clip-path="url(#clipPath24)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 11.916 19.926001 28.889999 34.812 43.433998 47.574001 51.605999 55.674 65.124001 71.171997 80.136002 87.227997 94.265999 103.77 109.764 118.728 122.796 128.718 137.23199 143.26199 147.312"
+           y="0"
+           sodipodi:role="line"
+           id="tspan23">Overall pressure ratio</tspan></text>
+    </g>
+    <g
+       id="g24">
+      <text
+         id="text24"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,1034.08,215.33333)"
+         clip-path="url(#clipPath25)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0 11.07 15.12 23.742001 38.124001 47.088001 52.793999 61.757999"
+           y="0"
+           sodipodi:role="line"
+           id="tspan24">Diameter</tspan></text>
+    </g>
+    <g
+       id="g25">
+      <text
+         id="text25"
+         xml:space="preserve"
+         transform="matrix(1.3333333,0,0,1.3333333,965.14667,280.256)"
+         clip-path="url(#clipPath26)"><tspan
+           style="font-variant:normal;font-weight:normal;font-size:18.024px;font-family:Calibri;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"
+           x="0"
+           y="0"
+           id="tspan25">…</tspan></text>
+    </g>
+  </g>
+</svg>
diff --git a/docs/documentation/sizing/propulsion_design/figures/xml_output.PNG b/docs/documentation/sizing/propulsion_design/figures/xml_output.PNG
new file mode 100644
index 0000000000000000000000000000000000000000..c0a4774fb2e1cdc88aa3f7e693667ccc93cf1558
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/xml_output.PNG
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ac1643468287a3ba1a8701c4d6de1c0c0a08f7abefaf1602abacf5fe4e69c9ac
+size 82271
diff --git a/docs/documentation/sizing/propulsion_design/getting-started.md b/docs/documentation/sizing/propulsion_design/getting-started.md
new file mode 100644
index 0000000000000000000000000000000000000000..e3c3978e89432a2340c37ec2f8fc8e5edcc79873
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/getting-started.md
@@ -0,0 +1,252 @@
+# Getting started {#getting-started}
+This guide will show you the basic usage of **propulsion_design**. Following steps are necessary (if you are new to UNICADO check out the [settings and outputs](#settingsandoutputs) first!)
+
+## Step-by-step
+
+It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build-instructions/build/cpp.md)).
+
+1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#acXML))
+2. Fill out the configuration file - change at least:
+    - in `control_settings`
+        - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings
+        - `console_output` at least to `mode_1`
+        - `plot_output` to false (or define `inkscape_path` and `gnuplot_path`)
+    - in `program_settings`
+        - `path_engine_database` to your respective settings
+        - `propulsion/nacelle/profile` and `pylon/profile` to `propulsion_design/test/stubs` directory
+3. Open terminal and run **propulsion_design**
+
+Following will happen:
+- you see output in the console window
+- a HTML report is created in the directory of `aircraft_exchange_file_directory` (no plots of engine if they are turned off)
+- results are saved in the `/aircraft_exchange_file/component_design/propulsion`
+
+!!! note
+    The dummy does not include geometry data for e.g. fuselage or wing. Therefore the positioning of the engine will not work and warnings are expected in the output.
+
+## Settings and outputs {#settingsandoutputs}
+Generally, we use 2 files to set or configure in UNICADO:
+
+- the aircraft exchange file (or _acXML_) includes
+    - data related inputs (e.g. thrust-to-weight ratio, MTOM, average bleed and shaft offtakes or type of engine)
+    - data related outputs (e.g. engine position)
+- the configuration file `propulsion_design_conf.xml` (also _configXML_) includes
+    - control settings (e.g. enable/disable generating plots)
+    - program settings (e.g. set technology factors or methods)
+
+### Aircraft exchange file
+!!! note
+    _acXML_ is an exchange file - we agreed on that only data will be saved as output which is needed by another tool!
+
+**Inputs**:
+Following is needed from the _acXML_:
+
+1) the total required thrust using the thrust-to-weight ratio and MTOM,
+2) the average system off-takes for the bucket-curve,
+3) the user settings of the propulsion architecture.
+
+The propulsion design tool is based on the overall thrust or power the propulsion needs to be designed for. The thrust_share input divides the overall thrust to the single propulsors. In the first run of the UNICADO workflow, the tool _initialSizing_ estimates the thrust-to-weight-ratio for this. Afterwards, the tool _constraint_analysis_ updates the thrust to weight ratio by calculation the performance values using actual aircraft data. This assures the total thrust is sufficient to certification boundary conditions. With the thrust-to-weight ratio, which is calculated for the sea level static thrust, the propulsors are designed.
+
+The sea level static thrust $T_0$ is given by:
+
+$ T_0 = \frac{T}{W} \cdot MTOM $
+
+Where:
+
+- $T_0$ is the sea level static thrust.
+- $\frac{T}{W}$  is the thrust-to-weight ratio (specified as `/aircraft_exchange_file/sizing_point/thrust_to_weight`).
+- $MTOM$ is the maximum takeoff mass (specified as `/aircraft_exchange_file/analysis/masses_cg_inertia/maximum_takeoff_mass`).
+
+!!! note
+    This might change with new propulsion architectures!
+
+The most important parameter is the thrust-to-weight-ratio. Another input are the average system off-takes. Current engined provide power to different systems and therefore, the thrust specific consumption will increase. To include that, the nodes `average_bleed_air_demand` and `average_bleed_air_demand` in `/aircraft_exchange_file/component_design/systems/specific/` are read (is set to default values if not existing).
+
+Additionally, the user settings need to be defined. In the node `/aircraft_exchange_file/requirements_and_specifications/design_specification`, both `energy_carriers` and `propulsion` need to be filled out (for more information on the variables, please read the description in the _acXML_).
+
+```plaintext
+Energy Carriers
+|- Energy Carrier (ID=0)
+|  |- Type
+|  |- Density
+Propulsion
+|- Propulsor (ID=0)
+|  |- Powertrain
+|  |- Type
+|  |- Position
+|  |  |- Parent Component
+|  |  |- X
+|  |  |- Y
+|  |  |- Z
+|  |- Energy Carrier ID
+|  |- Thrust Share
+```
+Let's assume you want to design an aircraft with 5 engine - 2 on each side of the wing and one in the empennage. Additionally, you want to use 3 energy carriers: hydrogen, kerosene and battery-electric.
+For that, you need to define 3 energy carriers with each a type and a density with $ID=[0,1,2]$. Then you create 5 propulsor nodes with $ID=[0,...,4]$ and assign them each a powertrain, type, ..., and thrust share. E.g. Engine 0 shall be a kerosene-powered turbofan in the empennage with a thrust share of $10\%$. Then it has the position with `parent_component=empennage`, `x=front`, `y=mid`, `z=in`. If the type of the energy carrier with ID=0 is set to kerosene, you need to assign `energy_carrier_id=0`. Also `powertrain=turbo`, `type=fan`, and `thrust_share=0.1`. Then Engine 1 could be a hydrogen-powered turboprop located under the left front inner wing with a thrust share of $25\%$. Then it has the position with `parent_component=wing`, `x=front`, `y=left`, `z=under`. If the type of the energy carrier with ID=1 is set to hydrogen, you need to assign `energy_carrier_id=1`. Also `powertrain=turbo`, `type=prop`, and `thrust_share=0.25`. The same procedure needs to be done for the other 3 engines.
+
+**Outputs**: The results are saved in the _acXML_ node `/aircraft_exchange_file/component_design/propulsion`.
+
+```plaintext
+Propulsion
+|- Position
+|- Mass Properties
+|- Specific
+|  |- Propulsion (ID=0)
+|  |  |- Nacelle (ID=0)
+|  |  |  |- Origin
+|  |  |  |- Normal
+|  |  |  |- Mass Properties
+|  |  |  |- Sections
+|  |  |  |  |- Section (ID=0)
+|  |  |  |  |  |- Origin
+|  |  |  |  |  |- Width
+|  |  |  |  |  |- Height
+|  |  |  |  |  |- Profile
+|  |  |- Pylon
+|  |  |  |- Position
+|  |  |  |- Normal
+|  |  |  |- Mass Properties
+|  |  |  |- Sections
+|  |  |  |  |- Section (ID=0)
+|  |  |  |  |  |- Origin
+|  |  |  |  |  |- Chord Length
+|  |  |  |  |  |- Geometric Twist
+|  |  |  |  |  |- Profile
+|  |  |- Engine
+|  |  |  |- Engine Model
+|  |  |  |- Position
+|  |  |  |- Mass Properties
+|  |  |  |- Scale Factor
+|  |  |  |- Bucket Point
+|  |  |  |  |- Thrust
+|  |  |  |  |- TSFC
+
+```
+To shorten the visualization, the nodes `mass`, `inertia` and `center_of_gravity`in `mass_properties` are excluded. For more information, please read their description.
+
+### Configuration file
+
+The control settings are standardized in UNICADO and will not be described in detail here. The program settings are structured like this (descriptions are in the `propulsion_design_conf.xml`):
+```plaintext
+Program Settings
+|- Method
+|  |- Engine Designer
+|  |- Nacelle Designer
+|  |- Pylon Designer
+|  |- Propulsion Integrator
+|  |- Mass Analyzer
+|- Path Engine Database
+|- Technology Factors
+|  |- Engine Mass
+|  |- Nacelle Mass
+|  |- Pylon Mass
+|  |- Engine Efficiency
+|- Propulsion (ID=Default)
+|  |- Engine
+|  |  |- Empirical
+|  |  |  |- BPR
+|  |  |- Rubber
+|  |  |- GasTurb
+|  |- Nacelle
+|  |  |- Profile
+|  |- Pylon
+|  |  |- Profile
+|  |- Integration
+```
+You can choose the method for each discipline, the path for your engine data base, and different technology factors. To be highlighted, is the `Propulsion ID=Default` node. This is a default for all engines defined in the _acXML_ (see next paragraph). E.g. if you define 3 engines for an aircraft, all will use the same assumptions in the default setting. In case you want that the 3. engine is been calculated with e.g. another method, you can create a new `propulsion` node and assign the same `ID` value as set for the _acXML_ `ID`.
+
+## Minimal required aircraft exchange file input {#acXML}
+
+```xml
+<aircraft_exchange_file>
+    <requirements_and_specifications>
+        <general description="General aircraft information">
+            <type description="Aircraft type">
+                <value>Test</value>
+            </type>
+            <model description="Model - Version">
+                <value>Test</value>
+            </model>
+        </general>
+        <design_specification description="Design specification">
+            <configuration description="Configuration information">
+                <configuration_type description="aircraft configuration: tube_and_wing / blended_wing_body">
+                    <value>tube_and_wing</value>
+                </configuration_type>
+            </configuration>
+            <energy_carriers description="Energy carriers information">
+                <energy_carrier ID="0" description="One specific energy carrier">
+                    <type description="Energy type: kerosene / liquid_hydrogen / battery / saf (for multifuel engine create new ID)">
+                        <value>kerosene</value>
+                    </type>
+                    <density description="Energy carrier density">
+                        <value>790</value>
+                        <unit>kg/m^3</unit>
+                        <lower_boundary>50</lower_boundary>
+                        <upper_boundary>1000</upper_boundary>
+                    </density>
+                </energy_carrier>
+            </energy_carriers>
+            <propulsion description="Propulsion information">
+                <propulsor ID="0" description="Information for specific propulsor">
+                    <powertrain description="Way the power is generated from the source: turbo, electric, fuel_cell">
+                        <value>turbo</value>
+                    </powertrain>
+                    <type description="Type of main thrust generator: fan or prop">
+                        <value>fan</value>
+                    </type>
+                    <position description="propulsor position (arrangement order acc to ID order)">
+                        <parent_component description="position on component: wing, fuselage, empennage">
+                            <value>wing</value>
+                        </parent_component>
+                        <x description="x-position (aircraft coordinate system): front or back">
+                            <value>front</value>
+                        </x>
+                        <y description="y position (aircraft coordinate system): left or right">
+                            <value>right</value>
+                        </y>
+                        <z description="z position (aircraft coordinate system): over, mid, under, in">
+                            <value>under</value>
+                        </z>
+                    </position>
+                    <energy_carrier_ID description="see energy carrier specification node">
+                        <value>0</value>
+                        <unit>1</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>5</upper_boundary>
+                    </energy_carrier_ID>
+                    <thrust_share description="Share of this thrust in relation to required aircraft thrust">
+                        <value>1</value>
+                        <unit>0</unit>
+                        <lower_boundary>0.0</lower_boundary>
+                        <upper_boundary>1.0</upper_boundary>
+                    </thrust_share>
+                </propulsor>
+            </propulsion>
+        </design_specification>
+    </requirements_and_specifications>
+    <sizing_point>
+        <thrust_to_weight description="Total thrust (kN) divided by maximum aircraft weight (kN)" tool_level="1">
+            <value>0.33</value>
+            <unit>1</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>1</upper_boundary>
+        </thrust_to_weight>
+    </sizing_point>
+    <analysis>
+        <masses_cg_inertia description="masses, cgs, inertias." tool_level="0">
+            <maximum_takeoff_mass description="MTOM">
+                <mass_properties description="maximum takeoff mass properties">
+                    <mass description="mass">
+                        <value>77000</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                </mass_properties>
+            </maximum_takeoff_mass>
+        </masses_cg_inertia>
+    </analysis>
+</aircraft_exchange_file>
+```
+The nodes `requirements_and_specifications\general` and `design_specification\configuration` are not needed by **propulsion_design**. However, the library _moduleBasics_ requires them.
\ No newline at end of file
diff --git a/docs/documentation/sizing/propulsion_design/index.md b/docs/documentation/sizing/propulsion_design/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..294ef495f334caec1406841a18c5b97016127b55
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/index.md
@@ -0,0 +1,30 @@
+# Introduction {#mainpage}
+The tool _propulsion_design_ is one of the core design tools in UNICADO. The overall goal is the design the propulsion system based on...
+
+- the architecture (e.g. 2 turbofan at rear fuselage, 4 fuel cell prop engine over the front wing) set by the user and,
+- the total required thrust and system off-takes calculated within the aircraft design loop.
+The propulsion is one of the critical components in the aircraft design loop. It provides the thrust or power, enabling powered flight of the aircraft letting it move through the skies.
+
+There are different propulsion architectures for the aircraft conceptual design process. To give you a general taste, here are a few illustrations of possible concepts.
+![](figures/different_engines.svg)
+
+The [getting started](getting-started.md) gives you a first insight in how to execute the tool and how it generally works. To understand how the tools works in more detail, the documentation is split into a [engineering principles](engineering_principles.md) and a [software architecture](software_architecture.md) section.
+
+Prior to that, let's summarize what the tool can currently do and what is planned (terms like _method_ or _strategy_ will be explained in the sections):
+
+| Engine type                  | Methods (engine design/ nacelle design/ pylon design/ integrator/ mass analysis )  | Status     |
+|------------------------------|------------------------------------------------------|------------|
+|kerosene-powered turbofan     |Rubber(V2527-A5)/ Default/ Default/ Default/ Default  |running     |
+|hydrogen-powered turbofan     |Rubber(V2527-H2)/ Default/ Default/ Default/ Default  |to be tested|
+|kerosene-powered turboprop    |  |strategy integrated, but methods missing |
+|hydrogen-powered turboprop    |  |strategy integrated, but methods missing |
+
+Order:
+
+    1. engine designer
+    2. nacelle designer
+    3. pylon designer
+    4. propulsion integrator
+    5. mass analyzer
+
+So let's get started!
diff --git a/docs/documentation/sizing/propulsion_design/overview.md b/docs/documentation/sizing/propulsion_design/overview.md
new file mode 100644
index 0000000000000000000000000000000000000000..6815d2e21b0edde71882b0ba32f673a8e69159c0
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/overview.md
@@ -0,0 +1,138 @@
+# Overview {#mainpage}
+The propulsion_design tool provides the engine data and the engine integration on the aircraft.
+
+As a first step, the user inputs must be specified. This is done in the aircraftXML file in the following way:
+
+- `propulsor ID`: Information for the specific propulsor
+    - `Powertrain`: Way the power is generated from the source. Selector: turbo
+    - `Type`: Type of main thrust generator. Selector: fan
+    - `energy_carrier ID`: See energy carrier specification node
+    - `thrust_share`: Share of this thrust in relation to required aircraft thrust
+    - `position`: Propulsor position (arrangement order acc to ID order)
+        - `parent_component`: Position on component. Selector: wing / fuselage / empennage
+        - `x`: X-position (aircraft coordinate system). Selector: front / back
+        - `y`: Y-position (aircraft coordinate system). Selector: left / right
+        - `z`: Z-position (aircraft coordinate system). Selector: over / mid / under / in
+
+
+Further inputs can be specified in the propulsion design configuration file:
+
+> The following settings are specified in the `aircraftXML` file:
+>
+> ```xml
+> <control_settings>...</control_settings> <!-- Paths and settings -->
+> <program_settings> <!-- Settings specific to propulsion design -->
+>     <method> <!-- Choose the implementation method of each design domain -->
+>         <engine_designer>Empirical</engine_designer> <!-- Selector: Empirical / Rubber -->
+>     </method>
+>     <path_engine_database>...</path_engine_database> <!-- Path to the database with existing engine decks -->
+>     <technology_factors> <!-- Improve or decrease performance -->
+>         <engine_mass>...</engine_mass>
+>         <nacelle_mass>...</nacelle_mass>
+>         <pylon_mass>...</pylon_mass>
+>         <engine_efficiency>...</engine_efficiency>
+>     </technology_factors>
+>     <repositioning>...</repositioning> <!-- Shifting the engine center position -->
+>
+>     <propulsion ID="..."> <!-- ID specific settings -->
+>         <Empirical_Settings>...</Empirical_Settings>
+>         <Rubber_Method_Settings>
+>             <engine_model_name>...</engine_model_name>
+>         </Rubber_Method_Settings>
+>         <nacelle_geometry>...</nacelle_geometry>
+>         <pylon_geometry>...</pylon_geometry>
+>     </propulsion>
+> </program_settings>
+> ```
+
+With the settings the propulsion design calculation can be started.
+
+The main steps of the methodology are shown in the following figure:
+
+![](figures/propulsion_design_flow.png)
+
+Required inputs for propulsion design are therefore:
+
+    - The thrust to weight ratio (First from initial_sizing sizing then from constraint_analysis).
+    - The MTOW of the aircraft.
+    - The type of propulsors and the according thrust share.
+
+With this the engines are designed one by one with the following approach:
+
+![](figures/engine_sizing.png){html: width=600}
+
+The outputs are the engine xml file and the different deck values as csv files. They are saved in thr projects directory. Further output is saved in the aircraft xml because other tools of the UNICADO tool chain need it. An example of this output is shown below.
+
+> The following settings define propulsion-specific parameters in the `aircraftXML` file:
+>
+> ```xml
+> <propulsion ID="0"> <!-- Define the propulsion system -->
+>     <model>...</model> <!-- Name of the engine -->
+>     <position> <!-- Position in global coordinates -->
+>         <x>...</x>
+>         <y>...</y>
+>         <z>...</z>
+>     </position>
+>     <mass_properties> <!-- Mass properties -->
+>         <mass>...</mass>
+>         <cog>...</cog> <!-- Center of gravity -->
+>         <inertia>...</inertia>
+>     </mass_properties>
+>     <SLST>...</SLST> <!-- Static sea-level thrust -->
+>     <scale_factor>...</scale_factor> <!-- Scale factor for this engine -->
+>     <bucket_point> <!-- Performance adjustments -->
+>         <thrust>...</thrust>
+>         <tsfc>...</tsfc> <!-- Thrust specific fuel consumption -->
+>     </bucket_point>
+>     <pylon>...</pylon> <!-- Pylon specific data -->
+>     <nacelle>...</nacelle> <!-- Nacelle details -->
+> </propulsion>
+> ```
+
+
+Readout of the engine data can and should only be done using the engine library!
+The engine data is provided in two formats. The engine xml file and the csv files that contain the engine deck.
+The engine xml has values that are constant for a given engine:
+
+> The following structure defines the engine design conditions in the `EngineDataFile`:
+>
+> ```xml
+> <EngineDataFile>
+>     <EngineDesignCondition Desc="Flight Condition for creating the bucket curve">
+>         <flightAltitude Desc="Flight altitude for bucket curve" Unit="ft">35000</flightAltitude>
+>         <flightMachNumber Desc="Mach number for bucket curve" Unit="-">0.78</flightMachNumber>
+>         <thrust Desc="Thrust at design point, ISA (value from source)" Unit="kN">19</thrust>
+>         <SLST Desc="Sea level static thrust measured at SL, Mach 0, ISA (value from source)" Unit="kN">120.43</SLST>
+>         <MCT Desc="Maximum continuous thrust measured at SL, Mach 0, ISA (value from source)" Unit="kN">117.18</MCT>
+>     </EngineDesignCondition>
+> </EngineDataFile>
+> ```
+The csv files contain engine data that depends on the operating point. The operating point is defined as
+
+    - Flight Mach number
+    - Flight altitude
+    - Low pressure spool speed / power setting
+
+An example is shown in the following figure.
+
+![](figures/deck_example.PNG)
+
+The data is readout by the engine library which has an efficient parser for the deck values using a linear interpolation between two existing deck values. Penalties, like shaft power offtake or bleed air offtake, are applied using the engine library. The scale factor is applied according to the exact scaling mechanism for the value needed.
+The detailed description of the engine library can be found [here](../../libraries/engine/index.md).
+
+## Scaling Principle
+
+The underlying principle is the scaling of the mass flow with constant velocities. The following scaling is done using the scale factor (SF):
+
+Scaled Value = Base Value * \( SF^{X} \)
+
+- **Thrust:**       X=1
+- **Fuel Flow:**    X=1 → TSFC remains constant
+- **Diameter:**     X=0.5
+- **Weight:**       X=1.1
+- **Length:**       X=0.4
+- **LTO Fuel Flow:** X=1
+- **LTO Emissions:** 0
+- **Mass Flow:**    X=1
+- **Max bleed:**    X=1
+- **Max shaft offtake:** X=1
\ No newline at end of file
diff --git a/docs/documentation/sizing/propulsion_design/software_architecture.md b/docs/documentation/sizing/propulsion_design/software_architecture.md
new file mode 100644
index 0000000000000000000000000000000000000000..72a6ae7be3c1cae2cd3beff6eb161b3d57f5633a
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/software_architecture.md
@@ -0,0 +1,35 @@
+# Software architecture {#softwarearchitecture}
+
+## Software Architecture Overview
+
+The software architecture is structured into various modules and packages, each handling specific task. Below is a description of the main components (some classes, interfaces etc. are left out to keep it understandable for now - for more information see the [class diagram](figures/class_diagram.png) or the source code):
+
+- classes:
+    - **propulsionDesign** is like the "coordinator" responsible for the overall propulsion system design including _initialize_, _run_, _update_, _report_ and _save_ (inherits from `Module` class from **moduleBasics**). These include e.g. method selection function for each disciplines
+    - **Propulsion** represents a generic propulsion system defining the detailed attributes and functionalities like setter and getter for e.g. dimensions (`template` class parameterized by `EnergyCarrier`).
+    - **Turbofan** and **Turboprop** specializes engine type specific attributes and functions like `bypass_ratio()` for a turbofan (inherits from `Propulsion` class)
+- domains:
+    - **report** manages the generation of plots and HTML reports from the **propulsion_design** data
+    - **design** includes the strategies for **engine designer** and **propulsion integrator** into the aircraft, covering different propulsion types and configurations.
+    - **geometry** includes the strategies for **nacelle designer** and **pylon designer**.
+    - **mass** includes the strategies for **mass analyzer**
+    - **io** manages the in- and outputs for the _acXML_ and _engineXML_ (the XML structure changed in the past and this ensures that it is compatible with all versions)
+- packages/libraries:
+    - **moduleBasics** provides the basis structure for the modular approach of the UNICADO tools. The tools are intended to follow the _Strategy Design Pattern_ to execute at different fidelity levels (more information see libraries)
+- interfaces:
+    - **propulsionStrategy** populates the _Strategy Design Pattern_ for **propulsion_design** including the template and the specification methods.
+
+Some additional words on the **propulsionStrategy**:
+
+As you might also see in the [class diagram](figures/class_diagram.png), the core of it is the function `operator()` for specific engine types to allow the `engine` object to be used as functions. This object is, depending on the user settings, based on the propulsion type classes (e.g. `Turbofan<Kerosene>`). The type is combined with 3 "building blocks"
+
+ - *powertrain*: Way the power is generated from the source: turbo, electric, fuel_cell
+ - *type*: Type of main thrust generator: fan or prop
+ - *energy_carrier*: kerosene, liquid_hydrogen, battery (handled over IDs)
+
+So, if you want to use different combinations in UNICADO, you need to make sure that they are properly handled throughout the strategy!
+
+## Class Diagram {#classdiagram}
+Here is an overview how the module is structured:
+
+![](figures/class_diagram.png){html: width=1000}
diff --git a/docs/documentation/sizing/systems_design/figures/architecture_definition.png b/docs/documentation/sizing/systems_design/figures/architecture_definition.png
new file mode 100644
index 0000000000000000000000000000000000000000..1d4cdee8bd627d5787e7906e7a2c6154b90a1e85
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/figures/architecture_definition.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3687f3d702b3868c912308710ec8b8073dce13c91cba891f2cc5eb1a6ea0c93e
+size 358537
diff --git a/docs/documentation/sizing/systems_design/figures/flow-chart.jpg b/docs/documentation/sizing/systems_design/figures/flow-chart.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0df96210e7c8fdcee6b0be8cbc5cbe7a9c795b64
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/figures/flow-chart.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a86a864efa6b6c0d2470356b5a120a775c93846a18d836b2ba8192e8b8c499f7
+size 102740
diff --git a/docs/documentation/sizing/systems_design/figures/flow-chart.png b/docs/documentation/sizing/systems_design/figures/flow-chart.png
new file mode 100644
index 0000000000000000000000000000000000000000..1c41c0133f6c366ef85ab50604f6e1c6e1f82cdf
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/figures/flow-chart.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0b85bb2ad751ce11c792d122003d517cda5fad9225c0853f98f75e0f8e70de12
+size 225796
diff --git a/docs/documentation/sizing/systems_design/figures/mission-power-ATA70.png b/docs/documentation/sizing/systems_design/figures/mission-power-ATA70.png
new file mode 100644
index 0000000000000000000000000000000000000000..6c2a21bfa6a2a4dbf6dfd6b2a797bb87dd99e747
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/figures/mission-power-ATA70.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:24539c7f351fc6500674d1ccf7344870c6fbd08fb373ce56be8f18c6791cfc28
+size 20578
diff --git a/docs/documentation/sizing/systems_design/figures/overall_structure.png b/docs/documentation/sizing/systems_design/figures/overall_structure.png
new file mode 100644
index 0000000000000000000000000000000000000000..71f3b86407448c275a34b587c71167b2942761db
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/figures/overall_structure.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:398f273adfdba339b09c6c0065a14e73449c71875a74219ac447efcb76f9edb1
+size 88200
diff --git a/docs/documentation/sizing/systems_design/figures/power_summation.png b/docs/documentation/sizing/systems_design/figures/power_summation.png
new file mode 100644
index 0000000000000000000000000000000000000000..a9b56546555d66f9dddd7a17d2ef36e101b6d578
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/figures/power_summation.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7297a649219b9a489d5c81663e5202e5a71c22b282ade9bef184328669a7416a
+size 40510
diff --git a/docs/documentation/sizing/systems_design/figures/system-masses.png b/docs/documentation/sizing/systems_design/figures/system-masses.png
new file mode 100644
index 0000000000000000000000000000000000000000..bec6e5747e1766ac205b09b7eb0b228309abf754
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/figures/system-masses.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:26c86112cca64c0f9941b3768d16d1819b71689fd5d8a5013d15266a0398a05f
+size 61957
diff --git a/docs/documentation/sizing/systems_design/figures/system_class.png b/docs/documentation/sizing/systems_design/figures/system_class.png
new file mode 100644
index 0000000000000000000000000000000000000000..dcf23ed224cfd5d2ec6fa82a61c9fbf561c079a4
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/figures/system_class.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f600b523e02851af0e9a7e8cb371cf87aaa54fe39bb810671a6bcdb942c8d3de
+size 55656
diff --git a/docs/documentation/sizing/systems_design/getting-started.md b/docs/documentation/sizing/systems_design/getting-started.md
new file mode 100644
index 0000000000000000000000000000000000000000..e5eafe9228110e694a013b5cbdb37e4c1886da34
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/getting-started.md
@@ -0,0 +1,203 @@
+# Getting Started
+This guide will show you how to use **systems_design**.
+
+## Step-by-step
+
+It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build-instructions/build/cpp.md)).
+
+1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#settings-and-outputs))
+2. Fill out the configuration file - change at least:
+    - in `control_settings`
+        - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings
+        - `console_output` at least to `mode_1`
+        - `plot_output` to false or make sure gnuplot can be found (`gnuplot_path`)
+3. Open terminal and run **systems_design**
+
+The following will happen:
+- you see output in the console window
+- a HTML report is created in the directory of `aircraft_exchange_file_directory` (no plots if they are turned off)
+- results are saved in the _acXML_ file
+
+!!! note
+    An A320-like system architecture is implemented in the provided default config file. This architecture and its system parameters will be used if you make no other changes to the config file than those stated in 2. or just run the workflow without adapting the config file of systems_design.
+
+## Settings and outputs {#settings-and-outputs}
+
+Three input files are required for **systems_design**:
+
+- the aircraft exchange file (or _acXML_) with values for the following areas:
+    - paths to mission files
+    - overall masses (MTOM, OME, MME, wing loading)
+    - performance data (maximum operating velocity, maximum operating mach number, maximum operating altitude, design range)
+    - landing gear
+    - wing
+    - empennage
+    - fuselage
+    - nacelles
+    - tank
+    - propulsion
+    - number of flight and cabin crew
+- the configuration file `systems_design_conf.xml` (or _configXML_) includes
+    - control settings (e.g. enable/disable generating plots)
+    - program settings (e.g. define system architecture, set parameters for individual systems)
+- the mission file (`design_mission.xml`, `study_mission.xml` or `requirement_mission.xml`) is required since **systems_design** calculates the required system power for each mission step.
+
+!!! note
+    When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway.
+
+!!! note
+    _acXML_ is an exchange file - we agreed on that only data will be saved as output which is needed by another tool!
+
+**systems_design** has three modes, which are explained [here](software_architecture.md#run) in more detail. The mode can be selected in `module_configuration_file/program_settings/mission_mode` and defines which mission file is used for the calculation of the required power (design, study or requirement mission). For the design mission the systems are also sized, i.e. their masses are calculated.
+
+## Defining the System Architecture
+![](figures/architecture_definition.png)
+
+The system architecture is defined in the _configXML_ of systemsDesign in the node `module_configuration_file/program_settings/aircraft_systems`. Here the systems are grouped into consumer (or sink) systems, conducting systems, and source systems. (This grouping is also used during calculation.) Energy sinks are systems that consume energy. The environmental control system is considered separately to iterate between the heat created by the systems and the sizing of the environmental control system. Energy sources provide energy. Energy conductors conduct electric or hydraulic energy or bleed air. Virtual systems are used for adding systems that will not be designed (for example if there are no sizing methods implemented for this system). For each group the number of systems in the group is defined, followed by the individual system description. A minimal example of the architecture definition is given below.
+
+```xml
+<aircraft_systems>
+    <energy_sinks>
+        <number_of_sinks description="Number of energy sinks">
+            <value>1</value>
+            <default>20</default>
+        </number_of_sinks>
+        <system ID="0">
+            <system_description description="Type of furnishing system">
+                <value>conventionalFurnishing</value>
+            </system_description>
+            <operating_switch description="Switch whether the system is operated. Switch: true (on) / false (off, mass is determined anyway!)">
+                <value>true</value>
+                <default>true</default>
+            </operating_switch>
+        </system>
+    </energy_sinks>
+    <environmental_control_system>
+        <system_description Unit="-" description="Type of environmental control system (ECS)">
+            <value>conventionalECS</value>
+        </system_description>
+        <operating_switch description="Switch whether the system is operated. Switch: true (on) / false (off, mass is determined anyway!)">
+            <value>true</value>
+            <default>true</default>
+        </operating_switch>
+    </environmental_control_system>
+    <energy_sources>
+        <number_of_sources description="Number of energy sources">
+            <value>1</value>
+            <default>1</default>
+        </number_of_sources>
+        <system ID="0">
+            <system_description description="Type of propulsion system">
+                <value>conventionalPropulsion</value>
+            </system_description>
+            <operating_switch description="Switch whether the system is operated. Switch: true (on) / false (off, mass is determined anyway!)">
+                <value>true</value>
+                <default>true</default>
+            </operating_switch>
+        </system>
+    </energy_sources>
+    <energy_conductors>
+        <number_of_conductors description="Number of energy conductor systems">
+            <value>2</value>
+            <default>3</default>
+        </number_of_conductors>
+        <system ID="0">
+            <system_description description="Type of system">
+                <value>BleedAirSystem</value>
+            </system_description>
+            <operating_switch description="Switch whether the system is operated. Switch: true (on) / false (off, mass is determined anyway!)">
+                <value>true</value>
+                <default>true</default>
+            </operating_switch>
+        </system>
+		<system ID="1">
+            <system_description description="Type of system">
+                <value>ElectricSystem</value>
+            </system_description>
+            <operating_switch description="Switch whether the system is operated. Switch: true (on) / false (off, mass is determined anyway!)">
+                <value>true</value>
+                <default>true</default>
+            </operating_switch>
+        </system>
+    </energy_conductors>
+    <virtual_systems>
+        <number_of_virtual_systems description="Number of energy systems">
+            <value>0</value>
+            <default>0</default>
+        </number_of_virtual_systems>
+    </virtual_systems>
+</aircraft_systems>
+```
+
+By including or excluding these systems, you can choose which systems are implemented. By default the following systems are included in the architecture (name for configXML given in brackets):
+
+- energy sinks:
+    - [conventional furnishing system](systems.md#ata-25-furnishing-system) (conventionalFurnishing)
+    - [conventional fuel system](systems.md#ata-28-fuel-system) (conventionalFuel)
+    - [conventional ice and rain protection system](systems.md#ata-30-ice-and-rain-protection-system) (conventionalIceRainProtection)
+    - [conventional lighting system](systems.md#ata-33-lighting-system) (conventionalLighting)
+    - [conventional fire protection system](systems.md#ata-26-fire-protectrion-system) (conventionalFireProtection)
+    - [conventional oxygen system](systems.md#ata-35-oxygen-system) (conventionalOxygenSystem)
+    - [conventional landing gear system](systems.md#ata-32-landing-gear-system) (conventionalGear)
+    - [conventional flight control system](systems.md#ata-27-flight-control-system) (conventionalFlightControl)
+    - [remaining consumer systems](systems.md#ata-xx-remaining-consumers) (reminingConsumers)
+- [environmental control system](systems.md#ata-21-environmental-control-system) (conventionalECS)
+- energy sources:
+    - [conventional propulsion](systems.md#ata-70-engine) (conventionalPropulsion)
+    - [conventional APU](systems.md#ata-49-auxiliary-power-unit-apu) (conventionalAPU)
+- energy conductors:
+    - [bleed air system](systems.md#ata-36-bleed-air-system) (BleedAirSystem)
+    - [hydraulic system](systems.md#ata-29-hydraulic-system) (HydraulicSystem)
+    - [electric system](systems.md#ata-24-electric-system) (ElectricSystem)
+
+Some systems have several implementations (e.g. ATA30 has a conventional and an electric implementation). Which one is used is specified by the node `system_description`. Sticking to the ATA30 example, the conventional implementation would be set like this:
+```xml
+<system ID="2">
+	<system_description description="Type of system ice and rain protection system (conventional or electrical)">
+		<value>conventionalIceRainProtection</value>
+	</system_description>
+	<operating_switch description="Switch whether the system is operated 1: on, 0: off (the mass is also determined for a switched off system!)">
+		<value>1</value>
+		<default>1</default>
+	</operating_switch>
+</system>
+```
+To include an electrical ice and rain protection system `system_description/value` can be changed to `electricalIceRainProtection`. **Important**: The name must match those expected by `standardSystemsDesign::initializeSystems()`.
+
+Additionally, [system-specific parameters](systems.md) can be set in the node `<system_constants>` of the _configXML_. Apart from the specific parameters, a power source is defined for each system. One or more power sources can be defined to power the system. The operation factor of each power source defines the percentage of power it delivers. The type defines the energy type (hydraulic, electric, bleed). The source ID refers to the conductor system, not to the power source itself. This means that in the example below the system is power 100% through the electric conductor system 1.
+
+```xml
+<shaft_power_sources description="Sources for possible existing shaft power consumption">
+	<number_of_power_sources description="Number of power sources">
+		<value>1</value>
+	</number_of_power_sources>
+	<power_source ID="0" description="system description of the power source">
+		<operation_factor description="Percentage of performance provided by this source">
+			<value>1.0</value>
+			<unit>-</unit>
+		</operation_factor>
+		<type description="Type of power source (Hydraulic, Electric, Engine, APU)">
+			<value>Electric</value>
+		</type>
+		<source_ID description="ID of the energy source">
+			<value>1</value>
+		</source_ID>
+	</power_source>
+</shaft_power_sources>
+```
+
+**systems_design** offers scaling factors for each system so you can calibrate the system masses. The scaling factors can be set in the _configXML_ at `/module_configuration_file/program_settings/scaling_factors`. The masses of the systems are then multiplied by this factor.
+
+## Output
+**systems_design** will generate a report containing system masses (if run in sizing mode) and the electric, hydraulic and bleed air power profile over the mission for each system. Additionally, the section `systems` of the component design in the _acXML_ is updated (if **systems_design** was run in design mode) and the bleed air and shaft power offtakes from the engine for each mission step are written to the mission file (for any mode).
+
+Here are some examples of what you can expect to see in the report:
+
+![](figures/system-masses.png){width=500}
+
+The mission power shown here is for the propulsion unit. It is negative since the propulsion unit provides power instead of requiring it. Additionally to the plots displayed in the report, csv-files with the plot data can be found in the project folder: `reporting/plots/csv_files`.
+
+![](figures/mission-power-ATA70.png)
+
+!!! note
+    Some systems will not show anything in these graphs. That means they do not require power (e.g. [oxygen system](systems.md#ata-35-oxygen-system)). The graph of the [APU](systems.md#ata-49-auxiliary-power-unit-apu) is also empty because it is only sized for ground operations and those are not considered in the mission shown in these graphs.
\ No newline at end of file
diff --git a/docs/documentation/sizing/systems_design/index.md b/docs/documentation/sizing/systems_design/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..5626aa42c94878814badc216d3f476969691a6c1
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/index.md
@@ -0,0 +1,24 @@
+# Introduction {#mainpage}
+The systems design module calculates the mass and power requirement of the aircraft onboard systems. The current version supports a conventional power supply architecture shown in the picture below. An update that will allow other power sources is on its way :construction:.
+
+![](figures/overall_structure.png)
+
+ The systems are divided according to the ATA chapters. Models for the following systems exist:
+
+* [ATA 21: Environmental Control System](systems.md#ata-21-environmental-control-system)
+* [ATA 24: Electric System](systems.md#ata-24-electric-system)
+* [ATA 25: Furnishing System](systems.md#ata-25-furnishing-system)
+* [ATA 26: Fire Protectrion System](systems.md#ata-26-fire-protectrion-system)
+* [ATA 27: Flight Control System](systems.md#ata-27-flight-control-system)
+* [ATA 28: Fuel System](systems.md#ata-28-fuel-system)
+* [ATA 29: Hydraulic System](systems.md#ata-29-hydraulic-system)
+* [ATA 30: Ice and Rain Protection System](systems.md#ata-30-ice-and-rain-protection-system)
+* [ATA 32: Landing Gear System](systems.md#ata-32-landing-gear-system)
+* [ATA 33: Lighting System](systems.md#ata-33-lighting-system)
+* [ATA 35: Oxygen System](systems.md#ata-35-oxygen-system)
+* [ATA 36: Bleed Air System](systems.md#ata-36-bleed-air-system)
+* [ATA 49: Auxiliary Power Unit (APU)](systems.md#ata-49-auxiliary-power-unit-apu)
+* [ATA 70: Engine (only used to account for power extraction efficiencies of the engine)](systems.md#ata-70-engine)
+* [ATA XX: Remaining Consumers](systems.md#ata-xx-remaining-consumers)
+
+[Getting Started](getting-started.md) will show you how to define the system architecture. The settings and calculation methods for the individual aircraft systems are explained in [Systems](systems.md) or you can follow one of the links above directly to the system. If you want to know how the systems design module works have a look at the [Software Architecture](software_architecture.md).
diff --git a/docs/documentation/sizing/systems_design/literature.bib b/docs/documentation/sizing/systems_design/literature.bib
new file mode 100644
index 0000000000000000000000000000000000000000..db647ab1e8c72751c4ef4a5ad04d997119635d0c
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/literature.bib
@@ -0,0 +1,374 @@
+%%% BOOKS %%%
+
+@book{Ray18,
+ author = {Raymer, Daniel P.},
+ year = {2018},
+ title = {{Aircraft Design: A Conceptual Approach}},
+ edition = {6.},
+ publisher = {{American Institute of Aeronautics and Astronautics}},
+ isbn = {978-1-62410-574-6},
+ address = {Washington, DC, United States},
+ series = {AIAA education series}
+}
+@book{Bre91,
+  title		= {{Hydrogen Aircraft Technology}},
+  author	= {Brewer, G. D.},
+  year		= 1991,
+  publisher	= {CRC Press, Inc.},
+  address   = {Boca Raton, Florida, United States},
+  isbn		= {0-8493-5838-8}
+}
+
+@book{Bre91,
+  title		= {{Hydrogen Aircraft Technology}},
+  author	= {Brewer, G. D.},
+  year		= 1991,
+  publisher	= {CRC Press, Inc.},
+  address   = {Boca Raton, Florida, United States},
+  isbn		= {0-8493-5838-8}
+}
+
+@book{Jen99,
+  title		= {{Civil Jet Aircraft Design}},
+  author	= {Jenkinson, L. R. and Simpkin, P. and Rhodes, D.},
+  year		= 1999,
+  publisher	= {Arnold},
+  address   = {London, Great Britain},
+  isbn		= {978-0340741528}
+}
+
+@book{Rou07,
+  title		= {{Turbofan and Turbojet Engines - Database Handbook}},
+  author	= {Roux, E.},
+  year		= 2007,
+  publisher	= {Editions Elodie Roux},
+  address   = {Blagnac, France},
+  isbn		= {0978-2-9529380-0-6}
+}
+
+@book{Tor13,
+  title		= {{Advanced Aircraft Design}},
+  author	= {Torenbeek, E.},
+  year		= 2013,
+  publisher	= {John Wiley \& Sons Ltd},
+  address   = {Chichester, United Kingdom},
+  isbn		= {9781119969303}
+}
+
+@book{Sch16,
+  title		= {{Air Transport System}},
+  author	= {Schmitt, D. and Gollnick, V.},
+  year		= 2016,
+  publisher	= {Springer Verlag},
+  address   = {Vienna, Austria},
+  isbn		= {3709118794}
+}
+
+@book{Tim89,
+ author = {Timmerhaus, K. D. and Flynn, T. M.},
+ year = {1989},
+ title = {{Cryogenic Process Engineering}},
+ publisher = {{Springer US}},
+ isbn = {978-1-4684-8758-9},
+ address = {Boston, Massachusetts},
+ doi = {10.1007/978-1-4684-8756-5}
+}
+
+@book{Tor82,
+  title		= {{Synthesis of Subsonic Airplane}},
+  author	= {Torenbeek, E.},
+  year		= 1982,
+  publisher	= {Delft University Press},
+  address   = {Delft, Netherlands},
+  isbn		= {90-247-2724-3}
+}
+
+@book{Gud14,
+  title		= {{General Aviation Aircraft Design}},
+  author	= {Gudmundsson, S.},
+  year		= 2014,
+  publisher	= {Butterworth-Heinemann},
+  address   = {Oxford, UK},
+  isbn		= {9780123973085},
+  doi 		= {10.1016/B978-0-12-397308-5.12001-X}
+}
+
+@book{Ros89,
+  title		= {{Airplane Design: Part V, Component Weight Estimation}},
+  author	= {Roskam, J.},
+  year		= 1990,
+  publisher	= {Roskam Aviation and Engineering Corporation},
+  address   = {Ottawa, KS},
+  isbn		= {978-1884885242}
+}
+
+%%% JOURNAL ARTICLES %%%
+@Article{Res79,
+  Author = "E. Reshotko",
+  Title = {{Drag Reduction by Cooling in Hydrogen-Fueled Aircraft}},
+  Journal = "Journal of Aircraft",
+  Year = "1979",
+  Volume = "16",
+  Number = "9",
+  Pages = "584-590"
+}
+
+@article{Bra17,
+author = {Braun-Unkhoff, M. and Riedel, U. and Wahl, C.},
+title = {{About the Emissions of Alternative Jet Fuels}},
+journal = {CEAS Aeronautical Journal},
+volume = {8},
+pages = {167-180},
+year = {2017}
+}
+
+
+@article{Ver10,
+ author = {Verstraete, D. and Hendrick, P. and Pilidis, P. and Ramsden, K.},
+ year = {2010},
+ title = {{Hydrogen Fuel Tanks for Subsonic Transport Aircraft}},
+ pages = {11085--11098},
+ volume = {35},
+ journal = {International Journal of Hydrogen Energy},
+ doi = {10.1016/j.ijhydene.2010.06.060},
+ number = {20}
+}
+
+@article{Ver13,
+title = {{Long Range Transport Aircraft using Hydrogen Fuel}},
+author = {Verstraete, D.},
+journal = {International Journal of Hydrogen Energy},
+volume = {38},
+number = {34},
+pages = {14824-14831},
+year = {2013}
+}
+
+@article{Ver15,
+title = {{On the Energy Efficiency of Hydrogen-Fuelled Transport Aircraft}},
+author = {Verstraete, D.},
+journal = {International Journal of Hydrogen Energy},
+volume = {40},
+number = {23},
+pages = {7388–7394},
+year = {2015}
+}
+
+@article{Win18,
+ author = {Winnefeld, C. and Kadyk, T. and Bensmann, B. and Krewer, U. and Hanke-Rauschenbach, R.},
+ year = {2018},
+ title = {{Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications}},
+ pages = {105},
+ volume = {11},
+ journal = {Energies},
+ doi = {10.3390/en11010105},
+ number = {1}
+ }
+
+%%% CONFERENCE PAPERS %%%
+@Inproceedings{God16,
+  Author = "Godula-Jopek, A. and Westenberger, A.",
+  Title = {{Hydrogen-Fueled Aeroplanes}},
+  Booktitle = "Compendium of Hydrogen Energy",
+  Year = "2016"
+}
+
+@Inproceedings{Tro20,
+  Author = "F. Troeltsch and M. Engelmann and F. Peter and J. Kaiser and M. Hornung and A. E. Scholz",
+  Title = {{Hydrogen Powered Long Haul Aircraft with Minimized Climate Impact}},
+  Booktitle = {"Proc AIAA AVIATION 2020 FORUM"},
+  Year = "2020",
+  Address = {Virtual Event},
+  Organization = "AIAA Aviation Forum"
+}
+
+@Inproceedings{Sil20,
+  Author = "D. Silberhorn and J. Hartmann and N. M. Dzikus and G. Atanasov and T. Zill and U. Brand and J. C. Gomez Trillos and M. Oswald and T. Vogt and D. Wilken and W. Grimme",
+  Title = {{The Air-Vehicle as a Complex System of Air Transport Energy Systems}},
+  Booktitle = {"Proc AIAA AVIATION 2020 FORUM"},
+  Year = "2020",
+  Address = {Virtual Event},
+  Organization = "AIAA Aviation Forum"
+}
+
+%%% PHD DISSERTATIONS %%%
+
+@phdthesis{Joh17,
+ author = {Johanning, A.},
+ year = {2017},
+ title = {{A Method for the Environmental Life Cycle Analysis during Conceptual Aircraft Design [Methodik zur {\"O}kobilanzierung im Flugzeugvorentwurf]}},
+ school = {{Technical University of Munich}},
+ address = {Munich, Germany}
+}
+
+@phdthesis{Sch18,
+ author = {Schäfer, K.},
+ year = {2018},
+ title = {{Conceptual Aircraft Design for Sustainability}},
+ school = {{RWTH Aachen University}},
+ address = {Aachen, Germany}
+}
+
+@phdthesis{Jac09,
+ author = {Jackson, A. J. B.},
+ year = {2009},
+ title = {{Optimisation of Aero and Industrial Gas Turbine Design for the Environment}},
+ school = {{Cranfield University}},
+ address = {Cranfield, United Kingdom}
+}
+
+@phdthesis{Dob08,
+ author = {Dobrev, Y.},
+ year = {2008},
+ title = {{Initial Sizing von Airlinern mit Jet- und Turbopropellerantrieb}},
+ school = {{RWTH Aachen University}},
+ address = {Aachen, Germany}
+}
+
+@phdthesis{Koe06,
+ author = {Koeppen, C.},
+ year = {2006},
+ title = {{Methodik zur modellbasierten Prognose von Flugzeugsystemparametern im Vorentwurf von Verkehrsflugzeugen}},
+ school = {{RWTH Aachen University}},
+ address = {Aachen, Germany}
+}
+
+@phdthesis{Lam14,
+ author = {Lammering, T.},
+ year = {2014},
+ title = {{Integration of Aircraft Systems into Conceptual Design Synthesis}},
+ school = {{RWTH Aachen University}},
+ address = {Aachen, Germany}
+}
+
+%%% MASTER THESES %%%
+@mastersthesis{Kos20,
+ author = {Kossarev, K.},
+ year = {2020},
+ title = {{Extension of an Aircraft Design Environment for the Design and Life Cycle Assessment of a Long Range Hydrogen Aircraft}},
+ school = {Technical University of Munich},
+ address = {Munich, Germany}
+}
+
+@mastersthesis{Man21,
+ author = {Mangold, J.},
+ year = {2021},
+ title = {{Economical Assessment of Hydrogen Short-Range Aircraft with the Focus on the Turnaround Procedure}},
+ school = {University of Stuttgart},
+ address = {Stuttgart, Germany}
+}
+
+@mastersthesis{Bue14,
+ author = {Buente, C.},
+ year = {2014},
+ title = {{Analyse von elektrischen Betriebslasten am Beispiel eines Airbus A320 im Hinblick auf die Auslegung der Bordnetze zukünftiger Flugzeugkonfigurationen}},
+ school = {RWTH Aachen},
+ address = {Aachen, Germany}
+}
+
+@mastersthesis{Ste10,
+ author = {Steinke, T.},
+ year = {2010},
+ title = {{Entwicklung einer Methodik zur Modellierung und Analyse von Systemstrukturen im Flugzeugvorentwurf}},
+ school = {RWTH Aachen},
+ address = {Aachen, Germany}
+}
+
+%%% TECHNICAL REPORTS %%%
+
+@techreport{DENA19,
+    title = {{Powerfuels in Aviation}},
+    author = {D. Rojas and K. Crone and S. Löchle and S. Sigmund},
+    number = {Global Alliance Powerfuels},
+    address = {Berlin, Germany},
+    month        = 9,
+    year = {2019},
+    institution = {Deutsche Energie-Agentur GmbH (dena)}
+}
+
+@techreport{GRR11,
+    title = {{Sustainable Aviation Fuels Road Map: Data Assumptions and Modelling}},
+    author = {P. Graham and L. Reedman and L. Rodriguez and J. Raison and A. Braid and V. Haritos and T. Brinsmead and J. Hayward and J. Taylor and D. O’Connell},
+    address = {Newcastle, Australia},
+    month        = 5,
+    year = {2011},
+    institution = {CSIRO}
+}
+
+@techreport{IEA19,
+    title = {{The Future of Hydrogen: Seizing today's opportunities}},
+    author = {{International Energy Agency}},
+    month        = 6,
+    year = {2019},
+    institution = {International Energy Agency}
+}
+
+@techreport{NASA76,
+    title = {{NASA CR-144937: Development of weight and cost estimates for lifting surfaces with active controls}},
+    author = {{R. D. Anderson and C. C. Flora and R. M. Nelson and E. T. Raymond and J. H. Vincent}},
+    year = {1976},
+    institution = {NASA}
+}
+
+
+%%% OTHER %%%
+
+@Misc{Tho13,
+  Title = {{DOC-Assessment Method}},
+  Author = "J. Thorbeck and D. Scholz",
+  Year = "2013",
+  Month = "September",
+  Note = "[Presentation] 3rd Symposium on Collaboration in Aircraft Design, Linköping, Sweden. \url{https://www.fzt.haw-hamburg.de/pers/Scholz/Aero/TU-Berlin_DOC-Method_with_remarks_13-09-19.pdf} [Accessed: 22/07/2020]"
+}
+
+@Misc{Jen01,
+  Title = {{Butterworth-Heinemann - Civil Jet Aircraft Design - Aircraft Data File - Airbus Aircraft}},
+  Author = " L. Jenkinson and P. Simpkin and D. Rhodes",
+  Year = "2001",
+  Note = "\url{https://booksite.elsevier.com/9780340741528/appendices/data-a/table-1/table.htm} [Accessed: 14/06/2021]"
+}
+
+@Misc{Ber09,
+  Title = {{Survey on Standard Weights of Passengers and Baggage}},
+  Author = "Z. Berdowski and F. N. van den Broek-Serlé and J. T. Jetten and Y. Kawabata and J. T. Schoemaker and R. Versteegh",
+  Year = "2009",
+  Note = "\url{https://www.easa.europa.eu/sites/default/files/dfu/Weight\%20Survey\%20R20090095\%20Final.pdf} [Accessed: 14/06/2021]"
+}
+
+@Misc{Gro09,
+ author = {Groening, S.},
+ year = {2009},
+ title = {{Systemmodell Hochauftrieb - Modellierung der Systemkomponenten und Abschätzung der Einflüsse auf das Gesamtsystem Flugzeug}},
+ school = {RWTH Aachen},
+ address = {Aachen, Germany}
+}
+
+@Misc{Fre11,
+ author = {Freund, R.},
+ year = {2011},
+ title = {{Entwicklung eines Modells eines Flügelenteisungssystems}},
+ school = {RWTH Aachen},
+ address = {Aachen, Germany}
+}
+
+@Misc{Cha10,
+ author = {Chavez},
+ year = {2010},
+ title = {{Semesterarbeit}},
+ school = {RWTH Aachen},
+ address = {Aachen, Germany}
+}
+
+@Misc{SAE04,
+  Title = {{SAE AIR1168/4: Ice, Rain, Fog, and Frost Protection}},
+  Author = "SAE",
+  Year = "2004",
+  Note = "\url{https://www.sae.org/standards/content/air1168/4/} [Accessed: 15/06/2023]"
+}
+
+@Misc{Sch04,
+  Title = {{Skript: Auslegung von Flugzeugsystemen}},
+  Author = "Scholz, D.",
+  Year = "2004",
+  School = "RWTH Aachen"
+}
\ No newline at end of file
diff --git a/docs/documentation/sizing/systems_design/software_architecture.md b/docs/documentation/sizing/systems_design/software_architecture.md
new file mode 100644
index 0000000000000000000000000000000000000000..b223af1cf5d875c03e954366f355f68761bee543
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/software_architecture.md
@@ -0,0 +1,70 @@
+# Systems Design Software Architecture 
+If you are interested in how **systems_design** performs the system sizing and power requirment calculation, this page will give you an overview. The following UNICADO libraries are used:
+
+* atmosphere: determines atmospheric conditions at given altitudes
+* engine: access to engine data (max. available bleed air and shaft power)
+* aircraftGeometry2: used for geometry measurements
+* energyCarriers: accessing energy carrier information (e.g. densities)
+* aixml: handling of xml
+* moduleBasics: used for basic program functions
+* runtimeInfo: terminal outputs
+* unitConversion: converting units
+* standardFiles: file handling
+
+## Module Structure
+Currently **systems_design** only has one strategy - the `STANDARD` strategy implemented in `standardSystemsDesign.cpp`. In **systems_design** each system is represented by an instance of the class `aircraftSystem`. Its properties include the point mass and CoG of the system, the required power, and the heat load emitted by the system. Each aircraftSystem has functions for calculating these properties. The power of a system is not constant throughout the mission but calculated for each mission step. These values are stored in objects of the class `powerProfile`. This class stores the design power, used for system sizing, and the mission power. The mission power is further divided into the base load during this mission step and potential peak loads, e.g. resulting from the retraction or extension of the landing gear. Heat loads occurring due to energy losses in the systems are also calculated for each mission step and stored in a powerProfile.
+
+![](figures/system_class.png){width=500 style="display: block; margin: auto;"}
+
+If a new aircraftSystem is implemented, its header file has to be included in `standardSystemsDesign.cpp` and an else-if-statement calling its constructor according to the system name has to be added to `standardSystemsDesign::initializeSystems()`.
+
+## Calculation
+The calculation methodology is shown in this flow chart and explained in detail below.
+
+![](figures/flow-chart.png){width=400 style="display: block; margin: auto;"}
+
+#### Initialize
+The system design module starts with `standardSystemsDesign::initialize()` by initializing all aircraft systems using the user-provided data from the configuration file. The config file is read when the `data_` object is created. Additionally, required aircraft parameters from the aircraft exchange file are read. This includes geometry data (fuselage, nacelles, wing, empennage), propulsion data, mass and performance and accomodation data. This data are required for the power and mass calculations of specific systems. However, all data are read centrally by the `systemsIOData` class during initialization. Lastly checks for the user input and the geometry from the acxml are performed.
+
+!!! note 
+    **systems_design** considers the temperature offset to the International Standard Atmosphere (ISA) defined in the _acXML_. The resulting temperature changes in the atmospheric conditions are applied to the mission steps and affect the power demand and thus the mass properties of systems depending on atmospheric conditions ([environmental control system](systems.md#ata-21-environmental-control-system), [flight control system](systems.md#ata-27-flight-control-system), [ice and rain protection system](systems.md#ata-30-ice-and-rain-protection-system)).
+
+#### Run
+The strategy standard systems design contains three modes, which can be selected in the configuration file. The sizing mode calculates the required system power and based on that the system masses. The study and requirment mode can be used to calculate the required system power for different missions (either the study or requirments mission) and do not resize the systems (i.e., no mass calculation is performed).
+
+**Sizing Mode**
+
+First, the module calculates the performance profile of each system (with the function `standardSystemsDesign::calculatePerformanceProfile()`). This involves calling the respective power calculation function for each system in a specific order: consumer systems, the environmental control system (ECS), conducting systems, and source systems. The calculation order is crucial because the power requirements of consumer systems are necessary to calculate the conducting and source power. At first, the power profiles of all consumer systems are calculated (`standardSystemsDesign::getSinkEnergyConsumption()`) except for the ECS. It is treated separately because its power requirement depends on the heat loads generated by other systems, including conducting systems. Therefore, it is calculated later in the process.
+
+After each consumer system power calculation, the power is accumulated in a global power profile that stores the combined power requirement and heat loads of all consumer systems.
+
+![](figures/power_summation.png){width=400 style="display: block; margin: auto;"}
+
+Conductor systems can provide power to other conducting systems, e.g. through the conversion of electrical power to hydraulic power. The power used for these conversions is calculated next (with `transferElec2HydPower` (electric driven hydraulic pumps) and `transferHyd2ElecPower` (only for failure cases)) and stored in the global sink power profile.
+
+Next, an iteration loop is required because the ECS power requirement depends on the heat load of the sinks and conductors and the conducting power depends on the power requirement of the ECS. At the beginning of each loop the power profiles `data_->data.ECSConsumption` and `data_->data.conductorConsumption` are cleared from the values of the previous iteration loop and the global power profiles of the conductors are initialized (`data_->Systems.energyConductor`). In each iteration loop, the ECS power is calculated (`standardSystemsDesign::getECSEnergyConsumption()`) based on the heat loads of the consumer systems stored in the global sink power profile. The power requirements for conducting systems are then calculated or updated (`standardSystemsDesign::getConductorEnergyConsumption()`) to reflect the new ECS consumption, including any power transfers, such as from hydraulic to electrical power. The iteration continues until the average bleed load of the ECS converges. The convergence criterion is set to a difference of less than 10<sup>-4</sup> between iterations.
+
+After achieving convergence, the module calculates the power the sources (`standardSystemsDesign::getSourceEnergyConsumption()`) must provide based on the power profiles of the consumer and conductor systems and the ECS. The ECS is now moved to the vector containing the energy sinks (`data_->Systems.energySink`) and that containing all systems (`data_->Systems.allSystems`), since it can now be treated as an ordinary sink system. 
+
+Finally, with the power profiles established, the module calculates the mass of each system (`standardSystemsDesign::getSystemsMass()`) based on the design power requirements and specific characteristics of each system by calling the mass calculation method of each system. For virtual systems no method is called, rather the user definded values are copied from the configuration file. After the individual system masses are calculated, the function `weightsAndCGs::getWeights()` calculates the masses and CGs of system groups and the mass of some operator items. In UNICADO only the residual oil and fuel as well as water and toilet chemicals are considered part of the systems. Other operator items are calculated in fuselage design and mission analysis.
+
+!!! note
+    The currently implemented methods for the operator items (Torenbeek) do not calculate the residual oil mass!
+
+**Study Mode**
+
+This mode is used to calculate the power required by the systems during the study mission. The methodology is the same as for the sizing mode up until the calculation of system masses, which are skipped. However, the study mission file (`study_mission.xml`) is used instead of the design mission file (`design_mission.xml`). This means offtakes are written to the study mission file but no changes are made to the _acXML_ since the systems are not resized.
+
+**Requirements Mode**
+
+This mode is used to calculate the power required by the systems during the requirements mission. The methodology is the same as for the sizing mode up until the calculation of system masses, which are skipped. However, the requirement mission file (`requirement_mission.xml`) is used instead of the design mission file (`design_mission.xml`). This means offtakes are written to the requirements mission file but no changes are made to the _acXML_ since the systems are not resized.
+
+### Output
+#### Update
+The update section includes all updates to the aircraft exchange file and the mission file. If the sizing mode was run, the system masses in the aircraft exchange file are updated. Since the systems are considered as point masses in UNICADO the moments of inertia are set to zero. The function `systemsIOData::updateMassProperties()` updates the total mass of all systems and the operator items mass. The masses of the individual systems are updated by their classes, which all contain a function `updateXML()`. This way only the systems included in the architecture are written to the aircraft exchange file. 
+
+The function `systemsIOData::updateMissionXML()` updates all values calculated with the mission data (i.e., power requirements). This are mostly values in the `mission.xml` but can also include values in the aircraft exchange file.
+
+#### Report
+This section is used to create the plots and html and tex report of the module.
+Plots are generated using matplot++. Additionally, csv files with the plot data are written. More information on the outputs can be found [here](getting-started.md#output).
diff --git a/docs/documentation/sizing/systems_design/systems.md b/docs/documentation/sizing/systems_design/systems.md
new file mode 100644
index 0000000000000000000000000000000000000000..0ee3415fdd49e72766007aee453d167846ecf2fc
--- /dev/null
+++ b/docs/documentation/sizing/systems_design/systems.md
@@ -0,0 +1,388 @@
+# Implemented Aircraft System Models
+
+## ATA 21: Environmental Control System
+The environmental control system model implemented is powered by electric power and bleed air from the engines.
+
+**Methods**
+
+The power required by the environmental control system is calculated based on the heat loads of all systems, the heat from the sun and from the passengers. The ECO-Mode allows to reduce the required bleed air by 25%. Air conditioning is switched off during takeoff.
+
+The mass of the ECS depends on the bleed air mass flow in the design point. Calculation method from LTH and Howe. The mass is broken down into the components ducts, air conditioning pack, outlet, ram inlet, vents, and misc. according to factors determined by Koeppen[^1].
+
+The CoG of the ECS is determined with the assumption that its located in the belly fairing.
+
+**Required Input Parameters**
+
+* Airflow per PAX [kg/s]
+* Recirculation [-]: percentage of cabin air that is reused (0.0 - 1.0)
+* Heat Convection [W/(m^2*K)]: heat convection over aircraft skin (based on Airbus air conditioning system design)
+* Cabin Temperature [K]
+* Specific Heat Flow from Sun [W/m^2]
+* Window Area [m^2]: Area of a single window
+* Heat per PAX [W]: heat emitted per person
+* Heat per Light Length [W/m]
+* Efficiency Factor of the Air Conditioning Pack [-]
+* Heat Capacity Air [J/(kg*K)]
+* Off Take Off: Switch to turn of ACP during take off
+* ECO Mode: Switch for ECO Mode reduces bleed air requirement by 25%
+
+## ATA 24: Electric System
+
+**Methods**
+
+`CheckUserInput()` checks if generator sources exist.
+
+The required power of the electric system is the power lost through inefficiencies. The efficiency factor for the electric system and for the generators are considered.
+
+The mass calculation method from Steinke is based on the maximum required electric power and the cable length. The cable length is defined as 2*fuselage length (main bus from front to back, two bus systems) + connection of the engines to the avionics bay. A factor is applied to the mass depending on the design range of the aircraft (short or long range).
+
+**Required Input Parameters**
+
+* Efficiency Factor [-]
+* Maximum Relative Power [-]: ratio of maximum permanent power and maximum required power of all generators
+* Specific Cable Mass [kg/m]
+* Number of Electric Circuits [-]
+* Number of Generators [-]
+* For each Generator:
+    * name
+    * type (IDG, APUG, ...)
+    * source type (hydraulic, engine, APU)
+    * source ID
+    * efficiency
+    * operation factor (share of total power in normal operation)
+
+## ATA 25: Furnishing System
+
+Furnishing system includes the power required for the galleys and the inflight entertainment system (IFE). The mass of all furnishing is calculated in fuselage design and read from the aircraft exchange file.
+
+**Methods**
+
+Power calculation is done based on user inputs.
+
+!!! important
+    Because the mass of furnishing items is already calculated in **fuselage_design**, it is not changed in systems_design and there is no scaling factor available in systems_design to adapt this mass. If you wish to make adaptions, you can do this in [**fuselage_design**](../fuselage_design/getting_started.md/#accommodation-definitions).
+
+**Required Input Parameters**
+
+* Galley Load Fraction during Takeoff [-]:
+    Electric Load Analysis for A320 suggest a value of 0.2[^1]
+
+[^1]: Source documents are available in German and can be requested from the RWTH Aachen.
+
+* Galley Load Fraction during Cruise [-]:
+    Electric Load Analysis for A320 suggest a value of 0.7[^1]
+* Galley Load Fraction during Descent [-]:
+    Electric Load Analysis for A320 suggest a value of 0.2[^1]
+* Galley Location [m]
+* Non Personal IFE Power [W]: General power for IFE
+* Personal IFE Power [W]: Power for IFE per PAX
+* Personal IFE Load Fraction Climb [-]:
+    Electric Load Analysis for A320 suggest a value of 0.58[^1]
+* Personal IFE Load Fraction Cruise [-]:
+    Electric Load Analysis for A320 suggest a value of 1[^1]
+* Personal IFE Load Fraction Descent [-]:
+    Electric Load Analysis for A320 suggest a value of 0.5[^1]
+
+## ATA 26: Fire Protectrion System
+
+Does not require power!
+
+**Methods**
+
+Mass calculation is based on propulsion type and MTOM (Torenbeek Tab. 8-12).
+
+**Required Input Parameters**
+
+None.
+
+## ATA 27: Flight Control System
+
+The flight control system is modeled in great detail down to the individual actuators of the control surfaces. The calculation is devided into segments according to the control surfaces:
+
+* Ailerons
+* Spoilers
+* Elevators
+* Rudders
+* Trimmable Horizontal Stabilizers (THSAs)
+* Flaps
+* Slats
+
+The actuator architecture is defined by the user in the configuration file but the control surface geometry is read from the aircraft exchange file. The control surface geometry from the aircraft exchange file and the actuator architecture are checked against each other to make sure they match.
+
+**Methods**
+
+The function `setHorizontalContrSurfGeo` is used to read the geometry of horizontal control surfaces (e.g. ailerons, elevator) while the function `setRudderTemp` is used for the rudder. For the THSA there is a specialized function to read the geometry: `setTHSA_AsControlSurface`. These functions are used to calculate the area moment about the hinge line of each control surface and to determine the reference points of the actuators. This requires the geometry of the aerodynamic surface the control surfaces is mounted on and the geometry of the control surface itself, as well as the maximum deflection, deflection speed and number of actuators on the control surface.
+
+The design power of primary flight control surfaces is calculated based on the control surface geometry and hinge moment, the wing loading, and the maximum operating speed of the aircraft. The hinge moment is determined according to [NASA76] (equations on page 26).
+
+For the high lift system there's a separate class calculating the mass and power required (`class highLiftSystem`). This class and all other classes used for the calculation of the high lift system are in the folder src/aircraftSystems/highLiftSystem. The high lift devices are sorted into trailing edge and leading edge panels. For each device the actuation moments for the actuators, their work load and power are calculated. The mass consists of the masses of the actuation and support, the PCU, the wing tip brakes, the gear boxes, the torque shaft, and the torque limiters. The power consists of the actuation power and PCU power.
+
+There are two functions for the mission power allowing for detailed power calculation at each mission step or the calculation of the average mission power. Power calculation is the same as for the design power but with the flight speed at the given mission step.
+
+The mass of the primary flight control system is based on [NASA76, p. 42-48].
+
+**Required Input Parameters**
+
+There are some general inputs and then inputs for each control surface type. The general inputs are:
+
+* Switch whether loads for each mission step are calculated (otherwise average values)
+* Switch for electrical flight control system
+* Common installation weight factor [-]
+* Default actuator:
+    * Power Source (type and ID)
+    * Operation Mode (active, standby or damping during normal operation)
+    * Efficiency [-]
+    * Standby Power [W]
+    * Active Power [W]
+
+Specific inputs for each control surface type:
+
+* Weight Factor for Electric Flight Control System [-]
+  (This factor will only be applied if the switch for electric flight control system is set true!)
+* Switch if default actuator architecture should be used
+* Default Actuator Architecture:
+    * Number of Actuators per Control Surface [-]
+    * Default Deflection Speed [deg/s]
+* Manual Acturator Archtitecture:
+    * Number of Control Surfaces [-]
+    * For each Control Surface:
+        * Side (left or right)
+        * Deflection Speed [deg/s]
+        * Actuator Layout:
+            * Number of Actuators [-]
+            * For each actuator same parameters as for default actuator
+
+Acceptable control surface names are:
+
+* ailern / droop_aileron
+* spoiler_air / spoiler_ground
+* flap / slotted_flap / ADHF / fowler / double_fowler / triple_fowler / special / morphing_trailing_edge
+* slat / krueger / droop_nose / morphing_droop_nose / special
+
+**Note**: not all of these devices are implemented. If they aren't implemented a default will be used and a warning issued.
+
+## ATA 28: Fuel System
+
+**The fuel system does not contain the tank mass!**
+
+**Methods**
+
+The power of the electric powered pumps of the fuel system is calculated according to Buente, based on the MTOM.
+
+The mass of the fuel system is the mean value of the results from the Raymer and Torenbeek method. A technology factor of 0.7 is applied to the Raymer method.
+
+The CoG is assumed to be the same as that of the wing.
+
+**Required Input Parameters**
+
+None
+
+## ATA 29: Hydraulic System
+
+**Methods**
+
+`CheckUserInput()` checks if pump sources exist.
+
+The required power of the hydraulic system is the power lost through inefficiencies. The efficiency factor for the hydraulic system and for the pumps are considered.
+
+The mass calculation method from Steinke[^1] is based on the maximum required hydraulic power, the OME, the fluid mass and the ducting length. The ducting length is composed of the lengths from the engines to the belly fairing, the front gear to the back gear, 2 * the length of the wing trailing edge, 2 * the trailing edges of the horizontal and vertical tail plane. The total length is then doubled to account for the backflow.
+
+**Required Input Parameters**
+
+* Pressure [Pa]
+* Efficiency Factor [-]
+* Relative Maximum Power [-]: Ratio of maximum permanent power and maximum required power of all pumps
+* Specific Ducting Mass [kg/m]
+* Specific Pump Mass [kg/W]
+* Number of Hydraulic Circuits [-]
+* For each circuit:
+    * Compartment Reference Point [m]
+    * Number of Pumps [-]
+    * For each pump:
+        * Name
+        * Type (electric driven, enginge driven, RAT)
+        * Pump Efficiency [-]
+        * Operation Factor [-]: Percentage of total pump power in normal operation
+        * Power Source (type and ID)
+
+## ATA 30: Ice and Rain Protection System
+
+There are two implemented models for the ice and rain protection system - a conventional one powered by bleed air and an electric one.
+
+### Conventional ATA 30
+
+**Methods**
+
+Mass is calculated as a percentage of the OME defined by the user.
+
+Anti-Icing is typically applied from the kink of the wing and ends at the outer most leading edge device. If there are no leading edge devices the anti-icing is applied up until the wing tip. The system is design for the continuous maximum icing condition. The design altitude and design mach number are used to determine if there are icing conditions. The calculation of the liquid water content of the air is based on a method from CS-25 Appendix C (Figure 1). This method is valid between -30°C and 0°C. If the altitude's temperature lies outside of these boundaries (e.g. due to setting a delta temperature to the international standard atmosphere (ISA) in the _acXML_) the temperature is set to -30° or 0°, respectively. This ensures that the bleed air required by the anti-icing system is considered in the design loop. If there are icing conditions the external heat flux is calculated based on the water catch, the external heat transfer coefficient, the vapour pressure and from that the skin temperature. The required bleed air mass flow can then be calculated with the external heat flux, the inner skin temperature, the bleed air temperature, and the bleed air efficiency.
+
+**Required Input Parameters**
+
+* Switch to turn off anti-icing
+* Top Operating Altitude [m]
+* Engine Anti Ice Bleed Air Mass Flow [kg/s]
+* Skin Thickness [m]
+* Relative Half Span Width to Start Anti-Icing [-]
+* Heat Conductivity Wing [W/(m*K)]
+* Drop Diameter [micro meter]
+* Mass Percentage of OME [-]
+
+### Electric ATA 30
+
+Mass is calculated as a percentage of the OME defined by the user.
+
+**Methods**
+
+Same calculation for the external heat flux. From there the required electric power can be calculated with the electro thermic efficiency and the user defined electric power.
+
+**Required Input Parameters**
+
+Same as for conventional +
+
+* Electric Power Consumption Departure [W]:
+    Electric Load Analysis for A320 suggest a value of 14026.9 W[^1]
+* Electric Power Consumption Cruise [W]:
+    Electric Load Analysis for A320 suggest a value of 13070.9 W[^1]
+* Electric Power Consumption Approach [W]:
+    Electric Load Analysis for A320 suggest a value of 14026.9 W[^1]
+* Electric Power Consumption Land [W]
+    Electric Load Analysis for A320 suggest a value of 7192.9 W[^1]
+* Efficiency Electro Thermic Anti-Icing [-]
+
+## ATA 32: Landing Gear System
+
+**Methods**
+
+Mass based on MLM. **Important:** it needs to be checked if this is actually the landing gear actuation mass or the mass of the gear!
+
+The retraction and extension power are calculated based on the mass of the landing gear (read from aircraft exchange file), the strut length of the main gear, and the retraction/extension time.
+
+**Required Input Parameters**
+
+* Efficiency Factor [-]
+* Retraction Time [s]
+* Extension Time [s]
+* Power Source(s)
+
+## ATA 33: Lighting System
+
+**Methods**
+
+Mass calculation is based on MTOM [Sch04].
+
+Info:
+
+* A320 Landing Lights weights according to honeywell = 2 * 7.484kg
+* A320 LED Navigation Lights Goodrich Lighting Systems (green/red) = 2 * 0.408kg
+* A320 Logo Lights weights according to honeywell = 2 * 1.4kg
+
+CoG assumed at 45% fuselage length.
+
+The design electric power is calculated assuming all lights are on. For the mission power only the lights on in the respective mission steps are considered. Same for the heat load.
+
+**Required Input Parameters**
+
+* Navigation Light Power [W]
+* Rotating Beacon Light Power [W]
+* Wing Light Power [W]
+* Runway turn-off Light Power [W]
+* Taxi Light Power [W]
+* Landing Light Power [W]
+* Logo Light Power [W]
+* Strobe Light Power [W]
+* Specific Emergency Light Power [W/m^3]
+    Electric Load Analysis for A320 suggest a value of 1.46 W/m^3[^1]
+* Specific Cabin Light Power [W/m^3]
+    Electric Load Analysis for A320 suggest a value of 18.04 W/m^3[^1]
+* Flight Deck Light Power [W]
+    Electric Load Analysis for A320 suggest a value of 904.4 W[^1]
+* Power Sources
+
+## ATA 35: Oxygen System
+
+The oxygen system does not require power.
+
+**Methods**
+
+The mass is calculated according to Torenbeek based on the number of PAX and depending on the design range of the aircraft.
+
+**Required Input Parameters**
+
+None.
+
+## ATA 36: Bleed Air System
+
+**Methods**
+
+Mass results from ducting mass. The length of the ducts consists of the connectioin from the wing to the APU and the wing to the engines.
+
+CoG assumes the bleed air system is located in the belly fairing.
+
+Bleed air required by the bleed air system is based on the efficiency losses in the system. The heat load is calculated by converting the efficiency losses to heat.
+
+**Required Input Parameters**
+
+* Bleed Air Temperature [C]
+* Efficiency Factor [-]
+* Specific Ducting Mass [kg/m]
+
+## ATA 49: Auxiliary Power Unit (APU)
+
+The APU is the only power source sized within systems design. However, it is only operated on ground. Ground operations are not included in the mission analysis in UNICADO, thus, the kerosene required by the APU is neglected.
+
+**Methods**
+
+The APU mass is calculated based on its design power (bleed air is converted to [W] via the thermal efficiency) and considering the installation factor. The equation is a regression based on LTH data, developed by F. Peter.
+
+The power provided by the APU is calculated with the user defined percentages and efficiencies multiplied with the total required power of all systems.
+
+**Required Input Parameters**
+
+* Position of the APU relative to the fuselage length [-]
+* Percentage of bleed air generated by the APU [-]
+* Percentage of electric power generated by the APU [-]
+* Percentage of hydraulic power generated by the APU [-]
+* Bleed air efficiency factor [-]
+* Installation factor for attached parts such as fire protection, noise protection, etc. [-]
+* Percentages of power provided by APU for design case (bleed air, electric power, hydraulic power) [-]
+
+## ATA 70: Engine
+
+This model is only used to account for power extraction efficiencies of the engine. The engine is sized in the engine design module. The powere required by the systems from the engine is checked against the maximum power the engine can provide before updating the xml files. If at power peaks more power is required than available the less power over a longer amount of time will be written to the xml.
+
+**Methods**
+
+The efficiency factors for the shaft power extraction (electric + hydraulic power) are those defined for the generators and pumps.
+
+**Required Input Parameters**
+
+* Percentage of bleed air provided by the engine [-]
+* Percentage of electric power provided by the engine [-]
+* Percentage of hydraulic power provided by the engine [-]
+* Efficiency factor for the bleed air extraction [-]
+
+## ATA XX: Remaining Consumers
+
+The remaining consumers are the avionics and their power requirement is derived as a percentage of the power required by all other sink systems.
+
+**Methods**
+
+Power: Percentage * Power of previous systems.
+
+The mass is calculated according to Torenbeek p. 289. The method requires the maximum range, however that is not known yet by UNICADO at this point. Thus, the design range is used. The mass also depends on the OME and is multiplied by the user defined scaling factor.
+
+The CoG is calculated assuming the instruments are placed at the end of the cockpit segment and tthe auto flight system, navigation and communication are placed in the avionics bay located either in the nose for business jet-like AC or behind the cockpit segment for all other aircraft (this is defined by the user in the configuration file).
+
+**Required Input Parameters**
+
+* Location of the avionics bay (wing root, nose, behind cockpit)
+* Percentages of unrecorded power (bleed air, electric and hydraulic power) [-]
+* Scaling factor [-]
+* Mass percentage of ATA XX for instrumentation [-]
+* Mass percentage of ATA XX for auto flight [-]
+* Mass percentage of ATA XX for navigation [-]
+* Mass percentage of ATA XX for communication [-]
+
+### Additional Sources
+[^1] Source documents are available in German and can be requested from the RWTH Aachen.
\ No newline at end of file
diff --git a/docs/documentation/sizing/tank_design/figures/01_tank_locations.png b/docs/documentation/sizing/tank_design/figures/01_tank_locations.png
new file mode 100644
index 0000000000000000000000000000000000000000..c2cc414f0b16bb7ed554ff6c4d4ecc9b673c2b25
--- /dev/null
+++ b/docs/documentation/sizing/tank_design/figures/01_tank_locations.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4d5152eeb324b5666dfffe628b956420697ad3c7f38d46be64f787307e7eeac6
+size 461708
diff --git a/docs/documentation/sizing/tank_design/figures/02_obelisk.png b/docs/documentation/sizing/tank_design/figures/02_obelisk.png
new file mode 100644
index 0000000000000000000000000000000000000000..7bfae7fcfe2e1ffd3747a88291fc9a2b92f57fd1
--- /dev/null
+++ b/docs/documentation/sizing/tank_design/figures/02_obelisk.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8180364c165f4ea29a4f94929537b6a382da963534479c5b6852a08221708f24
+size 95118
diff --git a/docs/documentation/sizing/tank_design/figures/02_obelisk_simpson.png b/docs/documentation/sizing/tank_design/figures/02_obelisk_simpson.png
new file mode 100644
index 0000000000000000000000000000000000000000..7edbbfd88b9c73ad45c7fca69519f9efd9523f76
--- /dev/null
+++ b/docs/documentation/sizing/tank_design/figures/02_obelisk_simpson.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a234589ad0727ba7677ed0c07346529c09cf5934dab87f733f9718887c927705
+size 98402
diff --git a/docs/documentation/sizing/tank_design/figures/03_wing_box.png b/docs/documentation/sizing/tank_design/figures/03_wing_box.png
new file mode 100644
index 0000000000000000000000000000000000000000..bcf85aac341a882f4d5ba9ffe8bf37c2a8daf49c
--- /dev/null
+++ b/docs/documentation/sizing/tank_design/figures/03_wing_box.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f4630b20cccebfdd2eb1b6aee5265828b94653d0e650c6e971663294d36b85df
+size 86356
diff --git a/docs/documentation/sizing/tank_design/getting_started.md b/docs/documentation/sizing/tank_design/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..7933ecf90658d15be8f465d7782c28ab73fd2164
--- /dev/null
+++ b/docs/documentation/sizing/tank_design/getting_started.md
@@ -0,0 +1,316 @@
+# Getting started
+This section will guide you through the necessary steps to get the _tank\_design_ module up and running. It contains information on tool requirements and design parameters.
+
+- [Design method selection](#design-method-selection) - How to set the design method?
+- [Aircraft exchange file](#aircraft-exchange-file) - Get information on necessary parameters from the _acXML_.
+- [Tank design configuration](#configuring-tank-design-parameters-in-the-aircraft-exchange-file) - Learn about parameters used to set the tank configuration.
+- [Module configuration file](#module-configuration-file) - Dive into tank design specific parameters.
+- [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running?
+- [Next steps](#next-steps) - How to proceed?
+
+!!! note 
+    It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries.
+
+Generally, we use two files to set or configure modules in UNICADO:
+
+- The aircraft exchange file (or _acXML_) includes
+    - data related inputs (e.g., required energy, component design data) and
+    - data related outputs (e.g., tank positions).
+
+- The module configuration file `tank_design_conf.xml` (also _configXML_) includes
+    - control settings (e.g., enable/disable generating plots) and
+    - program settings (e.g., information on buffers).
+
+In the following sections you will find more information on how to configure these files to suit your needs.
+
+## Design method selection {#design-method-selection}
+The calculation method is automatically chosen based on the following data from the aircraft exchange and module configuration file:
+
+Parameter            | File          | Example <sup>*</sup>  |
+:--------------------|---------------|:----------------------|
+Configuration type   | _acXML_       | tube_and_wing         |
+Calculation fidelity | _configXML_   | empirical             |
+Method name          | _configXML_   | tank_design_tu_berlin |
+Energy carrier type  | _acXML_       | kerosene              |
+
+<sup>*</sup> This example defines a generic short and medium range tube-and-wing aircraft.
+
+Thus, it must be ensured that this data is available. More information on required data can be found in the following sections.
+
+## Aircraft exchange file requirements {#aircraft-exchange-file}
+To single execute the _tank\_design_ module, we need an _acXML_ file that already contains the output data from the following tools:
+
+- _wing\_design_
+- _empennage\_design_
+- _fuselage\_design_
+- _mission\_analysis_ <sup>*</sup>
+
+The following data should then be available in the _acXML_:
+
+1. Requirements and specifications
+    - Design specification
+        - Configuration information: Configuration type, tank definition ([see below](#configuring-tank-design-parameters-in-the-aircraft-exchange-file))
+        - Energy carrier(s)
+    - Requirements
+        - Top level aircraft requirements: Range (req. for design mission only)
+2. Analysis
+    - Mission energy (req. for design mission only): Consumed energy, energy carrier ID
+3. Component design: Geometrical data of
+    - Fuselage
+    - Wing
+    - Empennage
+
+!!! note 
+    When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway.
+
+<sup>*</sup> The _tank\_design_ execution is also possible without mission analysis data. Alternatively, the following assumption is used to calculate the mission fuel amount:
+
+$$
+    m_{\text{fuel}} = n_{\text{PAX}} \cdot R \cdot \frac{E}{100 \text{ km}}
+$$
+
+In which
+
+- $n_{\text{PAX}}$ - number of passengers
+- $R$ - range in km
+- $E$  - energy demand (3.35 liter per PAX per 100 km)
+
+Using the volumetric energy density of kerosene, the initial energy demand can then be calculated.
+
+## Configuring tank design parameters in the aircraft exchange file {#configuring-tank-design-parameters-in-the-aircraft-exchange-file}
+The desired tank configuration is defined by the user in the aircraft exchange file. The information can be found in the `aircraft_exchange_file/requirements_and_specifications/design_specification/configuration/tank_definition` block.
+
+### The ID `tank_element`
+Each tank is configured in the _acXML_ as one element (ID element) with the following parameters:
+
+- `energy_carrier_ID`: ID of energy carrier to obtain which fuel is to be stored in the tanks.
+- `location`: Aircraft component where the tank is located (valid options depend on the energy carrier).
+- `position`: Position at the desired location (valid options depend on location and energy carrier).
+- `energy_share`: Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Not used for the calculation of kerosene tanks. **Should therefore equal `0.0` for kerosene tanks.**
+
+The following sections give an overview on valid tank configurations for [kerosene](#kerosene-driven) and [liquid hydrogen](#lh2-driven) driven aircraft configurations.
+
+### Kerosene driven aircraft configurations {#kerosene-driven}
+For a valid tank configuration, you must first define each tank entity by setting the parameters of the ID element. You must specify a correct parameter combination of tank position and location _for each ID element_.
+
+Subsequently, you must define a valid overall tank configuration for the aircraft. In other words, the _combination of the individual ID elements_ must be valid.
+The following sections will guide you through the process.
+
+#### Valid tank location and tank position combinations
+For aircraft configurations with a kinked wing, the "wing tank configuration" consist of an inner and outer tank on each side of the aircraft and a wing center tank by default. This corresponds to numbers 1-5 in the following table that provides an overview on possible _tank location_ and _tank position_ combinations. Furthermore, there is the option to design a trim tank and an additional center tank.
+
+| No. |    Location           | Position    | Note |
+| --- | --------------------- | ------------|------|
+|  1  | Wing                  | Center      |      |
+|  2  | Wing                  | Inner left  |      |
+|  3  | Wing                  | Outer left  | No outer tanks available for single trapezoidal wing, only valid for kinked wing. |
+|  4  | Wing                  | Inner right |      |
+|  5  | Wing                  | Outer right | No outer tanks available for single trapezoidal wing, only valid for kinked wing. |
+|  6  | Horizontal stabilizer | Total       | Also referred to as 'trim tank'. |
+|  7  | Fuselage              | Center      | Also referred to as 'additional center tank'. |
+
+For example, to define a valid combination for the wing center tank, set the following parameters for the ID element `ID="0"`:
+
+- `energy_carrier_ID` to `0` (it is assumed that `0` equals kerosene)
+- `location` to `wing`
+- `position` to `center`
+- `energy_share` equals `0.0`
+
+Furthermore, give it a clear `description` tag, for example `wing center tank`.
+
+To define more tanks, continue by subsequently defining those parameters for the ID elements with the `ID="1"`, `ID="2"`, and so on. Please ensure to always keep an eye on valid tank configurations described in the next sections.
+
+#### Possible tank configurations: Aircraft with kinked wing
+The following table provides an overview on possible tank configurations. As can be seen, the "wing tank configuration" also corresponds to the minimum tank configuration `wing_all_tanks` that is similar to a tank configuration that can be found at a common medium range aircraft. The maximum number of tanks is 7. This means that the last ID element should have the `ID="6"`.
+
+|  Tanks 1-5 |             Tank 6            |             Tank 7            |           Configuration name             |
+| ---------- | ----------------------------- | ----------------------------- | ---------------------------------------- |
+| Wing       |               -               |               -               | wing_all_tanks                           |
+| Wing       | Horizontal stabilizer - Total |               -               | wing_with_trim_tank                      |
+| Wing       | Fuselage - Center             |               -               | wing_with_additional_center_tank         |
+| Wing       | Horizontal stabilizer - Total | Fuselage - Center             | wing_with_additional_center_and_trim_tank|
+| Wing       | Fuselage - Center             | Horizontal stabilizer - Total | wing_with_additional_center_and_trim_tank|
+
+Note: "Wing" always refers to either the combinations 1 to 5 of the table in the previous section ("wing tank configuration").
+
+#### Possible tank configurations: Aircraft with singe trapezoidal wing
+The following table provides an overview on possible tank configurations. As can be seen, the "wing tank configuration" also corresponds to the minimum tank configuration `wing_all_tanks`. The maximum number of tanks is 5. This means that the last ID element should have the `ID="4"`.
+
+|  Tanks 1-3 |             Tank 4            |             Tank 5            |           Configuration name             |
+| ---------- | ----------------------------- | ----------------------------- | ---------------------------------------- |
+| Wing       |               -               |               -               | wing_all_tanks                           |
+| Wing       | Horizontal stabilizer - Total |               -               | wing_with_trim_tank                      |
+| Wing       | Fuselage - Center             |               -               | wing_with_additional_center_tank         |
+| Wing       | Horizontal stabilizer - Total | Fuselage - Center             | wing_with_additional_center_and_trim_tank|
+| Wing       | Fuselage - Center             | Horizontal stabilizer - Total | wing_with_additional_center_and_trim_tank|
+
+Note: "Wing" always refers to the combinations 1, 2, and 4 of the table in the previous section ("wing tank configuration").
+
+#### Example: Minimum tank configuration
+The following `tank_definition` code block snippet shows how to configure a standard "wing tank configuration" for an aircraft with a kinked wing that is similar to the one of a common commercial medium range aircraft.
+```xml
+<tank_definition description="Energy tanks information">
+    <tank ID="0" description="Inner left wing tank">
+        <energy_carrier_ID description="see energy carrier specification node">
+            <value>0</value>
+            <unit>1</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>5</upper_boundary>
+        </energy_carrier_ID>
+        <location description="Component where the tank is located: fuselage, wing, horizontal_stabilizer">
+            <value>wing</value>
+        </location>
+        <position description="Position of tank in location: tailcone, rear, front, top, bottom, center, inner_left, outer_left, inner_right, outer_right, total">
+            <value>inner_left</value>
+        </position>
+        <energy_share description="Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Equals 0.0 for kerosene tanks.">
+            <value>0.0</value>
+            <unit>1</unit>
+            <lower_boundary>0.0</lower_boundary>
+            <upper_boundary>1.0</upper_boundary>
+        </energy_share>
+    </tank>
+    <tank ID="1" description="Outer left wing tank">
+        <energy_carrier_ID description="see energy carrier specification node">
+            <value>0</value>
+            <unit>1</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>5</upper_boundary>
+        </energy_carrier_ID>
+        <location description="Component where the tank is located: fuselage, wing, horizontal_stabilizer">
+            <value>wing</value>
+        </location>
+        <position description="Position of tank in location: tailcone, rear, front, top, bottom, center, inner_left, outer_left, inner_right, outer_right, total">
+            <value>outer_left</value>
+        </position>
+        <energy_share description="Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Equals 0.0 for kerosene tanks.">
+            <value>0.0</value>
+            <unit>1</unit>
+            <lower_boundary>0.0</lower_boundary>
+            <upper_boundary>1.0</upper_boundary>
+        </energy_share>
+    </tank>
+    <tank ID="2" description="Inner right wing tank">
+        <energy_carrier_ID description="see energy carrier specification node">
+            <value>0</value>
+            <unit>1</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>5</upper_boundary>
+        </energy_carrier_ID>
+        <location description="Component where the tank is located: fuselage, wing, horizontal_stabilizer">
+            <value>wing</value>
+        </location>
+        <position description="Position of tank in location: tailcone, rear, front, top, bottom, center, inner_left, outer_left, inner_right, outer_right, total">
+            <value>inner_right</value>
+        </position>
+        <energy_share description="Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Equals 0.0 for kerosene tanks.">
+            <value>0.0</value>
+            <unit>1</unit>
+            <lower_boundary>0.0</lower_boundary>
+            <upper_boundary>1.0</upper_boundary>
+        </energy_share>
+    </tank>
+    <tank ID="3" description="Outer right wing tank">
+        <energy_carrier_ID description="see energy carrier specification node">
+            <value>0</value>
+            <unit>1</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>5</upper_boundary>
+        </energy_carrier_ID>
+        <location description="Component where the tank is located: fuselage, wing, horizontal_stabilizer">
+            <value>wing</value>
+        </location>
+        <position description="Position of tank in location: tailcone, rear, front, top, bottom, center, inner_left, outer_left, inner_right, outer_right, total">
+            <value>outer_right</value>
+        </position>
+        <energy_share description="Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Equals 0.0 for kerosene tanks.">
+            <value>0.0</value>
+            <unit>1</unit>
+            <lower_boundary>0.0</lower_boundary>
+            <upper_boundary>1.0</upper_boundary>
+        </energy_share>
+    </tank>
+    <tank ID="4" description="Wing center tank">
+        <energy_carrier_ID description="see energy carrier specification node">
+            <value>0</value>
+            <unit>1</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>5</upper_boundary>
+        </energy_carrier_ID>
+        <location description="Component where the tank is located: fuselage, wing, horizontal_stabilizer">
+            <value>wing</value>
+        </location>
+        <position description="Position of tank in location: tailcone, rear, front, top, bottom, center, inner_left, outer_left, inner_right, outer_right, total">
+            <value>center</value>
+        </position>
+        <energy_share description="Share of this tanks energy in relation to required mission energy (of same energy carrier). Only relevant for liquid hydrogen tanks. Equals 0.0 for kerosene tanks.">
+            <value>0.0</value>
+            <unit>1</unit>
+            <lower_boundary>0.0</lower_boundary>
+            <upper_boundary>1.0</upper_boundary>
+        </energy_share>
+    </tank>
+</tank_definition>
+```
+<br>
+
+!!! note 
+    For aircraft with a single trapezoidal wing, please delete the `Outer left tank` and `Outer right tank` elements and adjust the other tank IDs accordingly.
+
+### Liquid hydrogen driven aircraft configurations {#lh2-driven}
+tbd. :construction:
+
+## Module configuration file {#module-configuration-file}
+The _configXML_ is structured into two blocks: the control and program settings.
+
+The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least
+
+- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings,
+- the `console_output` at least to `mode_1`, and
+- the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`).
+
+!!! note 
+    If the tool is executed via the workflow, those settings are set by the workflow settings.
+
+The program settings are structured like this (descriptions can be found in the `tank_design_conf.xml`):
+
+```plaintext
+Program Settings
+|- Configuration (ID="tube_and_wing")
+|  |- Fidelity name
+|  |- Method name
+|  |- Fidelity (ID="empirical")
+|  |  |- Tank design tu berlin
+|  |  |  |- General
+|  |  |  |  |- Mass technology factor
+|  |  |  |- Specific
+|  |  |  |  |- Kerosene tank design parameter
+|  |  |  |  |  |- Obelisk calculation method
+|  |  |  |  |  |- A/D factor
+|  |  |  |  |  |- Factor volume usable
+|  |  |  |  |  |- Temperature expansion allowance
+|  |  |  |  |  |- Buffer inner tank segment
+|  |  |  |  |  |- Buffer outer tank segment
+|  |  |  |  |  |- Buffer center tank segment
+|  |  |  |  |- Liquid hydrogen tank design parameter
+|  |  |  |  |  |- End cap type
+|  |  |  |  |  |- Internal pressure
+|  |  |  |  |  |- Insulation type
+|  |  |  |  |  |- Insulation material
+|  |  |  |  |  |- Insulation thickness
+|  |  |  |  |  |- Insulation density
+|  |  |  |  |  |- Material wall
+|  |  |  |  |  |- Density wall
+|  |  |  |  |  |- Wall thickness calculation method
+|  |  |  |  |  |- Mass baffle
+|  |  |  |  |  |- Mass pumps
+|  |  |  |  |- Miscellaneous
+|  |  |  |  |  |- Factor usable diameter
+|  |  |  |  |  |- Factor volume allowance
+```
+
+## Additional requirements {#additional-requirements}
+There is no additional data required at the moment.
+
+## Next steps {#next-steps}
+The next step is to [run the _tank\_design_ module](run_your_first_tank_design.md).
\ No newline at end of file
diff --git a/docs/documentation/sizing/tank_design/index.md b/docs/documentation/sizing/tank_design/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..a8af86c9cad9fa9612e475df211cf2a522549205
--- /dev/null
+++ b/docs/documentation/sizing/tank_design/index.md
@@ -0,0 +1,40 @@
+# Introduction {#mainpage}
+The _tank\_design_ module in UNICADO is here to save your aircraft from fuel-storage nightmares. It handles the math, checks the geometry, and makes sure your energy carrier fits perfectly — because a tank that doesn’t work isn’t worth the fuel. With hydrogen and other next-gen fuels joining the party, you’ll want all the precision you can get. Consider this module your go-to for tanks that get the job done right. 🚀
+
+## Summary of features
+Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned:
+
+Configuration     | Energy carrier   | Fidelity  | Methods   | Status                               |
+------------------|------------------|-----------|-----------|:------------------------------------:|
+Tube-and-wing     |Kerosene          |Empirical  |TUB        |running :white_check_mark:       |
+Tube-and-wing     |Liquid hydrogen   |Empirical  |TUB        |under development :construction: |
+Blended-wing-body |...               |...        |...        |under development :construction: |
+
+## A user's guide to tank design
+The _tank\_design_ tool is your key to designing the aircraft's fuel storage. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a tank design from the ground up.
+The following sections will walk you through the process:
+
+- [Getting started](getting_started.md)
+- [Run your first tank design](run_your_first_tank_design.md)
+
+For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections:
+
+- A [method description](tank_design_method.md) and
+- a [software architecture](software_architecture.md)
+section.
+
+Ready to dive in? Let’s get started! :airplane:
+
+
+<!-- ## You are a Developer?
+If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO!
+
+The following pages will help you understand the code structure:
+
+- [Prerequisites](prerequisites.md)
+- [Build the code](build-the-code.md)
+- [Tank design module structure](wing-module-structure.md)
+- [Available methods](available-methods.md)
+- [Method template](method-template.md)
+
+We appreciate it! -->
\ No newline at end of file
diff --git a/docs/documentation/sizing/tank_design/run_your_first_tank_design.md b/docs/documentation/sizing/tank_design/run_your_first_tank_design.md
new file mode 100644
index 0000000000000000000000000000000000000000..ee39580f507ee760f6e503da9c24aab5d4c660d7
--- /dev/null
+++ b/docs/documentation/sizing/tank_design/run_your_first_tank_design.md
@@ -0,0 +1,130 @@
+# Run your first tank design
+Let's dive into the fun part and design some tanks!
+
+## Tool single execution
+The tool can be executed from the console directly if all paths are set. The following will happen:
+
+- [Console output](#console-output)
+- [Generation of reports and plots](#reporting)
+- [Writing output to aircraft exchange file](#acxml)
+
+Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices.
+Also, if you need some additional information on the underlying methodology, check out the page on the [tank design method](tank_design_method.md).
+
+So, feel free to open the terminal and run `python.exe tank_design.py` to see what happens...
+
+### Console output {#console-output}
+Firstly, you see output in the console window. Let's go through it step by step...
+
+```
+2024-12-10 13:05:44,866 - PRINT - Tank design started...
+2024-12-10 13:05:45,829 - PRINT - Valid tank configuration found in acXML: wing_with_additional_center_and_trim_tank
+```
+To this point, the module started, found a valid tank configuration in the _acXML_, and prints the name of the configuration for your information.
+
+```
+2024-12-10 12:26:26,090 - PRINT - Initial sizing loop! Energy demand is estimated (3.35 liters per PAX per 100 km).
+```
+If the tool is executed during the initial sizing loop in the workflow, or when no information on the required mission energy is available from the _mission\_analysis_ tool, the energy demand is estimated.
+
+```
+2024-12-10 13:05:45,844 - PRINT - Wing tank design started...
+2024-12-10 13:05:45,846 - PRINT - Vent tank (located near each wing tip) calculated.
+```
+Afterwards, the tank design starts with the wing tanks, specifically with the vent tank dimensioning that is based on the overall wing tank volume.
+
+```
+2024-12-10 13:05:45,846 - PRINT - Inner left wing tank (tank_0) calculated. Volume (energy) available: 4,800.69 L (155,182.15 MJ)
+2024-12-10 13:05:45,846 - PRINT - Outer left wing tank (tank_1) calculated. Volume (energy) available: 4,630.29 L (149,674.22 MJ)
+2024-12-10 13:05:45,847 - PRINT - Inner right wing tank (tank_2) calculated. Volume (energy) available: 4,800.69 L (155,182.15 MJ)
+2024-12-10 13:05:45,847 - PRINT - Outer right wing tank (tank_3) calculated. Volume (energy) available: 4,630.29 L (149,674.22 MJ)
+2024-12-10 13:05:45,847 - PRINT - Wing center tank (tank_4) calculated. Volume (energy) available: 7,646.16 L (247,162.02 MJ)
+2024-12-10 13:05:45,847 - PRINT - Wing tanks successfully calculated.
+```
+The tool continues with the calculation of the wing tank entities - in this example the inner and outer left and right wing tanks, and the wing center tank. Additionally, information is given on the volume and energy available of each tank.
+
+```
+2024-12-10 13:05:45,847 - PRINT - Energy check: Wing center tank necessary to store required energy amount.
+2024-12-10 13:05:45,847 - PRINT - Energy check: Energy demand covered.
+```
+After the wing tank design there is an energy check to review whether the required mission energy can be stored in the tanks. If the energy demand would not be covered up until this point, an energy check would be carried out after the calculation of every subsequent tank.
+
+```
+2024-12-10 13:05:45,848 - PRINT - Additional center tank design started...
+2024-12-10 13:05:45,848 - PRINT - Additional center tank (tank_5) calculated. Volume (energy) available: 3,068.50 L (103,818.10 MJ)
+2024-12-10 13:05:45,849 - PRINT - Additional center tank design completed.
+2024-12-10 13:05:45,849 - PRINT - Additional center tank is generated but unnecessary to store required energy amount.
+```
+As already known, there is an additional center tank given in the _acXML_ tank configuration that is calculated subsequently. Furthermore, the information is given that this tank is not necessary to store the required mission energy amount.
+
+```
+2024-12-10 13:05:45,850 - PRINT - Trim tank design started...
+2024-12-10 13:05:45,850 - PRINT - Trim tank (tank_6) calculated. Volume (energy) available: 2,679.94 L (86,629.04 MJ)
+2024-12-10 13:05:45,850 - PRINT - Trim tank design completed.
+2024-12-10 13:05:45,850 - PRINT - Trim tank is generated but unnecessary to store required energy amount.
+2024-12-10 13:05:45,851 - PRINT - Tank design successful.
+2024-12-10 13:05:45,851 - PRINT - Debug: The "calculate_tanks" function was successfully executed.
+2024-12-10 13:05:45,851 - PRINT - Tank design completed.
+```
+The trim tank is then dimensioned and the tank design is completed.
+
+```
+2024-12-10 13:05:48,050 - WARNING - Warning: No "method_plot" function in "methodplot.py" file implemented yet.
+2024-12-10 13:05:48,050 - WARNING - Warning: No "method_html_report" function in "methodhtmlreport.py" file implemented yet.
+2024-12-10 13:05:48,055 - PRINT - Method-specific data are written to 'tank_design_results.xml'...
+2024-12-10 13:05:48,212 - WARNING - Warning: No "method_tex_output" function in "methodtexoutput.py" file implemented yet.
+2024-12-10 13:05:48,213 - PRINT - Tank design finished.
+```
+Finally, you receive information about the reports and plots created (depending on your settings) and the tool is successfully completed.
+
+### Reporting {#reporting}
+In the following, a short overview is given on the generated reports:
+
+- A `tank_design.log` file is written within the directory of the executable
+- Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file:
+    - an HTML report in the `report_html` folder
+    - a TeX report in the `report_tex` folder (not implemented yet)
+    - an XML file with additional output data in the `report_xml` folder (currently, only a rough output file is generated with the routing information but without any additional data)
+    - plots in the `plots` folder (not implemented yet)
+
+### Write data to the aircraft exchange file {#acxml}
+!!! note 
+    The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool!
+
+Results are saved in the aircraft exchange file at the `/aircraft_exchange_file/component_design/tank`. node. The following information is written to the _acXML_:
+```plaintext
+Aircraft exchange file
+|- Component design
+|  |- Tank
+|  |  |- Position*
+|  |  |- Mass properties**
+|  |  |- Specific
+|  |  |  |- Additional fuselage length
+|  |  |  |- Tank (ID="0")
+|  |  |  |  |- Name
+|  |  |  |  |- Designator
+|  |  |  |  |- Position*
+|  |  |  |  |- Direction*
+|  |  |  |  |- Mass properties**
+|  |  |  |  |- Maximum energy capacity
+|  |  |  |  |- Energy capacity required for mission
+|  |  |  |  |- Geometry
+|  |  |  |  |  |- Cross section (ID="0")
+|  |  |  |  |  |  |- Name
+|  |  |  |  |  |  |- Position*
+|  |  |  |  |  |  |- Shape
+|  |  |  |  |  |  |- Height
+|  |  |  |  |  |  |- Width
+|  |  |  |  |  |  |- Length
+|  |  |  |  |  |- Cross section (ID="1")
+|  |  |  |  |  |  |- ...
+|  |  |  |- Tank (ID="1")
+|  |  |  |  |- ...
+```
+
+<sup>*</sup> Node has been shortened. It contains the following sub-nodes: x, y, z
+
+<sup>*</sup> Node has been shortened. It contains sub-nodes with information on the mass, inertia, and center of gravity.
+
+## Troubleshooting {#troubleshooting}
+- The tool does not run properly? *Make sure you have all the paths set up correctly and the specified elements exist.*
diff --git a/docs/documentation/sizing/tank_design/software_architecture.md b/docs/documentation/sizing/tank_design/software_architecture.md
new file mode 100644
index 0000000000000000000000000000000000000000..b947e4a0893287c0fc138f3b4c718447ee9a827d
--- /dev/null
+++ b/docs/documentation/sizing/tank_design/software_architecture.md
@@ -0,0 +1,34 @@
+# Software architecture
+This site is currently under development. :construction:
+
+<!-- 
+## Module structure
+'main.py' runs the following functions:
+1. 'data_preprocessing' (from 'datapreprocessing.py')<sup>1</sup>
+   - 1.1  
+2. 'run_module' (from 'methodexecutionpackage' library)<sup>2</sup>
+   - 2.1
+3. 'data_postprocessing' (from 'datapostprocessing.py')<sup>3</sup>
+
+<sup>1</sup> data preprocessing runs: \
+<sup>2</sup> \
+<sup>3</sup> data_postprocessing runs: ...
+
+...
+
+
+### Routing layers
+The tank design module has the following layer structure:
+
+1. Aircraft configuration
+   - Implemented: 'tube_and_wing'
+   - Not yet implemented: 'blended_wing_body'
+2. Calculation method fidelity
+   - Implemented: 'empirical'
+3. Calculation method
+   - Implemented: 'tank_design_tu_berlin'
+4. Energy carrier <sup>1</sup>
+   - Implemented: 'kerosene'
+   - Not yet implemented: 'liquid_hydrogen', 'hybrid'
+
+<sup>1</sup> The used energy carrier is determined automatically in the 'read_energy_carrier_and_tank_configuration' function. -->
diff --git a/docs/documentation/sizing/tank_design/tank_design_method.md b/docs/documentation/sizing/tank_design/tank_design_method.md
new file mode 100644
index 0000000000000000000000000000000000000000..d5ea8d7d8dd5c2f284c45af6398500b287be7757
--- /dev/null
+++ b/docs/documentation/sizing/tank_design/tank_design_method.md
@@ -0,0 +1,176 @@
+# Calculation method
+The task of the _tank_design_ module differs slightly depending on the energy carrier:
+
+- [Kerosene](#kerosene-tanks) - Determine the maximum fuel capacity of the aircraft using its geometry.
+- [Liquid hydrogen](#liquid-hydrogen-tanks) - Size tanks to ensure that the required amount of fuel is available.
+
+## Kerosene tanks {#kerosene-tanks}
+For kerosene-powered aircraft, the fuel is stored in the wing. Additional tanks can be installed in the fuselage 
+(additional center tank) or in the empennage (trim tank).
+
+### General methodology
+<!-- The tank design process starts with determining the required energy amount since the energy amount is necessary to 
+check whether the tank capacity is big enough to store the mission energy. If this information is not yet available
+ in the _acXML_ in the first iteration loop, an initial estimate is made:
+$
+    E_{\text{mission}} = n_{\text{PAX}} \cdot R \cdot fc_{\text{approx}}
+$
+In which
+- $n_{\text{PAX}}$ - number of passengers
+- $R$ - range in km
+- $fc_{\text{approx}}$ - approx. fuel consumption per passenger per 100 km (ca. 3.5 L/100 km) -->
+
+The tank design starts with the wing tanks. Initially, the available volume of the complete wing is calculated which is then followed by the dimensioning of the vent tank. Afterwards, the wing is divided into several tanks based on its geometry. The gross volume of these tanks is calculated using the [obelisk method](#obelisk-method). This is followed by accounting for volume losses due to structural components and thermal expansion, resulting in the net [usable tank volume](#net-tank-volume).
+The [energy stored](#calculate-energy) in the tanks is then calculated using the volumetric energy density of kerosene.
+Afterwards, the remaining tanks are calculated, based on the specified tank configuration in the _acXML_.
+
+Note, that after every tank calculation, there is an assessment whether or not the required mission energy can be 
+stored in the available tanks. If this is the case, the flag `energy_capacity_required_for_mission` is set to `False` 
+for all remaining tanks. This means that all tanks defined in the _acXML_ are designed, whether required to store the 
+mission energy or not!
+
+### Wing tanks
+The tank capacity of aerodynamic surfaces like the wing or the empennage can be determined by a simple calculation of the volume.
+
+At first, the overall wing tank volume is determined to get the vent tank volume required by the Certification Specification:
+
+> CS 25.969 Fuel tank expansion space: Each fuel tank must have an expansion space of not less than 2% of the tank capacity. It must be impossible to fill the expansion space inadvertently with the aeroplane in the normal ground attitude.
+
+Knowing the necessary vent tank volume, the remaining volume of the wing tanks can be calculated. The volume of the vent as well as the volume of any other wing tank can be determined using the obelisk method.
+
+#### Obelisk method {#obelisk-method}
+The obelisk method simplifies the wing by dividing it into several volumes. Depending on the geometry, this results in three (single trapezoidal wing) or five (double trapezoidal/kinked wing) individual wing tanks, each of which has the shape of an obelisk. In the case of a double trapezoidal geometry, it is assumed that the wing can be divided into an inner tank (wing root to kink) and an outer tank (kink to vent tank position) per side as well as a wing center tank.
+
+![](figures/01_tank_locations.png)
+
+##### Obelisk geometry
+
+The geometry of the obelisks is obtained based on the wing geometry.
+Knowing the chord length $l_\text{chord}$ and the thickness-to-chord ratio, the maximum profile thickness $h_\text{max}$ can be obtained.
+The actual thickness $h_1$ is calculated using the a-to-d factor (user input).
+The width of the obelisk $w_1$ is defined as the distance between the front $p_\text{fs}$ and the rear spar $p_\text{rs}$ of the wing.
+
+![](figures/03_wing_box.png)
+
+The obelisk volume can be determined using two different approaches that are described in the following.
+The user can select the desired method via the following node in the `program_settings` section of the _confXML_:
+`configuration[@ID="tube_and_wing"]/specific/kerosene_tank_design_parameter/obelisk_calculation_method`.
+
+!!! note 
+    The obelisk method is explained using the wing as an example. The volume of a [trim tank](#trim-tank) located in the horizontal stabilizer is determined analogously.
+
+##### Obelisk volume according to Torenbeek<sup>[1]</sup>
+![](figures/02_obelisk.png)
+
+The volume can be calculated using the following equation:
+
+$$
+    V_{\text{obelisk}} = \frac{l}{3} \cdot \left( S_1 + S_2 + \frac{h_1 \cdot w_2 + h_2 \cdot w_1}{2}\right)
+$$
+
+In which
+
+- $l$ - length
+- $S_1$, $S_2$ - end face areas
+- $h_1$, $w_1$  - height and width of end face $S_1$
+- $h_2$, $w_2$  - height and width of end face $S_2$
+
+The parallel end faces $S_1$ and $S_2$ are derived from the position of the spars of the wing box, that are 
+known from the wing design.
+<!-- Based on the formula for determining the area of a rectangle:
+$
+    S_{i} = h_i \cdot w_i
+$
+the size of the parallel end surfaces $S_1$ and $S_2$ is obtained by extending it with the chord length 
+$l_{chord}$:
+$
+    S_{i} = \frac{h_i}{l_{chord}} \cdot l_{chord} \cdot w_i
+$
+By multiplying with the maximum thickness $h_{max}$ and substituting the width $w_i = p_{fs}-p_{rs}$, we get:
+$
+    S_{i} = \frac{h_{max}}{l_{chord}} \cdot \frac{h_{i}}{h_{max}} \cdot l_{chord} \cdot (p_{rs} - p_{fs})
+$
+
+Where
+- $\frac{h_{max}}{l_{chord}}$ - maximum thickness ratio of used profile
+- $\frac{a_{max}}{d_{max}}$ - ...
+- $p_{rs}$ - position rear spar
+- $p_{fs}$ - position front spar
+
+![](figures/03_wing_box.png) -->
+
+##### Obelisk volume according to Simpson
+The Simpson's rule is a method of numerical integration that is often used to calculate the volume of bodies whose 
+cross-sections are known at different positions. In the case of an obelisk - i.e. a body with square or rectangular 
+cross-sections that vary along the height - the volume is integrated as the sum of the cross-sectional areas $S(x)$
+along the length $l$:
+
+$$
+    V_{\text{obelisk}} = \int_0^l S(x) \, dx
+$$
+
+If the cross-sectional areas $S(x)$ at $i+1$ uniformly distributed points are known (which is the case for the 
+tank design), Simpson's rule can be applied.
+
+Two end surfaces are known for each tank, so that a third middle surface $S_{12}$ can be determined by linear 
+interpolation (see following figure). Each tank is thus divided into two sections.
+
+![](figures/02_obelisk_simpson.png)
+
+The tank volume can therefore be determined using a simplified Simpson's rule:
+
+$$
+    V_{\text{obelisk}} = \frac{l}{6.0} \cdot (S_{1} + 4.0 \cdot S_{12} + S_{2})
+$$
+
+#### Calculate net tank volume {#net-tank-volume}
+The volume must then be converted from cubic meter to liter. A portion of the volume of the obelisk is lost to the internal structure of the integral tanks (e.g., ribs), with a reduction factor $ f_{\text{volume,usable}} = 0.95$.
+Additionally, the expansion of the fuel due to heating must be considered, with a temperature expansion allowance of $ a_{\text{temperature,expansion}} = 0.95$. Thus, the wing tank volume is calculated as:
+
+$$
+    V_{\text{tank}} = f_{\text{volume,usable}} \cdot a_{\text{temperature,expansion}} \cdot V_{\text{obelisk}}
+$$
+
+!!! note 
+    As the wing has a vent tank at each wing tip to allow for the thermodynamic expansion of the fuel, this factor is `1.0` for the wing tanks.
+
+#### Calculate energy {#calculate-energy}
+Using the volumetric energy density of kerosene $\eta_{\text{v,kerosene}}$, the energy contained in each tank can be determined:
+
+$$
+    V_{\text{tank}} = \eta_{\text{v,kerosene}} \cdot V_{\text{obelisk}}
+$$
+
+### Additional center tank
+The module allows the installation of an additional center tank in the form of an LD3-45 container. The process includes the following steps:
+
+1. **Height check**: The program first verifies whether the cargo compartment has sufficient height to accommodate the container.
+    - If insufficient height is detected: All output values related to the center tank are set to zero.
+    - If sufficient height is detected: The installation proceeds.
+2. **Installation placement**: The LD3-45 container is positioned 10 cm behind the end of the landing gear bay, aligning approximately with the trailing edge of the wing.
+3. **Container data**: The volume and dimensions of the LD3-45 container are predefined and referenced from the Lufthansa Cargo website<sup>[2]</sup>.
+
+The energy contained in an additional center tank is calculated by first determining the usable volume and then taking into account the volumetric energy density of kerosene. With the known factors $ f_{\text{volume,usable}}$ and $a_{\text{temperature,expansion}}$, the usable volume of an additional center tank results in $V_{\text{ACT,usable}} = 3,068.5\text{ L}$ which is equal to an energy amount of $ E_{\text{ACT}} = 103,818.1\text{ MJ}$.
+
+#### Limitations
+**Single Center Tank Limit:** The program currently supports the calculation of only one additional center tank. Attempts to add more tanks will not be processed.
+
+!!! note 
+    Verify that the cargo compartment dimensions are correctly provided to ensure accurate installation.
+
+### Trim tank {#trim-tank}
+The procedure for the trim tank is the same as for the wing tanks. The geometry of the horizontal stabilizer is simplified and divided into several obelisks whose volume is calculated. The usable volume is then determined, taking the already known factors $ f_{\text{volume,usable}}$ and $ a_{\text{temperature,expansion}}$ into account. Finally, the available energy is determined.
+
+<!-- ### Assumptions and tool limitations
+tbd. :construction -->
+<!-- - All tanks with the same energy carrier (e.g. liquid_hydrogen) have the same design parameters -->
+<!-- - Design point for tank design: Point B, design mission -->
+<!-- - Der Rumpf wird gestretcht. Es gibt keine Option, die Kabine kleiner zu machen bisher. -->
+<!-- - Positionsangaben beziehen sich immer auf vordersten und innersten Punkt, wobei z die Mitte der Ebene angibt (dabei liegt die Annahme zugrunde, dass beim wing auch immer die center line des profils bei der z-Koordinate angegeben wird) -->
+
+## Liquid hydrogen tanks {#liquid-hydrogen-tanks}
+tbd. :construction:
+
+---
+<sup>[1]</sup> E. Torenbeek, 1982. *Synthesis of Subsonic Airplane Design*.<br>
+<sup>[2]</sup> Lufthansa Cargo, 2024. *Our containers*. URL: https://www.lufthansa-cargo.com/de/fleet-ulds/ulds/containers
\ No newline at end of file
diff --git a/docs/documentation/sizing/wing_design/basic-concepts.md b/docs/documentation/sizing/wing_design/basic-concepts.md
new file mode 100644
index 0000000000000000000000000000000000000000..57a63931a913024d154d3b88f77a6fbea0276cc3
--- /dev/null
+++ b/docs/documentation/sizing/wing_design/basic-concepts.md
@@ -0,0 +1,83 @@
+# Basic Concepts {#BasicConcepts}
+
+Designing a wing for an aircraft is by far one of the most challenging tasks. This topic provides basic information for wings.
+
+If you are already familiar with the basic concepts, you can move on to the [:octicons-arrow-right-16: Getting Started](getting-started.md).
+
+### Available configurations
+Here you can find available wing build methods from the _wing\_design_ tool inside UNICADO.
+
+- _UNICADO is shipped natively with the cantilever wing method for a tube and wing configuration._
+- _A basic Blended Wing body method is planned!_
+
+```mermaid
+  graph LR;
+    A[Wing Design]-->B[Tube and Wing];
+    B-->C[Cantilever];
+    A-->D[Blended Wing body]
+```
+
+!!! danger "Important"
+    Since the documentation might be delayed to the development progress - this graph might not have all information yet.
+
+___
+
+### Wing Loading
+Wing loading is the mass / weight of the aircraft distributed over its reference wing area.
+
+- _Initial parameter to start design_
+- _Wing Loading = M / S_ in (kg/m^2)
+- _Wing Loading = M &times; g / S_ in (N/m^2)
+- _M : Aircraft mass_
+- _g : Gravitational acceleration_
+- _Wing Loading &uarr; Higher speeds at takeoff necessary_
+- _Wing Loading &darr; Lower speeds at takeoff_
+
+### Wing Geometry
+Understanding the wing geometry is crucial for designing an efficient wing. Below are key terms and their meanings:
+
+- Aspect Ratio (_AR_): The ratio of the wingspan to the average chord length
+    - _AR= b&sup2; / S_
+    - _b : Wingspan_
+    - _S : Wing reference area (projected area on ground from top view)_
+    - _High AR (e.g. gliders) &rarr; increased aerodynamic efficiency (higher drag) but slender and more flexible wing._
+    - _Low AR (e.g., fighter jets) &rarr; decreased aerodynmic efficiency and stiffer._
+
+- Taper Ratio (&lambda;): The ratio of the tip chord to the root chord.
+    - _&lambda;_ = _c_<sub>_tip_</sub> / _c_<sub>_root_</sub>
+    - _A taper ratio of one indicates a rectangular wing._
+    - _Reduced taper ratio can improve aerodynamic efficiency and reduce structural weight._
+
+- Sweep Angle (&Phi;): The angle between the chord at a given position and a line perpendicular to the chord
+    - _Increased sweep leads to higher overall speeds due to reduction of the mach number normal to the leading edge_
+        - _backward sweep: increased aerodynamic load at the outer wing part &rarr; bad behaviour at high angle of attack (AoA)_
+        - _forward sweep: decreased aerodynamic load at the outer wing part but increased structural load due to wing torsion effects_
+
+- Dihedral / Anhedral Angle (&nu;): Effects wing clearance and roll stability due to sideslip
+    - Common dihedral angle (positive) for low wing configuration
+    - Common anhedral angle (negative) for shoulder or high wing configurations
+
+- Kink: Discontinuity in the wing trailing edge due to change in trailing edge sweep
+    - mostly occurs on aircraft from inner to outer wing (low configuration) which is affected by the engine and landing gear vice versa
+
+### Airfoil selection
+An airfoil defines the cross-sectional shape of a wing. The key characteristics include:
+
+- Camber: Airfoil curvature
+    - _High camber  - generates more lift but comes with increased drag_
+    - _No camber (symmetrical) often used for aerobatic A/C_
+    - _Chord: Defines the length of the line from leading to trailing edge_
+    - _Thickness to Chord Ratio (t/c): maximum airfoil thickness in relation to its chord length_
+    - _affects lift, drag and wing cross section_
+
+
+### Spar Placements
+Spars are the one of the main structural elements inside the wing to provide strength and rigidity
+
+- _Has effects size of slats, flaps and integral tank size_
+
+
+### Winglet / Raked wingtip / Rakelet (not available yet):
+Additional aerodynamic component at the tip of the main wing section
+
+- _Used for induced drag reduction_
diff --git a/docs/documentation/sizing/wing_design/design-methods.md b/docs/documentation/sizing/wing_design/design-methods.md
new file mode 100644
index 0000000000000000000000000000000000000000..def64a457467321ba94a60bb8273cf6c4a6912e8
--- /dev/null
+++ b/docs/documentation/sizing/wing_design/design-methods.md
@@ -0,0 +1,56 @@
+# Design methods
+
+The task of the _wing\_design_ tool is to generate the wing geometry according to parameters.
+
+## Cantilever method
+The general method for a cantilever wing starts with the setup of the wanted quarter chord sweep. The quarter chord sweep is kept constant over the wing (not inside the fuselage).
+
+#### Step 1: Sweep Computation
+The user is able to define the quarter chord sweep or let it compute by the usage of the korn equation which uses the desired design mach number and the delta to the drag divergence mach number. Additionally, the maximum thickness to chord ratio, the wing loading, the airfoil profile as a factor and the design altitude will have an influence on the quarter chord sweep. This method is an iterative process.
+
+#### Step 2: Wing area computation
+After the computation of the sweep is done, the desired wing area is either defined by the user or it is computed by the wing loading (recommended). For calculating the wing area by the wing loading, the value for the maximum takeoff mass is used.
+!!! danger "Important"
+    There are multiple definitions for the wing loading - here the one is used for wing loading with the unit $[kg/m^2]$
+
+#### Step 3: Aspect ratio computation
+Again, the aspect ratio can be defined by the user or set via an empirical _pitch-up-limit_ function which requires the quarter chord sweep.
+!!! example "Experimental"
+    Currently the _pitch-up-limit_ function is an empirical function which strongly relies on the airfoil. The parameter will vary from airfoil to airfoil. To this point - see this method as _"experimental"_.
+
+When the aspect ratio is calculated, the tool computes the span of the wing and uses the information from the ICAO aerodrome reference code as limitations to the span which sets a lower and an upper limit.
+
+??? info "ICAO Aerodrome Reference Code"
+    The ICAO Aerodrome reference code defines more than the allowed wing span - however the code for wing span is covered by a Code Letter:
+
+      - A: <15m
+      - B: 15m ... < 24m
+      - C: 24m ... < 36m
+      - D: 36m ... < 52m
+      - E: 52m ... < 65m
+      - F: 65m ... < 80m
+
+If the limits are exceeded, the user receives a warning and the aspect ratio as well as the span are set to the limit accordingly.
+
+#### Step 4: Taper ratio computation
+After computing the aspect ratio, the taper ratio can be user defined or determined by a method from Howe. Howe uses the aspect ration and the quarter chord sweep to compute the taper ratio.
+
+#### Step 5: Dihedral computation
+The next step computes the dihedral which can be set by user or will be computed based on limits defined by Howe or Raymer. Since both, Howe and Raymer just give limitations, the dihedral as a mean value between the minimum and maximum values. Howe differentiates between sweept and unsweept while Raymer includes the mach state of the aircraft.
+
+#### Step 6: Calculate geometry
+Based on the computed data and the information from the aircraft exchange file, it will be determined if the wing geometry will be calculated with a kink or not. The kink is enabled when the _landing gear_ is _wing mounted_ and the wing is mounted _low_. Otherwise it uses an unkinked geometry.
+
+The algorithm to determine the geometry differs in some points since the kinked geometry has an inner and an outer wing while in the unkinked version, no differentiation between inner and outer wing is done.
+
+The unkinked geometry calculation is straight forward, however the kinked version has an root finding loop to compute the root by keeping the taper ratio, aspect ratio and wing area feasible. Afterwards certain conditions are checked like  $LE_{inner} \ge LE_{outer}$ and $TE_{inner} \le TE_{outer}$.
+
+If those checks succeed, the geometry will be finalized, otherwise the tool throws an error here.
+
+#### Step 7: Determine spar position and control devices
+The spar positions and control devices can be set by user. For control devices, a basic set of control devices will be set consisting of an aileron, and a number of high lift devices and spoilers for air and ground.
+
+#### Step 8: Mass calculation
+With the wing finished, the mass of the wing will be computed by two different methods, one is the Flight Optimization System (Flops) method and the other is a Method from Chiozzotto (PhD Thesis). Both methods allow changes in material while Flops uses a factor from 0 to 1 to vary the ratio between aluminim and composite materials while Chiozzotto sets two materials - _AL_ for aluminium and _CFRP_ for carbon fibre reinforced plastics.
+
+For the determination of the center of gravity and the position, again empirical methods from Howe are used.
diff --git a/docs/documentation/sizing/wing_design/figures/Report_page_wing_design.png b/docs/documentation/sizing/wing_design/figures/Report_page_wing_design.png
new file mode 100644
index 0000000000000000000000000000000000000000..c90ceb2e2a0392afa1f2e4d2a56de3aa7cc1da18
--- /dev/null
+++ b/docs/documentation/sizing/wing_design/figures/Report_page_wing_design.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c71f29f6a5327254084a8656351ac3497484317d420a91584537e88f90e5c9dd
+size 250088
diff --git a/docs/documentation/sizing/wing_design/getting-started.md b/docs/documentation/sizing/wing_design/getting-started.md
new file mode 100644
index 0000000000000000000000000000000000000000..281f4a98d0d2290690f38983b772b0c87c257d03
--- /dev/null
+++ b/docs/documentation/sizing/wing_design/getting-started.md
@@ -0,0 +1,139 @@
+# Getting started {#getting-started}
+Welcome to the Wing Design Tool! This section will guide you step-by-step through the initial steps to access and start using the tool, including an overview of the parameters which affects the basic module behavior.
+
+## Method selection
+The main method selection, _which_ wing shall be designed is part of the _Aircraft Exchange File_. This is defined in the Block `requirements_and_specification` of the _Aircraft Exchange File_.
+
+Here you have two main elements which will affect the wing design inside `design_specification/configuration`:
+
+- `configuration_type`: This defines the aircraft configuration which the wing is build for
+    - `tube_and_wing`
+    - `blended_wing_body`
+
+- `wing_definition`: This defines where the wing shall be mounted (no effect during BWB design)
+    - `low`
+    - `high`
+
+
+The configuration file of the Wing Design tool `wing\_design_conf.xml` enables more specified parameters to choose, which will tailor the wing to your desire in the `program_settings` block.
+
+The file comes with mode selectors and associated parameters to set which can vary.
+
+Parameters to choose:
+
+- `wing_configuration`:
+    - `mode_0: cantilever`: sets wing type to cantilever wing.
+
+To select a tube and wing with a cantilever, choose the following inside the aircraft exchange file
+
+- `configuration_type` is set to `tube_and_wing`
+- `wing_configuration` is set to `mode_0` which selects `cantilever`
+```mermaid
+ graph LR;
+   A[Wing Design] ==> B[Tube and Wing];
+   B==>C[Cantilever];
+   A-->D[Blended Wing body]
+   style B stroke-width:4px
+   style C stroke:#0f0, stroke-width:4px
+```
+
+Each `wing_configuration`will have it's own block to choose parameters from.
+!!! note
+    For default values or ranges, you should check the description of the parameters or the allowed ranges inside the configuration file
+
+!!! tip
+    If you are missing some of the terms in here - take a look at [:octicons-arrow-right-16: Basic Concepts](basic-concepts.md).
+
+## Configuration parameters &rarr; Tube and Wing
+In this section you find parameters for tube and wing methods.
+### Cantilever calculation methods and parameters
+_Geometry calculation methods_
+
+- `wing_area`: How to calculate the wing area
+    - `mode_0: user_defined`: Set a wing area
+    - `mode_1: by_loading_and_mtom`: Set wing area by wing loading
+- `sweep`: How to calculate the wing quarter chord sweep (constant over wing from root to tip)
+    - `mode_0: user_defined`: Set a user defined quarter chord sweep
+    - `mode_1: drag_divergence`: Computes the wing sweep by the usage of Korn's equation
+      - `param: korn_technology_factor`: Technology factor for korns method
+      - `param: delta_drag_divergence_to_mach_design`: Set the difference between the design mach and the delta to the drag divergence mach number
+- `taper_ratio`: How to calculate the wings taper ratio
+    - `mode_0: user_defined`: Set a taper ratio
+    - `mode_1: howe`: Calculates the taper ratio by Howe's empirical method
+- `dihedral`: How to calculate the wings dihedral (root to tip; negative values &rarr; anhedral)
+    - `mode_0: user_defined`: Set dihedral
+    - `mode_1: by_wing_position_and_quarter_chord_sweep`: Calculates dihedral by vertical position (ref. to `wing_definition`) and the quarter chord sweep
+        - `param: dihedral_limitation`: Choose from Raymer or How to set the dihedral limits
+            - `mode_0: raymer`: Raymer's limits
+            - `mode_1: howe`: Howe's limits
+- `aspect_ratio`: How to calculate aspect ratio
+    - `mode_0: user_defined`: Set wing aspect ratio
+    - `mode_1: by_pitch_up_limit_function`: Sets the aspect ratio by a predefined pitch up limit function (function parameters currently fix)
+- `relative_kink_position`: How to calculate the relative kink position (takes effect only when `wing_definition` is `low`)
+    - `mode_0: user_defined`: Set relative kink position as part of dimensionless half span
+        - `param: relative_kink_position`: relative kink position
+        - `param: maximum_inner_trailing_edge_sweep`: sets the maximum inner wing trailing edge sweep.
+    - `mode_1: based_on_landing_gear_track`: Calculate kink position on landing gear track (no effect - future implementation)
+        - `param: initial_relative_kink_position`: initial relative kink position (first iteration)
+        - `param: maximum_inner_trailing_edge_sweep`: sets the maximum inner wing trailing edge sweep.
+- `wing_profile_and_thickness_distribution`:
+    - `mode_0: user_defined`: Sets user defined profiles with associated thickness to chord ratios (multiple ID Elements)
+        - `param: wing_profile`: Name of desired airfoil
+        - `param: thickness_to_chord/ratio`: thickness to chord ratio for the desired profile
+        - `param: thickness_to_chord/at_half_span`: dimensionless half span position where to apply the airfoil
+    - `mode_1: torenbeek_jenkinson`: Torenbeek-Jenkinson method to determine thickness distribution
+        - `param: wing_profiel`: Name of desired airfoil
+        - `param: max_thickness_to_chord_ratio`: Maximum thickness to chord ratio (at root / centerline)
+        - `param: airfoil_critical_factor`: Sets technology level
+
+_Mass Calculation Methods_
+
+- `mass`: How to calculate the mass methods
+    - `mode_0: flops`: Calculate the wing mass according to FLOPS (_NASA Flight Optimization System_)
+        - `param: fstrt`: Wing strut bracing factor
+        - `param: faert`: Wing aeroelastic tailoring factor
+        - `param: fcomp`: Wing composite utilization factor
+    - `mode_1: chiozzotto_wer`: Calculate the wing mass according to Chiozzotto (WER)
+        - `param: technology_factor`: Technology factor, scales effective weight
+        - `param: material`: Material to choose between Aluminium or Carbo Fiber Reinforced Plastic
+
+_Control Design Methods_
+
+- `mode_0: user_defined`: User defined control devices (multiple ID Elements)
+    - `param: type`: Sets type of control device (e.g. aileron, rudder, elevator...)
+    - `param: deflection`: Set positive and negative deflection limits
+    - `param: position`: Set position parameters like chordwise and spanwise position for inner and outer dimension of a control device
+- `mode_1: empirical`: Sets control devices according to standard values
+    - `param: high_lift_device_type_leading_edge`: Select high lift leading edge device type
+    - `param: high_lift_device_type_trailing_edge`: Select high lift trailing edge device type
+
+_Spars Methods_
+
+- `mode_0: user_defined`: Sets spars directly (multiple ID Elements)
+    - `param: name`: Set spar name (e.g. front spar, rear spar etc.)
+    - `param: position`: Set position parameters like chordwise and spanwise position for inner and outer dimension of a spar
+
+## Configuration parameters &rarr; Blended Wing Body
+In this section you find parameters for Blended Wing Body methods.
+
+!!! note
+    In the beta version of UNICADO, BWB methods are under development.
+
+## Additional configurations
+Additionally, one has to define the common airfoil data paths inside the configuration file:
+
+- `common_airfoil_data_paths`: Defines the path, where to look for airfoils - normally a database
+
+## Additional information and requirements
+The methods in the wing design tool also require additional information on the design mach number, and the ICAO aerodrome reference code (for determination of maximum allowed span) from the requirements and specification block of the _Aircraft Exchange File_.
+
+!!! danger "Important"
+    Keep in mind that the _wing\_design_ tool generates a wing as a part of an aircraft. This lets it rely on specific values, e.g. for definining the area inside the fuselage etc. This leads to mandatory items at this point:
+
+    - A specified fuselage - here length and width and height are necessary to determine wing geometry and wing position
+    - Initial Maximum Takeoff Mass (MTOM) - for determination of the wing area necessary based on the wing loading (only if method is selected)
+
+Please keep in mind, that the module is still in beta phase and you can gratefully contribute to the _wing\_design_ tool!
+
+## Next Steps
+The next step is to run the _wing\_design_ tool. So let's get your wings from [:octicons-arrow-right-16: Run your first wing design](run-your-first-wing-design.md)
diff --git a/docs/documentation/sizing/wing_design/index.md b/docs/documentation/sizing/wing_design/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..d60a3ecd22277dc877d1484930eb6f33e26730e9
--- /dev/null
+++ b/docs/documentation/sizing/wing_design/index.md
@@ -0,0 +1,50 @@
+# Introduction {#mainpage}
+The wing is an essential part of an aircraft, therefore the _wing\_design_ tool is one of the core design tools in UNICADO and enables the workflow to design wings according to specified requirements and design specifications. 
+
+According to the workflow, the tool requires a valid _Aircraft Exchange File_ with inputs from the tools _initial\_sizing_ and _fuselage\_design_.
+
+```mermaid
+	flowchart LR
+		A@{ shape: sm-circ } --> B@{ shape: rounded, label: "Initial Sizing"}
+		B --> C@{ shape: rounded, label: "Fuselage Design"}
+		C --> D@{ shape: rounded, label: "Wing Design"} --> E["..."]
+
+		style E stroke: none, fill: none
+		style B stroke: #9e0f0f,fill: #9e0f0f
+		style C stroke: #9e0f0f,fill: #9e0f0f
+```
+
+## Summary of features
+Here is a quick overview of what the tool is currently capable of including a preview which is planned:
+
+| Configuration     | Wing Type  | Methods |                           Status |
+|-------------------|------------|---------|:---------------------------------:|
+| tube-and-wing     | Cantilever | TUB     |       running :white_check_mark: |
+| blended-wing-body | ...        | ...     | under development :construction: |
+
+## A User's Guide to Wing Design
+The _wing\_design_ tool will help you design various wings for classical configurations to blended wing body configurations (in the future). This user documentation will guide you through all necessary steps to understand the tool as well as the necessary inputs and configurations to create a new wing from scratch.
+
+The following pages will guide you through the process of generating your first wing within UNICADO:
+
+[:octicons-arrow-right-16: Basic Concepts](basic-concepts.md)   
+[:octicons-arrow-right-16: Getting Started](getting-started.md)   
+[:octicons-arrow-right-16: Design Methods](design-methods.md)   
+[:octicons-arrow-right-16: Design your first wing](run-your-first-wing-design.md)   
+
+So let's get started!
+
+
+## You are a Developer?
+
+If you are familiar with these concepts and want to contribute - head over to the developers guide to get your own method running in UNICADO!
+
+The following pages will help you understand the build process code structure:
+
+[:octicons-arrow-right-16: Prerequisites](prerequisites.md)   
+[:octicons-arrow-right-16: Build the code](../../../get-involved/build-instructions/build/python.md)   
+[:octicons-arrow-right-16: Wing module structure](module-structure.md)   
+[:octicons-arrow-right-16: Method template](method-template.md)   
+
+We appreciate it!
+
diff --git a/docs/documentation/sizing/wing_design/method-template.md b/docs/documentation/sizing/wing_design/method-template.md
new file mode 100644
index 0000000000000000000000000000000000000000..dc713ebd182509859e8cc6033c3917c93768438e
--- /dev/null
+++ b/docs/documentation/sizing/wing_design/method-template.md
@@ -0,0 +1 @@
+> :construction: This site is currently under construction.
\ No newline at end of file
diff --git a/docs/documentation/sizing/wing_design/module-structure.md b/docs/documentation/sizing/wing_design/module-structure.md
new file mode 100644
index 0000000000000000000000000000000000000000..dc713ebd182509859e8cc6033c3917c93768438e
--- /dev/null
+++ b/docs/documentation/sizing/wing_design/module-structure.md
@@ -0,0 +1 @@
+> :construction: This site is currently under construction.
\ No newline at end of file
diff --git a/docs/documentation/sizing/wing_design/prerequisites.md b/docs/documentation/sizing/wing_design/prerequisites.md
new file mode 100644
index 0000000000000000000000000000000000000000..dc713ebd182509859e8cc6033c3917c93768438e
--- /dev/null
+++ b/docs/documentation/sizing/wing_design/prerequisites.md
@@ -0,0 +1 @@
+> :construction: This site is currently under construction.
\ No newline at end of file
diff --git a/docs/documentation/sizing/wing_design/run-your-first-wing-design.md b/docs/documentation/sizing/wing_design/run-your-first-wing-design.md
new file mode 100644
index 0000000000000000000000000000000000000000..ebaeb68d7180d3efed1552b8bbe0e365824fe2b8
--- /dev/null
+++ b/docs/documentation/sizing/wing_design/run-your-first-wing-design.md
@@ -0,0 +1,276 @@
+# Design your first wing {#design-your-first-wing}
+Let's dive into the fun part. In this guide we will create a wing for a classic tube and wing configuration with a cantilever wing design method.
+
+  - [Requirements:](#requirements) - Information on tool requirements
+  - [Design parameters:](#design-parameters) - Information on design parameters
+  - [Tool execution:](#tool-execution) - Tool execution information
+  - [Reporting](#reporting) - Wing Design tool report information
+  - [Changing parameters](#changing-parameters) - The fun part! Let's change parameters
+  - [Troubleshooting](#troubleshooting) - Something went wrong? Maybe you are not the first one!
+
+The wing will be part of a generic tube and wing aircraft which is a look-a-like A320.
+
+## Requirements
+Running this tool requires an _Aircraft Exchange File_ where the tools _initial\_sizing_ and _fuselage\_design_ already run.
+
+```mermaid
+	flowchart LR
+		A@{ shape: sm-circ } --> B@{ shape: rounded, label: "Initial Sizing"}
+		B --> C@{ shape: rounded, label: "Fuselage Design"}
+		C --> D@{ shape: rounded, label: "Wing Design"} --> E["..."]
+
+		style E stroke: none, fill: none
+		style B stroke: #9e0f0f,fill: #9e0f0f
+		style C stroke: #9e0f0f,fill: #9e0f0f
+```
+
+From the _Aircraft Exchange File_ we have the following information:
+
+From the Requirements block:
+
+Parameter                  |         Value
+:--------------------------|-------------:
+A/C Type                   |         CeraS
+A/C Model                  |      SMR-2020
+Configuration Type         | Tube and Wing
+Wing definition            |           low
+ICAO Aerodrome Ref Code    |        3CIIIB
+Initial cruise mach number |          0.78
+
+From _initial\_sizing_ tool
+
+Parameter    |           Value
+:------------|---------------:
+MTOM         |        64232 kg
+Wing loading | 619.8444 kg/m^2
+
+!!! note
+		Parameters of the fuselage are not listed - however, it has a length of ~37m and a width of ~4m
+
+## Design parameters
+Wing Design tool parameters for cantilever method
+
+Parameter | Value (parameter in order of occurence)
+:-- | --:
+`wing_area` | `mode_1` &rarr; `by_loading_and_mtom`
+`sweep` | `mode_0` &rarr; `user_defined (27°)`
+`taper_ratio` | `mode_0` &rarr; `user_defined (0.17)`
+`dihedral` | `mode_1` &rarr; `by_wing_position_and_quarter_chord_sweep (raymer)`,
+`aspect_ratio` | `mode_0` &rarr; `user_defined (10.3)`
+`relative_kink_position` | `mode_0` &rarr; `user_defined (0.3, 10°)`
+`wing_profile_and_thickness` | `mode_1` &rarr; `torenbeek-jenkinson (F15, 0.15, 1.12)`
+`mass` | `mode_0` &rarr; `flops (0.0,0.0,0.5)`
+`control_devices` | `mode_1` &rarr; `empirical (slat, flap_fowler)`
+`spars` | `mode_0` &rarr; `user_defined ((front_spar,0.0,0.2,0.2, 1.0,0.2,0.2),(rear_spar,0.0,0.6,0.6,1.0,0.6,0.6) `
+
+
+## Tool execution
+The tool can be executed from console directly if all paths are set (see [:octicons-arrow-right-16: How to run a tool](../../../tutorials/seperate-tool-execution.md)).
+
+We go through the tool output step by step
+```
+*******************************************************************************
+18.11.2024 21:50:22 - Start wingDesign
+18.11.2024 21:50:22 - [MODULE RUNTIMEINFO] - wingDesign
+18.11.2024 21:50:22 -    [CONSOLE  ] - [ON]
+18.11.2024 21:50:22 -    [LOG      ] - [ON]
+18.11.2024 21:50:22 -    [PLOT     ] - [ON]
+18.11.2024 21:50:22 -       [COPY  ] - [ON]
+18.11.2024 21:50:22 -       [DELETE] - [ON]
+18.11.2024 21:50:22 -    [REPORT   ] - [ON]
+18.11.2024 21:50:22 -    [TEX      ] - [OFF]
+18.11.2024 21:50:22 -    [INFOFILES] - [OFF]
+18.11.2024 21:50:22 -    [GNUPLOT]
+18.11.2024 21:50:22 -       [PATH    ] -
+18.11.2024 21:50:22 -       [FILENAME] - DEFAULT
+18.11.2024 21:50:22 -    [INKSCAPE]
+18.11.2024 21:50:22 -       [PATH    ] -
+18.11.2024 21:50:22 -       [FILENAME] - DEFAULT
+18.11.2024 21:50:22 -    [LOGFILE]
+18.11.2024 21:50:22 -       [PATH    ] - .
+18.11.2024 21:50:22 -       [FILENAME] - wingDesign.log
+18.11.2024 21:50:22 -    [IO/ACXML]
+18.11.2024 21:50:22 -       [PATH    ] - ../projects/CSR/CSR-02
+18.11.2024 21:50:22 -       [FILENAME] - csmr-2020.xml
+18.11.2024 21:50:22 -    [MODCONFIG]
+18.11.2024 21:50:22 -       [PATH    ] - .
+18.11.2024 21:50:22 -       [FILENAME] - wingDesign_conf.xml
+18.11.2024 21:50:22 - Checking directory... [REPORT]
+18.11.2024 21:50:22 - Checking directory... [TEX]
+18.11.2024 21:50:22 - Checking directory... [HTML]
+18.11.2024 21:50:22 - Checking directory... [PLOT]
+18.11.2024 21:50:22 - Checking directory... [CSVFILES]
+18.11.2024 21:50:22 - Checking directory... [CSVFILESTOOL]
+18.11.2024 21:50:22 - Creating directory... [CSVFILESTOOL]
+18.11.2024 21:50:22 - Checking directory... [PLOTFILES]
+18.11.2024 21:50:22 - Checking directory... [PLOTFILESTOOL]
+18.11.2024 21:50:22 - Creating directory... [PLOTFILESTOOL]
+18.11.2024 21:50:22 - Checking directory... [LOGFILES]
+```
+To this point, the module is in the top level stage and creates folders and checks the configuration file settings from the control block. Here you can see some common information.
+
+Afterwards the module progresses and starts with the wing design initialization where it checks the airfoildata directory
+```
+18.11.2024 21:50:22 - Initializing wing design ... [START]
+18.11.2024 21:50:22 - Checking directory... [AIRFOILDATA]
+18.11.2024 21:50:22 - Initializing wing design ... [FINISHED]
+```
+Nothing fancy to this point! Now, we go to the interesting part - the design part begins with the check of the kink. Afterwards it gives you information on your parameter settings and gives you some more information about some selections like the ICAO Aerodrome reference code.
+```
+18.11.2024 21:50:22 - Run wing design ... [START]
+18.11.2024 21:50:22 - Selected design method ... [START]
+18.11.2024 21:50:22 - Wing Design ... [Start]
+18.11.2024 21:50:22 - Wing kink check ...
+18.11.2024 21:50:22 - Wing is kinked  ... [TRUE]
+Quarter chord sweep [method]: user_defined
+Quarter chord sweep  [value]: 27 [deg]
+Wing area [method]: by_loading_and_mtom
+Wing area  [value]: 104.198 [m^2]
+18.11.2024 21:50:22 - ICAO EASA Aerodrome reference code: 3CIIIB
+	Limts for  : ICAO field length
+	Code       : 3
+	Lower limit: 1200
+	Upper limit: 1800
+	Limts for  : ICAO wing span
+	Code       : C
+	Lower limit: 24
+	Upper limit: 36
+	Limts for  : FAA ADG tail height
+	Code       : III
+	Lower limit: 9.144
+	Upper limit: 13.716
+	Limts for  : ICAO aircraft approach speed
+	Code       : B
+	Lower limit: 169
+	Upper limit: 224
+Wing aspect ratio [method]: user_defined
+Wing aspect ratio  [value]: 10.3 [1]
+Wing taper ratio [method]: user_defined
+Wing taper ratio  [value]: 0.17 [1]
+Dihedral [method]: raymer
+Dihedral  [value]: 5 [deg]
+Maximum inner trailing edge sweep [method]: user_defined
+Maximum inner trailing edge sweep  [value]: 3 [deg]
+Relative kink position [method]: user_defined
+Relative kink position  [value]: 0.3 [1]
+```
+The aspect ratio with 10.3 is within limits of the 3CIIIB, otherwise a warning would have occured!
+
+In the next part, the tool computes the thickness distribution according to the selected method and goes further to the control and spars definition. After finishing this, the masses and the center of gravity as well as the wing position alongside the fuselage is calculated.
+```
+Wing profile and thickness [method]: torenbeek_jenkinson
+Wing profile and thickness [values]:
+	Eta               : 0
+	Thickness to chord: 0.15
+	Profile           : F15
+	Eta               : 0.121122
+	Thickness to chord: 0.15
+	Profile           : F15
+	Eta               : 0.3
+	Thickness to chord: 0.13803
+	Profile           : F15
+	Eta               : 1
+	Thickness to chord: 0.0911906
+	Profile           : F15
+Leading edge check ... [OK]
+Trailing edge check ... [OK]
+Spars [method]: user_defined
+Spars [values]:
+	Number 2 [1]
+Wing kink check ...
+18.11.2024 21:50:22 - Wing is kinked  ... [TRUE]
+Relative kink position [method]: user_defined
+Relative kink position  [value]: 0.3 [1]
+18.11.2024 21:50:22 - Wing kink check ...
+18.11.2024 21:50:22 - Wing is kinked  ... [TRUE]
+Control devices [method]: empirical
+Control devices [values]:
+	Name              : slat
+	Deflections       : 0	40
+	Name              : slat
+	Deflections       : 0	40
+	Name              : flap_fowler
+	Deflections       : 0	45
+	Name              : flap_fowler
+	Deflections       : 0	45
+	Name              : aileron
+	Deflections       : -20	20
+	Name              : spoiler_ground
+	Deflections       : 0	45
+	Name              : spoiler_air
+	Deflections       : 0	45
+	Name              : spoiler_air
+	Deflections       : 0	45
+	Name              : spoiler_air
+	Deflections       : 0	45
+	Name              : spoiler_air
+	Deflections       : 0	45
+18.11.2024 21:50:22 - Selected design method ... [FINISHED]
+18.11.2024 21:50:22 - Selected mass method   ... [START]
+18.11.2024 21:50:22 - Wing mass estimation using ... FLOPS
+18.11.2024 21:50:22 - Calculating ...
+18.11.2024 21:50:22 - Calculated wing mass ... 5822.87[kg]
+18.11.2024 21:50:22 - Wing bending material mass ... 3077.49[kg]
+18.11.2024 21:50:22 - Wing shear material and control surface mass ... 2238.51[kg]
+18.11.2024 21:50:22 - Wing miscellaneous items mass ... 506.872[kg]
+18.11.2024 21:50:22 - Calculate Center of Gravity ...
+18.11.2024 21:50:22 - CG Position...
+18.11.2024 21:50:22 - x ... 16.9761
+18.11.2024 21:50:22 - y ... 0
+18.11.2024 21:50:22 - z ... -0.673262
+18.11.2024 21:50:22 - Selected mass method   ... [FINISHED]
+18.11.2024 21:50:22 - Run wing design ... [FINISHED]
+```
+Now the design has finished.
+
+In the following the wing data will be written to the _Aircraft Exchange File_ (Update) and the report will be written.
+```
+18.11.2024 21:50:22 - Update designed wing ... [START]
+18.11.2024 21:50:22 - Update designed wing ... [FINISHED]
+18.11.2024 21:50:22 - Report designed wing ... [START]
+18.11.2024 21:50:24 - CSS code written to style.css successfully.
+18.11.2024 21:50:24 - Report designed wing ... [FINISHED]
+```
+
+
+Executing the tool with reporting on gives you a HTML report for the designed wing.
+Let's have a look at it.
+## Reporting
+The HTML report is splitted - on the left half, one can see numerical information of the wing design. The right side contains plots and visual information.
+
+![:octicons-arrow-right-16: Report Page](figures/Report_page_wing_design.png)
+
+It starts with general information followed by section parameters. Then you get information on spars and control devices. It concludes with mass information.
+
+The plot side starts with a general wing planfrom view, followed by the airfoil shape and the thickness and twist distribution
+
+
+## Changing parameters
+The mass here seems quite low - this is due to the `fcomp` parameter in the `mass` block of the configuration file which is set to `0.5` (`fcomp` defines the part of composite utilization), so we want to decrease the composite part so we will set this to `fcomp = 0.2`.
+
+The results are indeed different:
+Now we have a wing mass of `6424kg` instead of `5822kg`.
+
+Also we can try to trigger an error - lets increase the aspect ratio to get out of the ICAO Aerodrome reference code region (set `aspect_ratio = 18`).
+
+Now we see the following during code exectuion:
+```
+Wing aspect ratio [method]: user_defined
+Wing aspect ratio  [value]: 18 [1]
+18.11.2024 22:15:26 - WARNING: Calculated aspect ratio > maximum_possible_aspect_ratio
+18.11.2024 22:15:26 - WARNING: Switch to maximum possible aspect_ratio
+Wing taper ratio [method]: user_defined
+...
+```
+The tool adapted the wing aspect ratio to the maximum possible aspect ratio since the aspect ratio we defined was way too high.
+
+Soo .... Now it is your turn!
+
+!!! tip
+    Start by changing only one parameter at once. There might be interactions with other parameters, so don't rush!
+
+## Troubleshooting
+- Tool does not run properly:
+  - Make sure you have all the paths set up correctly and the specified elements exist!
+- Tool is not there:
+  - You can build the tool directly from scratch - see therefor [:octicons-arrow-right-16: How to build a tool](../../../get-involved/build-instructions/build/cpp.md)
diff --git a/docs/download/getting-started.md b/docs/download/getting-started.md
new file mode 100644
index 0000000000000000000000000000000000000000..b65d6c31ee4642a26c4eb745eb074af3e4fe2883
--- /dev/null
+++ b/docs/download/getting-started.md
@@ -0,0 +1,6 @@
+You want to **use** UNICADO to get familiar with the workflow and see first results? Great :fire: Then check out the [Requirements](requirements.md) for installation and usage. Afterwards, you can download and install UNICADO [here](takeoff.md).
+
+If you're a **developer** interested in contributing to UNICADO, follow the [Developer Installation Guide](../get-involved/developer-installation.md). However, you also need to check out the [Requirements](requirements.md) to ensure you'll be able to run your code!
+
+
+
diff --git a/docs/download/release-notes.md b/docs/download/release-notes.md
new file mode 100644
index 0000000000000000000000000000000000000000..df19915f83e0750483ffade1ee972c0b479751a1
--- /dev/null
+++ b/docs/download/release-notes.md
@@ -0,0 +1,38 @@
+### 🚀 Version 0.5.0 - 2025-02-28
+
+!!! note
+	🎉 First official release of UNICADO!
+
+#### 🛠 Features
+
+- Open source code in C++ and Python of conceptual aircraft design and assessment tools, custom libraries, additional tools, and workflow
+- Clean sheet design, parameter studies and calibrations possible in UNICADO workflow
+- Example design of an short/medium range aircraft with HTML reports
+
+| Parameter            | Value  | Unit |
+| -------------------- | ------ | ---- |
+| Maximum takeoff mass | 78910  | kg   |
+| Operating empty mass | 44664  | kg   |
+| Maximum useable fuel | 657977 | MJ   |
+| Numbers of iteration | 5 (+1) |      |
+
+#### 📌 Parameter studies results
+Following top-level aircraft parameter studies were successful and showed reasonable results: 
+
+- Number of passenger, passenger & cargo mass
+- Required takeoff and landing length & approach speed
+- Design mission: range, initial cruise mach number and altitude, maximum operating mach number, delta ISA
+- Friction and braking coefficient
+- Fuselage type (single and wide body), different class distributions as well as undercarriage retractability
+- Different engine positions and numbers
+
+!!! important
+	Parameter studies of tool setting are in progress and will be updated on the website asap
+
+#### ⭐ Upcoming in next release
+
+- Implementation of existing geometry usage
+- Implementation of CPACS interface
+- Improvement of optimization framework integration in UNICADO workflow 
+
+Known issues are in the GitLab 🐞 Issue board: [Link](https://git.rwth-aachen.de/groups/unicado/-/issues)
diff --git a/docs/download/requirements.md b/docs/download/requirements.md
new file mode 100644
index 0000000000000000000000000000000000000000..40df94c6f275d5a23449874bcdf4f0491f7225cb
--- /dev/null
+++ b/docs/download/requirements.md
@@ -0,0 +1,34 @@
+## Installation Requirements {#installation-requirements}
+
+For the installation of UNICADO, the following requirements have to be fulfilled:
+
+### Required hardware
+
+- 8GB RAM
+- Intel Core i5 or higher
+- 240MB  hard disk space + 120MB for installation processes
+
+### Required software
+
+The UNICADO software runs predominantly on Windows 10 and upwards, so you need to provide such a windows environment.
+
+## Additional Software to Use UNICADO {#additional-software}
+
+To run UNICADO, you will need some external software. It can be downloaded on the corresponding websites.
+
+### Required software
+
+- [:simple-python: Python :octicons-link-external-16:](https://www.python.org/) **3.11**
+- [:fontawesome-brands-java: Java Runtime Environment :octicons-link-external-16:](https://jdk.java.net/) (download zip file, unzip to e.g. `C:\Programs`, add `bin` folder of JDK to your **PATH** variable)
+- [RCE :octicons-link-external-16:](https://rcenvironment.de/) integration platform (download zip file, unzip to e.g. `C:\Programs`)
+- [gnuplot :octicons-link-external-16:](https://sourceforge.net/projects/gnuplot/) for generating plots with matplot++ (download and add `bin` folder to your **PATH** variables). Gnuplot 6.0.2 is recommended!
+
+!!! note
+    Please check the [RCE Updates Website :octicons-link-external-16:](https://rcenvironment.de/pages/updatessecurity.html) for which Java version is working with the respective RCE version. Currently, e.g. Java **11.x** is recommended for the current released
+
+### Optional software
+
+- [TiGL :octicons-link-external-16:](https://dlr-sc.github.io/tigl/) 3.x for visualizing the aircraft geometry
+- [MikTex :octicons-link-external-16:](https://miktex.org/) for creating pdf reports
+- [Inkscape :octicons-link-external-16:](https://inkscape.org/release/inkscape-1.4/) for creating plots for pdf reports (download and add `bin` folder to your **PATH** variables)
+
diff --git a/docs/download/takeoff.md b/docs/download/takeoff.md
new file mode 100644
index 0000000000000000000000000000000000000000..11e3fb9bf8d99a1a611159f09b0e97ec61add42b
--- /dev/null
+++ b/docs/download/takeoff.md
@@ -0,0 +1,20 @@
+---
+title: Cleared for Take-Off
+summary: Instructions how to install the workflow
+authors:
+    - Sebastian Oberschwendtner
+    - Maurice Zimmnau
+    - Kristina Mazur
+    - Katrin Bistreck
+date: 2024-11-05
+---
+## Installer
+When you fullfil all the [requirements](requirements.md), you can download and install the workflow with the current [:material-download: UNICADO installer](../assets/UNICADOinstaller.exe). This [standalone workflow tutorial](../tutorials/standalone.mp4) will show you in a video how this will look like.
+
+## Troubleshooting
+Your installation aborts and the window closes suddenly:
+
+- Create the `C:\Programs` folder by yourself.
+- If your installation aborts a good first guess is always to restart your pc (because temp folders might be cleaned after a restart)
+- If the restart does not help, close your installation window (if still opened), go to `C:\Users\<YourUserName>\AppData\Local\Temp` and delete all folders beginning with *_M*. Afterwards execute the installer again.
+
diff --git a/docs/get-involved/build-instructions/build-environment/linux.md b/docs/get-involved/build-instructions/build-environment/linux.md
new file mode 100644
index 0000000000000000000000000000000000000000..9fcb6cc92a1431985b31bcfd8312f349a7cb4776
--- /dev/null
+++ b/docs/get-involved/build-instructions/build-environment/linux.md
@@ -0,0 +1,68 @@
+---
+title: Setup Linux Environment
+summary: How to create the C++ build environment on Linux Systems
+authors:
+    - Sebastian Oberschwendtner
+date: 2024-03-01
+---
+## Introduction
+We use the basic linux tools to build *UNICADO* on Linux.
+The tools used are:
+
+- Compiler: `GCC` + `make`
+- Generator tool: `CMake` (more infos [here](../build/general.md))
+- Package manager: &rarr; The package manager of your **Linux** distribution should suffice
+- some other tools (Python, Git - see below)
+
+>You can use _Visual Studio Code_ as your IDE which will integrate everything, but since we are not prescribing any IDE, this will only show you how to setup the build tools. :point_up:
+
+---
+
+## Install Build Tools
+Since there are many distributions out there and they all call the package which contains all build tools differently, we can provide just a small set of examples.
+If your distribution is not listed here, make sure to at least install:
+
+- `gcc` + `g++`
+- `make`
+- `gdb`
+- `git`
+
+=== "Arch"
+
+    ```{.sh .copy}
+    sudo pacman -Sy
+    sudo pacman -S devtools
+    ```
+
+=== "Ubuntu"
+
+    ```{.sh .copy}
+    sudo apt-get update
+    sudo apt-get install build-essential
+    ```
+---
+
+## Install Other Tools
+Please install the following as well:
+
+|Package|Version|
+|---|---|
+|`git`| |
+|`python`| Preferably **3.11**|
+|`pyenv`| |
+|`cmake`| >= **3.29**|
+|`matplotplusplus`| |
+
+For Python, you can install it:
+=== "Arch"
+
+    ```{.sh .copy}
+    sudo pacman -S pyenv
+    pyenv install 3.11.10
+    ```
+
+!!! important 
+    Currently, `matplotplusplus` has to be cloned manually into the submodule `aircraftdesign`. Sometimes here are connection problems when doing so. The command that currently works is 
+    ```{.sh .copy}
+    git clone --depth=1 --shallow-submodules https://github.com/alandefreitas/matplotplusplus.git 
+    ```
\ No newline at end of file
diff --git a/docs/get-involved/build-instructions/build-environment/macos.md b/docs/get-involved/build-instructions/build-environment/macos.md
new file mode 100644
index 0000000000000000000000000000000000000000..4013be81d44d08394617ba2240c391f07c262c85
--- /dev/null
+++ b/docs/get-involved/build-instructions/build-environment/macos.md
@@ -0,0 +1,13 @@
+---
+title: Setup MacOS Environment
+summary: How to create the C++ build environment on MacOS Systems
+authors:
+    - Sebastian Oberschwendtner
+date: 2024-03-01
+---
+
+!!! info
+    We have no documentation (yet) how to setup the build environment for *MacOS*.
+    But since it is also a *Unix* based system, the standard **GCC** compiler should work as well.
+    &rArr; Feel free to experiment and provide documentation of your findings. :apple: :wink:
+
diff --git a/docs/get-involved/build-instructions/build-environment/mingw.md b/docs/get-involved/build-instructions/build-environment/mingw.md
new file mode 100644
index 0000000000000000000000000000000000000000..61a54b6076e2c104e1b95a0ddcda14210d031c2c
--- /dev/null
+++ b/docs/get-involved/build-instructions/build-environment/mingw.md
@@ -0,0 +1,13 @@
+---
+title: Setup MSYS2/MinGW Environment
+summary: How to create the C++ build environment on Windows using MSYS2.
+authors:
+    - Sebastian Oberschwendtner
+date: 2024-03-01
+---
+!!! warning
+    Using **MSYS2** to build *UNICADO* may work, but is no longer maintained by us!
+    So things could have changed in the meantime.
+
+> Microsoft provides a good manual how to install **MSYS2**/MinGW in their [Documenation :octicons-link-external-16:](https://code.visualstudio.com/docs/cpp/config-mingw){:target="_blank"}.
+Although this targets their IDE, the process of installing **MYS2** applies for us as well regardless of which IDE you use.
\ No newline at end of file
diff --git a/docs/get-involved/build-instructions/build-environment/windows.md b/docs/get-involved/build-instructions/build-environment/windows.md
new file mode 100644
index 0000000000000000000000000000000000000000..7c85ea1b9bd4c981f29fb4f11704a8ff4bf48eb8
--- /dev/null
+++ b/docs/get-involved/build-instructions/build-environment/windows.md
@@ -0,0 +1,130 @@
+---
+title: Setup Windows Environment
+summary: How to create the C++ build environment on Windows
+authors:
+    - Sebastian Oberschwendtner
+date: 2024-03-01
+---
+
+## Introduction
+We recommend using the Windows compiler for the best experience and to create programs that are easily distributable to other Windows machines.
+The tools used are:
+
+- Compiler: `Clang` or `MSVC`
+- Generator tool: `CMake` (more infos [here](../build/general.md))
+- Package manager: `vcpkg`
+- Some other tools (Python, Git - see below)
+
+> You can use _Visual Studio Code_ as your IDE which will integrate everything, but since we are not prescribing any IDE, this will only show you how to set up the build tools. :point_up:
+
+---
+
+## Install Git
+- Download and Install the latest release of **Git**: [Download Git ![link icon](https://img.icons8.com/ios/16/ADD8E6/external-link.png)](https://git-scm.com/download/win)
+- Follow [Install and Configure Git](../../how-to-contribute/contributor-tutorial/git-installation&configuration.md) for a detailed explanation of how to install & configure Git.
+
+---
+
+## Install Python
+- Download and install **Python**: [Download Python ![link icon](https://img.icons8.com/ios/16/ADD8E6/external-link.png)](https://www.python.org/downloads/windows/)
+
+!!! warning
+    Please install version **3.11.8**, select all the default options, and check the option to add Python to *PATH* & make sure to include the debug binaries!
+
+![Python settings](site:assets/images/developer/python-debug-binaries.png)
+
+### Python Dependencies
+The only Python dependency we have is `pipenv`, which is used to manage the Python environment.
+Install it by executing the following command in a terminal after you have **successfully** installed Python:
+
+```{.sh .copy}
+pip install pipenv
+```
+
+---
+
+## Install CMake
+- Download and Install the latest release of **CMake**: [Download CMake ![link icon](https://img.icons8.com/ios/16/ADD8E6/external-link.png)](https://cmake.org/download/)
+
+!!! important
+    Install at least version **3.29**!
+
+- Enable the option to make **CMake** available in *PATH*.
+
+---
+
+## Install VS Code (optional)
+If you'd like to use VS Code as your IDE and haven't installed it yet, now is the right time :clock:.
+You can download it from the official website: [Download Visual Studio Code ![link icon](https://img.icons8.com/ios/16/ADD8E6/external-link.png)](https://code.visualstudio.com/Download)
+
+Afterwards, you can freely decide on installing nice extensions such as:
+- C/C++, C/C++ Extension Pack, C/C++ Themes: for a convenient working environment in C++
+- CMake, CMake Tools: for build process within your IDE
+- cpp-check-lint: for style checks during coding
+- ...
+
+---
+
+## Install Build Tools
+- Download the build tools from Microsoft: [Download Build Tools ![link icon](https://img.icons8.com/ios/16/ADD8E6/external-link.png)](https://visualstudio.microsoft.com/downloads/?q=build+tools#build-tools-for-visual-studio-2022){:target="_blank"}
+
+The page should look something like this:
+![Download Build Tools](site:assets/images/screenshots/download-build-tools.png)
+
+- Execute the installer and install at least these components:
+    - *Desktop development with C++*
+    - *C++ CMake tools for Windows*
+    - *C++ Clang tools for Windows* (&rArr; This will include the Clang compiler as well.)
+
+!!! attention
+    The latest version of Visual Studio Build Tools can change over time. Just download the latest one and keep a note of which version that is.
+
+---
+
+## Install vcpkg
+*vcpkg* is the open-source package manager maintained by Microsoft that we use to install and manage our dependencies.
+
+- *vcpkg* recommends keeping the path where you install it short, so create the following folder:
+
+    :octicons-file-directory-16: `C:\dev`
+
+!!! warning
+    From now on, we assume that you installed *vcpkg* in this folder!
+
+- Open a terminal inside `C:\dev`
+- Clone the *vcpkg* repository:
+
+```{.sh .copy}
+git clone https://github.com/microsoft/vcpkg.git
+```
+
+- Create the *vcpkg* executable by executing this command in the opened terminal:
+
+=== "Windows"
+
+    ``` { .cmd .copy }
+    .\vcpkg\bootstrap-vcpkg.bat
+    ```
+
+    !!! note
+        This may take some time, and you can install one package after the other.
+
+
+
+=== "MinGW"
+
+    ``` { .sh .copy }
+    cmd.exe /c .\vcpkg\bootstrap-vcpkg.bat
+    ```
+
+To check if *vcpkg* is installed on your system, you can run the following command in your terminal or command prompt:
+
+```{.cmd .copy}
+vcpkg --version
+```
+
+If you get an error like `vcpkg: command not found`, it means that *vcpkg* is not properly installed or the executable is not in your system's PATH. Make sure that *vcpkg* is correctly installed and that the path to the executable is included in the environment variables.
+
+You can get more information on how *vcpkg* can be installed in the [Readme ![link icon](https://img.icons8.com/ios/16/ADD8E6/external-link.png)](https://github.com/microsoft/vcpkg/?tab=readme-ov-file#getting-started) of the project itself.
+
+---
\ No newline at end of file
diff --git a/docs/get-involved/build-instructions/build/cmake-presets.md b/docs/get-involved/build-instructions/build/cmake-presets.md
new file mode 100644
index 0000000000000000000000000000000000000000..4af102cb3935dd915abbce32305d17ca5b8c95b9
--- /dev/null
+++ b/docs/get-involved/build-instructions/build/cmake-presets.md
@@ -0,0 +1,81 @@
+---
+title: CMake Presets
+summary: How to define your custom CMake preset
+authors:
+    - Sebastian Oberschwendtner
+date: 2024-03-06
+---
+## Introduction
+If you don't know what **CMake** presets are, read about them in their [Documentation :octicons-link-external-16:](https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html){:target="_blank"}.
+
+We provide a standard set of presets in :octicons-file-16: `CMakePresets.json` which gives you some reasonable defaults.
+However, our assumptions may not apply to your build environment.
+So there is the option to provide a custom :octicons-file-16: `CMakeUserPresets.json` which can override certain options of our presets.
+Just make sure your preset inherits our defaults.
+The following provides preset templates you can build your preset upon.
+
+!!! warning
+    Do not include the :octicons-file-16: `CMakeUserPresets.json` file into version control!
+    This file should be an untracked local file on your machine.
+
+## User Presets
+
+=== "Windows"
+
+    A possible user preset for the *Windows* preset:
+    ```{.json .copy}
+    {
+        "version": 6,
+        "configurePresets": [
+            {
+                "name": "default",
+                "inherits": "x64-windows-common",
+                <your custom overrides here>
+            }
+        ]
+    }
+    ```
+
+=== "MinGW"
+
+    A possible user preset for running *MSYS2* on Windows:
+    ```{.json .copy}
+    {
+        "version": 6,
+        "configurePresets": [
+            {
+                "name": "default",
+                "inherits": "x64-unix-common",
+                <your custom overrides here>
+            }
+        ]
+    }
+    ```
+
+=== "Linux"
+
+    A possible user preset for the *Linux* preset:
+    ```{.json .copy}
+    {
+        "version": 6,
+        "configurePresets": [
+            {
+                "name": "default",
+                "inherits": "x64-linux-common",
+                <your custom overrides here>
+            }
+        ]
+    }
+    ```
+
+!!! note
+    The templates do not provide any concrete custom settings, since those might be very specific to your system. In general, **CMake** will tell you when something is wrong with the default settings and then you can add your custom override in the user preset.
+    Feel free to look at our presets to understand what each provided preset does and why this may not be applicable to your system.
+
+If you used the `name` parameter as shown in the templates you can use the custom preset when configuring **CMake** like this:
+```
+cmake -B build -S . --preset default
+```
+
+!!! tip
+    Most **CMake** IDE plugins should recognize these preset files and provide a way for you to select the preset you want.
diff --git a/docs/get-involved/build-instructions/build/cpp.md b/docs/get-involved/build-instructions/build/cpp.md
new file mode 100644
index 0000000000000000000000000000000000000000..9f7764c2a14e01a3968f564ad774831386e4ad5e
--- /dev/null
+++ b/docs/get-involved/build-instructions/build/cpp.md
@@ -0,0 +1,208 @@
+---
+title: Building C++ Modules
+summary: How to build C++ modules of UNICADO.
+authors:
+    - Sebastian Oberschwendtner
+date: 2023-09-12
+---
+Most modules are written in C++. In the following, it is explained how:
+
+- the current important [dependencies](#dependencies) have to be installed
+- how to [configure](#configure) and [build](#build) with CMake
+
+For detailed information on CMake, please read the [general information](../build/general.md).
+
+## Install required dependencies {#dependencies}
+We do not provide an automatic way to get the required dependencies, since we do not want to force any specific package manager on you.
+*UNICADO* has currently these external dependencies for building:
+
+- [Eigen3 :octicons-link-external-16:](https://eigen.tuxfamily.org/index.php?title=Main_Page){:target="_blank"}
+- [Boost :octicons-link-external-16:](https://www.boost.org/){:target="_blank"}
+- [CGAL :octicons-link-external-16:](https://www.cgal.org/){:target="_blank"}
+
+However, if you followed the instructions in *Prerequisites* you can install them as follows:
+
+=== "Windows"
+
+    ``` { .cmd .copy }
+    C:\dev\vcpkg\vcpkg.exe install eigen3 boost cgal
+    ```
+
+    !!! note
+        This may take some time and you can install one package after the other.
+
+=== "MinGW"
+
+    ``` { .sh .copy }
+    pacman -S mingw-w64-ucrt-x86_64-eigen3 mingw-w64-ucrt-x86_64-boost mingw-w64-ucrt-x86_64-cgal
+    ```
+=== "Unix"
+
+    &rArr; Use your the package manager of your distribution to install the packages. :wink:
+
+
+## Configure {#configure}
+Before building we need to configure and figure out on which platform you are running your current build.
+### Naming pattern
+We use the following naming pattern to identify the presets:
+
+```
+architecture-platform-configuration
+```
+
+Where *architecture* can be one of the following:
+
+- `x64` for 64-bit architectures (Currently the **only** one we support!)
+
+And *platform* can be one of the following:
+
+- `windows` for Windows
+- `linux` for Linux
+- `mingw` for MinGW on Windows (:warning: **Deprecated**)
+
+The *configuration* can be one of the following:
+
+- `release` for a release builds
+- `debug` for a debug builds
+
+Other configurations are possible, but not supported by our presets.
+You have to specify custom presets by [CMakeUserPresets](cmake-presets.md).
+
+!!! note
+    In the following we always assume the **Release** configuration for building. The **Debug** configuration works analogously.
+
+### Configure in Terminal
+The programmers way to configure **CMake**:
+
+1. Open a terminal inside the root directory of the *rAircraftDesign* repository.
+2. Configure **CMake** by explicitly telling it which preset to use:
+
+=== "Windows"
+
+    ``` { .sh .copy }
+    cmake -B build -S . --preset x64-windows-release
+    ```
+
+=== "MinGW"
+
+    ``` { .sh .copy }
+    cmake -B build -S . --preset x64-mingw-release
+    ```
+=== "Linux"
+
+    ``` { .sh .copy }
+    cmake -B build -S . --preset x64-linux-release
+    ```
+
+!!! tip
+    The `-B` and `-S` are not needed anymore when using the preset. You can however still use them to specify the build directory and the source directory.
+    :fontawesome-solid-arrow-right: **In the following we will omit them.**
+
+During this configuration, **CMake** generates a cache file which remembers some parameters which are re-used when you configure **CMake** again.
+This cache files is __not__ automatically deleted/updated, which can lead to some unexpected behavior.
+When this happens, you can tell **CMake** explicitly to refresh this cache by:
+
+=== "Windows"
+
+    ``` { .sh .copy }
+    cmake --preset x64-windows-release --fresh
+    ```
+
+=== "MinGW"
+
+    ``` { .sh .copy }
+    cmake --preset x64-mingw-release --fresh
+    ```
+=== "Linux"
+
+    ``` { .sh .copy }
+    cmake --preset x64-linux-release --fresh
+    ```
+
+Read more about the configuration and additional possible flags you can set [here](../build/general.md).
+
+---
+
+## Build {#build}
+
+### Build specific target
+So to build a specific target you call **CMake** with the following command, where `<target>` is the name of the module you want to compile:
+
+=== "Windows"
+
+    ```sh
+    cmake --build --preset x64-windows-release --target <target>
+    ```
+
+=== "MinGW"
+
+    ```sh
+    cmake --build --preset x64-mingw-release --target <target>
+    ```
+
+    !!! tip
+        Remember: The build preset should match the one specified when configuring **CMake** :point_up:.
+
+=== "Unix"
+
+    ```sh
+    cmake --build --preset x64-linux-release --target <target>
+    ```
+
+    !!! tip
+        Remember: The build preset should match the one specified when configuring **CMake** :point_up:.
+
+### Build all target
+When you want to compile all the modules ^^at once^^, you can just omit the *target* option and call **CMake** with:
+
+=== "Windows"
+
+    ```sh
+    cmake --build --preset x64-windows-release
+    ```
+
+=== "MinGW"
+
+    ```sh
+    cmake --build --preset x64-mingw-release
+    ```
+
+=== "Unix"
+
+    ```sh
+    cmake --build --preset x64-linux-release
+    ```
+!!! warning
+    If you do that, you also have to install the python packages first (see [Python build](../build/python.md)).
+
+### Other notes
+#### Clean before re-compiling
+
+=== "Windows"
+
+    ```sh
+    cmake --build --preset x64-windows-release --target <target> --clean-first
+    ```
+
+=== "MinGW"
+
+    ```sh
+    cmake --build --preset x64-mingw-release --target <target> --clean-first
+    ```
+
+=== "Unix"
+
+    ```sh
+    cmake --build --preset x64-linux-release --target <target> --clean-first
+    ```
+
+That's all folks. This should compile *UNICADO* just fine. 👌
+
+#### Improve Compilation Speed
+You can increase the build speed by enabling parallel jobs of the build tool. This is as easy as this:
+
+```sh
+cmake --build --preset <preset> --target <target> -j <n_jobs>
+```
+
+This builds the project using `n_jobs` processes. You can give any number here, but it should correspond to the number of processors available on your machine.
diff --git a/docs/get-involved/build-instructions/build/general.md b/docs/get-involved/build-instructions/build/general.md
new file mode 100644
index 0000000000000000000000000000000000000000..89fa92176ebb762a6204585a04ed0f9525886fdd
--- /dev/null
+++ b/docs/get-involved/build-instructions/build/general.md
@@ -0,0 +1,66 @@
+---
+title: General
+authors:
+    - Kristina Mazur
+date: 2024-11-05
+---
+To understand **UNICADO's code base**, there are some things you need to know:
+
+1. The code is in both :simple-cplusplus: C++ and :simple-python: Python. This makes the software especially exciting for development :fire:.
+
+2. We work a lot with executables in order to integrate them into the workflow.
+
+3. For generating the build files, **UNICADO** uses [CMake :octicons-link-external-16:](https://cmake.org/){:target="_blank"}.
+CMake is a build system generator, which allows for cross-platform compilation.
+For more information about this system, please refer to its [Documentation :octicons-link-external-16:](https://cmake.org/cmake/help/latest/){:target="_blank"}.
+
+A step by step guide on how to build UNICADO modules can be found [here](cpp.md) for C++ modules or [here](python.md) for python modules, respectively.
+
+## Some words about :simple-cmake: CMake
+
+In UNICADO, CMake plays a crucial role as our build system generator. CMake simplifies the process of generating platform-specific build files, making it easier to compile the code across various operating systems. This is especially useful for developers, as it ensures consistency and efficiency in building executables regardless of the environment.
+
+By defining build instructions in `CMakeLists.txt` files, CMake enables flexible configuration options, allowing us to manage dependencies and set up customized builds effortlessly.
+
+The typical CMake-based workflow includes two steps: configure and build. Here are some insights:
+
+### Configure CMake
+Since **CMake** is independent of the used platform, it needs to figure out on which platform you are running your current build. This process is called *Configuration*. During configuration, **CMake** checks on which platform you are and selects the appropriate build system/compiler.
+**CMake** wants to separate the build specific files from the source files. Usually, this is done by providing a separate *build* directory, where all the intermediate files are stored before actually executing the build.
+
+!!! note
+    **CMake** introduced the concept of [Presets :octicons-link-external-16:](https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html){:target="_blank"} which allows to specify different sets of arguments which are passed to **CMake** when configuring the project.
+    We provide a basic preset file which contains a reasonable default configuration for each platform we support. You can however, create your own :octicons-file-16: `CMakeUserPresets.json` file along our preset file to override our settings. See [CMake Presets](../../build-instructions/build/cmake-presets.md) for more information about that.
+
+
+**CMake** also comes with a **GUI** which can be used for the configuration process.
+The GUI looks like this:
+
+![CMake GUI](site:assets/images/screenshots/cmake-gui.png)
+
+It works the same as the command line interface.
+You have to specify the path to the source files and to the build directory.
+Then you have to select the preset you want to use.
+You can see the exposed options of the project as well.
+And as the GUI already tells you:
+> Press Configure to update and display new values in red, then press Generate to generate selected build files.
+
+These project options are currently available during configuration time:
+
+| Name | Default | Description |
+| --- | :---: | ---|
+|**BUILD_BLACKBOXTESTS**| `OFF` | Whether to build the blackbox tests. (If available)|
+|**BUILD_UNITTEST**| `OFF` |Whether to build the unit tests. (If available)|
+|**BUILD_SHARED_LIBS**| `OFF` | Decide whether the libraries are built as static or shared libraries.|
+|**PACKAGE_SYSTEM_LIBRARIES**| `OFF` | Whether to include all system libraries when creating release packages. *(Only available in `rUNICADO`)* |
+|**FIND_LIBRARIES_AS_PACKAGE**| `OFF` |If *true* the libraries are included with `find_package()`, otherwise the *submodule* with `add_subdirectory()` is used.|
+|**STATIC_GLIBS**| `OFF` | Whether to link the *GCC runtime libraries* as static libraries. :warning: ^^**Experimental**^^ |
+
+The other options shown in the GUI are specific to **CMake**.
+(*Not all options shown in the table are part of the screenshot, since the screenshot was taken before these options were introduced.*)
+
+### Build with CMake
+Once the configuration is complete and build files are generated, the build step compiles the modules into executables or libraries. This is where CMake hands over control to the underlying compiler, which translates the C++ and Python components of UNICADO into a runnable format.
+The different modules are called *targets* in the **CMake** language.
+
+After this step, you’ll have compiled executables and/or libraries ready to run or integrate into the UNICADO workflow. :simple-cmake: :heart:
diff --git a/docs/get-involved/build-instructions/build/including-libraries.md b/docs/get-involved/build-instructions/build/including-libraries.md
new file mode 100644
index 0000000000000000000000000000000000000000..02e95d468ac19e46f6cafaf16dfab83baeee9337
--- /dev/null
+++ b/docs/get-involved/build-instructions/build/including-libraries.md
@@ -0,0 +1,57 @@
+---
+title: Build and Include the Libraries
+summary: Some remarks on including the UNICADO libraries.
+authors:
+    - Sebastian Oberschwendtner
+date: 2023-09-12
+---
+## A word about including the libraries
+
+Oh yes, the **UNICADO** [libraries](../../../documentation/libraries/index.md). 🙂
+When you start developing and building the **UNICADO** modules you will quickly discover the importance of the libraries.
+There are many ways how you can include libraries in C++ projects and all have their advantages and disadvantages.
+In the **UNICADO** project, the most important decisions to make are:
+
+- Whether to include the libraries as **static** (`*.a`) or **dynamic** (`*.dll` or `*.so`) libraries.
+- Whether to include the libraries as **CMake** **targets** and always recompile the libraries when building the modules or to import the libraries as a **CMake** **package** somewhere from the hard drive. ( :fontawesome-solid-arrow-right: Look in [ Include Library Package ](#library-package) to find out what this actually means.)
+
+
+>  Note that each decision is completely independent from the other decision.
+
+Each of those decisions has a corresponding option when configuring **CMake**.
+So you can decide for your situation what suits your workflow the best.
+The default configuration when [Building with CMake](cpp.md) is:
+
+- `BUILD_SHARED_LIBS=OFF` :fontawesome-solid-arrow-right: Build **static** libraries.
+- `FIND_LIBRARIES_AS_PACKAGE=OFF` :fontawesome-solid-arrow-right: Include **targets** from the submodule and recompile libraries each time there are changes.
+
+!!! note
+    The default configuration is usually best suited for most situations.
+
+## Changing to dynamic libraries
+When you want to decrease the binary size of the executables or want to test changes in the libraries without having to recompile the executables, you can build the libraries as **dynamic** libraries by configuring **CMake** with:
+
+```sh
+cmake -B build -S . --preset <preset> -DBUILD_SHARED_LIBS=ON
+```
+
+This will build all libraries as **dynamic** libraries and link the executables against those libraries.
+It does not matter where you set this option.
+When you build the libraries on their own, the option does the same thing as when you build the complete project where the libraries are included as a submodule.
+
+!!! warning
+    This is **not** recommended unless you have a specific need for it.
+    Do not forget to add the location of the **dynamic** libraries to your **PATH** afterwards. 😉
+
+## Changing to the library package {#library-package}
+
+When you want to save some compilation time or do not want to copy the libraries everywhere, you can include them as a package by:
+
+```sh
+cmake -B build -S . --preset <preset> -DFIND_LIBRARIES_AS_PACKAGE=ON -DCMAKE_PREFIX_PATH=path-to-libs
+```
+
+!!! important
+    When including the libraries as a package you ^^**HAVE**^^ to set `CMAKE_PREFIX_PATH`. You also have to make sure that the libraries this path is pointing to are compiled and exist!
+
+With this mechanism you can have mutliple projects using the same libraries without having to copy and recompile them all the time. The added downside is that **CMake** can no longer handle the automatic compilation and you have to manually make sure that the libraries are ready to be used.
\ No newline at end of file
diff --git a/docs/get-involved/build-instructions/build/python.md b/docs/get-involved/build-instructions/build/python.md
new file mode 100644
index 0000000000000000000000000000000000000000..1673c80158e4fcb95ffa9673994fa8ebfcc11450
--- /dev/null
+++ b/docs/get-involved/build-instructions/build/python.md
@@ -0,0 +1,102 @@
+---
+title: Building Python Modules
+summary: How to build Python modules of UNICADO.
+authors:
+    - Sebastian Oberschwendtner
+    - Kristina Mazur
+date: 2024-11-05
+---
+Some modules are written in Python. Although, the tools can run without Cmake, the recommended way is to still use it to create the virtual environment (at least for configuration!). However, if you are an expert, feel free to do it by yourself :material-arm-flex: !
+
+In the following, it is explained how to [configure](#configure) and [build](#build) with CMake. It is pretty straight-forward as it is the same procedure as for C++ - just with one slight addition!
+
+!!! note
+    The required setup for Python including the `pipenv` dependency was already explained in the [developer prerequisites](../build-environment/windows.md).
+
+## Configure
+
+This is just a short recap as more information are given in the C++ section.
+
+1. Open a terminal inside the root directory of the *rAircraftDesign* repository.
+2. Configure **CMake** by explicitly telling it which preset to use:
+
+=== "Windows"
+
+    ``` { .sh .copy }
+    cmake --preset x64-windows-release
+    ```
+
+=== "MinGW"
+
+    ``` { .sh .copy }
+    cmake --preset x64-mingw-release
+    ```
+=== "Linux"
+
+    ``` { .sh .copy }
+    cmake --preset x64-linux-release
+    ```
+
+The libraries that are defined in the `Pipfile` are the ones installed in your environment.
+
+!!! tip
+    In case you want to checkout your virtual environment, you usually can find it in your user directory in .virtualenvs
+
+## Build
+
+### Install python packages
+
+Now this is the difference to the Cpp tools. The python tools use some of the Cpp libraries, which have to be installed via the python bindings. To do so you need to add them into your virtual environment.
+
+=== "Windows"
+
+    ``` { .sh .copy }
+    cmake --build --preset x64-windows-release -t install_python_packages
+    ```
+
+=== "MinGW"
+
+    ``` { .sh .copy }
+    cmake --build --preset x64-mingw-release -t install_python_packages
+    ```
+
+    !!! tip
+        Remember: The build preset should match the one specified when configuring **CMake** :point_up:.
+
+=== "Unix"
+
+    ``` { .sh .copy }
+    cmake --build --preset x64-linux-release -t install_python_packages
+    ```
+
+    !!! tip
+        Remember: The build preset should match the one specified when configuring **CMake** :point_up:.
+
+
+### Build target
+
+Same as for Cpp:
+
+=== "Windows"
+
+    ``` { .sh .copy }
+    cmake --build --preset x64-windows-release --target <target>
+    ```
+
+=== "MinGW"
+
+    ``` { .sh .copy }
+    cmake --build --preset x64-mingw-release --target <target>
+    ```
+
+    !!! tip
+        Remember: The build preset should match the one specified when configuring **CMake** :point_up:.
+
+=== "Unix"
+
+    ``` { .sh .copy }
+    cmake --build --preset x64-linux-release --target <target>
+    ```
+
+    !!! tip
+        Remember: The build preset should match the one specified when configuring **CMake** :point_up:.
diff --git a/docs/get-involved/build-instructions/get-source-code.md b/docs/get-involved/build-instructions/get-source-code.md
new file mode 100644
index 0000000000000000000000000000000000000000..a457525841f2012bc587dab37e1ffa21a43d8a52
--- /dev/null
+++ b/docs/get-involved/build-instructions/get-source-code.md
@@ -0,0 +1,92 @@
+---
+title: Get UNICADO Source Code
+summary: How to clone the UNICADO repositories
+authors:
+    - Sebastian Oberschwendtner
+date: 2024-04-09
+---
+# Get UNICADO Source Code
+
+The source code of **UNICADO** is grouped into different repositories.
+You can get an overview of which repository contains which topic [here](../../documentation/overview.md).
+Whenever one repository needs another repository, we include it as a *Git Submodule*.
+If you are not familiar with *Git Submodules*, please read their Documentation ![link icon](https://img.icons8.com/ios/16/ADD8E6/external-link.png) <https://git-scm.com/book/en/v2/Git-Tools-Submodules>
+
+🎥 **Watch the first part of [Merge Request Workflow](../how-to-contribute/contributor-tutorial/videos/Merge_Request_Workflow.mp4) video for a more detailed explanation of below mentioned steps**.
+
+## Step-by-Step Guide
+
+The repository [Unicado Package](https://git.rwth-aachen.de/unicado/unicado-package) contains all necessary source code as submodules to get started compiling **UNICADO** and its installer. It is used to create UNICADO releases and provides a good starting point for development. UNICADO project is hosted on GitLab platform. So you need to have a GitLab account if you want to fork the repsitory and start contributing to it.
+
+### Step 1: Create a GitLab Account
+
+   - Open your browser and navigate to [GitLab:octicons-link-external-16:](https://gitlab.com/).
+   - Click on the **"Register"** button and fill in the required fields. Optionally, sign up using **Google** or **GitHub** credentials.
+   - Check your email for a confirmation link, and click on it to verify your account.
+   - Once verified, log in to your GitLab account.
+
+### Step 2: Locate the Repository You Want to Fork
+
+   Search for the Unicado Package Repository: Use GitLab's **search bar** at the top of the page to find the repository. Click on the repository from the search results to view its main page.
+
+
+### Step 3: Fork the Repository
+
+  - **Click "Fork":** Find the **"Fork"** button at the top-left of the repository page.
+  - **Select Namespace:** Choose your **Personal** or **Group** namespace.
+  - **Confirm Fork:** Click **Fork project** to create your copy.
+  - **Wait for Completion:** The process will take a few moments, after which you’ll be redirected to your forked repository.
+
+Fork method is used for contributing to a GitLab project when you are not a member of the project with write access. Allows you to freely make changes to your fork and propose changes to the original repository through a merge request (MR).
+Forking Creates a personal copy of a repo on the server, the general format of forked repository is https://gitlab.com/your-username/repo.git. Now if you want to work on the repository locally using an IDE ( for eg. VSC), you need to clone the forked version of Unicado Package Repository to your locall machine. Cloning will create a local copy of Forked repository.
+
+### Step 4: Clone Your Forked Repository
+
+  - **Navigate to Your Fork:** Navigate to your forked repository in the GitLab dashboard under Projects.
+
+  - **Copy the Clone URL:** Click the Clone button and choose HTTPS or SSH.
+
+  -  **Clone the Repository Locally:**
+
+
+
+=== "HTTP"
+
+    ``` { .cmd .copy }
+    git clone https://gitlab.com/your-username/repository-name.git
+    ```
+
+
+=== "SSH"
+
+    ``` { .sh .copy }
+    git clone git@gitlab.com:your-username/repository-name.git
+    ```
+
+Should the default branch not yet contain the submodules or you want to update the submodules afterwards, you can do that with:
+
+   ```{.cmd .copy}
+    git submodule update --init --recursive
+   ```
+
+
+!!! Note
+   You can push to a forked repository without configuring SSH by using HTTPS for authentication instead of SSH. However, SSH is often preferred for its security and ease of use once set up. 🎥**Follow [SSH Configuration](../how-to-contribute/contributor-tutorial/videos/SSH_Configuration.mp4) tutorial video if you want to set up SSH**.
+
+!!! Attention
+   Only proceed when all submodules could be checked out successfully. Otherwise the builds will not work!
+
+In the following instructions we assume, that you forked and cloned the **Unicado Package** as described.
+That means, whenever we talk about building inside the *Aircraft Design* folder, we mean the submodule **inside** the **Unicado Package** repository.
+In general, you should find every mentioned directory or file in one of the submodules of the **Unicado Package**. :point_up:
+
+### Step 5: Update the Repository with the Latest Changes from Remote
+
+Once the repository is cloned, you need to update it with the latest changes from the remote. If your repository includes multiple submodules, follow these steps:
+
+   ```{.cmd .copy}
+   git checkout main # Checkout the `main` branch of your repository
+   git fetch # Fetch the latest updates from the remote repository
+   git pull origin main # Pull the latest changes from the remote `main` branch
+
+   ```
diff --git a/docs/get-involved/developer-installation.md b/docs/get-involved/developer-installation.md
new file mode 100644
index 0000000000000000000000000000000000000000..e77507adcc1dd9891190903934ee46b5af35e6af
--- /dev/null
+++ b/docs/get-involved/developer-installation.md
@@ -0,0 +1,17 @@
+There is no dedicated installer for developers. As a developer you are expected to build your own installer. :wink:
+
+These steps to get you up and running are *(Choose according to your operating system.)*:
+
+- Make sure your build system is working as explained in the [:octicons-checklist-16: developer prerequisites](build-instructions/build-environment/windows.md).
+- Ensure you have [:octicons-repo-clone-16: cloned all repositories](build-instructions/get-source-code.md)
+- Follow the [:simple-cmake: build instructions](build-instructions/build/general.md) to build the tools. Also check out the [:material-library: libraries](build-instructions/build/including-libraries.md) and the [CMake Preset](build-instructions/build/cmake-presets.md) explanation.
+- Make yourself acquainted with the [style guides](style/cpp.md).
+- Read about the [module structures](modularization/cpp-modularization.md) to learn about the strategy patterns.
+- Learn about the [:material-test-tube-empty: testing procedures](testing.md).
+- Read the [contribution instruction](how-to-contribute/contribute.md) to understand the process.
+
+Now you are ready to contribute :material-file-code: !
+
+In case you need tips on how to set up your IDE, check [here](ide-setup.md).
+
+Relevant for UNICADO owners only: here it is explained how to create the [UNICADO release package](release-package.md) :material-white-balance-incandescent:
\ No newline at end of file
diff --git a/docs/get-involved/how-to-contribute/code-of-conduct.md b/docs/get-involved/how-to-contribute/code-of-conduct.md
new file mode 100644
index 0000000000000000000000000000000000000000..a64010bd0801e10eb7ce5e5bcdfe0807da3d5cc6
--- /dev/null
+++ b/docs/get-involved/how-to-contribute/code-of-conduct.md
@@ -0,0 +1,134 @@
+
+# Contributor Covenant Code of Conduct
+
+## Our Pledge
+
+We as members, contributors, and leaders pledge to make participation in our
+community a harassment-free experience for everyone, regardless of age, body
+size, visible or invisible disability, ethnicity, sex characteristics, gender
+identity and expression, level of experience, education, socio-economic status,
+nationality, personal appearance, race, caste, color, religion, or sexual
+identity and orientation.
+
+We pledge to act and interact in ways that contribute to an open, welcoming,
+diverse, inclusive, and healthy community.
+
+## Our Standards
+
+Examples of behavior that contributes to a positive environment for our
+community include:
+
+* Demonstrating empathy and kindness toward other people
+* Being respectful of differing opinions, viewpoints, and experiences
+* Giving and gracefully accepting constructive feedback
+* Accepting responsibility and apologizing to those affected by our mistakes,
+  and learning from the experience
+* Focusing on what is best not just for us as individuals, but for the overall
+  community
+
+Examples of unacceptable behavior include:
+
+* The use of sexualized language or imagery, and sexual attention or advances of
+  any kind
+* Trolling, insulting or derogatory comments, and personal or political attacks
+* Public or private harassment
+* Publishing others' private information, such as a physical or email address,
+  without their explicit permission
+* Other conduct which could reasonably be considered inappropriate in a
+  professional setting
+
+## Enforcement Responsibilities
+
+Community leaders are responsible for clarifying and enforcing our standards of
+acceptable behavior and will take appropriate and fair corrective action in
+response to any behavior that they deem inappropriate, threatening, offensive,
+or harmful.
+
+Community leaders have the right and responsibility to remove, edit, or reject
+comments, commits, code, wiki edits, issues, and other contributions that are
+not aligned to this Code of Conduct, and will communicate reasons for moderation
+decisions when appropriate.
+
+## Scope
+
+This Code of Conduct applies within all community spaces, and also applies when
+an individual is officially representing the community in public spaces.
+Examples of representing our community include using an official email address,
+posting via an official social media account, or acting as an appointed
+representative at an online or offline event.
+
+## Enforcement
+
+Instances of abusive, harassing, or otherwise unacceptable behavior may be
+reported to the community leaders responsible for enforcement at
+[admins@unicado.de](mailto:admins@unicado.de).
+All complaints will be reviewed and investigated promptly and fairly.
+
+All community leaders are obligated to respect the privacy and security of the
+reporter of any incident.
+
+## Enforcement Guidelines
+
+Community leaders will follow these Community Impact Guidelines in determining
+the consequences for any action they deem in violation of this Code of Conduct:
+
+### 1. Correction
+
+**Community Impact**: Use of inappropriate language or other behavior deemed
+unprofessional or unwelcome in the community.
+
+**Consequence**: A private, written warning from community leaders, providing
+clarity around the nature of the violation and an explanation of why the
+behavior was inappropriate. A public apology may be requested.
+
+### 2. Warning
+
+**Community Impact**: A violation through a single incident or series of
+actions.
+
+**Consequence**: A warning with consequences for continued behavior. No
+interaction with the people involved, including unsolicited interaction with
+those enforcing the Code of Conduct, for a specified period of time. This
+includes avoiding interactions in community spaces as well as external channels
+like social media. Violating these terms may lead to a temporary or permanent
+ban.
+
+### 3. Temporary Ban
+
+**Community Impact**: A serious violation of community standards, including
+sustained inappropriate behavior.
+
+**Consequence**: A temporary ban from any sort of interaction or public
+communication with the community for a specified period of time. No public or
+private interaction with the people involved, including unsolicited interaction
+with those enforcing the Code of Conduct, is allowed during this period.
+Violating these terms may lead to a permanent ban.
+
+### 4. Permanent Ban
+
+**Community Impact**: Demonstrating a pattern of violation of community
+standards, including sustained inappropriate behavior, harassment of an
+individual, or aggression toward or disparagement of classes of individuals.
+
+**Consequence**: A permanent ban from any sort of public interaction within the
+community.
+
+## Attribution
+
+This Code of Conduct is adapted from the [Contributor Covenant][homepage],
+version 2.1, available at
+[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
+
+Community Impact Guidelines were inspired by
+[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
+
+For answers to common questions about this code of conduct, see the FAQ at
+[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
+[https://www.contributor-covenant.org/translations][translations].
+
+[homepage]: https://www.contributor-covenant.org
+[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
+[Mozilla CoC]: https://github.com/mozilla/diversity
+[FAQ]: https://www.contributor-covenant.org/faq
+[translations]: https://www.contributor-covenant.org/translations
+
diff --git a/docs/get-involved/how-to-contribute/contribute.md b/docs/get-involved/how-to-contribute/contribute.md
new file mode 100644
index 0000000000000000000000000000000000000000..116722c9fd0c50e811aedffe590549f7bdf29026
--- /dev/null
+++ b/docs/get-involved/how-to-contribute/contribute.md
@@ -0,0 +1,73 @@
+---
+title: How to contribute to UNICADO
+summary: Explains the basic procedure how to contribute.
+authors:
+    - Sebastian Oberschwendtner
+date: 2024-03-05
+---
+# How to contribute to UNICADO
+
+You want to contribute to UNICADO?
+
+Awesome! :sunglasses: Please make sure to read our *style guides* first:
+
+- Our [&rdca; C++ Code Style](../style/cpp.md).
+- Our [&rdca; Python Code Style](../style/python.md).
+
+## How to actually contribute
+
+This is how you can actually make a difference:
+The flowchart below illustrates the Merge Request workflow, along with the commands used at each stage.
+
+<figure>
+  <img src="site:assets/images/merge_request_workflow.png" alt="merge-request" style="width: 80%; height: auto;" >
+  <figcaption>Merge request workflow</figcaption>
+</figure>
+
+
+You cloned/forked the UNICADO Package successfully acc. to [Get Source Code](../build-instructions/get-source-code.md). Nice! You want to make a change, e.g. fixing a bug or creating a new feature, so you create a *issue* (see also [types of contribution](#contributions)). Then you :point_up: create a feature branch, change the code and create a merge request (here a [how to](merge-request.md)). An automatic CI/CD pipeline is triggered, which helps your selected reviewer to make sure that request is ok. If it is accepted and ready-to-land :airplane:, the documentation is automatically updated. Nicely done :+1:
+
+## Types of contribution {#contributions}
+
+We use *issues* and [merge requests](merge-request.md) to manage the contribution to UNICADO.
+You should always create an issue **first**, before creating the merge request.
+The issue is used to discuss and plan the required work.
+An issue should always have at least the following *labels*:
+
+- **Type:** The type of the issue, can be: `type::bug` `type::feature` `type::todo` `type::documentation`
+- **Tool:** Specify which *tool manager* is responsible, i.e. `library::aixml` or `module::calculatePolar`
+- **Priority**: *Optional*, can be: `priority::low` `priority::medium` `priority::high`
+
+We have *issue templates* for each issue **type**.
+Please use them accordingly and fill out all relevant information.
+The following gives you further information when to use which template:
+
+### Did you find a bug?
+
+- **Ensure the bug was not already reported** by searching under *Issues*.
+- If you're unable to find a related issue addressing the problem, open a new one.
+Be sure to use the `Bug` **Issue Template** and give a fitting **title and clear description**.
+Give as much relevant information as possible.
+- Please include **test to reproduce** the bug.
+
+### Do you intend to add a new feature or method?
+
+- Create an issue using the `Feature` template.
+- If you are implementing a new method, please provide relevant references.
+
+### Do you want to assign a maintenance task to yourself or somebody?
+
+- Create an issue using the `Todo` template.
+- Please describe the task in a meaningful manner, so others can understand what the task involves and could take over.
+
+### Is something unclear in the documentation?
+
+- Please ask the person who implemented the part the documentation refers to.
+The issues should **not** be used as a *Q/A* forum.
+- If you have concrete information/ideas how the documentation can be improved, create an issue using the `Documentation` template.
+
+---
+
+❤️ Thanks for reading this! We are looking forward to your contributions!
+
+UNICADO Team
diff --git a/docs/get-involved/how-to-contribute/contributor-tutorial/git-installation&configuration.md b/docs/get-involved/how-to-contribute/contributor-tutorial/git-installation&configuration.md
new file mode 100644
index 0000000000000000000000000000000000000000..50334513bafacf8b03ce302b7d6c932f3f3aa5d5
--- /dev/null
+++ b/docs/get-involved/how-to-contribute/contributor-tutorial/git-installation&configuration.md
@@ -0,0 +1,139 @@
+---
+title: Install & Configure Git on Windows
+summary: Explains how to download, install & configure Git.
+authors:
+    - Alfin Johny
+date: 2024-12-05
+---
+
+### Download & Install Git
+
+<span style="color:rgb(68, 0, 255);">🎥</span> **If you'd rather skip the text explanations below, watch this video tutorial. [Git_Installation&Configuration](videos/Git_Installation&Configuration.mp4)**.
+
+To begin, download and install Git for Windows from the official [Git website docs/download/installation.md](https://git-scm.com/download/win). You will be provided with an installer file that has a `.exe` extension. Locate the downloaded file in your `Downloads` folder and double-click it to start the installation process. Follow the prompts in the installation wizard. While most of the default options are suitable, make sure you select **Git from the command line and also from 3rd-party software**, so Git is accessible from your terminal/command prompt. Once installed, Git will be added to the System Environment Path variable, making it accessible globally.
+
+After installation, open the Git terminal and verify the installation by typing the following command:
+
+```{ .cmd .copy }
+git --version
+```
+
+This should return the installed version of Git, confirming that Git is set up correctly.
+
+---
+
+### Configure Git
+
+Once Git is installed, configure your user name and email, which will be associated with your commits. Run the following commands in the terminal to set these configurations:
+
+```{ .cmd .copy }
+git config --global user.name "Your Name"
+git config --global user.email "your.email@example.com"
+git config --list  # Check if the configuration was successful
+```
+
+This setup ensures that your commits are correctly attributed to your identity.
+
+Now you're ready to start using Git for version control!
+
+
+
+### SSH Configuration for GitLab
+
+To securely connect with the UNICADO project hosted on GitLab and access its repositories, you'll need to set up SSH keys. Follow the steps below to generate a new SSH key pair, configure an SSH agent, create an SSH config file (optional), and test the SSH connection.
+
+
+#### Step 1: Generate an SSH Key Pair
+
+Open a terminal and run the following command to generate a new SSH key pair. Replace the email with the one associated with your GitLab account:
+
+```{ .cmd .copy }
+ssh-keygen -t ed25519 -C "your.email@example.com"
+```
+
+- `-t ed25519`: Specifies the key type. ED25519 is the recommended key type for SSH.
+- `-C "your.email@example.com"`: Adds a comment (usually your email) to the key.
+
+When prompted, press Enter to save the key to the default location (`C:\Users\YourName.ssh\id_ed25519` on Windows). You can also specify a different file name or path if desired. Optionally, set a passphrase for extra security (recommended but not required).
+
+---
+
+#### Step 2: Create an SSH Config File (Optional but Recommended)
+
+If you use multiple SSH keys (for different services like GitHub, GitLab, etc.), it's a good idea to create an SSH config file for easier management. Open the SSH config file using notepad and
+
+```{ .cmd .copy }
+notepad C:\Users\<YourUsername>\.ssh\config
+```
+
+Replace <YourUsername> with your actual Windows username. This will open the config file in Notepad (or create it if it doesn't exist).
+
+```{ .cmd .copy }
+Host gitlab.com
+    User git
+    HostName gitlab.com
+    PreferredAuthentications publickey
+    IdentityFile C:\Users\<YourUsername>\.ssh\id_ed25519
+```
+
+- `Host`: An alias for the connection (use `gitlab.com` to match the GitLab domain).
+- `User`: The SSH user for GitLab (`git`).
+- `HostName`: The GitLab domain (`gitlab.com`).
+- `PreferredAuthentications`: Specifies that public key authentication should be used.
+- `IdentityFile`: The path to your private SSH key (default is `.ssh\id_ed25519`).
+---
+
+#### Step 3: Add SSH Key to SSH Agent
+
+The SSH agent manages your private keys, so you won’t need to enter your passphrase every time you interact with GitLab. Start the SSH agent by running:
+
+```{ .cmd .copy }
+ssh-agent bash
+```
+
+On Windows command prompt, the SSH agent may be automatically set up. Add your private key to the agent:
+
+```{ .cmd .copy }
+ssh-add C:\Users\<YourUsername>\.ssh\id_ed25519
+```
+
+If you used a different name or location for your key (e.g., `id_rsa_gitlab`), adjust the path accordingly:
+
+```{ .cmd .copy }
+ssh-add C:\Users\<YourUsername>\.ssh\id_rsa_gitlab
+```
+
+---
+
+#### Step 4: Add SSH Key to GitLab
+
+GitLab uses SSH to authenticate your identity when interacting with repositories. To set up SSH authentication, you'll need to add the public key to your GitLab account.
+
+First, copy the public key to your clipboard. On Windows (with Git Bash), use the following command to display the public key:
+
+```{ .cmd .copy }
+cat .ssh\id_ed25519.pub
+```
+
+Next, log in to your GitLab account and navigate to your **Profile Settings**. In the left sidebar, select **SSH Keys**, paste the public key into the **Key** field, and optionally provide a title (e.g., "My Laptop"). Click **Add key** to save it.
+
+---
+
+#### Step 5: Test the SSH Connection
+
+Test whether your SSH key is set up correctly by running the following command:
+
+```{ .cmd .copy }
+ssh -T git@gitlab.com
+```
+
+If the key is set up properly, the output should say:
+
+```
+Welcome to GitLab, @yourusername!
+```
+
+If it’s your first time connecting, GitLab may ask you to confirm the authenticity of the host. Type `yes` to proceed.
+
+By following these steps, you’ve successfully configured SSH for GitLab. You can now securely interact with GitLab repositories over SSH, enabling you to clone, push, and pull using your private key.
+
diff --git a/docs/get-involved/how-to-contribute/contributor-tutorial/videos/Git_Installation&Configuration.mp4 b/docs/get-involved/how-to-contribute/contributor-tutorial/videos/Git_Installation&Configuration.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..cb4268bda5a0546a020edef2d02fd8e2afce1031
Binary files /dev/null and b/docs/get-involved/how-to-contribute/contributor-tutorial/videos/Git_Installation&Configuration.mp4 differ
diff --git a/docs/get-involved/how-to-contribute/contributor-tutorial/videos/Merge_Request_Workflow.mp4 b/docs/get-involved/how-to-contribute/contributor-tutorial/videos/Merge_Request_Workflow.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..d443dddb6d74d0ef60e400fd74d6ce3651cf8661
Binary files /dev/null and b/docs/get-involved/how-to-contribute/contributor-tutorial/videos/Merge_Request_Workflow.mp4 differ
diff --git a/docs/get-involved/how-to-contribute/contributor-tutorial/videos/SSH_Configuration.mp4 b/docs/get-involved/how-to-contribute/contributor-tutorial/videos/SSH_Configuration.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..21a747114d1ad4c1351181de906b9d96e5ec8d43
Binary files /dev/null and b/docs/get-involved/how-to-contribute/contributor-tutorial/videos/SSH_Configuration.mp4 differ
diff --git a/docs/get-involved/how-to-contribute/merge-request.md b/docs/get-involved/how-to-contribute/merge-request.md
new file mode 100644
index 0000000000000000000000000000000000000000..cd011462ce52baa07de4b779abeca0d4649d8fff
--- /dev/null
+++ b/docs/get-involved/how-to-contribute/merge-request.md
@@ -0,0 +1,117 @@
+---
+title: How to create a merge request
+summary: Explains a common method to create a merge request.
+authors:
+    - Maurice Zimmnau
+date: 2024-09-25
+---
+
+# How to create a merge request (MR)
+
+You have already implemented an improvement to the current code base or intend to? Awesome 😎
+Follow these steps to create a merge request (MR) from your forked repository:
+
+- First, make sure you have read [How to contribute to UNICADO](contribute.md)
+- Then, proceed with the steps below:
+
+There are several ways to create a merge request within GitLab, which are explained in detail in the [official GitLab docs :octicons-link-external-16:](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html).
+
+However, we will highlight the workflow, we prefer - but feel free to make your own choice.
+
+## Preferred Merge Request Workflow for a Forked Repository
+This is the first and preferred way to make a merge request, as it is similar to our previous UNICADO workflow.
+Let's assume you have forked( if you are not a direct member of UNICADO project) and cloned the Unicado Package repoistory and updated all it's submodules following [Get Source Code](../build-instructions/get-source-code.md ). Open your preferred IDE (e.g., Visual Studio Code). Ensure that Git is integrated within your IDE. Most IDEs, such as VSCode, have built-in Git integration. Go to the sub module where you want to make the change. Create your own (local) branch, where you are developing a new feature / fixing bug / addong documentation.
+For a more detailed explanation of the steps mentioned below, watch the [Merge Request Workflow](contributor-tutorial/videos/Merge_Request_Workflow.mp4) video.
+
+### 1.  Configure Remotes:
+
+Verify and set up remotes for your fork and the upstream repository:
+
+```{ .cmd .copy }
+git remote -v
+```
+Add the original UNICADO repository as the upstream remote:
+
+```{ .cmd .copy }
+git remote add upstream git@gitlab.com:unicado/unicado.git
+```
+
+### 2. Create a New Branch
+
+Create a new branch from `main` to work on your feature or bug fix. The `main` branch contains the stable version of the code and ‘main’ is the default branch (i.e., the branch you check out when cloning the repository). Developers are not allowed to push directly to this branch. All changes must go through <new-branch-name> branch and a merge request process.
+
+```{ .cmd .copy }
+git checkout -b <new-branch-name>  # Create a new branch
+```
+Where <new-branch-name> is the branch where developers work on new features or bug fixes. Each developer creates their own  branch from the `main` branch. After completing changes on the new branch, a Merge Request (MR) is created to merge the changes into the `main` branch. Once the MR is reviewed and approved, it gets merged into `main`.
+
+Make sure your branch name follows this convention:
+
+- `feature/your-feature` # Changes which brings in new feature
+- `fix/your-fix` # Changes which fixes bug
+- `refactor/your-refactor` # Changes which refactor the code
+- `release/your-release`# Your release verion (only relevant for Unicado owner!)
+
+This ensures your branch can be pushed successfully.
+
+### 3. Make Changes
+
+Modify the submodule files as needed.
+
+### 4. Stage and Commit Your Changes
+
+After making your changes, stage them using the `git add` command:
+
+```{ .cmd .copy }
+git add .  # Stage all modified files
+```
+
+Next, commit your changes with a meaningful commit message:
+
+
+#### Guidelines for a Good Commit Message
+
+- **Title**: A short description of what the commit does (use present tense).
+- **Body**: Explain why and how the change was made. Include any relevant details, such as specific files changed or issues addressed. Should be clear and concise. Use **English** language.
+- **Reference**: Mention related issues or tickets (if applicable). Use the `#` to close and refer to issues.
+
+Before committing, ensure that your code is working as expected by running local tests (such as static code analysis) and avoid committing code that is not functioning properly.
+
+### 5. Push Changes to Your Fork
+
+Push your branch to your forked repository on GitLab:
+
+```{ .cmd .copy }
+git push origin <new-branch-name>
+```
+If you are working on this branch locally, and it is not shared with remote ☁️, then you have to push it ⏫ to remote, first in order to create a merge request.
+
+### 6. Create a Merge Request (MR) to the Original Repository
+
+To propose your changes to the original UNICADO repository:
+
+1. Go to the original UNICADO repository on GitLab.
+2. Click Create Merge Request.
+3. Set your forked repository's <new-branch-name> as the source branch and `main` in the original repository as the target branch.
+4. Fill out the MR details:
+      - Provide a clear title and description of your changes.
+      - Use the available MR templates for consistency. Select a suitable one from the dropdown menu. These templates are saved in merge_request_templates folder inside .gitlab
+5. Add reviewers who will assess your changes (e.g., project maintainers):
+      - Reviewers will leave comments or request changes.
+      - Make the necessary updates locally, commit them, and push to the same branch. In case you need to commit adaptions, check the [Guidelines for a Good Commit Message](#guidelines-for-a-good-commit-message) again!
+6. After pushing your branch, the Continuous Integration (CI) pipeline will run automatically for the MR. CI checks ensure that your code meets the project’s quality standards and passes all tests.
+      - Monitor Pipeline Status: Once your MR is created, GitLab will display the pipeline status in the MR. Look for ✅ (success) or ❌ (failure).
+      - Fixing CI Failures: Open the pipeline logs to identify the issue. Fix the problem in your local branch. Commit and push the updates:
+
+> As a reviewer, don't close the merge request. It will be closed automatically, when the merge is completed.
+
+> Choose squash as merge strategy, to keep the git history streamlined
+
+### 7. Approval, Merge and clean up
+
+The reviewer(e.g., project maintainers) will merge your branch into the main branch. GitLab automatically deletes the source branch(<new-branch-name>) if "Remove source branch" is selected during the merge. Additionally, you can close the related issue, which should have been resolved by the MR.
+
+By following these steps, you ensure that your contributions are properly tracked, reviewed, and merged with minimal disruption to the project.
+
+> You can also perform the git operations via your tool of choice, e.g. VSCode
+
diff --git a/docs/get-involved/how-to-contribute/review-merge-request.md b/docs/get-involved/how-to-contribute/review-merge-request.md
new file mode 100644
index 0000000000000000000000000000000000000000..ee91993034f9692b9d575abd397e1554d6164119
--- /dev/null
+++ b/docs/get-involved/how-to-contribute/review-merge-request.md
@@ -0,0 +1,28 @@
+---
+title: How to review a merge request
+summary: Explains how to review a merge request.
+authors:
+    - Maurice Zimmnau
+    - Kristina Mazur
+date: 2024-09-25
+---
+
+# How to review a merge request
+
+Your colleagues have improved the code and would like you to check it? Nice 😎
+
+If you are GitLab beginner, this is our suggested workflow for a review:
+
+1. Read the [official GitLab documentation :octicons-link-external-16:](https://docs.gitlab.com/ee/tutorials/reviews/). It includes a very recommended tutorial :fire: and gives some general inside what is important in an review (checking related issues, examine each file in depth etc.).
+2. Check the testing pipelines. If tests fail, you and the developer need to decide what to do. The pipelines are also explained in detail in the [testing documentation](../testing.md).
+3. Make suggestions for improvement. The recommended and easiest :point_up: way is to open the secondary menu of the merge request, select **Changes** and add a comment to a specific line. A :cool: feature is the **Insert suggestion** - this enables the developer to directly include the change in the web interface!
+
+But sometimes you want to test some code change suggestions locally - here are some short instructions. But it is pretty straight-forward: as the feature branch, which includes the changes, is remote, you can assess it.
+
+``` { .sh .copy }
+git fetch
+git checkout <new-branch-name>
+```
+
+!!! note
+    You can also push these changes and add them to the merge request. However, it is **not** recommended as the developer does not directly see your implementations as changes, but as an update
\ No newline at end of file
diff --git a/docs/get-involved/ide-setup.md b/docs/get-involved/ide-setup.md
new file mode 100644
index 0000000000000000000000000000000000000000..cba423bb9ef32370841c35eb2db45a9c2ca1dec1
--- /dev/null
+++ b/docs/get-involved/ide-setup.md
@@ -0,0 +1,19 @@
+---
+title: IDE Setup
+summary: How to setup certain IDEs
+authors:
+    - Sebastian Oberschwendtner
+data: 2024-03-06
+---
+## Introduction
+In general, the build system of *UNICADO* is not based on a specific IDE.
+All the required tools can be called directly via a terminal.
+We cannot provide a manual for every IDE out there, but here is a quick overview of the most popular IDEs we use in the project:
+
+## Visual Studio Code - VS Code
+[VSCode :octicons-link-external-16:](https://code.visualstudio.com/){:target="_blank"} is a popular open-source IDE from Microsoft.
+It offers great flexibility with its capability to install extensions.
+You can explorer the good [Documentation :octicons-link-external-16:](https://code.visualstudio.com/docs/cpp/config-msvc){:target="_blank"} of **VSCode** how to set it up for C++.
+
+!!! note
+    Do not confuse **VS Code** with _Visual Studio_. :point_up: Those are two __different__ IDEs...
\ No newline at end of file
diff --git a/docs/get-involved/modularization/cpp-modularization.md b/docs/get-involved/modularization/cpp-modularization.md
new file mode 100644
index 0000000000000000000000000000000000000000..290726f7028be621aedecd7c1d182e9da737af05
--- /dev/null
+++ b/docs/get-involved/modularization/cpp-modularization.md
@@ -0,0 +1,533 @@
+---
+title: Module Structure in c++
+summary: Explains the structure of modularized UNICADO c++ modules
+authors:
+    - Christopher Ruwisch
+    - Katrin Bistreck
+date: 2024-10-14
+---
+
+# Module Structure in c++
+
+## Preface
+This page shall give you an overview of how c++ modules in the UNICADO framework look like. The structure is valid for modularized modules (all design and analysis modules of Unicado v3.0.0). All header files which are named in the following can be found in the library [moduleBasics](../../documentation/libraries/index.md).
+
+!!! attention
+    Due to a bug in versions of compilerversion < 10.2.0, modules which use the std::filesystem can't be build! To use the code, please update the compiler to a version > 10.2.0. Otherwise disable building the moduleBasics library.
+
+## Overview
+
+The modules are structured into three levels:
+
+- Top level - usage of `Module` for input/output handling and program flow
+- Intermediate level - usage of `Strategy` and `StrategySelector` for routing through your module to lowest level
+- Low level - implementation of your fidelities, report generation and plotting
+
+## Top level
+
+### RuntimeIO
+
+The RuntimeIO class (`runtimeIO.h`, header-only) handles input/output (IO) operations and provides functionality related to file and directory management.
+
+There are several public read-only member variables which can be accessed directly:
+
+``` c++
+const std::string programname;
+const std::string toolVersion;
+const modi consoleOn;
+const modi logOn;
+mutable bool plotOn;
+bool plotCopyOn;
+bool plotDeleteOn;
+const bool reportOn;
+const bool texOn;
+const bool infoOn;
+const int ownToolLevel;
+const fs::path gnuAccess;
+const fs::path inkAccess;
+const fs::path logAccess;
+const fs::path acxmlAccess;
+const fs::path moduleConfAccess;
+node& acxml;
+const node& moduleConfig;
+```
+
+Node references:
+
+- `acxml` - access for Aircraft Exchange File (opened at module start)
+- `moduleConfig` - access for module config (opened at module start)
+
+!!! IMPORTANT
+    `acxml` and `moduleConfig` are not saved and closed at the end. This must be done by the developer. The reason for this change is due to aspects regarding implementation of python elements during code and possible missusage of aixml::openDocument, aixml::saveDocument and aixml::closeDocument
+
+The class provides several public methods for various operations:
+
+- `showRuntime()` - Prints runtime information, e.g. program name, enabled flags etc.
+- `showDirectories()` - shows stored directories in directories_ map.
+- `getIODir()`, `getGeometryDir()` and other similar functions which return the path w/o ending seperator
+- `createGeometryDir()`, `createAirfoilDataDir()` and other similar functions which create the directoryif not existent
+- `checkFileExistence()` - checks if a file exists by specific argument
+- `create_common_directories` - creates standard output directories if not existent
+- `addDir()` - adds a directory to the directories_ map and creates it if not existent. The key will be specified in upper case letters
+- `reopenAcXML()` - reopens the aircraftXML - please make sure to (save and) close the acxml before
+- `saveAcXML()` - saves the current acxml node from the runtimeIO instantiation
+- `closeAcXML()` - closes the current acxml node from the runtimeIO instantiation
+- `saveAndCloseAcXML()` - runs saveAcXML() and closeAcXML() (in this order)
+- `saveModuleConfig()` - saves the current moduleConfig node from the runtimeIO instantiation
+- `closeModuleConfig()` - closes the current moduleConfig node from the runtimeIO instantiation
+- `saveAndCloseModuleConfig()` - runs saveModuleConfig() and closeModuleConfig() (in this order)
+- `aircraft_type()` - returns current aircraft type
+- `aircraft_model()` - returns current aircraft model
+- `aircraft_configuration_type()` - returns current aircraft configuration type
+- `aerodynamic_technologies()` - returns whether aerodynamic technologies are integrated
+- `aircraft_energy_carrier_type` - returns used energy carrier (in case more than one type is use: hybrid)
+- `aircraft_energy_carriers` - returns ,ap of used energy carriers (ID; fuel type, density, volumetric energy density, gravimetric energy density)
+- `aircraft_propulsor_parents`  - returns map of propulsor parents and number of propulsors mounted to this parent
+- `get_fuel_type`, `get_fuel_density` and other similar functions returns the fuel name / density and other properties of a given energy carrier ID from the aircraft XML
+
+
+The class also handles the IO Information if the flag `info` is set to true.
+
+Since the class access the specific config XML-file, this file must be of the following structure:
+
+```xml
+<?xml version="1.0" encoding="utf-8" ?>
+<module_configuration_file name="TOOLNAME.xml">
+    <control_settings description="General control settings for this tool">
+        <aircraft_exchange_file_name description="Specify the name of the exchange file">
+			<value>csmr-2020.xml</value>
+		</aircraft_exchange_file_name>
+        <aircraft_exchange_file_directory description="Specify the direction in which the aircraft exchange file can be found">
+			<value>../projects/</value>
+		</aircraft_exchange_file_directory>
+        <own_tool_level description="Specify the tool level of this tool">
+			<value>3</value>
+		</own_tool_level>
+        <console_output description="Selector to specify the console output. Selector: mode_0 (Off) / mode_1 (only out/err/warn) / mode_2 (1 + info) / mode_3 (2 + debug)">
+			<value>mode_1</value>
+		</console_output>
+        <log_file_output description="Selector to specify the log file output. Selector: mode_0 (Off) / mode_1 (only out/err/warn) / mode_2 (1 + info) / mode_3 (2 + debug)">
+			<value>mode_1</value>
+		</log_file_output>
+        <plot_output description="Specify the way plotting shall be handled">
+			<enable description="Switch to enable plotting. Switch: true (On) / false (Off)">
+				<value>true</value>
+			</enable>
+			<copy_plotting_files description="Switch if plotting files shall be copied. Switch: true (On) / false (Off)">
+				<value>true</value>
+			</copy_plotting_files>
+			<delete_plotting_files_from_tool_folder description="Switch if plotting files shall be deleted from folder. Switch: true (On) / false (Off)">
+				<value>true</value>
+			</delete_plotting_files_from_tool_folder>
+		</plot_output>
+        <report_output description="Switch to generate an HTML report. Switch: true (On) / false (Off)">
+			<value>true</value>
+		</report_output>
+        <tex_report description="Switch to generate a Tex report. Switch: true (On) / false (Off)">
+			<value>true</value>
+		</tex_report>
+        <write_info_files description="Switch to generate info files. Switch: true (On) / false (Off)">
+			<value>false</value>
+		</write_info_files>
+        <log_file description="Specify the name of the log file">
+			<value>TOOLNAME.log</value>
+		</log_file>
+        <inkscape_path description="Path to the inkscape application (DEFAULT: Use inkscape from the UNICADO repo structure)">
+			<value>DEFAULT</value>
+		</inkscape_path>
+        <gnuplot_path description="Path to the gnuplot application (DEFAULT: Use gnuplot from the UNICADO repo structure)">
+			<value>DEFAULT</value>
+		</gnuplot_path>
+  </control_settings>
+  <program_settings>
+    <!-- module specific>
+  </program_settings>
+</module_configuration_file>
+```
+The **module config** XML-File will contains all information about the module configuration including (partial) the routing through your module until you reach the fidelity level. It can be very specific to your module needs.
+
+Since the module config data is module specific, the developer has to read it at the constructor on the top level of each module.
+
+!!! NOTE
+    It is possible to use allowed none SI Units in the module configuration file - see allowed units.
+
+!!! attention
+    The aircraft exchange file is SI Units only!
+
+
+### Module
+
+The Module class (`module.h`, header-only) describes the basic behaviour of each module by being a template class. It structures the controlflow by five pure virtual functions:
+
+- `initialize()` - responsible for initializing the module
+- `run()` - responsible for running the module
+- `update()` - responsible for updating generated data
+- `report()` - responsible for report generation
+- `save()` - responsible for saving data
+
+The class has a protected instantiation of RuntimeIO as a smart-pointer `rtIO_`. This instantiation can be received by `getRuntimeIO()` which returns a shared_ptr of RuntimeIO (handle with care).
+
+The inheritance on the top level of a new module is **MANDATORY**.
+
+A basic usage of the module class can be seen below:
+
+```c++
+...
+
+class MyModule : public Module
+{
+public:
+	 MyModule(int argc, char *argv[], const std::string& toolName, const std::string& toolVersion);
+	~MyModule() = default;
+
+	void initialize();
+	void run();
+	void update();
+	void report();
+	void save();
+
+private:
+	...
+}
+```
+
+The constructor and the five methods `initialize()` , `run()`, `update()`, `report()`, `save()` must be implemented by the user.
+
+The constructor will be used in the following way:
+
+``` c++
+MyModule(int argc, char *argv[], const std::string& toolName, const std::string& toolVersion) :
+		 Module(argc, argv, toolName, toolVersion)
+{
+	// <-- read module config information here
+}
+```
+
+This constructor above calls module constructor, which will provide an instantiation of `myRuntimeInfo` and `rtIO_`.
+
+The methods `initialize()`, `run()`, `update()`, `report()` and `save()` will be called in the method execute. In this method, those pure virtual methods are included in a `try catch` context, which will handle `throws` within each underlying function / method.
+
+As an example, the main function will look like:
+
+```c++
+#include "toolinfo.h" // <-- TOOL_NAME, TOOL_VERSION
+#include "MyModule.h" // <-- MyModule class
+
+int main(int argc, char *argv[]) {
+	MyModule myModule(argc, argv, TOOL_NAME, TOOL_VERSION);
+	return myModule.execute();
+}
+```
+The `argc`, `argv` values are for commandline usage with the option `-c` (please be aware of small letter). The option lets you specify the path from the executable to the basic configuration file (e.g. *massEstimation_conf.xml*). *Please be aware that the path must include the filename as well.* If no option is used, the base path (*./<tool name>_conf.xml*) is used then.
+
+
+### Modeselector
+The header file `modeselector.h` is used within `module.h` for `mode_<x>`-specific strings like `mode_0`, `mode_1`, ... `mode_9`. The number of modes can be extended (initial 10 modes allowed - 0..9) by extending the `std::map<std::string, modi> selection_`. This class must be initialize at construction, since it has no possibility to change the mode afterwards due to its purpose to read only data from a config file which should not be able to be changed later. To get the selected mode of a type `modi` (overlays `int`) a `get()` method is provided.
+
+Example usage:
+
+```c++
+modeSelection = Modeselector("mode_2")
+
+modi selectedMode = modeSelection.get(); // selectedMode = 2
+```
+
+## Intermediate level
+
+### Strategy and StrategySelector
+
+The intermediate level, which describes the routing from top to low level, uses the so called **Strategy Design Pattern**. This pattern allows to set a specific strategy at first place and let it run through Selector, in this case the `StrategySelector` class (`strategySelector.h`, header-only).
+
+Each strategy, such as the low-fidelity strategy or high-fidelity strategy, is implemented as a class that inherits from the base class `Strategy`. The `Strategy` base class defines the following pure virtual methods:
+
+- `initialize()`
+- `run()`
+- `update()`
+- `report()`
+- `save()`
+
+The code for the class:
+
+```c++
+class Strategy
+{
+public:
+    virtual void initialize() = 0;
+    virtual void run() = 0;
+    virtual void update() = 0;
+    virtual void report() = 0;
+    virtual void save() = 0;
+    virtual ~Strategy() {};
+};
+```
+The `StrategySelector` class serves as a selector for strategies. It manages a dynamic allocation of a strategy using a `std::unique_ptr`. The class provides member functions to set the strategy, initialize the strategy with a given configuration class, run, update, report and save the strategy. Methods for this are:
+
+- `setStrategy()`
+- `initializeStrategy()`
+- `runStrategy()`
+- `updateStrategy()`
+- `reportStrategy()`
+- `saveStrategy()`
+
+The code for the class:
+
+```c++
+class StrategySelector
+{
+public:
+    void setStrategy(std::unique_ptr<Strategy> strategy) {
+        strategy_ = std::move(strategy);
+    }
+    void initializeStrategy() {
+        strategy_->initialize();
+    }
+    void runStrategy() {
+        strategy_->run();
+    }
+    void updateStrategy() {
+        strategy_->update();
+    }
+    void reportStrategy() {
+        strategy_->report();
+    }
+    void saveStrategy() {
+        strategy_->save();
+    }
+private:
+    std::unique_ptr<Strategy<> strategy_;
+};
+```
+
+The Strategy and StrategySelector classes are given as basic templates which should be used. However, an adaption of Input/Output types might be necessary but must be clearly stated.
+
+To use these classes, a minimal example can be seen below:
+
+```c++
+#include "strategySelector.h"
+
+
+class Low : public Strategy
+{
+public:
+	Low(const std::shared_ptr<RuntimeIO>& rtIO) : this->rtIO{rtIO} {};
+	void initialize() { std::cout << "initialize low" << std::endl; }
+	void run() { std::cout << "run low" << std::endl; }
+	void update() { std::cout << "update low" << std::endl; }
+	void report() { std::cout << "report low" << std::endl; }
+	void save() { std::cout << "save low" << std::endl; }
+
+        const std::shared_ptr<RuntimeIO>& rtIO;
+};
+
+class High : public Strategy
+{
+public:
+	High(const std::shared_ptr<RuntimeIO>& rtIO) : this->rtIO{rtIO} {};
+	void initialize() { std::cout << "initialize high" << std::endl; }
+	void run() { std::cout << "run high" << std::endl; }
+	void update() { std::cout << "update high" << std::endl; }
+	void report() { std::cout << "report high" << std::endl; }
+	void save() { std::cout << "save high" << std::endl; }
+
+	const std::shared_ptr<RuntimeIO>& rtIO;
+};
+
+int main(void) {
+
+	StrategySelector strategyholder;
+        const std::shared_ptr<RuntimeIO> rtIO = std::make_shared<RuntimeIO>(.....);
+	strategyholder.setStrategy(std::make_unique<Low>(rtIO));
+
+	strategyholder.runStrategy();
+
+	strategyholder.setStrategy(std::make_unique<High>());
+	strategyholder.runStrategy();
+	strategyholder.saveStrategy();
+	return 0;
+}
+```
+
+Output generated:
+
+```bash
+$ ./a.exe
+run low
+run high
+save high
+```
+With `setStrategy`, a strategy will be selected and the RuntimeIO shared smart pointer is handed over to the strategy as a reference. All other calls via `strategyholder` will call methods from the *Low class strategy*. However, the strategy is changed after the first call of `runStrategy`, so below that second `setStrategy` statement, Methods within *High Strategy* are called.
+
+The strategy is selected via a routing table system. To improve readability for the routing table, the file `strategySelector.h` provides two overlays:
+
+- `strategyptr` - `std::unique_ptr<Strategy>(const std::shared_ptr<RuntimeIO>&`
+- `strategyaccess` - `std::function<strategyptr>`
+
+A routing table is defined in a method inside the derived module class. As an example for empennage_design:
+
+```c++
+strategyaccess EmpennageDesign::routing_(const std::vector<std::string>& route) {
+
+ /* Routing table */
+ std::map<std::string,std::map<std::string,std::map<std::string,strategyaccess>>> table = {
+   {"TAW",
+     std::map<std::string,std::map<std::string,strategyaccess>>{
+       {"CONVENTIONAL",
+         std::map<std::string,strategyaccess>{
+           {"LOW",[](const std::shared_ptr<RuntimeIO>& arg) {return std::make_unique<LowConventionalTaw>(arg);}},
+         }
+       },
+     }
+   },
+   {"BWB",
+     std::map<std::string,std::map<std::string,strategyaccess>>{
+       {"FINS",
+         std::map<std::string,strategyaccess>{
+           {"LOW",[](const std::shared_ptr<RuntimeIO>& arg) {return std::make_unique<LowFinsBwb>(arg);}},
+           {"MID",[](const std::shared_ptr<RuntimeIO>& arg) {return std::make_unique<MidFinsBwb>(arg);}}
+         }
+       }
+     }
+   }
+ };
+
+ return table[route.at(0)][route.at(1)][route.at(2)];
+}
+```
+
+`[](const std::shared_ptr<RuntimeIO>& arg) {return std::make_unique<LowFinsBwb>(arg)` is a lambda function which handle is returned from the routing_ table.
+
+Inside the module constructor, the strategy is set by
+
+```c++
+EmpennageDesign::EmpennageDesing(...) : Module(...) {
+  // read route from configuration file and store into std::vector<std::string> route_; name of vector might differ if there are more than one strategy to call
+  strategy_.setStrategy(routing_(route)(rtIO_));
+  ...}
+```
+
+The parameter for strategy set is called by invoking `routing_(...)` with the `route` vector which returns the handle for the selected strategy from the routing table according to the route. With `...(rtIO_)`, the returned handle is called with the `RuntimeIO` object `rtIO_` as an argument. The result is than handed over to the setStrategy method.
+
+If you'd like to add your own module, you can choose the structure of your routing table freely. Existing UNICADO modules use for example following layers:
+
+- aircraft configuration (tube and wing, BWB...)
+- fuel type (kerosene, hydrogen...)
+- fidelity level (see [fidelities](#fidelities))
+- method name
+- ...
+
+### The Fidelities {#fidelities}
+
+The fidelity of each methods can be classified as low, mid, higher, high and own as follows:
+
+- `low` - empirical methods
+- `mid` - semi-empirical methods
+- `higher` - analytical methods
+- `high` - numerical methods
+- `own` - own method (experimental)
+
+## Low level
+
+!!!note
+    The low level implementations members should be public only. This has different reasons:
+
+    1. There is no method next to the current
+    2. To keep the overhead of the class as small as possible (no setter/getter methods which must be provided for private members)
+    3. Due to pep8 conventions (python normally has no private / protected members)
+    4. isocpp: all private or all public - no mixture
+
+On the low level, the implementation of the algorithms is focused. Here you can structure your implementations according to the five base methods:
+
+- `initialize` - initialize your module to your needs and your output data by reading and preparing the data.
+- `run` - Here happens your wizardy stuff, sometimes muggle-like, sometime not 🧙.
+- `update` - lets you call the update methods within the IOData class
+- `save` - if you opened any specific document during your module execution, you can save the data within this method and close the data.
+
+### IO Data
+
+The IO Data includes the module specific data from the *Aircraft Exchange File* (Input-Output) and the *Module Configuration File* (Input). The data from the Exchange file is stored within a dedicated data class for a specific method. The `program_settings` of the config file are also stored in a dedicated config class for a specific method.
+Module data which is used within the execution can be stored here and must have methods to update specific parts of the `aircraft_exchange_file`. There might be data for xml and data for non-xml at the current state.
+As an example for the data part:
+
+```c++
+/* LOW FIDELITY DATA START */
+namespace low {
+class ConventionalData
+{
+public:
+  // ...
+};
+
+} // namespace low
+/* LOW FIDELITY DATA END */
+
+/* HIGHER FIDELITY DATA START */
+namespace higher {
+class ConventionalData : public low::ConventionalData
+{
+public:
+	//....
+}
+} // namespace higher
+/* HIGHER FIDELITY DATA END */
+```
+For the configuration data from the specific config xml, it is recommended that you have `read` methods for each element and also a method `readAll` which calls all `read` methods. If using *endnodes* - make sure that you use `EndnodeReadOnly` for configuration file content. If your configuration file holds common blocks which are used in more than one module - it is recommended to cluster the read data in an external class which is instantiated in the config class.
+
+As an example:
+
+```c++
+/* LOW FIDELITY CONFIGS START */
+
+namespace low {
+
+class ConventionalConfig
+{
+public:
+	// your elements from the configuration file
+
+};
+
+} // namespace low
+/* LOW FIDELITY CONFIGS END */
+```
+
+### Report
+
+For report generation, a dedicated Report class (`report.h`) can be used. It offers access to HTML and Tex streams. Public methods are the following:
+
+- `Report` - Constructor
+- `setAircraftName` - Set the aircraftname for report documents
+- `generateReports` - generates reports based on settings from RuntimeIO (in case a module writes more than one report, individual names can be used)
+- `htmlReportStream` - returns the html report output stream
+- `texReportStream` - returns the tex report output stream
+- `generateHtmlReport` - generates the html report with written data to the htmlReportStream
+- `generateTexReport` - generates the tex report with written data to the htmlReportStream
+- `reportName` - returns standard name of the report
+- Legacy Method `addPlot` - adds a plot to the plots map by the name of the plot in case `plot.h` is used
+
+All methods for a report must be on the low level for a specific fidelity in a seperate `...Report.cpp` File. Report is an object of the main specific fidelity class and NOT an inherited class. Within your html report, can add generated plots by using the `image` function of `html.h`
+
+### Plot
+!!!attention
+    The methods provided by `plot.h` are legacy methods. Please use [matplot++](https://alandefreitas.github.io/matplotplusplus/) for plot generating!
+
+The Plot class (`plot.h`) is a basic frame for SVG Plot generation. There are multiple public methods:
+
+- `Plot` - Constructor with Name
+- `getPlotName` - Get the Name of the plot object
+- `getDataDestination` - Get the std::filesystem::path of the dataStream (optional)
+- `getSvgDestination` - Get the std::filesystem::path of the svg (optional)
+- `getScriptDestination` - Get the std::filesystem::path of the script (optional)
+- `getDataStream` - Get the data stringstream
+- `generatePlotData` - Generates plot data which is in the data stringstream
+- `getScriptStream` - Get the script stringstream
+- `generatePlotScript` - Generates plot script which is in the script stringstream
+- `generateSvg` - generates .svg based on the plotname in the given directory based on reference of a vector of unique pointers which stores svgObjects.
+
+All methods for a report must be on the low level for a specific fidelity in a seperate `...Plot.cpp` File. Plot is an object inside a method from the main specific fidelity class class and NOT an inherited class.
+
+!!! note
+    In case `plot.h` is used: Plots which are not added to the report (not part of the map `plots`) will not appear on the generated report!
+
+
+
+
diff --git a/docs/get-involved/modularization/python-modularization.md b/docs/get-involved/modularization/python-modularization.md
new file mode 100644
index 0000000000000000000000000000000000000000..04e0addfc1c8b3759bfb5ec05427fc554fc4b101
--- /dev/null
+++ b/docs/get-involved/modularization/python-modularization.md
@@ -0,0 +1,348 @@
+# How to Python in UNICADO :snake:
+This documentation provides a detailed overview of helpful guidelines and conventions for the use/implementation of Python code in the UNICADO framework.
+
+!!! note
+    The content below is valid for UNICADO release v3.0.0.
+
+# Content
+- [Introduction](#introduction)
+- [Code style](#code-style)
+- [UNICADO Python philosophy](#unicado-python-philosophy)
+- [Code modularity (Python-only modules)](#code-modularity-python-only-modules)
+- [Logging and printing](#logging-and-printing)
+- [Package generation](#package-generation)
+- [Testing with Python](#testing-with-python)
+
+---
+
+# First things first ... Easter egg hunt
+
+1. Please open a Python interpreter or IDE of your choice.
+2. Start an interactive Python console.
+3. Type `import this`.
+4. Congrats! You found the _Zen of Python_.
+5. Take a few deep breaths and let the spiritual outpourings of Tim Peters work their magic on you ... 🧘 (For the less spiritual souls among us, awesome work! Allow yourself a short break before we dive deeper into the topic.)
+
+# Introduction {#introduction}
+The UNICADO Python Library is designed to streamline and standardize Python-based code development. The library consists of multiple packages within a central repository, each containing individual modules grouped by functionality. These modules house functions that perform related tasks, creating a highly modular, scalable, and manageable structure.
+
+With its structured layers and well-defined documentation and logging practices, the UNICADO Library enables developers to produce modular, reusable, and well-documented code. This guide ensures developers can build and maintain code to the standards expected within the UNICADO framework, promoting compatibility and readiness for team-based development, testing, and deployment. The result is improved code quality, reusability, and maintainability across complex projects.
+
+# Code style {#code-style}
+Below, you find some information on UNICADO code style basics.
+
+## Python Enhancement Proposals (PEPs)
+Let's start with an obvious question ... [What is a PEP? :octicons-link-external-16:](https://peps.python.org/pep-0001/#what-is-a-pep)
+
+> PEP stands for Python Enhancement Proposal. A PEP is a design document providing information to the Python community, or describing a new feature for Python or its processes or environment. The PEP should provide a concise technical specification of the feature and a rationale for the feature.
+
+There are numerous PEPs, one of which is PEP 20 (which you have already encountered as _Zen of Python_), but probably the most beautiful is ... :drum:
+
+... PEP 8.
+
+Wondering why?
+Great, I will tell you... [PEP 8 - Style Guide for Python Code :octicons-link-external-16:](https://peps.python.org/pep-0008/) gives us conventions on how to write beautiful Python code. And beautiful is better than ugly, right? :wink:
+
+No, seriously... PEP 8 is considered a common and official Python style guide. To improve readability and ensure consistency as well as maintainability when writing new Python code, we decided to follow this recommendation and choose PEP 8 as our **Python coding standard**.
+
+## PEP 8
+- Supported by common Python IDEs.
+- Guidelines are adaptable, with internal project guidelines having a higher priority.
+- Unless otherwise stated, we adhere to the PEP 8 guidelines.
+
+At some points, the standard leaves options. These are explained in more detail below.
+
+### Code layout
+- Tabs or spaces? Spaces
+- Maximum Line Length? 119 characters
+- Line Break Before or After a Binary Operator? Before
+
+### Naming conventions
+- Packages: all-lowercase, starting with "py" (e.g., `pymodulepackage` or `pymathpackage`)
+- Modules: all-lowercase (e.g., `datapreprocessingmodule`)
+- Functions: `lowercase_with_underscores`
+- Variables: Descriptive variable names written in `lowercase_with_underscores`
+
+### Implementing PEP 8 into your workflow
+- Familiarize yourself with the guidelines
+- Use a linter!
+- Avoid excessive whitespace
+- Stay consistent in naming conventions
+
+## DocStrings
+- Customized DocString format based on reStructuredText (reST)
+<!-- - reST is used by default in JetBrains PyCharm: Type triple quotes `"""` after defining a function and hit Enter -->
+
+Please try to stick to the following scheme:
+
+```python
+"""Short description of the module.
+
+Long description of the module.
+
+:param type parameter_name: Description
+...
+:raises name: Description of raised error
+:return type parameter_name: Description OR
+:return: None OR
+:returns:
+    - type parameter_name: Description
+    - type parameter_name: Description
+"""
+```
+
+
+Example:
+
+```python
+    """Conduct data preprocessing.
+
+    This function provides data preprocessing functionalities. It sets up the necessary data and imports relevant modules. The importlib module is used to dynamically import necessary modules.
+
+    [...]
+
+    :param str module_configuration_file: Name of module configuration file
+    :param list argv: List with optional input arguments
+    :raises ModuleNotFoundError: Raised if module import failed
+    :returns:
+        - dict paths_and_names: Dictionary containing system paths and ElementTrees
+        - dict preprocessing_dict: Dictionary containing data preprocessing results
+        - logging.Logger runtime_output: Logging object used for capturing log messages in the module
+
+    """
+```
+
+# UNICADO Python philosophy {#unicado-python-philosophy}
+- **UNICADO** has a **library**
+- This **library** is a collection of various **packages**
+- These **packages** are a collection of several **modules**
+- These **modules** combine **functions** that belong together in terms of functionality
+
+This means, for example:
+
+- There is the `unicado_python_library`, which contains, for example:
+  - the `pymodulepackage`, which includes:
+    - the `datapostprocessingmodule` and
+    - the `datapreprocessingmodule`. This in turn provides the functions
+      - `read_paths_and_names`
+      - `read_xml_information`.
+
+## Excursion: What is a module?
+- A **module** is a *.py file containing related code, allowing its functionality to be reused across different parts of an application.
+- Modules can include variables, functions, classes, and more.
+- Import modules using `import [module_name]`.
+- **Example:** Import a module named `mypythonmodule` with `import mypythonmodule`.
+- **Function Syntax:** Access functions within a module using `module.function()`.
+  - **Example:** If `mypythonmodule` contains a function `easter_egg_hunt()`, call it with `mypythonmodule.easter_egg_hunt()`.
+-  Since it is common that a module contains several functions, explicit imports can be realized using the following syntax: `from mypythonmodule import easter_egg_hunt`.
+
+# Code modularity (Python-only modules) {#code-modularity-python-only-modules}
+In the following, the modularized structure of a Python module is explained using the `cost_estimation` module. The according folder structure is shown in the following picture. It is also available for [download](https://git.rwth-aachen.de/unicado/unicado.gitlab.io/-/tree/develop/docs/get-involved/modularization/python-template).
+
+![](../../assets/images/developer/style/modularization/python-modularization_01_code-modularity.png)
+
+## Layer example
+The following **layers** are selected for cost calculation:
+
+1. Aircraft configuration (e.g., `blended_wing_body` or `tube_and_wing`, golden folder)
+2. Fidelity of the calculation method (e.g., `empirical`, red folder)
+3. Calculation method (e.g., `operating_cost_estimation_tu_berlin`, green folder)
+4. Energy carrier (e.g., `kerosene` or `liquid_hydrogen`, grey folder) - **USER LAYER** (This is where the magic happens! :dizzy:)
+
+![](../../assets/images/developer/style/modularization/python-modularization_02_example-folder.png)
+
+## File structure
+
+The following section gives a brief overview of the files included in the (condensed) **rAircraftDesign** repository/folder with short descriptions of their contents.
+```plaintext
+rAircraftDesign
+|- cost_estimation: Current example module
+|  |- src: Contains source code (see [1])
+|  |  |- blended_wing_body: Folder and files for blended wing body configurations (see [2])
+|  |  |- tube_and_wing: Folder and files for tube and wing configurations (see [2])
+|  |  |  |- empirical: Folder and files for empirical calculation methods (see [3])
+|  |  |  |  |- operating_cost_estimation_tu_berlin: Files and folders necessary for calculating operating costs (see [4])
+|  |  |  |  |  |- general: [user layer] Files with functionalities independent of layer 4 value
+|  |  |  |  |  |  |- methodhtmlreport.py: Functionalities for data export to "cost_estimation.html" file (located in '...')
+|  |  |  |  |  |  |- methodplot.py: Plotting functionalities (plots saved to 'projects/CSR/CSR-02/reporting/plots')
+|  |  |  |  |  |  |- methodtexoutput.py: TeX report functionalities (output in '...')
+|  |  |  |  |  |  |- methodxmlexport.py: Data export functionalities to "cost_estimation_results.xml" file (located in 'projects/CSR/CSR-02/reporting/report_xml')
+|  |  |  |  |  |- kerosene: [user layer] Functionalities specific to kerosene
+|  |  |  |  |  |  |- methodkerosene.py: Module with calculation functions for kerosene-driven aircraft, implemented by the user
+|  |  |  |  |  |- liquid_hydrogen: [user layer] Functionalities specific to liquid hydrogen
+|  |  |  |  |  |  |- methodliquidhydrogen.py: Module with calculation functions for liquid hydrogen-driven aircraft, implemented by the user
+|  |  |  |  |  |- usermethoddatapreparation.py: Module providing functions for user data preparation
+|  |  |  |- datapostprocessing.py: Functions for data postprocessing
+|  |  |  |- datapreprocessing.py: Functions for data preprocessing
+|  |  |  |- readlayertext.py: Functions for reading layer information
+|  |- CMakeLists.txt: ...
+|  |- cost_estimation_conf.xml: General information for the cost estimation module, e.g., console output/log/report on/off settings and the path and name of the module configuration file
+|  |- cost_estimation.log: Logging messages for the current module
+|  |- main.py: Main file of the calculation module
+|- projects: Contains aircraft projects (xml files) and output folders
+|- unicado_python_library: Contains UNICADO-specific Python packages
+```
+<br>
+
+!!! note
+    [1] At the top level, the example structure distinguishes between aircraft configurations with two branches: **blended wing body** and **tube and wing**.<br>
+    [2] These folders are subdivided according to **layer 2** and may contain various calculation method fidelities.<br>
+    [3] This folder is subdivided according to **layer 3** and may contain various calculation methods.<br>
+    [4] This folder is subdivided according to **layer 4** and may contain various fuel types.
+
+## Files that require changes by the module manager
+The code is designed to be highly generalized, meaning that only a few files need changes by the module manager. These files are shown in the following image and are discussed below in more detail. In some parts of the code, dynamic import commands and function names are generated, with examples provided at relevant points to illustrate how these commands work.
+
+![](../../assets/images/developer/style/modularization/python-modularization_03_example-folder-changes-module-manager.png)
+
+### The `main()`
+- Update the module name in two places within the docString
+- Customize the module configuration file name
+- Adjust the `runtime_output_string`
+
+![](../../assets/images/developer/style/modularization/python-modularization_04_main-01.png)
+![](../../assets/images/developer/style/modularization/python-modularization_05_main-02.png)
+
+### The `data_preprocessing` (`datapreprocessing.py`)
+- Update the layer description in the docString
+- Customize the layer description within `layer_description_dict`. If a layer is unknown (e.g., `user_layer`), set it to 'None' rather than a path and call the relevant function (e.g., `read_energy_carrier`) as indicated (see lines 69 and following).
+
+![](../../assets/images/developer/style/modularization/python-modularization_06_datapreprocessing-01.png)
+![](../../assets/images/developer/style/modularization/python-modularization_07_datapreprocessing-02.png)
+
+**Example for `module_import_name`**
+In this example, `module_import_name` at line 68 would be: `src.tube_and_wing.empirical.operating_cost_estimation_tu_berlin`.
+
+**Example for the import command**
+To import a module from `usermethoddatapreparation.py` at line 74, the command is as follows:
+`src.tube_and_wing.empirical.operating_cost_estimation_tu_berlin.usermethoddatapreparation`.
+
+### The `data_postprocessing` (`datapostprocessing.py`)
+- Modify `paths_to_key_parameters_list`
+- Adjust `module_key_parameters_dict`
+
+![](../../assets/images/developer/style/modularization/python-modularization_08_datapostprocessing-01.png)
+![](../../assets/images/developer/style/modularization/python-modularization_09_datapostprocessing-02.png)
+
+## Files that require changes by the user
+Similarly, the code is structured so that only a few files require modifications by the user. These files are highlighted in the following image.
+
+Note that this is an executable example code and a proposal for a structure. Generally speaking, the following files are at **user layer**:
+
+- `methodexport.py`
+- `methodplot.py`
+- `methodreport.py`
+- `methodkerosene.py`
+- `methodliquidhydrogen.py`
+
+Users are free to structure the code within these files but must ensure that all parameters are formatted correctly and contain all necessary values. This is especially critical for `usermethoddatapreparation.py` (not part of the user layer!), as this function handles data preparation for the user method. Here, the user must gather relevant general data from the aircraft exchange file and calculation-specific parameters from the module configuration file, submitting the data in the correct format.
+
+More detailed instructions for required changes are available within the docStrings of each corresponding file.
+
+![](../../assets/images/developer/style/modularization/python-modularization_10_example-folder-changes-user.png)
+
+
+# Logging and printing {#logging-and-printing}
+The Python framework in this project has a customized logging function, which builds on Python’s [logging facility :octicons-link-external-16:](https://docs.python.org/3/library/logging.html). The following logging levels are available:
+
+| **Level**                  | **Numeric Value** | **Usage**                                                 | **Text Scheme**                                          |
+|----------------------------|-------------------|-----------------------------------------------------------|----------------------------------------------------------|
+| `runtime_output.debug`     | 10                | For development messages and debug information            | `runtime_output.debug("Debug: Add some text here.")`     |
+| `runtime_output.info`      | 20                | To provide additional information on calculations         | `runtime_output.info("Attention: Add some text here.")`  |
+| `runtime_output.warning`   | 30                | When something goes wrong, but the code still runs        | `runtime_output.warning("Warning: Add some text here.")` |
+| `runtime_output.print`     | 35 (default)      | For standard user output (e.g., values)                   | `runtime_output.print("Add some text here.")`            |
+| `runtime_output.error`     | 40                | For serious issues where the code can still continue      | `runtime_output.error("Error: Add some text here.")`     |
+| `runtime_output.critical`  | 50                | For critical issues that terminate the code (exit code 1) | `runtime_output.critical("Error: Add some text here.")`  |
+
+Instead of using Python's built-in `print` function, use these logging options to ensure all outputs are appropriately documented in the log file according to user settings.
+
+## Logging configuration in the module configuration file
+User settings for logging behavior can be configured in the module configuration file under `console_output/value` and `log_file_output/value`. The available modes are as follows:
+
+| **Mode** | **Logging Levels Included**                                  |
+|----------|--------------------------------------------------------------|
+| `mode_0` | `critical`                                                   |
+| `mode_1` | `critical`, `error`, `print`, and `warning`                  |
+| `mode_2` | `critical`, `error`, `print`, `warning`, and `info`          |
+| `mode_3` | `critical`, `error`, `print`, `warning`, `info`, and `debug` |
+
+Each mode enables progressively more detailed logging, from critical errors only (`mode_0`) to full debug information (`mode_3`).
+
+# Package generation {#package-generation}
+Sources:
+
+- [Python packaging :octicons-link-external-16:](https://packaging.python.org/en/latest/tutorials/packaging-projects/)
+- [Example video :octicons-link-external-16:](https://www.youtube.com/watch?v=v6tALyc4C10&ab_channel=RealPython)
+
+According to the UNICADO Python philosophy, the UNICADO Python library contains several packages, e.g. the `pymodulepackage`. But how do I generate those packages?
+The necessary steps are listed below. Please ensure to read the respective explanations of the individual steps carefully before proceeding to the next step.
+
+**Prerequisites**
+
+1. Update `pip` to the latest version:
+    - **Unix/macOS:** `python3 -m pip install --upgrade pip`
+    - **Windows:** `python -m pip install --upgrade pip`
+2. Navigate to the `AircraftDesign/unicado_python_library` folder (illustrated below) to set up the required folder structure.
+
+![](../../assets/images/developer/style/modularization/python-modularization_11_unicado-python-library.png)
+
+## Step 1: Create the package subfolder
+In `unicado_python_library`, create a new subfolder for the package. Follow this naming convention:
+
+- **Format:** `py[name of package]package` (all lowercase, without underscores)
+- **Example:** `pymodulepackage`
+
+Then, navigate into this subfolder.
+
+## Step 2: Create a `pyproject.toml` file
+The `pyproject.toml` file contains information on the build backend (`[build-system]`). We are using setuptools. Furthermore, this file contains core metadata for packaging-related tools to consume (`[project]`, `[project.urls]`).
+
+Please see the sample `pyproject.toml` file in the example folder (that is available for [download](https://git.rwth-aachen.de/unicado/unicado.gitlab.io/-/tree/develop/docs/get-involved/modularization/python-template)) and complete the **highlighted fields** with package-specific information, without modifying build system details.
+
+![](../../assets/images/developer/style/modularization/python-modularization_12_toml_file.png)
+
+**Further resources:**
+
+- [PEP 621: Project metadata :octicons-link-external-16:](https://peps.python.org/pep-0621/)
+- [Setuptools documentation :octicons-link-external-16:](https://setuptools.pypa.io/en/latest/index.html)
+
+## Step 3: Create a `LICENSE` file
+Add a `LICENSE` file (it can be taken directly from the example folder) to define usage rights.
+The [GPL-3.0 license :octicons-link-external-16:](https://choosealicense.com/licenses/gpl-3.0/#) text is used in this example.
+
+## Step 4: Create a `README.md` file
+Download and fill out the sample `README.md` file with details about your package. This file can also be obtained from example folder in the repository.
+
+## Step 5: Create `src` subfolder
+Inside the package folder, create a `src` subfolder to hold the `.py` files (modules).
+
+- **Convention:** Each `.py` file should correspond to a single module, named in this format:
+    - **Format:** `[module name]module.py` (all lowercase, no underscores)
+    - **Example:** `datapreprocessingmodule.py`
+
+Modules can contain several functions. Once files are set up, return to the main package folder before proceeding.
+
+## Step 6: Execute installation command
+In the directory containing `pyproject.toml`, run the following installation command:
+
+   - **Windows:** `python -m pip install -e .`
+   - **macOS:** `python3 -m pip install -e .`
+
+**Explanation:**
+
+- **`-m` flag:** Specifies the module to run as a script.
+- **`-e` (editable mode):** Installs the package in editable mode, meaning changes to source code are immediately reflected.
+
+Expected output should resemble:
+```plaintext
+C:\Users\user_name\Documents\example_project\AircraftDesign\unicado_python_library\pymodulepackage>python -m pip install -e . Obtaining file:///C:/Users/user_name/Documents/example_project/AircraftDesign/unicado_python_library/pymodulepackage Installing build dependencies ... done Checking if build backend supports build_editable ... done Getting requirements to build editable ... done Installing backend dependencies ... done Preparing editable metadata (pyproject.toml) ... done Building wheels for collected packages: pymodulepackage Building editable for pymodulepackage (pyproject.toml) ... done Created wheel for pymodulepackage: filename=pymodulepackage-2.0.1-0.editable-py3-none-any.whl size=26933 sha256=11cbdd8301b02ef2e9a7daabcc87c549844e651b951c27aa78611a9f1f13df5e Stored in directory: C:\Users...... Successfully built pymodulepackage Installing collected packages: pymodulepackage Successfully installed pymodulepackage-2.0.1
+```
+
+You can check whether this command was successful by running `pip list`. If the installation was successful, the module should be listed.
+
+## Step 7: Use packages
+The modules  should now be ready to use. You can import the functions from the modules using the `from [module name] import [function name]` command. To stay with the before mentioned example:
+`from datapostprocessingmodule import paths_and_names`
+
+# Testing with Python {#testing-with-python}
+tbd. :construction:
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/CMakeLists.txt b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e1f1120976ea0d7f64ca1fe14d4ae585f5137a39
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/CMakeLists.txt
@@ -0,0 +1,80 @@
+
+# Set name of executable
+set(MODULE_NAME docEstimation)
+
+# ==============================================
+# Add the module executable
+#
+# *** IMPORTANT ***
+# -> Change *.cpp files according to the module
+# -> Add main.cpp later since this list is also
+#    used for the tests
+# ==============================================
+
+# Fuel - Fossil
+set(MODULE_SOURCES_FOSSIL
+    src/fossil/lowFidelity/lowFossil.cpp
+    src/fossil/lowFidelity/lowFossilIOData.cpp
+    src/fossil/lowFidelity/lowFossilReport.cpp
+    src/fossil/lowFidelity/lowFossilPlot.cpp
+)
+
+# Fuel - H2
+set(MODULE_SOURCES_H2
+    src/h2/lowFidelity/lowH2.cpp
+    src/h2/lowFidelity/lowH2IOData.cpp
+    src/h2/lowFidelity/lowH2Report.cpp
+    src/h2/lowFidelity/lowH2Plot.cpp
+)
+
+set(MODULE_SOURCES
+    ${MODULE_SOURCES_FOSSIL}
+    ${MODULE_SOURCES_H2}
+    src/tankDesign.cpp
+)
+
+add_executable(${MODULE_NAME}
+    ${MODULE_SOURCES}
+    src/mainTankDesign.cpp
+)
+
+
+# Set compile options specific to this module
+if(USE_GNUPLOT)
+    # -> Bug: When not setting this option, the `generateSvgPlot` is not overwritten by calculatePolarOutput.cpp
+    target_compile_definitions(${MODULE_NAME} PRIVATE USE_GNUPLOT)
+endif()
+
+
+# Link the runtime libraries
+target_link_libraries(${MODULE_NAME}
+    PRIVATE
+        moduleBasics
+        strategy
+        runtimeInfo
+        aixml
+        standardFiles
+        svl
+        svgPlot
+        spline
+        aircraftGeometry
+)
+
+# Add the include directories
+target_include_directories(${MODULE_NAME}
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/.. # <- This is due to the includes in the main file # <- This is due to the absolute import in svl/svl/Basics.h
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/ # <- This is due to the includes in empennage
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/common/
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/h2/
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/fossil/
+)
+
+# Set the location where the executable will be placed to the current source directory
+set_target_properties(${MODULE_NAME} PROPERTIES
+    RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
+)
+
+# Add the tests if enabled
+if(BUILD_UNITTEST)
+    add_subdirectory(test)
+endif()
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation.py
new file mode 100644
index 0000000000000000000000000000000000000000..0a16cd5eaee48b75b3a63e6a791703045ef2f6b9
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation.py
@@ -0,0 +1,88 @@
+"""Calculation module main file."""
+# Import standard modules.
+import logging
+import traceback
+from sys import argv, exit
+
+# Import own modules.
+from runmodule import run_module
+from src.datapreprocessing import data_preprocessing
+from src.datapostprocessing import data_postprocessing
+
+
+def main():
+    """Execute the main program for cost estimation.
+
+    This function serves as the main entry point for performing the cost estimation.
+    It goes through the following key steps:
+        (1) Preprocessing - Acquire necessary data and paths: Call the 'data_preprocessing' function from
+        'datapreprocessing.py' to set up data and routing information.
+        (2) Run (main processing) - Execute code depending on method layers: Execute the 'run_module' function from the
+        'methodexecutionpackage' library. The 'run_module' function is responsible for the programs primary logic.
+        (3) Postprocessing - Write data to the aircraft exchange file and generate plots and reports: Call the
+        'data_postprocessing' function from 'datapostprocessing.py' to handle postprocessing tasks. This step receives
+        data from both the preprocessing and the main processing step.
+
+    Note: The 'routing_dict' dictionary is used to manage the routing and execution of different program components.
+
+    :raises Exception: Raised to handle other exceptions
+    :return: None
+    """
+
+    # Initialize exception string and runtime output logger.
+    tool_name = 'cost estimation'
+    runtime_output = logging.getLogger('module_logger')
+
+    try:
+        """Preprocessing: Acquire necessary data and paths."""
+        # Run 'data_preprocessing' function from 'datapreprocessing.py'.
+        paths_and_names, routing_dict, runtime_output = data_preprocessing('cost_estimation_conf.xml', argv)
+        runtime_output.print('Cost estimation started...')
+
+        """Run: Execute code depending on method layers."""
+        # Execute 'run_module' function from 'methodexecutionpackage' library. This function is responsible for the main
+        # logic of the program.
+        run_output_dict = run_module(paths_and_names, routing_dict, runtime_output)
+
+        """Postprocessing: Write data to aircraft exchange file and generate plots and reports."""
+        # Run 'data_postprocessing' function from 'datapostprocessing.py' to handle postprocessing tasks. Receives data
+        # from preprocessing and main processing step.
+        data_postprocessing(paths_and_names, routing_dict, run_output_dict, runtime_output)
+        runtime_output.print('Operating cost estimation finished.')
+
+    except Exception as e:  # pylint: disable=broad-exception-caught
+        # Handle other exceptions.
+        runtime_output.critical(exception_string_msg(e, tool_name))
+        exit(1)
+
+
+def exception_string_msg(error, tool_name: str):
+    """Generate exception message.
+
+    Generate a formatted string detailing the type and location of an exception, along with an error message, for
+    diagnostic purposes. This function is particularly useful for logging or displaying comprehensive error information
+    when an exception occurs in a specific module or function.
+
+    :param exception error: Caught exception object from which details will be extracted
+    :param str tool_name: Name of the tool or module where the error occurred, used in the final error message
+    :return str: String including error type, file name, function/method name, line number, code that caused the error,
+    and error message.
+    """
+    error_type = str(type(error).__name__)
+    error_trace = traceback.extract_tb(error.__traceback__)
+    error_file, error_line, error_func, error_code = error_trace[-1]
+    error_file = error_file.split('/')[-1]
+
+    exception_string = f"{error_type}: \n"
+    exception_string += f"                                   - File             : {error_file} \n"
+    exception_string += f"                                   - Function / Method: {error_func} \n"
+    exception_string += f"                                   - Line             : {error_line} \n"
+    exception_string += f"                                   - Code             : {error_code} \n"
+    exception_string += f"                                   - Error message    : {str(error)} \n"
+
+    return exception_string + f"Main execution of {tool_name} module failed! \n" \
+                              f"Program aborted."
+
+
+if __name__ == "__main__":
+    main()
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation_conf.xml b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation_conf.xml
new file mode 100644
index 0000000000000000000000000000000000000000..eb104f9681ad912ac6ee7bf76e5b16e2002e76c6
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation_conf.xml
@@ -0,0 +1,311 @@
+<?xml version="1.0" encoding="UTF-8" ?>
+	<module_configuration_file Name="Cost Estimation Runtime Configuration"> <!-- Change naming according to module name -->
+        <control_settings description="General control settings for this tool">
+            <aircraft_exchange_file_name description="Specify the name of the exchange file">
+                <value>CSR-02.xml</value>
+            </aircraft_exchange_file_name>
+            <aircraft_exchange_file_directory description="Specify the direction in which the aircraft exchange file can be found">
+                <value>./projects/CSR/CSR-02/</value>
+            </aircraft_exchange_file_directory>
+            <own_tool_level description="Specify the tool level of this tool">
+                <value>2</value>
+            </own_tool_level>
+            <console_output description="Selector to specify the console output. Selector: mode_0 (Off) / mode_1 (only out/err/warn) / mode_2 (1 + info) / mode_3 (2 + debug)">
+                <value>mode_1</value>
+            </console_output>
+            <log_file_output description="Selector to specify the log file output. Selector: mode_0 (Off) / mode_1 (only out/err/warn) / mode_2 (1 + info) / mode_3 (2 + debug)">
+                <value>mode_1</value>
+            </log_file_output>
+            <plot_output description="Specify the way plotting shall be handled">
+                <enable description="Switch to enable plotting. Switch: true (On) / false (Off)">
+                    <value>true</value>
+                </enable>
+                <copy_plotting_files description="Switch if plotting files shall be copied. Switch: true (On) / false (Off)">
+                    <value>true</value>
+                </copy_plotting_files>
+                <delete_plotting_files_from_tool_folder description="Switch if plotting files shall be deleted from folder. Switch: true (On) / false (Off)">
+                    <value>true</value>
+                </delete_plotting_files_from_tool_folder>
+            </plot_output>
+            <report_output description="Switch to generate an HTML report. Switch: true (On) / false (Off)">
+                <value>false</value>
+            </report_output>
+            <tex_report description="Switch to generate a Tex report. Switch: true (On) / false (Off)">
+                <value>false</value>
+            </tex_report>
+            <write_info_files description="Switch to generate info files. Switch: true (On) / false (Off)">
+                <value>false</value>
+            </write_info_files>
+            <log_file description="Specify the name of the log file">
+                <value>cost_estimation.log</value>
+            </log_file>
+            <inkscape_path description="Path to the inkscape application (DEFAULT: Use inkscape from the UNICADO repo structure)">
+                <value>DEFAULT</value>
+            </inkscape_path>
+            <gnuplot_path description="Path to the gnuplot application (DEFAULT: Use gnuplot from the UNICADO repo structure)">
+                <value>DEFAULT</value>
+            </gnuplot_path>
+            <program_specific_control_settings description="Program specific control settings for this tool">
+                <xml_output description="Switch to export module specific data to XML ('true': On, 'false': Off)">
+                    <value>true</value>
+                </xml_output>
+            </program_specific_control_settings>
+        </control_settings>
+	    <program_settings description="program settings">
+            <configuration ID="tube_and_wing">
+                <fidelity_name description="Select fidelity name (options: empirical, numerical,...)">
+                    <value>empirical</value>
+                </fidelity_name>
+                <method_name description="Select method name (options: operating_cost_estimation_tu_berlin)">
+                    <value>operating_cost_estimation_tu_berlin</value>
+                    <default>operating_cost_estimation_tu_berlin</default>
+                </method_name>
+                <fidelity ID="empirical">
+                    <operating_cost_estimation_tu_berlin description="Empirical method to estimate the direct operating costs (DOC) and indirect operating costs (IOC) of an aircraft.">
+                        <general_direct_operating_costs_parameter>
+                            <capital description="Capital cost related parameters">
+                                <depreciation_period description="Depreciation period (assumption for default value: depreciation to 15% residual value in 12 years)">
+                                    <value>12.0</value>
+                                    <unit>y</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>30.0</upper_boundary>
+                                    <default>12.0</default>
+                                </depreciation_period>
+                                <price_per_operating_empty_mass description="Price per kg operating empty mass">
+                                    <value>1245.0</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>1245.0</default>
+                                </price_per_operating_empty_mass>
+                                <rate_insurance description="Insurance rate">
+                                    <value>0.005</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                    <default>0.005</default>
+                                </rate_insurance>
+                                <rate_interest description="Interest rate">
+                                    <value>0.05</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>0.05</default>
+                                </rate_interest>
+                                <residual_value_factor description="Residual value per aircraft price after depreciation period">
+                                    <value>0.15</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>20.0</upper_boundary>
+                                    <default>0.15</default>
+                                </residual_value_factor>
+                            </capital>
+                            <crew description="Crew cost related parameters">
+                                <salary_variation description="Salary variation mode (0: same salary for design mission and mission study, 1: range dependent salaries)">
+                                    <value>0</value>
+                                    <default>0</default>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </salary_variation>
+                            </crew>
+                            <flight_cycles description="Flight cycle related parameters">
+                                <block_time_per_flight description="Average block time supplement per flight (default: 1.83 h)" Unit="hours" Default="1.83" lower_boundary="0" upper_boundary="None">
+                                    <value>1.83</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>1.83</default>
+                                </block_time_per_flight>
+                                <daily_night_curfew_time description="Night curfew time per day">
+                                    <value>7.0</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>7.0</default>
+                                </daily_night_curfew_time>
+                                <potential_annual_operation_time description="Potential annual operation time (365 days a 24h hours)">
+                                    <value>8760</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>8760</lower_boundary>
+                                    <upper_boundary>8784</upper_boundary>
+                                    <default>8760</default>
+                                </potential_annual_operation_time>
+                                <annual_lay_days_overhaul description="Lay days per year for overhaul (D-Check every 5 years a 4 weeks)">
+                                    <value>5.6</value>
+                                    <unit>day</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>5.6</default>
+                                </annual_lay_days_overhaul>
+                                <annual_lay_days_reserve description="Lay days per year for repairs, technical and operational reserve (statistical value)">
+                                    <value>2.6</value>
+                                    <unit>day</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>2.6</default>
+                                </annual_lay_days_reserve>
+                            </flight_cycles>
+                            <handling description="Handling related parameters">
+                                <fees_handling description="Handling fees per kg payload">
+                                    <value>0.1</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.1</default>
+                                </fees_handling>
+                            </handling>
+                            <landing description="Landing related parameters">
+                                <fees_landing description="Landing fees per kg maximum take-off mass">
+                                    <value>0.01</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.01</default>
+                                </fees_landing>
+                            </landing>
+                            <air_traffic_control description="Air traffic control related parameters">
+                                <air_traffic_control_price_factor_design description="Range dependent ATC price factor for design mission (range dependent: domestic europe 1.0, transatlantic 0.7, far east flights half of landings @ european airports 0.6)">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0.6</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                    <default>1.0</default>
+                                </air_traffic_control_price_factor_design>
+                                <air_traffic_control_price_factor_study description="range dependent ATC price factor for mission study (range dependent: domestic europe 1.0, transatlantic 0.7, far east flights half of landings @ european airports 0.6)">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0.6</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>1.0</default>
+                                </air_traffic_control_price_factor_study>
+                            </air_traffic_control>
+                            <maintenance description="Maintenance related parameters">
+                                <airframe_repair_costs_per_flight description="Airframe repair costs per flight">
+                                    <value>57.5</value>
+                                    <unit>EUR</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>57.5</default>
+                                </airframe_repair_costs_per_flight>
+                                <annual_lay_days_maintenance description="Lay days per year for maintenance (C-Check every 15 month a 4 days)">
+                                    <value>3.2</value>
+                                    <unit>day</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>3.2</default>
+                                </annual_lay_days_maintenance>
+                                <cost_burden description="Cost burden maintenance">
+                                    <value>10.5</value>
+                                    <unit>EUR</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>10.5</default>
+                                </cost_burden>
+                                <rate_labor description="Labor rate">
+                                    <value>50.0</value>
+                                    <unit>EUR/h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>50.0</default>
+                                </rate_labor>
+                            </maintenance>
+                            <related_direct_operating_costs description="Necessary parameters for the calculation of related DOC">
+                                <revenue_per_freight_km_design description="Revenue per flight kilometer design mission">
+                                    <value>0.2</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.2</default>
+                                </revenue_per_freight_km_design>
+                                <revenue_per_freight_km_study description="Revenue per flight kilometer mission study">
+                                    <value>0.2</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.2</default>
+                                </revenue_per_freight_km_study>
+                            </related_direct_operating_costs>
+                            <miscellaneous description="Miscellaneous parameters">
+                                <rate_inflation description="Rate of annual inflation (including price and salary increases)">
+                                    <value>0.03</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.03</default>
+                                </rate_inflation>
+                                <seat_load_factor_design description="Seat load factor of design mission">
+                                    <value>0.85</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>0.85</default>
+                                </seat_load_factor_design>
+                                <seat_load_factor_study description="Seat load factor of study mission">
+                                    <value>0.85</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>0.85</default>
+                                </seat_load_factor_study>
+                            </miscellaneous>
+                        </general_direct_operating_costs_parameter>
+                        <fuel_type ID="kerosene">
+                            <factor_engine_maintenance description="Factor for engine maintenance">
+                                <value>1</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1</default>
+                            </factor_engine_maintenance>
+                            <fuel_price description="Average fuel price per kg kerosene">
+                                <value>0.7</value>
+                                <unit>EUR/kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>0.7</default>
+                            </fuel_price>
+                            <ratio_operating_empty_mass description="Ratio of operating empty mass kerosene aircraft to hydrogen aircraft">
+                                <value>1</value>
+                                <unit>EUR</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1</default>
+                            </ratio_operating_empty_mass>
+                        </fuel_type>
+                        <fuel_type ID="liquid_hydrogen">
+                            <factor_engine_maintenance description="Factor for engine maintenance">
+                                <value>0.7</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1</default>
+                            </factor_engine_maintenance>
+                            <fuel_price description="Average fuel price per kg liquid hydrogen">
+                                <value>9.16</value>
+                                <unit>EUR/kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>9.16</default>
+                            </fuel_price>
+                            <ratio_operating_empty_mass description="Ratio of operating empty mass kerosene aircraft to hydrogen aircraft">
+                                <value>1.1</value>
+                                <unit>EUR</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1.1</default>
+                            </ratio_operating_empty_mass>
+                        </fuel_type>
+                        <fuel_type ID="gaseous_hydrogen">
+                            <fuel_price description="Average fuel price per kg gaseous hydrogen">
+                                <value>12.85</value>
+                                <unit>EUR/kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>12.85</default>
+                            </fuel_price>
+                        </fuel_type>
+                    </operating_cost_estimation_tu_berlin>
+                </fidelity>
+            </configuration>
+	    </program_settings>
+	</module_configuration_file>
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapostprocessing.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapostprocessing.py
new file mode 100644
index 0000000000000000000000000000000000000000..3ffa408d651bf1a614dd427930e8cb1b93cd7c14
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapostprocessing.py
@@ -0,0 +1,81 @@
+"""Module providing functions for data postprocessing."""
+# Import standard modules.
+
+# Import own modules.
+from datapostprocessingmodule import method_data_postprocessing
+from datapostprocessingmodule import write_key_data_to_aircraft_exchange_file
+from datapostprocessingmodule import prepare_element_tree_for_module_key_parameter
+
+
+def data_postprocessing(paths_and_names, routing_dict, data_dict, runtime_output):
+    """Perform data postprocessing and write data to an aircraft exchange file.
+
+    This function is responsible for data postprocessing that involves the following steps:
+        (1) Data preparation: The module manager prepares a list containing all paths to the key parameters that must
+        be written to the aircraft exchange file.
+        (2) Write data to the aircraft exchange file: The results of the module execution are passed on to the function
+        responsible for properly writing the data to the aircraft exchange file.
+        (3) Method-specific data postprocessing: User-defined method-specific postprocessing is conducted as needed.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing the result of the module execution (direct operating cost estimation)
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    """Data preparation."""
+    # Changes to this list are the sole responsibility of the module manager!
+    paths_to_key_parameters_list = [
+        './assessment/operating_cost_estimation_tu_berlin/direct_operating_costs/direct_operating_costs_annual',
+        './assessment/operating_cost_estimation_tu_berlin/indirect_operating_costs/indirect_operating_costs_annual'
+    ]
+
+    module_key_parameters_dict = {
+        'assessment': {
+            'operating_cost_estimation_tu_berlin': {
+                'attributes': {
+                    'description': 'Operating costs (sum of direct and indirect operating costs)',
+                    'tool_level': '0'},
+                'direct_operating_costs': {
+                    'attributes': {
+                        'description': 'Direct operating costs (sum of route independent and route dependent costs)'},
+                    'direct_operating_costs_annual': {
+                        'attributes': {'description': 'Direct operating costs (DOC) per year'},
+                        'value': '0',
+                        'unit': 'EUR/y',
+                        'lower_boundary': '0',
+                        'upper_boundary': 'inf'}
+                },
+                'indirect_operating_costs': {
+                    'attributes': {'description': 'Indirect operating costs (IOC)'},
+                    'indirect_operating_costs_annual': {
+                        'attributes': {'description': 'Indirect operating costs (IOC) per year'},
+                        'value': '0',
+                        'unit': 'EUR/y',
+                        'lower_boundary': '0',
+                        'upper_boundary': 'inf'}
+                }
+            }
+        }
+    }
+
+    paths_and_names = prepare_element_tree_for_module_key_parameter(paths_and_names, module_key_parameters_dict)
+
+    # Run 'user_method_data_output_preparation' from 'usermethoddatapreparation.py'.
+    key_output_dict, method_specific_output_dict = routing_dict['func_user_method_data_output_preparation'](data_dict)
+    # Extract tool level from routing dictionary.
+    tool_level = routing_dict['tool_level']
+
+    """Write data to aircraft exchange file."""
+    # Extract root and path to aircraft exchange file.
+    root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree']
+    path_to_aircraft_exchange_file = paths_and_names['path_to_aircraft_exchange_file']
+    # Write key data to aircraft exchange file.
+    write_key_data_to_aircraft_exchange_file(root_of_aircraft_exchange_tree, path_to_aircraft_exchange_file,
+                                             paths_to_key_parameters_list, key_output_dict, tool_level, runtime_output)
+
+    """Method-specific postprocessing."""
+    # Run 'method_data_postprocessing' from 'datapostprocessingmodule'.
+    method_data_postprocessing(paths_and_names, routing_dict, data_dict,
+                               method_specific_output_dict, runtime_output)
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapreprocessing.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapreprocessing.py
new file mode 100644
index 0000000000000000000000000000000000000000..8ac87546f3daa0f7ec18644426478d76d44d0668
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapreprocessing.py
@@ -0,0 +1,126 @@
+"""Module providing functions for data preprocessing."""
+# Import standard modules.
+import importlib
+import sys
+
+# Import own modules.
+from datapreprocessingmodule import get_paths_and_names, read_routing_values_from_xml
+from src.readlayertext import read_energy_carrier
+
+
+def data_preprocessing(module_configuration_file, argv):
+    """Conduct data preprocessing.
+
+    This function provides data preprocessing functionalities. It sets up the necessary data and imports relevant
+    modules. The importlib module is used to dynamically import necessary modules.
+
+    The output dictionary 'preprocessing_dict' contains the following values:
+        - 'layer_1': First routing layer (aircraft configuration) (str)
+        - 'layer_2': Second routing layer (calculation method fidelity) (str)
+        - 'layer_3': Third routing layer (calculation method) (str)
+        - 'user_layer': Last routing layer (fuel type) (user layer) (str)
+        - 'tool_level': Tool level of current tool (str)
+        - 'module_import_name': Dynamic string for dynamically generated module import name based on layers (str)
+        - 'module_name': Module name (name of the module configuration file without its file extension) (str)
+        - 'func_user_method_data_input_preparation': Reference to 'user_method_data_input_preparation' function
+        - 'func_user_method_data_output_preparation': Reference to 'user_method_data_output_preparation' function
+        - 'func_user_method_plot': Reference to 'method_plot' function
+        - 'func_user_method_html_report': Reference to 'method_html_report' function
+        - 'func_user_method_xml_export': Reference to 'method_xml_export' function
+
+    :param str module_configuration_file: Name of module configuration file
+    :param list argv: List with optional input arguments
+    :raises ModuleNotFoundError: Raised if module import failed
+    :returns:
+        - dict paths_and_names: Dictionary containing system paths and ElementTrees
+        - dict preprocessing_dict: Dictionary containing data preprocessing results
+        - logging.Logger runtime_output: Logging object used for capturing log messages in the module
+
+    """
+
+    """Get paths, names, and xml trees for module configuration and aircraft exchange file."""
+    # Call 'get_paths_and_names' function to obtain various paths and names.
+    paths_and_names, runtime_output = get_paths_and_names(module_configuration_file, argv)
+    # Note: It is the exclusive responsibility of the module manager to modify the following information!
+    # Create layer description dictionary according to the number of individual layers. The dictionary associates
+    # layers with their respective XML paths and expected data types according to the following scheme:
+    #   layer_description_dict = {'layer_1': [path, expected data type], 'layer_2': [...]}
+    # If any information cannot be directly extracted from a specific aircraft exchange file path, please write 'None'
+    # and manually add the missing value afterward.
+    aircraft_exchange_tmp_path = 'aircraft_exchange_file/requirements_and_specifications/design_specification/'
+    module_configuration_tmp_path = 'module_configuration_file/program_settings/configuration/'
+    layer_description_dict = {
+        'layer_1': [aircraft_exchange_tmp_path + 'configuration/configuration_type/value', float],
+        'layer_2': [module_configuration_tmp_path + 'fidelity_name/value', str],
+        'layer_3': [module_configuration_tmp_path + 'method_name/value', str],
+        'user_layer': [None, str]
+     }
+
+    """ Extract data from aircraft exchange and module configuration file."""
+    # Extract root and path to aircraft exchange file and write key data to aircraft exchange file.
+    root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree']
+    root_of_module_configuration_file = paths_and_names['root_of_module_config_tree']
+    # Extract data from *.xml files based on the provided layer description (if no path information given ('None'),
+    # the entry has to be specified manually afterward). The result is stored in the 'preprocessing_dict' dictionary.
+    # It has the following output format (all values are strings):
+    #   dict_out = {'layer_1': value, 'layer_2': value, 'layer_3': value, 'user_layer': value, 'tool_level': value}
+    preprocessing_dict = read_routing_values_from_xml(layer_description_dict, root_of_aircraft_exchange_tree,
+                                                      root_of_module_configuration_file, runtime_output)
+    # Manual specification of missing layer values ('None' entry layer).
+    preprocessing_dict['user_layer'] = read_energy_carrier(root_of_aircraft_exchange_tree, runtime_output)
+
+    """Prepare and import modules."""
+    # Generate a dynamic import name 'module_import_name' for the selected calculation method modules based on the
+    # provided layer values according to the following scheme:
+    #   'src.[value of layer_1].[value of layer_2].[value of layer_3]'
+    module_import_name = 'src'
+    for _, value in list(preprocessing_dict.items())[:-2]:
+        module_import_name += '.' + value
+    # Create import commands by appending the python file name (incl. sub-folders, if necessary) to the generated
+    # 'module_import_name'. E.g., the import command for the module import from the 'usermethoddatapreparation.py' file
+    # is as follows:
+    #   'src.[value of layer_1].[value of layer_2].[value of layer_3].usermethoddatapreparation'
+    # The import command for the module import from the 'methodplot.py' file in the 'general' folder is as follows:
+    #   'src.[value of layer_1].[value of layer_2].[value of layer_3].general.methodplot'
+    # This step is executed for the following python files:
+    #   * 'usermethoddatapreparation.py'
+    #   * 'methodplot.py'
+    #   * 'methodhtmlreport.py'
+    #   * 'methodxmlexport.py'
+    #   * 'methodtexoutput'.py'
+    import_command_user_method_data_preparation = module_import_name + '.usermethoddatapreparation'
+    import_command_user_method_plot = module_import_name + '.general.methodplot'
+    import_command_user_method_html_report = module_import_name + '.general.methodhtmlreport'
+    import_command_user_method_xml_export = module_import_name + '.general.methodxmlexport'
+    import_command_user_method_tex_output = module_import_name + '.general.methodtexoutput'
+
+    # Add module name and tool level to the preprocessing_dict.
+    preprocessing_dict['module_import_name'] = module_import_name
+    preprocessing_dict['module_name'] = module_configuration_file[:-9]
+
+    # Dynamically import modules and functions based on the generated import commands.
+    try:
+        # Import functions from the specified modules.
+        import_user_method_data_preparation = importlib.import_module(import_command_user_method_data_preparation)
+        import_user_method_plot = importlib.import_module(import_command_user_method_plot)
+        import_user_method_html_report = importlib.import_module(import_command_user_method_html_report)
+        import_user_method_xml_export = importlib.import_module(import_command_user_method_xml_export)
+        import_user_method_tex_output = importlib.import_module(import_command_user_method_tex_output)
+        # Save the imported functions as variables in the 'preprocessing_dict' dictionary.
+        preprocessing_dict['func_user_method_data_input_preparation'] \
+            = import_user_method_data_preparation.user_method_data_input_preparation
+        preprocessing_dict['func_user_method_data_output_preparation'] \
+            = import_user_method_data_preparation.user_method_data_output_preparation
+        preprocessing_dict['func_user_method_plot'] = import_user_method_plot.method_plot
+        preprocessing_dict['func_user_method_html_report'] = import_user_method_html_report.method_html_report
+        preprocessing_dict['func_user_method_xml_export'] = import_user_method_xml_export.method_xml_export
+        preprocessing_dict['func_user_method_tex_output'] = import_user_method_tex_output.method_tex_output
+    # Exception handling for module import error.
+    except ModuleNotFoundError as module_import_error:
+        runtime_output_string = ('Error: ' + str(module_import_error) + ' found in '
+                                 + preprocessing_dict['module_name'] + '.\n'
+                                + '                                     Program aborted.')
+        runtime_output.critical(runtime_output_string)
+        sys.exit(1)
+
+    return paths_and_names, preprocessing_dict, runtime_output
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/readlayertext.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/readlayertext.py
new file mode 100644
index 0000000000000000000000000000000000000000..35d6e1fa00018d39edec21314071aad9214d6e6c
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/readlayertext.py
@@ -0,0 +1,86 @@
+"""File providing functions to read layer text from aircraft XML file."""
+# Import standard libraries.
+import sys
+
+
+def read_energy_carrier(root_of_aircraft_exchange_tree, runtime_output):
+    """Read energy carrier from aircraft exchange file.
+
+    This function extracts information about the energy carrier used in an aircraft from the provided aircraft exchange
+    file. It specifically looks for 'energy_carrier' nodes and their corresponding 'energy_carrier' sub-nodes.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Raised if energy carrier node does not exist
+    :return string energy_carrier: Energy carrier string
+    """
+
+    # Initialize empty list.
+    energy_carrier_list = []
+
+    # Attempt to extract information on energy carrier from aircraft exchange file.
+    try:
+        # Find all 'energy_carrier' nodes in aircraft exchange file.
+        energy_carrier_node_list = root_of_aircraft_exchange_tree.findall('.//energy_carrier')
+        # Check, if 'energy_carrier' nodes exist.
+        if not energy_carrier_node_list:
+            # Raise error, if no energy carrier node exists.
+            raise ValueError('No energy carriers nodes found in the aircraft exchange file. Program aborted.')
+        # Iterate over 'energy_carrier_node_list' and append values of energy carrier sub-nodes.
+        for energy_carrier_type_node in energy_carrier_node_list:
+            energy_carrier_node = energy_carrier_type_node.find('.//type/value')
+            if energy_carrier_node is not None:
+                energy_carrier_list.append(energy_carrier_node.text)
+            else:
+                raise ValueError('No energy carrier nodes found in the aircraft exchange file. Program aborted.')
+
+        # If 'energy_carrier_list' is not empty, compare all entries.
+        if energy_carrier_list is not None:
+            # If all entries are the same, set 'energy_carrier' to first list entry.
+            if all(element == energy_carrier_list[0] for element in energy_carrier_list):
+                energy_carrier = energy_carrier_list[0]
+            # If list entries differ, set 'energy_carrier' to 'hybrid'.
+            else:
+                energy_carrier = 'hybrid'
+        # Raise error, if 'energy_carrier_list' is empty.
+        else:
+            raise ValueError('No energy carrier node found. Program aborted.')
+
+    # Exception handling for ValueError.
+    except ValueError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    return energy_carrier
+
+
+def read_engine_configuration(root_of_aircraft_exchange_tree, runtime_output):
+    """Read engine configuration.
+
+    Read engine configuration from aircraft exchange file.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return str engine_configuration: Information on engine configuration
+    """
+
+    engine_configuration = 'xyz'
+    print(engine_configuration)
+
+    return engine_configuration
+
+
+def read_tank_configuration(root_of_aircraft_exchange_tree, runtime_output):
+    """Read tank configuration.
+
+    Read tank configuration information from aircraft exchange file.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return str tank_configuration: Information on tank configuration
+    """
+
+    tank_configuration = 'xyz'
+    print(tank_configuration)
+
+    return tank_configuration
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py
new file mode 100644
index 0000000000000000000000000000000000000000..9cef4c0e8de230c1c48d832966ba2432ce378b3e
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py
@@ -0,0 +1,19 @@
+"""Module providing HTML report functionalities for current calculation method."""
+
+
+def method_html_report(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """HTML report function.
+
+    This function is responsible for creating HTML reports.
+    [Add further information here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    # This is just a dummy code snippet. Insert your code here.
+    runtime_output.warning('Warning: No "method_html_report" function in "methodhtmlreport.py" file implemented yet.')
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py
new file mode 100644
index 0000000000000000000000000000000000000000..25b7588daf2da12a6fa3069394bd644901931653
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py
@@ -0,0 +1,23 @@
+"""Module providing plotting functionalities for current calculation method."""
+# Import standard libraries.
+import os
+from matplotlib import pyplot as plt
+import numpy as np
+
+
+def method_plot(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """Plot function.
+
+    This function is responsible for creating plots.
+    [Add further information here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    # This is just a dummy code snippet. Insert your code here.
+    runtime_output.print('Warning: No "method_plot" function in "methodplot.py" file implemented yet.')
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py
new file mode 100644
index 0000000000000000000000000000000000000000..87a9aa043988da76e4dcc285947e5c66c16b4fb8
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py
@@ -0,0 +1,19 @@
+"""Module providing report functionalities for current calculation method."""
+
+
+def method_tex_output(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """TeX file output function.
+
+    This function is responsible for creating TeX output files.
+    [Add further information here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    # This is just a dummy code snippet. Insert your code here.
+    runtime_output.warning('Warning: No "method_tex_output" function in "methodtexoutput.py" file implemented yet.')
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py
new file mode 100644
index 0000000000000000000000000000000000000000..34eaf144b7d87418db5fa350c7c06db2e3cbb7f1
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py
@@ -0,0 +1,103 @@
+"""Module providing export functionalities for current calculation method."""
+# Import standard libraries.
+import xml.etree.ElementTree as ET
+
+
+def method_xml_export(paths_and_names, routing_dict, data_dict, method_specific_output_dict, xml_export_tree,
+                      path_to_results_file, runtime_output):
+    """Export function.
+
+    This function is responsible for the export of method-specific data to the corresponding method-specific XML. In
+    detail, this includes the following steps:
+        (1) Parse the XML file specified by the 'path_to_results_file' variable.
+        (2) Find the 'calculation_results' element in the XML file. This is the element under which method-specific
+        nodes will be added.
+        (3) Extract method-related information from the configuration file, such as the method name and description and
+        add method node.
+        (4) Extract design mission data from the method-specific output dictionary and write it to the XML file.
+        (5) If a study exists, extract study data from the method-specific output dict and write it to the XML file.
+        (6) Attempt to write the modified XML data back to the 'costEstimation_results.xml' file. Handle an OSError
+        exception in case an error occurs during this operation.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method-specific output data
+    :param ElementTree xml_export_tree: Element tree of method-specific XML tree
+    :param str path_to_results_file: Path to method-specific output XML file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises OSError: Raised if writing to aircraft exchange file failed
+    :return: None
+    """
+    runtime_output.print("Method-specific data are written to '" + routing_dict['module_name'] + "_results.xml'...")
+
+    # Function to write data to 'cost_estimation_results.xml'
+    root_of_results_file = xml_export_tree.getroot()
+    parent = root_of_results_file.find('calculation_results')
+    # Add method node.
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    method_name = root_of_module_config_tree.find('./program_settings/configuration/method_name/value').text
+    method_description = ("Empirical method to estimate the direct operating costs (DOC) and indirect operating costs"
+                          " (IOC) of an aircraft.")
+    child = ET.SubElement(parent, method_name)
+    child.set("description", method_description)
+
+    # Prepare ElementTree for export to module-specific XML.
+    prepare_element_tree_for_module_specific_export(root_of_results_file, method_specific_output_dict)
+
+    # Write all parameters to export file.
+    try:
+        # Ensure proper indentation.
+        ET.indent(root_of_results_file, space="    ", level=0)
+        # Write data to file.
+        xml_export_tree.write(path_to_results_file)
+    # Exception handling for operating system error.
+    except OSError:
+        runtime_output.error('Error: Writing to aircraft exchange file failed. Program aborted!')
+
+
+def prepare_element_tree_for_module_specific_export(root_of_results_file, specific_output_dict):
+    """ Prepare ElementTree for module-specific results export.
+
+    This function is responsible for preparing the ElementTree of the module-specific export file.
+    In summary, the code dynamically updates an XML structure based on a list of paths and a dictionary
+    ('specific_output_dict'). It ensures that the specified paths exist in the XML structure and creates the necessary
+    sub-elements along the way, setting attributes and text values as specified in 'specific_output_dict'.
+
+    :param ElementTree root_of_results_file: Root of method-specific export ElementTree
+    :param dict specific_output_dict: Dictionary containing method-specific output data
+    :return: None
+    """
+    # Extract 'list_of_paths' from 'specific_output_dict' and delete it from dictionary.
+    list_of_paths = specific_output_dict['list_of_paths']
+    del specific_output_dict['list_of_paths']
+    # Iterate over paths.
+    for current_path in list_of_paths:
+        # Check, if 'current_path' exists in XML structure and generate path and sub-elements if not.
+        if root_of_results_file.find(current_path) is None:
+            # Split path into path_parts using '/' as delimiter, excluding first empty part.
+            path_parts = current_path.split('/')[1:]
+            # Initialize 'path_to_check' with the root element ('.').
+            path_to_check = '.'
+            # Iterate over 'path_parts'.
+            for part in path_parts:
+                # Find parent element corresponding to current 'path_to_check'.
+                parent_path = root_of_results_file.find(path_to_check)
+                # Update 'path_to_check' by appending the current part.
+                path_to_check += ('/' + part)
+                # Check, if updated 'path_to_check' does not exist in the XML structure.
+                if root_of_results_file.find(path_to_check) is None:
+                    # Check, if 'part' is in 'specific_output_dict'.
+                    if specific_output_dict[part] is not None:
+                        # Create sub-element.
+                        new_node = ET.SubElement(parent_path, part)
+                        # Add attributes (if necessary).
+                        if 'attributes' in specific_output_dict[part]:
+                            for key, value in specific_output_dict[part]['attributes'].items():
+                                new_node.set(key, value)
+                        # Add further sub-elements if defined.
+                        if 'parameters' in specific_output_dict[part]:
+                            current_path = root_of_results_file.find(path_to_check)
+                            for key, value in specific_output_dict[part]['parameters'].items():
+                                parameter_node = ET.SubElement(current_path, key)
+                                parameter_node.text = str(value)
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py
new file mode 100644
index 0000000000000000000000000000000000000000..7781cf02b5180b5f5743d31519d7a396067d8543
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py
@@ -0,0 +1,35 @@
+"""Module providing calculation functions provided by the user."""
+# Import standard modules.
+import sys
+
+# Import own modules.
+
+
+def method_kerosene(paths_and_names, routing_dict, dict_ac_exchange, dict_mod_config, runtime_output):
+    """Operating cost estimation method according to TU Berlin for kerosene-powered aircraft.
+
+    This function performs the operating cost estimation according to the TU Berlin method for kerosene-powered aircraft
+    configurations.
+    [Add more information here...]
+    The output dictionary 'kerosene_output_dict' contains the results of the cost estimation and is structured according
+    to the following scheme:
+        kerosene_output_dict = {'parameter_1': value,
+                                'parameter_2': value}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict dict_ac_exchange: Dict containing parameters and according values from aircraft exchange file
+    :param dict dict_mod_config: Dict containing parameters and according values from module configuration file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return dict kerosene_output_dict: Dictionary containing results from calculation for kerosene-powered aircraft
+    """
+
+    kerosene_output_dict = {'direct_operating_costs_annual_design_point': 30,
+                            'indirect_operating_costs': 40}
+
+    # Calculate costs.
+    runtime_output.print('----------------------------------------------------------')
+    runtime_output.print('[No method implemented yet ("methodkerosene.py").]   ')
+    runtime_output.print('----------------------------------------------------------')
+
+    return kerosene_output_dict
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py
new file mode 100644
index 0000000000000000000000000000000000000000..67d201723a75e81f92ef9ecbfa053ca3497baeed
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py
@@ -0,0 +1,211 @@
+"""Module providing functions for the preparation of user data."""
+
+
+def user_method_data_input_preparation(routing_dict):
+    """Prepare necessary input data for the user method from aircraft exchange and module configuration files.
+
+    In this function, the user is responsible for preparing the data needed for the user method. Relevant general data
+    are obtained from the aircraft exchange file and calculation specific parameter from the module configuration file.
+    The user must submit the data in the following format:
+        dict = {'parameter_name': [path to parameter node, expected data type], ...}
+
+    :param dict routing_dict: Dictionary containing information on necessary data from module configuration file
+    :returns:
+        - dict data_to_extract_from_aircraft_exchange_dict: Dictionary containing parameter name, path to parameter,
+        and expected data type of parameters to be extracted from aircraft exchange file
+        - dict data_to_extract_from_module_configuration_dict: Dictionary containing parameter name, path to parameter,
+        and expected data type of parameters to be extracted from module configuration file
+    """
+
+    """Aircraft exchange file."""
+    # Enter all parameters to be extracted from the aircraft exchange file.
+    path_to_adapt = './requirements_and_specifications/everything_the_DOC_heart_desires/'
+    data_to_extract_from_aircraft_exchange_dict = {
+        'altitude_cruise': [path_to_adapt + 'altitude_cruise', float],
+        'm_cargo_design': ['./analysis/mission/design_mission/cargo_mass', float],
+        'm_cargo_study': ['./analysis/mission/study_mission/cargo_mass', float],
+        'm_luggage': [path_to_adapt + '/m_luggage', float],
+        'm_operating_empty': ['./analysis/masses_cg_inertia/operating_mass_empty/mass_properties/mass', float],
+        'm_passenger': [path_to_adapt + '/m_passenger', float],
+        'm_payload_design': ['./analysis/mission/design_mission/payload', float],
+        'm_payload_max': ['./analysis/masses_cg_inertia/maximum_payload_mass/mass_properties/mass', float],
+        'm_payload_study': ['./analysis/mission/study_mission/payload', float],
+        'm_payload_at_max_fuel': ['./assessment/performance/range/payload_maximum_fuel_at_maximum_take_off_mass',
+                                  float],
+        'm_takeoff_design': ['./analysis/mission/design_mission/take_off_mass', float],
+        'm_takeoff_max': ['./analysis/masses_cg_inertia/maximum_takeoff_mass/mass_properties/mass', float],
+        'm_takeoff_study': [path_to_adapt + 'm_takeoff_study', float],
+        'mach_cruise': [path_to_adapt + 'mach_cruise', float],
+        'n_cabin_crew_members': [path_to_adapt + 'n_cabin_crew_members', float],
+        'n_cockpit_crew_members': [path_to_adapt + 'n_cockpit_crew_members', float],
+        'n_engines': [path_to_adapt + 'n_engines', float],
+        'n_passengers_per_class': [path_to_adapt + 'pax_per_class', str],
+        'range_at_max_fuel': ['./assessment/performance/range/range_max_fuel_at_maximum_take_off_mass', float],
+        'range_at_max_payload': ['./assessment/performance/range/range_max_payload_at_maximum_take_off_mass', float],
+        'range_ferry': ['./assessment/performance/range/range_maximum_fuel_empty', float],
+        'static_thrust_per_engine': [path_to_adapt + 'static_thrust_per_engine', float],
+        'stage_length_design': ['./analysis/mission/design_mission/range', float],
+        'stage_length_study': ['./analysis/mission/study_mission/range', float],
+        'seat_load_factor_design': [path_to_adapt + 'seat_load_factor_design', float],
+        'seat_load_factor_study': [path_to_adapt + 'seat_load_factor_design', float],
+        'flight_time_design': [path_to_adapt + 'flight_time_design', float],
+        'flight_time_study': [path_to_adapt + 'flight_time_study', float],
+        'flights_per_year_design': [path_to_adapt + 'flights_per_year_design', float],
+        'flights_per_year_study': [path_to_adapt + 'flights_per_year_study', float]
+    }
+
+    """Module configuration file."""
+    # Enter all general parameters to be extracted from the module configuration file. 'general parameters' means
+    # parameters that do not differ according to the user layer. It should be noted that 'tmp_general' is only used to
+    # shorten the path information in the 'general_data_to_extract_from_module_configuration_dict'.
+    tmp_general = ('./program_settings/configuration[@ID="tube_and_wing"]/fidelity[@ID="empirical"]/'
+                   + 'operating_cost_estimation_tu_berlin/general_direct_operating_costs_parameter')
+    general_data_to_extract_from_module_configuration_dict = {
+        'annual_lay_days_maintenance':
+            [tmp_general + '/maintenance/annual_lay_days_maintenance', float],
+        'annual_lay_days_overhaul':
+            [tmp_general + '/flight_cycles/annual_lay_days_overhaul', float],
+        'annual_lay_days_reserve':
+            [tmp_general + '/flight_cycles/annual_lay_days_reserve', float],
+        'air_traffic_control_price_factor_design':
+            [tmp_general + '/air_traffic_control/air_traffic_control_price_factor_design', float],
+        'air_traffic_control_price_factor_study':
+            [tmp_general + '/air_traffic_control/air_traffic_control_price_factor_study', float],
+        'airframe_repair_costs_per_flight':
+            [tmp_general + '/maintenance/airframe_repair_costs_per_flight', float],
+        'block_time_per_flight':
+            [tmp_general + '/flight_cycles/block_time_per_flight', float],
+        'cost_burden':
+            [tmp_general + '/maintenance/cost_burden', float],
+        'daily_night_curfew_time':
+            [tmp_general + '/flight_cycles/daily_night_curfew_time', float],
+        'depreciation_period':
+            [tmp_general + '/capital/depreciation_period', float],
+        'fees_handling':
+            [tmp_general + '/handling/fees_handling', float],
+        'fees_landing':
+            [tmp_general + '/landing/fees_landing', float],
+        'potential_annual_operation_time':
+            [tmp_general + '/flight_cycles/potential_annual_operation_time', float],
+        'price_per_operating_empty_mass':
+            [tmp_general + '/capital/price_per_operating_empty_mass', float],
+        'rate_inflation':
+            [tmp_general + '/miscellaneous/rate_inflation', float],
+        'rate_insurance':
+            [tmp_general + '/capital/rate_insurance', float],
+        'rate_interest':
+            [tmp_general + '/capital/rate_interest', float],
+        'rate_labor':
+            [tmp_general + '/maintenance/rate_labor', float],
+        'residual_value_factor':
+            [tmp_general + '/capital/residual_value_factor', float],
+        'revenue_per_freight_km_design':
+            [tmp_general + '/related_direct_operating_costs/revenue_per_freight_km_design', float],
+        'revenue_per_freight_km_study':
+            [tmp_general + '/related_direct_operating_costs/revenue_per_freight_km_study', float],
+        'salary_variation':
+            [tmp_general + '/crew/salary_variation', bool],
+        'seat_load_factor_design':
+            [tmp_general + '/miscellaneous/seat_load_factor_design', float],
+        'seat_load_factor_study':
+            [tmp_general + '/miscellaneous/seat_load_factor_study', float]
+    }
+
+    # Enter all specific parameters to be extracted from the module configuration file. 'specific parameters' means
+    # parameters that differ according to the user layer. It should be noted that 'tmp_specific' is only used to
+    # shorten the path information in the 'specific_data_to_extract_from_module_configuration_dict'.
+    tmp_specific = ('./program_settings/configuration[@ID="tube_and_wing"]/fidelity[@ID="empirical"]/'
+                    + 'operating_cost_estimation_tu_berlin')
+    specific_data_to_extract_from_module_configuration_dict = {
+        'fuel_price': [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/fuel_price', float],
+        'factor_engine_maintenance':
+            [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/factor_engine_maintenance', float],
+        'ratio_operating_empty_mass':
+            [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/ratio_operating_empty_mass', float]
+    }
+
+    # Merge module configuration dictionaries.
+    data_to_extract_from_module_configuration_dict = \
+        general_data_to_extract_from_module_configuration_dict | specific_data_to_extract_from_module_configuration_dict
+
+    return data_to_extract_from_aircraft_exchange_dict, data_to_extract_from_module_configuration_dict
+
+
+def user_method_data_output_preparation(data_dict):
+    """Prepare user-specific output data based on the calculation method results.
+
+    This function is responsible for preparing the user-specific output data based on the results of the calculation
+    method. The 'data_dict' input parameter contains the results of the module execution.
+    The data for the key parameters output must be specified in the following format in order to be written correctly
+    to the aircraft exchange file by the 'write_key_data_to_aircraft_exchange_file' function in the following step:
+        dict = {'parameter_name': [path to parameter node, value, name (if needed)], ...}
+    Important notes:
+        (1) It should be noted that only key parameters may be written that have been previously defined by the module
+        manager.
+        (2) Attention must be paid to the proper path specifications, otherwise warnings may be issued or, in the worst
+        case, errors may occur subsequently resulting in the write process and consequently the entire program being
+        aborted.
+        (3) If the path specifications contain IDs, these must start at '0' and be defined in ascending order without
+        gaps.
+    For the method-specific output, a path list and a dictionary is necessary to properly write the data to the
+    method-specific XML file.
+    the dictionary must be specified in the following format:
+        dict = ...
+    Note: If the user wants to export data from the design and study mission, two path lists and dictionaries are
+    necessary.
+
+    :param dict data_dict: Dictionary containing the results of the module execution
+    :returns:
+        - dict key_output_dict: Output dictionary containing key parameters that are written to aircraft XML file
+        - dict method_specific_output_dict: Dictionary containing specific parameters that are written to
+        method-specific output XML
+    """
+
+    """Key parameters output."""
+    doc_path = './assessment/operating_cost_estimation_tu_berlin/direct_operating_costs/'
+    ioc_path = './assessment/operating_cost_estimation_tu_berlin/indirect_operating_costs/'
+
+    key_output_dict = {
+        # Direct operating costs shares.
+        'direct_operating_costs_annual':
+            [doc_path + 'direct_operating_costs_annual',
+             data_dict['direct_operating_costs_annual_design_point']],
+        # Indirect operating costs shares.
+        'indirect_operating_costs_annual':
+            [ioc_path + 'indirect_operating_costs_annual',
+             data_dict['indirect_operating_costs']]
+    }
+
+    """Method-specific output."""
+    # Define specific output paths and dict for design mission.
+    tmp_path = './calculation_results/operating_cost_estimation_tu_berlin/design_mission/'
+
+    paths_to_specific_design_outputs_list = [
+        tmp_path + 'direct_operating_costs/direct_operating_costs_per_year',
+        tmp_path + 'indirect_operating_costs'
+    ]
+
+    method_specific_output_dict = {
+        'operating_cost_estimation_tu_berlin': {},
+        'design_mission': {
+            'attributes': {'description': 'Cost estimation results of the design mission'}},
+        'direct_operating_costs': {
+            'attributes': {'description': 'Direct operating costs'}},
+        # Direct operating costs.
+        'direct_operating_costs_per_year': {
+            'attributes': {'description': 'Direct operating costs per year at design point (sum of route dependent and '
+                                          'route independent costs)'},
+            'parameters': {
+                'value': data_dict['direct_operating_costs_annual_design_point'],
+                'unit': 'EUR'}},
+        # Indirect operating costs.
+        'indirect_operating_costs': {
+            'attributes': {'description': 'Indirect operating costs'},
+            'parameters': {
+                'value': data_dict['indirect_operating_costs'],
+                'unit': 'EUR'}},
+        # List
+        'list_of_paths': paths_to_specific_design_outputs_list
+    }
+
+    return key_output_dict, method_specific_output_dict
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/version.txt b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/version.txt
new file mode 100644
index 0000000000000000000000000000000000000000..50aea0e7aba1ab64fce04e96fb64bf9599a1c2a5
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/version.txt
@@ -0,0 +1 @@
+2.1.0
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/CSR-02.xml b/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/CSR-02.xml
new file mode 100644
index 0000000000000000000000000000000000000000..2582b9d7e14739a34111dd1a9e022bcd4e2af2b5
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/CSR-02.xml
@@ -0,0 +1,4832 @@
+<aircraft_exchange_file>
+    <requirements_and_specifications description="Requirements and specifications">
+        <general description="General information on requirements and specifications">
+            <type description="Aircraft type">
+                <value>CeRAS</value>
+            </type>
+            <model description="Model - Version">
+                <value>CSR-02</value>
+            </model>
+        </general>
+        <design_specification description="Design specification">
+            <configuration description="Configuration information">
+                <configuration_type description="aircraft configuration: tube_and_wing / blended_wing_body">
+                    <value>tube_and_wing</value>
+                </configuration_type>
+                <undercarriage_definition description="Design description of the undercarriage.">
+                    <main_gear_mounting description="Mounting position of the main landing gear: wing_mounted / fuselage_mounted.">
+                        <value>wing_mounted</value>
+                    </main_gear_mounting>
+                </undercarriage_definition>
+            </configuration>
+            <propulsion description="Propulsion information">
+                <propulsor ID="0" description="Specific propulsor information">
+                    <mounting_position description="positions: under_wing_left / under_wing_right / over_wing_left / over_wing_right / on_fuselage_left / on_fuselage_right / in_fuselage_rear">
+                        <value>under_wing_left</value>
+                    </mounting_position>
+                    <energy_carrier description="Energy type: kerosene / liquid_hydrogen / battery / saf / hybrid (e.g, kerosene+liquid_hydrogen)">
+                        <value>kerosene</value>
+                    </energy_carrier>
+                    <degree_of_hybridization description="">
+                        <value>0.5</value>
+                    </degree_of_hybridization>
+                </propulsor>
+                <propulsor ID="1" description="Specific propulsor information">
+                    <mounting_position description="positions: under_wing_left / under_wing_right / over_wing_left / over_wing_right / on_fuselage_left / on_fuselage_right / in_fuselage_rear">
+                        <value>under_wing_left</value>
+                    </mounting_position>
+                    <energy_carrier description="Energy type: kerosene / liquid_hydrogen / battery / saf / hybrid (e.g, kerosene+liquid_hydrogen)">
+                        <value>kerosene</value>
+                    </energy_carrier>
+                    <degree_of_hybridization description="">
+                        <value>0.5</value>
+                    </degree_of_hybridization>
+                </propulsor>
+            </propulsion>
+        </design_specification>
+        <requirements description="Aircraft design requirements">
+            <top_level_aircraft_requirements description="Top level aircraft requirements (TLAR)">
+                <maximum_approach_speed description="Maximum allowed approach speed.">
+                    <value>71</value>
+                    <unit>m/s</unit>
+                    <lower_boundary>50</lower_boundary>
+                    <upper_boundary>90</upper_boundary>
+                </maximum_approach_speed>
+                <pavement_classification_number description="Runway pavment classification number (PCN) - limits the maximum allowed aircraft classification number of undercarriage.">
+                    <value>55</value>
+                    <unit>1</unit>
+                    <lower_boundary>5</lower_boundary>
+                    <upper_boundary>120</upper_boundary>
+                </pavement_classification_number>
+            </top_level_aircraft_requirements>
+            <additional_requirements description="Additional requirements">
+            </additional_requirements>
+        </requirements>
+        <everything_the_DOC_heart_desires>
+            <altitude_cruise>
+                <value>10058.4</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>m</unit>
+            </altitude_cruise>
+            <m_passenger>
+                <value>75</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </m_passenger>
+            <m_luggage>
+                <value>15.72</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </m_luggage>
+            <n_cabin_crew_members>
+                <value>4</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </n_cabin_crew_members>
+            <n_cockpit_crew_members>
+                <value>2</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </n_cockpit_crew_members>
+            <n_engines>
+                <value>2</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </n_engines>
+            <pax_per_class>
+                <value>0/0/0/12/138</value>
+                <unit>1</unit>
+            </pax_per_class>
+            <static_thrust_per_engine>
+                <value>128.855268</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </static_thrust_per_engine>
+            <m_takeoff_study>
+                <value>62560.48325</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </m_takeoff_study>
+            <mach_cruise>
+                <value>0.82</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </mach_cruise>
+            <seat_load_factor_design>
+                <value>1.0</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </seat_load_factor_design>
+            <seat_load_factor_study>
+                <value>0.8</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </seat_load_factor_study>
+            <flights_per_year_design>
+                <value>1289</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flights_per_year_design>
+            <flights_per_year_study>
+                <value>2508</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flights_per_year_study>
+            <flight_time_design>
+                <value>2.83</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flight_time_design>
+            <flight_time_study>
+                <value>0.57</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flight_time_study>
+        </everything_the_DOC_heart_desires>
+    </requirements_and_specifications>
+    <sizing_point>
+        <wing_loading description="Maximum takeoff mass (MTOM) divided by wing area (Sref)" tool_evel="1">
+            <value>0</value>
+            <unit>"kg/m^2"</unit>
+        </wing_loading>
+        <thrust_to_weight description="Total thrust (kN) divided by maximum aircraft weight (kN)" tool_evel="1">
+            <value>0</value>
+            <lower_boundary>0.0</lower_boundary>
+            <upper_boundary>1.0</upper_boundary>
+            <unit>"1"</unit>
+        </thrust_to_weight>
+        <MTOM description="Maximum takeoff mass" tool_evel="1">
+            <value>0</value>
+            <unit>"kg"</unit>
+        </MTOM>
+        <OME description="Operating mass empty" tool_evel="1">
+            <value>0</value>
+            <unit>"kg"</unit>
+        </OME>
+    </sizing_point>
+    <component_design>
+        <mission_files description="Path and name of xml files containing the flight phase data" tool_level="0">
+            <design_mission_file description="Path and name of the design mission xml">
+                <value>0</value>
+            </design_mission_file>
+            <study_mission_file description="Path and name of the study mission xml">
+                <value>0</value>
+            </study_mission_file>
+        </mission_files>
+        <global_reference_point>
+            <reference_component description="">
+                <value />
+            </reference_component>
+            <x_position description="">
+                <value />
+                <unit />
+            </x_position>
+            <y_position description="">
+                <value />
+                <unit />
+            </y_position>
+            <z_position description="">
+                <value />
+                <unit />
+            </z_position>
+        </global_reference_point>
+        <wing description="wing component" tool_level="0">
+            <position description="position of wing (most forward position of part composition at y = 0)">
+                <x description="x position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </x>
+                <y description="y position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </y>
+                <z description="z position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </z>
+            </position>
+            <mass_properties description="mass_properties of component wing">
+                <mass description="component mass">
+                    <value>0.0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="component inertia refered to center of gravity">
+                    <j_xx description="inertia component in x">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="inertia component in y">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="inertia component in z">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="inertia component in xy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="inertia component in xz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="inertia component in yx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="inertia component in yz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="inertia component in zx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="inertia component in zy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                    <x description="x component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </x>
+                    <y description="y component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </y>
+                    <z description="z component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </z>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <geometry>
+                    <aerodynamic_surface description="aerodynamic surface" ID="0">
+                        <name description="name of aerodynamic surface">
+                            <value>main_wing</value>
+                        </name>
+                        <position description="reference position in global coordinates">
+                            <x description="x position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </x>
+                            <y description="y position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </y>
+                            <z description="z position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </z>
+                        </position>
+                        <parameters description="aerodynamic surface parameters">
+                            <direction description="unit vector according to global coordinate system for direction applied at position">
+                                <x description="x direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </x>
+                                <y description="y direction of unit vector">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </y>
+                                <z description="z direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </z>
+                            </direction>
+                            <symmetric description="symmetric to x-z plane (global) aerodynamic surface">
+                                <value>true</value>
+                            </symmetric>
+                            <sections description="sections">
+                                <section description="section" ID="0">
+                                    <chord_origin description="origin of chord (local)">
+                                        <x description="x position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x>
+                                        <y description="y position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y>
+                                        <z description="z position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z>
+                                    </chord_origin>
+                                    <chord_length description="length of chord">
+                                        <value>0.0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-inf</lower_boundary>
+                                        <upper_boundary>inf</upper_boundary>
+                                    </chord_length>
+                                    <geometric_twist description="geometric twist at leading edge">
+                                        <value>0.0</value>
+                                        <unit>rad</unit>
+                                        <lower_boundary>-</lower_boundary>
+                                        <upper_boundary />
+                                    </geometric_twist>
+                                    <profile description="profile (data normalized on chord)">
+                                        <name>
+                                            <value>naca0012</value>
+                                        </name>
+                                    </profile>
+                                </section>
+                            </sections>
+                            <spars description="spars">
+                                <spar description="front spar" ID="0">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                                <spar description="rear spar" ID="1">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                            </spars>
+                            <control_devices description="control devices">
+                                <control_device description="control device" ID="0">
+                                    <type>
+                                        <value>aileron</value>
+                                    </type>
+                                    <deflection description="maximum positive and negative deflection of control device">
+                                        <full_negative_deflection description="full negative deflection">
+                                            <value>-25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_negative_deflection>
+                                        <full_positive_deflection description="full positive deflection">
+                                            <value>25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_positive_deflection>
+                                    </deflection>
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </control_device>
+                            </control_devices>
+                        </parameters>
+                        <mass_properties description="mass_properties of aerodynamic surface">
+                            <mass description="component mass">
+                                <value>0.0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </mass>
+                            <inertia description="component inertia refered to center of gravity">
+                                <j_xx description="inertia component in x">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="inertia component in y">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="inertia component in z">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="inertia component in xy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="inertia component in xz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="inertia component in yx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="inertia component in yz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="inertia component in zx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="inertia component in zy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                                <x description="x component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </x>
+                                <y description="y component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </y>
+                                <z description="z component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </z>
+                            </center_of_gravity>
+                        </mass_properties>
+                    </aerodynamic_surface>
+                </geometry>
+            </specific>
+        </wing>
+        <fuselage description="Geometric description of the aircraft fuselages" tool_level="0">
+            <position description="Position of the fuselages with regard to the global reference point.">
+                <x_position description="Distance in x direction with regard to the global reference point. (fuselage nose point)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-10</lower_boundary>
+                    <upper_boundary>10</upper_boundary>
+                </x_position>
+                <y_position description="Distance in y direction with regard to the global reference point. (fuselage nose point)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>0</upper_boundary>
+                </y_position>
+                <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-5</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </z_position>
+            </position>
+            <mass_properties description="Mass properties of the fuselages.">
+                <mass description="Mass of the total fuselages.">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="Inertia of the total fuselages with regard to the total center of gravity.">
+                    <j_xx description="Inertia of the total fuselages in x.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="Inertia of the total fuselages in y.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="Inertia of the total fuselages in z.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="Inertia of the total fuselages in xy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="Inertia of the total fuselages in xz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="Inertia of the total fuselages in yx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="Inertia of the total fuselages in yz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="Inertia of the total fuselages in zx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="Inertia of the total fuselages in zy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="Center of gravity of the total fuselages.">
+                    <x_position description="Center of gravity in x-direction with regard to the global reference point. (total fuselage)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>50</upper_boundary>
+                    </x_position>
+                    <y_position description="Center of gravity in y-direction with regard to the global reference point. (total fuselage)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-5</lower_boundary>
+                        <upper_boundary>5</upper_boundary>
+                    </y_position>
+                    <z_position description="Center of gravity in z-direction with regard to the global reference point. (total fuselage)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-5</lower_boundary>
+                        <upper_boundary>5</upper_boundary>
+                    </z_position>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <geometry>
+                    <geometry_file_name>
+                        <value>geometryData/fuselage.dat</value>
+                    </geometry_file_name>
+                    <fuselage ID="0" description="Geometrical description of one entire fuselage.">
+                        <name description="Name of the fuselage.">
+                            <value>center_fuselage</value>
+                        </name>
+                        <position description="Position of one entire fuselage with regard to the global reference point.">
+                            <x_position description="Distance in x direction with regard to the global reference point. (fuselage nose point)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-10</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </x_position>
+                            <y_position description="Distance in y direction with regard to the global reference point. (fuselage nose point)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-25</lower_boundary>
+                                <upper_boundary>25</upper_boundary>
+                            </y_position>
+                            <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-5</lower_boundary>
+                                <upper_boundary>5</upper_boundary>
+                            </z_position>
+                        </position>
+                        <mass_properties description="Mass properties of one entire fuselage.">
+                            <mass description="Mass of one entire fuslege.">
+                                <value>0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>100000</upper_boundary>
+                            </mass>
+                            <inertia description="Inertia of one entire fuselage with regard to his center of gravity.">
+                                <j_xx description="Inertia of one entire fuselage in x.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="Inertia of one entire fuselage in y.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="Inertia of one entire fuselage in z.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="Inertia of one entire fuselage in xy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="Inertia of one entire fuselage in xz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="Inertia of one entire fuselage in yx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="Inertia of one entire fuselage in yz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="Inertia of one entire fuselage in zx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="Inertia of one entire fuselage in zy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="Center of gravity of one entire fuselage.">
+                                <x_position description="Center of gravity in x-direction with regard to the global reference point. (entire fuselage)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>50</upper_boundary>
+                                </x_position>
+                                <y_position description="Center of gravity in y-direction with regard to the global reference point. (entire fuselage)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-25</lower_boundary>
+                                    <upper_boundary>25</upper_boundary>
+                                </y_position>
+                                <z_position description="Center of gravity in z-direction with regard to the global reference point. (entire fuselage)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-5</lower_boundary>
+                                    <upper_boundary>5</upper_boundary>
+                                </z_position>
+                            </center_of_gravity>
+                        </mass_properties>
+                        <fuselage_sections description="Geometrical description of the fuselage sections of one entire fuselage">
+                            <section ID="0" description="Geometrical description of one fuselage section.">
+                                <name description="Name of the fuselage section.">
+                                    <value>section_1</value>
+                                </name>
+                                <origin description="Origin of fuselage section (local).">
+                                    <x_position description="Distance in x direction with regard to the global reference point.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-10</lower_boundary>
+                                        <upper_boundary>75</upper_boundary>
+                                    </x_position>
+                                    <y_position description="Distance in y direction with regard to the global reference point.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-25</lower_boundary>
+                                        <upper_boundary>25</upper_boundary>
+                                    </y_position>
+                                    <z_position description="Distance in z direction with regard to the global reference point.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-5</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </z_position>
+                                </origin>
+                                <upper_hight description="Height of the upper half of the fuselage section.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </upper_hight>
+                                <lower_hight description="Height of the lower half of the fuselage section.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </lower_hight>
+                                <width description="Width of the fuselage section.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </width>
+                                <chord_length description="Maximum length of the fuselage section for bwb configuration.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>70</upper_boundary>
+                                </chord_length>
+                            </section>
+                        </fuselage_sections>
+                        <fuselage_accommodation>
+                            <position description="Position of the payload tubes with regard to the global reference point.">
+                                <x_position description="Distance in x direction with regard to the global reference point. (center payload tube starting point)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-10</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </x_position>
+                                <y_position description="Distance in y direction with regard to the global reference point. (center payload tube starting point)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </y_position>
+                                <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-5</lower_boundary>
+                                    <upper_boundary>5</upper_boundary>
+                                </z_position>
+                            </position>
+                            <mass_properties description="Mass properties of the payload tubes of one entire fuselage.">
+                                <mass description="Mass of the payload tubes of one entire fuslege.">
+                                    <value>0</value>
+                                    <unit>kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>100000</upper_boundary>
+                                </mass>
+                                <center_of_gravity description="Center of gravity of the payload tubes of one entire fuselage.">
+                                    <x_position description="Center of gravity in x-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>50</upper_boundary>
+                                    </x_position>
+                                    <y_position description="Center of gravity in y-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-5</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </y_position>
+                                    <z_position description="Center of gravity in z-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-5</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </z_position>
+                                </center_of_gravity>
+                            </mass_properties>
+                            <number_of_payload_tubes description="Number of payload tubes of one entire fuselage.">
+                                <value>1</value>
+                                <unit>1</unit>
+                                <lower_boundary>1</lower_boundary>
+                                <upper_boundary>7</upper_boundary>
+                            </number_of_payload_tubes>
+                            <payload_tube ID="0" description="Geometrical description of one payload tube of the fuselage.">
+                                <name description="Name of the payload tube.">
+                                    <value>center_payload_tube</value>
+                                </name>
+                                <payload_tube_reference_points description="Payload tube center reference points in x, y and z-direction refered to fuselage nose point.">
+                                    <front_reference_points Desc="Reference points in the front of payload tube.">
+                                        <x_position Desc="Payload tube reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <y_position Desc="Payload tube reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y_position>
+                                        <z_position Desc="Payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                        <upper_z_position Desc="Upper payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </upper_z_position>
+                                        <lower_z_position Desc="Lower payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </lower_z_position>
+                                    </front_reference_points>
+                                    <aft_reference_points Desc="Reference points in the aft of payload tube.">
+                                        <x_position Desc="Payload tube reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <y_position Desc="Payload tube reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y_position>
+                                        <z_position Desc="Payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                        <upper_z_position Desc="Upper payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </upper_z_position>
+                                        <lower_z_position Desc="Lower payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </lower_z_position>
+                                    </aft_reference_points>
+                                </payload_tube_reference_points>
+                                <payload_tube_wall_reference_points description="Payload tube wall reference points in x, y and z-direction refered to fuselage nose point.">
+                                    <front_reference_points Desc="Wall reference points in the front of payload tube.">
+                                        <x_position Desc="Wall reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <left_y_position Desc="Left wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </left_y_position>
+                                        <right_y_position Desc="Right wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </right_y_position>
+                                        <z_position Desc="Wall reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                    </front_reference_points>
+                                    <aft_reference_points Desc="Wall reference points in the aft of payload tube.">
+                                        <x_position Desc="Wall reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <left_y_position Desc="Left wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </left_y_position>
+                                        <right_y_position Desc="Right wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </right_y_position>
+                                        <z_position Desc="Wall reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                    </aft_reference_points>
+                                </payload_tube_wall_reference_points>
+                                <payload_tube_structural_wall_thickness description="Structural wall thickness of the paylaod tube.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </payload_tube_structural_wall_thickness>
+                                <payload_tube_water_volume description="Total water volume of one entire paylaod tube.">
+                                    <value>0</value>
+                                    <unit>m^3</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>infr</upper_boundary>
+                                </payload_tube_water_volume>
+                                <number_of_payload_decks description="Number of payload decks of one entire fuselage.">
+                                    <value>1</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>1</lower_boundary>
+                                    <upper_boundary>3</upper_boundary>
+                                </number_of_payload_decks>
+                                <payload_deck ID="0" description="Geometrical description of the payload decks in one payload tube.">
+                                    <name description="Name of the payload deck.">
+                                        <value>passenger_deck</value>
+                                    </name>
+                                    <position description="Position of the payload deck with regard to the global reference point.">
+                                        <x_position description="Distance in x direction with regard to the global reference point. (payload deck starting point)">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>10</upper_boundary>
+                                        </x_position>
+                                        <y_position description="Distance in y direction with regard to the global reference point. (payload deck starting point)">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>0</upper_boundary>
+                                        </y_position>
+                                        <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-5</lower_boundary>
+                                            <upper_boundary>5</upper_boundary>
+                                        </z_position>
+                                    </position>
+                                    <mass_properties description="Mass properties of the payload deck of one entire payload tube.">
+                                        <mass description="Mass of the payload deck of one entire paylaod tube.">
+                                            <value>0</value>
+                                            <unit>kg</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>100000</upper_boundary>
+                                        </mass>
+                                        <center_of_gravity description="Center of gravity of the payload tubes of one entire fuselage.">
+                                            <x_position description="Center of gravity in x-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>50</upper_boundary>
+                                            </x_position>
+                                            <y_position description="Center of gravity in y-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-5</lower_boundary>
+                                                <upper_boundary>5</upper_boundary>
+                                            </y_position>
+                                            <z_position description="Center of gravity in z-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-5</lower_boundary>
+                                                <upper_boundary>5</upper_boundary>
+                                            </z_position>
+                                        </center_of_gravity>
+                                    </mass_properties>
+                                    <payload_deck_area description="Total floor area of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m^2</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>1000</upper_boundary>
+                                    </payload_deck_area>
+                                    <payload_deck_water_volume description="Total water volume of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m^3</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>1000</upper_boundary>
+                                    </payload_deck_water_volume>
+                                    <payload_deck_length description="Total length of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>100</upper_boundary>
+                                    </payload_deck_length>
+                                    <payload_deck_height description="Maximum standing height of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>3</upper_boundary>
+                                    </payload_deck_height>
+                                    <payload_deck_top_width description="Width on the top of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>10</upper_boundary>
+                                    </payload_deck_top_width>
+                                    <payload_deck_bottom_width description="Width on the bottom of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>10</upper_boundary>
+                                    </payload_deck_bottom_width>
+                                    <payload_deck_required_power description="Required power of the payload deck.">
+                                        <value>0</value>
+                                        <unit>W</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>inf</upper_boundary>
+                                    </payload_deck_required_power>
+                                    <number_of_payload_deck_compartments description="Number of paylaod compartments of the payload deck.">
+                                        <value>1</value>
+                                        <unit>1</unit>
+                                        <lower_boundary>1</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </number_of_payload_deck_compartments>
+                                    <payload_compartment ID="0" description="Geometrical description of the payload compartment of one payload deck.">
+                                        <name description="Name of the payload compartment of the payload deck.">
+                                            <value>front_compartment</value>
+                                        </name>
+                                        <position description="Position of the payload compartment with regard to the global reference point.">
+                                            <x_position description="Distance in x direction with regard to the global reference point. (payload compartment starting point)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-10</lower_boundary>
+                                                <upper_boundary>100</upper_boundary>
+                                            </x_position>
+                                            <y_position description="Distance in y direction with regard to the global reference point. (payload compartment starting point)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-25</lower_boundary>
+                                                <upper_boundary>25</upper_boundary>
+                                            </y_position>
+                                            <z_position description="Distance in z direction with regard to the global reference point. (distance compartment fuselage center line)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-5</lower_boundary>
+                                                <upper_boundary>5</upper_boundary>
+                                            </z_position>
+                                        </position>
+                                        <payload_compartment_area description="Total floor area of the payload compartment.">
+                                            <value>0</value>
+                                            <unit>m^2</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>1000</upper_boundary>
+                                        </payload_compartment_area>
+                                        <payload_compartment_water_volume description="Total water volume of the paylaod compartment.">
+                                            <value>0</value>
+                                            <unit>m^3</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>1000</upper_boundary>
+                                        </payload_compartment_water_volume>
+                                        <payload_compartment_length description="Total length of the paylaod compartment.">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>100</upper_boundary>
+                                        </payload_compartment_length>
+                                    </payload_compartment>
+                                </payload_deck>
+                            </payload_tube>
+                        </fuselage_accommodation>
+                    </fuselage>
+                </geometry>
+            </specific>
+        </fuselage>
+        <tank description="Description of aircraft tanks." tool_level="0">
+            <position description="Position of the tanks with regard to the global reference point.">
+                <x_position description="Distance between the foremost tank end and the global reference point in x-direction.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>80</upper_boundary>
+                </x_position>
+                <y_position description="Distance between the foremost tank end and the global reference point in y-direction.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-40</lower_boundary>
+                    <upper_boundary>40</upper_boundary>
+                </y_position>
+                <z_position description="Distance between the foremost tank end and the global reference point in z-direction.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-5</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </z_position>
+            </position>
+            <mass_properties description="Mass properties of all tanks.">
+                <mass description="Total tank mass.">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>100000</upper_boundary>
+                </mass>
+                <inertia description="Inertia of all tanks with regard to the total center of gravity.">
+                    <j_xx description="Inertia of all tanks in x.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="Inertia of all tanks in y.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="Inertia of all tanks in z.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="Inertia of all tanks in xy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="Inertia of all tanks in xz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="Inertia of all tanks in yx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="Inertia of all tanks in yz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="Inertia of all tanks in zx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="Inertia of all tanks in zy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="Center of gravity of all tanks.">
+                    <x_position description="Center of gravity in x-direction with regard to the global reference point.">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>80</upper_boundary>
+                    </x_position>
+                    <y_position description="Center of gravity in y-direction with regard to the global reference point.">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-40</lower_boundary>
+                        <upper_boundary>40</upper_boundary>
+                    </y_position>
+                    <z_position description="Center of gravity in z-direction with regard to the global reference point.">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-5</lower_boundary>
+                        <upper_boundary>5</upper_boundary>
+                    </z_position>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <tank ID="0" description="Description of one tank.">
+                    <name description="Designator of the tank (right/left hand inner/outer wing tank, centre tank, trim tank, cylindrical/conical tail cone tank, ...).">
+                        <value>right hand inner wing tank</value>
+                    </name>
+                    <position description="Position of one tank with regard to the global reference point.">
+                        <x_position description="Distance between the foremost tank end of one tank and the global reference point in x-direction.">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>80</upper_boundary>
+                        </x_position>
+                        <y_position description="Distance between the foremost tank end of one tank and the global reference point in y-direction.">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-40</lower_boundary>
+                            <upper_boundary>40</upper_boundary>
+                        </y_position>
+                        <z_position description="Distance between the foremost tank end of one tank and the global reference point in z-direction.">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-5</lower_boundary>
+                            <upper_boundary>5</upper_boundary>
+                        </z_position>
+                    </position>
+                    <mass_properties description="Mass properties of one tank.">
+                        <mass description="Total dry mass of one tank.">
+                            <value>0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>100000</upper_boundary>
+                        </mass>
+                        <inertia description="Inertia of one tank with regard to its center of gravity.">
+                            <j_xx description="Inertia of one tank in x.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_xx>
+                            <j_yy description="Inertia of one tank in y.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_yy>
+                            <j_zz description="Inertia of one tank in z.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_zz>
+                            <j_xy description="Inertia of one tank in xy.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_xy>
+                            <j_xz description="Inertia of one tank in xz.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_xz>
+                            <j_yx description="Inertia of one tank in yx.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_yx>
+                            <j_yz description="Inertia of one tank in yz.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_yz>
+                            <j_zx description="Inertia of one tank in zx.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_zx>
+                            <j_zy description="Inertia of one tank in zy.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_zy>
+                        </inertia>
+                        <center_of_gravity description="Center of gravity of one tank.">
+                            <x_position description="Center of gravity in x-direction with regard to the global reference point.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>80</upper_boundary>
+                            </x_position>
+                            <y_position description="Center of gravity in y-direction with regard to the global reference point.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-40</lower_boundary>
+                                <upper_boundary>40</upper_boundary>
+                            </y_position>
+                            <z_position description="Center of gravity in z-direction with regard to the global reference point.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-5</lower_boundary>
+                                <upper_boundary>5</upper_boundary>
+                            </z_position>
+                        </center_of_gravity>
+                    </mass_properties>
+                    <volume description="Total usable volume of one tank.">
+                        <value>0</value>
+                        <unit>l</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>100000</upper_boundary>
+                    </volume>
+                    <geometry description="Geometrical description of one tank.">
+                        <cross_section ID="0" description="Geometrical description of one tank cross section.">
+                            <name description="Designator of tank cross section.">
+                                <value>first cross section</value>
+                            </name>
+                            <position description="Position of tank cross section with regard to the global reference point.">
+                                <x_position description="Distance between the tank cross section and the global reference point in x-direction.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>80</upper_boundary>
+                                </x_position>
+                                <y_position description="Distance between the tank cross section and the global reference point in y-direction.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-40</lower_boundary>
+                                    <upper_boundary>40</upper_boundary>
+                                </y_position>
+                                <z_position description="Distance between the tank cross section and the global reference point in z-direction.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-5</lower_boundary>
+                                    <upper_boundary>5</upper_boundary>
+                                </z_position>
+                            </position>
+                            <shape description="Description of the shape of the cross section (circular, rectangular, elliptical).">
+                                <value>rectangular</value>
+                            </shape>
+                            <height description="Height of the cross section.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </height>
+                            <width description="Width of the cross section.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </width>
+                            <length description="Length of the cross section (if length &gt; 0: curved cross section, e.g., dashed tank endcap).">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </length>
+                        </cross_section>
+                    </geometry>
+                </tank>
+            </specific>
+        </tank>
+        <empennage description="empennage component" tool_level="0">
+            <position description="position of empennage (most forward position of part composition)">
+                <x description="x position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </x>
+                <y description="y position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </y>
+                <z description="z position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </z>
+            </position>
+            <mass_properties description="mass_properties of component empennage">
+                <mass description="component mass">
+                    <value>0.0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="component inertia refered to center of gravity">
+                    <j_xx description="inertia component in x">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="inertia component in y">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="inertia component in z">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="inertia component in xy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="inertia component in xz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="inertia component in yx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="inertia component in yz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="inertia component in zx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="inertia component in zy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                    <x description="x component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </x>
+                    <y description="y component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </y>
+                    <z description="z component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </z>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <geometry>
+                    <aerodynamic_surface description="aerodynamic surface" ID="0">
+                        <name description="name of aerodynamic surface">
+                            <value>fin</value>
+                        </name>
+                        <position description="reference position in global coordinates">
+                            <x description="x position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </x>
+                            <y description="y position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </y>
+                            <z description="z position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </z>
+                        </position>
+                        <parameters description="aerodynamic surface parameters">
+                            <direction description="unit vector according to global coordinate system for direction applied at position">
+                                <x description="x direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </x>
+                                <y description="y direction of unit vector">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </y>
+                                <z description="z direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </z>
+                            </direction>
+                            <symmetric description="symmetric to x-z plane (global) aerodynamic surface">
+                                <value>true</value>
+                            </symmetric>
+                            <sections description="sections">
+                                <section description="section" ID="0">
+                                    <chord_origin description="origin of chord (local)">
+                                        <x description="x position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x>
+                                        <y description="y position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y>
+                                        <z description="z position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z>
+                                    </chord_origin>
+                                    <chord_length description="length of chord">
+                                        <value>0.0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-inf</lower_boundary>
+                                        <upper_boundary>inf</upper_boundary>
+                                    </chord_length>
+                                    <geometric_twist description="geometric twist at leading edge">
+                                        <value>0.0</value>
+                                        <unit>rad</unit>
+                                        <lower_boundary>-</lower_boundary>
+                                        <upper_boundary />
+                                    </geometric_twist>
+                                    <profile description="profile (data normalized on chord)">
+                                        <name>
+                                            <value>naca0012</value>
+                                        </name>
+                                    </profile>
+                                </section>
+                            </sections>
+                            <spars description="spars">
+                                <spar description="front spar" ID="0">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                                <spar description="rear spar" ID="1">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                            </spars>
+                            <control_devices description="control devices">
+                                <control_device description="control device" ID="0">
+                                    <type>
+                                        <value>aileron</value>
+                                    </type>
+                                    <deflection description="maximum positive and negative deflection of control device">
+                                        <full_negative_deflection description="full negative deflection">
+                                            <value>-25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_negative_deflection>
+                                        <full_positive_deflection description="full positive deflection">
+                                            <value>25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_positive_deflection>
+                                    </deflection>
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </control_device>
+                            </control_devices>
+                        </parameters>
+                        <mass_properties description="mass_properties of aerodynamic surface">
+                            <mass description="component mass">
+                                <value>0.0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </mass>
+                            <inertia description="component inertia refered to center of gravity">
+                                <j_xx description="inertia component in x">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="inertia component in y">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="inertia component in z">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="inertia component in xy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="inertia component in xz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="inertia component in yx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="inertia component in yz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="inertia component in zx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="inertia component in zy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                                <x description="x component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </x>
+                                <y description="y component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </y>
+                                <z description="z component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </z>
+                            </center_of_gravity>
+                        </mass_properties>
+                    </aerodynamic_surface>
+                </geometry>
+            </specific>
+        </empennage>
+        <landing_gear description="Geometric description of the aircraft undercarriage." tool_level="0">
+            <position description="Position of the total undercarriage arrangment with regard to the global reference point.">
+                <x_position description="Distance in x direction with regard to the global reference point. (total undercarriage arrangment)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>50</upper_boundary>
+                </x_position>
+                <y_position description="Distance in y direction with regard to the global reference point. (total undercarriage arrangment)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>0</upper_boundary>
+                </y_position>
+                <z_position description="Distance in z direction with regard to the global reference point. (total undercarriage arrangment)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-10</lower_boundary>
+                    <upper_boundary>0</upper_boundary>
+                </z_position>
+            </position>
+            <mass_properties description="Mass properties of the total undercarriage arrangment.">
+                <mass description="Mass of the total undercarriage arrangment.">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="Inertia of the total undercarriage arrangment with regard to the total center of gravity.">
+                    <j_xx description="Inertia of the total undercarriage arrangment in x.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="Inertia of the total undercarriage arrangment in y.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="Inertia of the total undercarriage arrangment in z.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="Inertia of the total undercarriage arrangment in xy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="Inertia of the total undercarriage arrangment in xz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="Inertia of the total undercarriage arrangment in yx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="Inertia of the total undercarriage arrangment in yz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="Inertia of the total undercarriage arrangment in zx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="Inertia of the total undercarriage arrangment in zy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="Center of gravity of the total undercarriage arrangment.">
+                    <x_position description="Center of gravity in x-direction with regard to the global reference point. (total undercarriage arrangment)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>50</upper_boundary>
+                    </x_position>
+                    <y_position description="Center of gravity in y-direction with regard to the global reference point. (total undercarriage arrangment)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>0</upper_boundary>
+                    </y_position>
+                    <z_position description="Center of gravity in z-direction with regard to the global reference point. (total undercarriage arrangment)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-10</lower_boundary>
+                        <upper_boundary>0</upper_boundary>
+                    </z_position>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <aircraft_classification_number description="Aircraft classification number for the total undercarriage arrangment.">
+                    <value>return_string</value>
+                </aircraft_classification_number>
+                <aircraft_classification_rating description="Aircraft classification rating for the total undercarriage arrangment.">
+                    <value>return_string</value>
+                </aircraft_classification_rating>
+                <geometry>
+                    <number_of_landing_gear_struts description="Number of installed landing gear struts.">
+                        <value>0</value>
+                        <unit>1</unit>
+                        <lower_boundary>3</lower_boundary>
+                        <upper_boundary>6</upper_boundary>
+                    </number_of_landing_gear_struts>
+                    <landing_gear_leg ID="0" description="Geometrical description of one entire landing gear leg.">
+                        <name description="Name of the landing gear leg.">
+                            <value>nose_gear</value>
+                        </name>
+                        <position description="Position of one entire landing gear leg with regard to the global reference point.">
+                            <x_position description="Distance in x direction with regard to the global reference point. (center line of the landing gear leg)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>100</upper_boundary>
+                            </x_position>
+                            <y_position description="Distance in y direction with regard to the global reference point. (center line of the landing gear leg)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-15</lower_boundary>
+                                <upper_boundary>15</upper_boundary>
+                            </y_position>
+                            <z_position description="Distance in z direction with regard to the global reference point. (z coordinate refers to the mounting point of the landing gear leg.)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-10</lower_boundary>
+                                <upper_boundary>0</upper_boundary>
+                            </z_position>
+                        </position>
+                        <mass_properties description="Mass properties of one entire landing gear leg.">
+                            <mass description="Mass of one entire landing gear leg.">
+                                <value>0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10000</upper_boundary>
+                            </mass>
+                            <inertia description="Inertia of one entire landing gear leg with regard to his center of gravity.">
+                                <j_xx description="Inertia of one entire landing gear leg in x.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="Inertia of one entire landing gear leg in y.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="Inertia of one entire landing gear leg in z.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="Inertia of one entire landing gear leg xy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="Inertia of one entire landing gear leg in xz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="Inertia of one entire landing gear leg in yx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="Inertia of one entire landing gear leg in yz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="Inertia of one entire landing gear leg in zx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="Inertia of one entire landing gear leg in zy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="Center of gravity of one entire landing gear leg.">
+                                <x_position description="Center of gravity in x-direction with regard to the global reference point. (entire landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>50</upper_boundary>
+                                </x_position>
+                                <y_position description="Center of gravity in y-direction with regard to the global reference point. (entire landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </y_position>
+                                <z_position description="Center of gravity in z-direction with regard to the global reference point. (entire landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-10</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </z_position>
+                            </center_of_gravity>
+                        </mass_properties>
+                        <assambly_components>
+                            <strut_diameter Desc="Diameter of the landing gear strut.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>1</upper_boundary>
+                            </strut_diameter>
+                            <strut_length Desc="Length of the landing gear strut.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </strut_length>
+                            <wheel_group_position Desc="Position of wheel group of one entire landing gear leg.">
+                                <x_position description="Distance in x direction with regard to the global reference point (center line of the landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>100</upper_boundary>
+                                </x_position>
+                                <y_position description="Distance in y direction with regard to the global reference point (center line of the landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-15</lower_boundary>
+                                    <upper_boundary>15</upper_boundary>
+                                </y_position>
+                                <z_position description="Distance in z direction with regard to the global reference point (z coordinate refers to the end point of the landing gear leg.)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-20</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </z_position>
+                            </wheel_group_position>
+                            <number_of_axis_of_wheel_group Desc="Number of axis of the wheel group behind each other.">
+                                <value>0</value>
+                                <unit>1</unit>
+                                <lower_boundary>1</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </number_of_axis_of_wheel_group>
+                            <wheel_base Desc="Distance of the foremost to the rearmost axis of the wheel group.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>15</upper_boundary>
+                            </wheel_base>
+                            <wheel_track Desc="Distance between the outermost wheels of an axis.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>5</upper_boundary>
+                            </wheel_track>
+                            <number_of_tires_per_axis Desc="Number of tires per axis of a tire group.">
+                                <value>0</value>
+                                <unit>1</unit>
+                                <lower_boundary>1</lower_boundary>
+                                <upper_boundary>4</upper_boundary>
+                            </number_of_tires_per_axis>
+                            <tire_description Desc="Description of one tire of the wheel group">
+                                <tire_diameter Desc="Diameter of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>2</upper_boundary>
+                                </tire_diameter>
+                                <tire_width Desc="Width of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </tire_width>
+                                <rim_diameter Desc="Rim diameter of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </rim_diameter>
+                                <tire_pressure Desc="Tire pressure of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>Pa</unit>
+                                    <lower_boundary>1000000</lower_boundary>
+                                    <upper_boundary>2000000</upper_boundary>
+                                </tire_pressure>
+                                <maximum_tire_speed Desc="Maximum permissible tire speed of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m/s</unit>
+                                    <lower_boundary>50</lower_boundary>
+                                    <upper_boundary>125</upper_boundary>
+                                </maximum_tire_speed>
+                            </tire_description>
+                        </assambly_components>
+                    </landing_gear_leg>
+                </geometry>
+            </specific>
+        </landing_gear>
+        <propulsion description="Propulsion components" ID="0" tool_level="0">
+            <position description="Reference positions of the propulsion assembly">
+                <nacelle description="Position of nacelle element in aircraft coordinate system (center of inlet)">
+                    <x description="x direction of nacelle">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>100</upper_boundary>
+                    </x>
+                    <y description="y direction of nacelle">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-50</lower_boundary>
+                        <upper_boundary>50</upper_boundary>
+                    </y>
+                    <z description="z direction of nacelle">
+                        <unit>m</unit>
+                        <value>0</value>
+                        <lower_boundary>-20</lower_boundary>
+                        <upper_boundary>40</upper_boundary>
+                    </z>
+                </nacelle>
+            </position>
+            <mass_properties description="Mass properties of propulsion assembly">
+                <nacelle>
+                    <mass description="nacelle mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </mass>
+                    <inertia description="nacelle inertia refered to its center of gravity">
+                        <j_xx description="inertia component in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia component in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia component in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia component in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia component in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia component in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia component in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia component in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia component in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="nacelle center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </nacelle>
+                <pylon>
+                    <mass description="component mass pylon">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </mass>
+                    <inertia description="component inertia refered to center of gravity">
+                        <j_xx description="inertia component in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia component in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia component in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia component in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia component in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia component in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia component in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia component in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia component in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </pylon>
+                <engine>
+                    <mass description="component mass engine">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </mass>
+                    <inertia description="component inertia refered to center of gravity">
+                        <j_xx description="inertia component in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia component in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia component in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia component in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia component in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia component in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia component in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia component in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia component in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </engine>
+            </mass_properties>
+            <specific description="Specific nacelle and engine properties">
+                <nacelle description="Parametric description of nacelle geometry">
+                    <incidence_angle description="Angle of incidence in reference to the aircrafts coordinate system">
+                        <unit>degree</unit>
+                        <lower_boundary>-10</lower_boundary>
+                        <upper_boundary>10</upper_boundary>
+                    </incidence_angle>
+                    <number_points description="No of points describing the section">
+                        <value>0</value>
+                    </number_points>
+                    <number_segments description="Number of segments describing the nacelle">
+                        <value>0</value>
+                    </number_segments>
+                    <inlet_segment description="Geometric desciption of the nacelle inlet segment">
+                        <segment_point_data>
+                            <value>0</value>
+                        </segment_point_data>
+                        <width_inlet description="Width of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_inlet>
+                        <height_inlet description="Height of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_inlet>
+                        <length_inlet description="Length of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </length_inlet>
+                    </inlet_segment>
+                    <nacelle_segment ID="0">
+                        <inner_segment_point_data>
+                            <value>0</value>
+                        </inner_segment_point_data>
+                        <outer_segment_point_data>
+                            <value>0</value>
+                        </outer_segment_point_data>
+                        <width_inner_segment description="Inner widht of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_inner_segment>
+                        <width_outer_segment description="Outer widht of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_outer_segment>
+                        <height_inner_segment description="Inner height of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_inner_segment>
+                        <height_outer_segment description="Outer height of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_outer_segment>
+                        <length_segment description="length of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </length_segment>
+                    </nacelle_segment>
+                    <exit_segment description="Geometric desciption of the nacelle exit segment">
+                        <segment_point_data>
+                            <value>0</value>
+                        </segment_point_data>
+                        <width_inlet description="Width of the nacelle exit segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_inlet>
+                        <height_inlet description="height of the nacelle exit segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_inlet>
+                    </exit_segment>
+                </nacelle>
+                <engine description="Parametric description of engine settings, geometry and performance">
+                    <settings description="Settings of engine model and improvment factor (from config)">
+                        <engine_model description="Name of selected engine model">
+                            <value>0.0</value>
+                        </engine_model>
+                        <fuel_flow_scale_factor description="Selected fuel flow scaling/improvement factor">
+                            <value>0.0</value>
+                            <lower_boundary>0.0</lower_boundary>
+                            <upper_boundary>1.0</upper_boundary>
+                        </fuel_flow_scale_factor>
+                        <maximum_shaft_power_extraction description="Maximum shaft power extraction of the engine for aircraft onboard systems">
+                            <value>0.0</value>
+                            <unit>W</unit>
+                            <lower_boundary>0.0</lower_boundary>
+                            <upper_boundary>3E+5</upper_boundary>
+                        </maximum_shaft_power_extraction>
+                    </settings>
+                    <turboprop_propeller_diameter description="Diameter of the propeller of the turboprop">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>1.75</lower_boundary>
+                        <lower_boundary>5.3</lower_boundary>
+                    </turboprop_propeller_diameter>
+                    <performance description="Performance specific parameter">
+                        <scale_factor description="Performance scaling factor">
+                            <value>0.0</value>
+                            <lower_boundary>0.0</lower_boundary>
+                            <upper_boundary>1.0</upper_boundary>
+                        </scale_factor>
+                        <maximum_take_off description="Performance at maximum take off condition at ISA+deltaISA (Requirements/DesignMission) with no offtakes at Mach=0.0 and altitude=0.0">
+                            <thrust>
+                                <value>0.0</value>
+                                <unit>N</unit>
+                                <lower_boundary>0.0</lower_boundary>
+                                <upper_boundary>999.0</upper_boundary>
+                            </thrust>
+                        </maximum_take_off>
+                        <maximum_continuous description="Performance at maximum continuous conditions at ISA+deltaISA (Requirements/DesignMission) with no offtakes at predefined Mach and altitude">
+                            <maximum_thrust description="Performance at maximum thrust at maximum continuous conditions">
+                                <thrust>
+                                    <value>0.0</value>
+                                    <unit>N</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust>
+                                <thrust_specific_fuel_consumption>
+                                    <value>0.0</value>
+                                    <unit>kgs^-1N^-1</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust_specific_fuel_consumption>
+                            </maximum_thrust>
+                            <bucket_thrust description="performance at bucket thrust at maximum continuous conditions">
+                                <thrust>
+                                    <value>0.0</value>
+                                    <unit>N</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust>
+                                <thrust_specific_fuel_consumption>
+                                    <value>0.0</value>
+                                    <unit>kgs^-1N^-1</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust_specific_fuel_consumption>
+                            </bucket_thrust>
+                        </maximum_continuous>
+                    </performance>
+                </engine>
+            </specific>
+        </propulsion>
+        <systems tool_level="0">
+            <position />
+            <mass_properties description="mass_properties of component systems">
+                <mass description="component mass">
+                    <systems_group description="total systems group">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </systems_group>
+                    <auxiliary_power_unit description="Airbus Chapter 30, ATA49">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </auxiliary_power_unit>
+                    <hydraulic_generation description="Airbus Chapter 31, ATA 29">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </hydraulic_generation>
+                    <hydraulic_distribution description="Airbus Chapter 32, ATA 29">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </hydraulic_distribution>
+                    <air_conditioning description="Airbus Chapter 33, ATA21">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </air_conditioning>
+                    <de_icing description="Airbus Chapter 34, ATA30">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </de_icing>
+                    <fire_protection description="Airbus Chapter 35, ATA26">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </fire_protection>
+                    <flight_controls description="Airbus Chapter 36, ATA27">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                        <roll description="aileron actuators, their installations and operation controls, Airbus Ch. 36.0">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </roll>
+                        <yaw description="rudder actuators, their installations and operation controls, Airbus Ch. 36.1">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </yaw>
+                        <pitch description="elevator actuators, their installations and operation controls, Airbus Ch. 36.2">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </pitch>
+                        <movable_horizontal_tail description="movable horizontal tail actuators, their installations and operation controls, Airbus Ch. 36.3">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </movable_horizontal_tail>
+                        <flaps description="flap actuators, their installations and operation controls, Airbus Ch. 36.4">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </flaps>
+                        <spoilers_airbrakes_liftdumpers description="spoiler actuators, their installations and operation controls, Airbus Ch. 36.5">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </spoilers_airbrakes_liftdumpers>
+                        <slats description="Mass of the slat actuators, their installations and operation controls, Airbus Ch. 36.6">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </slats>
+                        <common_installation description="flight control common installation, Airbus Ch. 36.7">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </common_installation>
+                    </flight_controls>
+                    <instruments description="Airbus Chapter 37, ATA31">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </instruments>
+                    <automatic_flight_system description="Airbus Chapter 38, ATA 22">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </automatic_flight_system>
+                    <navigation description="Airbus Chapter 39, ATA34">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </navigation>
+                    <communication description="Airbus Chapter 40, ATA23">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </communication>
+                    <electrical_generation description="Airbus Chapter 41, ATA24, generation">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </electrical_generation>
+                    <electrical_distribution description="Airbus Chapter 42, ATA24, distribution">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </electrical_distribution>
+                </mass>
+                <inertia />
+                <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                    <systems_group description="total systems group">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </systems_group>
+                    <auxiliary_power_unit description="Airbus Chapter 30, ATA49">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </auxiliary_power_unit>
+                    <hydraulic_generation description="Airbus Chapter 31, ATA 29">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </hydraulic_generation>
+                    <hydraulic_distribution description="Airbus Chapter 32, ATA 29">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </hydraulic_distribution>
+                    <air_conditioning description="Airbus Chapter 33, ATA21">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </air_conditioning>
+                    <de_icing description="Airbus Chapter 34, ATA30">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </de_icing>
+                    <fire_protection description="Airbus Chapter 35, ATA26">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </fire_protection>
+                    <flight_controls description="Airbus Chapter 36, ATA27">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                        <roll description="aileron actuators, their installations and operation controls, Airbus Ch. 36.0">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </roll>
+                        <yaw description="rudder actuators, their installations and operation controls, Airbus Ch. 36.1">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </yaw>
+                        <pitch description="elevator actuators, their installations and operation controls, Airbus Ch. 36.2">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </pitch>
+                        <movable_horizontal_tail description="movable horizontal tail actuators, their installations and operation controls, Airbus Ch. 36.3">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </movable_horizontal_tail>
+                        <flaps description="flap actuators, their installations and operation controls, Airbus Ch. 36.4">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </flaps>
+                        <spoilers_airbrakes_liftdumpers description="spoiler actuators, their installations and operation controls, Airbus Ch. 36.5">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </spoilers_airbrakes_liftdumpers>
+                        <slats description="Mass of the slat actuators, their installations and operation controls, Airbus Ch. 36.6">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </slats>
+                        <common_installation description="flight control common installation, Airbus Ch. 36.7">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </common_installation>
+                    </flight_controls>
+                    <instruments description="Airbus Chapter 37, ATA31">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </instruments>
+                    <automatic_flight_system description="Airbus Chapter 38, ATA 22">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </automatic_flight_system>
+                    <navigation description="Airbus Chapter 39, ATA34">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </navigation>
+                    <communication description="Airbus Chapter 40, ATA23">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </communication>
+                    <electrical_generation description="Airbus Chapter 41, ATA24, generation">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </electrical_generation>
+                    <electrical_distribution description="Airbus Chapter 42, ATA24, distribution">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </electrical_distribution>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <design_power description="design power of ATA29, ATA49, ATA70">
+                    <ATA29_hydraulic_system>
+                        <design_power description="maximum design power">
+                            <electric description="maximum demand for electrical power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </electric>
+                            <hydraulic description="maximum demand for hydraulic power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </hydraulic>
+                            <bleed_air description="maximum demand for bleed air">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air>
+                        </design_power>
+                        <pressure description="nominal pressure of hydraulic system">
+                            <value>0</value>
+                            <unit>Pa</unit>
+                        </pressure>
+                    </ATA29_hydraulic_system>
+                    <ATA49_auxiliary_power_unit>
+                        <design_power description="maximum design power">
+                            <electric description="maximum demand for electrical power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </electric>
+                            <hydraulic description="maximum demand for hydraulic power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </hydraulic>
+                            <bleed_air description="maximum demand for bleed air">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air>
+                        </design_power>
+                    </ATA49_auxiliary_power_unit>
+                    <ATA70_propulsion_system>
+                        <design_power description="maximum design power">
+                            <electric description="maximum demand for electrical power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </electric>
+                            <hydraulic description="maximum demand for hydraulic power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </hydraulic>
+                            <bleed_air description="maximum demand for bleed air">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air>
+                        </design_power>
+                    </ATA70_propulsion_system>
+                </design_power>
+                <offtakes description="total shaft power and bleed air offtakes from sink systems">
+                    <design_mission>
+                        <average_cruise_offtakes description="average offtakes during cruise and changeFL for the design mission">
+                            <shaft_power_total description="total shaft offtakes from all sink systems">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </shaft_power_total>
+                            <bleed_air_total description="total bleed air offtake from all sink systems">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air_total>
+                        </average_cruise_offtakes>
+                    </design_mission>
+                    <study_mission>
+                        <average_cruise_offtakes description="average offtakes during cruise and changeFL for the study mission">
+                            <shaft_power_total description="total shaft offtakes from all sink systems">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </shaft_power_total>
+                            <bleed_air_total description="total bleed air offtake from all sink systems">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air_total>
+                        </average_cruise_offtakes>
+                    </study_mission>
+                </offtakes>
+            </specific>
+        </systems>
+    </component_design>
+    <analysis>
+        <masses_cg_inertia description="masses, cgs, inertias." tool_level="0">
+            <manufacturer_mass_empty description="MME">
+                <mass_properties description="manufacturer mass empty properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </manufacturer_mass_empty>
+            <operating_mass_empty description="OME">
+                <mass_properties description="operating mass empty properties">
+                    <mass description="mass">
+                        <value>42307.66255</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </operating_mass_empty>
+            <maximum_zero_fuel_mass description="MZFM">
+                <mass_properties description="maximum zero fuel mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_zero_fuel_mass>
+            <maximum_landing_mass description="MLM">
+                <mass_properties description="maximum landing  mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_landing_mass>
+            <maximum_takeoff_mass description="MTOM">
+                <mass_properties description="maximum landing mass properties">
+                    <mass description="mass">
+                        <value>79144.73202</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_takeoff_mass>
+            <maximum_payload_mass description="maximum payload mass">
+                <mass_properties description="maximum payload mass properties">
+                    <mass description="mass">
+                        <value>20000</value>
+                        <unit>kg</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_payload_mass>
+            <maximum_fuel_mass description="maximum fuel mass">
+                <mass_properties description="maximum fuel mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_fuel_mass>
+            <most_forward_mass description="mass for most forward cg position">
+                <mass_properties description="maximum fuel mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </most_forward_mass>
+            <most_aft_mass description="mass for most aft cg position">
+                <mass_properties description="most aft mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </most_aft_mass>
+            <design_mass description="design mass ">
+                <mass_properties description="design mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </design_mass>
+            <most_afterward_mass description="mass for most afterward cg position">
+                <mass_properties description="most afterward mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </most_afterward_mass>
+        </masses_cg_inertia>
+        <aerodynamics description="Aerodynamcal analysis." level="0">
+            <reference_values>
+                <b description="Total wing span" tool_level="0">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>80</upper_boundary>
+                </b>
+                <MAC description="Mean aerodynamic chord" tool_level="0">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>50</upper_boundary>
+                </MAC>
+                <S_ref description="Wing reference area" tool_level="0">
+                    <value>0</value>
+                    <unit>m^2</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </S_ref>
+            </reference_values>
+            <lift_coefficients>
+                <C_LmaxLanding description="Maximum lift coefficient in landing configuration" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LmaxLanding>
+                <C_LmaxT-O description="Maximum lift coefficient in take off configuration" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LmaxT-O>
+                <C_LoptimumCruise description="Lift coefficient at L/D_optimum at M_initial_cruise" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LoptimumCruise>
+                <C_LgroundRoll description="Lift coefficient on ground for ground roll calculation" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LgroundRoll>
+            </lift_coefficients>
+            <polar>
+                <polar_file description="Name of polar file" tool_level="0">
+                    <value>0</value>
+                </polar_file>
+                <configurations description="Number of configurations in the polar file" tool_level="0">
+                    <value>0</value>
+                </configurations>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="1" tool_level="0">
+                    <type>Cruise</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="2" tool_level="0">
+                    <type>Departure</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="3" tool_level="0">
+                    <type>Departure</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="4" tool_level="0">
+                    <type>Departure</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="5" tool_level="0">
+                    <type>Approach</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="6" tool_level="0">
+                    <type>Approach</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="7" tool_level="0">
+                    <type>Approach</type>
+                    <value>0</value>
+                </configuration>
+            </polar>
+            <max_spoiler_factor description="Factor for maximum drag increase trough spoilers" tool_level="0">
+                <value>0</value>
+                <lower_boundary>1</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+            </max_spoiler_factor>
+        </aerodynamics>
+        <mission description="Mission data." tool_level="0">
+            <design_mission description="Data of design mission">
+                <range description="Range of design mission">
+                    <value>2500.496279</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>3000000</upper_boundary>
+                </range>
+                <block_time description="Block time of design mission: Time from break release to end of taxiing after landing">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>126000</upper_boundary>
+                </block_time>
+                <flight_time description="Flight time of design mission">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>12600</upper_boundary>
+                </flight_time>
+                <taxi_fuel_take_off description="Taxi fuel before takeoff in design mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </taxi_fuel_take_off>
+                <taxi_fuel_landing description="Taxi fuel after landing in design mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </taxi_fuel_landing>
+                <mission_fuel description="Total fuel loaded for design mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mission_fuel>
+                <trip_fuel description="Fuel burned from takeoff to landing">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </trip_fuel>
+                <payload description="Payload of design mission">
+                    <value>17000</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload>
+                <number_of_pax description="Number of passengers of design mission">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </number_of_pax>
+                <cargo_mass description="Cargo mass of design mission">
+                    <value>3392</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </cargo_mass>
+                <take_off_engine_derate Desc="Engine power demand">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1</upper_boundary>
+                </take_off_engine_derate>
+                <cruise_steps description="Cruise step information">
+                    <numer_of_cruise_steps description="Number of cruise steps in design mission">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </numer_of_cruise_steps>
+                    <cruise_step description="Data of cruise step" ID="0">
+                        <relative_end_of_cruise_step description="End of cruise step relative to mission length">
+                            <value>0</value>
+                            <unit>-</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>1</upper_boundary>
+                        </relative_end_of_cruise_step>
+                        <altitude description="Altitude of cruise step">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>15000</upper_boundary>
+                        </altitude>
+                    </cruise_step>
+                </cruise_steps>
+                <take_off_mass description="Take off mass">
+                    <value>79144.73202</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </take_off_mass>
+            </design_mission>
+            <study_mission description="Data of study mission">
+                <range description="Range of study mission">
+                    <value>500.6435584</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>3000000</upper_boundary>
+                </range>
+                <block_time description="Block time of study mission: Time from break release to end of taxiing after landing">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>126000</upper_boundary>
+                </block_time>
+                <flight_time description="Flight time of study mission">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>12600</upper_boundary>
+                </flight_time>
+                <taxi_fuel_takeoff description="Taxi fuel before takeoff in study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>500</upper_boundary>
+                </taxi_fuel_takeoff>
+                <taxi_fuel_landing description="Taxi fuel after landing in study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>500</upper_boundary>
+                </taxi_fuel_landing>
+                <mission_fuel description="Total fuel loaded for study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mission_fuel>
+                <trip_fuel description="Fuel burned from takeoff to landing">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </trip_fuel>
+                <payload description="Payload of study mission">
+                    <value>13608</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload>
+                <cruise_steps description="Cruise step information">
+                    <numer_of_cruise_steps description="Number of cruise steps in study mission">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </numer_of_cruise_steps>
+                    <cruise_step description="Data of cruise step" ID="0">
+                        <relative_end_of_cruise_step description="End of cruise step relative to mission length">
+                            <value>0</value>
+                            <unit>-</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>1</upper_boundary>
+                        </relative_end_of_cruise_step>
+                        <altitude description="Altitude of cruise step">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>15000</upper_boundary>
+                        </altitude>
+                    </cruise_step>
+                </cruise_steps>
+                <payload description="Payload of study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload>
+                <number_of_pax description="Number of passengers of study mission">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </number_of_pax>
+                <cargo_mass description="Cargo mass of study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </cargo_mass>
+                <take_off_engine_derate Desc="Engine power demand">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1</upper_boundary>
+                </take_off_engine_derate>
+            </study_mission>
+        </mission>
+        <requirement_compliance>
+            <top_level_aircraft_requirements tool_level="0">
+                <design_take_off_field_length description="Switch indicating if take off field length can be maintained.">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </design_take_off_field_length>
+                <design_landing_field_length description="Switch indicating if landing fiel length can be maintained.">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </design_landing_field_length>
+                <design_approach_speed description="Switch indicating if approach speed can be maintained.">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </design_approach_speed>
+            </top_level_aircraft_requirements>
+            <certification tool_level="0">
+                <climb_gradient_of_second_take_off_segment description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_of_second_take_off_segment>
+                <climb_gradient_of_final_take_off_segment description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_of_final_take_off_segment>
+                <climb_gradient_approach_one_engine_inoperative description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_approach_one_engine_inoperative>
+                <climb_gradient_all_engines_operative description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_all_engines_operative>
+            </certification>
+        </requirement_compliance>
+    </analysis>
+    <assessment>
+        <performance>
+            <speed tool_level="0">
+                <maximum_operating_mach_number description="Maximum operating mach number">
+                    <value>0</value>
+                    <unit>-</unit>
+                </maximum_operating_mach_number>
+                <maximum_operating_velocity description="Maximum oderating speed (maximum dynamic pressure)">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </maximum_operating_velocity>
+                <dive_mach_number description="Diving mach number">
+                    <value>0</value>
+                    <unit>-</unit>
+                </dive_mach_number>
+                <dive_velocity description="Diving speed">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </dive_velocity>
+                <one_g_stall_speed_velocity description="One g stall speed in clean configuration">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </one_g_stall_speed_velocity>
+            </speed>
+            <take_off tool_level="0">
+                <take_off_distance_normal_safety description="Takeoff distance at Sea Level for MTOM and (ISA + deltaISA)-Conditions(calculated by missionAnalysis using missionDesign.xml settings) with all engines operating (AEO)">
+                    <value>0</value>
+                    <unit>m</unit>
+                </take_off_distance_normal_safety>
+                <lift_off_speed_velocity Alt="v_lof" description="Lift-off speed in take-off configuration">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </lift_off_speed_velocity>
+                <decision_speed Alt="v_1" description="Decision speed">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </decision_speed>
+                <take_off_safety_speed Alt="v_2" description="Speed at screen height (35 ft)">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </take_off_safety_speed>
+                <final_take_off_speed Alt="v_FTO" description="Speed at final takeoff segment (1500 ft)">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </final_take_off_speed>
+                <time_to_screen_height description="Time to screen height">
+                    <value>0</value>
+                    <unit>s</unit>
+                </time_to_screen_height>
+                <climb_or_descend_segment_climb_gradient description="Climb gradient in second takeoff segment">
+                    <value>0</value>
+                    <unit>%</unit>
+                </climb_or_descend_segment_climb_gradient>
+                <final_segment_climb_gradient description="Climb gradient in final takeoff segment">
+                    <value>0</value>
+                    <unit>%</unit>
+                </final_segment_climb_gradient>
+                <balanced_field_length description="Balanced field length">
+                    <value>0</value>
+                    <unit>m</unit>
+                </balanced_field_length>
+            </take_off>
+            <landing tool_level="0">
+                <needed_runway_length description="Needed runway length with all engines operating and maximum landing mass">
+                    <value>0</value>
+                    <unit>m</unit>
+                </needed_runway_length>
+                <approach_speed description="Final approach speed in landing configuration and maximum landing mass">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </approach_speed>
+            </landing>
+            <range tool_level="0">
+                <range_max_payload_at_maximum_take_off_mass description="Range at maximum payload and fuel mass till maximum take off mass limit">
+                    <value>3246.489365</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </range_max_payload_at_maximum_take_off_mass>
+                <range_max_fuel_at_maximum_take_off_mass description="Range at full tanks and payload till maximum take off mass limit">
+                    <value>10458.54652</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </range_max_fuel_at_maximum_take_off_mass>
+                <payload_maximum_fuel_at_maximum_take_off_mass description="Payload at full tanks and payload till maximum take off mass limit">
+                    <value>4361.39852</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload_maximum_fuel_at_maximum_take_off_mass>
+                <range_maximum_fuel_empty description="Range for no payload and full tanks">
+                    <value>10708.77812</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </range_maximum_fuel_empty>
+            </range>
+        </performance>
+        <average_temperature_response description="Integrated temperature change per year caused by aircraft operation divided by operating lifetime" tool_level="2">
+            <value>0</value>
+            <unit>K</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>1e-5</upper_boundary>
+        </average_temperature_response>
+        <operating_cost_estimation_tu_berlin description="Operating costs (sum of direct and indirect operating costs)" tool_level="2">
+            <direct_operating_costs description="Direct operating costs (sum of route independent and route dependent costs)">
+                <direct_operating_costs_annual description="Direct operating costs (DOC) per year">
+                    <value>30</value>
+                    <unit>EUR/y</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </direct_operating_costs_annual>
+            </direct_operating_costs>
+            <indirect_operating_costs description="Indirect operating costs (IOC)">
+                <indirect_operating_costs_annual description="Indirect operating costs (IOC) per year">
+                    <value>40</value>
+                    <unit>EUR/y</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </indirect_operating_costs_annual>
+            </indirect_operating_costs>
+        </operating_cost_estimation_tu_berlin>
+    </assessment>
+</aircraft_exchange_file>
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/reporting/plots/[module name]_[name of plot].txt b/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/reporting/plots/[module name]_[name of plot].txt
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml b/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml
new file mode 100644
index 0000000000000000000000000000000000000000..7266cf694afa591575e928cb4b635e6740ddbdbd
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml
@@ -0,0 +1,46 @@
+<module_results_file Name="Cost estimation specific outputs">
+    <general_information description="General information on module execution">
+        <workflow_version description="Version number of the current workflow">
+            <value>2.1.0</value>
+        </workflow_version>
+        <execution_date description="Execution date and time of the code">
+            <value>2024-11-18_10-48-55</value>
+        </execution_date>
+        <project_name description="Name of the current aircraft project">
+            <value>CSR-02</value>
+        </project_name>
+        <method_name description="Name of current module calculation method">
+            <value>operating_cost_estimation_tu_berlin</value>
+        </method_name>
+        <routing_layer description="Routing layer information">
+            <layer_1 description="Routing layer_1">
+                <value>tube_and_wing</value>
+            </layer_1>
+            <layer_2 description="Routing layer_2">
+                <value>empirical</value>
+            </layer_2>
+            <layer_3 description="Routing layer_3">
+                <value>operating_cost_estimation_tu_berlin</value>
+            </layer_3>
+            <user_layer description="Routing user_layer">
+                <value>kerosene</value>
+            </user_layer>
+        </routing_layer>
+    </general_information>
+    <calculation_results description="Results of calculation method">
+        <operating_cost_estimation_tu_berlin description="Empirical method to estimate the direct operating costs (DOC) and indirect operating costs (IOC) of an aircraft.">
+            <design_mission description="Cost estimation results of the design mission">
+                <direct_operating_costs description="Direct operating costs">
+                    <direct_operating_costs_per_year description="Direct operating costs per year at design point (sum of route dependent and route independent costs)">
+                        <value>30</value>
+                        <unit>EUR</unit>
+                    </direct_operating_costs_per_year>
+                </direct_operating_costs>
+                <indirect_operating_costs description="Indirect operating costs">
+                    <value>40</value>
+                    <unit>EUR</unit>
+                </indirect_operating_costs>
+            </design_mission>
+        </operating_cost_estimation_tu_berlin>
+    </calculation_results>
+</module_results_file>
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/CMakeLists.txt b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c590f285d26c1401d18573ee20ba6cd8c7484f29
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/CMakeLists.txt
@@ -0,0 +1,4 @@
+# Add the package to the package list for exporting the target
+# and propagate the resulting list back to the parent scope
+list( APPEND PYTHON_TARGETS ${CMAKE_CURRENT_LIST_DIR} )
+set( PYTHON_TARGETS ${PYTHON_TARGETS} PARENT_SCOPE )
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/LICENSE b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..c2e9f6c95bb8b07119095b6793e4fc81984c0647
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/LICENSE
@@ -0,0 +1,674 @@
+                    GNU GENERAL PUBLIC LICENSE
+                       Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+                            Preamble
+
+  The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+  The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works.  By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users.  We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors.  You can apply it to
+your programs, too.
+
+  When we speak of free software, we are referring to freedom, not
+price.  Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+  To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights.  Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+  For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received.  You must make sure that they, too, receive
+or can get the source code.  And you must show them these terms so they
+know their rights.
+
+  Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+  For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software.  For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+  Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so.  This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software.  The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable.  Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products.  If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+  Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary.  To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+  The precise terms and conditions for copying, distribution and
+modification follow.
+
+                       TERMS AND CONDITIONS
+
+  0. Definitions.
+
+  "This License" refers to version 3 of the GNU General Public License.
+
+  "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+  "The Program" refers to any copyrightable work licensed under this
+License.  Each licensee is addressed as "you".  "Licensees" and
+"recipients" may be individuals or organizations.
+
+  To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy.  The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+  A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+  To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy.  Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+  To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies.  Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+  An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License.  If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+  1. Source Code.
+
+  The "source code" for a work means the preferred form of the work
+for making modifications to it.  "Object code" means any non-source
+form of a work.
+
+  A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+  The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form.  A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+  The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities.  However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work.  For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+  The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+  The Corresponding Source for a work in source code form is that
+same work.
+
+  2. Basic Permissions.
+
+  All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met.  This License explicitly affirms your unlimited
+permission to run the unmodified Program.  The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work.  This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+  You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force.  You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright.  Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+  Conveying under any other circumstances is permitted solely under
+the conditions stated below.  Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+  No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+  When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+  4. Conveying Verbatim Copies.
+
+  You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+  You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+  5. Conveying Modified Source Versions.
+
+  You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+    a) The work must carry prominent notices stating that you modified
+    it, and giving a relevant date.
+
+    b) The work must carry prominent notices stating that it is
+    released under this License and any conditions added under section
+    7.  This requirement modifies the requirement in section 4 to
+    "keep intact all notices".
+
+    c) You must license the entire work, as a whole, under this
+    License to anyone who comes into possession of a copy.  This
+    License will therefore apply, along with any applicable section 7
+    additional terms, to the whole of the work, and all its parts,
+    regardless of how they are packaged.  This License gives no
+    permission to license the work in any other way, but it does not
+    invalidate such permission if you have separately received it.
+
+    d) If the work has interactive user interfaces, each must display
+    Appropriate Legal Notices; however, if the Program has interactive
+    interfaces that do not display Appropriate Legal Notices, your
+    work need not make them do so.
+
+  A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit.  Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+  6. Conveying Non-Source Forms.
+
+  You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+    a) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by the
+    Corresponding Source fixed on a durable physical medium
+    customarily used for software interchange.
+
+    b) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by a
+    written offer, valid for at least three years and valid for as
+    long as you offer spare parts or customer support for that product
+    model, to give anyone who possesses the object code either (1) a
+    copy of the Corresponding Source for all the software in the
+    product that is covered by this License, on a durable physical
+    medium customarily used for software interchange, for a price no
+    more than your reasonable cost of physically performing this
+    conveying of source, or (2) access to copy the
+    Corresponding Source from a network server at no charge.
+
+    c) Convey individual copies of the object code with a copy of the
+    written offer to provide the Corresponding Source.  This
+    alternative is allowed only occasionally and noncommercially, and
+    only if you received the object code with such an offer, in accord
+    with subsection 6b.
+
+    d) Convey the object code by offering access from a designated
+    place (gratis or for a charge), and offer equivalent access to the
+    Corresponding Source in the same way through the same place at no
+    further charge.  You need not require recipients to copy the
+    Corresponding Source along with the object code.  If the place to
+    copy the object code is a network server, the Corresponding Source
+    may be on a different server (operated by you or a third party)
+    that supports equivalent copying facilities, provided you maintain
+    clear directions next to the object code saying where to find the
+    Corresponding Source.  Regardless of what server hosts the
+    Corresponding Source, you remain obligated to ensure that it is
+    available for as long as needed to satisfy these requirements.
+
+    e) Convey the object code using peer-to-peer transmission, provided
+    you inform other peers where the object code and Corresponding
+    Source of the work are being offered to the general public at no
+    charge under subsection 6d.
+
+  A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+  A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling.  In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage.  For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product.  A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+  "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source.  The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+  If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information.  But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+  The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed.  Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+  Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+  7. Additional Terms.
+
+  "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law.  If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+  When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it.  (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.)  You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+  Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+    a) Disclaiming warranty or limiting liability differently from the
+    terms of sections 15 and 16 of this License; or
+
+    b) Requiring preservation of specified reasonable legal notices or
+    author attributions in that material or in the Appropriate Legal
+    Notices displayed by works containing it; or
+
+    c) Prohibiting misrepresentation of the origin of that material, or
+    requiring that modified versions of such material be marked in
+    reasonable ways as different from the original version; or
+
+    d) Limiting the use for publicity purposes of names of licensors or
+    authors of the material; or
+
+    e) Declining to grant rights under trademark law for use of some
+    trade names, trademarks, or service marks; or
+
+    f) Requiring indemnification of licensors and authors of that
+    material by anyone who conveys the material (or modified versions of
+    it) with contractual assumptions of liability to the recipient, for
+    any liability that these contractual assumptions directly impose on
+    those licensors and authors.
+
+  All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10.  If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term.  If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+  If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+  Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+  8. Termination.
+
+  You may not propagate or modify a covered work except as expressly
+provided under this License.  Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+  However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+  Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+  Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License.  If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+  9. Acceptance Not Required for Having Copies.
+
+  You are not required to accept this License in order to receive or
+run a copy of the Program.  Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance.  However,
+nothing other than this License grants you permission to propagate or
+modify any covered work.  These actions infringe copyright if you do
+not accept this License.  Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+  10. Automatic Licensing of Downstream Recipients.
+
+  Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License.  You are not responsible
+for enforcing compliance by third parties with this License.
+
+  An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations.  If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+  You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License.  For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+  11. Patents.
+
+  A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based.  The
+work thus licensed is called the contributor's "contributor version".
+
+  A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version.  For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+  Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+  In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement).  To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+  If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients.  "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+  If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+  A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License.  You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+  Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+  12. No Surrender of Others' Freedom.
+
+  If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License.  If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all.  For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+  13. Use with the GNU Affero General Public License.
+
+  Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work.  The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+  14. Revised Versions of this License.
+
+  The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time.  Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+  Each version is given a distinguishing version number.  If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation.  If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+  If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+  Later license versions may give you additional or different
+permissions.  However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+  15. Disclaimer of Warranty.
+
+  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+  16. Limitation of Liability.
+
+  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+  17. Interpretation of Sections 15 and 16.
+
+  If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+                     END OF TERMS AND CONDITIONS
+
+            How to Apply These Terms to Your New Programs
+
+  If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+  To do so, attach the following notices to the program.  It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+    UNICADO - Modular Preliminary Aircraft Design Tool
+    Copyright (C) 2024
+
+    This program is free software: you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation, either version 3 of the License, or
+    (at your option) any later version.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
+
+    You should have received a copy of the GNU General Public License
+    along with this program.  If not, see <https://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+  If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+    <program>  Copyright (C) <year>  <name of author>
+    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+    This is free software, and you are welcome to redistribute it
+    under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License.  Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+  You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+<https://www.gnu.org/licenses/>.
+
+  The GNU General Public License does not permit incorporating your program
+into proprietary programs.  If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library.  If this is what you want to do, use the GNU Lesser General
+Public License instead of this License.  But first, please read
+<https://www.gnu.org/licenses/why-not-lgpl.html>.
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/README.md b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..3eb3604f05fd0d1711bce7b3695de3df835b534c
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/README.md
@@ -0,0 +1,31 @@
+# UNICADO Python Framework
+
+Brief description of what the project does and its purpose.
+
+## Installation (standalone)
+Please follow the instructions on the UNICADO website:
+https://unicado.ilr.rwth-aachen.de/w/software_maintenance/how_to_python_in_unicado/
+
+## Usage
+Explain how to use the project. Provide examples if necessary.
+
+## Configuration
+Explain any configuration options or settings that can be customized.
+
+## Contributing
+If you'd like to contribute to this project, please follow these guidelines:
+
+Fork the repository.
+Create a new branch (git checkout -b feature_branch).
+Make your changes and commit them (git commit -am 'Add new feature').
+Push to the branch (git push origin feature_branch).
+Create a new Pull Request.
+
+## License
+This project is licensed under the GNU General Public License, Version 3 - see the LICENSE.md file for details.
+
+## Acknowledgements
+List any acknowledgements or credits for libraries, tutorials, etc. that were used in developing this project.
+
+## Contact
+For questions or feedback, please contact A. Gobbin (a.gobbin@tu-berlin.de) or S. Roscher (s.roscher@tu-berlin.de).
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/pyproject.toml b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/pyproject.toml
new file mode 100644
index 0000000000000000000000000000000000000000..ebb3fbb21978587f60e92ec6ada35fb193757c75
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/pyproject.toml
@@ -0,0 +1,20 @@
+[build-system]
+# Please do not change any information given here.
+requires = ["setuptools", "setuptools-scm"] 
+build-backend = "setuptools.build_meta"
+
+[project] 
+name = "pymodulepackage" # insert name of the package (all lowercase, without underscores or special characters)
+version = "2.0.1" # insert version of package
+description = "This package contains standardized functions for UNICADO module execution." # Insert short package description
+readme = "README.md"
+requires-python = ">=3.10"
+license = {file = "LICENSE"}
+authors = [ # Insert name of author(s)
+    {name = "A. Gobbin", email = "a.gobbin@tu-berlin.de"},
+    {name = "S. Roscher", email = "s.roscher@tu-berlin.de"}
+]
+
+[project.urls]
+homepage = "https://unicado.ilr.rwth-aachen.de/"
+repository = "https://git.rwth-aachen.de/unicado"
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a4f587af3ab7a2aa1357331dd59a91b45322d2c
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py
@@ -0,0 +1,930 @@
+"""Module providing general UNICADO data postprocessing functions for Python code."""
+# Import standard modules.
+import os
+import re
+import sys
+import collections
+import xml.etree.ElementTree as ET
+from datetime import datetime
+
+
+def create_element_tree_from_paths(input_dict):
+    """ Create element tree from paths.
+
+    This function creates an element tree from the xml-paths inside the given input dictionary.
+
+    :param root input_dict: Dict containing module specific output datas.
+    :return: root
+    """
+    ''' initialize local parameter '''
+    paths = []
+    values = []
+
+    # Generate lists of paths and values
+    for _, value in input_dict.items():
+        paths.append(value[0])
+        values.append(value[1])
+
+    # Create the root element.
+    root_name = paths[0].split('/')[1]
+    root = ET.Element(root_name)
+
+    # Build the XML tree.
+    for index, path in enumerate(paths):
+        # Split the path into parts.
+        parts = re.split(r'\/(?![^\[]*\])', path.lstrip('./'))
+        current_element = root
+
+        for part in parts:
+            # Check if part has an ID attribute
+            id_match = re.search(r'(.+?)\[@ID="(\d+)"\]', part)
+            if id_match:
+                tag, id_value = id_match.groups()
+                # Check if an element with the same tag and ID already exists.
+                existing_element = current_element.find(f"./{tag}[@ID='{id_value}']")
+                if existing_element is not None:
+                    current_element = existing_element
+                else:
+                    new_element = ET.SubElement(current_element, tag, ID=id_value)
+                    current_element = new_element
+            else:
+                # Check if an element with the same tag already exists.
+                existing_element = current_element.find(part)
+                if existing_element is not None:
+                    current_element = existing_element
+                else:
+                    new_element = ET.SubElement(current_element, part)
+                    current_element = new_element
+
+        # Add 'value' sub-node with None as text content to the end node.
+        value_node = ET.SubElement(current_element, 'value')
+        value_node.text = str(values[index])
+
+    return root
+
+
+def insert_missing_elements(main_tree, root_of_tree_to_insert):
+    """ Insert missing elements.
+
+    This function searches and inserts missing module-dependent node elements in the aircraft exchange tree.
+
+    :param tree main_tree: The element tree into which all data from the second tree is to be inserted.
+    :param root root_of_tree_to_insert: The root node contains all the data to be inserted into the main tree.
+    :return: None
+    """
+    root = main_tree.getroot()
+
+    def insert_elements(first_parent, second_parent):
+        for second_child in second_parent:
+            # Find or create the corresponding child in the first tree
+            first_child = first_parent.find(second_child.tag)
+            if first_child is None:
+                # If the element doesn't exist in the first tree, append it
+                first_child = ET.SubElement(first_parent, second_child.tag, attrib=second_child.attrib)
+                first_child.text = second_child.text
+            else:
+                # Update the attributes and text of the existing element
+                first_child.attrib.update(second_child.attrib)
+                if first_child.text is None:
+                    first_child.text = second_child.text
+                elif second_child.text is not None:
+                    first_child.text += second_child.text
+            # Recursively insert missing elements for child elements
+            insert_elements(first_child, second_child)
+
+    # Start recursive insertion from the roots
+    insert_elements(root, root_of_tree_to_insert)
+
+
+def find_and_remove_paths_in_tree(element_tree, cleaned_paths):
+    """ Find and remove paths in tree.
+
+    This function searches and removes given XML paths from a given element tree.
+    Attention: The function has different behavior for entries in the 'component_design' node. Due to the unknown
+    number of ID nodes, the entire module-dependent subtree is deleted here.
+    For all other nodes, only the target nodes are removed.
+
+    :param tree element_tree: Element tree containing all node datas.
+    :param list cleaned_paths: List containing all xml paths to remove.
+    :return: None
+    """
+    # Nested function to find parent node of current subtree node
+    def find_parent(root, element):
+        for parent in root.iter():
+            for child in parent:
+                if child == element:
+                    return parent
+        return None
+
+    root = element_tree.getroot()
+    # Create map for parent-child relations.
+    parent_map = {c: p for p in element_tree.iter() for c in p}
+
+    # Loop across all paths to remove from aircraft exchange tree.
+    for path in cleaned_paths:
+        # Convert the './' prefixed path to the standard XPath by removing the leading './'.
+        xpath = path.lstrip('./')
+        # Get first node of current path.
+        first_node = xpath.split('/')[0]
+        # Check if the first node is not 'component_design' -> if true: -> remove only the end nodes of current path.
+        if not first_node == 'component_design':
+            # Find elements matching the XPath.
+            elements_to_remove = root.findall(xpath)
+            # Check each element if is existing -> if true: -> remove node from element tree
+            for elem in elements_to_remove:
+                parent = parent_map.get(elem)
+                if parent is not None:
+                    parent.remove(elem)
+
+        # Else condition: the first node of current path is 'component_design'
+        #   -> Remove all nodes from second node to end of current path.
+        else:
+            second_node = xpath.split('/')[1]
+            sub_tree_to_remove = root.find('component_design/' + second_node)
+            if sub_tree_to_remove is not None:
+                # Use a list to collect all descendants
+                elements_to_remove = []
+                stack = [sub_tree_to_remove]
+                while stack:
+                    current_element = stack.pop()
+                    elements_to_remove.append(current_element)
+                    stack.extend(list(current_element))
+                # Remove all collected elements
+                for elem in elements_to_remove[::-1]:
+                    # Call nested function to find parend node of current sub tree node.
+                    parent = find_parent(root, elem)
+                    if parent is not None:
+                        parent.remove(elem)
+
+
+def convert_dictionary_to_element_tree(parameters_dict, parent=None):
+    """ Convert dictionary to element tree.
+
+    This function converts the module-dependent key parameter dict into a consistent module-dependent element tree.
+
+    :param dict parameters_dict: Dict containing parameter for the element tree to generate.
+    :param node parent: The Parent node element of current module key parameter.
+    :return: element parent
+    """
+    # Check if is parent is None -> if true: -> initialize root node of element tree as 'module_dependent_root'.
+    #  Otherwise, the given parent is an ET.Element
+    if parent is None:
+        parent = ET.Element('module_dependent_root')
+
+    # Loop across the key value pairs of given dictionary to convert to an element tree.
+    for key, value in parameters_dict.items():
+        # Check if the current key is 'attribute' -> if true: -> set current value as an attribute of parent node
+        if key == 'attributes':
+            for attr_key, attr_value in value.items():
+                parent.set(attr_key, str(attr_value))
+        # Else if condition: Check if the current value is a dictionary -> if true: -> build sub-dictionary recursively.
+        elif isinstance(value, dict):
+            element = ET.Element(key)
+            parent.append(element)
+            # Call function for recursive tree building.
+            convert_dictionary_to_element_tree(value, element)
+        # Else condition: Current key value pair is an end-node -> set value of dictionary entry as text element.
+        else:
+            element = ET.SubElement(parent, key)
+            element.text = str(value)
+
+    return parent
+
+def convert_element_tree_to_dictionary(root_of_tree):
+    """ Converts an ElementTree or Element into a dictionary.
+
+    :param (xml.etree.ElementTree.Element): The root element to convert.
+    :return dict dictionary: A dictionary representation of the ElementTree.
+    """
+
+    def _etree_to_dict(tree):
+        dictionary = {tree.tag: {} if tree.attrib else None}
+        children = list(tree)
+        if children:
+            data_dict = {}
+            for data_child in map(_etree_to_dict, children):
+                for key, value in data_child.items():
+                    if key in data_dict:
+                        if isinstance(data_dict[key], list):
+                            data_dict[key].append(value)
+                        else:
+                            data_dict[key] = [data_dict[key], value]
+                    else:
+                        data_dict[key] = value
+            dictionary = {tree.tag: data_dict}
+        if tree.attrib:
+            dictionary[tree.tag].update(('@' + key, value) for key, value in tree.attrib.items())
+        if tree.text:
+            text = tree.text.strip()
+            if children or tree.attrib:
+                if text:
+                    dictionary[tree.tag]['#text'] = text
+            else:
+                dictionary[tree.tag] = text
+        return dictionary
+
+    return _etree_to_dict(root_of_tree)
+
+def get_paths_of_element_tree(element_tree, parent_path=""):
+    """ Get paths of element tree.
+
+    This function extracts all xml paths of the given element tree.
+
+    :param tree element_tree: The element tree containing the module dependent parameter.
+    :param string parent_path: The string contains the parent path of current element.
+    :return: list paths
+    """
+    paths = []
+    current_path = f"{parent_path}/{element_tree.tag}" if parent_path else element_tree.tag
+    # If the element has no children, add the current path to list of paths.
+    if len(element_tree) == 0:
+        paths.append(current_path)
+    # Run through the children recursively
+    for child in element_tree:
+        # Call function for recursive path generation.
+        paths.extend(get_paths_of_element_tree(child, current_path))
+
+    return paths
+
+
+def prepare_element_tree_for_module_key_parameter(paths_and_names, module_key_parameters_dict):
+    """Prepare element tree.
+
+    This function prepares the element tree for the current module.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict module_key_parameters_dict: Dict containing information on module nodes in aircraft exchange file
+    :return: dict paths_and_names
+    """
+    # Call function to convert the module key parameter dict to a module dependent element tree.
+    module_dependent_tree = convert_dictionary_to_element_tree(module_key_parameters_dict)
+
+    # Call function to generate all xml path of the module dependent element tree.
+    element_tree_paths = get_paths_of_element_tree(module_dependent_tree)
+
+    # Sort the list of xml paths, delete duplicates and prepare for element tree operations.
+    cleaned_paths = sorted(list(set(['./' + '/'.join(path.split('/')[1:-1]) for path in element_tree_paths])))
+
+    # Call function to remove old elements from aircraft exchange tree.
+    find_and_remove_paths_in_tree(paths_and_names['root_of_aircraft_exchange_tree'], cleaned_paths)
+
+    # Call function to insert module dependent entries to the aircraft exchange tree.
+    insert_missing_elements(paths_and_names['root_of_aircraft_exchange_tree'], module_dependent_tree)
+
+    return paths_and_names
+
+
+def write_key_data_to_aircraft_exchange_file(root_of_aircraft_exchange_tree, path_to_aircraft_exchange_file,
+                                             paths_to_key_parameters_list, user_output_dict, tool_level,
+                                             runtime_output):
+    """Write key data to the aircraft exchange file.
+
+    This function takes key data, verifies and writes it to the aircraft exchange file.
+        (1) Preparation: Using the paths contained in the 'user_output_dict', a list with user paths is generated that
+        is subsequently cleaned of duplicates. Next, every path in the path list is assigned to one of the four
+        categories and appended to the corresponding list:
+            (a) user path already exists in aircraft exchange file ('paths_already_in_aircraft_exchange_file_list')
+            (b) valid user path ('valid_user_paths_list')
+            (c) invalid user path (invalid_user_paths_list)
+            (d) user paths that need further checks ('user_paths_to_check_list')
+        Note: Only the paths of the last category will be considered further in the following steps.
+        For further processing, the paths in 'user_paths_to_check_list' are sorted in ascending order according to
+        their IDs. In addition, all paths that have one or more IDs are then extracted from the key paths and appended
+        to 'key_paths_with_id_list' for further use.
+        (2) Path validation and key parameter check: One by one, each key path is generalized. This means that the
+        number(s) of the ID(s) contained are replaced by an 'X'. All user paths from 'user_paths_to_check_list' are
+        checked to see whether they match the pattern of the current generalized key path. All paths that match this
+        pattern are added to the 'matching_user_paths_list'. If there are matching user paths, the code performs
+        various checks to assign these user paths to either the 'valid_user_paths_list' or 'invalid_user_paths_list'.
+        The checks include examining the structure and values of IDs within the user paths. After processing the key
+        paths, the code checks for any user paths that are neither in the 'valid_user_paths_list' nor in the
+        'invalid_user_paths_list'. These paths are considered invalid, and a warning is issued. If there are user path
+        errors, error messages are generated, and the program is prepared for possible abort. The code checks whether
+        all key parameters are written by the user. If any key parameter path is missing, an error message is issued.
+        If there are either user path errors or missing key path errors, the code generates error messages and,
+        depending on the error type, raises a ValueError exception. This exception serves as a signal to terminate the
+        program.
+        Note: Only the 'valid_user_path_list' will be considered further in the following steps.
+        (3) Initialization of tree structure: Ensure that all necessary paths exist in aircraft exchange file to enable
+        upcoming step. Furthermore, the values are checked to ensure that they are within the defined limits.
+        (4) Completion: Write to aircraft exchange file. If the file cannot be opened, an OSError is raised.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange file tree
+    :param str path_to_aircraft_exchange_file: Path to aircraft exchange file
+    :param list paths_to_key_parameters_list: List with paths to key parameters in aircraft exchange file
+    :param dict user_output_dict: Dictionary containing parameter name, path to parameter, and value of key parameters
+    :param int tool_level: Tool level of current module
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Raised if unsuccessful validation (faulty user paths, missing key paths or value out of limits)
+    or failed writing to the aircraft exchange file
+    :return: None
+    """
+
+    """Preparation."""
+    # Generate list with user defined paths in 'user_output_dict' and ensure operating system conformity for path
+    # separators.
+    user_defined_path_list = [user_output_dict[key][0].replace(os.sep, '/') for key in user_output_dict]
+    # Count the occurrences of each path.
+    path_counter = collections.Counter(user_defined_path_list)
+    duplicate_paths = [path for path, count in path_counter.items() if count > 1]
+    # Remove duplicates and generate a warning.
+    if duplicate_paths:
+        runtime_output.warning('Warning: Duplicate paths found. Removing the following duplicates:')
+        for duplicate_paths in duplicate_paths:
+            runtime_output.warning('                                     ' + f"Duplicate path: {duplicate_paths}")
+            user_defined_path_list.remove(duplicate_paths)
+
+    # Initialize local parameters that indicate which paths are valid, invalid, already in aircraft exchange file, and
+    # which need further checks.
+    valid_user_paths_list, invalid_user_paths_list, user_paths_to_check_list = [], [], []
+    paths_already_in_aircraft_exchange_file_list = []
+
+    # Iterate over all user defined paths in 'user_defined_path_list' and assign each path to one category.
+    for user_path in user_defined_path_list:
+        path_not_in_aircraft_exchange_file = False
+        # Check if user path (including 'value' sub-node) exists in aircraft exchange file and append to
+        # 'paths_already_in_aircraft_exchange_file_list' and 'valid_user_paths_list'.
+        if root_of_aircraft_exchange_tree.find(user_path + '/value') is not None:
+            paths_already_in_aircraft_exchange_file_list.append(user_path)
+            valid_user_paths_list.append(user_path)
+        # Else: Set 'path_not_in_aircraft_exchange_file' to 'True'.
+        else:
+            path_not_in_aircraft_exchange_file = True
+
+        # If path is not already contained in aircraft exchange file, append path to one of the following three lists:
+        # 'valid_user_paths_list', 'invalid_user_paths_list', or 'user_paths_to_check_list'.
+        if path_not_in_aircraft_exchange_file:
+            # If last character of 'user_path' is ']', path is considered invalid.
+            if user_path[-1] == ']':
+                invalid_user_paths_list.append(user_path)
+                continue
+            # Count the number of IDs in 'user_path' string.
+            user_path_id_count = user_path.count('[@ID="')
+            # If current user path is contained in list of key parameter paths, append user path to list of valid user
+            # paths.
+            if user_path in paths_to_key_parameters_list:
+                valid_user_paths_list.append(user_path)
+            # If current user path is not contained in list of key parameter paths and user path does not contain an
+            # ID, append user path to list of invalid user paths.
+            elif user_path not in paths_to_key_parameters_list and user_path_id_count == 0:
+                invalid_user_paths_list.append(user_path)
+            # If none of above criteria apply, the user path is appended to the list of paths that need further checks.
+            else:
+                user_paths_to_check_list.append(user_path)
+
+    # Extract the values after "@ID=" from the paths in the list of paths that need further checks and sort this list.
+    id_values = [int(re.search(r'@ID="(\d+)"', path).group(1)) for path in user_paths_to_check_list]
+    user_defined_path_list_sorted = [path for _, path in sorted(zip(id_values, user_paths_to_check_list))]
+
+    # Extract key paths that contain "@ID".
+    key_paths_with_id_list = [path for path in paths_to_key_parameters_list if re.search(r'@ID="\d+"', path)]
+
+    """Path validation and key parameter check."""
+    # Classify each existing user path into a category based on generalized key parameter paths and check for missing
+    # key parameter paths.
+    try:
+        # Initialization of variables for error tracking.
+        error_path_dict = {}
+        user_path_error = False
+        user_path_error_counter = 0
+        missing_key_path_error = False
+        # Iterate over key paths in list of key paths with IDs.
+        for current_key_path in key_paths_with_id_list:
+            # Check if current key path exists in 'valid_user_paths_list' (True/False).
+            key_path_exists_in_user_paths = current_key_path in valid_user_paths_list
+            # Define ID pattern to generalize "@ID" attribute in 'current_key_path' (replace ID number with 'X').
+            id_pattern = re.compile(r'@ID="(\d+)"')
+            # Store current generalized key parameter path.
+            current_generalized_key_path = re.sub(r'@ID="\d+"', '@ID="X"', current_key_path)
+            # Create empty list of matching user paths.
+            # Iterate over all user paths in sorted list of user defined paths.
+            # - Replace ID number with 'X' for generalization purposes.
+            # - Append all user paths that match the pattern of the current generalized key parameter path.
+            matching_user_paths_list = [user_path for user_path in user_defined_path_list_sorted if
+                re.sub(r'@ID="\d+"', '@ID="X"', user_path) == current_generalized_key_path]
+
+            # Sub function to sort all paths by his last ID entry in numerical order.
+            def extract_id(matching_user_paths_list):
+                matches = re.findall(r'@ID="(\d+)"', matching_user_paths_list)
+                return int(matches[-1]) if matches else float('inf')
+
+            # Sort the list by the extracted ID value.
+            matching_user_paths_list = sorted(matching_user_paths_list, key=extract_id)
+
+            # If any user paths match the current generalized key parameter path, various checks are performed to
+            # assign the corresponding user paths to either the "valid_user_paths_list" or the
+            # "invalid_user_paths_list".
+            if len(matching_user_paths_list) > 0:
+                # Create empty list of current user path IDs.
+                user_path_ids_list = []
+                # Iterate over list with user paths that match current key parameter path pattern and extract the
+                # values of contained IDs.
+                for current_matching_user_path in matching_user_paths_list:
+                    # Find all IDs of current user path.
+                    values_of_user_ids_list = re.findall(id_pattern, current_matching_user_path)
+                    # Convert the numbers from strings to integers.
+                    values_of_user_ids_list = [int(num) for num in values_of_user_ids_list]
+                    # Generate list of IDs for current user path.
+                    user_path_ids_list.append(values_of_user_ids_list)
+
+                # If the 'current_key_path' exists in 'valid_user_paths_list' and there are user path IDs, the IDs are
+                # compared and possible errors handled.
+                if key_path_exists_in_user_paths and len(user_path_ids_list) != 0:
+                    # Create a list with n zeros (n corresponds to the number of IDs in the current generalized key
+                    # parameter path) and store the list in which all IDs are zero as 'first_list'.
+                    zero_list = [0 for _ in range(len(user_path_ids_list[0]))]
+                    user_path_ids_list.insert(0, zero_list)
+                    first_list = user_path_ids_list[0]
+                    # Check each position in the lists.
+                    for i in range(1, len(user_path_ids_list)):
+                        # Check whether the first element of the previous list is NOT the same as the first element of
+                        # the current list.
+                        if first_list != user_path_ids_list[i]:
+                            # If the two IDs differ by more than 1, add the path to the list of invalid paths and go on
+                            # with the next generalized key parameter path.
+                            if abs(sum(first_list) - sum(user_path_ids_list[i])) > 1 \
+                                    and (abs(first_list[-1] - user_path_ids_list[i][-1]) > 1):
+                                user_path_error_counter += 1
+                                error_path_dict[current_generalized_key_path] = matching_user_paths_list[i-1:]
+                                [invalid_user_paths_list.append(matching_user_paths_list[j])
+                                    for j in range(0, len(matching_user_paths_list))]
+                                break
+                            # If the first ID differs by 1 compared to the previous path, then a check of the following
+                            # IDs is performed.
+                            else:
+                                valid_user_paths_list.append(matching_user_paths_list[i-1])
+                                first_list = user_path_ids_list[i]
+                        # If the first ID of the current path matches the first ID of the previous path, the subsequent
+                        # IDs are subjected to further checks.
+                        else:
+                            # If the difference between the two lists is greater than 1, append the current path to the
+                            # list of invalid paths and continue with the next generalized key parameter path.
+                            if abs(sum(first_list) - sum(user_path_ids_list[i])) > 1:
+                                user_path_error_counter += 1
+                                error_path_dict[current_generalized_key_path] = matching_user_paths_list[i-1:]
+                                [invalid_user_paths_list.append(matching_user_paths_list[j])
+                                    for j in range(0, len(matching_user_paths_list))]
+                                break
+                            # If the difference between the two lists is less than or equal to 1, then append the
+                            # current path to the list of valid paths.
+                            elif abs(sum(first_list) - sum(user_path_ids_list[i])) <= 1:
+                                valid_user_paths_list.append(matching_user_paths_list[i-1])
+                                first_list = user_path_ids_list[i]
+                # If the 'current_key_path' exists in 'valid_user_paths_list', but there are no matching user paths, a
+                # warning is issued.
+                elif key_path_exists_in_user_paths and len(user_path_ids_list) == 0:
+                    runtime_output.warning('Warning: No matching user paths according to key pattern: '
+                                           + current_generalized_key_path)
+                    continue
+                # If the 'current_key_path' does not exist in 'valid_user_paths_list' and is not contained in
+                # 'paths_already_in_aircraft_exchange_file_list', a warning is issued and the current user paths are
+                # appended to the invalid paths.
+                elif not key_path_exists_in_user_paths \
+                        and current_key_path not in paths_already_in_aircraft_exchange_file_list:
+                    runtime_output.warning('Warning: Key path missing in user defined path list: ' + current_key_path)
+                    user_path_error_counter += 1
+                    error_path_dict[current_generalized_key_path] = matching_user_paths_list
+                    [invalid_user_paths_list.append(matching_user_paths_list[j])
+                        for j in range(0, len(matching_user_paths_list))]
+                    continue
+
+        # After processing the key paths, it is checked for any user paths that are neither in 'valid_user_paths_list'
+        # nor in 'invalid_user_paths_list'. These paths are considered invalid, and a warning is issued.
+        for tmp_path in user_defined_path_list_sorted:
+            if tmp_path not in valid_user_paths_list and tmp_path not in invalid_user_paths_list:
+                invalid_user_paths_list.append(tmp_path)
+                runtime_output.warning(
+                    ('Warning: The path "' + tmp_path + '" is not a key value and therefore not written to aircraft '
+                     'exchange file. Please contact module manager for further instructions.'))
+
+        # If there are user path errors, error messages are generated.
+        if user_path_error_counter > 0:
+            user_path_error = True
+            # Generate error messages.
+            for key, value in error_path_dict.items():
+                runtime_output.error('Error: The following user paths of the pattern "' + key + '" are invalid:')
+                for i, value in enumerate(value):
+                    runtime_output.error('                                     ' + value)
+                user_path_error_string = 'Please change user paths according to style guidelines.'
+
+        # Check whether all key parameters are written by the user.
+        missing_key_path_list = []
+        missing_key_path_error_string = str()
+        for tmp_key_path in paths_to_key_parameters_list:
+            # If a key parameter path is missing, an error message is issued.
+            if tmp_key_path not in valid_user_paths_list:
+                runtime_output.error('Error: The following key parameter is not set: ' + tmp_key_path)
+                missing_key_path_list.append(tmp_key_path)
+        # If there are missing key path errors, error messages are generated.
+        if len(missing_key_path_list) != 0:
+            missing_key_path_error = True
+            missing_key_path_error_string = 'Please make sure to write all necessary key parameters of your method.'
+
+        # If there are user path errors or missing key path errors, error messages are generated and the program is
+        # aborted with a ValueError exception.
+        if user_path_error or missing_key_path_error:
+            if user_path_error and not missing_key_path_error:
+                raise ValueError(user_path_error_string + ' Program aborted!')
+            elif not user_path_error and missing_key_path_error:
+                raise ValueError(missing_key_path_error_string + ' Program aborted!')
+            else:
+                raise ValueError(user_path_error_string[:-1] + ' and ' + missing_key_path_error_string.lower()
+                                 + ' Program aborted!')
+
+    # Exception handling for value error.
+    except ValueError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    """Initialization of tree structure."""
+    # Initialization.
+    component_layer_old = str()
+    sub_node_list = ['value', 'unit', 'lower_boundary', 'upper_boundary']
+    # Extract the corresponding dictionary entries to the valid user paths.
+    valid_key_dict = {key: value for (key, value) in user_output_dict.items()
+                      if user_output_dict[key][0] in valid_user_paths_list}
+
+    # Create all necessary nodes in the aircraft exchange file and check whether the results are within the expected
+    # limits.
+    try:
+        # Iterate over all parameters in 'valid_key_dict'.
+        for key in valid_key_dict:
+            # Extract path.
+            tmp_string = valid_key_dict[key][0]
+            # Split 'tmp_string' at operating system separator.
+            parts_list = tmp_string.split('/')
+            # Delete all empty list entries if existing.
+            filtered_parts = [part for part in parts_list if part]
+            # Store third element as 'component_layer'.
+            component_layer = filtered_parts[2]
+            # Initialization of necessary variables.
+            parent_path = []
+            path_to_check = '.'
+            first_id_parent = []
+            tmp_zero_path = str()
+            path_contains_id = False
+            # Check if the current part of string is existing in the aircraft exchange ElementTree.
+            for part in filtered_parts[1:]:
+                # Extend the 'path_to_check' with the current 'part'.
+                path_to_check = os.path.join(path_to_check, part).replace(os.sep, '/')
+                # Check if the path exist in aircraft exchange ElementTree.
+                path_flag = root_of_aircraft_exchange_tree.find(path_to_check)
+                # Check if the 'component_layer' is the same as the 'component_layer_old'.
+                same_component_layer = component_layer == component_layer_old
+                # Set 'tool_level' attribute if path exists, the current part equals 'component_layer', and if the
+                # 'component_layer' is different from the previous one.
+                if path_flag is not None and part == component_layer and not same_component_layer:
+                    path_flag.set('tool_level', tool_level)
+                    component_layer_old = component_layer
+                # Add the current part of string to the ElementTree as a new sub-node if the node does not exist.
+                if path_flag is None:
+                    # Check if current part of string contains '@' (indicating ID).
+                    if '@' in part:
+                        # Set flag if string contains '@'.
+                        path_contains_id = True
+                        if len(first_id_parent) == 0:
+                            first_id_parent = parent_path
+                        # Handle attribute 'ID' (extract 'ID' and value of ID, generate new sub-node under current
+                        # 'parent_path', and set attribute 'ID' with according value).
+                        attribute_name, attribute_value = part.split('=')
+                        attribute_name = attribute_name.split('[@')
+                        attribute_id = attribute_name[1]
+                        attribute_value = attribute_value[attribute_value.find('"')+1:attribute_value.rfind('"')]
+                        node_name = attribute_name[0]
+                        new_node = ET.SubElement(parent_path, node_name)
+                        new_node.set(attribute_id, attribute_value)
+                        # Handle attribute 'description' (set the description to description of the 'tmp_zero_path').
+                        tmp_pattern = r'"(.*?)"'
+                        tmp_zero_path = re.sub(tmp_pattern, '"0"', path_to_check)
+                        tmp_description = root_of_aircraft_exchange_tree.find(tmp_zero_path).get('description')
+                        new_node.set('description', tmp_description)
+                    # Current path does not contain '@'.
+                    else:
+                        if len(tmp_zero_path) != 0:
+                            tmp_zero_path = tmp_zero_path + '/' + part
+                        else:
+                            tmp_pattern = r'"(.*?)"'
+                            tmp_zero_path = re.sub(tmp_pattern, '"0"', path_to_check)
+                            path_contains_id = True
+                        element_to_add = ET.Element(part)
+                        # Check if description exists.
+                        if path_to_check == './component_design/fuselage/specific/geometry/fuselage[@ID="0"]/mass_breakdown/fuselage_furnishing/component_mass[@ID="0"]/mass':
+                            formatted_xml = ET.tostring(root_of_aircraft_exchange_tree.getroot(), encoding='unicode', method='xml')
+                            formatted_xml_with_indent = minidom.parseString(formatted_xml).toprettyxml(indent="    ")
+                            # Ausgabe
+                            print(formatted_xml_with_indent)
+                            print(path_to_check)
+                        description_of_zero_path = \
+                            root_of_aircraft_exchange_tree.find(tmp_zero_path).get('description')
+                        element_to_add.set('description', description_of_zero_path)
+                        # Append 'element_to_add' to 'parent_path'.
+                        parent_path.append(element_to_add)
+                parent_path = root_of_aircraft_exchange_tree.find(path_to_check)
+                # Check if the current 'part' is the last element in the 'filtered_parts' list.
+                if part == filtered_parts[-1]:
+                    # Check if 'path_to_check' contains an ID.
+                    if path_contains_id:
+                        # Check if 'path_to_check' is not equal to 'tmp_zero_path'.
+                        if path_to_check != tmp_zero_path:
+                            # Check if the current parameter not is not 'name'
+                            #  -> if true: -> add all sub nodes to current paramter
+                            if part != 'name':
+                                # Iterate through 'sub_node_list'.
+                                for sub_node in sub_node_list:
+                                    # Check if 'sub-node' exists in 'tmp_zero_path'.
+                                    tmp_sub_node_exists_in_zero_path = \
+                                        root_of_aircraft_exchange_tree.find(tmp_zero_path + '/' + sub_node)
+                                    if tmp_sub_node_exists_in_zero_path is not None:
+                                        # Create new XML subelement with same name as 'sub_node' under 'parent_path'.
+                                        ET.SubElement(parent_path, sub_node)
+                                        # Get associated element. Set text to text of element in 'tmp_zero_path/sub_node'.
+                                        tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/' + sub_node)
+                                        if sub_node == 'value':
+                                            tmp_path.text = str(user_output_dict[key][1])
+                                        else:
+                                            tmp_path.text = str(root_of_aircraft_exchange_tree.find(
+                                                tmp_zero_path + '/' + sub_node).text)
+                            # Else condition: The current parameter not is 'name'
+                            #  -> add only 'value' sub note to current parameter
+                            else:
+                                # Check if 'value' exists in 'tmp_zero_path'.
+                                tmp_sub_node_exists_in_zero_path = \
+                                    root_of_aircraft_exchange_tree.find(tmp_zero_path + '/value')
+                                if tmp_sub_node_exists_in_zero_path is not None:
+                                    # Create new XML subelement with same name as 'sub_node' under 'parent_path'.
+                                    ET.SubElement(parent_path, 'value')
+                                    # Get associated element. Set text to text of element in 'tmp_zero_path/sub_node'.
+                                    tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/value')
+                                    tmp_path.text = str(user_output_dict[key][1])
+                    # 'path_to_check' does not contain an ID.
+                    else:
+                        # Find the XML element at 'path_to_check' + '/value'.
+                        tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/value')
+                        # Get value associated with the key from 'user_output_dict'.
+                        tmp_value = user_output_dict[key][1]
+                        # Find lower and upper boundary elements.
+                        lower_boundary = root_of_aircraft_exchange_tree.find(path_to_check + '/lower_boundary')
+                        upper_boundary = root_of_aircraft_exchange_tree.find(path_to_check + '/upper_boundary')
+                        # Check if lower and upper boundaries are checkable (checkable means not None and not "None").
+                        lower_boundary_checkable = lower_boundary is not None and \
+                            (lower_boundary.text is not None and lower_boundary.text != 'None')
+                        upper_boundary_checkable = upper_boundary is not None and \
+                            (upper_boundary.text is not None and upper_boundary.text != 'None')
+                        # Check if the value falls below the lower boundary (if checkable).
+                        if lower_boundary_checkable and tmp_value < float(lower_boundary.text):
+                            raise ValueError('The value of the parameter ' + str(key) + ' = ' + str(tmp_value)
+                                             + ' falls below the given lower boundary of ' + lower_boundary.text
+                                             + '. Program aborted!')
+                        # Check if the value exceeds the upper boundary (if checkable).
+                        if upper_boundary_checkable and tmp_value > float(upper_boundary.text):
+                            raise ValueError('The value of the parameter ' + str(key) + ' = ' + str(tmp_value) +
+                                             ' exceeds the given upper boundary of ' + upper_boundary.text
+                                             + '. Program aborted!')
+                        # If no boundary conditions were violated, set tmp_path.text to the value.
+                        tmp_path.text = str(tmp_value)
+
+            # Sort all child nodes alphabetically according to their tags.
+            sort_root = first_id_parent
+            children = list(sort_root)
+            children.sort(key=lambda x: x.tag)
+            # Delete all child nodes from root element.
+            for child in children:
+                sort_root.remove(child)
+            # Add the sorted child nodes back to the root element.
+            for child in children:
+                sort_root.append(child)
+
+    # Exception handling for value error.
+    except ValueError as e:
+        runtime_output.critical('Error:' + str(e))
+        sys.exit(1)
+
+    """Completion."""
+    # Ensure proper indentation.
+    ET.indent(root_of_aircraft_exchange_tree, space="    ", level=0)
+    # Write all key parameters to aircraft exchange file.
+    try:
+        # Write data to file.
+        root_of_aircraft_exchange_tree.write(path_to_aircraft_exchange_file,  encoding='utf-8')
+    # Exception handling for operating system error.
+    except OSError:
+        runtime_output.critical('Error: Writing to aircraft exchange file failed. Program aborted!')
+        sys.exit(1)
+
+
+def method_data_postprocessing(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """General data postprocessing for current calculation method.
+
+    This function executes the method's own postprocessing. It is divided into general postprocessing and user layer
+    specific postprocessing:
+        - General postprocessing: The general postprocessing contains operations that are always carried out regardless
+        of the user layer. This includes general reports and plots.
+        - User layer specific postprocessing: Specific postprocessing includes, for example, plots that can/should only
+        be created if the user layer contains a certain value. The same applies to reports with values that are only
+        determined for certain user layer values.
+    Note that it may also be possible that the specific part is omitted, as the entire postprocessing is independent of
+    the user layer.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method-specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises OSError: Raised if any method-specific postprocessing function fails
+    :return: None
+    """
+
+    # Read output switches from module configuration file.
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    plot_switch = (eval(root_of_module_config_tree.find('.//plot_output/enable/value').text.capitalize()))
+    html_switch = eval(root_of_module_config_tree.find('.//report_output/value').text.capitalize())
+    tex_switch = eval(root_of_module_config_tree.find('.//tex_report/value').text.capitalize())
+    if root_of_module_config_tree.find('.//xml_output/value') is not None:
+        xml_export_switch = eval(root_of_module_config_tree.find('.//xml_output/value').text.capitalize())
+    else:
+        xml_export_switch = False
+
+    # Plot functionality.
+    if plot_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/plots'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/plots')
+        try:
+            # Run 'method_plot' from 'methodplot.py'.
+            routing_dict['func_user_method_plot'](paths_and_names, routing_dict, data_dict, method_specific_output_dict,
+                                                  runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_plot" function failed. No plots generated and saved.')
+    else:
+        runtime_output.warning('Warning: "plot_output" switch in module configuration file set to "False". '
+                               + 'No plots generated.')
+
+    # HTML report functionality.
+    if html_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_html'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/report_html')
+            
+        try:
+            # Run 'method_html_report' from 'methodhtmlreport.py'.
+            routing_dict['func_user_method_html_report'](paths_and_names, routing_dict, data_dict,
+                                                         method_specific_output_dict, runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_html_report" function failed. '
+                                 + 'No additional data written to HTML report file.')
+    else:
+        runtime_output.warning(
+            'Warning: "html_output" switch in module configuration file set to "False". No HTML report generated.'
+        )
+
+    # XML export functionality.
+    if xml_export_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_xml'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/report_xml')
+            
+        xml_export_tree, path_to_results_file = prepare_method_specific_xml_file(paths_and_names, routing_dict,
+                                                                                 runtime_output)
+        try:
+            # Run 'method_xml_export' from 'methodxmlexport.py'.
+            routing_dict['func_user_method_xml_export'](paths_and_names, routing_dict, data_dict,
+                                                        method_specific_output_dict, xml_export_tree,
+                                                        path_to_results_file, runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_xml_export" function failed. '
+                                 + 'No additional data written to module specific XML results file.'
+                                 )
+    else:
+        runtime_output.warning('Warning: "xml_output" switch in module configuration file set to "False". '
+                               + 'No XML results file generated.')
+
+    # TeX output functionality.
+    if tex_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_tex'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/report_tex')
+            
+        try:
+            # Run 'method_tex_output' from 'methodtexoutput.py'.
+            routing_dict['func_user_method_tex_output'](paths_and_names, routing_dict, data_dict,
+                                                        method_specific_output_dict, runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_tex_output" function failed. '
+                                 + 'No TeX report file generated.'
+                                 )
+    else:
+        runtime_output.warning(
+            'Warning: "tex_output" switch in module configuration file set to "False". No TeX report file generated.')
+
+
+def prepare_method_specific_xml_file(paths_and_names, routing_dict, runtime_output):
+    """Generate XML file with general information on module execution to prepare the method-specific data output.
+
+    This function generates the basic structure of an XML file that is intended for the export of method-specific data.
+    This involves the following steps:
+        (1) Generate the file and module name as well as the path to the results file using information provided by the
+        'paths_and_names' dictionary.
+        (2) Delete older versions of the file (if existing).
+        (3) Create the XML structure
+            3.1) Create a 'general_information' block that contains the following information:
+                - Version of the current UNICADO workflow
+                - Code execution date and time
+                - Current aircraft project name
+                - Calculation method name
+            3.2) Create a 'routing_layer' block that contains information on the current routing layers.
+            3.3) Create a 'calculation_results' block that serves as a placeholder for the subsequent export of data
+            (if desired)
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises OSError: Raised if workflow version file not found
+    :returns:
+        - ElementTree xml_export_tree: Element tree of method-specific XML tree
+        - str path_to_results_file: Path to method-specific output XML file
+    """
+
+    # Initialize parameters.
+    file_name = paths_and_names['tool_name'] + '_results.xml'
+    module_name = paths_and_names['tool_name'].replace('_', ' ').capitalize()
+    path_to_results_file = paths_and_names["project_directory"] + '/reporting/report_xml/' + file_name
+
+    # Delete older output file if existing.
+    if os.path.isfile(path_to_results_file):
+        os.remove(path_to_results_file)
+
+    # Create directory for xml reports, if not existing
+    os.makedirs(paths_and_names["project_directory"] + '/reporting/report_xml/', exist_ok = True)
+
+    # Generate new ElementTree.
+    xml_export_root = ET.Element("module_results_file")
+    # Set name of current tool 'Name' of root element and generate ElementTree.
+    xml_export_root.set("Name", module_name + " specific outputs")
+    xml_export_tree = ET.ElementTree(xml_export_root)
+    # Add 'general_information' sub-node.
+    child = ET.SubElement(xml_export_root, "general_information")
+    child.set("description", "General information on module execution")
+
+    try:
+        # Initialize general information parameters.
+        if os.path.isfile(paths_and_names['working_directory'] + '/version.txt'):
+            # Open file and read version information.
+            with open(paths_and_names['working_directory'] + '/version.txt', 'r') as file:
+                # Read first line.
+                workflow_version = file.readline()
+        else:
+            workflow_version = "not available"
+    except OSError as e:
+        runtime_output.warning('Warning: ' + str(e) + ' \n'
+                               + '                                     '
+                               + 'Workflow version file not found.')
+
+    execution_date = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    project_name = (
+        root_of_module_config_tree.find('./control_settings/aircraft_exchange_file_name/value').text.split(".xml"))[0]
+    method_name = root_of_module_config_tree.find('./program_settings/configuration/method_name/value').text
+    # Definition of subnodes of 'general_information'.
+    # Format: general_information_subnodes = { 'name_of_sub-node': [description, value], ...}
+    general_information_subnodes = {
+        'workflow_version': ['Version number of the current workflow', workflow_version],
+        'execution_date': ['Execution date and time of the code', execution_date],
+        'project_name': ['Name of the current aircraft project', project_name],
+        'method_name': ['Name of current module calculation method', method_name]
+    }
+    # Iterate over 'general_information_subnodes' dictionary and add all keys as children.
+    for key, value in general_information_subnodes.items():
+        # Create a subelement for each key.
+        key_element = ET.SubElement(child, key)
+        # Add an attribute "description" and set the value to the first entry of the value-list.
+        key_element.set("description", value[0])
+        # Add a subelement "value" and set the value as text.
+        value_element = ET.SubElement(key_element, "value")
+        value_element.text = value[1]
+    # Add routing layer block.
+    routing_layer_element = ET.SubElement(child, 'routing_layer')
+    routing_layer_element.set("description", "Routing layer information")
+    # Iterate over 'routing_dict' and add keys that contain 'layer' as children of 'routing_layer_element'.
+    for key, value in routing_dict.items():
+        if 'layer' in key:
+            key_element = ET.SubElement(routing_layer_element, key)
+            key_element.set("description", 'Routing ' + str(key))
+            value_element = ET.SubElement(key_element, "value")
+            value_element.text = value
+    # Add 'calculation_results' block.
+    child = ET.SubElement(xml_export_root, "calculation_results")
+    child.set("description", "Results of calculation method")
+
+    # Ensure proper indentation and write file.
+    ET.indent(xml_export_root, space="    ", level=0)
+    try:
+        xml_export_tree.write(path_to_results_file)
+    except OSError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    return xml_export_tree, path_to_results_file
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..26e7e6c0bef95bef7dc5997ad35d04e1a4007512
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py
@@ -0,0 +1,776 @@
+"""Module providing general UNICADO data preprocessing functions for Python code."""
+# Import standard modules.
+import os
+import re
+import sys
+import logging
+import xml.etree.ElementTree as ET
+from pathlib import Path
+from datetime import datetime
+from inspect import currentframe, getframeinfo
+from runtimeoutputmodule import configure_runtime_output
+
+
+def method_data_preprocessing(paths_and_names, routing_dict, runtime_output):
+    """General data preprocessing for current calculation method.
+
+    This function performs general data preprocessing on input data obtained from aircraft exchange and module
+    configuration files. It accomplishes the following tasks:
+        (1) Data preparation: Extract root elements of aircraft exchange and module configuration trees from
+        'paths_and_names' dict. Invoke 'user_method_data_preparation' function, specified in 'routing_dict', to obtain
+        information on data to extract from these files, resulting in two dictionaries, namely the
+        'data_to_extract_from_aircraft_exchange_dict' and the 'data_to_extract_from_module_configuration_dict'.
+        (2) Read values from XML files: Using the above defined dictionaries with information on parameters that must
+        be extracted from the aircraft exchange and module configuration file, the according values are read from the
+        respective files and stored in 'tmp_aircraft_exchange_dict' and 'tmp_module_configuration_dict'. These
+        temporary dictionaries have a specific format for each parameter, including the parameter's name, path, value,
+        lower boundary, and upper boundary:
+            tmp_dict = {'parameter_name_1': [path, expected data type, value, lower boundary, upper boundary],
+                        'parameter_name_2': [...],
+                        ...}
+        (3) The code then iterates over both temporary dictionaries, type casts the values to their expected data types,
+        checks if the values are within specified lower and upper boundaries, and stores the checked values in a new
+        dictionary, 'dict_out_short'. This dictionary contains the values for the same parameters as the input
+        dictionaries but with checked and possibly modified values.
+    The code returns two dictionaries: 'short_aircraft_exchange_dict' and 'short_module_configuration_dict', that
+    represent the preprocessed data for the aircraft exchange and module configuration file, respectively. The
+    dictionaries represent condensed forms of the 'tmp_aircraft_exchange_dict' and the 'tmp_module_configuration_dict'
+    and are structured according to the following scheme:
+        dict = {'parameter_name_1': value, ...}
+
+    In the case of a multi-parameter (xml path contains '@ID' identifier), the value of the parameter key
+    ('parameter_name_1') contains a sub-dictionary with all existing parameter ID names ('parameter_name_1_ID...') and
+    its corresponding values.
+        dict = {'parameter_name_1': {'parameter_name_1_ID0': value, 'parameter_name_1_ID1': value}, ...}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing information on necessary data from module configuration file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :returns:
+        - dict short_aircraft_exchange_dict: Dict containing parameters and acc. values from aircraft exchange file
+        - dict short_module_configuration_dict: Dict containing parameters and acc. values from module config. file
+    """
+
+    """Data preparation."""
+    # Extract roots of aircraft exchange and module configuration file.
+    root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree']
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    # Run 'user_method_data_preparation' from 'usermethoddatapreparation.py'.
+    data_to_extract_from_aircraft_exchange_dict, data_to_extract_from_module_configuration_dict \
+        = routing_dict['func_user_method_data_input_preparation'](routing_dict)
+
+    """Read values from XML files."""
+    # Read values from aircraft exchange and module configuration file.
+    tmp_aircraft_exchange_dict = read_values_from_xml_file(data_to_extract_from_aircraft_exchange_dict,
+                                                           root_of_aircraft_exchange_tree, runtime_output)
+    tmp_module_configuration_dict = read_values_from_xml_file(data_to_extract_from_module_configuration_dict,
+                                                              root_of_module_config_tree, runtime_output)
+
+    """Extract, compute (type cast), and check values from output dictionary."""
+    tmp_list = []
+    # Iterate over both dictionaries.
+    for tmp_dict in [tmp_aircraft_exchange_dict, tmp_module_configuration_dict]:
+        dict_out_short = {}
+        multi_parameter_dict = {}
+        # Iterate over all elements of current dictionary.
+        for key in tmp_dict.keys():
+            # Extract and compute values.
+            parameter_name = key
+            expected_data_type = tmp_dict[key][1]
+            # Check if the current expected data type is not tool_level.
+            if expected_data_type != 'tool_level':
+                value = convert_string_to_expected_data_type(
+                    tmp_dict[key][-3], expected_data_type, parameter_name,
+                    runtime_output)
+                lower_boundary = convert_string_to_expected_data_type(tmp_dict[key][-2], expected_data_type,
+                                                                    ("lower_boundary_of_" + parameter_name),
+                                                                    runtime_output)
+                upper_boundary = convert_string_to_expected_data_type(tmp_dict[key][-1], expected_data_type,
+                                                                    ("upper_boundary_of_" + parameter_name),
+                                                                    runtime_output)
+                # Check if value is within specified limits.
+                checked_value = check_boundaries(parameter_name, value, runtime_output, lower_boundary, upper_boundary)
+
+                # Check if the current parameter to check is a multi-parameter with "@ID" xml path.
+                if tmp_dict[key][2]:
+                    if not tmp_dict[key][3] in multi_parameter_dict:
+                        multi_parameter_dict[tmp_dict[key][3]] = {}
+                    multi_parameter_dict[tmp_dict[key][3]][key] = checked_value
+                # Else condition: current parameter is a single parameter.
+                else:
+                    # Set value to checked value and write to output dictionary.
+                    dict_out_short[key] = checked_value
+            # Else condition: The current expected data type is a tool_level.
+            else:
+                # Check if the value of tool_level is not None.
+                if tmp_dict[key][-3] is not None:
+                    dict_out_short[key] = int(tmp_dict[key][-1])
+                # Else condition: The current value of tool_level is None.
+                else:
+                    dict_out_short[key] = None
+
+        # Update and append 'dict_out_short'.
+        dict_out_short = {**dict_out_short, **multi_parameter_dict}
+        tmp_list.append(dict_out_short)
+
+    # Extract short versions of dictionaries from 'tmp_list'.
+    short_aircraft_exchange_dict = tmp_list[0]
+    short_module_configuration_dict = tmp_list[1]
+
+    return short_aircraft_exchange_dict, short_module_configuration_dict
+
+
+def get_paths_and_names(module_configuration_file_name, argv):
+    """Generate paths, names, and ElementTree based on module configuration file.
+
+    This function generates paths and names as well as ElementTrees of the module configuration (config) and
+    the associated aircraft exchange file. All generated parameters are returned via the output dictionary
+    'paths_and_names'.
+
+    The 'paths_and_names' output dictionary contains the following values:
+        - 'working_directory': Current working directory of module (str)
+        - 'parent_directory': Parent directory of module (str)
+        - 'project_directory': Current project directory (str)
+        - 'path_to_module_config_file': Path to module configuration file (str)
+        - 'root_of_module_config_tree': Root of module configuration file tree (ElementTree)
+        - 'path_to_aircraft_exchange_file': Path to aircraft exchange file (str)
+        - 'root_of_aircraft_exchange_tree': Root of aircraft exchange file tree (ElementTree)
+        - 'name_of_project': Name of the current aircraft project (str)
+        - 'tool_name': Name of current tool (str)
+
+    :param str module_configuration_file_name: Name of module configuration file
+    :param list argv: Contains optional input arguments
+    :returns:
+        - dict paths_and_names: Dictionary containing system paths and ElementTrees
+        - logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    """
+
+    # Initialization.
+    path_flag = False
+    given_path = str()
+    log_file_list = []
+    current_parent_directory = str()
+    current_working_directory = str()
+    path_to_module_config_file = str()
+    function_name = getframeinfo(currentframe()).function
+
+    """Generate paths, names, and ElementTree for module configuration file."""
+    # Determine the module's working directory and path to the module configuration file.
+    # This section handles different cases depending on the presence of command line arguments.
+    # Read and process command line arguments.
+    if len(argv) == 1:
+        # Read current working directory.
+        current_working_directory = argv[-1]
+        # Convert path of current working directory to python path (\ to /).
+        current_working_directory = os.path.dirname(current_working_directory.replace(os.sep, '/'))
+        if (len(argv[-1]) >= (len(os.path.splitext(module_configuration_file_name)[0][:-5]))) \
+            and (len(current_working_directory) <= (len(os.path.splitext(module_configuration_file_name)[0][:-5]))):
+            current_working_directory = os.getcwd()
+        # Get current parent directory.
+        count = current_working_directory.rfind('/')
+        current_parent_directory = current_working_directory[0:count]
+        # Generate path of module configuration file.
+        path_to_module_config_file = (current_working_directory + '/' + module_configuration_file_name)
+    else:
+        # Handle a specific command line argument to set the given path.
+        given_path = argv[-1]
+        path_flag = True
+
+    if path_flag:
+        # Convert path of optional argument path of module configuration file to python path (\ to /).
+        if not os.path.isabs(given_path):
+            given_path = os.path.abspath(given_path)
+            current_working_directory = given_path.replace(os.sep, '/')
+        else:
+            given_path = given_path.replace(os.sep, '/')
+            if given_path[-1] == '/':
+                current_working_directory = given_path[:-2]
+            else:
+                current_working_directory = given_path
+        # Check if the optinal path argument is a directory or a file -> if a file -> correct the current_working_directory
+        if not os.path.isdir(current_working_directory):
+            count = current_working_directory.rfind('/')
+            current_working_directory = current_working_directory[:count]
+            # Generate path of module configuration file.
+            path_to_module_config_file = given_path
+        else:
+           # Generate path of module configuration file.
+            path_to_module_config_file = current_working_directory + '/' + module_configuration_file_name 
+        # Get current parent directory.
+        count = current_working_directory.rfind('/')
+        current_parent_directory = current_working_directory[:count]
+        
+
+    # Determine the current module name 'tool_name' based on the module configuration file name.
+    tool_name = os.path.splitext(module_configuration_file_name)[0][:-5]
+
+    # Read ElementTree of module configuration file.
+    frame_info = getframeinfo(currentframe())
+    # Call function to read module configuration XML file as ElementTree.
+    root_of_module_config_tree, __, log_file_list, error_flag = read_xml_information(
+        path_to_module_config_file, os.path.splitext(module_configuration_file_name)[0], function_name,
+        frame_info.lineno, log_file_list)
+
+    """Generate paths, names, and ElementTree for aircraft exchange file."""
+    if not error_flag:
+        # Read aircraft project name and directory.
+        current_aircraft_exchange_file_name = root_of_module_config_tree.find(
+            "./control_settings/aircraft_exchange_file_name/value").text
+        # Get name of project.
+        name_of_project = os.path.splitext(current_aircraft_exchange_file_name)[0]        
+        current_aircraft_exchange_file_directory = root_of_module_config_tree.find("./control_settings/aircraft_exchange_file_directory/value").text
+        
+        if not path_flag:
+            # Check if current execution inside of an virtuell enviroment 
+            #  -> if true: -> rebuild path to aircraft exchange file 
+            if sys.prefix != sys.base_prefix: 
+                if not os.path.isabs(current_aircraft_exchange_file_directory):
+                    current_aircraft_exchange_file_directory = \
+                        Path(current_aircraft_exchange_file_directory).resolve().relative_to(Path.cwd().parent)
+                    current_aircraft_exchange_file_directory = str(current_parent_directory / current_aircraft_exchange_file_directory)
+                
+            else:
+                # Get path to current aircraft project and aircraft exchange file.
+                if not os.path.isabs(current_aircraft_exchange_file_directory):
+                    current_aircraft_exchange_file_directory = os.path.abspath(current_aircraft_exchange_file_directory)
+                       
+            # get absolut path aircraft exchange file
+            path_to_aircraft_exchange_file = current_aircraft_exchange_file_directory + '/' + current_aircraft_exchange_file_name
+        else:
+            name_of_project = os.path.splitext(current_aircraft_exchange_file_name)[0]
+            path_to_aircraft_exchange_file = current_aircraft_exchange_file_directory + '/' \
+                + current_aircraft_exchange_file_name
+
+        # Read ElementTree of module configuration file.
+        frame_info = getframeinfo(currentframe())
+        # Call function to read aircraft exchange XML file as ElementTree.
+        root_of_aircraft_exchange_tree, __, log_file_list, error_flag = read_xml_information(
+            path_to_aircraft_exchange_file, name_of_project, function_name,
+            frame_info.lineno, log_file_list)
+
+        """Generate return dictionary."""
+        paths_and_names = {'working_directory': current_working_directory,
+                           'parent_directory': current_parent_directory,
+                           'project_directory': current_aircraft_exchange_file_directory,
+                           'path_to_module_config_file': path_to_module_config_file,
+                           'root_of_module_config_tree': root_of_module_config_tree,
+                           'path_to_aircraft_exchange_file': path_to_aircraft_exchange_file,
+                           'root_of_aircraft_exchange_tree': root_of_aircraft_exchange_tree,
+                           'name_of_project': name_of_project,
+                           'tool_name': tool_name,
+                           }
+    else:
+        paths_and_names = {'working_directory': current_working_directory, 'tool_name': tool_name}
+
+    """Configure logger and initialize logger instance."""
+    configure_runtime_output(paths_and_names)
+    runtime_output = logging.getLogger(__name__)
+
+    if error_flag:
+        for entry in log_file_list:
+            runtime_output.critical(entry)
+        sys.exit(1)
+
+    return paths_and_names, runtime_output
+
+
+def read_xml_information(path, xml_file_name, function_name, code_line, log_file_list):
+    """Read tree of XML file.
+
+    This function reads and returns the ElementTree of the given XML file and its root.
+
+    :param str path: Absolute path to the given XML file
+    :param str xml_file_name: Name of the given XML file to read
+    :param str function_name: Name of the function that called 'read_xml_information'
+    :param int code_line: Code line number of function that called 'read_xml_information' in 1
+    :param list log_file_list: Strings of workflow log file from caller function and added strings from this function
+    :raises OSError: Error if XML file cannot be opened
+    :returns:
+        - ElementTree xml_tree: ElementTree of given XML file
+        - ElementTree root_of_xml_tree: Root of ElementTree of given XML file
+        - list log_file_list: List with log file entries
+        - bool error_flag: Flag if error occurs (error: True, no error: False)
+    """
+
+    # Initialize local parameters.
+    xml_tree = None
+    error_flag = False
+    root_of_xml_tree = None
+    # Initialize element tree with content of file and return root element (if given).
+    try:
+        # Attempt to create an ElementTree and get the root element from the XML file.
+        xml_tree = ET.ElementTree(file=path)
+        root_of_xml_tree = xml_tree.getroot()
+    # Exception handling for operating system (OS) error.
+    except OSError:
+        # Handle an error if the XML file cannot be opened. Print an error message and log it to a log file.
+        log_file_list.append('Error in file "' + function_name + '.py" (line ' + str(code_line + 2) + ') \n'
+                             '                                     ' + 'The "' + xml_file_name +
+                             '.xml" file could not be opened.  \n'
+                             '                                     ' + 'Program aborted!')
+
+        error_flag = True
+
+    return xml_tree, root_of_xml_tree, log_file_list, error_flag
+
+
+def read_routing_values_from_xml(input_dict, root_of_aircraft_exchange_tree, root_of_module_configuration_tree,
+                                 runtime_output, module_configuration_tmp_path=None):
+    """Read routing values from XML file.
+
+    This function reads and extracts routing values from an XML file based on the provided input dictionary and
+    ElementTrees.
+
+    The output dictionary 'return_dict' contains the following values:
+        - 'layer_1': First routing layer (str)
+        - 'layer_2': Second routing layer (str)
+        - 'layer_3': Third routing layer (str)
+        - 'user_layer': User layer (own code is implemented on this layer) (str)
+        - 'tool_level': Tool level of current tool (str)
+
+    :param dict input_dict: Input dictionary containing layer descriptions
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param ElementTree root_of_module_configuration_tree: Root of module configuration XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :param string module_configuration_tmp_path: Optional parameter for routing layer paths with ID - defaults to None
+    :raises AttributeError: Error if the "own_tool_level" node does not exist
+    :return dict return_dict: Output dictionary containing layer information
+    """
+
+    # Read lists with n entries from XML file (n equals number of layers).
+    return_dict = input_dict
+    element_exists = True
+    # Iterate over keys from input dict.
+    for key in input_dict:
+        # Check, if 'key' contains information to be read from file.
+        if input_dict[key][0] is not None:
+            # Generate absolute and relative paths to parameter (key).
+            absolute_path_to_parameter = input_dict[key][0]
+            relative_path_to_parameter = './' + absolute_path_to_parameter.split('/', 1)[1]
+            # Extract first part of path string (equals file type: 'aircraft_exchange_file' or
+            # 'module_configuration_file').
+            file_type = absolute_path_to_parameter.split('/')[0]
+            if file_type == 'aircraft_exchange_file':
+                root_of_tree = root_of_aircraft_exchange_tree
+            else:
+                root_of_tree = root_of_module_configuration_tree
+            # Check if element (path) exists.
+            tmp = root_of_tree.findall(relative_path_to_parameter)
+            if tmp is None:
+                element_exists = False
+            # Set value of parameter if element given.
+            if element_exists:
+                # Only on element of layer value exist -> no ID element in the path for the routing layer node.
+                if len(tmp) == 1:
+                    return_dict[key] = tmp[0].text
+                # At least 2 elements with the same routing layer exist -> ID element in the path for the routing layer.
+                # Check if the optional parameter "module_configuration_tmp_path" is not None
+                #  -> if true: -> prepare relative path to routing layer node with ID from routing layer 1.
+                elif module_configuration_tmp_path is not None:
+                    if module_configuration_tmp_path[-1] == '/':
+                        module_configuration_tmp_path = module_configuration_tmp_path[:-1]
+                    module_configuration_tmp_path = './' + module_configuration_tmp_path.split('/', 1)[1]
+                    relative_path_to_parameter = relative_path_to_parameter.split(module_configuration_tmp_path)[-1]
+                    id_path = module_configuration_tmp_path + '[@ID="' + next(iter(return_dict.values())) + '"]/' \
+                              + relative_path_to_parameter
+                    return_dict[key] = root_of_tree.find(id_path).text
+                # At least 2 elements with the same routing layer exist but no optional paramter is given
+                #  -> raise an error and abort program.
+                else:
+                    runtime_output.critical('Error: At least there are two possible parameter nodes for the routing layer. \n' #noPep8 e501
+                                            '                                            Please call the function "read_routing_values_from_xml" with the optional parameter as described in "datapreprocessing.py".\n'
+                                            '                                            Program abortet!')
+                    sys.exit(1)
+
+            # Set value of parameter to 'None' if not given.
+            else:
+                return_dict[key] = None
+        # If 'key' is None, write 'None' into 'return_dict'.
+        else:
+            return_dict[key] = None
+
+    # Add tool level to return dictionary.
+    try:
+        return_dict['tool_level'] = root_of_module_configuration_tree.find('./control_settings/own_tool_level/value').text
+    except AttributeError as e:
+        # Attach both handlers to the root logger
+        runtime_output.critical('Error: ' + str(e) + ' \n'
+                                + '                                     '
+                                + 'Node "own_tool_level" not found in module configuration file. \n'
+                                + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    return return_dict
+
+
+def read_values_from_xml_file(input_dict, root_of_xml_file, runtime_output):
+    """Read values from XML file.
+
+    This function extracts specific values from a XML file, including the parameter's value, lower boundary, and upper
+    boundary, based on the information provided in the 'input_dict'. It processes the XML structure of the file and
+    constructs an output dictionary with the extracted values.
+
+    The data of the output dictionary 'return_dict' are structured according to the following scheme:
+    return_dict = {'parameter_name_1': [path, expected data type, bool for parameter with ID, parameter name,
+                                        value, lower boundary, upper boundary],
+                   'parameter_name_2': [...],
+                   ...}
+
+    :param dict input_dict: Input dictionary with information on values to read from XML file
+    :param ElementTree root_of_xml_file: Root of XML tree
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Raised if parameter does not exist in node
+    :return dict return_dict: Dictionary containing parameter from XML file
+    """
+
+    # Initialization.
+    id_tag = str()
+    cleaned_string = str()
+    key_list_to_delete = []
+    return_dict = input_dict
+    parameter_list = ['value', 'lower_boundary', 'upper_boundary']
+    file_type = root_of_xml_file._root.tag.replace('_', ' ')
+    # Extraction of values from the XML file.
+    try:
+        # Iterate over every parameter in 'input_dict'.
+        for key in input_dict:
+            tmp_dict = {}
+            # Find corresponding node in 'root_of_xml_file'.
+            if '[@ID="0"]' in input_dict[key][0] or '[@id="0"]' in input_dict[key][0] \
+                    or '[@UID="0"]' in input_dict[key][0] or '[@uid="0"]' in input_dict[key][0]:
+                if '[@ID="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@ID="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@ID="0"\]', input_dict[key][0]))
+                    id_tag = '@ID="0"'
+                    id_naming = '@ID='
+                elif '[@id="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@id="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@id="0"\]', input_dict[key][0]))
+                    id_tag = '@id="0"'
+                    id_naming = '@id='
+                elif '[@UID="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@UID="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@UID="0"\]', input_dict[key][0]))
+                    id_tag = '@UID="0"'
+                    id_naming = '@UID='
+                elif '[@uid="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@uid="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@uid="0"\]', input_dict[key][0]))
+                    id_tag = '@uid="0"'
+                    id_naming = '@uid='
+
+                # Extract the number of existing end nodes in the aircraft exchange file of current parameter.
+                key_id_list = root_of_xml_file.findall(cleaned_string)
+
+                # Check if at least one end node is existing.
+                #  -> if true: -> generate all xml paths to the existing end nodes
+                key_list_to_delete.append(key)
+                if len(key_id_list) > 0:
+                    indexes_of_ids = []
+                    index = input_dict[key][0].find(id_tag)
+                    # Loop through the entire input xml path to get ID identifier indexes.
+                    while index != -1:
+                        indexes_of_ids.append(index)
+                        index = input_dict[key][0].find(id_tag, index + 1)
+                    indexes_of_ids = [x - 1 for x in indexes_of_ids]
+
+                    string_part_list = []
+                    test_string_list = []
+                    # Loop across the number of indexes to split the input xml path in separate parts.
+                    i = []
+                    for i in range(0, len(indexes_of_ids)):
+                        string_part = cleaned_string[:indexes_of_ids[i] - i * (len(id_tag) + 2)]
+                        if i == 0:
+                            string_part_list.append(input_dict[key][0][:(indexes_of_ids[i] + len(id_tag) + 2)])
+                        else:
+                            string_part_list.append(
+                                input_dict[key][0][indexes_of_ids[i-1] + (len(id_tag) + 2):indexes_of_ids[i]
+                                                                                           + (len(id_tag) + 2)])
+                        tmp_list = [string_part, len(root_of_xml_file.findall(string_part))]
+                        test_string_list.append(tmp_list)
+
+                    # Add the xml path part behind the last ID identifier to string part list.
+                    string_part_list.append(input_dict[key][0][(indexes_of_ids[i] + len(id_tag) + 2):])
+
+                    # Generate ID list of one single parent node with all possible child nodes to target parameter.
+                    number_of_fist_elements = test_string_list[0][1]
+                    id_list = [int(test_string_list[0][1] / number_of_fist_elements) - 1]
+                    for j in range(1, len(test_string_list)):
+                        id_list.append(int(test_string_list[j][1] / test_string_list[j-1][1]) - 1)
+
+                    # Loop across all possible nodes to generate all xml-paths to the end node of current parameter.
+                    loop_count = 0
+                    parameter_path_list = []
+                    for i in range(len(id_list)-1, -1, -1):
+                        dummy_list = []
+                        # Check if current loop is the first -> if true: -> generate initial xml path elements.
+                        if i == len(id_list)-1:
+                            # Initialize all possible end node IDs of current parameter for the ID="0" parent root.
+                            for j in range(0, id_list[i] + 1):
+                                part_with_id =(
+                                        string_part_list[i][:string_part_list[i].find(id_tag)
+                                                             + len(id_naming)] + '"' + str(j) + '"]')
+                                dummy_list.append(part_with_id + string_part_list[i+1])
+                        else:
+                            for j in range(0, id_list[i] + 1):
+                                part_with_id =(
+                                        string_part_list[i][:string_part_list[i].find(id_tag)
+                                                             + len(id_naming)] + '"' + str(j) + '"]')
+                                for k in range(0, len(parameter_path_list[loop_count-1])):
+                                    dummy_list.append(part_with_id + parameter_path_list[loop_count-1][k])
+
+                        parameter_path_list.append(dummy_list)
+                        loop_count += 1
+
+                    # Convert final parameter path lists of list to on final paths list.
+                    if isinstance(parameter_path_list, list):
+                        parameter_path_list = parameter_path_list[-1]
+                    else:
+                        parameter_path_list = [parameter_path_list]
+
+                    # Check if more than one parent root node of parameter exists.
+                    #  -> if true: -> add all remaining xml paths to parameter path list
+                    if number_of_fist_elements > 1:
+                        first_part = parameter_path_list[0][:(indexes_of_ids[0] + len(id_naming) + 1)]
+                        for i in range(1, number_of_fist_elements):
+                            for j in range(0, len(parameter_path_list)):
+                                parameter_path_list.append(first_part + '"' + str(i) + '"' + parameter_path_list[j][(indexes_of_ids[0] + len(id_tag) + 1):])  # noPep8 e501
+
+                    # Generate temporary dictionary with names, xml paths and expected data type.
+                    for i in range(0, len(parameter_path_list)):
+                        numerical_values = re.findall(r'@ID="(\d+)"', parameter_path_list[i])
+                        numerical_string = ['_ID' + str(value) for value in numerical_values]
+                        numerical_string = key + ''.join(numerical_string)
+                        tmp_dict[numerical_string] = [parameter_path_list[i], input_dict[key][1], True, key]
+
+                # Else condition: no one end node of current key is existing in the aircraft exchange file.
+                else:
+                    numerical_values = re.findall(r'@ID="(\d+)"', input_dict[key][0])
+                    numerical_string = ['_ID' + str(value) for value in numerical_values]
+                    numerical_string = key + ''.join(numerical_string)
+                    tmp_dict[numerical_string] = [input_dict[key][0], input_dict[key][1], True, key]
+
+            # Else condition: The string of the xml path of current key, contains no ID identifier.
+            else:
+                tmp_dict[key] = [input_dict[key][0], input_dict[key][1], False, key]
+
+            # Update return dict.
+            return_dict = {**return_dict, **tmp_dict}
+            # Loop across all temporary key elements to read the responding values from the element tree.
+            for tmp_key, value in tmp_dict.items():
+                # Try to find temporary element from xml-tree.
+                tmp = root_of_xml_file.find(tmp_dict[tmp_key][0])
+
+                # Initialize 'value', 'lower_boundary', and 'upper_boundary' of value with 'None' if node does not exist
+                if tmp is None or tmp_dict[tmp_key][1] is None:
+                    if tmp_dict[tmp_key][2]:
+                        return_dict[tmp_key] = [tmp_dict[tmp_key][0], tmp_dict[tmp_key][1], True, tmp_dict[tmp_key][3],
+                                                None, None, None]
+                    else:
+                        return_dict[tmp_key] = [tmp_dict[tmp_key][0], tmp_dict[tmp_key][1], False, tmp_dict[tmp_key][3],
+                                                None, None, None]
+                    runtime_output.info('Attention: Node "' + tmp_dict[tmp_key][0] + '" not found in ' + file_type
+                                         + '. Value, lower, and upper boundary initialized with "None".')
+                    if not tmp is None and tmp_dict[tmp_key][1] is None:
+                        return_dict[tmp_key][1] = bool
+                        return_dict[tmp_key][4] = 'True'
+                    elif tmp_dict[tmp_key][1] is None:
+                        return_dict[tmp_key][1] = bool
+                        return_dict[tmp_key][4] = 'False'
+                elif tmp_dict[tmp_key][1] == 'tool_level':
+                    tmp_parameter = root_of_xml_file.find(tmp_dict[tmp_key][0])
+                    if tmp_parameter is not None:
+                        return_dict[tmp_key] += [tmp_parameter.attrib['tool_level']]
+                else:
+                    # Check existence of every parameter in 'parameter_list' and append text if given and 'None' if not.
+                    for parameter in parameter_list:
+                        parameter_exists = True
+                        # Append parameter to path and check existence.
+                        tmp_parameter = root_of_xml_file.find(tmp_dict[tmp_key][0] + '/' + parameter)
+                        # Raise error if parameter 'value' does not exist in current node.
+                        if parameter == 'value' and tmp_parameter is None:
+                            parameter_exists = False
+                            raise ValueError('Node "' + tmp_dict[tmp_key][0] + '/' + parameter + '" not found in '
+                                             + file_type + '. Program aborted!')
+                        # Set 'parameter_exists' to 'False' if 'lower_boundary' or 'upper_boundary' missing, print warning.
+                        elif tmp_parameter is None:
+                            parameter_exists = False
+                            runtime_output.info('Attention: Node "' + tmp_dict[tmp_key][0] + '/' + parameter
+                                                 + '" not found in ' + file_type + '.')
+                        # Append parameter text if existing (equals value of parameter).
+                        if parameter_exists:
+                            return_dict[tmp_key] += [tmp_parameter.text]
+                        # Append 'None' to 'return_dict' if parameter does not exist, print a warning.
+                        else:
+                            return_dict[tmp_key] += [None]
+                            runtime_output.info('Attention: No "' + parameter + '" defined for "' + tmp_key
+                                                 + '". Set to "None" instead.')
+
+        for key in key_list_to_delete:
+            del return_dict[key]
+
+    # Exception handling for ValueError.
+    except ValueError as e:
+        runtime_output.critical('Error:' + str(e))
+        sys.exit(1)
+
+    return return_dict
+
+
+def convert_string_to_expected_data_type(input_value, expected_data_type, variable_name, runtime_output):
+    """This function converts a string to a desired data type.
+
+    This function converts an input string to the given data type (if valid). Valid data types are
+        - int (integer),
+        - float,
+        - str (string), and
+        - bool.
+    The function enforces two conditions for a successful conversion:
+        1) Valid expected data type: If the data type is invalid, the function returns 'None' for the return value and
+        raises an error.
+        2) The input value must not be 'None': This is particularly important when converting the limit values, as they
+        may not exist and thus be read out as 'None' from the configuration file.
+    If a value is convertible, the conversion is executed in dependence of the data type. If conversion is not
+    possible, a ValueError is raised.
+
+    :param str input_value: Input value
+    :param <class 'type'> expected_data_type: Expected data type
+    :param str variable_name: Name of the input variable
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Error if value cannot be converted to expected data type
+    :return int/float/str/bool converted_value: Input value converted to expected data type
+    """
+
+    # Initialize output parameter (only changed if valid conversion possible).
+    converted_value = None
+    # Define expected data type and check if it is valid.
+    expected_class_int = str(expected_data_type) == "<class 'int'>"
+    expected_class_float = str(expected_data_type) == "<class 'float'>"
+    expected_class_str = str(expected_data_type) == "<class 'str'>"
+    expected_class_bool = str(expected_data_type) == "<class 'bool'>"
+    valid_expected_data_type = (
+        expected_class_int or expected_class_float or expected_class_str or expected_class_bool)
+    # If 'bool' expected, the following inputs are accepted as true/false.
+    dict_bool_true = {'True': True, 'true': True, '1': True, '1.0': True}
+    dict_bool_false = {'False': False, 'false': False, '0': False, '0.0': False}
+
+    # Check if input value is of class 'NoneType'.
+    input_of_class_none_type = (input_value is None) or (input_value == 'None')
+
+    # If valid data type and value is not 'None'.
+    if valid_expected_data_type and not input_of_class_none_type:
+        # If expected data type is of "<class 'int'>".
+        if expected_class_int:
+            # Check if value is of type 'int' (could subsequently be converted to 'int').
+            try:
+                converted_value = expected_data_type(input_value)
+            # Otherwise value is not of type 'int'.
+            except ValueError:
+                # Check if value is of type 'float' (could subsequently be converted to 'float' and 'int').
+                try:
+                    converted_value = expected_data_type(float(input_value))
+                    runtime_output.info("Attention: Expected data type was 'int' but input value was of type 'float'."
+                                         "The value was first converted to a float value and then to an int."
+                                         "Decimal places are lost in the process.")
+                # Value error (value not of type 'int' or 'float').
+                except ValueError:
+                    runtime_output.info(
+                        ("Attention: Expected data type was 'int' but input value was neither of type 'int' "
+                         "nor 'float'. Value conversion not possible for parameter '" + variable_name + "'."))
+        # If expected data type is of "<class 'float'>".
+        if expected_class_float:
+            # Check if value can be converted to 'float' (means value is of type 'int' or 'float').
+            try:
+                converted_value = expected_data_type(input_value)
+            # Handle exception if value is not of type 'int' or 'float'.
+            except ValueError:
+                runtime_output.info(
+                    ("Attention: Expected data type was 'float', but the input value seems to be of type string "
+                     "or bool. Value conversion not possible for parameter '" + variable_name + "'."))
+        # If expected data type is of "<class 'str'>".
+        if expected_class_str:
+            converted_value = input_value
+        # If expected data type is of "<class 'bool'>".
+        if expected_class_bool:
+            # Check if input is a valid expression for 'True'.
+            if dict_bool_true.get(input_value):
+                converted_value = True
+            # Check if input is a valid expression for 'False'.
+            elif dict_bool_false.get(input_value):
+                converted_value = False
+            # Input does not contain a valid expression for boolean values.
+            else:
+                runtime_output.info(
+                    ("Attention: Expected data type was 'bool', "
+                     "but input does not seems to contain valid expressions for boolean values."
+                     "Value conversion not possible for parameter '" + variable_name + "'."))
+    # No valid data type or value is 'None' (often the case if no default values provided in configuration file).
+    else:
+        runtime_output.info("Attention: Invalid data type or input value is 'None' (" + variable_name + ").")
+
+    return converted_value
+
+
+def check_boundaries(parameter_name, input_value, runtime_output, lower_boundary=None, upper_boundary=None):
+    """Verify that a value is within specified limits.
+
+    This function checks whether a given input value falls within specified boundaries (lower and upper limits). It is
+    designed to handle values of different data types, including int, float, str, and bool. It raises errors or
+    warnings when the input does not meet the expected criteria.
+
+    :param str parameter_name: Name of the parameter
+    :param int/float/str/bool input_value: Value of the parameter
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :param int/float/str/bool lower_boundary: Lower boundary (parameter value must be greater), defaults to None
+    :param int/float/str/bool upper_boundary: Upper boundary (parameter value must be smaller), defaults to None
+    :raises ValueError: Error if parameter value is outside the specified boundaries
+    :return int/float/str/bool checked_value: Checked input value
+    """
+
+    # Initialize local parameter.
+    checked_value = input_value
+
+    # Check if boundary check possible (Value of type 'int'/'float'?).
+    if isinstance(input_value, bool):
+        boundary_check_possible = False
+    else:
+        boundary_check_possible = isinstance(input_value, (int, float))
+    # Check if boundaries are given.
+    boundaries_given = (lower_boundary is not None and upper_boundary is not None)
+
+    # Perform boundary checks.
+    try:
+        # If value is of data type that allows boundary check.
+        if boundary_check_possible:
+            # If both boundaries are given.
+            if boundaries_given:
+                # Check if given input value lower than given lower boundary. Raise error if true.
+                if input_value < lower_boundary:
+                    user_value_error_string = ('The parameter "' + parameter_name
+                                               + '" is lower than the expected lower boundary ('
+                                               + str(lower_boundary) + '). Program aborted!')
+                    raise ValueError(user_value_error_string)
+                # Check if given input value higher than given upper boundary. Raise error if true.
+                elif input_value > upper_boundary:
+                    user_value_error_string = ('The parameter "' + parameter_name
+                                               + '" is higher than the expected upper boundary ('
+                                               + str(upper_boundary) + '). Program aborted!')
+                    raise ValueError(user_value_error_string)
+            # Raise error if no boundaries given but required.
+            else:
+                user_value_error_string = ('The data type "' + str(type(input_value))
+                                           + ') of the given input parameter "' + parameter_name
+                                           + '" requires lower and upper boundaries. Program aborted!')
+                raise ValueError(user_value_error_string)
+        # Input value is not of a valid data type for boundary checking.
+        else:
+            runtime_output.info(
+                ('Attention: The data type of the given input parameter "' + parameter_name +
+                 '" (' + str(type(input_value)) +
+                 ') is not of type int or float. Therefore no boundaries were checked.'))
+    # Exception handling if values outside the limits or no boundaries given.
+    except ValueError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    return checked_value
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runmodule.py b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc23a699930513eeb63642769927507748877750
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runmodule.py
@@ -0,0 +1,54 @@
+"""Module providing run function of calculation method."""
+# Import standard modules.
+import sys
+import importlib
+from datapreprocessingmodule import method_data_preprocessing
+
+
+def run_module(paths_and_names, routing_dict, runtime_output):
+    """Conduct Python module.
+
+    This function performs any UNICADO Python module. The process involves the following steps:
+        (1) Method-specific preprocessing: The prerequisite for any UNICADO Python module is the acquisition of data
+        from corresponding exchange files. These include the aircraft exchange and the module configuration file. This
+        data preprocessing is crucial as it prepares the input data for the calculation method. The obtained data are
+        stored in the two dictionaries 'aircraft_exchange_dict' and 'module_configuration_dict'.
+        (2) Run calculation method: Depending on the user layer specified in the routing parameters, the function calls
+        the appropriate calculation function. The selected function is dynamically imported and executed.
+    The output dictionary 'run_output_dict' contains the result of the UNICADO Python module and is structured according
+     to the following scheme:
+        run_output_dict = {'parameter_name_1': value, ...}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ModuleNotFoundError: Raised if module cannot be imported
+    :return dict run_output_dict: Dictionary containing results of module execution
+    """
+
+    """Method specific preprocessing: Acquire necessary data."""
+    # Run 'method_data_preprocessing' from 'datapreprocessingmodule'.
+    aircraft_exchange_dict, module_configuration_dict = method_data_preprocessing(paths_and_names, routing_dict, runtime_output)
+
+    """Run: Execute code depending on user layer."""
+    # Prepare strings for dynamic imports of calculation functions. The 'import_command_method_user_layer' is build
+    # according to the following scheme:
+    # 'src.[value of layer_1].[value of layer_2].[value of layer_3].[value of user layer].method[value of user layer]'
+    # The 'function_name' is generated according to the following scheme:
+    #   'method_[value of user layer]'
+    import_command_method_user_layer = (routing_dict['module_import_name'] + '.' + routing_dict['user_layer']
+                                        + '.method' + routing_dict['user_layer'].replace('_', ''))
+    function_name = 'method_' + routing_dict['user_layer']
+    # Import calculation module.
+    try:
+        module = importlib.import_module(import_command_method_user_layer)
+        # Call function depending on routing parameters.
+        run_output_dict = getattr(module, function_name)(paths_and_names, routing_dict, aircraft_exchange_dict,
+                                                         module_configuration_dict, runtime_output)
+    # Exception handling for module import error.
+    except ModuleNotFoundError as module_import_error:
+        runtime_output.critical('Error: ' + str(module_import_error) + ' found in ' + routing_dict['module_name'] + '\n'
+                                + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    return run_output_dict
diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..9589d0b83f321a6f548bede60525fbff9c0c6087
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py
@@ -0,0 +1,123 @@
+"""Module configuring the runtime output."""
+# Import standard modules.
+import sys
+import logging
+
+
+def configure_runtime_output(paths_and_names):
+    """ Initialize logging handler for console prints and log file writing, provide runtime_output instance.
+
+    [Add some text here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :raises AttributeError: ...
+    :return:
+    """
+    # Define a new log level 'PRINT' with a value of 35.
+    PRINT = 35
+    logging.addLevelName(PRINT, "PRINT")
+
+    # Create a custom log level class by subclassing logging.Filter.
+    class PrintoutFilter(logging.Filter):
+        def filter(self, record):
+            return record.levelno == PRINT
+
+    # Attach the custom filter to the 'root_logger'.
+    root_logger = logging.getLogger()
+    root_logger.addFilter(PrintoutFilter())
+
+    # Add a custom method to the logger.
+    def printout(self, message, *args, **kwargs):
+        """
+        :param self:
+        :param message:
+        :param args:
+        :param kwargs:
+        :return:
+        """
+        if self.isEnabledFor(PRINT):
+            self._log(PRINT, message, args, **kwargs)
+
+    # Attach the custom method to the logger.
+    logging.Logger.print = printout
+
+    # Set the logging level for the root logger.
+    root_logger.setLevel(logging.DEBUG)
+
+    """Genereate log file handler and initialze."""
+    # Create a file handler with the desired file name and format.
+    log_file_name = paths_and_names['working_directory'] + '/' + paths_and_names['tool_name'] + '.log'
+    log_format = '%(asctime)s - %(levelname)s - %(message)s'
+    file_handler = logging.FileHandler(log_file_name)
+    file_handler.setFormatter(logging.Formatter(log_format))
+
+    """Genereate console handler and initialze."""
+    # Create a stream handler to output log messages to the console.
+    console_format = '%(asctime)s - %(levelname)s - %(message)s'
+    console_handler = logging.StreamHandler()
+    console_handler.setFormatter(logging.Formatter(console_format))
+
+    """Set log file handler level to selected mode from module configuration file."""
+    # Extract 'log_file_output' from 'root_of_module_config_tree'.
+    try:
+        log_file_mode = paths_and_names['root_of_module_config_tree'].find('.//log_file_output/value').text
+    except AttributeError as e:
+        # Attach both handlers to the 'root_logger'.
+        root_logger.addHandler(file_handler)
+        root_logger.addHandler(console_handler)
+        logger = logging.getLogger('module_logger')
+        logger.critical('Error: ' + str(e) + ' \n'
+                         + '                                     '
+                         + 'Node "log_file_output" not found in module configuration file. \n'
+                         + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    match log_file_mode:
+        # Only 'CRITICAL' logs displayed.
+        case 'mode_0':
+            file_handler.setLevel(logging.CRITICAL)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', and 'WARNING' displayed.
+        case 'mode_1':
+            file_handler.setLevel(logging.WARNING)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', and 'INFO' displayed.
+        case 'mode_2':
+            file_handler.setLevel(logging.INFO)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', 'INFO', and 'DEBUG' displayed.
+        case 'mode_3':
+            file_handler.setLevel(logging.DEBUG)
+
+    """Set console handler level to selected mode from module configuration file."""
+    # Extract 'console_output' from 'root_of_module_config_tree'.
+    try:
+        console_output = paths_and_names['root_of_module_config_tree'].find('.//console_output/value').text
+    except AttributeError as e:
+        # Attach both handlers to the 'root_logger'.
+        root_logger.addHandler(file_handler)
+        root_logger.addHandler(console_handler)
+        logger = logging.getLogger('module_logger')
+        logger.critical('Error: ' + str(e) + ' \n'
+                        + '                                     '
+                        + 'Node "console_output" not found in module configuration file. \n'
+                        + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    match console_output:
+        # Only 'CRITICAL' logs displayed.
+        case 'mode_0':
+            console_handler.setLevel(logging.CRITICAL)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', and 'WARNING' displayed.
+        case 'mode_1':
+            console_handler.setLevel(logging.WARNING)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', and 'INFO' displayed.
+        case 'mode_2':
+            console_handler.setLevel(logging.INFO)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', 'INFO', and 'DEBUG' displayed.
+        case 'mode_3':
+            console_handler.setLevel(logging.DEBUG)
+
+    # Disable colorization for the console handler.
+    console_handler.setStream(stream=sys.stdout)
+
+    # Attach both handlers to the 'root_logger'.
+    root_logger.addHandler(file_handler)
+    root_logger.addHandler(console_handler)
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/CMakeLists.txt b/docs/get-involved/modularization/python-template/cost_estimation/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b9ce40268f00da881b35833cbcce547a50dfd50a
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/CMakeLists.txt
@@ -0,0 +1,80 @@
+
+# Set name of executable
+set(MODULE_NAME docEstimation)
+
+# ==============================================
+# Add the module executable
+#
+# *** IMPORTANT ***
+# -> Change *.cpp files according to the module
+# -> Add main.cpp later since this list is also
+#    used for the tests
+# ==============================================
+
+# Fuel - Fossil
+set(MODULE_SOURCES_FOSSIL
+    src/fossil/lowFidelity/lowFossil.cpp
+    src/fossil/lowFidelity/lowFossilIOData.cpp
+    src/fossil/lowFidelity/lowFossilReport.cpp
+    src/fossil/lowFidelity/lowFossilPlot.cpp
+)
+
+# Fuel - H2
+set(MODULE_SOURCES_H2
+    src/h2/lowFidelity/lowH2.cpp
+    src/h2/lowFidelity/lowH2IOData.cpp
+    src/h2/lowFidelity/lowH2Report.cpp
+    src/h2/lowFidelity/lowH2Plot.cpp
+)
+
+set(MODULE_SOURCES
+    ${MODULE_SOURCES_FOSSIL}
+    ${MODULE_SOURCES_H2}
+    src/tankDesign.cpp
+)
+
+add_executable(${MODULE_NAME}
+    ${MODULE_SOURCES}
+    src/mainTankDesign.cpp
+)
+
+
+# Set compile options specific to this module
+if(USE_GNUPLOT)
+    # -> Bug: When not setting this option, the `generateSvgPlot` is not overwritten by calculatePolarOutput.cpp
+    target_compile_definitions(${MODULE_NAME} PRIVATE USE_GNUPLOT)
+endif()
+
+
+# Link the runtime libraries
+target_link_libraries(${MODULE_NAME}
+    PRIVATE
+        moduleBasics
+        strategy
+        runtimeInfo
+        aixml
+        standardFiles
+        svl
+        svgPlot
+        spline
+        aircraftGeometry
+)
+
+# Add the include directories
+target_include_directories(${MODULE_NAME}
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/.. # <- This is due to the includes in the main file # <- This is due to the absolute import in svl/svl/Basics.h
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/ # <- This is due to the includes in empennage
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/common/
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/h2/
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/fossil/
+)
+
+# Set the location where the executable will be placed to the current source directory
+set_target_properties(${MODULE_NAME} PROPERTIES
+    RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
+)
+
+# Add the tests if enabled
+if(BUILD_UNITTEST)
+    add_subdirectory(test)
+endif()
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation.py b/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation.py
new file mode 100644
index 0000000000000000000000000000000000000000..0a16cd5eaee48b75b3a63e6a791703045ef2f6b9
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation.py
@@ -0,0 +1,88 @@
+"""Calculation module main file."""
+# Import standard modules.
+import logging
+import traceback
+from sys import argv, exit
+
+# Import own modules.
+from runmodule import run_module
+from src.datapreprocessing import data_preprocessing
+from src.datapostprocessing import data_postprocessing
+
+
+def main():
+    """Execute the main program for cost estimation.
+
+    This function serves as the main entry point for performing the cost estimation.
+    It goes through the following key steps:
+        (1) Preprocessing - Acquire necessary data and paths: Call the 'data_preprocessing' function from
+        'datapreprocessing.py' to set up data and routing information.
+        (2) Run (main processing) - Execute code depending on method layers: Execute the 'run_module' function from the
+        'methodexecutionpackage' library. The 'run_module' function is responsible for the programs primary logic.
+        (3) Postprocessing - Write data to the aircraft exchange file and generate plots and reports: Call the
+        'data_postprocessing' function from 'datapostprocessing.py' to handle postprocessing tasks. This step receives
+        data from both the preprocessing and the main processing step.
+
+    Note: The 'routing_dict' dictionary is used to manage the routing and execution of different program components.
+
+    :raises Exception: Raised to handle other exceptions
+    :return: None
+    """
+
+    # Initialize exception string and runtime output logger.
+    tool_name = 'cost estimation'
+    runtime_output = logging.getLogger('module_logger')
+
+    try:
+        """Preprocessing: Acquire necessary data and paths."""
+        # Run 'data_preprocessing' function from 'datapreprocessing.py'.
+        paths_and_names, routing_dict, runtime_output = data_preprocessing('cost_estimation_conf.xml', argv)
+        runtime_output.print('Cost estimation started...')
+
+        """Run: Execute code depending on method layers."""
+        # Execute 'run_module' function from 'methodexecutionpackage' library. This function is responsible for the main
+        # logic of the program.
+        run_output_dict = run_module(paths_and_names, routing_dict, runtime_output)
+
+        """Postprocessing: Write data to aircraft exchange file and generate plots and reports."""
+        # Run 'data_postprocessing' function from 'datapostprocessing.py' to handle postprocessing tasks. Receives data
+        # from preprocessing and main processing step.
+        data_postprocessing(paths_and_names, routing_dict, run_output_dict, runtime_output)
+        runtime_output.print('Operating cost estimation finished.')
+
+    except Exception as e:  # pylint: disable=broad-exception-caught
+        # Handle other exceptions.
+        runtime_output.critical(exception_string_msg(e, tool_name))
+        exit(1)
+
+
+def exception_string_msg(error, tool_name: str):
+    """Generate exception message.
+
+    Generate a formatted string detailing the type and location of an exception, along with an error message, for
+    diagnostic purposes. This function is particularly useful for logging or displaying comprehensive error information
+    when an exception occurs in a specific module or function.
+
+    :param exception error: Caught exception object from which details will be extracted
+    :param str tool_name: Name of the tool or module where the error occurred, used in the final error message
+    :return str: String including error type, file name, function/method name, line number, code that caused the error,
+    and error message.
+    """
+    error_type = str(type(error).__name__)
+    error_trace = traceback.extract_tb(error.__traceback__)
+    error_file, error_line, error_func, error_code = error_trace[-1]
+    error_file = error_file.split('/')[-1]
+
+    exception_string = f"{error_type}: \n"
+    exception_string += f"                                   - File             : {error_file} \n"
+    exception_string += f"                                   - Function / Method: {error_func} \n"
+    exception_string += f"                                   - Line             : {error_line} \n"
+    exception_string += f"                                   - Code             : {error_code} \n"
+    exception_string += f"                                   - Error message    : {str(error)} \n"
+
+    return exception_string + f"Main execution of {tool_name} module failed! \n" \
+                              f"Program aborted."
+
+
+if __name__ == "__main__":
+    main()
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation_conf.xml b/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation_conf.xml
new file mode 100644
index 0000000000000000000000000000000000000000..5c78866a2c4abb97ee924a947ac39a642c529883
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation_conf.xml
@@ -0,0 +1,311 @@
+<?xml version="1.0" encoding="UTF-8" ?>
+	<module_configuration_file Name="Cost Estimation Runtime Configuration"> <!-- Change naming according to module name -->
+        <control_settings description="General control settings for this tool">
+            <aircraft_exchange_file_name description="Specify the name of the exchange file">
+                <value>CSR-02.xml</value>
+            </aircraft_exchange_file_name>
+            <aircraft_exchange_file_directory description="Specify the direction in which the aircraft exchange file can be found">
+                <value>./projects/CSR/CSR-02/</value>
+            </aircraft_exchange_file_directory>
+            <own_tool_level description="Specify the tool level of this tool">
+                <value>2</value>
+            </own_tool_level>
+            <console_output description="Selector to specify the console output. Selector: mode_0 (Off) / mode_1 (only out/err/warn) / mode_2 (1 + info) / mode_3 (2 + debug)">
+                <value>mode_1</value>
+            </console_output>
+            <log_file_output description="Selector to specify the log file output. Selector: mode_0 (Off) / mode_1 (only out/err/warn) / mode_2 (1 + info) / mode_3 (2 + debug)">
+                <value>mode_1</value>
+            </log_file_output>
+            <plot_output description="Specify the way plotting shall be handled">
+                <enable description="Switch to enable plotting. Switch: true (On) / false (Off)">
+                    <value>true</value>
+                </enable>
+                <copy_plotting_files description="Switch if plotting files shall be copied. Switch: true (On) / false (Off)">
+                    <value>true</value>
+                </copy_plotting_files>
+                <delete_plotting_files_from_tool_folder description="Switch if plotting files shall be deleted from folder. Switch: true (On) / false (Off)">
+                    <value>true</value>
+                </delete_plotting_files_from_tool_folder>
+            </plot_output>
+            <report_output description="Switch to generate an HTML report. Switch: true (On) / false (Off)">
+                <value>false</value>
+            </report_output>
+            <tex_report description="Switch to generate a Tex report. Switch: true (On) / false (Off)">
+                <value>false</value>
+            </tex_report>
+            <write_info_files description="Switch to generate info files. Switch: true (On) / false (Off)">
+                <value>false</value>
+            </write_info_files>
+            <log_file description="Specify the name of the log file">
+                <value>cost_estimation.log</value>
+            </log_file>
+            <inkscape_path description="Path to the inkscape application (DEFAULT: Use inkscape from the UNICADO repo structure)">
+                <value>DEFAULT</value>
+            </inkscape_path>
+            <gnuplot_path description="Path to the gnuplot application (DEFAULT: Use gnuplot from the UNICADO repo structure)">
+                <value>DEFAULT</value>
+            </gnuplot_path>
+            <program_specific_control_settings description="Program specific control settings for this tool">
+                <xml_output description="Switch to export module specific data to XML ('true': On, 'false': Off)">
+                    <value>true</value>
+                </xml_output>
+            </program_specific_control_settings>
+        </control_settings>
+	    <program_settings description="program settings">
+            <configuration ID="tube_and_wing">
+                <fidelity_name description="Select fidelity name (options: empirical, numerical,...)">
+                    <value>empirical</value>
+                </fidelity_name>
+                <method_name description="Select method name (options: operating_cost_estimation_tu_berlin)">
+                    <value>operating_cost_estimation_tu_berlin</value>
+                    <default>operating_cost_estimation_tu_berlin</default>
+                </method_name>
+                <fidelity ID="empirical">
+                    <operating_cost_estimation_tu_berlin description="Empirical method to estimate the direct operating costs (DOC) and indirect operating costs (IOC) of an aircraft.">
+                        <general_direct_operating_costs_parameter>
+                            <capital description="Capital cost related parameters">
+                                <depreciation_period description="Depreciation period (assumption for default value: depreciation to 15% residual value in 12 years)">
+                                    <value>12.0</value>
+                                    <unit>y</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>30.0</upper_boundary>
+                                    <default>12.0</default>
+                                </depreciation_period>
+                                <price_per_operating_empty_mass description="Price per kg operating empty mass">
+                                    <value>1245.0</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>1245.0</default>
+                                </price_per_operating_empty_mass>
+                                <rate_insurance description="Insurance rate">
+                                    <value>0.005</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                    <default>0.005</default>
+                                </rate_insurance>
+                                <rate_interest description="Interest rate">
+                                    <value>0.05</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>0.05</default>
+                                </rate_interest>
+                                <residual_value_factor description="Residual value per aircraft price after depreciation period">
+                                    <value>0.15</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>20.0</upper_boundary>
+                                    <default>0.15</default>
+                                </residual_value_factor>
+                            </capital>
+                            <crew description="Crew cost related parameters">
+                                <salary_variation description="Salary variation mode (0: same salary for design mission and mission study, 1: range dependent salaries)">
+                                    <value>0</value>
+                                    <default>0</default>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </salary_variation>
+                            </crew>
+                            <flight_cycles description="Flight cycle related parameters">
+                                <block_time_per_flight description="Average block time supplement per flight (default: 1.83 h)" Unit="hours" Default="1.83" lower_boundary="0" upper_boundary="None">
+                                    <value>1.83</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>1.83</default>
+                                </block_time_per_flight>
+                                <daily_night_curfew_time description="Night curfew time per day">
+                                    <value>7.0</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>7.0</default>
+                                </daily_night_curfew_time>
+                                <potential_annual_operation_time description="Potential annual operation time (365 days a 24h hours)">
+                                    <value>8760</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>8760</lower_boundary>
+                                    <upper_boundary>8784</upper_boundary>
+                                    <default>8760</default>
+                                </potential_annual_operation_time>
+                                <annual_lay_days_overhaul description="Lay days per year for overhaul (D-Check every 5 years a 4 weeks)">
+                                    <value>5.6</value>
+                                    <unit>day</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>5.6</default>
+                                </annual_lay_days_overhaul>
+                                <annual_lay_days_reserve description="Lay days per year for repairs, technical and operational reserve (statistical value)">
+                                    <value>2.6</value>
+                                    <unit>day</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>2.6</default>
+                                </annual_lay_days_reserve>
+                            </flight_cycles>
+                            <handling description="Handling related parameters">
+                                <fees_handling description="Handling fees per kg payload">
+                                    <value>0.1</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.1</default>
+                                </fees_handling>
+                            </handling>
+                            <landing description="Landing related parameters">
+                                <fees_landing description="Landing fees per kg maximum take-off mass">
+                                    <value>0.01</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.01</default>
+                                </fees_landing>
+                            </landing>
+                            <air_traffic_control description="Air traffic control related parameters">
+                                <air_traffic_control_price_factor_design description="Range dependent ATC price factor for design mission (range dependent: domestic europe 1.0, transatlantic 0.7, far east flights half of landings @ european airports 0.6)">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0.6</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                    <default>1.0</default>
+                                </air_traffic_control_price_factor_design>
+                                <air_traffic_control_price_factor_study description="range dependent ATC price factor for mission study (range dependent: domestic europe 1.0, transatlantic 0.7, far east flights half of landings @ european airports 0.6)">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0.6</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>1.0</default>
+                                </air_traffic_control_price_factor_study>
+                            </air_traffic_control>
+                            <maintenance description="Maintenance related parameters">
+                                <airframe_repair_costs_per_flight description="Airframe repair costs per flight">
+                                    <value>57.5</value>
+                                    <unit>EUR</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>57.5</default>
+                                </airframe_repair_costs_per_flight>
+                                <annual_lay_days_maintenance description="Lay days per year for maintenance (C-Check every 15 month a 4 days)">
+                                    <value>3.2</value>
+                                    <unit>day</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>3.2</default>
+                                </annual_lay_days_maintenance>
+                                <cost_burden description="Cost burden maintenance">
+                                    <value>10.5</value>
+                                    <unit>EUR</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>10.5</default>
+                                </cost_burden>
+                                <rate_labor description="Labor rate">
+                                    <value>50.0</value>
+                                    <unit>EUR/h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>50.0</default>
+                                </rate_labor>
+                            </maintenance>
+                            <related_direct_operating_costs description="Necessary parameters for the calculation of related DOC">
+                                <revenue_per_freight_km_design description="Revenue per flight kilometer design mission">
+                                    <value>0.2</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.2</default>
+                                </revenue_per_freight_km_design>
+                                <revenue_per_freight_km_study description="Revenue per flight kilometer mission study">
+                                    <value>0.2</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.2</default>
+                                </revenue_per_freight_km_study>
+                            </related_direct_operating_costs>
+                            <miscellaneous description="Miscellaneous parameters">
+                                <rate_inflation description="Rate of annual inflation (including price and salary increases)">
+                                    <value>0.03</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.03</default>
+                                </rate_inflation>
+                                <seat_load_factor_design description="Seat load factor of design mission">
+                                    <value>0.85</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>0.85</default>
+                                </seat_load_factor_design>
+                                <seat_load_factor_study description="Seat load factor of study mission">
+                                    <value>0.85</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>0.85</default>
+                                </seat_load_factor_study>
+                            </miscellaneous>
+                        </general_direct_operating_costs_parameter>
+                        <fuel_type ID="kerosene">
+                            <factor_engine_maintenance description="Factor for engine maintenance">
+                                <value>1</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1</default>
+                            </factor_engine_maintenance>
+                            <fuel_price description="Average fuel price per kg kerosene">
+                                <value>0.7</value>
+                                <unit>EUR/kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>0.7</default>
+                            </fuel_price>
+                            <ratio_operating_empty_mass description="Ratio of operating empty mass kerosene aircraft to hydrogen aircraft">
+                                <value>1</value>
+                                <unit>EUR</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1</default>
+                            </ratio_operating_empty_mass>
+                        </fuel_type>
+                        <fuel_type ID="liquid_hydrogen">
+                            <factor_engine_maintenance description="Factor for engine maintenance">
+                                <value>0.7</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1</default>
+                            </factor_engine_maintenance>
+                            <fuel_price description="Average fuel price per kg liquid hydrogen">
+                                <value>9.16</value>
+                                <unit>EUR/kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>9.16</default>
+                            </fuel_price>
+                            <ratio_operating_empty_mass description="Ratio of operating empty mass kerosene aircraft to hydrogen aircraft">
+                                <value>1.1</value>
+                                <unit>EUR</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1.1</default>
+                            </ratio_operating_empty_mass>
+                        </fuel_type>
+                        <fuel_type ID="gaseous_hydrogen">
+                            <fuel_price description="Average fuel price per kg gaseous hydrogen">
+                                <value>12.85</value>
+                                <unit>EUR/kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>12.85</default>
+                            </fuel_price>
+                        </fuel_type>
+                    </operating_cost_estimation_tu_berlin>
+                </fidelity>
+            </configuration>
+	    </program_settings>
+	</module_configuration_file>
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/datapostprocessing.py b/docs/get-involved/modularization/python-template/cost_estimation/src/datapostprocessing.py
new file mode 100644
index 0000000000000000000000000000000000000000..3ffa408d651bf1a614dd427930e8cb1b93cd7c14
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/datapostprocessing.py
@@ -0,0 +1,81 @@
+"""Module providing functions for data postprocessing."""
+# Import standard modules.
+
+# Import own modules.
+from datapostprocessingmodule import method_data_postprocessing
+from datapostprocessingmodule import write_key_data_to_aircraft_exchange_file
+from datapostprocessingmodule import prepare_element_tree_for_module_key_parameter
+
+
+def data_postprocessing(paths_and_names, routing_dict, data_dict, runtime_output):
+    """Perform data postprocessing and write data to an aircraft exchange file.
+
+    This function is responsible for data postprocessing that involves the following steps:
+        (1) Data preparation: The module manager prepares a list containing all paths to the key parameters that must
+        be written to the aircraft exchange file.
+        (2) Write data to the aircraft exchange file: The results of the module execution are passed on to the function
+        responsible for properly writing the data to the aircraft exchange file.
+        (3) Method-specific data postprocessing: User-defined method-specific postprocessing is conducted as needed.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing the result of the module execution (direct operating cost estimation)
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    """Data preparation."""
+    # Changes to this list are the sole responsibility of the module manager!
+    paths_to_key_parameters_list = [
+        './assessment/operating_cost_estimation_tu_berlin/direct_operating_costs/direct_operating_costs_annual',
+        './assessment/operating_cost_estimation_tu_berlin/indirect_operating_costs/indirect_operating_costs_annual'
+    ]
+
+    module_key_parameters_dict = {
+        'assessment': {
+            'operating_cost_estimation_tu_berlin': {
+                'attributes': {
+                    'description': 'Operating costs (sum of direct and indirect operating costs)',
+                    'tool_level': '0'},
+                'direct_operating_costs': {
+                    'attributes': {
+                        'description': 'Direct operating costs (sum of route independent and route dependent costs)'},
+                    'direct_operating_costs_annual': {
+                        'attributes': {'description': 'Direct operating costs (DOC) per year'},
+                        'value': '0',
+                        'unit': 'EUR/y',
+                        'lower_boundary': '0',
+                        'upper_boundary': 'inf'}
+                },
+                'indirect_operating_costs': {
+                    'attributes': {'description': 'Indirect operating costs (IOC)'},
+                    'indirect_operating_costs_annual': {
+                        'attributes': {'description': 'Indirect operating costs (IOC) per year'},
+                        'value': '0',
+                        'unit': 'EUR/y',
+                        'lower_boundary': '0',
+                        'upper_boundary': 'inf'}
+                }
+            }
+        }
+    }
+
+    paths_and_names = prepare_element_tree_for_module_key_parameter(paths_and_names, module_key_parameters_dict)
+
+    # Run 'user_method_data_output_preparation' from 'usermethoddatapreparation.py'.
+    key_output_dict, method_specific_output_dict = routing_dict['func_user_method_data_output_preparation'](data_dict)
+    # Extract tool level from routing dictionary.
+    tool_level = routing_dict['tool_level']
+
+    """Write data to aircraft exchange file."""
+    # Extract root and path to aircraft exchange file.
+    root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree']
+    path_to_aircraft_exchange_file = paths_and_names['path_to_aircraft_exchange_file']
+    # Write key data to aircraft exchange file.
+    write_key_data_to_aircraft_exchange_file(root_of_aircraft_exchange_tree, path_to_aircraft_exchange_file,
+                                             paths_to_key_parameters_list, key_output_dict, tool_level, runtime_output)
+
+    """Method-specific postprocessing."""
+    # Run 'method_data_postprocessing' from 'datapostprocessingmodule'.
+    method_data_postprocessing(paths_and_names, routing_dict, data_dict,
+                               method_specific_output_dict, runtime_output)
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/datapreprocessing.py b/docs/get-involved/modularization/python-template/cost_estimation/src/datapreprocessing.py
new file mode 100644
index 0000000000000000000000000000000000000000..8ac87546f3daa0f7ec18644426478d76d44d0668
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/datapreprocessing.py
@@ -0,0 +1,126 @@
+"""Module providing functions for data preprocessing."""
+# Import standard modules.
+import importlib
+import sys
+
+# Import own modules.
+from datapreprocessingmodule import get_paths_and_names, read_routing_values_from_xml
+from src.readlayertext import read_energy_carrier
+
+
+def data_preprocessing(module_configuration_file, argv):
+    """Conduct data preprocessing.
+
+    This function provides data preprocessing functionalities. It sets up the necessary data and imports relevant
+    modules. The importlib module is used to dynamically import necessary modules.
+
+    The output dictionary 'preprocessing_dict' contains the following values:
+        - 'layer_1': First routing layer (aircraft configuration) (str)
+        - 'layer_2': Second routing layer (calculation method fidelity) (str)
+        - 'layer_3': Third routing layer (calculation method) (str)
+        - 'user_layer': Last routing layer (fuel type) (user layer) (str)
+        - 'tool_level': Tool level of current tool (str)
+        - 'module_import_name': Dynamic string for dynamically generated module import name based on layers (str)
+        - 'module_name': Module name (name of the module configuration file without its file extension) (str)
+        - 'func_user_method_data_input_preparation': Reference to 'user_method_data_input_preparation' function
+        - 'func_user_method_data_output_preparation': Reference to 'user_method_data_output_preparation' function
+        - 'func_user_method_plot': Reference to 'method_plot' function
+        - 'func_user_method_html_report': Reference to 'method_html_report' function
+        - 'func_user_method_xml_export': Reference to 'method_xml_export' function
+
+    :param str module_configuration_file: Name of module configuration file
+    :param list argv: List with optional input arguments
+    :raises ModuleNotFoundError: Raised if module import failed
+    :returns:
+        - dict paths_and_names: Dictionary containing system paths and ElementTrees
+        - dict preprocessing_dict: Dictionary containing data preprocessing results
+        - logging.Logger runtime_output: Logging object used for capturing log messages in the module
+
+    """
+
+    """Get paths, names, and xml trees for module configuration and aircraft exchange file."""
+    # Call 'get_paths_and_names' function to obtain various paths and names.
+    paths_and_names, runtime_output = get_paths_and_names(module_configuration_file, argv)
+    # Note: It is the exclusive responsibility of the module manager to modify the following information!
+    # Create layer description dictionary according to the number of individual layers. The dictionary associates
+    # layers with their respective XML paths and expected data types according to the following scheme:
+    #   layer_description_dict = {'layer_1': [path, expected data type], 'layer_2': [...]}
+    # If any information cannot be directly extracted from a specific aircraft exchange file path, please write 'None'
+    # and manually add the missing value afterward.
+    aircraft_exchange_tmp_path = 'aircraft_exchange_file/requirements_and_specifications/design_specification/'
+    module_configuration_tmp_path = 'module_configuration_file/program_settings/configuration/'
+    layer_description_dict = {
+        'layer_1': [aircraft_exchange_tmp_path + 'configuration/configuration_type/value', float],
+        'layer_2': [module_configuration_tmp_path + 'fidelity_name/value', str],
+        'layer_3': [module_configuration_tmp_path + 'method_name/value', str],
+        'user_layer': [None, str]
+     }
+
+    """ Extract data from aircraft exchange and module configuration file."""
+    # Extract root and path to aircraft exchange file and write key data to aircraft exchange file.
+    root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree']
+    root_of_module_configuration_file = paths_and_names['root_of_module_config_tree']
+    # Extract data from *.xml files based on the provided layer description (if no path information given ('None'),
+    # the entry has to be specified manually afterward). The result is stored in the 'preprocessing_dict' dictionary.
+    # It has the following output format (all values are strings):
+    #   dict_out = {'layer_1': value, 'layer_2': value, 'layer_3': value, 'user_layer': value, 'tool_level': value}
+    preprocessing_dict = read_routing_values_from_xml(layer_description_dict, root_of_aircraft_exchange_tree,
+                                                      root_of_module_configuration_file, runtime_output)
+    # Manual specification of missing layer values ('None' entry layer).
+    preprocessing_dict['user_layer'] = read_energy_carrier(root_of_aircraft_exchange_tree, runtime_output)
+
+    """Prepare and import modules."""
+    # Generate a dynamic import name 'module_import_name' for the selected calculation method modules based on the
+    # provided layer values according to the following scheme:
+    #   'src.[value of layer_1].[value of layer_2].[value of layer_3]'
+    module_import_name = 'src'
+    for _, value in list(preprocessing_dict.items())[:-2]:
+        module_import_name += '.' + value
+    # Create import commands by appending the python file name (incl. sub-folders, if necessary) to the generated
+    # 'module_import_name'. E.g., the import command for the module import from the 'usermethoddatapreparation.py' file
+    # is as follows:
+    #   'src.[value of layer_1].[value of layer_2].[value of layer_3].usermethoddatapreparation'
+    # The import command for the module import from the 'methodplot.py' file in the 'general' folder is as follows:
+    #   'src.[value of layer_1].[value of layer_2].[value of layer_3].general.methodplot'
+    # This step is executed for the following python files:
+    #   * 'usermethoddatapreparation.py'
+    #   * 'methodplot.py'
+    #   * 'methodhtmlreport.py'
+    #   * 'methodxmlexport.py'
+    #   * 'methodtexoutput'.py'
+    import_command_user_method_data_preparation = module_import_name + '.usermethoddatapreparation'
+    import_command_user_method_plot = module_import_name + '.general.methodplot'
+    import_command_user_method_html_report = module_import_name + '.general.methodhtmlreport'
+    import_command_user_method_xml_export = module_import_name + '.general.methodxmlexport'
+    import_command_user_method_tex_output = module_import_name + '.general.methodtexoutput'
+
+    # Add module name and tool level to the preprocessing_dict.
+    preprocessing_dict['module_import_name'] = module_import_name
+    preprocessing_dict['module_name'] = module_configuration_file[:-9]
+
+    # Dynamically import modules and functions based on the generated import commands.
+    try:
+        # Import functions from the specified modules.
+        import_user_method_data_preparation = importlib.import_module(import_command_user_method_data_preparation)
+        import_user_method_plot = importlib.import_module(import_command_user_method_plot)
+        import_user_method_html_report = importlib.import_module(import_command_user_method_html_report)
+        import_user_method_xml_export = importlib.import_module(import_command_user_method_xml_export)
+        import_user_method_tex_output = importlib.import_module(import_command_user_method_tex_output)
+        # Save the imported functions as variables in the 'preprocessing_dict' dictionary.
+        preprocessing_dict['func_user_method_data_input_preparation'] \
+            = import_user_method_data_preparation.user_method_data_input_preparation
+        preprocessing_dict['func_user_method_data_output_preparation'] \
+            = import_user_method_data_preparation.user_method_data_output_preparation
+        preprocessing_dict['func_user_method_plot'] = import_user_method_plot.method_plot
+        preprocessing_dict['func_user_method_html_report'] = import_user_method_html_report.method_html_report
+        preprocessing_dict['func_user_method_xml_export'] = import_user_method_xml_export.method_xml_export
+        preprocessing_dict['func_user_method_tex_output'] = import_user_method_tex_output.method_tex_output
+    # Exception handling for module import error.
+    except ModuleNotFoundError as module_import_error:
+        runtime_output_string = ('Error: ' + str(module_import_error) + ' found in '
+                                 + preprocessing_dict['module_name'] + '.\n'
+                                + '                                     Program aborted.')
+        runtime_output.critical(runtime_output_string)
+        sys.exit(1)
+
+    return paths_and_names, preprocessing_dict, runtime_output
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/readlayertext.py b/docs/get-involved/modularization/python-template/cost_estimation/src/readlayertext.py
new file mode 100644
index 0000000000000000000000000000000000000000..35d6e1fa00018d39edec21314071aad9214d6e6c
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/readlayertext.py
@@ -0,0 +1,86 @@
+"""File providing functions to read layer text from aircraft XML file."""
+# Import standard libraries.
+import sys
+
+
+def read_energy_carrier(root_of_aircraft_exchange_tree, runtime_output):
+    """Read energy carrier from aircraft exchange file.
+
+    This function extracts information about the energy carrier used in an aircraft from the provided aircraft exchange
+    file. It specifically looks for 'energy_carrier' nodes and their corresponding 'energy_carrier' sub-nodes.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Raised if energy carrier node does not exist
+    :return string energy_carrier: Energy carrier string
+    """
+
+    # Initialize empty list.
+    energy_carrier_list = []
+
+    # Attempt to extract information on energy carrier from aircraft exchange file.
+    try:
+        # Find all 'energy_carrier' nodes in aircraft exchange file.
+        energy_carrier_node_list = root_of_aircraft_exchange_tree.findall('.//energy_carrier')
+        # Check, if 'energy_carrier' nodes exist.
+        if not energy_carrier_node_list:
+            # Raise error, if no energy carrier node exists.
+            raise ValueError('No energy carriers nodes found in the aircraft exchange file. Program aborted.')
+        # Iterate over 'energy_carrier_node_list' and append values of energy carrier sub-nodes.
+        for energy_carrier_type_node in energy_carrier_node_list:
+            energy_carrier_node = energy_carrier_type_node.find('.//type/value')
+            if energy_carrier_node is not None:
+                energy_carrier_list.append(energy_carrier_node.text)
+            else:
+                raise ValueError('No energy carrier nodes found in the aircraft exchange file. Program aborted.')
+
+        # If 'energy_carrier_list' is not empty, compare all entries.
+        if energy_carrier_list is not None:
+            # If all entries are the same, set 'energy_carrier' to first list entry.
+            if all(element == energy_carrier_list[0] for element in energy_carrier_list):
+                energy_carrier = energy_carrier_list[0]
+            # If list entries differ, set 'energy_carrier' to 'hybrid'.
+            else:
+                energy_carrier = 'hybrid'
+        # Raise error, if 'energy_carrier_list' is empty.
+        else:
+            raise ValueError('No energy carrier node found. Program aborted.')
+
+    # Exception handling for ValueError.
+    except ValueError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    return energy_carrier
+
+
+def read_engine_configuration(root_of_aircraft_exchange_tree, runtime_output):
+    """Read engine configuration.
+
+    Read engine configuration from aircraft exchange file.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return str engine_configuration: Information on engine configuration
+    """
+
+    engine_configuration = 'xyz'
+    print(engine_configuration)
+
+    return engine_configuration
+
+
+def read_tank_configuration(root_of_aircraft_exchange_tree, runtime_output):
+    """Read tank configuration.
+
+    Read tank configuration information from aircraft exchange file.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return str tank_configuration: Information on tank configuration
+    """
+
+    tank_configuration = 'xyz'
+    print(tank_configuration)
+
+    return tank_configuration
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py
new file mode 100644
index 0000000000000000000000000000000000000000..9cef4c0e8de230c1c48d832966ba2432ce378b3e
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py
@@ -0,0 +1,19 @@
+"""Module providing HTML report functionalities for current calculation method."""
+
+
+def method_html_report(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """HTML report function.
+
+    This function is responsible for creating HTML reports.
+    [Add further information here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    # This is just a dummy code snippet. Insert your code here.
+    runtime_output.warning('Warning: No "method_html_report" function in "methodhtmlreport.py" file implemented yet.')
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py
new file mode 100644
index 0000000000000000000000000000000000000000..25b7588daf2da12a6fa3069394bd644901931653
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py
@@ -0,0 +1,23 @@
+"""Module providing plotting functionalities for current calculation method."""
+# Import standard libraries.
+import os
+from matplotlib import pyplot as plt
+import numpy as np
+
+
+def method_plot(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """Plot function.
+
+    This function is responsible for creating plots.
+    [Add further information here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    # This is just a dummy code snippet. Insert your code here.
+    runtime_output.print('Warning: No "method_plot" function in "methodplot.py" file implemented yet.')
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py
new file mode 100644
index 0000000000000000000000000000000000000000..87a9aa043988da76e4dcc285947e5c66c16b4fb8
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py
@@ -0,0 +1,19 @@
+"""Module providing report functionalities for current calculation method."""
+
+
+def method_tex_output(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """TeX file output function.
+
+    This function is responsible for creating TeX output files.
+    [Add further information here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    # This is just a dummy code snippet. Insert your code here.
+    runtime_output.warning('Warning: No "method_tex_output" function in "methodtexoutput.py" file implemented yet.')
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py
new file mode 100644
index 0000000000000000000000000000000000000000..582a61e893f851308e18fbaadf415f4b3c8731ad
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py
@@ -0,0 +1,103 @@
+"""Module providing export functionalities for current calculation method."""
+# Import standard libraries.
+import xml.etree.ElementTree as ET
+
+
+def method_xml_export(paths_and_names, routing_dict, data_dict, method_specific_output_dict, xml_export_tree,
+                      path_to_results_file, runtime_output):
+    """Export function.
+
+    This function is responsible for the export of method-specific data to the corresponding method-specific XML. In
+    detail, this includes the following steps:
+        (1) Parse the XML file specified by the 'path_to_results_file' variable.
+        (2) Find the 'calculation_results' element in the XML file. This is the element under which method-specific
+        nodes will be added.
+        (3) Extract method-related information from the configuration file, such as the method name and description and
+        add method node.
+        (4) Extract design mission data from the method-specific output dictionary and write it to the XML file.
+        (5) If a study exists, extract study data from the method-specific output dict and write it to the XML file.
+        (6) Attempt to write the modified XML data back to the 'costEstimation_results.xml' file. Handle an OSError
+        exception in case an error occurs during this operation.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method-specific output data
+    :param ElementTree xml_export_tree: Element tree of method-specific XML tree
+    :param str path_to_results_file: Path to method-specific output XML file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises OSError: Raised if writing to aircraft exchange file failed
+    :return: None
+    """
+    runtime_output.print("Method-specific data are written to '" + routing_dict['module_name'] + "_results.xml'...")
+
+    # Function to write data to 'cost_estimation_results.xml'
+    root_of_results_file = xml_export_tree.getroot()
+    parent = root_of_results_file.find('calculation_results')
+    # Add method node.
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    method_name = root_of_module_config_tree.find('./program_settings/configuration/method_name/value').text
+    method_description = ("Empirical method to estimate the direct operating costs (DOC) and indirect operating costs"
+                          " (IOC) of an aircraft.")
+    child = ET.SubElement(parent, method_name)
+    child.set("description", method_description)
+
+    # Prepare ElementTree for export to module-specific XML.
+    prepare_element_tree_for_module_specific_export(root_of_results_file, method_specific_output_dict)
+
+    # Write all parameters to export file.
+    try:
+        # Ensure proper indentation.
+        ET.indent(root_of_results_file, space="    ", level=0)
+        # Write data to file.
+        xml_export_tree.write(path_to_results_file)
+    # Exception handling for operating system error.
+    except OSError:
+        runtime_output.error('Error: Writing to aircraft exchange file failed. Program aborted!')
+
+
+def prepare_element_tree_for_module_specific_export(root_of_results_file, specific_output_dict):
+    """ Prepare ElementTree for module-specific results export.
+
+    This function is responsible for preparing the ElementTree of the module-specific export file.
+    In summary, the code dynamically updates an XML structure based on a list of paths and a dictionary
+    ('specific_output_dict'). It ensures that the specified paths exist in the XML structure and creates the necessary
+    sub-elements along the way, setting attributes and text values as specified in 'specific_output_dict'.
+
+    :param ElementTree root_of_results_file: Root of method-specific export ElementTree
+    :param dict specific_output_dict: Dictionary containing method-specific output data
+    :return: None
+    """
+    # Extract 'list_of_paths' from 'specific_output_dict' and delete it from dictionary.
+    list_of_paths = specific_output_dict['list_of_paths']
+    del specific_output_dict['list_of_paths']
+    # Iterate over paths.
+    for current_path in list_of_paths:
+        # Check, if 'current_path' exists in XML structure and generate path and sub-elements if not.
+        if root_of_results_file.find(current_path) is None:
+            # Split path into path_parts using '/' as delimiter, excluding first empty part.
+            path_parts = current_path.split('/')[1:]
+            # Initialize 'path_to_check' with the root element ('.').
+            path_to_check = '.'
+            # Iterate over 'path_parts'.
+            for part in path_parts:
+                # Find parent element corresponding to current 'path_to_check'.
+                parent_path = root_of_results_file.find(path_to_check)
+                # Update 'path_to_check' by appending the current part.
+                path_to_check += ('/' + part)
+                # Check, if updated 'path_to_check' does not exist in the XML structure.
+                if root_of_results_file.find(path_to_check) is None:
+                    # Check, if 'part' is in 'specific_output_dict'.
+                    if specific_output_dict[part] is not None:
+                        # Create sub-element.
+                        new_node = ET.SubElement(parent_path, part)
+                        # Add attributes (if necessary).
+                        if 'attributes' in specific_output_dict[part]:
+                            for key, value in specific_output_dict[part]['attributes'].items():
+                                new_node.set(key, value)
+                        # Add further sub-elements if defined.
+                        if 'parameters' in specific_output_dict[part]:
+                            current_path = root_of_results_file.find(path_to_check)
+                            for key, value in specific_output_dict[part]['parameters'].items():
+                                parameter_node = ET.SubElement(current_path, key)
+                                parameter_node.text = str(value)
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py
new file mode 100644
index 0000000000000000000000000000000000000000..7781cf02b5180b5f5743d31519d7a396067d8543
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py
@@ -0,0 +1,35 @@
+"""Module providing calculation functions provided by the user."""
+# Import standard modules.
+import sys
+
+# Import own modules.
+
+
+def method_kerosene(paths_and_names, routing_dict, dict_ac_exchange, dict_mod_config, runtime_output):
+    """Operating cost estimation method according to TU Berlin for kerosene-powered aircraft.
+
+    This function performs the operating cost estimation according to the TU Berlin method for kerosene-powered aircraft
+    configurations.
+    [Add more information here...]
+    The output dictionary 'kerosene_output_dict' contains the results of the cost estimation and is structured according
+    to the following scheme:
+        kerosene_output_dict = {'parameter_1': value,
+                                'parameter_2': value}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict dict_ac_exchange: Dict containing parameters and according values from aircraft exchange file
+    :param dict dict_mod_config: Dict containing parameters and according values from module configuration file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return dict kerosene_output_dict: Dictionary containing results from calculation for kerosene-powered aircraft
+    """
+
+    kerosene_output_dict = {'direct_operating_costs_annual_design_point': 30,
+                            'indirect_operating_costs': 40}
+
+    # Calculate costs.
+    runtime_output.print('----------------------------------------------------------')
+    runtime_output.print('[No method implemented yet ("methodkerosene.py").]   ')
+    runtime_output.print('----------------------------------------------------------')
+
+    return kerosene_output_dict
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/liquid_hydrogen/methodliquidhydrogen.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/liquid_hydrogen/methodliquidhydrogen.py
new file mode 100644
index 0000000000000000000000000000000000000000..7a33a604f6d196631945425de8fdd4cd3324db62
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/liquid_hydrogen/methodliquidhydrogen.py
@@ -0,0 +1,34 @@
+"""Module providing calculation functions provided by the user."""
+# Import standard modules.
+import sys
+
+# Import own modules.
+
+
+def method_liquid_hydrogen(paths_and_names, routing_dict, dict_ac_exchange, dict_mod_config, runtime_output):
+    """Operating cost estimation method for liquid hydrogen (LH2)-powered aircraft.
+
+    This function performs the operating cost estimation for liquid hydrogen-powered aircraft configurations.
+    [Add more information here...]
+    The output dictionary 'liquid_hydrogen_output_dict' contains the results of the cost estimation and is structured
+    according to the following scheme:
+        liquid_hydrogen_output_dict = {'parameter_1': value,
+                                       'parameter_2': value}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict dict_ac_exchange: Dict containing parameters and according values from aircraft exchange file
+    :param dict dict_mod_config: Dict containing parameters and according values from module configuration file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return dict liquid_hydrogen_output_dict: Dictionary containing results from calculation for LH2-powered aircraft
+    """
+
+    liquid_hydrogen_output_dict = {'direct_operating_costs_annual_design_point': 30,
+                                   'indirect_operating_costs': 40}
+
+    # Calculate costs.
+    runtime_output.print('----------------------------------------------------------')
+    runtime_output.print('[No method implemented yet ("methodliquidhydrogen.py").]   ')
+    runtime_output.print('----------------------------------------------------------')
+
+    return liquid_hydrogen_output_dict
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py
new file mode 100644
index 0000000000000000000000000000000000000000..67d201723a75e81f92ef9ecbfa053ca3497baeed
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py
@@ -0,0 +1,211 @@
+"""Module providing functions for the preparation of user data."""
+
+
+def user_method_data_input_preparation(routing_dict):
+    """Prepare necessary input data for the user method from aircraft exchange and module configuration files.
+
+    In this function, the user is responsible for preparing the data needed for the user method. Relevant general data
+    are obtained from the aircraft exchange file and calculation specific parameter from the module configuration file.
+    The user must submit the data in the following format:
+        dict = {'parameter_name': [path to parameter node, expected data type], ...}
+
+    :param dict routing_dict: Dictionary containing information on necessary data from module configuration file
+    :returns:
+        - dict data_to_extract_from_aircraft_exchange_dict: Dictionary containing parameter name, path to parameter,
+        and expected data type of parameters to be extracted from aircraft exchange file
+        - dict data_to_extract_from_module_configuration_dict: Dictionary containing parameter name, path to parameter,
+        and expected data type of parameters to be extracted from module configuration file
+    """
+
+    """Aircraft exchange file."""
+    # Enter all parameters to be extracted from the aircraft exchange file.
+    path_to_adapt = './requirements_and_specifications/everything_the_DOC_heart_desires/'
+    data_to_extract_from_aircraft_exchange_dict = {
+        'altitude_cruise': [path_to_adapt + 'altitude_cruise', float],
+        'm_cargo_design': ['./analysis/mission/design_mission/cargo_mass', float],
+        'm_cargo_study': ['./analysis/mission/study_mission/cargo_mass', float],
+        'm_luggage': [path_to_adapt + '/m_luggage', float],
+        'm_operating_empty': ['./analysis/masses_cg_inertia/operating_mass_empty/mass_properties/mass', float],
+        'm_passenger': [path_to_adapt + '/m_passenger', float],
+        'm_payload_design': ['./analysis/mission/design_mission/payload', float],
+        'm_payload_max': ['./analysis/masses_cg_inertia/maximum_payload_mass/mass_properties/mass', float],
+        'm_payload_study': ['./analysis/mission/study_mission/payload', float],
+        'm_payload_at_max_fuel': ['./assessment/performance/range/payload_maximum_fuel_at_maximum_take_off_mass',
+                                  float],
+        'm_takeoff_design': ['./analysis/mission/design_mission/take_off_mass', float],
+        'm_takeoff_max': ['./analysis/masses_cg_inertia/maximum_takeoff_mass/mass_properties/mass', float],
+        'm_takeoff_study': [path_to_adapt + 'm_takeoff_study', float],
+        'mach_cruise': [path_to_adapt + 'mach_cruise', float],
+        'n_cabin_crew_members': [path_to_adapt + 'n_cabin_crew_members', float],
+        'n_cockpit_crew_members': [path_to_adapt + 'n_cockpit_crew_members', float],
+        'n_engines': [path_to_adapt + 'n_engines', float],
+        'n_passengers_per_class': [path_to_adapt + 'pax_per_class', str],
+        'range_at_max_fuel': ['./assessment/performance/range/range_max_fuel_at_maximum_take_off_mass', float],
+        'range_at_max_payload': ['./assessment/performance/range/range_max_payload_at_maximum_take_off_mass', float],
+        'range_ferry': ['./assessment/performance/range/range_maximum_fuel_empty', float],
+        'static_thrust_per_engine': [path_to_adapt + 'static_thrust_per_engine', float],
+        'stage_length_design': ['./analysis/mission/design_mission/range', float],
+        'stage_length_study': ['./analysis/mission/study_mission/range', float],
+        'seat_load_factor_design': [path_to_adapt + 'seat_load_factor_design', float],
+        'seat_load_factor_study': [path_to_adapt + 'seat_load_factor_design', float],
+        'flight_time_design': [path_to_adapt + 'flight_time_design', float],
+        'flight_time_study': [path_to_adapt + 'flight_time_study', float],
+        'flights_per_year_design': [path_to_adapt + 'flights_per_year_design', float],
+        'flights_per_year_study': [path_to_adapt + 'flights_per_year_study', float]
+    }
+
+    """Module configuration file."""
+    # Enter all general parameters to be extracted from the module configuration file. 'general parameters' means
+    # parameters that do not differ according to the user layer. It should be noted that 'tmp_general' is only used to
+    # shorten the path information in the 'general_data_to_extract_from_module_configuration_dict'.
+    tmp_general = ('./program_settings/configuration[@ID="tube_and_wing"]/fidelity[@ID="empirical"]/'
+                   + 'operating_cost_estimation_tu_berlin/general_direct_operating_costs_parameter')
+    general_data_to_extract_from_module_configuration_dict = {
+        'annual_lay_days_maintenance':
+            [tmp_general + '/maintenance/annual_lay_days_maintenance', float],
+        'annual_lay_days_overhaul':
+            [tmp_general + '/flight_cycles/annual_lay_days_overhaul', float],
+        'annual_lay_days_reserve':
+            [tmp_general + '/flight_cycles/annual_lay_days_reserve', float],
+        'air_traffic_control_price_factor_design':
+            [tmp_general + '/air_traffic_control/air_traffic_control_price_factor_design', float],
+        'air_traffic_control_price_factor_study':
+            [tmp_general + '/air_traffic_control/air_traffic_control_price_factor_study', float],
+        'airframe_repair_costs_per_flight':
+            [tmp_general + '/maintenance/airframe_repair_costs_per_flight', float],
+        'block_time_per_flight':
+            [tmp_general + '/flight_cycles/block_time_per_flight', float],
+        'cost_burden':
+            [tmp_general + '/maintenance/cost_burden', float],
+        'daily_night_curfew_time':
+            [tmp_general + '/flight_cycles/daily_night_curfew_time', float],
+        'depreciation_period':
+            [tmp_general + '/capital/depreciation_period', float],
+        'fees_handling':
+            [tmp_general + '/handling/fees_handling', float],
+        'fees_landing':
+            [tmp_general + '/landing/fees_landing', float],
+        'potential_annual_operation_time':
+            [tmp_general + '/flight_cycles/potential_annual_operation_time', float],
+        'price_per_operating_empty_mass':
+            [tmp_general + '/capital/price_per_operating_empty_mass', float],
+        'rate_inflation':
+            [tmp_general + '/miscellaneous/rate_inflation', float],
+        'rate_insurance':
+            [tmp_general + '/capital/rate_insurance', float],
+        'rate_interest':
+            [tmp_general + '/capital/rate_interest', float],
+        'rate_labor':
+            [tmp_general + '/maintenance/rate_labor', float],
+        'residual_value_factor':
+            [tmp_general + '/capital/residual_value_factor', float],
+        'revenue_per_freight_km_design':
+            [tmp_general + '/related_direct_operating_costs/revenue_per_freight_km_design', float],
+        'revenue_per_freight_km_study':
+            [tmp_general + '/related_direct_operating_costs/revenue_per_freight_km_study', float],
+        'salary_variation':
+            [tmp_general + '/crew/salary_variation', bool],
+        'seat_load_factor_design':
+            [tmp_general + '/miscellaneous/seat_load_factor_design', float],
+        'seat_load_factor_study':
+            [tmp_general + '/miscellaneous/seat_load_factor_study', float]
+    }
+
+    # Enter all specific parameters to be extracted from the module configuration file. 'specific parameters' means
+    # parameters that differ according to the user layer. It should be noted that 'tmp_specific' is only used to
+    # shorten the path information in the 'specific_data_to_extract_from_module_configuration_dict'.
+    tmp_specific = ('./program_settings/configuration[@ID="tube_and_wing"]/fidelity[@ID="empirical"]/'
+                    + 'operating_cost_estimation_tu_berlin')
+    specific_data_to_extract_from_module_configuration_dict = {
+        'fuel_price': [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/fuel_price', float],
+        'factor_engine_maintenance':
+            [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/factor_engine_maintenance', float],
+        'ratio_operating_empty_mass':
+            [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/ratio_operating_empty_mass', float]
+    }
+
+    # Merge module configuration dictionaries.
+    data_to_extract_from_module_configuration_dict = \
+        general_data_to_extract_from_module_configuration_dict | specific_data_to_extract_from_module_configuration_dict
+
+    return data_to_extract_from_aircraft_exchange_dict, data_to_extract_from_module_configuration_dict
+
+
+def user_method_data_output_preparation(data_dict):
+    """Prepare user-specific output data based on the calculation method results.
+
+    This function is responsible for preparing the user-specific output data based on the results of the calculation
+    method. The 'data_dict' input parameter contains the results of the module execution.
+    The data for the key parameters output must be specified in the following format in order to be written correctly
+    to the aircraft exchange file by the 'write_key_data_to_aircraft_exchange_file' function in the following step:
+        dict = {'parameter_name': [path to parameter node, value, name (if needed)], ...}
+    Important notes:
+        (1) It should be noted that only key parameters may be written that have been previously defined by the module
+        manager.
+        (2) Attention must be paid to the proper path specifications, otherwise warnings may be issued or, in the worst
+        case, errors may occur subsequently resulting in the write process and consequently the entire program being
+        aborted.
+        (3) If the path specifications contain IDs, these must start at '0' and be defined in ascending order without
+        gaps.
+    For the method-specific output, a path list and a dictionary is necessary to properly write the data to the
+    method-specific XML file.
+    the dictionary must be specified in the following format:
+        dict = ...
+    Note: If the user wants to export data from the design and study mission, two path lists and dictionaries are
+    necessary.
+
+    :param dict data_dict: Dictionary containing the results of the module execution
+    :returns:
+        - dict key_output_dict: Output dictionary containing key parameters that are written to aircraft XML file
+        - dict method_specific_output_dict: Dictionary containing specific parameters that are written to
+        method-specific output XML
+    """
+
+    """Key parameters output."""
+    doc_path = './assessment/operating_cost_estimation_tu_berlin/direct_operating_costs/'
+    ioc_path = './assessment/operating_cost_estimation_tu_berlin/indirect_operating_costs/'
+
+    key_output_dict = {
+        # Direct operating costs shares.
+        'direct_operating_costs_annual':
+            [doc_path + 'direct_operating_costs_annual',
+             data_dict['direct_operating_costs_annual_design_point']],
+        # Indirect operating costs shares.
+        'indirect_operating_costs_annual':
+            [ioc_path + 'indirect_operating_costs_annual',
+             data_dict['indirect_operating_costs']]
+    }
+
+    """Method-specific output."""
+    # Define specific output paths and dict for design mission.
+    tmp_path = './calculation_results/operating_cost_estimation_tu_berlin/design_mission/'
+
+    paths_to_specific_design_outputs_list = [
+        tmp_path + 'direct_operating_costs/direct_operating_costs_per_year',
+        tmp_path + 'indirect_operating_costs'
+    ]
+
+    method_specific_output_dict = {
+        'operating_cost_estimation_tu_berlin': {},
+        'design_mission': {
+            'attributes': {'description': 'Cost estimation results of the design mission'}},
+        'direct_operating_costs': {
+            'attributes': {'description': 'Direct operating costs'}},
+        # Direct operating costs.
+        'direct_operating_costs_per_year': {
+            'attributes': {'description': 'Direct operating costs per year at design point (sum of route dependent and '
+                                          'route independent costs)'},
+            'parameters': {
+                'value': data_dict['direct_operating_costs_annual_design_point'],
+                'unit': 'EUR'}},
+        # Indirect operating costs.
+        'indirect_operating_costs': {
+            'attributes': {'description': 'Indirect operating costs'},
+            'parameters': {
+                'value': data_dict['indirect_operating_costs'],
+                'unit': 'EUR'}},
+        # List
+        'list_of_paths': paths_to_specific_design_outputs_list
+    }
+
+    return key_output_dict, method_specific_output_dict
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/version.txt b/docs/get-involved/modularization/python-template/cost_estimation/version.txt
new file mode 100644
index 0000000000000000000000000000000000000000..50aea0e7aba1ab64fce04e96fb64bf9599a1c2a5
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/version.txt
@@ -0,0 +1 @@
+2.1.0
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/CSR-02.xml b/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/CSR-02.xml
new file mode 100644
index 0000000000000000000000000000000000000000..2582b9d7e14739a34111dd1a9e022bcd4e2af2b5
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/CSR-02.xml
@@ -0,0 +1,4832 @@
+<aircraft_exchange_file>
+    <requirements_and_specifications description="Requirements and specifications">
+        <general description="General information on requirements and specifications">
+            <type description="Aircraft type">
+                <value>CeRAS</value>
+            </type>
+            <model description="Model - Version">
+                <value>CSR-02</value>
+            </model>
+        </general>
+        <design_specification description="Design specification">
+            <configuration description="Configuration information">
+                <configuration_type description="aircraft configuration: tube_and_wing / blended_wing_body">
+                    <value>tube_and_wing</value>
+                </configuration_type>
+                <undercarriage_definition description="Design description of the undercarriage.">
+                    <main_gear_mounting description="Mounting position of the main landing gear: wing_mounted / fuselage_mounted.">
+                        <value>wing_mounted</value>
+                    </main_gear_mounting>
+                </undercarriage_definition>
+            </configuration>
+            <propulsion description="Propulsion information">
+                <propulsor ID="0" description="Specific propulsor information">
+                    <mounting_position description="positions: under_wing_left / under_wing_right / over_wing_left / over_wing_right / on_fuselage_left / on_fuselage_right / in_fuselage_rear">
+                        <value>under_wing_left</value>
+                    </mounting_position>
+                    <energy_carrier description="Energy type: kerosene / liquid_hydrogen / battery / saf / hybrid (e.g, kerosene+liquid_hydrogen)">
+                        <value>kerosene</value>
+                    </energy_carrier>
+                    <degree_of_hybridization description="">
+                        <value>0.5</value>
+                    </degree_of_hybridization>
+                </propulsor>
+                <propulsor ID="1" description="Specific propulsor information">
+                    <mounting_position description="positions: under_wing_left / under_wing_right / over_wing_left / over_wing_right / on_fuselage_left / on_fuselage_right / in_fuselage_rear">
+                        <value>under_wing_left</value>
+                    </mounting_position>
+                    <energy_carrier description="Energy type: kerosene / liquid_hydrogen / battery / saf / hybrid (e.g, kerosene+liquid_hydrogen)">
+                        <value>kerosene</value>
+                    </energy_carrier>
+                    <degree_of_hybridization description="">
+                        <value>0.5</value>
+                    </degree_of_hybridization>
+                </propulsor>
+            </propulsion>
+        </design_specification>
+        <requirements description="Aircraft design requirements">
+            <top_level_aircraft_requirements description="Top level aircraft requirements (TLAR)">
+                <maximum_approach_speed description="Maximum allowed approach speed.">
+                    <value>71</value>
+                    <unit>m/s</unit>
+                    <lower_boundary>50</lower_boundary>
+                    <upper_boundary>90</upper_boundary>
+                </maximum_approach_speed>
+                <pavement_classification_number description="Runway pavment classification number (PCN) - limits the maximum allowed aircraft classification number of undercarriage.">
+                    <value>55</value>
+                    <unit>1</unit>
+                    <lower_boundary>5</lower_boundary>
+                    <upper_boundary>120</upper_boundary>
+                </pavement_classification_number>
+            </top_level_aircraft_requirements>
+            <additional_requirements description="Additional requirements">
+            </additional_requirements>
+        </requirements>
+        <everything_the_DOC_heart_desires>
+            <altitude_cruise>
+                <value>10058.4</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>m</unit>
+            </altitude_cruise>
+            <m_passenger>
+                <value>75</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </m_passenger>
+            <m_luggage>
+                <value>15.72</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </m_luggage>
+            <n_cabin_crew_members>
+                <value>4</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </n_cabin_crew_members>
+            <n_cockpit_crew_members>
+                <value>2</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </n_cockpit_crew_members>
+            <n_engines>
+                <value>2</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </n_engines>
+            <pax_per_class>
+                <value>0/0/0/12/138</value>
+                <unit>1</unit>
+            </pax_per_class>
+            <static_thrust_per_engine>
+                <value>128.855268</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </static_thrust_per_engine>
+            <m_takeoff_study>
+                <value>62560.48325</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </m_takeoff_study>
+            <mach_cruise>
+                <value>0.82</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </mach_cruise>
+            <seat_load_factor_design>
+                <value>1.0</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </seat_load_factor_design>
+            <seat_load_factor_study>
+                <value>0.8</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </seat_load_factor_study>
+            <flights_per_year_design>
+                <value>1289</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flights_per_year_design>
+            <flights_per_year_study>
+                <value>2508</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flights_per_year_study>
+            <flight_time_design>
+                <value>2.83</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flight_time_design>
+            <flight_time_study>
+                <value>0.57</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flight_time_study>
+        </everything_the_DOC_heart_desires>
+    </requirements_and_specifications>
+    <sizing_point>
+        <wing_loading description="Maximum takeoff mass (MTOM) divided by wing area (Sref)" tool_evel="1">
+            <value>0</value>
+            <unit>"kg/m^2"</unit>
+        </wing_loading>
+        <thrust_to_weight description="Total thrust (kN) divided by maximum aircraft weight (kN)" tool_evel="1">
+            <value>0</value>
+            <lower_boundary>0.0</lower_boundary>
+            <upper_boundary>1.0</upper_boundary>
+            <unit>"1"</unit>
+        </thrust_to_weight>
+        <MTOM description="Maximum takeoff mass" tool_evel="1">
+            <value>0</value>
+            <unit>"kg"</unit>
+        </MTOM>
+        <OME description="Operating mass empty" tool_evel="1">
+            <value>0</value>
+            <unit>"kg"</unit>
+        </OME>
+    </sizing_point>
+    <component_design>
+        <mission_files description="Path and name of xml files containing the flight phase data" tool_level="0">
+            <design_mission_file description="Path and name of the design mission xml">
+                <value>0</value>
+            </design_mission_file>
+            <study_mission_file description="Path and name of the study mission xml">
+                <value>0</value>
+            </study_mission_file>
+        </mission_files>
+        <global_reference_point>
+            <reference_component description="">
+                <value />
+            </reference_component>
+            <x_position description="">
+                <value />
+                <unit />
+            </x_position>
+            <y_position description="">
+                <value />
+                <unit />
+            </y_position>
+            <z_position description="">
+                <value />
+                <unit />
+            </z_position>
+        </global_reference_point>
+        <wing description="wing component" tool_level="0">
+            <position description="position of wing (most forward position of part composition at y = 0)">
+                <x description="x position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </x>
+                <y description="y position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </y>
+                <z description="z position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </z>
+            </position>
+            <mass_properties description="mass_properties of component wing">
+                <mass description="component mass">
+                    <value>0.0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="component inertia refered to center of gravity">
+                    <j_xx description="inertia component in x">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="inertia component in y">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="inertia component in z">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="inertia component in xy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="inertia component in xz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="inertia component in yx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="inertia component in yz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="inertia component in zx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="inertia component in zy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                    <x description="x component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </x>
+                    <y description="y component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </y>
+                    <z description="z component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </z>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <geometry>
+                    <aerodynamic_surface description="aerodynamic surface" ID="0">
+                        <name description="name of aerodynamic surface">
+                            <value>main_wing</value>
+                        </name>
+                        <position description="reference position in global coordinates">
+                            <x description="x position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </x>
+                            <y description="y position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </y>
+                            <z description="z position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </z>
+                        </position>
+                        <parameters description="aerodynamic surface parameters">
+                            <direction description="unit vector according to global coordinate system for direction applied at position">
+                                <x description="x direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </x>
+                                <y description="y direction of unit vector">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </y>
+                                <z description="z direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </z>
+                            </direction>
+                            <symmetric description="symmetric to x-z plane (global) aerodynamic surface">
+                                <value>true</value>
+                            </symmetric>
+                            <sections description="sections">
+                                <section description="section" ID="0">
+                                    <chord_origin description="origin of chord (local)">
+                                        <x description="x position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x>
+                                        <y description="y position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y>
+                                        <z description="z position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z>
+                                    </chord_origin>
+                                    <chord_length description="length of chord">
+                                        <value>0.0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-inf</lower_boundary>
+                                        <upper_boundary>inf</upper_boundary>
+                                    </chord_length>
+                                    <geometric_twist description="geometric twist at leading edge">
+                                        <value>0.0</value>
+                                        <unit>rad</unit>
+                                        <lower_boundary>-</lower_boundary>
+                                        <upper_boundary />
+                                    </geometric_twist>
+                                    <profile description="profile (data normalized on chord)">
+                                        <name>
+                                            <value>naca0012</value>
+                                        </name>
+                                    </profile>
+                                </section>
+                            </sections>
+                            <spars description="spars">
+                                <spar description="front spar" ID="0">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                                <spar description="rear spar" ID="1">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                            </spars>
+                            <control_devices description="control devices">
+                                <control_device description="control device" ID="0">
+                                    <type>
+                                        <value>aileron</value>
+                                    </type>
+                                    <deflection description="maximum positive and negative deflection of control device">
+                                        <full_negative_deflection description="full negative deflection">
+                                            <value>-25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_negative_deflection>
+                                        <full_positive_deflection description="full positive deflection">
+                                            <value>25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_positive_deflection>
+                                    </deflection>
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </control_device>
+                            </control_devices>
+                        </parameters>
+                        <mass_properties description="mass_properties of aerodynamic surface">
+                            <mass description="component mass">
+                                <value>0.0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </mass>
+                            <inertia description="component inertia refered to center of gravity">
+                                <j_xx description="inertia component in x">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="inertia component in y">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="inertia component in z">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="inertia component in xy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="inertia component in xz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="inertia component in yx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="inertia component in yz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="inertia component in zx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="inertia component in zy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                                <x description="x component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </x>
+                                <y description="y component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </y>
+                                <z description="z component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </z>
+                            </center_of_gravity>
+                        </mass_properties>
+                    </aerodynamic_surface>
+                </geometry>
+            </specific>
+        </wing>
+        <fuselage description="Geometric description of the aircraft fuselages" tool_level="0">
+            <position description="Position of the fuselages with regard to the global reference point.">
+                <x_position description="Distance in x direction with regard to the global reference point. (fuselage nose point)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-10</lower_boundary>
+                    <upper_boundary>10</upper_boundary>
+                </x_position>
+                <y_position description="Distance in y direction with regard to the global reference point. (fuselage nose point)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>0</upper_boundary>
+                </y_position>
+                <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-5</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </z_position>
+            </position>
+            <mass_properties description="Mass properties of the fuselages.">
+                <mass description="Mass of the total fuselages.">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="Inertia of the total fuselages with regard to the total center of gravity.">
+                    <j_xx description="Inertia of the total fuselages in x.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="Inertia of the total fuselages in y.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="Inertia of the total fuselages in z.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="Inertia of the total fuselages in xy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="Inertia of the total fuselages in xz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="Inertia of the total fuselages in yx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="Inertia of the total fuselages in yz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="Inertia of the total fuselages in zx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="Inertia of the total fuselages in zy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="Center of gravity of the total fuselages.">
+                    <x_position description="Center of gravity in x-direction with regard to the global reference point. (total fuselage)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>50</upper_boundary>
+                    </x_position>
+                    <y_position description="Center of gravity in y-direction with regard to the global reference point. (total fuselage)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-5</lower_boundary>
+                        <upper_boundary>5</upper_boundary>
+                    </y_position>
+                    <z_position description="Center of gravity in z-direction with regard to the global reference point. (total fuselage)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-5</lower_boundary>
+                        <upper_boundary>5</upper_boundary>
+                    </z_position>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <geometry>
+                    <geometry_file_name>
+                        <value>geometryData/fuselage.dat</value>
+                    </geometry_file_name>
+                    <fuselage ID="0" description="Geometrical description of one entire fuselage.">
+                        <name description="Name of the fuselage.">
+                            <value>center_fuselage</value>
+                        </name>
+                        <position description="Position of one entire fuselage with regard to the global reference point.">
+                            <x_position description="Distance in x direction with regard to the global reference point. (fuselage nose point)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-10</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </x_position>
+                            <y_position description="Distance in y direction with regard to the global reference point. (fuselage nose point)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-25</lower_boundary>
+                                <upper_boundary>25</upper_boundary>
+                            </y_position>
+                            <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-5</lower_boundary>
+                                <upper_boundary>5</upper_boundary>
+                            </z_position>
+                        </position>
+                        <mass_properties description="Mass properties of one entire fuselage.">
+                            <mass description="Mass of one entire fuslege.">
+                                <value>0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>100000</upper_boundary>
+                            </mass>
+                            <inertia description="Inertia of one entire fuselage with regard to his center of gravity.">
+                                <j_xx description="Inertia of one entire fuselage in x.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="Inertia of one entire fuselage in y.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="Inertia of one entire fuselage in z.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="Inertia of one entire fuselage in xy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="Inertia of one entire fuselage in xz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="Inertia of one entire fuselage in yx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="Inertia of one entire fuselage in yz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="Inertia of one entire fuselage in zx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="Inertia of one entire fuselage in zy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="Center of gravity of one entire fuselage.">
+                                <x_position description="Center of gravity in x-direction with regard to the global reference point. (entire fuselage)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>50</upper_boundary>
+                                </x_position>
+                                <y_position description="Center of gravity in y-direction with regard to the global reference point. (entire fuselage)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-25</lower_boundary>
+                                    <upper_boundary>25</upper_boundary>
+                                </y_position>
+                                <z_position description="Center of gravity in z-direction with regard to the global reference point. (entire fuselage)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-5</lower_boundary>
+                                    <upper_boundary>5</upper_boundary>
+                                </z_position>
+                            </center_of_gravity>
+                        </mass_properties>
+                        <fuselage_sections description="Geometrical description of the fuselage sections of one entire fuselage">
+                            <section ID="0" description="Geometrical description of one fuselage section.">
+                                <name description="Name of the fuselage section.">
+                                    <value>section_1</value>
+                                </name>
+                                <origin description="Origin of fuselage section (local).">
+                                    <x_position description="Distance in x direction with regard to the global reference point.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-10</lower_boundary>
+                                        <upper_boundary>75</upper_boundary>
+                                    </x_position>
+                                    <y_position description="Distance in y direction with regard to the global reference point.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-25</lower_boundary>
+                                        <upper_boundary>25</upper_boundary>
+                                    </y_position>
+                                    <z_position description="Distance in z direction with regard to the global reference point.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-5</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </z_position>
+                                </origin>
+                                <upper_hight description="Height of the upper half of the fuselage section.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </upper_hight>
+                                <lower_hight description="Height of the lower half of the fuselage section.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </lower_hight>
+                                <width description="Width of the fuselage section.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </width>
+                                <chord_length description="Maximum length of the fuselage section for bwb configuration.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>70</upper_boundary>
+                                </chord_length>
+                            </section>
+                        </fuselage_sections>
+                        <fuselage_accommodation>
+                            <position description="Position of the payload tubes with regard to the global reference point.">
+                                <x_position description="Distance in x direction with regard to the global reference point. (center payload tube starting point)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-10</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </x_position>
+                                <y_position description="Distance in y direction with regard to the global reference point. (center payload tube starting point)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </y_position>
+                                <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-5</lower_boundary>
+                                    <upper_boundary>5</upper_boundary>
+                                </z_position>
+                            </position>
+                            <mass_properties description="Mass properties of the payload tubes of one entire fuselage.">
+                                <mass description="Mass of the payload tubes of one entire fuslege.">
+                                    <value>0</value>
+                                    <unit>kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>100000</upper_boundary>
+                                </mass>
+                                <center_of_gravity description="Center of gravity of the payload tubes of one entire fuselage.">
+                                    <x_position description="Center of gravity in x-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>50</upper_boundary>
+                                    </x_position>
+                                    <y_position description="Center of gravity in y-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-5</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </y_position>
+                                    <z_position description="Center of gravity in z-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-5</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </z_position>
+                                </center_of_gravity>
+                            </mass_properties>
+                            <number_of_payload_tubes description="Number of payload tubes of one entire fuselage.">
+                                <value>1</value>
+                                <unit>1</unit>
+                                <lower_boundary>1</lower_boundary>
+                                <upper_boundary>7</upper_boundary>
+                            </number_of_payload_tubes>
+                            <payload_tube ID="0" description="Geometrical description of one payload tube of the fuselage.">
+                                <name description="Name of the payload tube.">
+                                    <value>center_payload_tube</value>
+                                </name>
+                                <payload_tube_reference_points description="Payload tube center reference points in x, y and z-direction refered to fuselage nose point.">
+                                    <front_reference_points Desc="Reference points in the front of payload tube.">
+                                        <x_position Desc="Payload tube reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <y_position Desc="Payload tube reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y_position>
+                                        <z_position Desc="Payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                        <upper_z_position Desc="Upper payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </upper_z_position>
+                                        <lower_z_position Desc="Lower payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </lower_z_position>
+                                    </front_reference_points>
+                                    <aft_reference_points Desc="Reference points in the aft of payload tube.">
+                                        <x_position Desc="Payload tube reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <y_position Desc="Payload tube reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y_position>
+                                        <z_position Desc="Payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                        <upper_z_position Desc="Upper payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </upper_z_position>
+                                        <lower_z_position Desc="Lower payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </lower_z_position>
+                                    </aft_reference_points>
+                                </payload_tube_reference_points>
+                                <payload_tube_wall_reference_points description="Payload tube wall reference points in x, y and z-direction refered to fuselage nose point.">
+                                    <front_reference_points Desc="Wall reference points in the front of payload tube.">
+                                        <x_position Desc="Wall reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <left_y_position Desc="Left wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </left_y_position>
+                                        <right_y_position Desc="Right wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </right_y_position>
+                                        <z_position Desc="Wall reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                    </front_reference_points>
+                                    <aft_reference_points Desc="Wall reference points in the aft of payload tube.">
+                                        <x_position Desc="Wall reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <left_y_position Desc="Left wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </left_y_position>
+                                        <right_y_position Desc="Right wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </right_y_position>
+                                        <z_position Desc="Wall reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                    </aft_reference_points>
+                                </payload_tube_wall_reference_points>
+                                <payload_tube_structural_wall_thickness description="Structural wall thickness of the paylaod tube.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </payload_tube_structural_wall_thickness>
+                                <payload_tube_water_volume description="Total water volume of one entire paylaod tube.">
+                                    <value>0</value>
+                                    <unit>m^3</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>infr</upper_boundary>
+                                </payload_tube_water_volume>
+                                <number_of_payload_decks description="Number of payload decks of one entire fuselage.">
+                                    <value>1</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>1</lower_boundary>
+                                    <upper_boundary>3</upper_boundary>
+                                </number_of_payload_decks>
+                                <payload_deck ID="0" description="Geometrical description of the payload decks in one payload tube.">
+                                    <name description="Name of the payload deck.">
+                                        <value>passenger_deck</value>
+                                    </name>
+                                    <position description="Position of the payload deck with regard to the global reference point.">
+                                        <x_position description="Distance in x direction with regard to the global reference point. (payload deck starting point)">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>10</upper_boundary>
+                                        </x_position>
+                                        <y_position description="Distance in y direction with regard to the global reference point. (payload deck starting point)">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>0</upper_boundary>
+                                        </y_position>
+                                        <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-5</lower_boundary>
+                                            <upper_boundary>5</upper_boundary>
+                                        </z_position>
+                                    </position>
+                                    <mass_properties description="Mass properties of the payload deck of one entire payload tube.">
+                                        <mass description="Mass of the payload deck of one entire paylaod tube.">
+                                            <value>0</value>
+                                            <unit>kg</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>100000</upper_boundary>
+                                        </mass>
+                                        <center_of_gravity description="Center of gravity of the payload tubes of one entire fuselage.">
+                                            <x_position description="Center of gravity in x-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>50</upper_boundary>
+                                            </x_position>
+                                            <y_position description="Center of gravity in y-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-5</lower_boundary>
+                                                <upper_boundary>5</upper_boundary>
+                                            </y_position>
+                                            <z_position description="Center of gravity in z-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-5</lower_boundary>
+                                                <upper_boundary>5</upper_boundary>
+                                            </z_position>
+                                        </center_of_gravity>
+                                    </mass_properties>
+                                    <payload_deck_area description="Total floor area of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m^2</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>1000</upper_boundary>
+                                    </payload_deck_area>
+                                    <payload_deck_water_volume description="Total water volume of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m^3</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>1000</upper_boundary>
+                                    </payload_deck_water_volume>
+                                    <payload_deck_length description="Total length of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>100</upper_boundary>
+                                    </payload_deck_length>
+                                    <payload_deck_height description="Maximum standing height of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>3</upper_boundary>
+                                    </payload_deck_height>
+                                    <payload_deck_top_width description="Width on the top of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>10</upper_boundary>
+                                    </payload_deck_top_width>
+                                    <payload_deck_bottom_width description="Width on the bottom of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>10</upper_boundary>
+                                    </payload_deck_bottom_width>
+                                    <payload_deck_required_power description="Required power of the payload deck.">
+                                        <value>0</value>
+                                        <unit>W</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>inf</upper_boundary>
+                                    </payload_deck_required_power>
+                                    <number_of_payload_deck_compartments description="Number of paylaod compartments of the payload deck.">
+                                        <value>1</value>
+                                        <unit>1</unit>
+                                        <lower_boundary>1</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </number_of_payload_deck_compartments>
+                                    <payload_compartment ID="0" description="Geometrical description of the payload compartment of one payload deck.">
+                                        <name description="Name of the payload compartment of the payload deck.">
+                                            <value>front_compartment</value>
+                                        </name>
+                                        <position description="Position of the payload compartment with regard to the global reference point.">
+                                            <x_position description="Distance in x direction with regard to the global reference point. (payload compartment starting point)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-10</lower_boundary>
+                                                <upper_boundary>100</upper_boundary>
+                                            </x_position>
+                                            <y_position description="Distance in y direction with regard to the global reference point. (payload compartment starting point)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-25</lower_boundary>
+                                                <upper_boundary>25</upper_boundary>
+                                            </y_position>
+                                            <z_position description="Distance in z direction with regard to the global reference point. (distance compartment fuselage center line)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-5</lower_boundary>
+                                                <upper_boundary>5</upper_boundary>
+                                            </z_position>
+                                        </position>
+                                        <payload_compartment_area description="Total floor area of the payload compartment.">
+                                            <value>0</value>
+                                            <unit>m^2</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>1000</upper_boundary>
+                                        </payload_compartment_area>
+                                        <payload_compartment_water_volume description="Total water volume of the paylaod compartment.">
+                                            <value>0</value>
+                                            <unit>m^3</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>1000</upper_boundary>
+                                        </payload_compartment_water_volume>
+                                        <payload_compartment_length description="Total length of the paylaod compartment.">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>100</upper_boundary>
+                                        </payload_compartment_length>
+                                    </payload_compartment>
+                                </payload_deck>
+                            </payload_tube>
+                        </fuselage_accommodation>
+                    </fuselage>
+                </geometry>
+            </specific>
+        </fuselage>
+        <tank description="Description of aircraft tanks." tool_level="0">
+            <position description="Position of the tanks with regard to the global reference point.">
+                <x_position description="Distance between the foremost tank end and the global reference point in x-direction.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>80</upper_boundary>
+                </x_position>
+                <y_position description="Distance between the foremost tank end and the global reference point in y-direction.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-40</lower_boundary>
+                    <upper_boundary>40</upper_boundary>
+                </y_position>
+                <z_position description="Distance between the foremost tank end and the global reference point in z-direction.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-5</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </z_position>
+            </position>
+            <mass_properties description="Mass properties of all tanks.">
+                <mass description="Total tank mass.">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>100000</upper_boundary>
+                </mass>
+                <inertia description="Inertia of all tanks with regard to the total center of gravity.">
+                    <j_xx description="Inertia of all tanks in x.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="Inertia of all tanks in y.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="Inertia of all tanks in z.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="Inertia of all tanks in xy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="Inertia of all tanks in xz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="Inertia of all tanks in yx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="Inertia of all tanks in yz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="Inertia of all tanks in zx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="Inertia of all tanks in zy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="Center of gravity of all tanks.">
+                    <x_position description="Center of gravity in x-direction with regard to the global reference point.">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>80</upper_boundary>
+                    </x_position>
+                    <y_position description="Center of gravity in y-direction with regard to the global reference point.">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-40</lower_boundary>
+                        <upper_boundary>40</upper_boundary>
+                    </y_position>
+                    <z_position description="Center of gravity in z-direction with regard to the global reference point.">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-5</lower_boundary>
+                        <upper_boundary>5</upper_boundary>
+                    </z_position>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <tank ID="0" description="Description of one tank.">
+                    <name description="Designator of the tank (right/left hand inner/outer wing tank, centre tank, trim tank, cylindrical/conical tail cone tank, ...).">
+                        <value>right hand inner wing tank</value>
+                    </name>
+                    <position description="Position of one tank with regard to the global reference point.">
+                        <x_position description="Distance between the foremost tank end of one tank and the global reference point in x-direction.">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>80</upper_boundary>
+                        </x_position>
+                        <y_position description="Distance between the foremost tank end of one tank and the global reference point in y-direction.">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-40</lower_boundary>
+                            <upper_boundary>40</upper_boundary>
+                        </y_position>
+                        <z_position description="Distance between the foremost tank end of one tank and the global reference point in z-direction.">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-5</lower_boundary>
+                            <upper_boundary>5</upper_boundary>
+                        </z_position>
+                    </position>
+                    <mass_properties description="Mass properties of one tank.">
+                        <mass description="Total dry mass of one tank.">
+                            <value>0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>100000</upper_boundary>
+                        </mass>
+                        <inertia description="Inertia of one tank with regard to its center of gravity.">
+                            <j_xx description="Inertia of one tank in x.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_xx>
+                            <j_yy description="Inertia of one tank in y.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_yy>
+                            <j_zz description="Inertia of one tank in z.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_zz>
+                            <j_xy description="Inertia of one tank in xy.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_xy>
+                            <j_xz description="Inertia of one tank in xz.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_xz>
+                            <j_yx description="Inertia of one tank in yx.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_yx>
+                            <j_yz description="Inertia of one tank in yz.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_yz>
+                            <j_zx description="Inertia of one tank in zx.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_zx>
+                            <j_zy description="Inertia of one tank in zy.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_zy>
+                        </inertia>
+                        <center_of_gravity description="Center of gravity of one tank.">
+                            <x_position description="Center of gravity in x-direction with regard to the global reference point.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>80</upper_boundary>
+                            </x_position>
+                            <y_position description="Center of gravity in y-direction with regard to the global reference point.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-40</lower_boundary>
+                                <upper_boundary>40</upper_boundary>
+                            </y_position>
+                            <z_position description="Center of gravity in z-direction with regard to the global reference point.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-5</lower_boundary>
+                                <upper_boundary>5</upper_boundary>
+                            </z_position>
+                        </center_of_gravity>
+                    </mass_properties>
+                    <volume description="Total usable volume of one tank.">
+                        <value>0</value>
+                        <unit>l</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>100000</upper_boundary>
+                    </volume>
+                    <geometry description="Geometrical description of one tank.">
+                        <cross_section ID="0" description="Geometrical description of one tank cross section.">
+                            <name description="Designator of tank cross section.">
+                                <value>first cross section</value>
+                            </name>
+                            <position description="Position of tank cross section with regard to the global reference point.">
+                                <x_position description="Distance between the tank cross section and the global reference point in x-direction.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>80</upper_boundary>
+                                </x_position>
+                                <y_position description="Distance between the tank cross section and the global reference point in y-direction.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-40</lower_boundary>
+                                    <upper_boundary>40</upper_boundary>
+                                </y_position>
+                                <z_position description="Distance between the tank cross section and the global reference point in z-direction.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-5</lower_boundary>
+                                    <upper_boundary>5</upper_boundary>
+                                </z_position>
+                            </position>
+                            <shape description="Description of the shape of the cross section (circular, rectangular, elliptical).">
+                                <value>rectangular</value>
+                            </shape>
+                            <height description="Height of the cross section.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </height>
+                            <width description="Width of the cross section.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </width>
+                            <length description="Length of the cross section (if length &gt; 0: curved cross section, e.g., dashed tank endcap).">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </length>
+                        </cross_section>
+                    </geometry>
+                </tank>
+            </specific>
+        </tank>
+        <empennage description="empennage component" tool_level="0">
+            <position description="position of empennage (most forward position of part composition)">
+                <x description="x position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </x>
+                <y description="y position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </y>
+                <z description="z position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </z>
+            </position>
+            <mass_properties description="mass_properties of component empennage">
+                <mass description="component mass">
+                    <value>0.0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="component inertia refered to center of gravity">
+                    <j_xx description="inertia component in x">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="inertia component in y">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="inertia component in z">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="inertia component in xy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="inertia component in xz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="inertia component in yx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="inertia component in yz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="inertia component in zx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="inertia component in zy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                    <x description="x component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </x>
+                    <y description="y component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </y>
+                    <z description="z component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </z>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <geometry>
+                    <aerodynamic_surface description="aerodynamic surface" ID="0">
+                        <name description="name of aerodynamic surface">
+                            <value>fin</value>
+                        </name>
+                        <position description="reference position in global coordinates">
+                            <x description="x position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </x>
+                            <y description="y position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </y>
+                            <z description="z position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </z>
+                        </position>
+                        <parameters description="aerodynamic surface parameters">
+                            <direction description="unit vector according to global coordinate system for direction applied at position">
+                                <x description="x direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </x>
+                                <y description="y direction of unit vector">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </y>
+                                <z description="z direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </z>
+                            </direction>
+                            <symmetric description="symmetric to x-z plane (global) aerodynamic surface">
+                                <value>true</value>
+                            </symmetric>
+                            <sections description="sections">
+                                <section description="section" ID="0">
+                                    <chord_origin description="origin of chord (local)">
+                                        <x description="x position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x>
+                                        <y description="y position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y>
+                                        <z description="z position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z>
+                                    </chord_origin>
+                                    <chord_length description="length of chord">
+                                        <value>0.0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-inf</lower_boundary>
+                                        <upper_boundary>inf</upper_boundary>
+                                    </chord_length>
+                                    <geometric_twist description="geometric twist at leading edge">
+                                        <value>0.0</value>
+                                        <unit>rad</unit>
+                                        <lower_boundary>-</lower_boundary>
+                                        <upper_boundary />
+                                    </geometric_twist>
+                                    <profile description="profile (data normalized on chord)">
+                                        <name>
+                                            <value>naca0012</value>
+                                        </name>
+                                    </profile>
+                                </section>
+                            </sections>
+                            <spars description="spars">
+                                <spar description="front spar" ID="0">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                                <spar description="rear spar" ID="1">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                            </spars>
+                            <control_devices description="control devices">
+                                <control_device description="control device" ID="0">
+                                    <type>
+                                        <value>aileron</value>
+                                    </type>
+                                    <deflection description="maximum positive and negative deflection of control device">
+                                        <full_negative_deflection description="full negative deflection">
+                                            <value>-25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_negative_deflection>
+                                        <full_positive_deflection description="full positive deflection">
+                                            <value>25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_positive_deflection>
+                                    </deflection>
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </control_device>
+                            </control_devices>
+                        </parameters>
+                        <mass_properties description="mass_properties of aerodynamic surface">
+                            <mass description="component mass">
+                                <value>0.0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </mass>
+                            <inertia description="component inertia refered to center of gravity">
+                                <j_xx description="inertia component in x">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="inertia component in y">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="inertia component in z">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="inertia component in xy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="inertia component in xz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="inertia component in yx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="inertia component in yz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="inertia component in zx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="inertia component in zy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                                <x description="x component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </x>
+                                <y description="y component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </y>
+                                <z description="z component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </z>
+                            </center_of_gravity>
+                        </mass_properties>
+                    </aerodynamic_surface>
+                </geometry>
+            </specific>
+        </empennage>
+        <landing_gear description="Geometric description of the aircraft undercarriage." tool_level="0">
+            <position description="Position of the total undercarriage arrangment with regard to the global reference point.">
+                <x_position description="Distance in x direction with regard to the global reference point. (total undercarriage arrangment)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>50</upper_boundary>
+                </x_position>
+                <y_position description="Distance in y direction with regard to the global reference point. (total undercarriage arrangment)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>0</upper_boundary>
+                </y_position>
+                <z_position description="Distance in z direction with regard to the global reference point. (total undercarriage arrangment)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-10</lower_boundary>
+                    <upper_boundary>0</upper_boundary>
+                </z_position>
+            </position>
+            <mass_properties description="Mass properties of the total undercarriage arrangment.">
+                <mass description="Mass of the total undercarriage arrangment.">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="Inertia of the total undercarriage arrangment with regard to the total center of gravity.">
+                    <j_xx description="Inertia of the total undercarriage arrangment in x.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="Inertia of the total undercarriage arrangment in y.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="Inertia of the total undercarriage arrangment in z.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="Inertia of the total undercarriage arrangment in xy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="Inertia of the total undercarriage arrangment in xz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="Inertia of the total undercarriage arrangment in yx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="Inertia of the total undercarriage arrangment in yz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="Inertia of the total undercarriage arrangment in zx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="Inertia of the total undercarriage arrangment in zy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="Center of gravity of the total undercarriage arrangment.">
+                    <x_position description="Center of gravity in x-direction with regard to the global reference point. (total undercarriage arrangment)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>50</upper_boundary>
+                    </x_position>
+                    <y_position description="Center of gravity in y-direction with regard to the global reference point. (total undercarriage arrangment)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>0</upper_boundary>
+                    </y_position>
+                    <z_position description="Center of gravity in z-direction with regard to the global reference point. (total undercarriage arrangment)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-10</lower_boundary>
+                        <upper_boundary>0</upper_boundary>
+                    </z_position>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <aircraft_classification_number description="Aircraft classification number for the total undercarriage arrangment.">
+                    <value>return_string</value>
+                </aircraft_classification_number>
+                <aircraft_classification_rating description="Aircraft classification rating for the total undercarriage arrangment.">
+                    <value>return_string</value>
+                </aircraft_classification_rating>
+                <geometry>
+                    <number_of_landing_gear_struts description="Number of installed landing gear struts.">
+                        <value>0</value>
+                        <unit>1</unit>
+                        <lower_boundary>3</lower_boundary>
+                        <upper_boundary>6</upper_boundary>
+                    </number_of_landing_gear_struts>
+                    <landing_gear_leg ID="0" description="Geometrical description of one entire landing gear leg.">
+                        <name description="Name of the landing gear leg.">
+                            <value>nose_gear</value>
+                        </name>
+                        <position description="Position of one entire landing gear leg with regard to the global reference point.">
+                            <x_position description="Distance in x direction with regard to the global reference point. (center line of the landing gear leg)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>100</upper_boundary>
+                            </x_position>
+                            <y_position description="Distance in y direction with regard to the global reference point. (center line of the landing gear leg)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-15</lower_boundary>
+                                <upper_boundary>15</upper_boundary>
+                            </y_position>
+                            <z_position description="Distance in z direction with regard to the global reference point. (z coordinate refers to the mounting point of the landing gear leg.)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-10</lower_boundary>
+                                <upper_boundary>0</upper_boundary>
+                            </z_position>
+                        </position>
+                        <mass_properties description="Mass properties of one entire landing gear leg.">
+                            <mass description="Mass of one entire landing gear leg.">
+                                <value>0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10000</upper_boundary>
+                            </mass>
+                            <inertia description="Inertia of one entire landing gear leg with regard to his center of gravity.">
+                                <j_xx description="Inertia of one entire landing gear leg in x.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="Inertia of one entire landing gear leg in y.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="Inertia of one entire landing gear leg in z.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="Inertia of one entire landing gear leg xy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="Inertia of one entire landing gear leg in xz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="Inertia of one entire landing gear leg in yx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="Inertia of one entire landing gear leg in yz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="Inertia of one entire landing gear leg in zx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="Inertia of one entire landing gear leg in zy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="Center of gravity of one entire landing gear leg.">
+                                <x_position description="Center of gravity in x-direction with regard to the global reference point. (entire landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>50</upper_boundary>
+                                </x_position>
+                                <y_position description="Center of gravity in y-direction with regard to the global reference point. (entire landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </y_position>
+                                <z_position description="Center of gravity in z-direction with regard to the global reference point. (entire landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-10</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </z_position>
+                            </center_of_gravity>
+                        </mass_properties>
+                        <assambly_components>
+                            <strut_diameter Desc="Diameter of the landing gear strut.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>1</upper_boundary>
+                            </strut_diameter>
+                            <strut_length Desc="Length of the landing gear strut.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </strut_length>
+                            <wheel_group_position Desc="Position of wheel group of one entire landing gear leg.">
+                                <x_position description="Distance in x direction with regard to the global reference point (center line of the landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>100</upper_boundary>
+                                </x_position>
+                                <y_position description="Distance in y direction with regard to the global reference point (center line of the landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-15</lower_boundary>
+                                    <upper_boundary>15</upper_boundary>
+                                </y_position>
+                                <z_position description="Distance in z direction with regard to the global reference point (z coordinate refers to the end point of the landing gear leg.)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-20</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </z_position>
+                            </wheel_group_position>
+                            <number_of_axis_of_wheel_group Desc="Number of axis of the wheel group behind each other.">
+                                <value>0</value>
+                                <unit>1</unit>
+                                <lower_boundary>1</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </number_of_axis_of_wheel_group>
+                            <wheel_base Desc="Distance of the foremost to the rearmost axis of the wheel group.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>15</upper_boundary>
+                            </wheel_base>
+                            <wheel_track Desc="Distance between the outermost wheels of an axis.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>5</upper_boundary>
+                            </wheel_track>
+                            <number_of_tires_per_axis Desc="Number of tires per axis of a tire group.">
+                                <value>0</value>
+                                <unit>1</unit>
+                                <lower_boundary>1</lower_boundary>
+                                <upper_boundary>4</upper_boundary>
+                            </number_of_tires_per_axis>
+                            <tire_description Desc="Description of one tire of the wheel group">
+                                <tire_diameter Desc="Diameter of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>2</upper_boundary>
+                                </tire_diameter>
+                                <tire_width Desc="Width of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </tire_width>
+                                <rim_diameter Desc="Rim diameter of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </rim_diameter>
+                                <tire_pressure Desc="Tire pressure of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>Pa</unit>
+                                    <lower_boundary>1000000</lower_boundary>
+                                    <upper_boundary>2000000</upper_boundary>
+                                </tire_pressure>
+                                <maximum_tire_speed Desc="Maximum permissible tire speed of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m/s</unit>
+                                    <lower_boundary>50</lower_boundary>
+                                    <upper_boundary>125</upper_boundary>
+                                </maximum_tire_speed>
+                            </tire_description>
+                        </assambly_components>
+                    </landing_gear_leg>
+                </geometry>
+            </specific>
+        </landing_gear>
+        <propulsion description="Propulsion components" ID="0" tool_level="0">
+            <position description="Reference positions of the propulsion assembly">
+                <nacelle description="Position of nacelle element in aircraft coordinate system (center of inlet)">
+                    <x description="x direction of nacelle">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>100</upper_boundary>
+                    </x>
+                    <y description="y direction of nacelle">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-50</lower_boundary>
+                        <upper_boundary>50</upper_boundary>
+                    </y>
+                    <z description="z direction of nacelle">
+                        <unit>m</unit>
+                        <value>0</value>
+                        <lower_boundary>-20</lower_boundary>
+                        <upper_boundary>40</upper_boundary>
+                    </z>
+                </nacelle>
+            </position>
+            <mass_properties description="Mass properties of propulsion assembly">
+                <nacelle>
+                    <mass description="nacelle mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </mass>
+                    <inertia description="nacelle inertia refered to its center of gravity">
+                        <j_xx description="inertia component in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia component in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia component in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia component in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia component in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia component in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia component in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia component in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia component in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="nacelle center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </nacelle>
+                <pylon>
+                    <mass description="component mass pylon">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </mass>
+                    <inertia description="component inertia refered to center of gravity">
+                        <j_xx description="inertia component in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia component in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia component in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia component in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia component in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia component in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia component in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia component in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia component in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </pylon>
+                <engine>
+                    <mass description="component mass engine">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </mass>
+                    <inertia description="component inertia refered to center of gravity">
+                        <j_xx description="inertia component in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia component in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia component in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia component in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia component in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia component in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia component in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia component in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia component in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </engine>
+            </mass_properties>
+            <specific description="Specific nacelle and engine properties">
+                <nacelle description="Parametric description of nacelle geometry">
+                    <incidence_angle description="Angle of incidence in reference to the aircrafts coordinate system">
+                        <unit>degree</unit>
+                        <lower_boundary>-10</lower_boundary>
+                        <upper_boundary>10</upper_boundary>
+                    </incidence_angle>
+                    <number_points description="No of points describing the section">
+                        <value>0</value>
+                    </number_points>
+                    <number_segments description="Number of segments describing the nacelle">
+                        <value>0</value>
+                    </number_segments>
+                    <inlet_segment description="Geometric desciption of the nacelle inlet segment">
+                        <segment_point_data>
+                            <value>0</value>
+                        </segment_point_data>
+                        <width_inlet description="Width of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_inlet>
+                        <height_inlet description="Height of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_inlet>
+                        <length_inlet description="Length of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </length_inlet>
+                    </inlet_segment>
+                    <nacelle_segment ID="0">
+                        <inner_segment_point_data>
+                            <value>0</value>
+                        </inner_segment_point_data>
+                        <outer_segment_point_data>
+                            <value>0</value>
+                        </outer_segment_point_data>
+                        <width_inner_segment description="Inner widht of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_inner_segment>
+                        <width_outer_segment description="Outer widht of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_outer_segment>
+                        <height_inner_segment description="Inner height of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_inner_segment>
+                        <height_outer_segment description="Outer height of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_outer_segment>
+                        <length_segment description="length of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </length_segment>
+                    </nacelle_segment>
+                    <exit_segment description="Geometric desciption of the nacelle exit segment">
+                        <segment_point_data>
+                            <value>0</value>
+                        </segment_point_data>
+                        <width_inlet description="Width of the nacelle exit segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_inlet>
+                        <height_inlet description="height of the nacelle exit segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_inlet>
+                    </exit_segment>
+                </nacelle>
+                <engine description="Parametric description of engine settings, geometry and performance">
+                    <settings description="Settings of engine model and improvment factor (from config)">
+                        <engine_model description="Name of selected engine model">
+                            <value>0.0</value>
+                        </engine_model>
+                        <fuel_flow_scale_factor description="Selected fuel flow scaling/improvement factor">
+                            <value>0.0</value>
+                            <lower_boundary>0.0</lower_boundary>
+                            <upper_boundary>1.0</upper_boundary>
+                        </fuel_flow_scale_factor>
+                        <maximum_shaft_power_extraction description="Maximum shaft power extraction of the engine for aircraft onboard systems">
+                            <value>0.0</value>
+                            <unit>W</unit>
+                            <lower_boundary>0.0</lower_boundary>
+                            <upper_boundary>3E+5</upper_boundary>
+                        </maximum_shaft_power_extraction>
+                    </settings>
+                    <turboprop_propeller_diameter description="Diameter of the propeller of the turboprop">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>1.75</lower_boundary>
+                        <lower_boundary>5.3</lower_boundary>
+                    </turboprop_propeller_diameter>
+                    <performance description="Performance specific parameter">
+                        <scale_factor description="Performance scaling factor">
+                            <value>0.0</value>
+                            <lower_boundary>0.0</lower_boundary>
+                            <upper_boundary>1.0</upper_boundary>
+                        </scale_factor>
+                        <maximum_take_off description="Performance at maximum take off condition at ISA+deltaISA (Requirements/DesignMission) with no offtakes at Mach=0.0 and altitude=0.0">
+                            <thrust>
+                                <value>0.0</value>
+                                <unit>N</unit>
+                                <lower_boundary>0.0</lower_boundary>
+                                <upper_boundary>999.0</upper_boundary>
+                            </thrust>
+                        </maximum_take_off>
+                        <maximum_continuous description="Performance at maximum continuous conditions at ISA+deltaISA (Requirements/DesignMission) with no offtakes at predefined Mach and altitude">
+                            <maximum_thrust description="Performance at maximum thrust at maximum continuous conditions">
+                                <thrust>
+                                    <value>0.0</value>
+                                    <unit>N</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust>
+                                <thrust_specific_fuel_consumption>
+                                    <value>0.0</value>
+                                    <unit>kgs^-1N^-1</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust_specific_fuel_consumption>
+                            </maximum_thrust>
+                            <bucket_thrust description="performance at bucket thrust at maximum continuous conditions">
+                                <thrust>
+                                    <value>0.0</value>
+                                    <unit>N</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust>
+                                <thrust_specific_fuel_consumption>
+                                    <value>0.0</value>
+                                    <unit>kgs^-1N^-1</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust_specific_fuel_consumption>
+                            </bucket_thrust>
+                        </maximum_continuous>
+                    </performance>
+                </engine>
+            </specific>
+        </propulsion>
+        <systems tool_level="0">
+            <position />
+            <mass_properties description="mass_properties of component systems">
+                <mass description="component mass">
+                    <systems_group description="total systems group">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </systems_group>
+                    <auxiliary_power_unit description="Airbus Chapter 30, ATA49">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </auxiliary_power_unit>
+                    <hydraulic_generation description="Airbus Chapter 31, ATA 29">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </hydraulic_generation>
+                    <hydraulic_distribution description="Airbus Chapter 32, ATA 29">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </hydraulic_distribution>
+                    <air_conditioning description="Airbus Chapter 33, ATA21">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </air_conditioning>
+                    <de_icing description="Airbus Chapter 34, ATA30">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </de_icing>
+                    <fire_protection description="Airbus Chapter 35, ATA26">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </fire_protection>
+                    <flight_controls description="Airbus Chapter 36, ATA27">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                        <roll description="aileron actuators, their installations and operation controls, Airbus Ch. 36.0">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </roll>
+                        <yaw description="rudder actuators, their installations and operation controls, Airbus Ch. 36.1">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </yaw>
+                        <pitch description="elevator actuators, their installations and operation controls, Airbus Ch. 36.2">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </pitch>
+                        <movable_horizontal_tail description="movable horizontal tail actuators, their installations and operation controls, Airbus Ch. 36.3">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </movable_horizontal_tail>
+                        <flaps description="flap actuators, their installations and operation controls, Airbus Ch. 36.4">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </flaps>
+                        <spoilers_airbrakes_liftdumpers description="spoiler actuators, their installations and operation controls, Airbus Ch. 36.5">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </spoilers_airbrakes_liftdumpers>
+                        <slats description="Mass of the slat actuators, their installations and operation controls, Airbus Ch. 36.6">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </slats>
+                        <common_installation description="flight control common installation, Airbus Ch. 36.7">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </common_installation>
+                    </flight_controls>
+                    <instruments description="Airbus Chapter 37, ATA31">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </instruments>
+                    <automatic_flight_system description="Airbus Chapter 38, ATA 22">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </automatic_flight_system>
+                    <navigation description="Airbus Chapter 39, ATA34">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </navigation>
+                    <communication description="Airbus Chapter 40, ATA23">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </communication>
+                    <electrical_generation description="Airbus Chapter 41, ATA24, generation">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </electrical_generation>
+                    <electrical_distribution description="Airbus Chapter 42, ATA24, distribution">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </electrical_distribution>
+                </mass>
+                <inertia />
+                <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                    <systems_group description="total systems group">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </systems_group>
+                    <auxiliary_power_unit description="Airbus Chapter 30, ATA49">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </auxiliary_power_unit>
+                    <hydraulic_generation description="Airbus Chapter 31, ATA 29">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </hydraulic_generation>
+                    <hydraulic_distribution description="Airbus Chapter 32, ATA 29">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </hydraulic_distribution>
+                    <air_conditioning description="Airbus Chapter 33, ATA21">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </air_conditioning>
+                    <de_icing description="Airbus Chapter 34, ATA30">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </de_icing>
+                    <fire_protection description="Airbus Chapter 35, ATA26">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </fire_protection>
+                    <flight_controls description="Airbus Chapter 36, ATA27">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                        <roll description="aileron actuators, their installations and operation controls, Airbus Ch. 36.0">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </roll>
+                        <yaw description="rudder actuators, their installations and operation controls, Airbus Ch. 36.1">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </yaw>
+                        <pitch description="elevator actuators, their installations and operation controls, Airbus Ch. 36.2">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </pitch>
+                        <movable_horizontal_tail description="movable horizontal tail actuators, their installations and operation controls, Airbus Ch. 36.3">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </movable_horizontal_tail>
+                        <flaps description="flap actuators, their installations and operation controls, Airbus Ch. 36.4">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </flaps>
+                        <spoilers_airbrakes_liftdumpers description="spoiler actuators, their installations and operation controls, Airbus Ch. 36.5">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </spoilers_airbrakes_liftdumpers>
+                        <slats description="Mass of the slat actuators, their installations and operation controls, Airbus Ch. 36.6">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </slats>
+                        <common_installation description="flight control common installation, Airbus Ch. 36.7">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </common_installation>
+                    </flight_controls>
+                    <instruments description="Airbus Chapter 37, ATA31">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </instruments>
+                    <automatic_flight_system description="Airbus Chapter 38, ATA 22">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </automatic_flight_system>
+                    <navigation description="Airbus Chapter 39, ATA34">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </navigation>
+                    <communication description="Airbus Chapter 40, ATA23">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </communication>
+                    <electrical_generation description="Airbus Chapter 41, ATA24, generation">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </electrical_generation>
+                    <electrical_distribution description="Airbus Chapter 42, ATA24, distribution">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </electrical_distribution>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <design_power description="design power of ATA29, ATA49, ATA70">
+                    <ATA29_hydraulic_system>
+                        <design_power description="maximum design power">
+                            <electric description="maximum demand for electrical power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </electric>
+                            <hydraulic description="maximum demand for hydraulic power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </hydraulic>
+                            <bleed_air description="maximum demand for bleed air">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air>
+                        </design_power>
+                        <pressure description="nominal pressure of hydraulic system">
+                            <value>0</value>
+                            <unit>Pa</unit>
+                        </pressure>
+                    </ATA29_hydraulic_system>
+                    <ATA49_auxiliary_power_unit>
+                        <design_power description="maximum design power">
+                            <electric description="maximum demand for electrical power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </electric>
+                            <hydraulic description="maximum demand for hydraulic power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </hydraulic>
+                            <bleed_air description="maximum demand for bleed air">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air>
+                        </design_power>
+                    </ATA49_auxiliary_power_unit>
+                    <ATA70_propulsion_system>
+                        <design_power description="maximum design power">
+                            <electric description="maximum demand for electrical power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </electric>
+                            <hydraulic description="maximum demand for hydraulic power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </hydraulic>
+                            <bleed_air description="maximum demand for bleed air">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air>
+                        </design_power>
+                    </ATA70_propulsion_system>
+                </design_power>
+                <offtakes description="total shaft power and bleed air offtakes from sink systems">
+                    <design_mission>
+                        <average_cruise_offtakes description="average offtakes during cruise and changeFL for the design mission">
+                            <shaft_power_total description="total shaft offtakes from all sink systems">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </shaft_power_total>
+                            <bleed_air_total description="total bleed air offtake from all sink systems">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air_total>
+                        </average_cruise_offtakes>
+                    </design_mission>
+                    <study_mission>
+                        <average_cruise_offtakes description="average offtakes during cruise and changeFL for the study mission">
+                            <shaft_power_total description="total shaft offtakes from all sink systems">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </shaft_power_total>
+                            <bleed_air_total description="total bleed air offtake from all sink systems">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air_total>
+                        </average_cruise_offtakes>
+                    </study_mission>
+                </offtakes>
+            </specific>
+        </systems>
+    </component_design>
+    <analysis>
+        <masses_cg_inertia description="masses, cgs, inertias." tool_level="0">
+            <manufacturer_mass_empty description="MME">
+                <mass_properties description="manufacturer mass empty properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </manufacturer_mass_empty>
+            <operating_mass_empty description="OME">
+                <mass_properties description="operating mass empty properties">
+                    <mass description="mass">
+                        <value>42307.66255</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </operating_mass_empty>
+            <maximum_zero_fuel_mass description="MZFM">
+                <mass_properties description="maximum zero fuel mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_zero_fuel_mass>
+            <maximum_landing_mass description="MLM">
+                <mass_properties description="maximum landing  mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_landing_mass>
+            <maximum_takeoff_mass description="MTOM">
+                <mass_properties description="maximum landing mass properties">
+                    <mass description="mass">
+                        <value>79144.73202</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_takeoff_mass>
+            <maximum_payload_mass description="maximum payload mass">
+                <mass_properties description="maximum payload mass properties">
+                    <mass description="mass">
+                        <value>20000</value>
+                        <unit>kg</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_payload_mass>
+            <maximum_fuel_mass description="maximum fuel mass">
+                <mass_properties description="maximum fuel mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_fuel_mass>
+            <most_forward_mass description="mass for most forward cg position">
+                <mass_properties description="maximum fuel mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </most_forward_mass>
+            <most_aft_mass description="mass for most aft cg position">
+                <mass_properties description="most aft mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </most_aft_mass>
+            <design_mass description="design mass ">
+                <mass_properties description="design mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </design_mass>
+            <most_afterward_mass description="mass for most afterward cg position">
+                <mass_properties description="most afterward mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </most_afterward_mass>
+        </masses_cg_inertia>
+        <aerodynamics description="Aerodynamcal analysis." level="0">
+            <reference_values>
+                <b description="Total wing span" tool_level="0">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>80</upper_boundary>
+                </b>
+                <MAC description="Mean aerodynamic chord" tool_level="0">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>50</upper_boundary>
+                </MAC>
+                <S_ref description="Wing reference area" tool_level="0">
+                    <value>0</value>
+                    <unit>m^2</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </S_ref>
+            </reference_values>
+            <lift_coefficients>
+                <C_LmaxLanding description="Maximum lift coefficient in landing configuration" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LmaxLanding>
+                <C_LmaxT-O description="Maximum lift coefficient in take off configuration" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LmaxT-O>
+                <C_LoptimumCruise description="Lift coefficient at L/D_optimum at M_initial_cruise" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LoptimumCruise>
+                <C_LgroundRoll description="Lift coefficient on ground for ground roll calculation" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LgroundRoll>
+            </lift_coefficients>
+            <polar>
+                <polar_file description="Name of polar file" tool_level="0">
+                    <value>0</value>
+                </polar_file>
+                <configurations description="Number of configurations in the polar file" tool_level="0">
+                    <value>0</value>
+                </configurations>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="1" tool_level="0">
+                    <type>Cruise</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="2" tool_level="0">
+                    <type>Departure</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="3" tool_level="0">
+                    <type>Departure</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="4" tool_level="0">
+                    <type>Departure</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="5" tool_level="0">
+                    <type>Approach</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="6" tool_level="0">
+                    <type>Approach</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="7" tool_level="0">
+                    <type>Approach</type>
+                    <value>0</value>
+                </configuration>
+            </polar>
+            <max_spoiler_factor description="Factor for maximum drag increase trough spoilers" tool_level="0">
+                <value>0</value>
+                <lower_boundary>1</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+            </max_spoiler_factor>
+        </aerodynamics>
+        <mission description="Mission data." tool_level="0">
+            <design_mission description="Data of design mission">
+                <range description="Range of design mission">
+                    <value>2500.496279</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>3000000</upper_boundary>
+                </range>
+                <block_time description="Block time of design mission: Time from break release to end of taxiing after landing">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>126000</upper_boundary>
+                </block_time>
+                <flight_time description="Flight time of design mission">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>12600</upper_boundary>
+                </flight_time>
+                <taxi_fuel_take_off description="Taxi fuel before takeoff in design mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </taxi_fuel_take_off>
+                <taxi_fuel_landing description="Taxi fuel after landing in design mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </taxi_fuel_landing>
+                <mission_fuel description="Total fuel loaded for design mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mission_fuel>
+                <trip_fuel description="Fuel burned from takeoff to landing">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </trip_fuel>
+                <payload description="Payload of design mission">
+                    <value>17000</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload>
+                <number_of_pax description="Number of passengers of design mission">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </number_of_pax>
+                <cargo_mass description="Cargo mass of design mission">
+                    <value>3392</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </cargo_mass>
+                <take_off_engine_derate Desc="Engine power demand">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1</upper_boundary>
+                </take_off_engine_derate>
+                <cruise_steps description="Cruise step information">
+                    <numer_of_cruise_steps description="Number of cruise steps in design mission">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </numer_of_cruise_steps>
+                    <cruise_step description="Data of cruise step" ID="0">
+                        <relative_end_of_cruise_step description="End of cruise step relative to mission length">
+                            <value>0</value>
+                            <unit>-</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>1</upper_boundary>
+                        </relative_end_of_cruise_step>
+                        <altitude description="Altitude of cruise step">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>15000</upper_boundary>
+                        </altitude>
+                    </cruise_step>
+                </cruise_steps>
+                <take_off_mass description="Take off mass">
+                    <value>79144.73202</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </take_off_mass>
+            </design_mission>
+            <study_mission description="Data of study mission">
+                <range description="Range of study mission">
+                    <value>500.6435584</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>3000000</upper_boundary>
+                </range>
+                <block_time description="Block time of study mission: Time from break release to end of taxiing after landing">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>126000</upper_boundary>
+                </block_time>
+                <flight_time description="Flight time of study mission">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>12600</upper_boundary>
+                </flight_time>
+                <taxi_fuel_takeoff description="Taxi fuel before takeoff in study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>500</upper_boundary>
+                </taxi_fuel_takeoff>
+                <taxi_fuel_landing description="Taxi fuel after landing in study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>500</upper_boundary>
+                </taxi_fuel_landing>
+                <mission_fuel description="Total fuel loaded for study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mission_fuel>
+                <trip_fuel description="Fuel burned from takeoff to landing">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </trip_fuel>
+                <payload description="Payload of study mission">
+                    <value>13608</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload>
+                <cruise_steps description="Cruise step information">
+                    <numer_of_cruise_steps description="Number of cruise steps in study mission">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </numer_of_cruise_steps>
+                    <cruise_step description="Data of cruise step" ID="0">
+                        <relative_end_of_cruise_step description="End of cruise step relative to mission length">
+                            <value>0</value>
+                            <unit>-</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>1</upper_boundary>
+                        </relative_end_of_cruise_step>
+                        <altitude description="Altitude of cruise step">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>15000</upper_boundary>
+                        </altitude>
+                    </cruise_step>
+                </cruise_steps>
+                <payload description="Payload of study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload>
+                <number_of_pax description="Number of passengers of study mission">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </number_of_pax>
+                <cargo_mass description="Cargo mass of study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </cargo_mass>
+                <take_off_engine_derate Desc="Engine power demand">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1</upper_boundary>
+                </take_off_engine_derate>
+            </study_mission>
+        </mission>
+        <requirement_compliance>
+            <top_level_aircraft_requirements tool_level="0">
+                <design_take_off_field_length description="Switch indicating if take off field length can be maintained.">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </design_take_off_field_length>
+                <design_landing_field_length description="Switch indicating if landing fiel length can be maintained.">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </design_landing_field_length>
+                <design_approach_speed description="Switch indicating if approach speed can be maintained.">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </design_approach_speed>
+            </top_level_aircraft_requirements>
+            <certification tool_level="0">
+                <climb_gradient_of_second_take_off_segment description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_of_second_take_off_segment>
+                <climb_gradient_of_final_take_off_segment description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_of_final_take_off_segment>
+                <climb_gradient_approach_one_engine_inoperative description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_approach_one_engine_inoperative>
+                <climb_gradient_all_engines_operative description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_all_engines_operative>
+            </certification>
+        </requirement_compliance>
+    </analysis>
+    <assessment>
+        <performance>
+            <speed tool_level="0">
+                <maximum_operating_mach_number description="Maximum operating mach number">
+                    <value>0</value>
+                    <unit>-</unit>
+                </maximum_operating_mach_number>
+                <maximum_operating_velocity description="Maximum oderating speed (maximum dynamic pressure)">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </maximum_operating_velocity>
+                <dive_mach_number description="Diving mach number">
+                    <value>0</value>
+                    <unit>-</unit>
+                </dive_mach_number>
+                <dive_velocity description="Diving speed">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </dive_velocity>
+                <one_g_stall_speed_velocity description="One g stall speed in clean configuration">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </one_g_stall_speed_velocity>
+            </speed>
+            <take_off tool_level="0">
+                <take_off_distance_normal_safety description="Takeoff distance at Sea Level for MTOM and (ISA + deltaISA)-Conditions(calculated by missionAnalysis using missionDesign.xml settings) with all engines operating (AEO)">
+                    <value>0</value>
+                    <unit>m</unit>
+                </take_off_distance_normal_safety>
+                <lift_off_speed_velocity Alt="v_lof" description="Lift-off speed in take-off configuration">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </lift_off_speed_velocity>
+                <decision_speed Alt="v_1" description="Decision speed">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </decision_speed>
+                <take_off_safety_speed Alt="v_2" description="Speed at screen height (35 ft)">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </take_off_safety_speed>
+                <final_take_off_speed Alt="v_FTO" description="Speed at final takeoff segment (1500 ft)">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </final_take_off_speed>
+                <time_to_screen_height description="Time to screen height">
+                    <value>0</value>
+                    <unit>s</unit>
+                </time_to_screen_height>
+                <climb_or_descend_segment_climb_gradient description="Climb gradient in second takeoff segment">
+                    <value>0</value>
+                    <unit>%</unit>
+                </climb_or_descend_segment_climb_gradient>
+                <final_segment_climb_gradient description="Climb gradient in final takeoff segment">
+                    <value>0</value>
+                    <unit>%</unit>
+                </final_segment_climb_gradient>
+                <balanced_field_length description="Balanced field length">
+                    <value>0</value>
+                    <unit>m</unit>
+                </balanced_field_length>
+            </take_off>
+            <landing tool_level="0">
+                <needed_runway_length description="Needed runway length with all engines operating and maximum landing mass">
+                    <value>0</value>
+                    <unit>m</unit>
+                </needed_runway_length>
+                <approach_speed description="Final approach speed in landing configuration and maximum landing mass">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </approach_speed>
+            </landing>
+            <range tool_level="0">
+                <range_max_payload_at_maximum_take_off_mass description="Range at maximum payload and fuel mass till maximum take off mass limit">
+                    <value>3246.489365</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </range_max_payload_at_maximum_take_off_mass>
+                <range_max_fuel_at_maximum_take_off_mass description="Range at full tanks and payload till maximum take off mass limit">
+                    <value>10458.54652</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </range_max_fuel_at_maximum_take_off_mass>
+                <payload_maximum_fuel_at_maximum_take_off_mass description="Payload at full tanks and payload till maximum take off mass limit">
+                    <value>4361.39852</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload_maximum_fuel_at_maximum_take_off_mass>
+                <range_maximum_fuel_empty description="Range for no payload and full tanks">
+                    <value>10708.77812</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </range_maximum_fuel_empty>
+            </range>
+        </performance>
+        <average_temperature_response description="Integrated temperature change per year caused by aircraft operation divided by operating lifetime" tool_level="2">
+            <value>0</value>
+            <unit>K</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>1e-5</upper_boundary>
+        </average_temperature_response>
+        <operating_cost_estimation_tu_berlin description="Operating costs (sum of direct and indirect operating costs)" tool_level="2">
+            <direct_operating_costs description="Direct operating costs (sum of route independent and route dependent costs)">
+                <direct_operating_costs_annual description="Direct operating costs (DOC) per year">
+                    <value>30</value>
+                    <unit>EUR/y</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </direct_operating_costs_annual>
+            </direct_operating_costs>
+            <indirect_operating_costs description="Indirect operating costs (IOC)">
+                <indirect_operating_costs_annual description="Indirect operating costs (IOC) per year">
+                    <value>40</value>
+                    <unit>EUR/y</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </indirect_operating_costs_annual>
+            </indirect_operating_costs>
+        </operating_cost_estimation_tu_berlin>
+    </assessment>
+</aircraft_exchange_file>
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/reporting/plots/[module name]_[name of plot].txt b/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/reporting/plots/[module name]_[name of plot].txt
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml b/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml
new file mode 100644
index 0000000000000000000000000000000000000000..7266cf694afa591575e928cb4b635e6740ddbdbd
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml
@@ -0,0 +1,46 @@
+<module_results_file Name="Cost estimation specific outputs">
+    <general_information description="General information on module execution">
+        <workflow_version description="Version number of the current workflow">
+            <value>2.1.0</value>
+        </workflow_version>
+        <execution_date description="Execution date and time of the code">
+            <value>2024-11-18_10-48-55</value>
+        </execution_date>
+        <project_name description="Name of the current aircraft project">
+            <value>CSR-02</value>
+        </project_name>
+        <method_name description="Name of current module calculation method">
+            <value>operating_cost_estimation_tu_berlin</value>
+        </method_name>
+        <routing_layer description="Routing layer information">
+            <layer_1 description="Routing layer_1">
+                <value>tube_and_wing</value>
+            </layer_1>
+            <layer_2 description="Routing layer_2">
+                <value>empirical</value>
+            </layer_2>
+            <layer_3 description="Routing layer_3">
+                <value>operating_cost_estimation_tu_berlin</value>
+            </layer_3>
+            <user_layer description="Routing user_layer">
+                <value>kerosene</value>
+            </user_layer>
+        </routing_layer>
+    </general_information>
+    <calculation_results description="Results of calculation method">
+        <operating_cost_estimation_tu_berlin description="Empirical method to estimate the direct operating costs (DOC) and indirect operating costs (IOC) of an aircraft.">
+            <design_mission description="Cost estimation results of the design mission">
+                <direct_operating_costs description="Direct operating costs">
+                    <direct_operating_costs_per_year description="Direct operating costs per year at design point (sum of route dependent and route independent costs)">
+                        <value>30</value>
+                        <unit>EUR</unit>
+                    </direct_operating_costs_per_year>
+                </direct_operating_costs>
+                <indirect_operating_costs description="Indirect operating costs">
+                    <value>40</value>
+                    <unit>EUR</unit>
+                </indirect_operating_costs>
+            </design_mission>
+        </operating_cost_estimation_tu_berlin>
+    </calculation_results>
+</module_results_file>
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/CMakeLists.txt b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c590f285d26c1401d18573ee20ba6cd8c7484f29
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/CMakeLists.txt
@@ -0,0 +1,4 @@
+# Add the package to the package list for exporting the target
+# and propagate the resulting list back to the parent scope
+list( APPEND PYTHON_TARGETS ${CMAKE_CURRENT_LIST_DIR} )
+set( PYTHON_TARGETS ${PYTHON_TARGETS} PARENT_SCOPE )
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/LICENSE b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..c2e9f6c95bb8b07119095b6793e4fc81984c0647
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/LICENSE
@@ -0,0 +1,674 @@
+                    GNU GENERAL PUBLIC LICENSE
+                       Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+                            Preamble
+
+  The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+  The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works.  By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users.  We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors.  You can apply it to
+your programs, too.
+
+  When we speak of free software, we are referring to freedom, not
+price.  Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+  To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights.  Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+  For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received.  You must make sure that they, too, receive
+or can get the source code.  And you must show them these terms so they
+know their rights.
+
+  Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+  For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software.  For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+  Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so.  This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software.  The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable.  Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products.  If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+  Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary.  To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+  The precise terms and conditions for copying, distribution and
+modification follow.
+
+                       TERMS AND CONDITIONS
+
+  0. Definitions.
+
+  "This License" refers to version 3 of the GNU General Public License.
+
+  "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+  "The Program" refers to any copyrightable work licensed under this
+License.  Each licensee is addressed as "you".  "Licensees" and
+"recipients" may be individuals or organizations.
+
+  To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy.  The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+  A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+  To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy.  Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+  To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies.  Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+  An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License.  If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+  1. Source Code.
+
+  The "source code" for a work means the preferred form of the work
+for making modifications to it.  "Object code" means any non-source
+form of a work.
+
+  A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+  The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form.  A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+  The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities.  However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work.  For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+  The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+  The Corresponding Source for a work in source code form is that
+same work.
+
+  2. Basic Permissions.
+
+  All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met.  This License explicitly affirms your unlimited
+permission to run the unmodified Program.  The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work.  This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+  You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force.  You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright.  Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+  Conveying under any other circumstances is permitted solely under
+the conditions stated below.  Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+  No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+  When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+  4. Conveying Verbatim Copies.
+
+  You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+  You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+  5. Conveying Modified Source Versions.
+
+  You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+    a) The work must carry prominent notices stating that you modified
+    it, and giving a relevant date.
+
+    b) The work must carry prominent notices stating that it is
+    released under this License and any conditions added under section
+    7.  This requirement modifies the requirement in section 4 to
+    "keep intact all notices".
+
+    c) You must license the entire work, as a whole, under this
+    License to anyone who comes into possession of a copy.  This
+    License will therefore apply, along with any applicable section 7
+    additional terms, to the whole of the work, and all its parts,
+    regardless of how they are packaged.  This License gives no
+    permission to license the work in any other way, but it does not
+    invalidate such permission if you have separately received it.
+
+    d) If the work has interactive user interfaces, each must display
+    Appropriate Legal Notices; however, if the Program has interactive
+    interfaces that do not display Appropriate Legal Notices, your
+    work need not make them do so.
+
+  A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit.  Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+  6. Conveying Non-Source Forms.
+
+  You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+    a) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by the
+    Corresponding Source fixed on a durable physical medium
+    customarily used for software interchange.
+
+    b) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by a
+    written offer, valid for at least three years and valid for as
+    long as you offer spare parts or customer support for that product
+    model, to give anyone who possesses the object code either (1) a
+    copy of the Corresponding Source for all the software in the
+    product that is covered by this License, on a durable physical
+    medium customarily used for software interchange, for a price no
+    more than your reasonable cost of physically performing this
+    conveying of source, or (2) access to copy the
+    Corresponding Source from a network server at no charge.
+
+    c) Convey individual copies of the object code with a copy of the
+    written offer to provide the Corresponding Source.  This
+    alternative is allowed only occasionally and noncommercially, and
+    only if you received the object code with such an offer, in accord
+    with subsection 6b.
+
+    d) Convey the object code by offering access from a designated
+    place (gratis or for a charge), and offer equivalent access to the
+    Corresponding Source in the same way through the same place at no
+    further charge.  You need not require recipients to copy the
+    Corresponding Source along with the object code.  If the place to
+    copy the object code is a network server, the Corresponding Source
+    may be on a different server (operated by you or a third party)
+    that supports equivalent copying facilities, provided you maintain
+    clear directions next to the object code saying where to find the
+    Corresponding Source.  Regardless of what server hosts the
+    Corresponding Source, you remain obligated to ensure that it is
+    available for as long as needed to satisfy these requirements.
+
+    e) Convey the object code using peer-to-peer transmission, provided
+    you inform other peers where the object code and Corresponding
+    Source of the work are being offered to the general public at no
+    charge under subsection 6d.
+
+  A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+  A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling.  In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage.  For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product.  A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+  "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source.  The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+  If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information.  But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+  The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed.  Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+  Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+  7. Additional Terms.
+
+  "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law.  If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+  When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it.  (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.)  You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+  Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+    a) Disclaiming warranty or limiting liability differently from the
+    terms of sections 15 and 16 of this License; or
+
+    b) Requiring preservation of specified reasonable legal notices or
+    author attributions in that material or in the Appropriate Legal
+    Notices displayed by works containing it; or
+
+    c) Prohibiting misrepresentation of the origin of that material, or
+    requiring that modified versions of such material be marked in
+    reasonable ways as different from the original version; or
+
+    d) Limiting the use for publicity purposes of names of licensors or
+    authors of the material; or
+
+    e) Declining to grant rights under trademark law for use of some
+    trade names, trademarks, or service marks; or
+
+    f) Requiring indemnification of licensors and authors of that
+    material by anyone who conveys the material (or modified versions of
+    it) with contractual assumptions of liability to the recipient, for
+    any liability that these contractual assumptions directly impose on
+    those licensors and authors.
+
+  All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10.  If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term.  If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+  If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+  Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+  8. Termination.
+
+  You may not propagate or modify a covered work except as expressly
+provided under this License.  Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+  However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+  Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+  Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License.  If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+  9. Acceptance Not Required for Having Copies.
+
+  You are not required to accept this License in order to receive or
+run a copy of the Program.  Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance.  However,
+nothing other than this License grants you permission to propagate or
+modify any covered work.  These actions infringe copyright if you do
+not accept this License.  Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+  10. Automatic Licensing of Downstream Recipients.
+
+  Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License.  You are not responsible
+for enforcing compliance by third parties with this License.
+
+  An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations.  If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+  You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License.  For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+  11. Patents.
+
+  A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based.  The
+work thus licensed is called the contributor's "contributor version".
+
+  A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version.  For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+  Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+  In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement).  To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+  If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients.  "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+  If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+  A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License.  You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+  Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+  12. No Surrender of Others' Freedom.
+
+  If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License.  If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all.  For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+  13. Use with the GNU Affero General Public License.
+
+  Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work.  The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+  14. Revised Versions of this License.
+
+  The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time.  Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+  Each version is given a distinguishing version number.  If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation.  If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+  If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+  Later license versions may give you additional or different
+permissions.  However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+  15. Disclaimer of Warranty.
+
+  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+  16. Limitation of Liability.
+
+  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+  17. Interpretation of Sections 15 and 16.
+
+  If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+                     END OF TERMS AND CONDITIONS
+
+            How to Apply These Terms to Your New Programs
+
+  If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+  To do so, attach the following notices to the program.  It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+    UNICADO - Modular Preliminary Aircraft Design Tool
+    Copyright (C) 2024
+
+    This program is free software: you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation, either version 3 of the License, or
+    (at your option) any later version.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
+
+    You should have received a copy of the GNU General Public License
+    along with this program.  If not, see <https://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+  If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+    <program>  Copyright (C) <year>  <name of author>
+    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+    This is free software, and you are welcome to redistribute it
+    under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License.  Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+  You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+<https://www.gnu.org/licenses/>.
+
+  The GNU General Public License does not permit incorporating your program
+into proprietary programs.  If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library.  If this is what you want to do, use the GNU Lesser General
+Public License instead of this License.  But first, please read
+<https://www.gnu.org/licenses/why-not-lgpl.html>.
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/README.md b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..3eb3604f05fd0d1711bce7b3695de3df835b534c
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/README.md
@@ -0,0 +1,31 @@
+# UNICADO Python Framework
+
+Brief description of what the project does and its purpose.
+
+## Installation (standalone)
+Please follow the instructions on the UNICADO website:
+https://unicado.ilr.rwth-aachen.de/w/software_maintenance/how_to_python_in_unicado/
+
+## Usage
+Explain how to use the project. Provide examples if necessary.
+
+## Configuration
+Explain any configuration options or settings that can be customized.
+
+## Contributing
+If you'd like to contribute to this project, please follow these guidelines:
+
+Fork the repository.
+Create a new branch (git checkout -b feature_branch).
+Make your changes and commit them (git commit -am 'Add new feature').
+Push to the branch (git push origin feature_branch).
+Create a new Pull Request.
+
+## License
+This project is licensed under the GNU General Public License, Version 3 - see the LICENSE.md file for details.
+
+## Acknowledgements
+List any acknowledgements or credits for libraries, tutorials, etc. that were used in developing this project.
+
+## Contact
+For questions or feedback, please contact A. Gobbin (a.gobbin@tu-berlin.de) or S. Roscher (s.roscher@tu-berlin.de).
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/pyproject.toml b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/pyproject.toml
new file mode 100644
index 0000000000000000000000000000000000000000..ebb3fbb21978587f60e92ec6ada35fb193757c75
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/pyproject.toml
@@ -0,0 +1,20 @@
+[build-system]
+# Please do not change any information given here.
+requires = ["setuptools", "setuptools-scm"] 
+build-backend = "setuptools.build_meta"
+
+[project] 
+name = "pymodulepackage" # insert name of the package (all lowercase, without underscores or special characters)
+version = "2.0.1" # insert version of package
+description = "This package contains standardized functions for UNICADO module execution." # Insert short package description
+readme = "README.md"
+requires-python = ">=3.10"
+license = {file = "LICENSE"}
+authors = [ # Insert name of author(s)
+    {name = "A. Gobbin", email = "a.gobbin@tu-berlin.de"},
+    {name = "S. Roscher", email = "s.roscher@tu-berlin.de"}
+]
+
+[project.urls]
+homepage = "https://unicado.ilr.rwth-aachen.de/"
+repository = "https://git.rwth-aachen.de/unicado"
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a4f587af3ab7a2aa1357331dd59a91b45322d2c
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py
@@ -0,0 +1,930 @@
+"""Module providing general UNICADO data postprocessing functions for Python code."""
+# Import standard modules.
+import os
+import re
+import sys
+import collections
+import xml.etree.ElementTree as ET
+from datetime import datetime
+
+
+def create_element_tree_from_paths(input_dict):
+    """ Create element tree from paths.
+
+    This function creates an element tree from the xml-paths inside the given input dictionary.
+
+    :param root input_dict: Dict containing module specific output datas.
+    :return: root
+    """
+    ''' initialize local parameter '''
+    paths = []
+    values = []
+
+    # Generate lists of paths and values
+    for _, value in input_dict.items():
+        paths.append(value[0])
+        values.append(value[1])
+
+    # Create the root element.
+    root_name = paths[0].split('/')[1]
+    root = ET.Element(root_name)
+
+    # Build the XML tree.
+    for index, path in enumerate(paths):
+        # Split the path into parts.
+        parts = re.split(r'\/(?![^\[]*\])', path.lstrip('./'))
+        current_element = root
+
+        for part in parts:
+            # Check if part has an ID attribute
+            id_match = re.search(r'(.+?)\[@ID="(\d+)"\]', part)
+            if id_match:
+                tag, id_value = id_match.groups()
+                # Check if an element with the same tag and ID already exists.
+                existing_element = current_element.find(f"./{tag}[@ID='{id_value}']")
+                if existing_element is not None:
+                    current_element = existing_element
+                else:
+                    new_element = ET.SubElement(current_element, tag, ID=id_value)
+                    current_element = new_element
+            else:
+                # Check if an element with the same tag already exists.
+                existing_element = current_element.find(part)
+                if existing_element is not None:
+                    current_element = existing_element
+                else:
+                    new_element = ET.SubElement(current_element, part)
+                    current_element = new_element
+
+        # Add 'value' sub-node with None as text content to the end node.
+        value_node = ET.SubElement(current_element, 'value')
+        value_node.text = str(values[index])
+
+    return root
+
+
+def insert_missing_elements(main_tree, root_of_tree_to_insert):
+    """ Insert missing elements.
+
+    This function searches and inserts missing module-dependent node elements in the aircraft exchange tree.
+
+    :param tree main_tree: The element tree into which all data from the second tree is to be inserted.
+    :param root root_of_tree_to_insert: The root node contains all the data to be inserted into the main tree.
+    :return: None
+    """
+    root = main_tree.getroot()
+
+    def insert_elements(first_parent, second_parent):
+        for second_child in second_parent:
+            # Find or create the corresponding child in the first tree
+            first_child = first_parent.find(second_child.tag)
+            if first_child is None:
+                # If the element doesn't exist in the first tree, append it
+                first_child = ET.SubElement(first_parent, second_child.tag, attrib=second_child.attrib)
+                first_child.text = second_child.text
+            else:
+                # Update the attributes and text of the existing element
+                first_child.attrib.update(second_child.attrib)
+                if first_child.text is None:
+                    first_child.text = second_child.text
+                elif second_child.text is not None:
+                    first_child.text += second_child.text
+            # Recursively insert missing elements for child elements
+            insert_elements(first_child, second_child)
+
+    # Start recursive insertion from the roots
+    insert_elements(root, root_of_tree_to_insert)
+
+
+def find_and_remove_paths_in_tree(element_tree, cleaned_paths):
+    """ Find and remove paths in tree.
+
+    This function searches and removes given XML paths from a given element tree.
+    Attention: The function has different behavior for entries in the 'component_design' node. Due to the unknown
+    number of ID nodes, the entire module-dependent subtree is deleted here.
+    For all other nodes, only the target nodes are removed.
+
+    :param tree element_tree: Element tree containing all node datas.
+    :param list cleaned_paths: List containing all xml paths to remove.
+    :return: None
+    """
+    # Nested function to find parent node of current subtree node
+    def find_parent(root, element):
+        for parent in root.iter():
+            for child in parent:
+                if child == element:
+                    return parent
+        return None
+
+    root = element_tree.getroot()
+    # Create map for parent-child relations.
+    parent_map = {c: p for p in element_tree.iter() for c in p}
+
+    # Loop across all paths to remove from aircraft exchange tree.
+    for path in cleaned_paths:
+        # Convert the './' prefixed path to the standard XPath by removing the leading './'.
+        xpath = path.lstrip('./')
+        # Get first node of current path.
+        first_node = xpath.split('/')[0]
+        # Check if the first node is not 'component_design' -> if true: -> remove only the end nodes of current path.
+        if not first_node == 'component_design':
+            # Find elements matching the XPath.
+            elements_to_remove = root.findall(xpath)
+            # Check each element if is existing -> if true: -> remove node from element tree
+            for elem in elements_to_remove:
+                parent = parent_map.get(elem)
+                if parent is not None:
+                    parent.remove(elem)
+
+        # Else condition: the first node of current path is 'component_design'
+        #   -> Remove all nodes from second node to end of current path.
+        else:
+            second_node = xpath.split('/')[1]
+            sub_tree_to_remove = root.find('component_design/' + second_node)
+            if sub_tree_to_remove is not None:
+                # Use a list to collect all descendants
+                elements_to_remove = []
+                stack = [sub_tree_to_remove]
+                while stack:
+                    current_element = stack.pop()
+                    elements_to_remove.append(current_element)
+                    stack.extend(list(current_element))
+                # Remove all collected elements
+                for elem in elements_to_remove[::-1]:
+                    # Call nested function to find parend node of current sub tree node.
+                    parent = find_parent(root, elem)
+                    if parent is not None:
+                        parent.remove(elem)
+
+
+def convert_dictionary_to_element_tree(parameters_dict, parent=None):
+    """ Convert dictionary to element tree.
+
+    This function converts the module-dependent key parameter dict into a consistent module-dependent element tree.
+
+    :param dict parameters_dict: Dict containing parameter for the element tree to generate.
+    :param node parent: The Parent node element of current module key parameter.
+    :return: element parent
+    """
+    # Check if is parent is None -> if true: -> initialize root node of element tree as 'module_dependent_root'.
+    #  Otherwise, the given parent is an ET.Element
+    if parent is None:
+        parent = ET.Element('module_dependent_root')
+
+    # Loop across the key value pairs of given dictionary to convert to an element tree.
+    for key, value in parameters_dict.items():
+        # Check if the current key is 'attribute' -> if true: -> set current value as an attribute of parent node
+        if key == 'attributes':
+            for attr_key, attr_value in value.items():
+                parent.set(attr_key, str(attr_value))
+        # Else if condition: Check if the current value is a dictionary -> if true: -> build sub-dictionary recursively.
+        elif isinstance(value, dict):
+            element = ET.Element(key)
+            parent.append(element)
+            # Call function for recursive tree building.
+            convert_dictionary_to_element_tree(value, element)
+        # Else condition: Current key value pair is an end-node -> set value of dictionary entry as text element.
+        else:
+            element = ET.SubElement(parent, key)
+            element.text = str(value)
+
+    return parent
+
+def convert_element_tree_to_dictionary(root_of_tree):
+    """ Converts an ElementTree or Element into a dictionary.
+
+    :param (xml.etree.ElementTree.Element): The root element to convert.
+    :return dict dictionary: A dictionary representation of the ElementTree.
+    """
+
+    def _etree_to_dict(tree):
+        dictionary = {tree.tag: {} if tree.attrib else None}
+        children = list(tree)
+        if children:
+            data_dict = {}
+            for data_child in map(_etree_to_dict, children):
+                for key, value in data_child.items():
+                    if key in data_dict:
+                        if isinstance(data_dict[key], list):
+                            data_dict[key].append(value)
+                        else:
+                            data_dict[key] = [data_dict[key], value]
+                    else:
+                        data_dict[key] = value
+            dictionary = {tree.tag: data_dict}
+        if tree.attrib:
+            dictionary[tree.tag].update(('@' + key, value) for key, value in tree.attrib.items())
+        if tree.text:
+            text = tree.text.strip()
+            if children or tree.attrib:
+                if text:
+                    dictionary[tree.tag]['#text'] = text
+            else:
+                dictionary[tree.tag] = text
+        return dictionary
+
+    return _etree_to_dict(root_of_tree)
+
+def get_paths_of_element_tree(element_tree, parent_path=""):
+    """ Get paths of element tree.
+
+    This function extracts all xml paths of the given element tree.
+
+    :param tree element_tree: The element tree containing the module dependent parameter.
+    :param string parent_path: The string contains the parent path of current element.
+    :return: list paths
+    """
+    paths = []
+    current_path = f"{parent_path}/{element_tree.tag}" if parent_path else element_tree.tag
+    # If the element has no children, add the current path to list of paths.
+    if len(element_tree) == 0:
+        paths.append(current_path)
+    # Run through the children recursively
+    for child in element_tree:
+        # Call function for recursive path generation.
+        paths.extend(get_paths_of_element_tree(child, current_path))
+
+    return paths
+
+
+def prepare_element_tree_for_module_key_parameter(paths_and_names, module_key_parameters_dict):
+    """Prepare element tree.
+
+    This function prepares the element tree for the current module.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict module_key_parameters_dict: Dict containing information on module nodes in aircraft exchange file
+    :return: dict paths_and_names
+    """
+    # Call function to convert the module key parameter dict to a module dependent element tree.
+    module_dependent_tree = convert_dictionary_to_element_tree(module_key_parameters_dict)
+
+    # Call function to generate all xml path of the module dependent element tree.
+    element_tree_paths = get_paths_of_element_tree(module_dependent_tree)
+
+    # Sort the list of xml paths, delete duplicates and prepare for element tree operations.
+    cleaned_paths = sorted(list(set(['./' + '/'.join(path.split('/')[1:-1]) for path in element_tree_paths])))
+
+    # Call function to remove old elements from aircraft exchange tree.
+    find_and_remove_paths_in_tree(paths_and_names['root_of_aircraft_exchange_tree'], cleaned_paths)
+
+    # Call function to insert module dependent entries to the aircraft exchange tree.
+    insert_missing_elements(paths_and_names['root_of_aircraft_exchange_tree'], module_dependent_tree)
+
+    return paths_and_names
+
+
+def write_key_data_to_aircraft_exchange_file(root_of_aircraft_exchange_tree, path_to_aircraft_exchange_file,
+                                             paths_to_key_parameters_list, user_output_dict, tool_level,
+                                             runtime_output):
+    """Write key data to the aircraft exchange file.
+
+    This function takes key data, verifies and writes it to the aircraft exchange file.
+        (1) Preparation: Using the paths contained in the 'user_output_dict', a list with user paths is generated that
+        is subsequently cleaned of duplicates. Next, every path in the path list is assigned to one of the four
+        categories and appended to the corresponding list:
+            (a) user path already exists in aircraft exchange file ('paths_already_in_aircraft_exchange_file_list')
+            (b) valid user path ('valid_user_paths_list')
+            (c) invalid user path (invalid_user_paths_list)
+            (d) user paths that need further checks ('user_paths_to_check_list')
+        Note: Only the paths of the last category will be considered further in the following steps.
+        For further processing, the paths in 'user_paths_to_check_list' are sorted in ascending order according to
+        their IDs. In addition, all paths that have one or more IDs are then extracted from the key paths and appended
+        to 'key_paths_with_id_list' for further use.
+        (2) Path validation and key parameter check: One by one, each key path is generalized. This means that the
+        number(s) of the ID(s) contained are replaced by an 'X'. All user paths from 'user_paths_to_check_list' are
+        checked to see whether they match the pattern of the current generalized key path. All paths that match this
+        pattern are added to the 'matching_user_paths_list'. If there are matching user paths, the code performs
+        various checks to assign these user paths to either the 'valid_user_paths_list' or 'invalid_user_paths_list'.
+        The checks include examining the structure and values of IDs within the user paths. After processing the key
+        paths, the code checks for any user paths that are neither in the 'valid_user_paths_list' nor in the
+        'invalid_user_paths_list'. These paths are considered invalid, and a warning is issued. If there are user path
+        errors, error messages are generated, and the program is prepared for possible abort. The code checks whether
+        all key parameters are written by the user. If any key parameter path is missing, an error message is issued.
+        If there are either user path errors or missing key path errors, the code generates error messages and,
+        depending on the error type, raises a ValueError exception. This exception serves as a signal to terminate the
+        program.
+        Note: Only the 'valid_user_path_list' will be considered further in the following steps.
+        (3) Initialization of tree structure: Ensure that all necessary paths exist in aircraft exchange file to enable
+        upcoming step. Furthermore, the values are checked to ensure that they are within the defined limits.
+        (4) Completion: Write to aircraft exchange file. If the file cannot be opened, an OSError is raised.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange file tree
+    :param str path_to_aircraft_exchange_file: Path to aircraft exchange file
+    :param list paths_to_key_parameters_list: List with paths to key parameters in aircraft exchange file
+    :param dict user_output_dict: Dictionary containing parameter name, path to parameter, and value of key parameters
+    :param int tool_level: Tool level of current module
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Raised if unsuccessful validation (faulty user paths, missing key paths or value out of limits)
+    or failed writing to the aircraft exchange file
+    :return: None
+    """
+
+    """Preparation."""
+    # Generate list with user defined paths in 'user_output_dict' and ensure operating system conformity for path
+    # separators.
+    user_defined_path_list = [user_output_dict[key][0].replace(os.sep, '/') for key in user_output_dict]
+    # Count the occurrences of each path.
+    path_counter = collections.Counter(user_defined_path_list)
+    duplicate_paths = [path for path, count in path_counter.items() if count > 1]
+    # Remove duplicates and generate a warning.
+    if duplicate_paths:
+        runtime_output.warning('Warning: Duplicate paths found. Removing the following duplicates:')
+        for duplicate_paths in duplicate_paths:
+            runtime_output.warning('                                     ' + f"Duplicate path: {duplicate_paths}")
+            user_defined_path_list.remove(duplicate_paths)
+
+    # Initialize local parameters that indicate which paths are valid, invalid, already in aircraft exchange file, and
+    # which need further checks.
+    valid_user_paths_list, invalid_user_paths_list, user_paths_to_check_list = [], [], []
+    paths_already_in_aircraft_exchange_file_list = []
+
+    # Iterate over all user defined paths in 'user_defined_path_list' and assign each path to one category.
+    for user_path in user_defined_path_list:
+        path_not_in_aircraft_exchange_file = False
+        # Check if user path (including 'value' sub-node) exists in aircraft exchange file and append to
+        # 'paths_already_in_aircraft_exchange_file_list' and 'valid_user_paths_list'.
+        if root_of_aircraft_exchange_tree.find(user_path + '/value') is not None:
+            paths_already_in_aircraft_exchange_file_list.append(user_path)
+            valid_user_paths_list.append(user_path)
+        # Else: Set 'path_not_in_aircraft_exchange_file' to 'True'.
+        else:
+            path_not_in_aircraft_exchange_file = True
+
+        # If path is not already contained in aircraft exchange file, append path to one of the following three lists:
+        # 'valid_user_paths_list', 'invalid_user_paths_list', or 'user_paths_to_check_list'.
+        if path_not_in_aircraft_exchange_file:
+            # If last character of 'user_path' is ']', path is considered invalid.
+            if user_path[-1] == ']':
+                invalid_user_paths_list.append(user_path)
+                continue
+            # Count the number of IDs in 'user_path' string.
+            user_path_id_count = user_path.count('[@ID="')
+            # If current user path is contained in list of key parameter paths, append user path to list of valid user
+            # paths.
+            if user_path in paths_to_key_parameters_list:
+                valid_user_paths_list.append(user_path)
+            # If current user path is not contained in list of key parameter paths and user path does not contain an
+            # ID, append user path to list of invalid user paths.
+            elif user_path not in paths_to_key_parameters_list and user_path_id_count == 0:
+                invalid_user_paths_list.append(user_path)
+            # If none of above criteria apply, the user path is appended to the list of paths that need further checks.
+            else:
+                user_paths_to_check_list.append(user_path)
+
+    # Extract the values after "@ID=" from the paths in the list of paths that need further checks and sort this list.
+    id_values = [int(re.search(r'@ID="(\d+)"', path).group(1)) for path in user_paths_to_check_list]
+    user_defined_path_list_sorted = [path for _, path in sorted(zip(id_values, user_paths_to_check_list))]
+
+    # Extract key paths that contain "@ID".
+    key_paths_with_id_list = [path for path in paths_to_key_parameters_list if re.search(r'@ID="\d+"', path)]
+
+    """Path validation and key parameter check."""
+    # Classify each existing user path into a category based on generalized key parameter paths and check for missing
+    # key parameter paths.
+    try:
+        # Initialization of variables for error tracking.
+        error_path_dict = {}
+        user_path_error = False
+        user_path_error_counter = 0
+        missing_key_path_error = False
+        # Iterate over key paths in list of key paths with IDs.
+        for current_key_path in key_paths_with_id_list:
+            # Check if current key path exists in 'valid_user_paths_list' (True/False).
+            key_path_exists_in_user_paths = current_key_path in valid_user_paths_list
+            # Define ID pattern to generalize "@ID" attribute in 'current_key_path' (replace ID number with 'X').
+            id_pattern = re.compile(r'@ID="(\d+)"')
+            # Store current generalized key parameter path.
+            current_generalized_key_path = re.sub(r'@ID="\d+"', '@ID="X"', current_key_path)
+            # Create empty list of matching user paths.
+            # Iterate over all user paths in sorted list of user defined paths.
+            # - Replace ID number with 'X' for generalization purposes.
+            # - Append all user paths that match the pattern of the current generalized key parameter path.
+            matching_user_paths_list = [user_path for user_path in user_defined_path_list_sorted if
+                re.sub(r'@ID="\d+"', '@ID="X"', user_path) == current_generalized_key_path]
+
+            # Sub function to sort all paths by his last ID entry in numerical order.
+            def extract_id(matching_user_paths_list):
+                matches = re.findall(r'@ID="(\d+)"', matching_user_paths_list)
+                return int(matches[-1]) if matches else float('inf')
+
+            # Sort the list by the extracted ID value.
+            matching_user_paths_list = sorted(matching_user_paths_list, key=extract_id)
+
+            # If any user paths match the current generalized key parameter path, various checks are performed to
+            # assign the corresponding user paths to either the "valid_user_paths_list" or the
+            # "invalid_user_paths_list".
+            if len(matching_user_paths_list) > 0:
+                # Create empty list of current user path IDs.
+                user_path_ids_list = []
+                # Iterate over list with user paths that match current key parameter path pattern and extract the
+                # values of contained IDs.
+                for current_matching_user_path in matching_user_paths_list:
+                    # Find all IDs of current user path.
+                    values_of_user_ids_list = re.findall(id_pattern, current_matching_user_path)
+                    # Convert the numbers from strings to integers.
+                    values_of_user_ids_list = [int(num) for num in values_of_user_ids_list]
+                    # Generate list of IDs for current user path.
+                    user_path_ids_list.append(values_of_user_ids_list)
+
+                # If the 'current_key_path' exists in 'valid_user_paths_list' and there are user path IDs, the IDs are
+                # compared and possible errors handled.
+                if key_path_exists_in_user_paths and len(user_path_ids_list) != 0:
+                    # Create a list with n zeros (n corresponds to the number of IDs in the current generalized key
+                    # parameter path) and store the list in which all IDs are zero as 'first_list'.
+                    zero_list = [0 for _ in range(len(user_path_ids_list[0]))]
+                    user_path_ids_list.insert(0, zero_list)
+                    first_list = user_path_ids_list[0]
+                    # Check each position in the lists.
+                    for i in range(1, len(user_path_ids_list)):
+                        # Check whether the first element of the previous list is NOT the same as the first element of
+                        # the current list.
+                        if first_list != user_path_ids_list[i]:
+                            # If the two IDs differ by more than 1, add the path to the list of invalid paths and go on
+                            # with the next generalized key parameter path.
+                            if abs(sum(first_list) - sum(user_path_ids_list[i])) > 1 \
+                                    and (abs(first_list[-1] - user_path_ids_list[i][-1]) > 1):
+                                user_path_error_counter += 1
+                                error_path_dict[current_generalized_key_path] = matching_user_paths_list[i-1:]
+                                [invalid_user_paths_list.append(matching_user_paths_list[j])
+                                    for j in range(0, len(matching_user_paths_list))]
+                                break
+                            # If the first ID differs by 1 compared to the previous path, then a check of the following
+                            # IDs is performed.
+                            else:
+                                valid_user_paths_list.append(matching_user_paths_list[i-1])
+                                first_list = user_path_ids_list[i]
+                        # If the first ID of the current path matches the first ID of the previous path, the subsequent
+                        # IDs are subjected to further checks.
+                        else:
+                            # If the difference between the two lists is greater than 1, append the current path to the
+                            # list of invalid paths and continue with the next generalized key parameter path.
+                            if abs(sum(first_list) - sum(user_path_ids_list[i])) > 1:
+                                user_path_error_counter += 1
+                                error_path_dict[current_generalized_key_path] = matching_user_paths_list[i-1:]
+                                [invalid_user_paths_list.append(matching_user_paths_list[j])
+                                    for j in range(0, len(matching_user_paths_list))]
+                                break
+                            # If the difference between the two lists is less than or equal to 1, then append the
+                            # current path to the list of valid paths.
+                            elif abs(sum(first_list) - sum(user_path_ids_list[i])) <= 1:
+                                valid_user_paths_list.append(matching_user_paths_list[i-1])
+                                first_list = user_path_ids_list[i]
+                # If the 'current_key_path' exists in 'valid_user_paths_list', but there are no matching user paths, a
+                # warning is issued.
+                elif key_path_exists_in_user_paths and len(user_path_ids_list) == 0:
+                    runtime_output.warning('Warning: No matching user paths according to key pattern: '
+                                           + current_generalized_key_path)
+                    continue
+                # If the 'current_key_path' does not exist in 'valid_user_paths_list' and is not contained in
+                # 'paths_already_in_aircraft_exchange_file_list', a warning is issued and the current user paths are
+                # appended to the invalid paths.
+                elif not key_path_exists_in_user_paths \
+                        and current_key_path not in paths_already_in_aircraft_exchange_file_list:
+                    runtime_output.warning('Warning: Key path missing in user defined path list: ' + current_key_path)
+                    user_path_error_counter += 1
+                    error_path_dict[current_generalized_key_path] = matching_user_paths_list
+                    [invalid_user_paths_list.append(matching_user_paths_list[j])
+                        for j in range(0, len(matching_user_paths_list))]
+                    continue
+
+        # After processing the key paths, it is checked for any user paths that are neither in 'valid_user_paths_list'
+        # nor in 'invalid_user_paths_list'. These paths are considered invalid, and a warning is issued.
+        for tmp_path in user_defined_path_list_sorted:
+            if tmp_path not in valid_user_paths_list and tmp_path not in invalid_user_paths_list:
+                invalid_user_paths_list.append(tmp_path)
+                runtime_output.warning(
+                    ('Warning: The path "' + tmp_path + '" is not a key value and therefore not written to aircraft '
+                     'exchange file. Please contact module manager for further instructions.'))
+
+        # If there are user path errors, error messages are generated.
+        if user_path_error_counter > 0:
+            user_path_error = True
+            # Generate error messages.
+            for key, value in error_path_dict.items():
+                runtime_output.error('Error: The following user paths of the pattern "' + key + '" are invalid:')
+                for i, value in enumerate(value):
+                    runtime_output.error('                                     ' + value)
+                user_path_error_string = 'Please change user paths according to style guidelines.'
+
+        # Check whether all key parameters are written by the user.
+        missing_key_path_list = []
+        missing_key_path_error_string = str()
+        for tmp_key_path in paths_to_key_parameters_list:
+            # If a key parameter path is missing, an error message is issued.
+            if tmp_key_path not in valid_user_paths_list:
+                runtime_output.error('Error: The following key parameter is not set: ' + tmp_key_path)
+                missing_key_path_list.append(tmp_key_path)
+        # If there are missing key path errors, error messages are generated.
+        if len(missing_key_path_list) != 0:
+            missing_key_path_error = True
+            missing_key_path_error_string = 'Please make sure to write all necessary key parameters of your method.'
+
+        # If there are user path errors or missing key path errors, error messages are generated and the program is
+        # aborted with a ValueError exception.
+        if user_path_error or missing_key_path_error:
+            if user_path_error and not missing_key_path_error:
+                raise ValueError(user_path_error_string + ' Program aborted!')
+            elif not user_path_error and missing_key_path_error:
+                raise ValueError(missing_key_path_error_string + ' Program aborted!')
+            else:
+                raise ValueError(user_path_error_string[:-1] + ' and ' + missing_key_path_error_string.lower()
+                                 + ' Program aborted!')
+
+    # Exception handling for value error.
+    except ValueError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    """Initialization of tree structure."""
+    # Initialization.
+    component_layer_old = str()
+    sub_node_list = ['value', 'unit', 'lower_boundary', 'upper_boundary']
+    # Extract the corresponding dictionary entries to the valid user paths.
+    valid_key_dict = {key: value for (key, value) in user_output_dict.items()
+                      if user_output_dict[key][0] in valid_user_paths_list}
+
+    # Create all necessary nodes in the aircraft exchange file and check whether the results are within the expected
+    # limits.
+    try:
+        # Iterate over all parameters in 'valid_key_dict'.
+        for key in valid_key_dict:
+            # Extract path.
+            tmp_string = valid_key_dict[key][0]
+            # Split 'tmp_string' at operating system separator.
+            parts_list = tmp_string.split('/')
+            # Delete all empty list entries if existing.
+            filtered_parts = [part for part in parts_list if part]
+            # Store third element as 'component_layer'.
+            component_layer = filtered_parts[2]
+            # Initialization of necessary variables.
+            parent_path = []
+            path_to_check = '.'
+            first_id_parent = []
+            tmp_zero_path = str()
+            path_contains_id = False
+            # Check if the current part of string is existing in the aircraft exchange ElementTree.
+            for part in filtered_parts[1:]:
+                # Extend the 'path_to_check' with the current 'part'.
+                path_to_check = os.path.join(path_to_check, part).replace(os.sep, '/')
+                # Check if the path exist in aircraft exchange ElementTree.
+                path_flag = root_of_aircraft_exchange_tree.find(path_to_check)
+                # Check if the 'component_layer' is the same as the 'component_layer_old'.
+                same_component_layer = component_layer == component_layer_old
+                # Set 'tool_level' attribute if path exists, the current part equals 'component_layer', and if the
+                # 'component_layer' is different from the previous one.
+                if path_flag is not None and part == component_layer and not same_component_layer:
+                    path_flag.set('tool_level', tool_level)
+                    component_layer_old = component_layer
+                # Add the current part of string to the ElementTree as a new sub-node if the node does not exist.
+                if path_flag is None:
+                    # Check if current part of string contains '@' (indicating ID).
+                    if '@' in part:
+                        # Set flag if string contains '@'.
+                        path_contains_id = True
+                        if len(first_id_parent) == 0:
+                            first_id_parent = parent_path
+                        # Handle attribute 'ID' (extract 'ID' and value of ID, generate new sub-node under current
+                        # 'parent_path', and set attribute 'ID' with according value).
+                        attribute_name, attribute_value = part.split('=')
+                        attribute_name = attribute_name.split('[@')
+                        attribute_id = attribute_name[1]
+                        attribute_value = attribute_value[attribute_value.find('"')+1:attribute_value.rfind('"')]
+                        node_name = attribute_name[0]
+                        new_node = ET.SubElement(parent_path, node_name)
+                        new_node.set(attribute_id, attribute_value)
+                        # Handle attribute 'description' (set the description to description of the 'tmp_zero_path').
+                        tmp_pattern = r'"(.*?)"'
+                        tmp_zero_path = re.sub(tmp_pattern, '"0"', path_to_check)
+                        tmp_description = root_of_aircraft_exchange_tree.find(tmp_zero_path).get('description')
+                        new_node.set('description', tmp_description)
+                    # Current path does not contain '@'.
+                    else:
+                        if len(tmp_zero_path) != 0:
+                            tmp_zero_path = tmp_zero_path + '/' + part
+                        else:
+                            tmp_pattern = r'"(.*?)"'
+                            tmp_zero_path = re.sub(tmp_pattern, '"0"', path_to_check)
+                            path_contains_id = True
+                        element_to_add = ET.Element(part)
+                        # Check if description exists.
+                        if path_to_check == './component_design/fuselage/specific/geometry/fuselage[@ID="0"]/mass_breakdown/fuselage_furnishing/component_mass[@ID="0"]/mass':
+                            formatted_xml = ET.tostring(root_of_aircraft_exchange_tree.getroot(), encoding='unicode', method='xml')
+                            formatted_xml_with_indent = minidom.parseString(formatted_xml).toprettyxml(indent="    ")
+                            # Ausgabe
+                            print(formatted_xml_with_indent)
+                            print(path_to_check)
+                        description_of_zero_path = \
+                            root_of_aircraft_exchange_tree.find(tmp_zero_path).get('description')
+                        element_to_add.set('description', description_of_zero_path)
+                        # Append 'element_to_add' to 'parent_path'.
+                        parent_path.append(element_to_add)
+                parent_path = root_of_aircraft_exchange_tree.find(path_to_check)
+                # Check if the current 'part' is the last element in the 'filtered_parts' list.
+                if part == filtered_parts[-1]:
+                    # Check if 'path_to_check' contains an ID.
+                    if path_contains_id:
+                        # Check if 'path_to_check' is not equal to 'tmp_zero_path'.
+                        if path_to_check != tmp_zero_path:
+                            # Check if the current parameter not is not 'name'
+                            #  -> if true: -> add all sub nodes to current paramter
+                            if part != 'name':
+                                # Iterate through 'sub_node_list'.
+                                for sub_node in sub_node_list:
+                                    # Check if 'sub-node' exists in 'tmp_zero_path'.
+                                    tmp_sub_node_exists_in_zero_path = \
+                                        root_of_aircraft_exchange_tree.find(tmp_zero_path + '/' + sub_node)
+                                    if tmp_sub_node_exists_in_zero_path is not None:
+                                        # Create new XML subelement with same name as 'sub_node' under 'parent_path'.
+                                        ET.SubElement(parent_path, sub_node)
+                                        # Get associated element. Set text to text of element in 'tmp_zero_path/sub_node'.
+                                        tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/' + sub_node)
+                                        if sub_node == 'value':
+                                            tmp_path.text = str(user_output_dict[key][1])
+                                        else:
+                                            tmp_path.text = str(root_of_aircraft_exchange_tree.find(
+                                                tmp_zero_path + '/' + sub_node).text)
+                            # Else condition: The current parameter not is 'name'
+                            #  -> add only 'value' sub note to current parameter
+                            else:
+                                # Check if 'value' exists in 'tmp_zero_path'.
+                                tmp_sub_node_exists_in_zero_path = \
+                                    root_of_aircraft_exchange_tree.find(tmp_zero_path + '/value')
+                                if tmp_sub_node_exists_in_zero_path is not None:
+                                    # Create new XML subelement with same name as 'sub_node' under 'parent_path'.
+                                    ET.SubElement(parent_path, 'value')
+                                    # Get associated element. Set text to text of element in 'tmp_zero_path/sub_node'.
+                                    tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/value')
+                                    tmp_path.text = str(user_output_dict[key][1])
+                    # 'path_to_check' does not contain an ID.
+                    else:
+                        # Find the XML element at 'path_to_check' + '/value'.
+                        tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/value')
+                        # Get value associated with the key from 'user_output_dict'.
+                        tmp_value = user_output_dict[key][1]
+                        # Find lower and upper boundary elements.
+                        lower_boundary = root_of_aircraft_exchange_tree.find(path_to_check + '/lower_boundary')
+                        upper_boundary = root_of_aircraft_exchange_tree.find(path_to_check + '/upper_boundary')
+                        # Check if lower and upper boundaries are checkable (checkable means not None and not "None").
+                        lower_boundary_checkable = lower_boundary is not None and \
+                            (lower_boundary.text is not None and lower_boundary.text != 'None')
+                        upper_boundary_checkable = upper_boundary is not None and \
+                            (upper_boundary.text is not None and upper_boundary.text != 'None')
+                        # Check if the value falls below the lower boundary (if checkable).
+                        if lower_boundary_checkable and tmp_value < float(lower_boundary.text):
+                            raise ValueError('The value of the parameter ' + str(key) + ' = ' + str(tmp_value)
+                                             + ' falls below the given lower boundary of ' + lower_boundary.text
+                                             + '. Program aborted!')
+                        # Check if the value exceeds the upper boundary (if checkable).
+                        if upper_boundary_checkable and tmp_value > float(upper_boundary.text):
+                            raise ValueError('The value of the parameter ' + str(key) + ' = ' + str(tmp_value) +
+                                             ' exceeds the given upper boundary of ' + upper_boundary.text
+                                             + '. Program aborted!')
+                        # If no boundary conditions were violated, set tmp_path.text to the value.
+                        tmp_path.text = str(tmp_value)
+
+            # Sort all child nodes alphabetically according to their tags.
+            sort_root = first_id_parent
+            children = list(sort_root)
+            children.sort(key=lambda x: x.tag)
+            # Delete all child nodes from root element.
+            for child in children:
+                sort_root.remove(child)
+            # Add the sorted child nodes back to the root element.
+            for child in children:
+                sort_root.append(child)
+
+    # Exception handling for value error.
+    except ValueError as e:
+        runtime_output.critical('Error:' + str(e))
+        sys.exit(1)
+
+    """Completion."""
+    # Ensure proper indentation.
+    ET.indent(root_of_aircraft_exchange_tree, space="    ", level=0)
+    # Write all key parameters to aircraft exchange file.
+    try:
+        # Write data to file.
+        root_of_aircraft_exchange_tree.write(path_to_aircraft_exchange_file,  encoding='utf-8')
+    # Exception handling for operating system error.
+    except OSError:
+        runtime_output.critical('Error: Writing to aircraft exchange file failed. Program aborted!')
+        sys.exit(1)
+
+
+def method_data_postprocessing(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """General data postprocessing for current calculation method.
+
+    This function executes the method's own postprocessing. It is divided into general postprocessing and user layer
+    specific postprocessing:
+        - General postprocessing: The general postprocessing contains operations that are always carried out regardless
+        of the user layer. This includes general reports and plots.
+        - User layer specific postprocessing: Specific postprocessing includes, for example, plots that can/should only
+        be created if the user layer contains a certain value. The same applies to reports with values that are only
+        determined for certain user layer values.
+    Note that it may also be possible that the specific part is omitted, as the entire postprocessing is independent of
+    the user layer.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method-specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises OSError: Raised if any method-specific postprocessing function fails
+    :return: None
+    """
+
+    # Read output switches from module configuration file.
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    plot_switch = (eval(root_of_module_config_tree.find('.//plot_output/enable/value').text.capitalize()))
+    html_switch = eval(root_of_module_config_tree.find('.//report_output/value').text.capitalize())
+    tex_switch = eval(root_of_module_config_tree.find('.//tex_report/value').text.capitalize())
+    if root_of_module_config_tree.find('.//xml_output/value') is not None:
+        xml_export_switch = eval(root_of_module_config_tree.find('.//xml_output/value').text.capitalize())
+    else:
+        xml_export_switch = False
+
+    # Plot functionality.
+    if plot_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/plots'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/plots')
+        try:
+            # Run 'method_plot' from 'methodplot.py'.
+            routing_dict['func_user_method_plot'](paths_and_names, routing_dict, data_dict, method_specific_output_dict,
+                                                  runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_plot" function failed. No plots generated and saved.')
+    else:
+        runtime_output.warning('Warning: "plot_output" switch in module configuration file set to "False". '
+                               + 'No plots generated.')
+
+    # HTML report functionality.
+    if html_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_html'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/report_html')
+            
+        try:
+            # Run 'method_html_report' from 'methodhtmlreport.py'.
+            routing_dict['func_user_method_html_report'](paths_and_names, routing_dict, data_dict,
+                                                         method_specific_output_dict, runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_html_report" function failed. '
+                                 + 'No additional data written to HTML report file.')
+    else:
+        runtime_output.warning(
+            'Warning: "html_output" switch in module configuration file set to "False". No HTML report generated.'
+        )
+
+    # XML export functionality.
+    if xml_export_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_xml'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/report_xml')
+            
+        xml_export_tree, path_to_results_file = prepare_method_specific_xml_file(paths_and_names, routing_dict,
+                                                                                 runtime_output)
+        try:
+            # Run 'method_xml_export' from 'methodxmlexport.py'.
+            routing_dict['func_user_method_xml_export'](paths_and_names, routing_dict, data_dict,
+                                                        method_specific_output_dict, xml_export_tree,
+                                                        path_to_results_file, runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_xml_export" function failed. '
+                                 + 'No additional data written to module specific XML results file.'
+                                 )
+    else:
+        runtime_output.warning('Warning: "xml_output" switch in module configuration file set to "False". '
+                               + 'No XML results file generated.')
+
+    # TeX output functionality.
+    if tex_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_tex'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/report_tex')
+            
+        try:
+            # Run 'method_tex_output' from 'methodtexoutput.py'.
+            routing_dict['func_user_method_tex_output'](paths_and_names, routing_dict, data_dict,
+                                                        method_specific_output_dict, runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_tex_output" function failed. '
+                                 + 'No TeX report file generated.'
+                                 )
+    else:
+        runtime_output.warning(
+            'Warning: "tex_output" switch in module configuration file set to "False". No TeX report file generated.')
+
+
+def prepare_method_specific_xml_file(paths_and_names, routing_dict, runtime_output):
+    """Generate XML file with general information on module execution to prepare the method-specific data output.
+
+    This function generates the basic structure of an XML file that is intended for the export of method-specific data.
+    This involves the following steps:
+        (1) Generate the file and module name as well as the path to the results file using information provided by the
+        'paths_and_names' dictionary.
+        (2) Delete older versions of the file (if existing).
+        (3) Create the XML structure
+            3.1) Create a 'general_information' block that contains the following information:
+                - Version of the current UNICADO workflow
+                - Code execution date and time
+                - Current aircraft project name
+                - Calculation method name
+            3.2) Create a 'routing_layer' block that contains information on the current routing layers.
+            3.3) Create a 'calculation_results' block that serves as a placeholder for the subsequent export of data
+            (if desired)
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises OSError: Raised if workflow version file not found
+    :returns:
+        - ElementTree xml_export_tree: Element tree of method-specific XML tree
+        - str path_to_results_file: Path to method-specific output XML file
+    """
+
+    # Initialize parameters.
+    file_name = paths_and_names['tool_name'] + '_results.xml'
+    module_name = paths_and_names['tool_name'].replace('_', ' ').capitalize()
+    path_to_results_file = paths_and_names["project_directory"] + '/reporting/report_xml/' + file_name
+
+    # Delete older output file if existing.
+    if os.path.isfile(path_to_results_file):
+        os.remove(path_to_results_file)
+
+    # Create directory for xml reports, if not existing
+    os.makedirs(paths_and_names["project_directory"] + '/reporting/report_xml/', exist_ok = True)
+
+    # Generate new ElementTree.
+    xml_export_root = ET.Element("module_results_file")
+    # Set name of current tool 'Name' of root element and generate ElementTree.
+    xml_export_root.set("Name", module_name + " specific outputs")
+    xml_export_tree = ET.ElementTree(xml_export_root)
+    # Add 'general_information' sub-node.
+    child = ET.SubElement(xml_export_root, "general_information")
+    child.set("description", "General information on module execution")
+
+    try:
+        # Initialize general information parameters.
+        if os.path.isfile(paths_and_names['working_directory'] + '/version.txt'):
+            # Open file and read version information.
+            with open(paths_and_names['working_directory'] + '/version.txt', 'r') as file:
+                # Read first line.
+                workflow_version = file.readline()
+        else:
+            workflow_version = "not available"
+    except OSError as e:
+        runtime_output.warning('Warning: ' + str(e) + ' \n'
+                               + '                                     '
+                               + 'Workflow version file not found.')
+
+    execution_date = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    project_name = (
+        root_of_module_config_tree.find('./control_settings/aircraft_exchange_file_name/value').text.split(".xml"))[0]
+    method_name = root_of_module_config_tree.find('./program_settings/configuration/method_name/value').text
+    # Definition of subnodes of 'general_information'.
+    # Format: general_information_subnodes = { 'name_of_sub-node': [description, value], ...}
+    general_information_subnodes = {
+        'workflow_version': ['Version number of the current workflow', workflow_version],
+        'execution_date': ['Execution date and time of the code', execution_date],
+        'project_name': ['Name of the current aircraft project', project_name],
+        'method_name': ['Name of current module calculation method', method_name]
+    }
+    # Iterate over 'general_information_subnodes' dictionary and add all keys as children.
+    for key, value in general_information_subnodes.items():
+        # Create a subelement for each key.
+        key_element = ET.SubElement(child, key)
+        # Add an attribute "description" and set the value to the first entry of the value-list.
+        key_element.set("description", value[0])
+        # Add a subelement "value" and set the value as text.
+        value_element = ET.SubElement(key_element, "value")
+        value_element.text = value[1]
+    # Add routing layer block.
+    routing_layer_element = ET.SubElement(child, 'routing_layer')
+    routing_layer_element.set("description", "Routing layer information")
+    # Iterate over 'routing_dict' and add keys that contain 'layer' as children of 'routing_layer_element'.
+    for key, value in routing_dict.items():
+        if 'layer' in key:
+            key_element = ET.SubElement(routing_layer_element, key)
+            key_element.set("description", 'Routing ' + str(key))
+            value_element = ET.SubElement(key_element, "value")
+            value_element.text = value
+    # Add 'calculation_results' block.
+    child = ET.SubElement(xml_export_root, "calculation_results")
+    child.set("description", "Results of calculation method")
+
+    # Ensure proper indentation and write file.
+    ET.indent(xml_export_root, space="    ", level=0)
+    try:
+        xml_export_tree.write(path_to_results_file)
+    except OSError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    return xml_export_tree, path_to_results_file
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..26e7e6c0bef95bef7dc5997ad35d04e1a4007512
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py
@@ -0,0 +1,776 @@
+"""Module providing general UNICADO data preprocessing functions for Python code."""
+# Import standard modules.
+import os
+import re
+import sys
+import logging
+import xml.etree.ElementTree as ET
+from pathlib import Path
+from datetime import datetime
+from inspect import currentframe, getframeinfo
+from runtimeoutputmodule import configure_runtime_output
+
+
+def method_data_preprocessing(paths_and_names, routing_dict, runtime_output):
+    """General data preprocessing for current calculation method.
+
+    This function performs general data preprocessing on input data obtained from aircraft exchange and module
+    configuration files. It accomplishes the following tasks:
+        (1) Data preparation: Extract root elements of aircraft exchange and module configuration trees from
+        'paths_and_names' dict. Invoke 'user_method_data_preparation' function, specified in 'routing_dict', to obtain
+        information on data to extract from these files, resulting in two dictionaries, namely the
+        'data_to_extract_from_aircraft_exchange_dict' and the 'data_to_extract_from_module_configuration_dict'.
+        (2) Read values from XML files: Using the above defined dictionaries with information on parameters that must
+        be extracted from the aircraft exchange and module configuration file, the according values are read from the
+        respective files and stored in 'tmp_aircraft_exchange_dict' and 'tmp_module_configuration_dict'. These
+        temporary dictionaries have a specific format for each parameter, including the parameter's name, path, value,
+        lower boundary, and upper boundary:
+            tmp_dict = {'parameter_name_1': [path, expected data type, value, lower boundary, upper boundary],
+                        'parameter_name_2': [...],
+                        ...}
+        (3) The code then iterates over both temporary dictionaries, type casts the values to their expected data types,
+        checks if the values are within specified lower and upper boundaries, and stores the checked values in a new
+        dictionary, 'dict_out_short'. This dictionary contains the values for the same parameters as the input
+        dictionaries but with checked and possibly modified values.
+    The code returns two dictionaries: 'short_aircraft_exchange_dict' and 'short_module_configuration_dict', that
+    represent the preprocessed data for the aircraft exchange and module configuration file, respectively. The
+    dictionaries represent condensed forms of the 'tmp_aircraft_exchange_dict' and the 'tmp_module_configuration_dict'
+    and are structured according to the following scheme:
+        dict = {'parameter_name_1': value, ...}
+
+    In the case of a multi-parameter (xml path contains '@ID' identifier), the value of the parameter key
+    ('parameter_name_1') contains a sub-dictionary with all existing parameter ID names ('parameter_name_1_ID...') and
+    its corresponding values.
+        dict = {'parameter_name_1': {'parameter_name_1_ID0': value, 'parameter_name_1_ID1': value}, ...}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing information on necessary data from module configuration file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :returns:
+        - dict short_aircraft_exchange_dict: Dict containing parameters and acc. values from aircraft exchange file
+        - dict short_module_configuration_dict: Dict containing parameters and acc. values from module config. file
+    """
+
+    """Data preparation."""
+    # Extract roots of aircraft exchange and module configuration file.
+    root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree']
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    # Run 'user_method_data_preparation' from 'usermethoddatapreparation.py'.
+    data_to_extract_from_aircraft_exchange_dict, data_to_extract_from_module_configuration_dict \
+        = routing_dict['func_user_method_data_input_preparation'](routing_dict)
+
+    """Read values from XML files."""
+    # Read values from aircraft exchange and module configuration file.
+    tmp_aircraft_exchange_dict = read_values_from_xml_file(data_to_extract_from_aircraft_exchange_dict,
+                                                           root_of_aircraft_exchange_tree, runtime_output)
+    tmp_module_configuration_dict = read_values_from_xml_file(data_to_extract_from_module_configuration_dict,
+                                                              root_of_module_config_tree, runtime_output)
+
+    """Extract, compute (type cast), and check values from output dictionary."""
+    tmp_list = []
+    # Iterate over both dictionaries.
+    for tmp_dict in [tmp_aircraft_exchange_dict, tmp_module_configuration_dict]:
+        dict_out_short = {}
+        multi_parameter_dict = {}
+        # Iterate over all elements of current dictionary.
+        for key in tmp_dict.keys():
+            # Extract and compute values.
+            parameter_name = key
+            expected_data_type = tmp_dict[key][1]
+            # Check if the current expected data type is not tool_level.
+            if expected_data_type != 'tool_level':
+                value = convert_string_to_expected_data_type(
+                    tmp_dict[key][-3], expected_data_type, parameter_name,
+                    runtime_output)
+                lower_boundary = convert_string_to_expected_data_type(tmp_dict[key][-2], expected_data_type,
+                                                                    ("lower_boundary_of_" + parameter_name),
+                                                                    runtime_output)
+                upper_boundary = convert_string_to_expected_data_type(tmp_dict[key][-1], expected_data_type,
+                                                                    ("upper_boundary_of_" + parameter_name),
+                                                                    runtime_output)
+                # Check if value is within specified limits.
+                checked_value = check_boundaries(parameter_name, value, runtime_output, lower_boundary, upper_boundary)
+
+                # Check if the current parameter to check is a multi-parameter with "@ID" xml path.
+                if tmp_dict[key][2]:
+                    if not tmp_dict[key][3] in multi_parameter_dict:
+                        multi_parameter_dict[tmp_dict[key][3]] = {}
+                    multi_parameter_dict[tmp_dict[key][3]][key] = checked_value
+                # Else condition: current parameter is a single parameter.
+                else:
+                    # Set value to checked value and write to output dictionary.
+                    dict_out_short[key] = checked_value
+            # Else condition: The current expected data type is a tool_level.
+            else:
+                # Check if the value of tool_level is not None.
+                if tmp_dict[key][-3] is not None:
+                    dict_out_short[key] = int(tmp_dict[key][-1])
+                # Else condition: The current value of tool_level is None.
+                else:
+                    dict_out_short[key] = None
+
+        # Update and append 'dict_out_short'.
+        dict_out_short = {**dict_out_short, **multi_parameter_dict}
+        tmp_list.append(dict_out_short)
+
+    # Extract short versions of dictionaries from 'tmp_list'.
+    short_aircraft_exchange_dict = tmp_list[0]
+    short_module_configuration_dict = tmp_list[1]
+
+    return short_aircraft_exchange_dict, short_module_configuration_dict
+
+
+def get_paths_and_names(module_configuration_file_name, argv):
+    """Generate paths, names, and ElementTree based on module configuration file.
+
+    This function generates paths and names as well as ElementTrees of the module configuration (config) and
+    the associated aircraft exchange file. All generated parameters are returned via the output dictionary
+    'paths_and_names'.
+
+    The 'paths_and_names' output dictionary contains the following values:
+        - 'working_directory': Current working directory of module (str)
+        - 'parent_directory': Parent directory of module (str)
+        - 'project_directory': Current project directory (str)
+        - 'path_to_module_config_file': Path to module configuration file (str)
+        - 'root_of_module_config_tree': Root of module configuration file tree (ElementTree)
+        - 'path_to_aircraft_exchange_file': Path to aircraft exchange file (str)
+        - 'root_of_aircraft_exchange_tree': Root of aircraft exchange file tree (ElementTree)
+        - 'name_of_project': Name of the current aircraft project (str)
+        - 'tool_name': Name of current tool (str)
+
+    :param str module_configuration_file_name: Name of module configuration file
+    :param list argv: Contains optional input arguments
+    :returns:
+        - dict paths_and_names: Dictionary containing system paths and ElementTrees
+        - logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    """
+
+    # Initialization.
+    path_flag = False
+    given_path = str()
+    log_file_list = []
+    current_parent_directory = str()
+    current_working_directory = str()
+    path_to_module_config_file = str()
+    function_name = getframeinfo(currentframe()).function
+
+    """Generate paths, names, and ElementTree for module configuration file."""
+    # Determine the module's working directory and path to the module configuration file.
+    # This section handles different cases depending on the presence of command line arguments.
+    # Read and process command line arguments.
+    if len(argv) == 1:
+        # Read current working directory.
+        current_working_directory = argv[-1]
+        # Convert path of current working directory to python path (\ to /).
+        current_working_directory = os.path.dirname(current_working_directory.replace(os.sep, '/'))
+        if (len(argv[-1]) >= (len(os.path.splitext(module_configuration_file_name)[0][:-5]))) \
+            and (len(current_working_directory) <= (len(os.path.splitext(module_configuration_file_name)[0][:-5]))):
+            current_working_directory = os.getcwd()
+        # Get current parent directory.
+        count = current_working_directory.rfind('/')
+        current_parent_directory = current_working_directory[0:count]
+        # Generate path of module configuration file.
+        path_to_module_config_file = (current_working_directory + '/' + module_configuration_file_name)
+    else:
+        # Handle a specific command line argument to set the given path.
+        given_path = argv[-1]
+        path_flag = True
+
+    if path_flag:
+        # Convert path of optional argument path of module configuration file to python path (\ to /).
+        if not os.path.isabs(given_path):
+            given_path = os.path.abspath(given_path)
+            current_working_directory = given_path.replace(os.sep, '/')
+        else:
+            given_path = given_path.replace(os.sep, '/')
+            if given_path[-1] == '/':
+                current_working_directory = given_path[:-2]
+            else:
+                current_working_directory = given_path
+        # Check if the optinal path argument is a directory or a file -> if a file -> correct the current_working_directory
+        if not os.path.isdir(current_working_directory):
+            count = current_working_directory.rfind('/')
+            current_working_directory = current_working_directory[:count]
+            # Generate path of module configuration file.
+            path_to_module_config_file = given_path
+        else:
+           # Generate path of module configuration file.
+            path_to_module_config_file = current_working_directory + '/' + module_configuration_file_name 
+        # Get current parent directory.
+        count = current_working_directory.rfind('/')
+        current_parent_directory = current_working_directory[:count]
+        
+
+    # Determine the current module name 'tool_name' based on the module configuration file name.
+    tool_name = os.path.splitext(module_configuration_file_name)[0][:-5]
+
+    # Read ElementTree of module configuration file.
+    frame_info = getframeinfo(currentframe())
+    # Call function to read module configuration XML file as ElementTree.
+    root_of_module_config_tree, __, log_file_list, error_flag = read_xml_information(
+        path_to_module_config_file, os.path.splitext(module_configuration_file_name)[0], function_name,
+        frame_info.lineno, log_file_list)
+
+    """Generate paths, names, and ElementTree for aircraft exchange file."""
+    if not error_flag:
+        # Read aircraft project name and directory.
+        current_aircraft_exchange_file_name = root_of_module_config_tree.find(
+            "./control_settings/aircraft_exchange_file_name/value").text
+        # Get name of project.
+        name_of_project = os.path.splitext(current_aircraft_exchange_file_name)[0]        
+        current_aircraft_exchange_file_directory = root_of_module_config_tree.find("./control_settings/aircraft_exchange_file_directory/value").text
+        
+        if not path_flag:
+            # Check if current execution inside of an virtuell enviroment 
+            #  -> if true: -> rebuild path to aircraft exchange file 
+            if sys.prefix != sys.base_prefix: 
+                if not os.path.isabs(current_aircraft_exchange_file_directory):
+                    current_aircraft_exchange_file_directory = \
+                        Path(current_aircraft_exchange_file_directory).resolve().relative_to(Path.cwd().parent)
+                    current_aircraft_exchange_file_directory = str(current_parent_directory / current_aircraft_exchange_file_directory)
+                
+            else:
+                # Get path to current aircraft project and aircraft exchange file.
+                if not os.path.isabs(current_aircraft_exchange_file_directory):
+                    current_aircraft_exchange_file_directory = os.path.abspath(current_aircraft_exchange_file_directory)
+                       
+            # get absolut path aircraft exchange file
+            path_to_aircraft_exchange_file = current_aircraft_exchange_file_directory + '/' + current_aircraft_exchange_file_name
+        else:
+            name_of_project = os.path.splitext(current_aircraft_exchange_file_name)[0]
+            path_to_aircraft_exchange_file = current_aircraft_exchange_file_directory + '/' \
+                + current_aircraft_exchange_file_name
+
+        # Read ElementTree of module configuration file.
+        frame_info = getframeinfo(currentframe())
+        # Call function to read aircraft exchange XML file as ElementTree.
+        root_of_aircraft_exchange_tree, __, log_file_list, error_flag = read_xml_information(
+            path_to_aircraft_exchange_file, name_of_project, function_name,
+            frame_info.lineno, log_file_list)
+
+        """Generate return dictionary."""
+        paths_and_names = {'working_directory': current_working_directory,
+                           'parent_directory': current_parent_directory,
+                           'project_directory': current_aircraft_exchange_file_directory,
+                           'path_to_module_config_file': path_to_module_config_file,
+                           'root_of_module_config_tree': root_of_module_config_tree,
+                           'path_to_aircraft_exchange_file': path_to_aircraft_exchange_file,
+                           'root_of_aircraft_exchange_tree': root_of_aircraft_exchange_tree,
+                           'name_of_project': name_of_project,
+                           'tool_name': tool_name,
+                           }
+    else:
+        paths_and_names = {'working_directory': current_working_directory, 'tool_name': tool_name}
+
+    """Configure logger and initialize logger instance."""
+    configure_runtime_output(paths_and_names)
+    runtime_output = logging.getLogger(__name__)
+
+    if error_flag:
+        for entry in log_file_list:
+            runtime_output.critical(entry)
+        sys.exit(1)
+
+    return paths_and_names, runtime_output
+
+
+def read_xml_information(path, xml_file_name, function_name, code_line, log_file_list):
+    """Read tree of XML file.
+
+    This function reads and returns the ElementTree of the given XML file and its root.
+
+    :param str path: Absolute path to the given XML file
+    :param str xml_file_name: Name of the given XML file to read
+    :param str function_name: Name of the function that called 'read_xml_information'
+    :param int code_line: Code line number of function that called 'read_xml_information' in 1
+    :param list log_file_list: Strings of workflow log file from caller function and added strings from this function
+    :raises OSError: Error if XML file cannot be opened
+    :returns:
+        - ElementTree xml_tree: ElementTree of given XML file
+        - ElementTree root_of_xml_tree: Root of ElementTree of given XML file
+        - list log_file_list: List with log file entries
+        - bool error_flag: Flag if error occurs (error: True, no error: False)
+    """
+
+    # Initialize local parameters.
+    xml_tree = None
+    error_flag = False
+    root_of_xml_tree = None
+    # Initialize element tree with content of file and return root element (if given).
+    try:
+        # Attempt to create an ElementTree and get the root element from the XML file.
+        xml_tree = ET.ElementTree(file=path)
+        root_of_xml_tree = xml_tree.getroot()
+    # Exception handling for operating system (OS) error.
+    except OSError:
+        # Handle an error if the XML file cannot be opened. Print an error message and log it to a log file.
+        log_file_list.append('Error in file "' + function_name + '.py" (line ' + str(code_line + 2) + ') \n'
+                             '                                     ' + 'The "' + xml_file_name +
+                             '.xml" file could not be opened.  \n'
+                             '                                     ' + 'Program aborted!')
+
+        error_flag = True
+
+    return xml_tree, root_of_xml_tree, log_file_list, error_flag
+
+
+def read_routing_values_from_xml(input_dict, root_of_aircraft_exchange_tree, root_of_module_configuration_tree,
+                                 runtime_output, module_configuration_tmp_path=None):
+    """Read routing values from XML file.
+
+    This function reads and extracts routing values from an XML file based on the provided input dictionary and
+    ElementTrees.
+
+    The output dictionary 'return_dict' contains the following values:
+        - 'layer_1': First routing layer (str)
+        - 'layer_2': Second routing layer (str)
+        - 'layer_3': Third routing layer (str)
+        - 'user_layer': User layer (own code is implemented on this layer) (str)
+        - 'tool_level': Tool level of current tool (str)
+
+    :param dict input_dict: Input dictionary containing layer descriptions
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param ElementTree root_of_module_configuration_tree: Root of module configuration XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :param string module_configuration_tmp_path: Optional parameter for routing layer paths with ID - defaults to None
+    :raises AttributeError: Error if the "own_tool_level" node does not exist
+    :return dict return_dict: Output dictionary containing layer information
+    """
+
+    # Read lists with n entries from XML file (n equals number of layers).
+    return_dict = input_dict
+    element_exists = True
+    # Iterate over keys from input dict.
+    for key in input_dict:
+        # Check, if 'key' contains information to be read from file.
+        if input_dict[key][0] is not None:
+            # Generate absolute and relative paths to parameter (key).
+            absolute_path_to_parameter = input_dict[key][0]
+            relative_path_to_parameter = './' + absolute_path_to_parameter.split('/', 1)[1]
+            # Extract first part of path string (equals file type: 'aircraft_exchange_file' or
+            # 'module_configuration_file').
+            file_type = absolute_path_to_parameter.split('/')[0]
+            if file_type == 'aircraft_exchange_file':
+                root_of_tree = root_of_aircraft_exchange_tree
+            else:
+                root_of_tree = root_of_module_configuration_tree
+            # Check if element (path) exists.
+            tmp = root_of_tree.findall(relative_path_to_parameter)
+            if tmp is None:
+                element_exists = False
+            # Set value of parameter if element given.
+            if element_exists:
+                # Only on element of layer value exist -> no ID element in the path for the routing layer node.
+                if len(tmp) == 1:
+                    return_dict[key] = tmp[0].text
+                # At least 2 elements with the same routing layer exist -> ID element in the path for the routing layer.
+                # Check if the optional parameter "module_configuration_tmp_path" is not None
+                #  -> if true: -> prepare relative path to routing layer node with ID from routing layer 1.
+                elif module_configuration_tmp_path is not None:
+                    if module_configuration_tmp_path[-1] == '/':
+                        module_configuration_tmp_path = module_configuration_tmp_path[:-1]
+                    module_configuration_tmp_path = './' + module_configuration_tmp_path.split('/', 1)[1]
+                    relative_path_to_parameter = relative_path_to_parameter.split(module_configuration_tmp_path)[-1]
+                    id_path = module_configuration_tmp_path + '[@ID="' + next(iter(return_dict.values())) + '"]/' \
+                              + relative_path_to_parameter
+                    return_dict[key] = root_of_tree.find(id_path).text
+                # At least 2 elements with the same routing layer exist but no optional paramter is given
+                #  -> raise an error and abort program.
+                else:
+                    runtime_output.critical('Error: At least there are two possible parameter nodes for the routing layer. \n' #noPep8 e501
+                                            '                                            Please call the function "read_routing_values_from_xml" with the optional parameter as described in "datapreprocessing.py".\n'
+                                            '                                            Program abortet!')
+                    sys.exit(1)
+
+            # Set value of parameter to 'None' if not given.
+            else:
+                return_dict[key] = None
+        # If 'key' is None, write 'None' into 'return_dict'.
+        else:
+            return_dict[key] = None
+
+    # Add tool level to return dictionary.
+    try:
+        return_dict['tool_level'] = root_of_module_configuration_tree.find('./control_settings/own_tool_level/value').text
+    except AttributeError as e:
+        # Attach both handlers to the root logger
+        runtime_output.critical('Error: ' + str(e) + ' \n'
+                                + '                                     '
+                                + 'Node "own_tool_level" not found in module configuration file. \n'
+                                + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    return return_dict
+
+
+def read_values_from_xml_file(input_dict, root_of_xml_file, runtime_output):
+    """Read values from XML file.
+
+    This function extracts specific values from a XML file, including the parameter's value, lower boundary, and upper
+    boundary, based on the information provided in the 'input_dict'. It processes the XML structure of the file and
+    constructs an output dictionary with the extracted values.
+
+    The data of the output dictionary 'return_dict' are structured according to the following scheme:
+    return_dict = {'parameter_name_1': [path, expected data type, bool for parameter with ID, parameter name,
+                                        value, lower boundary, upper boundary],
+                   'parameter_name_2': [...],
+                   ...}
+
+    :param dict input_dict: Input dictionary with information on values to read from XML file
+    :param ElementTree root_of_xml_file: Root of XML tree
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Raised if parameter does not exist in node
+    :return dict return_dict: Dictionary containing parameter from XML file
+    """
+
+    # Initialization.
+    id_tag = str()
+    cleaned_string = str()
+    key_list_to_delete = []
+    return_dict = input_dict
+    parameter_list = ['value', 'lower_boundary', 'upper_boundary']
+    file_type = root_of_xml_file._root.tag.replace('_', ' ')
+    # Extraction of values from the XML file.
+    try:
+        # Iterate over every parameter in 'input_dict'.
+        for key in input_dict:
+            tmp_dict = {}
+            # Find corresponding node in 'root_of_xml_file'.
+            if '[@ID="0"]' in input_dict[key][0] or '[@id="0"]' in input_dict[key][0] \
+                    or '[@UID="0"]' in input_dict[key][0] or '[@uid="0"]' in input_dict[key][0]:
+                if '[@ID="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@ID="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@ID="0"\]', input_dict[key][0]))
+                    id_tag = '@ID="0"'
+                    id_naming = '@ID='
+                elif '[@id="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@id="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@id="0"\]', input_dict[key][0]))
+                    id_tag = '@id="0"'
+                    id_naming = '@id='
+                elif '[@UID="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@UID="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@UID="0"\]', input_dict[key][0]))
+                    id_tag = '@UID="0"'
+                    id_naming = '@UID='
+                elif '[@uid="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@uid="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@uid="0"\]', input_dict[key][0]))
+                    id_tag = '@uid="0"'
+                    id_naming = '@uid='
+
+                # Extract the number of existing end nodes in the aircraft exchange file of current parameter.
+                key_id_list = root_of_xml_file.findall(cleaned_string)
+
+                # Check if at least one end node is existing.
+                #  -> if true: -> generate all xml paths to the existing end nodes
+                key_list_to_delete.append(key)
+                if len(key_id_list) > 0:
+                    indexes_of_ids = []
+                    index = input_dict[key][0].find(id_tag)
+                    # Loop through the entire input xml path to get ID identifier indexes.
+                    while index != -1:
+                        indexes_of_ids.append(index)
+                        index = input_dict[key][0].find(id_tag, index + 1)
+                    indexes_of_ids = [x - 1 for x in indexes_of_ids]
+
+                    string_part_list = []
+                    test_string_list = []
+                    # Loop across the number of indexes to split the input xml path in separate parts.
+                    i = []
+                    for i in range(0, len(indexes_of_ids)):
+                        string_part = cleaned_string[:indexes_of_ids[i] - i * (len(id_tag) + 2)]
+                        if i == 0:
+                            string_part_list.append(input_dict[key][0][:(indexes_of_ids[i] + len(id_tag) + 2)])
+                        else:
+                            string_part_list.append(
+                                input_dict[key][0][indexes_of_ids[i-1] + (len(id_tag) + 2):indexes_of_ids[i]
+                                                                                           + (len(id_tag) + 2)])
+                        tmp_list = [string_part, len(root_of_xml_file.findall(string_part))]
+                        test_string_list.append(tmp_list)
+
+                    # Add the xml path part behind the last ID identifier to string part list.
+                    string_part_list.append(input_dict[key][0][(indexes_of_ids[i] + len(id_tag) + 2):])
+
+                    # Generate ID list of one single parent node with all possible child nodes to target parameter.
+                    number_of_fist_elements = test_string_list[0][1]
+                    id_list = [int(test_string_list[0][1] / number_of_fist_elements) - 1]
+                    for j in range(1, len(test_string_list)):
+                        id_list.append(int(test_string_list[j][1] / test_string_list[j-1][1]) - 1)
+
+                    # Loop across all possible nodes to generate all xml-paths to the end node of current parameter.
+                    loop_count = 0
+                    parameter_path_list = []
+                    for i in range(len(id_list)-1, -1, -1):
+                        dummy_list = []
+                        # Check if current loop is the first -> if true: -> generate initial xml path elements.
+                        if i == len(id_list)-1:
+                            # Initialize all possible end node IDs of current parameter for the ID="0" parent root.
+                            for j in range(0, id_list[i] + 1):
+                                part_with_id =(
+                                        string_part_list[i][:string_part_list[i].find(id_tag)
+                                                             + len(id_naming)] + '"' + str(j) + '"]')
+                                dummy_list.append(part_with_id + string_part_list[i+1])
+                        else:
+                            for j in range(0, id_list[i] + 1):
+                                part_with_id =(
+                                        string_part_list[i][:string_part_list[i].find(id_tag)
+                                                             + len(id_naming)] + '"' + str(j) + '"]')
+                                for k in range(0, len(parameter_path_list[loop_count-1])):
+                                    dummy_list.append(part_with_id + parameter_path_list[loop_count-1][k])
+
+                        parameter_path_list.append(dummy_list)
+                        loop_count += 1
+
+                    # Convert final parameter path lists of list to on final paths list.
+                    if isinstance(parameter_path_list, list):
+                        parameter_path_list = parameter_path_list[-1]
+                    else:
+                        parameter_path_list = [parameter_path_list]
+
+                    # Check if more than one parent root node of parameter exists.
+                    #  -> if true: -> add all remaining xml paths to parameter path list
+                    if number_of_fist_elements > 1:
+                        first_part = parameter_path_list[0][:(indexes_of_ids[0] + len(id_naming) + 1)]
+                        for i in range(1, number_of_fist_elements):
+                            for j in range(0, len(parameter_path_list)):
+                                parameter_path_list.append(first_part + '"' + str(i) + '"' + parameter_path_list[j][(indexes_of_ids[0] + len(id_tag) + 1):])  # noPep8 e501
+
+                    # Generate temporary dictionary with names, xml paths and expected data type.
+                    for i in range(0, len(parameter_path_list)):
+                        numerical_values = re.findall(r'@ID="(\d+)"', parameter_path_list[i])
+                        numerical_string = ['_ID' + str(value) for value in numerical_values]
+                        numerical_string = key + ''.join(numerical_string)
+                        tmp_dict[numerical_string] = [parameter_path_list[i], input_dict[key][1], True, key]
+
+                # Else condition: no one end node of current key is existing in the aircraft exchange file.
+                else:
+                    numerical_values = re.findall(r'@ID="(\d+)"', input_dict[key][0])
+                    numerical_string = ['_ID' + str(value) for value in numerical_values]
+                    numerical_string = key + ''.join(numerical_string)
+                    tmp_dict[numerical_string] = [input_dict[key][0], input_dict[key][1], True, key]
+
+            # Else condition: The string of the xml path of current key, contains no ID identifier.
+            else:
+                tmp_dict[key] = [input_dict[key][0], input_dict[key][1], False, key]
+
+            # Update return dict.
+            return_dict = {**return_dict, **tmp_dict}
+            # Loop across all temporary key elements to read the responding values from the element tree.
+            for tmp_key, value in tmp_dict.items():
+                # Try to find temporary element from xml-tree.
+                tmp = root_of_xml_file.find(tmp_dict[tmp_key][0])
+
+                # Initialize 'value', 'lower_boundary', and 'upper_boundary' of value with 'None' if node does not exist
+                if tmp is None or tmp_dict[tmp_key][1] is None:
+                    if tmp_dict[tmp_key][2]:
+                        return_dict[tmp_key] = [tmp_dict[tmp_key][0], tmp_dict[tmp_key][1], True, tmp_dict[tmp_key][3],
+                                                None, None, None]
+                    else:
+                        return_dict[tmp_key] = [tmp_dict[tmp_key][0], tmp_dict[tmp_key][1], False, tmp_dict[tmp_key][3],
+                                                None, None, None]
+                    runtime_output.info('Attention: Node "' + tmp_dict[tmp_key][0] + '" not found in ' + file_type
+                                         + '. Value, lower, and upper boundary initialized with "None".')
+                    if not tmp is None and tmp_dict[tmp_key][1] is None:
+                        return_dict[tmp_key][1] = bool
+                        return_dict[tmp_key][4] = 'True'
+                    elif tmp_dict[tmp_key][1] is None:
+                        return_dict[tmp_key][1] = bool
+                        return_dict[tmp_key][4] = 'False'
+                elif tmp_dict[tmp_key][1] == 'tool_level':
+                    tmp_parameter = root_of_xml_file.find(tmp_dict[tmp_key][0])
+                    if tmp_parameter is not None:
+                        return_dict[tmp_key] += [tmp_parameter.attrib['tool_level']]
+                else:
+                    # Check existence of every parameter in 'parameter_list' and append text if given and 'None' if not.
+                    for parameter in parameter_list:
+                        parameter_exists = True
+                        # Append parameter to path and check existence.
+                        tmp_parameter = root_of_xml_file.find(tmp_dict[tmp_key][0] + '/' + parameter)
+                        # Raise error if parameter 'value' does not exist in current node.
+                        if parameter == 'value' and tmp_parameter is None:
+                            parameter_exists = False
+                            raise ValueError('Node "' + tmp_dict[tmp_key][0] + '/' + parameter + '" not found in '
+                                             + file_type + '. Program aborted!')
+                        # Set 'parameter_exists' to 'False' if 'lower_boundary' or 'upper_boundary' missing, print warning.
+                        elif tmp_parameter is None:
+                            parameter_exists = False
+                            runtime_output.info('Attention: Node "' + tmp_dict[tmp_key][0] + '/' + parameter
+                                                 + '" not found in ' + file_type + '.')
+                        # Append parameter text if existing (equals value of parameter).
+                        if parameter_exists:
+                            return_dict[tmp_key] += [tmp_parameter.text]
+                        # Append 'None' to 'return_dict' if parameter does not exist, print a warning.
+                        else:
+                            return_dict[tmp_key] += [None]
+                            runtime_output.info('Attention: No "' + parameter + '" defined for "' + tmp_key
+                                                 + '". Set to "None" instead.')
+
+        for key in key_list_to_delete:
+            del return_dict[key]
+
+    # Exception handling for ValueError.
+    except ValueError as e:
+        runtime_output.critical('Error:' + str(e))
+        sys.exit(1)
+
+    return return_dict
+
+
+def convert_string_to_expected_data_type(input_value, expected_data_type, variable_name, runtime_output):
+    """This function converts a string to a desired data type.
+
+    This function converts an input string to the given data type (if valid). Valid data types are
+        - int (integer),
+        - float,
+        - str (string), and
+        - bool.
+    The function enforces two conditions for a successful conversion:
+        1) Valid expected data type: If the data type is invalid, the function returns 'None' for the return value and
+        raises an error.
+        2) The input value must not be 'None': This is particularly important when converting the limit values, as they
+        may not exist and thus be read out as 'None' from the configuration file.
+    If a value is convertible, the conversion is executed in dependence of the data type. If conversion is not
+    possible, a ValueError is raised.
+
+    :param str input_value: Input value
+    :param <class 'type'> expected_data_type: Expected data type
+    :param str variable_name: Name of the input variable
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Error if value cannot be converted to expected data type
+    :return int/float/str/bool converted_value: Input value converted to expected data type
+    """
+
+    # Initialize output parameter (only changed if valid conversion possible).
+    converted_value = None
+    # Define expected data type and check if it is valid.
+    expected_class_int = str(expected_data_type) == "<class 'int'>"
+    expected_class_float = str(expected_data_type) == "<class 'float'>"
+    expected_class_str = str(expected_data_type) == "<class 'str'>"
+    expected_class_bool = str(expected_data_type) == "<class 'bool'>"
+    valid_expected_data_type = (
+        expected_class_int or expected_class_float or expected_class_str or expected_class_bool)
+    # If 'bool' expected, the following inputs are accepted as true/false.
+    dict_bool_true = {'True': True, 'true': True, '1': True, '1.0': True}
+    dict_bool_false = {'False': False, 'false': False, '0': False, '0.0': False}
+
+    # Check if input value is of class 'NoneType'.
+    input_of_class_none_type = (input_value is None) or (input_value == 'None')
+
+    # If valid data type and value is not 'None'.
+    if valid_expected_data_type and not input_of_class_none_type:
+        # If expected data type is of "<class 'int'>".
+        if expected_class_int:
+            # Check if value is of type 'int' (could subsequently be converted to 'int').
+            try:
+                converted_value = expected_data_type(input_value)
+            # Otherwise value is not of type 'int'.
+            except ValueError:
+                # Check if value is of type 'float' (could subsequently be converted to 'float' and 'int').
+                try:
+                    converted_value = expected_data_type(float(input_value))
+                    runtime_output.info("Attention: Expected data type was 'int' but input value was of type 'float'."
+                                         "The value was first converted to a float value and then to an int."
+                                         "Decimal places are lost in the process.")
+                # Value error (value not of type 'int' or 'float').
+                except ValueError:
+                    runtime_output.info(
+                        ("Attention: Expected data type was 'int' but input value was neither of type 'int' "
+                         "nor 'float'. Value conversion not possible for parameter '" + variable_name + "'."))
+        # If expected data type is of "<class 'float'>".
+        if expected_class_float:
+            # Check if value can be converted to 'float' (means value is of type 'int' or 'float').
+            try:
+                converted_value = expected_data_type(input_value)
+            # Handle exception if value is not of type 'int' or 'float'.
+            except ValueError:
+                runtime_output.info(
+                    ("Attention: Expected data type was 'float', but the input value seems to be of type string "
+                     "or bool. Value conversion not possible for parameter '" + variable_name + "'."))
+        # If expected data type is of "<class 'str'>".
+        if expected_class_str:
+            converted_value = input_value
+        # If expected data type is of "<class 'bool'>".
+        if expected_class_bool:
+            # Check if input is a valid expression for 'True'.
+            if dict_bool_true.get(input_value):
+                converted_value = True
+            # Check if input is a valid expression for 'False'.
+            elif dict_bool_false.get(input_value):
+                converted_value = False
+            # Input does not contain a valid expression for boolean values.
+            else:
+                runtime_output.info(
+                    ("Attention: Expected data type was 'bool', "
+                     "but input does not seems to contain valid expressions for boolean values."
+                     "Value conversion not possible for parameter '" + variable_name + "'."))
+    # No valid data type or value is 'None' (often the case if no default values provided in configuration file).
+    else:
+        runtime_output.info("Attention: Invalid data type or input value is 'None' (" + variable_name + ").")
+
+    return converted_value
+
+
+def check_boundaries(parameter_name, input_value, runtime_output, lower_boundary=None, upper_boundary=None):
+    """Verify that a value is within specified limits.
+
+    This function checks whether a given input value falls within specified boundaries (lower and upper limits). It is
+    designed to handle values of different data types, including int, float, str, and bool. It raises errors or
+    warnings when the input does not meet the expected criteria.
+
+    :param str parameter_name: Name of the parameter
+    :param int/float/str/bool input_value: Value of the parameter
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :param int/float/str/bool lower_boundary: Lower boundary (parameter value must be greater), defaults to None
+    :param int/float/str/bool upper_boundary: Upper boundary (parameter value must be smaller), defaults to None
+    :raises ValueError: Error if parameter value is outside the specified boundaries
+    :return int/float/str/bool checked_value: Checked input value
+    """
+
+    # Initialize local parameter.
+    checked_value = input_value
+
+    # Check if boundary check possible (Value of type 'int'/'float'?).
+    if isinstance(input_value, bool):
+        boundary_check_possible = False
+    else:
+        boundary_check_possible = isinstance(input_value, (int, float))
+    # Check if boundaries are given.
+    boundaries_given = (lower_boundary is not None and upper_boundary is not None)
+
+    # Perform boundary checks.
+    try:
+        # If value is of data type that allows boundary check.
+        if boundary_check_possible:
+            # If both boundaries are given.
+            if boundaries_given:
+                # Check if given input value lower than given lower boundary. Raise error if true.
+                if input_value < lower_boundary:
+                    user_value_error_string = ('The parameter "' + parameter_name
+                                               + '" is lower than the expected lower boundary ('
+                                               + str(lower_boundary) + '). Program aborted!')
+                    raise ValueError(user_value_error_string)
+                # Check if given input value higher than given upper boundary. Raise error if true.
+                elif input_value > upper_boundary:
+                    user_value_error_string = ('The parameter "' + parameter_name
+                                               + '" is higher than the expected upper boundary ('
+                                               + str(upper_boundary) + '). Program aborted!')
+                    raise ValueError(user_value_error_string)
+            # Raise error if no boundaries given but required.
+            else:
+                user_value_error_string = ('The data type "' + str(type(input_value))
+                                           + ') of the given input parameter "' + parameter_name
+                                           + '" requires lower and upper boundaries. Program aborted!')
+                raise ValueError(user_value_error_string)
+        # Input value is not of a valid data type for boundary checking.
+        else:
+            runtime_output.info(
+                ('Attention: The data type of the given input parameter "' + parameter_name +
+                 '" (' + str(type(input_value)) +
+                 ') is not of type int or float. Therefore no boundaries were checked.'))
+    # Exception handling if values outside the limits or no boundaries given.
+    except ValueError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    return checked_value
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runmodule.py b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc23a699930513eeb63642769927507748877750
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runmodule.py
@@ -0,0 +1,54 @@
+"""Module providing run function of calculation method."""
+# Import standard modules.
+import sys
+import importlib
+from datapreprocessingmodule import method_data_preprocessing
+
+
+def run_module(paths_and_names, routing_dict, runtime_output):
+    """Conduct Python module.
+
+    This function performs any UNICADO Python module. The process involves the following steps:
+        (1) Method-specific preprocessing: The prerequisite for any UNICADO Python module is the acquisition of data
+        from corresponding exchange files. These include the aircraft exchange and the module configuration file. This
+        data preprocessing is crucial as it prepares the input data for the calculation method. The obtained data are
+        stored in the two dictionaries 'aircraft_exchange_dict' and 'module_configuration_dict'.
+        (2) Run calculation method: Depending on the user layer specified in the routing parameters, the function calls
+        the appropriate calculation function. The selected function is dynamically imported and executed.
+    The output dictionary 'run_output_dict' contains the result of the UNICADO Python module and is structured according
+     to the following scheme:
+        run_output_dict = {'parameter_name_1': value, ...}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ModuleNotFoundError: Raised if module cannot be imported
+    :return dict run_output_dict: Dictionary containing results of module execution
+    """
+
+    """Method specific preprocessing: Acquire necessary data."""
+    # Run 'method_data_preprocessing' from 'datapreprocessingmodule'.
+    aircraft_exchange_dict, module_configuration_dict = method_data_preprocessing(paths_and_names, routing_dict, runtime_output)
+
+    """Run: Execute code depending on user layer."""
+    # Prepare strings for dynamic imports of calculation functions. The 'import_command_method_user_layer' is build
+    # according to the following scheme:
+    # 'src.[value of layer_1].[value of layer_2].[value of layer_3].[value of user layer].method[value of user layer]'
+    # The 'function_name' is generated according to the following scheme:
+    #   'method_[value of user layer]'
+    import_command_method_user_layer = (routing_dict['module_import_name'] + '.' + routing_dict['user_layer']
+                                        + '.method' + routing_dict['user_layer'].replace('_', ''))
+    function_name = 'method_' + routing_dict['user_layer']
+    # Import calculation module.
+    try:
+        module = importlib.import_module(import_command_method_user_layer)
+        # Call function depending on routing parameters.
+        run_output_dict = getattr(module, function_name)(paths_and_names, routing_dict, aircraft_exchange_dict,
+                                                         module_configuration_dict, runtime_output)
+    # Exception handling for module import error.
+    except ModuleNotFoundError as module_import_error:
+        runtime_output.critical('Error: ' + str(module_import_error) + ' found in ' + routing_dict['module_name'] + '\n'
+                                + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    return run_output_dict
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..f8806eccf1e7c3c4d917c4e4df2d066f204738dc
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py
@@ -0,0 +1,123 @@
+"""Module configuring the runtime output."""
+# Import standard modules.
+import sys
+import logging
+
+
+def configure_runtime_output(paths_and_names):
+    """ Initialize logging handler for console prints and log file writing, provide runtime_output instance.
+
+    [Add some text here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :raises AttributeError: ...
+    :return:
+    """
+    # Define a new log level 'PRINT' with a value of 35.
+    PRINT = 35
+    logging.addLevelName(PRINT, "PRINT")
+
+    # Create a custom log level class by subclassing logging.Filter.
+    class PrintoutFilter(logging.Filter):
+        def filter(self, record):
+            return record.levelno == PRINT
+
+    # Attach the custom filter to the 'root_logger'.
+    root_logger = logging.getLogger()
+    root_logger.addFilter(PrintoutFilter())
+
+    # Add a custom method to the logger.
+    def printout(self, message, *args, **kwargs):
+        """
+        :param self:
+        :param message:
+        :param args:
+        :param kwargs:
+        :return:
+        """
+        if self.isEnabledFor(PRINT):
+            self._log(PRINT, message, args, **kwargs)
+
+    # Attach the custom method to the logger.
+    logging.Logger.print = printout
+
+    # Set the logging level for the root logger.
+    root_logger.setLevel(logging.DEBUG)
+
+    """Genereate log file handler and initialze."""
+    # Create a file handler with the desired file name and format.
+    log_file_name = paths_and_names['working_directory'] + '/' + paths_and_names['tool_name'] + '.log'
+    log_format = '%(asctime)s - %(levelname)s - %(message)s'
+    file_handler = logging.FileHandler(log_file_name)
+    file_handler.setFormatter(logging.Formatter(log_format))
+
+    """Genereate console handler and initialze."""
+    # Create a stream handler to output log messages to the console.
+    console_format = '%(asctime)s - %(levelname)s - %(message)s'
+    console_handler = logging.StreamHandler()
+    console_handler.setFormatter(logging.Formatter(console_format))
+
+    """Set log file handler level to selected mode from module configuration file."""
+    # Extract 'log_file_output' from 'root_of_module_config_tree'.
+    try:
+        log_file_mode = paths_and_names['root_of_module_config_tree'].find('.//log_file_output/value').text
+    except AttributeError as e:
+        # Attach both handlers to the 'root_logger'.
+        root_logger.addHandler(file_handler)
+        root_logger.addHandler(console_handler)
+        logger = logging.getLogger('module_logger')
+        logger.critical('Error: ' + str(e) + ' \n'
+                         + '                                     '
+                         + 'Node "log_file_output" not found in module configuration file. \n'
+                         + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    match log_file_mode:
+        # Only 'CRITICAL' logs displayed.
+        case 'mode_0':
+            file_handler.setLevel(logging.CRITICAL)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', and 'WARNING' displayed.
+        case 'mode_1':
+            file_handler.setLevel(logging.WARNING)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', and 'INFO' displayed.
+        case 'mode_2':
+            file_handler.setLevel(logging.INFO)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', 'INFO', and 'DEBUG' displayed.
+        case 'mode_3':
+            file_handler.setLevel(logging.DEBUG)
+
+    """Set console handler level to selected mode from module configuration file."""
+    # Extract 'console_output' from 'root_of_module_config_tree'.
+    try:
+        console_output = paths_and_names['root_of_module_config_tree'].find('.//console_output/value').text
+    except AttributeError as e:
+        # Attach both handlers to the 'root_logger'.
+        root_logger.addHandler(file_handler)
+        root_logger.addHandler(console_handler)
+        logger = logging.getLogger('module_logger')
+        logger.critical('Error: ' + str(e) + ' \n'
+                        + '                                     '
+                        + 'Node "console_output" not found in module configuration file. \n'
+                        + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    match console_output:
+        # Only 'CRITICAL' logs displayed.
+        case 'mode_0':
+            console_handler.setLevel(logging.CRITICAL)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', and 'WARNING' displayed.
+        case 'mode_1':
+            console_handler.setLevel(logging.WARNING)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', and 'INFO' displayed.
+        case 'mode_2':
+            console_handler.setLevel(logging.INFO)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', 'INFO', and 'DEBUG' displayed.
+        case 'mode_3':
+            console_handler.setLevel(logging.DEBUG)
+
+    # Disable colorization for the console handler.
+    console_handler.setStream(stream=sys.stdout)
+
+    # Attach both handlers to the 'root_logger'.
+    root_logger.addHandler(file_handler)
+    root_logger.addHandler(console_handler)
diff --git a/docs/get-involved/release-package.md b/docs/get-involved/release-package.md
new file mode 100644
index 0000000000000000000000000000000000000000..4319d8974c97d9c283a71b8742df9c87878a0200
--- /dev/null
+++ b/docs/get-involved/release-package.md
@@ -0,0 +1,58 @@
+---
+title: Building the Release Package
+summary: How to build C++ Installer packages of UNICADO.
+authors:
+    - Sebastian Oberschwendtner
+date: 2024-05-29
+---
+When all module executables are built and tested, you can create an installer package for the **UNICADO** project.
+CMake offers a convenient way to execute predefined workflow steps to build everything you need for the installer package and the installer itself.
+The **UNICADO** project has a workflow defined for creating a **Release** package for *Windows* and *Linux*.
+
+:fontawesome-solid-arrow-right: You can read more about the [workflow :octicons-link-external-16:](https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html#workflow-preset){:target="_blank"} in the **CMake** documentation.
+
+## Prerequisites
+Make sure you execute **all** steps on this page in a terminal in the **root directory** of the [Unicado Package :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/unicado-package){:target="_blank"} repository.
+
+### Enable Parallel Builds (optional)
+Since most machines nowadays have multiple cores, you can enable parallel builds to speed up the build process.
+In fact, the release workflow will warn you if you don't. :wink:
+
+As the release workflow invokes multiple different CMake modules, you have to enable the parallel build by setting an **environment variable** called [`CMAKE_BUILD_PARALLEL_LEVEL`](https://cmake.org/cmake/help/latest/envvar/CMAKE_BUILD_PARALLEL_LEVEL.html){:target="_blank"}:
+
+=== "Windows"
+
+    ```{.sh .copy}
+    set CMAKE_BUILD_PARALLEL_LEVEL=<number_of_cores>
+    ```
+
+=== "Linux"
+
+    ```{.sh .copy}
+    export CMAKE_BUILD_PARALLEL_LEVEL=<number_of_cores>
+    ```
+
+**Do not insert any spaces around the `=` sign!**
+
+!!! note
+    The `<number_of_cores>` should be the number of cores your machine has.
+
+## Build the Installer
+The installer with all its needed components can be built by executing the following command:
+
+=== "Windows"
+
+    ```sh
+    cmake --workflow --preset x64-windows-release
+    ```
+
+=== "Linux"
+
+    ```sh
+    cmake --workflow --preset x64-linux-release
+    ```
+
+This should also work out of the box with a freshly cloned version of the **Unicado Package** repository.
+
+!!! note
+    There is **no** *Debug* configuration for the installer package. The installer package has to always be built in **Release** mode!
\ No newline at end of file
diff --git a/docs/get-involved/style/cpp.md b/docs/get-involved/style/cpp.md
new file mode 100644
index 0000000000000000000000000000000000000000..11c3365bce06931c5a83864d0b90cf810243bfd8
--- /dev/null
+++ b/docs/get-involved/style/cpp.md
@@ -0,0 +1,219 @@
+---
+title: C++ Style Guide
+summary: The most important C++ style rules for UNICADO.
+authors:
+    - Sebastian Oberschwendtner
+date: 2023-09-12
+---
+# UNICADO C++ Style Guide
+
+!!! tip
+    Consistency in code style is the most important thing!
+
+---
+
+## Header Files
+### Inline Functions
+- Define inline functions only if they are small (~ 10 lines or less).
+
+### Function Parameter Ordering
+- The sequence of parameters of a function is: first input parameters, then output parameters.
+- Input parameters are passed either as value or const reference.
+- Output or input/output parameters are passed as pointers.
+
+:fontawesome-solid-arrow-right: In general, try to use **value semantics** instead of reference/pointer semantics.
+
+---
+
+## Classes
+### Doing Work in Constructors
+- No errors may be thrown in the constructor.
+- Short initialization in the constructor is ok.
+- Transfer complex initialization with larger calculation in initialization method (e.g. `Init()`).
+- Do not call `init()` in the constructor, but after constructor call!
+
+### Inheritance
+- Destructor must always be virtual if it should be a base class for other classes.
+
+### Declaration Order
+- Declaration sequence: public, protected, private. In every section:
+     - Typedefs and Enums
+- Constants (static const data members)
+- Constructors
+- Destructor
+- methods, incl. static methods
+- Data Members (except static const data members)
+- for constants: first const then data type, e.g.: `const int i = 1;`
+
+### Write Short Functions
+- Prefer small and focused functions.
+- For more than 40 lines: split the function
+
+### Ownership and Smart Pointers
+- Always use Smart Pointers instead of normal pointers (raw pointers), since Smart Pointers free up storage space at a suitable location.
+- Do not use `auto_ptr` (obsolete and not container-compatible) but `unique_ptr`.
+- Use `shared_ptr` only if several pointers to the same object are needed, because more memory is used for the reference counting.
+
+---
+
+## Other C++ Features
+### Preincrement and Predecrement
+- For primitive data types, post-increment `i++` is the same as pre-increment `++i`.
+- Pre-increment is faster for iterators because no copy is created.
+- For iterators: use pre-increment
+
+### auto
+- Only use `auto` when the type is still clear to the reader.
+- Example:
+
+```cpp
+/* static_cast holds the type clearly visible */
+auto value = std::static_cast<int>(other_value);
+```
+- Use `auto` for **trailing return types** of functions, because we are doing **Modern C++** 😉 :
+
+```cpp
+auto some_function(int input) -> double
+{
+    /* do stuff */
+    return value;
+}
+```
+- Do __not__ use `auto` when the type is not clearly visible.
+- Don't:
+
+```cpp
+auto value = get_value(); // type ist not readable
+```
+
+### Comparison of variables of type double
+- In order to avoid a compiler warning if floating values are compared (== or !=) use the function `fabs(a-b) < ACCURACY_LOW / _MEDIUM / _HIGH`. **LOW**, **MEDIUM** and **HIGH** correspond to accuracies of **10e-4**, **10e-7** and **10e-10**, respectively. Choose the accuracy as necessary for each case. Alternatively, you can also use the function `accuracyCheck(a, b, ACCURACY_LOW / _MEDIUM / _HIGH)`.
+- Accuracy constants can be found in the :fontawesome-solid-file: `constants.h` file within the unitConversion library.
+
+---
+
+## Naming
+- Function names, variable names and file names should be descriptive: no simple letters such as "b" for span.
+- Avoid abbreviations: Don't delete letters from words in the name to make it shorter e.g.: acft_dsgn instead of aircraft_design (usual and common abbreviations are fine in case of doubt)
+- Lowercase file names, variable names and function names; capitalize new word
+- Capitalize Structs, Typdefs and Enums
+- Names should be as short as possible, but as long as necessary
+
+---
+
+## Comments
+- The best code is self-explaining --> good type & variable names, etc.
+- Documentation with Doxyblocks; see also "Documentation with Doxyblocks.pptx".
+- You can use `\` and `@` to mark the __doxygen__ keywords.
+- Generally everywhere, where the code is not directly understandable by itself, comments on readability and comprehensibility are necessary.
+- But don't describe the code itself. Assume that the reading person knows C++.
+- Do not use umlauts (ä -> ae etc.)
+
+### File Comments
+- Line comments for attributes in header: Declaration `/**<Comment*//`
+- Each file should have a comment at the beginning describing its contents.
+- Header file `.h`: Describes the classes declared in the file. [icon arrow-right} what are they for, how are they used?
+- Source file `.cpp`: Contains more information about implementation details / algorithms.
+- Implementation details and information about algorithms can also be mentioned in.h file, but then mention in `.cpp` file Location of documentation.
+- The files should always start with a copyright statement.
+- After the copyright, give some information about the file with:
+
+```cpp
+/**
+ * \file name.extension
+ * \author Name (Email)
+ * \brief Short description of the content
+ * \version major.minor.bugfix
+ * \date yyyy-mm-dd
+ */
+```
+
+### Class Comments
+- Each class should have an accompanying comment describing what the class is for and how it is used
+- Block comments for classes in source:
+
+```cpp
+/**
+ * \class name
+ * \brief short description of the class
+ * \details detailed description of the class
+ */
+```
+
+### Function Comments
+- Function declaration: Describe what the function does and how it is used.
+- Does the memory function occupy memory that must be released again by the caller?
+- Can one of the arguments be a null pointer?
+- Definition of function: Describe how the function performs its task.
+- Give an overview of the individual steps.
+- Explain the used "coding tricks".
+- Explain why this implementation was chosen.
+- Block comments for methods/constructors in Source:
+
+```cpp
+/**
+ * \brief description of the function/method/constructor
+ * \details detailed description of the method
+ * \param name Description of the transfer parameter
+ * \return name Description of the return value
+ */
+```
+
+- Additional comments in the code only via `//`.
+- Instructions for creating documentation with Doxyblocks can be found in the wiki.
+
+### TODO Comments
+- Use **TODO** comments to mark temporary code, temporary solutions or parts in need of improvement.
+- Example for formatting: `// TODO(Name#_#MantisID:_) Comment`
+- A **TODO** is not an obligation that the specified person will solve the problem.
+- Specify an approximately date/time frame, if necessary, in which the problem is to be solved.
+
+---
+
+## Formatting
+- General (ANSI) style with 4 spaces as indentation.
+
+### Line Length
+- Each line of code max. 120 characters’ long.
+- Exception: Comment line with example or URL.
+
+### Spaces vs. Tabs
+- Use only spaces, 4 spaces for an indentation.
+- IDE can be set to output spaces at "TAB".
+
+== Function Declarations and Definitions ==
+- Return type and function name in one line.
+- Parameter in the same line if it does not match: Parameters in several lines
+- No space between function name and opening parenthesis.
+- No space between parenthesis and parameter.
+- Example:
+
+```cpp
+auto ClassName::functionName(Type par_name1, Type par_name2) -> return_type
+{
+    DoSomething(); // 2 space indent
+}
+```
+
+### Horizontal Whitespace
+- No spaces at end of line.
+- For operators (=, <, >, +, -, ...): space before and after: `int a = 0;` (not `int a=0;`)
+- Sometimes spaces can be removed by factors: `v = w*x + y/z;`
+- In loops and conditions: Spaces before the beginning of parentheses and after semicolons; no additional spaces in parentheses.
+- Can be automated in the IDE under the button Source "Formatter Insert Spaces around operators".
+
+### Vertical Whitespace
+- Minimize empty lines!
+- Basic rule: The more code fits on the screen, the easier it is to follow the program flow.
+- Blank lines at the beginning and end of functions can sometimes improve readability.
+
+!!! tip
+    This code style is based on the Google C++ Style Guide [GSG :octicons-link-external-16:](https://google.github.io/styleguide/cppguide.html) and contains some guidelines. For more information or more detailed specifications, read the Google Guide.
+
+---
+
+## Bibliography
+
+**GSG**: Google, [Google C++ Style Guide :octicons-link-external-16:](https://google.github.io/styleguide/cppguide.html)
+
+**ISOCPP**: IsoCpp, Bjarne Stroustrop & Herb Sutter, [C++ Core Guidelines :octicons-link-external-16:](http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
diff --git a/docs/get-involved/style/python.md b/docs/get-involved/style/python.md
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/docs/get-involved/testing.md b/docs/get-involved/testing.md
new file mode 100644
index 0000000000000000000000000000000000000000..30d9bcab8a92949ad36f9c37f74dade5b8fccb3d
--- /dev/null
+++ b/docs/get-involved/testing.md
@@ -0,0 +1,263 @@
+---
+title: Testing Guidelines
+summary: How to test in UNICADO
+authors:
+    - Kristina Mazur
+    - Maurice Zimmnau
+date: 2024-10-23
+---
+## Introduction
+
+_"Software is well known for low reliability and lack of trustworthiness."_ As mentioned by Spillner and Linz, software is not reliable, because we are error-prone and so we need testing. Consider the V-model for software development, there are 4 important levels:
+
+- **Unit testing**: It methodically examines the lowest-level architectural components of a system.
+- **Module testing**: It involves testing individual modules of a software system in isolation to ensure the correct interaction of the units.
+- **Integration testing**: This concerns verifying the interactions and interfaces between different modules to ensure they work together seamlessly and produce the expected results when integrated.
+- **System testing**: This level checks if the complete, integrated system actually fulfills its specified requirements.
+
+!!! note
+    For more background information, it is referred to the publications "UNICADO Software Maintenance, Revision, and Management in a Distributed Collaboration" and "Test Automation for Increased Robustness Within the Conceptual Aircraft Design with UNICADO" (will be linked as soon as they are public)
+
+These testing guidelines gives an overview how we integrated that in UNICADO. Generally, it can be split into 2 aspects:
+
+- [Manual testing](#manual) including the blackbox/module and unit tests
+- [Automated testing](#automated) triggering the _testFramework_
+
+### Manual testing {#manual}
+
+As you might have seen in the [C++ build instructions](build-instructions/build/cpp.md), there exist 2 flags to configure and build tests, so we can do:
+
+- module/blackbox tests or
+- unit tests.
+
+#### Blackbox tests
+A blackbox test runs a complete module with different test cases and then checks whether a specific result is calculated or set compared to expected values defined in a `blackBoxTestCases.xml`. This is implemented in the library [blackboxTest description](../documentation/libraries/index.md).
+
+!!! attention
+    This will only work if the module has a only the test suite defined which corresponds to the `aircraft_exchange_file`
+
+To run the test, you need to add the flag when configuring your module
+=== "Windows"
+
+    ``` { .sh .copy }
+    cmake --preset x64-windows-release -DBUILD_BLACKBOXTESTS=ON
+    ```
+
+=== "MinGW"
+
+    ``` { .sh .copy }
+    cmake --preset x64-mingw-release -DBUILD_BLACKBOXTESTS=ON
+    ```
+=== "Linux"
+
+    ``` { .sh .copy }
+    cmake --preset x64-linux-release -DBUILD_BLACKBOXTESTS=ON
+    ```
+
+Then you can execute the test
+=== "Windows"
+
+    ```sh
+    cmake --build --preset x64-windows-release --target blackbox_<target>
+    ```
+
+=== "MinGW"
+
+    ```sh
+    cmake --build --preset x64-mingw-release --target blackbox_<target>
+    ```
+
+=== "Unix"
+
+    ```sh
+    cmake --build --preset x64-linux-release --target blackbox_<target>
+    ```
+
+#### Unit tests
+These tests involve systematically checking the lowest-level component, like a function, within a module.
+
+🔔 This is currently only implemented for the module/target **propulsionDesign**.
+
+To run the test, you need to add the flag when configuring your module
+=== "Windows"
+
+    ``` { .sh .copy }
+    cmake --preset x64-windows-release -DBUILD_UNITTEST=ON
+    ```
+
+=== "MinGW"
+
+    ``` { .sh .copy }
+    cmake --preset x64-mingw-release -DBUILD_UNITTEST=ON
+    ```
+=== "Linux"
+
+    ``` { .sh .copy }
+    cmake --preset x64-linux-release -DBUILD_UNITTEST=ON
+    ```
+
+Then you can execute the test
+=== "Windows"
+
+    ```sh
+    cmake --build --preset x64-windows-release --target runtest_<target>
+    ```
+
+=== "MinGW"
+
+    ```sh
+    cmake --build --preset x64-mingw-release --target runtest_<target>
+    ```
+
+=== "Unix"
+
+    ```sh
+    cmake --build --preset x64-linux-release --target runtest_<target>
+    ```
+
+### Automated testing {#automated}
+
+To reduce the workload of the developer, tests can be automated. For that, the additional software [testFramework](../documentation/additional-software.md) can be used. It can be executed manually (see [python build instruction](../get-involved/build-instructions/build/python.md)) or be linked to the CI/CD pipeline. The latter one ensures that it is tested before every merge request.
+
+!!! attention
+    The `testFramework` is currently under construction :construction: and still needs to be linked to the CI/CD pipeline
+
+The CI/CD pipeline is **currently implemented for the aircraftDesign repository** and consists of 3 stages:
+
+- setup
+- build
+- run
+
+Each of these stages have jobs for the implemented 3 implemented test levels:
+
+- black-box-test (Module)
+- integration-test
+- performance-test (System)
+
+For each test level we have an own gitlab-runner resource, which executes the respective test in a docker container (Currently only tested on ubuntu 24.04; image: ubuntu:latest)
+
+Unit tests and an own pipeline are planned to be implemented for the libraries repository.
+Testing on windows is planned as well.
+
+The CI / CD pipeline is implemented in gitlab via a YAML script: `.gitlab-ci.yml`
+
+For the aircraft design repository, the pipeline has a modular structure, i.e. for each stage of each test level there exist an own YAML script with instructions.
+Furthermore, there is one variables.yml script controlling constant variable namings and paths, which are used in the other YAML scripts.
+
+The YAML scripts are located in the folder .ci-scripts, currently within the aircraft design repository. The main script - `.gitlab-ci.yml` - however is always at the root of a repository, also with this fixed naming.
+
+#### Setup
+
+Within each setup step a clean UNICADO repository is cloned into the aircraft design repository.
+For the clone process at first necessary git and ssh packages are downloaded and installed in a fresh docker container based on the alpine:latest image.
+Why explicitly mention alpine:latest? It is a small unix based image, which is pretty fast and lightweight in installing packages (at least faster, than ubuntu images). But we will need the ubuntu image for the later stages - we will come to that later.
+
+Currently for all sub-repositories within the UNICADO repository the develop branch is checked out. The branch for each respective repository, however, can be set in the variables.yml script, i.e.
+
+- `BRANCH_UNICADO`: "main"
+- `BRANCH_AIRCRAFT_DESIGN`: "develop"
+- `BRANCH_ADDITIONAL_SOFTWARE`: "develop"
+- `BRANCH_LIBRARIES`: "develop"
+- `BRANCH_AIRCRAFT_REFERENCES`: "develop"
+
+But why should there be a setup script, for each test level, if all are doing the same?
+Simply, because they are not the same:
+E.g. for each test level different folders and tools are necessary from the UNICADO repository. For efficient cache management (We'll come to that later), it is a good idea, to keep the content of the cache as small as possible, i.e. it should contain only the necessary files for the respective test.
+
+##### The Blackbox-test needs
+- the modified tool
+- **gnuplot** and **inkscape** for plotting
+- an aircraft reference
+
+##### The integration-test needs
+- the modified tool
+- the un-modified tool
+- libraries for the un-modified tool
+- cmake build receipts for the un-modified tool
+- **gnuplot** and **inkscape** for plotting
+- `designEvaluator` to compare results
+- libraries for the design Evaluator
+- cmake build receipts for the the `designEvaluator`
+
+##### The performance-test needs
+- The modified tool
+- All un-modified aircraft design tools
+- cmake build receipts for all un-modified aircraft design tools
+- Libraries for the un-modified tools
+- all additional software tools
+- libraries for additional software
+- cmake build receipts for additional software
+- rce environment which has to be downloaded
+
+#### Build
+
+Within the build process we use docker container based on the **ubuntu:latest (Currently 24.04)** image.
+Why? Well .. Several reasons:
+
+- Not alpine, because the gcc install differs from the gcc install on **ubuntu**, which causes build failure. With **ubuntu latest** and gcc 14 it works. The rest are deeper technical details
+- Not **ubuntu 24.10** (Most current ubuntu version at the moment), because **Python 3.11** can't be installed easily, because the `deadsnakes` ppa repository is currently not available for **ubuntu 24.10**. A manual make install of **Python 3.11** would take unnecessary much computational time, which is a good idea to be reduced as much as possible
+- Not **ubuntu 24.10** because **RCE** needs **Python 3.11** - and the challenges of the previous bullet point
+
+##### Black-box-test build instructions:
+- Install necessary packages like `cmake`, `gcc`, **Python**, **git**, `eigen3`, `cgal`, etc.
+- Create a project directory and copy the chosen aircraft reference to work on (Currently CSR-02 hard coded. A script probably needs to be added later, to modify the config. There is already a script, which modifies the `designEvaluator` config, which can be generalized)
+-  Copy **gnuplot** and **inkscape** into the working directory
+- Build the modified tool in black-box test mode as stated above.
+- Move black-box-test executable to modified tool folder
+
+##### Integration-test build instructions:
+- Install necessary packages like `cmake`, `gcc`, **Python**, **git**, `eigen3`, `cgal`, etc.
+- Make **gnuplot** and **inkscape** executable
+- Modify cmake build receipts of current aircraft design repo to build only modified tool
+- Build modified tool
+- Modify cmake build receipts of clean aircraft design repo within UNICADO repo to build only un-modified tool for comparison
+- Build clean tool
+- Build `designEvaluator`
+- Create a project directory within the aircraftDesign repo of the UNICADO repo (clean) and copy the chosen aircraft reference to work on (For limitations see instructions of Black-box-test above)
+-  Create a project directory within the repo (local) and copy the chosen aircraft reference to work on
+- Copy **gnuplot** an **inkscape** to the aircraft design repo of UNICADO
+- Copy **gnuplot** an **inkscape** to the current repo
+
+##### Performance-test build instructions:
+- Install necessary packages like `cmake`, `gcc`, **Python**, **git**, `eigen3`, `cgal`, etc.
+- Install `pipenv` for necessary virtual environments
+- Download and install the most latest version of cmake directly from source
+- Install gcc-14 and g++-14 from ubuntu-toolchain-r/test repository, because build-essential package of **ubuntu 24.04** comes with gcc version <14  but 14 is required
+- Make **gnuplot** and **inkscape** executable
+- Create a release package by building the UNICADO installer (Here also a pipeline is planned, which solely tests the release of the installer)
+- Modify cmake build receipts of current aircraft design repo to build only modified tool
+- Build modified tool only
+- Build `designEvaluator`
+- Copy `designEvaluator` to current repo (local)
+
+#### Test
+
+After successful setup and build, the tests are ready to be executed, with the following steps
+
+##### Black-box-test test execution steps:
+- Enter modified tool folder and execute black-box-test
+
+##### Integration-test test execution steps:
+- Install python and some libraries via pip
+- Execute modified tool
+- Store aircraft reference result to be compared into a common project folder with postfix _post
+- Execute un-modified tool
+- Store aircraft reference result to be compared into a common project folder with postfix _pre
+- Adapt `designEvaluator` config to compare both aircraft reference designs
+- Execute `designEvaluator`
+- Evaluate report of `designEvaluator`
+
+##### Performance-test test execution steps:
+- Install **Python 3.11** from `deadsnakes` repository and some libraries via pip
+- Remove rce user folder
+- Make `UNICADOinstaller` executable
+- Execute `UNICADOinstaller`
+- Create workflow configuration file
+- Execute UNICADOworkflow with RCE in headless mode with un-modified tool
+- Store aircraft reference result to be compared into a common project folder with postfix _pre
+- Copy modified tool executable into UNICADOworkflow
+- Execute UNICADOworkflow with RCE in headless mode with modified tool
+- Store aircraft reference result to be compared into a common project folder with postfix _post
+- Adapt `designEvaluator` config to compare both aircraft reference designs
+- Execute `designEvaluator`
+- Evaluate report of `designEvaluator`
\ No newline at end of file
diff --git a/docs/imprint.md b/docs/imprint.md
new file mode 100644
index 0000000000000000000000000000000000000000..e80413a849b004b12a8246c486e38865fc983a84
--- /dev/null
+++ b/docs/imprint.md
@@ -0,0 +1,55 @@
+---
+title: Imprint
+summary: Imprint for the UNICADO Page
+authors:
+    - Florian Schueltke
+date: 2025-02-26
+---
+# Imprint
+## Publisher
+
+Published on behalf of the Rector of RWTH Aachen University.
+
+RWTH Aachen University  
+Templergraben 55  
+52062 Aachen (street address)  
+52056 Aachen (mailing address)  
+
+Phone: +49 241 80-1  
+Email: :email: [impressum@rwth-aachen.de](mailto:impressum@rwth-aachen.de)
+
+RWTH Aachen University is a public institution represented by the Rector, Univ.-Prof. Dr. rer. nat. Dr. h.c. mult. Ulrich Rüdiger.
+
+## Regulatory Authority
+
+The Ministry of Culture and Science of the Federal State of North Rhine-Westphalia, Völklinger Straße 49, 40221 Düsseldorf.
+
+## Sales Tax Identification Number
+
+In accordance with § 27 Sales Tax Law: DE 121689807
+
+## Content Liability
+
+RWTH Aachen University’s website is maintained by various departments.
+
+Responsible for home page content, including the Events and News & Announcements sections:
+Thorsten Karbach  
+Head of the Department of Press and Communications  
+RWTH Aachen University  
+Templergraben 55  
+52062 Aachen  
+Phone: +49 241 80 94323  
+Email: :email: [thorsten.karbach@zhv.rwth-aachen.de](mailto:thorsten.karbach@zhv.rwth-aachen.de)  
+ 
+
+Responsible for all other content:
+Brita McClay  
+Web Coordinator  
+RWTH Aachen University  
+Phone: +49 241 80 97220  
+Email: :email: [Brita.McClay@zhv.rwth-aachen.de](mailto:Brita.McClay@zhv.rwth-aachen.de)  
+Email Web Editorial Office: :email: [zentralredaktion@zhv.rwth-aachen.de](mailto:zentralredaktion@zhv.rwth-aachen.de)  
+
+The above information also applies to our social media channels: Facebook, Youtube, Instagram, X, LinkedIn, Pinterest, TikTok and Threads.
+
+The web content of the Central University Administration, central administration facilities, group representatives, institutes, chairs, and research areas are coordinated independently under the direction of apppointed web coordinators and webmasters. Information for questions on liability can be found in the [Privacy Policy](private-policy.md).
\ No newline at end of file
diff --git a/docs/index.md b/docs/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..dec7d0553ae1067772859b74b2f5c311af347d5d
--- /dev/null
+++ b/docs/index.md
@@ -0,0 +1,87 @@
+---
+title: Welcome to UNICADO
+summary: Home page of the UNICADO project
+authors:
+    - Sebastian Oberschwendtner
+    - Kristina Mazur
+date: 2024-11-05
+glightbox: false
+hide:
+  - navigation
+  - toc
+---
+
+<div class="hero-section" markdown="1">
+![banner](assets/images/logos/unicado.png){.hero-logo}
+# Think. Design. Change.
+
+<div class="intro-text" markdown="1">
+**UNICADO** is a conceptual aircraft design environment. It provides a _robust framework_ for designing, analyzing and optimizing aircraft based on a minimum set of requirements. Developed in collaboration with _leading German aerospace universities_, it enables designers to define and size an aircraft's geometry, analyse performance and feasibility while balancing aerodynamic, operational and user-specific requirements. Its _modular architecture_ allows for easy customization and adaptability, enabling users to integrate new tools or methods.
+</div>
+<div class="download-button-container">
+    <a href="download/getting-started" class="download-button">Download UNICADO</a>
+</div>
+</div>
+
+<div class="grid-container" markdown="1">
+<div class="grid-item card" markdown="1">
+:material-clock-fast:{ .lg .accent } **Getting Started**
+
+---
+
+Learn how to set it up & install the prerequisites.
+
+[:octicons-arrow-right-24: Download](download/getting-started.md)
+</div>
+
+<div class="grid-item card" markdown="1">
+:octicons-book-16:{ .lg .accent } **Ready to design**
+
+---
+
+Design your first aircraft.
+
+[:octicons-arrow-right-24: Tutorials](tutorials/standalone.mp4)
+</div>
+
+<div class="grid-item card" markdown="1">
+:material-library:{ .lg .accent } **Available Tools**
+
+---
+
+Get an overview of the tools and libraries.
+
+[:octicons-arrow-right-24: Documentation](documentation/overview.md)
+</div>
+
+<div class="grid-item card" markdown="1">
+:fontawesome-solid-plane-departure:{ .lg .accent } **Cleared to develop**
+
+---
+
+Get insights on how to contribute and develop.
+
+[:octicons-arrow-right-24: Get involved](get-involved/developer-installation.md)
+</div>
+
+<div class="grid-item card" markdown="1">
+:fontawesome-solid-user-group:{ .lg .accent } **About us**
+
+---
+
+Read about who is behind it.
+
+[:octicons-arrow-right-24: About](about.md)
+</div>
+
+<div class="grid-item card" markdown="1">
+:material-scale-balance:{ .lg .accent } **Open Source**
+
+---
+
+**UNICADO** is available as open-source software licensed under **GPLv3**.
+
+[:octicons-arrow-right-24: License](license.md)
+</div>
+</div>
+
diff --git a/docs/license.md b/docs/license.md
new file mode 100644
index 0000000000000000000000000000000000000000..674b1f70ce4842a4424d4895a8fa5f0f42a61573
--- /dev/null
+++ b/docs/license.md
@@ -0,0 +1,35 @@
+# License
+
+UNICADO is distributed under the **GNU General Public License, Version 3 (GPLv3)**. This license ensures that the software remains free and open for use, distribution, and modification, fostering collaboration and innovation within the community. Below, we outline the key aspects of the GPLv3 license as it applies to UNICADO.
+
+## Key Features of the GPLv3 License
+
+1. **Freedom to Use:** UNICADO is free to use for any purpose, whether academic, commercial, or personal.
+
+2. **Freedom to Modify:** You are free to access the source code of UNICADO and modify it to suit your specific needs.
+
+3. **Freedom to Share:** Redistribution of the software, whether in its original form or modified, is permitted. If you redistribute UNICADO, you must also share the source code under the same GPLv3 license (:fontawesome-solid-arrow-right: so-called *copyleft license*).
+
+4. **Freedom to Contribute:** Contributions and improvements to UNICADO are welcomed and encouraged, helping to strengthen the platform and expand its capabilities for the global community.
+
+## Responsibilities Under the License
+
+1. **Preservation of License:** Any redistributed version of UNICADO must remain under the GPLv3 license, ensuring that it stays free and open for future users. So, if you include UNICADO code in a larger program, the larger program must be under this license too.
+
+2. **Transparency:** If you distribute a modified version of UNICADO, you are required to make the source code available to the recipients.
+
+3. **Acknowledgment:** Retain the copyright notices and attributions in the codebase to give proper credit to the contributors.
+
+## Why GPLv3?
+
+The GPLv3 license aligns with UNICADO's mission to foster collaboration, transparency, and innovation in the field of aircraft preliminary design. It provides robust protections for users' freedoms while enabling an ecosystem of shared knowledge and advancements.
+
+## Full License Text
+
+To review the full terms and conditions of the GPLv3 license, please refer to the official documentation: [GNU General Public License, Version 3 (GPLv3)](https://www.gnu.org/licenses/gpl-3.0.en.html)
+
+## Get Involved
+
+UNICADO thrives on contributions from its community. If you have questions about the license, wish to contribute, or need support with compliance, feel free to reach out via our [contact page](contact.md).
+
+Thank you for being part of the UNICADO journey and contributing to open innovation in aerospace design! :airplane: :heart:
\ No newline at end of file
diff --git a/docs/partners.md b/docs/partners.md
new file mode 100644
index 0000000000000000000000000000000000000000..9263ef9462fd354d02ac8a616707f1d06b0e4b86
--- /dev/null
+++ b/docs/partners.md
@@ -0,0 +1,95 @@
+# Partners
+
+## National Project Partner
+
+<div class="grid-container" markdown="1">
+
+<!-- RWTH Aachen -->
+<div class="grid-item card" markdown="1">
+<p align="center">
+    <a href="https://www.rwth-aachen.de/"><img src="site:assets/images/logos/RWTH.svg" alt="Logo RWTH" width="150"/></a>
+</p>
+
+---
+<a href="https://www.ilr.rwth-aachen.de/go/id/jmql/?lidx=1" style="color: white;"> :fontawesome-solid-arrow-right: Chair and Institute of Aerospace Systems</a>
+</div>
+
+<!-- TU Berlin -->
+<div class="grid-item card" markdown="1">
+<p align="center">
+    <a href="https://www.tu.berlin"><img src="site:assets/images/logos/TUB.svg" alt="Logo TUB" width="150"/></a>
+</p>
+
+---
+<a href="https://www.tu.berlin/luftbau" style="color: white;"> :fontawesome-solid-arrow-right: Aircraft Design and Aerostructures</a><br>
+<a href="https://www.tu.berlin/fmra" style="color: white;"> :fontawesome-solid-arrow-right: Flight Mechanics, Flight Control and Aeroelasticity</a>
+</div>
+
+<!-- TU Braunschweig -->
+<div class="grid-item card" markdown="1">
+<p align="center">
+    <a href="https://www.tu-braunschweig.de"><img src="site:assets/images/logos/TUBS.svg" alt="Logo TUBS" width="150"/></a>
+</p>
+
+---
+<a href="https://www.tu-braunschweig.de/en/ifl" style="color: white;"> :fontawesome-solid-arrow-right: Chair of Overall Aircraft Design</a>
+</div>
+
+<!-- TUHH -->
+<div class="grid-item card" markdown="1">
+<p align="center">
+    <a href="https://www.tuhh.de"><img src="site:assets/images/logos/TUHH.svg" alt="Logo TUHH" width="150"/></a>
+</p>
+
+---
+<a href="https://www.tuhh.de/ilt/willkommen" style="color: white;"> :fontawesome-solid-arrow-right: Institute of Air Transportation Systems</a>
+</div>
+
+<!-- TUM -->
+<div class="grid-item card" markdown="1">
+<p align="center">
+    <a href="https://www.tum.de"><img src="site:assets/images/logos/TUM.svg" alt="Logo TUM" width="150"/></a>
+</p>
+
+---
+<a href="https://www.asg.ed.tum.de/en/lls/home/" style="color: white;"> :fontawesome-solid-arrow-right: Chair of Aircraft Design</a>
+</div>
+
+ <!-- USTUTT -->
+<div class="grid-item card" markdown="1">
+<p align="center">
+    <a href="https://www.uni-stuttgart.de"><img src="site:assets/images/logos/USTUTT.svg" alt="Logo USTUTT" width="150"/></a>
+</p>
+
+---
+<a href="https://www.ifb.uni-stuttgart.de/en/institute/" style="color: white;"> :fontawesome-solid-arrow-right: Institute of Aircraft Design</a>
+</div>
+</div>
+
+## International Project Partner
+
+<div class="grid-container" markdown="1">
+<div class="grid-item card" markdown="1">
+<p align="center">
+    <a href="https://www.tuwien.at"><img src="site:assets/images/logos/TUW.png" alt="Logo TUW" width="150"/></a>
+</p>
+
+---
+<a href="https://www.tuwien.at/en/mwbw/ikp/mel/lfs/" style="color: white;"> :fontawesome-solid-arrow-right: Research Group for Aircraft Systems</a>
+</div>
+</div>
+
+
+## Associated Partner
+
+<a href="https://www.airbus.com/en">:fontawesome-solid-arrow-right: Airbus</a>
+
+<a href="https://www.collinsaerospace.com/">:fontawesome-solid-arrow-right: Collins Aerospace</a>
+
+<a href="https://www.tgm.solutions/en/">:fontawesome-solid-arrow-right: TGM Lightweight Solutions GmbH</a>
+</p>
+
+
+
+
+
diff --git a/docs/private-policy.md b/docs/private-policy.md
new file mode 100644
index 0000000000000000000000000000000000000000..6ce5f0b4a969e5642aff06b67b2d9d73ae5b8a1b
--- /dev/null
+++ b/docs/private-policy.md
@@ -0,0 +1,340 @@
+---
+title: Private Policy
+summary: Private Policy for the UNICADO Page
+authors:
+    - Florian Schueltke
+date: 2025-02-26
+---
+# Privacy Policy
+This data protection policy applies to the central website of RWTH Aachen University. It is possible that for some websites of university institutions and departments, other data protection policies apply. In this case, they are available on the website in question.
+
+Data Protection Policy as of February 2019
+
+## I. Person Responsible for Data Processing (Data Controller)
+The person responsible within the meaning of the General Data Protection Regulation and other national data protection laws of the member states as well as other data protection regulations is:
+
+Rector of RWTH Aachen University  
+Templergraben 55  
+52062 Aachen (physical address)  
+52056 Aachen (mailing address)  
+Phone: +49 241 80 1  
+Email: :email: [rektorat@rwth-aachen.de](mailto:rektorat@rwth-aachen.de)  
+Website: [www.rwth-aachen.de/rectorate](https://www.rwth-aachen.de/rectorate)
+
+## II. Contact data of the officially appointed Data Protection Officer
+Contact data of the Data Protection Office of RWTH Aachen University:
+
+Data Protection Office of RWTH Aachen University  
+Templergraben 83  
+52062 Aachen (physical address)  
+52056 Aachen (mailing address)  
+Germany  
+Phone: +49 241 80 94114  
+Email: :email: [dsb@rwth-aachen.de  ](mailto:dsb@rwth-aachen.de  )  
+Website: [www.rwth-aachen.de/dataprotection](https://www.rwth-aachen.de/dataprotection)
+
+## III. Data Processing – General Information
+### 1. Scope of the processing of personal data
+
+RWTH Aachen University processes personal data of visitors of the site only insofar as this is necessary to provide a functional website as well as our contents and services. The collection and processing of the personal data of our users take place only with the user's consent. An exception applies in those cases where prior consent cannot be obtained for practical reasons and the processing of the data is permitted by law.
+
+### 2. Legal basis for the processing of personal data
+
+Insofar as RWTH Aachen University obtains the consent of the data subject for the processing of personal data, Art. 6 para. 1 lit. a of the EU General Data Protection Regulation (GDPR) serves as a legal basis.
+
+In the processing of personal data necessary for the performance of a contract to which the data subject is a party, Art. 6 para. 1 lit. b GDPR serves as a legal basis. This also applies to processing operations required to carry out pre-contractual activities.
+
+As far as the processing of personal data is required for the fulfilment of responsibilities which are carried out in the public interest or in the exercise of official authority, Art. 6 para. 1 lit. e GDPR serves as a legal basis for this processing.
+
+### 3. Deletion of Data and Duration of Storage
+
+The personal data of the data subject will be deleted or blocked as soon as the purpose of storage ceases to exist. Furthermore, data may be stored if this is required by the European or national legislator in EU regulations, laws or other provisions to which the controller is subject. The data will also be blocked or deleted if a storage period prescribed by the aforementioned regulations expires, unless there is a need for further storage of the data for the conclusion or fulfillment of a contract.
+
+## IV. Provision of the website and generation of log files
+### 1. Description and scope of data processing
+
+Each time our website is accessed, the RWTH Aachen University system may collect automated data and information from the computer system of the user's computer.
+
+In this process, the following data may be collected:
+
+1. Information on the browser and version used
+2. Information on the operating system of the user
+3. The internet service provider of the user
+4. The IP address of the user
+5. Date and time of access
+6. Websites from which the user's system is led to the RWTH Aachen University website
+7. Information on websites visited and files opened
+
+The data is stored in the log files of the University's system. This data is not stored together with other personal data of the user.
+
+### 2. Legal basis for data processing
+
+The legal basis for the temporary storage of data and log files is Art. 6 para. 1 lit. f GDPR.
+
+### 3. Purpose of data processing
+
+Temporary storage of the IP address through the system is necessary to deliver the website to the user’s computer. To this end, the user’s IP address must be stored for the duration of the session.
+
+The data is used for the purpose of optimizing the website and ensuring the safety of information technology systems. The data is not evaluated for marketing purposes in this context.
+
+### 4. Duration of storage
+
+The data will be deleted as soon as it is no longer necessary for carrying out the purpose of its collection. Typically, data is deleted seven days after its storage at the latest. It is possible that the data is stored for a longer period. In this case, the user's IP address is deleted or anonymized, so that the client accessing the website can no longer be identified.
+
+### 5. Possibility of Objection and Remedy
+
+The collection of data for the purpose of providing the website and the storage of data in log files is absolutely necessary for the operation of the website. Consequently, there is no possibility of objection on the part of the user.
+
+## V. Use of cookies
+### 1. Description and scope of data processing
+
+The RWTH Aachen University website uses cookies. Cookies are text files that are saved in the user's web browser or stored by the web browser on the user's computer system. When a user visits our website, a cookie may be stored in the user's operating system. This cookie contains a specific string of characters that enables a unique identification of the browser when the website is accessed again.
+
+Cookies store and transmit the following data:
+
+- Anonymized IDs to identify the logged-in editors of the website
+- Declaration of consent to the use of external services
+
+### 2. Legal basis for data processing
+
+The legal basis for the processing of personal data using cookies is Art. 6 para. 1 lit. e GDPR. For the processing of the user's consent in the context of the storage of cookies, the legal basis is Art. 6 para. 1 lit. a GDPR.
+
+### 3. Purpose of data processing
+
+RWTH Aachen University only uses cookies on its website to identify editors logged in to the website and to temporarily store the user's consent to the invocation of external services such as Google Maps.
+
+### 4. Duration of storage, possibility of objection and remedy
+
+Cookies are stored on the user's computer and transmitted to our site. For this reason, as a user, you have full control over the use of cookies. You can deactivate or restrict the transmission of cookies by changing the settings of your web browser. Cookies already stored on your computer can be deleted at any time. This can be done automatically as well. If cookies have been deactivated for the RWTH Aachen University website, it may no longer be possible to use all functions of the website.
+
+## VI. Mailing lists
+### 1. Description and scope of data processing
+
+The RWTH Aachen University website gives you the opportunity to subscribe to a number of free-of-charge mailing lists. When registering, the data as entered into the input form is transmitted to RWTH Aachen University. This data is:
+
+1. Your email address
+2. Your name (optional)
+3. Password (freely selectable)
+4. Language preference
+
+When registering, you are asked whether or not you agree to your data being processed.
+
+Data collected in the registration process will not be passed on to third parties. The data will be used exclusively for sending out emails.
+
+### 2. Legal basis for data processing
+
+The legal basis for the processing of data once a user has registered for one or more mailing lists is, as long as the user's consent has been given, Art. 6 para. 1 lit. a GDPR.
+
+### 3. Purpose of the data processing
+
+The purpose of collecting the user's email address is to be able to send them emails as requested.
+
+### 4. Duration of storage
+
+The data will be deleted as soon as it is no longer needed to achieve the purpose of its collection. The data of the user are stored as long as they remain subscribed to the mailing list.
+
+### 5. Possibility of Objection and Remedy
+
+The user can cancel the subscription to the mailing list at any time. Each email sent out contains a link to unsubscribe from the mailing list. Furthermore, each user will be sent a monthly email reminding them of their membership. This email contains links to unsubscribe from the list or edit one's membership settings.
+
+## VII. Contact Form and Email Contact
+### 1. Description and scope of data processing
+
+There is a feedback form on the RWTH Aachen University website which can be used to electronically contact the University. Should a user use this feature, the data entered in the form will be transmitted and stored. These data are:
+
+1. Salutation
+2. Name
+3. Address (optional)
+4. Email address
+5. Phone (optional)
+
+Furthermore, different forms for various registration and contact purposes may be used, which request data from the user for purposes specific to the respective occasion.
+
+The user's consent for the processing of data is obtained in the transmission process, and reference is made to this privacy policy.
+
+Alternatively, the user can contact us via the email address provided. In this case, the user's personal data as transmitted by email will be stored.
+
+This data is not shared with third parties in this context. The data will be used exclusively to process the conversation.
+
+### 2. Legal basis for data processing
+
+After the user has given their consent to their data being processed, Art. 6 para. 1 lit. a GDPR serves as a legal basis for the processing of data.
+
+The legal basis for the processing of data transmitted via email is Art. 6 para. 1 lit. f GDPR.
+
+### 3. Purpose of data processing
+
+The personal data from the input form are processed solely for the purpose of processing the user's request. In the event of the user contacting us by email, this also constitutes the required legitimate interest in the processing of the data.
+
+The other personal data processed during the transmission process serve to prevent misuse of the contact form and to ensure the security of the University's information technology systems.
+
+### 4. Duration of storage
+
+The data will be deleted as soon as it is no longer needed to achieve the purpose of its collection. For the personal data entered into the input form and those that were sent by email, this is the case when the respective conversation with the user has been concluded. The conversation is considered concluded once it can be established from the situation that the subject matter in question has been fully clarified.
+
+### 5. Possibility of objection and remedy
+
+At any time the user has the opportunity to revoke their consent to the processing of their personal data. When the user contacts RWTH Aachen University by email, they can object to the storage of their personal data at any time. In this case, however, the conversation cannot be continued.
+
+To revoke your consent to the data being processed and/or to object against data storage, please use the following email address: [impressum@rwth-aachen.de](mailto:impressum@rwth-aachen.de)
+
+In this case, all personal data stored in the context of the user's contacting RWTH Aachen University will be deleted.
+
+## VIII. Google Maps
+The RWTH Aachen University Navigator application available on the RWTH Aachen University website is able to represent geographical information in order to assist users with contacting and visiting the University. The navigator is based on the Google Maps API as provided by Google Ireland Limited, Google Building Gordon House, 4 Barrow St, Dublin, D04 E5W5, Irland. By using the map service, it is possible for Google to detect your IP address as well the language and other settings of your Web browser.
+
+The geographical locations requested from within the Navigator menu are directly transmitted to the service. When the site is accessed with a GPS-capable device, the geographical location of the user may be transmitted as well. Google is not provided with any other personal data.
+
+Google makes use of cookies. Information on the processing of data and its purposes are available and can be requested at [Google](https://policies.google.com/privacy).
+
+When invoking the Navigator, you will be asked for your consent to using the service under the above conditions. You can withdraw this declaration of consent at any time.
+
+## IX. YouTube
+The RWTH Aachen University website uses plugins from the Google-operated YouTube site. Operator of the site is YouTube, LLC, 901 Cherry Ave., San Bruno, CA 94066, USA.
+
+When you visit one of our pages equipped with a YouTube plugin, a connection to YouTube's serves is being established. The YouTube server receives information on which of our web pages you have visited.
+
+If you are signed into your YouTube account, you make it possible for YouTube to associate your browsing behavior directly with your personal profile. You can prevent this by logging out of your YouTube account.
+
+For further information on how user data is managed and processed, please refer to YouTube's privacy policy statement: [https://policies.google.com/privacy?hl=en](https://policies.google.com/privacy?hl=en).
+
+## X. Vimeo
+The RWTH Aachen University Website uses plugins from the Vimeo video sharing platform, a service provided by Vimeo LLC, 555 West 18th Street, New York, New York 10011.
+
+If you visit one of our web pages featuring a Vimeo plugin, a connection to the Vimeo server is established. The server receives information about which of our web pages you have visited.
+
+If you are logged in to your Vimeo account, you make it possible for Vimeo to tie your web browsing behavior directly to your personal profile. You can prevent this by logging out of your Vimeo account.
+
+For further information on how Vimeo manages user data, please refer to Vimeo's data protection declaration at [https://vimeo.com/privacy](https://vimeo.com/privacy).
+
+## XI. StepMap
+Some pages of our website use embedded maps provided by the Stepmap.com platform (StepMap GmbH, Romy-Schneider-Straße 6, 13599 Berlin). If you visit one of our web pages in which HTML code from stepmap.com is embedded, your browser connects to the servers of stepmap.com. Stepmap uses an export code so that contents of the HTML code are directly transmitted to your browser, which processes this code on the web page.
+
+By means of the embedded map, StepMap receives the following browser-based data:
+
+1. IP address
+2. Time and date of the request
+3. Time zone difference to Greenwich Mean Time (GMT)
+4. Content of the request
+5. Status of access
+6. Data volume transmitted
+7. Retrieving website
+8. Browser type
+9. Operating system
+10. Browser software language
+
+For information on what data are collected by StepMap and to what purpose, please refer to StepMap's data protection declaration at [https://www.stepmap.de/privacy.html](https://www.stepmap.de/privacy.html)
+
+## XII. Rights of the data subject
+If any of your personal data is being processed, you are considered a data subject according to the GDPR. Thus, you have the following rights vis-a-vis the person responsible:
+
+### 1. Right to information
+
+You can ask the responsible person to confirm whether your personal data is or will be processed by RWTH Aachen University.
+
+If your data is being processed, you can request the following information from the person responsible:
+
+1. the purposes for which the personal data is processed;
+2. the type/categories of personal data being processed;
+3. the recipients or categories of recipients to whom the personal data have been and/or will be disclosed
+4. the planned duration of storage of your personal data or, if specific information in this regard cannot be provided, criteria that determine the storage period;
+5. the existence of a right to rectification or deletion of personal data concerning you as a user, a right to limitation of processing by the controller, or a right to object to such processing;
+6. the existence of a right of appeal to a supervisory authority;
+7. any available information on the source of the data if the personal data is not collected from the data subject;
+8. the existence of automated decision-making including profiling in accordance with Art. 22 para. 1 and 4 GDPR and – at least in these cases – meaningful information on the logic involved and the scope and intended effects of such processing for the data subject.
+
+You have the right to request information as to whether the personal data concerning you is transferred to a third country or to an international organization. In this context, you may request to be informed of the appropriate guarantees pursuant to Art. 46 GDPR in connection with the transmission.
+
+This right to information may be restricted in so far as it is expected to make the realization of research and statistical purposes impossible or severely limits it, and this restriction is necessary for the fulfillment of the research or statistical purpose.
+
+### 2. Right to demand correction
+
+You have a right of rectification and/or completion vis-à-vis the person responsible if the personal data processed concerning you are incorrect or incomplete. The person responsible shall make the correction without delay.
+
+This right to information may be restricted in so far as it is expected to make the realization of research and statistical purposes impossible or severely limits it, and this restriction is necessary for the fulfillment of the research or statistical purpose.
+
+### 3. Right to limitation of processing
+
+Under the following conditions, you may request that the processing of personal data concerning you shall be restricted:
+
+1. if you dispute the accuracy of the personal data relating to you for a period that enables the data controller to verify the accuracy of the personal data;
+2. the processing is unlawful and you refuse to delete the personal data and instead request that the use of the personal data be restricted;
+3. the data controller no longer needs the personal data for the purposes of the processing, but you do need them to assert, exercise or defend legal claims, or
+4. if you have filed an objection to the processing pursuant to Art. 21 para. 1 GDPR and it has not yet been determined whether the legitimate reasons of the person responsible outweigh your reasons.
+
+If the processing of personal data relating to you has been restricted, such data may only be processed – aside from being stored – with your consent or for the purpose of asserting, exercising or defending rights or protecting the rights of another natural or legal person or on grounds of an important public interest of the Union or a Member State.
+
+If the processing restriction has been restricted according to the above conditions, you will be informed by the person responsible before the restriction is lifted.
+
+This right to information may be restricted in so far as it is expected to make the realization of research and statistical purposes impossible or severely limits it, and this restriction is necessary for the fulfillment of the research or statistical purpose.
+
+### 4. Right to deletion
+
+#### a) Duty to delete
+
+You may request the data controller to delete the personal data relating to you without delay, and the controller is obliged to delete this data without delay if one of the following reasons applies:
+
+1. The personal data relating to you are no longer necessary for the purposes for which they were collected or otherwise processed.
+2. You revoke your consent, on which the processing was based pursuant to Art. 6 para. 1 lit. a or Art. 9 para. 2 lit. a GDPR, and there is no other legal basis for the processing.
+3. You file an objection against the processing pursuant to Art. 21 para. 1 GDPR, and there are no overriding legitimate reasons for the processing, or you file an objection against the processing pursuant to Art. 21 para. 2 GDPR.
+4. The personal data concerning you have been processed unlawfully.
+5. The deletion of personal data relating to you is necessary to fulfill a legal obligation under Union law or the law of the Member States to which the data controller is subject.
+6. The personal data relating to you have been collected in relation to information society services offered pursuant to Art. 8 para. 1 GDPR.
+
+#### b) Information to third parties
+
+If the data controller has made the personal data concerning you public and is obliged to delete it pursuant to Art. 17 para. 1 GDPR, he or she shall take appropriate measures, including technical ones, and taking into account the available technology and the implementation costs, to inform those who are responsible for processing the personal data that you as the data subject have requested the deletion of all links to this personal data or of copies or replications of this personal data.
+
+#### c) Exceptions
+
+The right to cancellation does not exist insofar as the processing is necessary
+
+1. to exercise the right to freedom of expression and information;
+2. for the performance of a legal obligation required for processing under the law of the Union or of the Member States to which the controller is subject, or for the performance of a task in the public interest or in the exercise of official authority conferred on the controller;
+3. for reasons of public interest in the field of public health pursuant to Art. 9 para. 2 lit. h and i and Art. 9 para. 3 GDPR;
+4. for archiving purposes in the public interest, scientific or historical research purposes or for statistical purposes pursuant to Art. 89 para. 1 GDPR, insofar as the law referred to under a) is likely to make it impossible or seriously impair the attainment of the objectives of such processing, or
+5. to assert, exercise or defend legal claims.
+
+### 5. Right to information
+
+If you have exercised your right to have the data controller correct, delete or limit the processing, he or she is obliged to inform all recipients to whom the personal data relating to you have been disclosed of this correction, deletion or restriction on processing, unless this proves impossible or would involve a disproportionate effort.
+
+You have the right, vis-à-vis the data controller, to be informed of these recipients.
+
+### 6. Right to data transferability
+
+You have the right to obtain the personal data concerning you that you have provided to the data controller in a structured, common and machine-readable format. In addition, you have the right to pass this data on to another data controller without obstruction by the data controller to whom the personal data was made available, provided that
+
+1. processing is based on consent pursuant to Art. 6 para. 1 lit. a GDPR or Art. 9 para. 2 lit. a GDPR or on a contract pursuant to Art. 6 para. 1 lit. b GDPR and
+2. processing is carried out by means of automated methods.
+In exercising this right, you also have the right to request that the personal data concerning you be transferred directly from one data controller to another data controller, insofar as this is technically feasible. The freedoms and rights of other persons must not be compromised by this.
+
+The right to transferability shall not apply to the processing of personal data necessary for the performance of a task in the public interest or in the exercise of official authority conferred on the controller.
+
+### 7. Right of appeal
+
+You have the right to object at any time, for reasons arising from your particular situation, to the processing of personal data concerning you under Article 6 para 1 lit e or lit. f GDPR; this also applies to profiling activities based on these provisions.
+
+The data controller no longer processes the personal data relating to you, unless he or she can prove compelling reasons worthy of protection for the processing which outweigh your interests, rights and freedoms, or the processing serves to assert, exercise or defend legal claims.
+
+If the personal data concerning you are processed for direct marketing purposes, you have the right to object at any time to the processing of the personal data relating to you for the purpose of such advertising; this also applies to profiling, insofar as it is associated with such direct marketing activities.
+
+If you object to the processing for direct marketing purposes, the personal data concerning you are no longer to be processed for these purposes.
+
+You have the opportunity – notwithstanding Directive 2002/58/EC – to exercise your right of objection in connection with the use of Information Society services by means of automated processes using technical specifications.
+
+In addition you have the right, on grounds relating to your particular situation, to object to processing of personal data relating to you, which are processed for scientific or historical research purposes or statistical purposes pursuant to Article 89 Art. 1.
+
+This right to information may be restricted in so far as it is expected to make the realization of research and statistical purposes impossible or severely limit it, and this restriction is necessary for the fulfillment of the research or statistical purpose.
+
+### 8. Right to revoke the data protection declaration of consent
+
+You have the right to revoke your declaration of consent concerning data protection at any time. The revocation of consent shall not affect the legality of the processing carried out on the basis of your consent until revocation.
+
+### 9. Right of appeal to a supervisory authority
+
+Without prejudice to any other administrative or judicial remedy, if you believe that the processing of personal data relating to you infringes the GDPR, you have the right of appeal to a supervisory authority, in particular in the member state where you reside, work, or where the supposed infringement took place.
+
+The supervisory authority to which the complaint has been lodged shall inform the complainant of the status and results of the complaint, including the possibility of a judicial remedy under Article 78 GDPR.
+
+The competent supervisory authority for RWTH Aachen University is the Landesbeauftragte für Datenschutz und Informationsfreiheit NRW (State Commissioner for Data Protection and Freedom of Information) [https://www.ldi.nrw.de/](https://www.ldi.nrw.de/]).
\ No newline at end of file
diff --git a/docs/tutorials/changing-design-specifications.md b/docs/tutorials/changing-design-specifications.md
new file mode 100644
index 0000000000000000000000000000000000000000..b630282511bdc72c145363b60c7b2c802ea0ff25
--- /dev/null
+++ b/docs/tutorials/changing-design-specifications.md
@@ -0,0 +1,92 @@
+---
+title: Changing Top-Level Aircraft Requirements
+summary: Instructions on where to change TLAR in the ACXML
+authors:
+    - Jens Vilöhr
+date: 2024-12-04
+---
+When running the UNICADO workflow, the aircraft is sized based on requirements and specifications defined in the aircraft exchange file. This file holds initial parameters in an XML format, which ensure the final aircraft meets the design objectives and that can be modified to accommodate alternative goals or mission profiles.
+
+## Overview of the Aircraft Exchange File
+In its hierarchy, the most important parameters for the definition of the aircraft can be found in the sections
+`requirements_and_specifications/design_specifications`, where requirements regarding the configuration, transport task, propulsion and technologies are defined, and in `requirements_and_specifications/requirements`, where top-level aircraft requirements (TLARs) are defined.
+```
+<aircraft_exchange_file>
+└── <requirements_and_specifications>
+    ├── ...
+    ├── <design_specifications>
+    │   └── Definition of configuration, transport task, propulsion, technologies
+    ├── <requirements>
+    │   └── Definition of TLARs
+    └── ...
+```
+When modifying parameters, it is important to consider the intended design objective, as a change in the parameters will lead to a differently sized aircraft. Also, the given lower and upper boundary of the value should not be exceeded, which can be found in the corresponding XML tag. All numerical parameters have the following structure:
+```
+<parameter>
+├── <value> The parameter will be set to this value
+├── <unit> The unit of the parameter, can not be changed
+├── <lower_boundary> Lower boundary, can not be changed
+└── <upper_boundary> Upper boundary, can not be changed
+```
+When changing parameters, it is recommended to change only one parameter in the beginning to study how a change will affect the sizing of the aircraft.
+
+## Most important parameters
+The following tables showcase the most important parameters that affect the sizing of the aircraft, as well as their location within the aircraft exchange file structure. For additional details about other parameters, refer to the descriptions provided within their corresponding XML tags.
+
+Definition of design mission related parameters:
+
+|Parameter|Description|Path in Aircraft Exchange File|
+|---|---|---|
+|Design range|Operational range the aircraft will be designed to achieve.|`requirements_and_specifications/requirements/top_level_aircraft_requirements/design_mission/range`|
+|Initial cruise mach number|Mach number at the beginning of the aircrafts cruise phase after climbing to its initial cruising altitude.|`requirements_and_specifications/requirements/top_level_aircraft_requirements/design_mission/initial_cruise_mach_number`|
+|Initial cruise altitude|Altitude at the beginning of the aircrafts cruise phase.|`requirements_and_specifications/requirements/top_level_aircraft_requirements/design_mission/initial_cruise_altitude`|
+
+Definition of transport task related parameters:
+
+|Parameter|Description|Path in Aircraft Exchange File|
+|---|---|---|
+|Passenger number|Total number of passengers to accomodate. Make sure, that the maximum structural payload mass is changed accordingly.|`requirements_and_specifications/design_specification/transport_task/passenger_definition/total_number_passengers`|
+|Additional Cargo Mass|Mass of cargo which does not belong to passengers. Make sure, that the maximum structural payload mass is changed accordingly.|`requirements_and_specifications/design_specification/transport_task/cargo_definition/additional_cargo_mass`|
+|Maximum structural payload mass|Maximum structual payload mass which can be carried by the aircraft. Must at least include passenger and cargo mass.|`requirements_and_specifications/requirements/top_level_aircraft_requirements/maximum_structrual_payload_mass`|
+
+Definition of the aircraft configuration:
+
+|Parameter|Description|Path in Aircraft Exchange File|
+|---|---|---|
+|Configuration Type|Currently, only a tube-and-wing configuration is supported. In future releases, a blended-wing-body configuration can be set here.|`requirements_and_specifications/design_specification/configuration/configuration_type`|
+|Fuselage type|Change fuselage type between single-aisle and wide-body. If changed to wide-body, the seat-abreast in the fuselage_design_conf.xml must be adjusted to take two aisles into account as well.|`requirements_and_specifications/design_specification/configuration/fuselage_definition/fuselage_type`|
+|Wing mounting|Vertical position of the wing. Can be low / mid / high.|`requirements_and_specifications/design_specification/configuration/wing_definition/mounting`|
+
+Definition of constraints:
+
+|Parameter|Description|Path in Aircraft Exchange File|
+|---|---|---|
+|Take-Off Distance|Design takeoff distance at Sea Level with maximum takeoff mass (MTOM)|`requirements_and_specifications/requirements/top_level_aircraft_requirements/takeoff_distance`|
+|Landing Distance|Required runway length for landing at Sea Level with maximum landing mass (MLM)|`requirements_and_specifications/requirements/top_level_aircraft_requirements/landing_field_length`|
+
+
+Note that the parameters displayed here are relevant to the sizing of the entire aircraft. For module-specific adjustments, the relevant parameters can be found in the configuration file of the corresponding module. For instance, to modify the wing sweep angle, the parameter can be located in the wing_design configuration file under `program_settings/tube_and_wing/cantilever/calculation_methods/sweep`. For further details, consult the documentation of the corresponding module.
+
+## Good to know
+
+Some parameter require more explaination - this section provides the background.
+
+### delta_ISA
+
+As we learned in school, the Earth's atmosphere is not static. Different parameter like air density, pressure, and composition change depending on altitude, latitude, longitude, time of year and day. As an aircraft has to be designed for different routes and missions, but considering detailed atmospheric data would not be feasible, the **ISA** (International Standard Atmosphere) is used as a common reference. This model represents the Earth's atmosphere over altitude and was defined in thr 1920s primarly as pressure alitmeter calibration and later on published in 1975 as ISO2533<sup>[1]</sup>.
+
+Following assumptions are considered:
+
+- Mean sea level conditions of 288.25 K (15°C), 1013.25 hPa pressure, and 1.225 kg/m³ air density, 340.294 m/s speed of sound, 9.81 m/s<sup>2</sup> aacceleration of gravity.
+- A constant lapse rate of -6.5°C/km in the troposphere up to 11 km.
+- Isothermal or different lapse rates for layers above the troposphere.
+
+`delta_ISA` is therefore a mission related parameters which changes the starting point of ISA - commonly adapted over the temperature. The figure shows it examplary for ISA+10.
+
+<figure markdown>
+  ![ISA](site:assets/images/tutorials/ISA.svg){width="500"}
+  <figcaption>Altitude over temperature for ISA and ISA+10</figcaption>
+</figure>
+
+---
+<sup>[1]</sup> International Organization for Standardization, Standard Atmosphere, ISO 2533:1975, 1975.<br>
diff --git a/docs/tutorials/seperate-tool-execution.md b/docs/tutorials/seperate-tool-execution.md
new file mode 100644
index 0000000000000000000000000000000000000000..0be7c4dc54ddfd6d4592598cd1ef8994bd5ef805
--- /dev/null
+++ b/docs/tutorials/seperate-tool-execution.md
@@ -0,0 +1,142 @@
+> :construction: Under construction. Needs to be checked for final folder structure.
+
+You want to execute UNICADO tools separately? Here we go:
+
+## Requirements
+
+Ensure that you have cloned the following repositories:
+
+- **Aircraft Design** - aircraft design tools (including the submodule `libs`)
+- **Aircraft References** - aircraft reference designs
+- **Engines** - engine data
+
+If you haven't yet, don't worry: just follow [these](../get-involved/build-instructions/get-source-code.md) instructions before continuing.
+
+Ensure, that you have checked out the same branch (e.g. `develop`) for both **Aircraft Design** and **Engines**, as they are synchronized on remote and a running couple.
+For testing purposes you most probably will choose the CSMR-2020 aircraft reference. Therefore, checkout the *CSMR-2020* branch from the **Aircraft References** repo.
+
+---
+
+## Project Environment
+
+For creating a **project environment** you have several options 🍟. Here we'll present the two mostly used ones (excluding the UNICADOworkflow on RCE stated [here](standalone.mp4)):
+
+- Create a new folder for your project environment **or** use the folder where you have cloned the **Aircraft Design** repo. Both will be calles **project environment** in the following.
+
+- In case you are **not** using the local copy itself as a **project environment**: Copy the tool(s) you want to execute / test (e.g. *initialSizing*) **AND** the folder `libs` from your local copy of **Aircraft Design** to your  **project environment**
+
+- Inside your **project environment**, create the folders **Gnuplot** and **Inkscape**. Copy the **content** of the `bin/` from their installation directories to the newly created folders.
+
+- Create a new folder **databases** inside your **project environment**
+
+    - Inside **databases**, create a folder **airfoils**
+            - From 'libs/airfoils', copy the folder F15 and NACA to the newly created **airfoils** directory
+    - Inside **databases**, create a folder **engine**
+            - From your **Engines** repo, copy the folder PW1127G-JM to the newly created **engine** directory
+
+- Create a folder named **projects** within your **project environment**
+    - Within your **projects** folder create a folder named as the aircraft class, e.g. CSMR
+    - Within the **aircraft class** folder create a folder of the aircraft type, e.g. CSMR-2020
+    - Copy the **content** (not the folder) of a specific design folder of the corresponding aircraft from your local copy of **Aircraft References** into the aircraft type folder. Options are
+        - cleanSheetDesign,
+        - retrofitDesign/aerodynamicCalibration,
+        - retrofitDesign/engineCalibration and
+        - retrofitDesign/withoutCalibration
+
+    - Now you have again two options:
+        - Test the tool on an empty aircraft exchange file: Delete the existing aircraft exchange file e.g. *CSMR-2020.xml*. Then rename the aircraft exchange file e.g. *CSMR-2020_startCSD.xml* to *CSMR-2020.xml* (if you have copied the cleanSheetDesign)
+        - Test the tool on a so called converged aircraft: Directly execute your tool with the available aircraft exchange file, e.g. *CSMR-2020.xml*
+
+If you made everything correctly, your folder structure inside your project environment will include at least following folders and files:
+
+```
+project environment
+├── module_name/
+│   ├── module_name.exe
+│   └── module_name_config.xml
+├── gnuplot/
+│   ├── gnuplot.exe
+│   └── ...
+├── inkscape/
+│   ├── inkscape.exe
+│   └── ...
+├── projects/
+│   └──  CSMR/
+│        └──CSMR-2020
+│           ├── CSMR-2020.xml
+│           └── Seat_positions.xml
+├── databases/
+│   ├── airfoils/
+│   │   ├── NACA/
+│   │   └── F15/
+│   └── engine/
+└── libs/
+```
+
+---
+
+## Aircraft Design Tool Dependencies
+
+Suppose you use an empty aircraft exchange file (described above in option 1).
+The aircraft design tools have dependencies, e.g. a fuselage 🐳 has to exist in order to mount wings 🐦.  An aircraft geometry has to be available in order to conduct an aerodynamic analysis.
+
+Therefore the tools can be executed based on their dependencies in the following sequence:
+
+- initial_sizing
+- create_mission_xml
+- fuselage_design
+- wing_design
+- empennage_design
+- tank_design
+- propulsion_design
+- landing_gear_design
+- aerodynamic_analysis
+- systems_design
+- mission_analysis
+- weight_and_balance_analysis
+- performance_analysis
+- cost_estimation
+- ecological_assessment
+
+!!! warning
+    If you use a converged aircraft file (described above in option 2):
+    Be aware that due to the module dependencies, there will probably be inconsistencies in the resulting aircraft file.
+    After a single module execution, the aircraft will not be a valid configuration anymore.
+
+---
+
+## Tool execution
+
+Finally we want to execute the tool. But what if we have noticed, that there are no executables in the tool folders? 🔥
+Then the executables have first to be build inside the working copy e.g. of the **Aircraft Design** repo. Please follow the [build instructions](../get-involved/build-instructions/build/general.md).
+
+If this is already done and an executable is present, then you can execute the respective tool from within the tool folder either on windows directly via double click or via a terminal e.g.
+
+=== "cmd"
+
+    ``` { .sh .copy }
+    initialSizing.exe
+    ```
+
+=== "powershell"
+
+    ``` { .sh .copy }
+    initialSizing.exe
+    ```
+=== "git bash"
+
+    ``` { .sh .copy }
+    ./initialSizing.exe
+    ```
+
+If you want to examine the terminal outputs we've got you covered: `.log`-files are written for each tool (if not: activate `log_file_output` in the config file).
+
+## Troubleshooting
+
+The module throws an error? - Read the error message carefully.
+
+- "Node not existing" / "File not found" or similar: Most probably either a file is missing in your project environment or some content within an file is lacking. Double check the description of the project environment and tool dependencies.
+- "Can't open ...": If the file exist, make sure it is currently not used by another application.
+- "ModuleNotFoundError: No Module named 'runmodule'": you try to execute a python tool which was not built correctly. Make sure to intall the python_packages before building the modudule. Go back to [build python](../get-involved/build-instructions/build/python.md), follow the instruction and keep an eye on error messages during the build process.
+
+## Video tutorial
\ No newline at end of file
diff --git a/docs/tutorials/standalone.mp4 b/docs/tutorials/standalone.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..087d0f50ee781112c30fba4e567f8589241cf138
Binary files /dev/null and b/docs/tutorials/standalone.mp4 differ
diff --git a/docs/workflow.md b/docs/workflow.md
new file mode 100644
index 0000000000000000000000000000000000000000..e93cb60dcdcc8005f9bafa461e1a9aa58e211dfb
--- /dev/null
+++ b/docs/workflow.md
@@ -0,0 +1,38 @@
+---
+title: Workflow
+summary: Introduces the UNICADO workflow in RCE
+authors:
+    - Sebastian Oberschwendtner
+    - Jens Vilöhr
+date: 2024-12-10
+---
+After installing UNICADO with the provided installer, the workflow can be run in RCE to calculate a converged aircraft, retrofit an already existing aircraft or perform a mission analysis. RCE is an open-source environment developed by the DLR (Deutsches Zentrum für Luft- und Raumfahrt) to connect and run different tools - in the context of UNICADO the individual modules which represent a distinct step in the aircraft development process. RCE can be downloaded from the [official website](https://rcenvironment.de).
+
+## Run the workflow in RCE
+To open the UNICADO workflow, launch RCE and with `File → Open Projects from File System` select the `workingDirectoryRCE` folder located in the installation directory of UNICADO. Typically, this folder is found at `C:\Programs\UNICADOworkflow`. Then the file `UNICADOworkflow.wf` can be opened, which should look like this:
+<figure markdown>
+  ![UNICADO Workflow](assets/images/screenshots/rce.png){width="800"}
+  <figcaption>UNICADO Workflow</figcaption>
+</figure>
+
+The workflow can be executed with `Run → Execute Workflow...`, after which the user is asked to name the current run and specify the installation path to the installed python version on the computer. Once defined, the workflow will beginn execution. Due to the various iteration steps involved in the aircraft design process, the execution may take some time to complete.
+During execution, log entries of the different modules can be seen in the Workflow Console in RCE. When finished, the results can be found in `workflowResults` in the installation directory of UNICADO, where they can be viewed and analyzed.
+
+## Configuration Settings
+The workflow in RCE can be executed to perform different tasks, depending on the user set `program_settings/design_case_settings/design_mode` value in the configuration file, which can be found in `workingDirectoryRCE/UNICADOworkflow/unicado_workflow_conf.xml`. The following table gives an overview over the different design modes currently possible to run:
+
+|Design Mode|Description|
+|---|---|
+|Mode 0: Standard design with no check in subprograms|@todo: add a description here. Please note, that an aircraft exchange file with a fully calculated aircraft as well as additional engine data and geometry data depending on the settings in the modules must be defined inside the `projects` folder in the installation directory of UNICADO.|
+|Mode 1: Clean sheet design|Based on requirements and design specifications, an aircraft is sized, converged and analyzed. The requirements and design specifications can be set in the aircraft exchange file, which is located in the `projects` folder in the installation directory of UNICADO. For more information how to adjust the parameters, see [Changing the Design Specifications](./tutorials/changing-design-specifications.md).|
+|Mode 2: Retrofit design|If an aircraft is already designed, running the UNICADO workflow in the retrofit mode calculates a new aircraft based on the initial, already existing geometry. @todo: Enhance the description here|
+|Mode 3: Mission study analysis without design sizing|If an aircraft is already designed, this mode can be used to analyze the aircraft regarding a study mission. Please note, that an aircraft exchange file with a fully calculated aircraft as well as additional engine data and geometry data must be defined inside the `projects` folder in the installation directory of UNICADO.|
+|Mode 4: Design sizing without mission study analysis|Based on requirements and design specifications, an aircraft is sized and converged, but it is not analyzed afterward. See [Changing the Design Specifications](./tutorials/changing-design-specifications.md) on how to change the design parameters.|
+
+
+To speed up the execution of the workflow, the configuration file also holds further parameters to adjust the iteration speed:
+
+|Parameter|Description|Path in Workflow Configuration File
+|---|---|---|
+|Convergence Criteria|Max. allowed relative change to the last iteration to achieve convergence|`program_settings/design_case_settings/iteration_settings/convergence_criteria`
+|Max. number of Iterations|Max. allowed number of iterations before the workflow is aborted|`program_settings/design_case_settings/iteration_settings/max_number_of_iterations_before_exit`
diff --git a/mkdocs.yml b/mkdocs.yml
new file mode 100644
index 0000000000000000000000000000000000000000..97654a4556cfbda77216b12b26744b5fb04da483
--- /dev/null
+++ b/mkdocs.yml
@@ -0,0 +1,463 @@
+# UNICADO - UNIversity Conceptual Aircraft Design and Optimization
+#
+# Copyright (C) 2025 UNICADO consortium
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <https://www.gnu.org/licenses/>.
+#
+# Description:
+# This file is part of UNICADO.
+
+# === General site meta data ===
+site_name: UNICADO                        # The name of the site, displayed in the header.
+repo_url: https://git.rwth-aachen.de/unicado/unicado-package  # Link to the Git repository, will appear in the header.
+repo_name: UNICADO Repository             # Name for the Git repository link in the header.
+site_url: "https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/" # The actual site url -> IMPORTANT: site-urls relies on this (site: will be replaced directly)!
+
+# === Site configuration ===
+markdown_extensions:
+  - attr_list                             # Allows adding HTML attributes to Markdown elements (like classes).
+  - admonition                            # Enables note/warning/admonition boxes with custom styling.
+  - md_in_html                            # Allows writing Markdown inside HTML tags for flexibility.
+  - footnotes                             # Allows footnotes
+  - pymdownx.tabbed:                      # Enables tabbed content blocks, allowing content to be organized in tabs.
+      alternate_style: true               # Uses an alternate style for tabbed blocks.
+  - pymdownx.emoji:                       # Adds support for emojis using the Material theme’s emoji set.
+      emoji_index: !!python/name:material.extensions.emoji.twemoji
+      emoji_generator: !!python/name:material.extensions.emoji.to_svg
+  - pymdownx.highlight:                   # Adds code syntax highlighting with custom line anchors.
+      anchor_linenums: true               # Makes line numbers clickable in code blocks.
+      line_spans: __span                  # Adds spans around lines for custom styling.
+      pygments_lang_class: true           # Adds language class to highlighted code for styling consistency.
+  - pymdownx.details                      # Enables collapsible details/summary blocks for content hiding/showing.
+  - pymdownx.superfences:                 # Adds advanced fence syntax for blocks like code or tabs.
+      custom_fences:
+        - name: mermaid
+          class: mermaid
+          format: !!python/name:pymdownx.superfences.fence_code_format
+  - pymdownx.inlinehilite                 # Allows inline code highlighting within text.
+  - pymdownx.snippets                     # Enables code snippets for reusing code blocks across pages.
+  - pymdownx.critic                       # Adds Critic Markup support for collaborative editing.
+  - pymdownx.caret                        # Adds support for superscript text with a caret.
+  - pymdownx.keys                         # Adds special styling for keyboard key indicators.
+  - pymdownx.mark                         # Adds highlighting functionality for text.
+  - pymdownx.tilde                        # Enables strikethrough formatting.
+  - pymdownx.arithmatex:
+      generic: true
+
+# Additional JavaScript files to include for rendering mathematical notation
+extra_javascript:
+  - assets/javascripts/katex.js           # Local KaTeX script.
+  - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js  # CDN KaTeX script (same as local but hosted externally).
+  - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/contrib/auto-render.min.js  # KaTeX auto-render script (converts Latex syntax in formatted math).
+  - assets/javascripts/mathjax.js         # Local MathJax script
+  - https://unpkg.com/mathjax@3/es5/tex-mml-chtml.js  # MathJax renderer can be used for more complex formulas
+
+# Additional CSS files to include for styling of website and mathematical notations (font, size etc.)
+extra_css:
+  - assets/css/unicado.css                # Custom CSS for styling the UNICADO site.
+  - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.css  # CSS for KaTeX math rendering.
+
+# === Plugins ===
+plugins:
+  - search
+  - site-urls
+  - bibtex:
+      bib_dir: "./docs/assets/bibtex/"
+  - mkdoxy:
+      projects:
+        propulsion_design:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "propulsion_design"
+            OUTPUT_DIR: "docs/api/propulsion"
+            BIBTEX_FILE: "docs/assets/bibtex/propulsion_design_literature.bib"
+          src-dirs: ../aircraft-design/propulsion_design/src/
+          full-doc: True
+        ecological_assessment:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "ecological_assessment"
+            OUTPUT_DIR: "docs/api/ecological_assessment"
+            BIBTEX_FILE: "docs/assets/bibtex/ecological_assessment_literature.bib"
+          src-dirs: ../aircraft-design/ecological_assessment/src/
+          full-doc: True
+        initial_sizing:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "initial_sizing"
+            OUTPUT_DIR: "docs/api/initial_sizing"
+            BIBTEX_FILE: "docs/assets/bibtex/initial_sizing_literature.bib"
+          src-dirs: ../aircraft-design/initial_sizing/src/
+          full-doc: true
+        create_mission_xml:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "create_mission_xml"
+            OUTPUT_DIR: "docs/api/create_mission_xml"
+            BIBTEX_FILE: "docs/assets/bibtex/create_mission_xml_literature.bib"
+          src-dirs: ../aircraft-design/create_mission_xml/src/
+          full-doc: true
+        fuselage_design:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "fuselage_design"
+            OUTPUT_DIR: "docs/api/fuselage_design"
+            BIBTEX_FILE: "docs/assets/bibtex/fuselage_design_literature.bib"
+          src-dirs: ../aircraft-design/fuselage_design/src/
+          full-doc: true
+        wing_design:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "wing_design"
+            OUTPUT_DIR: "docs/api/wing_design"
+            BIBTEX_FILE: "docs/assets/bibtex/wing_design_literature.bib"
+          src-dirs: ../aircraft-design/wing_design/src/
+          full-doc: True
+        empennage_design:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "empennage_design"
+            OUTPUT_DIR: "docs/api/empennage_design"
+          src-dirs: ../aircraft-design/empennage_design/src/
+          full-doc: true
+        tank_design:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "tank_design"
+            OUTPUT_DIR: "docs/api/tank_design"
+          src-dirs: ../aircraft-design/tank_design/src/
+          full-doc: true
+        landing_gear_design:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "landing_gear_design"
+            OUTPUT_DIR: "docs/api/landing_gear_design"
+          src-dirs: ../aircraft-design/landing_gear_design/src/
+          full-doc: true
+        systems_design:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "systems_design"
+            OUTPUT_DIR: "docs/api/systems_design"
+          src-dirs: ../aircraft-design/systems_design/src/
+          full-doc: true
+        aerodynamic_analysis:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "aerodynamic_analysis"
+            OUTPUT_DIR: "docs/api/aerodynamic_analysis"
+          src-dirs: ../aircraft-design/aerodynamic_analysis/src/
+          full-doc: true
+        aircraftGeometry2:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "aircraftGeometry2"
+            OUTPUT_DIR: "docs/api/aircraftGeometry2"
+          src-dirs: ../aircraft-design/libs/aircraftGeometry2/src/
+          full-doc: true
+        engine:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "engine"
+            OUTPUT_DIR: "docs/api/engine"
+          src-dirs: ../aircraft-design/libs/engine/src/
+          full-doc: true
+        mission_analysis:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "mission_analysis"
+            OUTPUT_DIR: "docs/api/mission_analysis"
+            BIBTEX_FILE: "docs/assets/bibtex/mission_analysis_literature.bib"
+          src-dirs: ../aircraft-design/mission_analysis/src/
+          full-doc: true
+        weight_and_balance_analysis:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "weight_and_balance_analysis"
+            OUTPUT_DIR: "docs/api/weight_and_balance_analysis"
+          src-dirs: ../aircraft-design/weight_and_balance_analysis/src/
+          full-doc: true
+        performance_assesment:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "performance_assesment"
+            OUTPUT_DIR: "docs/api/performance_assesment"
+          src-dirs: ../aircraft-design/performance_assesment/src/
+          full-doc: true
+        cost_estimation:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "cost_estimation"
+            OUTPUT_DIR: "docs/api/cost_estimation"
+          src-dirs: ../aircraft-design/cost_estimation/src/
+          full-doc: true
+        aircraft_geometry2:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "aircraft_geometry2"
+            OUTPUT_DIR: "docs/api/aircraft_geometry2"
+          src-dirs: ../aircraft-design/libs/aircraftGeometry2/src/
+          full-doc: true
+        engine:
+          doxyfile: Doxyfile
+          variables:
+            PROJECT_NAME: "engine"
+            OUTPUT_DIR: "docs/api/engine"
+          src-dirs: ../aircraft-design/libs/engine/src/
+          full-doc: true
+  - glightbox                             # Plugin for lightbox-style image and content viewing.
+
+# === Theme configuration ===
+theme:
+  name: material                          # Specifies the theme name (alternatives: material, mkdocs, readthedocs).
+  favicon: assets/favicon.png             # Path to the favicon image displayed in the browser tab (same as logo).
+  logo: assets/images/logos/unicado-icon.png  # Path to the UNICADO logo displayed in the header.
+  custom_dir: overrides                      # Directory for custom files (like footer).
+  # Theme colors configuration
+  palette:
+   - scheme: slate
+     primary: green
+     accent: red
+
+  # Feature configurations for navigation and ToC behavior
+  features:
+    - navigation.instant
+    - navigation.top
+    - navigation.path
+    - navigation.tabs
+    - navigation.tabs.sticky
+    - navigation.indexes
+    - toc.follow
+
+  # Additional links (social) to display in the header
+  extra:
+    social:
+      - icon: fontawesome/brands/github   # Icon for the GitHub link (uses FontAwesome icon set).
+        link: https://git.rwth-aachen.de/unicado/unicado-package  # URL for the Git repository.
+        name: "Unicado Repository"        # Name displayed when hovering over the repository icon.
+
+# === Navigation Menu ===
+
+nav:                                      # Customizes the main navigation structure of the site.
+  - Home: index.md                     # Main page of the site.
+  - Download:                             # Top-level navigation item for "Download".
+    - Getting Started: download/getting-started.md  # Link to the getting started page.
+    - Requirements: download/requirements.md  # Link to the installation requirements page.
+    - Cleared for Take-Off: download/takeoff.md  # Link to the takeoff/getting started page.
+    - Release Notes: download/release-notes.md
+  - Tutorials:
+    - Standalone Workflow: tutorials/standalone.md  # Link to the standalone tutorial page.
+    - Separate Tool Execution: tutorials/seperate-tool-execution.md  # Link to the separate tool execution tutorial page.
+    - Changing Design Specifications: tutorials/changing-design-specifications.md
+  - Documentation:                        # Top-level item for documentation.
+    - Overview: documentation/overview.md   # Overview of modules.
+    - Aircraft Design:
+      - Sizing:
+          - documentation/sizing/index.md # Link to aircraft sizing documentation.
+          - Initial Sizing:
+            - Introduction: documentation/sizing/initial_sizing/index.md
+            - Getting Started: documentation/sizing/initial_sizing/getting-started.md
+            - Methods: documentation/sizing/initial_sizing/initialSizing.md
+            - Changelog: documentation/sizing/initial_sizing/changelog.md
+            - API Reference:
+              - initial_sizing/classes.md
+              - initial_sizing/namespaces.md
+              - initial_sizing/files.md
+              - initial_sizing/functions.md
+          - Create Mission XML:
+            - Introduction: documentation/sizing/create_mission_xml/index.md
+            - Getting Started: documentation/sizing/create_mission_xml/getting_started.md
+            - Mission Steps: documentation/sizing/create_mission_xml/mission_steps.md
+          - Fuselage Design:
+            - Introduction: documentation/sizing/fuselage_design/index.md
+            - Getting Started: documentation/sizing/fuselage_design/getting_started.md
+            - Design Method: documentation/sizing/fuselage_design/design_method.md
+            - Run your First Design: documentation/sizing/fuselage_design/run_your_first_design.md
+            - Software Architecture: documentation/sizing/fuselage_design/software_architecture.md
+          # - API Reference: # TODO define for Python
+          - Wing Design:
+            - Introduction: documentation/sizing/wing_design/index.md
+            - Getting Started: documentation/sizing/wing_design/getting-started.md
+            - Design Method: documentation/sizing/wing_design/design-methods.md
+            - Basic Concepts: documentation/sizing/wing_design/basic-concepts.md
+            - Run your First Design: documentation/sizing/wing_design/run-your-first-wing-design.md
+            - API Reference:
+              - wing_design/classes.md
+              - wing_design/namespaces.md
+              - wing_design/files.md
+              - wing_design/functions.md
+          - Empennage Design:
+            - Introduction: documentation/sizing/empennage_design/index.md
+            - Getting Started: documentation/sizing/empennage_design/getting-started.md
+            - Design Method: documentation/sizing/empennage_design/design-methods.md
+            - Basic Concepts: documentation/sizing/empennage_design/basic-concepts.md
+            - Run your First Design: documentation/sizing/empennage_design/run-your-first-empennage-design.md
+            - API Reference:
+              - empennage_design/classes.md
+              - empennage_design/namespaces.md
+              - empennage_design/files.md
+              - empennage_design/functions.md
+          - Tank Design:
+            - Introduction: documentation/sizing/tank_design/index.md
+            - Getting Started: documentation/sizing/tank_design/getting_started.md
+            - Design Method: documentation/sizing/tank_design/tank_design_method.md
+            - Run your First Design: documentation/sizing/tank_design/run_your_first_tank_design.md
+            - Software Architecture: documentation/sizing/tank_design/software_architecture.md
+            # - API Reference: # TODO define for Python
+          - Propulsion Design:
+            - Introduction: documentation/sizing/propulsion_design/index.md
+            - Overview: documentation/sizing/propulsion_design/overview.md
+            - Getting Started: documentation/sizing/propulsion_design/getting-started.md
+            - Engineering Principles: documentation/sizing/propulsion_design/engineering_principles.md
+            - Software Architecture: documentation/sizing/propulsion_design/software_architecture.md
+            - Changelog: documentation/sizing/propulsion_design/changelog.md
+            - Additional Information: documentation/sizing/propulsion_design/additional.md
+            - API Reference:
+              - propulsion_design/classes.md
+              - propulsion_design/namespaces.md
+              - propulsion_design/files.md
+              - propulsion_design/functions.md
+          - Landing Gear Design:
+            - Introduction: documentation/sizing/landing_gear_design/index.md
+            - Getting Started: documentation/sizing/landing_gear_design/getting_started.md
+            - Design Method: documentation/sizing/landing_gear_design/design_method.md
+            - Run your First Design: documentation/sizing/landing_gear_design/run_your_first_design.md
+            - Software Architecture: documentation/sizing/landing_gear_design/software_architecture.md
+            # - API Reference: # TODO define for Python
+          - Systems Design:
+            - Introduction: documentation/sizing/systems_design/index.md
+            - Getting Started: documentation/sizing/systems_design/getting-started.md
+            - Implemented Models: documentation/sizing/systems_design/systems.md
+            - Software Architecture: documentation/sizing/systems_design/software_architecture.md
+            - API Reference:
+              - systems_design/classes.md
+              - systems_design/namespaces.md
+              - systems_design/files.md
+              - systems_design/functions.md
+      - Analysis:
+          - documentation/analysis/index.md # Link to analysis module page.
+          - Mission Analysis:
+            - Introduction: documentation/analysis/mission_analysis/index.md
+            - Getting Started: documentation/analysis/mission_analysis/getting_started.md
+            - Mission Methods: documentation/analysis/mission_analysis/methods.md
+            - Mission Steps: documentation/analysis/mission_analysis/mission_steps.md
+            - API Reference:
+              - mission_analysis/classes.md
+              - mission_analysis/namespaces.md
+              - mission_analysis/files.md
+              - mission_analysis/functions.md
+          - Weight and Balance Analysis:
+            - Introduction: documentation/analysis/weight_and_balance_analysis/index.md
+            - Basic Concepts: documentation/analysis/weight_and_balance_analysis/basic-concepts.md
+            - Usage: documentation/analysis/weight_and_balance_analysis/usage.md
+            # - API Reference: # TODO define for Python
+          - Performance Assessment:
+            - Introduction: documentation/analysis/performance_assessment/index.md
+            - Getting Started: documentation/analysis/performance_assessment/getting_started.md
+            - Capabilities:
+              - Payload-Range Diagram: documentation/analysis/performance_assessment/payload_range_diagram.md
+              - Takeoff Performance: documentation/analysis/performance_assessment/takeoff_performance.md
+              - Landing Performance: documentation/analysis/performance_assessment/landing_performance.md
+              - Flight Envelope: documentation/analysis/performance_assessment/flight_envelope.md
+              - Ceiling Performance: documentation/analysis/performance_assessment/ceiling_performance.md
+          - Cost Estimation:
+            - Introduction: documentation/analysis/cost_estimation/index.md
+            - Getting Started: documentation/analysis/cost_estimation/getting_started.md
+            - Design Method: documentation/analysis/cost_estimation/operating_cost_method.md
+            - Run your First Estimation: documentation/analysis/cost_estimation/run_your_first_cost_estimation.md
+            - Software Architecture: documentation/analysis/cost_estimation/software_architecture.md
+            # - API Reference: # TODO define for Python
+          - Ecological Assessment:
+            - Introduction: documentation/analysis/ecological_assessment/index.md
+            - Basic Concepts: documentation/analysis/ecological_assessment/basic-concepts.md
+            - Module Usage: documentation/analysis/ecological_assessment/usage.md
+            - Software Architecture: documentation/analysis/ecological_assessment/software-architecture.md
+            - Changelog: documentation/analysis/ecological_assessment/changelog.md
+            - API Reference:
+              - ecological_assessment/classes.md
+              - ecological_assessment/namespaces.md
+              - ecological_assessment/files.md
+              - ecological_assessment/functions.md
+          - Aerodynamic Analysis:
+            - Introduction: documentation/analysis/aerodynamic_analysis/getting_started.md
+            - Aerodynamic Principles: documentation/analysis/aerodynamic_analysis/aerodynamic_principles.md
+            - Software Architecture: documentation/analysis/aerodynamic_analysis/software_architecture.md
+          - Constraint Analysis:
+            - Introduction: documentation/analysis/constraint_analysis/index.md
+            - Principles: documentation/analysis/constraint_analysis/principles.md
+    - Libraries:
+        - documentation/libraries/index.md # Link to libraries overview.
+        - AircraftGeometry2:
+          - Introduction: documentation/libraries/aircraftGeometry2/index.md
+          - Getting Started: documentation/libraries/aircraftGeometry2/getting-started.md
+          - Tutorial:
+            - Overview: documentation/libraries/aircraftGeometry2/tutorial.md
+            - Geometry: documentation/libraries/aircraftGeometry2/tutorial-geometry.md
+            - Factory: documentation/libraries/aircraftGeometry2/tutorial-factory.md
+            - Convert: documentation/libraries/aircraftGeometry2/tutorial-convert.md
+          - API Reference:
+            - aircraftGeometry2/classes.md
+            - aircraftGeometry2/namespaces.md
+            - aircraftGeometry2/files.md
+            - aircraftGeometry2/functions.md
+        - engine:
+          - Overview:
+            - documentation/libraries/engine/index.md
+          - API Reference:
+            - engine/classes.md
+            - engine/namespaces.md
+            - engine/files.md
+            - engine/functions.md
+    - Utilities: documentation/additional-software.md
+    - Workflow: 'workflow.md' # Link to the workflow page.
+  - Get Involved:
+    - Developer Guide: get-involved/developer-installation.md # Top-level item for contributions and development.
+    - Build Instructions:
+      - Prerequisites:
+        - Windows: get-involved/build-instructions/build-environment/windows.md
+        - Linux: get-involved/build-instructions/build-environment/linux.md
+        - MacOS: get-involved/build-instructions/build-environment/macos.md
+        - MSYS2/MinGW (deprecated): get-involved/build-instructions/build-environment/mingw.md
+      - Get Source Code: get-involved/build-instructions/get-source-code.md
+      - Build:
+        - General: get-involved/build-instructions/build/general.md
+        - C++: get-involved/build-instructions/build/cpp.md
+        - Python: get-involved/build-instructions/build/python.md
+        - CMake Presets: get-involved/build-instructions/build/cmake-presets.md
+        - Include Libraries: get-involved/build-instructions/build/including-libraries.md
+    - Module Development:
+      - Module Structure in c++: get-involved/modularization/cpp-modularization.md
+      - Module Structure in Python: get-involved/modularization/python-modularization.md
+    - Style Guide:
+      - C++: get-involved/style/cpp.md
+      - Python: get-involved/style/python.md
+    - Testing Guidelines: get-involved/testing.md
+    - How to Contribute:                  # Subsection for contribution guidelines.
+          - Basics: 'get-involved/how-to-contribute/contribute.md'
+          - Code of Conduct: 'get-involved/how-to-contribute/code-of-conduct.md'
+          - Merge Requests: 'get-involved/how-to-contribute/merge-request.md'
+          - Review Merge Requests: 'get-involved/how-to-contribute/review-merge-request.md'
+          - Contributor Tutorial:
+            - Git Installation & Configuration: get-involved/how-to-contribute/contributor-tutorial/git-installation&configuration.md
+            - "Video: Git Installation & Configuration": get-involved/how-to-contribute/contributor-tutorial/videos/Git_Installation&Configuration.mp4
+            - "Video: Merge Request Workflow": get-involved/how-to-contribute/contributor-tutorial/videos/Merge_Request_Workflow.mp4
+            - "Video: SSH Configuration" : get-involved/how-to-contribute/contributor-tutorial/videos/SSH_Configuration.mp4
+    - IDE Setup: 'get-involved/ide-setup.md'
+    - Release Package: 'get-involved/release-package.md'
+
+  - About:                                # Top-level item for general site information.
+      - About us: 'about.md'              # Link to the about page.
+      - License: 'license.md'             # Link to license information.
+      - Contact: 'contact.md'             # Link to contact page.
+      - Partners: 'partners.md'           # Link to partners page.
diff --git a/overrides/main.html b/overrides/main.html
new file mode 100644
index 0000000000000000000000000000000000000000..a34a6e36e95ad551ca26f9d2dcc18ffaf7047ad7
--- /dev/null
+++ b/overrides/main.html
@@ -0,0 +1,15 @@
+{% extends "base.html" %}
+
+{% block footer %}
+<div class="custom-footer">
+    <div class="footer-content">
+        <p>&copy; 2025 UNICADO. All rights reserved.</p>
+        <a href="{{ base_url }}/imprint" class="footer-link">Imprint</a>
+        <a href="{{ base_url }}/private-policy" class="footer-link">Private Policy</a>
+    </div>
+    <div class="footer-image-container">
+        <img src="{{ base_url }}/assets/images/logos/bmwk.png" alt="Footer Logo" class="footer-image">
+    </div>
+</div>
+
+{% endblock %}
\ No newline at end of file