diff --git a/docs/assets/css/unicado.css b/docs/assets/css/unicado.css
index cc05708456e672dab6032ef3b25bdaf32b3676cc..86edb4c7529febfedd879e24a42890fca4bdea8e 100644
--- a/docs/assets/css/unicado.css
+++ b/docs/assets/css/unicado.css
@@ -47,6 +47,20 @@
   font-size: 1.1em;
 }
 
+/* Make all LaTeX-style math equations white */
+:root {
+  --math-color: #ffffff; /* Set the default color for equations */
+}
+
+/* MathJax equations */
+.MathJax, mjx-container, math {
+  color: var(--math-color) !important;
+}
+
+/* KaTeX equations */
+.katex, .katex-display {
+  color: var(--math-color) !important;
+}
 
 /* Download button styling */
 .download-button-container {
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_01_code-modularity.png b/docs/assets/images/developer/style/modularization/python-modularization_01_code-modularity.png
new file mode 100644
index 0000000000000000000000000000000000000000..0a29d3aadf7401019fb92deade1dba544b033312
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_01_code-modularity.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:03b4c572759cf886f6d2b5d44c51346bf42da6daa4aef402917c75b5435a574d
+size 155693
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_02_example-folder.png b/docs/assets/images/developer/style/modularization/python-modularization_02_example-folder.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e63fdf8f459e352db2d47d0e540ac594d7b7952
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_02_example-folder.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7fba9e2393c5bb763d410e7352de52474be41d9b796bfdd005311ee0f3c7e5c8
+size 195802
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_03_example-folder-changes-module-manager.png b/docs/assets/images/developer/style/modularization/python-modularization_03_example-folder-changes-module-manager.png
new file mode 100644
index 0000000000000000000000000000000000000000..97d4239bd5ec6e047ae9a3efadd1e89f508f01a3
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_03_example-folder-changes-module-manager.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8144d9b8320a8a374321cccf0e49764145c91fb3928beec742764a6cb7f9b4af
+size 196101
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_04_main-01.png b/docs/assets/images/developer/style/modularization/python-modularization_04_main-01.png
new file mode 100644
index 0000000000000000000000000000000000000000..1917294ddcb1e07079a489c5e754a42bfbec1a75
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_04_main-01.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:796488f22857b95660e1a0bffb47a219f67a62009aa54d37bca46e1546efafa3
+size 331123
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_05_main-02.png b/docs/assets/images/developer/style/modularization/python-modularization_05_main-02.png
new file mode 100644
index 0000000000000000000000000000000000000000..f6cf1c0728bf4efcf3b247d6013e2ba78b6c2268
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_05_main-02.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b7c64a0120f6d16d2cf93143f51eb1b882f6f87da4883da62c5d46d2387da3ee
+size 290488
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_06_datapreprocessing-01.png b/docs/assets/images/developer/style/modularization/python-modularization_06_datapreprocessing-01.png
new file mode 100644
index 0000000000000000000000000000000000000000..9abb406eb96dfcd7eae9613069d14322ca86869f
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_06_datapreprocessing-01.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1c7ec64acb94c52dcab1b915762df5589ab4f4ac8a43ffedcf813fc521868983
+size 313579
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_07_datapreprocessing-02.png b/docs/assets/images/developer/style/modularization/python-modularization_07_datapreprocessing-02.png
new file mode 100644
index 0000000000000000000000000000000000000000..886f23a986a32cfb08f1aab56bf4b5468943db18
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_07_datapreprocessing-02.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e4a7abe707b8edf50e570a47b7c96bf5ed6bfcb0dc653515c78f2b1b6b783bce
+size 363406
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_08_datapostprocessing-01.png b/docs/assets/images/developer/style/modularization/python-modularization_08_datapostprocessing-01.png
new file mode 100644
index 0000000000000000000000000000000000000000..0a1b8ae31a9af7aed1733c4bf808cb10a7113ef6
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_08_datapostprocessing-01.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4b40d19b9cf7fc6f5b3312b34c61233fd7ce9f47363af0d91386f4f6eac3e481
+size 297481
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_09_datapostprocessing-02.png b/docs/assets/images/developer/style/modularization/python-modularization_09_datapostprocessing-02.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e697a327c09021515f649d3f394d3bb22abebba
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_09_datapostprocessing-02.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3d927e8d9d6f6c5ba4ff9fafd6252d3cf154d74183493340d30ff56865ee230b
+size 309195
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_10_example-folder-changes-user.png b/docs/assets/images/developer/style/modularization/python-modularization_10_example-folder-changes-user.png
new file mode 100644
index 0000000000000000000000000000000000000000..3bd32da553a790f1f0f0d2b517acc3ca6148dbbe
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_10_example-folder-changes-user.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:feac17192622ff3fb8c215979c58943f6810b6a8a64feda4f2891fcd73cf12e8
+size 195890
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_11_unicado-python-library.png b/docs/assets/images/developer/style/modularization/python-modularization_11_unicado-python-library.png
new file mode 100644
index 0000000000000000000000000000000000000000..79eb03fffccd875ca3f06ec9c19311a0e53d6cf6
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_11_unicado-python-library.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d49e7060d87384eafd9653981286d320579e6f2be64053b4e65fec84b9d03751
+size 139372
diff --git a/docs/assets/images/developer/style/modularization/python-modularization_12_toml_file.png b/docs/assets/images/developer/style/modularization/python-modularization_12_toml_file.png
new file mode 100644
index 0000000000000000000000000000000000000000..f807921f50a3b0c72b1a79b4c085a46f30287875
--- /dev/null
+++ b/docs/assets/images/developer/style/modularization/python-modularization_12_toml_file.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2fb99f03e5d110fe7abf2cbd116830de6d86b9a78ca40336c4812703224760ff
+size 233783
diff --git a/docs/documentation/analysis/aerodynamic_analysis/aerodynamic_principles.md b/docs/documentation/analysis/aerodynamic_analysis/aerodynamic_principles.md
new file mode 100644
index 0000000000000000000000000000000000000000..277daf16fcef79bf129c9e249c80b93c3d26d8eb
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/aerodynamic_principles.md
@@ -0,0 +1,123 @@
+
+# Aerodynamic principles {#aerodynamicprinciples}
+
+All methods for calculationg the properties of an aircraft face a trade off between accuracy on one hand and complexity and computing effort on the other hand.
+
+A typical aircraft in UNICADO takes roughly 20 to 30 iterations to converge in the design loop.
+For each iteration, the full aerodynamic properties have to be calculated.
+To enable extensive design space exploration and optimization studies in a reasonable time frame, the whole design process in UNICADO should takes less then an hour.
+The aerodynamic analysis therefore should be finished in under a minute.
+As a consequence of this requirement, the preliminary aircraft design in general, including UNICADO, is limited to lower fidelity methods, ranging from semi-empirical formulas to analytical approaches.
+
+**aerodynamic_analysis** contains a set off different methods and will be expanded in future.
+
+
+## Methods
+
+Currently there are **methods** with differing levels of fidelity implemented. These methods are listed in the table below.
+
+| Aerodynamic value                               | Methods                       | Fidelity level                    | Application                               |
+|-------------------------------------------------|-------------------------------|-----------------------------------|-------------------------------------------|
+|Lift, induced drag and pitching moment           | Lifting Line                  | analytical                        | Lifting surfaces in general               |
+|Lift, induced drag and pitching moment with corrections for TAW   | Lifting Line | analytical/semi-empirical         | Wing and stabilizer for TAW               |
+|Viscous drag                                     | According to Raymer           | semi-empirical                    | Lifting surfaces, fuselages and nacelles  |
+|Wave drag                                        | According to Mason            | semi-empirical                    | Lifting surfaces                          |
+|High lift adaptions                              | According to Raymer and Howe  | semi-empirical                    | TAW configuration                         |
+|Trim function                                    | Linear interpolation          |             -                     | Trimming via all movable horizontal stabilizer |
+
+The aim is to extend the method set with new calculation methods of variing fidelites for conventional TAW and and conventional configurations like the BWB.
+
+## Strategies
+
+The methods shown above have certain limitations:
+- No method can provide all aerodynamic values needed
+- The methods are only valid for certain flight conditions and aircraft configurations
+- Most methods need other aerodynamic values as input for their calculation
+  
+Because of these shortcommings, the engineer has to select a suitable set of methods for their aircraft and bundle them together into a **strategy**.
+Due to the complexitiy in the fields of aerodynamics, the individual methods cannot be pluged in and out of a strategy, rather the strategies are tailor made for a given case.
+For illustration, the default strategy for calculation of the polars for the TAW is explained in the next chapter.
+
+
+## Example strategy for tube and wing
+
+### Lifting Line
+Lifting Line is a method to calculate the lift distribution and the induced drag.
+For this purpose, the potential equations are used, i.e. the flow is simplified and assumed to be frictionless, rotationless and incompressible.
+The wing is reduced to its skeletal lines.
+This simplified geometry is divided into trapezoidal elementary wings, which are covered with free and bound vortices.
+A system of equations is constructed from the vortex system and the boundary conditions, the solution of which is used to calculate the lift distribution.
+For a more in-depth discussion, the  dissertation by Horstmann [Horstmann 1987: Ein Mehrfach-Traglinienverfahren und seine Verwendung für Entwurf und Nachrechnung nichtplanarer Flügelanordnungen](references/Horstmann_1987_Mehrfachtraglinienverfahren.pdf) is recommended or the [user-documentation of Lifting Line](references/LIFTING_LINE_V3.2_UserDoc.pdf).
+
+The following picture shows the lifting surfaces of a typical TAW aircraft discretized into elementary wings according to the lifting line method:
+![A wing and horizontal tailplane broken down into elementary wings](figures/ll_geom.png)
+
+The Prandtl-Glauert transformation is applied to the polars from Lifting Line.
+Lift coefficients, induced drag and pitch moment coefficients are thus transformed to include the compressibility effects.
+The lift distribution calculated using lifting line agrees well with CFD results for both the conventional wing and the blended wing body.
+Since the concept of the induced drag is based on the lifting line theory, it cannot be validated by CFD methods, which are based on the Navier-Stokes-Equations.
+Several semi-empirical corrections are integrated into the lifting line methodology in UNICADO.
+Based on Roskam, induced drag is calculated for the fuselage and nacelles.
+The pitching moment is corrected for fuselage and nacelle influences based on Torenbeek (Torenbeek, E. - Advanced Aircraft Design, 2013, ISBN: 9781119969303).
+
+### Viscous drag according to Raymer
+The frictional drag/viscous drag/zero lift drag is calculated based on the method of Raymer (Raymer 1992: Aircraft Design: A Conceptual Approach, page 280 ff).
+Contrary to what the name suggests, the viscous drag also regards influences of the boundary layer, which makes validation by CFD calculations difficult.
+
+For this purpose, the aircraft is broken down into its individual components, whose drag is calculated from a form factor, interference factor, friction coefficient and the wetted area:
+
+$
+    C_{D0} = \frac{\sum(C_{fc}FF_{c}Q_{c}S_{wet,c})}{S_{ref}}+C_{Dmisc}+C_{DLP}
+$
+
+The form factors are calculated using semi-empirical formulas, the interference factors are derived from the recommendations in the text (page 284 f).
+The friction coefficient is derived from the flow around a flat plate and depends on the Reynolds number and the surface roughness.
+
+In addition to the drags for the individual components, a 'miscellaneous drag' is calculated.
+This includes resistance caused by gas entering and leaving the hull through leaks and resistance caused by antennas, protrusions and the like.
+In total, the viscous drag depends only on the geometry, Reynolds number and Mach number and is thus constant over an entire aircraft polar.
+A calibration method is built in which the viscous drag is calibrated using an exponential function based on the lift coefficient.
+Thus, the viscous drag slightly increases with increasing lift.
+
+### Wave drag according to Mason
+The wave drag is the pressure drag generated by the occurrence of a shock wave.
+A compression shock reduces the static pressure of the fluid, which results in the surface pressure at the trailing edge of the profile being weaker than at the leading edge.
+The wave drag therefore only occurs when a compression shock occurs.
+From flight data it could be deduced that with increasing Mach number the wave drag is only between 0 and 10 drag counts and increases slightly linearly up to a Mach divergence number, above which the wave drag increases exponentially.
+This behavior of the wave drag is approximated by a fourth degree polynomial.
+
+The following picture shows the drag creep in the flight test data of a DC-9-30, according to Gur, Full-COnfiguration Drag Estimation, 2010:
+![The rise of the wave drag for a typical aircraft](figures/Drag_creep.png)
+
+To calculate the wave drag, the critical Mach number is required, which is calculated according to the Korn-Mason equation (Mason 1990: Analytic Models for Technology Integration in Arcraft Design).
+To calculate the critical Mach number, the wing sweep, the profile thickness ratio, the local lift coefficient and the "profile technology factor" are required.
+Two values ​​are given for the profile technology factor, 0.87 for conventional and 0.95 for transonic profiles.
+Since the local lift coefficient is included in the formula for the critical Mach number, the wing is divided into individual strips for the drag calculation.
+
+For each strip, the local critical Mach number and the local wave drag are calculated and then summed up.
+In Gur 2010: Full-Configuration Drag Estimation a simple, area-weighted summation over all wing strips is proposed.
+The wave drag is then calibrated like the viscous drag using an exponential function based on the lift coefficient.
+
+### High lift polars
+Analysis of the aircraft in high lift configurations, with extended leading and trailing edge high lift devices, poses difficulties, even in numerical or experimental setups.
+In the interest of saving computing time and ressources in the aerodynamic analysis, the only valid option is to rely on semi-empirical calculations.
+
+The high lift polars are calculated for the following cases:
+
+- Take Off
+
+- Take Off landing gear retracted
+
+- Climb
+
+- Approach
+
+- Approach with landing gear
+
+- Landing
+
+For this, the number, type, postions and areas of all leading and trailing edge devices are read in.
+The geometric parameters of the high lift devices are used to calculate a maximum lift coefficient and shifts of the drag and moment coefficients, based on a set of semi-empirical formulas.
+
+The following picture shows the shifts in lift and drag in the high lift polars for a typical short medium range passernger aircraft according to the method:
+![An example of a clean polar and transformed high lift polars at Mach 0.2](figures/high_lift_shift.png)
\ No newline at end of file
diff --git a/docs/documentation/analysis/aerodynamic_analysis/figures/Drag_creep.png b/docs/documentation/analysis/aerodynamic_analysis/figures/Drag_creep.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e6bbd7991b75c4078cd19fd847677409b9925b8
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/figures/Drag_creep.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9a03315158b9b8f6d25fc2cd18287a39d8264860a2d7bb334ca5f69bd63c3e14
+size 47521
diff --git a/docs/documentation/analysis/aerodynamic_analysis/figures/high_lift_shift.png b/docs/documentation/analysis/aerodynamic_analysis/figures/high_lift_shift.png
new file mode 100644
index 0000000000000000000000000000000000000000..5f84dc219859ee9ddc4b852516828914128cb4ac
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/figures/high_lift_shift.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:897191cc2a021f6bf1b484d760fd7e5bcefbf8478d107d516ed4c74b82b699c7
+size 264228
diff --git a/docs/documentation/analysis/aerodynamic_analysis/figures/ll_geom.png b/docs/documentation/analysis/aerodynamic_analysis/figures/ll_geom.png
new file mode 100644
index 0000000000000000000000000000000000000000..b283bdfdc968cfedd71b2f1bbee6d2fc343148ff
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/figures/ll_geom.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1b4564b37808587a4a9d3980c6d228895a4b279d221c987403b2a17aae581dad
+size 41658
diff --git a/docs/documentation/analysis/aerodynamic_analysis/getting_started.md b/docs/documentation/analysis/aerodynamic_analysis/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..6d1aa432b488960a33a22317c2fb221e9f036983
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/getting_started.md
@@ -0,0 +1,25 @@
+# Getting started {#getting-started}
+This guide will show you the basic usage of **aerodynamic_analysis**. Following steps are necessary (if you are new to UNICADO check out the [settings and outputs](#settingsandoutputs) first!)
+
+## Step-by-step
+
+It is assumed that you have the `UNICADO Package` installed including the executables. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/build/cpp/)).
+
+1. Take an `aircraft_exchange_file` with a fully designed aircraft (fuselage, wing, empennage and nacelles already sized)
+2. Fill out the configuration file - change at least:
+    - in `control_settings` 
+        - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings
+        - `console_output` at least to `mode_1`
+        - `plot_output` to false (or define `inkscape_path` and `gnuplot_path`)
+    - in `program_settings`
+        - `Trim` enable/disable and tune the trim calculations
+        - `FlightConditions`define your flight conditions with altitude and mach number
+        - The different methods, like `ViscDragRaymer` which are listed can be fine tuned, and customized
+        - Enable/disable and set individual calibration factors in the different methods and for the overall polars in `DragCorrection`
+3. Open terminal and run **aerodynamic_analysis**
+
+
+Following will happen:
+- you see output in the console window
+- csv- files containing the raw lift, drag and moment data for all calculations are created in the `aerodynamic_analysis` folder
+- results are saved via xml-file in the `/aircraft_exchange_file/aero_data` for later use in e.g. **mission_analysis**
diff --git a/docs/documentation/analysis/aerodynamic_analysis/index.md b/docs/documentation/analysis/aerodynamic_analysis/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..20c4f732880a4d78d95a187f22f8b456d58b9b70
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/index.md
@@ -0,0 +1,9 @@
+# Introduction {#mainpage}
+The tool aerodynamic_analysis is on of the core tools in UNICADO. The overall goal is to calculate the lift and drag for all flight phases ranging from take off to cruise and landing.
+The gool of the tool is to...
+- Enable aerodynamic analysis for conventional and unconventional aircraft configurations
+- calculate the lift to drag polars for all flight phases regarding the aircraft geometry and the altitude and flight speed
+
+
+The [getting started](getting_started.md) gives you a first insight in how to execute the tool and how it generally works. To understand how the aerodynamic analysis works in detail, the documentation is split into a [aerodynamic principles](aerodynamic_principles.md) and a [software architecture](software_architecture.md) section. 
+
diff --git a/docs/documentation/analysis/aerodynamic_analysis/references/Horstmann_1987_Mehrfachtraglinienverfahren.pdf b/docs/documentation/analysis/aerodynamic_analysis/references/Horstmann_1987_Mehrfachtraglinienverfahren.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..c40dfca217910563da5ed048a599b71538e932c7
Binary files /dev/null and b/docs/documentation/analysis/aerodynamic_analysis/references/Horstmann_1987_Mehrfachtraglinienverfahren.pdf differ
diff --git a/docs/documentation/analysis/aerodynamic_analysis/references/LIFTING_LINE_V3.2_UserDoc.pdf b/docs/documentation/analysis/aerodynamic_analysis/references/LIFTING_LINE_V3.2_UserDoc.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..68da3749c4b6921ff6fb877ceba3aa852697e4cf
Binary files /dev/null and b/docs/documentation/analysis/aerodynamic_analysis/references/LIFTING_LINE_V3.2_UserDoc.pdf differ
diff --git a/docs/documentation/analysis/aerodynamic_analysis/software_architecture.md b/docs/documentation/analysis/aerodynamic_analysis/software_architecture.md
new file mode 100644
index 0000000000000000000000000000000000000000..72fdf81cb3d91f99f9568f4ba5e0503aa9bf6851
--- /dev/null
+++ b/docs/documentation/analysis/aerodynamic_analysis/software_architecture.md
@@ -0,0 +1,13 @@
+# Software architecture {#softwarearchitecture}
+
+The software architecture is structured into various modules and packages, each handling specific tasks. Below is a description of the main components
+
+- strategies:
+  - **Strategies** define the procedure of calculating the polars by initializing the aircraft geometry, calling methods and copying and processing data.
+  - There are different strategies implemented, stored in the folders corresponding to the aircraft configuration (e.g., `taw`, `bwb`).
+  - Each Strategy has a corresponding `data.cpp` for reading and writing data into the `aircraft.xml` and a `config.cpp`file for reading from the `config.xml`.
+
+- methods:
+  - **Methods** are either derived from literature or rely on external calculation sofwares, data bases or surrogate models.
+  - Methods are structured in a general way, so that they can be accessed by all strategies ranging over different aircraft configurations.
+  - Methods are stored in the `methods` folder and need to be initialized, by **geometry input**, **flight conditions** and **input parameters** from the config file.
\ No newline at end of file
diff --git a/docs/documentation/analysis/cost_estimation/getting_started.md b/docs/documentation/analysis/cost_estimation/getting_started.md
index ff94edb83dc1c5aac7ce87e0d28da4ac32b1843a..7e1c20500c264e656b72a694e2c7e34eefa149d2 100644
--- a/docs/documentation/analysis/cost_estimation/getting_started.md
+++ b/docs/documentation/analysis/cost_estimation/getting_started.md
@@ -1,5 +1,6 @@
 # Getting started
 This section will guide you through the necessary steps to get the _cost\_estimation_ module up and running. It contains information on tool requirements and design parameters.
+
 - [Aircraft exchange file](#aircraft-exchange-file) - Get information on necessary parameters from the _acXML_.
 - [Module configuration file](#module-configuration-file) - Dive into cost estimation specific parameters.
 - [Additional requirements](#additional-requirements) - Is anything else necessary to get the module running?
@@ -9,6 +10,7 @@ This section will guide you through the necessary steps to get the _cost\_estima
     It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries.
 
 Generally, we use two files to set or configure modules in UNICADO:
+
 - The aircraft exchange file (or _acXML_) includes
     - data related inputs (e.g., aircraft configuration, transport task) and
     - data related outputs (e.g., annual direct operating costs).
@@ -22,6 +24,7 @@ In the following sections you will find more information on how to configure the
 Since the _cost\_estimation_ module is an assessment tool, it is assumed that a converged aircraft design and therefore all the necessary data are already available.
 
 The following information is needed from the _acXML_:
+
 1. Design specification
     - Configuration information: Configuration type
     - Transport task: Passenger definition, passenger class definition, and cargo definition
@@ -71,16 +74,13 @@ Program Settings
 |  |  |  |  |  | - Price per operating empty mass
 |  |  |  |  |  | - Rate insurance
 |  |  |  |  |  | - Rate interest
-|  |  |  |  |  | - Residual value factor
-|  |  |  |  | - Crew
-|  |  |  |  |  | - Salary variation
 |  |  |  |  | - Flight cycles
-|  |  |  |  |  | - Block time per flight
+|  |  |  |  |  | - Block time supplement per flight
 |  |  |  |  |  | - Daily night curfew time
 |  |  |  |  |  | - Potential annual operation time
-|  |  |  |  |  | - Annual lay days overhaul
-|  |  |  |  |  | - Annual lay days reserve
-|  |  |  |  |  | - Annual lay days maintenance
+|  |  |  |  |  | - Annual lay hours overhaul
+|  |  |  |  |  | - Annual lay hours reserve
+|  |  |  |  |  | - Annual lay hours maintenance
 |  |  |  |  | - Handling
 |  |  |  |  |  | - Fees handling
 |  |  |  |  | - Landing
diff --git a/docs/documentation/analysis/cost_estimation/index.md b/docs/documentation/analysis/cost_estimation/index.md
index 7446bf117fbe7a4860861c4e3a898b394788cb54..3a2b1a6b891f5e64d556f9d5238d637d2e7a6ec5 100644
--- a/docs/documentation/analysis/cost_estimation/index.md
+++ b/docs/documentation/analysis/cost_estimation/index.md
@@ -1,5 +1,5 @@
 # Introduction {#mainpage}
-Welcome to the _cost\_estimation_ module in UNICADO – where we take your aircraft operating costs from “hmm… probably a lot?” to laser-accurate precision! This tool is like a financial :crystal_ball for your aircraft, crunching numbers on fuel, maintenance, crew costs, and just about (almost) every other expense you can imagine. Think of it as your budgeting co-pilot, always ready to calculate so you can focus on the skies instead of spreadsheets. With _cost\_estimation_, you stay in control, keep the accountants happy, and land at your bottom line without any turbulence. So buckle up, and let’s start calculating!
+Welcome to the _cost\_estimation_ module in UNICADO – where we take your aircraft operating costs from “hmm… probably a lot?” to laser-accurate precision! This tool is like a financial :crystal_ball: for your aircraft, crunching numbers on fuel, maintenance, crew costs, and just about (almost) every other expense you can imagine. Think of it as your budgeting co-pilot, always ready to calculate so you can focus on the skies instead of spreadsheets. With _cost\_estimation_, you stay in control, keep the accountants happy, and land at your bottom line without any turbulence. So buckle up, and let’s start calculating!
 
 ## Summary of features
 Here’s a quick rundown of what the tool currently does, along with a sneak peek at what's planned:
@@ -15,10 +15,12 @@ Blended-wing-body |...              |...                      |under development
 ## A user's guide to cost calculation
 The _cost\_estimation_ tool is your key to accurately calculating the operating costs of an aircraft. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a cost analysis from the ground up.
 The following sections will walk you through the cost estimation process in UNICADO:
+
 - [Getting started](getting_started.md)
 - [Run your first cost estimation](run_your_first_cost_estimation.md)
 
 For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections:
+
 - A [method description](operating_cost_method.md) and
 - a [software architecture](software_architecture.md)
 section.
diff --git a/docs/documentation/analysis/cost_estimation/operating_cost_method.md b/docs/documentation/analysis/cost_estimation/operating_cost_method.md
index c3231270e1742732b946a42bfe62d21963336dde..9a8afa6f99cc846952f40779117ef9bba588eda7 100644
--- a/docs/documentation/analysis/cost_estimation/operating_cost_method.md
+++ b/docs/documentation/analysis/cost_estimation/operating_cost_method.md
@@ -1,88 +1,109 @@
 # Calculation method
 The total operating costs of an aircraft are split into direct operating costs (DOC) and indirect operating costs (IOC).
-$
+$$
   TOC = DOC + IOC
-$
+$$
 
 !!! note
-  Unless explicitly stated, all values are in SI units and all costs in EUR.
+    Unless explicitly stated, all values are in SI units and all costs in EUR.
 
-## Direct operating costs (calculate_direct_operating_costs function)
+## Direct operating costs
 The Direct Operating Costs (DOC) are directly influenced by the parameters and the aircraft's performance and are commonly used for aircraft evaluation. Therefore, a simplified method for DOC estimation, based on „From Aircraft Performance to Aircraft Assessment“ by J. Thorbeck <sup>[1]</sup>, is provided. The DOC are determined for one year and the entire depreciation period.
+
 Two elements are required for the simplified DOC model: The route independent (fixed) costs $C_1$ and route dependent (variable) costs $C_2$:
-$
+$$
   DOC = C_1 + C_2
-$
+$$
 
 
-### Route independent costs (calculate_route_independent_costs function)
+### Route independent costs
 Route-independent costs include all cost components apart from the operation of the aircraft.
 Hence, the route-independent costs are the sum of the capital costs and the crew costs:
-$
-  C_1 = C_{CAP} + C_{crew}
-$
+$$
+  C_1 = C_{\text{capital}} + C_{\text{crew}}
+$$
+
 Those are calculated both, for one year and for the depreciation period.
 
-#### Capital costs (calculate_capital_costs function)
+#### Capital costs
 The capital costs can be assumed to be a linear function of the operating empty mass if the influence of the aircraft market is considered negligible:
-$
-  C_{CAP} = P_{OE} \cdot  m_{OE} \cdot (a+f_I)
-$
+$$
+  C_{\text{capital}} = P_{\text{OE}} \cdot  m_{\text{OE}} \cdot (a + f_{\text{I}})
+$$
+
 In which
-- $P_{OE}$ - price per kg operating empty mass
-- $m_{OE}$ - operating empty mass
+
+- $P_{\text{OE}}$ - price per kg operating empty mass
+- $m_{\text{OE}}$ - operating empty mass
 - $a$ - annuity factor in percent
-- $f_I$ - insurance rate in percent
+- $f_{\text{I}}$ - insurance rate in percent
 
 The annuity formula, which is based on a modified mortgage equation, addresses both yearly depreciation and interest:
-$
-  a = f_{IR} \cdot \frac{1-f_{RV} \cdot \left(\frac{1}{1+f_{IR}}\right)^{t_{DEP}}}{1-\left(\frac{1}{1+f_{IR}}\right)^{t_{DEP}}}
-$
+$$
+  a = f_{\text{IR}} \cdot \frac{1 - f_{\text{RV}} \cdot \left( \frac{1}{1 + f_{\text{IR}}} \right)^{t_{\text{DEP}}}}{1 - \left( \frac{1}{1 + f_{\text{IR}}} \right)^{t_{\text{DEP}}}}
+$$
+
 In which
-- $f_{IR}$ - interest rate in percent
-- $f_{RV}$ - residual value factor in percent
-- $t_{DEP}$ - depreciation period in years
+
+- $f_{\text{IR}}$ - interest rate in percent
+- $f_{\text{RV}}$ - residual value factor in percent
+- $t_{\text{DEP}}$ - depreciation period in years
 
 The reason for the annuity method modification is to include the residual aircraft value at the end of the depreciation period into the capital costs, which is occasionally relevant. This assumes that an operator is purchasing an aircraft at a constant price per kilogram and spends the corresponding capital cost consistently per year throughout the depreciation period.
 
-#### Crew costs (calculate_crew_costs function)
+The residual value factor depends on the depreciation period and can be determined based on the following information:
+
+Depreciation period         | Residual value factor |
+----------------------------|:---------------------:|
+up to 5 years               |          0.7%         |
+up to 10 years              |          0.5%         |
+up to 15 years              |          0.3%         |
+more than 15 years          |          0.1%         |
+
+#### Crew costs
 This method is based on the lecture "J Flugzeugbewertung" by A. Bardenhagen <sup>[2]</sup>.
 The annual crew costs are assumed to be the sum of the flight and cabin crew costs:
-$
-  C_{crew} = C_{FC} + C_{CC}
-$
+$$
+  C_{\text{crew}} = C_{\text{FC}} + C_{\text{CC}}
+$$
 
 both of which are of different levels. There are different approaches here, which must be adapted to the respective cost structure of the airline:
+
 - Some airlines (mainly low-cost carriers) employ and pay pilots and flight attendants on a time basis (block hours).
 - Other airlines hire their personnel permanently and must pay them irrespective of the time they are deployed.
 
-In the first case, the personnel costs belong to the variable in the second case to the fixed direct operating costs. Here, crew costs are assumed to be fixed (route independent) because an airline must provide enough crews to ensure flight operations over the entire service time and therefore are proportional to the payload. 50 passengers per flight attendant are assumed based on certification requirements. Crew costs are constant per year. To calculate the crew cost for several years, the expected salary increase should be considered by an escalation factor. Accordingly, past price levels can be extrapolated to the current level changed according to inflation, price, or salary increase.
+In the first case, the personnel costs belong to the variable in the second case to the fixed direct operating costs. Here, crew costs are assumed to be fixed (route independent) because an airline must provide enough crews to ensure flight operations over the entire service time and therefore are proportional to the payload. 50 passengers per flight attendant are assumed based on certification requirements.
+
+Crew costs are constant per year. To calculate the crew cost for several years, the expected salary increase should be considered by an escalation factor. Accordingly, past price levels can be extrapolated to the current level changed according to inflation, price, or salary increase.
 
 Both cost shares are determined by the same variables:
-- The flight/cabin crew complement (the number of crews per aircraft, dependent on the stage length): $n_{FCC}$/$n_{CCC}$,
-- The number of flight/cabin crew members: $n_{FC}$/$n_{CC}$,
-- The annual salary of a flight/cabin crew member (dependent on the stage length): $S_{FC}$/$S_{CC}$, and
-- The escalation factor in percent: $f_{ESC}$.
+
+- The flight/cabin crew complement (the number of crews per aircraft, dependent on the stage length): $n_{\text{FCC}}$/$n_{\text{CCC}}$,
+- the number of flight/cabin crew members: $n_{\text{FC}}$/$n_{\text{CC}}$,
+- the annual salary of a flight/cabin crew member (dependent on the stage length): $S_{\text{FC}}$/$S_{\text{CC}}$, and
+- the escalation factor in percent: $f_{\text{ESC}}$.
 
 <!-- NOTE: The values of these drivers depend on the stage length. Two modes are implemented. Mode 1 (salary_variation = False, default): To ensure that the values of the above-mentioned parameters are the same for the design mission and mission study, the stage length of the design mission is used to determine the values for the study mission as well. Mode 2 (salary_variation = True): The above-mentioned values are obtained for different stage lengths for the design mission and mission study. -->
 
 That results in the following calculations:
-$
-  C_{FC} = n_{FCC} \cdot n_{FC} \cdot S_{FC} \cdot f_{ESC}
-$
-$
-  C_{CC} = n_{CCC} \cdot n_{CC} \cdot S_{CC} \cdot f_{ESC}
-$
+$$
+  C_{\text{FC}} = n_{\text{FCC}} \cdot n_{\text{FC}} \cdot S_{\text{FC}} \cdot f_{\text{ESC}}
+$$
+
+$$
+  C_{\text{CC}} = n_{\text{CCC}} \cdot n_{\text{CC}} \cdot S_{\text{CC}} \cdot f_{\text{ESC}}
+$$
 
 The escalation factor
-$
-  f_{ESC} = (1+r_{INF})^{y}
-$
+$$
+  f_{\text{ESC}} = (1 + r_{\text{INF}})^{y}
+$$
 
-incorporates the inflation rate ($r_{INF}$), which encompasses both price and salary adjustments, and the number of years elapsed between the calculation year and the base year for salaries ($y$).
+incorporates the inflation rate ($r_{\text{INF}}$), which encompasses both price and salary adjustments, and the number of years elapsed between the calculation year and the base year for salaries ($y$).
 If the depreciation period is used as the time difference, resulting costs are related to the whole depreciation period, whereas a time difference of one year solely results in the costs for the base year.
 
 The crew complements as well as the average annual salaries are dependent on the stage length:
+
 - Regional: ranges less than 500 km
 - Short haul: ranges between 500 km and 1000 km
 - Medium haul: ranges between 1000 km and 4000 km
@@ -91,28 +112,30 @@ The crew complements as well as the average annual salaries are dependent on the
 
 and can be taken from the following tables:
 
-Segment         | Crew complement | $S_{FC}$ in EUR/y | $S_{CC}$ in EUR/y |
-----------------|:---------------:|:-----------------:|:-----------------:|
-Regional        |        5        |       70 000      |       30 000      |
-Short haul      |        5        |      120 000      |       30 000      |
-Medium haul     |        5        |      160 000      |       30 000      |
-Long haul       |        8        |      200 000      |       45 000      |
-Ultra-long haul |        8        |      200 000      |       45 000      |
+Segment         | Crew complement | $S_{\text{FC}}$ in EUR/y | $S_{\text{CC}}$ in EUR/y |
+----------------|:---------------:|:------------------------:|:------------------------:|
+Regional        |        5        |          70,000          |          30,000          |
+Short haul      |        5        |         120,000          |          30,000          |
+Medium haul     |        5        |         160,000          |          30,000          |
+Long haul       |        8        |         200,000          |          45,000          |
+Ultra-long haul |        8        |         200,000          |          45,000          |
 
-### Route dependent costs (calculate_route_dependent_costs function)
+### Route dependent costs
 Route dependent costs $C_2$ include all cost components that are directly attributable to flight operations. These include
-- fuel $C_F$,
-- fees (handling $C_H$, landing $C_L$, air traffic control (ATC) $C_{ATC}$), and
-- maintenance $C_{MRO}$.
+
+- fuel $C_\text{F}$,
+- fees (handling $C_\text{H}$, landing $C_\text{LDG}$, air traffic control (ATC) $C_{\text{ATC}}$), and
+- maintenance $C_{\text{MRO}}$.
 
 Thus, the **annual** route dependent costs can be calculated by
-$
-  C_2 = C_F + C_H + C_{LDG} + C_{ATC} + C_{MRO}
-$
+$$
+  C_2 = C_\text{F} + C_\text{H} + C_\text{LDG} + C_{\text{ATC}} + C_{\text{MRO}}
+$$
 
 #### Flights per year
 Knowing the number of annual flights is mandatory to calculate the above-mentioned cost shares.
 A reliable approximation of the number of annual flights can be found using the following analytical basis:
+
 - Potential flight hours per year: $365 \cdot 24 = 8760$
 - Maintenance lay days per year (C-Check every 15 months for 4 days): $4 \cdot 12/15 = 3.2$
 - Overhaul lay days per year (D-Check every 5 years for 4 weeks): $4 \cdot 7/5 = 5.6$
@@ -124,168 +147,182 @@ A reliable approximation of the number of annual flights can be found using the
 - Yearly operation time in hours: $OT = 8760-2475-273.6 = 6011.4$
 
 Knowing the time for one flight $FT$ and the block time supplement $BT$ (turn around time) per flight, the number of flight cycles $FC$ can be calculated:
-$
+$$
   FC = \frac{OT}{(FT + BT)}
-$
+$$
 It is assumed that one flight cycle consists of an outbound flight, a turnaround time and a return flight. Consequently, the number of annual flights is calculated as follows:
-$
-  n_{flights} = 2 \cdot FC
-$
-
-#### Fuel costs (calculate_fuel_costs function)
-The fuel costs depend on the fuel price $P_F$, the trip fuel mass $m_{TF}$ (which can be obtained from the payload range diagram (PRD)), and the number of yearly flights $n_{flights}$:
-$
-  C_F = P_{F} \cdot m_{TF} \cdot n_{flights}
-$
-
-#### Handling costs (calculate_handling_costs function)
-Handling charges $F_H$ include charges for loading and unloading, use of terminals and passenger boarding bridges, security checks, and ground energy supply.
-The annual handling fees are charged based on the payload mass $m_{PL}$ and the number of flights per year. The resulting handling costs are calculated as follows:
-$
-  C_H = m_{PL} \cdot F_{H} \cdot n_{flights}
-$
-
-#### Landing costs (calcutale_landing_costs function)
-The annual landing fees $F_{LDG}$ are charged based on the maximum (certified) takeoff mass $m_{TO}$ and number of flights per year. The resulting landing costs are calculated as follows:
-$
-  C_{LDG} = m_{TO} \cdot F_L \cdot n_{flights}
-$
-
-#### Air traffic control costs (calculate_air_traffic_control_costs function)
+$$
+  n_{\text{flights}} = 2 \cdot FC
+$$
+
+#### Fuel costs
+The fuel costs depend on the fuel price $P_\text{F}$, the trip fuel mass $m_{\text{TF}}$ (which can be obtained from the payload range diagram (PRD)), and the number of yearly flights $n_{\text{flights}}$:
+$$
+  C_\text{F} = P_{\text{F}} \cdot m_{\text{TF}} \cdot n_{\text{flights}}
+$$
+
+#### Handling costs
+Handling charges $F_\text{H}$ include charges for loading and unloading, use of terminals and passenger boarding bridges, security checks, and ground energy supply.
+The annual handling fees are charged based on the payload mass $m_{\text{PL}}$ and the number of flights per year. The resulting handling costs are calculated as follows:
+$$
+  C_\text{H} = m_{\text{PL}} \cdot F_{\text{H}} \cdot n_{\text{flights}}
+$$
+
+#### Landing costs
+The annual landing fees $F_{\text{LDG}}$ are charged based on the maximum (certified) takeoff mass $m_{\text{TO}}$ and number of flights per year. The resulting landing costs are calculated as follows:
+$$
+  C_{\text{LDG}} = m_{\text{TO}} \cdot F_\text{L} \cdot n_{\text{flights}}
+$$
+
+#### Air traffic control costs
 The calculation of the ATC costs is based on the EUROCONTROL route charge formula <sup>[3]</sup>, more precisely the aircraft weight factor.
 
 > "The weight factor (expressed to two decimals) is determined by dividing, by fifty (50), the certificated Maximum Take-Off Weight (MTOW) of the aircraft (in metric tonnes, to one decimal) and subsequently taking the square root of the result rounded to the second decimal [...]".
 
-The ATC price factor $f_{ATC}$ considers the fact that the price scenarios are varying strongly for each continent (or even region):
-- $f_{ATC} = 1.0$ for domestic europe
-- $f_{ATC} = 0.7$ for transatlantic flights
-- $f_{ATC} = 0.6$ for far east flights (only half of the landings at european airports)
+The ATC price factor $f_{\text{ATC}}$ considers the fact that the price scenarios are varying strongly for each continent (or even region):
+
+- $f_{\text{ATC}} = 1.0$ for domestic europe
+- $f_{\text{ATC}} = 0.7$ for transatlantic flights
+- $f_{\text{ATC}} = 0.6$ for far east flights (only half of the landings at european airports)
 
 The ATC costs are calculated as follows:
-$
-  C_{ATC} = R \cdot f_{ATC} \cdot \sqrt{\frac{m_{TO}[\text t]}{50}} \cdot n_{flights}
-$
+$$
+  C_{\text{ATC}} = R \cdot f_{\text{ATC}} \cdot \sqrt{\frac{m_{\text{TO}}[\text t]}{50}} \cdot n_{\text{flights}}
+$$
 
 with
+
 - $R$ - range in km
-- $m_{TO}$ - maximum takeoff mass (in tonnes)
+- $m_{\text{TO}}$ - maximum takeoff mass (in tonnes)
 
-#### Maintenance costs (calculate_maintenance_costs function)
+#### Maintenance costs
 Maintenance costs are categorized into three components:
+
 - Flight cycle dependent cost: This component primarily accounts for structural fatigue and overhaul burdens.
 - Flight hour dependent cost: This component primarily reflects wear and the associated line maintenance work.
 - Calendar time dependent cost: This component represents a constant share, such as the rectification of corrosion during overhaul.
 
 In the following, only the maintenance costs per flight cycle are considered. Following the JADC method, an approximation for those costs is given by the sum of three parts:
-- Airframe material maintenance cost (repair and replacement): $C_{MRO,AF,MAT}$
-- Airframe personnel maintenance cost (inspection and repair): $C_{MRO,AF,PER}$
-- Engine total maintenance cost: $C_{MRO,ENG}$
+
+- Airframe material maintenance cost (repair and replacement): $C_{\text{MRO,AF,MAT}}$
+- Airframe personnel maintenance cost (inspection and repair): $C_{\text{MRO,AF,PER}}$
+- Engine total maintenance cost: $C_{\text{MRO,ENG}}$
 
 In which
-$
-  C_{MRO,AF,MAT} = m_{OE}[\text t] \cdot (0.2 \cdot t_{flight} + 13.7) + C_{MRO,AF,REP}
-$
-$
-  C_{MRO,AF,PER} = f_{LR} \cdot (1+C_B) \cdot \left[ (0.655 + 0.01 \cdot m_{OE}[\text t]) \cdot t_{flight} + 0.254 + 0.01 \cdot m_{OE}[\text t] \right]
-$
-$
-  C_{MRO,ENG} = n_{ENG} \cdot \left( 1.5 \cdot \frac{T_{0} [\text t]}{n_{ENG}} + 30.5 \cdot t_{flight} + 10.6 \cdot f_{MRO,ENG}\right)
-$
+$$
+  C_{\text{MRO,AF,MAT}} = m_{\text{OE}}[\text t] \cdot (0.2 \cdot t_{\text{flight}} + 13.7) + C_{\text{MRO,AF,REP}}
+$$
+
+$$
+  C_{\text{MRO,AF,PER}} = f_{\text{LR}} \cdot (1+C_\text{B}) \cdot \left[ (0.655 + 0.01 \cdot m_{\text{OE}}[\text t]) \cdot t_{\text{flight}} + 0.254 + 0.01 \cdot m_{\text{OE}}[\text t] \right]
+$$
+
+$$
+  C_{\text{MRO,ENG}} = n_{\text{ENG}} \cdot \left( 1.5 \cdot \frac{T_{0} [\text t]}{n_{\text{ENG}}} + 30.5 \cdot t_{\text{flight}} + 10.6 \cdot f_{\text{MRO,ENG}}\right)
+$$
 
 with
-- $C_{MRO,AF,REP}$ - airframe repair cost per flight
-- $f_{LR}$ - labor rate in EUR/h
-- $C_B$ - cost burden
-- $n_{ENG}$ - number of engines
+
+- $C_{\text{MRO,AF,REP}}$ - airframe repair cost per flight
+- $f_{\text{LR}}$ - labor rate in EUR/h
+- $C_\text{B}$ - cost burden
+- $n_{\text{ENG}}$ - number of engines
 - $T_{0}$ - sea level static thrust per engine
-- $f_{MRO,ENG}$ - engine maintenance factor
+- $f_{\text{MRO,ENG}}$ - engine maintenance factor
 
-The airframe repair cost per flight $C_{MRO,AF,REP}$ equal 57.5 for kerosene-powered aircraft. For hydrogen-powered aircraft, this value is multiplied by the operating empty mass factor $f_{OEM} = 1.1$ to account for an approx. 10% higher operating empty mass.
-The engine maintenance factor is considered $f_{ENG} = 1$ for kerosene-powered aircraft and $f_{ENG} = 0.7$ for hydrogen-powered aircraft.
+The airframe repair cost per flight $C_{\text{MRO,AF,REP}}$ equal `57.5` for kerosene-powered aircraft. For hydrogen-powered aircraft, this value is multiplied by the operating empty mass factor $f_{\text{OEM}} = 1.1$ to account for an approx. 10% higher operating empty mass.
+The engine maintenance factor is considered $f_{\text{ENG}} = 1$ for kerosene-powered aircraft and $f_{\text{ENG}} = 0.7$ for hydrogen-powered aircraft.
 
 Thus, the annual maintenance costs result in
-$
-  C_{MRO} = (C_{MRO,AF,MAT} + C_{MRO,AF,PER} + C_{MRO,ENG}) \cdot n_{flights}
-$
+$$
+  C_{\text{MRO}} = (C_{\text{MRO,AF,MAT}} + C_{\text{MRO,AF,PER}} + C_{\text{MRO,ENG}}) \cdot n_{\text{flights}}
+$$
 
 ## Related direct operating costs
 Absolute DOC are generally unsuitable as an assessment measure because aircraft size and technology strongly influence this figure. They are therefore expressed in differently related quantities, depending on the purpose of the evaluation:
+
   - DOC/Range (Flight Kilometer): Flight Kilometer Costs (FKC)
   - DOC/Seat Kilometer Offered (SKO): Seat Kilometer Costs (SKC)
   - DOC/Seat Kilometer Offered Corrected: Corrected SKC to take account of any freight revenue
   - DOC/Ton Kilometers Offered (TKO): Ton Kilometer Costs (TKC)
   - DOC/Revenue Passenger Kilometer (RPK): Revenue Seat Kilometer Costs (RSKC)
+
 These are described below.
 
-### Flight kilometer costs (calculate_flight_kilometer_costs function)
+### Flight kilometer costs
 The flight kilometer costs are very flexible and suitable for an extended consideration of changed route structures. This parameter allows the range potential of the aircraft to be assessed:
-$
+$$
   FKC = \frac{DOC}{R}.
-$
+$$
+
+### Seat kilometer costs
+The seat kilometer offered (SKO) (or available) is a measure of an aircraft's passenger carrying capacity or, in other words, its potential to generate revenue by providing available seats to passengers. They are calculated by multiplying the number of seats available $n_{\text{seats}}$ by the range:
+$$
+  SKO = n_{\text{seats}} \cdot R.
+$$
 
-### Seat kilometer costs (calculate_seat_kilometer_costs function)
-The seat kilometer offered (SKO) (or available) is a measure of an aircraft's passenger carrying capacity or, in other words, its potential to generate revenue by providing available seats to passengers. They are calculated by multiplying the number of seats available $n_{seats}$ by the range:
-$
-  SKO = n_{seats} \cdot R.
-$
 The seat kilometer costs allow the analysis of a change in seat capacity and thus the assessment of the passenger kilometer potential:
-$
+$$
   SKC = \frac{DOC}{SKO}
-$
+$$
 
-### Corrected seat kilometer costs (calculate_corrected_seat_kilometer_costs function)
+### Corrected seat kilometer costs
 
 !!! note 
-  The calculation of this cost share is not implemented at the moment and set to `0` instead.
+    The calculation of this cost share is not implemented at the moment and set to `0` instead.
 
 A method of freight equivalent passenger seats is applied.
-Cargo revenue from residual cargo payload at maximum zero fuel mass ($m_{PL,max} - m_{PL}$) can be calculated using
-$
-  I_{cargo} = I_{FR} \cdot (W_{PL,max} - W_{PAX})
-$
+Cargo revenue from residual cargo payload at maximum zero fuel mass ($m_{\text{PL,max}} - m_{\text{PL}}$) can be calculated using
+$$
+  I_{\text{cargo}} = I_{\text{FR}} \cdot (W_{\text{PL,max}} - W_{\text{PAX}})
+$$
+
 with
-- $I_{FR}$ - revenue per freight kilometer
-- $W_{PL,max}$ - maximum payload weight
-- $W_{PAX}$ - pax weight
+
+- $I_{\text{FR}}$ - revenue per freight kilometer
+- $W_{\text{PL,max}}$ - maximum payload weight
+- $W_{\text{PAX}}$ - pax weight
 
 The equivalent seat revenue can be derived using the following formula:
-$
-  n_{PAX,cargo} = \frac{I_{cargo}}{I_{PAX}}
-$
-with $I_{PAX}$ as revenue per seat and flight (see following table).
-
-Segment         | $I_{PAX,multi-class}$ in EUR/SO | $I_{PAX,all-economy}$ in EUR/SO |
-----------------|:-------------------------------:|:-------------------------------:|
-Short haul      |               400               |               250               |
-Medium haul     |               450               |               300               |
-Long haul       |               550               |               400               |
-Ultra long haul |               700               |               550               |
+$$
+  n_{\text{PAX,cargo}} = \frac{I_{\text{cargo}}}{I_{\text{PAX}}}
+$$
+
+with $I_{\text{PAX}}$ as revenue per seat and flight (see following table).
+
+Segment         | $I_{\text{PAX,multi-class}}$ in EUR/SO | $I_{\text{PAX,all-economy}}$ in EUR/SO |
+----------------|:--------------------------------------:|:--------------------------------------:|
+Short haul      |                  400                   |                  250                   |
+Medium haul     |                  450                   |                  300                   |
+Long haul       |                  550                   |                  400                   |
+Ultra long haul |                  700                   |                  550                   |
 
 Finally, the SKC correction can be determined as follows:
-$
-  SKC_{cor} = SKC \cdot \frac{n_{PAX}}{n_{PAX} + n_{PAX,cargo}}
-$
+$$
+  SKC_{\text{cor}} = SKC \cdot \frac{n_{\text{PAX}}}{n_{\text{PAX}} + n_{\text{PAX,cargo}}}
+$$
 
-### Ton kilometer costs (calculate_ton_kilometer_costs function)
+### Ton kilometer costs
 The ton kilometer costs (TKC) allow the analysis of a change in payload capacity and thus the assessment of the payload kilometer potential. The Ton Kilometers Offered (TKO) are the product of the payload and the range:
-$
-  TKO = m_{PL} \cdot R
-$
+$$
+  TKO = m_{\text{PL}} \cdot R
+$$
+
 The Ton Kilometer Costs (TKC) are the DOC related to the TKO:
-$
+$$
   TKC = \frac{DOC}{TKO}
-$
+$$
 
-### Revenue seat kilometer costs (calculate_revenue_seat_kilometer_costs)
-Revenue passenger kilometers (RPK) are a measure of how many kilometers the aircraft has carried paying passengers. It is often referred to as "traffic" as it represents the actual demand for air transport. The RPK are determined by multiplying the range by the number of paying passengers. The revenue passenger kilometers are calculated by multiplying the number of revenue passengers with the maximum number of seats and the seat load factor $f_{PL}$:
-$
-  RPK = n_{PAX} \cdot f_{SL} \cdot R
-$
+### Revenue seat kilometer costs
+Revenue passenger kilometers (RPK) are a measure of how many kilometers the aircraft has carried paying passengers. It is often referred to as "traffic" as it represents the actual demand for air transport. The RPK are determined by multiplying the range by the number of paying passengers. The revenue passenger kilometers are calculated by multiplying the number of revenue passengers with the maximum number of seats and the seat load factor $f_{\text{SL}}$:
+$$
+  RPK = n_{\text{PAX}} \cdot f_{\text{SL}} \cdot R
+$$
 
 The DOC per revenue passenger kilometer additionally take into account the overall performance of an airline. Note that revenue is strongly dependent on market situation and therefore varying.
-$
+$$
   RSKC = \frac{DOC}{RPK}
-$
+$$
 
 ## Indirect operating costs (IOC)
 tbd. :construction:
diff --git a/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md b/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md
index a043b4a7f388d03eb83461e3370f641e4c3b6dbb..595234bdf9588970ec6ce5e9b88c35f22b3b73ed 100644
--- a/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md
+++ b/docs/documentation/analysis/cost_estimation/run_your_first_cost_estimation.md
@@ -3,13 +3,14 @@ Let's dive into the fun part and crunch some numbers! :moneybag:
 
 ## Tool single execution
 The tool can be executed from the console directly if all paths are set. The following will happen:
+
 - [Console output](#console-output)
 - [Generation of reports and plots](#reporting)
 - [Writing output to aircraft exchange file](#write-data-to-acxml)
 
 Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices. Also, if you need some additional information on the underlying methodology, check out the page on the [cost estimation method](operating_cost_method.md).
 
-So, feel free to open the terminal and run `cost_estimation.exe` to see what happens...
+So, feel free to open the terminal and run `python.exe cost_estimation.py` to see what happens...
 
 ### Console output {#console-output}
 Firstly, you see output in the console window. Let's go through it step by step...
@@ -45,7 +46,7 @@ The tool continues to check if an off-design study exists and tries to calculate
 
 ```
 2024-12-06 11:37:30,641 - PRINT - Plots are generated and saved...
-2024-12-06 11:37:38,187 - WARNING - Warning: "html_output" switch in module configuration file set to "False". No HTML report generated.
+2024-12-06 11:37:38,187 - PRINT - HTML report is generated and saved...
 2024-12-06 11:37:38,188 - PRINT - Method-specific data are written to 'cost_estimation_results.xml'...
 2024-12-06 11:37:38,192 - WARNING - Warning: "tex_output" switch in module configuration file set to "False". No TeX report file generated.
 2024-12-06 11:37:38,192 - PRINT - Cost estimation finished.
@@ -54,9 +55,10 @@ Finally, you receive information about the reports and plots created (depending
 
 ### Reporting {#reporting}
 In the following, a short overview is given on the generated reports:
+
 - A `cost_estimation.log` file is written within the directory of the executable
 - Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file:
-    - an HTML report in the `report_html` folder (not implemented yet)
+    - an HTML report in the `report_html` folder
     - a TeX report in the `report_tex` folder (not implemented yet)
     - an XML file with additional output data in the `report_xml` folder
     - plots in the `plots` folder
diff --git a/docs/documentation/analysis/ecological_assessment/basic-concepts.md b/docs/documentation/analysis/ecological_assessment/basic-concepts.md
index 5c787023b5a78a21241b1fd55311ccadb249b21a..7d98ac79854701f6f0092b57a16d7059892ec8ab 100644
--- a/docs/documentation/analysis/ecological_assessment/basic-concepts.md
+++ b/docs/documentation/analysis/ecological_assessment/basic-concepts.md
@@ -1,26 +1,20 @@
 # Basic concepts {#basic-concepts}
-This chapter provides some insight in the implemented calculation routines. The module is split into several submodules which are responsible to calculate parts of the ecological assessment. The following graph shows a rough overview of the module structure, with the end points standing for a submodule:
-<pre class='mermaid'>
-  graph TD;
-    A[ecological_assessment/src]-->C[standard_strategy]
-	C-->D[emission_calculation]
-    D-->F[life_cycle_emissions]
-    F-->H[LCA_schaefer]
-    D-->G[mission_emissions]
-	C-->E[impact_calculation]
-    E-->I[air_quality_index_schaefer]
-    E-->J[climate_impact_dallara]
-</pre>
+This chapter provides some insight in the implemented calculation routines. The module is split into several submodules which are responsible to calculate parts of the ecological assessment. Following submodules are implemented:
+
+- [Mission Emissions](#mission-emissions)
+- [Life Cycle Emissions (Schaefer)](#lca-schaefer)
+- [Air Quality Index (Schaefer)](#aqi-schaefer)
+- [Climate Model (Dallara)](#climate-model-dallara)
 
-The next sections will describe the submodules in detail, with information about in- and outputs as well as calculation routines. If you'd like to get more information about the values named in the input xml files, you can have an look into the files and read the corresponding description.
+The next sections will describe the submodules in detail, with information about in- and outputs as well as calculation routines. If you'd like to get more information about the values named in the input xml files, you can have an look into the files and read the corresponding description. The inputs from configuration file are shown in their original format, so that you can check the default values and boundaries within this documentation.
 
 ## Mission Emissions {#mission-emissions}
 The submodule _mission_emissions_ is the only part of _ecological\_assessment_ which can not be deactivated by the user, as its results are needed by all other submodules. It provides various options to calculate the emissions of kerosene or hydrogen-burning engines during a mission. Both the design and the study mission will be calculated (in the following, file names including *mission* will always mean *study_mission* and *design_mission*).
 
 ### General principles {#mission-emissions-generalprinciples}
-Depending on the defined engine carrier, the emissions will be calculated for every mission step defined in the `mission.csv` file. Only pure kerosene or pure liquid hydrogen combustion is possible, other energy carriers or hybrid variants are not implemented and will lead to a program abortion!
+Depending on the defined engine carrier, the emissions will be calculated for every mission step defined in the `mission.csv` file. Currently, only pure kerosene or pure liquid hydrogen combustion is supported, other energy carriers or hybrid variants are not implemented and will lead to a program abortion!
 
-The needed engine thermodynamics during the landing and takeoff phase (LTO) according to ICAO definition are calculated by the engine library. If you're interested in seeing a comparison between the standard ICAO LTO cycle and your aircraft design, you need to switch on the `info` mode for console or log file output inside your configuration file to get those information. Following thrust settings in percent of take-off thrust are used for LTO:
+The needed engine thermodynamics during the landing and takeoff phase (LTO) according to ICAO definition are calculated by the engine library. If you're interested to see a comparison between the standard ICAO LTO cycle and your aircraft design, you need to switch on the `info` mode for console or log file output inside your configuration file to get those information. Following thrust settings in percent of take-off thrust are used for LTO:
 
 Taxiing | Take-off | Climb | Approach |
 --------|----------|-------|----------|
@@ -28,22 +22,20 @@ Taxiing | Take-off | Climb | Approach |
 
 If the taxiing thrust can not be set (which happens sometimes because of a lack of engine data), you will see a warning and the engine will automatically set to idle conditions.
 
-Then, the main task of this submodule is executed: the emission calculation.
-
-#### Kerosene Emissions
-Kerosene combustion emissions will be calculated as following:
+Then, the main task of this submodule is executed: the emission calculation. Following formula is used for determination:
 
-The emissions of CO2, H2O, SO2, SO4 and (in a low fidelity approach) soot are considered to be proportional to the fuel flow. Therefore, they are calculated via
+$ m_{emission} = EI \cdot m_{fuel}$,
 
-$ m_{emission} = EI * m_{fuel}$,
-
-with
+where
 
 - $ m_{emission}$: emission mass $[kg]$
 - $ EI $: emission index $[\frac{kg_{emission}}{kg_{fuel}}]$
 - $ m_{fuel} $: fuel mass  $[kg]$
 
-Following emission indices are used:
+#### Kerosene Emissions
+Kerosene combustion emissions will be calculated as following:
+
+The emissions of CO2, H2O, SO2, SO4 and (in a low fidelity approach) soot are considered to be proportional to the fuel flow. Following emission indices are used:
 
 Emission | EI [kg/kg] |
 ---------|------------|
@@ -55,9 +47,18 @@ Soot     | 0.025e-3   |
 
 All other emissions are considered to be non-proportional and are calculated with following methods:
 
-- For NOx emissions, there are a P3T3 Method \cite Nor03, Boeing Fuel Flow Method 2 \cite Sch13, and the calculation based on data generated by GasTurb available.
-- For HC as well as CO emissions, the DLR Omega method and Boeing Fuel Flow Method 2 \cite Sch13 are implemented. Additionally, there is the option to calculate the landing and takeoff cycle emissions based on constants provided by ICAO.
-- Soot emissions can be determined via a DLR correlation based on ICAO smoke numbers or a correlation by R.B. Whyte \cite Kug05. Alternatively, it can be assumed to be proportional to the consumed fuel.
+- For NOx emissions, there are
+    - a P3T3 Method \cite Nor03,
+    - Boeing Fuel Flow Method 2 \cite Sch13
+    - and the calculation based on data generated by GasTurb available.
+- For HC as well as CO emissions, the
+    - DLR Omega method
+    - and Boeing Fuel Flow Method 2 \cite Sch13 are implemented.
+    - Additionally, there is the option to calculate the landing and takeoff cycle emissions based on constants provided by ICAO.
+- Soot emissions can be determined via
+    - a DLR correlation based on ICAO smoke numbers
+    - or a correlation by R.B. Whyte \cite Kug05.
+    - Alternatively, it can be assumed to be proportional to the consumed fuel.
 
 #### Hydrogen Combustion Emissions
 When hydrogen is burned in an engine, only H2O and NOx emissions are produced. H2O is again assumed to be proportional to the fuel flow. For NOx emissions, there are two methods implemented. As the determination of NOx emissions when burning hydrogen is subject to great uncertainty, a the low-fidelity method of using constant emission indices for different flight phases is the default method. The emission indices were determined in \cite Koss22 for one engine type and are listed in this table:
@@ -70,7 +71,7 @@ Climb   | 6.17     |
 Cruise  | 3.14     |
 Approach| 2.4      |
 
-Alternatively, you can choose to follow the method describes in \cite Koss22 and calculate the emission index in every mission step. For that, the emissions of kerosene-burning engines are calculated via the P3T3 method and a correction factor is used to derive the emissions due to hydrogen combustion. If the calculation of a correction factor fails, the first method is used as a fallback method.
+Alternatively, you can choose to follow the method described in \cite Koss22 and calculate the emission index in every mission step. For that, the emissions of kerosene-burning engines are calculated via the P3T3 method and a correction factor is used to derive the emissions due to hydrogen combustion. If the calculation of a correction factor fails, the first method is used as a fallback method.
 
 
 
@@ -78,60 +79,123 @@ Alternatively, you can choose to follow the method describes in \cite Koss22 and
 
 ### Input data {#mission-emissions-input}
 For the mission emission calculation (including used libraries), the following parameters are needed in the `aircraft_exchange_file`:
-```xml
-- requirements_and_specifications
-  - general
-    - type
-    - model
-  - design_specification
-    - configuration
-      - configuration_type
-      - aerodynamic_technologies
-    - energy_carriers
-      - energy_carrier (ID="0")
-        - type
-    - assessment_scenario
-      - flights_per_year
+```
+├── requirements_and_specifications/
+│   ├── general/
+│   │   ├── type
+│   │   └── model
+│   ├── mission_files/
+│   │   ├── design_mission_file
+│   │   └── study_mission_file
+│   ├── design_specification/
+│   │   ├── configuration/
+│   │   │   ├── configuration_type
+│   │   │   └── aerodynamic_technologies
+│   │   ├── energy_carriers/
+│   │   |    └── energy_carrier (ID="0")/
+│   │   |       └── type
+│   |   └── transport_task/
+│   |       ├── cargo_definition/
+│   |       |   └── additional_cargo_mass
+│   |       └── passenger_definition/
+│   |           ├── total_number_passengers
+│   |           ├── mass_per_passenger
+│   |           └── luggage_mass_per_passenger
+│   ├── requirements/
+│   │   └── top_level_aircraft_requirements/
+│   │       ├── design_mission/
+│   │       │   └── delta_ISA
+│   │       └── study_mission/
+|   |           ├── delta_ISA
+│   │           └── payload_fractions/
+│   │               ├── cargo_fraction
+│   │               └── passenger_mass_fraction
+│   └── assessment_scenario/
+│       └── duration_operation
+├── analysis/
+│   └── mission/
+│       ├── design_mission/
+│       │    └── cruise/
+│       │        └── cruise_step@{i}/
+│       │            └── cruise_steps/
+│       │                ├── relative_end_of_cruise_step
+│       │                └── altitude
+│       └── study_mission/
+│            └── cruise/
+│                └── cruise_step@{i}/
+│                    └── cruise_steps/
+│                        ├── relative_end_of_cruise_step
+│                        └── altitude
+├── component_design/
+│   └── propulsion/
+│       └── specific/
+│           └── propulsion (ID="0")/
+│               └── engine/
+│                   ├── scale_factor
+│                   └── model
+└── assessment/
+    └── cost_estimation/
+        └── operating_cost/
+            └── direct_operating_cost/
+                └── flights_per_year_study_mission
 ```
 
-In the `ecological_assessment_conf.xml`, next to the control settings block, you can set the emission calculation methods, relative humidity of the air and the duration of aircraft operation within the program settings:
+In the `ecological_assessment_conf.xml`, next to the control settings block, you can set the emission calculation methods and relative humidity of the air within the program settings:
 ```xml
-- strategy_selector
-  - standard_strategy
-    - emission_calculation
-      - mission_emissions
-        - emission_methods
-          - kerosene
-            - HC_method_selector
-            - CO_method_selector
-            - NOx_method_selector
-            - soot_method_selector
-          - hydrogen_combustion
-            - NOx_method_selector
-        - relative_humidity
-    - duration_operation
+<standard_strategy description="Settings for standard strategy. Different methods can be used by defining them in this block.">
+    <emission_calculation description="Settings for the emission calculation">
+        <mission_emissions>
+            <emission_methods description="Methods for calculation of emission indices">
+                <kerosene description="Calculation methods for kerosene combustion emission indices">
+                    <HC_method_selector description="Select method for calculation of hydrocarbon emission index. Selector: mode_0 (DLR Omega Method) / mode_1 (Boeing Fuel Flow Method 2) / mode_2 (ICAO Emission indices)">
+                        <value>mode_0</value>
+                    </HC_method_selector>
+                    <CO_method_selector description="Select method for calculation of carbon monoxide emission index. Selector: mode_0 (DLR Omega Method) / mode_1 (Boeing Fuel Flow Method 2) / mode_2 (ICAO Emission indices)">
+                        <value>mode_0</value>
+                    </CO_method_selector>
+                    <NOx_method_selector description="Select method for calculation of nitrogen oxide emission index. Selector: mode_0 (pressure and temperature dependent (P3T3) method by P.D.Norman) / mode_1 (Boeing Fuel Flow Method 2)  / mode_2 (NOx values from GasTurb will be used)">
+                        <value>mode_0</value>
+                    </NOx_method_selector>
+                    <soot_method_selector description="Select method for calculation of soot emission index. Selector: mode_0 (DLR correlation based on ICAO smoke number) / mode_1 (Correlation by R.B.Whyte) / mode_2 (Use constant factor defined in engine.xml)">
+                        <value>mode_0</value>
+                    </soot_method_selector>
+                </kerosene>
+                <hydrogen_combustion description="Calculation methods for hydrogen combustion emission indices">
+                    <NOx_method_selector description="Select method for calculation of nitrogen oxide emission index. Selector: mode_0 (Use constant EI for different mission segments (Kossarev 2022)) / mode_1 (P3T3 correlation based on experiments by Marek 2005 and correction factor derived of kerosene P3T3 method)">
+                        <value>mode_0</value>
+                    </NOx_method_selector>
+                </hydrogen_combustion>
+            </emission_methods>
+            <relative_humidity description="Relative humidity of air">
+                <value>0.6</value>
+                <unit>1</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>1</upper_boundary>
+            </relative_humidity>
+        </mission_emissions>
+    </emission_calculation>
 ```
 
-From `mission.xml`, the taxi time and range will be read :
-```xml
-- taxi_time_origin
-- taxi_time_destination
-- range
+From `mission.xml`, the taxi time and mission range will be read :
+```
+├── taxi_time_origin
+├── taxi_time_destination
+├── range
 ```
-Additionally, you need to provide the `mission.csv` file written by the UNICADO *mission_analysis* module and located in _aircraft\_exchange\_file\_directory/mission_data_.
+Additionally, you need to provide the `mission.csv` file written by the UNICADO [mission analysis](../mission_analysis/index.md) module and located in _aircraft\_exchange\_file\_directory/mission_data_.
 
-And last but not least, the engine library will be used, so you can check the documentation page of the library to get information about its input files.
+And last but not least, the engine library will be used, so you can check the documentation page of the [engine library](../../libraries/index.md) to get information about its input files.
 
 ### Output data {#mission-emissions-output}
-The central output of the mission submodule is the `ecological_assessment_results_file.xml` which you will find in the *aircraft\_exchange\_file\_directory/reporting/report_xml* directory. It contains all calculated emission masses. Additionally, there is a `...emissionspath.csv` file in the folder *aircraft_exchange_file_directory/mission_data/* including mission and engine data for every mission step.  As described in [Module usage](#usage), an HTML report including plots with emission flows will be generated.
+The central output of the mission submodule is the `ecological_assessment_results.xml` which you will find in the *aircraft\_exchange\_file\_directory/reporting/report_xml* directory. It contains all calculated emission masses. Additionally, there is a `...emissionspath.csv` file in the folder *aircraft_exchange_file_directory/mission_data/* including mission and engine data for every mission step.  As described in [Module usage](#usage), an HTML report including plots with emission flows will be generated.
 
 
-## LCA Schaefer {#lca-schaefer}
+## Life Cycle Emissions (Schaefer) {#lca-schaefer}
 The method is based on the dissertation by Katharina Schäfer (2011) \cite Sch17. It is highly recommended to refer to this work for detailed insights. The method calculates the energy demand and emissions across the aircraft's life cycle phases: development, production, operation, and end-of-life. The following image shows the processes considered.
 
 ![](figures/lifeCyclePhases.png "Life cycle phases according to K.Schaefer")
 
-The method is only applicable for conventional tube and wing aircraft, powered by kerosene. This will be checked and the program skips the life cycle emission calculation in case you try to assess fancy unconventional aircraft designs :wink:.
+The method is only applicable for conventional tube and wing aircraft, powered by kerosene. This will be checked and the program skips the life cycle emission calculation in case you try to assess fancy unconventional aircraft designs :wink:
 
 ### General principles {#lca-schaefer-generalprinciples}
 For all processes within the four phases, an inventory analysis is conducted. In a first step, all relevant inputs are collected, such as materials, fuel and energy demand. Next, the resulting emissions are determined. For background processes, data provided primarily by [GaBi Software](https://ghgprotocol.org/gabi-databases) is used, offering emission data for material extraction, fuel production, energy production, and more. With this data, emissions resulting of the determined resources are calculated as follows:
@@ -142,7 +206,7 @@ $ Em_{fuel} = Em_{fuel}^* \cdot f + Em_{com}$
 
 $ Em_{mat} = Em_{mat}^* \cdot m_{mat} $
 
-with
+where
 
 - $ Em_{energy} $: Emissions due to energy production (both electric and heat energy) [kg]
 - $ Em_{fuel} $: Emissions due to fuel production and combustion [kg]
@@ -155,7 +219,7 @@ with
 - $ f $: Fuel demand [kg]
 - $ m_{mat} $: Material demand [kg]
 
-The emissions of CO2, H2O, NOx, CO, SO2, CH4, HC and soot are determined. For the testing phase during development, perfluorinated hydrocarbons (PFC), non methane volatile organic compounds (NMVOC) and nitrous oxide emissions (N2O) are additionally calculated.
+The emissions of CO2, H2O, NOx, CO, SO2, CH4, HC and soot are determined. For the testing phase during development, perfluorinated hydrocarbons (PFC), non methane volatile organic compounds (NMVOC) and nitrous oxide emissions (N2O) are calculated in addition.
 
 If recycling is enabled, emissions in the end-of-life phase can be negative, as the emissions saved in the production phase due to recycling are accounted for here.
 
@@ -166,25 +230,25 @@ Both electric and heat energy demand for engineering is determined by:
 
 $  E = E^*  \cdot A \cdot \frac{t}{h} $
 
-with
+where
 
 - $E$: (Electric and heat) energy $[MJ]$
-- $E^*$: Specific energy per area $[MJ/(m^2 \cdot a)]$
+- $E^*$: Specific energy per area $[\frac{MJ}{m^2 \cdot a}]$
 - $A$: Gross floor area $[m^2]$
 - $t$: Engineering hours $[h]$
 - $h$: Hours per year $[h/a]$
 
 Testing is split into wind tunnel test, structure tests, system tests, ground tests, engine tests and flight tests.
 
-The wind tunnel tests (index: wt) only use energy E [JM], depending on the time spend in the wind tunnel t [s] and power demand P [MW]:
+The wind tunnel tests (index: wt) only use energy $E$ [MJ], depending on the time spend in the wind tunnel $t$ [s] and power demand $P$ [MW]:
 
 $ E_{wt} = t_{wt} \cdot P_{wt}$.
 
-For structure tests (index: struc), production and end of life (eol) of the test components are considered. As the emissions resulting from energy, material and fuel demand of those components are calculated within the according phases, the resources are not determined here - instead, the emissions are directly summed up from existing data. Additionally, there is some energy needed for carrying out the tests. The energy E [MJ] is calculated using a linear correlation for the needed hydraulic and pneumatic power, depending on the number of load cycles n [-] and the maximum take off mass MTOM [t]:
+For structure tests (index: struc), production and end of life of the test components are considered. As the emissions resulting from energy, material and fuel demand of those components are calculated within the according phases, the resources are not determined here - instead, the emissions are directly summed up from existing data. Additionally, there is some energy needed for carrying out the tests. The energy $E$ [MJ] is calculated using a linear correlation for the needed hydraulic and pneumatic power, depending on the number of load cycles $n$ [-] and the maximum take off mass $MTOM$ [kg]:
 
-$E_{struc} = n \cdot MTOM * 1.45 \frac{J}{kg}$
+$E_{struc} = n \cdot MTOM \cdot 1.45 \frac{MJ}{kg}$
 
-The system tests (index: sys) are divided into integration tests and iron bird tets. The needed energy E [MJ] is estimated using the maximum design power of the electric, pneumatic and hydraulic aircraft systems P [MW] and the testing time t [s]:
+The system tests (index: sys) are divided into integration tests and iron bird tets. The needed energy $E$ [MJ] is estimated using the maximum design power of the electric, pneumatic and hydraulic aircraft systems $P$ [MW] and the testing time $t$ [s]:
 
 $E_{sys} = P \cdot t_{sys}$
 
@@ -194,7 +258,7 @@ $E_{gt} = P \cdot t_{gt}$
 
 Additionally, emissions for taxi tests are considered. As they are calculated in the mission submodule anyway, the are summed up directly instead of calculating the resources here. It is assumed, that the total ground test time equals the flight test time, and the taxi test time is 5% of the total ground test time.
 
-Engine tests are divided into rig tests (index: rig) and test on an flying test bed (index: ftb). For the fuel demand f [kg], the number of test engines n [-], their thrust specific fuel consumption TSFC [(kg/s)/kN] and thrust T [kN] both for cruise condition c, and maximum max as well as share of those values x [-] and total time t [s] are needed:
+Engine tests are divided into rig tests (index: rig) and test on an flying test bed (index: ftb). For the fuel demand $f$ [kg], the number of test engines $n$ [-], their thrust specific fuel consumption $TSFC$ [(kg/s)/kN] and thrust $T$ [kN] both for cruise condition $c$, and maximum $max$ as well as share of those values $x$ [-] and total time $t$ [s] are needed:
 
 $ f_{rig} = n \cdot t_{rig} (\cdot (TSFC_{max} \cdot T_{max} \cdot x  +  TSFC_{c} \cdot T_{c} \cdot (1 - x))) $
 
@@ -220,13 +284,15 @@ The energy of labour is determined based on the actual working hours, the yearly
 
 $ labourCosts = 0.41 \cdot (recurringCosts - finalAssemblyCosts) $
 
+<div class="mathjax-render">
 $ energy [MJ] = specificEnergy [MJ/a] \cdot \frac{labourCosts [\$]}{wage [\$/h] \cdot hoursPerYear [h/a]} $
+</div>
 
-For the material demand m [kg] of one aircraft component (index: ac), the component weight W [kg], the material ration mr [-] and the scrap ratio sr [-] are needed:
+For the material demand $m$ [kg] of one aircraft component (index: ac), the component weight $m_{comp}$ [kg], the material ration $mr$ [-] and the scrap ratio $sr$ [-] are needed:
 
-$ m_{ac} = \frac{mr \cdot W}{1-sr} $
+$ m_{ac} = \frac{mr \cdot m_{comp}}{1-sr} $
 
-This is done for all components and all considered materials (aluminum, CFRP, steel, titanium, nickel) and summed up for a total value. Whereas the competent masses are read from the aircraft exchange file, all other values can be found hardcoded in the module database. Also part of the database are the values for recycling of primary scrap. The raw material demand (index: raw) per material (index: mat)and component is:
+This is done for all components and all considered materials (aluminum, CFRP, steel, titanium, nickel) and summed up for a total value. Whereas the component masses are read from the aircraft exchange file, all other values can be found in the module database. Also part of the database are the values for recycling of primary scrap. The raw material demand (index: raw) per material (index: mat) per component is:
 
 $ m_{mat, raw} = m_{ac} \cdot (1- sr \cdot recoveryRate) $
 
@@ -234,259 +300,410 @@ Therefor, the whole raw material demand for a component is:
 
 $ m_{ac,raw} = \sum m_{mat, raw} $
 
-The energy demand for material processing does not consider the scrap ratio, as the values for specific energy demand are valid per aircraft component. The energy is calculated per material and summed up:
+The energy demand for material processing does not consider the scrap ratio, as the values for specific energy demand $E^{*}_{mat}$ are valid per aircraft component. The energy demand is calculated per material and summed up:
 
-$ E_{component} = \sum specificEnergyMaterial \cdot mr \cdot W $
+<div class="mathjax-render">
+$ E_{comp} = \sum E^{*}_{mat} \cdot mr \cdot m_{comp} $
+</div>
 
-The fuel demand for transportation is based on a Airbus transportation network scenario which is hardcoded in the module. For every transportation/fuel type, the amount of fuel is calculated based on the components weight and transport distance:
+The fuel demand for transportation is based on a Airbus transportation network scenario which is defined in source code of the module. For every transportation/fuel type, the amount of fuel $f$ [kg] is calculated based on the components weight $m_{comp}$ [t], the transport distance $d$ [km] and a fuel specific fuel consumption $f^*$ [kg/(km$\cdot$t)]:
 
-$fuel [kg] = mass [t] \cdot distance [km] * fuelConsumption [kg/(km\cdot t)]$
+$f = m_{comp} \cdot d \cdot f^* $
 
 For the final assembly, mainly personnel work and therefor electrical and heat energy is required. Again, the working hours are derived from costs:
 
+<div class="mathjax-render">
 $energy [MJ] = specificEnergy[MJ/a] \cdot \frac{finalAssemblyCosts [\$]}{wage [\$/h] \cdot hoursPerYear [h/a]} $
+</div>
 
-The fuel for final flight tests are determined as the first flight tests:
+The fuel for final flight tests (index: ft) are determined as the first flight tests:
 
 $f_{ft} = f_{mission} \cdot \frac{t_{ft}}{t_{mission}}$
 
 #### Operation resources
-During the operation phase, flight are performed and maintenance is necessary. The needed fuel for operation can be read from the mission calculation and is not calculates in this phase. Resources for maintenance are production resources for spare parts and labour energy (heat and electricity). For the spare parts, resourced determined in the production phase are used. It is assumed, that the ratio of the maintenance material costs of a certain component and the corresponding recurring costs of that component is equal to the ratio of resources of the spare parts and of manufacturing of the specific component. For labour energy, direct maintenance costs are used and the amount of operating years t considered:
+During the operation phase, flights are performed and maintenance is necessary. The needed fuel for operation can be read from the mission calculation and is not calculates in this phase. Resources for maintenance are production resources for spare parts and labour energy (heat and electricity). For the spare parts, resources determined in the production phase are used. It is assumed, that the ratio of the maintenance material costs of a certain component and the corresponding recurring costs of that component is equal to the ratio of resources of the spare parts and of manufacturing of the specific component. For labour energy, direct maintenance costs are used and the amount of operating years t considered:
 
-$energy [MJ] = specificEnergy[MJ/a] \cdot \frac{directMaintenanceCosts [\$]}{wage [\$/h] \cdot hoursPerYear [h/a]} \cdot t [yr]$
+$energy [MJ] = specificEnergy[MJ/a] \cdot \frac{directMaintenanceCosts [\$]}{wage [\$/h] \cdot hoursPerYear [h/a]} \cdot t [a]$
 
 
 #### End of life resources
 In the end of life (EoL) phase, the transport to EoL-site, disassembly, dismantling and recycling/incineration/landfill are considered.
-The transport to EoL-site is handled like a flight with a certain distance and the fuel demand f determined via the range R [NM] of this flight compared to the range of the known mission:
+The transport to EoL-site is handled like a flight with a certain distance and the fuel demand $f$ [kg] is determined via the range $R$ [NM] of this flight compared to the range of the known mission:
 
 $f_{EoL} = f_{mission} \cdot \frac{R_{EoL}}{R_{mission}}$
 
-Resources for disassembly and dismantling are determined as for the final assembly, but no heat energy is required as the the process takes place outdoors.
+Resources for disassembly and dismantling are determined as for the final assembly, but no heat energy is required as the the process typically takes place outdoors.
+
+$energy [MJ] = specificEnergy[MJ/a] \cdot \frac{costs [\$]}{wage [\$/h] \cdot hoursPerYear [h/a]} \cdot t [a]$
 
-$energy [MJ] = specificEnergy[MJ/a] \cdot \frac{costs [\$]}{wage [\$/h] \cdot hoursPerYear [h/a]} \cdot t [yr]$
+The EoL scenario defined in the module contains recycling, incineration and landfill rates for the aircraft components. The energy needed for all materials/components and all cases is summed up. With the ratios of incineration and landfill, the energy for all components and materials are calculated like this:
 
-The EoL scenario hardcoded in the module contains recycling, incineration and landfill rates for the aircraft components. The energy needed for all materials/components and all cases is summed up. With the ratios of incineration and landfill, the energy for all components and materials are calculated like this:
+$ E = E^*\cdot m_{comp} $
 
-$ energy [MJ] = specificEnergy [MJ/kg] \cdot componentMass \cdot  $
+where
 
-For recycling, the energy rate ER is needed additionally:
+- $E$: Energy $[MJ]$
+- $E^*$: Specific energy $[MJ/kg]$
+- $m_{comp}$: Mass of component $[kg]$
 
-$ energy [MJ] = \frac{1}{ER} \cdot specificEnergy [MJ/kg] \cdot componentMass \cdot  $
+For recycling, the energy rate $ER$ [-] is needed additionally:
+
+$ E = \frac{1}{ER} \cdot E^*\cdot m_{comp} $
 
 ### Input data {#lca-schaefer-input}
 The calculation results depend on following user inputs the aircraft exchange file:
-```xml
-- requirements_and_specifications
-  - general
-    - type
-    - model
-  - design_specification
-    - transport_task
-      - passenger_definition
-        - total_number_passengers
-  - requirements
-    - top_level_aircraft_requirements
-      - flight_envelope
-        - maximum_operating_velocity
-      - study_mission
-        - range
-        - payload_fractions
-          - passenger_mass_fraction
-  - assessment_scenario
-    - flights_per_year
-    - duration_operation
-  - mission_files
-    - design_mission_file
+```
+requirements_and_specifications/
+├── general/
+│   ├── type
+│   └── model
+├── design_specification/
+│   └── transport_task/
+│       └── passenger_definition/
+│           └── total_number_passengers
+├── requirements/
+│   └── top_level_aircraft_requirements/
+│       ├── flight_envelope/
+│       │   └── maximum_operating_velocity
+│       └── study_mission/
+│           ├── range
+│           └── payload_fractions/
+│               └── passenger_mass_fraction
+├── assessment_scenario/
+│   └── duration_operation
+└── mission_files/
+    └── design_mission_file
 ```
 Additionally, results from other Unicado tools are needed:
-```xml
-- component_design
-  - propulsion
-    - specific
-      - propulsion (ID="0")
-        - engine
-          - scale_factor
-          - model
-          - bucket_point
-            - thrust
-            - tsfc
-          - mass_properties
-            - mass
-        - nacelle (ID="0")
-          - mass_properties
-            - mass
-        - pylon (ID="0")
-          - mass_properties
-            - mass
-      - mass_properties
-        - mass
-  - systems
-    - specific
-      - maximium_power_demand
-      - geometry
-        - mass_properties
-          - bleed_air_system
-          - fuel_system
-      - mass_properties
-        - mass
-  - wing
-    - mass_properties
-      - mass
-  - fuselage
-    - mass_properties
-      - mass
-  - landing_gear
-    - mass_properties
-      - mass
-  - empennage
-    - specific
-      - geometry
-        - aerodynamic_surface (ID="0")
-          - name
-          - mass_properties
-            - mass
-        - aerodynamic_surface (ID="1")
-          - name
-          - mass_properties
-            - mass
-- analysis
-  - aerodynamics
-    - reference_values
-      - S_ref
-  - masses_cg_inertia
-    - maximum_takeoff_mass
-      - mass_properties
-        - mass
-    - operating_mass_empty
-      - mass_properties
-        - mass
-    - manufacturer_mass_empty
-      - mass_properties
-        - mass
-  - mission
-    - design_mission
-      - range
-      - block_time
-      - flight_time
-      - taxi_energy (ID="0")
-        - taxi_out_energy (ID="0")
-          - consumed_energy
-    - study_mission
-      - flight_time
-      - taxi_energy (ID="0")
-        - taxi_out_energy (ID="0")
-          - consumed_energy
-      - in_flight_energy
-        - trip_energy (ID="0")
-          - consumed_energy
+```
+├──component_design/
+│  ├── propulsion/
+│  │   ├── specific/
+│  │   ├── propulsion (ID="0")/
+│  │   │   ├── engine/
+│  │   │   │   ├── scale_factor
+│  │   │   │   ├── model
+│  │   │   │   ├── bucket_point/
+│  │   │   │   │   ├── thrust
+│  │   │   │   │   └── tsfc
+│  │   │   │   └── mass_properties/
+│  │   │   │       └── mass
+│  │   │   ├── nacelle (ID="0")/
+│  │   │   │   └── mass_properties/
+│  │   │   │       └── mass
+│  │   │   └── pylon (ID="0")/
+│  │   │       └── mass_properties/
+│  │   │           └── mass
+│  │   └── mass_properties/
+│  │       └── mass
+│  ├── systems/
+│  │   └── specific/
+│  │       ├── maximium_power_demand
+│  │       ├── geometry/
+│  │       │   └── mass_properties/
+│  │       │       ├── bleed_air_system
+│  │       │       └── fuel_system
+│  │       └── mass_properties/
+│  │           └── mass
+│  ├── wing/
+│  │   └── mass_properties/
+│  │       └── mass
+│  ├── fuselage/
+│  │   └── mass_properties/
+│  │       └── mass
+│  ├── landing_gear/
+│  │   └── mass_properties/
+│  │       └── mass
+│  └── empennage/
+│      └── specific/
+│          └── geometry/
+│              ├── aerodynamic_surface (ID="0")/
+│              │   ├── name
+│              │   └── mass_properties/
+│              │       └── mass
+│              └── aerodynamic_surface (ID="1")/
+│                  ├── name
+│                  └── mass_properties/
+│                      └── mass
+├── analysis/
+│   ├── aerodynamics/
+│   │   └── reference_values/
+│   │       └── S_ref
+│   ├── masses_cg_inertia/
+│   │   ├── maximum_takeoff_mass/
+│   │   │   └── mass_properties/
+│   │   │       └── mass
+│   │   ├── operating_mass_empty/
+│   │   │   └── mass_properties/
+│   │   │       └── mass
+│   │   └── manufacturer_mass_empty/
+│   │       └── mass_properties/
+│   │           └── mass
+│   └── mission/
+│       ├── design_mission/
+│       │   ├── range
+│       │   ├── block_time
+│       │   ├── flight_time
+│       │   ├── trip_energy
+│       │   │    └── consumed_energy
+│       │   ├── takeoff_energy
+│       │   │   └── consumed_energy
+│       │   ├── landing_energy
+│       │   │   └── consumed_energy
+│       │   └── taxi_energy (ID="0")/
+│       │       ├── taxi_out_energy (ID="0")/
+│       │       │   └── consumed_energy
+│       │       └── taxi_in_energy (ID="0")/
+│       │           └── consumed_energy
+│       └── study_mission/
+│           ├── range
+│           ├── flight_time
+│           ├── taxi_energy (ID="0")/
+│           │   ├── taxi_out_energy (ID="0")/
+│           │   │   └── consumed_energy
+│           │   └── taxi_in_energy (ID="0")/
+│           │       └── consumed_energy
+│           └── in_flight_energy/
+│               └── trip_energy (ID="0")/
+│                   └── consumed_energy
+└── assessment/
+    └── cost_estimation/
+        └── operating_cost/
+            └── direct_operating_cost/
+                └── flights_per_year_study_mission
 ```
 In the `ecological_assessment_conf.xml`, you can specify calculation modes and input parameters like testing hours for the different phases. Next to the control settings block, the following program settings can be set:
 ```xml
-- emission_calculation
-    - life_cycle_emissions_methods
-        - method
-        - schaefer
-            - engine_mode_switch
-            - engine_engineering_ratio
-            - development_phase
-                - test_phase
-                    - development_emission_setting
-                    - aircraft_specs
-                        - ETOPS_switch
-                        - engine_options
-                - wind_tunnel_test
-                    - test_hours
-                - structural_test
-                    - test_cycles
-                    - number_of_structural_test_aircraft
-                - system_test
-                    - system_integration_test_hours
-                    - iron_bird_test_hours
-                - engine_test
-                    - enable
-                    - number_of_new_engines
-                    - number_of_test_engines
-                    - rig_test
-                        - test_hours
-                        - max_continuous_thrust_percentage
-                    - flying_testbed
-                        - test_hours
-                        - flying_testbed_engines
-                            - engine_number
-                            - flying_testbed_fuel_consumption_per_engine
-                - flight_test
-                    - test_hours
-                    - number_of_flight_test_aircraft
-            - production_phase
-                - production_mode
-                - primary_material_recycling_switch
-                - number_produced_aircraft
-            - end_of_life_phase
-                - distance_to_end_of_life_site
+<standard_strategy description="Settings for standard strategy. Different methods can be used by defining them in this block.">
+    <emission_calculation description="Settings for the emission calculation">
+        <life_cycle_emissions_methods description="Settings for life cylce emission calculation">
+            <schaefer description="Settings for the emission calculations according to K.Schäfer(2018)">
+                <engine_mode_switch description="Includes engine life cycle in calculation (Dev+Production+Maintenance+EoL). Switch: true (engine included) / false (engine not included)">
+                    <value>true</value>
+                </engine_mode_switch>
+                <engine_engineering_ratio description="Engineering effort for engines relative to whole aircraft (derived from Micado CSR-02 costs)">
+                    <value>0.2113</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1</upper_boundary>
+                </engine_engineering_ratio>
+                <development_phase description="Settings for the calculation of the development phase">
+                    <test_phase description="Settings for calculation of test emissions">
+                        <development_emission_setting description="Selects scope of development emission calculation. Selector: mode_0 (no development emissions) / mode_1 (development emissions without production/endOfLife emissions of test components) / mode_2 (development emissions with production/endOfLife emissions of test components)">
+                            <value>mode_2</value>
+                        </development_emission_setting>
+                        <aircraft_specs description="Aircraft specifications needed for development calculations">
+                            <ETOPS_switch description="Aircraft and engine(s) will be tested for ETOPS (Extended-range Twin-engine Operations Performance Standards) approval, engine test: additional 3000 test cycles (a 0.5h). Switch: true (test) / false (no test)">
+                                <value>false</value>
+                            </ETOPS_switch>
+                            <engine_options description="Number of engine options for this aircraft">
+                                <value>2</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </engine_options>
+                        </aircraft_specs>
+                        <wind_tunnel_test description="Settings for wind tunnel test">
+                            <test_hours description="Number of wind tunnel hours in aircraft development">
+                                <value>15000</value>
+                                <unit>h</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>150000</upper_boundary>
+                            </test_hours>
+                        </wind_tunnel_test>
+                        <structural_test description="Settings for structural test">
+                            <test_cycles description="Number of tested flight cycles in aircraft development (twice the number of flight cycles for which the aircraft will be certified)">
+                                <value>160000</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>500000</upper_boundary>
+                            </test_cycles>
+                            <number_of_structural_test_aircraft description="Number of aircraft for structural tests">
+                                <value>2</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </number_of_structural_test_aircraft>
+                        </structural_test>
+                        <system_test description="Settings for system tests">
+                            <system_integration_test_hours description="Test hours at the system integration test rig">
+                                <value>5000</value>
+                                <unit>h</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10000</upper_boundary>
+                            </system_integration_test_hours>
+                            <iron_bird_test_hours description="Test hours on the Iron-Bird test rig">
+                                <value>5000</value>
+                                <unit>h</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10000</upper_boundary>
+                            </iron_bird_test_hours>
+                        </system_test>
+                        <engine_test description="Specify engine tests">
+                            <enable description="Switch to enable engine tests. Switch: true (engine tests on (only if new engine/s for aircraft has to be certified)) / false (engine tests off)">
+                                <value>true</value>
+                            </enable>
+                            <number_of_new_engines description="Number of new engine(s) to be certified">
+                                <value>1</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </number_of_new_engines>
+                            <number_of_test_engines description="Number of engine for test rig (approx. 5) and flight test (approx. 1)">
+                                <value>6</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>100</upper_boundary>
+                            </number_of_test_engines>
+                            <rig_test>
+                                <test_hours description="Test hours on the engine rig within aircraft development without/with ETOPS (Extended-range Twin-engine Operations Performance Standards) hours (s.inclETOPS)">
+                                    <value>1500</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>15000</upper_boundary>
+                                </test_hours>
+                                <incl_ETOPS_switch description="Adds ETOPS (Extended-range Twin-engine Operations Performance Standards) certification in test hours. Switch: true (is included) / false (is not included)">
+                                    <value>false</value>
+                                </incl_ETOPS_switch>
+                                <max_continuous_thrust_percentage description="Percentage of test hours on the engine rig with Maximum Continuous Thrust in aircraft development">
+                                    <value>0.1</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </max_continuous_thrust_percentage>
+                            </rig_test>
+                            <flying_testbed description="Settings for the flying testbed ">
+                                <test_hours description="Test hours on flying testbed aircraft development">
+                                    <value>225</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1000</upper_boundary>
+                                </test_hours>
+                                <flying_testbed_engines description="Information about the engine at the flying_test_bed_engines (!), not to be tested engine">
+                                    <engine_number description="Number of engines on flying testbed (without tested engine)">
+                                        <value>3</value>
+                                        <unit>1</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>20</upper_boundary>
+                                    </engine_number>
+                                    <flying_testbed_fuel_consumption_per_engine description="Fuel consumption of the flying testbed engines of (one!) engine in cruise flight">
+                                        <value>3000</value>
+                                        <unit>kg/h</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>10000</upper_boundary>
+                                    </flying_testbed_fuel_consumption_per_engine>
+                                </flying_testbed_engines>
+                            </flying_testbed>
+                        </engine_test>
+                        <flight_test description="Settings for the flight tests">
+                            <test_hours description="Flight test hours in aircraft development for one / all Engine(s)-Option/s (s. incl_engine_options)">
+                                <value>2500</value>
+                                <unit>h</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10000</upper_boundary>
+                                <incl_engine_options description="Defines if all engine options are included in tests. Switch: true (include all engine options) / false (only one engine)">
+                                    <value>false</value>
+                                </incl_engine_options>
+                            </test_hours>
+                            <number_of_flight_test_aircraft description="Number of aircraft for flight tests">
+                                <value>6</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </number_of_flight_test_aircraft>
+                        </flight_test>
+                    </test_phase>
+                </development_phase>
+                <production_phase description="Settings for the calculation of the production phase">
+                    <production_mode description="Selects the production calculation mode. Selector: mode_0 (material mode) / mode_1 (main parts mode)">
+                        <value>mode_1</value>
+                    </production_mode>
+                    <primary_material_recycling_switch description="Enables primary material recycling. Switch: true (primary material will be recycled) / false (no recyling)">
+                        <value>true</value>
+                    </primary_material_recycling_switch>
+                    <number_produced_aircraft description="Number of produced aircraft per programm">
+                        <value>1500</value>
+                        <unit>1</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </number_produced_aircraft>
+                </production_phase>
+                <operating_phase description="Settings for the calculation of the opeerating phase">
+                </operating_phase>
+                <end_of_life_phase description="Settings for the calculation of the end of life phase">
+                    <distance_to_end_of_life_site description="Distance to be flown to the demolition location">
+                        <value>1000</value>
+                        <unit>NM</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </distance_to_end_of_life_site>
+                </end_of_life_phase>
+            </schaefer>
+        </life_cycle_emissions_methods>
+    </emission_calculation>
 ```
 Other inputs are mission related. The design mission taxi time is needed and read from the *design_mission.xml*:
 
-```xml
-- taxi_time_origin
-- taxi_time_destination
+```
+├── taxi_time_origin
+├── taxi_time_destination
 ```
 
 And last but not least, the emissions provided by the submodule [mission_emissions](mission_emissions) will be read from *ecological_assessment_results.xml*:
 
-```xml
-- mission_emissions
-    - design_mission
-        - emissions
-            - LTO_cycle
-                - CO2
-                - H2O
-                - SO2
-                - SO4
-                - HC
-                - CH4
-                - CO
-                - NOx
-                - soot
-                - c_soot_LTO_max
-            - cruise
-                - CO2
-                - H2O
-                - SO2
-                - SO4
-                - HC
-                - CH4
-                - CO
-                - NOx
-                - soot
-    - study_mission
-        - emissions
-            - LTO_cycle
-                - CO2
-                - H2O
-                - SO2
-                - SO4
-                - HC
-                - CH4
-                - CO
-                - NOx
-                - soot
-                - c_soot_LTO_max
-            - cruise
-                - CO2
-                - H2O
-                - SO2
-                - SO4
-                - HC
-                - CH4
-                - CO
-                - NOx
-                - soot
+```
+mission_emissions/
+├── design_mission/
+│   └── emissions/
+│       ├── LTO_cycle/
+│       │   ├── CO2
+│       │   ├── H2O
+│       │   ├── SO2
+│       │   ├── SO4
+│       │   ├── HC
+│       │   ├── CH4
+│       │   ├── CO
+│       │   ├── NOx
+│       │   ├── soot
+│       │   └── c_soot_LTO_max
+│       └── cruise/
+│           ├── CO2
+│           ├── H2O
+│           ├── SO2
+│           ├── SO4
+│           ├── HC
+│           ├── CH4
+│           ├── CO
+│           ├── NOx
+│           └── soot
+└── study_mission/
+    └── emissions/
+        ├── LTO_cycle/
+        │   ├── CO2
+        │   ├── H2O
+        │   ├── SO2
+        │   ├── SO4
+        │   ├── HC
+        │   ├── CH4
+        │   ├── CO
+        │   ├── NOx
+        │   ├── soot
+        │   └── c_soot_LTO_max
+        └── cruise/
+            ├── CO2
+            ├── H2O
+            ├── SO2
+            ├── SO4
+            ├── HC
+            ├── CH4
+            ├── CO
+            ├── NOx
+            └── soot
 ```
 ### Output data {#lca-schaefer-output}
 The Method writes data to CSV files in the *aircraft\_exchange\_file\_directory/reporting/plots/csv_files* folder containing emissions, energy demand, fuel demand and GWP100 for all processes. Additionally, total emissions of the four phases are written to the `ecological_assessment_results.xml`. As described in [Usage of the ecological_assessment tool](#usage), an HTML report including a plot will be generated.
 
-## Air Quality Index Schaefer {#aqi-schaefer}
+## Air Quality Index (Schaefer) {#aqi-schaefer}
 This method provides a single indicator - called the Air Quality Index (AQI) - for the assessment of air quality. The AQI can take values between 0 and 1, with 1 indicating that the allowable limits defined by ICAO are reached by all species. Therefore, low values are preferable.
 
 ### General principles {#aqi-schaefer-generalprinciples}
@@ -497,42 +714,42 @@ $ AQI = 1/n \cdot \sum x_i/x_{i,max}$
 where:
 
 - $ x_i $: emission mass [g] ( for CO, HC, NOx) or maximum concentration [mg/m^3] ( for soot) during the landing and takeoff cycle,
-- $ x_{i,max}$: regulatory value defined by ICAO, the ratio of emission mass Dp [g] emitted during LTO and the rated thrust F00 [kN],
+- $ x_{i,max}$: regulatory value defined by ICAO (the ratio of emission mass $Dp$ [g] emitted during LTO and the rated thrust $F00$ [kN]),
 - $ n $: number of emission species.
 
 ### Input data {#aqi-schaefer-input}
 Only engine and emission data are needed. To construct the engine object, the following is required from aircraft exchange file:
-```xml
-- component_design
-    - propulsion
-        - specific
-        - propulsion (ID="0")
-            - engine
-                - engine_model
-                - scale_factor
+```
+component_design/
+└── propulsion/
+    ├── specific
+    └── propulsion (ID="0")/
+        └── engine/
+            ├── engine_model
+            └── scale_factor
 ```
 
 From `ecological_assessment_results.xml` the emissions during LTO of the study mission are needed:
-```xml
-- mission_emissions
-    - study_mission
-        - emissions
-            - LTO_cycle
-            - HC
-            - CO
-            - NOx
-            - c_soot_LTO_max
+```
+mission_emissions/
+└── study_mission/
+    └── emissions/
+        └── LTO_cycle/
+            ├── HC
+            ├── CO
+            ├── NOx
+            └── c_soot_LTO_max
 ```
 ### Output data {#aqi-schaefer-output}
 The submodule writes its calculation results into the HTML report located in *aircraft_exchange_file_directory/reporting/report_html*.
 
-## Climate Model Dallara {#climate-model-dallara}
+## Climate Model (Dallara) {#climate-model-dallara}
 The climate model calculates key climate impact metrics: Radiative Forcing (RF), Absolute Global Warming Potential (AGWP), Absolute Global Temperature Potential (AGTP), and Average Temperature Response (ATR). The calculation methodology is derived from Dallara's work in 2011 \cite Dal11, providing a systematic approach to assess the environmental effects of various emissions.
 
 The key metrics are:
 
 - **RF**: quantifies the change in energy flux in the Earth's atmosphere due to emissions, specifically related to greenhouse gases, aerosols, and other components like soot or water vapor.
-- **AGWP**: measures the cumulative impact of an emission over a specific time horizon (typically 20, 100, or 500 years), comparing it to CO₂'s effect.
+- **AGWP**: measures the cumulative RF of an emission over a specific time horizon (typically 20, 100, or 500 years).
 - **AGTP**: calculates the temperature change due to emissions at a given point in time, typically looking at how gases contribute to warming.
 - **ATR**: ATR evaluates the mean temperature change over time.
 
@@ -547,12 +764,23 @@ Additionally aircraft induced cloudiness (AIC) is considered.
 
 A particular feature of the method is the usage of forcing factors, which are unitless parameters. These factors modify the radiative forcing for emissions at different altitudes by normalizing the RF values to a fleet wide average. The altitude is the only flight trajectory parameter considered, meaning the geographic location is not factored into the calculations. This altitude dependency recognizes that emissions at higher altitudes (such as those from aviation) have a different forcing impact compared to emissions at ground level, as atmospheric processes and the distribution of pollutants vary with height.
 
-In the model, you can explore how the influence of time affects climate impact by adjusting the rate of devaluation for temperature response. A value of zero indicates that the temperature changes occurring after operations are given equal weight compared to changes during the operational period. Higher values of the rate, however, signify that postoperation impacts become progressively less important over time, with each subsequent year's temperature change being less significant than that of the previous year.
+In the model, you can explore how the influence of time effects climate impact by adjusting the rate of devaluation for temperature response. A value of zero indicates that the temperature changes occurring after operations are given equal weight compared to changes during the operational period. Higher values of the rate, however, signify that postoperation impacts become progressively less important over time, with each subsequent year's temperature change being less significant than that of the previous year.
 
 ### General principles {#climate-model-generalprinciples}
-The submodules is based on the emissions calculated by the mission submodule. The values are read and scaled to one year, to get the yearly emission mass E.
+The submodules is based on the emissions calculated by the mission submodule. Following metrics are calculated, always for one kilogram of one emission species, for the annual amount of this emission and finally for all emission species together:
+
+<pre class='mermaid'>
+  graph LR;
+  A[Emissions]-->B[RF]
+  B-->C[Normalized RF]
+  C-->D[Temperature Change]
+  D-->E[Weighted Temperature Change]
+  E-->F[ATR]
+</pre>
 
-To calculate the radiative forcing following formulas are used:
+In a first step, the emission masses are read and scaled to annual emissions.
+
+Afterwards, following formulas are used to calculate the radiative forcing:
 
 $ RF(t, h) = s_i(h) \cdot \int_{0}^{t} G_i(t-\tau)E_i(\tau)d\tau$  for  $i \in [CO_2, O_{3L}, CH_4]$
 
@@ -560,7 +788,7 @@ $ RF(t, h) = s_i(h) \cdot \left(\frac{RF_{ref}}{E_{ref}}\right)\cdot E_i(t)$  fo
 
 $ RF_{AIC}(t, h) = s_{AIC}(h) \cdot \left(\frac{RF_{ref}}{L_{ref}}\right)_{AIC}\cdot L(t)$
 
-with
+where
 
 - $RF$: radiative forcing [W/m^2]
 - $s_i$: forcing factor [-]
@@ -606,7 +834,7 @@ with the weighting function:
   $
 </div>
 
-with
+where
 
 - $t$: current year
 - $t_{max}$: considered time frame
@@ -623,58 +851,96 @@ $ATR = \sum_{i} ATR_i$
 
 ### Input data {#climate-model-input}
 From the aircraft exchange file following parameter are needed:
-```xml
-- requirements_and_specifications
-    - design_specification
-        - assessment_scenario
-            - flights_per_year
-    - analysis
-        - mission
-            - study_mission
-                - range
-                - cruise
-                    - top_of_climb_range
-                    - top_of_descent_range
-                - cruise_steps
-                    - cruise_step (ID="0")
-                        - relative_end_of_cruise_step
-                        - altitude
+```
+├── analysis/
+│    └── mission/
+│       └── study_mission/
+│           ├── range
+│           └── cruise/
+│               ├── top_of_climb_range
+│               ├── top_of_descent_range
+│               └── cruise_steps/
+│                   └── cruise_step (ID="0")/
+│                       ├── relative_end_of_cruise_step
+│                       └── altitude
+└── assessment/
+    └── cost_estimation/
+        └── operating_cost/
+            └── direct_operating_cost/
+                └── flights_per_year_study_mission
 ```
 The submodule reads following data from the program settings in the configuration file:
 ```xml
-- standard_strategy
-    - impact_calculation
-        - climate_model_methods
-            - method
-            - dallara
-                - fuel_factor_AIC
-                - max_integration_period
-                - devaluation_rate
-                - forcing_factors
-                    - variations
-                    - aircraft_induced_cloudiness
-                    - short_lived_ozone
-                    - methan_and_long_lived_ozone
-                    - data_set_selector
+<standard_strategy description="Settings for standard strategy. Different methods can be used by defining them in this block.">
+    <impact_calculation description="Settings for impact calculation">
+        <climate_model_methods description="Settings for climate model">
+            <dallara description="Settings for the climate impact calculation according to E.Schwartz-Dallara(2011)">
+                <forcing_factors>
+                    <data_set_selector description="Selects data set for forcing factor calculation. Selector: mode_0 (Data set by E.Schwartz-Dallara (2011)) / mode_1 (Data set by K.Dahlmann (2011))">
+                        <value>mode_0</value>
+                    </data_set_selector>
+                    <variations description="Forcing factors (S_i_height) are within a certain likelihood range (Reference Dallara_2011_Metric for comparing...). Here you can vary the forcing factors.">
+                        <aircraft_induced_cloudiness description="Variation of AIC forcing factor">
+                            <value>1</value>
+                            <unit>1</unit>
+                            <lower_boundary>0.67</lower_boundary>
+                            <upper_boundary>1.33</upper_boundary>
+                        </aircraft_induced_cloudiness>
+                        <short_lived_ozone description="Variation of short-lived ozone forcing factor">
+                            <value>1</value>
+                            <unit>1</unit>
+                            <lower_boundary>0.67</lower_boundary>
+                            <upper_boundary>1.33</upper_boundary>
+                        </short_lived_ozone>
+                        <methan_and_long_lived_ozone description="Variation of methan and long-live ozone forcing factor">
+                            <value>1</value>
+                            <unit>1</unit>
+                            <lower_boundary>0.67</lower_boundary>
+                            <upper_boundary>1.33</upper_boundary>
+                        </methan_and_long_lived_ozone>
+                    </variations>
+                </forcing_factors>
+                <fuel_factor_AIC description="Set a factor to scale radiative forcing of aircraft induced cloudiness (AIC) relative to kerosene depending on fuel type. liquidHydrogen=0.3...0.8">
+                    <value>0.6</value>
+                    <unit>1</unit>
+                    <lower_boundary>0.3</lower_boundary>
+                    <upper_boundary>1</upper_boundary>
+                </fuel_factor_AIC>
+                <max_integration_period description="Time over which radiative forcing is to be integrated">
+                    <value>200</value>
+                    <unit>a</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </max_integration_period>
+                <devaluation_rate description="Rate of devaluation of temperature response. Zero means, that postoperation impacts are equally important compared with impacts during operating years, higher values mean that temperature change each postoperation year is less important than the temperature change experienced the previous year">
+                    <value>0.03</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>10^10</upper_boundary>
+                </devaluation_rate>
+            </dallara>
+        </climate_model_methods>
+    </impact_calculation>
+</standard_strategy>
 ```
 
 Additionally, the emission masses of the study missions are needed:
-```xml
-- mission_emissions
-    - study_mission
-        - emissions
-            - LTO_cycle
-                - CO2
-                - H2O
-                - SO4
-                - NOx
-                - soot
-            - cruise
-                - CO2
-                - H2O
-                - SO4
-                - NOx
-                - soot
+```
+mission_emissions/
+└── study_mission/
+    └── emissions/
+        ├── LTO_cycle/
+        │   ├── CO2
+        │   ├── H2O
+        │   ├── SO4
+        │   ├── NOx
+        │   └── soot
+        └── cruise/
+            ├── CO2
+            ├── H2O
+            ├── SO4
+            ├── NOx
+            └── soot
 ```
 
 
diff --git a/docs/documentation/analysis/ecological_assessment/changelog.md b/docs/documentation/analysis/ecological_assessment/changelog.md
index ab0e5a4f00fbf2c9bafaefa6d2fc75a891eb91fa..4967d86d45541cda4d5ec4db6187b9a7e1ff5e67 100644
--- a/docs/documentation/analysis/ecological_assessment/changelog.md
+++ b/docs/documentation/analysis/ecological_assessment/changelog.md
@@ -5,6 +5,7 @@ The *v3.0.0* release is a **major** release with many changes including the *mod
 
 ### Changes
 The following changes have been introduced:
+
 - The software architecture has been completely refactored.
 - Cost calculation methods have been integrated to be independent of cost modules.
 
diff --git a/docs/documentation/analysis/ecological_assessment/software-architecture.md b/docs/documentation/analysis/ecological_assessment/software-architecture.md
index 03fcde244a63a7039e45c8b54c60523e2dee06bd..57dda6f05b189440c78e2a6f69d65976365fe30d 100644
--- a/docs/documentation/analysis/ecological_assessment/software-architecture.md
+++ b/docs/documentation/analysis/ecological_assessment/software-architecture.md
@@ -2,13 +2,26 @@
 
 If you're interested in developing this module, reading this chapter could be helpful. It provides some insights into the software (folder) structure and shall help you to find a way around :flashlight:
 
+The following graph shows a rough overview of the module structure, with every end point standing for a submodule described in [Basic Concepts](basic-concepts.md):
+<pre class='mermaid'>
+  graph TD;
+    A[ecological_assessment/src]-->C[standard_strategy]
+	C-->D[emission_calculation]
+    D-->F[life_cycle_emissions]
+    F-->H[LCA_schaefer]
+    D-->G[mission_emissions]
+	C-->E[impact_calculation]
+    E-->I[air_quality_index_schaefer]
+    E-->J[climate_impact_dallara]
+</pre>
+
 As you have for sure carefully read our [developer guide](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/get-involved/developer-installation/), you already know everything about the modularized structure of the UNICADO and the top, intermediate and low level of its modules. So, here is how the *ecological_assessment* tool looks like:
 
-- On the top level, nothing fancy happens. Within the *src* directory, you will find the `main_ecological_assessment.cpp` which executes the module and the `ecolocical_assessment.cpp`/`ecolocical_assessment.h`, where the class EcologicalAssessment, which is inherited from the class Module, is defined. Therefor, it will run the functions `initialize`, `run`, `update`, `report` and `save` of the strategy. The save function will save and close the aircraft XML file and close the configuration file. In the class definition, you the RuntimeIO pointer is
+- On the top level, nothing fancy happens. Within the *src* directory, you will find the `main_ecological_assessment.cpp` which executes the module and the `ecolocical_assessment.cpp`/`ecolocical_assessment.h`, where the class EcologicalAssessment, which is inherited from the class Module, is defined. Therefor, it will run the functions `initialize`, `run`, `update`, `report` and `save` of the strategy. The save function will save and close the aircraft XML file and close the configuration file.
 
-- The intermediate level is structured by the implemented strategies. This section is a short one: there is only one strategy implemented in the module. It is called **STANDARD** and provides access to all the submodules.
+- The intermediate level is structured by the implemented strategies. This section is a short one: there is only one strategy implemented in the module. It is called **STANDARD** and provides access to all the submodules. It will be set according to the method defined in the `strategy_selector` node of the configuration file.
 
-- On the low level, you'll find all in [basic concepts](basic-concepts.md) described methods. The folder structure is like the module structure. So the *standard_strategy* is subdivided into *emission_calculation* and *impact_calulation*. In the directory, there is the class StandardStrategy, which contains the definition of `initialize`, `run`, `update`, `report` and `save`. The class can be seen as the coordinator of the submodules: in `initialize` it reads from the configuration file, which submodules shall be executed and prepares the `ecological_assessment_results.xml`. In `run`, the submodule's `run` functions are executed. In `update`, the aircraft exchange file will be updated and `report` calls the both the plotting and report functions of all executed submodules and generates the overall module reports. In a last step, `save` will save the `ecological_assessment_results.xml`. The *standard_strategy* directory additionally contains teh definition of emissionsClass, which provides a collection all emissions calculated by the module. Within the folder *emission_calculation* there are directories for *mission_emissions* and *life_cycle_emissions* which contain the corresponding methods. In addition, the class ecoDatabase offers access to database data used for calculations. The directory *impact_calculation* contains all methods to determine the impact of the emissions.
+- On the low level, you'll find all in [basic concepts](basic-concepts.md) described methods. The folder structure is like the module structure. So the *standard_strategy* is subdivided into *emission_calculation* and *impact_calulation*. In the directory, there is the class StandardStrategy, which contains the definition of `initialize`, `run`, `update`, `report` and `save`. The class can be seen as the coordinator of the submodules: in `initialize` it reads from the configuration file, which submodules shall be executed and prepares the `ecological_assessment_results.xml`. In `run`, the submodule's `run` functions are executed. In `update`, the aircraft exchange file will be updated and `report` calls the both the plotting and report functions of all executed submodules and generates the overall module reports. In a last step, `save` will save the `ecological_assessment_results.xml`. The *standard_strategy* directory additionally contains the definition of emissionsClass, which provides a collection all emissions calculated by the module. Within the folder *emission_calculation* there are directories for *mission_emissions* and *life_cycle_emissions* which contain the corresponding methods. In addition, the class ecoDatabase offers access to database data used for calculations. The directory *impact_calculation* contains all methods to determine the impact of the emissions.
 
     All submodules have a class _IOData_, which contains all data from acXML and functions to read or write the data. Additionally, the class has a member _configuration_, which provides access to configuration file data. The `run` function of the submodules shall call functions to
 
diff --git a/docs/documentation/analysis/ecological_assessment/standard-strategy.md b/docs/documentation/analysis/ecological_assessment/standard-strategy.md
deleted file mode 100644
index 29e04c9016f59c25d7ad05f1b2ceedeafa023e85..0000000000000000000000000000000000000000
--- a/docs/documentation/analysis/ecological_assessment/standard-strategy.md
+++ /dev/null
@@ -1,37 +0,0 @@
-
-# Standard Strategy {#standard-strategy}
-## Overview
-This page provides an overview of the structure and functionalities of the standard strategy.
-The architecture is (based on the parts of a Life Cycle Assessment (LCA)) structured into various submodules (see @subpage submodules). The methods of the submodules are located in subfolders called "emissionCalculation" or "impactCalculation," respectively.
-- The folder **emissionCalculation** contains all methods to determine emissions.
-    - In one folder, you'll find the method for mission calculation. By changing the setting in the configuration file, you can choose different methods for emission calculation. Both kerosene and hydrogen-burning turbines can be calculated. The results will be saved in the _ecological\_assessment\_results.xml_.
-    - The other folder provides functions for life cycle emission calculation. The implemented method is based on Schaefer (2017) \cite Sch17  and determines the emissions for development, production, operation, and end-of-life phases.
-    - Additionally, you'll find the **ecoDatabase**, a class that offers a variety of constants to calculate the emissions in all aircraft life phases.
-- The folder **impactCalculation** contains different methods to calculate the consequences of the emissions.
-    - The air quality index is determined according to Schaefer (2017) \cite Sch17.
-    - The climate impact is determined according to Dallara (2011) \cite Dal11.
-
-For a first overview, examining the folder structure (file list) could be beneficial. For more detailed insights, exploring the collaboration diagrams or the source code is recommended. In the following, information about the coordination of the module subparts and their behavior is provided.
-
-The corresponding class `StandardStrategy`, derived from the class `Strategy`, coordinates all calculations based on the methods chosen by the user. It contains all classes of the submodules, as well as functions for generating the plots and the output files. It handles _shared_ptr_ for collecting the HTML report body information of all submodules and the `ecological_assessment_results.xml` data exchanged between the submodules. It includes the functions `initialize`, `run`, `update`, `report`, and `save` (inherited from the `Module` class in **moduleBasics**).
-- **initialize()**: The methods for the submodules are read from the config file, and the report and `ecological_assessment_results` are initialized.
-- **run()**: Depending on the chosen methods, the run function of the methods is executed. Important: The emissions of the flown mission will always be calculated, as they are needed for all other methods.
-- **update()**: Depending on the chosen methods, the acXML will be updated.
-- **report()**: Depending on the chosen methods, the plots will be generated, and the HTML as well as TeX reports will be written.
-- **save()**: The `ecological_assessment_results.xml` will be saved and closed.
-
-
-## Submodule Description {#submodules}
-
-### Submodule Routines {#submodules-routines}
-All submodules have a class _IOData_, which contains all data from acXML and functions to read or write the data. Additionally, it has a member _configuration_, which provides access to configuration file data. The submodules are executed via the function `run`, which is called by the `StandardStrategy`. The `run` function shall call functions to initialize the data, perform the calculation routines, and update the `ecological_assessment_results.xml` (in case there are results that are needed by other parts of *ecological_assessment*).
-
-### Submodule Description {#submodules-description}
-
-The following subpages will provide you with an overview of the implemented methodologies. For every submodule, there is a brief description of the method, as well as the required inputs and outputs. To gain deeper insights into the calculation routines, you're encouraged to take a look at the source code and the cited literature.
-
-The following submodules are available:
-- @subpage mission-emissions
-- @subpage lca-schaefer
-- @subpage aqi-schaefer
-- @subpage climate-model-dallara
\ No newline at end of file
diff --git a/docs/documentation/analysis/ecological_assessment/usage.md b/docs/documentation/analysis/ecological_assessment/usage.md
index 5f341853f1b67e1590ae3a49b5b49eb7c7b7b4ae..483c52b44db8491b07bdf1774fcb4e1fed7161de 100644
--- a/docs/documentation/analysis/ecological_assessment/usage.md
+++ b/docs/documentation/analysis/ecological_assessment/usage.md
@@ -3,12 +3,35 @@ You have carefully read the [basic-concepts](basic-concepts.md) and feel ready t
 
 ## Prerequisites
 1. It is assumed that you have the `UNICADO Package` installed, including the executables and UNICADO libraries. If you are a developer, you need to build the tool first (see [build instructions on the UNICADO website](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/build/cpp/)).
-2. Fill out the configuration file `ecological_assessment_config.xml`.
-    - change at least in `control_settings`:
-        - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings
+2. Fill out the configuration file `ecological_assessment_conf.xml`. Check and change if needed at least following settings:
+    - change in `control_settings`:
+        ```
+        control_settings/
+        ├── aircraft_exchange_file_name/
+        ├── aircraft_exchange_file_directory/
+        ├── console_output/
+        ├── plot_output/
+        │   └── enable/
+        ├── inkscape_path/
+        └── gnuplot_path/
+        ```
+        - set `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings
         - set `console_output` at least to `mode_1`
-        - set `plot_output` to false (or define `inkscape_path` and `gnuplot_path`)
-    - define in the `program_settings` which submodules you would like to execute
+        - set `plot_output` to false **or** define `inkscape_path` and `gnuplot_path`
+    - define in the `program_settings` which submodules you would like to execute:
+        ```
+        program_settings/
+        ├── strategy_selector/
+        └── standard_strategy/
+            ├── emission_calculation/
+            │   └── life_cycle_emissions_methods/
+            │       └── method/
+            └── impact_calculation/
+                ├── climate_model_methods/
+                │   └── method/
+                └── air_quality_methods/
+                    └── method/
+        ```
     - all other parameters can be left at default values
 3. You need to provide all necessary input data. What is necessary depends on the chosen methods (or executed submodule). In general, you need a (shortened) project environment as described in [Seperate Tool Execution](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/tutorials/seperate-tool-execution/). The aircraft exchange file need to located at the path you defined in the configuration file. Here is an example with a CSMR-2020 in the projects directory:
 
@@ -17,7 +40,7 @@ You have carefully read the [basic-concepts](basic-concepts.md) and feel ready t
     project environment
     ├── ecological_assessment/
     │   ├── ecological_assessment.exe
-    │   └── ecological_assessment_config.xml
+    │   └── ecological_assessment_conf.xml
     ├── projects/
     │   └──  CSMR/
     │        └──CSMR-2020
@@ -30,7 +53,26 @@ You have carefully read the [basic-concepts](basic-concepts.md) and feel ready t
     If you used the UNICADO installer, you will automatically have this environment in your UNICADOworkflow directory. But make sure, that the aircraft exchange file includes all nodes defined in the input data sections of the submodule you would like to execute (remember: you'll find the information [here](basic-concepts.md)). If the tool is executed via the workflow, all data will be available anyway.
 
 ## Tool execution
-If you have prepared everything, you can open a terminal and run *ecological_assessment.exe*. You will see output in the console window. If you chose `mode_1` for console output, you'll only be informed about the ongoing calculation step. For more information, choose a higher mode. At `mode_1`, you will get following output:
+If you have prepared everything, you can open a terminal and run *ecological_assessment.exe*.
+
+=== "cmd"
+
+    ``` { .sh .copy }
+    ecological_assessment.exe
+    ```
+
+=== "powershell"
+
+    ``` { .sh .copy }
+    ecological_assessment.exe
+    ```
+=== "git bash"
+
+    ``` { .sh .copy }
+    ./ecological_assessment.exe
+    ```
+
+You will see output in the console window. If you chose `mode_1` for console output, you'll only be informed about the ongoing calculation step. For more information, choose a higher mode. At `mode_1`, you will get following output:
 ```xml
 *******************************************************************************
 27.01.2025 14:33:32 - Start ecological_assessment
@@ -112,16 +154,21 @@ After successful calculation, the aircraft exchange file will be updated, plots
 27.01.2025 14:34:25 - CSS code written to style.css successfully.
 27.01.2025 14:34:25 - Finish ecological_assessment
 ```
-You will find a `.log` file within the directory of the executable and an HTML report in the directory of  `aircraft_exchange_file_directory/reporting/reportHTML`. Depending on your chosen methods, results are saved in
+You will find
 
-- `/aircraft_exchange_file/assessment/average_temperature_response`
-- and/or in the files you'll find in the `aircraft_exchange_file_directory/reporting/plots/` directory
-- and/or in the files you'll find in the `aircraft_exchange_file_directory/reporting/plots/csv_files` directory.
+- a `.log` file within the directory of the executable,
+- an HTML report in the directory of  `aircraft_exchange_file_directory/reporting/report_html`,
+- an xml file in `aircraft_exchange_file_directory/reporting/report_xml`
+- and depending on your chosen methods, additional results are saved in
+    - `/aircraft_exchange_file/assessment/average_temperature_response`
+    - and/or in the files you'll find in the `aircraft_exchange_file_directory/reporting/plots/` directory
+    - and/or in the files you'll find in the `aircraft_exchange_file_directory/reporting/plots/csv_files` directory.
 
+Check the Output data sections of [Basic Concepts](basic-concepts.md) to see, which outputs you can expect.
 Be aware of the files' timestamp as there could be leftovers of earlier program executions!
 
 ## Changing user input
-If you want to adapt the tool's execution, you can modify the parameters within the configuration file. There, you can enable or disable specific aspects of the ecological assessment and select the methods to be used for the calculations. At the [basic concepts](basic-concepts.md), you can check which parameters are available. Start with changing only one parameter at once, so you can track the influence of this parameter!
+If you want to adapt the tool's execution, you can modify the parameters within the configuration file. There, you can enable or disable specific aspects of the ecological assessment and select the methods to be used for the calculations. At the [Basic Concepts](basic-concepts.md), you can check which parameters are available. Start with changing only one parameter at once, so you can track the influence of this parameter!
 
 ## Troubleshooting
 If something does not work as expected:
diff --git a/docs/documentation/analysis/mission_analysis/figures/acceleration/PP_for_gif.pptx b/docs/documentation/analysis/mission_analysis/figures/acceleration/PP_for_gif.pptx
new file mode 100644
index 0000000000000000000000000000000000000000..4bde5657badf3751e3d952b276529995f7c4db8b
Binary files /dev/null and b/docs/documentation/analysis/mission_analysis/figures/acceleration/PP_for_gif.pptx differ
diff --git a/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.drawio b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.drawio
new file mode 100644
index 0000000000000000000000000000000000000000..e2c9f9e4e859540a3704b6c09cc603bb52f480e2
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.drawio
@@ -0,0 +1,77 @@
+<mxfile host="Electron" modified="2025-01-23T11:02:38.911Z" agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/22.0.2 Chrome/114.0.5735.289 Electron/25.8.4 Safari/537.36" etag="3bY63jl8jJOAUaerBc7u" version="22.0.2" type="device">
+  <diagram id="C5RBs43oDa-KdzZeNtuy" name="Page-1">
+    <mxGraphModel dx="1036" dy="1783" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
+      <root>
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-0" />
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-1" parent="WIyWlLk6GJQsqaUBKTNV-0" />
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-2" value="" style="rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;edgeStyle=orthogonalEdgeStyle;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="WIyWlLk6GJQsqaUBKTNV-3" target="WIyWlLk6GJQsqaUBKTNV-6" edge="1">
+          <mxGeometry relative="1" as="geometry" />
+        </mxCell>
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-3" value="&lt;font style=&quot;font-size: 18px;&quot;&gt;Compute performance&lt;br&gt;data using set_segment_end_conditions&lt;/font&gt;" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="430" y="-60" width="270" height="70" as="geometry" />
+        </mxCell>
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-4" value="&lt;font style=&quot;font-size: 18px;&quot;&gt;Yes&lt;/font&gt;" style="rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;edgeStyle=orthogonalEdgeStyle;entryX=0.5;entryY=0;entryDx=0;entryDy=0;exitX=0.5;exitY=1;exitDx=0;exitDy=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="WIyWlLk6GJQsqaUBKTNV-6" target="VD6oQmZdT0cPyfVzGxJv-10" edge="1">
+          <mxGeometry x="0.0456" y="-20" relative="1" as="geometry">
+            <mxPoint x="41" as="offset" />
+            <mxPoint x="219.71" y="210" as="sourcePoint" />
+            <mxPoint x="219.71" y="270" as="targetPoint" />
+            <Array as="points">
+              <mxPoint x="830" y="40" />
+              <mxPoint x="830" y="40" />
+            </Array>
+          </mxGeometry>
+        </mxCell>
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-5" value="&lt;font style=&quot;font-size: 18px;&quot;&gt;No&lt;/font&gt;" style="edgeStyle=orthogonalEdgeStyle;rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;entryX=0.5;entryY=0;entryDx=0;entryDy=0;exitX=0.5;exitY=0;exitDx=0;exitDy=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="WIyWlLk6GJQsqaUBKTNV-6" target="VD6oQmZdT0cPyfVzGxJv-5" edge="1">
+          <mxGeometry x="-0.9379" y="-20" relative="1" as="geometry">
+            <mxPoint as="offset" />
+            <mxPoint x="298.97" y="175" as="sourcePoint" />
+            <mxPoint x="308.97" y="-40" as="targetPoint" />
+            <Array as="points">
+              <mxPoint x="830" y="-100" />
+              <mxPoint x="130" y="-100" />
+            </Array>
+          </mxGeometry>
+        </mxCell>
+        <mxCell id="WIyWlLk6GJQsqaUBKTNV-6" value="&lt;font style=&quot;&quot;&gt;&lt;font style=&quot;font-size: 18px; border-color: var(--border-color);&quot;&gt;h&lt;/font&gt;&lt;font style=&quot;border-color: var(--border-color);&quot;&gt;&lt;font style=&quot;border-color: var(--border-color); font-size: 9px;&quot;&gt;end, i&lt;/font&gt;&lt;font style=&quot;font-size: 18px; border-color: var(--border-color);&quot;&gt;&amp;nbsp;&lt;/font&gt;&lt;span style=&quot;font-size: 18px;&quot;&gt;= h&lt;/span&gt;&lt;font style=&quot;border-color: var(--border-color); font-size: 9px;&quot;&gt;end, i-1&lt;/font&gt;&lt;/font&gt;&lt;span style=&quot;font-size: 18px;&quot;&gt;?&lt;/span&gt;&lt;/font&gt;" style="rhombus;whiteSpace=wrap;html=1;shadow=0;fontFamily=Helvetica;fontSize=12;align=center;strokeWidth=1;spacing=6;spacingTop=-4;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="740" y="-55" width="180" height="60" as="geometry" />
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-1" value="&lt;font style=&quot;&quot;&gt;&lt;font style=&quot;font-size: 18px;&quot;&gt;h&lt;/font&gt;&lt;font style=&quot;&quot;&gt;&lt;font style=&quot;font-size: 9px;&quot;&gt;end, i&lt;/font&gt;&lt;font style=&quot;font-size: 18px;&quot;&gt;&amp;nbsp;&lt;/font&gt;&lt;span style=&quot;font-size: 18px;&quot;&gt;= h&lt;/span&gt;&lt;font style=&quot;font-size: 9px;&quot;&gt;start&lt;/font&gt;&lt;span style=&quot;font-size: 18px;&quot;&gt;&amp;nbsp;+ Δh&lt;/span&gt;&lt;font style=&quot;font-size: 9px;&quot;&gt;i&lt;/font&gt;&lt;/font&gt;&lt;/font&gt;" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="230" y="-40" width="160" height="30" as="geometry" />
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-3" value="" style="rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;edgeStyle=orthogonalEdgeStyle;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="VD6oQmZdT0cPyfVzGxJv-1" target="WIyWlLk6GJQsqaUBKTNV-3" edge="1">
+          <mxGeometry relative="1" as="geometry">
+            <mxPoint x="230" y="130" as="sourcePoint" />
+            <mxPoint x="220" y="80" as="targetPoint" />
+          </mxGeometry>
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-5" value="&lt;font style=&quot;&quot;&gt;&lt;span style=&quot;font-size: 18px;&quot;&gt;Compute Δh&lt;/span&gt;&lt;font style=&quot;font-size: 9px;&quot;&gt;i&lt;/font&gt;&lt;/font&gt;" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="70" y="-40" width="120" height="30" as="geometry" />
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-6" value="" style="rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;edgeStyle=orthogonalEdgeStyle;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="VD6oQmZdT0cPyfVzGxJv-5" target="VD6oQmZdT0cPyfVzGxJv-1" edge="1">
+          <mxGeometry relative="1" as="geometry">
+            <mxPoint x="230" y="60" as="sourcePoint" />
+            <mxPoint x="220" y="20" as="targetPoint" />
+          </mxGeometry>
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-7" value="" style="rounded=0;html=1;jettySize=auto;orthogonalLoop=1;fontSize=11;endArrow=block;endFill=0;endSize=8;strokeWidth=1;shadow=0;labelBackgroundColor=none;edgeStyle=orthogonalEdgeStyle;entryX=0;entryY=0.5;entryDx=0;entryDy=0;exitX=1;exitY=0.5;exitDx=0;exitDy=0;" parent="WIyWlLk6GJQsqaUBKTNV-1" source="VD6oQmZdT0cPyfVzGxJv-9" target="VD6oQmZdT0cPyfVzGxJv-5" edge="1">
+          <mxGeometry relative="1" as="geometry">
+            <mxPoint x="220" y="-60" as="sourcePoint" />
+            <mxPoint x="230" y="30" as="targetPoint" />
+            <Array as="points">
+              <mxPoint x="30" y="-25" />
+            </Array>
+          </mxGeometry>
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-9" value="" style="ellipse;whiteSpace=wrap;html=1;aspect=fixed;fillColor=#000000;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="10" y="-35" width="20" height="20" as="geometry" />
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-10" value="" style="ellipse;whiteSpace=wrap;html=1;aspect=fixed;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="820" y="50" width="20" height="20" as="geometry" />
+        </mxCell>
+        <mxCell id="VD6oQmZdT0cPyfVzGxJv-11" value="" style="ellipse;whiteSpace=wrap;html=1;aspect=fixed;fillColor=#000000;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
+          <mxGeometry x="825" y="55" width="10" height="10" as="geometry" />
+        </mxCell>
+      </root>
+    </mxGraphModel>
+  </diagram>
+</mxfile>
diff --git a/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.png b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.png
new file mode 100644
index 0000000000000000000000000000000000000000..f9fea516b41e2dd9395ba8660218fc1556a24f5a
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2e8c81a6e85a4f82e8347ad7891ef5262b8cc6bdc09c4601d478b910f6a496e4
+size 32131
diff --git a/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.svg b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.svg
new file mode 100644
index 0000000000000000000000000000000000000000..19adb8b8811499df8ea2600158f248a664b9461c
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/figures/acceleration/acceleration.svg
@@ -0,0 +1,4 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!-- Do not edit this file with editors other than draw.io -->
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" width="912px" height="180px" viewBox="-0.5 -0.5 912 180" content="&lt;mxfile host=&quot;Electron&quot; modified=&quot;2025-01-22T15:10:02.927Z&quot; agent=&quot;Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/22.0.2 Chrome/114.0.5735.289 Electron/25.8.4 Safari/537.36&quot; etag=&quot;Nayg6E22_kPXE1fj6PBs&quot; version=&quot;22.0.2&quot; type=&quot;device&quot;&gt;&lt;diagram id=&quot;C5RBs43oDa-KdzZeNtuy&quot; name=&quot;Page-1&quot;&gt;7Vpbd5s4EP41nLP7YB8uBtuPsXPpdrs97Uk22fQlRwYZ2AhEhXzrr69khLkaMIY0aZsXM8NoJM3lk2aCpM297Q0BgfMPtiCSVNnaStqlpKrKaCKzH87ZRRxV1o2IYxPXElIJ49b9BgVTDLRXrgXDjCDFGFE3yDJN7PvQpBkeIARvsmJLjLKzBsCGBcatCVCR++Ba1Im4E3Wc8N9B13bimRVjGr3xQCwsdhI6wMKbFEu7krQ5wZhGT952DhG3XmyXh792D+jDs3Hz/nP4Ffw7+/vu4/0gUnZ9ypDDFgj0abeq1Uj1GqCVsJfYK93FBiR45VuQK5ElbeZQD7FHhT3+DyndCYeDFcWMhQl1sI19gD5gHAi5JfapEFM4DX3rgjuW0QuEzeeIde0iJOZglJCfMCqkBD8ffMcVHBzBhRFYQDQD5rO9X+gcI0zYKx/7kKuyWDCIvSSLu0q4s4a2FT4I8YqYsEJOEyEOiA2r9Ikk4utLxanw3A3EHqRkxwQIRIC662wwA5ET9kEu8Tt7EK4/IQy0kjAwEBXOy8SD8XWF4xeDcO+mCyagTILt3prxe/Zk89859oIVhdzGkCwx8YDPDCi0L0gsZgEKmMwqdH2bzwfpUwhtjznliYXDE0MHy6Uu9sN4KNtntLZofEXY8pDZOC6FtwHY+27DoC4byukQZV6Y2QiEoQiwmvg7LX7WkFC4rfS4eDvSBOwI4B0Ygt4kKKaOBc9JIVjM6zxIRv0FySNs4defEo5YFJHdf1zZUI/Jx8NCGHG5zVC7mNq6NDWMUY9iefw5GcSJXavQrYU+owh995cG/ux9se5k89Nuef/tZvt+PYhvBrXYJzJBHsqj+NIRJ0N8JjeGR6H9E3b3oRonWW4EXi4Z8mSP0dwQVZkOx0pmNYe7TqwmMpUYeKKufPpG5izoYiELdimxgAuEx3c6ycHJSK5cWbU4e4jmT8Dk4Lb2+KL3hy8fcVN4qc/Qtw1AncKL/BrhRT8NXQbycKqNp93Cyyl4Mp0Mp+PM9MpYb4cnmlzQNRi9DJ4wVK9GFKVmQD+YYpyOKUX0aA1D8gITC5KBGSXhxX4l5I/BIM3/s3RO5yhg1ayl/ZQdqpZzFpkewWWGbJI6505su90eTM9+gccLBH8RBqk1HFlaGAD/rMNpP0hOOzxS+Qq8wsG5cvP92eS6xh61dYKDvcUqrK/9MqcnV3kNPBdxlHoH0RpS1wQlFSJAru0zwmSHGyTlxzKbklez2qWRUHf7awCrpfqrHMejHNLqeqFyVCYllaPRQeVYfuP/oSjcGbSev6aXx8E3Dm4N7ReyWw3tfSsF03FMleZX0nTU9wbr4qIp+4c2yQoQ1hT9jkKdmr9UjopNMsUogTqtL6gr66T+Yh0sUSrGvafHTNlYXiomZamULkqTGvVIWVpa6rWrOasOrtpuvlYepWd2p/LRreSjtnGfSc0qmjSrCVsUYVUVeTfH/9kwnvxD4pVC90+G0eMGEK2+JESX9QR+Q/RbhWi9CNHHobx3iM6XUG0RWn1ZhB7/TomW4d0mlfpOiWnDlND7SYlcKA9a50Qut/IHQked7HwJoeq5DDuvLV3loap8Y1rcIIT1Rz4Ig+i7qaW75fk5W7IUiuNfYtvb//V4wCs5A2rFdlPZ+Z6HuO66TXKf1u3LipNc2ugln3u8qBXLmnZvNkYnIqsP1i1piZZYN/+P/QbWZWTySWCEF8mXldrVdw==&lt;/diagram&gt;&lt;/mxfile&gt;" style="background-color: rgb(255, 255, 255);"><defs/><g><path d="M 690 84 L 719.88 84" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 728.88 84 L 719.88 88.5 L 719.88 79.5 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><rect x="420" y="49" width="270" height="70" rx="10.5" ry="10.5" fill="rgb(255, 255, 255)" stroke="rgb(0, 0, 0)" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 268px; height: 1px; padding-top: 84px; margin-left: 421px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 12px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: normal; overflow-wrap: normal;"><font style="font-size: 18px;">Compute performance<br />data using set_segment_end_conditions</font></div></div></div></foreignObject><text x="555" y="88" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="12px" text-anchor="middle">Compute performance...</text></switch></g><path d="M 820 114 L 820 149 L 820 148.88" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 820 157.88 L 815.5 148.88 L 824.5 148.88 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 1px; height: 1px; padding-top: 137px; margin-left: 841px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 11px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: nowrap;"><font style="font-size: 18px;">Yes</font></div></div></div></foreignObject><text x="841" y="140" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="11px" text-anchor="middle">Yes</text></switch></g><path d="M 820 54 L 820 9 L 120 9 L 120 58.88" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 120 67.88 L 115.5 58.88 L 124.5 58.88 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 1px; height: 1px; padding-top: 30px; margin-left: 840px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 11px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: nowrap;"><font style="font-size: 18px;">No</font></div></div></div></foreignObject><text x="840" y="33" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="11px" text-anchor="middle">No</text></switch></g><path d="M 820 54 L 910 84 L 820 114 L 730 84 Z" fill="rgb(255, 255, 255)" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 170px; height: 1px; padding-top: 82px; margin-left: 735px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 12px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: normal; overflow-wrap: normal;"><font style=""><font style="font-size: 18px; border-color: var(--border-color);">h</font><font style="border-color: var(--border-color);"><font style="border-color: var(--border-color); font-size: 9px;">end, i</font><font style="font-size: 18px; border-color: var(--border-color);"> </font><span style="font-size: 18px;">= h</span><font style="border-color: var(--border-color); font-size: 9px;">end, i-1</font></font><span style="font-size: 18px;">?</span></font></div></div></div></foreignObject><text x="820" y="86" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="12px" text-anchor="middle">hend, i = hend, i-1?</text></switch></g><rect x="220" y="69" width="160" height="30" rx="4.5" ry="4.5" fill="rgb(255, 255, 255)" stroke="rgb(0, 0, 0)" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 158px; height: 1px; padding-top: 84px; margin-left: 221px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 12px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: normal; overflow-wrap: normal;"><font style=""><font style="font-size: 18px;">h</font><font style=""><font style="font-size: 9px;">end, i</font><font style="font-size: 18px;"> </font><span style="font-size: 18px;">= h</span><font style="font-size: 9px;">start</font><span style="font-size: 18px;"> + Δh</span><font style="font-size: 9px;">i</font></font></font></div></div></div></foreignObject><text x="300" y="88" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="12px" text-anchor="middle">hend, i = hstart + Δhi</text></switch></g><path d="M 380 84 L 409.88 84" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 418.88 84 L 409.88 88.5 L 409.88 79.5 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><rect x="60" y="69" width="120" height="30" rx="4.5" ry="4.5" fill="rgb(255, 255, 255)" stroke="rgb(0, 0, 0)" pointer-events="all"/><g transform="translate(-0.5 -0.5)"><switch><foreignObject pointer-events="none" width="100%" height="100%" requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility" style="overflow: visible; text-align: left;"><div xmlns="http://www.w3.org/1999/xhtml" style="display: flex; align-items: unsafe center; justify-content: unsafe center; width: 118px; height: 1px; padding-top: 84px; margin-left: 61px;"><div data-drawio-colors="color: rgb(0, 0, 0); " style="box-sizing: border-box; font-size: 0px; text-align: center;"><div style="display: inline-block; font-size: 12px; font-family: Helvetica; color: rgb(0, 0, 0); line-height: 1.2; pointer-events: all; white-space: normal; overflow-wrap: normal;"><font style=""><span style="font-size: 18px;">Compute Δh</span><font style="font-size: 9px;">i</font></font></div></div></div></foreignObject><text x="120" y="88" fill="rgb(0, 0, 0)" font-family="Helvetica" font-size="12px" text-anchor="middle">Compute Δhi</text></switch></g><path d="M 180 84 L 209.88 84" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 218.88 84 L 209.88 88.5 L 209.88 79.5 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><path d="M 20 84 L 49.88 84" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="stroke"/><path d="M 58.88 84 L 49.88 88.5 L 49.88 79.5 Z" fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" pointer-events="all"/><ellipse cx="10" cy="84" rx="10" ry="10" fill="#000000" stroke="rgb(0, 0, 0)" pointer-events="all"/><ellipse cx="820" cy="169" rx="10" ry="10" fill="rgb(255, 255, 255)" stroke="rgb(0, 0, 0)" pointer-events="all"/><ellipse cx="820" cy="169" rx="5" ry="5" fill="#000000" stroke="rgb(0, 0, 0)" pointer-events="all"/></g><switch><g requiredFeatures="http://www.w3.org/TR/SVG11/feature#Extensibility"/><a transform="translate(0,-5)" xlink:href="https://www.drawio.com/doc/faq/svg-export-text-problems" target="_blank"><text text-anchor="middle" font-size="10px" x="50%" y="100%">Text is not SVG - cannot display</text></a></switch></svg>
\ No newline at end of file
diff --git a/docs/documentation/analysis/mission_analysis/figures/acceleration/iteration.gif b/docs/documentation/analysis/mission_analysis/figures/acceleration/iteration.gif
new file mode 100644
index 0000000000000000000000000000000000000000..bf95add9286a42ac935dc38e38ed7da0be351da4
Binary files /dev/null and b/docs/documentation/analysis/mission_analysis/figures/acceleration/iteration.gif differ
diff --git a/docs/documentation/analysis/mission_analysis/figures/mission_profile.png b/docs/documentation/analysis/mission_analysis/figures/mission_profile.png
new file mode 100644
index 0000000000000000000000000000000000000000..f39a710ce4fd20a9ab6dfc822dfbedac73e477d9
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/figures/mission_profile.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:38988f840774e65c1645ce9584394aed3beb50469cffe08ee0c96ca955017719
+size 60706
diff --git a/docs/documentation/analysis/mission_analysis/figures/transition_altitude.png b/docs/documentation/analysis/mission_analysis/figures/transition_altitude.png
new file mode 100644
index 0000000000000000000000000000000000000000..c1aa28b66e9dfc38176773ff2859d3bb1f81701d
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/figures/transition_altitude.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b6abf3139435c76d8c9118a2fe7e31790fe74a8befdd026fa7ad50481da4ddf6
+size 150526
diff --git a/docs/documentation/analysis/mission_analysis/getting_started.md b/docs/documentation/analysis/mission_analysis/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..db54daa790b9087e3546c065ce5cbdf193d2df48
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/getting_started.md
@@ -0,0 +1,478 @@
+
+# Getting started {#getting_started}
+
+Tickets :ticket: please: We are about to start! In this guide, we will show you how to set up your first mission using our **mission_analysis** tool.
+
+
+## Step-by-step
+
+To be able to execute **mission_analysis**, you have to provide the following data beside your [Aircraft Exchange File](#acxml):
+
+- `mission_data` (e.g. `design_mission.xml`)
+- `aero_data` (polar files)
+- `engine_data` (engine maps)
+
+!!! note 
+    Those files are generated by [Create Mission XML](../../sizing/create_mission_xml/index.md), [Aerodynamic Assessment](../../sizing/aerodynamic_analysis/index.md) and [Propulsion Design](../../sizing/propulsion_design/index.md) and shall not be edited manually!
+
+To do so, you can either use:
+
+- a pre-calculated aircraft configuration (e.g. from the `Aircraft References` repository),
+- an aircraft project in which the [Sizing Tools](../../sizing/sizing.md) and the [Aerodynamic Assessment](../../sizing/aerodynamic_analysis/index.md) tool have already been executed at least once.
+
+Once your aircraft is ready, you only need to follow these steps to start your calculation:
+
+1. Head over to `mission_analysis_conf` (more details [here](#config_file)). Assuming this file represents the version of the develop branch, edit the following nodes within `control_settings`:
+    - set `aircraft exchange file_name` and `aircraft exchange file_directory` to your respective settings,
+    - set the `plot_output` to false if you don't have `inkscape` or `gnuplot` installed or define `inkscape_path` and `gnuplot_path` if their directories are not registered in your system environments.
+2. Open your terminal within the `mission_analysis` folder and run the **mission_analysis** executable.
+3. Fasten your seatbelt: We are ready for takeoff! :airplane:
+
+If everything is set up correctly, your first `design_mission` should land a few seconds later :star:
+
+## First iteration results
+
+!!! note
+    If you are using a pre-calculated aircraft, **mission_analysis** will generate its results using parameters from the previous calculations. Therefore, the behavior for an initial execution can not be observed. Continue with [Further Iterations](#further_iterations).
+
+Due to many dependencies between the [sizing tools](../../sizing/sizing.md), performance data and component parameters are quite off within the first iteration. This can lead to an unstable aircraft configuration that will fail the `design_mission` (e.g. wrongly sized engines can't climb to the initial cruise altitude). To avoid this, the [low-fidelity 3D Standard Mission](methods.md/#lowfi) (`design_mission::breguet`) is triggered if no previous mission calculation can be found. Unlike the ordinary mission calculation, this sub-version of the `design_mission` finishes after a rough estimation of the fuel consumption. Once this method is finished, the `masses_cg_inertia/maximum_takeoff_mass/mass_properties/mass` node is updated and this block is written into the [Aircraft Exchange File](#acxml):
+
+```xml
+<mission description="Mission data" tool_level="0">
+    <design_mission description="Data of design mission">
+        <range description="Traveled range from break release to end of taxi at destination">
+            <value>4500000</value>
+            <unit>m</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>5000000</upper_boundary>
+        </range>
+        <loaded_mission_energy description="Amount of energy loaded into tanks (including reserves) for the mission">
+            <mission_energy ID="0" description="Amount of energy loaded into tanks (including reserves) for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>7.0e+11</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </mission_energy>
+        </loaded_mission_energy>
+        <in_flight_energy description="Amount of energy needed for in-flight segments (all segments from takeoff to landing)">
+            <trip_energy ID="0" description="Amount of energy needed for trip segments (all segments from takeoff to landing) for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>5.5e+11</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </trip_energy>
+        </in_flight_energy>
+        <taxi_energy description="Amount of energy needed for taxiing specified energy carrier">
+            <taxi_out_energy ID="0" description="Amount of energy needed for taxiing at origin for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>1.0+10</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </taxi_out_energy>
+            <taxi_in_energy ID="0" description="Amount of energy needed for taxiing at destination for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>5.0e9</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </taxi_in_energy>
+        </taxi_energy>
+    </design_mission>
+</mission>
+```
+
+
+## Further iterations {#further_iterations}
+
+After the initial loop, we expect a robuster behavior which we can use to calculate the flight segments with an increased resolution. To achieve this, every segment is split into little time and way increments (only a few seconds/meters per increment) aiming for the trajectory points that were written into the `mission file`. In each increment, all relevant parameters are saved into a `mission profile`. After the calculation is done, said `mission profile` is exported as a [CSV file](#csv_file) into the `mission_data` directory. Within the [Aircraft Exchange File](#acxml) the `masses_cg_inertia/maximum_takeoff_mass/mass_properties/mass` node is updated when calculating a `design_mission`; for a `study_mission` it's the `mission/study_mission/takeoff_mass` node. Having a higher resolution also increases the amount of data in the `mission` block:
+
+
+```xml
+<mission description="Mission data" tool_level="0">
+    <design_mission description="Data of design mission">
+        <range description="Traveled range from break release to end of taxi at destination">
+            <value>4500000</value>
+            <unit>m</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>5000000</upper_boundary>
+        </range>
+        <loaded_mission_energy description="Amount of energy loaded into tanks (including reserves) for the mission">
+            <mission_energy ID="0" description="Amount of energy loaded into tanks (including reserves) for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>7.0e+11</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </mission_energy>
+        </loaded_mission_energy>
+        <in_flight_energy description="Amount of energy needed for in-flight segments (all segments from takeoff to landing)">
+            <trip_energy ID="0" description="Amount of energy needed for trip segments (all segments from takeoff to landing) for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>5.5e+11</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </trip_energy>
+            <takeoff_energy ID="0" description="Amount of energy needed for takeoff segment for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>8.9e+9</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </takeoff_energy>
+            <landing_energy ID="0" description="Amount of energy needed for landing segment for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>8.9e+9</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </landing_energy>
+        </in_flight_energy>
+        <taxi_energy description="Amount of energy needed for taxiing specified energy carrier">
+            <taxi_out_energy ID="0" description="Amount of energy needed for taxiing at origin for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>1.0e+10</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </taxi_out_energy>
+            <taxi_in_energy ID="0" description="Amount of energy needed for taxiing at destination for specified energy carrier">
+                <consumed_energy description="Energy amount">
+                    <value>5.6e+10</value>
+                    <unit>J</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1e+13</upper_boundary>
+                </consumed_energy>
+                <energy_carrier_ID description="See energy carrier specification node">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </energy_carrier_ID>
+            </taxi_in_energy>
+        </taxi_energy>
+        <block_time description="Block time for the whole mission: Time from break release to end of taxiing after landing">
+            <value>21000.0</value>
+            <unit>s</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>45000</upper_boundary>
+        </block_time>
+        <flight_time description="Flight time for the whole mission">
+            <value>20000.0</value>
+            <unit>s</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>44500</upper_boundary>
+        </flight_time>
+        <takeoff_engine_derate description="Engine power demand">
+            <value>1</value>
+            <unit>1</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>1</upper_boundary>
+        </takeoff_engine_derate>
+        <cruise description="Characteristics of the cruise segment">
+            <average_lift_coefficient description="Lift coefficient CL_average: Arithmetic mean over the entire cruise flight">
+                <value>0.52</value>
+                <unit>1</unit>
+                <lower_boundary>-0.01</lower_boundary>
+                <upper_boundary>1</upper_boundary>
+            </average_lift_coefficient>
+            <minimum_lift_coefficient description="Minimum cruise flight lift coefficient CL_min">
+                <value>0.49</value>
+                <unit>1</unit>
+                <lower_boundary>-0.01</lower_boundary>
+                <upper_boundary>1</upper_boundary>
+            </minimum_lift_coefficient>
+            <maximum_lift_coefficient description="Maximum cruise flight lift coefficient CL_max">
+                <value>0.56</value>
+                <unit>1</unit>
+                <lower_boundary>-0.01</lower_boundary>
+                <upper_boundary>1</upper_boundary>
+            </maximum_lift_coefficient>
+            <top_of_climb_mass description="Total aircraft mass at top of climb (= start of initial cruise altitude (ICA))">
+                <value>77000.0</value>
+                <unit>kg</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>150000</upper_boundary>
+            </top_of_climb_mass>
+            <top_of_descend_mass description="Total aircraft mass at top of descend (TOD)">
+                <value>66000.0</value>
+                <unit>kg</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>150000</upper_boundary>
+            </top_of_descend_mass>
+            <top_of_climb_range description="Flown range from takeoff to top of climb (= start of initial cruise altitude (ICA))">
+                <value>220000.0</value>
+                <unit>kg</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>500000</upper_boundary>
+            </top_of_climb_range>
+            <top_of_descend_range description="Flown range from takeoff to top of descend">
+                <value>4300000.0</value>
+                <unit>kg</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>5000000</upper_boundary>
+            </top_of_descend_range>
+            <cruise_steps description="Cruise step information">
+                <cruise_step ID="0" description="Data of a cruise step">
+                    <relative_end_of_cruise_step description="End of cruise step relative to total cruise length">
+                        <value>0.5</value>
+                        <unit>1</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>1</upper_boundary>
+                    </relative_end_of_cruise_step>
+                    <altitude description="Altitude of cruise step">
+                        <value>10058.4</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>15000</upper_boundary>
+                    </altitude>
+                </cruise_step>
+                <cruise_step ID="1" description="Data of a cruise step">
+                    <relative_end_of_cruise_step description="End of cruise step relative to total cruise length">
+                        <value>1</value>
+                        <unit>1</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>1</upper_boundary>
+                    </relative_end_of_cruise_step>
+                    <altitude description="Altitude of cruise step">
+                        <value>10668.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>15000</upper_boundary>
+                    </altitude>
+                </cruise_step>
+            </cruise_steps>
+        </cruise>
+    </design_mission>
+</mission>
+```
+
+## Additional Output
+
+Beside the output written into the [aircraft XML](#acxml), **mission_analysis** generates a few more files you and even other tools can work with
+
+
+### Mission Data CSV {#csv_file}
+
+Remember that nice graph from this tool's [introduction](index.md)? This is a simple visualization of this CSV file we described above. Depending on the amount of engines, used energy carriers and other inputs, the CSV file may differ a bit, but usually you can expect the following parameters there:
+
+- Time [s]
+- Range [m]
+- Altitude [m]
+- FL [100 ft]
+- Mode name [-]
+- Total mass [kg]
+- Energy carrier (ID)
+- Thrust [N]
+- Fuelflow [kg/s]
+- Fuel consumed (kerosene | ID = 0) [kg]
+- Energy consumed (kerosene | ID = 0) [J]
+- Mach [-]
+- CAS [m/s]
+- TAS [m/s]
+- TAS [kts]
+- ROC [fpm]
+- SAR [m/kg]
+- Aero Config [-]
+- C_L [-]
+- L over D [-]
+- Spoiler Factor [-]
+- Reynolds Number [-]
+- Engine Rating [-]
+- Engine N1 (PW1127G-JM | ID = 0) [-]
+- Engine N1 (PW1127G-JM | ID = 1) [-]
+- Shaft power offtake [W]
+- Bleed [kg/s]
+- Angle of attack [deg]
+- Glidepath angle [deg]
+- Incidence angle (stabilizer) [deg]
+
+Beside being a neat dataset to show-off, [Ecological Assessment](../ecological_assessment/index.md) can go through it to calculate the ecological impact of an aircraft flying the displayed mission.
+
+
+### Reporting
+
+If you don't want to edit your data on your own, but need to see some basic characteristics of your mission, you can simply go to the `reporting` directory next to your [Aircraft Exchange File](#acxml). Within `report_html`, we already provide many graphs and useful insights which might come in handy. If something went wrong or you need to know what **mission_analysis** has done in detail, there is also a `.log` file next to your executable in which the shell output is tracked. 
+
+
+## Mission Configuration {#configuration}
+
+Now that we have successfully generated our first mission output, let's see how you can tweak our tool a little bit :sunglasses:
+
+
+### Aircraft Exchange File {#acxml}
+
+Within the `requirements_and_specifications` block of the `aircraft_exchange_file`, the following nodes can affect the behavior of **mission_analysis** (descriptions to be found within that file):
+
+```plaintext
+requirements_and_specifications
+└── mission_files
+    ├── design_mission_file
+    ├── study_mission_file
+    ├── requirements_mission_file
+└── design_specification
+    ├── propulsion
+    ├── skinning
+    │   ├── thickness
+    ├── configuration
+    │   ├── tank_definition
+    ├── energy_carriers
+└── requirements
+    ├── top_level_aircraft_requirements
+    │   ├── maximum_structrual_payload_mass
+    │   ├── design_mission
+    │   ├── study_mission
+    │   ├── takeoff_distance
+    │   ├── landing_field_length
+    │   ├── icao_aerodrome_reference_code (once 4D missions are ready)
+    │   ├── flight_envelope
+    │   │   ├── maximum_operating_mach_number
+    │   │   ├── maximum_operating_velocity
+    │   │   ├── maximum_approach_speed
+    │   │   ├── maximum_operating_altitude
+    │   │   ├── maximum_altitude_one_engine_inoperative
+    │   │   ├── climb_or_descend_segment_gradient
+    ├── additional_requirements
+    │   ├── landing_gear
+```
+
+The `mission_files` node simply saves the names of said files. Within `design_specification`, we extract everything from the propulsion system (including tanks) in order to analyze fuel consumption and thrust generation. In the `top_level_aircraft_requirements` node, we can find performance maxima and characteristics for `design_mission` and `study_mission`. The later provide nodes for the mission planning (initial cruise altitude and speed, fuel planning etc.). In `additional_requirements`, the `landing_gear` node tells us with which `friction_coefficient` and `braking_coefficient` our aircraft will be slowed down after touchdown.
+
+
+### Configuration File {#config_file}
+
+The `control_settings` are standardized in UNICADO and will not be described in detail here. The program settings are structured like this (descriptions are in the `mission_analysis_conf.xml`):
+
+```plaintext
+Program Settings
+└── Program Specific
+    ├── Specific Air Range Plot
+    ├── Exit If Fuel Limit Reached
+    │   ├── Enable
+    │   ├── Allowed Relative Overshoot
+    ├── Exit If Maximum Takeoff Mass Limit Reached
+    │   ├── Enable
+    │   ├── Allowed Relative Overshoot
+└── General
+    ├── Fuel Planning
+    │   ├── Fuel Estimation
+    │   │   ├── Fuel Estimation Switch
+    │   │   ├── Joint Aviation Requirements Parameters
+    │   │   │   ├── Contingency Fuel
+    │   │   │   ├── Use Additional Fuel
+    │   │   │   ├── Extra Fuel
+    │   │   ├── Federal Aviation Regulations Parameter
+    │   │   │   ├── Use Additional Fuel
+    │   ├── Fuel Flow Factor Taxiing
+    │   ├── Holding
+    │   │   ├── Holding Mach Number
+    │   │   ├── Holding Altitude
+    │   │   ├── Use Economical Speed
+    ├── Increase Engine Rating During Climb
+    ├── Polar Switch Mission Point
+    │   ├── Polar Switch Selector
+    │   ├── Absolute Range Flown
+    │   ├── Relative Range Flown
+    │   ├── Absolute Time Passed
+    │   ├── Relative Time Passed
+    ├── Glideslope Interception Distance
+    ├── Use Breguet Estimation In Cruise
+    ├── Iterate Top Of descend Mass
+    ├── Landing
+    │   ├── Rotation Time
+    │   ├── Thrust Reverser
+    │   │   ├── Enable
+    │   │   ├── Deactivation Speed
+    │   │   ├── Efficiency
+    │   ├── Runway Exit Speed
+└── Mode
+    ├── Mission Methods
+    │   ├── Fidelity Level
+    │   ├── Mission Type
+    │   ├── Center Of Gravity Method
+    ├── Rate Of Climb Switch
+└── Precision
+    ├── Acceleration Increment
+    ├── Mach Acceleration Increment
+    ├── Altitude Increment
+    ├── Way Increment
+    ├── Specific Air Range Check Increment
+```
+
+
+In the `program_specific` node, you can specify if the specific air range (SAR) is plotted (when plotting is turned on in the `control_Settings`). In addition, you can allow the tool to exceed the maximum takeoff mass and fuel mass during the design loop. This can be useful when operating at extreme conditions where fluctuation above the maxima shall not trigger an exit immediately. 
+
+
+In `general` you can decide how the needed fuel is estimated and you can tell **mission_analysis** in which way it shall behave in different flight segments.
+
+
+The `mode` node lets you choose the methods that are applied. Using the keyword `low`/`mid` you will trigger the low-fidelity/mid-fidelity version of the [Standard Mission](methods.md) method. It also has three sub-methods to differentiate between `design_mission`, `study_mission` and `requirements_mission` which can be selected in the `mission_type` node. Please mind that the low-fidelity method only accepts the `design_mission`. The `rate_of_climb_switch` will only affect the [Climb to Ceiling](mission_steps.md/#climb_to_ceiling_subparagraph) step of the `requirements_mission`. With this option, **mission_analysis** calculates the optimum rate of climb towards service ceiling.
+
+
+Finally, in `precision` you can set the parameters which will define the before mentioned increments of your mission profile.
diff --git a/docs/documentation/analysis/mission_analysis/index.md b/docs/documentation/analysis/mission_analysis/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..8fad77ed00dd8ef6bb6fe5fe86f014dd27280a47
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/index.md
@@ -0,0 +1,61 @@
+
+# Introduction {#mainpage}
+
+**mission_analysis** is an assessment tool that outputs the flown mission profile, saves characteristic parameters within that profile and checks if performance requirements are met. The following mission types can be analyzed:
+
+- `design_mission`:
+    - Defines the mission for which the aircraft shall be optimized
+    - $MTOM$ is altered during the design process
+    - Exports the `mission profile` as a CSV file
+    - Except $MTOM$, all other results for the [Aircraft Exchange File](getting_started.md/#acxml) are saved in the `design_mission` node
+- `study_mission`:
+    - Calculates off-design missions
+    - Exports a `mission profile` as a CSV file
+    - All results for the [Aircraft Exchange File](getting_started.md/#acxml) are saved in the `study_mission` node
+- `requirements_mission`:
+    - Checks top-level aircraft requirements and possible maxima (like maximum operating altitude)
+    - In the [Aircraft Exchange File](getting_started.md/#acxml) only the `requirement_compliance` block is edited
+
+Mentioned parameters include the energy consumptions which has a high impact on how the aircraft is sized. That's the reason why (unlike many other assessment tools) its `design_mission` calculation takes place within the design loop of our [RCE Workflow](../../../workflow.md).
+
+Once your mission is calculated, you can choose from a wide range of profile data which allows you to further investigate what your aircraft actually does. Here's a little example graph which visualizes the engines' total fuelflow during a `design_mission`:
+
+<p align="center">
+  <img src="figures/mission_profile.png" alt="Mission Profile" width="85%">
+  <br>
+  <em>Visualization of an example mission profile.</em>
+</p>
+
+
+## Quick Overview
+
+| Mission method                   | mission type              | Status                                 |
+|----------------------------------|---------------------------|----------------------------------------|
+| [3D Standard Mission (low-fidelity)](methods.md/#midfi)|`design_mission::breguet`| running  :white_check_mark:|
+| [3D Standard Mission (mid-fidelity)](methods.md/#midfi)|`design_mission`         | running :white_check_mark:|
+| [3D Standard Mission (mid-fidelity)](methods.md/#midfi)|`study_mission`          | running :white_check_mark:|
+| [3D Standard Mission (mid-fidelity)](methods.md/#midfi)|`requirements_mission`   | running :white_check_mark:|
+| [4D_trajectory (high-fidelity)](methods.md/#highfi)    |None                     | under development :construction:|
+
+By now, only a [standard (3D) mission method](methods.md/#midfi) is implemented. Its mid-fidelity version can trigger the three missions mentioned above while the low-fidelity sub-version is only used for the `design_mission`. The later is a Breguet-based estimation of the consumed mission fuel and it is triggered automatically if no initial values where given for the `design_mission`. A 4D trajectory mission is also planned, but it is still in the making.
+
+<pre class='mermaid'>
+  graph TD;
+    A[mission_analysis]-->B[design_mission]
+    B-->E[low-fidelity]
+    B-->F[mid-fidelity]
+    B-->G["(high-fidelity)"]
+    A-->C[study_mission]
+    C-->H[mid-fidelity]
+    C-->I["(high-fidelity)"]
+    A-->D[requirements_mission]
+    D-->J[mid-fidelity]
+    D-->K["(high-fidelity)"]
+</pre>
+
+
+## Where to start
+
+If you want a step-by-step guide to start your first calculation, head over to the [Getting Started](getting_started.md) section. We will show you some basic functionalities and how to get your airplane into the air.
+
+Further details about the methods can be found [here](methods.md).
diff --git a/docs/documentation/analysis/mission_analysis/methods.md b/docs/documentation/analysis/mission_analysis/methods.md
new file mode 100644
index 0000000000000000000000000000000000000000..1d1c41bfc861f2bbb8a6cd7e44c98a6aa950c816
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/methods.md
@@ -0,0 +1,110 @@
+
+# Mission Methods {#missions}
+
+Depending on computing resources and needed level of detail, we have set up three different approaches to calculate a mission. Okay... it's only two by now, but the third will come for sure! Let's see, what we can find here.
+
+
+## Breguet Estimation (Low Fidelity) {#lowfi}
+
+In this method, the trip fuel mass $ m_{fuel,\,trip} $ (consumed fuel from takeoff until taxi-in) is calculated using the Breguet range equation. To do so, the time needed for climb and cruise are derived from the `mission file`. The approach segment is neglected since its share is rather small and the engines are set to `maximum_continuous` which will overestimate the needed fuel anyway. Up next, it is calculated how much lift $ \overline{L} $, drag $ \overline{D} $, thrust $ \overline{T} $ and fuel massflow $ \overline{\dot{m}}_{fuel} $ are needed on average to reach the top of climb and the end of cruise. After those values are set, the trip fuel mass is computed in the following way:
+
+$ m_{fuel,\,trip} \approx \sum_{i=0}^{n} m_{fuel,\,i} $
+
+$ m_{fuel,\,0} = 0 $
+
+$ m_{fuel,\,i} = (m_{zero\textrm{-}fuel\,mass} + m_{fuel,\,i-1}) \cdot e^{t_{i} \cdot TSFC_i \cdot g \cdot \frac{\overline{D_i}}{\overline{L_i}}} $
+
+$ TSFC_i = \frac{\overline{\dot{m}}_{fuel,\,i}}{\overline{T}_i} $
+
+
+To get the total fuel carried for the mission $ m_{fuel,\,mission} $, taxi-out $ m_{fuel,\,taxi\textrm{-}out}  $ and reserve fuel $ m_{fuel,\,reserve} $ are added:
+
+$ m_{fuel,\,mission} =  m_{fuel,\,trip} + m_{fuel,\,taxi\textrm{-}out} + m_{fuel,\,reserve} $
+
+Depending on taxiing procedures and reserve fuel methods like JAR or FAR, the fuel quantities may differ (for more details, [click here](#fuel_planning)).
+
+
+
+!!! note
+    The Breguet Estimation is a sub-method of the 3D Standard Mission and therefore uses the same functions for e.g. taxi fuel calculations. When calculating a `design_mission` without having any mission data yet (first loop), the Breguet Estimation is activated automatically to ensure greater robustness. To trigger this method manually, set the [Configuration File's](getting_started.md/#config_file) `fidelity_level` node to `low`.
+
+
+## 3D Standard Mission (Mid Fidelity) {#midfi}
+
+This standard method for the **mission_analysis** tool calculates a `mission profile` that consists of two space dimension plus one time dimension (range, altitude & time). Due to that, it will not handle more complex trajectories like specific flight paths between two airports. To set up its 2D profile, this method derives various target points from [departure, cruise and approach steps](mission_steps.md) stated in the `mission file`. There, every steps' `mode` indicates how _FlightConditions_ and _OperatingConditions_ shall be manipulated to reach those target points. _FlightConditions_ are used to save performance-related values (like true airspeed and current altitude) while _OperatingConditions_ will tell **mission_analysis** in which conditions the aircraft is operated (e.g. high-lift configuration or engine rating).
+
+
+The following `modes` can be found in the steps of the `mission file`:
+
+- `takeoff`
+- `climb`
+- `climb_to_cruise`
+- `climb_to_ceiling`
+- `change_flight_level_constant_ROC`
+- `accelerate`
+- `change_speed`
+- `change_speed_to_CAS`
+- `change_speed_to_Mach`
+- `cruise`
+- `descend_to_approach`
+- `descend`
+- `level_glide_slope_interception`
+- `landing`
+
+
+!!! note
+    Which `mode` is used will be determined by the steps in the `mission file`. If you want to alter them, check out [Create Mission XML](../../sizing/create_mission_xml/index.md).
+
+
+For each step, the start conditions are initialized using the exit data of the previous one (for `TAKEOFF`, an initial step is given manually where most values are set to $0$). Depending on the `mode` different functions are used to change the current conditions of the aircraft iteratively until the required end conditions of the [steps](mission_steps.md) are reached. Since those iterations are split into many small increments, processing the data takes much longer than the [Breguet Estimation](#lowfi). On the upside, this method offers a superior resolution without which a valid analysis of the mission would not be possible. Also, for each increment the relevant flight parameters are saved into a `mission profile` CSV sheet which can be further analyzed.
+
+
+!!! note
+    [The Breguet Estimation](#lowfi) only estimates the aircraft performance using average values for each flight step. Whether the aircraft is able to deliver the needed thrust or lift throughout the whole mission cannot be assured! To get valid mission profiles, always use the [3D Standard Mission](#midfi)! To use this method, set the [Configuration File's](getting_started.md/#config_file) `fidelity_level` node to `mid`.
+
+
+As you might have noticed, we have only discussed the `mission profile` from takeoff until touchdown, but what about taxiing and reserve fuel? Like the others, taxiing steps are described in the [Mission Steps](mission_steps.md/#taxiing) section while fuel planning will be tackled in the following subparagraph.
+
+
+### Fuel Planning Procedures {#fuel_planning}
+
+If you want to set a specific fuel planning procedure, head over to the [Aircraft Exchange File](getting_started.md/#acxml). There, you can select between EASA's fuel planning (_JAR_), FAA's domestic fuel planning (_FAR_DOMESTIC_) and FAA's flag or supplemental fuel planning (_FAR_FLAG_). How the fuel quantities for the different procedures shall be calculated can be changed in the [Configuration File](getting_started.md/#config_file).
+
+_JAR_ consists of:
+
+- Extra fuel:
+    - Fuel mass that shall be carried at the discretion of the captain
+- Alternate Fuel:
+    - Estimated fuel needed to fly the `alternate_distance` (from `mission_file`) on $FL200$
+- Final Reserve Fuel:
+    - $30\,min$ holding at $1500\,ft$ above destination airport at holding speed and ISA-Conditions
+- Additional Fuel:
+    - $15\,min$ holding at $1500\,ft$ above destination airport at holding speed and ISA-Conditions
+- Contingency Fuel using the maximum of the following quantities:
+    - $5\,min$ holding at $1500\,ft$ above destination airport at holding speed and ISA-Conditions
+    - $5\,\%$ of trip-fuel or $3\,\%$ if en-route alternate is available
+
+
+_FAR_DOMESTIC_ consists of:
+
+- Alternate Fuel:
+    - Estimated fuel needed to fly the `alternate_distance` (from `mission_file`) on $FL200$
+- Final Reserve Fuel:
+    - $45\,min$ at mean cruise fuel consumption
+  
+
+_FAR_FLAG_ consists of:
+
+- Alternate Fuel:
+    - Estimated fuel needed to fly the `alternate_distance` (from `mission_file`) on $FL200$
+- Final Reserve Fuel:
+    - $30\,min$ holding at $1500\,ft$ above destination airport at holding speed and ISA-Conditions
+- Additional Fuel:
+    - $15\,min$ holding at $1500\,ft$ above destination airport at holding speed and ISA-Conditions
+- Contingency Fuel:
+    - $10\,\%$ of the total required time from brake release (departure airport) to landing (destination airport) at mean cruise fuel consumption
+  
+
+## 4D Trajectory (High Fidelity) {#highfi}
+
+Oops, that is not ready yet. An industrious UNICADO coder is probably working on that right now :unicorn:
diff --git a/docs/documentation/analysis/mission_analysis/mission_steps.md b/docs/documentation/analysis/mission_analysis/mission_steps.md
new file mode 100644
index 0000000000000000000000000000000000000000..ee75836a06619e7546c9c86c61a1f2f1dd77fbec
--- /dev/null
+++ b/docs/documentation/analysis/mission_analysis/mission_steps.md
@@ -0,0 +1,232 @@
+# Mission Steps {#mission_steps}
+
+In this section, you will learn how **mission_analysis** interprets the different mission steps from the `mission file`. Beside that, we show you how the taxiing procedures are implemented. 
+
+
+## Mission Step Input Parameters
+
+A mission step can consist of the following nodes:
+
+- `configuration`: Aircraft configuration to identify the right polars for aerodynamic calculations (mandatory)
+- `derate`: Thrust derate to (de)throttle the engines during the step (mandatory)
+- `mode`: Defines the mode of the step (mandatory)
+- `rating`: The engine's thrust rating (mandatory)
+- `shaft_power_takeoff_schedule`: Defines the power the engines must provide for the aircraft systems (mandatory)
+- `bleed_air_takeoff` Schedule: Defines bleed air offtakes the engines must provide for the aircraft systems (mandatory)
+- `altitude`: Altitude at the end of this step.
+- `calibrated_airspeed`: Airspeed at the end of this step
+- `mach_number`: Mach number at the end of this step
+- `rate_of_climb_limit`: Maximum rate of climb during this step
+- `flight_management_system`: Indicator if a flight management system is implemented and what its cost index is (`cruise_step` only)
+- `round_to_regular_flight_level`: Rounded flight levels to the multiples of 10 (`cruise_step` only)
+- `auto_select_optimum_flight_level`: Switch to let **mission_analysis** decide what FL is the best (`cruise_step` only)
+- `glide_path`: Angle between glide path and runway (`approach_step` only)
+
+If you need further information about these, please head other to [Create Mission XML](../../sizing/create_mission_xml/index.md).
+
+
+## Step Modes {#step_modes}
+
+In the following paragraphs, we focus on how the steps' `mode` will manipulate the `mission_profile` from start to landing.
+
+
+### Takeoff {#takeoff_subparagraph}
+
+The `takeoff` is composed of ground run (break release until lift-off) and first climb segment to screen height ($35\,ft$). First, the aircraft is accelerated from $ 0\,\frac{m}{s} $ to the lift-off velocity $ v_{LOF} $ utilizing the `acceleration increments` of the [Configuration File](getting_started.md/#config_file). According to [EASA's CS-25 rules](https://www.easa.europa.eu/en/document-library/easy-access-rules/easy-access-rules-large-aeroplanes-cs-25), $ v_{LOF} $ equals $ 110\,\%$ $v_{MU}$ (minimum unstick speed) for aerodynamically limited aircraft and $ 108\,\%$ $v_{MU}$ for geometry limited aircraft. To generalize the $v_{LOF}$ calculation, a more conservative approach has been implemented. Since the minimum safe climb speed at screen height $v_2$ should always be (moderately) greater than the lift-off speed, the following approximation is used (all velocities are calibrated airspeeds):
+
+$$
+v_{LOF} \approx v_2 \geq 1.2 \cdot v_{stall} = 1.2 \cdot 0.94 \cdot v_{stall,\,1g} = 1.128 \cdot v_{stall,\,1g}
+$$
+
+The 1-g stall speed $v_{stall,\,1g}$ is the speed where lift $L$ is equal to the aircraft's weight $ m_{aircraft} \cdot g $ when operating at maximum lift coefficient $C_{L,\,max}$:
+
+
+$$
+L = m_{aircraft} \cdot g = \frac{1}{2} \cdot \rho \cdot v_{stall,\,1g}^2 \cdot C_{L,\,max} \cdot S_{ref} 
+\iff v_{stall,\,1g} = \sqrt{\frac{2 \cdot m_{aircraft} \cdot g}{\rho \cdot C_{L,\,max}\cdot S_{ref}}}
+$$
+
+After the aircraft's lift-off, it [climbs with constant speed](#climb_subparagraph) towards screen height to finish this segment.
+
+
+### Accelerate {#accelerate_subparagraph}
+
+`acceleration` segments activate the _change_speed_at_constant_ROC_ function. This mode is usually used for altitudes below $10\,000\,ft$ where the aircraft's speed is increased while retaining a given rate of climb (departure steps). To do so, the speed gap $\Delta v$ between segment start and end is divided into $n$ smaller steps using the [Configuration File's](getting_started.md/#config_file) `acceleration increment`. Then, for $n$ steps the aircraft's velocity is increased using the `acceleration increment`. For each increment, an iterative loop is initiated in which its end altitude is set like this:
+
+
+$$
+h_{end} = h_{start} + \Delta h = h_{start} + \sin(\frac{\gamma}{2 \cdot \overline{a}} \cdot (v_{start}^2 - v_{end}^2))
+$$
+
+before adapting the other _FlightConditions_ using the _set_segment_end_conditions_ function. Once the end altitude within the iteration loop doesn't change anymore, the parameters have converged. Hence, they are saved into the `mission profile` and the next increment will be calculated.
+
+<p align="center">
+  <img src="../figures/acceleration/iteration.gif" alt="Acceleration flow chart" width="95%">
+  <br>
+  <em>Flow chart displaying the iterative pattern to identify the increment's height change.</em>
+</p>
+
+
+### Change Speed {#change_speed_subparagraph}
+
+See [Accelerate](#accelerate_subparagraph). Unlike `accelerate`, `change_speed` uses a (constant) given glide path angle from the `mission file` to derive a rate of climb. Because ATC regulations demand that you can maintain glide path angles between $0°$ and $3°$ at lower altitudes, it is used for deceleration during approach steps below $10\,000\,ft$. .
+
+
+### Change Speed to CAS {#change_speed_to_CAS_subparagraph}
+
+`change_speed_to_CAS` alters the calibrated airspeed while a given rate of climb from the `mission file` is maintained. It's an adaption of [Accelerate](#accelerate_subparagraph) for altitudes between $10\,000\,ft$ and the transition height $h_{transition}$.
+
+
+### Change Speed to Mach {#change_speed_to_Mach_subparagraph}
+
+`change_speed_to_Mach` alters the Mach number while a given rate of climb from the `mission file` is maintained. It's an adaption of [Accelerate](#accelerate_subparagraph) for altitudes above the transition height $h_{transition}$.
+
+
+### Climb {#climb_subparagraph}
+
+The `climb` mode activates the _change_altitude_at_constant_speed_ function.
+To ensure that the aircraft maintains an efficient aerodynamic behavior, the calibrated airspeed is kept constant while the aircraft's altitude is increased/decreased by $\Delta h$. To achieve this, $\Delta h$ is split into $n$ steps by dividing it by the [Configuration File's](getting_started.md/#config_file) `altitude increment`. By default, the minimum rate of climb $ROC$ with which the new altitudes are reached is set to $100\,\frac{ft}{min}$. The actual $ROC$ is calculated using the glide path $\gamma$ while maintaining the total available thrust $T$:
+
+$$
+\gamma = \arcsin \left(\frac{T-D}{g\cdot m_{aircraft}}\right);
+$$
+
+$$
+ROC = \sin(\gamma) \cdot v_{TAS};
+$$
+
+If no maximum $ROC$ is given by the `mission file`, $ROC$ will be taken from the equation above. Else, it is checked if the given $ROC$ limit is exceeded. If this is the case, $ROC$ is set to the maximum while adapting $\gamma$ and $T$ to it. Analogous to [Change Speed](#change_speed_subparagraph), the increment's _FlightConditions_ are looped until $\gamma$ has converged. Afterwards, they are saved into the `mission profile` and the next increment will be calculated.
+
+
+### Climb to Cruise {#climb_to_cruise_subparagraph}
+
+The `climb_to_cruise` mode adapts [Climb](#climb_subparagraph) with the difference that its minimum rate of climb is set to $ 0\,\frac{ft}{min}$. While climbing towards the initial cruise altitude, the air becomes thinner and colder which leads to an increasing Mach number. Once the design cruise Mach number $M_{cruise}$ is exceeded, a constant CAS climb would lead to compressibility effects which could worsen the aircraft's performance. Therefore, the Mach number is kept constant as soon as $M_{cruise}$ is reached. Therefore, $M_{cruise} \approx M_{transition}$.
+
+The altitude at which this occurs is called transition altitude $h_{transition}$ (aka crossover altitude). $h_{transition}$ is defined as the geopotential pressure altitude at which calibrated airspeed and Mach number are representing the same value of true airspeed ($TAS_{Mach} = TAS_{CAS}$). Using the barometric formula, $h_{transition}$ is computed in the following way:
+
+<p align="center">
+  <img src="../figures/transition_altitude.png" alt="Transition Altitude" width="85%">
+  <br>
+  <em>Climb profile at given IAS/MACH Law [1].</em>
+</p>
+
+$$
+h_{transition} = \frac{T_{h=0}}{\frac{\delta T}{\delta h}} \cdot \left(\frac{p_{transition}}{p_{h=0}}\right)^{\frac{R\cdot \frac{\delta T}{\delta h}}{g} - 1}
+$$
+
+$R$ represents the Gas Constant and $g$ the gravitational acceleration. Within the tropopause, the temperature gradient $\frac{\delta T}{\delta h}$ equals $-0.0065\,[K/m]$; above it is defined as $0\,[K/m]$. For $TAS_{Mach}$, you can simply use Mach number $M_{transition}$ and speed of sound $a_{transition}$ which can also be displayed in relation to sea-level conditions:
+
+$$
+TAS_{Mach} = M_{transition}\cdot a_{transition} = M_{transition}\cdot a_{z=0} \cdot\sqrt{\frac{T_{transition}}{T_{z=0}}}
+$$
+
+$TAS_{CAS}$ is computed using isentropic flow equations:
+
+$$
+TAS_{CAS} = a_{h=0} \sqrt{\frac{2}{\kappa - 1} \cdot \frac{\sqrt{T_{transition}}}{T_{h=0}}\cdot\left(\frac{q}{p_{transition}}+1\right)^{\frac{\kappa -1}{\kappa}}-1}
+$$
+
+Where the the stagnation pressure $q$ is derived from the calibrated airspeed:
+
+$$
+CAS = a_{h=0} \sqrt{\frac{2}{\kappa - 1} \cdot \left(\frac{q}{p_{z=0}}+1\right)^{\frac{\kappa -1}{\kappa}}-1}
+$$
+
+
+Finally, the following statement can be derived for the needed pressure ratio characterizing $h_{transition}$:
+
+$$
+\frac{p_{transition}}{p_{h=0}} = \frac{\left(1 + \frac{\kappa-1}{2} \cdot \left(\frac{CAS}{a_{h=0}}\right)^{2} \right)^{\frac{\kappa}{\kappa-1}} - 1}{\left(1 + \frac{\kappa-1}{2} \cdot M_{transition}^{2} \right)^{\frac{\kappa}{\kappa-1}} - 1}
+$$
+
+
+!!! note
+    To determine the cruise range for the [Cruise](#cruise-cruise_subparagraph) segment, the index on the `mission profile` where the aircraft reaches the `initial_cruise_altitude` is saved for later usage.
+
+
+### Climb to Ceiling {#climb_to_ceiling_subparagraph}
+
+This mode should only be used for `requirements missions`! This mode contains four segments:
+
+1. [Climb to Cruise](#climb_to_cruise_subparagraph).
+2. From there, climb to maximum operating altitude with $ROC = 100\,\frac{ft}{min}$ or with a automated maximum rate of climb by turning on the `rate_of_climb_switch`. Either way, the engines are set to `maximum continuous`.
+3. Keep on climbing with $ROC = 100\,\frac{ft}{min}$. Once the engines fail, climb with $ROC = 50\,\frac{ft}{min}$ until they ultimately fail (end altitude = ceiling altitude).
+4. Reset to cruise altitude and repeat step 2 with one engine inoperative.
+
+
+### Change Flight Level {#change_flight_level_constant_ROC_subparagraph}
+
+The `change_flight_level_constant_ROC` segment adapts the [Climb](climb_subparagraph) mode using a minimum rate of climb from the `mission file`. Typically, this option is used in cruise steps to initiate a flight level change. Due to the fact that the cruise altitude usually is way above the transition altitude, the Mach Number is kept constant during this altitude change (see [Climb to Cruise](#climb_to_cruise_subparagraph) for the explanation).
+
+
+### Cruise {#cruise_subparagraph}
+
+In this segment, the aircraft is moved forward with constant speed and $ROC = 0\,\frac{ft}{min}$. How long this `cruise` segment shall last, is determined by the `relative_segment_length` (`mission_file`) which will be applied to the estimated cruise range. To get the latter, the descend range $R_{descend}$ is estimated using the [Breguet method](#lowfi). Then, the afore saved mission segment for reaching `initial_cruise_altitude` (ICA) provides $R_{ICA}$ leading us to the current `cruise` segment's range:
+
+$$
+R_{cruise} = R_{descend} - R_{ICA}
+$$
+
+
+To iterate through this range, it is split into $n$ steps using the [Configuration File's](getting_started.md/#config_file) `way_increment`. Analogous to [Change Speed](#change_speed_subparagraph), the increment's _FlightConditions_ are looped until its consumed fuel mass has converged. Afterwards, they are saved into the `mission profile` and the next increment will be calculated.
+
+
+Even though this mode is not used to climb, the `auto_select_optimum_flight_level` option (see `cruise_steps` in the `mission file`) can be switched on to alter the flight level during `cruise`. If a better specific air range can be obtained on another flight level, **mission_analysis** will test whether the aircraft would consume less fuel there. If this is the case, [Change Flight Level](#change_flight_level_constant_ROC_subparagraph) will take care of the altitude change. Since for regularity reasons discrete flight levels are mandatory, `round_to_regular_flight_level` assures that only permitted altitudes are applied.
+ 
+!!! note
+    Even if the specific air range of another flight level might be better, a flight level change can cost more fuel than it saves until the end of cruise! Of course, **mission_analysis** is smart enough to take this into account :nerd:
+
+
+### Descend to Approach {#descend_to_approach_subparagraph}
+
+`descend_to_approach` is used to initiate a descend segment from the current cruise altitude towards approach $(10\,000\,ft)$. It uses the same functions the [Climb](#climb_subparagraph) mode does with the difference that its minimum rate of climb is set to $0\,\frac{ft}{min}$. Like in [Climb to Cruise](#climb-climb_subparagraph), the transition altitude $h_{transition}$ will presumably be crossed in this segment. Therefore, the aircraft first descends with a constant Mach number. When $h_{transition}$ is reached, it continues with a constant CAS climb.
+
+!!! note
+    Since the calibrated airspeed won't further decrease below $h_{transition}$, the demanded velocity for the segment's end (segment's `calibrated_airspeed` node in the `mission file`) must be reached before that altitude. If this is not the case, the aircraft will be automatically decelerated by activating a [Change Speed](#change_speed_subparagraph) segment in between.
+
+
+### Descend {#descend_subparagraph}
+
+This mode adapts [Climb](climb_subparagraph) with the difference that its minimum rate of climb is set to $0\,\frac{ft}{min}$ and a glide path angle $\gamma$ is read from the `mission file`. This comes in handy to meet ATC regulations for lower altitudes. Hence, `descend` should be used for approach steps below $10\,000\,ft$.
+
+!!! note
+    After the last descend segment, **mission_analysis** expects the aircraft to be at threshold crossing height ($50\,ft = 15.24\,m$). Otherwise, [Landing](#landing) might cause problems!
+
+
+### Glide Slope Interception {#level_glide_slope_interception_subparagraph}
+
+With `level_glide_slope_interception` the final approach slope is initiated by [cruising](#cruise_subparagraph) at glide slope interception altitude ($3000\,ft$) with constant calibrated airspeed. The distance until the aircraft reaches the interception point $\Delta x$ is derived from the landing glide slope $\gamma$ (usually it's about $3°$), total range $R_{total}$ and the aircraft's current position:
+
+$$
+\Delta x = R_{total} - \frac{h_{current}}{\tan(-\gamma)} - R_{current}
+$$
+
+!!! warning
+    If $\Delta x$ becomes negative, the interception was overflown. This can happen if e.g. the engine produces too much thrust while decelerating or the drag is too low. Either way, **mission_analysis** will try to land the aircraft, but the result may not be ATC conform.
+
+
+### Landing {#landing_subparagraph}
+
+Like [Descend](#descend_subparagraph), the `landing` mode changes the altitude using a constant calibrated airspeed while maintaining a given glide path angle. After touchdown, the aircraft is decelerated to the dedicated taxi speed. Beside the aircraft's brakes, you can also turn on the `thrust_reverser` in the [Configuration File](getting_started.md/#config_file). This may shorten the needed runway length drastically, but you must be sure your engines/aircraft configuration is capable of this.
+
+
+## Taxiing procedures
+
+Unlike the other mission steps, taxi-out and taxi-in are defined in the overall `mission` block within the `mission file`. The taxi fuel consumption for both the origin and destination is determined based on the type of `taxiing_procedure` used. If electric taxiing is used, fuel is only needed for engine warm-up at the origin airport, while no fuel is allocated for taxiing at the destination. The warm-up fuel is calculated using the `engine_warmup_time` $t_{warm\textrm{-}up}$ time and fuelflow rate $\dot{m}_{warm\textrm{-}up}$ which is derived from the [Configuration File's](getting_started.md/#config_file) `fuel_flow_factor_taxiing` which is applied to the engine running in `idle`:
+
+$$
+m_{fuel,\,warm\textrm{-}up} = t_{warm\textrm{-}up} \cdot \dot{m}_{warm\textrm{-}up}
+$$
+
+If electric taxiing is not used, fuel is needed for both origin and destination taxi operations. In this case, the required fuel mass is based on the taxiing time $t_{taxi}$ at each airport (`taxi_time_origin` & `taxi_time_destination`). Analogous to $\dot{m}_{warm\textrm{-}up}$, we get the taxi fuels:
+
+$$
+m_{fuel,\,taxi\textrm{-}out} = t_{taxi\textrm{-}out} \cdot \dot{m}_{taxi\textrm{-}out}
+$$
+
+$$
+m_{fuel,\,taxi\textrm{-}in} = t_{taxi\textrm{-}in} \cdot \dot{m}_{taxi\textrm{-}in}
+$$
+
+!!!node
+    The fuelflow is computed the same way for the three procedures above. Therefore all of these are equal.
diff --git a/docs/documentation/libraries/engine/index.md b/docs/documentation/libraries/engine/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..c694d6124308790449ddf073de17fbf988821114
--- /dev/null
+++ b/docs/documentation/libraries/engine/index.md
@@ -0,0 +1,48 @@
+# The `engine` Library in UNICADO
+
+The `_engine_` library serves as the core analysis tool for engine data within UNICADO. It provides access to all possible engine data for every tool in UNICADO. The data can be fixed for an engine or at a given operating point. The data output depends on various factors such as the scale factor and power and bleed offtakes from the engine. The primary objective is to establish a **single source of truth** for engine data retrieval.
+
+## Role in `propulsion_design`
+Within the `propulsion_design` module:
+- Engines for the aircraft are selected, and their respective files are copied to the engine directory.
+- The **scale factor** is calculated, determining how the engine's thrust is adjusted to meet aircraft requirements (refer to the `propulsion_design` documentation).
+
+The `engine` library applies this scale factor, ensuring that aircraft parameters can be accessed without further manual adjustments.
+
+## Engine Data Formats
+The engine data is stored in:
+- `engine.xml` — Contains data **independent** of the operating point.
+- CSV files — Store values **dependent** on:
+
+  - **Mach number**
+  - **Altitude**
+  - **Engine power setting**  
+
+> **Note:** The data in these files is **raw and unscaled**. The only modification made in `propulsion_design` is to the fuel flow CSV file, reflecting user-defined efficiency improvements.
+
+## Functionality of the `engine` Library
+The library is responsible for:
+
+- **Reading engine data**
+- **Applying scaling factors to the data**
+- **Modifying values based on performance-influencing factors like bleed and power offtakes**
+
+### Factors Affecting Engine Performance
+The `engine` library incorporates the following factors, either by default or as optional parameters:
+
+- **Scale factor** from `propulsion_design`
+- **Temperature variations** (non-ISA standard conditions)
+- **Engine derating**
+- **Bleed air extraction** (for turbofan engines)
+- **Spool shaft offtake** (for turbofan engines)
+
+## How the Library Retrieves Data
+- If data is **not dependent** on the operating point → Uses `engine.xml` in a simple readout.
+- If data is **dependent** on the operating point → Uses CSV files and requires:
+
+    - Mach number
+    - Altitude
+    - Engine power setting (e.g., N1 for turbofan engines)
+
+A **linear interpolation** is performed between existing operating points in the deck when retrieving values from CSV files.
+
diff --git a/docs/documentation/libraries/index.md b/docs/documentation/libraries/index.md
index 2abddf2d44fb65b745469c53f8cc5fa1033abe83..27130690a4574ea638987213cce2c229020bcc26 100644
--- a/docs/documentation/libraries/index.md
+++ b/docs/documentation/libraries/index.md
@@ -196,4 +196,4 @@ In addition, it defines some common **constants** which are useful for calculati
 
 |Module Version|Language|License|Documentation|Dependencies|
 |:---:|:---:|:---:|---|---|
-|2.1.0|:simple-cplusplus: |GPLv3|-|-|
+|2.1.0|:simple-cplusplus: |GPLv3|-|-|
\ No newline at end of file
diff --git a/docs/documentation/sizing/create_mission_xml/figures/flight_path.png b/docs/documentation/sizing/create_mission_xml/figures/flight_path.png
new file mode 100644
index 0000000000000000000000000000000000000000..1f5c8ff062c20cb839f6a9975adfa73345aa1df5
--- /dev/null
+++ b/docs/documentation/sizing/create_mission_xml/figures/flight_path.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2b8a41cfe089727a6116f2252b6755310e498bd380b5ec2b476dec80586998ae
+size 191274
diff --git a/docs/documentation/sizing/create_mission_xml/getting_started.md b/docs/documentation/sizing/create_mission_xml/getting_started.md
new file mode 100644
index 0000000000000000000000000000000000000000..51efce0f3b022a6bb6f7cec0f51c5ac8a5722d48
--- /dev/null
+++ b/docs/documentation/sizing/create_mission_xml/getting_started.md
@@ -0,0 +1,288 @@
+# Getting started
+
+Because **create_mission_xml** only needs the user input from the [aircraft XML's](#acxml) `requirements_and_specifications` block it can operate without other tools being executed first. Only if [Mission Analysis](../../analysis/mission_analysis/index.md) was run in between, **create_mission_xml** would adapt given cruise steps, but it is not needed to generate a functioning `mission file`.
+
+
+## Run Create Mission XML
+
+Sounds easy? It gets better! Since the `mission file` is this tool's sole output no plots or reports must be written and therefore, you can simply ignore those settings within the [Configuration File](#config_file). Once you set the path to your aircraft XML and provide its name, you can simply open a terminal and execute **create_mission_xml**. Et voilà, it's done!
+
+Even though, you could happily head over to the next tool, we should take a look at what happens in detail and how you can manipulate the mission for your needs.
+
+
+## Mission Configuration
+
+Like we mentioned before, **create_mission_xml** only needs input from the [aircraft XML's](#acxml) `requirements_and_specifications` block and it's own [Configuration File](#config_file). So, let's see what we can do here!
+
+
+### Aircraft Exchange File {#acxml}
+
+Since we don't need all information from the `requirements_and_specifications` block, we have filtered it a little bit to only show you the relevant nodes:
+
+```plaintext
+requirements_and_specifications
+└── mission_files
+    ├── design_mission_file
+    ├── study_mission_file
+    ├── requirements_mission_file
+└── design_specification
+    ├── transport_task
+    │   ├── cargo_definition
+    │   │   ├── additional_cargo_mass
+    │   ├── passenger_definition
+    │   │   ├── total_number_passengers
+    │   │   ├── mass_per_passenger
+    │   │   ├── luggage_mass_per_passenger
+└── requirements
+    ├── top_level_aircraft_requirements
+    │   ├── maximum_structrual_payload_mass
+    │   ├── design_mission*
+    │   ├── study_mission*
+    │   ├── flight_envelope
+    │   │   ├── maximum_operating_altitude
+    │   │   ├── maximum_approach_speed
+```
+<em>* including its subnodes.</em>
+
+The `mission_files` node simply saves the names of said files. Within `design_specification`, **create_mission_xml** gets the information about the transport task from which we can derive the needed payload mass. In the `top_level_aircraft_requirements` node, the `maximum_structrual_payload_mass` is checked against the calculated payload. Also, we can find other performance maxima and characteristics (e.g. initial cruise altitude & Mach number) for `design_mission` and `study_mission` there.
+
+
+### Configuration File {#config_file}
+
+Since the control settings are equal for all tool's, we will skip it and focus on the tool-specific `program_settings`:
+
+```plaintext
+program_settings
+├── mission_selector
+├── maximum_operating_mach_number
+│   ├── enable
+│   ├── delta
+├── adapt_climb_speed_schedule
+│   ├── enable
+│   ├── crossover_altitude
+├── climb_thrust_setting
+├── maximum_rate_of_climb
+├── design_mission
+│   ├── output_file_name
+│   ├── terminal_operation_time
+│   ├── takeoff_procedure
+│   ├── approach_procedure
+│   ├── taxi_time_origin
+│   ├── taxi_time_destination
+│   ├── auto_select_initial_cruise_altitude
+│   ├── auto_select_flight_level
+│   ├── round_to_regular_flight_level
+│   ├── auto_climb_altitude_steps
+│   ├── auto_rate_of_climb_steps
+│   ├── alternate_distance
+│   ├── engine_warmup_time
+│   ├── taxiing_procedure
+│   ├── origin_airport
+│   ├── destination_airport
+├── study_mission
+│   ├── copy_mach_number
+│   ├── copy_initial_cruise_altitude
+│   ├── output_file_name
+│   ├── terminal_operation_time
+│   ├── takeoff_procedure
+│   ├── approach_procedure
+│   ├── taxi_time_origin
+│   ├── taxi_time_destination
+│   ├── auto_select_initial_cruise_altitude
+│   ├── auto_select_flight_level
+│   ├── round_to_regular_flight_level
+│   ├── auto_climb_altitude_steps
+│   ├── auto_rate_of_climb_steps
+│   ├── alternate_distance
+│   ├── engine_warmup_time
+│   ├── taxiing_procedure
+│   ├── origin_airport
+│   ├── destination_airport
+```
+
+In this config, you can decide what takeoff and approach procedure you want to use and how the aircraft shall operate at the airport and while cruising. In the `mission_selector`, you can choose if the `mission file` shall be generated for a `design_mission`, `study_mission` or `requirements_mission`. For more details, check the descriptions in `create_mission_xml_conf.xml`.
+
+!!!node
+    `maximum_operating_mach_number` and the nodes starting with `auto` will lead to **mission_analysis** ignoring user input from the aircraft XML. In those cases, the tool will try to find an own optimum.
+
+
+## Output
+
+Like we have already discussed, the output of **create_mission_xml** is the mission_file which generally looks like this:
+
+```xml
+<mission>
+    <range description="Mission range">
+        <value>5000000</value>
+        <unit>m</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>100000000</upper_boundary>
+    </range>
+    <payload description="Payload mass">
+        <value>20000</value>
+        <unit>kg</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>100000</upper_boundary>
+    </payload>
+    <number_of_pax description="Number of passenger (Mass per PAX = 95 kg)">
+        <value>200</value>
+        <unit>1</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>1000</upper_boundary>
+    </number_of_pax>
+    <cargo_mass description="Cargo mass">
+        <value>2000</value>
+        <unit>kg</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>100000</upper_boundary>
+    </cargo_mass>
+    <desired_cruise_speed description="Planned cruise Mach number for fuel calculation">
+        <value>0.78</value>
+        <unit>1</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>1</upper_boundary>
+    </desired_cruise_speed>
+    <alternate_distance description="Distance from destination to alternate aerodrome">
+        <value>370400.2</value>
+        <unit>m</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>10000000</upper_boundary>
+    </alternate_distance>
+    <taxi_time_origin description="Taxi time at departure airport">
+        <value>540</value>
+        <unit>s</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>10000</upper_boundary>
+    </taxi_time_origin>
+    <taxi_time_destination description="Taxi time at destination">
+        <value>300</value>
+        <unit>s</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>10000</upper_boundary>
+    </taxi_time_destination>
+    <engine_warmup_time description="Running time of the engines before take-off">
+        <value>0</value>
+        <unit>s</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>10000</upper_boundary>
+    </engine_warmup_time>
+    <terminal_operation_time description="Time at the terminal for stopovers">
+        <value>1500</value>
+        <unit>s</unit>
+        <lower_boundary>0</lower_boundary>
+        <upper_boundary>10000</upper_boundary>
+    </terminal_operation_time>
+    <taxiing_procedure description="Taxiing procedure for start and landing.">
+        <value>propulsion_taxiing</value>
+    </taxiing_procedure>
+    <departure description="Departure procedure; Additional nodes neded for mode... 
+                                Takeoff: No additional nodes. 
+                                climb: End Point Altitude [m] (double).
+                                accelerate: Rate of climb [m/s] (double), End point CAS [m/s] (double).">
+        <departure_step ID="0" description="Single departure step">
+            <configuration description="Configuration of the aircraft during this step">
+                <value>e.g. clean</value>
+            </configuration>
+            <derate description="Derate during this step">
+                <value>1</value>
+                <unit>1</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>1.5</upper_boundary>
+            </derate>
+            <mode description="Mode during this step">
+                <value>e.g. accelerate</value>
+            </mode>
+            <rating description="Sets thrust rating within climb/acceleration segments to Takeoff, Climb, Maximum continuous, Cruise">
+                <value>e.g. idle</value>
+            </rating>
+            <additional_nodes>...</additional_nodes>
+        </departure_step>
+    </departure>
+    <cruise description="Cruise procedure: Additional nodes needed for mode...
+                            change_speed_to_CAS: Rate of climb [m/s] (double), end point CAS [m/s] (double)
+                            change_speed_to_Mach: Rate of climb [m/s] (double), Mach [-] (double)
+                            climb_to_cruise: End Point Altitude [m] (double), Mach [-] (double)
+                            cruise: Range [%] (double, relative distance at the end of the cruise segment without climb and descend)
+                            change_flight_level_constant_ROC: Rate of climb [m/s] (double), end Point Altitude [m] (double)
+                            descend_to_approach: End Point Altitude [m] (double), end point CAS [m/s] (double).">
+        <cruise_step ID="0" description="Single cruise step">
+            <configuration description="Configuration of the aircraft during this step">
+                <value>e.g. clean</value>
+            </configuration>
+            <derate description="Derate during this step">
+                <value>1</value>
+                <unit>1</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>1.5</upper_boundary>
+            </derate>
+            <mode description="Mode during this step">
+                <value>e.g. change_speed_to_CAS</value>
+            </mode>
+            <rating description="Sets thrust rating within climb/acceleration segments to Takeoff, Climb, Maximum continuous, Cruise">
+                <value>e.g. idle</value>
+            </rating>
+            <auto_select_optimum_flight_level description="Parameters to handle automatized flight_level changes">
+                <enabled description="Switch for automatic selection of the optimum flight level of the cruise step">
+                    <value>false</value>
+                </enabled>
+                <auto_climb_step_height description="Height difference for an automatic altitude change step.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>5000</upper_boundary>
+                </auto_climb_step_height>
+            </auto_select_optimum_flight_level>
+            <flight_management_system description="Flight management system settings">
+                <enabled description="Switch to indicate if a flight management system is equipped">
+                    <value>false</value>
+                </enabled>
+                <cost_index description="Cost index [kg/min], scaled 0 to 999 according to Sperry/Honeywell">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>999</upper_boundary>
+                </cost_index>
+            </flight_management_system>
+            <additional_nodes>...</additional_nodes>
+        </cruise_step>
+    </cruise>
+    <approach description="Approach procedure: Additional nodes needed for mode... : 
+                            descend: End Point Altitude [m] (double), glide_path [deg] (double).
+                            change_speed: End point CAS [m/s] (double), glide_path [deg] (double).
+                            level_glide_slope_interception: No additional nodes.
+                            landing: End Point Altitude [m] (double), glide_path [deg] (double).">
+        <approach_step ID="0" description="Single approach step">
+            <configuration description="Configuration of the aircraft during this step">
+                <value>e.g. clean</value>
+            </configuration>
+            <derate description="Derate during this step">
+                <value>1</value>
+                <unit>1</unit>
+                <lower_boundary>0</lower_boundary>
+                <upper_boundary>1.5</upper_boundary>
+            </derate>
+            <mode description="Mode during this step">
+                <value>e.g. change_speed</value>
+            </mode>
+            <rating description="Sets thrust rating within climb/acceleration segments to Takeoff, Climb, Maximum continuous, Cruise">
+                <value>e.g. idle</value>
+            </rating>
+            <additional_nodes>...</additional_nodes>
+        </approach_step>
+    </approach>
+</mission>
+```
+
+!!!node
+    Bleed air and power offtakes are not displayed here, but every step will include these, too. Offtakes are written and explained by [Systems Design](../systems_design/index.md).
+
+
+While the most parameters like `range` and `alternate_distance` are copied directly from [Aircraft Exchange File](#acxml) and [Configuration File](#config_file), the `payload` is derived from the given number of passengers, their luggage and the mass per passenger. Each step (`departure_step`, `cruise_step` or `approach_step`) contains the nodes `configuration`, `mode`, `derate` and `rating`. The `configuration` node will tell [Mission Analysis](../../analysis/mission_analysis/index.md) which polar (generated by [Aerodynamic Assessment](../../sizing/aerodynamic_analysis/index.md)) shall be used. `derate` and `rating` characterize the engine operations and `mode` specifies what shall happen during the segment between two steps (more infos about `modes`, [click here](../../analysis/mission_analysis/mission_steps.md/#step_modes)). Furthermore, `cruise_steps` always include `flight_management_system` and `auto_select_optimum_flight_level` nodes.
+
+Other entries within these steps can differ depending on which `mode` is used. What input nodes are needed can be found in the descriptions of `departure`, `cruise` and `approach`. As a rule of thumb, the following input nodes can usually be expected:
+
+- `mode` that changes speed: Target speed (Mach or CAS), rate of climb or target speed
+- `mode` that changes altitude: Target altitude, rate of climb or target speed
+
+!!!node
+    For an `approach_step`, the rate of climb cannot be determined up-front, because the glide path angle must be kept constant at $3°$ due to regulatory requirements. Therefore, the rate of climb will be derived from the `glide_path` node by [Mission Analysis](../../analysis/mission_analysis/index.md).
diff --git a/docs/documentation/sizing/create_mission_xml/index.md b/docs/documentation/sizing/create_mission_xml/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..33892231d6d72779104ea28d16b2123c3deb5c08
--- /dev/null
+++ b/docs/documentation/sizing/create_mission_xml/index.md
@@ -0,0 +1,20 @@
+# Introduction
+
+Good news first: **create_mission_xml** is quite slim... or perhaps the slimmest tool of the whole UNICADO chain. It's sole purpose is to define some basic parameters and target points on the mission's trajectory. Nonetheless, this is critical to the whole operation, because we all know *if you fail planning, you'll be planning your failure!* But no worries, we'll help you out :wink:
+
+
+## What a Mission Looks Like {#typical_mission}
+
+In short, a mission contains a handful of so-called segments with which you can define a basic mission profile. Depending on the aircraft size, regulation and flight path planning philosophy, some details may differ, but in general it should look something like this:
+
+<p align="center">
+  <img src="figures/flight_path.png" alt="Flight segments" width="97.5%">
+  <br>
+  <em>Flight segments with typical speeds: IAS (blue), Mach (green), and TAS (violet) [1].</em>
+</p>
+
+
+**create_mission_xml** sets the target/end points of these flight segments which will later be connected by [Mission Analysis](../../analysis/mission_analysis/index.md). Those target points are saved into the `mission file` in which they are categorized as `departure_steps`, `cruise_steps` and `approach_steps`. What this `mission_file` contains in detail can be found in the [Getting Started](getting_started.md). 
+
+
+To fill and order `departure_steps` and `approach_steps`, departure and approach procedures based on regulatory requirements were implemented. Since cruise segments are pretty much straight forward and automatic/optimized flight level changes will be handled by [Mission Analysis](../../analysis/mission_analysis/index.md), there are no pre-defined procedures for cruise. Still, there are a few thing to take into account which we will describe in the [Mission Steps](mission_steps.md) section.
diff --git a/docs/documentation/sizing/create_mission_xml/mission_steps.md b/docs/documentation/sizing/create_mission_xml/mission_steps.md
new file mode 100644
index 0000000000000000000000000000000000000000..27700c5098f298b94cf5ff4cbb346d9551544e6d
--- /dev/null
+++ b/docs/documentation/sizing/create_mission_xml/mission_steps.md
@@ -0,0 +1,126 @@
+# Mission Steps
+
+The steps in the `mission_file` can be filled and arranged in different ways, depending on what departure and approach procedures you want to implement and how you want the aircraft to behave during cruise. Let's see what **create_mission_xml** can do with the `departure`, `cruise` and `approach` nodes.
+
+
+## Departure
+
+| Procedure                 | Description                                  | Status                          |
+|---------------------------|----------------------------------------------|---------------------------------|
+| Standard                  | FAA/ICAO compliant standard                  | running :white_check_mark:      |
+| Standard 19 seat commuter | FAA/ICAO compliant standard 19 seat commuter | running :white_check_mark:      |
+| ICAO-A                    | Noise reduced takeoff according to ICAO      | under development :construction:|
+| ICAO-B                    | Noise reduced takeoff according to ICAO      | under development :construction:|
+
+
+### Standard
+
+| Mode       | Thrust Rating        | Config                         | End Altitude [m] | Rate of Climb [m/s]     | End CAS [m/s]         |
+|------------|----------------------|--------------------------------|------------------|-------------------------|-----------------------|
+| takeoff    | takeoff              | takeoff                        | N/A              | N/A                     | N/A                   |
+| climb      | climb thrust setting | takeoff landing gear retracted | 457.2 (1500 ft)  | maximum rate of climb   | N/A                   |
+| climb      | climb thrust setting | takeoff landing gear retracted | 914.4 (3000 ft)  | maximum rate of climb   | N/A                   |
+| accelerate | climb thrust setting | climb                          | N/A              | 5.08 (1000 fpm)         | 108.0 (210 kt)        |
+| accelerate | climb thrust setting | clean                          | N/A              | 6.10 (1200 fpm)         | CAS ATC limit climb   |
+| climb      | climb thrust setting | clean                          | 3048 (10,000 ft) | maximum rate of climb   | N/A                   |
+
+In the standard procedure, we assume that the thrust-to-weight ratio is high enough to maintain minimum safe climb speed $v_2$ (see [What a Mission Looks Like](index.md/#typical_mission)) from takeoff until en-route transition (`climb` configuration) at $3\,000\,ft$. Please mind, that EASA's CS-25 only allows extrapolation of the propulsion system's takeoff performance data up to that altitude. To do so, the aircraft shall climb with the given `maximum_rate_of_climb` and `climb_thrust_setting` from the [Configuration File](getting_started.md/#config_file) without an acceleration in between. Since the landing gear gets retracted between screen height ($35\,ft$) and $1\,500\,ft$, climbing up to $3\,000\,ft$ is divided into two segments. Like this, it's easier for [Systems Design](../systems_design/index.md) to simulate the retraction and to put the power/bleed air demand into the `mission file`. Once en-route transition is reached, flaps are set to `climb` while accelerating to $210\,kt$ calibrated airspeed. Just after that, the aircraft accelerates further in `clean` configuration (least drag) until the _CAS_ATC_limit_climb_ is obtained. Since the air space below $10,000\,ft$ is more crowded, institutions like FAA and ICAO limit the speed to $250 kt$ calibrated airspeed, but you can change that in the `climb_speed_below_FL100` node of our [Aircraft Exchange File](getting_started.md/#acxml). Then, the aircraft finishes the departure procedure by climbing up to $10,000\,ft$ using the `maximum_rate_of_climb`.
+
+!!!node
+    Although `maximum_rate_of_climb` can be set as a constant value, we usually set it to $-1$ to indicate that the aircraft shall use all possible thrust of its current engine settings to achieve altitude gains. Therefore, rate of climb varies within these climb segments. Since acceleration is most effective and saver when keeping a constant rate of climb, it is manually set to $1\,000\,\frac{ft}{min}$/$1\,200\,\frac{ft}{min}$ which follows the ICAO's recommendations.
+
+
+### Standard 19 seat commuter
+
+| Mode         | Thrust Rating        | Config                         | End Altitude [m] | Rate of Climb [m/s]     | End CAS [m/s]       |
+|--------------|----------------------|--------------------------------|------------------|-------------------------|---------------------|
+| takeoff      | takeoff              | takeoff                        | N/A              | N/A                     | N/A                 |
+| climb        | climb thrust setting | takeoff landing gear retracted | 60.96 (200 ft)   | maximum rate of climb   | N/A                 |
+| accelerate   | climb thrust setting | clean                          | N/A              | 6.10 (1200 fpm)         | CAS ATC limit climb |
+| climb        | climb thrust setting | clean                          | 3048 (10000 ft)  | maximum rate of climb   | N/A                 |
+
+Using a smaller aircraft, an acceleration segment at lower altitudes is needed. Analogous to the procedure above, it accelerates to the maximum allowed speed (normally $250\,kts$ calibrated airspeed) before climbing with maximum rate of climb towards $10\,000\,ft$.
+
+
+### Minimal Noise Takeoff
+
+ICAO-A and ICAO-B should tackle this, but it is not ready yet :construction:
+
+
+## Cruise
+
+| Mode                 | Thrust Rating        | Config  | End Altitude [m] | Rate of Climb [m/s]       | End CAS [m/s] / Mach [-]          |
+|----------------------|----------------------|---------|------------------|---------------------------|-----------------------------------|
+| change speed to CAS  | climb thrust setting | clean   | N/A              | 1.524 (300 ft/min)        | CAS over flight level 100 climb   |
+| climb to cruise      | climb thrust setting | clean   | initial cruise altitude   | maximum rate of climb   | N/A                        |
+| change speed to Mach | climb thrust setting | clean   | N/A              | 0                         | initial_cruise_mach_number        |
+| cruise               | cruise               | clean   | N/A              | N/A                       | N/A                               |
+| change flight level constant_ROC / change flight level | cruise | clean | auto / cruise FL + 20  | N/A / auto | N/A        |
+| cruise               | cruise               | clean   | N/A              | N/A                       | N/A                               |
+| descend to approach  | idle                 | clean   | 10000 ft         | N/A                       | CAS over flight level 100 descend |
+
+After reaching $10\,000\,ft$ the aircraft accelerates to the next higher speed limit `CAS_over_flight_level_100_climb` which is usually $300\,kts$ calibrated airspeed. Again, you can change this in the aircraft XML, but when you want to stick to current regulations, you should keep $300\,kts (= 154.3334 m/s)$. Then the aircraft keeps on climbing until the `initial_cruise_altitude` from where it accelerates to the `initial_cruise_mach_number` without climbing any further. In the table above, only one flight level change is displayed. How many of them will be initiated can be determined in the following way:
+
+- Short Range ($\leq 1\,000\,NM$):
+    - 1 cruise climb step
+- Medium Range ($1\,000 - 5\,000\,NM$):
+    - 2 cruise climb steps
+- Long Range ($\ge 5\,000\,NM$):
+    - 3 cruise climb steps
+
+!!! node
+    If climbs during cruise are disabled (`no_steps` node in the [Configuration File](getting_started.md/#config_file)), then only 1 climb step is generated. Also when automatic flight level changes are activated, [Mission Analysis](../../analysis/mission_analysis/index.md) will try to find an optimum by itself.
+
+Once the end of cruise is reached, the aircraft shall descend to approach ($10\,000\,ft$) using the maximum descend speed.
+
+!!!node
+    For the `requirements_mission`, `climb_to_cruise` gets replaced by `climb_to_ceiling` where [Missionis Analysis](../../analysis/mission_analysis/index.md) searches for the maximum altitude. After this segment, the mission ends. Thus, the `mission_file` will not have any more entries after `climb_to_ceiling`.
+
+
+## Approach
+
+| Procedure                 | Description                                  | Status                          |
+|---------------------------|----------------------------------------------|---------------------------------|
+| Standard                  | FAA/ICAO compliant standard                  | running :white_check_mark:      |
+| Standard 19 seat commuter | FAA/ICAO compliant standard 19 seat commuter | running :white_check_mark:      |
+| Continuous ICAO           | Continuous descent approach                  | under development :construction:|
+| Steep Continuous ICAO     | Steep Continuous descent approach            | under development :construction:|
+
+
+### Standard
+
+| Mode                           | Thrust rating  | Config                        | End Altitude [m] | Glide Path Angle [°] | End CAS [m/s]                 |          
+|--------------------------------|----------------|-------------------------------|------------------|----------------------|-------------------------------|
+| change speed                   | idle           | clean                         | N/A              | 0                    | CAS ATC limit descend         |
+| descend                        | cruise         | clean                         | 914.4 (3000 ft)  | -3                   | N/A                           |
+| change speed                   | idle           | approach                      | N/A              | 0                    | $v_{approach}$                |
+| level glide slope interception | cruise         | approach landing gear out     | N/A              | -3                   | N/A                           |
+| change speed                   | idle           | approach landing gear out     | N/A              | -3                   | $v_{max, approach + 5\,kt}$   |
+| descend                        | cruise         | approach landing gear out     | 457.2 (1500 ft)  | -3                   | N/A                           |
+| change speed                   | idle           | landing                       | N/A              | -3                   | $v_{max, approach}$           |
+| descend                        | cruise         | landing                       | 304.8 (1000 ft)  | -3                   | N/A                           |
+| descend                        | cruise         | landing                       | 15.24 (50 ft)    | -3                   | N/A                           |
+| landing                        | takeoff        | landing                       | 0                | -3                   | N/A                           |
+
+The first approach segment starts at $10\,000\,ft$ where the descend speed limit from the [Aircraft Exchange File](getting_started.md/#acxml) has to be followed. Like in departure, ICAO and FAA dictate $250 kt$ calibrated airspeed. Once this speed limit is met, the aircraft descends to $3,000\,ft$ maintaining a glide path angle of $-3°$. There, high-lift systems are activated (`approach` config) while decelerating to $v_{approach}$. With $v_{approach}$ the aircraft extends its landing gear and cruises to glide slope interception where instrument landing systems start operating. After decelerating to $v_{max, approach + 5\,kt}$, the aircraft descends to visual approach at $1\,500\,ft$. Lastly, the aircraft changes its speed to $v_{max, approach}$ being in `landing` configuration. Tensions rise, while we descend lower and lower until we finally touch the ground. Congratulations, we have landed! You need more braking power? We set the engines' rating to `takeoff` so you can use them as thrust reversers.
+
+!!!node
+    The `maximum_approach_speed` $v_{max, approach}$ (to be found in the [Aircraft Exchange File](getting_started.md/#acxml)) limits the calibrated airspeed below $1,000\,ft$. Above that, $v_{max, approach + 5\,kts} = v_{approach} + 5\,kt$ and $v_{approach} = max\left(v_{max,\,approach + 5\,kts}, 170\,kts\right)$.
+
+
+### Standard 19 seat commuter
+
+| mode         | rating  | config   | End Altitude [m] | Glide Path Angle [°] | End CAS [m/s]         |
+|--------------|---------|----------|------------------|----------------------|-----------------------|
+| change speed | idle    | clean    | N/A              | 0                    | CAS ATC limit descend |
+| descend      | cruise  | clean    | 609.6 (2000 ft)  | -3                   | N/A                   |
+| change speed | idle    | approach | N/A              | -3                   | $v_{max, approach}$   |
+| descend      | cruise  | landing  | 15.24 (50 ft)    | -3                   | N/A                   |
+| landing      | takeoff | landing  | 0                | -3                   | N/A                   |
+
+For smaller aircraft, the approach procedure becomes less complicated. You can simply decelerate to the before mentioned CAS limit of $250\,kt$ before descending towards initial approach fix at $2\,000\,ft$. Next, the aircraft's configuration is set to `approach` while decelerating to $v_{max, approach}$ with which we bring it to the ground using its `landing` configuration. Easy peasy lemon squeezy! :lemon:
+
+
+### (Steep) Continuous Descent Approach
+
+Continuous descent has not been implemented yet, but that's just a matter of time :clock:
diff --git a/docs/documentation/sizing/fuselage_design/design_method.md b/docs/documentation/sizing/fuselage_design/design_method.md
index fdd1ec8dbbb269d8adb955d7a3cc3eece2732f9f..045b78e0b758df4264f85faf78beaced90add548 100644
--- a/docs/documentation/sizing/fuselage_design/design_method.md
+++ b/docs/documentation/sizing/fuselage_design/design_method.md
@@ -13,75 +13,78 @@
 The cabin width is estimated using the given class definition.
 
 #### Determine width of seat row per aircraft side
-The width of one seat row/bench $w_{seat\_bench}$ (in inch) can be determined for the left and right side of the aircraft using the following equation:
-$
-    w_{seat\_bench} = n_{seats} \cdot w_{seat} + 2 \cdot w_{armrest}
-$
+The width of one seat row/bench $w_{\text{bench}}$ (in inch) can be determined for the left and right side of the aircraft using the following equation:
+$$
+    w_{\text{bench}} = n_{\text{seats}} \cdot w_{\text{seat}} + 2 \cdot w_{\text{armrest}}
+$$
 
 In which
-- $n_{seats}$ - number of seats per seat bench
-- $w_{seat}$ - seat width (taken from lowest class seat)
-- $w_{armrest}$ - armrest width (taken from lowest class seat)
+
+- $n_{\text{seats}}$ - number of seats per seat bench
+- $w_{\text{seat}}$ - seat width (taken from lowest class seat)
+- $w_{\text{armrest}}$ - armrest width (taken from lowest class seat)
 
 #### Calculate cabin width
-The cabin width $w_{cabin}$ (in inch) can then be calculated:
-$
-    w_{cabin} = w_{aisle} + w_{seat\_bench\_left} + w_{seat\_bench\_right} + 2 \cdot w_{seat\_space}
-$
+The cabin width $w_{\text{cabin}}$ (in inch) can then be calculated:
+$$
+    w_{\text{cabin}} = w_{\text{aisle}} + w_{\text{bench,left}} + w_{\text{bench,right}} + 2 \cdot w_{\text{seat space}}
+$$
 
 In which
-- $w_{aisle}$ - passenger aisle width
-- $w_{seat\_space}$ - lowest class seat space
 
-In case of a **wide-body aircraft configuration** there is an additional row in the middle of the aircraft as well as an additional passenger aisle. The width of the seat bench $w_{seat\_bench\_center}$ can be calculated using an equation similar to that in the previous section.
-$
-    w_{seat\_bench\_center} = n_{seats} \cdot w_{seat} + 2 \cdot w_{armrest\_outer} + (n_{seats} - 1) \cdot w_{armrest\_inner}
-$
+- $w_{\text{aisle}}$ - passenger aisle width
+- $w_{\text{seat space}}$ - lowest class seat space
+
+In case of a **wide-body aircraft configuration** there is an additional row in the middle of the aircraft as well as an additional passenger aisle. The width of the seat bench $w_{\text{bench,center}}$ can be calculated using an equation similar to that in the previous section.
+$$
+    w_{\text{bench,center}} = n_{\text{seats}} \cdot w_{\text{seat}} + 2 \cdot w_{\text{armrest,outer}} + (n_{\text{seats}} - 1) \cdot w_{\text{armrest,inner}}
+$$
 
 In which
-- $w_{seat}$ - seat width (from lowest class seat parameters of right side)
-- $w_{armrest\_outer}$ - width of outer armrest (from lowest class seat parameters of right side)
-- $w_{armrest\_inner}$ - width of inner armrest (from lowest class seat parameters of right side)
+
+- $w_{\text{seat}}$ - seat width (from lowest class seat parameters of right side)
+- $w_{\text{armrest,outer}}$ - width of outer armrest (from lowest class seat parameters of right side)
+- $w_{\text{armrest,inner}}$ - width of inner armrest (from lowest class seat parameters of right side)
 
 The equation for the cabin width estimation must be adapted accordingly:
-$
-    w_{cabin} = w_{aisle} + w_{seat\_bench\_left} + w_{seat\_bench\_right} + 2 \cdot w_{seat\_space} + w_{aisle} + w_{seat\_bench\_center}
-$
+$$
+    w_{\text{cabin}} = w_{\text{aisle}} + w_{\text{bench,left}} + w_{\text{bench,right}} + 2 \cdot w_{\text{seat space}} + w_{\text{aisle}} + w_{\text{bench,center}}
+$$
 
 ### Cabin slenderness ratio <sup>[1]</sup>
-The cabin slenderness ratio describes the ratio of cabin width to cabin length $\frac{w_{cabin}}{l_{cabin}}$.
-Whilst the cabin width is already known, the cabin length can be determined using the following equation:
-$
-    l_{cabin} = \frac{n_{PAX\_per\_class}}{ab} \cdot \left[ sp + \frac{a_{service}}{w_{seat}} + \frac{a_{bulk}}{\frac{w_{aisle}}{ab} + w_{seat}} + x \cdot w_{exit} \cdot \left( \frac{ab}{n_{PAX\_per\_class}} + \frac{sp}{d_{exits}} \right)  \right]
-$
+The cabin slenderness ratio describes the ratio of cabin width to cabin length and can be determined using the following equation:
+$$
+    \frac{w_{\text{cabin}}}{l_{\text{cabin}}} = \frac{n_{\text{PAX per class}}}{ab} \cdot \left[ sp + \frac{a_{\text{service}}}{w_{\text{seat}}} + \frac{a_{\text{bulk}}}{\frac{w_{\text{aisle}}}{ab} + w_{\text{seat}}} + x \cdot w_{\text{exit}} \cdot \left( \frac{ab}{n_{\text{PAX per class}}} + \frac{sp}{d_{\text{exits}}} \right)  \right]
+$$
 
 In which
+
 - $x$ - factor (1 for single-aisle, 2 for wide-body)
-- $n_{PAX\_per\_class}$ - number of PAX per class
+- $n_{\text{PAX per class}}$ - number of PAX per class
 - $ab$ - seat abreast
 - $sp$ - seat pitch
-- $a_{service}$ - service area per PAX
-- $a_{bulk}$ - bulk area per PAX
-- $w_{exit}$ - exit width
-- $d_{exits}$ - maximum distance between two exits
+- $a_{\text{service}}$ - service area per PAX
+- $a_{\text{bulk}}$ - bulk area per PAX
+- $w_{\text{exit}}$ - exit width
+- $d_{\text{exits}}$ - maximum distance between two exits
 
 ### Cabin length
 Knowing the cabin width and the cabin slenderness ratio, the cabin length (in inch) can be calculated:
-$
-    l_{cabin} = \frac{w_{cabin}}{\frac{w_{cabin}}{l_{cabin}}}
-$
+$$
+    l_{\text{cabin}} = \frac{w_{\text{cabin}}}{\frac{w_{\text{cabin}}}{l_{\text{cabin}}}}
+$$
 
 ### Cabin wall thickness
 The cabin wall thickness can be estimated using the following calculation:
-$
-    t_{wall} = 0.02 \cdot w_{cabin} + 2.5"
-$
+$$
+    t_{\text{wall}} = 0.02 \cdot w_{\text{cabin}} + 2.5"
+$$
 
 ### Cabin floor thickness
 With the use of the cabin wall thickness, the cabin floor thickness can be calculated:
-$
-    t_{floor} = 1.5 \cdot t_{wall}
-$
+$$
+    t_{\text{floor}} = 1.5 \cdot t_{\text{wall}}
+$$
 
 ## Determine fuselage geometry {#fuselage-geometry}
 With the calculated cabin the fuselage dimensions can be estimated.
@@ -90,85 +93,92 @@ With the calculated cabin the fuselage dimensions can be estimated.
 The fuselage length can be determined via regression formulas using the cabin length (in meter).
 
 For single-aisle aircraft:
-$
-    l_{fuselage} = \frac{l_{cabin}}{0.23482756 \cdot \log l_{cabin} - 0.05106017}
-$
+$$
+    l_{\text{fuselage}} = \frac{l_{\text{cabin}}}{0.23482756 \cdot \log l_{\text{cabin}} - 0.05106017}
+$$
 
 For wide-body aircraft:
-$
-    l_{fuselage} = \frac{l_{cabin}}{0.1735 \cdot \log l_{cabin} - 0.0966}
-$
+$$
+    l_{\text{fuselage}} = \frac{l_{\text{cabin}}}{0.1735 \cdot \log l_{\text{cabin}} - 0.0966}
+$$
 
 ### Fuselage diameters
 The fuselage does not necessarily have a circular cross-section. It is more common to design elliptical cross-sections. Because of that, there are several values that must be determined:
+
 - Fuselage diameter in y-direction
 - Fuselage diameter in negative z-direction
 - Fuselage diameter in positive z-direction
 
 #### Fuselage diameter in y-direction
-The fuselage diameter in y-direction $d_{fuselage\_y}$ can be calculated in the following way:
-$
-    d_{fuselage\_y} = w_{cabin} + 2 \cdot t_{wall}
-$
+The fuselage diameter in y-direction $d_{\text{fuselage,y}}$ can be calculated in the following way:
+$$
+    d_{\text{fuselage,y}} = w_{\text{cabin}} + 2 \cdot t_{\text{wall}}
+$$
 
 #### Fuselage diameter in negative z-direction
-The fuselage diameter in negative z-direction $d_{fuselage\_z\_neg}$ is determined by the cargo accommodation. It can be calculated in the following way.
+The fuselage diameter in negative z-direction $d_{\text{fuselage,z,neg}}$ is determined by the cargo accommodation. It can be calculated in the following way.
+
 At first, the distance to the cargo bottom is calculated:
-$
-    d_{to\_cargo\_bottom} = h_{max} + t_{floor} + d_{container\_to\_ceil} + o_{cabin\_floor}
-$
+$$
+    d_{\text{to cargo bottom}} = h_{\text{ULD,max}} + t_{\text{floor}} + d_{\text{container to ceil}} + o_{\text{cabin floor}}
+$$
 
 In which
-- $h_{max}$ - maximum height of unit load device
-- $d_{container\_to\_ceil}$ - distance from the container to the ceiling
-- $o_{cabin\_floor}$ - offset cabin floor
+
+- $h_{\text{ULD,max}}$ - maximum height of unit load device
+- $t_{\text{floor}}$ - floor thickness
+- $d_{\text{container to ceil}}$ - distance from the container to the ceiling
+- $o_{\text{cabin floor}}$ - offset cabin floor
 
 Afterwards, the distance to the lower compartment edge is estimated:
-$
-    d_{to\_lower\_compartment\_edge} = d_{container\_to\_wall} + 0.5 \cdot w_{max\_at\_base}
-$
+$$
+    d_{\text{to lower compartment edge}} = d_{\text{container to wall}} + 0.5 \cdot w_{\text{base,max}}
+$$
 In which
-- $d_{container\_to\_wall}$ - distance from container to wall
-- $w_{max\_at\_base}$ - maximum width at container base
+- $d_{\text{container to wall}}$ - distance from container to wall
+- $w_{\text{base,max}}$ - maximum width at container base
 
 Based on the Pythagorean theorem, the inner fuselage diameter (that equals the hypotenuse) can be calculated:
-$
-    d_{inner\_fuselage\_z\_neg} = \sqrt{(d_{to\_cargo\_bottom})^2 + (d_{to\_lower\_compartment\_edge})^2}
-$
+$$
+    d_{\text{fuselage,z,neg,inner}} = \sqrt{(d_{\text{to cargo bottom}})^2 + (d_{\text{to lower compartment edge}})^2}
+$$
 
 Adding the wall thickness results in the fuselage diameter in negative z-direction:
-$
-    d_{fuselage\_z\_neg} = d_{inner\_fuselage\_z\_neg} + t_{wall}
-$
+$$
+    d_{\text{fuselage,z,neg}} = d_{\text{fuselage,z,neg,inner}} + t_{\text{wall}}
+$$
 
 #### Fuselage diameter in positive z-direction
-The fuselage diameter in positive z-direction $d_{fuselage\_z\_pos}$ is determined by the passenger accommodation. It can be calculated in the following way.
+The fuselage diameter in positive z-direction $d_{\text{fuselage,z,pos}}$ is determined by the passenger accommodation. It can be calculated in the following way.
+
 Firstly, the inner fuselage height (equals outer cabin height) can be determined:
-$
-    d_{inner\_fuselage\_z\_pos} = h_{aisle\_standing} - o_{cabin\_floor} + h_{system\_bay}
-$
+$$
+    d_{\text{fuselage,z,pos,inner}} = h_{\text{aisle,standing}} - o_{\text{cabin floor}} + h_{\text{system bay}}
+$$
 
 In which
-- $h_{aisle\_standing}$ - passenger aisle standing height
-- $o_{cabin\_floor}$ - cabin floor offset
-- $h_{system\_bay}$ - system bay height above cabin
+
+- $h_{\text{aisle,standing}}$ - passenger aisle standing height
+- $o_{\text{cabin floor}}$ - cabin floor offset
+- $h_{\text{system bay}}$ - system bay height above cabin
 
 Adding the wall thickness leads to the fuselage diameter in positive z-direction.
-$
-    d_{fuselage\_z\_pos} = d_{inner\_fuselage\_z\_pos} + t_{wall}
-$
+$$
+    d_{\text{fuselage,z,pos}} = d_{\text{fuselage,z,pos,inner}} + t_{\text{wall}}
+$$
 
 ### Fuselage height
 The total height of the fuselage can be determined by summing up the fuselage diameters in positive and negative z-direction:
-$
-    h_{fuselage} = d_{fuselage\_z\_pos} + d_{fuselage\_z\_neg}
-$
+$$
+    h_{\text{fuselage}} = d_{\text{fuselage,z,pos}} + d_{\text{fuselage,z,neg}}
+$$
 
 !!! note 
     If the `force_circle_cross_section` mode is selected, fuselage height and width are set to the maximum of both.
 
 ## Mass estimation {#mass-estimation}
 The following masses are estimated:
+
 - Fuselage structure
 - Operator items
 - Furnishing
@@ -176,13 +186,15 @@ The following masses are estimated:
 Please refer to _Synthesis of Subsonic Airplane Design_ by E. Torenbeek<sup>[3]</sup> and the Certification Specifications<sup>[4]</sup> for further information.
 
 !!! note 
-    All masses are estimated in accordance with the CPACS standard.
+    All masses are estimated in accordance with the CPACS mass standard.
 <!-- ## Estimate positions and COG -->
 
 ## Generate fuselage shape {#generate-shape}
 The fuselage shape is generated using the calculated data and the reference ellipses (see the [getting started](getting_started.md) page for more information). The final geometry is written to the `fuselage_design_ellipses.json` file.
+
 The aircraft is divided into three sections: A cockpit section, followed by a constant section, and the tail section. 
 The steps of the shape generation are basically the same for all aircraft sections:
+
 1. Calculate the section length as a percentage of the fuselage length<sup>*</sup>.
 2. Proportionally adjust the given reference geometry to match the actual geometry using scaling factors. Therefore, separate scaling factors are calculated for
     - the x-direction (lengthwise),
diff --git a/docs/documentation/sizing/fuselage_design/getting_started.md b/docs/documentation/sizing/fuselage_design/getting_started.md
index 7973557226994a3494c343be18a476f71c859f5c..ce1373f473346b76e4d452af02eba713c79e53c1 100644
--- a/docs/documentation/sizing/fuselage_design/getting_started.md
+++ b/docs/documentation/sizing/fuselage_design/getting_started.md
@@ -11,6 +11,7 @@ This section will guide you through the necessary steps to get the _fuselage\_de
     It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries.
 
 Generally, we use two files to set or configure modules in UNICADO:
+
 - The aircraft exchange file (or _acXML_) includes
     - data related inputs (e.g., configuration type) and
     - data related outputs (e.g., component design data).
@@ -42,6 +43,7 @@ _fuselage\_design_ can be single executed without the execution of any other mod
 - ... -->
 
 The following data should be available in the _acXML_ (2. and 3. are optional):
+
 1. Requirements and specifications
     - Design specification
         - Configuration information
@@ -82,6 +84,7 @@ The following data should be available in the _acXML_ (2. and 3. are optional):
 The _configXML_ is structured into two blocks: the control and program settings.
 
 The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least
+
 - the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings,
 - the `console_output` at least to `mode_1`, and
 - the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`).
@@ -93,6 +96,10 @@ The program settings are structured like this (descriptions can be found in the
 
 ```plaintext
 Program Settings
+|- Program mode
+|  | - Setting use existing geometry
+|  |  | - Path to existing geometry_file
+|  |  | - Use as starting point
 |- Configuration (ID="tube_and_wing")
 |  |- Fidelity name
 |  |- Method name
@@ -179,6 +186,7 @@ Program Settings
 |  |  |  |  |  |  |  |  |  |- Specific number of class lavatories
 |  |  |  |  |  |  |  |- Wardrobe
 |  |  |  |  |  |  |  |  |- Use wardrobe for passenger class
+|  |  |  |  |  |  |  |  |  | - Space per passenger
 |  |  |  |  |- Passenger aisle
 |  |  |  |  |  |- Width
 |  |  |  |  |  |- Standing height
@@ -193,13 +201,16 @@ The fuselage design library contains files that are necessary to generate a vali
 #### Reference ellipses
 The reference aircraft ellipses are used to create the outer shape of the aircraft.
 There are reference ellipses for the following sections:
+
 - Cockpit section
 - Constant section
 - Tail sections
+
 Furthermore, there is data for the reference diameter and information on scaling factors.
 
 #### Accommodation definitions
 The `accommodation_definitions.xml` file contains information on the passenger and cargo definition for the following categories:
+
 - Cabin interior such as seats, galleys, trolleys, lavatories, and wardrobes as well as respective masses
 - Cargo accommodation such as containers or pallets
 - Emergency slides
@@ -207,6 +218,7 @@ The `accommodation_definitions.xml` file contains information on the passenger a
 
 #### Fuselage design certification requirements
 The `fuselage_design_cs_requirements.xml` file contains necessary design requirements regarding the following topics:
+
 - Emergency exit definition and positioning (according to CS-25.807ff)
 - Cabin design specifications such as the aisle dimensions and cross aisle overlaps (according to CS-25.807ff)
 - Container arrangement
diff --git a/docs/documentation/sizing/fuselage_design/index.md b/docs/documentation/sizing/fuselage_design/index.md
index 4fee3ec3b5b95dc19a2ce9a210d09c820af11353..b470af3b9b33012e55f30d758bc82499eaf73e11 100644
--- a/docs/documentation/sizing/fuselage_design/index.md
+++ b/docs/documentation/sizing/fuselage_design/index.md
@@ -15,10 +15,12 @@ Blended-wing-body |...               |...        |...        |under development
 ## A user's guide to fuselage design
 The _fuselage\_design_ tool is your key to designing the aircraft's fuselage. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a fuselage design from the ground up.
 The following sections will walk you through the process:
+
 - [Getting started](getting_started.md)
 - [Run your first fuselage design](run_your_first_design.md)
 
 For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections:
+
 - A [method description](design_method.md) and
 - a [software architecture](software_architecture.md)
 section.
diff --git a/docs/documentation/sizing/fuselage_design/run_your_first_design.md b/docs/documentation/sizing/fuselage_design/run_your_first_design.md
index 4e69db70adbb97fcaec8a962985f2a35ac160a81..f29d05baab25f3a5218c36ff66928030234794d2 100644
--- a/docs/documentation/sizing/fuselage_design/run_your_first_design.md
+++ b/docs/documentation/sizing/fuselage_design/run_your_first_design.md
@@ -3,6 +3,7 @@ Let's dive into the fun part and design a fuselage!
 
 ## Tool single execution
 The tool can be executed from the console directly if all paths are set. The following will happen:
+
 - [Console output](#console-output)
 - [Generation of reports and plots](#reporting)
 - [Writing output to aircraft exchange file](#acxml)
@@ -11,7 +12,7 @@ The tool can be executed from the console directly if all paths are set. The fol
 Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices.
 Also, if you need some additional information on the underlying methodology, check out the page on the [fuselage design method](design_method.md).
 
-So, feel free to open the terminal and run `fuselage_design.exe` to see what happens...
+So, feel free to open the terminal and run `python.exe fuselage_design.py` to see what happens...
 
 ### Console output {#console-output}
 Firstly, you see output in the console window. Let's go through it step by step...
@@ -50,9 +51,10 @@ Finally, you receive information about the reports and plots created (depending
 
 ### Reporting {#reporting}
 In the following, a short overview is given on the generated reports:
+
 - A `fuselage_design.log` file is written within the directory of the executable
 - Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file:
-    - an HTML report in the `report_html` folder (not implemented yet)
+    - an HTML report in the `report_html` folder
     - a TeX report in the `report_tex` folder (not implemented yet)
     - an XML file with additional output data in the `report_xml` folder
     - plots in the `plots` folder
@@ -67,16 +69,14 @@ Aircraft exchange file
 |- Component design
 |  |- Fuselage
 |  |  |- Position*
-|  |  |- Mass properties
-|  |  |  |- ...
+|  |  |- Mass properties**
 |  |  |- Specific
 |  |  |  |- Geometry
 |  |  |  |  |- Fuselage (ID="0")
 |  |  |  |  |  |- Name
 |  |  |  |  |  |- Position*
 |  |  |  |  |  |- Direction*
-|  |  |  |  |  |- Mass properties
-|  |  |  |  |  |  |- ...
+|  |  |  |  |  |- Mass properties**
 |  |  |  |  |  |- Sections
 |  |  |  |  |  |  |- Section (ID="0")
 |  |  |  |  |  |  |  |- Name
@@ -134,7 +134,9 @@ Aircraft exchange file
 |  |  |  |  |  |  |  |  |  |- Payload deck required galley power 
 ```
 
-<sup>*</sup> Node contains the following sub-nodes: x, y, z
+<sup>*</sup> Node has been shortened. It contains the following sub-nodes: x, y, z
+
+<sup>*</sup> Node has been shortened. It contains sub-nodes with information on the mass, inertia, and center of gravity.
 
 ### Write geometry data to .json file {#geometry-data}
 The calculated geometry data is written to the `fuselage_design_ellipses.json` file and can then be used if the `use_existing_geometry` flag is set to `true`.
diff --git a/docs/documentation/sizing/landing_gear_design/design_method.md b/docs/documentation/sizing/landing_gear_design/design_method.md
index d117245a96c9557bf06501f29c1285d7a92e188f..a4dfa7401bc3461d4eb962b30951568217480c6f 100644
--- a/docs/documentation/sizing/landing_gear_design/design_method.md
+++ b/docs/documentation/sizing/landing_gear_design/design_method.md
@@ -11,7 +11,7 @@
 
 
 ## Initial positions {#initial-positions}
-First, initial x axis positions for the nose $x_{NLG}$ and main landing gear $x_{MLG}$ are estimated. If any of the required values are missing, default values are used, such as a minimum distance of 2 meters between the main landing gear and the aft-most center of gravity.
+First, initial x axis positions for the nose $x_{\text{NLG}}$ and main landing gear $x_{\text{MLG}}$ are estimated. If any of the required values are missing, default values are used, such as a minimum distance of 2 meters between the main landing gear and the aft-most center of gravity.
 
 The nose gear position is determined either from module configuration data or input parameters, such as the front reference point of the payload area or existing landing gear positions. If no relevant data is available, a default starting position, such as 5 meters, is applied.
 
@@ -28,85 +28,93 @@ Default values are assigned if parameters are not explicitly provided.
 
 #### Distance between nose and main landing gear
 The distance between the nose and the main landing gear can be estimated using the following equation:
-$
-  d_{NLG\_MLG} = |x_{MLG} - x_{NLG}|
-$
+$$
+  d_{\text{NLG-MLG}} = |x_{\text{MLG}} - x_{\text{NLG}}|
+$$
+
 In which
-- $ x_{MLG}$ - x position of main landing gear
-- $ x_{NLG}$ - x position of nose landing gear
+
+- $x_{\text{MLG}}$ - x position of main landing gear
+- $x_{\text{NLG}}$ - x position of nose landing gear
 
 #### Distance between nose gear and foremost center of gravity position
 If the foremost center of gravity position is already known, the distance to the nose gear can be determined according to the following formula:
-$
-  d_{NLG\_front\_CG} = |x_{front\_CG} - x_{NLG}|
-$
+$$
+  d_{\text{NLG front CG}} = |x_{\text{front CG}} - x_{\text{NLG}}|
+$$
+
 In which
-- $ x_{front\_CG}$ - x position of foremost center of gravity
 
-Otherwise, $d_{NLG\_front\_CG}$ is determined by using a first estimation:
-$
-  d_{NLG\_front\_CG} = |(x_{MLG} - 2) - x_{NLG}|
-$
+- $x_{\text{front CG}}$ - x position of foremost center of gravity
+
+Otherwise, $d_{\text{NLG front CG}}$ is determined by using a first estimation:
+$$
+  d_{\text{NLG front CG}} = |(x_{\text{MLG}} - 2) - x_{\text{NLG}}|
+$$
 
 #### Distance between nose gear and rearmost center of gravity
 The distance between the nose gear position and the rearmost center of gravity in x direction can be calculated as follows:
-$
-  d_{NLG\_rear\_CG} = |x_{rear\_CG} - x_{NLG}|
-$
+$$
+  d_{\text{NLG rear CG}} = |x_{\text{rear CG}} - x_{\text{NLG}}|
+$$
+
 In which
-- $x_{rear\_CG}$ - x position of rearmost center of gravity
 
-Otherwise, $d_{NLG\_rear\_CG}$ is determined by using a first estimation:
-$
-  d_{NLG\_rear\_CG} = |(x_{MLG} - 1) - x_{NLG}|
-$
+- $x_{\text{rear CG}}$ - x position of rearmost center of gravity
+
+Otherwise, $d_{\text{NLG rear CG}}$ is determined by using a first estimation:
+$$
+  d_{\text{NLG rear CG}} = |(x_{\text{MLG}} - 1) - x_{\text{NLG}}|
+$$
 
 #### Distance between main landing gear and rearmost center of gravity position
-If no distance between the main landing gear and the rearmost center of gravity is available from earlier iterations, it equals `1`.
+If no distance between the main landing gear and the rearmost center of gravity is available from earlier iterations, it equals `1.0`.
 
 ### Vertical distances
 ![](figures/vertical_distances.png)
 
 #### Vertical distance between ground and center of gravity position
-Starting with the second iteration loop, the vertical distance between ground and center of gravity $\Delta h_{GND\_CG}$ is known.
+Starting with the second iteration loop, the vertical distance between ground and center of gravity $\Delta h_{\text{GND-CG}}$ is known.
 
 In the first loop, however, the vertical distance must be calculated as sum of the following heights:
-1. Vertical distance from fuselage center line to center of gravity $\Delta h_{FCL\_CG}$
-2. z position of tail tipping point (equals vertical distance between fuselage center line and tail tipping point) $z_{TP}$
-3. Vertical distance from tail tipping point to ground $\Delta h_{TP\_GND}$
+
+1. Vertical distance from fuselage center line to center of gravity $\Delta h_{\text{FCL-CG}}$
+2. z position of tail tipping point (equals vertical distance between fuselage center line and tail tipping point) $z_{\text{TP}}$
+3. Vertical distance from tail tipping point to ground $\Delta h_{\text{TP-GND}}$
 
 **1. Vertical distance from fuselage center line to center of gravity**<br>
-The distance between global center of gravity in z-direction and the fuselage center line $\Delta h_{FCL\_CG}$ is either estimated by subtracting the z position of the fuselage center line $z_{FCL}$ from the z position of the most aft CG position $z_{rear\_CG}$
-$
-  \Delta h_{FCL\_CG} = |z_{rear\_CG} - z_{FCL}|
-$
+The distance between global center of gravity in z-direction and the fuselage center line $\Delta h_{\text{FCL-CG}}$ is either estimated by subtracting the z position of the fuselage center line $z_{\text{FCL}}$ from the z position of the most aft CG position $z_{\text{rear CG}}$
+$$
+  \Delta h_{\text{FCL-CG}} = |z_{\text{rear CG}} - z_{\text{FCL}}|
+$$
 
 or, if those values are not given, set to `0.5` for single-aisle and `1.0` for wide-body configurations.
 
 **2. z position of tail tipping point**<br>
-If the position of the tail tipping point in z direction is not known, it is assumed to equal $z_{TP} = -0.3 \cdot h_{fuselage}$. The fuselage height $h_{fuselage}$ in meter is known or assumed to be `3.8` for single-aisle and `5.8` for wide-body aircraft.
+If the position of the tail tipping point in z direction is not known, it is assumed to equal $z_{\text{TP}} = -0.3 \cdot h_{\text{fuselage}}$. The fuselage height $h_{\text{fuselage}}$ in meter is known or assumed to be `3.8` for single-aisle and `5.8` for wide-body aircraft.
 
 **3. Vertical distance from tail tipping point to ground**<br>
-The vertical distance from the tail tipping point to the ground $\Delta h_{TP\_GND}$ is estimated in the following way:
+The vertical distance from the tail tipping point to the ground $\Delta h_{\text{TP-GND}}$ is estimated in the following way:
 
-$
-  \Delta h_{TP\_GND} = |\tan(\theta_{LDG}) \cdot d_{MLG\_TP}| - h_{susp}
-$
+$$
+  \Delta h_{\text{TP-GND}} = |\tan(\theta_{\text{LDG}}) \cdot d_{\text{MLG-TP}}| - h_{\text{susp}}
+$$
 
-The vertical distance between the main landing gear and the tail tipping point $d_{MLG\_TP}$ is either known or set to `15` for single-aisle or `25` for wide-body aircraft configurations.
+The vertical distance between the main landing gear and the tail tipping point $d_{\text{MLG-TP}}$ is either known or set to `15.0` for single-aisle or `25.0` for wide-body aircraft configurations.
 
-If a strut suspension system is implemented, the vertical distance between ground and CG decreases by the suspension travel $h_{susp}$ that equals `0` if no suspension system is implemented.
+If a strut suspension system is implemented, the vertical distance between ground and CG decreases by the suspension travel $h_{\text{susp}}$ that equals `0.0` if no suspension system is implemented.
 
 **Vertical distance between ground and center of gravity position**<br>
 Finally, the vertical distance between the ground and the CG position can be calculated by summing up these values:
 $
-  \Delta h_{GND\_CG} = \Delta h_{FCL\_CG} + |z_{TP}| + \Delta h_{TP\_GND}
+  \Delta h_{\text{GND-CG}} = \Delta h_{\text{FCL-CG}} + |z_{\text{TP}}| + \Delta h_{\text{TP-GND}}
 $
 
 ## Load estimation {#loads}
 Subsequently, the loads on the nose and main landing gear are calculated based on Norman S. Currey's work<sup>[1]</sup>, unless explicitly stated otherwise. It considers the static and dynamic loads during takeoff, landing, and taxiing, while ensuring the loads conform to the permissible percentages as per aviation regulations.
 
 The following data is necessary:
+
 - Maximum aft position of nose landing gear
 - Minimum foremost position of nose landing gear
 - Minimum foremost position of main landing gear
@@ -116,166 +124,188 @@ If no values are available, initial values are set.
 
 ### Nose landing gear loads
 **Minimum static nose gear load**
-$
-  L_{NLG,stat,min} = \frac{MRW \cdot (d_{NLG\_MLG} - d_{NLG\_rear\_CG})}{d_{NLG\_MLG}}
-$
+$$
+  L_{\text{NLG,stat,min}} = \frac{MRW \cdot (d_{\text{NLG-MLG}} - d_{\text{NLG rear CG}})}{d_{\text{NLG-MLG}}}
+$$
+
 In which
+
 - $MRW$ - maximum ramp weight
-- $d_{NLG\_MLG}$ - distance between nose and main gear
-- $d_{NLG\_rear\_CG}$ - distance between nose gear and rearmost center of gravity
+- $d_{\text{NLG-MLG}}$ - distance between nose and main gear
+- $d_{\text{NLG rear CG}}$ - distance between nose gear and rearmost center of gravity
 
 **Maximum static nose gear load**
-$
-  L_{NLG,stat,max} = \frac{MRW \cdot (d_{NLG\_MLG} - d_{NLG\_front\_CG})}{d_{NLG\_MLG}}
-$
+$$
+  L_{\text{NLG,stat,max}} = \frac{MRW \cdot (d_{\text{NLG-MLG}} - d_{\text{NLG front CG}})}{d_{\text{NLG-MLG}}}
+$$
+
 In which
+
 - $MRW$ - maximum ramp weight
-- $d_{NLG\_MLG}$ - distance between nose and main gear
-- $d_{NLG\_front\_CG}$ - distance between nose gear and foremost center of gravity
+- $d_{\text{NLG-MLG}}$ - distance between nose and main gear
+- $d_{\text{NLG front CG}}$ - distance between nose gear and foremost center of gravity
 
 **Maximum dynamic nose gear load**
-$
-  L_{NLG,dyn,max} = L_{NLG,stat,max} + \frac{10 \cdot d_{GND\_rear\_CG} \cdot MRW}{32.2 \cdot d_{NLG\_MLG}}
-$
+$$
+  L_{\text{NLG,dyn,max}} = L_{\text{NLG,stat,max}} + \frac{10 \cdot d_{\text{GND rear CG}} \cdot MRW}{32.2 \cdot d_{\text{NLG-MLG}}}
+$$
+
 In which
-- $d_{GND\_rear\_CG}$ - vertical distance between ground and aft center of gravity
+
+- $d_{\text{GND rear CG}}$ - vertical distance between ground and aft center of gravity
 
 The static loads on the nose landing gear should be between 6% and 20% of the maximum ramp weight for all CG positions. These values are absolute limits and must not be exceeded at any time. Ideally, the static loads for the minimum and maximum nose landing gear load should be between 8% and 15%. If the limits are violated, the landing gear positions and/or the empty mass center of gravity must be varied. This leads to a renewed check of the center of gravity movement and the limits to be adhered to (iterative process).
 
 #### Dynamic nose gear loads for takeoff and landing condition
 The calculation of the dynamic nose gear loads for takeoff and landing conditions is in accordance with CS 25.733 (b)(2) and (b)(3)<sup>[2]</sup>.
 
-**Maximum static nose gear landing load**
-In order to calculate the maximum static nose gear load at landing, the maximum static nose gear landing load $ L_{NLG,stat,max,LDG}$ has to be estimated first.
+**Maximum static nose gear landing load**<br>
+In order to calculate the maximum static nose gear load at landing, the maximum static nose gear landing load $ L_{\text{NLG,stat,max,LDG}}$ has to be estimated first.
+
+$$
+  L_{\text{NLG,stat,max,LDG}} = \frac{MLM \cdot g \cdot (d_{\text{NLG-MLG}} - d_{\text{NLG front CG}})}{d_{\text{NLG-MLG}}}
+$$
 
-$
-  L_{NLG,stat,max,LDG} = \frac{MLM \cdot g \cdot (d_{NLG\_MLG} - d_{NLG\_front\_CG})}{d_{NLG\_MLG}}
-$
 In which
+
 - $MLM$ - maximum landing mass
 - $ g$ - gravitational acceleration
-- $d_{NLG\_MLG}$ - distance between nose and main gear
-- $d_{NLG\_front\_CG}$ - distance between nose gear and foremost center of gravity
+- $d_{\text{NLG-MLG}}$ - distance between nose and main gear
+- $d_{\text{NLG front CG}}$ - distance between nose gear and foremost center of gravity
 
-!!! note 
-  If no maximum landing mass exists, 90% of the maximum ramp weight are initially assumed for the calculation.
+!!! note
+    If no maximum landing mass exists, 90% of the maximum ramp weight are initially assumed for the calculation.
 
-Subsequently, the maximum dynamic load at landing $ L_{NLG,dyn,max,LDG} $ can be calculated based on CS 25.733 (b)(2):
-$
-  L_{NLG,dyn,max,LDG} = L_{NLG,stat,max,LDG} + 0.31 \cdot L_{NLG,stat,max,LDG}
-$
+Subsequently, the maximum dynamic load at landing $ L_{\text{NLG,dyn,max,LDG}} $ can be calculated based on CS 25.733 (b)(2):
+$$
+  L_{\text{NLG,dyn,max,LDG}} = L_{\text{NLG,stat,max,LDG}} + 0.31 \cdot L_{\text{NLG,stat,max,LDG}}
+$$
 
-**Maximum dynamic nose gear takeoff load**
+**Maximum dynamic nose gear takeoff load**<br>
 The maximum dynamic nose gear load at takeoff can be calculated in accordance with CS 52.733 (b)(3):
-$
-  L_{NLG,dyn,max,TO} = L_{NLG,stat,max} + 0.2 \cdot L_{NLG,stat,max}
-$
+$$
+  L_{\text{NLG,dyn,max,TO}} = L_{\text{NLG,stat,max}} + 0.2 \cdot L_{\text{NLG,stat,max}}
+$$
 
 ### Main landing gear loads
 The total main gear load can be estimated using the following equation:
-$
-  L_{MLG,max} = \frac{100 - L_{NLG,stat,min}}{100} \cdot MRW
-$
+$$
+  L_{\text{MLG,max}} = \frac{100 - L_{\text{NLG,stat,min}}}{100} \cdot MRW
+$$
+
 In which
-- $L_{NLG,stat,min}$ - minimum static nose gear load **in percent**
+
+- $L_{\text{NLG,stat,min}}$ - minimum static nose gear load **in percent**
 
 ### Nose landing gear position
 The maximum possible foremost and aft position of the nose landing gear can be determined based on the loads.
 
 #### Foremost nose landing gear position
-A maximum of 20 percent of the maximum ramp weight is allowed as the maximum static nose gear load $ L_{NLG,stat,max,possible}$:
-$
-  L_{NLG,stat,max,possible} = 0.06 \cdot MRW
-$
+A maximum of 20 percent of the maximum ramp weight is allowed as the maximum static nose gear load $L_{\text{NLG,stat,max,possible}}$:
+$$
+  L_{\text{NLG,stat,max,possible}} = 0.06 \cdot MRW
+$$
 
 The foremost nose landing gear position therefore results in:
-$
-  d_{NLG\_front\_CG\_min} = \frac{MRW \cdot d_{NLG\_MLG} - L_{NLG,stat,max,possible} \cdot d_{NLG\_MLG}}{MRW}
-$
+$$
+  d_{\text{NLG front CG min}} = \frac{MRW \cdot d_{\text{NLG-MLG}} - L_{\text{NLG,stat,max,possible}} \cdot d_{\text{NLG-MLG}}}{MRW}
+$$
+
 In which
+
 - $MRW$ - maximum ramp weight
-- $d_{NLG\_MLG}$ - distance between nose and main gear
+- $d_{\text{NLG-MLG}}$ - distance between nose and main gear
 
 #### Aft nose landing gear position
-A minimum of 6 percent of the maximum ramp weight is allowed as the minimum static nose gear load $ L_{NLG,stat,min,possible}$:
-$
-  L_{NLG,stat,min,possible} = 0.2 \cdot MRW
-$
+A minimum of 6 percent of the maximum ramp weight is allowed as the minimum static nose gear load $L_{\text{NLG,stat,min,possible}}$:
+$$
+  L_{\text{NLG,stat,min,possible}} = 0.2 \cdot MRW
+$$
 
 The aft nose landing gear position therefore results in:
-$
-  d_{NLG\_aft\_CG\_max} = \frac{MRW \cdot d_{NLG\_MLG} - L_{NLG,stat,min,possible} \cdot d_{NLG\_MLG}}{MRW}
-$
+$$
+  d_{\text{NLG aft CG max}} = \frac{MRW \cdot d_{\text{NLG-MLG}} - L_{\text{NLG,stat,min,possible}} \cdot d_{\text{NLG-MLG}}}{MRW}
+$$
 
 ## Tires {#tires}
 Tire selection in accordance to CS 25.733<sup>[2]</sup> und EASA ETSO tire list<sup>[3]</sup>, bridgestone aircraft tires<sup>[4]</sup>  from landing gear lib (see [getting started](getting_started.md) page for more information).
  
 If a maximum takeoff stall speed exists, the maximum design speed **(in miles per hour)** corresponds to the greater of the two values maximum approach speed or maximum takeoff stall speed*1.3:
-$
-  v_{max\_des} = max(v_{app,max},v_{s,TO} \cdot 1.3)
-$
+$$
+  v_{\text{max,des}} = max(v_{\text{app,max}},v_{\text{s,TO}} \cdot 1.3)
+$$
+
 In which
-- $v_{app,max}$ - maximum approach speed (in mph)
-- $v_{s,TO}$ - takeoff stall speed (in mph)
+
+- $v_{\text{app,max}}$ - maximum approach speed (in mph)
+- $v_{\text{s,TO}}$ - takeoff stall speed (in mph)
 
 Otherwise, the following applies:
-$
-  v_{max\_des} = v_{app,max}
-$
+$$
+  v_{\text{max,des}} = v_{\text{app,max}}
+$$
 
 ### Nose gear
-For both, the number of nose gear struts $n_{NLG\_struts}$ as well as the number of nose gear tires per strut $n_{NLG\_tires\_per\_strut}$, the user can define specific values. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used.
+For both, the number of nose gear struts $n_{\text{NLG struts}}$ as well as the number of nose gear tires per strut $n_{\text{NLG tires per strut}}$, the user can define specific values. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used.
 
 #### Design load estimation
-The **single tire design load** $v_{NLG\_tire\_des}$ is calculated according to CS 25.733 (b)(1):
-$
-  v_{NLG\_tire\_des} = \frac{\frac{L_{NLG,stat,max}}{g} \cdot 2.2}{n_{NLG\_tires\_per\_strut} \cdot n_{NLG\_struts}}
-$
+The **single tire design load** $v_{\text{NLG,tire,des}}$ is calculated according to CS 25.733 (b)(1):
+$$
+  v_{\text{NLG,tire,des}} = \frac{\frac{L_{\text{NLG,stat,max}}}{g} \cdot 2.2}{n_{\text{NLG tires per strut}} \cdot n_{\text{NLG struts}}}
+$$
+
 In which
-- $ L_{NLG,stat,max}$ - maximum static nose gear load
-- $ g$ - gravitational acceleration
 
-Subsequently, the **single tire dynamic landing load** $v_{NLG\_tire\_LDG}$ is estimated based on CS 25.733 (b)(2):
-$
-  v_{NLG\_tire\_LDG} = \frac{\frac{L_{NLG,dyn,max,LDG}}{g} \cdot 2.2}{n_{NLG\_tires\_per\_strut} \cdot n_{NLG\_struts}}
-$
+- $L_{\text{NLG,stat,max}}$ - maximum static nose gear load
+- $g$ - gravitational acceleration
+
+Subsequently, the **single tire dynamic landing load** $v_{\text{NLG tire LDG}}$ is estimated based on CS 25.733 (b)(2):
+$$
+  v_{\text{NLG tire LDG}} = \frac{\frac{L_{\text{NLG,dyn,max,LDG}}}{g} \cdot 2.2}{n_{\text{NLG tires per strut}} \cdot n_{\text{NLG struts}}}
+$$
+
 In which
-- $ L_{NLG,dyn,max,LDG}$ - maximum dynamic load at landing
 
-Afterwards, the calculation of the **single tire dynamic takeoff load** $v_{NLG\_tire\_TO}$ for nose gear tires is in accordance to CS 25.733 (b)(3):
-$
-  v_{NLG\_tire\_TO} = \frac{\frac{L_{NLG,dyn,max,TO}}{g} \cdot 2.2}{n_{NLG\_tires\_per\_strut} \cdot n_{NLG\_struts}}
-$
+- $L_{\text{NLG,dyn,max,LDG}}$ - maximum dynamic load at landing
+
+Afterwards, the calculation of the **single tire dynamic takeoff load** $v_{\text{NLG tire TO}}$ for nose gear tires is in accordance to CS 25.733 (b)(3):
+$$
+  v_{\text{NLG tire TO}} = \frac{\frac{L_{\text{NLG,dyn,max,TO}}}{g} \cdot 2.2}{n_{\text{NLG tires per strut}} \cdot n_{\text{NLG struts}}}
+$$
+
 In which
-- $ L_{NLG,dyn,max,TO}$ - maximum dynamic load at takeoff
+
+- $L_{\text{NLG,dyn,max,TO}}$ - maximum dynamic load at takeoff
 
 #### Tire selection
 Knowing the design speed and loads, a suitable tire is selected from the database.
 
 ### Main gear tire selection
-Similar to the nose landing gear, the number of main gear struts $n_{MLG\_struts}$ as well as the number of main gear tires per strut $n_{MLG\_tires\_per\_strut}$ can be defined by the user. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used.
+Similar to the nose landing gear, the number of main gear struts $n_{\text{MLG struts}}$ as well as the number of main gear tires per strut $n_{\text{MLG tires per strut}}$ can be defined by the user. These values are checked for compliance and parameters, e.g., the number of axis, are set accordingly. If no values are given, default values are used.
 
 #### Design load estimation
 The **single tire design load** is calculated according to CS 25.733 (a)(1):
-$
-  v_{MLG\_tire\_des} = \frac{\frac{L_{MLG,max}}{g} \cdot 2.2}{n_{MLG\_tires\_per\_outer\_strut} \cdot n_{MLG\_outer\_struts} + n_{MLG\_tires\_per\_inner\_strut} \cdot n_{MLG\_inner\_struts}} \cdot f_{safety}
-$
+$$
+  v_{\text{MLG tire des}} = \frac{\frac{L_{\text{MLG,max}}}{g} \cdot 2.2}{n_{\text{MLG tires per outer strut}} \cdot n_{\text{MLG outer struts}} + n_{\text{MLG tires per inner strut}} \cdot n_{\text{MLG inner struts}}} \cdot f_{\text{safety}}
+$$
+
 In which
-- $L_{MLG,max}$ - maximum main gear load
+
+- $L_{\text{MLG,max}}$ - maximum main gear load
 - $g$ - gravitational acceleration
-- $n_{MLG\_tires\_per\_outer\_strut}$ - number of tires per outer strut
-- $n_{MLG\_outer\_struts}$ - number of outer struts
-- $n_{MLG\_tires\_per\_inner\_strut}$ - number of tires per inner strut
-- $n_{MLG\_inner\_struts}$ - number of inner struts
-- $f_{safety}$ - safety factor
+- $n_{\text{MLG tires per outer strut}}$ - number of tires per outer strut
+- $n_{\text{MLG outer struts}}$ - number of outer struts
+- $n_{\text{MLG tires per inner strut}}$ - number of tires per inner strut
+- $n_{\text{MLG inner struts}}$ - number of inner struts
+- $f_{\text{safety}}$ - safety factor
 
-If only one main gear tyre is mounted to one main landing gear strut, $f_{safety} = 1$. If more than one tire is mounted to one main landing gear strut, an additional safety load margin according to CS 25.733 (c)(1) is required that results in $f_{safety} = 1.07$.
+If only one main gear tyre is mounted to one main landing gear strut, $f_{\text{safety}} = 1$. If more than one tire is mounted to one main landing gear strut, an additional safety load margin according to CS 25.733 (c)(1) is required that results in $f_{\text{safety}} = 1.07$.
 
 #### Tire selection
 Knowing the design speed and loads, a suitable tire is selected from the database.
 
 ## Limitations {#limitations}
-Estimation of ground strike limitations in accordance to Sforza<sup>[5]</sup> and CS-25<sup>[2]</sup>
+Estimation of ground strike limitations in accordance to Sforza<sup>[5]</sup> and CS-25<sup>[2]</sup>.
 
 The safest and highest permissible rotation angle during takeoff, considering both landing constraints and tail tipping risks, is calculated, considering different constraints and configurations.
 
@@ -286,48 +316,50 @@ If this value is not provided, it defaults to using only the given tail strike l
 **Maximum Tail Tipping Angle**<br>
 The calculated maximum rotation angle at landing is compared with the maximum rotation angle during takeoff. The larger of these values is taken as the maximum tail tipping angle.
 
+**Turn over Angle**<br>
+The turnover angle defines how much an aircraft can tilt before it loses lateral stability and tips over. It depends on the center of gravity height and the landing gear track width. A higher center of gravity or a narrower landing gear stance reduces the turnover angle, making the aircraft more prone to tipping during sharp turns, braking, or uneven ground contact.
+For **commercial aircraft**, a turnover angle between 40–60° is generally required to ensure stability during taxiing, ground handling, and takeoff/landing rollouts. This ensures that lateral forces from crosswinds, asymmetric thrust, or sharp turns do not cause the aircraft to tip. If the turnover angle is too small (e.g., below 30°), the aircraft becomes unstable, increasing the risk of accidents on the ground.
+The turnover angle (\theta) is calculated using the formula:
+$$
+  \theta = \tan^{-1} \left( \frac{h}{\frac{T}{2}} \right)
+$$
+In which
+
+- $h$ - height of the center of gravity (CG) above the ground
+- $T$ - track width (distance between main landing gear contact points)
+- $\theta$ - turnover angle (in degrees)
+
 With the known values, the landing gear placement and dimensions are estimated meeting constraints like stability, retractability, turnover limits, and tail strike prevention. If the criteria aren't met, the design is refined in an iterative process.
 
 ## Clearances {#clearances}
 Ground clearance angles for nacelles and wing tips are calculated and verified in accordance to Torenbeek<sup>[6]</sup> and CS-25<sup>[2]</sup>.
 
 ### Nacelle clearance
-The ground clearance $c_{nacelle}$ for each nacelle is given as:
-$
-  c_{nacelle} = d_{GND\_to\_FCL} - |z_{nacelle}| - |h_{nacelle}|
-$
-In which
-- $d_{GND\_to\_FCL}$ - vertical distance between ground and fuselage center line
-- $z_{nacelle}$ - z position of nacelle
-- $h_{nacelle}$ - height of nacelle
-
-The nacelle clearance angle can then be determined:
-$
-    \theta_{nacelle} = \arctan\left(\frac{c_{nacelle}}{|y_{nacelle}| - y_{MLG\_outer\_strut}}\right) \cdot \frac{180}{\pi}
-$
-
-In which:
-- $y_{nacelle}$ - y position of nacelle
-- $y_{MLG\_outer\_strut}$ - y position of outer main landing gear strut
+The ground clearance $c_\text{nacelle}$ for each nacelle can be specified via the module configuration file. A value of 0.45 meters is set by default. 
+This value is usually used by the manufacturers as the nacelle safety clearance; a specification by certification regulations is not given.
 
-This value is then checked regarding the minimum required clearance angle of 5 degree, defined by CS 25.149, and the user-specified nacelle clearance angle.
+The implemented method checks for each existing propulsor whether it is mounted on the wing and if the nacelle used complies with the required safety distance. If the check fails, the necessary delta length of the main landing gear struts is calculated and the dimensioning of these is restarted. The repositioning in the direction of the span resulting due to the change in length is also performed. If there is a collision with the innermost propulsor mounted on to the wing, an error message is displayed and repositioning is terminated.
 
 ### Wing tip clearance
-The wing tip ground clearance $c_{wing\_tip}$ is known from the positions of the wing tip section.
-$
-  c_{wing\_tip} = d_{GND\_to\_FCL} - z_{wing\_tip}
-$
+The wing tip ground clearance $c_{\text{wing tip}}$ is known from the positions of the wing tip section.
+$$
+  c_{\text{wing tip}} = d_{\text{GND to FCL}} - z_{\text{wing tip}}
+$$
+
 In which
-- $d_{GND\_to\_FCL}$ - vertical distance between ground and fuselage center line
-- $z_{wing\_tip}$ - z position of wing tip
+
+- $d_{\text{GND to FCL}}$ - vertical distance between ground and fuselage center line
+- $z_{\text{wing tip}}$ - z position of wing tip
 
 The wing tip clearance angle is calculated using the wing tip's position relative to the main gear outer strut:
-$
-    \theta_{wing\_tip} = \arctan\left(\frac{c_{wing\_tip}}{|y_{wing\_tip}| - y_{MLG\_outer\_strut}}\right) \cdot \frac{180}{\pi}
-$
+$$
+    \theta_{\text{wing tip}} = \arctan\left(\frac{c_{\text{wing tip}}}{|y_{\text{wing tip}}| - y_{\text{MLG outer strut}}}\right) \cdot \frac{180}{\pi}
+$$
+
 In which:
-- $y_{wing\_tip}$ - y position of wing tip
-- $y_{MLG\_outer\_strut}$ - y position of outer main landing gear strut
+
+- $y_{\text{wing tip}}$ - y position of wing tip
+- $y_{\text{MLG outer strut}}$ - y position of outer main landing gear strut
 
 This value is then validated against the minimum required clearance angle of 5 degree, defined by CS 25.149, and the user-specified wing tip clearance angle.
 
@@ -343,17 +375,19 @@ The undercarriage masses are calculated in accordance to Torenbeek<sup>[6]</sup>
 
 Under the use of these coefficients, the mass for the nose as well as the main landing gear can be calculated using the following equation:
 
-$
-  m = c_{wing} \cdot \left( A + B \cdot MTOM^{0.75} + C \cdot MTOM + D \cdot MTOM^{1.5} \right) \cdot f_{corr}
-$
+$$
+  m = c_{\text{wing}} \cdot \left( A + B \cdot MTOM^{0.75} + C \cdot MTOM + D \cdot MTOM^{1.5} \right) \cdot f_{\text{corr}}
+$$
+
 In which:
-- $c_{wing}$ - wing position coefficient (`1.0`for low or mid wing position, `1.8`for high wing position)
+
+- $c_{\text{wing}}$ - wing position coefficient (`1.0`for low or mid wing position, `1.8`for high wing position)
 - $MTOM$ - maximum takeoff mass
-- $f_{corr}$ - landing gear correction factor (taken from user specification)
+- $f_{\text{corr}}$ - landing gear correction factor (taken from user specification)
 - $ A,B,C,D$ - coefficients from above table
 
 !!! note 
-  If the maximum takeoff mass is not available, it is calculated by dividing the maximum ramp weight by the gravitational acceleration.
+    If the maximum takeoff mass is not available, it is calculated by dividing the maximum ramp weight by the gravitational acceleration.
 
 The total nose/main landing gear mass divided by the number of struts per nose/main landing gear results in the per-strut mass.
 
@@ -362,8 +396,8 @@ The calculation is based on the COMFAA Tool developed by the Federal Aviation Ad
 Detailed information can be taken from the website:
 
 !!! note 
-  By clicking on the following link, you will leave the UNICADO website. Please note that we are not responsible for the content of the linked website and do not assume any liability.<br>
-  https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/comfaa-30
+    By clicking on the following link, you will leave the UNICADO website. Please note that we are not responsible for the content of the linked website and do not assume any liability.<br>
+    [External link to FAA COMFAA 3.0](https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/comfaa-30)
 
 The Aircraft Classification Number (ACN) is a standardized measure that describes the load a particular aircraft imposes on the surface of a runway or taxiway. It is defined by the International Civil Aviation Organization (ICAO) in Annex 14<sup>[7]</sup> and is used to assess whether an aircraft is compatible with a specific pavement's structural capacity, expressed as the Pavement Classification Number (PCN).
 The subsequent section provides some information on the method.
@@ -377,7 +411,7 @@ The subsequent section provides some information on the method.
     - Rigid pavements: Concrete surfaces with a stiff structure.
     - Flexible pavements: Asphalt or other elastic materials.
     !!! note 
-      Currently only flexible pavement implemented. 
+        Currently only flexible pavement implemented. 
   - Subgrade strength (the strength of the ground beneath the pavement) is divided into four categories: High (H), Medium (M), Low (L), Very Low (VL).
 3. Standardization
   - The ACN is normalized to a reference Single Wheel Load (SWL) of 10 tons.
diff --git a/docs/documentation/sizing/landing_gear_design/getting_started.md b/docs/documentation/sizing/landing_gear_design/getting_started.md
index 6bdeea4e2ff6a7ad6ce3fe14e62494b162ad2c25..9877fbe378b0792fc66937f86967a8c6f03a0f15 100644
--- a/docs/documentation/sizing/landing_gear_design/getting_started.md
+++ b/docs/documentation/sizing/landing_gear_design/getting_started.md
@@ -11,6 +11,7 @@ This section will guide you through the necessary steps to get the _landing\_gea
     It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries.
 
 Generally, we use two files to set or configure modules in UNICADO:
+
 - The aircraft exchange file (or _acXML_) includes
     - data related inputs (e.g., configuration type) and
     - data related outputs (e.g., component design data).
@@ -42,6 +43,7 @@ _landing\_gear\_design_ can be single executed without the execution of any othe
 - ... -->
 
 The following data should be available in the _acXML_ (2. and 3. are optional):
+
 1. Requirements and specifications
     - Design specification
         - Configuration information
@@ -97,6 +99,7 @@ The following data should be available in the _acXML_ (2. and 3. are optional):
 The _configXML_ is structured into two blocks: the control and program settings.
 
 The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least
+
 - the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings,
 - the `console_output` at least to `mode_1`, and
 - the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`).
@@ -108,16 +111,16 @@ The program settings are structured like this (descriptions can be found in the
 
 ```plaintext
 Program Settings
+|- program_mode
+|  |- Setting use existing geometry
+|  |  |- Path to existing geometry file
+|  |  |- Use as starting point
 |- Configuration (ID="wing_mounted")
 |  |- Fidelity name
 |  |- Method name
 |  |- Fidelity (ID="empirical")
 |  |  |- Landing gear design tu berlin
 |  |  |  |- General
-|  |  |  |  |- Sizing mode
-|  |  |  |  |  |- Setting use existing landing gear
-|  |  |  |  |  |  |- Name of existing geometry file
-|  |  |  |  |  |  |- Use as starting point
 |  |  |  |  |- Ground strike limitations
 |  |  |  |  |  |- Tail strike limit
 |  |  |  |  |  |- Turnover limit
@@ -166,6 +169,7 @@ The landing gear library contains files that are necessary to generate a valid l
 
 #### Tire list
 The EASA ETSO (European Technical Standard Order) tire list (`EASA_ETSO_tire_list_2022.xml`) contains data on several nose and main landing gear tires. The following values are provided:
+
 - Tire size
 - Diameters
 - Rated pressure, speed, load, and ply
@@ -174,7 +178,7 @@ The EASA ETSO (European Technical Standard Order) tire list (`EASA_ETSO_tire_lis
 The data is used to find matching tires for the main and nose gear.
 
 #### Bridgestone manuals
-Valuable information on the tire selection can be found in the Bridgestone manuals. There you can find information on cut depths, lengths limits and useful terminology, as well as tire specifications.
+Valuable information on the tire selection can be found in the Bridgestone manuals. There you can find information on cut depths, lengths limits, and useful terminology, as well as tire specifications.
 
 ## Next steps {#next-steps}
 The next step is to [run the _landing\_gear\_design_ module](run_your_first_design.md).
\ No newline at end of file
diff --git a/docs/documentation/sizing/landing_gear_design/index.md b/docs/documentation/sizing/landing_gear_design/index.md
index 8eab731dba67684d1cc5d8db02a7905f048d0f57..7e9913dd57f5f24c6d1e045eb5717d6b24558ac0 100644
--- a/docs/documentation/sizing/landing_gear_design/index.md
+++ b/docs/documentation/sizing/landing_gear_design/index.md
@@ -13,10 +13,12 @@ Body-mounted                 | ...              | ...       | ...       | under
 ## A user's guide to landing gear design
 The _landing\_gear\_design_ tool is your key to designing the aircraft's landing gear. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a landing gear design from the ground up.
 The following sections will walk you through the process:
+
 - [Getting started](getting_started.md)
 - [Run your first landing gear design](run_your_first_design.md)
 
 For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections:
+
 - A [method description](design_method.md) and
 - a [software architecture](software_architecture.md)
 section.
diff --git a/docs/documentation/sizing/landing_gear_design/run_your_first_design.md b/docs/documentation/sizing/landing_gear_design/run_your_first_design.md
index aa5198a00c93c23ec035bb2d2353f3ed9422c829..785d01bd457ba98b266fca2cc79645bcd2a3e84d 100644
--- a/docs/documentation/sizing/landing_gear_design/run_your_first_design.md
+++ b/docs/documentation/sizing/landing_gear_design/run_your_first_design.md
@@ -3,6 +3,7 @@ Let's dive into the fun part and design a landing gear!
 
 ## Tool single execution
 The tool can be executed from the console directly if all paths are set. The following will happen:
+
 - [Console output](#console-output)
 - [Generation of reports and plots](#reporting)
 - [Writing output to aircraft exchange file](#acxml)
@@ -98,9 +99,10 @@ Finally, you receive information about the reports and plots created (depending
 
 ### Reporting {#reporting}
 In the following, a short overview is given on the generated reports:
+
 - A `landing_gear_design.log` file is written within the directory of the executable
 - Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file:
-    - an HTML report in the `report_html` folder (not implemented yet)
+    - an HTML report in the `report_html` folder
     - a TeX report in the `report_tex` folder (not implemented yet)
     - an XML file with additional output data in the `report_xml` folder
     - plots in the `plots` folder
@@ -115,16 +117,14 @@ Aircraft exchange file
 |- Component design
 |  |- Landing gear
 |  |  |- Position*
-|  |  |- Mass properties
-|  |  |  |- ...
+|  |  |- Mass properties**
 |  |  |- Aircraft classification number
 |  |  |- Specific
 |  |  |  |- Geometry
 |  |  |  |  |- Landing gear assembly (ID="0")
 |  |  |  |  |  |- Name
 |  |  |  |  |  |- Position*
-|  |  |  |  |  |- Mass properties
-|  |  |  |  |  |  |- ...
+|  |  |  |  |  |- Mass properties**
 |  |  |  |  |  |- Assembly components
 |  |  |  |  |  |  |- Strut diameter
 |  |  |  |  |  |  |- Strut length
@@ -134,7 +134,9 @@ Aircraft exchange file
 |  |  |  |  |  |  |  |- Tire diameter
 |  |  |  |  |  |  |  |- Tire section width
 ```
-<sup>*</sup> Node contains the following sub-nodes: x, y, z
+<sup>*</sup> Node has been shortened. It contains the following sub-nodes: x, y, z
+
+<sup>*</sup> Node has been shortened. It contains sub-nodes with information on the mass, inertia, and center of gravity.
 
 ### Generation of geometry file {#existing-geometry-file}
 The calculated geometry data is written to the `existing_landing_gear_geometry.xml` file and can then be used if the `use_existing_geometry` flag is set to `true`.
diff --git a/docs/documentation/sizing/propulsion_design/changelog.md b/docs/documentation/sizing/propulsion_design/changelog.md
index d6f5738f1468778bc0bb86eed73895825c7fc1fc..7403ff41ee9a50ae4b9369bf7c29ae5a0f94a78b 100644
--- a/docs/documentation/sizing/propulsion_design/changelog.md
+++ b/docs/documentation/sizing/propulsion_design/changelog.md
@@ -14,12 +14,11 @@ The following changes are introduced:
 ### Bugfixes
 During the development of this release the following bugs were found and fixed:
 
-- When designing a *rubber* engine, the engine length was scaled incorrectly. The correct formula with ${scale_{engine}}^{0.4} $ is now implemented.
+- When designing a *rubber* engine, the engine length was scaled incorrectly. The correct formula with \f${scale_{engine}}^{0.4} \f$ is now implemented.
 
 ### Changes in the CSR designs
 The implemented changes and bugfixes lead to the following changes in the results of the CSR designs.
-!!! note 
-    Only changes which exceed a 10 % change are listed.
+@note Only changes which exceed a 10 % change are listed.
 
 #### CSR-02
 |Parameter|Changed introduced by|Old Value|New Value|Unit|
diff --git a/docs/documentation/sizing/propulsion_design/engineering_principles.md b/docs/documentation/sizing/propulsion_design/engineering_principles.md
index 0a8220b1c8dfc9371302c3dfc4c24898c4497a26..3ee23c713be64de6c58142ff1c3b54d11fb0e979 100644
--- a/docs/documentation/sizing/propulsion_design/engineering_principles.md
+++ b/docs/documentation/sizing/propulsion_design/engineering_principles.md
@@ -1,83 +1,100 @@
 
 # Engineering principles {#engineeringprinciples}
 
-Designing the propulsion with this tool includes different engineering disciplines. Here a brief explanation (more information in their respective sections):
+Designing the propulsion with this tool includes different steps shown below (with more information in their respective sections):
 
-- [Engine designer](#enginedesigner): calculates the performance of one individual engine based on the required thrust.
-- [Propulsor integrator](#propulsionintegrator): places the engine acc. to the user's settings.
-- [Nacelle designer](#nacelledesigner): calculates the nacelle geometry.
-- [Pylon designer](#pylondesigner): calculates the pylon geometry.
-- [Mass analyzer](#massanalyzer): calculates the mass properties (center of gravity, mass, and inertia) of engine, nacelle, and pylon.
+* [Engine designer](#enginedesigner): Calculates the performance of one individual engine based on the required thrust.
+* [Propulsor integrator](#propulsionintegrator): Places the engine acc. to the user's settings.
+* [Nacelle designer](#nacelledesigner): Calculates the nacelle geometry.
+* [Pylon designer](#pylondesigner): Calculates the pylon geometry.
+* [Mass analyzer](#massanalyzer): Calculates the mass properties (center of gravity, mass, and inertia) of engine, nacelle, and pylon.
 
-For these five disciplines, you can choose different **methods** (or fidelities) of calculating their output. Here is an overview of the current implemented methods (details see sections):
-| Discipline          | Methods                                                           |
-|---------------------|-------------------------------------------------------------------|
-|Engine designer      | *Rubber* (*Empirical* and *PropulsionSystem* are in preparation)  |
-|Propulsor integrator | *Default*                                                         |
-|Nacelle designer     | *Default*                                                         |
-|Pylon designer       | *Default*                                                         |
-|Mass analyzer        | *Default*                                                         |
+For these five disciplines, you can choose different methods of calculating their output. The following methods are integrated (details in the sections):
 
-If you want to learn more about how to configure methods or generally the settings and outputs, go to the [getting started](getting_started.md).
+| Discipline              | Methods                                                           |
+|-------------------------|-------------------------------------------------------------------|
+| **Engine designer**      | *Rubber* (*Empirical* and *PropulsionSystem* are in preparation)  |
+| **Propulsor integrator** | *Default*                                                         |
+| **Nacelle designer**     | *Default*                                                         |
+| **Pylon designer**       | *Default*                                                         |
+| **Mass analyzer**        | *Default*                                                         |
 
-@important These disciplines are executed sequentially for EACH engine. That means that the engines are not aware of each other within the designing and analyzing. More information, see the [software architecture](software_architecture.md) section.
 
 
+If you want to learn more about how to configure methods or generally the settings and outputs, go to the [getting started](getting-started.md).
+
+!!! important
+    These disciplines are executed sequentially for EACH engine. That means that the engines are not aware of each other while designing and analyzing. More information, see the [software architecture](software_architecture.md) section.
+
 ## Engine designer {#enginedesigner}
+This section describes the principles of the engine designer.
 
 ### General principles {#generalprinciples}
 
-The **engine designer** bases its principle on the common modelling practice using 
-- an _engine dataset_ (operating point **in**dependent)
-- an _engine deck_ (operating point dependent)
-- a _scale factor_
+In the engine design a dataset needs to be written into the projects directory. The following data is needed:
+
+* An engine dataset (operating point independent)
+* An engine deck (operating point dependent)
+* A scale factor
 
-The _dataset_ (also called _EngineXML_) includes parameter which are independent of the flight condition such as outer engine dimensions.
 
-The three-dimensional _engine deck_ contain engine performance data for different values of altitude $h$, Mach number $Ma$ and low-pressure engine spool speed $N1$. The most important performance parameter are thrust and fuel/energy flow. In UNICADO, the deck is split into multiple CSV files. The figure shows an example with values for thrust in kilo newton. The first block contains data for $N1=1$ for $Ma=0...0.9$ and $h=0...14000$. The second block below is for $N1=0.95$.
+The _dataset_ (also called _engine_xml_) includes parameter which are independent of the flight condition such as outer engine dimensions or the mass of the unscaled engine.
+
+The three-dimensional \( \text{\textit{engine deck}} \) contains engine performance data for different values of altitude \( h \), Mach number \( M_a \), and low-pressure engine spool speed \( N_1 \).
+ The most important performance parameter are thrust and fuel/energy flow. In UNICADO, the deck is split into multiple csv files. The figure shows an example with values for thrust in kilo newtons. The first block contains data for \( N_1 = 1 \) for \( M_a = 0 \ldots 0.9 \) and \( h = 0 \ldots 14000 \). The second block below is for \( N_1 = 0.95 \).
+
 ![](figures/deck_example_thrust.svg)
 
-!!! note 
-    Detailed information on required dataset and deck data will be updated in near future. 
 
-The _scale factor_ is necessary because (as conceptual aircraft designer), we use the concept of a so-called _rubber engine_. That means that (depending on the method, see later) we create or assume an engine deck and provide one _scale factor_ to obtain all engine data acc. to the required thrust the engine shall provide. The figure visualized the concept:
+The _scale factor_ is necessary for the rubber method as it uses the concept of a so-called _rubber engine_. That means that (depending on the method, see later) we create or assume an engine deck and provide a _scale factor_ to scale all engine data acc. to the required thrust the engine shall provide. The figure visualized the concept:
 ![](figures/scale_factor.svg)
 
-@attention &rarr; **As mentioned and highlighted in the figure**, there is ONE _scale factor_ **BUT** multiple exponents which differ depending on which property you want to use. E.g. for the diameter, the exponent is $0.5$ and for the mass its $0.4$. **So important to remember** that whenever you want to use engine data, you need to access it via the `engine` library. In the following, a brief explanation of the scaling concept will be given - however details are given in the library documentation.
+!!! attention
+    **As mentioned and highlighted in the figure**, there is ONE _scale factor_ **BUT** the scaling of the base values is not always linear.
+    **So important to remember** that whenever you want to use engine data, you need to access it via the `engine` library. In the following, a brief explanation of the scaling concept will be given - however details are given in the library documentation.
 
-So, the scaling is based on continuity principle assuming that the operating condition is constant (commonly known station numbering; assuming no pressure drop).
+The scaling is based on continuity principle assuming that the engine characteristics are constant.
 
-$ T = \dot m \cdot (V_9 - V_0) $
+$T = \dot{m} \cdot (V_9 - V_0)$
 
-Therefore, thrust $T$ is proportional to the mass flow $\dot m$, which is related to the cross-sectional area $A$ of the engine. 
+Therefore, thrust $T$ is proportional to the mass flow $\dot{m}$, which is linearly related to the cross-sectional area $A$ of the engine.
 
-$ \dot m = \rho \cdot V \cdot A = \rho \cdot V \cdot \pi \frac{d}{2}^2 $
+\[
+\dot{m} = \rho \cdot V \cdot A = \rho \cdot V \cdot \pi \frac{d}{2}^2
+\]
 
-Because area $A$ is proportional to the square of the diameter $d$ , it follows that the diameter should be proportional to the square root of the scale factor. 
+Because area $A$ is proportional to the square of the diameter $d$, it follows that the diameter should be proportional to the square root of the scale factor.  
 
-$ d_{new} = d_{ref} \cdot ( \frac{T_{new}}{T_{ref}} )^{0.5} $
+\[
+d_{\text{new}} = d_{\text{ref}} \cdot \left( \frac{T_{\text{new}}}{T_{\text{ref}}} \right)^{0.5}
+\]
 
-An exemplary simplified calculation (data from the V2527-A5): the current engine provides $127.27~kN$ as sea level static thrust, but for the design only $100~kN$ are needed. The scaling factor would be $0.7857$. Assuming an initial diameter $2~m$, the new diameter would be $1.773~m$ with the scaling factor of $(0.7857)^{0.5} = 0.8864$. 
+An exemplary simplified calculation (data from the V2527-A5): the current engine provides $127.27~\text{kN}$ as sea level static thrust, but for the design only $100~\text{kN}$ are needed. The scaling factor would be $0.7857$. Assuming an initial diameter $2~\text{m}$, the new diameter would be $1.773~\text{m}$ with the scaling factor of $(0.7857)^{0.5} = 0.8864$.
 
-So, again, always access the engine data via the `engine` library to ensure that you have the correctly scaled data 🙂
 
-!!! note
-    Actually, the sea level static thrust is not at $N1=1$ if you compare the dataset for this engine (for 110.31kN around $N1=0.95$). So the scaling factor will be slightly lower.
+The general scaling is therefore a linear scaling of the thrust. The fuel flow is scaled in the same way leading to a scaling with constant TSFC. 
+
+The engine data is always accessed via the `engine` library to ensure that you have the correctly scaled data for every value. This is valid for both the non operating condition dependent variables and the values that are directly read from the deck values. 
+
+!!! Note
+    Actually, the sea level static thrust is not at $N1=1$ if you compare the dataset for this engine (for $110.31~\text{kN}$ around $N1=0.95$). So the scaling factor is slightly lower.
+
 
 ### Methods description
 The **engine designer** includes different methods which create/use this deck in various ways.
 
-- *empirical*: the initial deck is calculated based on emipirical equations
-- *rubber*: (most common approach) based on an existing deck (usually created with GasTurb), the deck is "rubberized"
-- *propulsionsystem*: with the help of the library `propulsionsystem`, different architecture can be defined and a deck created (for more information see documentation of the library)
+* *empirical*: the initial deck is calculated based on empirical equations.
+* *rubber*: (most common approach) based on an existing deck (usually created with GasTurb), the deck is "rubberized".
+* *propulsionsystem*: with the help of the library `propulsionsystem`, different architecture can be defined and a deck created (for more information see documentation of the library)
 
 !!! note
     *empirical* and *propulsionsystem* is in preparation - not implemented yet!
 
-For all these methods, the approach of using the _scale factor_ is the same (see explaination [here](#generalprinciples)). A deck is either first created or assumed and then data is drawn with the `engine` library with the scaling approach. 
+For these methods, the approach of using the _scale factor_ is the same (see explanation [here](#generalprinciples)). A deck is either first created or an existing dataset is taken and then data is provided using the `engine` library with the scaling approach.
 
 ## Propulsion integrator {#propulsionintegrator}
 Additionally to calculating the engine performance parameter, the engine has to be placed on the aircraft. The **propulsion integrator** uses the user settings from the aircraft exchange file - the following needs to be defined:
+
 - parent component: wing, fuselage, empennage
 - x-position (aircraft coordinate system): front or rear
 - y position (aircraft coordinate system): left or right
@@ -86,40 +103,44 @@ Additionally to calculating the engine performance parameter, the engine has to
 ### Methods description
 
 Here, currently only one method is implemented:
+
  - *default* is based on a thesis of RWTH Aachen \cite{Ata10}
 
 This method includes multiple empirical functions for different propulsion integration. These are the options that are currently implemented:
-| Parent    | Lateral | Longitudinal | Vertical |
-|-----------|---------|--------------|----------|
-| Wing      | Right   | Front        | Under    |
-| Wing      | Left    | Front        | Under    |
-| Wing      | Right   | Front        | Over     |
-| Wing      | Left    | Front        | Over     |
-| Fuselage  | Right   | Rear         | Mid      |
-| Fuselage  | Left    | Rear         | Mid      |
-| Empennage | Mid     | Front        | In       |
+
+| Parent     | Lateral | Longitudinal | Vertical |
+|------------|---------|--------------|----------|
+| Wing       | Right   | Front        | Under    |
+| Wing       | Left    | Front        | Under    |
+| Wing       | Right   | Front        | Over     |
+| Wing       | Left    | Front        | Over     |
+| Fuselage   | Right   | Rear         | Mid      |
+| Fuselage   | Left    | Rear         | Mid      |
+| Empennage  | Mid     | Front        | In       |
+
 
 For detailed information, it is referred to the thesis.
 
-!!! note the implementation include currently Turbofan Kerosene only
+!!! note 
+    The implementation include currently Turbofan Kerosene only
 
 ## Nacelle designer {#nacelledesigner}
-After the integration, the nacelle geometry is defined (however its actually independent of the position, so the order could be changed). 
+After the integration, the nacelle geometry is defined.
 
 ### Methods description 
 
 For the **nacelle designer**, only one method is implemented:
 
- - *default* uses the `aircraftGeometry2` library 
+ - *default* uses the `aircraftGeometry2` library.
  
 The library uses the `.dat` file defined in the _configXML_ to extrude a polygon in different sections. These sections including the origin, width, height and its profile are saved in the _acXML_. With that, every other tool can "rebuild" the geometry using the same library.
 
-In the current implemented method, there is no differentiation between short and long ducted nacelle. It is a polygon with 3 segments (1. and 3. segments is 25% of engine length). The diameter for the 1. and 3. segment is chosen as the maximum between fan diameter, engine width or height. The 2. segments is 25% larger.
+There is no differentiation between short and long ducted nacelle. It is a polygon with 3 segments (1. and 3. segments is 25% of engine length). The diameter for the 1. and 3. segment is chosen as the maximum between fan diameter, engine width or height. The 2. segments is 25% larger.
 
 Keep in mind that the library defines a surface without a thickness. For more information, it is referred to the library. 
 
-!!!note
-    The implementation include currently Turbofan Kerosene only
+!!! note 
+    Currently, only a kerosene turbofan engine is included.
 
 ## Pylon designer {#pylondesigner}
 The pylon is the structural component to connect the engine to the aircraft. 
@@ -128,18 +149,14 @@ The pylon is the structural component to connect the engine to the aircraft.
 
 For the **pylon designer**, only one method is implemented:
 
- - *default* uses the `aircraftGeometry2` library 
+ - *default* uses the `aircraftGeometry2` library.
  
-In the current method, the mounting is attached to the beginning to the nacelle to the leading edge of the wing. The length is the engine length which is extruded to the wing. the profile is, likewise for the nacelle, defined in the _configXML_.
+In the current method, the mounting is attached to the beginning to the nacelle to the leading edge of the wing. The length is the engine length which is extruded to the wing. The profile is, likewise for the nacelle, defined in the _configXML_.
 
 ![Engine Mount](figures/engine_mount.svg)
 
-
-!!!note 
-    the implementation include currently Turbofan Kerosene only
-
 ## Mass analyzer {#massanalyzer}
-Lastly, the mass properties for engine, nacelle and pylon are calculated separate for center of gravity, mass and inertia. 
+Lastly, the mass properties for engine, nacelle and pylon are calculated separately for center of gravity, mass and inertia. 
 
 ### Methods description
 
@@ -155,6 +172,6 @@ Here, only one method is implemented:
         - mass: empirical estimation
         - inertia: wrt. CG with `aircraftGeometry2`lib
 
-!!!note 
-    the implementation include currently Turbofan Kerosene only
+!!! note 
+    Currently, only a kerosene turbofan engine is included.
 
diff --git a/docs/documentation/sizing/propulsion_design/figures/deck_example.PNG b/docs/documentation/sizing/propulsion_design/figures/deck_example.PNG
new file mode 100644
index 0000000000000000000000000000000000000000..1d74dd7a6572ccbcdc5356f477b7986504519fd3
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/deck_example.PNG
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ff540fd124e3b1f05103206aee52cc46fe50bdce9d2d237d184e36332c89d37
+size 101219
diff --git a/docs/documentation/sizing/propulsion_design/figures/engine_sizing.png b/docs/documentation/sizing/propulsion_design/figures/engine_sizing.png
new file mode 100644
index 0000000000000000000000000000000000000000..14717b1782761e3d55e05f74b3ff9d6b3e9fd6c0
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/engine_sizing.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d13c05a05f589a9d7d339e91ee9186da2edd6f667e92e39fd8413b124d7b9f46
+size 131823
diff --git a/docs/documentation/sizing/propulsion_design/figures/propulsion_design_flow.png b/docs/documentation/sizing/propulsion_design/figures/propulsion_design_flow.png
new file mode 100644
index 0000000000000000000000000000000000000000..ddbf1002f28bad0ff16f1fb91a031cea44c1b632
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/propulsion_design_flow.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:40488e9ef73109ffa6d52b0635104a4366655b4b9fb2bbbf1d50a0dfdbafa4b2
+size 157371
diff --git a/docs/documentation/sizing/propulsion_design/figures/xml_output.PNG b/docs/documentation/sizing/propulsion_design/figures/xml_output.PNG
new file mode 100644
index 0000000000000000000000000000000000000000..c0a4774fb2e1cdc88aa3f7e693667ccc93cf1558
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/figures/xml_output.PNG
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ac1643468287a3ba1a8701c4d6de1c0c0a08f7abefaf1602abacf5fe4e69c9ac
+size 82271
diff --git a/docs/documentation/sizing/propulsion_design/getting-started.md b/docs/documentation/sizing/propulsion_design/getting-started.md
index fafd391dbf79ade980793db140d0bcfc7be33527..7ee24ca9599ed8f3385162011424a7c02909265d 100644
--- a/docs/documentation/sizing/propulsion_design/getting-started.md
+++ b/docs/documentation/sizing/propulsion_design/getting-started.md
@@ -17,7 +17,6 @@ It is assumed that you have the `UNICADO Package` installed including the execut
 3. Open terminal and run **propulsion_design**
 
 Following will happen:
-
 - you see output in the console window
 - a HTML report is created in the directory of `aircraft_exchange_file_directory` (no plots of engine if they are turned off)
 - results are saved in the `/aircraft_exchange_file/component_design/propulsion`
@@ -29,7 +28,7 @@ Following will happen:
 Generally, we use 2 files to set or configure in UNICADO:
 
 - the aircraft exchange file (or _acXML_) includes
-    - data related inputs (e.g. thrust, offtakes or type of engine)
+    - data related inputs (e.g. thrust-to-weight ratio, MTOM, average bleed and shaft offtakes or type of engine)
     - data related outputs (e.g. engine position)
 - the configuration file `propulsion_design_conf.xml` (also _configXML_) includes
     - control settings (e.g. enable/disable generating plots)
@@ -42,11 +41,11 @@ Generally, we use 2 files to set or configure in UNICADO:
 **Inputs**: 
 Following is needed from the _acXML_:
 
-1) the total required thrust, 
-2) the system off-takes,
-3) the user settings of the propulsion architecture
+1) the total required thrust using the thrust-to-weight ratio and MTOM,
+2) the average system off-takes for the bucket-curve,
+3) the user settings of the propulsion architecture.
 
-Naturally, the propulsion need an assumption for thrust or power to be designed. Currently, in UNICADO, the requirement is set via the tool _initialSizing_. Here, initial estimation based on the TLARs are calculated like the thrust-to-weight via an design chart or the maximum take-off mass based on regressions. For this, **propulsion_design** currently assumes:
+The propulsion design tool is based on the overall thrust or power the propulsion needs to be designed for. The thrust_share input divides the overall thrust to the single propulsors. In the first run of the UNICADO workflow, the tool _initialSizing_ estimates the thrust-to-weight-ratio for this. Afterwards, the tool _constraint_analysis_ updates the thrust to weight ratio by calculation the performance values using actual aircraft data. This assures the total thrust is sufficient to certification boundary conditions. With the thrust-to-weight ratio, which is calculated for the sea level static thrust, the propulsors are designed.
 
 The sea level static thrust $T_0$ is given by:
 
@@ -61,7 +60,7 @@ Where:
 !!! note
     This might change with new propulsion architectures!
 
-Not only the thrust is important, but also the system off-takes. Current engine provide power to the systems and therefore, the thrust specific consumption can increase. To include that, the nodes `average_bleed_air_demand` and `average_bleed_air_demand` in `/aircraft_exchange_file/component_design/systems/specific/`are necessary (is set to default values if not existing).
+The most important parameter is the thrust-to-weight-ratio. Another input are the average system off-takes. Current engined provide power to different systems and therefore, the thrust specific consumption will increase. To include that, the nodes `average_bleed_air_demand` and `average_bleed_air_demand` in `/aircraft_exchange_file/component_design/systems/specific/` are read (is set to default values if not existing).
 
 Additionally, the user settings need to be defined. In the node `/aircraft_exchange_file/requirements_and_specifications/design_specification`, both `energy_carriers` and `propulsion` need to be filled out (for more information on the variables, please read the description in the _acXML_).
 
@@ -82,8 +81,8 @@ Propulsion
 |  |- Energy Carrier ID
 |  |- Thrust Share
 ```
-Let's assume you want to design an aircraft with 5 engine - 2 on each side of the wing and one in the empennage. Additionally, you want to use 3 energy carrier: hydrogen, kerosene and battery-electric.
-For that, you need to define 3 energy carriers with each a type and a density with $ID=[0,1,2]$. Then you create 5 propulsor nodes with $ID=[0,...,4]$ and assign them each an a powertrain, type, ..., and thrust share. E.g. Engine 0 shall be a kerosene-powered turbofan in the empennage with a thrust share of $10\%$. Then it has the position with `parent_component=empennage`, `x=front`, `y=mid`, `z=in`. If the type of the energy carrier with ID=0 is set to kerosene, you need to assign `energy_carrier_id=0`. Also `powertrain=turbo`, `type=fan`, and `thrust_share=0.1`. Then Engine 1 could be a hydrogen-powered turboprop located under the left front inner wing with a thrust share of $25\%$. Then it has the position with `parent_component=wing`, `x=front`, `y=left`, `z=under`. If the type of the energy carrier with ID=1 is set to hydrogen, you need to assign `energy_carrier_id=1`. Also `powertrain=turbo`, `type=prop`, and `thrust_share=0.25`. The same procedure needs to be done for the other 3 engine.
+Let's assume you want to design an aircraft with 5 engine - 2 on each side of the wing and one in the empennage. Additionally, you want to use 3 energy carriers: hydrogen, kerosene and battery-electric.
+For that, you need to define 3 energy carriers with each a type and a density with $ID=[0,1,2]$. Then you create 5 propulsor nodes with $ID=[0,...,4]$ and assign them each a powertrain, type, ..., and thrust share. E.g. Engine 0 shall be a kerosene-powered turbofan in the empennage with a thrust share of $10\%$. Then it has the position with `parent_component=empennage`, `x=front`, `y=mid`, `z=in`. If the type of the energy carrier with ID=0 is set to kerosene, you need to assign `energy_carrier_id=0`. Also `powertrain=turbo`, `type=fan`, and `thrust_share=0.1`. Then Engine 1 could be a hydrogen-powered turboprop located under the left front inner wing with a thrust share of $25\%$. Then it has the position with `parent_component=wing`, `x=front`, `y=left`, `z=under`. If the type of the energy carrier with ID=1 is set to hydrogen, you need to assign `energy_carrier_id=1`. Also `powertrain=turbo`, `type=prop`, and `thrust_share=0.25`. The same procedure needs to be done for the other 3 engines.
 
 **Outputs**: The results are saved in the _acXML_ node `/aircraft_exchange_file/component_design/propulsion`. 
 
@@ -154,7 +153,7 @@ Program Settings
 |  |  |- Profile
 |  |- Integration
 ```
-You can choose the method for each discipline, the path for your engine data base, and different technology factors. To be highlighted, is the `Propulsion ID=Default` node. This is a default for all engines defined in the _acXML_ (see next paragraph). E.g. if you define 3 engines for an aircraft, both will use the same assumptions in the default setting. In case you want that the 3. engine is been calculated with e.g. another method, you can create a new `propulsion` node and assign the same `ID` value as set for the _acXML_ `ID`. 
+You can choose the method for each discipline, the path for your engine data base, and different technology factors. To be highlighted, is the `Propulsion ID=Default` node. This is a default for all engines defined in the _acXML_ (see next paragraph). E.g. if you define 3 engines for an aircraft, all will use the same assumptions in the default setting. In case you want that the 3. engine is been calculated with e.g. another method, you can create a new `propulsion` node and assign the same `ID` value as set for the _acXML_ `ID`. 
 
 ## Minimal required aircraft exchange file input {#acXML}
 
diff --git a/docs/documentation/sizing/propulsion_design/index.md b/docs/documentation/sizing/propulsion_design/index.md
index 9caaff81ee51c1e3563458a952533ae99313abc9..e65323eecc45769542478585777d6baa62bd4728 100644
--- a/docs/documentation/sizing/propulsion_design/index.md
+++ b/docs/documentation/sizing/propulsion_design/index.md
@@ -1,25 +1,30 @@
 # Introduction {#mainpage}
-The tool _propulsion_design_ is one of the core design tools in UNICADO. The overall goal is the design the propulsion based on... 
+The tool _propulsion_design_ is one of the core design tools in UNICADO. The overall goal is the design the propulsion system based on...
 
 - the architecture (e.g. 2 turbofan at rear fuselage, 4 fuel cell prop engine over the front wing) set by the user and,
-- the total required thrust and system off-takes.
-This tool is exciting!🔥 because the propulsion is THE critical component providing the thrust or power, enabling to propel the aircraft forward and move through the skies.🌍
+- the total required thrust and system off-takes calculated within the aircraft design loop.
+The propulsion is one of the critical components in the aircraft design loop. It provides the thrust or power, enabling powered flight of the aircraft letting it move through the skies.
 
-To give you a general taste, here are a few illustrations of possible concepts.
+There are different propulsion architectures for the aircraft conceptual design process. To give you a general taste, here are a few illustrations of possible concepts.
 ![](figures/different_engines.svg)
 
-The [getting started](getting_started.md) gives you a first insight in how to execute the tool and how it generally works. To understand how the tools works in detail, the documentation is split into a [engineering principles](engineering_principles.md) and a [software architecture](software_architecture.md) section. 
+The [getting started](getting_started.md) gives you a first insight in how to execute the tool and how it generally works. To understand how the tools works in more detail, the documentation is split into a [engineering principles](engineering_principles.md) and a [software architecture](software_architecture.md) section. 
 
 Prior to that, let's summarize what the tool can currently do and what is planned (terms like _method_ or _strategy_ will be explained in the sections):
 
-| Engine type                  | Methods*                                             | Status     |
+| Engine type                  | Methods (engine design/ nacelle design/ pylon design/ integrator/ mass analysis )  | Status     |
 |------------------------------|------------------------------------------------------|------------|
 |kerosene-powered turbofan     |Rubber(V2527-A5)/ Default/ Default/ Default/ Default  |running     |
 |hydrogen-powered turbofan     |Rubber(V2527-H2)/ Default/ Default/ Default/ Default  |to be tested|
 |kerosene-powered turboprop    |  |strategy integrated, but methods missing |
 |hydrogen-powered turboprop    |  |strategy integrated, but methods missing |
 
-(*) order: engine designer/ nacelle designer/ pylon designer/ propulsion integrator/ mass analyzer
+Order: 
 
-So let's get started!
+    1. engine designer 
+    2. nacelle designer 
+    3. pylon designer 
+    4. propulsion integrator
+    5. mass analyzer
 
+So let's get started!
diff --git a/docs/documentation/sizing/propulsion_design/overview.md b/docs/documentation/sizing/propulsion_design/overview.md
new file mode 100644
index 0000000000000000000000000000000000000000..58c47410ef515511f076b703d960336c84365819
--- /dev/null
+++ b/docs/documentation/sizing/propulsion_design/overview.md
@@ -0,0 +1,134 @@
+# Overview {#mainpage}
+The propulsion_design tool provides the engine data and the engine integration on the aircraft. 
+
+As a first step, the user inputs must be specified. This is done in the aircraftXML file in the following way:
+
+- `propulsor ID`: Information for the specific propulsor
+    - `Powertrain`: Way the power is generated from the source. Selector: turbo
+    - `Type`: Type of main thrust generator. Selector: fan
+    - `energy_carrier ID`: See energy carrier specification node
+    - `thrust_share`: Share of this thrust in relation to required aircraft thrust
+    - `position`: Propulsor position (arrangement order acc to ID order)
+        - `parent_component`: Position on component. Selector: wing / fuselage / empennage
+        - `x`: X-position (aircraft coordinate system). Selector: front / back
+        - `y`: Y-position (aircraft coordinate system). Selector: left / right
+        - `z`: Z-position (aircraft coordinate system). Selector: over / mid / under / in
+
+    
+Further inputs can be specified in the propulsion design configuration file:
+
+> The following settings are specified in the `aircraftXML` file:
+> 
+> ```xml
+> <control_settings>...</control_settings> <!-- Paths and settings -->
+> <program_settings> <!-- Settings specific to propulsion design -->
+>     <method> <!-- Choose the implementation method of each design domain -->
+>         <engine_designer>Empirical</engine_designer> <!-- Selector: Empirical / Rubber -->
+>     </method>
+>     <path_engine_database>...</path_engine_database> <!-- Path to the database with existing engine decks -->
+>     <technology_factors> <!-- Improve or decrease performance -->
+>         <engine_mass>...</engine_mass>
+>         <nacelle_mass>...</nacelle_mass>
+>         <pylon_mass>...</pylon_mass>
+>         <engine_efficiency>...</engine_efficiency>
+>     </technology_factors>
+>     <repositioning>...</repositioning> <!-- Shifting the engine center position -->
+> 
+>     <propulsion ID="..."> <!-- ID specific settings -->
+>         <Empirical_Settings>...</Empirical_Settings>
+>         <Rubber_Method_Settings>
+>             <engine_model_name>...</engine_model_name>
+>         </Rubber_Method_Settings>
+>         <nacelle_geometry>...</nacelle_geometry>
+>         <pylon_geometry>...</pylon_geometry>
+>     </propulsion>
+> </program_settings>
+> ```
+        
+With the settings the propulsion design calculation can be started.
+
+The main steps of the methodology are shown in the following figure:
+
+![](figures/propulsion_design_flow.png)
+
+Required inputs for propulsion design are therefore:
+
+    - The thrust to weight ratio (First from initial_sizing sizing then from constraint_analysis).
+    - The MTOW of the aircraft.
+    - The type of propulsors and the according thrust share.
+
+With this the engines are designed one by one with the following approach:
+
+![](figures/engine_sizing.png){html: width=600}
+
+The outputs are the engine xml file and the different deck values as csv files. They are saved in thr projects directory. Further output is saved in the aircraft xml because other tools of the UNICADO tool chain need it. An example of this output is shown below.
+
+> The following settings define propulsion-specific parameters in the `aircraftXML` file:
+> 
+> ```xml
+> <propulsion ID="0"> <!-- Define the propulsion system -->
+>     <model>...</model> <!-- Name of the engine -->
+>     <position> <!-- Position in global coordinates -->
+>         <x>...</x>
+>         <y>...</y>
+>         <z>...</z>
+>     </position>
+>     <mass_properties> <!-- Mass properties -->
+>         <mass>...</mass>
+>         <cog>...</cog> <!-- Center of gravity -->
+>         <inertia>...</inertia>
+>     </mass_properties>
+>     <SLST>...</SLST> <!-- Static sea-level thrust -->
+>     <scale_factor>...</scale_factor> <!-- Scale factor for this engine -->
+>     <bucket_point> <!-- Performance adjustments -->
+>         <thrust>...</thrust>
+>         <tsfc>...</tsfc> <!-- Thrust specific fuel consumption -->
+>     </bucket_point>
+>     <pylon>...</pylon> <!-- Pylon specific data -->
+>     <nacelle>...</nacelle> <!-- Nacelle details -->
+> </propulsion>
+> ```
+
+    
+Readout of the engine data can and should only be done using the engine library!
+The engine data is provided in two formats. The engine xml file and the csv files that contain the engine deck.
+The engine xml has values that are constant for a given engine:
+
+> The following structure defines the engine design conditions in the `EngineDataFile`:
+> 
+> ```xml
+> <EngineDataFile>
+>     <EngineDesignCondition Desc="Flight Condition for creating the bucket curve">
+>         <flightAltitude Desc="Flight altitude for bucket curve" Unit="ft">35000</flightAltitude>
+>         <flightMachNumber Desc="Mach number for bucket curve" Unit="-">0.78</flightMachNumber>
+>         <thrust Desc="Thrust at design point, ISA (value from source)" Unit="kN">19</thrust>
+>         <SLST Desc="Sea level static thrust measured at SL, Mach 0, ISA (value from source)" Unit="kN">120.43</SLST>
+>         <MCT Desc="Maximum continuous thrust measured at SL, Mach 0, ISA (value from source)" Unit="kN">117.18</MCT>
+>     </EngineDesignCondition>
+> </EngineDataFile>
+> ```
+The csv files contain engine data that depends on the operating point. The operating point is defined as
+
+    - Flight Mach number
+    - Flight altitude 
+    - Low pressure spool speed / power setting
+
+An example is shown in the following figure.
+
+![](figures/deck_example.PNG)
+
+The data is readout by the engine library which has an efficient parser for the deck values using a linear interpolation between two existing deck values. Penalties, like shaft power offtake or bleed air offtake, are applied using the engine library. The scale factor is applied according to the exact scaling mechanism for the value needed.
+The detailed description of the engine library can be found [here](../../../libraries/engine/).
+
+## Scaling Principle  
+
+The underlying principle is the scaling of the mass flow with constant velocities. The following scaling is done using the scale factor (SF):  
+
+- **Thrust:** Linear  
+- **Fuel Flow:** Linear → TSFC remains constant  
+- **Diameter:** \( SF^{0.5} \)  
+- **Weight:** \( SF^{1.1} \)  
+- **Length:** \( SF^{0.4} \)  
+- **LTO Fuel Flow:** Linear
+- **LTO Emissions:** Constant
+
diff --git a/docs/documentation/sizing/propulsion_design/software_architecture.md b/docs/documentation/sizing/propulsion_design/software_architecture.md
index 294c85b487ec2fd2b1c5f3815f92876669f0db95..7995d60cc6570e0d69f3e9877e3f4b25f74bff5c 100644
--- a/docs/documentation/sizing/propulsion_design/software_architecture.md
+++ b/docs/documentation/sizing/propulsion_design/software_architecture.md
@@ -2,7 +2,7 @@
 
 ## Software Architecture Overview
 
-The software architecture is structured into various modules and packages, each handling specific task. Below is a description of the main components (some classes, interfaces etc. are left out to keep it understandable for now - for more information see the [class diagram](figures/class_diagram.png) or the source code):
+The software architecture is structured into various modules and packages, each handling specific task. Below is a description of the main components (some classes, interfaces etc. are left out to keep it understandable for now - for more information see the [class diagram](figure/class_diagram.png) or the source code):
 
 - classes:
     - **propulsionDesign** is like the "coordinator" responsible for the overall propulsion system design including _initialize_, _run_, _update_, _report_ and _save_ (inherits from `Module` class from **moduleBasics**). These include e.g. method selection function for each disciplines
@@ -21,9 +21,9 @@ The software architecture is structured into various modules and packages, each
 
 Some additional words on the **propulsionStrategy**:
 
-As you might also see in the [class diagram](figures/class_diagram.png), the core of it is the functor `operator()` for specific engine types to allow the `engine` object to be used as functions. This object is, depending on the user settings, based on the propulsion type classes (e.g. `Turbofan<Kerosene>`). As also shown in @ref propulsion.md, the type is combined with 3 "building blocks"
+As you might also see in the [class diagram](figure/class_diagram.png), the core of it is the function `operator()` for specific engine types to allow the `engine` object to be used as functions. This object is, depending on the user settings, based on the propulsion type classes (e.g. `Turbofan<Kerosene>`). As also shown in @ref propulsion.md, the type is combined with 3 "building blocks"
+
  - *powertrain*: Way the power is generated from the source: turbo, electric, fuel_cell
- - 
  - *type*: Type of main thrust generator: fan or prop
  - *energy_carrier*: kerosene, liquid_hydrogen, battery (handled over IDs)
 
diff --git a/docs/documentation/sizing/systems_design/getting-started.md b/docs/documentation/sizing/systems_design/getting-started.md
index 6099db298cf73b1470539d83d4b3e27e28345dff..204d27b4867761580f557d63ff2e019d741f0c2e 100644
--- a/docs/documentation/sizing/systems_design/getting-started.md
+++ b/docs/documentation/sizing/systems_design/getting-started.md
@@ -34,7 +34,7 @@ Three input files are required for **systems_design**:
     - tank
     - propulsion
     - number of flight and cabin crew
-- the configuration file `initial_sizing_conf.xml` (or _configXML_) includes
+- the configuration file `systems_design_conf.xml` (or _configXML_) includes
     - control settings (e.g. enable/disable generating plots)
     - program settings (e.g. define system architecture, set parameters for individual systems)
 - the mission file (`design_mission.xml`, `study_mission.xml` or `requirement_mission.xml`) is required since **systems_design** calculates the required system power for each mission step.
diff --git a/docs/documentation/sizing/tank_design/getting_started.md b/docs/documentation/sizing/tank_design/getting_started.md
index 4b81a6aaf1d26f550149beb30bea9891fbabb0b4..7933ecf90658d15be8f465d7782c28ab73fd2164 100644
--- a/docs/documentation/sizing/tank_design/getting_started.md
+++ b/docs/documentation/sizing/tank_design/getting_started.md
@@ -12,9 +12,11 @@ This section will guide you through the necessary steps to get the _tank\_design
     It is assumed that you have the `UNICADO package` installed including the executables and UNICADO libraries.
 
 Generally, we use two files to set or configure modules in UNICADO:
+
 - The aircraft exchange file (or _acXML_) includes
     - data related inputs (e.g., required energy, component design data) and
     - data related outputs (e.g., tank positions).
+
 - The module configuration file `tank_design_conf.xml` (also _configXML_) includes
     - control settings (e.g., enable/disable generating plots) and
     - program settings (e.g., information on buffers).
@@ -37,12 +39,14 @@ Thus, it must be ensured that this data is available. More information on requir
 
 ## Aircraft exchange file requirements {#aircraft-exchange-file}
 To single execute the _tank\_design_ module, we need an _acXML_ file that already contains the output data from the following tools:
+
 - _wing\_design_
 - _empennage\_design_
 - _fuselage\_design_
-- _mission\_analysis_ - _tank\_design_ execution also possible without mission analysis data (an assumption is made to calculate mission energy amount)
+- _mission\_analysis_ <sup>*</sup>
 
 The following data should then be available in the _acXML_:
+
 1. Requirements and specifications
     - Design specification
         - Configuration information: Configuration type, tank definition ([see below](#configuring-tank-design-parameters-in-the-aircraft-exchange-file))
@@ -59,11 +63,26 @@ The following data should then be available in the _acXML_:
 !!! note 
     When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway.
 
+<sup>*</sup> The _tank\_design_ execution is also possible without mission analysis data. Alternatively, the following assumption is used to calculate the mission fuel amount:
+
+$$
+    m_{\text{fuel}} = n_{\text{PAX}} \cdot R \cdot \frac{E}{100 \text{ km}}
+$$
+
+In which
+
+- $n_{\text{PAX}}$ - number of passengers
+- $R$ - range in km
+- $E$  - energy demand (3.35 liter per PAX per 100 km)
+
+Using the volumetric energy density of kerosene, the initial energy demand can then be calculated.
+
 ## Configuring tank design parameters in the aircraft exchange file {#configuring-tank-design-parameters-in-the-aircraft-exchange-file}
 The desired tank configuration is defined by the user in the aircraft exchange file. The information can be found in the `aircraft_exchange_file/requirements_and_specifications/design_specification/configuration/tank_definition` block.
 
 ### The ID `tank_element`
 Each tank is configured in the _acXML_ as one element (ID element) with the following parameters:
+
 - `energy_carrier_ID`: ID of energy carrier to obtain which fuel is to be stored in the tanks.
 - `location`: Aircraft component where the tank is located (valid options depend on the energy carrier).
 - `position`: Position at the desired location (valid options depend on location and energy carrier).
@@ -91,6 +110,7 @@ For aircraft configurations with a kinked wing, the "wing tank configuration" co
 |  7  | Fuselage              | Center      | Also referred to as 'additional center tank'. |
 
 For example, to define a valid combination for the wing center tank, set the following parameters for the ID element `ID="0"`:
+
 - `energy_carrier_ID` to `0` (it is assumed that `0` equals kerosene)
 - `location` to `wing`
 - `position` to `center`
@@ -110,6 +130,7 @@ The following table provides an overview on possible tank configurations. As can
 | Wing       | Fuselage - Center             |               -               | wing_with_additional_center_tank         |
 | Wing       | Horizontal stabilizer - Total | Fuselage - Center             | wing_with_additional_center_and_trim_tank|
 | Wing       | Fuselage - Center             | Horizontal stabilizer - Total | wing_with_additional_center_and_trim_tank|
+
 Note: "Wing" always refers to either the combinations 1 to 5 of the table in the previous section ("wing tank configuration").
 
 #### Possible tank configurations: Aircraft with singe trapezoidal wing
@@ -122,6 +143,7 @@ The following table provides an overview on possible tank configurations. As can
 | Wing       | Fuselage - Center             |               -               | wing_with_additional_center_tank         |
 | Wing       | Horizontal stabilizer - Total | Fuselage - Center             | wing_with_additional_center_and_trim_tank|
 | Wing       | Fuselage - Center             | Horizontal stabilizer - Total | wing_with_additional_center_and_trim_tank|
+
 Note: "Wing" always refers to the combinations 1, 2, and 4 of the table in the previous section ("wing tank configuration").
 
 #### Example: Minimum tank configuration
@@ -242,6 +264,7 @@ tbd. :construction:
 The _configXML_ is structured into two blocks: the control and program settings.
 
 The control settings are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least
+
 - the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings,
 - the `console_output` at least to `mode_1`, and
 - the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`).
diff --git a/docs/documentation/sizing/tank_design/index.md b/docs/documentation/sizing/tank_design/index.md
index 9b314d9f92d723a6505e1d1fc798ad7513a8d6fb..a8af86c9cad9fa9612e475df211cf2a522549205 100644
--- a/docs/documentation/sizing/tank_design/index.md
+++ b/docs/documentation/sizing/tank_design/index.md
@@ -13,10 +13,12 @@ Blended-wing-body |...               |...        |...        |under development
 ## A user's guide to tank design
 The _tank\_design_ tool is your key to designing the aircraft's fuel storage. In this user documentation, you’ll find all the information you need to understand the tool, as well as the necessary inputs and configurations to run a tank design from the ground up.
 The following sections will walk you through the process:
+
 - [Getting started](getting_started.md)
 - [Run your first tank design](run_your_first_tank_design.md)
 
 For a comprehensive understanding of the tool’s functionality, the documentation is structured into two distinct sections:
+
 - A [method description](tank_design_method.md) and
 - a [software architecture](software_architecture.md)
 section.
diff --git a/docs/documentation/sizing/tank_design/run_your_first_tank_design.md b/docs/documentation/sizing/tank_design/run_your_first_tank_design.md
index 400fe0aff55f1fca7fb2fdf15af407988070d875..ee39580f507ee760f6e503da9c24aab5d4c660d7 100644
--- a/docs/documentation/sizing/tank_design/run_your_first_tank_design.md
+++ b/docs/documentation/sizing/tank_design/run_your_first_tank_design.md
@@ -3,6 +3,7 @@ Let's dive into the fun part and design some tanks!
 
 ## Tool single execution
 The tool can be executed from the console directly if all paths are set. The following will happen:
+
 - [Console output](#console-output)
 - [Generation of reports and plots](#reporting)
 - [Writing output to aircraft exchange file](#acxml)
@@ -10,7 +11,7 @@ The tool can be executed from the console directly if all paths are set. The fol
 Some of the above mentioned steps did not work? Check out the [troubleshooting](#troubleshooting) section for advices.
 Also, if you need some additional information on the underlying methodology, check out the page on the [tank design method](tank_design_method.md).
 
-So, feel free to open the terminal and run `tank_design.exe` to see what happens...
+So, feel free to open the terminal and run `python.exe tank_design.py` to see what happens...
 
 ### Console output {#console-output}
 Firstly, you see output in the console window. Let's go through it step by step...
@@ -46,11 +47,11 @@ The tool continues with the calculation of the wing tank entities - in this exam
 2024-12-10 13:05:45,847 - PRINT - Energy check: Wing center tank necessary to store required energy amount.
 2024-12-10 13:05:45,847 - PRINT - Energy check: Energy demand covered.
 ```
-After the wing tank design there is an energy check to review whether the required mission energy can be stored in the tanks. If the energy demand would not be covered up until this point, an energy check would be occur after the calculation of every subsequent tank.
+After the wing tank design there is an energy check to review whether the required mission energy can be stored in the tanks. If the energy demand would not be covered up until this point, an energy check would be carried out after the calculation of every subsequent tank.
 
 ```
 2024-12-10 13:05:45,848 - PRINT - Additional center tank design started...
-2024-12-10 13:05:45,848 - PRINT - Additional center tank (tank_5) calculated. Volume (energy) available: 3,068.50 L (99,189.26 MJ)
+2024-12-10 13:05:45,848 - PRINT - Additional center tank (tank_5) calculated. Volume (energy) available: 3,068.50 L (103,818.10 MJ)
 2024-12-10 13:05:45,849 - PRINT - Additional center tank design completed.
 2024-12-10 13:05:45,849 - PRINT - Additional center tank is generated but unnecessary to store required energy amount.
 ```
@@ -78,15 +79,14 @@ Finally, you receive information about the reports and plots created (depending
 
 ### Reporting {#reporting}
 In the following, a short overview is given on the generated reports:
+
 - A `tank_design.log` file is written within the directory of the executable
 - Depending on your settings, the following output is generated and saved in the `reporting` folder, located in the directory of the aircraft exchange file:
-    - an HTML report in the `report_html` folder (not implemented yet)
+    - an HTML report in the `report_html` folder
     - a TeX report in the `report_tex` folder (not implemented yet)
-    - an XML file with additional output data in the `report_xml` folder (not written since no more data output necessary)
+    - an XML file with additional output data in the `report_xml` folder (currently, only a rough output file is generated with the routing information but without any additional data)
     - plots in the `plots` folder (not implemented yet)
 
-@warning Steffi: Check if additional output written
-
 ### Write data to the aircraft exchange file {#acxml}
 !!! note 
     The _acXML_ is an exchange file - we agreed on that only data will be saved as output that is needed by another tool!
@@ -96,33 +96,22 @@ Results are saved in the aircraft exchange file at the `/aircraft_exchange_file/
 Aircraft exchange file
 |- Component design
 |  |- Tank
-|  |  |- Position
-|  |  |  |- x
-|  |  |  |- y
-|  |  |  |- z
-|  |  |- Mass properties
-|  |  |  |- ...
+|  |  |- Position*
+|  |  |- Mass properties**
 |  |  |- Specific
 |  |  |  |- Additional fuselage length
 |  |  |  |- Tank (ID="0")
 |  |  |  |  |- Name
 |  |  |  |  |- Designator
-|  |  |  |  |- Position
-|  |  |  |  |  |- x
-|  |  |  |  |  |- y
-|  |  |  |  |  |- z
-|  |  |  |  |- Direction
-|  |  |  |  |- Mass properties
-|  |  |  |  |  |- ...
+|  |  |  |  |- Position*
+|  |  |  |  |- Direction*
+|  |  |  |  |- Mass properties**
 |  |  |  |  |- Maximum energy capacity
-|  |  |  |  |- Energy required for mission energy
+|  |  |  |  |- Energy capacity required for mission
 |  |  |  |  |- Geometry
 |  |  |  |  |  |- Cross section (ID="0")
 |  |  |  |  |  |  |- Name
-|  |  |  |  |  |  |- Position
-|  |  |  |  |  |  |  |- x
-|  |  |  |  |  |  |  |- y
-|  |  |  |  |  |  |  |- z
+|  |  |  |  |  |  |- Position*
 |  |  |  |  |  |  |- Shape
 |  |  |  |  |  |  |- Height
 |  |  |  |  |  |  |- Width
@@ -133,5 +122,9 @@ Aircraft exchange file
 |  |  |  |  |- ...
 ```
 
+<sup>*</sup> Node has been shortened. It contains the following sub-nodes: x, y, z
+
+<sup>*</sup> Node has been shortened. It contains sub-nodes with information on the mass, inertia, and center of gravity.
+
 ## Troubleshooting {#troubleshooting}
 - The tool does not run properly? *Make sure you have all the paths set up correctly and the specified elements exist.*
diff --git a/docs/documentation/sizing/tank_design/tank_design_method.md b/docs/documentation/sizing/tank_design/tank_design_method.md
index dd7c72b4e9c8b65f7740fba5b8aad1e40fa6343c..d5ea8d7d8dd5c2f284c45af6398500b287be7757 100644
--- a/docs/documentation/sizing/tank_design/tank_design_method.md
+++ b/docs/documentation/sizing/tank_design/tank_design_method.md
@@ -1,5 +1,6 @@
 # Calculation method
 The task of the _tank_design_ module differs slightly depending on the energy carrier:
+
 - [Kerosene](#kerosene-tanks) - Determine the maximum fuel capacity of the aircraft using its geometry.
 - [Liquid hydrogen](#liquid-hydrogen-tanks) - Size tanks to ensure that the required amount of fuel is available.
 
@@ -42,6 +43,15 @@ The obelisk method simplifies the wing by dividing it into several volumes. Depe
 
 ![](figures/01_tank_locations.png)
 
+##### Obelisk geometry
+
+The geometry of the obelisks is obtained based on the wing geometry.
+Knowing the chord length $l_\text{chord}$ and the thickness-to-chord ratio, the maximum profile thickness $h_\text{max}$ can be obtained.
+The actual thickness $h_1$ is calculated using the a-to-d factor (user input).
+The width of the obelisk $w_1$ is defined as the distance between the front $p_\text{fs}$ and the rear spar $p_\text{rs}$ of the wing.
+
+![](figures/03_wing_box.png)
+
 The obelisk volume can be determined using two different approaches that are described in the following.
 The user can select the desired method via the following node in the `program_settings` section of the _confXML_:
 `configuration[@ID="tube_and_wing"]/specific/kerosene_tank_design_parameter/obelisk_calculation_method`.
@@ -53,10 +63,13 @@ The user can select the desired method via the following node in the `program_se
 ![](figures/02_obelisk.png)
 
 The volume can be calculated using the following equation:
-$
+
+$$
     V_{\text{obelisk}} = \frac{l}{3} \cdot \left( S_1 + S_2 + \frac{h_1 \cdot w_2 + h_2 \cdot w_1}{2}\right)
-$
+$$
+
 In which
+
 - $l$ - length
 - $S_1$, $S_2$ - end face areas
 - $h_1$, $w_1$  - height and width of end face $S_1$
@@ -91,9 +104,10 @@ The Simpson's rule is a method of numerical integration that is often used to ca
 cross-sections are known at different positions. In the case of an obelisk - i.e. a body with square or rectangular 
 cross-sections that vary along the height - the volume is integrated as the sum of the cross-sectional areas $S(x)$
 along the length $l$:
-$
+
+$$
     V_{\text{obelisk}} = \int_0^l S(x) \, dx
-$
+$$
 
 If the cross-sectional areas $S(x)$ at $i+1$ uniformly distributed points are known (which is the case for the 
 tank design), Simpson's rule can be applied.
@@ -104,35 +118,39 @@ interpolation (see following figure). Each tank is thus divided into two section
 ![](figures/02_obelisk_simpson.png)
 
 The tank volume can therefore be determined using a simplified Simpson's rule:
-$
+
+$$
     V_{\text{obelisk}} = \frac{l}{6.0} \cdot (S_{1} + 4.0 \cdot S_{12} + S_{2})
-$
+$$
 
 #### Calculate net tank volume {#net-tank-volume}
 The volume must then be converted from cubic meter to liter. A portion of the volume of the obelisk is lost to the internal structure of the integral tanks (e.g., ribs), with a reduction factor $ f_{\text{volume,usable}} = 0.95$.
 Additionally, the expansion of the fuel due to heating must be considered, with a temperature expansion allowance of $ a_{\text{temperature,expansion}} = 0.95$. Thus, the wing tank volume is calculated as:
-$
+
+$$
     V_{\text{tank}} = f_{\text{volume,usable}} \cdot a_{\text{temperature,expansion}} \cdot V_{\text{obelisk}}
-$
+$$
 
 !!! note 
     As the wing has a vent tank at each wing tip to allow for the thermodynamic expansion of the fuel, this factor is `1.0` for the wing tanks.
 
 #### Calculate energy {#calculate-energy}
 Using the volumetric energy density of kerosene $\eta_{\text{v,kerosene}}$, the energy contained in each tank can be determined:
-$
+
+$$
     V_{\text{tank}} = \eta_{\text{v,kerosene}} \cdot V_{\text{obelisk}}
-$
+$$
 
 ### Additional center tank
 The module allows the installation of an additional center tank in the form of an LD3-45 container. The process includes the following steps:
+
 1. **Height check**: The program first verifies whether the cargo compartment has sufficient height to accommodate the container.
-  - If insufficient height is detected: All output values related to the center tank are set to zero.
-  - If sufficient height is detected: The installation proceeds.
+    - If insufficient height is detected: All output values related to the center tank are set to zero.
+    - If sufficient height is detected: The installation proceeds.
 2. **Installation placement**: The LD3-45 container is positioned 10 cm behind the end of the landing gear bay, aligning approximately with the trailing edge of the wing.
 3. **Container data**: The volume and dimensions of the LD3-45 container are predefined and referenced from the Lufthansa Cargo website<sup>[2]</sup>.
 
-The energy contained in an additional center tank is calculated by first determining the usable volume and then taking into account the volumetric energy density of kerosene. With the known factors $ f_{\text{volume,usable}}$ and $a_{\text{temperature,expansion}}$, the usable volume of an additional center tank results in $V_{\text{ACT,usable}} = 3068.5\text{ L}$ which is equal to an energy amount of $ E_{\text{ACT}} = 99189262.5\text{ MJ}$.
+The energy contained in an additional center tank is calculated by first determining the usable volume and then taking into account the volumetric energy density of kerosene. With the known factors $ f_{\text{volume,usable}}$ and $a_{\text{temperature,expansion}}$, the usable volume of an additional center tank results in $V_{\text{ACT,usable}} = 3,068.5\text{ L}$ which is equal to an energy amount of $ E_{\text{ACT}} = 103,818.1\text{ MJ}$.
 
 #### Limitations
 **Single Center Tank Limit:** The program currently supports the calculation of only one additional center tank. Attempts to add more tanks will not be processed.
diff --git a/docs/get-involved/modularization/python-modularization.md b/docs/get-involved/modularization/python-modularization.md
index d9851f66fcee031521fb878421310b185bcd3ccf..186e9b95d10848d69f71e3084c1f1bf27ca48be6 100644
--- a/docs/get-involved/modularization/python-modularization.md
+++ b/docs/get-involved/modularization/python-modularization.md
@@ -2,7 +2,7 @@
 This documentation provides a detailed overview of helpful guidelines and conventions for the use/implementation of Python code in the UNICADO framework.
 
 !!! note
-    The content below is valid for UNICADO release v2.0.
+    The content below is valid for UNICADO release v3.0.0.
 
 # Content
 - [Introduction](#introduction)
@@ -29,7 +29,7 @@ The UNICADO Python Library is designed to streamline and standardize Python-base
 With its structured layers and well-defined documentation and logging practices, the UNICADO Library enables developers to produce modular, reusable, and well-documented code. This guide ensures developers can build and maintain code to the standards expected within the UNICADO framework, promoting compatibility and readiness for team-based development, testing, and deployment. The result is improved code quality, reusability, and maintainability across complex projects.
 
 # Code style {#code-style}
-...
+Below, you find some information on UNICADO code style basics.
 
 ## Python Enhancement Proposals (PEPs)
 Let's start with an obvious question ... [What is a PEP?](https://peps.python.org/pep-0001/#what-is-a-pep)
@@ -119,6 +119,7 @@ Example:
 - These **modules** combine **functions** that belong together in terms of functionality
 
 This means, for example:
+
 - There is the `unicado_python_library`, which contains, for example:
   - the `pymodulepackage`, which includes:
     - the `datapostprocessingmodule` and
@@ -136,15 +137,9 @@ This means, for example:
 -  Since it is common that a module contains several functions, explicit imports can be realized using the following syntax: `from mypythonmodule import easter_egg_hunt`.
 
 # Code modularity (Python-only modules) {#code-modularity-python-only-modules}
-In the following, the modularized structure of a Python module is explained using the `cost_estimation` module. The according folder structure is shown in the following picture. It is also available for download.
-
-![](site:assets/images/developer/style/python-modularization_01_code-modularity.png)
+In the following, the modularized structure of a Python module is explained using the `cost_estimation` module. The according folder structure is shown in the following picture. It is also available for [download](https://git.rwth-aachen.de/unicado/unicado.gitlab.io/-/tree/develop/docs/get-involved/modularization/python-template).
 
-!!! warning
-    Check, if images displayed correctly here!
-
-!!! warning
-    Insert files here! {F216186}
+![](../../assets/images/developer/style/modularization/python-modularization_01_code-modularity.png)
 
 ## Layer example
 The following **layers** are selected for cost calculation:
@@ -154,10 +149,7 @@ The following **layers** are selected for cost calculation:
 3. Calculation method (e.g., `operating_cost_estimation_tu_berlin`, green folder)
 4. Energy carrier (e.g., `kerosene` or `liquid_hydrogen`, grey folder) - **USER LAYER** (This is where the magic happens! :dizzy:)
 
-![](site:assets/images/developer/style/python-modularization_02_example-folder.png)
-
-!!! warning
-    Check, if images displayed correctly here!
+![](../../assets/images/developer/style/modularization/python-modularization_02_example-folder.png)
 
 ## File structure
 
@@ -193,61 +185,50 @@ rAircraftDesign
 <br>
 
 !!! note
-    [1] At the top level, the example structure distinguishes between aircraft configurations with two branches: **blended wing body** and **tube and wing**.
-    [2] These folders are subdivided according to **layer 2** and may contain various calculation method fidelities.
-    [3] This folder is subdivided according to **layer 3** and may contain various calculation methods.
+    [1] At the top level, the example structure distinguishes between aircraft configurations with two branches: **blended wing body** and **tube and wing**.<br>
+    [2] These folders are subdivided according to **layer 2** and may contain various calculation method fidelities.<br>
+    [3] This folder is subdivided according to **layer 3** and may contain various calculation methods.<br>
     [4] This folder is subdivided according to **layer 4** and may contain various fuel types.
 
 ## Files that require changes by the module manager
 The code is designed to be highly generalized, meaning that only a few files need changes by the module manager. These files are shown in the following image and are discussed below in more detail. In some parts of the code, dynamic import commands and function names are generated, with examples provided at relevant points to illustrate how these commands work.
 
-![](site:assets/images/developer/style/python-modularization_03_example-folder-changes-module-manager.png)
-
-!!! warning
-    Check, if images displayed correctly here!
+![](../../assets/images/developer/style/modularization/python-modularization_03_example-folder-changes-module-manager.png)
 
 ### The `main()`
 - Update the module name in two places within the docString
 - Customize the module configuration file name
 - Adjust the `runtime_output_string`
 
-![](site:assets/images/developer/style/python-modularization_04_main-01.png)
-![](site:assets/images/developer/style/python-modularization_05_main-02.png)
-
-!!! warning
-    Check, if images displayed correctly here!
+![](../../assets/images/developer/style/modularization/python-modularization_04_main-01.png)
+![](../../assets/images/developer/style/modularization/python-modularization_05_main-02.png)
 
 ### The `data_preprocessing` (`datapreprocessing.py`)
 - Update the layer description in the docString
 - Customize the layer description within `layer_description_dict`. If a layer is unknown (e.g., `user_layer`), set it to 'None' rather than a path and call the relevant function (e.g., `read_energy_carrier`) as indicated (see lines 69 and following).
 
-![](site:assets/images/developer/style/python-modularization_06_datapreprocessing-01.png)
-![](site:assets/images/developer/style/python-modularization_07_datapreprocessing-02.png)
-
-!!! warning
-    Check, if images displayed correctly here!
+![](../../assets/images/developer/style/modularization/python-modularization_06_datapreprocessing-01.png)
+![](../../assets/images/developer/style/modularization/python-modularization_07_datapreprocessing-02.png)
 
-**Example for `module_import_name`**
+**Example for `module_import_name`**  
 In this example, `module_import_name` at line 68 would be: `src.tube_and_wing.empirical.operating_cost_estimation_tu_berlin`.
 
-**Example for the import command**
-To import a module from `usermethoddatapreparation.py` at line 74, the command is as follows:
+**Example for the import command**  
+To import a module from `usermethoddatapreparation.py` at line 74, the command is as follows:  
 `src.tube_and_wing.empirical.operating_cost_estimation_tu_berlin.usermethoddatapreparation`.
 
 ### The `data_postprocessing` (`datapostprocessing.py`)
 - Modify `paths_to_key_parameters_list`
 - Adjust `module_key_parameters_dict`
 
-![](site:assets/images/developer/style/python-modularization_08_datapostprocessing-01.png)
-![](site:assets/images/developer/style/python-modularization_09_datapostprocessing-02.png)
-
-!!! warning
-    Check, if images displayed correctly here!
+![](../../assets/images/developer/style/modularization/python-modularization_08_datapostprocessing-01.png)
+![](../../assets/images/developer/style/modularization/python-modularization_09_datapostprocessing-02.png)
 
 ## Files that require changes by the user
 Similarly, the code is structured so that only a few files require modifications by the user. These files are highlighted in the following image.
 
 Note that this is an executable example code and a proposal for a structure. Generally speaking, the following files are at **user layer**:
+
 - `methodexport.py`
 - `methodplot.py`
 - `methodreport.py`
@@ -258,10 +239,8 @@ Users are free to structure the code within these files but must ensure that all
 
 More detailed instructions for required changes are available within the docStrings of each corresponding file.
 
-![](site:assets/images/developer/style/python-modularization_10_example-folder-changes-user.png)
+![](../../assets/images/developer/style/modularization/python-modularization_10_example-folder-changes-user.png)
 
-!!! warning
-    Check, if images displayed correctly here!
 
 # Logging and printing {#logging-and-printing}
 The Python framework in this project has a customized logging function, which builds on Python’s [logging facility](https://docs.python.org/3/library/logging.html). The following logging levels are available:
@@ -275,7 +254,7 @@ The Python framework in this project has a customized logging function, which bu
 | `runtime_output.error`     | 40                | For serious issues where the code can still continue      | `runtime_output.error("Error: Add some text here.")`     |
 | `runtime_output.critical`  | 50                | For critical issues that terminate the code (exit code 1) | `runtime_output.critical("Error: Add some text here.")`  |
 
-Instead of using Python's built-in `print` function, use these logging options to ensure all outputs are appropriately documented in the log file according to user settings.
+Instead of using Python's built-in `print` function, use these logging options to ensure all outputs are appropriately documented in the log file according to user settings. 
 
 ## Logging configuration in the module configuration file
 User settings for logging behavior can be configured in the module configuration file under `console_output/value` and `log_file_output/value`. The available modes are as follows:
@@ -291,6 +270,7 @@ Each mode enables progressively more detailed logging, from critical errors only
 
 # Package generation {#package-generation}
 Sources:
+
 - [Python packaging](https://packaging.python.org/en/latest/tutorials/packaging-projects/)
 - [Example video](https://www.youtube.com/watch?v=v6tALyc4C10&ab_channel=RealPython)
 
@@ -298,65 +278,58 @@ According to the UNICADO Python philosophy, the UNICADO Python library contains
 The necessary steps are listed below. Please ensure to read the respective explanations of the individual steps carefully before proceeding to the next step.
 
 **Prerequisites**
+
 1. Update `pip` to the latest version:
-   - **Unix/macOS:** `python3 -m pip install --upgrade pip`
-   - **Windows:** `python -m pip install --upgrade pip`
+    - **Unix/macOS:** `python3 -m pip install --upgrade pip`
+    - **Windows:** `python -m pip install --upgrade pip`
 2. Navigate to the `AircraftDesign/unicado_python_library` folder (illustrated below) to set up the required folder structure.
 
-![](site:assets/images/developer/style/python-modularization_11_unicado-python-library.png)
-
-!!! warning
-    Check, if images displayed correctly here!
+![](../../assets/images/developer/style/modularization/python-modularization_11_unicado-python-library.png)
 
 ## Step 1: Create the package subfolder
 In `unicado_python_library`, create a new subfolder for the package. Follow this naming convention:
+
 - **Format:** `py[name of package]package` (all lowercase, without underscores)
 - **Example:** `pymodulepackage`
-
+  
 Then, navigate into this subfolder.
 
 ## Step 2: Create a `pyproject.toml` file
 The `pyproject.toml` file contains information on the build backend (`[build-system]`). We are using setuptools. Furthermore, this file contains core metadata for packaging-related tools to consume (`[project]`, `[project.urls]`).
 
-Please download the sample `pyproject.toml` file and complete the **highlighted fields** with package-specific information, without modifying build system details.
+Please see the sample `pyproject.toml` file in the example folder (that is available for [download](https://git.rwth-aachen.de/unicado/unicado.gitlab.io/-/tree/develop/docs/get-involved/modularization/python-template)) and complete the **highlighted fields** with package-specific information, without modifying build system details.
 
-!!! warning
-    Upload files/images here! {F204735}
+![](../../assets/images/developer/style/modularization/python-modularization_12_toml_file.png)
 
 **Further resources:**
+
 - [PEP 621: Project metadata](https://peps.python.org/pep-0621/)
 - [Setuptools documentation](https://setuptools.pypa.io/en/latest/index.html)
 
 ## Step 3: Create a `LICENSE` file
-Add a `LICENSE` file to define usage rights. You can download this directly here:
-
-!!! warning
-    Upload files/images here! {F204736}
-    Add: This file only needs to be downloaded from the repository.
-
+Add a `LICENSE` file (it can be taken directly from the example folder) to define usage rights.
 The [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/#) text is used in this example.
 
 ## Step 4: Create a `README.md` file
-Download and fill out the sample `README.md` file with details about your package. This file can also be obtained from the repository.
-
-!!! warning
-    Upload files/images here! {F204737}
-    Add: This file only needs to be downloaded from the repository.
+Download and fill out the sample `README.md` file with details about your package. This file can also be obtained from example folder in the repository.
 
 ## Step 5: Create `src` subfolder
 Inside the package folder, create a `src` subfolder to hold the `.py` files (modules).
-- **Convention:** Each `.py` file should correspond to a single module, named in this format:
-  - **Format:** `[module name]module.py` (all lowercase, no underscores)
-  - **Example:** `datapreprocessingmodule.py`
 
+- **Convention:** Each `.py` file should correspond to a single module, named in this format:
+    - **Format:** `[module name]module.py` (all lowercase, no underscores)
+    - **Example:** `datapreprocessingmodule.py`
+  
 Modules can contain several functions. Once files are set up, return to the main package folder before proceeding.
 
 ## Step 6: Execute installation command
 In the directory containing `pyproject.toml`, run the following installation command:
+
    - **Windows:** `python -m pip install -e .`
    - **macOS:** `python3 -m pip install -e .`
 
 **Explanation:**
+
 - **`-m` flag:** Specifies the module to run as a script.
 - **`-e` (editable mode):** Installs the package in editable mode, meaning changes to source code are immediately reflected.
 
@@ -372,4 +345,4 @@ The modules  should now be ready to use. You can import the functions from the m
 `from datapostprocessingmodule import paths_and_names`
 
 # Testing with Python {#testing-with-python}
-tbd. :construction:
+tbd. :construction:
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/CMakeLists.txt b/docs/get-involved/modularization/python-template/cost_estimation/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b9ce40268f00da881b35833cbcce547a50dfd50a
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/CMakeLists.txt
@@ -0,0 +1,80 @@
+
+# Set name of executable
+set(MODULE_NAME docEstimation)
+
+# ==============================================
+# Add the module executable
+#
+# *** IMPORTANT ***
+# -> Change *.cpp files according to the module
+# -> Add main.cpp later since this list is also
+#    used for the tests
+# ==============================================
+
+# Fuel - Fossil
+set(MODULE_SOURCES_FOSSIL
+    src/fossil/lowFidelity/lowFossil.cpp
+    src/fossil/lowFidelity/lowFossilIOData.cpp
+    src/fossil/lowFidelity/lowFossilReport.cpp
+    src/fossil/lowFidelity/lowFossilPlot.cpp
+)
+
+# Fuel - H2
+set(MODULE_SOURCES_H2
+    src/h2/lowFidelity/lowH2.cpp
+    src/h2/lowFidelity/lowH2IOData.cpp
+    src/h2/lowFidelity/lowH2Report.cpp
+    src/h2/lowFidelity/lowH2Plot.cpp
+)
+
+set(MODULE_SOURCES
+    ${MODULE_SOURCES_FOSSIL}
+    ${MODULE_SOURCES_H2}
+    src/tankDesign.cpp
+)
+
+add_executable(${MODULE_NAME}
+    ${MODULE_SOURCES}
+    src/mainTankDesign.cpp
+)
+
+
+# Set compile options specific to this module
+if(USE_GNUPLOT)
+    # -> Bug: When not setting this option, the `generateSvgPlot` is not overwritten by calculatePolarOutput.cpp
+    target_compile_definitions(${MODULE_NAME} PRIVATE USE_GNUPLOT)
+endif()
+
+
+# Link the runtime libraries
+target_link_libraries(${MODULE_NAME}
+    PRIVATE
+        moduleBasics
+        strategy
+        runtimeInfo
+        aixml
+        standardFiles
+        svl
+        svgPlot
+        spline
+        aircraftGeometry
+)
+
+# Add the include directories
+target_include_directories(${MODULE_NAME}
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/.. # <- This is due to the includes in the main file # <- This is due to the absolute import in svl/svl/Basics.h
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/ # <- This is due to the includes in empennage
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/common/
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/h2/
+    PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/fossil/
+)
+
+# Set the location where the executable will be placed to the current source directory
+set_target_properties(${MODULE_NAME} PROPERTIES
+    RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
+)
+
+# Add the tests if enabled
+if(BUILD_UNITTEST)
+    add_subdirectory(test)
+endif()
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation.py b/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation.py
new file mode 100644
index 0000000000000000000000000000000000000000..0a16cd5eaee48b75b3a63e6a791703045ef2f6b9
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation.py
@@ -0,0 +1,88 @@
+"""Calculation module main file."""
+# Import standard modules.
+import logging
+import traceback
+from sys import argv, exit
+
+# Import own modules.
+from runmodule import run_module
+from src.datapreprocessing import data_preprocessing
+from src.datapostprocessing import data_postprocessing
+
+
+def main():
+    """Execute the main program for cost estimation.
+
+    This function serves as the main entry point for performing the cost estimation.
+    It goes through the following key steps:
+        (1) Preprocessing - Acquire necessary data and paths: Call the 'data_preprocessing' function from
+        'datapreprocessing.py' to set up data and routing information.
+        (2) Run (main processing) - Execute code depending on method layers: Execute the 'run_module' function from the
+        'methodexecutionpackage' library. The 'run_module' function is responsible for the programs primary logic.
+        (3) Postprocessing - Write data to the aircraft exchange file and generate plots and reports: Call the
+        'data_postprocessing' function from 'datapostprocessing.py' to handle postprocessing tasks. This step receives
+        data from both the preprocessing and the main processing step.
+
+    Note: The 'routing_dict' dictionary is used to manage the routing and execution of different program components.
+
+    :raises Exception: Raised to handle other exceptions
+    :return: None
+    """
+
+    # Initialize exception string and runtime output logger.
+    tool_name = 'cost estimation'
+    runtime_output = logging.getLogger('module_logger')
+
+    try:
+        """Preprocessing: Acquire necessary data and paths."""
+        # Run 'data_preprocessing' function from 'datapreprocessing.py'.
+        paths_and_names, routing_dict, runtime_output = data_preprocessing('cost_estimation_conf.xml', argv)
+        runtime_output.print('Cost estimation started...')
+
+        """Run: Execute code depending on method layers."""
+        # Execute 'run_module' function from 'methodexecutionpackage' library. This function is responsible for the main
+        # logic of the program.
+        run_output_dict = run_module(paths_and_names, routing_dict, runtime_output)
+
+        """Postprocessing: Write data to aircraft exchange file and generate plots and reports."""
+        # Run 'data_postprocessing' function from 'datapostprocessing.py' to handle postprocessing tasks. Receives data
+        # from preprocessing and main processing step.
+        data_postprocessing(paths_and_names, routing_dict, run_output_dict, runtime_output)
+        runtime_output.print('Operating cost estimation finished.')
+
+    except Exception as e:  # pylint: disable=broad-exception-caught
+        # Handle other exceptions.
+        runtime_output.critical(exception_string_msg(e, tool_name))
+        exit(1)
+
+
+def exception_string_msg(error, tool_name: str):
+    """Generate exception message.
+
+    Generate a formatted string detailing the type and location of an exception, along with an error message, for
+    diagnostic purposes. This function is particularly useful for logging or displaying comprehensive error information
+    when an exception occurs in a specific module or function.
+
+    :param exception error: Caught exception object from which details will be extracted
+    :param str tool_name: Name of the tool or module where the error occurred, used in the final error message
+    :return str: String including error type, file name, function/method name, line number, code that caused the error,
+    and error message.
+    """
+    error_type = str(type(error).__name__)
+    error_trace = traceback.extract_tb(error.__traceback__)
+    error_file, error_line, error_func, error_code = error_trace[-1]
+    error_file = error_file.split('/')[-1]
+
+    exception_string = f"{error_type}: \n"
+    exception_string += f"                                   - File             : {error_file} \n"
+    exception_string += f"                                   - Function / Method: {error_func} \n"
+    exception_string += f"                                   - Line             : {error_line} \n"
+    exception_string += f"                                   - Code             : {error_code} \n"
+    exception_string += f"                                   - Error message    : {str(error)} \n"
+
+    return exception_string + f"Main execution of {tool_name} module failed! \n" \
+                              f"Program aborted."
+
+
+if __name__ == "__main__":
+    main()
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation_conf.xml b/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation_conf.xml
new file mode 100644
index 0000000000000000000000000000000000000000..5c78866a2c4abb97ee924a947ac39a642c529883
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/cost_estimation_conf.xml
@@ -0,0 +1,311 @@
+<?xml version="1.0" encoding="UTF-8" ?>
+	<module_configuration_file Name="Cost Estimation Runtime Configuration"> <!-- Change naming according to module name -->
+        <control_settings description="General control settings for this tool">
+            <aircraft_exchange_file_name description="Specify the name of the exchange file">
+                <value>CSR-02.xml</value>
+            </aircraft_exchange_file_name>
+            <aircraft_exchange_file_directory description="Specify the direction in which the aircraft exchange file can be found">
+                <value>./projects/CSR/CSR-02/</value>
+            </aircraft_exchange_file_directory>
+            <own_tool_level description="Specify the tool level of this tool">
+                <value>2</value>
+            </own_tool_level>
+            <console_output description="Selector to specify the console output. Selector: mode_0 (Off) / mode_1 (only out/err/warn) / mode_2 (1 + info) / mode_3 (2 + debug)">
+                <value>mode_1</value>
+            </console_output>
+            <log_file_output description="Selector to specify the log file output. Selector: mode_0 (Off) / mode_1 (only out/err/warn) / mode_2 (1 + info) / mode_3 (2 + debug)">
+                <value>mode_1</value>
+            </log_file_output>
+            <plot_output description="Specify the way plotting shall be handled">
+                <enable description="Switch to enable plotting. Switch: true (On) / false (Off)">
+                    <value>true</value>
+                </enable>
+                <copy_plotting_files description="Switch if plotting files shall be copied. Switch: true (On) / false (Off)">
+                    <value>true</value>
+                </copy_plotting_files>
+                <delete_plotting_files_from_tool_folder description="Switch if plotting files shall be deleted from folder. Switch: true (On) / false (Off)">
+                    <value>true</value>
+                </delete_plotting_files_from_tool_folder>
+            </plot_output>
+            <report_output description="Switch to generate an HTML report. Switch: true (On) / false (Off)">
+                <value>false</value>
+            </report_output>
+            <tex_report description="Switch to generate a Tex report. Switch: true (On) / false (Off)">
+                <value>false</value>
+            </tex_report>
+            <write_info_files description="Switch to generate info files. Switch: true (On) / false (Off)">
+                <value>false</value>
+            </write_info_files>
+            <log_file description="Specify the name of the log file">
+                <value>cost_estimation.log</value>
+            </log_file>
+            <inkscape_path description="Path to the inkscape application (DEFAULT: Use inkscape from the UNICADO repo structure)">
+                <value>DEFAULT</value>
+            </inkscape_path>
+            <gnuplot_path description="Path to the gnuplot application (DEFAULT: Use gnuplot from the UNICADO repo structure)">
+                <value>DEFAULT</value>
+            </gnuplot_path>
+            <program_specific_control_settings description="Program specific control settings for this tool">
+                <xml_output description="Switch to export module specific data to XML ('true': On, 'false': Off)">
+                    <value>true</value>
+                </xml_output>
+            </program_specific_control_settings>
+        </control_settings>
+	    <program_settings description="program settings">
+            <configuration ID="tube_and_wing">
+                <fidelity_name description="Select fidelity name (options: empirical, numerical,...)">
+                    <value>empirical</value>
+                </fidelity_name>
+                <method_name description="Select method name (options: operating_cost_estimation_tu_berlin)">
+                    <value>operating_cost_estimation_tu_berlin</value>
+                    <default>operating_cost_estimation_tu_berlin</default>
+                </method_name>
+                <fidelity ID="empirical">
+                    <operating_cost_estimation_tu_berlin description="Empirical method to estimate the direct operating costs (DOC) and indirect operating costs (IOC) of an aircraft.">
+                        <general_direct_operating_costs_parameter>
+                            <capital description="Capital cost related parameters">
+                                <depreciation_period description="Depreciation period (assumption for default value: depreciation to 15% residual value in 12 years)">
+                                    <value>12.0</value>
+                                    <unit>y</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>30.0</upper_boundary>
+                                    <default>12.0</default>
+                                </depreciation_period>
+                                <price_per_operating_empty_mass description="Price per kg operating empty mass">
+                                    <value>1245.0</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>1245.0</default>
+                                </price_per_operating_empty_mass>
+                                <rate_insurance description="Insurance rate">
+                                    <value>0.005</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                    <default>0.005</default>
+                                </rate_insurance>
+                                <rate_interest description="Interest rate">
+                                    <value>0.05</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>0.05</default>
+                                </rate_interest>
+                                <residual_value_factor description="Residual value per aircraft price after depreciation period">
+                                    <value>0.15</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>20.0</upper_boundary>
+                                    <default>0.15</default>
+                                </residual_value_factor>
+                            </capital>
+                            <crew description="Crew cost related parameters">
+                                <salary_variation description="Salary variation mode (0: same salary for design mission and mission study, 1: range dependent salaries)">
+                                    <value>0</value>
+                                    <default>0</default>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </salary_variation>
+                            </crew>
+                            <flight_cycles description="Flight cycle related parameters">
+                                <block_time_per_flight description="Average block time supplement per flight (default: 1.83 h)" Unit="hours" Default="1.83" lower_boundary="0" upper_boundary="None">
+                                    <value>1.83</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>1.83</default>
+                                </block_time_per_flight>
+                                <daily_night_curfew_time description="Night curfew time per day">
+                                    <value>7.0</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>7.0</default>
+                                </daily_night_curfew_time>
+                                <potential_annual_operation_time description="Potential annual operation time (365 days a 24h hours)">
+                                    <value>8760</value>
+                                    <unit>h</unit>
+                                    <lower_boundary>8760</lower_boundary>
+                                    <upper_boundary>8784</upper_boundary>
+                                    <default>8760</default>
+                                </potential_annual_operation_time>
+                                <annual_lay_days_overhaul description="Lay days per year for overhaul (D-Check every 5 years a 4 weeks)">
+                                    <value>5.6</value>
+                                    <unit>day</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>5.6</default>
+                                </annual_lay_days_overhaul>
+                                <annual_lay_days_reserve description="Lay days per year for repairs, technical and operational reserve (statistical value)">
+                                    <value>2.6</value>
+                                    <unit>day</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>2.6</default>
+                                </annual_lay_days_reserve>
+                            </flight_cycles>
+                            <handling description="Handling related parameters">
+                                <fees_handling description="Handling fees per kg payload">
+                                    <value>0.1</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.1</default>
+                                </fees_handling>
+                            </handling>
+                            <landing description="Landing related parameters">
+                                <fees_landing description="Landing fees per kg maximum take-off mass">
+                                    <value>0.01</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.01</default>
+                                </fees_landing>
+                            </landing>
+                            <air_traffic_control description="Air traffic control related parameters">
+                                <air_traffic_control_price_factor_design description="Range dependent ATC price factor for design mission (range dependent: domestic europe 1.0, transatlantic 0.7, far east flights half of landings @ european airports 0.6)">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0.6</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                    <default>1.0</default>
+                                </air_traffic_control_price_factor_design>
+                                <air_traffic_control_price_factor_study description="range dependent ATC price factor for mission study (range dependent: domestic europe 1.0, transatlantic 0.7, far east flights half of landings @ european airports 0.6)">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0.6</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>1.0</default>
+                                </air_traffic_control_price_factor_study>
+                            </air_traffic_control>
+                            <maintenance description="Maintenance related parameters">
+                                <airframe_repair_costs_per_flight description="Airframe repair costs per flight">
+                                    <value>57.5</value>
+                                    <unit>EUR</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>57.5</default>
+                                </airframe_repair_costs_per_flight>
+                                <annual_lay_days_maintenance description="Lay days per year for maintenance (C-Check every 15 month a 4 days)">
+                                    <value>3.2</value>
+                                    <unit>day</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>3.2</default>
+                                </annual_lay_days_maintenance>
+                                <cost_burden description="Cost burden maintenance">
+                                    <value>10.5</value>
+                                    <unit>EUR</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>10.5</default>
+                                </cost_burden>
+                                <rate_labor description="Labor rate">
+                                    <value>50.0</value>
+                                    <unit>EUR/h</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>50.0</default>
+                                </rate_labor>
+                            </maintenance>
+                            <related_direct_operating_costs description="Necessary parameters for the calculation of related DOC">
+                                <revenue_per_freight_km_design description="Revenue per flight kilometer design mission">
+                                    <value>0.2</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.2</default>
+                                </revenue_per_freight_km_design>
+                                <revenue_per_freight_km_study description="Revenue per flight kilometer mission study">
+                                    <value>0.2</value>
+                                    <unit>EUR/kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.2</default>
+                                </revenue_per_freight_km_study>
+                            </related_direct_operating_costs>
+                            <miscellaneous description="Miscellaneous parameters">
+                                <rate_inflation description="Rate of annual inflation (including price and salary increases)">
+                                    <value>0.03</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                    <default>0.03</default>
+                                </rate_inflation>
+                                <seat_load_factor_design description="Seat load factor of design mission">
+                                    <value>0.85</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>0.85</default>
+                                </seat_load_factor_design>
+                                <seat_load_factor_study description="Seat load factor of study mission">
+                                    <value>0.85</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                    <default>0.85</default>
+                                </seat_load_factor_study>
+                            </miscellaneous>
+                        </general_direct_operating_costs_parameter>
+                        <fuel_type ID="kerosene">
+                            <factor_engine_maintenance description="Factor for engine maintenance">
+                                <value>1</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1</default>
+                            </factor_engine_maintenance>
+                            <fuel_price description="Average fuel price per kg kerosene">
+                                <value>0.7</value>
+                                <unit>EUR/kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>0.7</default>
+                            </fuel_price>
+                            <ratio_operating_empty_mass description="Ratio of operating empty mass kerosene aircraft to hydrogen aircraft">
+                                <value>1</value>
+                                <unit>EUR</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1</default>
+                            </ratio_operating_empty_mass>
+                        </fuel_type>
+                        <fuel_type ID="liquid_hydrogen">
+                            <factor_engine_maintenance description="Factor for engine maintenance">
+                                <value>0.7</value>
+                                <unit>1</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1</default>
+                            </factor_engine_maintenance>
+                            <fuel_price description="Average fuel price per kg liquid hydrogen">
+                                <value>9.16</value>
+                                <unit>EUR/kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>9.16</default>
+                            </fuel_price>
+                            <ratio_operating_empty_mass description="Ratio of operating empty mass kerosene aircraft to hydrogen aircraft">
+                                <value>1.1</value>
+                                <unit>EUR</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>1.1</default>
+                            </ratio_operating_empty_mass>
+                        </fuel_type>
+                        <fuel_type ID="gaseous_hydrogen">
+                            <fuel_price description="Average fuel price per kg gaseous hydrogen">
+                                <value>12.85</value>
+                                <unit>EUR/kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                                <default>12.85</default>
+                            </fuel_price>
+                        </fuel_type>
+                    </operating_cost_estimation_tu_berlin>
+                </fidelity>
+            </configuration>
+	    </program_settings>
+	</module_configuration_file>
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/datapostprocessing.py b/docs/get-involved/modularization/python-template/cost_estimation/src/datapostprocessing.py
new file mode 100644
index 0000000000000000000000000000000000000000..3ffa408d651bf1a614dd427930e8cb1b93cd7c14
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/datapostprocessing.py
@@ -0,0 +1,81 @@
+"""Module providing functions for data postprocessing."""
+# Import standard modules.
+
+# Import own modules.
+from datapostprocessingmodule import method_data_postprocessing
+from datapostprocessingmodule import write_key_data_to_aircraft_exchange_file
+from datapostprocessingmodule import prepare_element_tree_for_module_key_parameter
+
+
+def data_postprocessing(paths_and_names, routing_dict, data_dict, runtime_output):
+    """Perform data postprocessing and write data to an aircraft exchange file.
+
+    This function is responsible for data postprocessing that involves the following steps:
+        (1) Data preparation: The module manager prepares a list containing all paths to the key parameters that must
+        be written to the aircraft exchange file.
+        (2) Write data to the aircraft exchange file: The results of the module execution are passed on to the function
+        responsible for properly writing the data to the aircraft exchange file.
+        (3) Method-specific data postprocessing: User-defined method-specific postprocessing is conducted as needed.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing the result of the module execution (direct operating cost estimation)
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    """Data preparation."""
+    # Changes to this list are the sole responsibility of the module manager!
+    paths_to_key_parameters_list = [
+        './assessment/operating_cost_estimation_tu_berlin/direct_operating_costs/direct_operating_costs_annual',
+        './assessment/operating_cost_estimation_tu_berlin/indirect_operating_costs/indirect_operating_costs_annual'
+    ]
+
+    module_key_parameters_dict = {
+        'assessment': {
+            'operating_cost_estimation_tu_berlin': {
+                'attributes': {
+                    'description': 'Operating costs (sum of direct and indirect operating costs)',
+                    'tool_level': '0'},
+                'direct_operating_costs': {
+                    'attributes': {
+                        'description': 'Direct operating costs (sum of route independent and route dependent costs)'},
+                    'direct_operating_costs_annual': {
+                        'attributes': {'description': 'Direct operating costs (DOC) per year'},
+                        'value': '0',
+                        'unit': 'EUR/y',
+                        'lower_boundary': '0',
+                        'upper_boundary': 'inf'}
+                },
+                'indirect_operating_costs': {
+                    'attributes': {'description': 'Indirect operating costs (IOC)'},
+                    'indirect_operating_costs_annual': {
+                        'attributes': {'description': 'Indirect operating costs (IOC) per year'},
+                        'value': '0',
+                        'unit': 'EUR/y',
+                        'lower_boundary': '0',
+                        'upper_boundary': 'inf'}
+                }
+            }
+        }
+    }
+
+    paths_and_names = prepare_element_tree_for_module_key_parameter(paths_and_names, module_key_parameters_dict)
+
+    # Run 'user_method_data_output_preparation' from 'usermethoddatapreparation.py'.
+    key_output_dict, method_specific_output_dict = routing_dict['func_user_method_data_output_preparation'](data_dict)
+    # Extract tool level from routing dictionary.
+    tool_level = routing_dict['tool_level']
+
+    """Write data to aircraft exchange file."""
+    # Extract root and path to aircraft exchange file.
+    root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree']
+    path_to_aircraft_exchange_file = paths_and_names['path_to_aircraft_exchange_file']
+    # Write key data to aircraft exchange file.
+    write_key_data_to_aircraft_exchange_file(root_of_aircraft_exchange_tree, path_to_aircraft_exchange_file,
+                                             paths_to_key_parameters_list, key_output_dict, tool_level, runtime_output)
+
+    """Method-specific postprocessing."""
+    # Run 'method_data_postprocessing' from 'datapostprocessingmodule'.
+    method_data_postprocessing(paths_and_names, routing_dict, data_dict,
+                               method_specific_output_dict, runtime_output)
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/datapreprocessing.py b/docs/get-involved/modularization/python-template/cost_estimation/src/datapreprocessing.py
new file mode 100644
index 0000000000000000000000000000000000000000..8ac87546f3daa0f7ec18644426478d76d44d0668
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/datapreprocessing.py
@@ -0,0 +1,126 @@
+"""Module providing functions for data preprocessing."""
+# Import standard modules.
+import importlib
+import sys
+
+# Import own modules.
+from datapreprocessingmodule import get_paths_and_names, read_routing_values_from_xml
+from src.readlayertext import read_energy_carrier
+
+
+def data_preprocessing(module_configuration_file, argv):
+    """Conduct data preprocessing.
+
+    This function provides data preprocessing functionalities. It sets up the necessary data and imports relevant
+    modules. The importlib module is used to dynamically import necessary modules.
+
+    The output dictionary 'preprocessing_dict' contains the following values:
+        - 'layer_1': First routing layer (aircraft configuration) (str)
+        - 'layer_2': Second routing layer (calculation method fidelity) (str)
+        - 'layer_3': Third routing layer (calculation method) (str)
+        - 'user_layer': Last routing layer (fuel type) (user layer) (str)
+        - 'tool_level': Tool level of current tool (str)
+        - 'module_import_name': Dynamic string for dynamically generated module import name based on layers (str)
+        - 'module_name': Module name (name of the module configuration file without its file extension) (str)
+        - 'func_user_method_data_input_preparation': Reference to 'user_method_data_input_preparation' function
+        - 'func_user_method_data_output_preparation': Reference to 'user_method_data_output_preparation' function
+        - 'func_user_method_plot': Reference to 'method_plot' function
+        - 'func_user_method_html_report': Reference to 'method_html_report' function
+        - 'func_user_method_xml_export': Reference to 'method_xml_export' function
+
+    :param str module_configuration_file: Name of module configuration file
+    :param list argv: List with optional input arguments
+    :raises ModuleNotFoundError: Raised if module import failed
+    :returns:
+        - dict paths_and_names: Dictionary containing system paths and ElementTrees
+        - dict preprocessing_dict: Dictionary containing data preprocessing results
+        - logging.Logger runtime_output: Logging object used for capturing log messages in the module
+
+    """
+
+    """Get paths, names, and xml trees for module configuration and aircraft exchange file."""
+    # Call 'get_paths_and_names' function to obtain various paths and names.
+    paths_and_names, runtime_output = get_paths_and_names(module_configuration_file, argv)
+    # Note: It is the exclusive responsibility of the module manager to modify the following information!
+    # Create layer description dictionary according to the number of individual layers. The dictionary associates
+    # layers with their respective XML paths and expected data types according to the following scheme:
+    #   layer_description_dict = {'layer_1': [path, expected data type], 'layer_2': [...]}
+    # If any information cannot be directly extracted from a specific aircraft exchange file path, please write 'None'
+    # and manually add the missing value afterward.
+    aircraft_exchange_tmp_path = 'aircraft_exchange_file/requirements_and_specifications/design_specification/'
+    module_configuration_tmp_path = 'module_configuration_file/program_settings/configuration/'
+    layer_description_dict = {
+        'layer_1': [aircraft_exchange_tmp_path + 'configuration/configuration_type/value', float],
+        'layer_2': [module_configuration_tmp_path + 'fidelity_name/value', str],
+        'layer_3': [module_configuration_tmp_path + 'method_name/value', str],
+        'user_layer': [None, str]
+     }
+
+    """ Extract data from aircraft exchange and module configuration file."""
+    # Extract root and path to aircraft exchange file and write key data to aircraft exchange file.
+    root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree']
+    root_of_module_configuration_file = paths_and_names['root_of_module_config_tree']
+    # Extract data from *.xml files based on the provided layer description (if no path information given ('None'),
+    # the entry has to be specified manually afterward). The result is stored in the 'preprocessing_dict' dictionary.
+    # It has the following output format (all values are strings):
+    #   dict_out = {'layer_1': value, 'layer_2': value, 'layer_3': value, 'user_layer': value, 'tool_level': value}
+    preprocessing_dict = read_routing_values_from_xml(layer_description_dict, root_of_aircraft_exchange_tree,
+                                                      root_of_module_configuration_file, runtime_output)
+    # Manual specification of missing layer values ('None' entry layer).
+    preprocessing_dict['user_layer'] = read_energy_carrier(root_of_aircraft_exchange_tree, runtime_output)
+
+    """Prepare and import modules."""
+    # Generate a dynamic import name 'module_import_name' for the selected calculation method modules based on the
+    # provided layer values according to the following scheme:
+    #   'src.[value of layer_1].[value of layer_2].[value of layer_3]'
+    module_import_name = 'src'
+    for _, value in list(preprocessing_dict.items())[:-2]:
+        module_import_name += '.' + value
+    # Create import commands by appending the python file name (incl. sub-folders, if necessary) to the generated
+    # 'module_import_name'. E.g., the import command for the module import from the 'usermethoddatapreparation.py' file
+    # is as follows:
+    #   'src.[value of layer_1].[value of layer_2].[value of layer_3].usermethoddatapreparation'
+    # The import command for the module import from the 'methodplot.py' file in the 'general' folder is as follows:
+    #   'src.[value of layer_1].[value of layer_2].[value of layer_3].general.methodplot'
+    # This step is executed for the following python files:
+    #   * 'usermethoddatapreparation.py'
+    #   * 'methodplot.py'
+    #   * 'methodhtmlreport.py'
+    #   * 'methodxmlexport.py'
+    #   * 'methodtexoutput'.py'
+    import_command_user_method_data_preparation = module_import_name + '.usermethoddatapreparation'
+    import_command_user_method_plot = module_import_name + '.general.methodplot'
+    import_command_user_method_html_report = module_import_name + '.general.methodhtmlreport'
+    import_command_user_method_xml_export = module_import_name + '.general.methodxmlexport'
+    import_command_user_method_tex_output = module_import_name + '.general.methodtexoutput'
+
+    # Add module name and tool level to the preprocessing_dict.
+    preprocessing_dict['module_import_name'] = module_import_name
+    preprocessing_dict['module_name'] = module_configuration_file[:-9]
+
+    # Dynamically import modules and functions based on the generated import commands.
+    try:
+        # Import functions from the specified modules.
+        import_user_method_data_preparation = importlib.import_module(import_command_user_method_data_preparation)
+        import_user_method_plot = importlib.import_module(import_command_user_method_plot)
+        import_user_method_html_report = importlib.import_module(import_command_user_method_html_report)
+        import_user_method_xml_export = importlib.import_module(import_command_user_method_xml_export)
+        import_user_method_tex_output = importlib.import_module(import_command_user_method_tex_output)
+        # Save the imported functions as variables in the 'preprocessing_dict' dictionary.
+        preprocessing_dict['func_user_method_data_input_preparation'] \
+            = import_user_method_data_preparation.user_method_data_input_preparation
+        preprocessing_dict['func_user_method_data_output_preparation'] \
+            = import_user_method_data_preparation.user_method_data_output_preparation
+        preprocessing_dict['func_user_method_plot'] = import_user_method_plot.method_plot
+        preprocessing_dict['func_user_method_html_report'] = import_user_method_html_report.method_html_report
+        preprocessing_dict['func_user_method_xml_export'] = import_user_method_xml_export.method_xml_export
+        preprocessing_dict['func_user_method_tex_output'] = import_user_method_tex_output.method_tex_output
+    # Exception handling for module import error.
+    except ModuleNotFoundError as module_import_error:
+        runtime_output_string = ('Error: ' + str(module_import_error) + ' found in '
+                                 + preprocessing_dict['module_name'] + '.\n'
+                                + '                                     Program aborted.')
+        runtime_output.critical(runtime_output_string)
+        sys.exit(1)
+
+    return paths_and_names, preprocessing_dict, runtime_output
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/readlayertext.py b/docs/get-involved/modularization/python-template/cost_estimation/src/readlayertext.py
new file mode 100644
index 0000000000000000000000000000000000000000..35d6e1fa00018d39edec21314071aad9214d6e6c
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/readlayertext.py
@@ -0,0 +1,86 @@
+"""File providing functions to read layer text from aircraft XML file."""
+# Import standard libraries.
+import sys
+
+
+def read_energy_carrier(root_of_aircraft_exchange_tree, runtime_output):
+    """Read energy carrier from aircraft exchange file.
+
+    This function extracts information about the energy carrier used in an aircraft from the provided aircraft exchange
+    file. It specifically looks for 'energy_carrier' nodes and their corresponding 'energy_carrier' sub-nodes.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Raised if energy carrier node does not exist
+    :return string energy_carrier: Energy carrier string
+    """
+
+    # Initialize empty list.
+    energy_carrier_list = []
+
+    # Attempt to extract information on energy carrier from aircraft exchange file.
+    try:
+        # Find all 'energy_carrier' nodes in aircraft exchange file.
+        energy_carrier_node_list = root_of_aircraft_exchange_tree.findall('.//energy_carrier')
+        # Check, if 'energy_carrier' nodes exist.
+        if not energy_carrier_node_list:
+            # Raise error, if no energy carrier node exists.
+            raise ValueError('No energy carriers nodes found in the aircraft exchange file. Program aborted.')
+        # Iterate over 'energy_carrier_node_list' and append values of energy carrier sub-nodes.
+        for energy_carrier_type_node in energy_carrier_node_list:
+            energy_carrier_node = energy_carrier_type_node.find('.//type/value')
+            if energy_carrier_node is not None:
+                energy_carrier_list.append(energy_carrier_node.text)
+            else:
+                raise ValueError('No energy carrier nodes found in the aircraft exchange file. Program aborted.')
+
+        # If 'energy_carrier_list' is not empty, compare all entries.
+        if energy_carrier_list is not None:
+            # If all entries are the same, set 'energy_carrier' to first list entry.
+            if all(element == energy_carrier_list[0] for element in energy_carrier_list):
+                energy_carrier = energy_carrier_list[0]
+            # If list entries differ, set 'energy_carrier' to 'hybrid'.
+            else:
+                energy_carrier = 'hybrid'
+        # Raise error, if 'energy_carrier_list' is empty.
+        else:
+            raise ValueError('No energy carrier node found. Program aborted.')
+
+    # Exception handling for ValueError.
+    except ValueError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    return energy_carrier
+
+
+def read_engine_configuration(root_of_aircraft_exchange_tree, runtime_output):
+    """Read engine configuration.
+
+    Read engine configuration from aircraft exchange file.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return str engine_configuration: Information on engine configuration
+    """
+
+    engine_configuration = 'xyz'
+    print(engine_configuration)
+
+    return engine_configuration
+
+
+def read_tank_configuration(root_of_aircraft_exchange_tree, runtime_output):
+    """Read tank configuration.
+
+    Read tank configuration information from aircraft exchange file.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return str tank_configuration: Information on tank configuration
+    """
+
+    tank_configuration = 'xyz'
+    print(tank_configuration)
+
+    return tank_configuration
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py
new file mode 100644
index 0000000000000000000000000000000000000000..9cef4c0e8de230c1c48d832966ba2432ce378b3e
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py
@@ -0,0 +1,19 @@
+"""Module providing HTML report functionalities for current calculation method."""
+
+
+def method_html_report(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """HTML report function.
+
+    This function is responsible for creating HTML reports.
+    [Add further information here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    # This is just a dummy code snippet. Insert your code here.
+    runtime_output.warning('Warning: No "method_html_report" function in "methodhtmlreport.py" file implemented yet.')
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py
new file mode 100644
index 0000000000000000000000000000000000000000..25b7588daf2da12a6fa3069394bd644901931653
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py
@@ -0,0 +1,23 @@
+"""Module providing plotting functionalities for current calculation method."""
+# Import standard libraries.
+import os
+from matplotlib import pyplot as plt
+import numpy as np
+
+
+def method_plot(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """Plot function.
+
+    This function is responsible for creating plots.
+    [Add further information here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    # This is just a dummy code snippet. Insert your code here.
+    runtime_output.print('Warning: No "method_plot" function in "methodplot.py" file implemented yet.')
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py
new file mode 100644
index 0000000000000000000000000000000000000000..87a9aa043988da76e4dcc285947e5c66c16b4fb8
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py
@@ -0,0 +1,19 @@
+"""Module providing report functionalities for current calculation method."""
+
+
+def method_tex_output(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """TeX file output function.
+
+    This function is responsible for creating TeX output files.
+    [Add further information here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return: None
+    """
+
+    # This is just a dummy code snippet. Insert your code here.
+    runtime_output.warning('Warning: No "method_tex_output" function in "methodtexoutput.py" file implemented yet.')
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py
new file mode 100644
index 0000000000000000000000000000000000000000..582a61e893f851308e18fbaadf415f4b3c8731ad
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py
@@ -0,0 +1,103 @@
+"""Module providing export functionalities for current calculation method."""
+# Import standard libraries.
+import xml.etree.ElementTree as ET
+
+
+def method_xml_export(paths_and_names, routing_dict, data_dict, method_specific_output_dict, xml_export_tree,
+                      path_to_results_file, runtime_output):
+    """Export function.
+
+    This function is responsible for the export of method-specific data to the corresponding method-specific XML. In
+    detail, this includes the following steps:
+        (1) Parse the XML file specified by the 'path_to_results_file' variable.
+        (2) Find the 'calculation_results' element in the XML file. This is the element under which method-specific
+        nodes will be added.
+        (3) Extract method-related information from the configuration file, such as the method name and description and
+        add method node.
+        (4) Extract design mission data from the method-specific output dictionary and write it to the XML file.
+        (5) If a study exists, extract study data from the method-specific output dict and write it to the XML file.
+        (6) Attempt to write the modified XML data back to the 'costEstimation_results.xml' file. Handle an OSError
+        exception in case an error occurs during this operation.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method-specific output data
+    :param ElementTree xml_export_tree: Element tree of method-specific XML tree
+    :param str path_to_results_file: Path to method-specific output XML file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises OSError: Raised if writing to aircraft exchange file failed
+    :return: None
+    """
+    runtime_output.print("Method-specific data are written to '" + routing_dict['module_name'] + "_results.xml'...")
+
+    # Function to write data to 'cost_estimation_results.xml'
+    root_of_results_file = xml_export_tree.getroot()
+    parent = root_of_results_file.find('calculation_results')
+    # Add method node.
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    method_name = root_of_module_config_tree.find('./program_settings/configuration/method_name/value').text
+    method_description = ("Empirical method to estimate the direct operating costs (DOC) and indirect operating costs"
+                          " (IOC) of an aircraft.")
+    child = ET.SubElement(parent, method_name)
+    child.set("description", method_description)
+
+    # Prepare ElementTree for export to module-specific XML.
+    prepare_element_tree_for_module_specific_export(root_of_results_file, method_specific_output_dict)
+
+    # Write all parameters to export file.
+    try:
+        # Ensure proper indentation.
+        ET.indent(root_of_results_file, space="    ", level=0)
+        # Write data to file.
+        xml_export_tree.write(path_to_results_file)
+    # Exception handling for operating system error.
+    except OSError:
+        runtime_output.error('Error: Writing to aircraft exchange file failed. Program aborted!')
+
+
+def prepare_element_tree_for_module_specific_export(root_of_results_file, specific_output_dict):
+    """ Prepare ElementTree for module-specific results export.
+
+    This function is responsible for preparing the ElementTree of the module-specific export file.
+    In summary, the code dynamically updates an XML structure based on a list of paths and a dictionary
+    ('specific_output_dict'). It ensures that the specified paths exist in the XML structure and creates the necessary
+    sub-elements along the way, setting attributes and text values as specified in 'specific_output_dict'.
+
+    :param ElementTree root_of_results_file: Root of method-specific export ElementTree
+    :param dict specific_output_dict: Dictionary containing method-specific output data
+    :return: None
+    """
+    # Extract 'list_of_paths' from 'specific_output_dict' and delete it from dictionary.
+    list_of_paths = specific_output_dict['list_of_paths']
+    del specific_output_dict['list_of_paths']
+    # Iterate over paths.
+    for current_path in list_of_paths:
+        # Check, if 'current_path' exists in XML structure and generate path and sub-elements if not.
+        if root_of_results_file.find(current_path) is None:
+            # Split path into path_parts using '/' as delimiter, excluding first empty part.
+            path_parts = current_path.split('/')[1:]
+            # Initialize 'path_to_check' with the root element ('.').
+            path_to_check = '.'
+            # Iterate over 'path_parts'.
+            for part in path_parts:
+                # Find parent element corresponding to current 'path_to_check'.
+                parent_path = root_of_results_file.find(path_to_check)
+                # Update 'path_to_check' by appending the current part.
+                path_to_check += ('/' + part)
+                # Check, if updated 'path_to_check' does not exist in the XML structure.
+                if root_of_results_file.find(path_to_check) is None:
+                    # Check, if 'part' is in 'specific_output_dict'.
+                    if specific_output_dict[part] is not None:
+                        # Create sub-element.
+                        new_node = ET.SubElement(parent_path, part)
+                        # Add attributes (if necessary).
+                        if 'attributes' in specific_output_dict[part]:
+                            for key, value in specific_output_dict[part]['attributes'].items():
+                                new_node.set(key, value)
+                        # Add further sub-elements if defined.
+                        if 'parameters' in specific_output_dict[part]:
+                            current_path = root_of_results_file.find(path_to_check)
+                            for key, value in specific_output_dict[part]['parameters'].items():
+                                parameter_node = ET.SubElement(current_path, key)
+                                parameter_node.text = str(value)
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py
new file mode 100644
index 0000000000000000000000000000000000000000..7781cf02b5180b5f5743d31519d7a396067d8543
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py
@@ -0,0 +1,35 @@
+"""Module providing calculation functions provided by the user."""
+# Import standard modules.
+import sys
+
+# Import own modules.
+
+
+def method_kerosene(paths_and_names, routing_dict, dict_ac_exchange, dict_mod_config, runtime_output):
+    """Operating cost estimation method according to TU Berlin for kerosene-powered aircraft.
+
+    This function performs the operating cost estimation according to the TU Berlin method for kerosene-powered aircraft
+    configurations.
+    [Add more information here...]
+    The output dictionary 'kerosene_output_dict' contains the results of the cost estimation and is structured according
+    to the following scheme:
+        kerosene_output_dict = {'parameter_1': value,
+                                'parameter_2': value}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict dict_ac_exchange: Dict containing parameters and according values from aircraft exchange file
+    :param dict dict_mod_config: Dict containing parameters and according values from module configuration file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return dict kerosene_output_dict: Dictionary containing results from calculation for kerosene-powered aircraft
+    """
+
+    kerosene_output_dict = {'direct_operating_costs_annual_design_point': 30,
+                            'indirect_operating_costs': 40}
+
+    # Calculate costs.
+    runtime_output.print('----------------------------------------------------------')
+    runtime_output.print('[No method implemented yet ("methodkerosene.py").]   ')
+    runtime_output.print('----------------------------------------------------------')
+
+    return kerosene_output_dict
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/liquid_hydrogen/methodliquidhydrogen.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/liquid_hydrogen/methodliquidhydrogen.py
new file mode 100644
index 0000000000000000000000000000000000000000..7a33a604f6d196631945425de8fdd4cd3324db62
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/liquid_hydrogen/methodliquidhydrogen.py
@@ -0,0 +1,34 @@
+"""Module providing calculation functions provided by the user."""
+# Import standard modules.
+import sys
+
+# Import own modules.
+
+
+def method_liquid_hydrogen(paths_and_names, routing_dict, dict_ac_exchange, dict_mod_config, runtime_output):
+    """Operating cost estimation method for liquid hydrogen (LH2)-powered aircraft.
+
+    This function performs the operating cost estimation for liquid hydrogen-powered aircraft configurations.
+    [Add more information here...]
+    The output dictionary 'liquid_hydrogen_output_dict' contains the results of the cost estimation and is structured
+    according to the following scheme:
+        liquid_hydrogen_output_dict = {'parameter_1': value,
+                                       'parameter_2': value}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict dict_ac_exchange: Dict containing parameters and according values from aircraft exchange file
+    :param dict dict_mod_config: Dict containing parameters and according values from module configuration file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :return dict liquid_hydrogen_output_dict: Dictionary containing results from calculation for LH2-powered aircraft
+    """
+
+    liquid_hydrogen_output_dict = {'direct_operating_costs_annual_design_point': 30,
+                                   'indirect_operating_costs': 40}
+
+    # Calculate costs.
+    runtime_output.print('----------------------------------------------------------')
+    runtime_output.print('[No method implemented yet ("methodliquidhydrogen.py").]   ')
+    runtime_output.print('----------------------------------------------------------')
+
+    return liquid_hydrogen_output_dict
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py
new file mode 100644
index 0000000000000000000000000000000000000000..67d201723a75e81f92ef9ecbfa053ca3497baeed
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py
@@ -0,0 +1,211 @@
+"""Module providing functions for the preparation of user data."""
+
+
+def user_method_data_input_preparation(routing_dict):
+    """Prepare necessary input data for the user method from aircraft exchange and module configuration files.
+
+    In this function, the user is responsible for preparing the data needed for the user method. Relevant general data
+    are obtained from the aircraft exchange file and calculation specific parameter from the module configuration file.
+    The user must submit the data in the following format:
+        dict = {'parameter_name': [path to parameter node, expected data type], ...}
+
+    :param dict routing_dict: Dictionary containing information on necessary data from module configuration file
+    :returns:
+        - dict data_to_extract_from_aircraft_exchange_dict: Dictionary containing parameter name, path to parameter,
+        and expected data type of parameters to be extracted from aircraft exchange file
+        - dict data_to_extract_from_module_configuration_dict: Dictionary containing parameter name, path to parameter,
+        and expected data type of parameters to be extracted from module configuration file
+    """
+
+    """Aircraft exchange file."""
+    # Enter all parameters to be extracted from the aircraft exchange file.
+    path_to_adapt = './requirements_and_specifications/everything_the_DOC_heart_desires/'
+    data_to_extract_from_aircraft_exchange_dict = {
+        'altitude_cruise': [path_to_adapt + 'altitude_cruise', float],
+        'm_cargo_design': ['./analysis/mission/design_mission/cargo_mass', float],
+        'm_cargo_study': ['./analysis/mission/study_mission/cargo_mass', float],
+        'm_luggage': [path_to_adapt + '/m_luggage', float],
+        'm_operating_empty': ['./analysis/masses_cg_inertia/operating_mass_empty/mass_properties/mass', float],
+        'm_passenger': [path_to_adapt + '/m_passenger', float],
+        'm_payload_design': ['./analysis/mission/design_mission/payload', float],
+        'm_payload_max': ['./analysis/masses_cg_inertia/maximum_payload_mass/mass_properties/mass', float],
+        'm_payload_study': ['./analysis/mission/study_mission/payload', float],
+        'm_payload_at_max_fuel': ['./assessment/performance/range/payload_maximum_fuel_at_maximum_take_off_mass',
+                                  float],
+        'm_takeoff_design': ['./analysis/mission/design_mission/take_off_mass', float],
+        'm_takeoff_max': ['./analysis/masses_cg_inertia/maximum_takeoff_mass/mass_properties/mass', float],
+        'm_takeoff_study': [path_to_adapt + 'm_takeoff_study', float],
+        'mach_cruise': [path_to_adapt + 'mach_cruise', float],
+        'n_cabin_crew_members': [path_to_adapt + 'n_cabin_crew_members', float],
+        'n_cockpit_crew_members': [path_to_adapt + 'n_cockpit_crew_members', float],
+        'n_engines': [path_to_adapt + 'n_engines', float],
+        'n_passengers_per_class': [path_to_adapt + 'pax_per_class', str],
+        'range_at_max_fuel': ['./assessment/performance/range/range_max_fuel_at_maximum_take_off_mass', float],
+        'range_at_max_payload': ['./assessment/performance/range/range_max_payload_at_maximum_take_off_mass', float],
+        'range_ferry': ['./assessment/performance/range/range_maximum_fuel_empty', float],
+        'static_thrust_per_engine': [path_to_adapt + 'static_thrust_per_engine', float],
+        'stage_length_design': ['./analysis/mission/design_mission/range', float],
+        'stage_length_study': ['./analysis/mission/study_mission/range', float],
+        'seat_load_factor_design': [path_to_adapt + 'seat_load_factor_design', float],
+        'seat_load_factor_study': [path_to_adapt + 'seat_load_factor_design', float],
+        'flight_time_design': [path_to_adapt + 'flight_time_design', float],
+        'flight_time_study': [path_to_adapt + 'flight_time_study', float],
+        'flights_per_year_design': [path_to_adapt + 'flights_per_year_design', float],
+        'flights_per_year_study': [path_to_adapt + 'flights_per_year_study', float]
+    }
+
+    """Module configuration file."""
+    # Enter all general parameters to be extracted from the module configuration file. 'general parameters' means
+    # parameters that do not differ according to the user layer. It should be noted that 'tmp_general' is only used to
+    # shorten the path information in the 'general_data_to_extract_from_module_configuration_dict'.
+    tmp_general = ('./program_settings/configuration[@ID="tube_and_wing"]/fidelity[@ID="empirical"]/'
+                   + 'operating_cost_estimation_tu_berlin/general_direct_operating_costs_parameter')
+    general_data_to_extract_from_module_configuration_dict = {
+        'annual_lay_days_maintenance':
+            [tmp_general + '/maintenance/annual_lay_days_maintenance', float],
+        'annual_lay_days_overhaul':
+            [tmp_general + '/flight_cycles/annual_lay_days_overhaul', float],
+        'annual_lay_days_reserve':
+            [tmp_general + '/flight_cycles/annual_lay_days_reserve', float],
+        'air_traffic_control_price_factor_design':
+            [tmp_general + '/air_traffic_control/air_traffic_control_price_factor_design', float],
+        'air_traffic_control_price_factor_study':
+            [tmp_general + '/air_traffic_control/air_traffic_control_price_factor_study', float],
+        'airframe_repair_costs_per_flight':
+            [tmp_general + '/maintenance/airframe_repair_costs_per_flight', float],
+        'block_time_per_flight':
+            [tmp_general + '/flight_cycles/block_time_per_flight', float],
+        'cost_burden':
+            [tmp_general + '/maintenance/cost_burden', float],
+        'daily_night_curfew_time':
+            [tmp_general + '/flight_cycles/daily_night_curfew_time', float],
+        'depreciation_period':
+            [tmp_general + '/capital/depreciation_period', float],
+        'fees_handling':
+            [tmp_general + '/handling/fees_handling', float],
+        'fees_landing':
+            [tmp_general + '/landing/fees_landing', float],
+        'potential_annual_operation_time':
+            [tmp_general + '/flight_cycles/potential_annual_operation_time', float],
+        'price_per_operating_empty_mass':
+            [tmp_general + '/capital/price_per_operating_empty_mass', float],
+        'rate_inflation':
+            [tmp_general + '/miscellaneous/rate_inflation', float],
+        'rate_insurance':
+            [tmp_general + '/capital/rate_insurance', float],
+        'rate_interest':
+            [tmp_general + '/capital/rate_interest', float],
+        'rate_labor':
+            [tmp_general + '/maintenance/rate_labor', float],
+        'residual_value_factor':
+            [tmp_general + '/capital/residual_value_factor', float],
+        'revenue_per_freight_km_design':
+            [tmp_general + '/related_direct_operating_costs/revenue_per_freight_km_design', float],
+        'revenue_per_freight_km_study':
+            [tmp_general + '/related_direct_operating_costs/revenue_per_freight_km_study', float],
+        'salary_variation':
+            [tmp_general + '/crew/salary_variation', bool],
+        'seat_load_factor_design':
+            [tmp_general + '/miscellaneous/seat_load_factor_design', float],
+        'seat_load_factor_study':
+            [tmp_general + '/miscellaneous/seat_load_factor_study', float]
+    }
+
+    # Enter all specific parameters to be extracted from the module configuration file. 'specific parameters' means
+    # parameters that differ according to the user layer. It should be noted that 'tmp_specific' is only used to
+    # shorten the path information in the 'specific_data_to_extract_from_module_configuration_dict'.
+    tmp_specific = ('./program_settings/configuration[@ID="tube_and_wing"]/fidelity[@ID="empirical"]/'
+                    + 'operating_cost_estimation_tu_berlin')
+    specific_data_to_extract_from_module_configuration_dict = {
+        'fuel_price': [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/fuel_price', float],
+        'factor_engine_maintenance':
+            [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/factor_engine_maintenance', float],
+        'ratio_operating_empty_mass':
+            [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/ratio_operating_empty_mass', float]
+    }
+
+    # Merge module configuration dictionaries.
+    data_to_extract_from_module_configuration_dict = \
+        general_data_to_extract_from_module_configuration_dict | specific_data_to_extract_from_module_configuration_dict
+
+    return data_to_extract_from_aircraft_exchange_dict, data_to_extract_from_module_configuration_dict
+
+
+def user_method_data_output_preparation(data_dict):
+    """Prepare user-specific output data based on the calculation method results.
+
+    This function is responsible for preparing the user-specific output data based on the results of the calculation
+    method. The 'data_dict' input parameter contains the results of the module execution.
+    The data for the key parameters output must be specified in the following format in order to be written correctly
+    to the aircraft exchange file by the 'write_key_data_to_aircraft_exchange_file' function in the following step:
+        dict = {'parameter_name': [path to parameter node, value, name (if needed)], ...}
+    Important notes:
+        (1) It should be noted that only key parameters may be written that have been previously defined by the module
+        manager.
+        (2) Attention must be paid to the proper path specifications, otherwise warnings may be issued or, in the worst
+        case, errors may occur subsequently resulting in the write process and consequently the entire program being
+        aborted.
+        (3) If the path specifications contain IDs, these must start at '0' and be defined in ascending order without
+        gaps.
+    For the method-specific output, a path list and a dictionary is necessary to properly write the data to the
+    method-specific XML file.
+    the dictionary must be specified in the following format:
+        dict = ...
+    Note: If the user wants to export data from the design and study mission, two path lists and dictionaries are
+    necessary.
+
+    :param dict data_dict: Dictionary containing the results of the module execution
+    :returns:
+        - dict key_output_dict: Output dictionary containing key parameters that are written to aircraft XML file
+        - dict method_specific_output_dict: Dictionary containing specific parameters that are written to
+        method-specific output XML
+    """
+
+    """Key parameters output."""
+    doc_path = './assessment/operating_cost_estimation_tu_berlin/direct_operating_costs/'
+    ioc_path = './assessment/operating_cost_estimation_tu_berlin/indirect_operating_costs/'
+
+    key_output_dict = {
+        # Direct operating costs shares.
+        'direct_operating_costs_annual':
+            [doc_path + 'direct_operating_costs_annual',
+             data_dict['direct_operating_costs_annual_design_point']],
+        # Indirect operating costs shares.
+        'indirect_operating_costs_annual':
+            [ioc_path + 'indirect_operating_costs_annual',
+             data_dict['indirect_operating_costs']]
+    }
+
+    """Method-specific output."""
+    # Define specific output paths and dict for design mission.
+    tmp_path = './calculation_results/operating_cost_estimation_tu_berlin/design_mission/'
+
+    paths_to_specific_design_outputs_list = [
+        tmp_path + 'direct_operating_costs/direct_operating_costs_per_year',
+        tmp_path + 'indirect_operating_costs'
+    ]
+
+    method_specific_output_dict = {
+        'operating_cost_estimation_tu_berlin': {},
+        'design_mission': {
+            'attributes': {'description': 'Cost estimation results of the design mission'}},
+        'direct_operating_costs': {
+            'attributes': {'description': 'Direct operating costs'}},
+        # Direct operating costs.
+        'direct_operating_costs_per_year': {
+            'attributes': {'description': 'Direct operating costs per year at design point (sum of route dependent and '
+                                          'route independent costs)'},
+            'parameters': {
+                'value': data_dict['direct_operating_costs_annual_design_point'],
+                'unit': 'EUR'}},
+        # Indirect operating costs.
+        'indirect_operating_costs': {
+            'attributes': {'description': 'Indirect operating costs'},
+            'parameters': {
+                'value': data_dict['indirect_operating_costs'],
+                'unit': 'EUR'}},
+        # List
+        'list_of_paths': paths_to_specific_design_outputs_list
+    }
+
+    return key_output_dict, method_specific_output_dict
diff --git a/docs/get-involved/modularization/python-template/cost_estimation/version.txt b/docs/get-involved/modularization/python-template/cost_estimation/version.txt
new file mode 100644
index 0000000000000000000000000000000000000000..50aea0e7aba1ab64fce04e96fb64bf9599a1c2a5
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/cost_estimation/version.txt
@@ -0,0 +1 @@
+2.1.0
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/CSR-02.xml b/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/CSR-02.xml
new file mode 100644
index 0000000000000000000000000000000000000000..2582b9d7e14739a34111dd1a9e022bcd4e2af2b5
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/CSR-02.xml
@@ -0,0 +1,4832 @@
+<aircraft_exchange_file>
+    <requirements_and_specifications description="Requirements and specifications">
+        <general description="General information on requirements and specifications">
+            <type description="Aircraft type">
+                <value>CeRAS</value>
+            </type>
+            <model description="Model - Version">
+                <value>CSR-02</value>
+            </model>
+        </general>
+        <design_specification description="Design specification">
+            <configuration description="Configuration information">
+                <configuration_type description="aircraft configuration: tube_and_wing / blended_wing_body">
+                    <value>tube_and_wing</value>
+                </configuration_type>
+                <undercarriage_definition description="Design description of the undercarriage.">
+                    <main_gear_mounting description="Mounting position of the main landing gear: wing_mounted / fuselage_mounted.">
+                        <value>wing_mounted</value>
+                    </main_gear_mounting>
+                </undercarriage_definition>
+            </configuration>
+            <propulsion description="Propulsion information">
+                <propulsor ID="0" description="Specific propulsor information">
+                    <mounting_position description="positions: under_wing_left / under_wing_right / over_wing_left / over_wing_right / on_fuselage_left / on_fuselage_right / in_fuselage_rear">
+                        <value>under_wing_left</value>
+                    </mounting_position>
+                    <energy_carrier description="Energy type: kerosene / liquid_hydrogen / battery / saf / hybrid (e.g, kerosene+liquid_hydrogen)">
+                        <value>kerosene</value>
+                    </energy_carrier>
+                    <degree_of_hybridization description="">
+                        <value>0.5</value>
+                    </degree_of_hybridization>
+                </propulsor>
+                <propulsor ID="1" description="Specific propulsor information">
+                    <mounting_position description="positions: under_wing_left / under_wing_right / over_wing_left / over_wing_right / on_fuselage_left / on_fuselage_right / in_fuselage_rear">
+                        <value>under_wing_left</value>
+                    </mounting_position>
+                    <energy_carrier description="Energy type: kerosene / liquid_hydrogen / battery / saf / hybrid (e.g, kerosene+liquid_hydrogen)">
+                        <value>kerosene</value>
+                    </energy_carrier>
+                    <degree_of_hybridization description="">
+                        <value>0.5</value>
+                    </degree_of_hybridization>
+                </propulsor>
+            </propulsion>
+        </design_specification>
+        <requirements description="Aircraft design requirements">
+            <top_level_aircraft_requirements description="Top level aircraft requirements (TLAR)">
+                <maximum_approach_speed description="Maximum allowed approach speed.">
+                    <value>71</value>
+                    <unit>m/s</unit>
+                    <lower_boundary>50</lower_boundary>
+                    <upper_boundary>90</upper_boundary>
+                </maximum_approach_speed>
+                <pavement_classification_number description="Runway pavment classification number (PCN) - limits the maximum allowed aircraft classification number of undercarriage.">
+                    <value>55</value>
+                    <unit>1</unit>
+                    <lower_boundary>5</lower_boundary>
+                    <upper_boundary>120</upper_boundary>
+                </pavement_classification_number>
+            </top_level_aircraft_requirements>
+            <additional_requirements description="Additional requirements">
+            </additional_requirements>
+        </requirements>
+        <everything_the_DOC_heart_desires>
+            <altitude_cruise>
+                <value>10058.4</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>m</unit>
+            </altitude_cruise>
+            <m_passenger>
+                <value>75</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </m_passenger>
+            <m_luggage>
+                <value>15.72</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </m_luggage>
+            <n_cabin_crew_members>
+                <value>4</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </n_cabin_crew_members>
+            <n_cockpit_crew_members>
+                <value>2</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </n_cockpit_crew_members>
+            <n_engines>
+                <value>2</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </n_engines>
+            <pax_per_class>
+                <value>0/0/0/12/138</value>
+                <unit>1</unit>
+            </pax_per_class>
+            <static_thrust_per_engine>
+                <value>128.855268</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </static_thrust_per_engine>
+            <m_takeoff_study>
+                <value>62560.48325</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>kg</unit>
+            </m_takeoff_study>
+            <mach_cruise>
+                <value>0.82</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </mach_cruise>
+            <seat_load_factor_design>
+                <value>1.0</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </seat_load_factor_design>
+            <seat_load_factor_study>
+                <value>0.8</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </seat_load_factor_study>
+            <flights_per_year_design>
+                <value>1289</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flights_per_year_design>
+            <flights_per_year_study>
+                <value>2508</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flights_per_year_study>
+            <flight_time_design>
+                <value>2.83</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flight_time_design>
+            <flight_time_study>
+                <value>0.57</value>
+                <lower_boundary>0.0</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+                <unit>1</unit>
+            </flight_time_study>
+        </everything_the_DOC_heart_desires>
+    </requirements_and_specifications>
+    <sizing_point>
+        <wing_loading description="Maximum takeoff mass (MTOM) divided by wing area (Sref)" tool_evel="1">
+            <value>0</value>
+            <unit>"kg/m^2"</unit>
+        </wing_loading>
+        <thrust_to_weight description="Total thrust (kN) divided by maximum aircraft weight (kN)" tool_evel="1">
+            <value>0</value>
+            <lower_boundary>0.0</lower_boundary>
+            <upper_boundary>1.0</upper_boundary>
+            <unit>"1"</unit>
+        </thrust_to_weight>
+        <MTOM description="Maximum takeoff mass" tool_evel="1">
+            <value>0</value>
+            <unit>"kg"</unit>
+        </MTOM>
+        <OME description="Operating mass empty" tool_evel="1">
+            <value>0</value>
+            <unit>"kg"</unit>
+        </OME>
+    </sizing_point>
+    <component_design>
+        <mission_files description="Path and name of xml files containing the flight phase data" tool_level="0">
+            <design_mission_file description="Path and name of the design mission xml">
+                <value>0</value>
+            </design_mission_file>
+            <study_mission_file description="Path and name of the study mission xml">
+                <value>0</value>
+            </study_mission_file>
+        </mission_files>
+        <global_reference_point>
+            <reference_component description="">
+                <value />
+            </reference_component>
+            <x_position description="">
+                <value />
+                <unit />
+            </x_position>
+            <y_position description="">
+                <value />
+                <unit />
+            </y_position>
+            <z_position description="">
+                <value />
+                <unit />
+            </z_position>
+        </global_reference_point>
+        <wing description="wing component" tool_level="0">
+            <position description="position of wing (most forward position of part composition at y = 0)">
+                <x description="x position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </x>
+                <y description="y position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </y>
+                <z description="z position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </z>
+            </position>
+            <mass_properties description="mass_properties of component wing">
+                <mass description="component mass">
+                    <value>0.0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="component inertia refered to center of gravity">
+                    <j_xx description="inertia component in x">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="inertia component in y">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="inertia component in z">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="inertia component in xy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="inertia component in xz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="inertia component in yx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="inertia component in yz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="inertia component in zx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="inertia component in zy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                    <x description="x component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </x>
+                    <y description="y component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </y>
+                    <z description="z component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </z>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <geometry>
+                    <aerodynamic_surface description="aerodynamic surface" ID="0">
+                        <name description="name of aerodynamic surface">
+                            <value>main_wing</value>
+                        </name>
+                        <position description="reference position in global coordinates">
+                            <x description="x position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </x>
+                            <y description="y position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </y>
+                            <z description="z position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </z>
+                        </position>
+                        <parameters description="aerodynamic surface parameters">
+                            <direction description="unit vector according to global coordinate system for direction applied at position">
+                                <x description="x direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </x>
+                                <y description="y direction of unit vector">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </y>
+                                <z description="z direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </z>
+                            </direction>
+                            <symmetric description="symmetric to x-z plane (global) aerodynamic surface">
+                                <value>true</value>
+                            </symmetric>
+                            <sections description="sections">
+                                <section description="section" ID="0">
+                                    <chord_origin description="origin of chord (local)">
+                                        <x description="x position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x>
+                                        <y description="y position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y>
+                                        <z description="z position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z>
+                                    </chord_origin>
+                                    <chord_length description="length of chord">
+                                        <value>0.0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-inf</lower_boundary>
+                                        <upper_boundary>inf</upper_boundary>
+                                    </chord_length>
+                                    <geometric_twist description="geometric twist at leading edge">
+                                        <value>0.0</value>
+                                        <unit>rad</unit>
+                                        <lower_boundary>-</lower_boundary>
+                                        <upper_boundary />
+                                    </geometric_twist>
+                                    <profile description="profile (data normalized on chord)">
+                                        <name>
+                                            <value>naca0012</value>
+                                        </name>
+                                    </profile>
+                                </section>
+                            </sections>
+                            <spars description="spars">
+                                <spar description="front spar" ID="0">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                                <spar description="rear spar" ID="1">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                            </spars>
+                            <control_devices description="control devices">
+                                <control_device description="control device" ID="0">
+                                    <type>
+                                        <value>aileron</value>
+                                    </type>
+                                    <deflection description="maximum positive and negative deflection of control device">
+                                        <full_negative_deflection description="full negative deflection">
+                                            <value>-25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_negative_deflection>
+                                        <full_positive_deflection description="full positive deflection">
+                                            <value>25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_positive_deflection>
+                                    </deflection>
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </control_device>
+                            </control_devices>
+                        </parameters>
+                        <mass_properties description="mass_properties of aerodynamic surface">
+                            <mass description="component mass">
+                                <value>0.0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </mass>
+                            <inertia description="component inertia refered to center of gravity">
+                                <j_xx description="inertia component in x">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="inertia component in y">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="inertia component in z">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="inertia component in xy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="inertia component in xz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="inertia component in yx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="inertia component in yz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="inertia component in zx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="inertia component in zy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                                <x description="x component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </x>
+                                <y description="y component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </y>
+                                <z description="z component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </z>
+                            </center_of_gravity>
+                        </mass_properties>
+                    </aerodynamic_surface>
+                </geometry>
+            </specific>
+        </wing>
+        <fuselage description="Geometric description of the aircraft fuselages" tool_level="0">
+            <position description="Position of the fuselages with regard to the global reference point.">
+                <x_position description="Distance in x direction with regard to the global reference point. (fuselage nose point)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-10</lower_boundary>
+                    <upper_boundary>10</upper_boundary>
+                </x_position>
+                <y_position description="Distance in y direction with regard to the global reference point. (fuselage nose point)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>0</upper_boundary>
+                </y_position>
+                <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-5</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </z_position>
+            </position>
+            <mass_properties description="Mass properties of the fuselages.">
+                <mass description="Mass of the total fuselages.">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="Inertia of the total fuselages with regard to the total center of gravity.">
+                    <j_xx description="Inertia of the total fuselages in x.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="Inertia of the total fuselages in y.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="Inertia of the total fuselages in z.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="Inertia of the total fuselages in xy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="Inertia of the total fuselages in xz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="Inertia of the total fuselages in yx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="Inertia of the total fuselages in yz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="Inertia of the total fuselages in zx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="Inertia of the total fuselages in zy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="Center of gravity of the total fuselages.">
+                    <x_position description="Center of gravity in x-direction with regard to the global reference point. (total fuselage)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>50</upper_boundary>
+                    </x_position>
+                    <y_position description="Center of gravity in y-direction with regard to the global reference point. (total fuselage)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-5</lower_boundary>
+                        <upper_boundary>5</upper_boundary>
+                    </y_position>
+                    <z_position description="Center of gravity in z-direction with regard to the global reference point. (total fuselage)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-5</lower_boundary>
+                        <upper_boundary>5</upper_boundary>
+                    </z_position>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <geometry>
+                    <geometry_file_name>
+                        <value>geometryData/fuselage.dat</value>
+                    </geometry_file_name>
+                    <fuselage ID="0" description="Geometrical description of one entire fuselage.">
+                        <name description="Name of the fuselage.">
+                            <value>center_fuselage</value>
+                        </name>
+                        <position description="Position of one entire fuselage with regard to the global reference point.">
+                            <x_position description="Distance in x direction with regard to the global reference point. (fuselage nose point)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-10</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </x_position>
+                            <y_position description="Distance in y direction with regard to the global reference point. (fuselage nose point)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-25</lower_boundary>
+                                <upper_boundary>25</upper_boundary>
+                            </y_position>
+                            <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-5</lower_boundary>
+                                <upper_boundary>5</upper_boundary>
+                            </z_position>
+                        </position>
+                        <mass_properties description="Mass properties of one entire fuselage.">
+                            <mass description="Mass of one entire fuslege.">
+                                <value>0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>100000</upper_boundary>
+                            </mass>
+                            <inertia description="Inertia of one entire fuselage with regard to his center of gravity.">
+                                <j_xx description="Inertia of one entire fuselage in x.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="Inertia of one entire fuselage in y.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="Inertia of one entire fuselage in z.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="Inertia of one entire fuselage in xy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="Inertia of one entire fuselage in xz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="Inertia of one entire fuselage in yx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="Inertia of one entire fuselage in yz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="Inertia of one entire fuselage in zx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="Inertia of one entire fuselage in zy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="Center of gravity of one entire fuselage.">
+                                <x_position description="Center of gravity in x-direction with regard to the global reference point. (entire fuselage)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>50</upper_boundary>
+                                </x_position>
+                                <y_position description="Center of gravity in y-direction with regard to the global reference point. (entire fuselage)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-25</lower_boundary>
+                                    <upper_boundary>25</upper_boundary>
+                                </y_position>
+                                <z_position description="Center of gravity in z-direction with regard to the global reference point. (entire fuselage)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-5</lower_boundary>
+                                    <upper_boundary>5</upper_boundary>
+                                </z_position>
+                            </center_of_gravity>
+                        </mass_properties>
+                        <fuselage_sections description="Geometrical description of the fuselage sections of one entire fuselage">
+                            <section ID="0" description="Geometrical description of one fuselage section.">
+                                <name description="Name of the fuselage section.">
+                                    <value>section_1</value>
+                                </name>
+                                <origin description="Origin of fuselage section (local).">
+                                    <x_position description="Distance in x direction with regard to the global reference point.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-10</lower_boundary>
+                                        <upper_boundary>75</upper_boundary>
+                                    </x_position>
+                                    <y_position description="Distance in y direction with regard to the global reference point.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-25</lower_boundary>
+                                        <upper_boundary>25</upper_boundary>
+                                    </y_position>
+                                    <z_position description="Distance in z direction with regard to the global reference point.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-5</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </z_position>
+                                </origin>
+                                <upper_hight description="Height of the upper half of the fuselage section.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </upper_hight>
+                                <lower_hight description="Height of the lower half of the fuselage section.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </lower_hight>
+                                <width description="Width of the fuselage section.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </width>
+                                <chord_length description="Maximum length of the fuselage section for bwb configuration.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>70</upper_boundary>
+                                </chord_length>
+                            </section>
+                        </fuselage_sections>
+                        <fuselage_accommodation>
+                            <position description="Position of the payload tubes with regard to the global reference point.">
+                                <x_position description="Distance in x direction with regard to the global reference point. (center payload tube starting point)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-10</lower_boundary>
+                                    <upper_boundary>10</upper_boundary>
+                                </x_position>
+                                <y_position description="Distance in y direction with regard to the global reference point. (center payload tube starting point)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </y_position>
+                                <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-5</lower_boundary>
+                                    <upper_boundary>5</upper_boundary>
+                                </z_position>
+                            </position>
+                            <mass_properties description="Mass properties of the payload tubes of one entire fuselage.">
+                                <mass description="Mass of the payload tubes of one entire fuslege.">
+                                    <value>0</value>
+                                    <unit>kg</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>100000</upper_boundary>
+                                </mass>
+                                <center_of_gravity description="Center of gravity of the payload tubes of one entire fuselage.">
+                                    <x_position description="Center of gravity in x-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>50</upper_boundary>
+                                    </x_position>
+                                    <y_position description="Center of gravity in y-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-5</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </y_position>
+                                    <z_position description="Center of gravity in z-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-5</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </z_position>
+                                </center_of_gravity>
+                            </mass_properties>
+                            <number_of_payload_tubes description="Number of payload tubes of one entire fuselage.">
+                                <value>1</value>
+                                <unit>1</unit>
+                                <lower_boundary>1</lower_boundary>
+                                <upper_boundary>7</upper_boundary>
+                            </number_of_payload_tubes>
+                            <payload_tube ID="0" description="Geometrical description of one payload tube of the fuselage.">
+                                <name description="Name of the payload tube.">
+                                    <value>center_payload_tube</value>
+                                </name>
+                                <payload_tube_reference_points description="Payload tube center reference points in x, y and z-direction refered to fuselage nose point.">
+                                    <front_reference_points Desc="Reference points in the front of payload tube.">
+                                        <x_position Desc="Payload tube reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <y_position Desc="Payload tube reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y_position>
+                                        <z_position Desc="Payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                        <upper_z_position Desc="Upper payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </upper_z_position>
+                                        <lower_z_position Desc="Lower payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </lower_z_position>
+                                    </front_reference_points>
+                                    <aft_reference_points Desc="Reference points in the aft of payload tube.">
+                                        <x_position Desc="Payload tube reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <y_position Desc="Payload tube reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y_position>
+                                        <z_position Desc="Payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                        <upper_z_position Desc="Upper payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </upper_z_position>
+                                        <lower_z_position Desc="Lower payload tube reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </lower_z_position>
+                                    </aft_reference_points>
+                                </payload_tube_reference_points>
+                                <payload_tube_wall_reference_points description="Payload tube wall reference points in x, y and z-direction refered to fuselage nose point.">
+                                    <front_reference_points Desc="Wall reference points in the front of payload tube.">
+                                        <x_position Desc="Wall reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <left_y_position Desc="Left wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </left_y_position>
+                                        <right_y_position Desc="Right wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </right_y_position>
+                                        <z_position Desc="Wall reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                    </front_reference_points>
+                                    <aft_reference_points Desc="Wall reference points in the aft of payload tube.">
+                                        <x_position Desc="Wall reference point in x-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x_position>
+                                        <left_y_position Desc="Left wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </left_y_position>
+                                        <right_y_position Desc="Right wall reference point in y-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </right_y_position>
+                                        <z_position Desc="Wall reference point in z-direction">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z_position>
+                                    </aft_reference_points>
+                                </payload_tube_wall_reference_points>
+                                <payload_tube_structural_wall_thickness description="Structural wall thickness of the paylaod tube.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </payload_tube_structural_wall_thickness>
+                                <payload_tube_water_volume description="Total water volume of one entire paylaod tube.">
+                                    <value>0</value>
+                                    <unit>m^3</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>infr</upper_boundary>
+                                </payload_tube_water_volume>
+                                <number_of_payload_decks description="Number of payload decks of one entire fuselage.">
+                                    <value>1</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>1</lower_boundary>
+                                    <upper_boundary>3</upper_boundary>
+                                </number_of_payload_decks>
+                                <payload_deck ID="0" description="Geometrical description of the payload decks in one payload tube.">
+                                    <name description="Name of the payload deck.">
+                                        <value>passenger_deck</value>
+                                    </name>
+                                    <position description="Position of the payload deck with regard to the global reference point.">
+                                        <x_position description="Distance in x direction with regard to the global reference point. (payload deck starting point)">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-10</lower_boundary>
+                                            <upper_boundary>10</upper_boundary>
+                                        </x_position>
+                                        <y_position description="Distance in y direction with regard to the global reference point. (payload deck starting point)">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>0</upper_boundary>
+                                        </y_position>
+                                        <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-5</lower_boundary>
+                                            <upper_boundary>5</upper_boundary>
+                                        </z_position>
+                                    </position>
+                                    <mass_properties description="Mass properties of the payload deck of one entire payload tube.">
+                                        <mass description="Mass of the payload deck of one entire paylaod tube.">
+                                            <value>0</value>
+                                            <unit>kg</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>100000</upper_boundary>
+                                        </mass>
+                                        <center_of_gravity description="Center of gravity of the payload tubes of one entire fuselage.">
+                                            <x_position description="Center of gravity in x-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>50</upper_boundary>
+                                            </x_position>
+                                            <y_position description="Center of gravity in y-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-5</lower_boundary>
+                                                <upper_boundary>5</upper_boundary>
+                                            </y_position>
+                                            <z_position description="Center of gravity in z-direction with regard to the global reference point. (all payload tubes of one entire fuselage)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-5</lower_boundary>
+                                                <upper_boundary>5</upper_boundary>
+                                            </z_position>
+                                        </center_of_gravity>
+                                    </mass_properties>
+                                    <payload_deck_area description="Total floor area of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m^2</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>1000</upper_boundary>
+                                    </payload_deck_area>
+                                    <payload_deck_water_volume description="Total water volume of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m^3</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>1000</upper_boundary>
+                                    </payload_deck_water_volume>
+                                    <payload_deck_length description="Total length of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>100</upper_boundary>
+                                    </payload_deck_length>
+                                    <payload_deck_height description="Maximum standing height of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>3</upper_boundary>
+                                    </payload_deck_height>
+                                    <payload_deck_top_width description="Width on the top of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>10</upper_boundary>
+                                    </payload_deck_top_width>
+                                    <payload_deck_bottom_width description="Width on the bottom of the paylaod deck.">
+                                        <value>0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>10</upper_boundary>
+                                    </payload_deck_bottom_width>
+                                    <payload_deck_required_power description="Required power of the payload deck.">
+                                        <value>0</value>
+                                        <unit>W</unit>
+                                        <lower_boundary>0</lower_boundary>
+                                        <upper_boundary>inf</upper_boundary>
+                                    </payload_deck_required_power>
+                                    <number_of_payload_deck_compartments description="Number of paylaod compartments of the payload deck.">
+                                        <value>1</value>
+                                        <unit>1</unit>
+                                        <lower_boundary>1</lower_boundary>
+                                        <upper_boundary>5</upper_boundary>
+                                    </number_of_payload_deck_compartments>
+                                    <payload_compartment ID="0" description="Geometrical description of the payload compartment of one payload deck.">
+                                        <name description="Name of the payload compartment of the payload deck.">
+                                            <value>front_compartment</value>
+                                        </name>
+                                        <position description="Position of the payload compartment with regard to the global reference point.">
+                                            <x_position description="Distance in x direction with regard to the global reference point. (payload compartment starting point)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-10</lower_boundary>
+                                                <upper_boundary>100</upper_boundary>
+                                            </x_position>
+                                            <y_position description="Distance in y direction with regard to the global reference point. (payload compartment starting point)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-25</lower_boundary>
+                                                <upper_boundary>25</upper_boundary>
+                                            </y_position>
+                                            <z_position description="Distance in z direction with regard to the global reference point. (distance compartment fuselage center line)">
+                                                <value>0</value>
+                                                <unit>m</unit>
+                                                <lower_boundary>-5</lower_boundary>
+                                                <upper_boundary>5</upper_boundary>
+                                            </z_position>
+                                        </position>
+                                        <payload_compartment_area description="Total floor area of the payload compartment.">
+                                            <value>0</value>
+                                            <unit>m^2</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>1000</upper_boundary>
+                                        </payload_compartment_area>
+                                        <payload_compartment_water_volume description="Total water volume of the paylaod compartment.">
+                                            <value>0</value>
+                                            <unit>m^3</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>1000</upper_boundary>
+                                        </payload_compartment_water_volume>
+                                        <payload_compartment_length description="Total length of the paylaod compartment.">
+                                            <value>0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>0</lower_boundary>
+                                            <upper_boundary>100</upper_boundary>
+                                        </payload_compartment_length>
+                                    </payload_compartment>
+                                </payload_deck>
+                            </payload_tube>
+                        </fuselage_accommodation>
+                    </fuselage>
+                </geometry>
+            </specific>
+        </fuselage>
+        <tank description="Description of aircraft tanks." tool_level="0">
+            <position description="Position of the tanks with regard to the global reference point.">
+                <x_position description="Distance between the foremost tank end and the global reference point in x-direction.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>80</upper_boundary>
+                </x_position>
+                <y_position description="Distance between the foremost tank end and the global reference point in y-direction.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-40</lower_boundary>
+                    <upper_boundary>40</upper_boundary>
+                </y_position>
+                <z_position description="Distance between the foremost tank end and the global reference point in z-direction.">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-5</lower_boundary>
+                    <upper_boundary>5</upper_boundary>
+                </z_position>
+            </position>
+            <mass_properties description="Mass properties of all tanks.">
+                <mass description="Total tank mass.">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>100000</upper_boundary>
+                </mass>
+                <inertia description="Inertia of all tanks with regard to the total center of gravity.">
+                    <j_xx description="Inertia of all tanks in x.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="Inertia of all tanks in y.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="Inertia of all tanks in z.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="Inertia of all tanks in xy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="Inertia of all tanks in xz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="Inertia of all tanks in yx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="Inertia of all tanks in yz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="Inertia of all tanks in zx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="Inertia of all tanks in zy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="Center of gravity of all tanks.">
+                    <x_position description="Center of gravity in x-direction with regard to the global reference point.">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>80</upper_boundary>
+                    </x_position>
+                    <y_position description="Center of gravity in y-direction with regard to the global reference point.">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-40</lower_boundary>
+                        <upper_boundary>40</upper_boundary>
+                    </y_position>
+                    <z_position description="Center of gravity in z-direction with regard to the global reference point.">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-5</lower_boundary>
+                        <upper_boundary>5</upper_boundary>
+                    </z_position>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <tank ID="0" description="Description of one tank.">
+                    <name description="Designator of the tank (right/left hand inner/outer wing tank, centre tank, trim tank, cylindrical/conical tail cone tank, ...).">
+                        <value>right hand inner wing tank</value>
+                    </name>
+                    <position description="Position of one tank with regard to the global reference point.">
+                        <x_position description="Distance between the foremost tank end of one tank and the global reference point in x-direction.">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>80</upper_boundary>
+                        </x_position>
+                        <y_position description="Distance between the foremost tank end of one tank and the global reference point in y-direction.">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-40</lower_boundary>
+                            <upper_boundary>40</upper_boundary>
+                        </y_position>
+                        <z_position description="Distance between the foremost tank end of one tank and the global reference point in z-direction.">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-5</lower_boundary>
+                            <upper_boundary>5</upper_boundary>
+                        </z_position>
+                    </position>
+                    <mass_properties description="Mass properties of one tank.">
+                        <mass description="Total dry mass of one tank.">
+                            <value>0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>100000</upper_boundary>
+                        </mass>
+                        <inertia description="Inertia of one tank with regard to its center of gravity.">
+                            <j_xx description="Inertia of one tank in x.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_xx>
+                            <j_yy description="Inertia of one tank in y.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_yy>
+                            <j_zz description="Inertia of one tank in z.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_zz>
+                            <j_xy description="Inertia of one tank in xy.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_xy>
+                            <j_xz description="Inertia of one tank in xz.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_xz>
+                            <j_yx description="Inertia of one tank in yx.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_yx>
+                            <j_yz description="Inertia of one tank in yz.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_yz>
+                            <j_zx description="Inertia of one tank in zx.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_zx>
+                            <j_zy description="Inertia of one tank in zy.">
+                                <value>0.0</value>
+                                <unit>kgm^2</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </j_zy>
+                        </inertia>
+                        <center_of_gravity description="Center of gravity of one tank.">
+                            <x_position description="Center of gravity in x-direction with regard to the global reference point.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>80</upper_boundary>
+                            </x_position>
+                            <y_position description="Center of gravity in y-direction with regard to the global reference point.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-40</lower_boundary>
+                                <upper_boundary>40</upper_boundary>
+                            </y_position>
+                            <z_position description="Center of gravity in z-direction with regard to the global reference point.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-5</lower_boundary>
+                                <upper_boundary>5</upper_boundary>
+                            </z_position>
+                        </center_of_gravity>
+                    </mass_properties>
+                    <volume description="Total usable volume of one tank.">
+                        <value>0</value>
+                        <unit>l</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>100000</upper_boundary>
+                    </volume>
+                    <geometry description="Geometrical description of one tank.">
+                        <cross_section ID="0" description="Geometrical description of one tank cross section.">
+                            <name description="Designator of tank cross section.">
+                                <value>first cross section</value>
+                            </name>
+                            <position description="Position of tank cross section with regard to the global reference point.">
+                                <x_position description="Distance between the tank cross section and the global reference point in x-direction.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>80</upper_boundary>
+                                </x_position>
+                                <y_position description="Distance between the tank cross section and the global reference point in y-direction.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-40</lower_boundary>
+                                    <upper_boundary>40</upper_boundary>
+                                </y_position>
+                                <z_position description="Distance between the tank cross section and the global reference point in z-direction.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-5</lower_boundary>
+                                    <upper_boundary>5</upper_boundary>
+                                </z_position>
+                            </position>
+                            <shape description="Description of the shape of the cross section (circular, rectangular, elliptical).">
+                                <value>rectangular</value>
+                            </shape>
+                            <height description="Height of the cross section.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </height>
+                            <width description="Width of the cross section.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </width>
+                            <length description="Length of the cross section (if length &gt; 0: curved cross section, e.g., dashed tank endcap).">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </length>
+                        </cross_section>
+                    </geometry>
+                </tank>
+            </specific>
+        </tank>
+        <empennage description="empennage component" tool_level="0">
+            <position description="position of empennage (most forward position of part composition)">
+                <x description="x position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </x>
+                <y description="y position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </y>
+                <z description="z position">
+                    <value>0.0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </z>
+            </position>
+            <mass_properties description="mass_properties of component empennage">
+                <mass description="component mass">
+                    <value>0.0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>-inf</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="component inertia refered to center of gravity">
+                    <j_xx description="inertia component in x">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="inertia component in y">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="inertia component in z">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="inertia component in xy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="inertia component in xz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="inertia component in yx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="inertia component in yz">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="inertia component in zx">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="inertia component in zy">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                    <x description="x component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </x>
+                    <y description="y component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </y>
+                    <z description="z component">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </z>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <geometry>
+                    <aerodynamic_surface description="aerodynamic surface" ID="0">
+                        <name description="name of aerodynamic surface">
+                            <value>fin</value>
+                        </name>
+                        <position description="reference position in global coordinates">
+                            <x description="x position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </x>
+                            <y description="y position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </y>
+                            <z description="z position">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </z>
+                        </position>
+                        <parameters description="aerodynamic surface parameters">
+                            <direction description="unit vector according to global coordinate system for direction applied at position">
+                                <x description="x direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </x>
+                                <y description="y direction of unit vector">
+                                    <value>1.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </y>
+                                <z description="z direction of unit vector">
+                                    <value>0.0</value>
+                                    <unit>1</unit>
+                                    <lower_boundary>-1.0</lower_boundary>
+                                    <upper_boundary>1.0</upper_boundary>
+                                </z>
+                            </direction>
+                            <symmetric description="symmetric to x-z plane (global) aerodynamic surface">
+                                <value>true</value>
+                            </symmetric>
+                            <sections description="sections">
+                                <section description="section" ID="0">
+                                    <chord_origin description="origin of chord (local)">
+                                        <x description="x position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </x>
+                                        <y description="y position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </y>
+                                        <z description="z position">
+                                            <value>0.0</value>
+                                            <unit>m</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </z>
+                                    </chord_origin>
+                                    <chord_length description="length of chord">
+                                        <value>0.0</value>
+                                        <unit>m</unit>
+                                        <lower_boundary>-inf</lower_boundary>
+                                        <upper_boundary>inf</upper_boundary>
+                                    </chord_length>
+                                    <geometric_twist description="geometric twist at leading edge">
+                                        <value>0.0</value>
+                                        <unit>rad</unit>
+                                        <lower_boundary>-</lower_boundary>
+                                        <upper_boundary />
+                                    </geometric_twist>
+                                    <profile description="profile (data normalized on chord)">
+                                        <name>
+                                            <value>naca0012</value>
+                                        </name>
+                                    </profile>
+                                </section>
+                            </sections>
+                            <spars description="spars">
+                                <spar description="front spar" ID="0">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                                <spar description="rear spar" ID="1">
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </spar>
+                            </spars>
+                            <control_devices description="control devices">
+                                <control_device description="control device" ID="0">
+                                    <type>
+                                        <value>aileron</value>
+                                    </type>
+                                    <deflection description="maximum positive and negative deflection of control device">
+                                        <full_negative_deflection description="full negative deflection">
+                                            <value>-25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_negative_deflection>
+                                        <full_positive_deflection description="full positive deflection">
+                                            <value>25.0</value>
+                                            <unit>deg</unit>
+                                            <lower_boundary>-inf</lower_boundary>
+                                            <upper_boundary>inf</upper_boundary>
+                                        </full_positive_deflection>
+                                    </deflection>
+                                    <position description="chord relative position of control device">
+                                        <inner_position description="relative inner position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </inner_position>
+                                        <outer_position description="relative outer position">
+                                            <spanwise description="relative spanwise position">
+                                                <value>0.2</value>
+                                                <unit>1</unit>
+                                                <lower_boundary>0</lower_boundary>
+                                                <upper_boundary>1.0</upper_boundary>
+                                            </spanwise>
+                                            <chord description="control device chord position">
+                                                <from description="relative chord position">
+                                                    <value>0.7</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </from>
+                                                <to description="relative chord position">
+                                                    <value>1.0</value>
+                                                    <unit>1</unit>
+                                                    <lower_boundary>0.0</lower_boundary>
+                                                    <upper_boundary>1.0</upper_boundary>
+                                                </to>
+                                            </chord>
+                                        </outer_position>
+                                    </position>
+                                </control_device>
+                            </control_devices>
+                        </parameters>
+                        <mass_properties description="mass_properties of aerodynamic surface">
+                            <mass description="component mass">
+                                <value>0.0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <upper_boundary>inf</upper_boundary>
+                            </mass>
+                            <inertia description="component inertia refered to center of gravity">
+                                <j_xx description="inertia component in x">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="inertia component in y">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="inertia component in z">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="inertia component in xy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="inertia component in xz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="inertia component in yx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="inertia component in yz">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="inertia component in zx">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="inertia component in zy">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                                <x description="x component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </x>
+                                <y description="y component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </y>
+                                <z description="z component">
+                                    <value>0.0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </z>
+                            </center_of_gravity>
+                        </mass_properties>
+                    </aerodynamic_surface>
+                </geometry>
+            </specific>
+        </empennage>
+        <landing_gear description="Geometric description of the aircraft undercarriage." tool_level="0">
+            <position description="Position of the total undercarriage arrangment with regard to the global reference point.">
+                <x_position description="Distance in x direction with regard to the global reference point. (total undercarriage arrangment)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>50</upper_boundary>
+                </x_position>
+                <y_position description="Distance in y direction with regard to the global reference point. (total undercarriage arrangment)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>0</upper_boundary>
+                </y_position>
+                <z_position description="Distance in z direction with regard to the global reference point. (total undercarriage arrangment)">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>-10</lower_boundary>
+                    <upper_boundary>0</upper_boundary>
+                </z_position>
+            </position>
+            <mass_properties description="Mass properties of the total undercarriage arrangment.">
+                <mass description="Mass of the total undercarriage arrangment.">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mass>
+                <inertia description="Inertia of the total undercarriage arrangment with regard to the total center of gravity.">
+                    <j_xx description="Inertia of the total undercarriage arrangment in x.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xx>
+                    <j_yy description="Inertia of the total undercarriage arrangment in y.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yy>
+                    <j_zz description="Inertia of the total undercarriage arrangment in z.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zz>
+                    <j_xy description="Inertia of the total undercarriage arrangment in xy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xy>
+                    <j_xz description="Inertia of the total undercarriage arrangment in xz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_xz>
+                    <j_yx description="Inertia of the total undercarriage arrangment in yx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yx>
+                    <j_yz description="Inertia of the total undercarriage arrangment in yz.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_yz>
+                    <j_zx description="Inertia of the total undercarriage arrangment in zx.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zx>
+                    <j_zy description="Inertia of the total undercarriage arrangment in zy.">
+                        <value>0.0</value>
+                        <unit>kgm^2</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </j_zy>
+                </inertia>
+                <center_of_gravity description="Center of gravity of the total undercarriage arrangment.">
+                    <x_position description="Center of gravity in x-direction with regard to the global reference point. (total undercarriage arrangment)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>50</upper_boundary>
+                    </x_position>
+                    <y_position description="Center of gravity in y-direction with regard to the global reference point. (total undercarriage arrangment)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>0</upper_boundary>
+                    </y_position>
+                    <z_position description="Center of gravity in z-direction with regard to the global reference point. (total undercarriage arrangment)">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-10</lower_boundary>
+                        <upper_boundary>0</upper_boundary>
+                    </z_position>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <aircraft_classification_number description="Aircraft classification number for the total undercarriage arrangment.">
+                    <value>return_string</value>
+                </aircraft_classification_number>
+                <aircraft_classification_rating description="Aircraft classification rating for the total undercarriage arrangment.">
+                    <value>return_string</value>
+                </aircraft_classification_rating>
+                <geometry>
+                    <number_of_landing_gear_struts description="Number of installed landing gear struts.">
+                        <value>0</value>
+                        <unit>1</unit>
+                        <lower_boundary>3</lower_boundary>
+                        <upper_boundary>6</upper_boundary>
+                    </number_of_landing_gear_struts>
+                    <landing_gear_leg ID="0" description="Geometrical description of one entire landing gear leg.">
+                        <name description="Name of the landing gear leg.">
+                            <value>nose_gear</value>
+                        </name>
+                        <position description="Position of one entire landing gear leg with regard to the global reference point.">
+                            <x_position description="Distance in x direction with regard to the global reference point. (center line of the landing gear leg)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>100</upper_boundary>
+                            </x_position>
+                            <y_position description="Distance in y direction with regard to the global reference point. (center line of the landing gear leg)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-15</lower_boundary>
+                                <upper_boundary>15</upper_boundary>
+                            </y_position>
+                            <z_position description="Distance in z direction with regard to the global reference point. (z coordinate refers to the mounting point of the landing gear leg.)">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-10</lower_boundary>
+                                <upper_boundary>0</upper_boundary>
+                            </z_position>
+                        </position>
+                        <mass_properties description="Mass properties of one entire landing gear leg.">
+                            <mass description="Mass of one entire landing gear leg.">
+                                <value>0</value>
+                                <unit>kg</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10000</upper_boundary>
+                            </mass>
+                            <inertia description="Inertia of one entire landing gear leg with regard to his center of gravity.">
+                                <j_xx description="Inertia of one entire landing gear leg in x.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xx>
+                                <j_yy description="Inertia of one entire landing gear leg in y.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yy>
+                                <j_zz description="Inertia of one entire landing gear leg in z.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zz>
+                                <j_xy description="Inertia of one entire landing gear leg xy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xy>
+                                <j_xz description="Inertia of one entire landing gear leg in xz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_xz>
+                                <j_yx description="Inertia of one entire landing gear leg in yx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yx>
+                                <j_yz description="Inertia of one entire landing gear leg in yz.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_yz>
+                                <j_zx description="Inertia of one entire landing gear leg in zx.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zx>
+                                <j_zy description="Inertia of one entire landing gear leg in zy.">
+                                    <value>0.0</value>
+                                    <unit>kgm^2</unit>
+                                    <lower_boundary>-inf</lower_boundary>
+                                    <upper_boundary>inf</upper_boundary>
+                                </j_zy>
+                            </inertia>
+                            <center_of_gravity description="Center of gravity of one entire landing gear leg.">
+                                <x_position description="Center of gravity in x-direction with regard to the global reference point. (entire landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>50</upper_boundary>
+                                </x_position>
+                                <y_position description="Center of gravity in y-direction with regard to the global reference point. (entire landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </y_position>
+                                <z_position description="Center of gravity in z-direction with regard to the global reference point. (entire landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-10</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </z_position>
+                            </center_of_gravity>
+                        </mass_properties>
+                        <assambly_components>
+                            <strut_diameter Desc="Diameter of the landing gear strut.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>1</upper_boundary>
+                            </strut_diameter>
+                            <strut_length Desc="Length of the landing gear strut.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </strut_length>
+                            <wheel_group_position Desc="Position of wheel group of one entire landing gear leg.">
+                                <x_position description="Distance in x direction with regard to the global reference point (center line of the landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>100</upper_boundary>
+                                </x_position>
+                                <y_position description="Distance in y direction with regard to the global reference point (center line of the landing gear leg)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-15</lower_boundary>
+                                    <upper_boundary>15</upper_boundary>
+                                </y_position>
+                                <z_position description="Distance in z direction with regard to the global reference point (z coordinate refers to the end point of the landing gear leg.)">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>-20</lower_boundary>
+                                    <upper_boundary>0</upper_boundary>
+                                </z_position>
+                            </wheel_group_position>
+                            <number_of_axis_of_wheel_group Desc="Number of axis of the wheel group behind each other.">
+                                <value>0</value>
+                                <unit>1</unit>
+                                <lower_boundary>1</lower_boundary>
+                                <upper_boundary>10</upper_boundary>
+                            </number_of_axis_of_wheel_group>
+                            <wheel_base Desc="Distance of the foremost to the rearmost axis of the wheel group.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>15</upper_boundary>
+                            </wheel_base>
+                            <wheel_track Desc="Distance between the outermost wheels of an axis.">
+                                <value>0</value>
+                                <unit>m</unit>
+                                <lower_boundary>0</lower_boundary>
+                                <upper_boundary>5</upper_boundary>
+                            </wheel_track>
+                            <number_of_tires_per_axis Desc="Number of tires per axis of a tire group.">
+                                <value>0</value>
+                                <unit>1</unit>
+                                <lower_boundary>1</lower_boundary>
+                                <upper_boundary>4</upper_boundary>
+                            </number_of_tires_per_axis>
+                            <tire_description Desc="Description of one tire of the wheel group">
+                                <tire_diameter Desc="Diameter of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>2</upper_boundary>
+                                </tire_diameter>
+                                <tire_width Desc="Width of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </tire_width>
+                                <rim_diameter Desc="Rim diameter of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m</unit>
+                                    <lower_boundary>0</lower_boundary>
+                                    <upper_boundary>1</upper_boundary>
+                                </rim_diameter>
+                                <tire_pressure Desc="Tire pressure of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>Pa</unit>
+                                    <lower_boundary>1000000</lower_boundary>
+                                    <upper_boundary>2000000</upper_boundary>
+                                </tire_pressure>
+                                <maximum_tire_speed Desc="Maximum permissible tire speed of the wheel group tires.">
+                                    <value>0</value>
+                                    <unit>m/s</unit>
+                                    <lower_boundary>50</lower_boundary>
+                                    <upper_boundary>125</upper_boundary>
+                                </maximum_tire_speed>
+                            </tire_description>
+                        </assambly_components>
+                    </landing_gear_leg>
+                </geometry>
+            </specific>
+        </landing_gear>
+        <propulsion description="Propulsion components" ID="0" tool_level="0">
+            <position description="Reference positions of the propulsion assembly">
+                <nacelle description="Position of nacelle element in aircraft coordinate system (center of inlet)">
+                    <x description="x direction of nacelle">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>100</upper_boundary>
+                    </x>
+                    <y description="y direction of nacelle">
+                        <value>0</value>
+                        <unit>m</unit>
+                        <lower_boundary>-50</lower_boundary>
+                        <upper_boundary>50</upper_boundary>
+                    </y>
+                    <z description="z direction of nacelle">
+                        <unit>m</unit>
+                        <value>0</value>
+                        <lower_boundary>-20</lower_boundary>
+                        <upper_boundary>40</upper_boundary>
+                    </z>
+                </nacelle>
+            </position>
+            <mass_properties description="Mass properties of propulsion assembly">
+                <nacelle>
+                    <mass description="nacelle mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </mass>
+                    <inertia description="nacelle inertia refered to its center of gravity">
+                        <j_xx description="inertia component in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia component in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia component in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia component in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia component in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia component in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia component in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia component in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia component in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="nacelle center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </nacelle>
+                <pylon>
+                    <mass description="component mass pylon">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </mass>
+                    <inertia description="component inertia refered to center of gravity">
+                        <j_xx description="inertia component in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia component in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia component in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia component in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia component in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia component in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia component in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia component in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia component in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </pylon>
+                <engine>
+                    <mass description="component mass engine">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>10000</upper_boundary>
+                    </mass>
+                    <inertia description="component inertia refered to center of gravity">
+                        <j_xx description="inertia component in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia component in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia component in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia component in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia component in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia component in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia component in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia component in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia component in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </engine>
+            </mass_properties>
+            <specific description="Specific nacelle and engine properties">
+                <nacelle description="Parametric description of nacelle geometry">
+                    <incidence_angle description="Angle of incidence in reference to the aircrafts coordinate system">
+                        <unit>degree</unit>
+                        <lower_boundary>-10</lower_boundary>
+                        <upper_boundary>10</upper_boundary>
+                    </incidence_angle>
+                    <number_points description="No of points describing the section">
+                        <value>0</value>
+                    </number_points>
+                    <number_segments description="Number of segments describing the nacelle">
+                        <value>0</value>
+                    </number_segments>
+                    <inlet_segment description="Geometric desciption of the nacelle inlet segment">
+                        <segment_point_data>
+                            <value>0</value>
+                        </segment_point_data>
+                        <width_inlet description="Width of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_inlet>
+                        <height_inlet description="Height of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_inlet>
+                        <length_inlet description="Length of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </length_inlet>
+                    </inlet_segment>
+                    <nacelle_segment ID="0">
+                        <inner_segment_point_data>
+                            <value>0</value>
+                        </inner_segment_point_data>
+                        <outer_segment_point_data>
+                            <value>0</value>
+                        </outer_segment_point_data>
+                        <width_inner_segment description="Inner widht of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_inner_segment>
+                        <width_outer_segment description="Outer widht of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_outer_segment>
+                        <height_inner_segment description="Inner height of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_inner_segment>
+                        <height_outer_segment description="Outer height of nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_outer_segment>
+                        <length_segment description="length of the nacelle segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </length_segment>
+                    </nacelle_segment>
+                    <exit_segment description="Geometric desciption of the nacelle exit segment">
+                        <segment_point_data>
+                            <value>0</value>
+                        </segment_point_data>
+                        <width_inlet description="Width of the nacelle exit segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </width_inlet>
+                        <height_inlet description="height of the nacelle exit segment">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>10</upper_boundary>
+                        </height_inlet>
+                    </exit_segment>
+                </nacelle>
+                <engine description="Parametric description of engine settings, geometry and performance">
+                    <settings description="Settings of engine model and improvment factor (from config)">
+                        <engine_model description="Name of selected engine model">
+                            <value>0.0</value>
+                        </engine_model>
+                        <fuel_flow_scale_factor description="Selected fuel flow scaling/improvement factor">
+                            <value>0.0</value>
+                            <lower_boundary>0.0</lower_boundary>
+                            <upper_boundary>1.0</upper_boundary>
+                        </fuel_flow_scale_factor>
+                        <maximum_shaft_power_extraction description="Maximum shaft power extraction of the engine for aircraft onboard systems">
+                            <value>0.0</value>
+                            <unit>W</unit>
+                            <lower_boundary>0.0</lower_boundary>
+                            <upper_boundary>3E+5</upper_boundary>
+                        </maximum_shaft_power_extraction>
+                    </settings>
+                    <turboprop_propeller_diameter description="Diameter of the propeller of the turboprop">
+                        <value>0.0</value>
+                        <unit>m</unit>
+                        <lower_boundary>1.75</lower_boundary>
+                        <lower_boundary>5.3</lower_boundary>
+                    </turboprop_propeller_diameter>
+                    <performance description="Performance specific parameter">
+                        <scale_factor description="Performance scaling factor">
+                            <value>0.0</value>
+                            <lower_boundary>0.0</lower_boundary>
+                            <upper_boundary>1.0</upper_boundary>
+                        </scale_factor>
+                        <maximum_take_off description="Performance at maximum take off condition at ISA+deltaISA (Requirements/DesignMission) with no offtakes at Mach=0.0 and altitude=0.0">
+                            <thrust>
+                                <value>0.0</value>
+                                <unit>N</unit>
+                                <lower_boundary>0.0</lower_boundary>
+                                <upper_boundary>999.0</upper_boundary>
+                            </thrust>
+                        </maximum_take_off>
+                        <maximum_continuous description="Performance at maximum continuous conditions at ISA+deltaISA (Requirements/DesignMission) with no offtakes at predefined Mach and altitude">
+                            <maximum_thrust description="Performance at maximum thrust at maximum continuous conditions">
+                                <thrust>
+                                    <value>0.0</value>
+                                    <unit>N</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust>
+                                <thrust_specific_fuel_consumption>
+                                    <value>0.0</value>
+                                    <unit>kgs^-1N^-1</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust_specific_fuel_consumption>
+                            </maximum_thrust>
+                            <bucket_thrust description="performance at bucket thrust at maximum continuous conditions">
+                                <thrust>
+                                    <value>0.0</value>
+                                    <unit>N</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust>
+                                <thrust_specific_fuel_consumption>
+                                    <value>0.0</value>
+                                    <unit>kgs^-1N^-1</unit>
+                                    <lower_boundary>0.0</lower_boundary>
+                                    <upper_boundary>999.0</upper_boundary>
+                                </thrust_specific_fuel_consumption>
+                            </bucket_thrust>
+                        </maximum_continuous>
+                    </performance>
+                </engine>
+            </specific>
+        </propulsion>
+        <systems tool_level="0">
+            <position />
+            <mass_properties description="mass_properties of component systems">
+                <mass description="component mass">
+                    <systems_group description="total systems group">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </systems_group>
+                    <auxiliary_power_unit description="Airbus Chapter 30, ATA49">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </auxiliary_power_unit>
+                    <hydraulic_generation description="Airbus Chapter 31, ATA 29">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </hydraulic_generation>
+                    <hydraulic_distribution description="Airbus Chapter 32, ATA 29">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </hydraulic_distribution>
+                    <air_conditioning description="Airbus Chapter 33, ATA21">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </air_conditioning>
+                    <de_icing description="Airbus Chapter 34, ATA30">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </de_icing>
+                    <fire_protection description="Airbus Chapter 35, ATA26">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </fire_protection>
+                    <flight_controls description="Airbus Chapter 36, ATA27">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                        <roll description="aileron actuators, their installations and operation controls, Airbus Ch. 36.0">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </roll>
+                        <yaw description="rudder actuators, their installations and operation controls, Airbus Ch. 36.1">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </yaw>
+                        <pitch description="elevator actuators, their installations and operation controls, Airbus Ch. 36.2">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </pitch>
+                        <movable_horizontal_tail description="movable horizontal tail actuators, their installations and operation controls, Airbus Ch. 36.3">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </movable_horizontal_tail>
+                        <flaps description="flap actuators, their installations and operation controls, Airbus Ch. 36.4">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </flaps>
+                        <spoilers_airbrakes_liftdumpers description="spoiler actuators, their installations and operation controls, Airbus Ch. 36.5">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </spoilers_airbrakes_liftdumpers>
+                        <slats description="Mass of the slat actuators, their installations and operation controls, Airbus Ch. 36.6">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </slats>
+                        <common_installation description="flight control common installation, Airbus Ch. 36.7">
+                            <value>0.0</value>
+                            <unit>kg</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </common_installation>
+                    </flight_controls>
+                    <instruments description="Airbus Chapter 37, ATA31">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </instruments>
+                    <automatic_flight_system description="Airbus Chapter 38, ATA 22">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </automatic_flight_system>
+                    <navigation description="Airbus Chapter 39, ATA34">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </navigation>
+                    <communication description="Airbus Chapter 40, ATA23">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </communication>
+                    <electrical_generation description="Airbus Chapter 41, ATA24, generation">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </electrical_generation>
+                    <electrical_distribution description="Airbus Chapter 42, ATA24, distribution">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </electrical_distribution>
+                </mass>
+                <inertia />
+                <center_of_gravity description="component center of gravity with respect to global coordinate system">
+                    <systems_group description="total systems group">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </systems_group>
+                    <auxiliary_power_unit description="Airbus Chapter 30, ATA49">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </auxiliary_power_unit>
+                    <hydraulic_generation description="Airbus Chapter 31, ATA 29">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </hydraulic_generation>
+                    <hydraulic_distribution description="Airbus Chapter 32, ATA 29">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </hydraulic_distribution>
+                    <air_conditioning description="Airbus Chapter 33, ATA21">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </air_conditioning>
+                    <de_icing description="Airbus Chapter 34, ATA30">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </de_icing>
+                    <fire_protection description="Airbus Chapter 35, ATA26">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </fire_protection>
+                    <flight_controls description="Airbus Chapter 36, ATA27">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                        <roll description="aileron actuators, their installations and operation controls, Airbus Ch. 36.0">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </roll>
+                        <yaw description="rudder actuators, their installations and operation controls, Airbus Ch. 36.1">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </yaw>
+                        <pitch description="elevator actuators, their installations and operation controls, Airbus Ch. 36.2">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </pitch>
+                        <movable_horizontal_tail description="movable horizontal tail actuators, their installations and operation controls, Airbus Ch. 36.3">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </movable_horizontal_tail>
+                        <flaps description="flap actuators, their installations and operation controls, Airbus Ch. 36.4">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </flaps>
+                        <spoilers_airbrakes_liftdumpers description="spoiler actuators, their installations and operation controls, Airbus Ch. 36.5">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </spoilers_airbrakes_liftdumpers>
+                        <slats description="Mass of the slat actuators, their installations and operation controls, Airbus Ch. 36.6">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </slats>
+                        <common_installation description="flight control common installation, Airbus Ch. 36.7">
+                            <x description="x component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </x>
+                            <y description="y component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </y>
+                            <z description="z component">
+                                <value>0.0</value>
+                                <unit>m</unit>
+                                <lower_boundary>-inf</lower_boundary>
+                                <lower_boundary>inf</lower_boundary>
+                            </z>
+                        </common_installation>
+                    </flight_controls>
+                    <instruments description="Airbus Chapter 37, ATA31">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </instruments>
+                    <automatic_flight_system description="Airbus Chapter 38, ATA 22">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </automatic_flight_system>
+                    <navigation description="Airbus Chapter 39, ATA34">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </navigation>
+                    <communication description="Airbus Chapter 40, ATA23">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </communication>
+                    <electrical_generation description="Airbus Chapter 41, ATA24, generation">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </electrical_generation>
+                    <electrical_distribution description="Airbus Chapter 42, ATA24, distribution">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <lower_boundary>inf</lower_boundary>
+                        </z>
+                    </electrical_distribution>
+                </center_of_gravity>
+            </mass_properties>
+            <specific>
+                <design_power description="design power of ATA29, ATA49, ATA70">
+                    <ATA29_hydraulic_system>
+                        <design_power description="maximum design power">
+                            <electric description="maximum demand for electrical power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </electric>
+                            <hydraulic description="maximum demand for hydraulic power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </hydraulic>
+                            <bleed_air description="maximum demand for bleed air">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air>
+                        </design_power>
+                        <pressure description="nominal pressure of hydraulic system">
+                            <value>0</value>
+                            <unit>Pa</unit>
+                        </pressure>
+                    </ATA29_hydraulic_system>
+                    <ATA49_auxiliary_power_unit>
+                        <design_power description="maximum design power">
+                            <electric description="maximum demand for electrical power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </electric>
+                            <hydraulic description="maximum demand for hydraulic power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </hydraulic>
+                            <bleed_air description="maximum demand for bleed air">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air>
+                        </design_power>
+                    </ATA49_auxiliary_power_unit>
+                    <ATA70_propulsion_system>
+                        <design_power description="maximum design power">
+                            <electric description="maximum demand for electrical power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </electric>
+                            <hydraulic description="maximum demand for hydraulic power">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </hydraulic>
+                            <bleed_air description="maximum demand for bleed air">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air>
+                        </design_power>
+                    </ATA70_propulsion_system>
+                </design_power>
+                <offtakes description="total shaft power and bleed air offtakes from sink systems">
+                    <design_mission>
+                        <average_cruise_offtakes description="average offtakes during cruise and changeFL for the design mission">
+                            <shaft_power_total description="total shaft offtakes from all sink systems">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </shaft_power_total>
+                            <bleed_air_total description="total bleed air offtake from all sink systems">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air_total>
+                        </average_cruise_offtakes>
+                    </design_mission>
+                    <study_mission>
+                        <average_cruise_offtakes description="average offtakes during cruise and changeFL for the study mission">
+                            <shaft_power_total description="total shaft offtakes from all sink systems">
+                                <value>0</value>
+                                <unit>W</unit>
+                            </shaft_power_total>
+                            <bleed_air_total description="total bleed air offtake from all sink systems">
+                                <value>0</value>
+                                <unit>kg/s</unit>
+                            </bleed_air_total>
+                        </average_cruise_offtakes>
+                    </study_mission>
+                </offtakes>
+            </specific>
+        </systems>
+    </component_design>
+    <analysis>
+        <masses_cg_inertia description="masses, cgs, inertias." tool_level="0">
+            <manufacturer_mass_empty description="MME">
+                <mass_properties description="manufacturer mass empty properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </manufacturer_mass_empty>
+            <operating_mass_empty description="OME">
+                <mass_properties description="operating mass empty properties">
+                    <mass description="mass">
+                        <value>42307.66255</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </operating_mass_empty>
+            <maximum_zero_fuel_mass description="MZFM">
+                <mass_properties description="maximum zero fuel mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_zero_fuel_mass>
+            <maximum_landing_mass description="MLM">
+                <mass_properties description="maximum landing  mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_landing_mass>
+            <maximum_takeoff_mass description="MTOM">
+                <mass_properties description="maximum landing mass properties">
+                    <mass description="mass">
+                        <value>79144.73202</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_takeoff_mass>
+            <maximum_payload_mass description="maximum payload mass">
+                <mass_properties description="maximum payload mass properties">
+                    <mass description="mass">
+                        <value>20000</value>
+                        <unit>kg</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_payload_mass>
+            <maximum_fuel_mass description="maximum fuel mass">
+                <mass_properties description="maximum fuel mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </maximum_fuel_mass>
+            <most_forward_mass description="mass for most forward cg position">
+                <mass_properties description="maximum fuel mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </most_forward_mass>
+            <most_aft_mass description="mass for most aft cg position">
+                <mass_properties description="most aft mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </most_aft_mass>
+            <design_mass description="design mass ">
+                <mass_properties description="design mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>0</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </design_mass>
+            <most_afterward_mass description="mass for most afterward cg position">
+                <mass_properties description="most afterward mass properties">
+                    <mass description="mass">
+                        <value>0.0</value>
+                        <unit>kg</unit>
+                        <lower_boundary>-inf</lower_boundary>
+                        <upper_boundary>inf</upper_boundary>
+                    </mass>
+                    <inertia description="inertia refered to center of gravity">
+                        <j_xx description="inertia in x">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xx>
+                        <j_yy description="inertia in y">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yy>
+                        <j_zz description="inertia in z">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zz>
+                        <j_xy description="inertia in xy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xy>
+                        <j_xz description="inertia in xz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_xz>
+                        <j_yx description="inertia in yx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yx>
+                        <j_yz description="inertia in yz">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_yz>
+                        <j_zx description="inertia in zx">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zx>
+                        <j_zy description="inertia in zy">
+                            <value>0.0</value>
+                            <unit>kgm^2</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </j_zy>
+                    </inertia>
+                    <center_of_gravity description="center of gravity with respect to global coordinate system">
+                        <x description="x component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </x>
+                        <y description="y component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </y>
+                        <z description="z component">
+                            <value>0.0</value>
+                            <unit>m</unit>
+                            <lower_boundary>-inf</lower_boundary>
+                            <upper_boundary>inf</upper_boundary>
+                        </z>
+                    </center_of_gravity>
+                </mass_properties>
+            </most_afterward_mass>
+        </masses_cg_inertia>
+        <aerodynamics description="Aerodynamcal analysis." level="0">
+            <reference_values>
+                <b description="Total wing span" tool_level="0">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>80</upper_boundary>
+                </b>
+                <MAC description="Mean aerodynamic chord" tool_level="0">
+                    <value>0</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>50</upper_boundary>
+                </MAC>
+                <S_ref description="Wing reference area" tool_level="0">
+                    <value>0</value>
+                    <unit>m^2</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </S_ref>
+            </reference_values>
+            <lift_coefficients>
+                <C_LmaxLanding description="Maximum lift coefficient in landing configuration" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LmaxLanding>
+                <C_LmaxT-O description="Maximum lift coefficient in take off configuration" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LmaxT-O>
+                <C_LoptimumCruise description="Lift coefficient at L/D_optimum at M_initial_cruise" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LoptimumCruise>
+                <C_LgroundRoll description="Lift coefficient on ground for ground roll calculation" tool_level="0">
+                    <value>0</value>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </C_LgroundRoll>
+            </lift_coefficients>
+            <polar>
+                <polar_file description="Name of polar file" tool_level="0">
+                    <value>0</value>
+                </polar_file>
+                <configurations description="Number of configurations in the polar file" tool_level="0">
+                    <value>0</value>
+                </configurations>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="1" tool_level="0">
+                    <type>Cruise</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="2" tool_level="0">
+                    <type>Departure</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="3" tool_level="0">
+                    <type>Departure</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="4" tool_level="0">
+                    <type>Departure</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="5" tool_level="0">
+                    <type>Approach</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="6" tool_level="0">
+                    <type>Approach</type>
+                    <value>0</value>
+                </configuration>
+                <configuration description="Configuration in polar file marked with ID - name can vary" ID="7" tool_level="0">
+                    <type>Approach</type>
+                    <value>0</value>
+                </configuration>
+            </polar>
+            <max_spoiler_factor description="Factor for maximum drag increase trough spoilers" tool_level="0">
+                <value>0</value>
+                <lower_boundary>1</lower_boundary>
+                <upper_boundary>inf</upper_boundary>
+            </max_spoiler_factor>
+        </aerodynamics>
+        <mission description="Mission data." tool_level="0">
+            <design_mission description="Data of design mission">
+                <range description="Range of design mission">
+                    <value>2500.496279</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>3000000</upper_boundary>
+                </range>
+                <block_time description="Block time of design mission: Time from break release to end of taxiing after landing">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>126000</upper_boundary>
+                </block_time>
+                <flight_time description="Flight time of design mission">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>12600</upper_boundary>
+                </flight_time>
+                <taxi_fuel_take_off description="Taxi fuel before takeoff in design mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </taxi_fuel_take_off>
+                <taxi_fuel_landing description="Taxi fuel after landing in design mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1000</upper_boundary>
+                </taxi_fuel_landing>
+                <mission_fuel description="Total fuel loaded for design mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mission_fuel>
+                <trip_fuel description="Fuel burned from takeoff to landing">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </trip_fuel>
+                <payload description="Payload of design mission">
+                    <value>17000</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload>
+                <number_of_pax description="Number of passengers of design mission">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </number_of_pax>
+                <cargo_mass description="Cargo mass of design mission">
+                    <value>3392</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </cargo_mass>
+                <take_off_engine_derate Desc="Engine power demand">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1</upper_boundary>
+                </take_off_engine_derate>
+                <cruise_steps description="Cruise step information">
+                    <numer_of_cruise_steps description="Number of cruise steps in design mission">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </numer_of_cruise_steps>
+                    <cruise_step description="Data of cruise step" ID="0">
+                        <relative_end_of_cruise_step description="End of cruise step relative to mission length">
+                            <value>0</value>
+                            <unit>-</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>1</upper_boundary>
+                        </relative_end_of_cruise_step>
+                        <altitude description="Altitude of cruise step">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>15000</upper_boundary>
+                        </altitude>
+                    </cruise_step>
+                </cruise_steps>
+                <take_off_mass description="Take off mass">
+                    <value>79144.73202</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </take_off_mass>
+            </design_mission>
+            <study_mission description="Data of study mission">
+                <range description="Range of study mission">
+                    <value>500.6435584</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>3000000</upper_boundary>
+                </range>
+                <block_time description="Block time of study mission: Time from break release to end of taxiing after landing">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>126000</upper_boundary>
+                </block_time>
+                <flight_time description="Flight time of study mission">
+                    <value>0</value>
+                    <unit>s</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>12600</upper_boundary>
+                </flight_time>
+                <taxi_fuel_takeoff description="Taxi fuel before takeoff in study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>500</upper_boundary>
+                </taxi_fuel_takeoff>
+                <taxi_fuel_landing description="Taxi fuel after landing in study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>500</upper_boundary>
+                </taxi_fuel_landing>
+                <mission_fuel description="Total fuel loaded for study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </mission_fuel>
+                <trip_fuel description="Fuel burned from takeoff to landing">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </trip_fuel>
+                <payload description="Payload of study mission">
+                    <value>13608</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload>
+                <cruise_steps description="Cruise step information">
+                    <numer_of_cruise_steps description="Number of cruise steps in study mission">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </numer_of_cruise_steps>
+                    <cruise_step description="Data of cruise step" ID="0">
+                        <relative_end_of_cruise_step description="End of cruise step relative to mission length">
+                            <value>0</value>
+                            <unit>-</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>1</upper_boundary>
+                        </relative_end_of_cruise_step>
+                        <altitude description="Altitude of cruise step">
+                            <value>0</value>
+                            <unit>m</unit>
+                            <lower_boundary>0</lower_boundary>
+                            <upper_boundary>15000</upper_boundary>
+                        </altitude>
+                    </cruise_step>
+                </cruise_steps>
+                <payload description="Payload of study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload>
+                <number_of_pax description="Number of passengers of study mission">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </number_of_pax>
+                <cargo_mass description="Cargo mass of study mission">
+                    <value>0</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </cargo_mass>
+                <take_off_engine_derate Desc="Engine power demand">
+                    <value>0</value>
+                    <unit>1</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>1</upper_boundary>
+                </take_off_engine_derate>
+            </study_mission>
+        </mission>
+        <requirement_compliance>
+            <top_level_aircraft_requirements tool_level="0">
+                <design_take_off_field_length description="Switch indicating if take off field length can be maintained.">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </design_take_off_field_length>
+                <design_landing_field_length description="Switch indicating if landing fiel length can be maintained.">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </design_landing_field_length>
+                <design_approach_speed description="Switch indicating if approach speed can be maintained.">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </design_approach_speed>
+            </top_level_aircraft_requirements>
+            <certification tool_level="0">
+                <climb_gradient_of_second_take_off_segment description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_of_second_take_off_segment>
+                <climb_gradient_of_final_take_off_segment description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_of_final_take_off_segment>
+                <climb_gradient_approach_one_engine_inoperative description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_approach_one_engine_inoperative>
+                <climb_gradient_all_engines_operative description="Switch if landing field length can be maintained">
+                    <value>0</value>
+                    <unit>-</unit>
+                    <checked description="Indicates if the value has been checked against the requirement.">
+                        <value>0</value>
+                        <unit>-</unit>
+                    </checked>
+                </climb_gradient_all_engines_operative>
+            </certification>
+        </requirement_compliance>
+    </analysis>
+    <assessment>
+        <performance>
+            <speed tool_level="0">
+                <maximum_operating_mach_number description="Maximum operating mach number">
+                    <value>0</value>
+                    <unit>-</unit>
+                </maximum_operating_mach_number>
+                <maximum_operating_velocity description="Maximum oderating speed (maximum dynamic pressure)">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </maximum_operating_velocity>
+                <dive_mach_number description="Diving mach number">
+                    <value>0</value>
+                    <unit>-</unit>
+                </dive_mach_number>
+                <dive_velocity description="Diving speed">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </dive_velocity>
+                <one_g_stall_speed_velocity description="One g stall speed in clean configuration">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </one_g_stall_speed_velocity>
+            </speed>
+            <take_off tool_level="0">
+                <take_off_distance_normal_safety description="Takeoff distance at Sea Level for MTOM and (ISA + deltaISA)-Conditions(calculated by missionAnalysis using missionDesign.xml settings) with all engines operating (AEO)">
+                    <value>0</value>
+                    <unit>m</unit>
+                </take_off_distance_normal_safety>
+                <lift_off_speed_velocity Alt="v_lof" description="Lift-off speed in take-off configuration">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </lift_off_speed_velocity>
+                <decision_speed Alt="v_1" description="Decision speed">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </decision_speed>
+                <take_off_safety_speed Alt="v_2" description="Speed at screen height (35 ft)">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </take_off_safety_speed>
+                <final_take_off_speed Alt="v_FTO" description="Speed at final takeoff segment (1500 ft)">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </final_take_off_speed>
+                <time_to_screen_height description="Time to screen height">
+                    <value>0</value>
+                    <unit>s</unit>
+                </time_to_screen_height>
+                <climb_or_descend_segment_climb_gradient description="Climb gradient in second takeoff segment">
+                    <value>0</value>
+                    <unit>%</unit>
+                </climb_or_descend_segment_climb_gradient>
+                <final_segment_climb_gradient description="Climb gradient in final takeoff segment">
+                    <value>0</value>
+                    <unit>%</unit>
+                </final_segment_climb_gradient>
+                <balanced_field_length description="Balanced field length">
+                    <value>0</value>
+                    <unit>m</unit>
+                </balanced_field_length>
+            </take_off>
+            <landing tool_level="0">
+                <needed_runway_length description="Needed runway length with all engines operating and maximum landing mass">
+                    <value>0</value>
+                    <unit>m</unit>
+                </needed_runway_length>
+                <approach_speed description="Final approach speed in landing configuration and maximum landing mass">
+                    <value>0</value>
+                    <unit>m/s</unit>
+                </approach_speed>
+            </landing>
+            <range tool_level="0">
+                <range_max_payload_at_maximum_take_off_mass description="Range at maximum payload and fuel mass till maximum take off mass limit">
+                    <value>3246.489365</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </range_max_payload_at_maximum_take_off_mass>
+                <range_max_fuel_at_maximum_take_off_mass description="Range at full tanks and payload till maximum take off mass limit">
+                    <value>10458.54652</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </range_max_fuel_at_maximum_take_off_mass>
+                <payload_maximum_fuel_at_maximum_take_off_mass description="Payload at full tanks and payload till maximum take off mass limit">
+                    <value>4361.39852</value>
+                    <unit>kg</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </payload_maximum_fuel_at_maximum_take_off_mass>
+                <range_maximum_fuel_empty description="Range for no payload and full tanks">
+                    <value>10708.77812</value>
+                    <unit>m</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </range_maximum_fuel_empty>
+            </range>
+        </performance>
+        <average_temperature_response description="Integrated temperature change per year caused by aircraft operation divided by operating lifetime" tool_level="2">
+            <value>0</value>
+            <unit>K</unit>
+            <lower_boundary>0</lower_boundary>
+            <upper_boundary>1e-5</upper_boundary>
+        </average_temperature_response>
+        <operating_cost_estimation_tu_berlin description="Operating costs (sum of direct and indirect operating costs)" tool_level="2">
+            <direct_operating_costs description="Direct operating costs (sum of route independent and route dependent costs)">
+                <direct_operating_costs_annual description="Direct operating costs (DOC) per year">
+                    <value>30</value>
+                    <unit>EUR/y</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </direct_operating_costs_annual>
+            </direct_operating_costs>
+            <indirect_operating_costs description="Indirect operating costs (IOC)">
+                <indirect_operating_costs_annual description="Indirect operating costs (IOC) per year">
+                    <value>40</value>
+                    <unit>EUR/y</unit>
+                    <lower_boundary>0</lower_boundary>
+                    <upper_boundary>inf</upper_boundary>
+                </indirect_operating_costs_annual>
+            </indirect_operating_costs>
+        </operating_cost_estimation_tu_berlin>
+    </assessment>
+</aircraft_exchange_file>
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/reporting/plots/[module name]_[name of plot].txt b/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/reporting/plots/[module name]_[name of plot].txt
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml b/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml
new file mode 100644
index 0000000000000000000000000000000000000000..7266cf694afa591575e928cb4b635e6740ddbdbd
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml
@@ -0,0 +1,46 @@
+<module_results_file Name="Cost estimation specific outputs">
+    <general_information description="General information on module execution">
+        <workflow_version description="Version number of the current workflow">
+            <value>2.1.0</value>
+        </workflow_version>
+        <execution_date description="Execution date and time of the code">
+            <value>2024-11-18_10-48-55</value>
+        </execution_date>
+        <project_name description="Name of the current aircraft project">
+            <value>CSR-02</value>
+        </project_name>
+        <method_name description="Name of current module calculation method">
+            <value>operating_cost_estimation_tu_berlin</value>
+        </method_name>
+        <routing_layer description="Routing layer information">
+            <layer_1 description="Routing layer_1">
+                <value>tube_and_wing</value>
+            </layer_1>
+            <layer_2 description="Routing layer_2">
+                <value>empirical</value>
+            </layer_2>
+            <layer_3 description="Routing layer_3">
+                <value>operating_cost_estimation_tu_berlin</value>
+            </layer_3>
+            <user_layer description="Routing user_layer">
+                <value>kerosene</value>
+            </user_layer>
+        </routing_layer>
+    </general_information>
+    <calculation_results description="Results of calculation method">
+        <operating_cost_estimation_tu_berlin description="Empirical method to estimate the direct operating costs (DOC) and indirect operating costs (IOC) of an aircraft.">
+            <design_mission description="Cost estimation results of the design mission">
+                <direct_operating_costs description="Direct operating costs">
+                    <direct_operating_costs_per_year description="Direct operating costs per year at design point (sum of route dependent and route independent costs)">
+                        <value>30</value>
+                        <unit>EUR</unit>
+                    </direct_operating_costs_per_year>
+                </direct_operating_costs>
+                <indirect_operating_costs description="Indirect operating costs">
+                    <value>40</value>
+                    <unit>EUR</unit>
+                </indirect_operating_costs>
+            </design_mission>
+        </operating_cost_estimation_tu_berlin>
+    </calculation_results>
+</module_results_file>
\ No newline at end of file
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/CMakeLists.txt b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c590f285d26c1401d18573ee20ba6cd8c7484f29
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/CMakeLists.txt
@@ -0,0 +1,4 @@
+# Add the package to the package list for exporting the target
+# and propagate the resulting list back to the parent scope
+list( APPEND PYTHON_TARGETS ${CMAKE_CURRENT_LIST_DIR} )
+set( PYTHON_TARGETS ${PYTHON_TARGETS} PARENT_SCOPE )
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/LICENSE b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..c2e9f6c95bb8b07119095b6793e4fc81984c0647
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/LICENSE
@@ -0,0 +1,674 @@
+                    GNU GENERAL PUBLIC LICENSE
+                       Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+                            Preamble
+
+  The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+  The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works.  By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users.  We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors.  You can apply it to
+your programs, too.
+
+  When we speak of free software, we are referring to freedom, not
+price.  Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+  To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights.  Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+  For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received.  You must make sure that they, too, receive
+or can get the source code.  And you must show them these terms so they
+know their rights.
+
+  Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+  For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software.  For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+  Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so.  This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software.  The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable.  Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products.  If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+  Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary.  To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+  The precise terms and conditions for copying, distribution and
+modification follow.
+
+                       TERMS AND CONDITIONS
+
+  0. Definitions.
+
+  "This License" refers to version 3 of the GNU General Public License.
+
+  "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+  "The Program" refers to any copyrightable work licensed under this
+License.  Each licensee is addressed as "you".  "Licensees" and
+"recipients" may be individuals or organizations.
+
+  To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy.  The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+  A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+  To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy.  Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+  To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies.  Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+  An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License.  If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+  1. Source Code.
+
+  The "source code" for a work means the preferred form of the work
+for making modifications to it.  "Object code" means any non-source
+form of a work.
+
+  A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+  The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form.  A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+  The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities.  However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work.  For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+  The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+  The Corresponding Source for a work in source code form is that
+same work.
+
+  2. Basic Permissions.
+
+  All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met.  This License explicitly affirms your unlimited
+permission to run the unmodified Program.  The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work.  This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+  You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force.  You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright.  Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+  Conveying under any other circumstances is permitted solely under
+the conditions stated below.  Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+  No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+  When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+  4. Conveying Verbatim Copies.
+
+  You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+  You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+  5. Conveying Modified Source Versions.
+
+  You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+    a) The work must carry prominent notices stating that you modified
+    it, and giving a relevant date.
+
+    b) The work must carry prominent notices stating that it is
+    released under this License and any conditions added under section
+    7.  This requirement modifies the requirement in section 4 to
+    "keep intact all notices".
+
+    c) You must license the entire work, as a whole, under this
+    License to anyone who comes into possession of a copy.  This
+    License will therefore apply, along with any applicable section 7
+    additional terms, to the whole of the work, and all its parts,
+    regardless of how they are packaged.  This License gives no
+    permission to license the work in any other way, but it does not
+    invalidate such permission if you have separately received it.
+
+    d) If the work has interactive user interfaces, each must display
+    Appropriate Legal Notices; however, if the Program has interactive
+    interfaces that do not display Appropriate Legal Notices, your
+    work need not make them do so.
+
+  A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit.  Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+  6. Conveying Non-Source Forms.
+
+  You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+    a) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by the
+    Corresponding Source fixed on a durable physical medium
+    customarily used for software interchange.
+
+    b) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by a
+    written offer, valid for at least three years and valid for as
+    long as you offer spare parts or customer support for that product
+    model, to give anyone who possesses the object code either (1) a
+    copy of the Corresponding Source for all the software in the
+    product that is covered by this License, on a durable physical
+    medium customarily used for software interchange, for a price no
+    more than your reasonable cost of physically performing this
+    conveying of source, or (2) access to copy the
+    Corresponding Source from a network server at no charge.
+
+    c) Convey individual copies of the object code with a copy of the
+    written offer to provide the Corresponding Source.  This
+    alternative is allowed only occasionally and noncommercially, and
+    only if you received the object code with such an offer, in accord
+    with subsection 6b.
+
+    d) Convey the object code by offering access from a designated
+    place (gratis or for a charge), and offer equivalent access to the
+    Corresponding Source in the same way through the same place at no
+    further charge.  You need not require recipients to copy the
+    Corresponding Source along with the object code.  If the place to
+    copy the object code is a network server, the Corresponding Source
+    may be on a different server (operated by you or a third party)
+    that supports equivalent copying facilities, provided you maintain
+    clear directions next to the object code saying where to find the
+    Corresponding Source.  Regardless of what server hosts the
+    Corresponding Source, you remain obligated to ensure that it is
+    available for as long as needed to satisfy these requirements.
+
+    e) Convey the object code using peer-to-peer transmission, provided
+    you inform other peers where the object code and Corresponding
+    Source of the work are being offered to the general public at no
+    charge under subsection 6d.
+
+  A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+  A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling.  In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage.  For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product.  A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+  "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source.  The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+  If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information.  But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+  The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed.  Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+  Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+  7. Additional Terms.
+
+  "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law.  If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+  When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it.  (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.)  You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+  Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+    a) Disclaiming warranty or limiting liability differently from the
+    terms of sections 15 and 16 of this License; or
+
+    b) Requiring preservation of specified reasonable legal notices or
+    author attributions in that material or in the Appropriate Legal
+    Notices displayed by works containing it; or
+
+    c) Prohibiting misrepresentation of the origin of that material, or
+    requiring that modified versions of such material be marked in
+    reasonable ways as different from the original version; or
+
+    d) Limiting the use for publicity purposes of names of licensors or
+    authors of the material; or
+
+    e) Declining to grant rights under trademark law for use of some
+    trade names, trademarks, or service marks; or
+
+    f) Requiring indemnification of licensors and authors of that
+    material by anyone who conveys the material (or modified versions of
+    it) with contractual assumptions of liability to the recipient, for
+    any liability that these contractual assumptions directly impose on
+    those licensors and authors.
+
+  All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10.  If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term.  If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+  If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+  Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+  8. Termination.
+
+  You may not propagate or modify a covered work except as expressly
+provided under this License.  Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+  However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+  Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+  Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License.  If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+  9. Acceptance Not Required for Having Copies.
+
+  You are not required to accept this License in order to receive or
+run a copy of the Program.  Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance.  However,
+nothing other than this License grants you permission to propagate or
+modify any covered work.  These actions infringe copyright if you do
+not accept this License.  Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+  10. Automatic Licensing of Downstream Recipients.
+
+  Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License.  You are not responsible
+for enforcing compliance by third parties with this License.
+
+  An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations.  If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+  You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License.  For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+  11. Patents.
+
+  A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based.  The
+work thus licensed is called the contributor's "contributor version".
+
+  A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version.  For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+  Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+  In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement).  To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+  If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients.  "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+  If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+  A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License.  You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+  Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+  12. No Surrender of Others' Freedom.
+
+  If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License.  If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all.  For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+  13. Use with the GNU Affero General Public License.
+
+  Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work.  The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+  14. Revised Versions of this License.
+
+  The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time.  Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+  Each version is given a distinguishing version number.  If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation.  If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+  If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+  Later license versions may give you additional or different
+permissions.  However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+  15. Disclaimer of Warranty.
+
+  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+  16. Limitation of Liability.
+
+  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+  17. Interpretation of Sections 15 and 16.
+
+  If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+                     END OF TERMS AND CONDITIONS
+
+            How to Apply These Terms to Your New Programs
+
+  If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+  To do so, attach the following notices to the program.  It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+    UNICADO - Modular Preliminary Aircraft Design Tool
+    Copyright (C) 2024
+
+    This program is free software: you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation, either version 3 of the License, or
+    (at your option) any later version.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
+
+    You should have received a copy of the GNU General Public License
+    along with this program.  If not, see <https://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+  If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+    <program>  Copyright (C) <year>  <name of author>
+    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+    This is free software, and you are welcome to redistribute it
+    under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License.  Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+  You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+<https://www.gnu.org/licenses/>.
+
+  The GNU General Public License does not permit incorporating your program
+into proprietary programs.  If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library.  If this is what you want to do, use the GNU Lesser General
+Public License instead of this License.  But first, please read
+<https://www.gnu.org/licenses/why-not-lgpl.html>.
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/README.md b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..3eb3604f05fd0d1711bce7b3695de3df835b534c
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/README.md
@@ -0,0 +1,31 @@
+# UNICADO Python Framework
+
+Brief description of what the project does and its purpose.
+
+## Installation (standalone)
+Please follow the instructions on the UNICADO website:
+https://unicado.ilr.rwth-aachen.de/w/software_maintenance/how_to_python_in_unicado/
+
+## Usage
+Explain how to use the project. Provide examples if necessary.
+
+## Configuration
+Explain any configuration options or settings that can be customized.
+
+## Contributing
+If you'd like to contribute to this project, please follow these guidelines:
+
+Fork the repository.
+Create a new branch (git checkout -b feature_branch).
+Make your changes and commit them (git commit -am 'Add new feature').
+Push to the branch (git push origin feature_branch).
+Create a new Pull Request.
+
+## License
+This project is licensed under the GNU General Public License, Version 3 - see the LICENSE.md file for details.
+
+## Acknowledgements
+List any acknowledgements or credits for libraries, tutorials, etc. that were used in developing this project.
+
+## Contact
+For questions or feedback, please contact A. Gobbin (a.gobbin@tu-berlin.de) or S. Roscher (s.roscher@tu-berlin.de).
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/pyproject.toml b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/pyproject.toml
new file mode 100644
index 0000000000000000000000000000000000000000..ebb3fbb21978587f60e92ec6ada35fb193757c75
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/pyproject.toml
@@ -0,0 +1,20 @@
+[build-system]
+# Please do not change any information given here.
+requires = ["setuptools", "setuptools-scm"] 
+build-backend = "setuptools.build_meta"
+
+[project] 
+name = "pymodulepackage" # insert name of the package (all lowercase, without underscores or special characters)
+version = "2.0.1" # insert version of package
+description = "This package contains standardized functions for UNICADO module execution." # Insert short package description
+readme = "README.md"
+requires-python = ">=3.10"
+license = {file = "LICENSE"}
+authors = [ # Insert name of author(s)
+    {name = "A. Gobbin", email = "a.gobbin@tu-berlin.de"},
+    {name = "S. Roscher", email = "s.roscher@tu-berlin.de"}
+]
+
+[project.urls]
+homepage = "https://unicado.ilr.rwth-aachen.de/"
+repository = "https://git.rwth-aachen.de/unicado"
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a4f587af3ab7a2aa1357331dd59a91b45322d2c
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py
@@ -0,0 +1,930 @@
+"""Module providing general UNICADO data postprocessing functions for Python code."""
+# Import standard modules.
+import os
+import re
+import sys
+import collections
+import xml.etree.ElementTree as ET
+from datetime import datetime
+
+
+def create_element_tree_from_paths(input_dict):
+    """ Create element tree from paths.
+
+    This function creates an element tree from the xml-paths inside the given input dictionary.
+
+    :param root input_dict: Dict containing module specific output datas.
+    :return: root
+    """
+    ''' initialize local parameter '''
+    paths = []
+    values = []
+
+    # Generate lists of paths and values
+    for _, value in input_dict.items():
+        paths.append(value[0])
+        values.append(value[1])
+
+    # Create the root element.
+    root_name = paths[0].split('/')[1]
+    root = ET.Element(root_name)
+
+    # Build the XML tree.
+    for index, path in enumerate(paths):
+        # Split the path into parts.
+        parts = re.split(r'\/(?![^\[]*\])', path.lstrip('./'))
+        current_element = root
+
+        for part in parts:
+            # Check if part has an ID attribute
+            id_match = re.search(r'(.+?)\[@ID="(\d+)"\]', part)
+            if id_match:
+                tag, id_value = id_match.groups()
+                # Check if an element with the same tag and ID already exists.
+                existing_element = current_element.find(f"./{tag}[@ID='{id_value}']")
+                if existing_element is not None:
+                    current_element = existing_element
+                else:
+                    new_element = ET.SubElement(current_element, tag, ID=id_value)
+                    current_element = new_element
+            else:
+                # Check if an element with the same tag already exists.
+                existing_element = current_element.find(part)
+                if existing_element is not None:
+                    current_element = existing_element
+                else:
+                    new_element = ET.SubElement(current_element, part)
+                    current_element = new_element
+
+        # Add 'value' sub-node with None as text content to the end node.
+        value_node = ET.SubElement(current_element, 'value')
+        value_node.text = str(values[index])
+
+    return root
+
+
+def insert_missing_elements(main_tree, root_of_tree_to_insert):
+    """ Insert missing elements.
+
+    This function searches and inserts missing module-dependent node elements in the aircraft exchange tree.
+
+    :param tree main_tree: The element tree into which all data from the second tree is to be inserted.
+    :param root root_of_tree_to_insert: The root node contains all the data to be inserted into the main tree.
+    :return: None
+    """
+    root = main_tree.getroot()
+
+    def insert_elements(first_parent, second_parent):
+        for second_child in second_parent:
+            # Find or create the corresponding child in the first tree
+            first_child = first_parent.find(second_child.tag)
+            if first_child is None:
+                # If the element doesn't exist in the first tree, append it
+                first_child = ET.SubElement(first_parent, second_child.tag, attrib=second_child.attrib)
+                first_child.text = second_child.text
+            else:
+                # Update the attributes and text of the existing element
+                first_child.attrib.update(second_child.attrib)
+                if first_child.text is None:
+                    first_child.text = second_child.text
+                elif second_child.text is not None:
+                    first_child.text += second_child.text
+            # Recursively insert missing elements for child elements
+            insert_elements(first_child, second_child)
+
+    # Start recursive insertion from the roots
+    insert_elements(root, root_of_tree_to_insert)
+
+
+def find_and_remove_paths_in_tree(element_tree, cleaned_paths):
+    """ Find and remove paths in tree.
+
+    This function searches and removes given XML paths from a given element tree.
+    Attention: The function has different behavior for entries in the 'component_design' node. Due to the unknown
+    number of ID nodes, the entire module-dependent subtree is deleted here.
+    For all other nodes, only the target nodes are removed.
+
+    :param tree element_tree: Element tree containing all node datas.
+    :param list cleaned_paths: List containing all xml paths to remove.
+    :return: None
+    """
+    # Nested function to find parent node of current subtree node
+    def find_parent(root, element):
+        for parent in root.iter():
+            for child in parent:
+                if child == element:
+                    return parent
+        return None
+
+    root = element_tree.getroot()
+    # Create map for parent-child relations.
+    parent_map = {c: p for p in element_tree.iter() for c in p}
+
+    # Loop across all paths to remove from aircraft exchange tree.
+    for path in cleaned_paths:
+        # Convert the './' prefixed path to the standard XPath by removing the leading './'.
+        xpath = path.lstrip('./')
+        # Get first node of current path.
+        first_node = xpath.split('/')[0]
+        # Check if the first node is not 'component_design' -> if true: -> remove only the end nodes of current path.
+        if not first_node == 'component_design':
+            # Find elements matching the XPath.
+            elements_to_remove = root.findall(xpath)
+            # Check each element if is existing -> if true: -> remove node from element tree
+            for elem in elements_to_remove:
+                parent = parent_map.get(elem)
+                if parent is not None:
+                    parent.remove(elem)
+
+        # Else condition: the first node of current path is 'component_design'
+        #   -> Remove all nodes from second node to end of current path.
+        else:
+            second_node = xpath.split('/')[1]
+            sub_tree_to_remove = root.find('component_design/' + second_node)
+            if sub_tree_to_remove is not None:
+                # Use a list to collect all descendants
+                elements_to_remove = []
+                stack = [sub_tree_to_remove]
+                while stack:
+                    current_element = stack.pop()
+                    elements_to_remove.append(current_element)
+                    stack.extend(list(current_element))
+                # Remove all collected elements
+                for elem in elements_to_remove[::-1]:
+                    # Call nested function to find parend node of current sub tree node.
+                    parent = find_parent(root, elem)
+                    if parent is not None:
+                        parent.remove(elem)
+
+
+def convert_dictionary_to_element_tree(parameters_dict, parent=None):
+    """ Convert dictionary to element tree.
+
+    This function converts the module-dependent key parameter dict into a consistent module-dependent element tree.
+
+    :param dict parameters_dict: Dict containing parameter for the element tree to generate.
+    :param node parent: The Parent node element of current module key parameter.
+    :return: element parent
+    """
+    # Check if is parent is None -> if true: -> initialize root node of element tree as 'module_dependent_root'.
+    #  Otherwise, the given parent is an ET.Element
+    if parent is None:
+        parent = ET.Element('module_dependent_root')
+
+    # Loop across the key value pairs of given dictionary to convert to an element tree.
+    for key, value in parameters_dict.items():
+        # Check if the current key is 'attribute' -> if true: -> set current value as an attribute of parent node
+        if key == 'attributes':
+            for attr_key, attr_value in value.items():
+                parent.set(attr_key, str(attr_value))
+        # Else if condition: Check if the current value is a dictionary -> if true: -> build sub-dictionary recursively.
+        elif isinstance(value, dict):
+            element = ET.Element(key)
+            parent.append(element)
+            # Call function for recursive tree building.
+            convert_dictionary_to_element_tree(value, element)
+        # Else condition: Current key value pair is an end-node -> set value of dictionary entry as text element.
+        else:
+            element = ET.SubElement(parent, key)
+            element.text = str(value)
+
+    return parent
+
+def convert_element_tree_to_dictionary(root_of_tree):
+    """ Converts an ElementTree or Element into a dictionary.
+
+    :param (xml.etree.ElementTree.Element): The root element to convert.
+    :return dict dictionary: A dictionary representation of the ElementTree.
+    """
+
+    def _etree_to_dict(tree):
+        dictionary = {tree.tag: {} if tree.attrib else None}
+        children = list(tree)
+        if children:
+            data_dict = {}
+            for data_child in map(_etree_to_dict, children):
+                for key, value in data_child.items():
+                    if key in data_dict:
+                        if isinstance(data_dict[key], list):
+                            data_dict[key].append(value)
+                        else:
+                            data_dict[key] = [data_dict[key], value]
+                    else:
+                        data_dict[key] = value
+            dictionary = {tree.tag: data_dict}
+        if tree.attrib:
+            dictionary[tree.tag].update(('@' + key, value) for key, value in tree.attrib.items())
+        if tree.text:
+            text = tree.text.strip()
+            if children or tree.attrib:
+                if text:
+                    dictionary[tree.tag]['#text'] = text
+            else:
+                dictionary[tree.tag] = text
+        return dictionary
+
+    return _etree_to_dict(root_of_tree)
+
+def get_paths_of_element_tree(element_tree, parent_path=""):
+    """ Get paths of element tree.
+
+    This function extracts all xml paths of the given element tree.
+
+    :param tree element_tree: The element tree containing the module dependent parameter.
+    :param string parent_path: The string contains the parent path of current element.
+    :return: list paths
+    """
+    paths = []
+    current_path = f"{parent_path}/{element_tree.tag}" if parent_path else element_tree.tag
+    # If the element has no children, add the current path to list of paths.
+    if len(element_tree) == 0:
+        paths.append(current_path)
+    # Run through the children recursively
+    for child in element_tree:
+        # Call function for recursive path generation.
+        paths.extend(get_paths_of_element_tree(child, current_path))
+
+    return paths
+
+
+def prepare_element_tree_for_module_key_parameter(paths_and_names, module_key_parameters_dict):
+    """Prepare element tree.
+
+    This function prepares the element tree for the current module.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict module_key_parameters_dict: Dict containing information on module nodes in aircraft exchange file
+    :return: dict paths_and_names
+    """
+    # Call function to convert the module key parameter dict to a module dependent element tree.
+    module_dependent_tree = convert_dictionary_to_element_tree(module_key_parameters_dict)
+
+    # Call function to generate all xml path of the module dependent element tree.
+    element_tree_paths = get_paths_of_element_tree(module_dependent_tree)
+
+    # Sort the list of xml paths, delete duplicates and prepare for element tree operations.
+    cleaned_paths = sorted(list(set(['./' + '/'.join(path.split('/')[1:-1]) for path in element_tree_paths])))
+
+    # Call function to remove old elements from aircraft exchange tree.
+    find_and_remove_paths_in_tree(paths_and_names['root_of_aircraft_exchange_tree'], cleaned_paths)
+
+    # Call function to insert module dependent entries to the aircraft exchange tree.
+    insert_missing_elements(paths_and_names['root_of_aircraft_exchange_tree'], module_dependent_tree)
+
+    return paths_and_names
+
+
+def write_key_data_to_aircraft_exchange_file(root_of_aircraft_exchange_tree, path_to_aircraft_exchange_file,
+                                             paths_to_key_parameters_list, user_output_dict, tool_level,
+                                             runtime_output):
+    """Write key data to the aircraft exchange file.
+
+    This function takes key data, verifies and writes it to the aircraft exchange file.
+        (1) Preparation: Using the paths contained in the 'user_output_dict', a list with user paths is generated that
+        is subsequently cleaned of duplicates. Next, every path in the path list is assigned to one of the four
+        categories and appended to the corresponding list:
+            (a) user path already exists in aircraft exchange file ('paths_already_in_aircraft_exchange_file_list')
+            (b) valid user path ('valid_user_paths_list')
+            (c) invalid user path (invalid_user_paths_list)
+            (d) user paths that need further checks ('user_paths_to_check_list')
+        Note: Only the paths of the last category will be considered further in the following steps.
+        For further processing, the paths in 'user_paths_to_check_list' are sorted in ascending order according to
+        their IDs. In addition, all paths that have one or more IDs are then extracted from the key paths and appended
+        to 'key_paths_with_id_list' for further use.
+        (2) Path validation and key parameter check: One by one, each key path is generalized. This means that the
+        number(s) of the ID(s) contained are replaced by an 'X'. All user paths from 'user_paths_to_check_list' are
+        checked to see whether they match the pattern of the current generalized key path. All paths that match this
+        pattern are added to the 'matching_user_paths_list'. If there are matching user paths, the code performs
+        various checks to assign these user paths to either the 'valid_user_paths_list' or 'invalid_user_paths_list'.
+        The checks include examining the structure and values of IDs within the user paths. After processing the key
+        paths, the code checks for any user paths that are neither in the 'valid_user_paths_list' nor in the
+        'invalid_user_paths_list'. These paths are considered invalid, and a warning is issued. If there are user path
+        errors, error messages are generated, and the program is prepared for possible abort. The code checks whether
+        all key parameters are written by the user. If any key parameter path is missing, an error message is issued.
+        If there are either user path errors or missing key path errors, the code generates error messages and,
+        depending on the error type, raises a ValueError exception. This exception serves as a signal to terminate the
+        program.
+        Note: Only the 'valid_user_path_list' will be considered further in the following steps.
+        (3) Initialization of tree structure: Ensure that all necessary paths exist in aircraft exchange file to enable
+        upcoming step. Furthermore, the values are checked to ensure that they are within the defined limits.
+        (4) Completion: Write to aircraft exchange file. If the file cannot be opened, an OSError is raised.
+
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange file tree
+    :param str path_to_aircraft_exchange_file: Path to aircraft exchange file
+    :param list paths_to_key_parameters_list: List with paths to key parameters in aircraft exchange file
+    :param dict user_output_dict: Dictionary containing parameter name, path to parameter, and value of key parameters
+    :param int tool_level: Tool level of current module
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Raised if unsuccessful validation (faulty user paths, missing key paths or value out of limits)
+    or failed writing to the aircraft exchange file
+    :return: None
+    """
+
+    """Preparation."""
+    # Generate list with user defined paths in 'user_output_dict' and ensure operating system conformity for path
+    # separators.
+    user_defined_path_list = [user_output_dict[key][0].replace(os.sep, '/') for key in user_output_dict]
+    # Count the occurrences of each path.
+    path_counter = collections.Counter(user_defined_path_list)
+    duplicate_paths = [path for path, count in path_counter.items() if count > 1]
+    # Remove duplicates and generate a warning.
+    if duplicate_paths:
+        runtime_output.warning('Warning: Duplicate paths found. Removing the following duplicates:')
+        for duplicate_paths in duplicate_paths:
+            runtime_output.warning('                                     ' + f"Duplicate path: {duplicate_paths}")
+            user_defined_path_list.remove(duplicate_paths)
+
+    # Initialize local parameters that indicate which paths are valid, invalid, already in aircraft exchange file, and
+    # which need further checks.
+    valid_user_paths_list, invalid_user_paths_list, user_paths_to_check_list = [], [], []
+    paths_already_in_aircraft_exchange_file_list = []
+
+    # Iterate over all user defined paths in 'user_defined_path_list' and assign each path to one category.
+    for user_path in user_defined_path_list:
+        path_not_in_aircraft_exchange_file = False
+        # Check if user path (including 'value' sub-node) exists in aircraft exchange file and append to
+        # 'paths_already_in_aircraft_exchange_file_list' and 'valid_user_paths_list'.
+        if root_of_aircraft_exchange_tree.find(user_path + '/value') is not None:
+            paths_already_in_aircraft_exchange_file_list.append(user_path)
+            valid_user_paths_list.append(user_path)
+        # Else: Set 'path_not_in_aircraft_exchange_file' to 'True'.
+        else:
+            path_not_in_aircraft_exchange_file = True
+
+        # If path is not already contained in aircraft exchange file, append path to one of the following three lists:
+        # 'valid_user_paths_list', 'invalid_user_paths_list', or 'user_paths_to_check_list'.
+        if path_not_in_aircraft_exchange_file:
+            # If last character of 'user_path' is ']', path is considered invalid.
+            if user_path[-1] == ']':
+                invalid_user_paths_list.append(user_path)
+                continue
+            # Count the number of IDs in 'user_path' string.
+            user_path_id_count = user_path.count('[@ID="')
+            # If current user path is contained in list of key parameter paths, append user path to list of valid user
+            # paths.
+            if user_path in paths_to_key_parameters_list:
+                valid_user_paths_list.append(user_path)
+            # If current user path is not contained in list of key parameter paths and user path does not contain an
+            # ID, append user path to list of invalid user paths.
+            elif user_path not in paths_to_key_parameters_list and user_path_id_count == 0:
+                invalid_user_paths_list.append(user_path)
+            # If none of above criteria apply, the user path is appended to the list of paths that need further checks.
+            else:
+                user_paths_to_check_list.append(user_path)
+
+    # Extract the values after "@ID=" from the paths in the list of paths that need further checks and sort this list.
+    id_values = [int(re.search(r'@ID="(\d+)"', path).group(1)) for path in user_paths_to_check_list]
+    user_defined_path_list_sorted = [path for _, path in sorted(zip(id_values, user_paths_to_check_list))]
+
+    # Extract key paths that contain "@ID".
+    key_paths_with_id_list = [path for path in paths_to_key_parameters_list if re.search(r'@ID="\d+"', path)]
+
+    """Path validation and key parameter check."""
+    # Classify each existing user path into a category based on generalized key parameter paths and check for missing
+    # key parameter paths.
+    try:
+        # Initialization of variables for error tracking.
+        error_path_dict = {}
+        user_path_error = False
+        user_path_error_counter = 0
+        missing_key_path_error = False
+        # Iterate over key paths in list of key paths with IDs.
+        for current_key_path in key_paths_with_id_list:
+            # Check if current key path exists in 'valid_user_paths_list' (True/False).
+            key_path_exists_in_user_paths = current_key_path in valid_user_paths_list
+            # Define ID pattern to generalize "@ID" attribute in 'current_key_path' (replace ID number with 'X').
+            id_pattern = re.compile(r'@ID="(\d+)"')
+            # Store current generalized key parameter path.
+            current_generalized_key_path = re.sub(r'@ID="\d+"', '@ID="X"', current_key_path)
+            # Create empty list of matching user paths.
+            # Iterate over all user paths in sorted list of user defined paths.
+            # - Replace ID number with 'X' for generalization purposes.
+            # - Append all user paths that match the pattern of the current generalized key parameter path.
+            matching_user_paths_list = [user_path for user_path in user_defined_path_list_sorted if
+                re.sub(r'@ID="\d+"', '@ID="X"', user_path) == current_generalized_key_path]
+
+            # Sub function to sort all paths by his last ID entry in numerical order.
+            def extract_id(matching_user_paths_list):
+                matches = re.findall(r'@ID="(\d+)"', matching_user_paths_list)
+                return int(matches[-1]) if matches else float('inf')
+
+            # Sort the list by the extracted ID value.
+            matching_user_paths_list = sorted(matching_user_paths_list, key=extract_id)
+
+            # If any user paths match the current generalized key parameter path, various checks are performed to
+            # assign the corresponding user paths to either the "valid_user_paths_list" or the
+            # "invalid_user_paths_list".
+            if len(matching_user_paths_list) > 0:
+                # Create empty list of current user path IDs.
+                user_path_ids_list = []
+                # Iterate over list with user paths that match current key parameter path pattern and extract the
+                # values of contained IDs.
+                for current_matching_user_path in matching_user_paths_list:
+                    # Find all IDs of current user path.
+                    values_of_user_ids_list = re.findall(id_pattern, current_matching_user_path)
+                    # Convert the numbers from strings to integers.
+                    values_of_user_ids_list = [int(num) for num in values_of_user_ids_list]
+                    # Generate list of IDs for current user path.
+                    user_path_ids_list.append(values_of_user_ids_list)
+
+                # If the 'current_key_path' exists in 'valid_user_paths_list' and there are user path IDs, the IDs are
+                # compared and possible errors handled.
+                if key_path_exists_in_user_paths and len(user_path_ids_list) != 0:
+                    # Create a list with n zeros (n corresponds to the number of IDs in the current generalized key
+                    # parameter path) and store the list in which all IDs are zero as 'first_list'.
+                    zero_list = [0 for _ in range(len(user_path_ids_list[0]))]
+                    user_path_ids_list.insert(0, zero_list)
+                    first_list = user_path_ids_list[0]
+                    # Check each position in the lists.
+                    for i in range(1, len(user_path_ids_list)):
+                        # Check whether the first element of the previous list is NOT the same as the first element of
+                        # the current list.
+                        if first_list != user_path_ids_list[i]:
+                            # If the two IDs differ by more than 1, add the path to the list of invalid paths and go on
+                            # with the next generalized key parameter path.
+                            if abs(sum(first_list) - sum(user_path_ids_list[i])) > 1 \
+                                    and (abs(first_list[-1] - user_path_ids_list[i][-1]) > 1):
+                                user_path_error_counter += 1
+                                error_path_dict[current_generalized_key_path] = matching_user_paths_list[i-1:]
+                                [invalid_user_paths_list.append(matching_user_paths_list[j])
+                                    for j in range(0, len(matching_user_paths_list))]
+                                break
+                            # If the first ID differs by 1 compared to the previous path, then a check of the following
+                            # IDs is performed.
+                            else:
+                                valid_user_paths_list.append(matching_user_paths_list[i-1])
+                                first_list = user_path_ids_list[i]
+                        # If the first ID of the current path matches the first ID of the previous path, the subsequent
+                        # IDs are subjected to further checks.
+                        else:
+                            # If the difference between the two lists is greater than 1, append the current path to the
+                            # list of invalid paths and continue with the next generalized key parameter path.
+                            if abs(sum(first_list) - sum(user_path_ids_list[i])) > 1:
+                                user_path_error_counter += 1
+                                error_path_dict[current_generalized_key_path] = matching_user_paths_list[i-1:]
+                                [invalid_user_paths_list.append(matching_user_paths_list[j])
+                                    for j in range(0, len(matching_user_paths_list))]
+                                break
+                            # If the difference between the two lists is less than or equal to 1, then append the
+                            # current path to the list of valid paths.
+                            elif abs(sum(first_list) - sum(user_path_ids_list[i])) <= 1:
+                                valid_user_paths_list.append(matching_user_paths_list[i-1])
+                                first_list = user_path_ids_list[i]
+                # If the 'current_key_path' exists in 'valid_user_paths_list', but there are no matching user paths, a
+                # warning is issued.
+                elif key_path_exists_in_user_paths and len(user_path_ids_list) == 0:
+                    runtime_output.warning('Warning: No matching user paths according to key pattern: '
+                                           + current_generalized_key_path)
+                    continue
+                # If the 'current_key_path' does not exist in 'valid_user_paths_list' and is not contained in
+                # 'paths_already_in_aircraft_exchange_file_list', a warning is issued and the current user paths are
+                # appended to the invalid paths.
+                elif not key_path_exists_in_user_paths \
+                        and current_key_path not in paths_already_in_aircraft_exchange_file_list:
+                    runtime_output.warning('Warning: Key path missing in user defined path list: ' + current_key_path)
+                    user_path_error_counter += 1
+                    error_path_dict[current_generalized_key_path] = matching_user_paths_list
+                    [invalid_user_paths_list.append(matching_user_paths_list[j])
+                        for j in range(0, len(matching_user_paths_list))]
+                    continue
+
+        # After processing the key paths, it is checked for any user paths that are neither in 'valid_user_paths_list'
+        # nor in 'invalid_user_paths_list'. These paths are considered invalid, and a warning is issued.
+        for tmp_path in user_defined_path_list_sorted:
+            if tmp_path not in valid_user_paths_list and tmp_path not in invalid_user_paths_list:
+                invalid_user_paths_list.append(tmp_path)
+                runtime_output.warning(
+                    ('Warning: The path "' + tmp_path + '" is not a key value and therefore not written to aircraft '
+                     'exchange file. Please contact module manager for further instructions.'))
+
+        # If there are user path errors, error messages are generated.
+        if user_path_error_counter > 0:
+            user_path_error = True
+            # Generate error messages.
+            for key, value in error_path_dict.items():
+                runtime_output.error('Error: The following user paths of the pattern "' + key + '" are invalid:')
+                for i, value in enumerate(value):
+                    runtime_output.error('                                     ' + value)
+                user_path_error_string = 'Please change user paths according to style guidelines.'
+
+        # Check whether all key parameters are written by the user.
+        missing_key_path_list = []
+        missing_key_path_error_string = str()
+        for tmp_key_path in paths_to_key_parameters_list:
+            # If a key parameter path is missing, an error message is issued.
+            if tmp_key_path not in valid_user_paths_list:
+                runtime_output.error('Error: The following key parameter is not set: ' + tmp_key_path)
+                missing_key_path_list.append(tmp_key_path)
+        # If there are missing key path errors, error messages are generated.
+        if len(missing_key_path_list) != 0:
+            missing_key_path_error = True
+            missing_key_path_error_string = 'Please make sure to write all necessary key parameters of your method.'
+
+        # If there are user path errors or missing key path errors, error messages are generated and the program is
+        # aborted with a ValueError exception.
+        if user_path_error or missing_key_path_error:
+            if user_path_error and not missing_key_path_error:
+                raise ValueError(user_path_error_string + ' Program aborted!')
+            elif not user_path_error and missing_key_path_error:
+                raise ValueError(missing_key_path_error_string + ' Program aborted!')
+            else:
+                raise ValueError(user_path_error_string[:-1] + ' and ' + missing_key_path_error_string.lower()
+                                 + ' Program aborted!')
+
+    # Exception handling for value error.
+    except ValueError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    """Initialization of tree structure."""
+    # Initialization.
+    component_layer_old = str()
+    sub_node_list = ['value', 'unit', 'lower_boundary', 'upper_boundary']
+    # Extract the corresponding dictionary entries to the valid user paths.
+    valid_key_dict = {key: value for (key, value) in user_output_dict.items()
+                      if user_output_dict[key][0] in valid_user_paths_list}
+
+    # Create all necessary nodes in the aircraft exchange file and check whether the results are within the expected
+    # limits.
+    try:
+        # Iterate over all parameters in 'valid_key_dict'.
+        for key in valid_key_dict:
+            # Extract path.
+            tmp_string = valid_key_dict[key][0]
+            # Split 'tmp_string' at operating system separator.
+            parts_list = tmp_string.split('/')
+            # Delete all empty list entries if existing.
+            filtered_parts = [part for part in parts_list if part]
+            # Store third element as 'component_layer'.
+            component_layer = filtered_parts[2]
+            # Initialization of necessary variables.
+            parent_path = []
+            path_to_check = '.'
+            first_id_parent = []
+            tmp_zero_path = str()
+            path_contains_id = False
+            # Check if the current part of string is existing in the aircraft exchange ElementTree.
+            for part in filtered_parts[1:]:
+                # Extend the 'path_to_check' with the current 'part'.
+                path_to_check = os.path.join(path_to_check, part).replace(os.sep, '/')
+                # Check if the path exist in aircraft exchange ElementTree.
+                path_flag = root_of_aircraft_exchange_tree.find(path_to_check)
+                # Check if the 'component_layer' is the same as the 'component_layer_old'.
+                same_component_layer = component_layer == component_layer_old
+                # Set 'tool_level' attribute if path exists, the current part equals 'component_layer', and if the
+                # 'component_layer' is different from the previous one.
+                if path_flag is not None and part == component_layer and not same_component_layer:
+                    path_flag.set('tool_level', tool_level)
+                    component_layer_old = component_layer
+                # Add the current part of string to the ElementTree as a new sub-node if the node does not exist.
+                if path_flag is None:
+                    # Check if current part of string contains '@' (indicating ID).
+                    if '@' in part:
+                        # Set flag if string contains '@'.
+                        path_contains_id = True
+                        if len(first_id_parent) == 0:
+                            first_id_parent = parent_path
+                        # Handle attribute 'ID' (extract 'ID' and value of ID, generate new sub-node under current
+                        # 'parent_path', and set attribute 'ID' with according value).
+                        attribute_name, attribute_value = part.split('=')
+                        attribute_name = attribute_name.split('[@')
+                        attribute_id = attribute_name[1]
+                        attribute_value = attribute_value[attribute_value.find('"')+1:attribute_value.rfind('"')]
+                        node_name = attribute_name[0]
+                        new_node = ET.SubElement(parent_path, node_name)
+                        new_node.set(attribute_id, attribute_value)
+                        # Handle attribute 'description' (set the description to description of the 'tmp_zero_path').
+                        tmp_pattern = r'"(.*?)"'
+                        tmp_zero_path = re.sub(tmp_pattern, '"0"', path_to_check)
+                        tmp_description = root_of_aircraft_exchange_tree.find(tmp_zero_path).get('description')
+                        new_node.set('description', tmp_description)
+                    # Current path does not contain '@'.
+                    else:
+                        if len(tmp_zero_path) != 0:
+                            tmp_zero_path = tmp_zero_path + '/' + part
+                        else:
+                            tmp_pattern = r'"(.*?)"'
+                            tmp_zero_path = re.sub(tmp_pattern, '"0"', path_to_check)
+                            path_contains_id = True
+                        element_to_add = ET.Element(part)
+                        # Check if description exists.
+                        if path_to_check == './component_design/fuselage/specific/geometry/fuselage[@ID="0"]/mass_breakdown/fuselage_furnishing/component_mass[@ID="0"]/mass':
+                            formatted_xml = ET.tostring(root_of_aircraft_exchange_tree.getroot(), encoding='unicode', method='xml')
+                            formatted_xml_with_indent = minidom.parseString(formatted_xml).toprettyxml(indent="    ")
+                            # Ausgabe
+                            print(formatted_xml_with_indent)
+                            print(path_to_check)
+                        description_of_zero_path = \
+                            root_of_aircraft_exchange_tree.find(tmp_zero_path).get('description')
+                        element_to_add.set('description', description_of_zero_path)
+                        # Append 'element_to_add' to 'parent_path'.
+                        parent_path.append(element_to_add)
+                parent_path = root_of_aircraft_exchange_tree.find(path_to_check)
+                # Check if the current 'part' is the last element in the 'filtered_parts' list.
+                if part == filtered_parts[-1]:
+                    # Check if 'path_to_check' contains an ID.
+                    if path_contains_id:
+                        # Check if 'path_to_check' is not equal to 'tmp_zero_path'.
+                        if path_to_check != tmp_zero_path:
+                            # Check if the current parameter not is not 'name'
+                            #  -> if true: -> add all sub nodes to current paramter
+                            if part != 'name':
+                                # Iterate through 'sub_node_list'.
+                                for sub_node in sub_node_list:
+                                    # Check if 'sub-node' exists in 'tmp_zero_path'.
+                                    tmp_sub_node_exists_in_zero_path = \
+                                        root_of_aircraft_exchange_tree.find(tmp_zero_path + '/' + sub_node)
+                                    if tmp_sub_node_exists_in_zero_path is not None:
+                                        # Create new XML subelement with same name as 'sub_node' under 'parent_path'.
+                                        ET.SubElement(parent_path, sub_node)
+                                        # Get associated element. Set text to text of element in 'tmp_zero_path/sub_node'.
+                                        tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/' + sub_node)
+                                        if sub_node == 'value':
+                                            tmp_path.text = str(user_output_dict[key][1])
+                                        else:
+                                            tmp_path.text = str(root_of_aircraft_exchange_tree.find(
+                                                tmp_zero_path + '/' + sub_node).text)
+                            # Else condition: The current parameter not is 'name'
+                            #  -> add only 'value' sub note to current parameter
+                            else:
+                                # Check if 'value' exists in 'tmp_zero_path'.
+                                tmp_sub_node_exists_in_zero_path = \
+                                    root_of_aircraft_exchange_tree.find(tmp_zero_path + '/value')
+                                if tmp_sub_node_exists_in_zero_path is not None:
+                                    # Create new XML subelement with same name as 'sub_node' under 'parent_path'.
+                                    ET.SubElement(parent_path, 'value')
+                                    # Get associated element. Set text to text of element in 'tmp_zero_path/sub_node'.
+                                    tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/value')
+                                    tmp_path.text = str(user_output_dict[key][1])
+                    # 'path_to_check' does not contain an ID.
+                    else:
+                        # Find the XML element at 'path_to_check' + '/value'.
+                        tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/value')
+                        # Get value associated with the key from 'user_output_dict'.
+                        tmp_value = user_output_dict[key][1]
+                        # Find lower and upper boundary elements.
+                        lower_boundary = root_of_aircraft_exchange_tree.find(path_to_check + '/lower_boundary')
+                        upper_boundary = root_of_aircraft_exchange_tree.find(path_to_check + '/upper_boundary')
+                        # Check if lower and upper boundaries are checkable (checkable means not None and not "None").
+                        lower_boundary_checkable = lower_boundary is not None and \
+                            (lower_boundary.text is not None and lower_boundary.text != 'None')
+                        upper_boundary_checkable = upper_boundary is not None and \
+                            (upper_boundary.text is not None and upper_boundary.text != 'None')
+                        # Check if the value falls below the lower boundary (if checkable).
+                        if lower_boundary_checkable and tmp_value < float(lower_boundary.text):
+                            raise ValueError('The value of the parameter ' + str(key) + ' = ' + str(tmp_value)
+                                             + ' falls below the given lower boundary of ' + lower_boundary.text
+                                             + '. Program aborted!')
+                        # Check if the value exceeds the upper boundary (if checkable).
+                        if upper_boundary_checkable and tmp_value > float(upper_boundary.text):
+                            raise ValueError('The value of the parameter ' + str(key) + ' = ' + str(tmp_value) +
+                                             ' exceeds the given upper boundary of ' + upper_boundary.text
+                                             + '. Program aborted!')
+                        # If no boundary conditions were violated, set tmp_path.text to the value.
+                        tmp_path.text = str(tmp_value)
+
+            # Sort all child nodes alphabetically according to their tags.
+            sort_root = first_id_parent
+            children = list(sort_root)
+            children.sort(key=lambda x: x.tag)
+            # Delete all child nodes from root element.
+            for child in children:
+                sort_root.remove(child)
+            # Add the sorted child nodes back to the root element.
+            for child in children:
+                sort_root.append(child)
+
+    # Exception handling for value error.
+    except ValueError as e:
+        runtime_output.critical('Error:' + str(e))
+        sys.exit(1)
+
+    """Completion."""
+    # Ensure proper indentation.
+    ET.indent(root_of_aircraft_exchange_tree, space="    ", level=0)
+    # Write all key parameters to aircraft exchange file.
+    try:
+        # Write data to file.
+        root_of_aircraft_exchange_tree.write(path_to_aircraft_exchange_file,  encoding='utf-8')
+    # Exception handling for operating system error.
+    except OSError:
+        runtime_output.critical('Error: Writing to aircraft exchange file failed. Program aborted!')
+        sys.exit(1)
+
+
+def method_data_postprocessing(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output):
+    """General data postprocessing for current calculation method.
+
+    This function executes the method's own postprocessing. It is divided into general postprocessing and user layer
+    specific postprocessing:
+        - General postprocessing: The general postprocessing contains operations that are always carried out regardless
+        of the user layer. This includes general reports and plots.
+        - User layer specific postprocessing: Specific postprocessing includes, for example, plots that can/should only
+        be created if the user layer contains a certain value. The same applies to reports with values that are only
+        determined for certain user layer values.
+    Note that it may also be possible that the specific part is omitted, as the entire postprocessing is independent of
+    the user layer.
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param dict data_dict: Dictionary containing results of module execution
+    :param dict method_specific_output_dict: Dictionary containing method-specific output data
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises OSError: Raised if any method-specific postprocessing function fails
+    :return: None
+    """
+
+    # Read output switches from module configuration file.
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    plot_switch = (eval(root_of_module_config_tree.find('.//plot_output/enable/value').text.capitalize()))
+    html_switch = eval(root_of_module_config_tree.find('.//report_output/value').text.capitalize())
+    tex_switch = eval(root_of_module_config_tree.find('.//tex_report/value').text.capitalize())
+    if root_of_module_config_tree.find('.//xml_output/value') is not None:
+        xml_export_switch = eval(root_of_module_config_tree.find('.//xml_output/value').text.capitalize())
+    else:
+        xml_export_switch = False
+
+    # Plot functionality.
+    if plot_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/plots'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/plots')
+        try:
+            # Run 'method_plot' from 'methodplot.py'.
+            routing_dict['func_user_method_plot'](paths_and_names, routing_dict, data_dict, method_specific_output_dict,
+                                                  runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_plot" function failed. No plots generated and saved.')
+    else:
+        runtime_output.warning('Warning: "plot_output" switch in module configuration file set to "False". '
+                               + 'No plots generated.')
+
+    # HTML report functionality.
+    if html_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_html'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/report_html')
+            
+        try:
+            # Run 'method_html_report' from 'methodhtmlreport.py'.
+            routing_dict['func_user_method_html_report'](paths_and_names, routing_dict, data_dict,
+                                                         method_specific_output_dict, runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_html_report" function failed. '
+                                 + 'No additional data written to HTML report file.')
+    else:
+        runtime_output.warning(
+            'Warning: "html_output" switch in module configuration file set to "False". No HTML report generated.'
+        )
+
+    # XML export functionality.
+    if xml_export_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_xml'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/report_xml')
+            
+        xml_export_tree, path_to_results_file = prepare_method_specific_xml_file(paths_and_names, routing_dict,
+                                                                                 runtime_output)
+        try:
+            # Run 'method_xml_export' from 'methodxmlexport.py'.
+            routing_dict['func_user_method_xml_export'](paths_and_names, routing_dict, data_dict,
+                                                        method_specific_output_dict, xml_export_tree,
+                                                        path_to_results_file, runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_xml_export" function failed. '
+                                 + 'No additional data written to module specific XML results file.'
+                                 )
+    else:
+        runtime_output.warning('Warning: "xml_output" switch in module configuration file set to "False". '
+                               + 'No XML results file generated.')
+
+    # TeX output functionality.
+    if tex_switch:
+        if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_tex'):
+            os.makedirs(paths_and_names['project_directory'] + '/reporting/report_tex')
+            
+        try:
+            # Run 'method_tex_output' from 'methodtexoutput.py'.
+            routing_dict['func_user_method_tex_output'](paths_and_names, routing_dict, data_dict,
+                                                        method_specific_output_dict, runtime_output)
+        except OSError as e:
+            runtime_output.error(str(e) + '\n '
+                                 + '                                     '
+                                 + 'Error: "method_tex_output" function failed. '
+                                 + 'No TeX report file generated.'
+                                 )
+    else:
+        runtime_output.warning(
+            'Warning: "tex_output" switch in module configuration file set to "False". No TeX report file generated.')
+
+
+def prepare_method_specific_xml_file(paths_and_names, routing_dict, runtime_output):
+    """Generate XML file with general information on module execution to prepare the method-specific data output.
+
+    This function generates the basic structure of an XML file that is intended for the export of method-specific data.
+    This involves the following steps:
+        (1) Generate the file and module name as well as the path to the results file using information provided by the
+        'paths_and_names' dictionary.
+        (2) Delete older versions of the file (if existing).
+        (3) Create the XML structure
+            3.1) Create a 'general_information' block that contains the following information:
+                - Version of the current UNICADO workflow
+                - Code execution date and time
+                - Current aircraft project name
+                - Calculation method name
+            3.2) Create a 'routing_layer' block that contains information on the current routing layers.
+            3.3) Create a 'calculation_results' block that serves as a placeholder for the subsequent export of data
+            (if desired)
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises OSError: Raised if workflow version file not found
+    :returns:
+        - ElementTree xml_export_tree: Element tree of method-specific XML tree
+        - str path_to_results_file: Path to method-specific output XML file
+    """
+
+    # Initialize parameters.
+    file_name = paths_and_names['tool_name'] + '_results.xml'
+    module_name = paths_and_names['tool_name'].replace('_', ' ').capitalize()
+    path_to_results_file = paths_and_names["project_directory"] + '/reporting/report_xml/' + file_name
+
+    # Delete older output file if existing.
+    if os.path.isfile(path_to_results_file):
+        os.remove(path_to_results_file)
+
+    # Create directory for xml reports, if not existing
+    os.makedirs(paths_and_names["project_directory"] + '/reporting/report_xml/', exist_ok = True)
+
+    # Generate new ElementTree.
+    xml_export_root = ET.Element("module_results_file")
+    # Set name of current tool 'Name' of root element and generate ElementTree.
+    xml_export_root.set("Name", module_name + " specific outputs")
+    xml_export_tree = ET.ElementTree(xml_export_root)
+    # Add 'general_information' sub-node.
+    child = ET.SubElement(xml_export_root, "general_information")
+    child.set("description", "General information on module execution")
+
+    try:
+        # Initialize general information parameters.
+        if os.path.isfile(paths_and_names['working_directory'] + '/version.txt'):
+            # Open file and read version information.
+            with open(paths_and_names['working_directory'] + '/version.txt', 'r') as file:
+                # Read first line.
+                workflow_version = file.readline()
+        else:
+            workflow_version = "not available"
+    except OSError as e:
+        runtime_output.warning('Warning: ' + str(e) + ' \n'
+                               + '                                     '
+                               + 'Workflow version file not found.')
+
+    execution_date = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    project_name = (
+        root_of_module_config_tree.find('./control_settings/aircraft_exchange_file_name/value').text.split(".xml"))[0]
+    method_name = root_of_module_config_tree.find('./program_settings/configuration/method_name/value').text
+    # Definition of subnodes of 'general_information'.
+    # Format: general_information_subnodes = { 'name_of_sub-node': [description, value], ...}
+    general_information_subnodes = {
+        'workflow_version': ['Version number of the current workflow', workflow_version],
+        'execution_date': ['Execution date and time of the code', execution_date],
+        'project_name': ['Name of the current aircraft project', project_name],
+        'method_name': ['Name of current module calculation method', method_name]
+    }
+    # Iterate over 'general_information_subnodes' dictionary and add all keys as children.
+    for key, value in general_information_subnodes.items():
+        # Create a subelement for each key.
+        key_element = ET.SubElement(child, key)
+        # Add an attribute "description" and set the value to the first entry of the value-list.
+        key_element.set("description", value[0])
+        # Add a subelement "value" and set the value as text.
+        value_element = ET.SubElement(key_element, "value")
+        value_element.text = value[1]
+    # Add routing layer block.
+    routing_layer_element = ET.SubElement(child, 'routing_layer')
+    routing_layer_element.set("description", "Routing layer information")
+    # Iterate over 'routing_dict' and add keys that contain 'layer' as children of 'routing_layer_element'.
+    for key, value in routing_dict.items():
+        if 'layer' in key:
+            key_element = ET.SubElement(routing_layer_element, key)
+            key_element.set("description", 'Routing ' + str(key))
+            value_element = ET.SubElement(key_element, "value")
+            value_element.text = value
+    # Add 'calculation_results' block.
+    child = ET.SubElement(xml_export_root, "calculation_results")
+    child.set("description", "Results of calculation method")
+
+    # Ensure proper indentation and write file.
+    ET.indent(xml_export_root, space="    ", level=0)
+    try:
+        xml_export_tree.write(path_to_results_file)
+    except OSError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    return xml_export_tree, path_to_results_file
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..26e7e6c0bef95bef7dc5997ad35d04e1a4007512
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py
@@ -0,0 +1,776 @@
+"""Module providing general UNICADO data preprocessing functions for Python code."""
+# Import standard modules.
+import os
+import re
+import sys
+import logging
+import xml.etree.ElementTree as ET
+from pathlib import Path
+from datetime import datetime
+from inspect import currentframe, getframeinfo
+from runtimeoutputmodule import configure_runtime_output
+
+
+def method_data_preprocessing(paths_and_names, routing_dict, runtime_output):
+    """General data preprocessing for current calculation method.
+
+    This function performs general data preprocessing on input data obtained from aircraft exchange and module
+    configuration files. It accomplishes the following tasks:
+        (1) Data preparation: Extract root elements of aircraft exchange and module configuration trees from
+        'paths_and_names' dict. Invoke 'user_method_data_preparation' function, specified in 'routing_dict', to obtain
+        information on data to extract from these files, resulting in two dictionaries, namely the
+        'data_to_extract_from_aircraft_exchange_dict' and the 'data_to_extract_from_module_configuration_dict'.
+        (2) Read values from XML files: Using the above defined dictionaries with information on parameters that must
+        be extracted from the aircraft exchange and module configuration file, the according values are read from the
+        respective files and stored in 'tmp_aircraft_exchange_dict' and 'tmp_module_configuration_dict'. These
+        temporary dictionaries have a specific format for each parameter, including the parameter's name, path, value,
+        lower boundary, and upper boundary:
+            tmp_dict = {'parameter_name_1': [path, expected data type, value, lower boundary, upper boundary],
+                        'parameter_name_2': [...],
+                        ...}
+        (3) The code then iterates over both temporary dictionaries, type casts the values to their expected data types,
+        checks if the values are within specified lower and upper boundaries, and stores the checked values in a new
+        dictionary, 'dict_out_short'. This dictionary contains the values for the same parameters as the input
+        dictionaries but with checked and possibly modified values.
+    The code returns two dictionaries: 'short_aircraft_exchange_dict' and 'short_module_configuration_dict', that
+    represent the preprocessed data for the aircraft exchange and module configuration file, respectively. The
+    dictionaries represent condensed forms of the 'tmp_aircraft_exchange_dict' and the 'tmp_module_configuration_dict'
+    and are structured according to the following scheme:
+        dict = {'parameter_name_1': value, ...}
+
+    In the case of a multi-parameter (xml path contains '@ID' identifier), the value of the parameter key
+    ('parameter_name_1') contains a sub-dictionary with all existing parameter ID names ('parameter_name_1_ID...') and
+    its corresponding values.
+        dict = {'parameter_name_1': {'parameter_name_1_ID0': value, 'parameter_name_1_ID1': value}, ...}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing information on necessary data from module configuration file
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :returns:
+        - dict short_aircraft_exchange_dict: Dict containing parameters and acc. values from aircraft exchange file
+        - dict short_module_configuration_dict: Dict containing parameters and acc. values from module config. file
+    """
+
+    """Data preparation."""
+    # Extract roots of aircraft exchange and module configuration file.
+    root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree']
+    root_of_module_config_tree = paths_and_names['root_of_module_config_tree']
+    # Run 'user_method_data_preparation' from 'usermethoddatapreparation.py'.
+    data_to_extract_from_aircraft_exchange_dict, data_to_extract_from_module_configuration_dict \
+        = routing_dict['func_user_method_data_input_preparation'](routing_dict)
+
+    """Read values from XML files."""
+    # Read values from aircraft exchange and module configuration file.
+    tmp_aircraft_exchange_dict = read_values_from_xml_file(data_to_extract_from_aircraft_exchange_dict,
+                                                           root_of_aircraft_exchange_tree, runtime_output)
+    tmp_module_configuration_dict = read_values_from_xml_file(data_to_extract_from_module_configuration_dict,
+                                                              root_of_module_config_tree, runtime_output)
+
+    """Extract, compute (type cast), and check values from output dictionary."""
+    tmp_list = []
+    # Iterate over both dictionaries.
+    for tmp_dict in [tmp_aircraft_exchange_dict, tmp_module_configuration_dict]:
+        dict_out_short = {}
+        multi_parameter_dict = {}
+        # Iterate over all elements of current dictionary.
+        for key in tmp_dict.keys():
+            # Extract and compute values.
+            parameter_name = key
+            expected_data_type = tmp_dict[key][1]
+            # Check if the current expected data type is not tool_level.
+            if expected_data_type != 'tool_level':
+                value = convert_string_to_expected_data_type(
+                    tmp_dict[key][-3], expected_data_type, parameter_name,
+                    runtime_output)
+                lower_boundary = convert_string_to_expected_data_type(tmp_dict[key][-2], expected_data_type,
+                                                                    ("lower_boundary_of_" + parameter_name),
+                                                                    runtime_output)
+                upper_boundary = convert_string_to_expected_data_type(tmp_dict[key][-1], expected_data_type,
+                                                                    ("upper_boundary_of_" + parameter_name),
+                                                                    runtime_output)
+                # Check if value is within specified limits.
+                checked_value = check_boundaries(parameter_name, value, runtime_output, lower_boundary, upper_boundary)
+
+                # Check if the current parameter to check is a multi-parameter with "@ID" xml path.
+                if tmp_dict[key][2]:
+                    if not tmp_dict[key][3] in multi_parameter_dict:
+                        multi_parameter_dict[tmp_dict[key][3]] = {}
+                    multi_parameter_dict[tmp_dict[key][3]][key] = checked_value
+                # Else condition: current parameter is a single parameter.
+                else:
+                    # Set value to checked value and write to output dictionary.
+                    dict_out_short[key] = checked_value
+            # Else condition: The current expected data type is a tool_level.
+            else:
+                # Check if the value of tool_level is not None.
+                if tmp_dict[key][-3] is not None:
+                    dict_out_short[key] = int(tmp_dict[key][-1])
+                # Else condition: The current value of tool_level is None.
+                else:
+                    dict_out_short[key] = None
+
+        # Update and append 'dict_out_short'.
+        dict_out_short = {**dict_out_short, **multi_parameter_dict}
+        tmp_list.append(dict_out_short)
+
+    # Extract short versions of dictionaries from 'tmp_list'.
+    short_aircraft_exchange_dict = tmp_list[0]
+    short_module_configuration_dict = tmp_list[1]
+
+    return short_aircraft_exchange_dict, short_module_configuration_dict
+
+
+def get_paths_and_names(module_configuration_file_name, argv):
+    """Generate paths, names, and ElementTree based on module configuration file.
+
+    This function generates paths and names as well as ElementTrees of the module configuration (config) and
+    the associated aircraft exchange file. All generated parameters are returned via the output dictionary
+    'paths_and_names'.
+
+    The 'paths_and_names' output dictionary contains the following values:
+        - 'working_directory': Current working directory of module (str)
+        - 'parent_directory': Parent directory of module (str)
+        - 'project_directory': Current project directory (str)
+        - 'path_to_module_config_file': Path to module configuration file (str)
+        - 'root_of_module_config_tree': Root of module configuration file tree (ElementTree)
+        - 'path_to_aircraft_exchange_file': Path to aircraft exchange file (str)
+        - 'root_of_aircraft_exchange_tree': Root of aircraft exchange file tree (ElementTree)
+        - 'name_of_project': Name of the current aircraft project (str)
+        - 'tool_name': Name of current tool (str)
+
+    :param str module_configuration_file_name: Name of module configuration file
+    :param list argv: Contains optional input arguments
+    :returns:
+        - dict paths_and_names: Dictionary containing system paths and ElementTrees
+        - logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    """
+
+    # Initialization.
+    path_flag = False
+    given_path = str()
+    log_file_list = []
+    current_parent_directory = str()
+    current_working_directory = str()
+    path_to_module_config_file = str()
+    function_name = getframeinfo(currentframe()).function
+
+    """Generate paths, names, and ElementTree for module configuration file."""
+    # Determine the module's working directory and path to the module configuration file.
+    # This section handles different cases depending on the presence of command line arguments.
+    # Read and process command line arguments.
+    if len(argv) == 1:
+        # Read current working directory.
+        current_working_directory = argv[-1]
+        # Convert path of current working directory to python path (\ to /).
+        current_working_directory = os.path.dirname(current_working_directory.replace(os.sep, '/'))
+        if (len(argv[-1]) >= (len(os.path.splitext(module_configuration_file_name)[0][:-5]))) \
+            and (len(current_working_directory) <= (len(os.path.splitext(module_configuration_file_name)[0][:-5]))):
+            current_working_directory = os.getcwd()
+        # Get current parent directory.
+        count = current_working_directory.rfind('/')
+        current_parent_directory = current_working_directory[0:count]
+        # Generate path of module configuration file.
+        path_to_module_config_file = (current_working_directory + '/' + module_configuration_file_name)
+    else:
+        # Handle a specific command line argument to set the given path.
+        given_path = argv[-1]
+        path_flag = True
+
+    if path_flag:
+        # Convert path of optional argument path of module configuration file to python path (\ to /).
+        if not os.path.isabs(given_path):
+            given_path = os.path.abspath(given_path)
+            current_working_directory = given_path.replace(os.sep, '/')
+        else:
+            given_path = given_path.replace(os.sep, '/')
+            if given_path[-1] == '/':
+                current_working_directory = given_path[:-2]
+            else:
+                current_working_directory = given_path
+        # Check if the optinal path argument is a directory or a file -> if a file -> correct the current_working_directory
+        if not os.path.isdir(current_working_directory):
+            count = current_working_directory.rfind('/')
+            current_working_directory = current_working_directory[:count]
+            # Generate path of module configuration file.
+            path_to_module_config_file = given_path
+        else:
+           # Generate path of module configuration file.
+            path_to_module_config_file = current_working_directory + '/' + module_configuration_file_name 
+        # Get current parent directory.
+        count = current_working_directory.rfind('/')
+        current_parent_directory = current_working_directory[:count]
+        
+
+    # Determine the current module name 'tool_name' based on the module configuration file name.
+    tool_name = os.path.splitext(module_configuration_file_name)[0][:-5]
+
+    # Read ElementTree of module configuration file.
+    frame_info = getframeinfo(currentframe())
+    # Call function to read module configuration XML file as ElementTree.
+    root_of_module_config_tree, __, log_file_list, error_flag = read_xml_information(
+        path_to_module_config_file, os.path.splitext(module_configuration_file_name)[0], function_name,
+        frame_info.lineno, log_file_list)
+
+    """Generate paths, names, and ElementTree for aircraft exchange file."""
+    if not error_flag:
+        # Read aircraft project name and directory.
+        current_aircraft_exchange_file_name = root_of_module_config_tree.find(
+            "./control_settings/aircraft_exchange_file_name/value").text
+        # Get name of project.
+        name_of_project = os.path.splitext(current_aircraft_exchange_file_name)[0]        
+        current_aircraft_exchange_file_directory = root_of_module_config_tree.find("./control_settings/aircraft_exchange_file_directory/value").text
+        
+        if not path_flag:
+            # Check if current execution inside of an virtuell enviroment 
+            #  -> if true: -> rebuild path to aircraft exchange file 
+            if sys.prefix != sys.base_prefix: 
+                if not os.path.isabs(current_aircraft_exchange_file_directory):
+                    current_aircraft_exchange_file_directory = \
+                        Path(current_aircraft_exchange_file_directory).resolve().relative_to(Path.cwd().parent)
+                    current_aircraft_exchange_file_directory = str(current_parent_directory / current_aircraft_exchange_file_directory)
+                
+            else:
+                # Get path to current aircraft project and aircraft exchange file.
+                if not os.path.isabs(current_aircraft_exchange_file_directory):
+                    current_aircraft_exchange_file_directory = os.path.abspath(current_aircraft_exchange_file_directory)
+                       
+            # get absolut path aircraft exchange file
+            path_to_aircraft_exchange_file = current_aircraft_exchange_file_directory + '/' + current_aircraft_exchange_file_name
+        else:
+            name_of_project = os.path.splitext(current_aircraft_exchange_file_name)[0]
+            path_to_aircraft_exchange_file = current_aircraft_exchange_file_directory + '/' \
+                + current_aircraft_exchange_file_name
+
+        # Read ElementTree of module configuration file.
+        frame_info = getframeinfo(currentframe())
+        # Call function to read aircraft exchange XML file as ElementTree.
+        root_of_aircraft_exchange_tree, __, log_file_list, error_flag = read_xml_information(
+            path_to_aircraft_exchange_file, name_of_project, function_name,
+            frame_info.lineno, log_file_list)
+
+        """Generate return dictionary."""
+        paths_and_names = {'working_directory': current_working_directory,
+                           'parent_directory': current_parent_directory,
+                           'project_directory': current_aircraft_exchange_file_directory,
+                           'path_to_module_config_file': path_to_module_config_file,
+                           'root_of_module_config_tree': root_of_module_config_tree,
+                           'path_to_aircraft_exchange_file': path_to_aircraft_exchange_file,
+                           'root_of_aircraft_exchange_tree': root_of_aircraft_exchange_tree,
+                           'name_of_project': name_of_project,
+                           'tool_name': tool_name,
+                           }
+    else:
+        paths_and_names = {'working_directory': current_working_directory, 'tool_name': tool_name}
+
+    """Configure logger and initialize logger instance."""
+    configure_runtime_output(paths_and_names)
+    runtime_output = logging.getLogger(__name__)
+
+    if error_flag:
+        for entry in log_file_list:
+            runtime_output.critical(entry)
+        sys.exit(1)
+
+    return paths_and_names, runtime_output
+
+
+def read_xml_information(path, xml_file_name, function_name, code_line, log_file_list):
+    """Read tree of XML file.
+
+    This function reads and returns the ElementTree of the given XML file and its root.
+
+    :param str path: Absolute path to the given XML file
+    :param str xml_file_name: Name of the given XML file to read
+    :param str function_name: Name of the function that called 'read_xml_information'
+    :param int code_line: Code line number of function that called 'read_xml_information' in 1
+    :param list log_file_list: Strings of workflow log file from caller function and added strings from this function
+    :raises OSError: Error if XML file cannot be opened
+    :returns:
+        - ElementTree xml_tree: ElementTree of given XML file
+        - ElementTree root_of_xml_tree: Root of ElementTree of given XML file
+        - list log_file_list: List with log file entries
+        - bool error_flag: Flag if error occurs (error: True, no error: False)
+    """
+
+    # Initialize local parameters.
+    xml_tree = None
+    error_flag = False
+    root_of_xml_tree = None
+    # Initialize element tree with content of file and return root element (if given).
+    try:
+        # Attempt to create an ElementTree and get the root element from the XML file.
+        xml_tree = ET.ElementTree(file=path)
+        root_of_xml_tree = xml_tree.getroot()
+    # Exception handling for operating system (OS) error.
+    except OSError:
+        # Handle an error if the XML file cannot be opened. Print an error message and log it to a log file.
+        log_file_list.append('Error in file "' + function_name + '.py" (line ' + str(code_line + 2) + ') \n'
+                             '                                     ' + 'The "' + xml_file_name +
+                             '.xml" file could not be opened.  \n'
+                             '                                     ' + 'Program aborted!')
+
+        error_flag = True
+
+    return xml_tree, root_of_xml_tree, log_file_list, error_flag
+
+
+def read_routing_values_from_xml(input_dict, root_of_aircraft_exchange_tree, root_of_module_configuration_tree,
+                                 runtime_output, module_configuration_tmp_path=None):
+    """Read routing values from XML file.
+
+    This function reads and extracts routing values from an XML file based on the provided input dictionary and
+    ElementTrees.
+
+    The output dictionary 'return_dict' contains the following values:
+        - 'layer_1': First routing layer (str)
+        - 'layer_2': Second routing layer (str)
+        - 'layer_3': Third routing layer (str)
+        - 'user_layer': User layer (own code is implemented on this layer) (str)
+        - 'tool_level': Tool level of current tool (str)
+
+    :param dict input_dict: Input dictionary containing layer descriptions
+    :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML
+    :param ElementTree root_of_module_configuration_tree: Root of module configuration XML
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :param string module_configuration_tmp_path: Optional parameter for routing layer paths with ID - defaults to None
+    :raises AttributeError: Error if the "own_tool_level" node does not exist
+    :return dict return_dict: Output dictionary containing layer information
+    """
+
+    # Read lists with n entries from XML file (n equals number of layers).
+    return_dict = input_dict
+    element_exists = True
+    # Iterate over keys from input dict.
+    for key in input_dict:
+        # Check, if 'key' contains information to be read from file.
+        if input_dict[key][0] is not None:
+            # Generate absolute and relative paths to parameter (key).
+            absolute_path_to_parameter = input_dict[key][0]
+            relative_path_to_parameter = './' + absolute_path_to_parameter.split('/', 1)[1]
+            # Extract first part of path string (equals file type: 'aircraft_exchange_file' or
+            # 'module_configuration_file').
+            file_type = absolute_path_to_parameter.split('/')[0]
+            if file_type == 'aircraft_exchange_file':
+                root_of_tree = root_of_aircraft_exchange_tree
+            else:
+                root_of_tree = root_of_module_configuration_tree
+            # Check if element (path) exists.
+            tmp = root_of_tree.findall(relative_path_to_parameter)
+            if tmp is None:
+                element_exists = False
+            # Set value of parameter if element given.
+            if element_exists:
+                # Only on element of layer value exist -> no ID element in the path for the routing layer node.
+                if len(tmp) == 1:
+                    return_dict[key] = tmp[0].text
+                # At least 2 elements with the same routing layer exist -> ID element in the path for the routing layer.
+                # Check if the optional parameter "module_configuration_tmp_path" is not None
+                #  -> if true: -> prepare relative path to routing layer node with ID from routing layer 1.
+                elif module_configuration_tmp_path is not None:
+                    if module_configuration_tmp_path[-1] == '/':
+                        module_configuration_tmp_path = module_configuration_tmp_path[:-1]
+                    module_configuration_tmp_path = './' + module_configuration_tmp_path.split('/', 1)[1]
+                    relative_path_to_parameter = relative_path_to_parameter.split(module_configuration_tmp_path)[-1]
+                    id_path = module_configuration_tmp_path + '[@ID="' + next(iter(return_dict.values())) + '"]/' \
+                              + relative_path_to_parameter
+                    return_dict[key] = root_of_tree.find(id_path).text
+                # At least 2 elements with the same routing layer exist but no optional paramter is given
+                #  -> raise an error and abort program.
+                else:
+                    runtime_output.critical('Error: At least there are two possible parameter nodes for the routing layer. \n' #noPep8 e501
+                                            '                                            Please call the function "read_routing_values_from_xml" with the optional parameter as described in "datapreprocessing.py".\n'
+                                            '                                            Program abortet!')
+                    sys.exit(1)
+
+            # Set value of parameter to 'None' if not given.
+            else:
+                return_dict[key] = None
+        # If 'key' is None, write 'None' into 'return_dict'.
+        else:
+            return_dict[key] = None
+
+    # Add tool level to return dictionary.
+    try:
+        return_dict['tool_level'] = root_of_module_configuration_tree.find('./control_settings/own_tool_level/value').text
+    except AttributeError as e:
+        # Attach both handlers to the root logger
+        runtime_output.critical('Error: ' + str(e) + ' \n'
+                                + '                                     '
+                                + 'Node "own_tool_level" not found in module configuration file. \n'
+                                + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    return return_dict
+
+
+def read_values_from_xml_file(input_dict, root_of_xml_file, runtime_output):
+    """Read values from XML file.
+
+    This function extracts specific values from a XML file, including the parameter's value, lower boundary, and upper
+    boundary, based on the information provided in the 'input_dict'. It processes the XML structure of the file and
+    constructs an output dictionary with the extracted values.
+
+    The data of the output dictionary 'return_dict' are structured according to the following scheme:
+    return_dict = {'parameter_name_1': [path, expected data type, bool for parameter with ID, parameter name,
+                                        value, lower boundary, upper boundary],
+                   'parameter_name_2': [...],
+                   ...}
+
+    :param dict input_dict: Input dictionary with information on values to read from XML file
+    :param ElementTree root_of_xml_file: Root of XML tree
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Raised if parameter does not exist in node
+    :return dict return_dict: Dictionary containing parameter from XML file
+    """
+
+    # Initialization.
+    id_tag = str()
+    cleaned_string = str()
+    key_list_to_delete = []
+    return_dict = input_dict
+    parameter_list = ['value', 'lower_boundary', 'upper_boundary']
+    file_type = root_of_xml_file._root.tag.replace('_', ' ')
+    # Extraction of values from the XML file.
+    try:
+        # Iterate over every parameter in 'input_dict'.
+        for key in input_dict:
+            tmp_dict = {}
+            # Find corresponding node in 'root_of_xml_file'.
+            if '[@ID="0"]' in input_dict[key][0] or '[@id="0"]' in input_dict[key][0] \
+                    or '[@UID="0"]' in input_dict[key][0] or '[@uid="0"]' in input_dict[key][0]:
+                if '[@ID="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@ID="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@ID="0"\]', input_dict[key][0]))
+                    id_tag = '@ID="0"'
+                    id_naming = '@ID='
+                elif '[@id="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@id="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@id="0"\]', input_dict[key][0]))
+                    id_tag = '@id="0"'
+                    id_naming = '@id='
+                elif '[@UID="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@UID="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@UID="0"\]', input_dict[key][0]))
+                    id_tag = '@UID="0"'
+                    id_naming = '@UID='
+                elif '[@uid="0"]' in input_dict[key][0]:
+                    cleaned_string = re.sub(r'\[@uid="0"\]', '', input_dict[key][0])
+                    id_count = len(re.findall(r'\[@uid="0"\]', input_dict[key][0]))
+                    id_tag = '@uid="0"'
+                    id_naming = '@uid='
+
+                # Extract the number of existing end nodes in the aircraft exchange file of current parameter.
+                key_id_list = root_of_xml_file.findall(cleaned_string)
+
+                # Check if at least one end node is existing.
+                #  -> if true: -> generate all xml paths to the existing end nodes
+                key_list_to_delete.append(key)
+                if len(key_id_list) > 0:
+                    indexes_of_ids = []
+                    index = input_dict[key][0].find(id_tag)
+                    # Loop through the entire input xml path to get ID identifier indexes.
+                    while index != -1:
+                        indexes_of_ids.append(index)
+                        index = input_dict[key][0].find(id_tag, index + 1)
+                    indexes_of_ids = [x - 1 for x in indexes_of_ids]
+
+                    string_part_list = []
+                    test_string_list = []
+                    # Loop across the number of indexes to split the input xml path in separate parts.
+                    i = []
+                    for i in range(0, len(indexes_of_ids)):
+                        string_part = cleaned_string[:indexes_of_ids[i] - i * (len(id_tag) + 2)]
+                        if i == 0:
+                            string_part_list.append(input_dict[key][0][:(indexes_of_ids[i] + len(id_tag) + 2)])
+                        else:
+                            string_part_list.append(
+                                input_dict[key][0][indexes_of_ids[i-1] + (len(id_tag) + 2):indexes_of_ids[i]
+                                                                                           + (len(id_tag) + 2)])
+                        tmp_list = [string_part, len(root_of_xml_file.findall(string_part))]
+                        test_string_list.append(tmp_list)
+
+                    # Add the xml path part behind the last ID identifier to string part list.
+                    string_part_list.append(input_dict[key][0][(indexes_of_ids[i] + len(id_tag) + 2):])
+
+                    # Generate ID list of one single parent node with all possible child nodes to target parameter.
+                    number_of_fist_elements = test_string_list[0][1]
+                    id_list = [int(test_string_list[0][1] / number_of_fist_elements) - 1]
+                    for j in range(1, len(test_string_list)):
+                        id_list.append(int(test_string_list[j][1] / test_string_list[j-1][1]) - 1)
+
+                    # Loop across all possible nodes to generate all xml-paths to the end node of current parameter.
+                    loop_count = 0
+                    parameter_path_list = []
+                    for i in range(len(id_list)-1, -1, -1):
+                        dummy_list = []
+                        # Check if current loop is the first -> if true: -> generate initial xml path elements.
+                        if i == len(id_list)-1:
+                            # Initialize all possible end node IDs of current parameter for the ID="0" parent root.
+                            for j in range(0, id_list[i] + 1):
+                                part_with_id =(
+                                        string_part_list[i][:string_part_list[i].find(id_tag)
+                                                             + len(id_naming)] + '"' + str(j) + '"]')
+                                dummy_list.append(part_with_id + string_part_list[i+1])
+                        else:
+                            for j in range(0, id_list[i] + 1):
+                                part_with_id =(
+                                        string_part_list[i][:string_part_list[i].find(id_tag)
+                                                             + len(id_naming)] + '"' + str(j) + '"]')
+                                for k in range(0, len(parameter_path_list[loop_count-1])):
+                                    dummy_list.append(part_with_id + parameter_path_list[loop_count-1][k])
+
+                        parameter_path_list.append(dummy_list)
+                        loop_count += 1
+
+                    # Convert final parameter path lists of list to on final paths list.
+                    if isinstance(parameter_path_list, list):
+                        parameter_path_list = parameter_path_list[-1]
+                    else:
+                        parameter_path_list = [parameter_path_list]
+
+                    # Check if more than one parent root node of parameter exists.
+                    #  -> if true: -> add all remaining xml paths to parameter path list
+                    if number_of_fist_elements > 1:
+                        first_part = parameter_path_list[0][:(indexes_of_ids[0] + len(id_naming) + 1)]
+                        for i in range(1, number_of_fist_elements):
+                            for j in range(0, len(parameter_path_list)):
+                                parameter_path_list.append(first_part + '"' + str(i) + '"' + parameter_path_list[j][(indexes_of_ids[0] + len(id_tag) + 1):])  # noPep8 e501
+
+                    # Generate temporary dictionary with names, xml paths and expected data type.
+                    for i in range(0, len(parameter_path_list)):
+                        numerical_values = re.findall(r'@ID="(\d+)"', parameter_path_list[i])
+                        numerical_string = ['_ID' + str(value) for value in numerical_values]
+                        numerical_string = key + ''.join(numerical_string)
+                        tmp_dict[numerical_string] = [parameter_path_list[i], input_dict[key][1], True, key]
+
+                # Else condition: no one end node of current key is existing in the aircraft exchange file.
+                else:
+                    numerical_values = re.findall(r'@ID="(\d+)"', input_dict[key][0])
+                    numerical_string = ['_ID' + str(value) for value in numerical_values]
+                    numerical_string = key + ''.join(numerical_string)
+                    tmp_dict[numerical_string] = [input_dict[key][0], input_dict[key][1], True, key]
+
+            # Else condition: The string of the xml path of current key, contains no ID identifier.
+            else:
+                tmp_dict[key] = [input_dict[key][0], input_dict[key][1], False, key]
+
+            # Update return dict.
+            return_dict = {**return_dict, **tmp_dict}
+            # Loop across all temporary key elements to read the responding values from the element tree.
+            for tmp_key, value in tmp_dict.items():
+                # Try to find temporary element from xml-tree.
+                tmp = root_of_xml_file.find(tmp_dict[tmp_key][0])
+
+                # Initialize 'value', 'lower_boundary', and 'upper_boundary' of value with 'None' if node does not exist
+                if tmp is None or tmp_dict[tmp_key][1] is None:
+                    if tmp_dict[tmp_key][2]:
+                        return_dict[tmp_key] = [tmp_dict[tmp_key][0], tmp_dict[tmp_key][1], True, tmp_dict[tmp_key][3],
+                                                None, None, None]
+                    else:
+                        return_dict[tmp_key] = [tmp_dict[tmp_key][0], tmp_dict[tmp_key][1], False, tmp_dict[tmp_key][3],
+                                                None, None, None]
+                    runtime_output.info('Attention: Node "' + tmp_dict[tmp_key][0] + '" not found in ' + file_type
+                                         + '. Value, lower, and upper boundary initialized with "None".')
+                    if not tmp is None and tmp_dict[tmp_key][1] is None:
+                        return_dict[tmp_key][1] = bool
+                        return_dict[tmp_key][4] = 'True'
+                    elif tmp_dict[tmp_key][1] is None:
+                        return_dict[tmp_key][1] = bool
+                        return_dict[tmp_key][4] = 'False'
+                elif tmp_dict[tmp_key][1] == 'tool_level':
+                    tmp_parameter = root_of_xml_file.find(tmp_dict[tmp_key][0])
+                    if tmp_parameter is not None:
+                        return_dict[tmp_key] += [tmp_parameter.attrib['tool_level']]
+                else:
+                    # Check existence of every parameter in 'parameter_list' and append text if given and 'None' if not.
+                    for parameter in parameter_list:
+                        parameter_exists = True
+                        # Append parameter to path and check existence.
+                        tmp_parameter = root_of_xml_file.find(tmp_dict[tmp_key][0] + '/' + parameter)
+                        # Raise error if parameter 'value' does not exist in current node.
+                        if parameter == 'value' and tmp_parameter is None:
+                            parameter_exists = False
+                            raise ValueError('Node "' + tmp_dict[tmp_key][0] + '/' + parameter + '" not found in '
+                                             + file_type + '. Program aborted!')
+                        # Set 'parameter_exists' to 'False' if 'lower_boundary' or 'upper_boundary' missing, print warning.
+                        elif tmp_parameter is None:
+                            parameter_exists = False
+                            runtime_output.info('Attention: Node "' + tmp_dict[tmp_key][0] + '/' + parameter
+                                                 + '" not found in ' + file_type + '.')
+                        # Append parameter text if existing (equals value of parameter).
+                        if parameter_exists:
+                            return_dict[tmp_key] += [tmp_parameter.text]
+                        # Append 'None' to 'return_dict' if parameter does not exist, print a warning.
+                        else:
+                            return_dict[tmp_key] += [None]
+                            runtime_output.info('Attention: No "' + parameter + '" defined for "' + tmp_key
+                                                 + '". Set to "None" instead.')
+
+        for key in key_list_to_delete:
+            del return_dict[key]
+
+    # Exception handling for ValueError.
+    except ValueError as e:
+        runtime_output.critical('Error:' + str(e))
+        sys.exit(1)
+
+    return return_dict
+
+
+def convert_string_to_expected_data_type(input_value, expected_data_type, variable_name, runtime_output):
+    """This function converts a string to a desired data type.
+
+    This function converts an input string to the given data type (if valid). Valid data types are
+        - int (integer),
+        - float,
+        - str (string), and
+        - bool.
+    The function enforces two conditions for a successful conversion:
+        1) Valid expected data type: If the data type is invalid, the function returns 'None' for the return value and
+        raises an error.
+        2) The input value must not be 'None': This is particularly important when converting the limit values, as they
+        may not exist and thus be read out as 'None' from the configuration file.
+    If a value is convertible, the conversion is executed in dependence of the data type. If conversion is not
+    possible, a ValueError is raised.
+
+    :param str input_value: Input value
+    :param <class 'type'> expected_data_type: Expected data type
+    :param str variable_name: Name of the input variable
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ValueError: Error if value cannot be converted to expected data type
+    :return int/float/str/bool converted_value: Input value converted to expected data type
+    """
+
+    # Initialize output parameter (only changed if valid conversion possible).
+    converted_value = None
+    # Define expected data type and check if it is valid.
+    expected_class_int = str(expected_data_type) == "<class 'int'>"
+    expected_class_float = str(expected_data_type) == "<class 'float'>"
+    expected_class_str = str(expected_data_type) == "<class 'str'>"
+    expected_class_bool = str(expected_data_type) == "<class 'bool'>"
+    valid_expected_data_type = (
+        expected_class_int or expected_class_float or expected_class_str or expected_class_bool)
+    # If 'bool' expected, the following inputs are accepted as true/false.
+    dict_bool_true = {'True': True, 'true': True, '1': True, '1.0': True}
+    dict_bool_false = {'False': False, 'false': False, '0': False, '0.0': False}
+
+    # Check if input value is of class 'NoneType'.
+    input_of_class_none_type = (input_value is None) or (input_value == 'None')
+
+    # If valid data type and value is not 'None'.
+    if valid_expected_data_type and not input_of_class_none_type:
+        # If expected data type is of "<class 'int'>".
+        if expected_class_int:
+            # Check if value is of type 'int' (could subsequently be converted to 'int').
+            try:
+                converted_value = expected_data_type(input_value)
+            # Otherwise value is not of type 'int'.
+            except ValueError:
+                # Check if value is of type 'float' (could subsequently be converted to 'float' and 'int').
+                try:
+                    converted_value = expected_data_type(float(input_value))
+                    runtime_output.info("Attention: Expected data type was 'int' but input value was of type 'float'."
+                                         "The value was first converted to a float value and then to an int."
+                                         "Decimal places are lost in the process.")
+                # Value error (value not of type 'int' or 'float').
+                except ValueError:
+                    runtime_output.info(
+                        ("Attention: Expected data type was 'int' but input value was neither of type 'int' "
+                         "nor 'float'. Value conversion not possible for parameter '" + variable_name + "'."))
+        # If expected data type is of "<class 'float'>".
+        if expected_class_float:
+            # Check if value can be converted to 'float' (means value is of type 'int' or 'float').
+            try:
+                converted_value = expected_data_type(input_value)
+            # Handle exception if value is not of type 'int' or 'float'.
+            except ValueError:
+                runtime_output.info(
+                    ("Attention: Expected data type was 'float', but the input value seems to be of type string "
+                     "or bool. Value conversion not possible for parameter '" + variable_name + "'."))
+        # If expected data type is of "<class 'str'>".
+        if expected_class_str:
+            converted_value = input_value
+        # If expected data type is of "<class 'bool'>".
+        if expected_class_bool:
+            # Check if input is a valid expression for 'True'.
+            if dict_bool_true.get(input_value):
+                converted_value = True
+            # Check if input is a valid expression for 'False'.
+            elif dict_bool_false.get(input_value):
+                converted_value = False
+            # Input does not contain a valid expression for boolean values.
+            else:
+                runtime_output.info(
+                    ("Attention: Expected data type was 'bool', "
+                     "but input does not seems to contain valid expressions for boolean values."
+                     "Value conversion not possible for parameter '" + variable_name + "'."))
+    # No valid data type or value is 'None' (often the case if no default values provided in configuration file).
+    else:
+        runtime_output.info("Attention: Invalid data type or input value is 'None' (" + variable_name + ").")
+
+    return converted_value
+
+
+def check_boundaries(parameter_name, input_value, runtime_output, lower_boundary=None, upper_boundary=None):
+    """Verify that a value is within specified limits.
+
+    This function checks whether a given input value falls within specified boundaries (lower and upper limits). It is
+    designed to handle values of different data types, including int, float, str, and bool. It raises errors or
+    warnings when the input does not meet the expected criteria.
+
+    :param str parameter_name: Name of the parameter
+    :param int/float/str/bool input_value: Value of the parameter
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :param int/float/str/bool lower_boundary: Lower boundary (parameter value must be greater), defaults to None
+    :param int/float/str/bool upper_boundary: Upper boundary (parameter value must be smaller), defaults to None
+    :raises ValueError: Error if parameter value is outside the specified boundaries
+    :return int/float/str/bool checked_value: Checked input value
+    """
+
+    # Initialize local parameter.
+    checked_value = input_value
+
+    # Check if boundary check possible (Value of type 'int'/'float'?).
+    if isinstance(input_value, bool):
+        boundary_check_possible = False
+    else:
+        boundary_check_possible = isinstance(input_value, (int, float))
+    # Check if boundaries are given.
+    boundaries_given = (lower_boundary is not None and upper_boundary is not None)
+
+    # Perform boundary checks.
+    try:
+        # If value is of data type that allows boundary check.
+        if boundary_check_possible:
+            # If both boundaries are given.
+            if boundaries_given:
+                # Check if given input value lower than given lower boundary. Raise error if true.
+                if input_value < lower_boundary:
+                    user_value_error_string = ('The parameter "' + parameter_name
+                                               + '" is lower than the expected lower boundary ('
+                                               + str(lower_boundary) + '). Program aborted!')
+                    raise ValueError(user_value_error_string)
+                # Check if given input value higher than given upper boundary. Raise error if true.
+                elif input_value > upper_boundary:
+                    user_value_error_string = ('The parameter "' + parameter_name
+                                               + '" is higher than the expected upper boundary ('
+                                               + str(upper_boundary) + '). Program aborted!')
+                    raise ValueError(user_value_error_string)
+            # Raise error if no boundaries given but required.
+            else:
+                user_value_error_string = ('The data type "' + str(type(input_value))
+                                           + ') of the given input parameter "' + parameter_name
+                                           + '" requires lower and upper boundaries. Program aborted!')
+                raise ValueError(user_value_error_string)
+        # Input value is not of a valid data type for boundary checking.
+        else:
+            runtime_output.info(
+                ('Attention: The data type of the given input parameter "' + parameter_name +
+                 '" (' + str(type(input_value)) +
+                 ') is not of type int or float. Therefore no boundaries were checked.'))
+    # Exception handling if values outside the limits or no boundaries given.
+    except ValueError as e:
+        runtime_output.critical('Error: ' + str(e))
+        sys.exit(1)
+
+    return checked_value
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runmodule.py b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc23a699930513eeb63642769927507748877750
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runmodule.py
@@ -0,0 +1,54 @@
+"""Module providing run function of calculation method."""
+# Import standard modules.
+import sys
+import importlib
+from datapreprocessingmodule import method_data_preprocessing
+
+
+def run_module(paths_and_names, routing_dict, runtime_output):
+    """Conduct Python module.
+
+    This function performs any UNICADO Python module. The process involves the following steps:
+        (1) Method-specific preprocessing: The prerequisite for any UNICADO Python module is the acquisition of data
+        from corresponding exchange files. These include the aircraft exchange and the module configuration file. This
+        data preprocessing is crucial as it prepares the input data for the calculation method. The obtained data are
+        stored in the two dictionaries 'aircraft_exchange_dict' and 'module_configuration_dict'.
+        (2) Run calculation method: Depending on the user layer specified in the routing parameters, the function calls
+        the appropriate calculation function. The selected function is dynamically imported and executed.
+    The output dictionary 'run_output_dict' contains the result of the UNICADO Python module and is structured according
+     to the following scheme:
+        run_output_dict = {'parameter_name_1': value, ...}
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :param dict routing_dict: Dictionary containing routing parameters
+    :param logging.Logger runtime_output: Logging object used for capturing log messages in the module
+    :raises ModuleNotFoundError: Raised if module cannot be imported
+    :return dict run_output_dict: Dictionary containing results of module execution
+    """
+
+    """Method specific preprocessing: Acquire necessary data."""
+    # Run 'method_data_preprocessing' from 'datapreprocessingmodule'.
+    aircraft_exchange_dict, module_configuration_dict = method_data_preprocessing(paths_and_names, routing_dict, runtime_output)
+
+    """Run: Execute code depending on user layer."""
+    # Prepare strings for dynamic imports of calculation functions. The 'import_command_method_user_layer' is build
+    # according to the following scheme:
+    # 'src.[value of layer_1].[value of layer_2].[value of layer_3].[value of user layer].method[value of user layer]'
+    # The 'function_name' is generated according to the following scheme:
+    #   'method_[value of user layer]'
+    import_command_method_user_layer = (routing_dict['module_import_name'] + '.' + routing_dict['user_layer']
+                                        + '.method' + routing_dict['user_layer'].replace('_', ''))
+    function_name = 'method_' + routing_dict['user_layer']
+    # Import calculation module.
+    try:
+        module = importlib.import_module(import_command_method_user_layer)
+        # Call function depending on routing parameters.
+        run_output_dict = getattr(module, function_name)(paths_and_names, routing_dict, aircraft_exchange_dict,
+                                                         module_configuration_dict, runtime_output)
+    # Exception handling for module import error.
+    except ModuleNotFoundError as module_import_error:
+        runtime_output.critical('Error: ' + str(module_import_error) + ' found in ' + routing_dict['module_name'] + '\n'
+                                + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    return run_output_dict
diff --git a/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..f8806eccf1e7c3c4d917c4e4df2d066f204738dc
--- /dev/null
+++ b/docs/get-involved/modularization/python-template/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py
@@ -0,0 +1,123 @@
+"""Module configuring the runtime output."""
+# Import standard modules.
+import sys
+import logging
+
+
+def configure_runtime_output(paths_and_names):
+    """ Initialize logging handler for console prints and log file writing, provide runtime_output instance.
+
+    [Add some text here...]
+
+    :param dict paths_and_names: Dictionary containing system paths and ElementTrees
+    :raises AttributeError: ...
+    :return:
+    """
+    # Define a new log level 'PRINT' with a value of 35.
+    PRINT = 35
+    logging.addLevelName(PRINT, "PRINT")
+
+    # Create a custom log level class by subclassing logging.Filter.
+    class PrintoutFilter(logging.Filter):
+        def filter(self, record):
+            return record.levelno == PRINT
+
+    # Attach the custom filter to the 'root_logger'.
+    root_logger = logging.getLogger()
+    root_logger.addFilter(PrintoutFilter())
+
+    # Add a custom method to the logger.
+    def printout(self, message, *args, **kwargs):
+        """
+        :param self:
+        :param message:
+        :param args:
+        :param kwargs:
+        :return:
+        """
+        if self.isEnabledFor(PRINT):
+            self._log(PRINT, message, args, **kwargs)
+
+    # Attach the custom method to the logger.
+    logging.Logger.print = printout
+
+    # Set the logging level for the root logger.
+    root_logger.setLevel(logging.DEBUG)
+
+    """Genereate log file handler and initialze."""
+    # Create a file handler with the desired file name and format.
+    log_file_name = paths_and_names['working_directory'] + '/' + paths_and_names['tool_name'] + '.log'
+    log_format = '%(asctime)s - %(levelname)s - %(message)s'
+    file_handler = logging.FileHandler(log_file_name)
+    file_handler.setFormatter(logging.Formatter(log_format))
+
+    """Genereate console handler and initialze."""
+    # Create a stream handler to output log messages to the console.
+    console_format = '%(asctime)s - %(levelname)s - %(message)s'
+    console_handler = logging.StreamHandler()
+    console_handler.setFormatter(logging.Formatter(console_format))
+
+    """Set log file handler level to selected mode from module configuration file."""
+    # Extract 'log_file_output' from 'root_of_module_config_tree'.
+    try:
+        log_file_mode = paths_and_names['root_of_module_config_tree'].find('.//log_file_output/value').text
+    except AttributeError as e:
+        # Attach both handlers to the 'root_logger'.
+        root_logger.addHandler(file_handler)
+        root_logger.addHandler(console_handler)
+        logger = logging.getLogger('module_logger')
+        logger.critical('Error: ' + str(e) + ' \n'
+                         + '                                     '
+                         + 'Node "log_file_output" not found in module configuration file. \n'
+                         + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    match log_file_mode:
+        # Only 'CRITICAL' logs displayed.
+        case 'mode_0':
+            file_handler.setLevel(logging.CRITICAL)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', and 'WARNING' displayed.
+        case 'mode_1':
+            file_handler.setLevel(logging.WARNING)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', and 'INFO' displayed.
+        case 'mode_2':
+            file_handler.setLevel(logging.INFO)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', 'INFO', and 'DEBUG' displayed.
+        case 'mode_3':
+            file_handler.setLevel(logging.DEBUG)
+
+    """Set console handler level to selected mode from module configuration file."""
+    # Extract 'console_output' from 'root_of_module_config_tree'.
+    try:
+        console_output = paths_and_names['root_of_module_config_tree'].find('.//console_output/value').text
+    except AttributeError as e:
+        # Attach both handlers to the 'root_logger'.
+        root_logger.addHandler(file_handler)
+        root_logger.addHandler(console_handler)
+        logger = logging.getLogger('module_logger')
+        logger.critical('Error: ' + str(e) + ' \n'
+                        + '                                     '
+                        + 'Node "console_output" not found in module configuration file. \n'
+                        + '                                     ' + 'Program aborted!')
+        sys.exit(1)
+
+    match console_output:
+        # Only 'CRITICAL' logs displayed.
+        case 'mode_0':
+            console_handler.setLevel(logging.CRITICAL)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', and 'WARNING' displayed.
+        case 'mode_1':
+            console_handler.setLevel(logging.WARNING)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', and 'INFO' displayed.
+        case 'mode_2':
+            console_handler.setLevel(logging.INFO)
+        # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', 'INFO', and 'DEBUG' displayed.
+        case 'mode_3':
+            console_handler.setLevel(logging.DEBUG)
+
+    # Disable colorization for the console handler.
+    console_handler.setStream(stream=sys.stdout)
+
+    # Attach both handlers to the 'root_logger'.
+    root_logger.addHandler(file_handler)
+    root_logger.addHandler(console_handler)
diff --git a/mkdocs.yml b/mkdocs.yml
index 16f204d22a0d41f9087d1a0881e09c9c9861c9f7..7a2e7c2c9e635d2d89e16d43937d5c0167844f60 100644
--- a/mkdocs.yml
+++ b/mkdocs.yml
@@ -150,6 +150,14 @@ plugins:
             FILE_PATTERNS: "*.cpp *.h"
             RECURSIVE: True
             EXTRACT_ALL: YES
+        aerodynamic_analysis:
+          src-dirs: ../aircraft-design/aerodynamic_analysis/
+          full-doc: true
+          output: docs/aerodynamic_analysis
+          doxy-cfg:
+            FILE_PATTERNS: "*.cpp *.h"
+            RECURSIVE: True
+            EXTRACT_ALL: YES
         aircraftGeometry2:
           src-dirs: ../aircraft-design/libs/aircraftGeometry2/
           full-doc: true
@@ -158,6 +166,14 @@ plugins:
             FILE_PATTERNS: "*.cpp *.h"
             RECURSIVE: True
             EXTRACT_ALL: YES
+        engine:
+          src-dirs: ../aircraft-design/libs/engine/
+          full-doc: true
+          output: docs/engine
+          doxy-cfg:
+            FILE_PATTERNS: "*.cpp *.h"
+            RECURSIVE: True
+            EXTRACT_ALL: YES
 
   - glightbox                             # Plugin for lightbox-style image and content viewing.
 
@@ -230,6 +246,10 @@ nav:                                      # Customizes the main navigation struc
               - initial_sizing/namespaces.md
               - initial_sizing/files.md
               - initial_sizing/functions.md
+          - Create Mission XML:
+            - Introduction: documentation/sizing/create_mission_xml/index.md
+            - Getting Started: documentation/sizing/create_mission_xml/getting_started.md
+            - Mission Steps: documentation/sizing/create_mission_xml/mission_steps.md
           - Fuselage Design:
             - Introduction: documentation/sizing/fuselage_design/index.md
             - Getting Started: documentation/sizing/fuselage_design/getting_started.md
@@ -268,6 +288,7 @@ nav:                                      # Customizes the main navigation struc
             # - API Reference: # TODO define for Python
           - Propulsion Design:
             - Introduction: documentation/sizing/propulsion_design/index.md
+            - Overview: documentation/sizing/propulsion_design/overview.md
             - Getting Started: documentation/sizing/propulsion_design/getting-started.md
             - Engineering Principles: documentation/sizing/propulsion_design/engineering_principles.md
             - Software Architecture: documentation/sizing/propulsion_design/software_architecture.md
@@ -299,8 +320,18 @@ nav:                                      # Customizes the main navigation struc
               - systems_design/namespaces.md
               - systems_design/files.md
               - systems_design/functions.md
-      - Analysis:
-          - documentation/analysis/index.md # Link to analysis module page.
+      - Analysis:   
+          - Modules: documentation/analysis.md # Link to analysis module page.
+          - Mission Analysis:
+            - Introduction: documentation/analysis/mission_analysis/index.md
+            - Getting Started: documentation/analysis/mission_analysis/getting_started.md
+            - Mission Methods: documentation/analysis/mission_analysis/methods.md
+            - Mission Steps: documentation/analysis/mission_analysis/mission_steps.md
+            - API Reference:
+              - mission_analysis/classes.md
+              - mission_analysis/namespaces.md
+              - mission_analysis/files.md
+              - mission_analysis/functions.md
           - Weight and Balance Analysis:
             - Introduction: documentation/analysis/weight_and_balance_analysis/index.md
             - Basic Concepts: documentation/analysis/weight_and_balance_analysis/basic-concepts.md
@@ -324,6 +355,10 @@ nav:                                      # Customizes the main navigation struc
               - ecological_assessment/namespaces.md
               - ecological_assessment/files.md
               - ecological_assessment/functions.md
+          - Aerodynamic Analysis:
+            - Introduction: documentation/analysis/aerodynamic_analysis/getting_started.md
+            - Aerodynamic Principles: documentation/analysis/aerodynamic_analysis/aerodynamic_principles.md
+            - Software Architecture: documentation/analysis/aerodynamic_analysis/software_architecture.md
           - Constraint Analysis:
             - Introduction: documentation/analysis/constraint_analysis/index.md
             - Principles: documentation/analysis/constraint_analysis/principles.md
@@ -338,6 +373,8 @@ nav:                                      # Customizes the main navigation struc
             - aircraftGeometry2/namespaces.md
             - aircraftGeometry2/files.md
             - aircraftGeometry2/functions.md
+        - engine:
+          - Introduction: documentation/libraries/engine/index.md 
     - Utilities: documentation/additional_software.md
     - Workflow: 'workflow.md' # Link to the workflow page.
   - Get Involved: