diff --git a/docs/documentation/additional_software.md b/docs/documentation/additional-software.md similarity index 86% rename from docs/documentation/additional_software.md rename to docs/documentation/additional-software.md index 33fe250e8bc97b23be3783013bbb04cd9faef8e1..8b2e78018ec086cb72b171bbbd6486707111166f 100644 --- a/docs/documentation/additional_software.md +++ b/docs/documentation/additional-software.md @@ -16,7 +16,7 @@ The module consists of two modules convertUNICADO2CPACS which is responsible for |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()| +|2.1.0|:simple-cplusplus: |GPLv3|-| --- @@ -27,18 +27,18 @@ The **deignEvaluator** can be used to perform all available analysis on a design |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()| +|2.1.0|:simple-cplusplus: |GPLv3|-| --- ## reportGenerator {.overview-img align=left} -The program collects all :simple-latex: reports of the programs and compiles a total pdf-report. +The program collects all reports of the programs and compiles a total report. {.overview-item} |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link]()| +|2.1.0|:simple-cplusplus: |GPLv3|-| --- @@ -51,6 +51,6 @@ It is mainly an automation tool written specifically for the **UNICADO** project |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link]()| +|2.1.0|:simple-python: |GPLv3|-| --- diff --git a/docs/documentation/analysis/aerodynamic_analysis/getting_started.md b/docs/documentation/analysis/aerodynamic_analysis/getting_started.md index 6d1aa432b488960a33a22317c2fb221e9f036983..8ac0b42b0603c0228ba91337988d48b7d4795f3d 100644 --- a/docs/documentation/analysis/aerodynamic_analysis/getting_started.md +++ b/docs/documentation/analysis/aerodynamic_analysis/getting_started.md @@ -3,11 +3,11 @@ This guide will show you the basic usage of **aerodynamic_analysis**. Following ## Step-by-step -It is assumed that you have the `UNICADO Package` installed including the executables. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](https://unicado.pages.rwth-aachen.de/unicado.gitlab.io/developer/build/cpp/)). +It is assumed that you have the `UNICADO Package` installed including the executables. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build-instructions/build/cpp.md)). 1. Take an `aircraft_exchange_file` with a fully designed aircraft (fuselage, wing, empennage and nacelles already sized) 2. Fill out the configuration file - change at least: - - in `control_settings` + - in `control_settings` - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings - `console_output` at least to `mode_1` - `plot_output` to false (or define `inkscape_path` and `gnuplot_path`) @@ -20,6 +20,10 @@ It is assumed that you have the `UNICADO Package` installed including the execut Following will happen: + - you see output in the console window - csv- files containing the raw lift, drag and moment data for all calculations are created in the `aerodynamic_analysis` folder - results are saved via xml-file in the `/aircraft_exchange_file/aero_data` for later use in e.g. **mission_analysis** + +## Settings and outputs {#settingsandoutputs} +> :construction: tbd \ No newline at end of file diff --git a/docs/documentation/analysis/ecological_assessment/basic-concepts.md b/docs/documentation/analysis/ecological_assessment/basic-concepts.md index 2558055f4b0f9191aa82c1ae4186f4d687f7050a..7113399de6e7380e50db90c3edf052835f9d99e8 100644 --- a/docs/documentation/analysis/ecological_assessment/basic-concepts.md +++ b/docs/documentation/analysis/ecological_assessment/basic-concepts.md @@ -187,7 +187,7 @@ Additionally, you need to provide the `mission.csv` file written by the UNICADO And last but not least, the engine library will be used, so you can check the documentation page of the [engine library](../../libraries/index.md) to get information about its input files. ### Output data {#mission-emissions-output} -The central output of the mission submodule is the `ecological_assessment_results.xml` which you will find in the *aircraft\_exchange\_file\_directory/reporting/report_xml* directory. It contains all calculated emission masses. Additionally, there is a `...emissionspath.csv` file in the folder *aircraft_exchange_file_directory/mission_data/* including mission and engine data for every mission step. As described in [Module usage](#usage), an HTML report including plots with emission flows will be generated. +The central output of the mission submodule is the `ecological_assessment_results.xml` which you will find in the *aircraft\_exchange\_file\_directory/reporting/report_xml* directory. It contains all calculated emission masses. Additionally, there is a `...emissionspath.csv` file in the folder *aircraft_exchange_file_directory/mission_data/* including mission and engine data for every mission step. As described in [Module usage](usage.md/#usage), an HTML report including plots with emission flows will be generated. ## Life Cycle Emissions (Schaefer) {#lca-schaefer} @@ -701,7 +701,7 @@ mission_emissions/ └── soot ``` ### Output data {#lca-schaefer-output} -The Method writes data to CSV files in the *aircraft\_exchange\_file\_directory/reporting/plots/csv_files* folder containing emissions, energy demand, fuel demand and GWP100 for all processes. Additionally, total emissions of the four phases are written to the `ecological_assessment_results.xml`. As described in [Usage of the ecological_assessment tool](#usage), an HTML report including a plot will be generated. +The Method writes data to CSV files in the *aircraft\_exchange\_file\_directory/reporting/plots/csv_files* folder containing emissions, energy demand, fuel demand and GWP100 for all processes. Additionally, total emissions of the four phases are written to the `ecological_assessment_results.xml`. As described in [Usage of the ecological_assessment tool](usage.md/#usage), an HTML report including a plot will be generated. ## Air Quality Index (Schaefer) {#aqi-schaefer} This method provides a single indicator - called the Air Quality Index (AQI) - for the assessment of air quality. The AQI can take values between 0 and 1, with 1 indicating that the allowable limits defined by ICAO are reached by all species. Therefore, low values are preferable. diff --git a/docs/documentation/analysis/index.md b/docs/documentation/analysis/index.md index fc3d57afa34c8152cbb39e3aa7cc7f1335535d83..d58b339cdc2a66fda264398330629692fd33e661 100644 --- a/docs/documentation/analysis/index.md +++ b/docs/documentation/analysis/index.md @@ -22,7 +22,7 @@ lift mach numbers. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|-| +|0.5.0|:simple-cplusplus: |GPLv3|[Link](aerodynamic_analysis/index.md)| --- @@ -35,11 +35,9 @@ Depending on the method, the fuel consumption is calculated either: - in segments by using the Breguet range formula, or - in a full-mission time-history simulation (the flight mission is divided into increments. For each increment the movement equations are solved, followed by the thrust requirements and fuel consumption) -For the user, possible changes in the module run configuration can be made in the related *missionAnalysis_conf.xml* file. The parameters comprised in this XML file can have different attributes as e.g. Desc, Unit, Default, AllowedRelOvershoot or text and are further subdivided into control and program settings. - |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|-| +|0.5.0|:simple-cplusplus: |GPLv3|[Link](mission_analysis/index.md)| --- @@ -50,7 +48,7 @@ The `weight_and_balance_analysis` module calculates sub-masses and total masses |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](analysis/weight_and_balance_analysis/index.md)| +|0.5.0|:simple-python: |GPLv3|[Link](weight_and_balance_analysis/index.md)| --- @@ -61,19 +59,8 @@ The `constraint_analysis` module updates the performance criteria wing loading a |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|1.0.0|:simple-cplusplus: |GPLv3|[Link](analysis/constraint_analysis/index.md)| - ---- - -## Ecological assessment -{.overview-img align=left} -The `ecological_assessment` is an additional module of the UNICADO toolchain. -Its purpose is to calculate the emissions and energy demand within the aircraft's lifecycle and to determine the missions based climate impact as well as impact on the local air quality. While the life cycle assessment is only valid for conventional kerosene powered tube and wing aircraft, the mission and impact calculations can be performed for all aircraft configurations and kerosene or hydrogen powered engines. -{.overview-item} +|0.5.0|:simple-cplusplus: |GPLv3|[Link](constraint_analysis/index.md)| -|Module Version|Language|License|Documentation| -|:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](ecological_assessment/index.md)| --- @@ -84,7 +71,7 @@ The module `calculatePerformance` is used to evaluate the mission performance of |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus:| GPLv3 |[Link](analysis/performance_assessment/index.md)| +|0.5.0|:simple-cplusplus:| GPLv3 |[Link](performance_assessment/index.md)| --- @@ -100,6 +87,18 @@ Direct costs include all expenses incurred in operating and financing the aircra |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](analysis/cost_estimation/index.md)| +|0.5.0|:simple-python: |GPLv3|[Link](cost_estimation/index.md)| --- + +## Ecological assessment +{.overview-img align=left} +The `ecological_assessment` is the last module of the UNICADO toolchain. +Its purpose is to calculate the emissions and energy demand within the aircraft's lifecycle and to determine the missions based climate impact as well as impact on the local air quality. While the life cycle assessment is only valid for conventional kerosene powered tube and wing aircraft, the mission and impact calculations can be performed for all aircraft configurations and kerosene or hydrogen powered engines. +{.overview-item} + +|Module Version|Language|License|Documentation| +|:---:|:---:|:---:|---| +|0.5.0|:simple-cplusplus: |GPLv3|[Link](ecological_assessment/index.md)| + +--- \ No newline at end of file diff --git a/docs/documentation/analysis/weight_and_balance_analysis/usage.md b/docs/documentation/analysis/weight_and_balance_analysis/usage.md index 172a885d924a29d4097ed36d0e76836eee1f2b4b..abd686b1d5546795226ffd33f9108eef843809da 100644 --- a/docs/documentation/analysis/weight_and_balance_analysis/usage.md +++ b/docs/documentation/analysis/weight_and_balance_analysis/usage.md @@ -7,7 +7,7 @@ Let's see now how the magic happens. In this guide we will go through the step-b - [Method Selection](#method-selection) - Where to find and how to select the calculation methodes and execution modes described in the [Basic Concepts](basic-concepts.md)? - [Tool Execution](#tool) - How to start the tool and what happens then? - [Troubleshooting](#trouble) - What do I do if the tool is not working? - + --- ## Requirements {#requirements} @@ -17,19 +17,19 @@ The following requirements are needed for the tool to run: 2. As the w&b analysis tool is an analysis tool, the **second requirement** is that the ***sizing modules***, as well that the ***aerodynamic analysis*** and ***mission analysis*** tools were successfully executed beforehand and that the results are written in the Aircraft Exchange File (acXML). The following information must be available (the subcomponents of the required nodes are not listed here): - - `aircraft_exchange_file/requirements_and_specifications/requirements/top_level_aircraft_requirements`: `maximum_structrual_payload_mass` + - `aircraft_exchange_file/requirements_and_specifications/requirements/top_level_aircraft_requirements`: `maximum_structrual_payload_mass` - `aircraft_exchange_file/requirements_and_specifications/design_specification`: `configuration`, `transport_task`, `energy_carriers` - `aircraft_exchange_file/component_design` : the `global_reference_point` and the components `wing`, `empennage`, `tank`, `propulsion`, `landing gear`, `systems` each at least with the nodes `position` and `mass_properties` - `aircraft_exchange_file/analysis/aerodynamics/reference_values`: `neutral_point` - - `aircraft_exchange_file/analysis/masses_cg_inertia`: `maximum_takeoff_mass` + - `aircraft_exchange_file/analysis/masses_cg_inertia`: `maximum_takeoff_mass` - `aircraft_exchange_file/analysis/mission/design_mission`: `loaded_mission_energy`, `in_flight_energy`, `taxi_energy` - + !!! note When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. - + 3. The `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` are correctly set in the `control settings` part of the _weight\_and\_balance\_analysis\_conf.xml_ file (configXML). The `console_output` should be set at least to `mode_1`. - -4. The structure of the acXML remains unchanged, otherwise the paths to the nodes must be updated in the data reading functions of the tool. + +4. The structure of the acXML remains unchanged, otherwise the paths to the nodes must be updated in the data reading functions of the tool. ___ ## Tool Structure {#architecture} @@ -43,7 +43,7 @@ ___ C-->H[_usermethoddatapreparation.py_] A-->F[Blended Wing body - _under development_] A-->G[_weight\_and\_balance\_analysis\_conf.xml_ _main.py_ _weight_and_balance_analysis.txt_ ] - A-->I[doc] + A-->I[doc] </pre> !!! danger "Important" @@ -61,7 +61,7 @@ The _weight\_and\_balance\_analysis\_conf.xml_ is structured into two blocks: th - the `console_output` at least to `mode_1`, and - the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`). -!!! note +!!! note If the tool is executed via the workflow, those settings are set by the workflow settings. ## Method Selection {#method-selection} @@ -106,7 +106,7 @@ By changing the program settings im the configXML we can manipulate how the w&b <method description="selected method"> <value>mode_0</value> </method> - </loading_mode> + </loading_mode> </calculation_methods> </basic> </standard> @@ -119,8 +119,8 @@ In this part of the configXML we can select the calculation methods and aircraft - the mass moments of inertia are calculated using the LTH Tables - the selected scenario for refueling is to fill up the tanks with the fuel for the design mission - the passengers should board each row at a time from the front to back and back to front -- the cg shift due to defueling (fuel consumption during flight) should also be considered in the loading diagramm -- the loading sequence is first refueling (ref), then boarding the passengeres, after that adding the cargo and finally defueling (def). +- the cg shift due to defueling (fuel consumption during flight) should also be considered in the loading diagram +- the loading sequence is first refueling (ref), then boarding the passengers, after that adding the cargo and finally defueling (def). ## Tool Execution {#tool} Once the desired methods are selected and the requirements are in place, the tool can run. In order to start the w&b analysis tool, we can execute it directly from the console if all paths are set (see [How to run a tool](howToRunATool.md)) or run the _main.py_ inside the tool folder. @@ -194,7 +194,7 @@ The following results are saved in the acXML under `aircraft_exchange_file/analy </design_mass> <design_fuel_mass description=""> </design_fuel_mass> - </masses_cg_inertia> + </masses_cg_inertia> ``` !!! tip diff --git a/docs/documentation/libraries/aircraftGeometry2/index.md b/docs/documentation/libraries/aircraftGeometry2/index.md index a73c0f85313a026bcbf405544e68fc4de2bfd0b1..315725f2df92734b45f2505557c9dc721db1b6ad 100644 --- a/docs/documentation/libraries/aircraftGeometry2/index.md +++ b/docs/documentation/libraries/aircraftGeometry2/index.md @@ -34,12 +34,12 @@ The local coordinate system in the scope of a section always refers to the shown The shape of the section consists of vertices which form the outline polygon. The polygon can have an arbitrary shape. It only needs to be simple, meaning no edges connecting the vertices should intersect each other. A concrete implementation of this described polygon concept which is used in the library is the [Polygon_2](https://doc.cgal.org/latest/Polygon/index.html#Chapter_2D_Polygon) class from **CGAL**. -The concept of the polygon shape is formalized with the *C++* concept [Shape](@ref geom2.Shape). +The concept of the polygon shape is formalized with the *C++* concept `Shape`. You can use any shape class which satisfies this concept to create the surfaces. This library currently implements two main types: -- [PolygonSection](@ref geom2.PolygonSection): For creating general "tube" based surfaces, i.e. fuselages or nacelles. -- [AirfoilSection](@ref geom2.AirfoilSection): For creating aerodynamic surfaces which have an airfoil shape. +- `PolygonSection`: For creating general "tube" based surfaces, i.e. fuselages or nacelles. +- `AirfoilSection`: For creating aerodynamic surfaces which have an airfoil shape. Those two section types mainly differ via the applied terminology how their geometric parameters are called. For example: An **AirfoilSection** can only set the *chord length* as opposed to a **PolygonSection** where you can set the *width* and *height* of the section independently. @@ -48,7 +48,7 @@ For example: An **AirfoilSection** can only set the *chord length* as opposed to --- ## 3D Geometry -The connection from the 2D section to create 3D surfaces are [multi-section surfaces](@ref geom2.MultisectionSurface). A multi-section surface consists of multiple sections which form the single segments of the the surface. A projected view of such a surface might look like this: +The connection from the 2D section to create 3D surfaces are `multi-section surfaces`. A multi-section surface consists of multiple sections which form the single segments of the the surface. A projected view of such a surface might look like this: {html: width=30%} @@ -108,7 +108,7 @@ So far no rotation was involved. The coordinate system had always the same orien That is not enough to represent arbitrary geometry. You need a mechanism to orient surfaces which should be extruded in a different direction than the global `Z` axis. For this reason, the idea of the **normal direction** is introduced. The normal direction basically defines the direction where the local `Z` axis should point to within a parent scope. -The direction is defined using the [Direction_3](@ref geom2.Direction_3) class of **CGAL** and is a vector in 3D space. Although, this class is technically not concerned about the length of the vector, it is a good idea to make sure, that the resulting length of the normal direction is equal to **1.0**. +The direction is defined using the `Direction_3`class of **CGAL** and is a vector in 3D space. Although, this class is technically not concerned about the length of the vector, it is a good idea to make sure, that the resulting length of the normal direction is equal to **1.0**. The definition of this normal direction is not enough to unambiguously define the three Euler angles which are needed for the coordinate transform. The normal direction can only define **two** of the three angles. As a consequence, the third Euler angle $\gamma$ has to be set manually using the `rotation_z` property of the geom2::Entity3D class. This angle applies a rotation around the local `Z` axis whenever the coordinates of the geometry are transformed to another coordinate system. diff --git a/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md b/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md index 96ae98fa692c5d3ab17de3a7ad4b739a59c0fa84..76cfef1b91e9ff8cec4b37dd373e1a7ed4d4ed8b 100644 --- a/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md +++ b/docs/documentation/libraries/aircraftGeometry2/tutorial-factory.md @@ -246,7 +246,7 @@ pylon = factory.create("Pylon@SimplePylon") </div> !!! attention - As recommended in [tutorial_airfoil_surface](#tutorial_airfoil_surface) , the airfoil factories use the **negative** local `Z` direction as the extrusion or span direction! + As recommended in [tutorial_airfoil_surface](tutorial-geometry.md/#tutorial_airfoil_surface) , the airfoil factories use the **negative** local `Z` direction as the extrusion or span direction! ### Wing Factory {#wing_factory} > **XML Example:** `aircraftGeometry2/test/stubs/aixml-v2/wing.xml` diff --git a/docs/documentation/libraries/index.md b/docs/documentation/libraries/index.md index c1e750a5c7b85e88c77fe7161fa00ef88f745453..479b8dd7febc3e2b36d5a8ef3c7fe212edb8d525 100644 --- a/docs/documentation/libraries/index.md +++ b/docs/documentation/libraries/index.md @@ -8,7 +8,7 @@ date: 2024-11-28 glightbox: false --- -As mentioned in the [build instructions](../get-involved/build/general.md), we have some external dependencies to: +As mentioned in the [build instructions](../../get-involved/build-instructions/build/general.md), we have some external dependencies to: - :simple-cplusplus: [Eigen3 :octicons-link-external-16:](https://eigen.tuxfamily.org/index.php?title=Main_Page){:target="_blank"} - :simple-cplusplus: [Boost :octicons-link-external-16:](https://www.boost.org/){:target="_blank"} @@ -27,19 +27,19 @@ It has helper functions to extract and interpolate data of provided airfoil pola |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|-|-| +|0.5.0|:simple-cplusplus: |GPLv3|-|-| --- ## aircraftGeometry2 {.overview-img align=left} -This library is based on the older [aircraftGeometry](#aircraftgeometry) library and extends it to be more modular. -The modularity and flexibility is achieved by using the high performance [Computational Geometry Algorithms Library](https://www.cgal.org/) also known as **CGAL**. +This library is based on the older aircraftGeometry library and extends it to be more modular. +The modularity and flexibility is achieved by using the high performance [:octicons-link-external-16: Computational Geometry Algorithms Library](https://www.cgal.org/) also known as **CGAL**. {.overview-item} |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](libraries/aircraftGeometry2/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| +|0.5.0|:simple-cplusplus: |GPLv3|[Link](aircraftGeometry2/index.md)| [Eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page), [CGAL](https://www.cgal.org/)| --- @@ -50,7 +50,7 @@ The **airfoils** libary provides a database for different airfoils. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|1.0.0|:simple-cplusplus: |GPLv3|-|-| +|0.5.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -62,7 +62,7 @@ It uses a simple XML library, namely *tinyxml*, to read and parse the XML files. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|-|-| +|0.5.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -74,7 +74,7 @@ You can set different atmospheric conditions (e.g. *ISA+25*) and calculate the p |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|-|| +|0.5.0|:simple-cplusplus: |GPLv3|-|| --- @@ -85,7 +85,7 @@ The **blackboxTest** library provides an interface to run a complete module with |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|-|[googleTest](https://google.github.io/googletest/)| +|0.5.0|:simple-cplusplus: |GPLv3|-|[googleTest](https://google.github.io/googletest/)| --- @@ -98,7 +98,7 @@ The engine decks can originate from different softwaretools as long as they prov |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](engine/index.md)|-| +|0.5.0|:simple-cplusplus: |GPLv3|[Link](engine/index.md)|-| --- @@ -118,7 +118,7 @@ It has helper functions to extract and interpolate data of the results from the |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|-|-| +|0.5.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -131,7 +131,7 @@ The library gives a template how modules should be structured and gives helpers |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|-|-| +|0.5.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -142,7 +142,7 @@ This library provides standardized UNICADO data preprocessing, run, and postproc |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|1.0.0|:simple-python: |GPLv3|-|-| +|0.5.0|:simple-python: |GPLv3|-|-| --- @@ -154,7 +154,7 @@ In provides custom output streams, which automatically handle the log files and |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|-|-| +|0.5.0|:simple-cplusplus: |GPLv3|-|-| --- @@ -167,7 +167,7 @@ The library can handle *UNIX* and *Windows* systems alike. |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|-|-| +|0.5.0|:simple-cplusplus: |GPLv3|-|-| !!! warning Some functions of this library are a bit outdated! When using this library, please look first at the wonderful [STL :octicons-link-external-16:](https://en.cppreference.com/w/) whether the function you are seeking is already there. @@ -181,7 +181,7 @@ The `simple vector library` by Andrew Willmott provides vector and matrix classe |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: | |[Link](https://www.cs.cmu.edu/~ajw/doc/svl.html)|-| +|0.5.0|:simple-cplusplus: | |[Link](https://www.cs.cmu.edu/~ajw/doc/svl.html)|-| !!! note This will soon be replaced by `Eigen`. @@ -196,4 +196,4 @@ In addition, it defines some common **constants** which are useful for calculati |Module Version|Language|License|Documentation|Dependencies| |:---:|:---:|:---:|---|---| -|2.1.0|:simple-cplusplus: |GPLv3|-|-| \ No newline at end of file +|0.5.0|:simple-cplusplus: |GPLv3|-|-| \ No newline at end of file diff --git a/docs/documentation/overview.md b/docs/documentation/overview.md index ebf66ad02c075de4ced323d7b44c6455178dd936..e9e1f507607227358089be3d82bf4a9aa009ee80 100644 --- a/docs/documentation/overview.md +++ b/docs/documentation/overview.md @@ -15,7 +15,7 @@ glightbox: false - [:simple-gitlab: Libraries :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/libraries): - Whenever some functionality is used in several modules, the functions are collected and made available within the project via [libraries](libraries.md). + Whenever some functionality is used in several modules, the functions are collected and made available within the project via [libraries](libraries/index.md). - [:simple-gitlab: Utilities :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/utilities): @@ -26,7 +26,7 @@ glightbox: false Here you can found different designed aircraft. The designs are made using the **UNICADO** workflow and are generally in a *valid* and *converged* state. 🔔 This repository will be translated to a actual database in the future! - + - [:simple-gitlab: Engines :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/engines): @@ -34,7 +34,7 @@ glightbox: false - [:simple-gitlab: WorkflowOnRCE :octicons-link-external-16:](https://git.rwth-aachen.de/unicado/rce-workflow): - Here are all the files which are relevant for executing the **UNICADO** workflow with [RCE](https://rcenvironment.de/). + Here are all the files which are relevant for executing the **UNICADO** workflow with [:octicons-link-external-16: RCE](https://rcenvironment.de/). - [:simple-gitlab: UNICADO Package:octicons-link-external-16:](https://git.rwth-aachen.de/unicado/unicado-package): diff --git a/docs/documentation/sizing/empennage_design/index.md b/docs/documentation/sizing/empennage_design/index.md index 8615893ab788767eb3a5418b68c39cc51316cd48..9b6b859d88693153513bcb2855a158b50ae084e2 100644 --- a/docs/documentation/sizing/empennage_design/index.md +++ b/docs/documentation/sizing/empennage_design/index.md @@ -29,10 +29,10 @@ The _empennage\_design_ tool will help you design various empennages for classic The following pages will guide you through the process of generating your first empennage within UNICADO: -[:octicons-arrow-right-16: Basic Concepts](basic-concepts.md) -[:octicons-arrow-right-16: Getting Started](getting-started.md) -[:octicons-arrow-right-16: Design Methods](design-methods.md) -[:octicons-arrow-right-16: Design your first empennage](run-your-first-empennage-design.md) +[:octicons-arrow-right-16: Basic Concepts](basic-concepts.md) +[:octicons-arrow-right-16: Getting Started](getting-started.md) +[:octicons-arrow-right-16: Design Methods](design-methods.md) +[:octicons-arrow-right-16: Design your first empennage](run-your-first-empennage-design.md) So let's get started! @@ -43,9 +43,9 @@ If you are familiar with these concepts and want to contribute - head over to th The following pages will help you understand the code structure: -[:octicons-arrow-right-16: Prerequisites](prerequisites.md) -[:octicons-arrow-right-16: Build the code](build-the-code.md) -[:octicons-arrow-right-16: Empennage module structure](empennage-module-structure.md) -[:octicons-arrow-right-16: Method template](method-template.md) +[:octicons-arrow-right-16: Prerequisites](prerequisites.md) +[:octicons-arrow-right-16: Build the code](../../../get-involved/build-instructions/build/python.md) +[:octicons-arrow-right-16: Empennage module structure](empennage-module-structure.md) +[:octicons-arrow-right-16: Method template](method-template.md) We appreciate it! diff --git a/docs/documentation/sizing/empennage_design/run-your-first-empennage-design.md b/docs/documentation/sizing/empennage_design/run-your-first-empennage-design.md index df35fccacdcd593f6593d9a026371cf6f124348a..6787ef3aac77ec721f2e73c13802f6c142b7ecd5 100644 --- a/docs/documentation/sizing/empennage_design/run-your-first-empennage-design.md +++ b/docs/documentation/sizing/empennage_design/run-your-first-empennage-design.md @@ -61,7 +61,7 @@ Dihedral | 5° !!! note Parameters of the fuselage are not listed - however, it has a length of ~37m and a width of ~4m. - + ## Design parameters Empennage Design tool parameters for conventional low method @@ -105,7 +105,7 @@ Parameter | Value `control_devices` | `((elevator, -25°, 25°,0.2,0.7,1.0,0.9,0.7,1.0))` ## Tool execution -The tool can be executed from console directly if all paths are set (see [:octicons-arrow-right-16: How to run a tool](howToRunATool.md)). +The tool can be executed from console directly if all paths are set (see [:octicons-arrow-right-16: How to run a tool](../../../tutorials/seperate-tool-execution.md)). We go through the tool output step by step ``` @@ -194,4 +194,4 @@ Soo .... Now it is your turn! - Tool does not run properly: - Make sure you have all the paths set up correctly and the specified elements exist! - Tool is not there: - - You can build the tool directly from scratch - see therefor [:octicons-arrow-right-16: How to build a tool](howToBuildATool.md) \ No newline at end of file + - You can build the tool directly from scratch - see therefor [:octicons-arrow-right-16: How to build a tool](../../../get-involved/build-instructions/build/cpp.md) \ No newline at end of file diff --git a/docs/documentation/sizing/index.md b/docs/documentation/sizing/index.md index 949a66207a1bbfc14ab5f9d143a048d9f46d3887..7f183f55852fd0c45d05c8c1b43dfd7c6da710e0 100644 --- a/docs/documentation/sizing/index.md +++ b/docs/documentation/sizing/index.md @@ -23,7 +23,7 @@ Furthermore an initial estimation of the takeoff mass is done. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/initial_sizing/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](initial_sizing/index.md)| --- @@ -31,13 +31,12 @@ Furthermore an initial estimation of the takeoff mass is done. {.overview-img align=left} The **create_mission_XML** is the third module of the UNICADO tool chain. Its purpose is to set up the overall flight mission including e.g. a flight segment table, speed and altitude schedules, number of passengers (PAX), total payload or the engine warm up time. -For the user, possible changes in the module run configuration can be made in the related createMissionXML_conf.xml file. -The parameters comprised in this file can have different attributes as e.g. Desc, Unit, Default or #text and are further subdivided into control settings and program settings. +For the user, possible changes in the module run configuration can be made in the related create_mission_xml_conf.xml file. {.overview-item} |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|-| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](create_mission_xml/index.md)| --- @@ -48,7 +47,7 @@ The **fuselage_design** module calculates characteristic parameters and generate |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/fuselage_design/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](fuselage_design/index.md)| --- @@ -59,7 +58,7 @@ The **wing_design** module calculates characteristic parameter of the aircraft m |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/wing_design/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](wing_design/index.md)| --- @@ -71,25 +70,25 @@ It takes takes the controllability as wells as the static margin of the aircraft |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/empennage_design/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](empennage_design/index.md)| --- ## Tank design {.overview-img align=left} -:construction: *tbd* +The **tank_design** module performs calculations regarding the tank. For kerosene tanks, the maximum fuel capacity of the aircraft is determined by using its geometry. Liquid hydrogen tanks will be sized according to the required amount of fuel. {.overview-item} |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-python: |GPLv3|[Link](sizing/tank_design/index.md)| +|2.1.0|:simple-python: |GPLv3|[Link](tank_design/index.md)| --- ## Propulsion design {.overview-img align=left} -The **propulsionDesign** module designs, integrates and analyzes the propulsion system to the aircraft. +The **propulsion_design** module designs, integrates and analyzes the propulsion system to the aircraft. It uses engine performance deck containing serval parameters (like thrust, fuel-flow, ...) as a function of the flight Mach number and the altitude. The engine will be scaled by the module to match the specific thrust requirements. Moreover, an engine bucket curve and several engine deck plots can be created. @@ -100,7 +99,7 @@ Also the mass properties are analyzed. |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|3.0.0|:simple-cplusplus: |GPLv3|[Link](sizing/propulsion_design/index.md)| +|3.0.0|:simple-cplusplus: |GPLv3|[Link](propulsion_design/index.md)| --- @@ -111,7 +110,7 @@ The **landing_gear_design** module calculates characteristic parameters for the |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/landing_gear_design/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](landing_gear_design/index.md)| --- @@ -123,6 +122,6 @@ It dimensions ATA chapter systems in terms of mass and energy requirement divide |Module Version|Language|License|Documentation| |:---:|:---:|:---:|---| -|2.1.0|:simple-cplusplus: |GPLv3|[Link](sizing/systems_design/index.md)| +|2.1.0|:simple-cplusplus: |GPLv3|[Link](systems_design/index.md)| --- diff --git a/docs/documentation/sizing/initial_sizing/getting-started.md b/docs/documentation/sizing/initial_sizing/getting-started.md index 8722f4cc206d1075537dc492814112ab13f37975..bfa1b4c516c1e91789c263abeb6fb7eff6d0a628 100644 --- a/docs/documentation/sizing/initial_sizing/getting-started.md +++ b/docs/documentation/sizing/initial_sizing/getting-started.md @@ -3,11 +3,11 @@ This guide will show you the basic usage of **initial_sizing**. Following steps ## Step-by-step -It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build/cpp/)). +It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build-instructions/build/cpp.md)). 1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#acXML)) 2. Fill out the configuration file - change at least: - - in `control_settings` + - in `control_settings` - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings - `console_output` at least to `mode_1` - `plot_output` to false (or define `inkscape_path` and `gnuplot_path`) @@ -15,10 +15,10 @@ It is assumed that you have the `UNICADO Package` installed including the execut - the initial assumptions of values for the stated parameters 3. Open terminal and run **initialSizing** -Following will happen +Following will happen -- you see output in the console window -- a HTML report is created in the directory of `aircraft_exchange_file_directory` (no plots if they are turned off) +- you see output in the console window +- a HTML report is created in the directory of `aircraft_exchange_file_directory` (no plots if they are turned off) - results are saved in the _acXML_ file @@ -26,22 +26,22 @@ Following will happen Generally, we use 2 files to set our configuration in UNICADO: - the aircraft exchange file (or _acXML_) includes - - data related inputs (e.g. range, pax number, cargo) - - data related outputs (e.g. MTOM, OME) + - data related inputs (e.g. range, pax number, cargo) + - data related outputs (e.g. MTOM, OME) - the configuration file `initial_sizing_conf.xml` (or _configXML_) includes - - control settings (e.g. enable/disable generating plots) + - control settings (e.g. enable/disable generating plots) - program settings (e.g. set parameters to consider for specific technologies or change of methods) -### Aircraft exchange file +### Aircraft exchange file {#acXML} !!! note _acXML_ is an exchange file - that only safes the data as output which is needed by another tool! -**Inputs**: +**Inputs**: The following is needed from the _acXML_: -1) the accomodation requirements (pax number, pax mass, luggage mass, cargo mass) -2) the mission requirements (range, reserves, TOFL, cruise speed and altitude, approach speed) +1) the accomodation requirements (pax number, pax mass, luggage mass, cargo mass) +2) the mission requirements (range, reserves, TOFL, cruise speed and altitude, approach speed) 3) the user settings of the energy carrier Naturally, the initial_sizing needs an assumption for the initial MTOM to start the iteration of MTOM. This initial MTOM is calculated from the pax number requirement in the _acXML_ . @@ -50,9 +50,9 @@ Additionally, the user settings need to be defined. In the node `/aircraft_excha **Outputs**: -The following is written into the _acXML_: -1) the Maximum Takeoff Mass (MTOM) -2) the Operating Mass Empty (OME) +The following is written into the _acXML_: +1) the Maximum Takeoff Mass (MTOM) +2) the Operating Mass Empty (OME) 3) the Design Sizing Point which consists of the wing loading and the Thrust to weight ratio needed to fulfill the TLARs ### Configuration file @@ -60,8 +60,8 @@ The _configXML_ is structured into two blocks: the ^^control^^ and ^^program^^ s The ^^control settings^^ are standardized in UNICADO and will not be described in detail here. But to get started, you have to change at least -- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings -- the `console_output` at least to `mode_1` +- the `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings +- the `console_output` at least to `mode_1` - the `plot_output` to false (or define `inkscape_path` and `gnuplot_path`). !!! note @@ -71,16 +71,16 @@ The ^^program settings^^ are special settings and input parameters only needed f At first the aircraft configuration for which the initial sizing shall be done needs to be set. The second setting is the approach how the initial sizing shall be done. There is an analytical method and there will be a database method. -``` +``` <tube_and_wing description="settings for tube and wing (TAW)"> <approach_selection description="selection of approach level"> <value>analytical</value> </approach_selection> ``` - + For the analytical approach of the initial sizing module further parameter assumptions and requirements needs to be set in the program settings. -``` +``` <General> <OswaldFactor description="Oswald efficency factor in clean configuration" Unit="-"> <value>0.85</value> @@ -108,7 +108,7 @@ For the analytical approach of the initial sizing module further parameter assum For the TLARs takeoff, climb, cruise and landing set in the _acXML_ further parameter assumptions are necessary for initial sizing in order to determine a sizing chart. These parameters are set in the initial sizing program settings and as are followed -``` +``` <TOFL description="takeoff distance requirement"> <CLmax_TO description="Maximum lift coefficient at takeoff" Unit="-"> <value>2.55</value> @@ -154,7 +154,7 @@ For the TLARs takeoff, climb, cruise and landing set in the _acXML_ further para In order to provide further input for the mass estimation methodology in the analytical approach of the initial sizing module fuel mass fractions for mission phases needs to be set. -``` +``` <Fractions description="fuel mass fractions"> <mf_warmup description="Warmup (according to Raymer: 0.97(A340)-0.99(A320))" Unit="-"> <value>0.99</value> diff --git a/docs/documentation/sizing/propulsion_design/getting-started.md b/docs/documentation/sizing/propulsion_design/getting-started.md index 7ee24ca9599ed8f3385162011424a7c02909265d..e3c3978e89432a2340c37ec2f8fc8e5edcc79873 100644 --- a/docs/documentation/sizing/propulsion_design/getting-started.md +++ b/docs/documentation/sizing/propulsion_design/getting-started.md @@ -3,11 +3,11 @@ This guide will show you the basic usage of **propulsion_design**. Following ste ## Step-by-step -It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build/cpp/)). +It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build-instructions/build/cpp.md)). 1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#acXML)) 2. Fill out the configuration file - change at least: - - in `control_settings` + - in `control_settings` - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings - `console_output` at least to `mode_1` - `plot_output` to false (or define `inkscape_path` and `gnuplot_path`) @@ -35,10 +35,10 @@ Generally, we use 2 files to set or configure in UNICADO: - program settings (e.g. set technology factors or methods) ### Aircraft exchange file -!!! note +!!! note _acXML_ is an exchange file - we agreed on that only data will be saved as output which is needed by another tool! -**Inputs**: +**Inputs**: Following is needed from the _acXML_: 1) the total required thrust using the thrust-to-weight ratio and MTOM, @@ -84,7 +84,7 @@ Propulsion Let's assume you want to design an aircraft with 5 engine - 2 on each side of the wing and one in the empennage. Additionally, you want to use 3 energy carriers: hydrogen, kerosene and battery-electric. For that, you need to define 3 energy carriers with each a type and a density with $ID=[0,1,2]$. Then you create 5 propulsor nodes with $ID=[0,...,4]$ and assign them each a powertrain, type, ..., and thrust share. E.g. Engine 0 shall be a kerosene-powered turbofan in the empennage with a thrust share of $10\%$. Then it has the position with `parent_component=empennage`, `x=front`, `y=mid`, `z=in`. If the type of the energy carrier with ID=0 is set to kerosene, you need to assign `energy_carrier_id=0`. Also `powertrain=turbo`, `type=fan`, and `thrust_share=0.1`. Then Engine 1 could be a hydrogen-powered turboprop located under the left front inner wing with a thrust share of $25\%$. Then it has the position with `parent_component=wing`, `x=front`, `y=left`, `z=under`. If the type of the energy carrier with ID=1 is set to hydrogen, you need to assign `energy_carrier_id=1`. Also `powertrain=turbo`, `type=prop`, and `thrust_share=0.25`. The same procedure needs to be done for the other 3 engines. -**Outputs**: The results are saved in the _acXML_ node `/aircraft_exchange_file/component_design/propulsion`. +**Outputs**: The results are saved in the _acXML_ node `/aircraft_exchange_file/component_design/propulsion`. ```plaintext Propulsion @@ -153,7 +153,7 @@ Program Settings | | |- Profile | |- Integration ``` -You can choose the method for each discipline, the path for your engine data base, and different technology factors. To be highlighted, is the `Propulsion ID=Default` node. This is a default for all engines defined in the _acXML_ (see next paragraph). E.g. if you define 3 engines for an aircraft, all will use the same assumptions in the default setting. In case you want that the 3. engine is been calculated with e.g. another method, you can create a new `propulsion` node and assign the same `ID` value as set for the _acXML_ `ID`. +You can choose the method for each discipline, the path for your engine data base, and different technology factors. To be highlighted, is the `Propulsion ID=Default` node. This is a default for all engines defined in the _acXML_ (see next paragraph). E.g. if you define 3 engines for an aircraft, all will use the same assumptions in the default setting. In case you want that the 3. engine is been calculated with e.g. another method, you can create a new `propulsion` node and assign the same `ID` value as set for the _acXML_ `ID`. ## Minimal required aircraft exchange file input {#acXML} diff --git a/docs/documentation/sizing/propulsion_design/index.md b/docs/documentation/sizing/propulsion_design/index.md index e65323eecc45769542478585777d6baa62bd4728..294ef495f334caec1406841a18c5b97016127b55 100644 --- a/docs/documentation/sizing/propulsion_design/index.md +++ b/docs/documentation/sizing/propulsion_design/index.md @@ -8,7 +8,7 @@ The propulsion is one of the critical components in the aircraft design loop. It There are different propulsion architectures for the aircraft conceptual design process. To give you a general taste, here are a few illustrations of possible concepts.  -The [getting started](getting_started.md) gives you a first insight in how to execute the tool and how it generally works. To understand how the tools works in more detail, the documentation is split into a [engineering principles](engineering_principles.md) and a [software architecture](software_architecture.md) section. +The [getting started](getting-started.md) gives you a first insight in how to execute the tool and how it generally works. To understand how the tools works in more detail, the documentation is split into a [engineering principles](engineering_principles.md) and a [software architecture](software_architecture.md) section. Prior to that, let's summarize what the tool can currently do and what is planned (terms like _method_ or _strategy_ will be explained in the sections): @@ -19,11 +19,11 @@ Prior to that, let's summarize what the tool can currently do and what is planne |kerosene-powered turboprop | |strategy integrated, but methods missing | |hydrogen-powered turboprop | |strategy integrated, but methods missing | -Order: +Order: - 1. engine designer - 2. nacelle designer - 3. pylon designer + 1. engine designer + 2. nacelle designer + 3. pylon designer 4. propulsion integrator 5. mass analyzer diff --git a/docs/documentation/sizing/propulsion_design/overview.md b/docs/documentation/sizing/propulsion_design/overview.md index 2854f84a3ba2194f334b35cfe42377231c3692af..6815d2e21b0edde71882b0ba32f673a8e69159c0 100644 --- a/docs/documentation/sizing/propulsion_design/overview.md +++ b/docs/documentation/sizing/propulsion_design/overview.md @@ -1,5 +1,5 @@ # Overview {#mainpage} -The propulsion_design tool provides the engine data and the engine integration on the aircraft. +The propulsion_design tool provides the engine data and the engine integration on the aircraft. As a first step, the user inputs must be specified. This is done in the aircraftXML file in the following way: @@ -14,11 +14,11 @@ As a first step, the user inputs must be specified. This is done in the aircraft - `y`: Y-position (aircraft coordinate system). Selector: left / right - `z`: Z-position (aircraft coordinate system). Selector: over / mid / under / in - + Further inputs can be specified in the propulsion design configuration file: > The following settings are specified in the `aircraftXML` file: -> +> > ```xml > <control_settings>...</control_settings> <!-- Paths and settings --> > <program_settings> <!-- Settings specific to propulsion design --> @@ -33,7 +33,7 @@ Further inputs can be specified in the propulsion design configuration file: > <engine_efficiency>...</engine_efficiency> > </technology_factors> > <repositioning>...</repositioning> <!-- Shifting the engine center position --> -> +> > <propulsion ID="..."> <!-- ID specific settings --> > <Empirical_Settings>...</Empirical_Settings> > <Rubber_Method_Settings> @@ -44,7 +44,7 @@ Further inputs can be specified in the propulsion design configuration file: > </propulsion> > </program_settings> > ``` - + With the settings the propulsion design calculation can be started. The main steps of the methodology are shown in the following figure: @@ -64,7 +64,7 @@ With this the engines are designed one by one with the following approach: The outputs are the engine xml file and the different deck values as csv files. They are saved in thr projects directory. Further output is saved in the aircraft xml because other tools of the UNICADO tool chain need it. An example of this output is shown below. > The following settings define propulsion-specific parameters in the `aircraftXML` file: -> +> > ```xml > <propulsion ID="0"> <!-- Define the propulsion system --> > <model>...</model> <!-- Name of the engine --> @@ -89,13 +89,13 @@ The outputs are the engine xml file and the different deck values as csv files. > </propulsion> > ``` - + Readout of the engine data can and should only be done using the engine library! The engine data is provided in two formats. The engine xml file and the csv files that contain the engine deck. The engine xml has values that are constant for a given engine: > The following structure defines the engine design conditions in the `EngineDataFile`: -> +> > ```xml > <EngineDataFile> > <EngineDesignCondition Desc="Flight Condition for creating the bucket curve"> @@ -110,7 +110,7 @@ The engine xml has values that are constant for a given engine: The csv files contain engine data that depends on the operating point. The operating point is defined as - Flight Mach number - - Flight altitude + - Flight altitude - Low pressure spool speed / power setting An example is shown in the following figure. @@ -118,21 +118,21 @@ An example is shown in the following figure.  The data is readout by the engine library which has an efficient parser for the deck values using a linear interpolation between two existing deck values. Penalties, like shaft power offtake or bleed air offtake, are applied using the engine library. The scale factor is applied according to the exact scaling mechanism for the value needed. -The detailed description of the engine library can be found [here](../../../libraries/engine/). +The detailed description of the engine library can be found [here](../../libraries/engine/index.md). -## Scaling Principle +## Scaling Principle -The underlying principle is the scaling of the mass flow with constant velocities. The following scaling is done using the scale factor (SF): +The underlying principle is the scaling of the mass flow with constant velocities. The following scaling is done using the scale factor (SF): -Scaled Value = Base Value * \( SF^{X} \) +Scaled Value = Base Value * \( SF^{X} \) -- **Thrust:** X=1 -- **Fuel Flow:** X=1 → TSFC remains constant -- **Diameter:** X=0.5 -- **Weight:** X=1.1 -- **Length:** X=0.4 +- **Thrust:** X=1 +- **Fuel Flow:** X=1 → TSFC remains constant +- **Diameter:** X=0.5 +- **Weight:** X=1.1 +- **Length:** X=0.4 - **LTO Fuel Flow:** X=1 - **LTO Emissions:** 0 - **Mass Flow:** X=1 - **Max bleed:** X=1 -- **Max shaft offtake:** X=1 \ No newline at end of file +- **Max shaft offtake:** X=1 \ No newline at end of file diff --git a/docs/documentation/sizing/propulsion_design/software_architecture.md b/docs/documentation/sizing/propulsion_design/software_architecture.md index 7995d60cc6570e0d69f3e9877e3f4b25f74bff5c..72a6ae7be3c1cae2cd3beff6eb161b3d57f5633a 100644 --- a/docs/documentation/sizing/propulsion_design/software_architecture.md +++ b/docs/documentation/sizing/propulsion_design/software_architecture.md @@ -2,7 +2,7 @@ ## Software Architecture Overview -The software architecture is structured into various modules and packages, each handling specific task. Below is a description of the main components (some classes, interfaces etc. are left out to keep it understandable for now - for more information see the [class diagram](figure/class_diagram.png) or the source code): +The software architecture is structured into various modules and packages, each handling specific task. Below is a description of the main components (some classes, interfaces etc. are left out to keep it understandable for now - for more information see the [class diagram](figures/class_diagram.png) or the source code): - classes: - **propulsionDesign** is like the "coordinator" responsible for the overall propulsion system design including _initialize_, _run_, _update_, _report_ and _save_ (inherits from `Module` class from **moduleBasics**). These include e.g. method selection function for each disciplines @@ -21,7 +21,7 @@ The software architecture is structured into various modules and packages, each Some additional words on the **propulsionStrategy**: -As you might also see in the [class diagram](figure/class_diagram.png), the core of it is the function `operator()` for specific engine types to allow the `engine` object to be used as functions. This object is, depending on the user settings, based on the propulsion type classes (e.g. `Turbofan<Kerosene>`). As also shown in @ref propulsion.md, the type is combined with 3 "building blocks" +As you might also see in the [class diagram](figures/class_diagram.png), the core of it is the function `operator()` for specific engine types to allow the `engine` object to be used as functions. This object is, depending on the user settings, based on the propulsion type classes (e.g. `Turbofan<Kerosene>`). The type is combined with 3 "building blocks" - *powertrain*: Way the power is generated from the source: turbo, electric, fuel_cell - *type*: Type of main thrust generator: fan or prop diff --git a/docs/documentation/sizing/systems_design/getting-started.md b/docs/documentation/sizing/systems_design/getting-started.md index b91d9b5478a030359d141be7a93e4cee468e0a4e..e5eafe9228110e694a013b5cbdb37e4c1886da34 100644 --- a/docs/documentation/sizing/systems_design/getting-started.md +++ b/docs/documentation/sizing/systems_design/getting-started.md @@ -3,11 +3,11 @@ This guide will show you how to use **systems_design**. ## Step-by-step -It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build/cpp/)). +It is assumed that you have the `UNICADO Package` installed including the executables and the engine database. In case you are a developer, you need to build the tool first (see [build instructions on UNICADO website](../../../get-involved/build-instructions/build/cpp.md)). -1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#settings-and-outputs-settingsandoutputs)) +1. Create a dummy `aircraft_exchange_file` (minimal required input see [here](#settings-and-outputs)) 2. Fill out the configuration file - change at least: - - in `control_settings` + - in `control_settings` - `aircraft_exchange_file_name` and `aircraft_exchange_file_directory` to your respective settings - `console_output` at least to `mode_1` - `plot_output` to false or make sure gnuplot can be found (`gnuplot_path`) @@ -18,10 +18,10 @@ The following will happen: - a HTML report is created in the directory of `aircraft_exchange_file_directory` (no plots if they are turned off) - results are saved in the _acXML_ file -!!! note +!!! note An A320-like system architecture is implemented in the provided default config file. This architecture and its system parameters will be used if you make no other changes to the config file than those stated in 2. or just run the workflow without adapting the config file of systems_design. -## Settings and outputs +## Settings and outputs {#settings-and-outputs} Three input files are required for **systems_design**: @@ -43,8 +43,8 @@ Three input files are required for **systems_design**: - the mission file (`design_mission.xml`, `study_mission.xml` or `requirement_mission.xml`) is required since **systems_design** calculates the required system power for each mission step. !!! note - When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. - + When the UNICADO workflow is executed the tool is run automatically. In this case, all the required data should be available anyway. + !!! note _acXML_ is an exchange file - we agreed on that only data will be saved as output which is needed by another tool! diff --git a/docs/documentation/sizing/systems_design/index.md b/docs/documentation/sizing/systems_design/index.md index 9d3b462ddded50531969f11159478066307e588d..5626aa42c94878814badc216d3f476969691a6c1 100644 --- a/docs/documentation/sizing/systems_design/index.md +++ b/docs/documentation/sizing/systems_design/index.md @@ -21,4 +21,4 @@ The systems design module calculates the mass and power requirement of the aircr * [ATA 70: Engine (only used to account for power extraction efficiencies of the engine)](systems.md#ata-70-engine) * [ATA XX: Remaining Consumers](systems.md#ata-xx-remaining-consumers) -[Getting Started](getting_started.md) will show you how to define the system architecture. The settings and calculation methods for the individual aircraft systems are explained in [Systems](systems.md) or you can follow one of the links above directly to the system. If you want to know how the systems design module works have a look at the [Software Architecture](software_architecture.md). +[Getting Started](getting-started.md) will show you how to define the system architecture. The settings and calculation methods for the individual aircraft systems are explained in [Systems](systems.md) or you can follow one of the links above directly to the system. If you want to know how the systems design module works have a look at the [Software Architecture](software_architecture.md). diff --git a/docs/documentation/sizing/wing_design/run-your-first-wing-design.md b/docs/documentation/sizing/wing_design/run-your-first-wing-design.md index 1b618185c4fe4b3ebad02a7619cd2c094da052f6..ebaeb68d7180d3efed1552b8bbe0e365824fe2b8 100644 --- a/docs/documentation/sizing/wing_design/run-your-first-wing-design.md +++ b/docs/documentation/sizing/wing_design/run-your-first-wing-design.md @@ -65,7 +65,7 @@ Parameter | Value (parameter in order of occurence) ## Tool execution -The tool can be executed from console directly if all paths are set (see [:octicons-arrow-right-16: How to run a tool](howToRunATool.md)). +The tool can be executed from console directly if all paths are set (see [:octicons-arrow-right-16: How to run a tool](../../../tutorials/seperate-tool-execution.md)). We go through the tool output step by step ``` @@ -273,4 +273,4 @@ Soo .... Now it is your turn! - Tool does not run properly: - Make sure you have all the paths set up correctly and the specified elements exist! - Tool is not there: - - You can build the tool directly from scratch - see therefor [:octicons-arrow-right-16: How to build a tool](howToBuildATool.md) + - You can build the tool directly from scratch - see therefor [:octicons-arrow-right-16: How to build a tool](../../../get-involved/build-instructions/build/cpp.md) diff --git a/docs/get-involved/build-environment/linux.md b/docs/get-involved/build-instructions/build-environment/linux.md similarity index 100% rename from docs/get-involved/build-environment/linux.md rename to docs/get-involved/build-instructions/build-environment/linux.md diff --git a/docs/get-involved/build-environment/macos.md b/docs/get-involved/build-instructions/build-environment/macos.md similarity index 100% rename from docs/get-involved/build-environment/macos.md rename to docs/get-involved/build-instructions/build-environment/macos.md diff --git a/docs/get-involved/build-environment/mingw.md b/docs/get-involved/build-instructions/build-environment/mingw.md similarity index 100% rename from docs/get-involved/build-environment/mingw.md rename to docs/get-involved/build-instructions/build-environment/mingw.md diff --git a/docs/get-involved/build-environment/windows.md b/docs/get-involved/build-instructions/build-environment/windows.md similarity index 96% rename from docs/get-involved/build-environment/windows.md rename to docs/get-involved/build-instructions/build-environment/windows.md index 2b8c24fc60055c55a7231d7d5f42dea174d402bc..7c85ea1b9bd4c981f29fb4f11704a8ff4bf48eb8 100644 --- a/docs/get-involved/build-environment/windows.md +++ b/docs/get-involved/build-instructions/build-environment/windows.md @@ -21,7 +21,7 @@ The tools used are: ## Install Git - Download and Install the latest release of **Git**: [Download Git ](https://git-scm.com/download/win) -- Follow [Install and Configure Git](../../get-involved/contributor-tutorial/git-installation&configuration.md) for a detailed explanation of how to install & configure Git. +- Follow [Install and Configure Git](../../how-to-contribute/contributor-tutorial/git-installation&configuration.md) for a detailed explanation of how to install & configure Git. --- @@ -112,7 +112,7 @@ git clone https://github.com/microsoft/vcpkg.git === "MinGW" - + ``` { .sh .copy } cmd.exe /c .\vcpkg\bootstrap-vcpkg.bat ``` diff --git a/docs/get-involved/cmake-presets.md b/docs/get-involved/build-instructions/build/cmake-presets.md similarity index 94% rename from docs/get-involved/cmake-presets.md rename to docs/get-involved/build-instructions/build/cmake-presets.md index a19ee49638e050a269d5faaea80d40928cf61eb3..4af102cb3935dd915abbce32305d17ca5b8c95b9 100644 --- a/docs/get-involved/cmake-presets.md +++ b/docs/get-involved/build-instructions/build/cmake-presets.md @@ -6,7 +6,7 @@ authors: date: 2024-03-06 --- ## Introduction -If you don't know what **CMake** presets are, read about them in their [Documenation :octicons-link-external-16:](https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html){:target="_blank"}. +If you don't know what **CMake** presets are, read about them in their [Documentation :octicons-link-external-16:](https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html){:target="_blank"}. We provide a standard set of presets in :octicons-file-16: `CMakePresets.json` which gives you some reasonable defaults. However, our assumptions may not apply to your build environment. @@ -75,7 +75,7 @@ The following provides preset templates you can build your preset upon. If you used the `name` parameter as shown in the templates you can use the custom preset when configuring **CMake** like this: ``` cmake -B build -S . --preset default -``` +``` !!! tip Most **CMake** IDE plugins should recognize these preset files and provide a way for you to select the preset you want. diff --git a/docs/get-involved/build/cpp.md b/docs/get-involved/build-instructions/build/cpp.md similarity index 98% rename from docs/get-involved/build/cpp.md rename to docs/get-involved/build-instructions/build/cpp.md index e0b81b5574bd490e20aef177f2a1877a6730e288..9f7764c2a14e01a3968f564ad774831386e4ad5e 100644 --- a/docs/get-involved/build/cpp.md +++ b/docs/get-involved/build-instructions/build/cpp.md @@ -66,7 +66,7 @@ The *configuration* can be one of the following: - `debug` for a debug builds Other configurations are possible, but not supported by our presets. -You have to specify custom presets by [CMakeUserPresets](../cmake-presets.md). +You have to specify custom presets by [CMakeUserPresets](cmake-presets.md). !!! note In the following we always assume the **Release** configuration for building. The **Debug** configuration works analogously. diff --git a/docs/get-involved/build/general.md b/docs/get-involved/build-instructions/build/general.md similarity index 97% rename from docs/get-involved/build/general.md rename to docs/get-involved/build-instructions/build/general.md index 1d6d6a58548a6fead12a171bb240851e13318c1a..bf06ac7075c8a37681d534f0f84277a44d979dcf 100644 --- a/docs/get-involved/build/general.md +++ b/docs/get-involved/build-instructions/build/general.md @@ -8,7 +8,7 @@ To understand **UNICADO's code base**, there are some things you need to know: 1. The code is in both :simple-cplusplus: C++ and :simple-python: Python. This makes the software especially exciting for development :fire:. -2. We work a lot with executables in order to integrate them into the workflow (you might have seen this the [standalone download](../../download/takeoff.md)). +2. We work a lot with executables in order to integrate them into the workflow (you might have seen this the [standalone download](../../../download/takeoff.md)). 3. For generating the build files, **UNICADO** uses [CMake :octicons-link-external-16:](https://cmake.org/){:target="_blank"}. CMake is a build system generator, which allows for cross-platform compilation. @@ -30,7 +30,7 @@ Since **CMake** is independent of the used platform, it needs to figure out on w !!! note **CMake** introduced the concept of [Presets :octicons-link-external-16:](https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html){:target="_blank"} which allows to specify different sets of arguments which are passed to **CMake** when configuring the project. - We provide a basic preset file which contains a reasonable default configuration for each platform we support. You can however, create your own :octicons-file-16: `CMakeUserPresets.json` file along our preset file to override our settings. See [CMake Presets](../cmake-presets.md) for more information about that. + We provide a basic preset file which contains a reasonable default configuration for each platform we support. You can however, create your own :octicons-file-16: `CMakeUserPresets.json` file along our preset file to override our settings. See [CMake Presets](../../build-instructions/build/cmake-presets.md) for more information about that. **CMake** also comes with a **GUI** which can be used for the configuration process. diff --git a/docs/get-involved/including-libraries.md b/docs/get-involved/build-instructions/build/including-libraries.md similarity index 86% rename from docs/get-involved/including-libraries.md rename to docs/get-involved/build-instructions/build/including-libraries.md index 0ceb3d4ad4b5e49dbb8bc9a177af978ca36eb1b1..02e95d468ac19e46f6cafaf16dfab83baeee9337 100644 --- a/docs/get-involved/including-libraries.md +++ b/docs/get-involved/build-instructions/build/including-libraries.md @@ -7,20 +7,20 @@ date: 2023-09-12 --- ## A word about including the libraries -Oh yes, the **UNICADO** [libraries](../documentation/libraries.md). 🙂 +Oh yes, the **UNICADO** [libraries](../../../documentation/libraries/index.md). 🙂 When you start developing and building the **UNICADO** modules you will quickly discover the importance of the libraries. There are many ways how you can include libraries in C++ projects and all have their advantages and disadvantages. In the **UNICADO** project, the most important decisions to make are: - Whether to include the libraries as **static** (`*.a`) or **dynamic** (`*.dll` or `*.so`) libraries. -- Whether to include the libraries as **CMake** **targets** and always recompile the libraries when building the modules or to import the libraries as a **CMake** **package** somewhere from the hard drive. ( :fontawesome-solid-arrow-right: Look in [ Include Library Package ](#) to find out what this actually means.) +- Whether to include the libraries as **CMake** **targets** and always recompile the libraries when building the modules or to import the libraries as a **CMake** **package** somewhere from the hard drive. ( :fontawesome-solid-arrow-right: Look in [ Include Library Package ](#library-package) to find out what this actually means.) > Note that each decision is completely independent from the other decision. Each of those decisions has a corresponding option when configuring **CMake**. So you can decide for your situation what suits your workflow the best. -The default configuration when [Building with CMake](build/cpp.md) is: +The default configuration when [Building with CMake](cpp.md) is: - `BUILD_SHARED_LIBS=OFF` :fontawesome-solid-arrow-right: Build **static** libraries. - `FIND_LIBRARIES_AS_PACKAGE=OFF` :fontawesome-solid-arrow-right: Include **targets** from the submodule and recompile libraries each time there are changes. @@ -41,9 +41,9 @@ When you build the libraries on their own, the option does the same thing as whe !!! warning This is **not** recommended unless you have a specific need for it. - Do not forget to add the location of the **dynamic** libraries to your **PATH** afterwards. 😉 + Do not forget to add the location of the **dynamic** libraries to your **PATH** afterwards. 😉 -## Changing to the library package +## Changing to the library package {#library-package} When you want to save some compilation time or do not want to copy the libraries everywhere, you can include them as a package by: @@ -52,6 +52,6 @@ cmake -B build -S . --preset <preset> -DFIND_LIBRARIES_AS_PACKAGE=ON -DCMAKE_PRE ``` !!! important - When including the libraries as a package you ^^**HAVE**^^ to set `CMAKE_PREFIX_PATH` as described in [ Include Library Package ](#). You also have to make sure that the libraries this path is pointing to are compiled and exist! + When including the libraries as a package you ^^**HAVE**^^ to set `CMAKE_PREFIX_PATH`. You also have to make sure that the libraries this path is pointing to are compiled and exist! With this mechanism you can have mutliple projects using the same libraries without having to copy and recompile them all the time. The added downside is that **CMake** can no longer handle the automatic compilation and you have to manually make sure that the libraries are ready to be used. \ No newline at end of file diff --git a/docs/get-involved/build/python.md b/docs/get-involved/build-instructions/build/python.md similarity index 100% rename from docs/get-involved/build/python.md rename to docs/get-involved/build-instructions/build/python.md diff --git a/docs/get-involved/get-source-code.md b/docs/get-involved/build-instructions/get-source-code.md similarity index 77% rename from docs/get-involved/get-source-code.md rename to docs/get-involved/build-instructions/get-source-code.md index 188a591e6d346f12d468f68fc79d76382fb28b01..a457525841f2012bc587dab37e1ffa21a43d8a52 100644 --- a/docs/get-involved/get-source-code.md +++ b/docs/get-involved/build-instructions/get-source-code.md @@ -8,29 +8,29 @@ date: 2024-04-09 # Get UNICADO Source Code The source code of **UNICADO** is grouped into different repositories. -You can get an overview of which repository contains which topic [here](../documentation/overview.md). +You can get an overview of which repository contains which topic [here](../../documentation/overview.md). Whenever one repository needs another repository, we include it as a *Git Submodule*. If you are not familiar with *Git Submodules*, please read their Documentation  <https://git-scm.com/book/en/v2/Git-Tools-Submodules> -🎥 **Watch the first part of [Merge Request Workflow](../assets/videos/Merge_Request_Workflow.mp4) video for a more detailed explanation of below mentioned steps**. +🎥 **Watch the first part of [Merge Request Workflow](../how-to-contribute/contributor-tutorial/videos/Merge_Request_Workflow.mp4) video for a more detailed explanation of below mentioned steps**. -## Step-by-Step Guide to Fork Unicado Package Repository on GitLab and update its submodules +## Step-by-Step Guide The repository [Unicado Package](https://git.rwth-aachen.de/unicado/unicado-package) contains all necessary source code as submodules to get started compiling **UNICADO** and its installer. It is used to create UNICADO releases and provides a good starting point for development. UNICADO project is hosted on GitLab platform. So you need to have a GitLab account if you want to fork the repsitory and start contributing to it. -**Step 1: Create a GitLab Account** +### Step 1: Create a GitLab Account - - Open your browser and navigate to [GitLab](https://gitlab.com/). + - Open your browser and navigate to [GitLab:octicons-link-external-16:](https://gitlab.com/). - Click on the **"Register"** button and fill in the required fields. Optionally, sign up using **Google** or **GitHub** credentials. - Check your email for a confirmation link, and click on it to verify your account. - Once verified, log in to your GitLab account. -**Step 2: Locate the Repository You Want to Fork** +### Step 2: Locate the Repository You Want to Fork Search for the Unicado Package Repository: Use GitLab's **search bar** at the top of the page to find the repository. Click on the repository from the search results to view its main page. -**Step 3: Fork the Repository** +### Step 3: Fork the Repository - **Click "Fork":** Find the **"Fork"** button at the top-left of the repository page. - **Select Namespace:** Choose your **Personal** or **Group** namespace. @@ -38,9 +38,9 @@ The repository [Unicado Package](https://git.rwth-aachen.de/unicado/unicado-pack - **Wait for Completion:** The process will take a few moments, after which you’ll be redirected to your forked repository. Fork method is used for contributing to a GitLab project when you are not a member of the project with write access. Allows you to freely make changes to your fork and propose changes to the original repository through a merge request (MR). -Forking Creates a personal copy of a repo on the server, the general format of forked repository is https://gitlab.com/your-username/repo.git. Now if you want to work on the repository locally using an IDE ( for eg. VSC), you need to clone the forked version of Unicado Package Repository to your locall machine. Cloning will create a local copy of Forked repository. +Forking Creates a personal copy of a repo on the server, the general format of forked repository is https://gitlab.com/your-username/repo.git. Now if you want to work on the repository locally using an IDE ( for eg. VSC), you need to clone the forked version of Unicado Package Repository to your locall machine. Cloning will create a local copy of Forked repository. -**Step 4: Clone Your Forked Repository** +### Step 4: Clone Your Forked Repository - **Navigate to Your Fork:** Navigate to your forked repository in the GitLab dashboard under Projects. @@ -58,7 +58,7 @@ Forking Creates a personal copy of a repo on the server, the general format of f === "SSH" - + ``` { .sh .copy } git clone git@gitlab.com:your-username/repository-name.git ``` @@ -70,15 +70,17 @@ Should the default branch not yet contain the submodules or you want to update t ``` ->⚠️You can push to a forked repository without configuring SSH by using HTTPS for authentication instead of SSH. However, SSH is often preferred for its security and ease of use once set up. 🎥**Follow [SSH Configuration](../assets/videos/SSH_Configuration.mp4) tutorial video if you want to set up SSH**. +!!! Note + You can push to a forked repository without configuring SSH by using HTTPS for authentication instead of SSH. However, SSH is often preferred for its security and ease of use once set up. 🎥**Follow [SSH Configuration](../how-to-contribute/contributor-tutorial/videos/SSH_Configuration.mp4) tutorial video if you want to set up SSH**. ->⚠️Only proceed when all submodules could be checked out successfully. Otherwise the builds will not work! +!!! Attention + Only proceed when all submodules could be checked out successfully. Otherwise the builds will not work! In the following instructions we assume, that you forked and cloned the **Unicado Package** as described. That means, whenever we talk about building inside the *Aircraft Design* folder, we mean the submodule **inside** the **Unicado Package** repository. In general, you should find every mentioned directory or file in one of the submodules of the **Unicado Package**. :point_up: -**Step 5: Update the Repository with the Latest Changes from Remote** +### Step 5: Update the Repository with the Latest Changes from Remote Once the repository is cloned, you need to update it with the latest changes from the remote. If your repository includes multiple submodules, follow these steps: diff --git a/docs/get-involved/developer-installation.md b/docs/get-involved/developer-installation.md index 1d0e72e29b2632a38ea8ae491024b2bf772031be..e77507adcc1dd9891190903934ee46b5af35e6af 100644 --- a/docs/get-involved/developer-installation.md +++ b/docs/get-involved/developer-installation.md @@ -2,16 +2,16 @@ There is no dedicated installer for developers. As a developer you are expected These steps to get you up and running are *(Choose according to your operating system.)*: -- Make sure your build system is working as explained in the [:octicons-checklist-16: developer prerequisites](../get-involved/build-environment/windows.md). -- Ensure you have [:octicons-repo-clone-16: cloned all repositories](../get-involved/get-source-code.md) -- Follow the [:simple-cmake: build instructions](../get-involved/build/general.md) to build the tools. Also check out the [:material-library: libraries](../get-involved/including-libraries.md) and the [CMake Preset](../get-involved/cmake-presets.md) explanation. -- Make yourself acquainted with the [style guides](../get-involved/style/cpp.md). -- Read about the [module structures](../get-involved/style/cpp-modularization.md) to learn about the strategy patterns. -- Learn about the [:material-test-tube-empty: testing procedures](../get-involved/testing.md). -- Read the [contribution instruction](../get-involved/contribute.md) to understand the process. +- Make sure your build system is working as explained in the [:octicons-checklist-16: developer prerequisites](build-instructions/build-environment/windows.md). +- Ensure you have [:octicons-repo-clone-16: cloned all repositories](build-instructions/get-source-code.md) +- Follow the [:simple-cmake: build instructions](build-instructions/build/general.md) to build the tools. Also check out the [:material-library: libraries](build-instructions/build/including-libraries.md) and the [CMake Preset](build-instructions/build/cmake-presets.md) explanation. +- Make yourself acquainted with the [style guides](style/cpp.md). +- Read about the [module structures](modularization/cpp-modularization.md) to learn about the strategy patterns. +- Learn about the [:material-test-tube-empty: testing procedures](testing.md). +- Read the [contribution instruction](how-to-contribute/contribute.md) to understand the process. Now you are ready to contribute :material-file-code: ! -In case you need tips on how to set up your IDE, check [here](../get-involved/ide-setup.md). +In case you need tips on how to set up your IDE, check [here](ide-setup.md). -Relevant for UNICADO owners only: here it is explained how to create the [UNICADO release package](../get-involved/release-package.md) :material-white-balance-incandescent: \ No newline at end of file +Relevant for UNICADO owners only: here it is explained how to create the [UNICADO release package](release-package.md) :material-white-balance-incandescent: \ No newline at end of file diff --git a/docs/get-involved/code-of-conduct.md b/docs/get-involved/how-to-contribute/code-of-conduct.md similarity index 100% rename from docs/get-involved/code-of-conduct.md rename to docs/get-involved/how-to-contribute/code-of-conduct.md diff --git a/docs/get-involved/contribute.md b/docs/get-involved/how-to-contribute/contribute.md similarity index 78% rename from docs/get-involved/contribute.md rename to docs/get-involved/how-to-contribute/contribute.md index b09b59007f38bb88fae950695f457d3d21f04048..116722c9fd0c50e811aedffe590549f7bdf29026 100644 --- a/docs/get-involved/contribute.md +++ b/docs/get-involved/how-to-contribute/contribute.md @@ -11,8 +11,8 @@ You want to contribute to UNICADO? Awesome! :sunglasses: Please make sure to read our *style guides* first: -- Our [⤷ C++ Code Style](style/cpp.md). -- Our [⤷ Python Code Style](style/python.md). +- Our [⤷ C++ Code Style](../style/cpp.md). +- Our [⤷ Python Code Style](../style/python.md). ## How to actually contribute @@ -25,11 +25,11 @@ The flowchart below illustrates the Merge Request workflow, along with the comma </figure> -You cloned/forked the UNICADO Package successfully acc. to [Get Source Code](get-source-code.md). Nice! You want to make a change, e.g. fixing a bug or creating a new feature, so you create a *issue* (see also [types of contribution](#contributions)). Then you :point_up: create a feature branch, change the code and create a merge request (here a [how to](merge-request.md)). An automatic CI/CD pipeline is triggered, which helps your selected reviewer to make sure that request is ok. If it is accepted and ready-to-land :airplane:, the documentation is automatically updated. Nicely done :+1: +You cloned/forked the UNICADO Package successfully acc. to [Get Source Code](../build-instructions/get-source-code.md). Nice! You want to make a change, e.g. fixing a bug or creating a new feature, so you create a *issue* (see also [types of contribution](#contributions)). Then you :point_up: create a feature branch, change the code and create a merge request (here a [how to](merge-request.md)). An automatic CI/CD pipeline is triggered, which helps your selected reviewer to make sure that request is ok. If it is accepted and ready-to-land :airplane:, the documentation is automatically updated. Nicely done :+1: ## Types of contribution {#contributions} -We use *issues* and [merge request](merge-request.md) to manage the contribution to UNICADO. +We use *issues* and [merge requests](merge-request.md) to manage the contribution to UNICADO. You should always create an issue **first**, before creating the merge request. The issue is used to discuss and plan the required work. An issue should always have at least the following *labels*: diff --git a/docs/get-involved/contributor-tutorial/git-installation&configuration.md b/docs/get-involved/how-to-contribute/contributor-tutorial/git-installation&configuration.md similarity index 87% rename from docs/get-involved/contributor-tutorial/git-installation&configuration.md rename to docs/get-involved/how-to-contribute/contributor-tutorial/git-installation&configuration.md index 5fb414b328e905c2db6fd4a06b9d1b87c5232d57..50334513bafacf8b03ce302b7d6c932f3f3aa5d5 100644 --- a/docs/get-involved/contributor-tutorial/git-installation&configuration.md +++ b/docs/get-involved/how-to-contribute/contributor-tutorial/git-installation&configuration.md @@ -8,9 +8,9 @@ date: 2024-12-05 ### Download & Install Git -<span style="color:rgb(68, 0, 255);">🎥</span> **If you'd rather skip the text explanations below, watch this video tutorial. [Git_Installation&Configuration](/docs/get-involved/contributor-tutorial/videos/Git_Installation&Configuration.mp4)**. +<span style="color:rgb(68, 0, 255);">🎥</span> **If you'd rather skip the text explanations below, watch this video tutorial. [Git_Installation&Configuration](videos/Git_Installation&Configuration.mp4)**. -To begin, download and install Git for Windows from the official [Git website](https://git-scm.com/download/win). You will be provided with an installer file that has a `.exe` extension. Locate the downloaded file in your `Downloads` folder and double-click it to start the installation process. Follow the prompts in the installation wizard. While most of the default options are suitable, make sure you select **Git from the command line and also from 3rd-party software**, so Git is accessible from your terminal/command prompt. Once installed, Git will be added to the System Environment Path variable, making it accessible globally. +To begin, download and install Git for Windows from the official [Git website docs/download/installation.md](https://git-scm.com/download/win). You will be provided with an installer file that has a `.exe` extension. Locate the downloaded file in your `Downloads` folder and double-click it to start the installation process. Follow the prompts in the installation wizard. While most of the default options are suitable, make sure you select **Git from the command line and also from 3rd-party software**, so Git is accessible from your terminal/command prompt. Once installed, Git will be added to the System Environment Path variable, making it accessible globally. After installation, open the Git terminal and verify the installation by typing the following command: @@ -60,7 +60,7 @@ When prompted, press Enter to save the key to the default location (`C:\Users\Yo #### Step 2: Create an SSH Config File (Optional but Recommended) -If you use multiple SSH keys (for different services like GitHub, GitLab, etc.), it's a good idea to create an SSH config file for easier management. Open the SSH config file using notepad and +If you use multiple SSH keys (for different services like GitHub, GitLab, etc.), it's a good idea to create an SSH config file for easier management. Open the SSH config file using notepad and ```{ .cmd .copy } notepad C:\Users\<YourUsername>\.ssh\config diff --git a/docs/get-involved/contributor-tutorial/videos/Git_Installation&Configuration.mp4 b/docs/get-involved/how-to-contribute/contributor-tutorial/videos/Git_Installation&Configuration.mp4 similarity index 100% rename from docs/get-involved/contributor-tutorial/videos/Git_Installation&Configuration.mp4 rename to docs/get-involved/how-to-contribute/contributor-tutorial/videos/Git_Installation&Configuration.mp4 diff --git a/docs/get-involved/contributor-tutorial/videos/Merge_Request_Workflow.mp4 b/docs/get-involved/how-to-contribute/contributor-tutorial/videos/Merge_Request_Workflow.mp4 similarity index 100% rename from docs/get-involved/contributor-tutorial/videos/Merge_Request_Workflow.mp4 rename to docs/get-involved/how-to-contribute/contributor-tutorial/videos/Merge_Request_Workflow.mp4 diff --git a/docs/get-involved/contributor-tutorial/videos/SSH_Configuration.mp4 b/docs/get-involved/how-to-contribute/contributor-tutorial/videos/SSH_Configuration.mp4 similarity index 100% rename from docs/get-involved/contributor-tutorial/videos/SSH_Configuration.mp4 rename to docs/get-involved/how-to-contribute/contributor-tutorial/videos/SSH_Configuration.mp4 diff --git a/docs/get-involved/merge-request.md b/docs/get-involved/how-to-contribute/merge-request.md similarity index 86% rename from docs/get-involved/merge-request.md rename to docs/get-involved/how-to-contribute/merge-request.md index 854283a12b3cb52791b81f77c87f9893892d1697..9c4366fa41fd4db5ce867d9d693c3646cae39708 100644 --- a/docs/get-involved/merge-request.md +++ b/docs/get-involved/how-to-contribute/merge-request.md @@ -11,17 +11,17 @@ date: 2024-09-25 You have already implemented an improvement to the current code base or intend to? Awesome 😎 Follow these steps to create a merge request (MR) from your forked repository: -- First, make sure you have read [How to contribute to UNICADO](../get-involved/contribute.md) +- First, make sure you have read [How to contribute to UNICADO](contribute.md) - Then, proceed with the steps below: -There are several ways to create a merge request within GitLab, which are explained in detail in the [official GitLab docs](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html). +There are several ways to create a merge request within GitLab, which are explained in detail in the [official GitLab docs :octicons-link-external-16:](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html). However, we will highlight the workflow, we prefer - but feel free to make your own choice. ## Preferred Merge Request Workflow for a Forked Repository This is the first and preferred way to make a merge request, as it is similar to our previous UNICADO workflow. -Let's assume you have forked( if you are not a direct member of UNICADO project) and cloned the Unicado Package repoistory and updated all it's submodules following [Get Source Code](get-source-code.md ). Open your preferred IDE (e.g., Visual Studio Code). Ensure that Git is integrated within your IDE. Most IDEs, such as VSCode, have built-in Git integration. Go to the sub module where you want to make the change. Create your own (local) branch, where you are developing a new feature / fixing bug / addong documentation. -For a more detailed explanation of the steps mentioned below, watch the [Merge Request Workflow](../assets/videos/Merge_Request_Workflow.mp4) video. +Let's assume you have forked( if you are not a direct member of UNICADO project) and cloned the Unicado Package repoistory and updated all it's submodules following [Get Source Code](../build-instructions/get-source-code.md ). Open your preferred IDE (e.g., Visual Studio Code). Ensure that Git is integrated within your IDE. Most IDEs, such as VSCode, have built-in Git integration. Go to the sub module where you want to make the change. Create your own (local) branch, where you are developing a new feature / fixing bug / addong documentation. +For a more detailed explanation of the steps mentioned below, watch the [Merge Request Workflow](contributor-tutorial/videos/Merge_Request_Workflow.mp4) video. ### 1. Configure Remotes: @@ -45,13 +45,13 @@ git checkout -b <new-branch-name> # Create a new branch ``` Where <new-branch-name> is the branch where developers work on new features or bug fixes. Each developer creates their own branch from the `main` branch. After completing changes on the new branch, a Merge Request (MR) is created to merge the changes into the `main` branch. Once the MR is reviewed and approved, it gets merged into `main`. -Make sure your branch name follows this convention: +Make sure your branch name follows this convention: - `feature/your-feature` # Changes which brings in new feature - `bugfix/your-bugfix` # Changes which fixes bug - `documentation/your_documentation` #Changes which adapt existing documentation / Adding new documentation. -This ensures your branch can be pushed successfully. +This ensures your branch can be pushed successfully. ### 3. Make Changes @@ -68,7 +68,7 @@ git add . # Stage all modified files Next, commit your changes with a meaningful commit message: -#### Guidelines for a Good Commit Message +#### Guidelines for a Good Commit Message - **Title**: A short description of what the commit does (use present tense). - **Body**: Explain why and how the change was made. Include any relevant details, such as specific files changed or issues addressed. Should be clear and concise. Use **English** language. @@ -83,7 +83,7 @@ Push your branch to your forked repository on GitLab: ```{ .cmd .copy } git push origin <new-branch-name> ``` -If you are working on this branch locally, and it is not shared with remote ☁️, then you have to push it ⏫ to remote, first in order to create a merge request. +If you are working on this branch locally, and it is not shared with remote ☁️, then you have to push it ⏫ to remote, first in order to create a merge request. ### 6. Create a Merge Request (MR) to the Original Repository diff --git a/docs/get-involved/review-merge-request.md b/docs/get-involved/how-to-contribute/review-merge-request.md similarity index 78% rename from docs/get-involved/review-merge-request.md rename to docs/get-involved/how-to-contribute/review-merge-request.md index a5fe998bee0be7b6d9c83dff4e04492108dbb37c..ee91993034f9692b9d575abd397e1554d6164119 100644 --- a/docs/get-involved/review-merge-request.md +++ b/docs/get-involved/how-to-contribute/review-merge-request.md @@ -13,8 +13,8 @@ Your colleagues have improved the code and would like you to check it? Nice 😎 If you are GitLab beginner, this is our suggested workflow for a review: -1. Read the [official GitLab documentation](https://docs.gitlab.com/ee/tutorials/reviews/). It includes a very recommended tutorial :fire: and gives some general inside what is important in an review (checking related issues, examine each file in depth etc.). -2. Check the testing pipelines. If tests fail, you and the developer need to decide what to do. The pipelines are also explained in detail in the [testing documentation](testing.md). +1. Read the [official GitLab documentation :octicons-link-external-16:](https://docs.gitlab.com/ee/tutorials/reviews/). It includes a very recommended tutorial :fire: and gives some general inside what is important in an review (checking related issues, examine each file in depth etc.). +2. Check the testing pipelines. If tests fail, you and the developer need to decide what to do. The pipelines are also explained in detail in the [testing documentation](../testing.md). 3. Make suggestions for improvement. The recommended and easiest :point_up: way is to open the secondary menu of the merge request, select **Changes** and add a comment to a specific line. A :cool: feature is the **Insert suggestion** - this enables the developer to directly include the change in the web interface! But sometimes you want to test some code change suggestions locally - here are some short instructions. But it is pretty straight-forward: as the feature branch, which includes the changes, is remote, you can assess it. @@ -24,5 +24,5 @@ git fetch git checkout <new-branch-name> ``` -!!! note +!!! note You can also push these changes and add them to the merge request. However, it is **not** recommended as the developer does not directly see your implementations as changes, but as an update \ No newline at end of file diff --git a/docs/get-involved/modularization/cpp-modularization.md b/docs/get-involved/modularization/cpp-modularization.md index dba820df64bb6ae7c15db6fe087b5a563e678f62..290726f7028be621aedecd7c1d182e9da737af05 100644 --- a/docs/get-involved/modularization/cpp-modularization.md +++ b/docs/get-involved/modularization/cpp-modularization.md @@ -10,7 +10,7 @@ date: 2024-10-14 # Module Structure in c++ ## Preface -This page shall give you an overview of how c++ modules in the UNICADO framework look like. The structure is valid for modularized modules (all design and analysis modules of Unicado v3.0.0). All header files which are named in the following can be found in the library [moduleBasics](#). +This page shall give you an overview of how c++ modules in the UNICADO framework look like. The structure is valid for modularized modules (all design and analysis modules of Unicado v3.0.0). All header files which are named in the following can be found in the library [moduleBasics](../../documentation/libraries/index.md). !!! attention Due to a bug in versions of compilerversion < 10.2.0, modules which use the std::filesystem can't be build! To use the code, please update the compiler to a version > 10.2.0. Otherwise disable building the moduleBasics library. diff --git a/docs/get-involved/modularization/python-modularization.md b/docs/get-involved/modularization/python-modularization.md index 186e9b95d10848d69f71e3084c1f1bf27ca48be6..04e0addfc1c8b3759bfb5ec05427fc554fc4b101 100644 --- a/docs/get-involved/modularization/python-modularization.md +++ b/docs/get-involved/modularization/python-modularization.md @@ -32,7 +32,7 @@ With its structured layers and well-defined documentation and logging practices, Below, you find some information on UNICADO code style basics. ## Python Enhancement Proposals (PEPs) -Let's start with an obvious question ... [What is a PEP?](https://peps.python.org/pep-0001/#what-is-a-pep) +Let's start with an obvious question ... [What is a PEP? :octicons-link-external-16:](https://peps.python.org/pep-0001/#what-is-a-pep) > PEP stands for Python Enhancement Proposal. A PEP is a design document providing information to the Python community, or describing a new feature for Python or its processes or environment. The PEP should provide a concise technical specification of the feature and a rationale for the feature. @@ -41,7 +41,7 @@ There are numerous PEPs, one of which is PEP 20 (which you have already encounte ... PEP 8. Wondering why? -Great, I will tell you... [PEP 8 - Style Guide for Python Code](https://peps.python.org/pep-0008/) gives us conventions on how to write beautiful Python code. And beautiful is better than ugly, right? :wink: +Great, I will tell you... [PEP 8 - Style Guide for Python Code :octicons-link-external-16:](https://peps.python.org/pep-0008/) gives us conventions on how to write beautiful Python code. And beautiful is better than ugly, right? :wink: No, seriously... PEP 8 is considered a common and official Python style guide. To improve readability and ensure consistency as well as maintainability when writing new Python code, we decided to follow this recommendation and choose PEP 8 as our **Python coding standard**. @@ -210,11 +210,11 @@ The code is designed to be highly generalized, meaning that only a few files nee   -**Example for `module_import_name`** +**Example for `module_import_name`** In this example, `module_import_name` at line 68 would be: `src.tube_and_wing.empirical.operating_cost_estimation_tu_berlin`. -**Example for the import command** -To import a module from `usermethoddatapreparation.py` at line 74, the command is as follows: +**Example for the import command** +To import a module from `usermethoddatapreparation.py` at line 74, the command is as follows: `src.tube_and_wing.empirical.operating_cost_estimation_tu_berlin.usermethoddatapreparation`. ### The `data_postprocessing` (`datapostprocessing.py`) @@ -243,7 +243,7 @@ More detailed instructions for required changes are available within the docStri # Logging and printing {#logging-and-printing} -The Python framework in this project has a customized logging function, which builds on Python’s [logging facility](https://docs.python.org/3/library/logging.html). The following logging levels are available: +The Python framework in this project has a customized logging function, which builds on Python’s [logging facility :octicons-link-external-16:](https://docs.python.org/3/library/logging.html). The following logging levels are available: | **Level** | **Numeric Value** | **Usage** | **Text Scheme** | |----------------------------|-------------------|-----------------------------------------------------------|----------------------------------------------------------| @@ -254,7 +254,7 @@ The Python framework in this project has a customized logging function, which bu | `runtime_output.error` | 40 | For serious issues where the code can still continue | `runtime_output.error("Error: Add some text here.")` | | `runtime_output.critical` | 50 | For critical issues that terminate the code (exit code 1) | `runtime_output.critical("Error: Add some text here.")` | -Instead of using Python's built-in `print` function, use these logging options to ensure all outputs are appropriately documented in the log file according to user settings. +Instead of using Python's built-in `print` function, use these logging options to ensure all outputs are appropriately documented in the log file according to user settings. ## Logging configuration in the module configuration file User settings for logging behavior can be configured in the module configuration file under `console_output/value` and `log_file_output/value`. The available modes are as follows: @@ -271,8 +271,8 @@ Each mode enables progressively more detailed logging, from critical errors only # Package generation {#package-generation} Sources: -- [Python packaging](https://packaging.python.org/en/latest/tutorials/packaging-projects/) -- [Example video](https://www.youtube.com/watch?v=v6tALyc4C10&ab_channel=RealPython) +- [Python packaging :octicons-link-external-16:](https://packaging.python.org/en/latest/tutorials/packaging-projects/) +- [Example video :octicons-link-external-16:](https://www.youtube.com/watch?v=v6tALyc4C10&ab_channel=RealPython) According to the UNICADO Python philosophy, the UNICADO Python library contains several packages, e.g. the `pymodulepackage`. But how do I generate those packages? The necessary steps are listed below. Please ensure to read the respective explanations of the individual steps carefully before proceeding to the next step. @@ -291,7 +291,7 @@ In `unicado_python_library`, create a new subfolder for the package. Follow this - **Format:** `py[name of package]package` (all lowercase, without underscores) - **Example:** `pymodulepackage` - + Then, navigate into this subfolder. ## Step 2: Create a `pyproject.toml` file @@ -303,12 +303,12 @@ Please see the sample `pyproject.toml` file in the example folder (that is avail **Further resources:** -- [PEP 621: Project metadata](https://peps.python.org/pep-0621/) -- [Setuptools documentation](https://setuptools.pypa.io/en/latest/index.html) +- [PEP 621: Project metadata :octicons-link-external-16:](https://peps.python.org/pep-0621/) +- [Setuptools documentation :octicons-link-external-16:](https://setuptools.pypa.io/en/latest/index.html) ## Step 3: Create a `LICENSE` file Add a `LICENSE` file (it can be taken directly from the example folder) to define usage rights. -The [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/#) text is used in this example. +The [GPL-3.0 license :octicons-link-external-16:](https://choosealicense.com/licenses/gpl-3.0/#) text is used in this example. ## Step 4: Create a `README.md` file Download and fill out the sample `README.md` file with details about your package. This file can also be obtained from example folder in the repository. @@ -319,7 +319,7 @@ Inside the package folder, create a `src` subfolder to hold the `.py` files (mod - **Convention:** Each `.py` file should correspond to a single module, named in this format: - **Format:** `[module name]module.py` (all lowercase, no underscores) - **Example:** `datapreprocessingmodule.py` - + Modules can contain several functions. Once files are set up, return to the main package folder before proceeding. ## Step 6: Execute installation command diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/CMakeLists.txt b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..e1f1120976ea0d7f64ca1fe14d4ae585f5137a39 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/CMakeLists.txt @@ -0,0 +1,80 @@ + +# Set name of executable +set(MODULE_NAME docEstimation) + +# ============================================== +# Add the module executable +# +# *** IMPORTANT *** +# -> Change *.cpp files according to the module +# -> Add main.cpp later since this list is also +# used for the tests +# ============================================== + +# Fuel - Fossil +set(MODULE_SOURCES_FOSSIL + src/fossil/lowFidelity/lowFossil.cpp + src/fossil/lowFidelity/lowFossilIOData.cpp + src/fossil/lowFidelity/lowFossilReport.cpp + src/fossil/lowFidelity/lowFossilPlot.cpp +) + +# Fuel - H2 +set(MODULE_SOURCES_H2 + src/h2/lowFidelity/lowH2.cpp + src/h2/lowFidelity/lowH2IOData.cpp + src/h2/lowFidelity/lowH2Report.cpp + src/h2/lowFidelity/lowH2Plot.cpp +) + +set(MODULE_SOURCES + ${MODULE_SOURCES_FOSSIL} + ${MODULE_SOURCES_H2} + src/tankDesign.cpp +) + +add_executable(${MODULE_NAME} + ${MODULE_SOURCES} + src/mainTankDesign.cpp +) + + +# Set compile options specific to this module +if(USE_GNUPLOT) + # -> Bug: When not setting this option, the `generateSvgPlot` is not overwritten by calculatePolarOutput.cpp + target_compile_definitions(${MODULE_NAME} PRIVATE USE_GNUPLOT) +endif() + + +# Link the runtime libraries +target_link_libraries(${MODULE_NAME} + PRIVATE + moduleBasics + strategy + runtimeInfo + aixml + standardFiles + svl + svgPlot + spline + aircraftGeometry +) + +# Add the include directories +target_include_directories(${MODULE_NAME} + PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/.. # <- This is due to the includes in the main file # <- This is due to the absolute import in svl/svl/Basics.h + PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/ # <- This is due to the includes in empennage + PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/common/ + PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/h2/ + PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/fossil/ +) + +# Set the location where the executable will be placed to the current source directory +set_target_properties(${MODULE_NAME} PROPERTIES + RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} +) + +# Add the tests if enabled +if(BUILD_UNITTEST) + add_subdirectory(test) +endif() \ No newline at end of file diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation.py new file mode 100644 index 0000000000000000000000000000000000000000..0a16cd5eaee48b75b3a63e6a791703045ef2f6b9 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation.py @@ -0,0 +1,88 @@ +"""Calculation module main file.""" +# Import standard modules. +import logging +import traceback +from sys import argv, exit + +# Import own modules. +from runmodule import run_module +from src.datapreprocessing import data_preprocessing +from src.datapostprocessing import data_postprocessing + + +def main(): + """Execute the main program for cost estimation. + + This function serves as the main entry point for performing the cost estimation. + It goes through the following key steps: + (1) Preprocessing - Acquire necessary data and paths: Call the 'data_preprocessing' function from + 'datapreprocessing.py' to set up data and routing information. + (2) Run (main processing) - Execute code depending on method layers: Execute the 'run_module' function from the + 'methodexecutionpackage' library. The 'run_module' function is responsible for the programs primary logic. + (3) Postprocessing - Write data to the aircraft exchange file and generate plots and reports: Call the + 'data_postprocessing' function from 'datapostprocessing.py' to handle postprocessing tasks. This step receives + data from both the preprocessing and the main processing step. + + Note: The 'routing_dict' dictionary is used to manage the routing and execution of different program components. + + :raises Exception: Raised to handle other exceptions + :return: None + """ + + # Initialize exception string and runtime output logger. + tool_name = 'cost estimation' + runtime_output = logging.getLogger('module_logger') + + try: + """Preprocessing: Acquire necessary data and paths.""" + # Run 'data_preprocessing' function from 'datapreprocessing.py'. + paths_and_names, routing_dict, runtime_output = data_preprocessing('cost_estimation_conf.xml', argv) + runtime_output.print('Cost estimation started...') + + """Run: Execute code depending on method layers.""" + # Execute 'run_module' function from 'methodexecutionpackage' library. This function is responsible for the main + # logic of the program. + run_output_dict = run_module(paths_and_names, routing_dict, runtime_output) + + """Postprocessing: Write data to aircraft exchange file and generate plots and reports.""" + # Run 'data_postprocessing' function from 'datapostprocessing.py' to handle postprocessing tasks. Receives data + # from preprocessing and main processing step. + data_postprocessing(paths_and_names, routing_dict, run_output_dict, runtime_output) + runtime_output.print('Operating cost estimation finished.') + + except Exception as e: # pylint: disable=broad-exception-caught + # Handle other exceptions. + runtime_output.critical(exception_string_msg(e, tool_name)) + exit(1) + + +def exception_string_msg(error, tool_name: str): + """Generate exception message. + + Generate a formatted string detailing the type and location of an exception, along with an error message, for + diagnostic purposes. This function is particularly useful for logging or displaying comprehensive error information + when an exception occurs in a specific module or function. + + :param exception error: Caught exception object from which details will be extracted + :param str tool_name: Name of the tool or module where the error occurred, used in the final error message + :return str: String including error type, file name, function/method name, line number, code that caused the error, + and error message. + """ + error_type = str(type(error).__name__) + error_trace = traceback.extract_tb(error.__traceback__) + error_file, error_line, error_func, error_code = error_trace[-1] + error_file = error_file.split('/')[-1] + + exception_string = f"{error_type}: \n" + exception_string += f" - File : {error_file} \n" + exception_string += f" - Function / Method: {error_func} \n" + exception_string += f" - Line : {error_line} \n" + exception_string += f" - Code : {error_code} \n" + exception_string += f" - Error message : {str(error)} \n" + + return exception_string + f"Main execution of {tool_name} module failed! \n" \ + f"Program aborted." + + +if __name__ == "__main__": + main() diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation_conf.xml b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation_conf.xml new file mode 100644 index 0000000000000000000000000000000000000000..eb104f9681ad912ac6ee7bf76e5b16e2002e76c6 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/cost_estimation_conf.xml @@ -0,0 +1,311 @@ +<?xml version="1.0" encoding="UTF-8" ?> + <module_configuration_file Name="Cost Estimation Runtime Configuration"> <!-- Change naming according to module name --> + <control_settings description="General control settings for this tool"> + <aircraft_exchange_file_name description="Specify the name of the exchange file"> + <value>CSR-02.xml</value> + </aircraft_exchange_file_name> + <aircraft_exchange_file_directory description="Specify the direction in which the aircraft exchange file can be found"> + <value>./projects/CSR/CSR-02/</value> + </aircraft_exchange_file_directory> + <own_tool_level description="Specify the tool level of this tool"> + <value>2</value> + </own_tool_level> + <console_output description="Selector to specify the console output. Selector: mode_0 (Off) / mode_1 (only out/err/warn) / mode_2 (1 + info) / mode_3 (2 + debug)"> + <value>mode_1</value> + </console_output> + <log_file_output description="Selector to specify the log file output. Selector: mode_0 (Off) / mode_1 (only out/err/warn) / mode_2 (1 + info) / mode_3 (2 + debug)"> + <value>mode_1</value> + </log_file_output> + <plot_output description="Specify the way plotting shall be handled"> + <enable description="Switch to enable plotting. Switch: true (On) / false (Off)"> + <value>true</value> + </enable> + <copy_plotting_files description="Switch if plotting files shall be copied. Switch: true (On) / false (Off)"> + <value>true</value> + </copy_plotting_files> + <delete_plotting_files_from_tool_folder description="Switch if plotting files shall be deleted from folder. Switch: true (On) / false (Off)"> + <value>true</value> + </delete_plotting_files_from_tool_folder> + </plot_output> + <report_output description="Switch to generate an HTML report. Switch: true (On) / false (Off)"> + <value>false</value> + </report_output> + <tex_report description="Switch to generate a Tex report. Switch: true (On) / false (Off)"> + <value>false</value> + </tex_report> + <write_info_files description="Switch to generate info files. Switch: true (On) / false (Off)"> + <value>false</value> + </write_info_files> + <log_file description="Specify the name of the log file"> + <value>cost_estimation.log</value> + </log_file> + <inkscape_path description="Path to the inkscape application (DEFAULT: Use inkscape from the UNICADO repo structure)"> + <value>DEFAULT</value> + </inkscape_path> + <gnuplot_path description="Path to the gnuplot application (DEFAULT: Use gnuplot from the UNICADO repo structure)"> + <value>DEFAULT</value> + </gnuplot_path> + <program_specific_control_settings description="Program specific control settings for this tool"> + <xml_output description="Switch to export module specific data to XML ('true': On, 'false': Off)"> + <value>true</value> + </xml_output> + </program_specific_control_settings> + </control_settings> + <program_settings description="program settings"> + <configuration ID="tube_and_wing"> + <fidelity_name description="Select fidelity name (options: empirical, numerical,...)"> + <value>empirical</value> + </fidelity_name> + <method_name description="Select method name (options: operating_cost_estimation_tu_berlin)"> + <value>operating_cost_estimation_tu_berlin</value> + <default>operating_cost_estimation_tu_berlin</default> + </method_name> + <fidelity ID="empirical"> + <operating_cost_estimation_tu_berlin description="Empirical method to estimate the direct operating costs (DOC) and indirect operating costs (IOC) of an aircraft."> + <general_direct_operating_costs_parameter> + <capital description="Capital cost related parameters"> + <depreciation_period description="Depreciation period (assumption for default value: depreciation to 15% residual value in 12 years)"> + <value>12.0</value> + <unit>y</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>30.0</upper_boundary> + <default>12.0</default> + </depreciation_period> + <price_per_operating_empty_mass description="Price per kg operating empty mass"> + <value>1245.0</value> + <unit>EUR/kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>1245.0</default> + </price_per_operating_empty_mass> + <rate_insurance description="Insurance rate"> + <value>0.005</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + <default>0.005</default> + </rate_insurance> + <rate_interest description="Interest rate"> + <value>0.05</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + <default>0.05</default> + </rate_interest> + <residual_value_factor description="Residual value per aircraft price after depreciation period"> + <value>0.15</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>20.0</upper_boundary> + <default>0.15</default> + </residual_value_factor> + </capital> + <crew description="Crew cost related parameters"> + <salary_variation description="Salary variation mode (0: same salary for design mission and mission study, 1: range dependent salaries)"> + <value>0</value> + <default>0</default> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </salary_variation> + </crew> + <flight_cycles description="Flight cycle related parameters"> + <block_time_per_flight description="Average block time supplement per flight (default: 1.83 h)" Unit="hours" Default="1.83" lower_boundary="0" upper_boundary="None"> + <value>1.83</value> + <unit>h</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>1.83</default> + </block_time_per_flight> + <daily_night_curfew_time description="Night curfew time per day"> + <value>7.0</value> + <unit>h</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>7.0</default> + </daily_night_curfew_time> + <potential_annual_operation_time description="Potential annual operation time (365 days a 24h hours)"> + <value>8760</value> + <unit>h</unit> + <lower_boundary>8760</lower_boundary> + <upper_boundary>8784</upper_boundary> + <default>8760</default> + </potential_annual_operation_time> + <annual_lay_days_overhaul description="Lay days per year for overhaul (D-Check every 5 years a 4 weeks)"> + <value>5.6</value> + <unit>day</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>5.6</default> + </annual_lay_days_overhaul> + <annual_lay_days_reserve description="Lay days per year for repairs, technical and operational reserve (statistical value)"> + <value>2.6</value> + <unit>day</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>2.6</default> + </annual_lay_days_reserve> + </flight_cycles> + <handling description="Handling related parameters"> + <fees_handling description="Handling fees per kg payload"> + <value>0.1</value> + <unit>EUR/kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>0.1</default> + </fees_handling> + </handling> + <landing description="Landing related parameters"> + <fees_landing description="Landing fees per kg maximum take-off mass"> + <value>0.01</value> + <unit>EUR/kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>0.01</default> + </fees_landing> + </landing> + <air_traffic_control description="Air traffic control related parameters"> + <air_traffic_control_price_factor_design description="Range dependent ATC price factor for design mission (range dependent: domestic europe 1.0, transatlantic 0.7, far east flights half of landings @ european airports 0.6)"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.6</lower_boundary> + <upper_boundary>1</upper_boundary> + <default>1.0</default> + </air_traffic_control_price_factor_design> + <air_traffic_control_price_factor_study description="range dependent ATC price factor for mission study (range dependent: domestic europe 1.0, transatlantic 0.7, far east flights half of landings @ european airports 0.6)"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.6</lower_boundary> + <upper_boundary>1.0</upper_boundary> + <default>1.0</default> + </air_traffic_control_price_factor_study> + </air_traffic_control> + <maintenance description="Maintenance related parameters"> + <airframe_repair_costs_per_flight description="Airframe repair costs per flight"> + <value>57.5</value> + <unit>EUR</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>57.5</default> + </airframe_repair_costs_per_flight> + <annual_lay_days_maintenance description="Lay days per year for maintenance (C-Check every 15 month a 4 days)"> + <value>3.2</value> + <unit>day</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>3.2</default> + </annual_lay_days_maintenance> + <cost_burden description="Cost burden maintenance"> + <value>10.5</value> + <unit>EUR</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>10.5</default> + </cost_burden> + <rate_labor description="Labor rate"> + <value>50.0</value> + <unit>EUR/h</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>50.0</default> + </rate_labor> + </maintenance> + <related_direct_operating_costs description="Necessary parameters for the calculation of related DOC"> + <revenue_per_freight_km_design description="Revenue per flight kilometer design mission"> + <value>0.2</value> + <unit>EUR/kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>0.2</default> + </revenue_per_freight_km_design> + <revenue_per_freight_km_study description="Revenue per flight kilometer mission study"> + <value>0.2</value> + <unit>EUR/kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>0.2</default> + </revenue_per_freight_km_study> + </related_direct_operating_costs> + <miscellaneous description="Miscellaneous parameters"> + <rate_inflation description="Rate of annual inflation (including price and salary increases)"> + <value>0.03</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>0.03</default> + </rate_inflation> + <seat_load_factor_design description="Seat load factor of design mission"> + <value>0.85</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + <default>0.85</default> + </seat_load_factor_design> + <seat_load_factor_study description="Seat load factor of study mission"> + <value>0.85</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + <default>0.85</default> + </seat_load_factor_study> + </miscellaneous> + </general_direct_operating_costs_parameter> + <fuel_type ID="kerosene"> + <factor_engine_maintenance description="Factor for engine maintenance"> + <value>1</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>1</default> + </factor_engine_maintenance> + <fuel_price description="Average fuel price per kg kerosene"> + <value>0.7</value> + <unit>EUR/kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>0.7</default> + </fuel_price> + <ratio_operating_empty_mass description="Ratio of operating empty mass kerosene aircraft to hydrogen aircraft"> + <value>1</value> + <unit>EUR</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>1</default> + </ratio_operating_empty_mass> + </fuel_type> + <fuel_type ID="liquid_hydrogen"> + <factor_engine_maintenance description="Factor for engine maintenance"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>1</default> + </factor_engine_maintenance> + <fuel_price description="Average fuel price per kg liquid hydrogen"> + <value>9.16</value> + <unit>EUR/kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>9.16</default> + </fuel_price> + <ratio_operating_empty_mass description="Ratio of operating empty mass kerosene aircraft to hydrogen aircraft"> + <value>1.1</value> + <unit>EUR</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>1.1</default> + </ratio_operating_empty_mass> + </fuel_type> + <fuel_type ID="gaseous_hydrogen"> + <fuel_price description="Average fuel price per kg gaseous hydrogen"> + <value>12.85</value> + <unit>EUR/kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <default>12.85</default> + </fuel_price> + </fuel_type> + </operating_cost_estimation_tu_berlin> + </fidelity> + </configuration> + </program_settings> + </module_configuration_file> diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapostprocessing.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapostprocessing.py new file mode 100644 index 0000000000000000000000000000000000000000..3ffa408d651bf1a614dd427930e8cb1b93cd7c14 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapostprocessing.py @@ -0,0 +1,81 @@ +"""Module providing functions for data postprocessing.""" +# Import standard modules. + +# Import own modules. +from datapostprocessingmodule import method_data_postprocessing +from datapostprocessingmodule import write_key_data_to_aircraft_exchange_file +from datapostprocessingmodule import prepare_element_tree_for_module_key_parameter + + +def data_postprocessing(paths_and_names, routing_dict, data_dict, runtime_output): + """Perform data postprocessing and write data to an aircraft exchange file. + + This function is responsible for data postprocessing that involves the following steps: + (1) Data preparation: The module manager prepares a list containing all paths to the key parameters that must + be written to the aircraft exchange file. + (2) Write data to the aircraft exchange file: The results of the module execution are passed on to the function + responsible for properly writing the data to the aircraft exchange file. + (3) Method-specific data postprocessing: User-defined method-specific postprocessing is conducted as needed. + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict routing_dict: Dictionary containing routing parameters + :param dict data_dict: Dictionary containing the result of the module execution (direct operating cost estimation) + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :return: None + """ + + """Data preparation.""" + # Changes to this list are the sole responsibility of the module manager! + paths_to_key_parameters_list = [ + './assessment/operating_cost_estimation_tu_berlin/direct_operating_costs/direct_operating_costs_annual', + './assessment/operating_cost_estimation_tu_berlin/indirect_operating_costs/indirect_operating_costs_annual' + ] + + module_key_parameters_dict = { + 'assessment': { + 'operating_cost_estimation_tu_berlin': { + 'attributes': { + 'description': 'Operating costs (sum of direct and indirect operating costs)', + 'tool_level': '0'}, + 'direct_operating_costs': { + 'attributes': { + 'description': 'Direct operating costs (sum of route independent and route dependent costs)'}, + 'direct_operating_costs_annual': { + 'attributes': {'description': 'Direct operating costs (DOC) per year'}, + 'value': '0', + 'unit': 'EUR/y', + 'lower_boundary': '0', + 'upper_boundary': 'inf'} + }, + 'indirect_operating_costs': { + 'attributes': {'description': 'Indirect operating costs (IOC)'}, + 'indirect_operating_costs_annual': { + 'attributes': {'description': 'Indirect operating costs (IOC) per year'}, + 'value': '0', + 'unit': 'EUR/y', + 'lower_boundary': '0', + 'upper_boundary': 'inf'} + } + } + } + } + + paths_and_names = prepare_element_tree_for_module_key_parameter(paths_and_names, module_key_parameters_dict) + + # Run 'user_method_data_output_preparation' from 'usermethoddatapreparation.py'. + key_output_dict, method_specific_output_dict = routing_dict['func_user_method_data_output_preparation'](data_dict) + # Extract tool level from routing dictionary. + tool_level = routing_dict['tool_level'] + + """Write data to aircraft exchange file.""" + # Extract root and path to aircraft exchange file. + root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree'] + path_to_aircraft_exchange_file = paths_and_names['path_to_aircraft_exchange_file'] + # Write key data to aircraft exchange file. + write_key_data_to_aircraft_exchange_file(root_of_aircraft_exchange_tree, path_to_aircraft_exchange_file, + paths_to_key_parameters_list, key_output_dict, tool_level, runtime_output) + + """Method-specific postprocessing.""" + # Run 'method_data_postprocessing' from 'datapostprocessingmodule'. + method_data_postprocessing(paths_and_names, routing_dict, data_dict, + method_specific_output_dict, runtime_output) diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapreprocessing.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapreprocessing.py new file mode 100644 index 0000000000000000000000000000000000000000..8ac87546f3daa0f7ec18644426478d76d44d0668 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/datapreprocessing.py @@ -0,0 +1,126 @@ +"""Module providing functions for data preprocessing.""" +# Import standard modules. +import importlib +import sys + +# Import own modules. +from datapreprocessingmodule import get_paths_and_names, read_routing_values_from_xml +from src.readlayertext import read_energy_carrier + + +def data_preprocessing(module_configuration_file, argv): + """Conduct data preprocessing. + + This function provides data preprocessing functionalities. It sets up the necessary data and imports relevant + modules. The importlib module is used to dynamically import necessary modules. + + The output dictionary 'preprocessing_dict' contains the following values: + - 'layer_1': First routing layer (aircraft configuration) (str) + - 'layer_2': Second routing layer (calculation method fidelity) (str) + - 'layer_3': Third routing layer (calculation method) (str) + - 'user_layer': Last routing layer (fuel type) (user layer) (str) + - 'tool_level': Tool level of current tool (str) + - 'module_import_name': Dynamic string for dynamically generated module import name based on layers (str) + - 'module_name': Module name (name of the module configuration file without its file extension) (str) + - 'func_user_method_data_input_preparation': Reference to 'user_method_data_input_preparation' function + - 'func_user_method_data_output_preparation': Reference to 'user_method_data_output_preparation' function + - 'func_user_method_plot': Reference to 'method_plot' function + - 'func_user_method_html_report': Reference to 'method_html_report' function + - 'func_user_method_xml_export': Reference to 'method_xml_export' function + + :param str module_configuration_file: Name of module configuration file + :param list argv: List with optional input arguments + :raises ModuleNotFoundError: Raised if module import failed + :returns: + - dict paths_and_names: Dictionary containing system paths and ElementTrees + - dict preprocessing_dict: Dictionary containing data preprocessing results + - logging.Logger runtime_output: Logging object used for capturing log messages in the module + + """ + + """Get paths, names, and xml trees for module configuration and aircraft exchange file.""" + # Call 'get_paths_and_names' function to obtain various paths and names. + paths_and_names, runtime_output = get_paths_and_names(module_configuration_file, argv) + # Note: It is the exclusive responsibility of the module manager to modify the following information! + # Create layer description dictionary according to the number of individual layers. The dictionary associates + # layers with their respective XML paths and expected data types according to the following scheme: + # layer_description_dict = {'layer_1': [path, expected data type], 'layer_2': [...]} + # If any information cannot be directly extracted from a specific aircraft exchange file path, please write 'None' + # and manually add the missing value afterward. + aircraft_exchange_tmp_path = 'aircraft_exchange_file/requirements_and_specifications/design_specification/' + module_configuration_tmp_path = 'module_configuration_file/program_settings/configuration/' + layer_description_dict = { + 'layer_1': [aircraft_exchange_tmp_path + 'configuration/configuration_type/value', float], + 'layer_2': [module_configuration_tmp_path + 'fidelity_name/value', str], + 'layer_3': [module_configuration_tmp_path + 'method_name/value', str], + 'user_layer': [None, str] + } + + """ Extract data from aircraft exchange and module configuration file.""" + # Extract root and path to aircraft exchange file and write key data to aircraft exchange file. + root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree'] + root_of_module_configuration_file = paths_and_names['root_of_module_config_tree'] + # Extract data from *.xml files based on the provided layer description (if no path information given ('None'), + # the entry has to be specified manually afterward). The result is stored in the 'preprocessing_dict' dictionary. + # It has the following output format (all values are strings): + # dict_out = {'layer_1': value, 'layer_2': value, 'layer_3': value, 'user_layer': value, 'tool_level': value} + preprocessing_dict = read_routing_values_from_xml(layer_description_dict, root_of_aircraft_exchange_tree, + root_of_module_configuration_file, runtime_output) + # Manual specification of missing layer values ('None' entry layer). + preprocessing_dict['user_layer'] = read_energy_carrier(root_of_aircraft_exchange_tree, runtime_output) + + """Prepare and import modules.""" + # Generate a dynamic import name 'module_import_name' for the selected calculation method modules based on the + # provided layer values according to the following scheme: + # 'src.[value of layer_1].[value of layer_2].[value of layer_3]' + module_import_name = 'src' + for _, value in list(preprocessing_dict.items())[:-2]: + module_import_name += '.' + value + # Create import commands by appending the python file name (incl. sub-folders, if necessary) to the generated + # 'module_import_name'. E.g., the import command for the module import from the 'usermethoddatapreparation.py' file + # is as follows: + # 'src.[value of layer_1].[value of layer_2].[value of layer_3].usermethoddatapreparation' + # The import command for the module import from the 'methodplot.py' file in the 'general' folder is as follows: + # 'src.[value of layer_1].[value of layer_2].[value of layer_3].general.methodplot' + # This step is executed for the following python files: + # * 'usermethoddatapreparation.py' + # * 'methodplot.py' + # * 'methodhtmlreport.py' + # * 'methodxmlexport.py' + # * 'methodtexoutput'.py' + import_command_user_method_data_preparation = module_import_name + '.usermethoddatapreparation' + import_command_user_method_plot = module_import_name + '.general.methodplot' + import_command_user_method_html_report = module_import_name + '.general.methodhtmlreport' + import_command_user_method_xml_export = module_import_name + '.general.methodxmlexport' + import_command_user_method_tex_output = module_import_name + '.general.methodtexoutput' + + # Add module name and tool level to the preprocessing_dict. + preprocessing_dict['module_import_name'] = module_import_name + preprocessing_dict['module_name'] = module_configuration_file[:-9] + + # Dynamically import modules and functions based on the generated import commands. + try: + # Import functions from the specified modules. + import_user_method_data_preparation = importlib.import_module(import_command_user_method_data_preparation) + import_user_method_plot = importlib.import_module(import_command_user_method_plot) + import_user_method_html_report = importlib.import_module(import_command_user_method_html_report) + import_user_method_xml_export = importlib.import_module(import_command_user_method_xml_export) + import_user_method_tex_output = importlib.import_module(import_command_user_method_tex_output) + # Save the imported functions as variables in the 'preprocessing_dict' dictionary. + preprocessing_dict['func_user_method_data_input_preparation'] \ + = import_user_method_data_preparation.user_method_data_input_preparation + preprocessing_dict['func_user_method_data_output_preparation'] \ + = import_user_method_data_preparation.user_method_data_output_preparation + preprocessing_dict['func_user_method_plot'] = import_user_method_plot.method_plot + preprocessing_dict['func_user_method_html_report'] = import_user_method_html_report.method_html_report + preprocessing_dict['func_user_method_xml_export'] = import_user_method_xml_export.method_xml_export + preprocessing_dict['func_user_method_tex_output'] = import_user_method_tex_output.method_tex_output + # Exception handling for module import error. + except ModuleNotFoundError as module_import_error: + runtime_output_string = ('Error: ' + str(module_import_error) + ' found in ' + + preprocessing_dict['module_name'] + '.\n' + + ' Program aborted.') + runtime_output.critical(runtime_output_string) + sys.exit(1) + + return paths_and_names, preprocessing_dict, runtime_output diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/readlayertext.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/readlayertext.py new file mode 100644 index 0000000000000000000000000000000000000000..35d6e1fa00018d39edec21314071aad9214d6e6c --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/readlayertext.py @@ -0,0 +1,86 @@ +"""File providing functions to read layer text from aircraft XML file.""" +# Import standard libraries. +import sys + + +def read_energy_carrier(root_of_aircraft_exchange_tree, runtime_output): + """Read energy carrier from aircraft exchange file. + + This function extracts information about the energy carrier used in an aircraft from the provided aircraft exchange + file. It specifically looks for 'energy_carrier' nodes and their corresponding 'energy_carrier' sub-nodes. + + :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :raises ValueError: Raised if energy carrier node does not exist + :return string energy_carrier: Energy carrier string + """ + + # Initialize empty list. + energy_carrier_list = [] + + # Attempt to extract information on energy carrier from aircraft exchange file. + try: + # Find all 'energy_carrier' nodes in aircraft exchange file. + energy_carrier_node_list = root_of_aircraft_exchange_tree.findall('.//energy_carrier') + # Check, if 'energy_carrier' nodes exist. + if not energy_carrier_node_list: + # Raise error, if no energy carrier node exists. + raise ValueError('No energy carriers nodes found in the aircraft exchange file. Program aborted.') + # Iterate over 'energy_carrier_node_list' and append values of energy carrier sub-nodes. + for energy_carrier_type_node in energy_carrier_node_list: + energy_carrier_node = energy_carrier_type_node.find('.//type/value') + if energy_carrier_node is not None: + energy_carrier_list.append(energy_carrier_node.text) + else: + raise ValueError('No energy carrier nodes found in the aircraft exchange file. Program aborted.') + + # If 'energy_carrier_list' is not empty, compare all entries. + if energy_carrier_list is not None: + # If all entries are the same, set 'energy_carrier' to first list entry. + if all(element == energy_carrier_list[0] for element in energy_carrier_list): + energy_carrier = energy_carrier_list[0] + # If list entries differ, set 'energy_carrier' to 'hybrid'. + else: + energy_carrier = 'hybrid' + # Raise error, if 'energy_carrier_list' is empty. + else: + raise ValueError('No energy carrier node found. Program aborted.') + + # Exception handling for ValueError. + except ValueError as e: + runtime_output.critical('Error: ' + str(e)) + sys.exit(1) + + return energy_carrier + + +def read_engine_configuration(root_of_aircraft_exchange_tree, runtime_output): + """Read engine configuration. + + Read engine configuration from aircraft exchange file. + + :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :return str engine_configuration: Information on engine configuration + """ + + engine_configuration = 'xyz' + print(engine_configuration) + + return engine_configuration + + +def read_tank_configuration(root_of_aircraft_exchange_tree, runtime_output): + """Read tank configuration. + + Read tank configuration information from aircraft exchange file. + + :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :return str tank_configuration: Information on tank configuration + """ + + tank_configuration = 'xyz' + print(tank_configuration) + + return tank_configuration diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py new file mode 100644 index 0000000000000000000000000000000000000000..9cef4c0e8de230c1c48d832966ba2432ce378b3e --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodhtmlreport.py @@ -0,0 +1,19 @@ +"""Module providing HTML report functionalities for current calculation method.""" + + +def method_html_report(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output): + """HTML report function. + + This function is responsible for creating HTML reports. + [Add further information here...] + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict routing_dict: Dictionary containing routing parameters + :param dict data_dict: Dictionary containing results of module execution + :param dict method_specific_output_dict: Dictionary containing method specific output data + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :return: None + """ + + # This is just a dummy code snippet. Insert your code here. + runtime_output.warning('Warning: No "method_html_report" function in "methodhtmlreport.py" file implemented yet.') diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py new file mode 100644 index 0000000000000000000000000000000000000000..25b7588daf2da12a6fa3069394bd644901931653 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodplot.py @@ -0,0 +1,23 @@ +"""Module providing plotting functionalities for current calculation method.""" +# Import standard libraries. +import os +from matplotlib import pyplot as plt +import numpy as np + + +def method_plot(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output): + """Plot function. + + This function is responsible for creating plots. + [Add further information here...] + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict routing_dict: Dictionary containing routing parameters + :param dict data_dict: Dictionary containing results of module execution + :param dict method_specific_output_dict: Dictionary containing method specific output data + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :return: None + """ + + # This is just a dummy code snippet. Insert your code here. + runtime_output.print('Warning: No "method_plot" function in "methodplot.py" file implemented yet.') diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py new file mode 100644 index 0000000000000000000000000000000000000000..87a9aa043988da76e4dcc285947e5c66c16b4fb8 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodtexoutput.py @@ -0,0 +1,19 @@ +"""Module providing report functionalities for current calculation method.""" + + +def method_tex_output(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output): + """TeX file output function. + + This function is responsible for creating TeX output files. + [Add further information here...] + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict routing_dict: Dictionary containing routing parameters + :param dict data_dict: Dictionary containing results of module execution + :param dict method_specific_output_dict: Dictionary containing method specific output data + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :return: None + """ + + # This is just a dummy code snippet. Insert your code here. + runtime_output.warning('Warning: No "method_tex_output" function in "methodtexoutput.py" file implemented yet.') diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py new file mode 100644 index 0000000000000000000000000000000000000000..34eaf144b7d87418db5fa350c7c06db2e3cbb7f1 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/general/methodxmlexport.py @@ -0,0 +1,103 @@ +"""Module providing export functionalities for current calculation method.""" +# Import standard libraries. +import xml.etree.ElementTree as ET + + +def method_xml_export(paths_and_names, routing_dict, data_dict, method_specific_output_dict, xml_export_tree, + path_to_results_file, runtime_output): + """Export function. + + This function is responsible for the export of method-specific data to the corresponding method-specific XML. In + detail, this includes the following steps: + (1) Parse the XML file specified by the 'path_to_results_file' variable. + (2) Find the 'calculation_results' element in the XML file. This is the element under which method-specific + nodes will be added. + (3) Extract method-related information from the configuration file, such as the method name and description and + add method node. + (4) Extract design mission data from the method-specific output dictionary and write it to the XML file. + (5) If a study exists, extract study data from the method-specific output dict and write it to the XML file. + (6) Attempt to write the modified XML data back to the 'costEstimation_results.xml' file. Handle an OSError + exception in case an error occurs during this operation. + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict routing_dict: Dictionary containing routing parameters + :param dict data_dict: Dictionary containing results of module execution + :param dict method_specific_output_dict: Dictionary containing method-specific output data + :param ElementTree xml_export_tree: Element tree of method-specific XML tree + :param str path_to_results_file: Path to method-specific output XML file + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :raises OSError: Raised if writing to aircraft exchange file failed + :return: None + """ + runtime_output.print("Method-specific data are written to '" + routing_dict['module_name'] + "_results.xml'...") + + # Function to write data to 'cost_estimation_results.xml' + root_of_results_file = xml_export_tree.getroot() + parent = root_of_results_file.find('calculation_results') + # Add method node. + root_of_module_config_tree = paths_and_names['root_of_module_config_tree'] + method_name = root_of_module_config_tree.find('./program_settings/configuration/method_name/value').text + method_description = ("Empirical method to estimate the direct operating costs (DOC) and indirect operating costs" + " (IOC) of an aircraft.") + child = ET.SubElement(parent, method_name) + child.set("description", method_description) + + # Prepare ElementTree for export to module-specific XML. + prepare_element_tree_for_module_specific_export(root_of_results_file, method_specific_output_dict) + + # Write all parameters to export file. + try: + # Ensure proper indentation. + ET.indent(root_of_results_file, space=" ", level=0) + # Write data to file. + xml_export_tree.write(path_to_results_file) + # Exception handling for operating system error. + except OSError: + runtime_output.error('Error: Writing to aircraft exchange file failed. Program aborted!') + + +def prepare_element_tree_for_module_specific_export(root_of_results_file, specific_output_dict): + """ Prepare ElementTree for module-specific results export. + + This function is responsible for preparing the ElementTree of the module-specific export file. + In summary, the code dynamically updates an XML structure based on a list of paths and a dictionary + ('specific_output_dict'). It ensures that the specified paths exist in the XML structure and creates the necessary + sub-elements along the way, setting attributes and text values as specified in 'specific_output_dict'. + + :param ElementTree root_of_results_file: Root of method-specific export ElementTree + :param dict specific_output_dict: Dictionary containing method-specific output data + :return: None + """ + # Extract 'list_of_paths' from 'specific_output_dict' and delete it from dictionary. + list_of_paths = specific_output_dict['list_of_paths'] + del specific_output_dict['list_of_paths'] + # Iterate over paths. + for current_path in list_of_paths: + # Check, if 'current_path' exists in XML structure and generate path and sub-elements if not. + if root_of_results_file.find(current_path) is None: + # Split path into path_parts using '/' as delimiter, excluding first empty part. + path_parts = current_path.split('/')[1:] + # Initialize 'path_to_check' with the root element ('.'). + path_to_check = '.' + # Iterate over 'path_parts'. + for part in path_parts: + # Find parent element corresponding to current 'path_to_check'. + parent_path = root_of_results_file.find(path_to_check) + # Update 'path_to_check' by appending the current part. + path_to_check += ('/' + part) + # Check, if updated 'path_to_check' does not exist in the XML structure. + if root_of_results_file.find(path_to_check) is None: + # Check, if 'part' is in 'specific_output_dict'. + if specific_output_dict[part] is not None: + # Create sub-element. + new_node = ET.SubElement(parent_path, part) + # Add attributes (if necessary). + if 'attributes' in specific_output_dict[part]: + for key, value in specific_output_dict[part]['attributes'].items(): + new_node.set(key, value) + # Add further sub-elements if defined. + if 'parameters' in specific_output_dict[part]: + current_path = root_of_results_file.find(path_to_check) + for key, value in specific_output_dict[part]['parameters'].items(): + parameter_node = ET.SubElement(current_path, key) + parameter_node.text = str(value) diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py new file mode 100644 index 0000000000000000000000000000000000000000..7781cf02b5180b5f5743d31519d7a396067d8543 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/kerosene/methodkerosene.py @@ -0,0 +1,35 @@ +"""Module providing calculation functions provided by the user.""" +# Import standard modules. +import sys + +# Import own modules. + + +def method_kerosene(paths_and_names, routing_dict, dict_ac_exchange, dict_mod_config, runtime_output): + """Operating cost estimation method according to TU Berlin for kerosene-powered aircraft. + + This function performs the operating cost estimation according to the TU Berlin method for kerosene-powered aircraft + configurations. + [Add more information here...] + The output dictionary 'kerosene_output_dict' contains the results of the cost estimation and is structured according + to the following scheme: + kerosene_output_dict = {'parameter_1': value, + 'parameter_2': value} + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict routing_dict: Dictionary containing routing parameters + :param dict dict_ac_exchange: Dict containing parameters and according values from aircraft exchange file + :param dict dict_mod_config: Dict containing parameters and according values from module configuration file + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :return dict kerosene_output_dict: Dictionary containing results from calculation for kerosene-powered aircraft + """ + + kerosene_output_dict = {'direct_operating_costs_annual_design_point': 30, + 'indirect_operating_costs': 40} + + # Calculate costs. + runtime_output.print('----------------------------------------------------------') + runtime_output.print('[No method implemented yet ("methodkerosene.py").] ') + runtime_output.print('----------------------------------------------------------') + + return kerosene_output_dict diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py new file mode 100644 index 0000000000000000000000000000000000000000..67d201723a75e81f92ef9ecbfa053ca3497baeed --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/src/tube_and_wing/empirical/operating_cost_estimation_tu_berlin/usermethoddatapreparation.py @@ -0,0 +1,211 @@ +"""Module providing functions for the preparation of user data.""" + + +def user_method_data_input_preparation(routing_dict): + """Prepare necessary input data for the user method from aircraft exchange and module configuration files. + + In this function, the user is responsible for preparing the data needed for the user method. Relevant general data + are obtained from the aircraft exchange file and calculation specific parameter from the module configuration file. + The user must submit the data in the following format: + dict = {'parameter_name': [path to parameter node, expected data type], ...} + + :param dict routing_dict: Dictionary containing information on necessary data from module configuration file + :returns: + - dict data_to_extract_from_aircraft_exchange_dict: Dictionary containing parameter name, path to parameter, + and expected data type of parameters to be extracted from aircraft exchange file + - dict data_to_extract_from_module_configuration_dict: Dictionary containing parameter name, path to parameter, + and expected data type of parameters to be extracted from module configuration file + """ + + """Aircraft exchange file.""" + # Enter all parameters to be extracted from the aircraft exchange file. + path_to_adapt = './requirements_and_specifications/everything_the_DOC_heart_desires/' + data_to_extract_from_aircraft_exchange_dict = { + 'altitude_cruise': [path_to_adapt + 'altitude_cruise', float], + 'm_cargo_design': ['./analysis/mission/design_mission/cargo_mass', float], + 'm_cargo_study': ['./analysis/mission/study_mission/cargo_mass', float], + 'm_luggage': [path_to_adapt + '/m_luggage', float], + 'm_operating_empty': ['./analysis/masses_cg_inertia/operating_mass_empty/mass_properties/mass', float], + 'm_passenger': [path_to_adapt + '/m_passenger', float], + 'm_payload_design': ['./analysis/mission/design_mission/payload', float], + 'm_payload_max': ['./analysis/masses_cg_inertia/maximum_payload_mass/mass_properties/mass', float], + 'm_payload_study': ['./analysis/mission/study_mission/payload', float], + 'm_payload_at_max_fuel': ['./assessment/performance/range/payload_maximum_fuel_at_maximum_take_off_mass', + float], + 'm_takeoff_design': ['./analysis/mission/design_mission/take_off_mass', float], + 'm_takeoff_max': ['./analysis/masses_cg_inertia/maximum_takeoff_mass/mass_properties/mass', float], + 'm_takeoff_study': [path_to_adapt + 'm_takeoff_study', float], + 'mach_cruise': [path_to_adapt + 'mach_cruise', float], + 'n_cabin_crew_members': [path_to_adapt + 'n_cabin_crew_members', float], + 'n_cockpit_crew_members': [path_to_adapt + 'n_cockpit_crew_members', float], + 'n_engines': [path_to_adapt + 'n_engines', float], + 'n_passengers_per_class': [path_to_adapt + 'pax_per_class', str], + 'range_at_max_fuel': ['./assessment/performance/range/range_max_fuel_at_maximum_take_off_mass', float], + 'range_at_max_payload': ['./assessment/performance/range/range_max_payload_at_maximum_take_off_mass', float], + 'range_ferry': ['./assessment/performance/range/range_maximum_fuel_empty', float], + 'static_thrust_per_engine': [path_to_adapt + 'static_thrust_per_engine', float], + 'stage_length_design': ['./analysis/mission/design_mission/range', float], + 'stage_length_study': ['./analysis/mission/study_mission/range', float], + 'seat_load_factor_design': [path_to_adapt + 'seat_load_factor_design', float], + 'seat_load_factor_study': [path_to_adapt + 'seat_load_factor_design', float], + 'flight_time_design': [path_to_adapt + 'flight_time_design', float], + 'flight_time_study': [path_to_adapt + 'flight_time_study', float], + 'flights_per_year_design': [path_to_adapt + 'flights_per_year_design', float], + 'flights_per_year_study': [path_to_adapt + 'flights_per_year_study', float] + } + + """Module configuration file.""" + # Enter all general parameters to be extracted from the module configuration file. 'general parameters' means + # parameters that do not differ according to the user layer. It should be noted that 'tmp_general' is only used to + # shorten the path information in the 'general_data_to_extract_from_module_configuration_dict'. + tmp_general = ('./program_settings/configuration[@ID="tube_and_wing"]/fidelity[@ID="empirical"]/' + + 'operating_cost_estimation_tu_berlin/general_direct_operating_costs_parameter') + general_data_to_extract_from_module_configuration_dict = { + 'annual_lay_days_maintenance': + [tmp_general + '/maintenance/annual_lay_days_maintenance', float], + 'annual_lay_days_overhaul': + [tmp_general + '/flight_cycles/annual_lay_days_overhaul', float], + 'annual_lay_days_reserve': + [tmp_general + '/flight_cycles/annual_lay_days_reserve', float], + 'air_traffic_control_price_factor_design': + [tmp_general + '/air_traffic_control/air_traffic_control_price_factor_design', float], + 'air_traffic_control_price_factor_study': + [tmp_general + '/air_traffic_control/air_traffic_control_price_factor_study', float], + 'airframe_repair_costs_per_flight': + [tmp_general + '/maintenance/airframe_repair_costs_per_flight', float], + 'block_time_per_flight': + [tmp_general + '/flight_cycles/block_time_per_flight', float], + 'cost_burden': + [tmp_general + '/maintenance/cost_burden', float], + 'daily_night_curfew_time': + [tmp_general + '/flight_cycles/daily_night_curfew_time', float], + 'depreciation_period': + [tmp_general + '/capital/depreciation_period', float], + 'fees_handling': + [tmp_general + '/handling/fees_handling', float], + 'fees_landing': + [tmp_general + '/landing/fees_landing', float], + 'potential_annual_operation_time': + [tmp_general + '/flight_cycles/potential_annual_operation_time', float], + 'price_per_operating_empty_mass': + [tmp_general + '/capital/price_per_operating_empty_mass', float], + 'rate_inflation': + [tmp_general + '/miscellaneous/rate_inflation', float], + 'rate_insurance': + [tmp_general + '/capital/rate_insurance', float], + 'rate_interest': + [tmp_general + '/capital/rate_interest', float], + 'rate_labor': + [tmp_general + '/maintenance/rate_labor', float], + 'residual_value_factor': + [tmp_general + '/capital/residual_value_factor', float], + 'revenue_per_freight_km_design': + [tmp_general + '/related_direct_operating_costs/revenue_per_freight_km_design', float], + 'revenue_per_freight_km_study': + [tmp_general + '/related_direct_operating_costs/revenue_per_freight_km_study', float], + 'salary_variation': + [tmp_general + '/crew/salary_variation', bool], + 'seat_load_factor_design': + [tmp_general + '/miscellaneous/seat_load_factor_design', float], + 'seat_load_factor_study': + [tmp_general + '/miscellaneous/seat_load_factor_study', float] + } + + # Enter all specific parameters to be extracted from the module configuration file. 'specific parameters' means + # parameters that differ according to the user layer. It should be noted that 'tmp_specific' is only used to + # shorten the path information in the 'specific_data_to_extract_from_module_configuration_dict'. + tmp_specific = ('./program_settings/configuration[@ID="tube_and_wing"]/fidelity[@ID="empirical"]/' + + 'operating_cost_estimation_tu_berlin') + specific_data_to_extract_from_module_configuration_dict = { + 'fuel_price': [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/fuel_price', float], + 'factor_engine_maintenance': + [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/factor_engine_maintenance', float], + 'ratio_operating_empty_mass': + [tmp_specific + '/fuel_type[@ID="' + routing_dict['user_layer'] + '"]/ratio_operating_empty_mass', float] + } + + # Merge module configuration dictionaries. + data_to_extract_from_module_configuration_dict = \ + general_data_to_extract_from_module_configuration_dict | specific_data_to_extract_from_module_configuration_dict + + return data_to_extract_from_aircraft_exchange_dict, data_to_extract_from_module_configuration_dict + + +def user_method_data_output_preparation(data_dict): + """Prepare user-specific output data based on the calculation method results. + + This function is responsible for preparing the user-specific output data based on the results of the calculation + method. The 'data_dict' input parameter contains the results of the module execution. + The data for the key parameters output must be specified in the following format in order to be written correctly + to the aircraft exchange file by the 'write_key_data_to_aircraft_exchange_file' function in the following step: + dict = {'parameter_name': [path to parameter node, value, name (if needed)], ...} + Important notes: + (1) It should be noted that only key parameters may be written that have been previously defined by the module + manager. + (2) Attention must be paid to the proper path specifications, otherwise warnings may be issued or, in the worst + case, errors may occur subsequently resulting in the write process and consequently the entire program being + aborted. + (3) If the path specifications contain IDs, these must start at '0' and be defined in ascending order without + gaps. + For the method-specific output, a path list and a dictionary is necessary to properly write the data to the + method-specific XML file. + the dictionary must be specified in the following format: + dict = ... + Note: If the user wants to export data from the design and study mission, two path lists and dictionaries are + necessary. + + :param dict data_dict: Dictionary containing the results of the module execution + :returns: + - dict key_output_dict: Output dictionary containing key parameters that are written to aircraft XML file + - dict method_specific_output_dict: Dictionary containing specific parameters that are written to + method-specific output XML + """ + + """Key parameters output.""" + doc_path = './assessment/operating_cost_estimation_tu_berlin/direct_operating_costs/' + ioc_path = './assessment/operating_cost_estimation_tu_berlin/indirect_operating_costs/' + + key_output_dict = { + # Direct operating costs shares. + 'direct_operating_costs_annual': + [doc_path + 'direct_operating_costs_annual', + data_dict['direct_operating_costs_annual_design_point']], + # Indirect operating costs shares. + 'indirect_operating_costs_annual': + [ioc_path + 'indirect_operating_costs_annual', + data_dict['indirect_operating_costs']] + } + + """Method-specific output.""" + # Define specific output paths and dict for design mission. + tmp_path = './calculation_results/operating_cost_estimation_tu_berlin/design_mission/' + + paths_to_specific_design_outputs_list = [ + tmp_path + 'direct_operating_costs/direct_operating_costs_per_year', + tmp_path + 'indirect_operating_costs' + ] + + method_specific_output_dict = { + 'operating_cost_estimation_tu_berlin': {}, + 'design_mission': { + 'attributes': {'description': 'Cost estimation results of the design mission'}}, + 'direct_operating_costs': { + 'attributes': {'description': 'Direct operating costs'}}, + # Direct operating costs. + 'direct_operating_costs_per_year': { + 'attributes': {'description': 'Direct operating costs per year at design point (sum of route dependent and ' + 'route independent costs)'}, + 'parameters': { + 'value': data_dict['direct_operating_costs_annual_design_point'], + 'unit': 'EUR'}}, + # Indirect operating costs. + 'indirect_operating_costs': { + 'attributes': {'description': 'Indirect operating costs'}, + 'parameters': { + 'value': data_dict['indirect_operating_costs'], + 'unit': 'EUR'}}, + # List + 'list_of_paths': paths_to_specific_design_outputs_list + } + + return key_output_dict, method_specific_output_dict diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/version.txt b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/version.txt new file mode 100644 index 0000000000000000000000000000000000000000..50aea0e7aba1ab64fce04e96fb64bf9599a1c2a5 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/cost_estimation/version.txt @@ -0,0 +1 @@ +2.1.0 \ No newline at end of file diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/CSR-02.xml b/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/CSR-02.xml new file mode 100644 index 0000000000000000000000000000000000000000..2582b9d7e14739a34111dd1a9e022bcd4e2af2b5 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/CSR-02.xml @@ -0,0 +1,4832 @@ +<aircraft_exchange_file> + <requirements_and_specifications description="Requirements and specifications"> + <general description="General information on requirements and specifications"> + <type description="Aircraft type"> + <value>CeRAS</value> + </type> + <model description="Model - Version"> + <value>CSR-02</value> + </model> + </general> + <design_specification description="Design specification"> + <configuration description="Configuration information"> + <configuration_type description="aircraft configuration: tube_and_wing / blended_wing_body"> + <value>tube_and_wing</value> + </configuration_type> + <undercarriage_definition description="Design description of the undercarriage."> + <main_gear_mounting description="Mounting position of the main landing gear: wing_mounted / fuselage_mounted."> + <value>wing_mounted</value> + </main_gear_mounting> + </undercarriage_definition> + </configuration> + <propulsion description="Propulsion information"> + <propulsor ID="0" description="Specific propulsor information"> + <mounting_position description="positions: under_wing_left / under_wing_right / over_wing_left / over_wing_right / on_fuselage_left / on_fuselage_right / in_fuselage_rear"> + <value>under_wing_left</value> + </mounting_position> + <energy_carrier description="Energy type: kerosene / liquid_hydrogen / battery / saf / hybrid (e.g, kerosene+liquid_hydrogen)"> + <value>kerosene</value> + </energy_carrier> + <degree_of_hybridization description=""> + <value>0.5</value> + </degree_of_hybridization> + </propulsor> + <propulsor ID="1" description="Specific propulsor information"> + <mounting_position description="positions: under_wing_left / under_wing_right / over_wing_left / over_wing_right / on_fuselage_left / on_fuselage_right / in_fuselage_rear"> + <value>under_wing_left</value> + </mounting_position> + <energy_carrier description="Energy type: kerosene / liquid_hydrogen / battery / saf / hybrid (e.g, kerosene+liquid_hydrogen)"> + <value>kerosene</value> + </energy_carrier> + <degree_of_hybridization description=""> + <value>0.5</value> + </degree_of_hybridization> + </propulsor> + </propulsion> + </design_specification> + <requirements description="Aircraft design requirements"> + <top_level_aircraft_requirements description="Top level aircraft requirements (TLAR)"> + <maximum_approach_speed description="Maximum allowed approach speed."> + <value>71</value> + <unit>m/s</unit> + <lower_boundary>50</lower_boundary> + <upper_boundary>90</upper_boundary> + </maximum_approach_speed> + <pavement_classification_number description="Runway pavment classification number (PCN) - limits the maximum allowed aircraft classification number of undercarriage."> + <value>55</value> + <unit>1</unit> + <lower_boundary>5</lower_boundary> + <upper_boundary>120</upper_boundary> + </pavement_classification_number> + </top_level_aircraft_requirements> + <additional_requirements description="Additional requirements"> + </additional_requirements> + </requirements> + <everything_the_DOC_heart_desires> + <altitude_cruise> + <value>10058.4</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>m</unit> + </altitude_cruise> + <m_passenger> + <value>75</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>kg</unit> + </m_passenger> + <m_luggage> + <value>15.72</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>kg</unit> + </m_luggage> + <n_cabin_crew_members> + <value>4</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>kg</unit> + </n_cabin_crew_members> + <n_cockpit_crew_members> + <value>2</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>kg</unit> + </n_cockpit_crew_members> + <n_engines> + <value>2</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>kg</unit> + </n_engines> + <pax_per_class> + <value>0/0/0/12/138</value> + <unit>1</unit> + </pax_per_class> + <static_thrust_per_engine> + <value>128.855268</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>kg</unit> + </static_thrust_per_engine> + <m_takeoff_study> + <value>62560.48325</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>kg</unit> + </m_takeoff_study> + <mach_cruise> + <value>0.82</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>1</unit> + </mach_cruise> + <seat_load_factor_design> + <value>1.0</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>1</unit> + </seat_load_factor_design> + <seat_load_factor_study> + <value>0.8</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>1</unit> + </seat_load_factor_study> + <flights_per_year_design> + <value>1289</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>1</unit> + </flights_per_year_design> + <flights_per_year_study> + <value>2508</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>1</unit> + </flights_per_year_study> + <flight_time_design> + <value>2.83</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>1</unit> + </flight_time_design> + <flight_time_study> + <value>0.57</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <unit>1</unit> + </flight_time_study> + </everything_the_DOC_heart_desires> + </requirements_and_specifications> + <sizing_point> + <wing_loading description="Maximum takeoff mass (MTOM) divided by wing area (Sref)" tool_evel="1"> + <value>0</value> + <unit>"kg/m^2"</unit> + </wing_loading> + <thrust_to_weight description="Total thrust (kN) divided by maximum aircraft weight (kN)" tool_evel="1"> + <value>0</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + <unit>"1"</unit> + </thrust_to_weight> + <MTOM description="Maximum takeoff mass" tool_evel="1"> + <value>0</value> + <unit>"kg"</unit> + </MTOM> + <OME description="Operating mass empty" tool_evel="1"> + <value>0</value> + <unit>"kg"</unit> + </OME> + </sizing_point> + <component_design> + <mission_files description="Path and name of xml files containing the flight phase data" tool_level="0"> + <design_mission_file description="Path and name of the design mission xml"> + <value>0</value> + </design_mission_file> + <study_mission_file description="Path and name of the study mission xml"> + <value>0</value> + </study_mission_file> + </mission_files> + <global_reference_point> + <reference_component description=""> + <value /> + </reference_component> + <x_position description=""> + <value /> + <unit /> + </x_position> + <y_position description=""> + <value /> + <unit /> + </y_position> + <z_position description=""> + <value /> + <unit /> + </z_position> + </global_reference_point> + <wing description="wing component" tool_level="0"> + <position description="position of wing (most forward position of part composition at y = 0)"> + <x description="x position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </position> + <mass_properties description="mass_properties of component wing"> + <mass description="component mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="component inertia refered to center of gravity"> + <j_xx description="inertia component in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia component in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia component in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia component in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia component in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia component in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia component in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia component in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia component in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="component center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + <specific> + <geometry> + <aerodynamic_surface description="aerodynamic surface" ID="0"> + <name description="name of aerodynamic surface"> + <value>main_wing</value> + </name> + <position description="reference position in global coordinates"> + <x description="x position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </position> + <parameters description="aerodynamic surface parameters"> + <direction description="unit vector according to global coordinate system for direction applied at position"> + <x description="x direction of unit vector"> + <value>0.0</value> + <unit>1</unit> + <lower_boundary>-1.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </x> + <y description="y direction of unit vector"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>-1.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </y> + <z description="z direction of unit vector"> + <value>0.0</value> + <unit>1</unit> + <lower_boundary>-1.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </z> + </direction> + <symmetric description="symmetric to x-z plane (global) aerodynamic surface"> + <value>true</value> + </symmetric> + <sections description="sections"> + <section description="section" ID="0"> + <chord_origin description="origin of chord (local)"> + <x description="x position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </chord_origin> + <chord_length description="length of chord"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </chord_length> + <geometric_twist description="geometric twist at leading edge"> + <value>0.0</value> + <unit>rad</unit> + <lower_boundary>-</lower_boundary> + <upper_boundary /> + </geometric_twist> + <profile description="profile (data normalized on chord)"> + <name> + <value>naca0012</value> + </name> + </profile> + </section> + </sections> + <spars description="spars"> + <spar description="front spar" ID="0"> + <position description="chord relative position of control device"> + <inner_position description="relative inner position"> + <spanwise description="relative spanwise position"> + <value>0.</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </inner_position> + <outer_position description="relative outer position"> + <spanwise description="relative spanwise position"> + <value>0.2</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </outer_position> + </position> + </spar> + <spar description="rear spar" ID="1"> + <position description="chord relative position of control device"> + <inner_position description="relative inner position"> + <spanwise description="relative spanwise position"> + <value>0.</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </inner_position> + <outer_position description="relative outer position"> + <spanwise description="relative spanwise position"> + <value>0.2</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </outer_position> + </position> + </spar> + </spars> + <control_devices description="control devices"> + <control_device description="control device" ID="0"> + <type> + <value>aileron</value> + </type> + <deflection description="maximum positive and negative deflection of control device"> + <full_negative_deflection description="full negative deflection"> + <value>-25.0</value> + <unit>deg</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </full_negative_deflection> + <full_positive_deflection description="full positive deflection"> + <value>25.0</value> + <unit>deg</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </full_positive_deflection> + </deflection> + <position description="chord relative position of control device"> + <inner_position description="relative inner position"> + <spanwise description="relative spanwise position"> + <value>0.2</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </inner_position> + <outer_position description="relative outer position"> + <spanwise description="relative spanwise position"> + <value>0.2</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </outer_position> + </position> + </control_device> + </control_devices> + </parameters> + <mass_properties description="mass_properties of aerodynamic surface"> + <mass description="component mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="component inertia refered to center of gravity"> + <j_xx description="inertia component in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia component in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia component in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia component in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia component in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia component in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia component in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia component in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia component in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="component center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </aerodynamic_surface> + </geometry> + </specific> + </wing> + <fuselage description="Geometric description of the aircraft fuselages" tool_level="0"> + <position description="Position of the fuselages with regard to the global reference point."> + <x_position description="Distance in x direction with regard to the global reference point. (fuselage nose point)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>10</upper_boundary> + </x_position> + <y_position description="Distance in y direction with regard to the global reference point. (fuselage nose point)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>0</upper_boundary> + </y_position> + <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </position> + <mass_properties description="Mass properties of the fuselages."> + <mass description="Mass of the total fuselages."> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="Inertia of the total fuselages with regard to the total center of gravity."> + <j_xx description="Inertia of the total fuselages in x."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="Inertia of the total fuselages in y."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="Inertia of the total fuselages in z."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="Inertia of the total fuselages in xy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="Inertia of the total fuselages in xz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="Inertia of the total fuselages in yx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="Inertia of the total fuselages in yz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="Inertia of the total fuselages in zx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="Inertia of the total fuselages in zy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="Center of gravity of the total fuselages."> + <x_position description="Center of gravity in x-direction with regard to the global reference point. (total fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>50</upper_boundary> + </x_position> + <y_position description="Center of gravity in y-direction with regard to the global reference point. (total fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </y_position> + <z_position description="Center of gravity in z-direction with regard to the global reference point. (total fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </center_of_gravity> + </mass_properties> + <specific> + <geometry> + <geometry_file_name> + <value>geometryData/fuselage.dat</value> + </geometry_file_name> + <fuselage ID="0" description="Geometrical description of one entire fuselage."> + <name description="Name of the fuselage."> + <value>center_fuselage</value> + </name> + <position description="Position of one entire fuselage with regard to the global reference point."> + <x_position description="Distance in x direction with regard to the global reference point. (fuselage nose point)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>10</upper_boundary> + </x_position> + <y_position description="Distance in y direction with regard to the global reference point. (fuselage nose point)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-25</lower_boundary> + <upper_boundary>25</upper_boundary> + </y_position> + <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </position> + <mass_properties description="Mass properties of one entire fuselage."> + <mass description="Mass of one entire fuslege."> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100000</upper_boundary> + </mass> + <inertia description="Inertia of one entire fuselage with regard to his center of gravity."> + <j_xx description="Inertia of one entire fuselage in x."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="Inertia of one entire fuselage in y."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="Inertia of one entire fuselage in z."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="Inertia of one entire fuselage in xy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="Inertia of one entire fuselage in xz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="Inertia of one entire fuselage in yx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="Inertia of one entire fuselage in yz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="Inertia of one entire fuselage in zx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="Inertia of one entire fuselage in zy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="Center of gravity of one entire fuselage."> + <x_position description="Center of gravity in x-direction with regard to the global reference point. (entire fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>50</upper_boundary> + </x_position> + <y_position description="Center of gravity in y-direction with regard to the global reference point. (entire fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-25</lower_boundary> + <upper_boundary>25</upper_boundary> + </y_position> + <z_position description="Center of gravity in z-direction with regard to the global reference point. (entire fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </center_of_gravity> + </mass_properties> + <fuselage_sections description="Geometrical description of the fuselage sections of one entire fuselage"> + <section ID="0" description="Geometrical description of one fuselage section."> + <name description="Name of the fuselage section."> + <value>section_1</value> + </name> + <origin description="Origin of fuselage section (local)."> + <x_position description="Distance in x direction with regard to the global reference point."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>75</upper_boundary> + </x_position> + <y_position description="Distance in y direction with regard to the global reference point."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-25</lower_boundary> + <upper_boundary>25</upper_boundary> + </y_position> + <z_position description="Distance in z direction with regard to the global reference point."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </origin> + <upper_hight description="Height of the upper half of the fuselage section."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </upper_hight> + <lower_hight description="Height of the lower half of the fuselage section."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </lower_hight> + <width description="Width of the fuselage section."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </width> + <chord_length description="Maximum length of the fuselage section for bwb configuration."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>70</upper_boundary> + </chord_length> + </section> + </fuselage_sections> + <fuselage_accommodation> + <position description="Position of the payload tubes with regard to the global reference point."> + <x_position description="Distance in x direction with regard to the global reference point. (center payload tube starting point)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>10</upper_boundary> + </x_position> + <y_position description="Distance in y direction with regard to the global reference point. (center payload tube starting point)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>0</upper_boundary> + </y_position> + <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </position> + <mass_properties description="Mass properties of the payload tubes of one entire fuselage."> + <mass description="Mass of the payload tubes of one entire fuslege."> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100000</upper_boundary> + </mass> + <center_of_gravity description="Center of gravity of the payload tubes of one entire fuselage."> + <x_position description="Center of gravity in x-direction with regard to the global reference point. (all payload tubes of one entire fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>50</upper_boundary> + </x_position> + <y_position description="Center of gravity in y-direction with regard to the global reference point. (all payload tubes of one entire fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </y_position> + <z_position description="Center of gravity in z-direction with regard to the global reference point. (all payload tubes of one entire fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </center_of_gravity> + </mass_properties> + <number_of_payload_tubes description="Number of payload tubes of one entire fuselage."> + <value>1</value> + <unit>1</unit> + <lower_boundary>1</lower_boundary> + <upper_boundary>7</upper_boundary> + </number_of_payload_tubes> + <payload_tube ID="0" description="Geometrical description of one payload tube of the fuselage."> + <name description="Name of the payload tube."> + <value>center_payload_tube</value> + </name> + <payload_tube_reference_points description="Payload tube center reference points in x, y and z-direction refered to fuselage nose point."> + <front_reference_points Desc="Reference points in the front of payload tube."> + <x_position Desc="Payload tube reference point in x-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x_position> + <y_position Desc="Payload tube reference point in y-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y_position> + <z_position Desc="Payload tube reference point in z-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z_position> + <upper_z_position Desc="Upper payload tube reference point in z-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </upper_z_position> + <lower_z_position Desc="Lower payload tube reference point in z-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </lower_z_position> + </front_reference_points> + <aft_reference_points Desc="Reference points in the aft of payload tube."> + <x_position Desc="Payload tube reference point in x-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x_position> + <y_position Desc="Payload tube reference point in y-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y_position> + <z_position Desc="Payload tube reference point in z-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z_position> + <upper_z_position Desc="Upper payload tube reference point in z-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </upper_z_position> + <lower_z_position Desc="Lower payload tube reference point in z-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </lower_z_position> + </aft_reference_points> + </payload_tube_reference_points> + <payload_tube_wall_reference_points description="Payload tube wall reference points in x, y and z-direction refered to fuselage nose point."> + <front_reference_points Desc="Wall reference points in the front of payload tube."> + <x_position Desc="Wall reference point in x-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x_position> + <left_y_position Desc="Left wall reference point in y-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </left_y_position> + <right_y_position Desc="Right wall reference point in y-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </right_y_position> + <z_position Desc="Wall reference point in z-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z_position> + </front_reference_points> + <aft_reference_points Desc="Wall reference points in the aft of payload tube."> + <x_position Desc="Wall reference point in x-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x_position> + <left_y_position Desc="Left wall reference point in y-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </left_y_position> + <right_y_position Desc="Right wall reference point in y-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </right_y_position> + <z_position Desc="Wall reference point in z-direction"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z_position> + </aft_reference_points> + </payload_tube_wall_reference_points> + <payload_tube_structural_wall_thickness description="Structural wall thickness of the paylaod tube."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </payload_tube_structural_wall_thickness> + <payload_tube_water_volume description="Total water volume of one entire paylaod tube."> + <value>0</value> + <unit>m^3</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>infr</upper_boundary> + </payload_tube_water_volume> + <number_of_payload_decks description="Number of payload decks of one entire fuselage."> + <value>1</value> + <unit>1</unit> + <lower_boundary>1</lower_boundary> + <upper_boundary>3</upper_boundary> + </number_of_payload_decks> + <payload_deck ID="0" description="Geometrical description of the payload decks in one payload tube."> + <name description="Name of the payload deck."> + <value>passenger_deck</value> + </name> + <position description="Position of the payload deck with regard to the global reference point."> + <x_position description="Distance in x direction with regard to the global reference point. (payload deck starting point)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>10</upper_boundary> + </x_position> + <y_position description="Distance in y direction with regard to the global reference point. (payload deck starting point)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>0</upper_boundary> + </y_position> + <z_position description="Distance in z direction with regard to the global reference point. (distance to fuselage center line)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </position> + <mass_properties description="Mass properties of the payload deck of one entire payload tube."> + <mass description="Mass of the payload deck of one entire paylaod tube."> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100000</upper_boundary> + </mass> + <center_of_gravity description="Center of gravity of the payload tubes of one entire fuselage."> + <x_position description="Center of gravity in x-direction with regard to the global reference point. (all payload tubes of one entire fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>50</upper_boundary> + </x_position> + <y_position description="Center of gravity in y-direction with regard to the global reference point. (all payload tubes of one entire fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </y_position> + <z_position description="Center of gravity in z-direction with regard to the global reference point. (all payload tubes of one entire fuselage)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </center_of_gravity> + </mass_properties> + <payload_deck_area description="Total floor area of the paylaod deck."> + <value>0</value> + <unit>m^2</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1000</upper_boundary> + </payload_deck_area> + <payload_deck_water_volume description="Total water volume of the paylaod deck."> + <value>0</value> + <unit>m^3</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1000</upper_boundary> + </payload_deck_water_volume> + <payload_deck_length description="Total length of the paylaod deck."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100</upper_boundary> + </payload_deck_length> + <payload_deck_height description="Maximum standing height of the paylaod deck."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>3</upper_boundary> + </payload_deck_height> + <payload_deck_top_width description="Width on the top of the paylaod deck."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </payload_deck_top_width> + <payload_deck_bottom_width description="Width on the bottom of the paylaod deck."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </payload_deck_bottom_width> + <payload_deck_required_power description="Required power of the payload deck."> + <value>0</value> + <unit>W</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </payload_deck_required_power> + <number_of_payload_deck_compartments description="Number of paylaod compartments of the payload deck."> + <value>1</value> + <unit>1</unit> + <lower_boundary>1</lower_boundary> + <upper_boundary>5</upper_boundary> + </number_of_payload_deck_compartments> + <payload_compartment ID="0" description="Geometrical description of the payload compartment of one payload deck."> + <name description="Name of the payload compartment of the payload deck."> + <value>front_compartment</value> + </name> + <position description="Position of the payload compartment with regard to the global reference point."> + <x_position description="Distance in x direction with regard to the global reference point. (payload compartment starting point)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>100</upper_boundary> + </x_position> + <y_position description="Distance in y direction with regard to the global reference point. (payload compartment starting point)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-25</lower_boundary> + <upper_boundary>25</upper_boundary> + </y_position> + <z_position description="Distance in z direction with regard to the global reference point. (distance compartment fuselage center line)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </position> + <payload_compartment_area description="Total floor area of the payload compartment."> + <value>0</value> + <unit>m^2</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1000</upper_boundary> + </payload_compartment_area> + <payload_compartment_water_volume description="Total water volume of the paylaod compartment."> + <value>0</value> + <unit>m^3</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1000</upper_boundary> + </payload_compartment_water_volume> + <payload_compartment_length description="Total length of the paylaod compartment."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100</upper_boundary> + </payload_compartment_length> + </payload_compartment> + </payload_deck> + </payload_tube> + </fuselage_accommodation> + </fuselage> + </geometry> + </specific> + </fuselage> + <tank description="Description of aircraft tanks." tool_level="0"> + <position description="Position of the tanks with regard to the global reference point."> + <x_position description="Distance between the foremost tank end and the global reference point in x-direction."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>80</upper_boundary> + </x_position> + <y_position description="Distance between the foremost tank end and the global reference point in y-direction."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-40</lower_boundary> + <upper_boundary>40</upper_boundary> + </y_position> + <z_position description="Distance between the foremost tank end and the global reference point in z-direction."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </position> + <mass_properties description="Mass properties of all tanks."> + <mass description="Total tank mass."> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100000</upper_boundary> + </mass> + <inertia description="Inertia of all tanks with regard to the total center of gravity."> + <j_xx description="Inertia of all tanks in x."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="Inertia of all tanks in y."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="Inertia of all tanks in z."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="Inertia of all tanks in xy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="Inertia of all tanks in xz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="Inertia of all tanks in yx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="Inertia of all tanks in yz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="Inertia of all tanks in zx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="Inertia of all tanks in zy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="Center of gravity of all tanks."> + <x_position description="Center of gravity in x-direction with regard to the global reference point."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>80</upper_boundary> + </x_position> + <y_position description="Center of gravity in y-direction with regard to the global reference point."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-40</lower_boundary> + <upper_boundary>40</upper_boundary> + </y_position> + <z_position description="Center of gravity in z-direction with regard to the global reference point."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </center_of_gravity> + </mass_properties> + <specific> + <tank ID="0" description="Description of one tank."> + <name description="Designator of the tank (right/left hand inner/outer wing tank, centre tank, trim tank, cylindrical/conical tail cone tank, ...)."> + <value>right hand inner wing tank</value> + </name> + <position description="Position of one tank with regard to the global reference point."> + <x_position description="Distance between the foremost tank end of one tank and the global reference point in x-direction."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>80</upper_boundary> + </x_position> + <y_position description="Distance between the foremost tank end of one tank and the global reference point in y-direction."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-40</lower_boundary> + <upper_boundary>40</upper_boundary> + </y_position> + <z_position description="Distance between the foremost tank end of one tank and the global reference point in z-direction."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </position> + <mass_properties description="Mass properties of one tank."> + <mass description="Total dry mass of one tank."> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100000</upper_boundary> + </mass> + <inertia description="Inertia of one tank with regard to its center of gravity."> + <j_xx description="Inertia of one tank in x."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="Inertia of one tank in y."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="Inertia of one tank in z."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="Inertia of one tank in xy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="Inertia of one tank in xz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="Inertia of one tank in yx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="Inertia of one tank in yz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="Inertia of one tank in zx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="Inertia of one tank in zy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="Center of gravity of one tank."> + <x_position description="Center of gravity in x-direction with regard to the global reference point."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>80</upper_boundary> + </x_position> + <y_position description="Center of gravity in y-direction with regard to the global reference point."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-40</lower_boundary> + <upper_boundary>40</upper_boundary> + </y_position> + <z_position description="Center of gravity in z-direction with regard to the global reference point."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </center_of_gravity> + </mass_properties> + <volume description="Total usable volume of one tank."> + <value>0</value> + <unit>l</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100000</upper_boundary> + </volume> + <geometry description="Geometrical description of one tank."> + <cross_section ID="0" description="Geometrical description of one tank cross section."> + <name description="Designator of tank cross section."> + <value>first cross section</value> + </name> + <position description="Position of tank cross section with regard to the global reference point."> + <x_position description="Distance between the tank cross section and the global reference point in x-direction."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>80</upper_boundary> + </x_position> + <y_position description="Distance between the tank cross section and the global reference point in y-direction."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-40</lower_boundary> + <upper_boundary>40</upper_boundary> + </y_position> + <z_position description="Distance between the tank cross section and the global reference point in z-direction."> + <value>0</value> + <unit>m</unit> + <lower_boundary>-5</lower_boundary> + <upper_boundary>5</upper_boundary> + </z_position> + </position> + <shape description="Description of the shape of the cross section (circular, rectangular, elliptical)."> + <value>rectangular</value> + </shape> + <height description="Height of the cross section."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </height> + <width description="Width of the cross section."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </width> + <length description="Length of the cross section (if length > 0: curved cross section, e.g., dashed tank endcap)."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </length> + </cross_section> + </geometry> + </tank> + </specific> + </tank> + <empennage description="empennage component" tool_level="0"> + <position description="position of empennage (most forward position of part composition)"> + <x description="x position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </position> + <mass_properties description="mass_properties of component empennage"> + <mass description="component mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="component inertia refered to center of gravity"> + <j_xx description="inertia component in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia component in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia component in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia component in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia component in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia component in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia component in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia component in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia component in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="component center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + <specific> + <geometry> + <aerodynamic_surface description="aerodynamic surface" ID="0"> + <name description="name of aerodynamic surface"> + <value>fin</value> + </name> + <position description="reference position in global coordinates"> + <x description="x position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </position> + <parameters description="aerodynamic surface parameters"> + <direction description="unit vector according to global coordinate system for direction applied at position"> + <x description="x direction of unit vector"> + <value>0.0</value> + <unit>1</unit> + <lower_boundary>-1.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </x> + <y description="y direction of unit vector"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>-1.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </y> + <z description="z direction of unit vector"> + <value>0.0</value> + <unit>1</unit> + <lower_boundary>-1.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </z> + </direction> + <symmetric description="symmetric to x-z plane (global) aerodynamic surface"> + <value>true</value> + </symmetric> + <sections description="sections"> + <section description="section" ID="0"> + <chord_origin description="origin of chord (local)"> + <x description="x position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z position"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </chord_origin> + <chord_length description="length of chord"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </chord_length> + <geometric_twist description="geometric twist at leading edge"> + <value>0.0</value> + <unit>rad</unit> + <lower_boundary>-</lower_boundary> + <upper_boundary /> + </geometric_twist> + <profile description="profile (data normalized on chord)"> + <name> + <value>naca0012</value> + </name> + </profile> + </section> + </sections> + <spars description="spars"> + <spar description="front spar" ID="0"> + <position description="chord relative position of control device"> + <inner_position description="relative inner position"> + <spanwise description="relative spanwise position"> + <value>0.</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </inner_position> + <outer_position description="relative outer position"> + <spanwise description="relative spanwise position"> + <value>0.2</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </outer_position> + </position> + </spar> + <spar description="rear spar" ID="1"> + <position description="chord relative position of control device"> + <inner_position description="relative inner position"> + <spanwise description="relative spanwise position"> + <value>0.</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </inner_position> + <outer_position description="relative outer position"> + <spanwise description="relative spanwise position"> + <value>0.2</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </outer_position> + </position> + </spar> + </spars> + <control_devices description="control devices"> + <control_device description="control device" ID="0"> + <type> + <value>aileron</value> + </type> + <deflection description="maximum positive and negative deflection of control device"> + <full_negative_deflection description="full negative deflection"> + <value>-25.0</value> + <unit>deg</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </full_negative_deflection> + <full_positive_deflection description="full positive deflection"> + <value>25.0</value> + <unit>deg</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </full_positive_deflection> + </deflection> + <position description="chord relative position of control device"> + <inner_position description="relative inner position"> + <spanwise description="relative spanwise position"> + <value>0.2</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </inner_position> + <outer_position description="relative outer position"> + <spanwise description="relative spanwise position"> + <value>0.2</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </spanwise> + <chord description="control device chord position"> + <from description="relative chord position"> + <value>0.7</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </from> + <to description="relative chord position"> + <value>1.0</value> + <unit>1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </to> + </chord> + </outer_position> + </position> + </control_device> + </control_devices> + </parameters> + <mass_properties description="mass_properties of aerodynamic surface"> + <mass description="component mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="component inertia refered to center of gravity"> + <j_xx description="inertia component in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia component in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia component in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia component in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia component in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia component in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia component in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia component in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia component in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="component center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </aerodynamic_surface> + </geometry> + </specific> + </empennage> + <landing_gear description="Geometric description of the aircraft undercarriage." tool_level="0"> + <position description="Position of the total undercarriage arrangment with regard to the global reference point."> + <x_position description="Distance in x direction with regard to the global reference point. (total undercarriage arrangment)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>50</upper_boundary> + </x_position> + <y_position description="Distance in y direction with regard to the global reference point. (total undercarriage arrangment)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>0</upper_boundary> + </y_position> + <z_position description="Distance in z direction with regard to the global reference point. (total undercarriage arrangment)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>0</upper_boundary> + </z_position> + </position> + <mass_properties description="Mass properties of the total undercarriage arrangment."> + <mass description="Mass of the total undercarriage arrangment."> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="Inertia of the total undercarriage arrangment with regard to the total center of gravity."> + <j_xx description="Inertia of the total undercarriage arrangment in x."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="Inertia of the total undercarriage arrangment in y."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="Inertia of the total undercarriage arrangment in z."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="Inertia of the total undercarriage arrangment in xy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="Inertia of the total undercarriage arrangment in xz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="Inertia of the total undercarriage arrangment in yx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="Inertia of the total undercarriage arrangment in yz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="Inertia of the total undercarriage arrangment in zx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="Inertia of the total undercarriage arrangment in zy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="Center of gravity of the total undercarriage arrangment."> + <x_position description="Center of gravity in x-direction with regard to the global reference point. (total undercarriage arrangment)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>50</upper_boundary> + </x_position> + <y_position description="Center of gravity in y-direction with regard to the global reference point. (total undercarriage arrangment)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>0</upper_boundary> + </y_position> + <z_position description="Center of gravity in z-direction with regard to the global reference point. (total undercarriage arrangment)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>0</upper_boundary> + </z_position> + </center_of_gravity> + </mass_properties> + <specific> + <aircraft_classification_number description="Aircraft classification number for the total undercarriage arrangment."> + <value>return_string</value> + </aircraft_classification_number> + <aircraft_classification_rating description="Aircraft classification rating for the total undercarriage arrangment."> + <value>return_string</value> + </aircraft_classification_rating> + <geometry> + <number_of_landing_gear_struts description="Number of installed landing gear struts."> + <value>0</value> + <unit>1</unit> + <lower_boundary>3</lower_boundary> + <upper_boundary>6</upper_boundary> + </number_of_landing_gear_struts> + <landing_gear_leg ID="0" description="Geometrical description of one entire landing gear leg."> + <name description="Name of the landing gear leg."> + <value>nose_gear</value> + </name> + <position description="Position of one entire landing gear leg with regard to the global reference point."> + <x_position description="Distance in x direction with regard to the global reference point. (center line of the landing gear leg)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100</upper_boundary> + </x_position> + <y_position description="Distance in y direction with regard to the global reference point. (center line of the landing gear leg)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-15</lower_boundary> + <upper_boundary>15</upper_boundary> + </y_position> + <z_position description="Distance in z direction with regard to the global reference point. (z coordinate refers to the mounting point of the landing gear leg.)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>0</upper_boundary> + </z_position> + </position> + <mass_properties description="Mass properties of one entire landing gear leg."> + <mass description="Mass of one entire landing gear leg."> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </mass> + <inertia description="Inertia of one entire landing gear leg with regard to his center of gravity."> + <j_xx description="Inertia of one entire landing gear leg in x."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="Inertia of one entire landing gear leg in y."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="Inertia of one entire landing gear leg in z."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="Inertia of one entire landing gear leg xy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="Inertia of one entire landing gear leg in xz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="Inertia of one entire landing gear leg in yx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="Inertia of one entire landing gear leg in yz."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="Inertia of one entire landing gear leg in zx."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="Inertia of one entire landing gear leg in zy."> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="Center of gravity of one entire landing gear leg."> + <x_position description="Center of gravity in x-direction with regard to the global reference point. (entire landing gear leg)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>50</upper_boundary> + </x_position> + <y_position description="Center of gravity in y-direction with regard to the global reference point. (entire landing gear leg)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>0</upper_boundary> + </y_position> + <z_position description="Center of gravity in z-direction with regard to the global reference point. (entire landing gear leg)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>0</upper_boundary> + </z_position> + </center_of_gravity> + </mass_properties> + <assambly_components> + <strut_diameter Desc="Diameter of the landing gear strut."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </strut_diameter> + <strut_length Desc="Length of the landing gear strut."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </strut_length> + <wheel_group_position Desc="Position of wheel group of one entire landing gear leg."> + <x_position description="Distance in x direction with regard to the global reference point (center line of the landing gear leg)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100</upper_boundary> + </x_position> + <y_position description="Distance in y direction with regard to the global reference point (center line of the landing gear leg)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-15</lower_boundary> + <upper_boundary>15</upper_boundary> + </y_position> + <z_position description="Distance in z direction with regard to the global reference point (z coordinate refers to the end point of the landing gear leg.)"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-20</lower_boundary> + <upper_boundary>0</upper_boundary> + </z_position> + </wheel_group_position> + <number_of_axis_of_wheel_group Desc="Number of axis of the wheel group behind each other."> + <value>0</value> + <unit>1</unit> + <lower_boundary>1</lower_boundary> + <upper_boundary>10</upper_boundary> + </number_of_axis_of_wheel_group> + <wheel_base Desc="Distance of the foremost to the rearmost axis of the wheel group."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>15</upper_boundary> + </wheel_base> + <wheel_track Desc="Distance between the outermost wheels of an axis."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>5</upper_boundary> + </wheel_track> + <number_of_tires_per_axis Desc="Number of tires per axis of a tire group."> + <value>0</value> + <unit>1</unit> + <lower_boundary>1</lower_boundary> + <upper_boundary>4</upper_boundary> + </number_of_tires_per_axis> + <tire_description Desc="Description of one tire of the wheel group"> + <tire_diameter Desc="Diameter of the wheel group tires."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>2</upper_boundary> + </tire_diameter> + <tire_width Desc="Width of the wheel group tires."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </tire_width> + <rim_diameter Desc="Rim diameter of the wheel group tires."> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </rim_diameter> + <tire_pressure Desc="Tire pressure of the wheel group tires."> + <value>0</value> + <unit>Pa</unit> + <lower_boundary>1000000</lower_boundary> + <upper_boundary>2000000</upper_boundary> + </tire_pressure> + <maximum_tire_speed Desc="Maximum permissible tire speed of the wheel group tires."> + <value>0</value> + <unit>m/s</unit> + <lower_boundary>50</lower_boundary> + <upper_boundary>125</upper_boundary> + </maximum_tire_speed> + </tire_description> + </assambly_components> + </landing_gear_leg> + </geometry> + </specific> + </landing_gear> + <propulsion description="Propulsion components" ID="0" tool_level="0"> + <position description="Reference positions of the propulsion assembly"> + <nacelle description="Position of nacelle element in aircraft coordinate system (center of inlet)"> + <x description="x direction of nacelle"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>100</upper_boundary> + </x> + <y description="y direction of nacelle"> + <value>0</value> + <unit>m</unit> + <lower_boundary>-50</lower_boundary> + <upper_boundary>50</upper_boundary> + </y> + <z description="z direction of nacelle"> + <unit>m</unit> + <value>0</value> + <lower_boundary>-20</lower_boundary> + <upper_boundary>40</upper_boundary> + </z> + </nacelle> + </position> + <mass_properties description="Mass properties of propulsion assembly"> + <nacelle> + <mass description="nacelle mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </mass> + <inertia description="nacelle inertia refered to its center of gravity"> + <j_xx description="inertia component in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia component in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia component in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia component in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia component in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia component in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia component in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia component in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia component in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="nacelle center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </nacelle> + <pylon> + <mass description="component mass pylon"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </mass> + <inertia description="component inertia refered to center of gravity"> + <j_xx description="inertia component in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia component in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia component in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia component in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia component in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia component in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia component in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia component in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia component in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="component center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </pylon> + <engine> + <mass description="component mass engine"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10000</upper_boundary> + </mass> + <inertia description="component inertia refered to center of gravity"> + <j_xx description="inertia component in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia component in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia component in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia component in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia component in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia component in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia component in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia component in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia component in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="component center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </engine> + </mass_properties> + <specific description="Specific nacelle and engine properties"> + <nacelle description="Parametric description of nacelle geometry"> + <incidence_angle description="Angle of incidence in reference to the aircrafts coordinate system"> + <unit>degree</unit> + <lower_boundary>-10</lower_boundary> + <upper_boundary>10</upper_boundary> + </incidence_angle> + <number_points description="No of points describing the section"> + <value>0</value> + </number_points> + <number_segments description="Number of segments describing the nacelle"> + <value>0</value> + </number_segments> + <inlet_segment description="Geometric desciption of the nacelle inlet segment"> + <segment_point_data> + <value>0</value> + </segment_point_data> + <width_inlet description="Width of the nacelle segment"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </width_inlet> + <height_inlet description="Height of the nacelle segment"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </height_inlet> + <length_inlet description="Length of the nacelle segment"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </length_inlet> + </inlet_segment> + <nacelle_segment ID="0"> + <inner_segment_point_data> + <value>0</value> + </inner_segment_point_data> + <outer_segment_point_data> + <value>0</value> + </outer_segment_point_data> + <width_inner_segment description="Inner widht of nacelle segment"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </width_inner_segment> + <width_outer_segment description="Outer widht of nacelle segment"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </width_outer_segment> + <height_inner_segment description="Inner height of nacelle segment"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </height_inner_segment> + <height_outer_segment description="Outer height of nacelle segment"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </height_outer_segment> + <length_segment description="length of the nacelle segment"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </length_segment> + </nacelle_segment> + <exit_segment description="Geometric desciption of the nacelle exit segment"> + <segment_point_data> + <value>0</value> + </segment_point_data> + <width_inlet description="Width of the nacelle exit segment"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </width_inlet> + <height_inlet description="height of the nacelle exit segment"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>10</upper_boundary> + </height_inlet> + </exit_segment> + </nacelle> + <engine description="Parametric description of engine settings, geometry and performance"> + <settings description="Settings of engine model and improvment factor (from config)"> + <engine_model description="Name of selected engine model"> + <value>0.0</value> + </engine_model> + <fuel_flow_scale_factor description="Selected fuel flow scaling/improvement factor"> + <value>0.0</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </fuel_flow_scale_factor> + <maximum_shaft_power_extraction description="Maximum shaft power extraction of the engine for aircraft onboard systems"> + <value>0.0</value> + <unit>W</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>3E+5</upper_boundary> + </maximum_shaft_power_extraction> + </settings> + <turboprop_propeller_diameter description="Diameter of the propeller of the turboprop"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>1.75</lower_boundary> + <lower_boundary>5.3</lower_boundary> + </turboprop_propeller_diameter> + <performance description="Performance specific parameter"> + <scale_factor description="Performance scaling factor"> + <value>0.0</value> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>1.0</upper_boundary> + </scale_factor> + <maximum_take_off description="Performance at maximum take off condition at ISA+deltaISA (Requirements/DesignMission) with no offtakes at Mach=0.0 and altitude=0.0"> + <thrust> + <value>0.0</value> + <unit>N</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>999.0</upper_boundary> + </thrust> + </maximum_take_off> + <maximum_continuous description="Performance at maximum continuous conditions at ISA+deltaISA (Requirements/DesignMission) with no offtakes at predefined Mach and altitude"> + <maximum_thrust description="Performance at maximum thrust at maximum continuous conditions"> + <thrust> + <value>0.0</value> + <unit>N</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>999.0</upper_boundary> + </thrust> + <thrust_specific_fuel_consumption> + <value>0.0</value> + <unit>kgs^-1N^-1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>999.0</upper_boundary> + </thrust_specific_fuel_consumption> + </maximum_thrust> + <bucket_thrust description="performance at bucket thrust at maximum continuous conditions"> + <thrust> + <value>0.0</value> + <unit>N</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>999.0</upper_boundary> + </thrust> + <thrust_specific_fuel_consumption> + <value>0.0</value> + <unit>kgs^-1N^-1</unit> + <lower_boundary>0.0</lower_boundary> + <upper_boundary>999.0</upper_boundary> + </thrust_specific_fuel_consumption> + </bucket_thrust> + </maximum_continuous> + </performance> + </engine> + </specific> + </propulsion> + <systems tool_level="0"> + <position /> + <mass_properties description="mass_properties of component systems"> + <mass description="component mass"> + <systems_group description="total systems group"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </systems_group> + <auxiliary_power_unit description="Airbus Chapter 30, ATA49"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </auxiliary_power_unit> + <hydraulic_generation description="Airbus Chapter 31, ATA 29"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </hydraulic_generation> + <hydraulic_distribution description="Airbus Chapter 32, ATA 29"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </hydraulic_distribution> + <air_conditioning description="Airbus Chapter 33, ATA21"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </air_conditioning> + <de_icing description="Airbus Chapter 34, ATA30"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </de_icing> + <fire_protection description="Airbus Chapter 35, ATA26"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </fire_protection> + <flight_controls description="Airbus Chapter 36, ATA27"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + <roll description="aileron actuators, their installations and operation controls, Airbus Ch. 36.0"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </roll> + <yaw description="rudder actuators, their installations and operation controls, Airbus Ch. 36.1"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </yaw> + <pitch description="elevator actuators, their installations and operation controls, Airbus Ch. 36.2"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </pitch> + <movable_horizontal_tail description="movable horizontal tail actuators, their installations and operation controls, Airbus Ch. 36.3"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </movable_horizontal_tail> + <flaps description="flap actuators, their installations and operation controls, Airbus Ch. 36.4"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </flaps> + <spoilers_airbrakes_liftdumpers description="spoiler actuators, their installations and operation controls, Airbus Ch. 36.5"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </spoilers_airbrakes_liftdumpers> + <slats description="Mass of the slat actuators, their installations and operation controls, Airbus Ch. 36.6"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </slats> + <common_installation description="flight control common installation, Airbus Ch. 36.7"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </common_installation> + </flight_controls> + <instruments description="Airbus Chapter 37, ATA31"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </instruments> + <automatic_flight_system description="Airbus Chapter 38, ATA 22"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </automatic_flight_system> + <navigation description="Airbus Chapter 39, ATA34"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </navigation> + <communication description="Airbus Chapter 40, ATA23"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </communication> + <electrical_generation description="Airbus Chapter 41, ATA24, generation"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </electrical_generation> + <electrical_distribution description="Airbus Chapter 42, ATA24, distribution"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </electrical_distribution> + </mass> + <inertia /> + <center_of_gravity description="component center of gravity with respect to global coordinate system"> + <systems_group description="total systems group"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </systems_group> + <auxiliary_power_unit description="Airbus Chapter 30, ATA49"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </auxiliary_power_unit> + <hydraulic_generation description="Airbus Chapter 31, ATA 29"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </hydraulic_generation> + <hydraulic_distribution description="Airbus Chapter 32, ATA 29"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </hydraulic_distribution> + <air_conditioning description="Airbus Chapter 33, ATA21"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </air_conditioning> + <de_icing description="Airbus Chapter 34, ATA30"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </de_icing> + <fire_protection description="Airbus Chapter 35, ATA26"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </fire_protection> + <flight_controls description="Airbus Chapter 36, ATA27"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + <roll description="aileron actuators, their installations and operation controls, Airbus Ch. 36.0"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </roll> + <yaw description="rudder actuators, their installations and operation controls, Airbus Ch. 36.1"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </yaw> + <pitch description="elevator actuators, their installations and operation controls, Airbus Ch. 36.2"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </pitch> + <movable_horizontal_tail description="movable horizontal tail actuators, their installations and operation controls, Airbus Ch. 36.3"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </movable_horizontal_tail> + <flaps description="flap actuators, their installations and operation controls, Airbus Ch. 36.4"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </flaps> + <spoilers_airbrakes_liftdumpers description="spoiler actuators, their installations and operation controls, Airbus Ch. 36.5"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </spoilers_airbrakes_liftdumpers> + <slats description="Mass of the slat actuators, their installations and operation controls, Airbus Ch. 36.6"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </slats> + <common_installation description="flight control common installation, Airbus Ch. 36.7"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </common_installation> + </flight_controls> + <instruments description="Airbus Chapter 37, ATA31"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </instruments> + <automatic_flight_system description="Airbus Chapter 38, ATA 22"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </automatic_flight_system> + <navigation description="Airbus Chapter 39, ATA34"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </navigation> + <communication description="Airbus Chapter 40, ATA23"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </communication> + <electrical_generation description="Airbus Chapter 41, ATA24, generation"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </electrical_generation> + <electrical_distribution description="Airbus Chapter 42, ATA24, distribution"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <lower_boundary>inf</lower_boundary> + </z> + </electrical_distribution> + </center_of_gravity> + </mass_properties> + <specific> + <design_power description="design power of ATA29, ATA49, ATA70"> + <ATA29_hydraulic_system> + <design_power description="maximum design power"> + <electric description="maximum demand for electrical power"> + <value>0</value> + <unit>W</unit> + </electric> + <hydraulic description="maximum demand for hydraulic power"> + <value>0</value> + <unit>W</unit> + </hydraulic> + <bleed_air description="maximum demand for bleed air"> + <value>0</value> + <unit>kg/s</unit> + </bleed_air> + </design_power> + <pressure description="nominal pressure of hydraulic system"> + <value>0</value> + <unit>Pa</unit> + </pressure> + </ATA29_hydraulic_system> + <ATA49_auxiliary_power_unit> + <design_power description="maximum design power"> + <electric description="maximum demand for electrical power"> + <value>0</value> + <unit>W</unit> + </electric> + <hydraulic description="maximum demand for hydraulic power"> + <value>0</value> + <unit>W</unit> + </hydraulic> + <bleed_air description="maximum demand for bleed air"> + <value>0</value> + <unit>kg/s</unit> + </bleed_air> + </design_power> + </ATA49_auxiliary_power_unit> + <ATA70_propulsion_system> + <design_power description="maximum design power"> + <electric description="maximum demand for electrical power"> + <value>0</value> + <unit>W</unit> + </electric> + <hydraulic description="maximum demand for hydraulic power"> + <value>0</value> + <unit>W</unit> + </hydraulic> + <bleed_air description="maximum demand for bleed air"> + <value>0</value> + <unit>kg/s</unit> + </bleed_air> + </design_power> + </ATA70_propulsion_system> + </design_power> + <offtakes description="total shaft power and bleed air offtakes from sink systems"> + <design_mission> + <average_cruise_offtakes description="average offtakes during cruise and changeFL for the design mission"> + <shaft_power_total description="total shaft offtakes from all sink systems"> + <value>0</value> + <unit>W</unit> + </shaft_power_total> + <bleed_air_total description="total bleed air offtake from all sink systems"> + <value>0</value> + <unit>kg/s</unit> + </bleed_air_total> + </average_cruise_offtakes> + </design_mission> + <study_mission> + <average_cruise_offtakes description="average offtakes during cruise and changeFL for the study mission"> + <shaft_power_total description="total shaft offtakes from all sink systems"> + <value>0</value> + <unit>W</unit> + </shaft_power_total> + <bleed_air_total description="total bleed air offtake from all sink systems"> + <value>0</value> + <unit>kg/s</unit> + </bleed_air_total> + </average_cruise_offtakes> + </study_mission> + </offtakes> + </specific> + </systems> + </component_design> + <analysis> + <masses_cg_inertia description="masses, cgs, inertias." tool_level="0"> + <manufacturer_mass_empty description="MME"> + <mass_properties description="manufacturer mass empty properties"> + <mass description="mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </manufacturer_mass_empty> + <operating_mass_empty description="OME"> + <mass_properties description="operating mass empty properties"> + <mass description="mass"> + <value>42307.66255</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </operating_mass_empty> + <maximum_zero_fuel_mass description="MZFM"> + <mass_properties description="maximum zero fuel mass properties"> + <mass description="mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </maximum_zero_fuel_mass> + <maximum_landing_mass description="MLM"> + <mass_properties description="maximum landing mass properties"> + <mass description="mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </maximum_landing_mass> + <maximum_takeoff_mass description="MTOM"> + <mass_properties description="maximum landing mass properties"> + <mass description="mass"> + <value>79144.73202</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </maximum_takeoff_mass> + <maximum_payload_mass description="maximum payload mass"> + <mass_properties description="maximum payload mass properties"> + <mass description="mass"> + <value>20000</value> + <unit>kg</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </maximum_payload_mass> + <maximum_fuel_mass description="maximum fuel mass"> + <mass_properties description="maximum fuel mass properties"> + <mass description="mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </maximum_fuel_mass> + <most_forward_mass description="mass for most forward cg position"> + <mass_properties description="maximum fuel mass properties"> + <mass description="mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </most_forward_mass> + <most_aft_mass description="mass for most aft cg position"> + <mass_properties description="most aft mass properties"> + <mass description="mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </most_aft_mass> + <design_mass description="design mass "> + <mass_properties description="design mass properties"> + <mass description="mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </design_mass> + <most_afterward_mass description="mass for most afterward cg position"> + <mass_properties description="most afterward mass properties"> + <mass description="mass"> + <value>0.0</value> + <unit>kg</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mass> + <inertia description="inertia refered to center of gravity"> + <j_xx description="inertia in x"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xx> + <j_yy description="inertia in y"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yy> + <j_zz description="inertia in z"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zz> + <j_xy description="inertia in xy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xy> + <j_xz description="inertia in xz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_xz> + <j_yx description="inertia in yx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yx> + <j_yz description="inertia in yz"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_yz> + <j_zx description="inertia in zx"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zx> + <j_zy description="inertia in zy"> + <value>0.0</value> + <unit>kgm^2</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </j_zy> + </inertia> + <center_of_gravity description="center of gravity with respect to global coordinate system"> + <x description="x component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </x> + <y description="y component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </y> + <z description="z component"> + <value>0.0</value> + <unit>m</unit> + <lower_boundary>-inf</lower_boundary> + <upper_boundary>inf</upper_boundary> + </z> + </center_of_gravity> + </mass_properties> + </most_afterward_mass> + </masses_cg_inertia> + <aerodynamics description="Aerodynamcal analysis." level="0"> + <reference_values> + <b description="Total wing span" tool_level="0"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>80</upper_boundary> + </b> + <MAC description="Mean aerodynamic chord" tool_level="0"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>50</upper_boundary> + </MAC> + <S_ref description="Wing reference area" tool_level="0"> + <value>0</value> + <unit>m^2</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1000</upper_boundary> + </S_ref> + </reference_values> + <lift_coefficients> + <C_LmaxLanding description="Maximum lift coefficient in landing configuration" tool_level="0"> + <value>0</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </C_LmaxLanding> + <C_LmaxT-O description="Maximum lift coefficient in take off configuration" tool_level="0"> + <value>0</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </C_LmaxT-O> + <C_LoptimumCruise description="Lift coefficient at L/D_optimum at M_initial_cruise" tool_level="0"> + <value>0</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </C_LoptimumCruise> + <C_LgroundRoll description="Lift coefficient on ground for ground roll calculation" tool_level="0"> + <value>0</value> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </C_LgroundRoll> + </lift_coefficients> + <polar> + <polar_file description="Name of polar file" tool_level="0"> + <value>0</value> + </polar_file> + <configurations description="Number of configurations in the polar file" tool_level="0"> + <value>0</value> + </configurations> + <configuration description="Configuration in polar file marked with ID - name can vary" ID="1" tool_level="0"> + <type>Cruise</type> + <value>0</value> + </configuration> + <configuration description="Configuration in polar file marked with ID - name can vary" ID="2" tool_level="0"> + <type>Departure</type> + <value>0</value> + </configuration> + <configuration description="Configuration in polar file marked with ID - name can vary" ID="3" tool_level="0"> + <type>Departure</type> + <value>0</value> + </configuration> + <configuration description="Configuration in polar file marked with ID - name can vary" ID="4" tool_level="0"> + <type>Departure</type> + <value>0</value> + </configuration> + <configuration description="Configuration in polar file marked with ID - name can vary" ID="5" tool_level="0"> + <type>Approach</type> + <value>0</value> + </configuration> + <configuration description="Configuration in polar file marked with ID - name can vary" ID="6" tool_level="0"> + <type>Approach</type> + <value>0</value> + </configuration> + <configuration description="Configuration in polar file marked with ID - name can vary" ID="7" tool_level="0"> + <type>Approach</type> + <value>0</value> + </configuration> + </polar> + <max_spoiler_factor description="Factor for maximum drag increase trough spoilers" tool_level="0"> + <value>0</value> + <lower_boundary>1</lower_boundary> + <upper_boundary>inf</upper_boundary> + </max_spoiler_factor> + </aerodynamics> + <mission description="Mission data." tool_level="0"> + <design_mission description="Data of design mission"> + <range description="Range of design mission"> + <value>2500.496279</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>3000000</upper_boundary> + </range> + <block_time description="Block time of design mission: Time from break release to end of taxiing after landing"> + <value>0</value> + <unit>s</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>126000</upper_boundary> + </block_time> + <flight_time description="Flight time of design mission"> + <value>0</value> + <unit>s</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>12600</upper_boundary> + </flight_time> + <taxi_fuel_take_off description="Taxi fuel before takeoff in design mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1000</upper_boundary> + </taxi_fuel_take_off> + <taxi_fuel_landing description="Taxi fuel after landing in design mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1000</upper_boundary> + </taxi_fuel_landing> + <mission_fuel description="Total fuel loaded for design mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mission_fuel> + <trip_fuel description="Fuel burned from takeoff to landing"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </trip_fuel> + <payload description="Payload of design mission"> + <value>17000</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </payload> + <number_of_pax description="Number of passengers of design mission"> + <value>0</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </number_of_pax> + <cargo_mass description="Cargo mass of design mission"> + <value>3392</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </cargo_mass> + <take_off_engine_derate Desc="Engine power demand"> + <value>0</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </take_off_engine_derate> + <cruise_steps description="Cruise step information"> + <numer_of_cruise_steps description="Number of cruise steps in design mission"> + <value>0</value> + <unit>-</unit> + </numer_of_cruise_steps> + <cruise_step description="Data of cruise step" ID="0"> + <relative_end_of_cruise_step description="End of cruise step relative to mission length"> + <value>0</value> + <unit>-</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </relative_end_of_cruise_step> + <altitude description="Altitude of cruise step"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>15000</upper_boundary> + </altitude> + </cruise_step> + </cruise_steps> + <take_off_mass description="Take off mass"> + <value>79144.73202</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </take_off_mass> + </design_mission> + <study_mission description="Data of study mission"> + <range description="Range of study mission"> + <value>500.6435584</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>3000000</upper_boundary> + </range> + <block_time description="Block time of study mission: Time from break release to end of taxiing after landing"> + <value>0</value> + <unit>s</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>126000</upper_boundary> + </block_time> + <flight_time description="Flight time of study mission"> + <value>0</value> + <unit>s</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>12600</upper_boundary> + </flight_time> + <taxi_fuel_takeoff description="Taxi fuel before takeoff in study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>500</upper_boundary> + </taxi_fuel_takeoff> + <taxi_fuel_landing description="Taxi fuel after landing in study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>500</upper_boundary> + </taxi_fuel_landing> + <mission_fuel description="Total fuel loaded for study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </mission_fuel> + <trip_fuel description="Fuel burned from takeoff to landing"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </trip_fuel> + <payload description="Payload of study mission"> + <value>13608</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </payload> + <cruise_steps description="Cruise step information"> + <numer_of_cruise_steps description="Number of cruise steps in study mission"> + <value>0</value> + <unit>-</unit> + </numer_of_cruise_steps> + <cruise_step description="Data of cruise step" ID="0"> + <relative_end_of_cruise_step description="End of cruise step relative to mission length"> + <value>0</value> + <unit>-</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </relative_end_of_cruise_step> + <altitude description="Altitude of cruise step"> + <value>0</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>15000</upper_boundary> + </altitude> + </cruise_step> + </cruise_steps> + <payload description="Payload of study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </payload> + <number_of_pax description="Number of passengers of study mission"> + <value>0</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </number_of_pax> + <cargo_mass description="Cargo mass of study mission"> + <value>0</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </cargo_mass> + <take_off_engine_derate Desc="Engine power demand"> + <value>0</value> + <unit>1</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1</upper_boundary> + </take_off_engine_derate> + </study_mission> + </mission> + <requirement_compliance> + <top_level_aircraft_requirements tool_level="0"> + <design_take_off_field_length description="Switch indicating if take off field length can be maintained."> + <value>0</value> + <unit>-</unit> + <checked description="Indicates if the value has been checked against the requirement."> + <value>0</value> + <unit>-</unit> + </checked> + </design_take_off_field_length> + <design_landing_field_length description="Switch indicating if landing fiel length can be maintained."> + <value>0</value> + <unit>-</unit> + <checked description="Indicates if the value has been checked against the requirement."> + <value>0</value> + <unit>-</unit> + </checked> + </design_landing_field_length> + <design_approach_speed description="Switch indicating if approach speed can be maintained."> + <value>0</value> + <unit>-</unit> + <checked description="Indicates if the value has been checked against the requirement."> + <value>0</value> + <unit>-</unit> + </checked> + </design_approach_speed> + </top_level_aircraft_requirements> + <certification tool_level="0"> + <climb_gradient_of_second_take_off_segment description="Switch if landing field length can be maintained"> + <value>0</value> + <unit>-</unit> + <checked description="Indicates if the value has been checked against the requirement."> + <value>0</value> + <unit>-</unit> + </checked> + </climb_gradient_of_second_take_off_segment> + <climb_gradient_of_final_take_off_segment description="Switch if landing field length can be maintained"> + <value>0</value> + <unit>-</unit> + <checked description="Indicates if the value has been checked against the requirement."> + <value>0</value> + <unit>-</unit> + </checked> + </climb_gradient_of_final_take_off_segment> + <climb_gradient_approach_one_engine_inoperative description="Switch if landing field length can be maintained"> + <value>0</value> + <unit>-</unit> + <checked description="Indicates if the value has been checked against the requirement."> + <value>0</value> + <unit>-</unit> + </checked> + </climb_gradient_approach_one_engine_inoperative> + <climb_gradient_all_engines_operative description="Switch if landing field length can be maintained"> + <value>0</value> + <unit>-</unit> + <checked description="Indicates if the value has been checked against the requirement."> + <value>0</value> + <unit>-</unit> + </checked> + </climb_gradient_all_engines_operative> + </certification> + </requirement_compliance> + </analysis> + <assessment> + <performance> + <speed tool_level="0"> + <maximum_operating_mach_number description="Maximum operating mach number"> + <value>0</value> + <unit>-</unit> + </maximum_operating_mach_number> + <maximum_operating_velocity description="Maximum oderating speed (maximum dynamic pressure)"> + <value>0</value> + <unit>m/s</unit> + </maximum_operating_velocity> + <dive_mach_number description="Diving mach number"> + <value>0</value> + <unit>-</unit> + </dive_mach_number> + <dive_velocity description="Diving speed"> + <value>0</value> + <unit>m/s</unit> + </dive_velocity> + <one_g_stall_speed_velocity description="One g stall speed in clean configuration"> + <value>0</value> + <unit>m/s</unit> + </one_g_stall_speed_velocity> + </speed> + <take_off tool_level="0"> + <take_off_distance_normal_safety description="Takeoff distance at Sea Level for MTOM and (ISA + deltaISA)-Conditions(calculated by missionAnalysis using missionDesign.xml settings) with all engines operating (AEO)"> + <value>0</value> + <unit>m</unit> + </take_off_distance_normal_safety> + <lift_off_speed_velocity Alt="v_lof" description="Lift-off speed in take-off configuration"> + <value>0</value> + <unit>m/s</unit> + </lift_off_speed_velocity> + <decision_speed Alt="v_1" description="Decision speed"> + <value>0</value> + <unit>m/s</unit> + </decision_speed> + <take_off_safety_speed Alt="v_2" description="Speed at screen height (35 ft)"> + <value>0</value> + <unit>m/s</unit> + </take_off_safety_speed> + <final_take_off_speed Alt="v_FTO" description="Speed at final takeoff segment (1500 ft)"> + <value>0</value> + <unit>m/s</unit> + </final_take_off_speed> + <time_to_screen_height description="Time to screen height"> + <value>0</value> + <unit>s</unit> + </time_to_screen_height> + <climb_or_descend_segment_climb_gradient description="Climb gradient in second takeoff segment"> + <value>0</value> + <unit>%</unit> + </climb_or_descend_segment_climb_gradient> + <final_segment_climb_gradient description="Climb gradient in final takeoff segment"> + <value>0</value> + <unit>%</unit> + </final_segment_climb_gradient> + <balanced_field_length description="Balanced field length"> + <value>0</value> + <unit>m</unit> + </balanced_field_length> + </take_off> + <landing tool_level="0"> + <needed_runway_length description="Needed runway length with all engines operating and maximum landing mass"> + <value>0</value> + <unit>m</unit> + </needed_runway_length> + <approach_speed description="Final approach speed in landing configuration and maximum landing mass"> + <value>0</value> + <unit>m/s</unit> + </approach_speed> + </landing> + <range tool_level="0"> + <range_max_payload_at_maximum_take_off_mass description="Range at maximum payload and fuel mass till maximum take off mass limit"> + <value>3246.489365</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </range_max_payload_at_maximum_take_off_mass> + <range_max_fuel_at_maximum_take_off_mass description="Range at full tanks and payload till maximum take off mass limit"> + <value>10458.54652</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </range_max_fuel_at_maximum_take_off_mass> + <payload_maximum_fuel_at_maximum_take_off_mass description="Payload at full tanks and payload till maximum take off mass limit"> + <value>4361.39852</value> + <unit>kg</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </payload_maximum_fuel_at_maximum_take_off_mass> + <range_maximum_fuel_empty description="Range for no payload and full tanks"> + <value>10708.77812</value> + <unit>m</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </range_maximum_fuel_empty> + </range> + </performance> + <average_temperature_response description="Integrated temperature change per year caused by aircraft operation divided by operating lifetime" tool_level="2"> + <value>0</value> + <unit>K</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>1e-5</upper_boundary> + </average_temperature_response> + <operating_cost_estimation_tu_berlin description="Operating costs (sum of direct and indirect operating costs)" tool_level="2"> + <direct_operating_costs description="Direct operating costs (sum of route independent and route dependent costs)"> + <direct_operating_costs_annual description="Direct operating costs (DOC) per year"> + <value>30</value> + <unit>EUR/y</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </direct_operating_costs_annual> + </direct_operating_costs> + <indirect_operating_costs description="Indirect operating costs (IOC)"> + <indirect_operating_costs_annual description="Indirect operating costs (IOC) per year"> + <value>40</value> + <unit>EUR/y</unit> + <lower_boundary>0</lower_boundary> + <upper_boundary>inf</upper_boundary> + </indirect_operating_costs_annual> + </indirect_operating_costs> + </operating_cost_estimation_tu_berlin> + </assessment> +</aircraft_exchange_file> \ No newline at end of file diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/reporting/plots/[module name]_[name of plot].txt b/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/reporting/plots/[module name]_[name of plot].txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml b/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml new file mode 100644 index 0000000000000000000000000000000000000000..7266cf694afa591575e928cb4b635e6740ddbdbd --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/projects/CSR/CSR-02/reporting/report_xml/cost_estimation_results.xml @@ -0,0 +1,46 @@ +<module_results_file Name="Cost estimation specific outputs"> + <general_information description="General information on module execution"> + <workflow_version description="Version number of the current workflow"> + <value>2.1.0</value> + </workflow_version> + <execution_date description="Execution date and time of the code"> + <value>2024-11-18_10-48-55</value> + </execution_date> + <project_name description="Name of the current aircraft project"> + <value>CSR-02</value> + </project_name> + <method_name description="Name of current module calculation method"> + <value>operating_cost_estimation_tu_berlin</value> + </method_name> + <routing_layer description="Routing layer information"> + <layer_1 description="Routing layer_1"> + <value>tube_and_wing</value> + </layer_1> + <layer_2 description="Routing layer_2"> + <value>empirical</value> + </layer_2> + <layer_3 description="Routing layer_3"> + <value>operating_cost_estimation_tu_berlin</value> + </layer_3> + <user_layer description="Routing user_layer"> + <value>kerosene</value> + </user_layer> + </routing_layer> + </general_information> + <calculation_results description="Results of calculation method"> + <operating_cost_estimation_tu_berlin description="Empirical method to estimate the direct operating costs (DOC) and indirect operating costs (IOC) of an aircraft."> + <design_mission description="Cost estimation results of the design mission"> + <direct_operating_costs description="Direct operating costs"> + <direct_operating_costs_per_year description="Direct operating costs per year at design point (sum of route dependent and route independent costs)"> + <value>30</value> + <unit>EUR</unit> + </direct_operating_costs_per_year> + </direct_operating_costs> + <indirect_operating_costs description="Indirect operating costs"> + <value>40</value> + <unit>EUR</unit> + </indirect_operating_costs> + </design_mission> + </operating_cost_estimation_tu_berlin> + </calculation_results> +</module_results_file> \ No newline at end of file diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/CMakeLists.txt b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..c590f285d26c1401d18573ee20ba6cd8c7484f29 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/CMakeLists.txt @@ -0,0 +1,4 @@ +# Add the package to the package list for exporting the target +# and propagate the resulting list back to the parent scope +list( APPEND PYTHON_TARGETS ${CMAKE_CURRENT_LIST_DIR} ) +set( PYTHON_TARGETS ${PYTHON_TARGETS} PARENT_SCOPE ) diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/LICENSE b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..c2e9f6c95bb8b07119095b6793e4fc81984c0647 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/LICENSE @@ -0,0 +1,674 @@ + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + UNICADO - Modular Preliminary Aircraft Design Tool + Copyright (C) 2024 + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <https://www.gnu.org/licenses/>. + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + <program> Copyright (C) <year> <name of author> + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +<https://www.gnu.org/licenses/>. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +<https://www.gnu.org/licenses/why-not-lgpl.html>. diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/README.md b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/README.md new file mode 100644 index 0000000000000000000000000000000000000000..3eb3604f05fd0d1711bce7b3695de3df835b534c --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/README.md @@ -0,0 +1,31 @@ +# UNICADO Python Framework + +Brief description of what the project does and its purpose. + +## Installation (standalone) +Please follow the instructions on the UNICADO website: +https://unicado.ilr.rwth-aachen.de/w/software_maintenance/how_to_python_in_unicado/ + +## Usage +Explain how to use the project. Provide examples if necessary. + +## Configuration +Explain any configuration options or settings that can be customized. + +## Contributing +If you'd like to contribute to this project, please follow these guidelines: + +Fork the repository. +Create a new branch (git checkout -b feature_branch). +Make your changes and commit them (git commit -am 'Add new feature'). +Push to the branch (git push origin feature_branch). +Create a new Pull Request. + +## License +This project is licensed under the GNU General Public License, Version 3 - see the LICENSE.md file for details. + +## Acknowledgements +List any acknowledgements or credits for libraries, tutorials, etc. that were used in developing this project. + +## Contact +For questions or feedback, please contact A. Gobbin (a.gobbin@tu-berlin.de) or S. Roscher (s.roscher@tu-berlin.de). diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/pyproject.toml b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..ebb3fbb21978587f60e92ec6ada35fb193757c75 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/pyproject.toml @@ -0,0 +1,20 @@ +[build-system] +# Please do not change any information given here. +requires = ["setuptools", "setuptools-scm"] +build-backend = "setuptools.build_meta" + +[project] +name = "pymodulepackage" # insert name of the package (all lowercase, without underscores or special characters) +version = "2.0.1" # insert version of package +description = "This package contains standardized functions for UNICADO module execution." # Insert short package description +readme = "README.md" +requires-python = ">=3.10" +license = {file = "LICENSE"} +authors = [ # Insert name of author(s) + {name = "A. Gobbin", email = "a.gobbin@tu-berlin.de"}, + {name = "S. Roscher", email = "s.roscher@tu-berlin.de"} +] + +[project.urls] +homepage = "https://unicado.ilr.rwth-aachen.de/" +repository = "https://git.rwth-aachen.de/unicado" diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py new file mode 100644 index 0000000000000000000000000000000000000000..9a4f587af3ab7a2aa1357331dd59a91b45322d2c --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapostprocessingmodule.py @@ -0,0 +1,930 @@ +"""Module providing general UNICADO data postprocessing functions for Python code.""" +# Import standard modules. +import os +import re +import sys +import collections +import xml.etree.ElementTree as ET +from datetime import datetime + + +def create_element_tree_from_paths(input_dict): + """ Create element tree from paths. + + This function creates an element tree from the xml-paths inside the given input dictionary. + + :param root input_dict: Dict containing module specific output datas. + :return: root + """ + ''' initialize local parameter ''' + paths = [] + values = [] + + # Generate lists of paths and values + for _, value in input_dict.items(): + paths.append(value[0]) + values.append(value[1]) + + # Create the root element. + root_name = paths[0].split('/')[1] + root = ET.Element(root_name) + + # Build the XML tree. + for index, path in enumerate(paths): + # Split the path into parts. + parts = re.split(r'\/(?![^\[]*\])', path.lstrip('./')) + current_element = root + + for part in parts: + # Check if part has an ID attribute + id_match = re.search(r'(.+?)\[@ID="(\d+)"\]', part) + if id_match: + tag, id_value = id_match.groups() + # Check if an element with the same tag and ID already exists. + existing_element = current_element.find(f"./{tag}[@ID='{id_value}']") + if existing_element is not None: + current_element = existing_element + else: + new_element = ET.SubElement(current_element, tag, ID=id_value) + current_element = new_element + else: + # Check if an element with the same tag already exists. + existing_element = current_element.find(part) + if existing_element is not None: + current_element = existing_element + else: + new_element = ET.SubElement(current_element, part) + current_element = new_element + + # Add 'value' sub-node with None as text content to the end node. + value_node = ET.SubElement(current_element, 'value') + value_node.text = str(values[index]) + + return root + + +def insert_missing_elements(main_tree, root_of_tree_to_insert): + """ Insert missing elements. + + This function searches and inserts missing module-dependent node elements in the aircraft exchange tree. + + :param tree main_tree: The element tree into which all data from the second tree is to be inserted. + :param root root_of_tree_to_insert: The root node contains all the data to be inserted into the main tree. + :return: None + """ + root = main_tree.getroot() + + def insert_elements(first_parent, second_parent): + for second_child in second_parent: + # Find or create the corresponding child in the first tree + first_child = first_parent.find(second_child.tag) + if first_child is None: + # If the element doesn't exist in the first tree, append it + first_child = ET.SubElement(first_parent, second_child.tag, attrib=second_child.attrib) + first_child.text = second_child.text + else: + # Update the attributes and text of the existing element + first_child.attrib.update(second_child.attrib) + if first_child.text is None: + first_child.text = second_child.text + elif second_child.text is not None: + first_child.text += second_child.text + # Recursively insert missing elements for child elements + insert_elements(first_child, second_child) + + # Start recursive insertion from the roots + insert_elements(root, root_of_tree_to_insert) + + +def find_and_remove_paths_in_tree(element_tree, cleaned_paths): + """ Find and remove paths in tree. + + This function searches and removes given XML paths from a given element tree. + Attention: The function has different behavior for entries in the 'component_design' node. Due to the unknown + number of ID nodes, the entire module-dependent subtree is deleted here. + For all other nodes, only the target nodes are removed. + + :param tree element_tree: Element tree containing all node datas. + :param list cleaned_paths: List containing all xml paths to remove. + :return: None + """ + # Nested function to find parent node of current subtree node + def find_parent(root, element): + for parent in root.iter(): + for child in parent: + if child == element: + return parent + return None + + root = element_tree.getroot() + # Create map for parent-child relations. + parent_map = {c: p for p in element_tree.iter() for c in p} + + # Loop across all paths to remove from aircraft exchange tree. + for path in cleaned_paths: + # Convert the './' prefixed path to the standard XPath by removing the leading './'. + xpath = path.lstrip('./') + # Get first node of current path. + first_node = xpath.split('/')[0] + # Check if the first node is not 'component_design' -> if true: -> remove only the end nodes of current path. + if not first_node == 'component_design': + # Find elements matching the XPath. + elements_to_remove = root.findall(xpath) + # Check each element if is existing -> if true: -> remove node from element tree + for elem in elements_to_remove: + parent = parent_map.get(elem) + if parent is not None: + parent.remove(elem) + + # Else condition: the first node of current path is 'component_design' + # -> Remove all nodes from second node to end of current path. + else: + second_node = xpath.split('/')[1] + sub_tree_to_remove = root.find('component_design/' + second_node) + if sub_tree_to_remove is not None: + # Use a list to collect all descendants + elements_to_remove = [] + stack = [sub_tree_to_remove] + while stack: + current_element = stack.pop() + elements_to_remove.append(current_element) + stack.extend(list(current_element)) + # Remove all collected elements + for elem in elements_to_remove[::-1]: + # Call nested function to find parend node of current sub tree node. + parent = find_parent(root, elem) + if parent is not None: + parent.remove(elem) + + +def convert_dictionary_to_element_tree(parameters_dict, parent=None): + """ Convert dictionary to element tree. + + This function converts the module-dependent key parameter dict into a consistent module-dependent element tree. + + :param dict parameters_dict: Dict containing parameter for the element tree to generate. + :param node parent: The Parent node element of current module key parameter. + :return: element parent + """ + # Check if is parent is None -> if true: -> initialize root node of element tree as 'module_dependent_root'. + # Otherwise, the given parent is an ET.Element + if parent is None: + parent = ET.Element('module_dependent_root') + + # Loop across the key value pairs of given dictionary to convert to an element tree. + for key, value in parameters_dict.items(): + # Check if the current key is 'attribute' -> if true: -> set current value as an attribute of parent node + if key == 'attributes': + for attr_key, attr_value in value.items(): + parent.set(attr_key, str(attr_value)) + # Else if condition: Check if the current value is a dictionary -> if true: -> build sub-dictionary recursively. + elif isinstance(value, dict): + element = ET.Element(key) + parent.append(element) + # Call function for recursive tree building. + convert_dictionary_to_element_tree(value, element) + # Else condition: Current key value pair is an end-node -> set value of dictionary entry as text element. + else: + element = ET.SubElement(parent, key) + element.text = str(value) + + return parent + +def convert_element_tree_to_dictionary(root_of_tree): + """ Converts an ElementTree or Element into a dictionary. + + :param (xml.etree.ElementTree.Element): The root element to convert. + :return dict dictionary: A dictionary representation of the ElementTree. + """ + + def _etree_to_dict(tree): + dictionary = {tree.tag: {} if tree.attrib else None} + children = list(tree) + if children: + data_dict = {} + for data_child in map(_etree_to_dict, children): + for key, value in data_child.items(): + if key in data_dict: + if isinstance(data_dict[key], list): + data_dict[key].append(value) + else: + data_dict[key] = [data_dict[key], value] + else: + data_dict[key] = value + dictionary = {tree.tag: data_dict} + if tree.attrib: + dictionary[tree.tag].update(('@' + key, value) for key, value in tree.attrib.items()) + if tree.text: + text = tree.text.strip() + if children or tree.attrib: + if text: + dictionary[tree.tag]['#text'] = text + else: + dictionary[tree.tag] = text + return dictionary + + return _etree_to_dict(root_of_tree) + +def get_paths_of_element_tree(element_tree, parent_path=""): + """ Get paths of element tree. + + This function extracts all xml paths of the given element tree. + + :param tree element_tree: The element tree containing the module dependent parameter. + :param string parent_path: The string contains the parent path of current element. + :return: list paths + """ + paths = [] + current_path = f"{parent_path}/{element_tree.tag}" if parent_path else element_tree.tag + # If the element has no children, add the current path to list of paths. + if len(element_tree) == 0: + paths.append(current_path) + # Run through the children recursively + for child in element_tree: + # Call function for recursive path generation. + paths.extend(get_paths_of_element_tree(child, current_path)) + + return paths + + +def prepare_element_tree_for_module_key_parameter(paths_and_names, module_key_parameters_dict): + """Prepare element tree. + + This function prepares the element tree for the current module. + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict module_key_parameters_dict: Dict containing information on module nodes in aircraft exchange file + :return: dict paths_and_names + """ + # Call function to convert the module key parameter dict to a module dependent element tree. + module_dependent_tree = convert_dictionary_to_element_tree(module_key_parameters_dict) + + # Call function to generate all xml path of the module dependent element tree. + element_tree_paths = get_paths_of_element_tree(module_dependent_tree) + + # Sort the list of xml paths, delete duplicates and prepare for element tree operations. + cleaned_paths = sorted(list(set(['./' + '/'.join(path.split('/')[1:-1]) for path in element_tree_paths]))) + + # Call function to remove old elements from aircraft exchange tree. + find_and_remove_paths_in_tree(paths_and_names['root_of_aircraft_exchange_tree'], cleaned_paths) + + # Call function to insert module dependent entries to the aircraft exchange tree. + insert_missing_elements(paths_and_names['root_of_aircraft_exchange_tree'], module_dependent_tree) + + return paths_and_names + + +def write_key_data_to_aircraft_exchange_file(root_of_aircraft_exchange_tree, path_to_aircraft_exchange_file, + paths_to_key_parameters_list, user_output_dict, tool_level, + runtime_output): + """Write key data to the aircraft exchange file. + + This function takes key data, verifies and writes it to the aircraft exchange file. + (1) Preparation: Using the paths contained in the 'user_output_dict', a list with user paths is generated that + is subsequently cleaned of duplicates. Next, every path in the path list is assigned to one of the four + categories and appended to the corresponding list: + (a) user path already exists in aircraft exchange file ('paths_already_in_aircraft_exchange_file_list') + (b) valid user path ('valid_user_paths_list') + (c) invalid user path (invalid_user_paths_list) + (d) user paths that need further checks ('user_paths_to_check_list') + Note: Only the paths of the last category will be considered further in the following steps. + For further processing, the paths in 'user_paths_to_check_list' are sorted in ascending order according to + their IDs. In addition, all paths that have one or more IDs are then extracted from the key paths and appended + to 'key_paths_with_id_list' for further use. + (2) Path validation and key parameter check: One by one, each key path is generalized. This means that the + number(s) of the ID(s) contained are replaced by an 'X'. All user paths from 'user_paths_to_check_list' are + checked to see whether they match the pattern of the current generalized key path. All paths that match this + pattern are added to the 'matching_user_paths_list'. If there are matching user paths, the code performs + various checks to assign these user paths to either the 'valid_user_paths_list' or 'invalid_user_paths_list'. + The checks include examining the structure and values of IDs within the user paths. After processing the key + paths, the code checks for any user paths that are neither in the 'valid_user_paths_list' nor in the + 'invalid_user_paths_list'. These paths are considered invalid, and a warning is issued. If there are user path + errors, error messages are generated, and the program is prepared for possible abort. The code checks whether + all key parameters are written by the user. If any key parameter path is missing, an error message is issued. + If there are either user path errors or missing key path errors, the code generates error messages and, + depending on the error type, raises a ValueError exception. This exception serves as a signal to terminate the + program. + Note: Only the 'valid_user_path_list' will be considered further in the following steps. + (3) Initialization of tree structure: Ensure that all necessary paths exist in aircraft exchange file to enable + upcoming step. Furthermore, the values are checked to ensure that they are within the defined limits. + (4) Completion: Write to aircraft exchange file. If the file cannot be opened, an OSError is raised. + + :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange file tree + :param str path_to_aircraft_exchange_file: Path to aircraft exchange file + :param list paths_to_key_parameters_list: List with paths to key parameters in aircraft exchange file + :param dict user_output_dict: Dictionary containing parameter name, path to parameter, and value of key parameters + :param int tool_level: Tool level of current module + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :raises ValueError: Raised if unsuccessful validation (faulty user paths, missing key paths or value out of limits) + or failed writing to the aircraft exchange file + :return: None + """ + + """Preparation.""" + # Generate list with user defined paths in 'user_output_dict' and ensure operating system conformity for path + # separators. + user_defined_path_list = [user_output_dict[key][0].replace(os.sep, '/') for key in user_output_dict] + # Count the occurrences of each path. + path_counter = collections.Counter(user_defined_path_list) + duplicate_paths = [path for path, count in path_counter.items() if count > 1] + # Remove duplicates and generate a warning. + if duplicate_paths: + runtime_output.warning('Warning: Duplicate paths found. Removing the following duplicates:') + for duplicate_paths in duplicate_paths: + runtime_output.warning(' ' + f"Duplicate path: {duplicate_paths}") + user_defined_path_list.remove(duplicate_paths) + + # Initialize local parameters that indicate which paths are valid, invalid, already in aircraft exchange file, and + # which need further checks. + valid_user_paths_list, invalid_user_paths_list, user_paths_to_check_list = [], [], [] + paths_already_in_aircraft_exchange_file_list = [] + + # Iterate over all user defined paths in 'user_defined_path_list' and assign each path to one category. + for user_path in user_defined_path_list: + path_not_in_aircraft_exchange_file = False + # Check if user path (including 'value' sub-node) exists in aircraft exchange file and append to + # 'paths_already_in_aircraft_exchange_file_list' and 'valid_user_paths_list'. + if root_of_aircraft_exchange_tree.find(user_path + '/value') is not None: + paths_already_in_aircraft_exchange_file_list.append(user_path) + valid_user_paths_list.append(user_path) + # Else: Set 'path_not_in_aircraft_exchange_file' to 'True'. + else: + path_not_in_aircraft_exchange_file = True + + # If path is not already contained in aircraft exchange file, append path to one of the following three lists: + # 'valid_user_paths_list', 'invalid_user_paths_list', or 'user_paths_to_check_list'. + if path_not_in_aircraft_exchange_file: + # If last character of 'user_path' is ']', path is considered invalid. + if user_path[-1] == ']': + invalid_user_paths_list.append(user_path) + continue + # Count the number of IDs in 'user_path' string. + user_path_id_count = user_path.count('[@ID="') + # If current user path is contained in list of key parameter paths, append user path to list of valid user + # paths. + if user_path in paths_to_key_parameters_list: + valid_user_paths_list.append(user_path) + # If current user path is not contained in list of key parameter paths and user path does not contain an + # ID, append user path to list of invalid user paths. + elif user_path not in paths_to_key_parameters_list and user_path_id_count == 0: + invalid_user_paths_list.append(user_path) + # If none of above criteria apply, the user path is appended to the list of paths that need further checks. + else: + user_paths_to_check_list.append(user_path) + + # Extract the values after "@ID=" from the paths in the list of paths that need further checks and sort this list. + id_values = [int(re.search(r'@ID="(\d+)"', path).group(1)) for path in user_paths_to_check_list] + user_defined_path_list_sorted = [path for _, path in sorted(zip(id_values, user_paths_to_check_list))] + + # Extract key paths that contain "@ID". + key_paths_with_id_list = [path for path in paths_to_key_parameters_list if re.search(r'@ID="\d+"', path)] + + """Path validation and key parameter check.""" + # Classify each existing user path into a category based on generalized key parameter paths and check for missing + # key parameter paths. + try: + # Initialization of variables for error tracking. + error_path_dict = {} + user_path_error = False + user_path_error_counter = 0 + missing_key_path_error = False + # Iterate over key paths in list of key paths with IDs. + for current_key_path in key_paths_with_id_list: + # Check if current key path exists in 'valid_user_paths_list' (True/False). + key_path_exists_in_user_paths = current_key_path in valid_user_paths_list + # Define ID pattern to generalize "@ID" attribute in 'current_key_path' (replace ID number with 'X'). + id_pattern = re.compile(r'@ID="(\d+)"') + # Store current generalized key parameter path. + current_generalized_key_path = re.sub(r'@ID="\d+"', '@ID="X"', current_key_path) + # Create empty list of matching user paths. + # Iterate over all user paths in sorted list of user defined paths. + # - Replace ID number with 'X' for generalization purposes. + # - Append all user paths that match the pattern of the current generalized key parameter path. + matching_user_paths_list = [user_path for user_path in user_defined_path_list_sorted if + re.sub(r'@ID="\d+"', '@ID="X"', user_path) == current_generalized_key_path] + + # Sub function to sort all paths by his last ID entry in numerical order. + def extract_id(matching_user_paths_list): + matches = re.findall(r'@ID="(\d+)"', matching_user_paths_list) + return int(matches[-1]) if matches else float('inf') + + # Sort the list by the extracted ID value. + matching_user_paths_list = sorted(matching_user_paths_list, key=extract_id) + + # If any user paths match the current generalized key parameter path, various checks are performed to + # assign the corresponding user paths to either the "valid_user_paths_list" or the + # "invalid_user_paths_list". + if len(matching_user_paths_list) > 0: + # Create empty list of current user path IDs. + user_path_ids_list = [] + # Iterate over list with user paths that match current key parameter path pattern and extract the + # values of contained IDs. + for current_matching_user_path in matching_user_paths_list: + # Find all IDs of current user path. + values_of_user_ids_list = re.findall(id_pattern, current_matching_user_path) + # Convert the numbers from strings to integers. + values_of_user_ids_list = [int(num) for num in values_of_user_ids_list] + # Generate list of IDs for current user path. + user_path_ids_list.append(values_of_user_ids_list) + + # If the 'current_key_path' exists in 'valid_user_paths_list' and there are user path IDs, the IDs are + # compared and possible errors handled. + if key_path_exists_in_user_paths and len(user_path_ids_list) != 0: + # Create a list with n zeros (n corresponds to the number of IDs in the current generalized key + # parameter path) and store the list in which all IDs are zero as 'first_list'. + zero_list = [0 for _ in range(len(user_path_ids_list[0]))] + user_path_ids_list.insert(0, zero_list) + first_list = user_path_ids_list[0] + # Check each position in the lists. + for i in range(1, len(user_path_ids_list)): + # Check whether the first element of the previous list is NOT the same as the first element of + # the current list. + if first_list != user_path_ids_list[i]: + # If the two IDs differ by more than 1, add the path to the list of invalid paths and go on + # with the next generalized key parameter path. + if abs(sum(first_list) - sum(user_path_ids_list[i])) > 1 \ + and (abs(first_list[-1] - user_path_ids_list[i][-1]) > 1): + user_path_error_counter += 1 + error_path_dict[current_generalized_key_path] = matching_user_paths_list[i-1:] + [invalid_user_paths_list.append(matching_user_paths_list[j]) + for j in range(0, len(matching_user_paths_list))] + break + # If the first ID differs by 1 compared to the previous path, then a check of the following + # IDs is performed. + else: + valid_user_paths_list.append(matching_user_paths_list[i-1]) + first_list = user_path_ids_list[i] + # If the first ID of the current path matches the first ID of the previous path, the subsequent + # IDs are subjected to further checks. + else: + # If the difference between the two lists is greater than 1, append the current path to the + # list of invalid paths and continue with the next generalized key parameter path. + if abs(sum(first_list) - sum(user_path_ids_list[i])) > 1: + user_path_error_counter += 1 + error_path_dict[current_generalized_key_path] = matching_user_paths_list[i-1:] + [invalid_user_paths_list.append(matching_user_paths_list[j]) + for j in range(0, len(matching_user_paths_list))] + break + # If the difference between the two lists is less than or equal to 1, then append the + # current path to the list of valid paths. + elif abs(sum(first_list) - sum(user_path_ids_list[i])) <= 1: + valid_user_paths_list.append(matching_user_paths_list[i-1]) + first_list = user_path_ids_list[i] + # If the 'current_key_path' exists in 'valid_user_paths_list', but there are no matching user paths, a + # warning is issued. + elif key_path_exists_in_user_paths and len(user_path_ids_list) == 0: + runtime_output.warning('Warning: No matching user paths according to key pattern: ' + + current_generalized_key_path) + continue + # If the 'current_key_path' does not exist in 'valid_user_paths_list' and is not contained in + # 'paths_already_in_aircraft_exchange_file_list', a warning is issued and the current user paths are + # appended to the invalid paths. + elif not key_path_exists_in_user_paths \ + and current_key_path not in paths_already_in_aircraft_exchange_file_list: + runtime_output.warning('Warning: Key path missing in user defined path list: ' + current_key_path) + user_path_error_counter += 1 + error_path_dict[current_generalized_key_path] = matching_user_paths_list + [invalid_user_paths_list.append(matching_user_paths_list[j]) + for j in range(0, len(matching_user_paths_list))] + continue + + # After processing the key paths, it is checked for any user paths that are neither in 'valid_user_paths_list' + # nor in 'invalid_user_paths_list'. These paths are considered invalid, and a warning is issued. + for tmp_path in user_defined_path_list_sorted: + if tmp_path not in valid_user_paths_list and tmp_path not in invalid_user_paths_list: + invalid_user_paths_list.append(tmp_path) + runtime_output.warning( + ('Warning: The path "' + tmp_path + '" is not a key value and therefore not written to aircraft ' + 'exchange file. Please contact module manager for further instructions.')) + + # If there are user path errors, error messages are generated. + if user_path_error_counter > 0: + user_path_error = True + # Generate error messages. + for key, value in error_path_dict.items(): + runtime_output.error('Error: The following user paths of the pattern "' + key + '" are invalid:') + for i, value in enumerate(value): + runtime_output.error(' ' + value) + user_path_error_string = 'Please change user paths according to style guidelines.' + + # Check whether all key parameters are written by the user. + missing_key_path_list = [] + missing_key_path_error_string = str() + for tmp_key_path in paths_to_key_parameters_list: + # If a key parameter path is missing, an error message is issued. + if tmp_key_path not in valid_user_paths_list: + runtime_output.error('Error: The following key parameter is not set: ' + tmp_key_path) + missing_key_path_list.append(tmp_key_path) + # If there are missing key path errors, error messages are generated. + if len(missing_key_path_list) != 0: + missing_key_path_error = True + missing_key_path_error_string = 'Please make sure to write all necessary key parameters of your method.' + + # If there are user path errors or missing key path errors, error messages are generated and the program is + # aborted with a ValueError exception. + if user_path_error or missing_key_path_error: + if user_path_error and not missing_key_path_error: + raise ValueError(user_path_error_string + ' Program aborted!') + elif not user_path_error and missing_key_path_error: + raise ValueError(missing_key_path_error_string + ' Program aborted!') + else: + raise ValueError(user_path_error_string[:-1] + ' and ' + missing_key_path_error_string.lower() + + ' Program aborted!') + + # Exception handling for value error. + except ValueError as e: + runtime_output.critical('Error: ' + str(e)) + sys.exit(1) + + """Initialization of tree structure.""" + # Initialization. + component_layer_old = str() + sub_node_list = ['value', 'unit', 'lower_boundary', 'upper_boundary'] + # Extract the corresponding dictionary entries to the valid user paths. + valid_key_dict = {key: value for (key, value) in user_output_dict.items() + if user_output_dict[key][0] in valid_user_paths_list} + + # Create all necessary nodes in the aircraft exchange file and check whether the results are within the expected + # limits. + try: + # Iterate over all parameters in 'valid_key_dict'. + for key in valid_key_dict: + # Extract path. + tmp_string = valid_key_dict[key][0] + # Split 'tmp_string' at operating system separator. + parts_list = tmp_string.split('/') + # Delete all empty list entries if existing. + filtered_parts = [part for part in parts_list if part] + # Store third element as 'component_layer'. + component_layer = filtered_parts[2] + # Initialization of necessary variables. + parent_path = [] + path_to_check = '.' + first_id_parent = [] + tmp_zero_path = str() + path_contains_id = False + # Check if the current part of string is existing in the aircraft exchange ElementTree. + for part in filtered_parts[1:]: + # Extend the 'path_to_check' with the current 'part'. + path_to_check = os.path.join(path_to_check, part).replace(os.sep, '/') + # Check if the path exist in aircraft exchange ElementTree. + path_flag = root_of_aircraft_exchange_tree.find(path_to_check) + # Check if the 'component_layer' is the same as the 'component_layer_old'. + same_component_layer = component_layer == component_layer_old + # Set 'tool_level' attribute if path exists, the current part equals 'component_layer', and if the + # 'component_layer' is different from the previous one. + if path_flag is not None and part == component_layer and not same_component_layer: + path_flag.set('tool_level', tool_level) + component_layer_old = component_layer + # Add the current part of string to the ElementTree as a new sub-node if the node does not exist. + if path_flag is None: + # Check if current part of string contains '@' (indicating ID). + if '@' in part: + # Set flag if string contains '@'. + path_contains_id = True + if len(first_id_parent) == 0: + first_id_parent = parent_path + # Handle attribute 'ID' (extract 'ID' and value of ID, generate new sub-node under current + # 'parent_path', and set attribute 'ID' with according value). + attribute_name, attribute_value = part.split('=') + attribute_name = attribute_name.split('[@') + attribute_id = attribute_name[1] + attribute_value = attribute_value[attribute_value.find('"')+1:attribute_value.rfind('"')] + node_name = attribute_name[0] + new_node = ET.SubElement(parent_path, node_name) + new_node.set(attribute_id, attribute_value) + # Handle attribute 'description' (set the description to description of the 'tmp_zero_path'). + tmp_pattern = r'"(.*?)"' + tmp_zero_path = re.sub(tmp_pattern, '"0"', path_to_check) + tmp_description = root_of_aircraft_exchange_tree.find(tmp_zero_path).get('description') + new_node.set('description', tmp_description) + # Current path does not contain '@'. + else: + if len(tmp_zero_path) != 0: + tmp_zero_path = tmp_zero_path + '/' + part + else: + tmp_pattern = r'"(.*?)"' + tmp_zero_path = re.sub(tmp_pattern, '"0"', path_to_check) + path_contains_id = True + element_to_add = ET.Element(part) + # Check if description exists. + if path_to_check == './component_design/fuselage/specific/geometry/fuselage[@ID="0"]/mass_breakdown/fuselage_furnishing/component_mass[@ID="0"]/mass': + formatted_xml = ET.tostring(root_of_aircraft_exchange_tree.getroot(), encoding='unicode', method='xml') + formatted_xml_with_indent = minidom.parseString(formatted_xml).toprettyxml(indent=" ") + # Ausgabe + print(formatted_xml_with_indent) + print(path_to_check) + description_of_zero_path = \ + root_of_aircraft_exchange_tree.find(tmp_zero_path).get('description') + element_to_add.set('description', description_of_zero_path) + # Append 'element_to_add' to 'parent_path'. + parent_path.append(element_to_add) + parent_path = root_of_aircraft_exchange_tree.find(path_to_check) + # Check if the current 'part' is the last element in the 'filtered_parts' list. + if part == filtered_parts[-1]: + # Check if 'path_to_check' contains an ID. + if path_contains_id: + # Check if 'path_to_check' is not equal to 'tmp_zero_path'. + if path_to_check != tmp_zero_path: + # Check if the current parameter not is not 'name' + # -> if true: -> add all sub nodes to current paramter + if part != 'name': + # Iterate through 'sub_node_list'. + for sub_node in sub_node_list: + # Check if 'sub-node' exists in 'tmp_zero_path'. + tmp_sub_node_exists_in_zero_path = \ + root_of_aircraft_exchange_tree.find(tmp_zero_path + '/' + sub_node) + if tmp_sub_node_exists_in_zero_path is not None: + # Create new XML subelement with same name as 'sub_node' under 'parent_path'. + ET.SubElement(parent_path, sub_node) + # Get associated element. Set text to text of element in 'tmp_zero_path/sub_node'. + tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/' + sub_node) + if sub_node == 'value': + tmp_path.text = str(user_output_dict[key][1]) + else: + tmp_path.text = str(root_of_aircraft_exchange_tree.find( + tmp_zero_path + '/' + sub_node).text) + # Else condition: The current parameter not is 'name' + # -> add only 'value' sub note to current parameter + else: + # Check if 'value' exists in 'tmp_zero_path'. + tmp_sub_node_exists_in_zero_path = \ + root_of_aircraft_exchange_tree.find(tmp_zero_path + '/value') + if tmp_sub_node_exists_in_zero_path is not None: + # Create new XML subelement with same name as 'sub_node' under 'parent_path'. + ET.SubElement(parent_path, 'value') + # Get associated element. Set text to text of element in 'tmp_zero_path/sub_node'. + tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/value') + tmp_path.text = str(user_output_dict[key][1]) + # 'path_to_check' does not contain an ID. + else: + # Find the XML element at 'path_to_check' + '/value'. + tmp_path = root_of_aircraft_exchange_tree.find(path_to_check + '/value') + # Get value associated with the key from 'user_output_dict'. + tmp_value = user_output_dict[key][1] + # Find lower and upper boundary elements. + lower_boundary = root_of_aircraft_exchange_tree.find(path_to_check + '/lower_boundary') + upper_boundary = root_of_aircraft_exchange_tree.find(path_to_check + '/upper_boundary') + # Check if lower and upper boundaries are checkable (checkable means not None and not "None"). + lower_boundary_checkable = lower_boundary is not None and \ + (lower_boundary.text is not None and lower_boundary.text != 'None') + upper_boundary_checkable = upper_boundary is not None and \ + (upper_boundary.text is not None and upper_boundary.text != 'None') + # Check if the value falls below the lower boundary (if checkable). + if lower_boundary_checkable and tmp_value < float(lower_boundary.text): + raise ValueError('The value of the parameter ' + str(key) + ' = ' + str(tmp_value) + + ' falls below the given lower boundary of ' + lower_boundary.text + + '. Program aborted!') + # Check if the value exceeds the upper boundary (if checkable). + if upper_boundary_checkable and tmp_value > float(upper_boundary.text): + raise ValueError('The value of the parameter ' + str(key) + ' = ' + str(tmp_value) + + ' exceeds the given upper boundary of ' + upper_boundary.text + + '. Program aborted!') + # If no boundary conditions were violated, set tmp_path.text to the value. + tmp_path.text = str(tmp_value) + + # Sort all child nodes alphabetically according to their tags. + sort_root = first_id_parent + children = list(sort_root) + children.sort(key=lambda x: x.tag) + # Delete all child nodes from root element. + for child in children: + sort_root.remove(child) + # Add the sorted child nodes back to the root element. + for child in children: + sort_root.append(child) + + # Exception handling for value error. + except ValueError as e: + runtime_output.critical('Error:' + str(e)) + sys.exit(1) + + """Completion.""" + # Ensure proper indentation. + ET.indent(root_of_aircraft_exchange_tree, space=" ", level=0) + # Write all key parameters to aircraft exchange file. + try: + # Write data to file. + root_of_aircraft_exchange_tree.write(path_to_aircraft_exchange_file, encoding='utf-8') + # Exception handling for operating system error. + except OSError: + runtime_output.critical('Error: Writing to aircraft exchange file failed. Program aborted!') + sys.exit(1) + + +def method_data_postprocessing(paths_and_names, routing_dict, data_dict, method_specific_output_dict, runtime_output): + """General data postprocessing for current calculation method. + + This function executes the method's own postprocessing. It is divided into general postprocessing and user layer + specific postprocessing: + - General postprocessing: The general postprocessing contains operations that are always carried out regardless + of the user layer. This includes general reports and plots. + - User layer specific postprocessing: Specific postprocessing includes, for example, plots that can/should only + be created if the user layer contains a certain value. The same applies to reports with values that are only + determined for certain user layer values. + Note that it may also be possible that the specific part is omitted, as the entire postprocessing is independent of + the user layer. + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict routing_dict: Dictionary containing routing parameters + :param dict data_dict: Dictionary containing results of module execution + :param dict method_specific_output_dict: Dictionary containing method-specific output data + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :raises OSError: Raised if any method-specific postprocessing function fails + :return: None + """ + + # Read output switches from module configuration file. + root_of_module_config_tree = paths_and_names['root_of_module_config_tree'] + plot_switch = (eval(root_of_module_config_tree.find('.//plot_output/enable/value').text.capitalize())) + html_switch = eval(root_of_module_config_tree.find('.//report_output/value').text.capitalize()) + tex_switch = eval(root_of_module_config_tree.find('.//tex_report/value').text.capitalize()) + if root_of_module_config_tree.find('.//xml_output/value') is not None: + xml_export_switch = eval(root_of_module_config_tree.find('.//xml_output/value').text.capitalize()) + else: + xml_export_switch = False + + # Plot functionality. + if plot_switch: + if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/plots'): + os.makedirs(paths_and_names['project_directory'] + '/reporting/plots') + try: + # Run 'method_plot' from 'methodplot.py'. + routing_dict['func_user_method_plot'](paths_and_names, routing_dict, data_dict, method_specific_output_dict, + runtime_output) + except OSError as e: + runtime_output.error(str(e) + '\n ' + + ' ' + + 'Error: "method_plot" function failed. No plots generated and saved.') + else: + runtime_output.warning('Warning: "plot_output" switch in module configuration file set to "False". ' + + 'No plots generated.') + + # HTML report functionality. + if html_switch: + if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_html'): + os.makedirs(paths_and_names['project_directory'] + '/reporting/report_html') + + try: + # Run 'method_html_report' from 'methodhtmlreport.py'. + routing_dict['func_user_method_html_report'](paths_and_names, routing_dict, data_dict, + method_specific_output_dict, runtime_output) + except OSError as e: + runtime_output.error(str(e) + '\n ' + + ' ' + + 'Error: "method_html_report" function failed. ' + + 'No additional data written to HTML report file.') + else: + runtime_output.warning( + 'Warning: "html_output" switch in module configuration file set to "False". No HTML report generated.' + ) + + # XML export functionality. + if xml_export_switch: + if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_xml'): + os.makedirs(paths_and_names['project_directory'] + '/reporting/report_xml') + + xml_export_tree, path_to_results_file = prepare_method_specific_xml_file(paths_and_names, routing_dict, + runtime_output) + try: + # Run 'method_xml_export' from 'methodxmlexport.py'. + routing_dict['func_user_method_xml_export'](paths_and_names, routing_dict, data_dict, + method_specific_output_dict, xml_export_tree, + path_to_results_file, runtime_output) + except OSError as e: + runtime_output.error(str(e) + '\n ' + + ' ' + + 'Error: "method_xml_export" function failed. ' + + 'No additional data written to module specific XML results file.' + ) + else: + runtime_output.warning('Warning: "xml_output" switch in module configuration file set to "False". ' + + 'No XML results file generated.') + + # TeX output functionality. + if tex_switch: + if not os.path.isdir(paths_and_names['project_directory'] + '/reporting/report_tex'): + os.makedirs(paths_and_names['project_directory'] + '/reporting/report_tex') + + try: + # Run 'method_tex_output' from 'methodtexoutput.py'. + routing_dict['func_user_method_tex_output'](paths_and_names, routing_dict, data_dict, + method_specific_output_dict, runtime_output) + except OSError as e: + runtime_output.error(str(e) + '\n ' + + ' ' + + 'Error: "method_tex_output" function failed. ' + + 'No TeX report file generated.' + ) + else: + runtime_output.warning( + 'Warning: "tex_output" switch in module configuration file set to "False". No TeX report file generated.') + + +def prepare_method_specific_xml_file(paths_and_names, routing_dict, runtime_output): + """Generate XML file with general information on module execution to prepare the method-specific data output. + + This function generates the basic structure of an XML file that is intended for the export of method-specific data. + This involves the following steps: + (1) Generate the file and module name as well as the path to the results file using information provided by the + 'paths_and_names' dictionary. + (2) Delete older versions of the file (if existing). + (3) Create the XML structure + 3.1) Create a 'general_information' block that contains the following information: + - Version of the current UNICADO workflow + - Code execution date and time + - Current aircraft project name + - Calculation method name + 3.2) Create a 'routing_layer' block that contains information on the current routing layers. + 3.3) Create a 'calculation_results' block that serves as a placeholder for the subsequent export of data + (if desired) + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict routing_dict: Dictionary containing routing parameters + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :raises OSError: Raised if workflow version file not found + :returns: + - ElementTree xml_export_tree: Element tree of method-specific XML tree + - str path_to_results_file: Path to method-specific output XML file + """ + + # Initialize parameters. + file_name = paths_and_names['tool_name'] + '_results.xml' + module_name = paths_and_names['tool_name'].replace('_', ' ').capitalize() + path_to_results_file = paths_and_names["project_directory"] + '/reporting/report_xml/' + file_name + + # Delete older output file if existing. + if os.path.isfile(path_to_results_file): + os.remove(path_to_results_file) + + # Create directory for xml reports, if not existing + os.makedirs(paths_and_names["project_directory"] + '/reporting/report_xml/', exist_ok = True) + + # Generate new ElementTree. + xml_export_root = ET.Element("module_results_file") + # Set name of current tool 'Name' of root element and generate ElementTree. + xml_export_root.set("Name", module_name + " specific outputs") + xml_export_tree = ET.ElementTree(xml_export_root) + # Add 'general_information' sub-node. + child = ET.SubElement(xml_export_root, "general_information") + child.set("description", "General information on module execution") + + try: + # Initialize general information parameters. + if os.path.isfile(paths_and_names['working_directory'] + '/version.txt'): + # Open file and read version information. + with open(paths_and_names['working_directory'] + '/version.txt', 'r') as file: + # Read first line. + workflow_version = file.readline() + else: + workflow_version = "not available" + except OSError as e: + runtime_output.warning('Warning: ' + str(e) + ' \n' + + ' ' + + 'Workflow version file not found.') + + execution_date = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + root_of_module_config_tree = paths_and_names['root_of_module_config_tree'] + project_name = ( + root_of_module_config_tree.find('./control_settings/aircraft_exchange_file_name/value').text.split(".xml"))[0] + method_name = root_of_module_config_tree.find('./program_settings/configuration/method_name/value').text + # Definition of subnodes of 'general_information'. + # Format: general_information_subnodes = { 'name_of_sub-node': [description, value], ...} + general_information_subnodes = { + 'workflow_version': ['Version number of the current workflow', workflow_version], + 'execution_date': ['Execution date and time of the code', execution_date], + 'project_name': ['Name of the current aircraft project', project_name], + 'method_name': ['Name of current module calculation method', method_name] + } + # Iterate over 'general_information_subnodes' dictionary and add all keys as children. + for key, value in general_information_subnodes.items(): + # Create a subelement for each key. + key_element = ET.SubElement(child, key) + # Add an attribute "description" and set the value to the first entry of the value-list. + key_element.set("description", value[0]) + # Add a subelement "value" and set the value as text. + value_element = ET.SubElement(key_element, "value") + value_element.text = value[1] + # Add routing layer block. + routing_layer_element = ET.SubElement(child, 'routing_layer') + routing_layer_element.set("description", "Routing layer information") + # Iterate over 'routing_dict' and add keys that contain 'layer' as children of 'routing_layer_element'. + for key, value in routing_dict.items(): + if 'layer' in key: + key_element = ET.SubElement(routing_layer_element, key) + key_element.set("description", 'Routing ' + str(key)) + value_element = ET.SubElement(key_element, "value") + value_element.text = value + # Add 'calculation_results' block. + child = ET.SubElement(xml_export_root, "calculation_results") + child.set("description", "Results of calculation method") + + # Ensure proper indentation and write file. + ET.indent(xml_export_root, space=" ", level=0) + try: + xml_export_tree.write(path_to_results_file) + except OSError as e: + runtime_output.critical('Error: ' + str(e)) + sys.exit(1) + + return xml_export_tree, path_to_results_file diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py new file mode 100644 index 0000000000000000000000000000000000000000..26e7e6c0bef95bef7dc5997ad35d04e1a4007512 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/datapreprocessingmodule.py @@ -0,0 +1,776 @@ +"""Module providing general UNICADO data preprocessing functions for Python code.""" +# Import standard modules. +import os +import re +import sys +import logging +import xml.etree.ElementTree as ET +from pathlib import Path +from datetime import datetime +from inspect import currentframe, getframeinfo +from runtimeoutputmodule import configure_runtime_output + + +def method_data_preprocessing(paths_and_names, routing_dict, runtime_output): + """General data preprocessing for current calculation method. + + This function performs general data preprocessing on input data obtained from aircraft exchange and module + configuration files. It accomplishes the following tasks: + (1) Data preparation: Extract root elements of aircraft exchange and module configuration trees from + 'paths_and_names' dict. Invoke 'user_method_data_preparation' function, specified in 'routing_dict', to obtain + information on data to extract from these files, resulting in two dictionaries, namely the + 'data_to_extract_from_aircraft_exchange_dict' and the 'data_to_extract_from_module_configuration_dict'. + (2) Read values from XML files: Using the above defined dictionaries with information on parameters that must + be extracted from the aircraft exchange and module configuration file, the according values are read from the + respective files and stored in 'tmp_aircraft_exchange_dict' and 'tmp_module_configuration_dict'. These + temporary dictionaries have a specific format for each parameter, including the parameter's name, path, value, + lower boundary, and upper boundary: + tmp_dict = {'parameter_name_1': [path, expected data type, value, lower boundary, upper boundary], + 'parameter_name_2': [...], + ...} + (3) The code then iterates over both temporary dictionaries, type casts the values to their expected data types, + checks if the values are within specified lower and upper boundaries, and stores the checked values in a new + dictionary, 'dict_out_short'. This dictionary contains the values for the same parameters as the input + dictionaries but with checked and possibly modified values. + The code returns two dictionaries: 'short_aircraft_exchange_dict' and 'short_module_configuration_dict', that + represent the preprocessed data for the aircraft exchange and module configuration file, respectively. The + dictionaries represent condensed forms of the 'tmp_aircraft_exchange_dict' and the 'tmp_module_configuration_dict' + and are structured according to the following scheme: + dict = {'parameter_name_1': value, ...} + + In the case of a multi-parameter (xml path contains '@ID' identifier), the value of the parameter key + ('parameter_name_1') contains a sub-dictionary with all existing parameter ID names ('parameter_name_1_ID...') and + its corresponding values. + dict = {'parameter_name_1': {'parameter_name_1_ID0': value, 'parameter_name_1_ID1': value}, ...} + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict routing_dict: Dictionary containing information on necessary data from module configuration file + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :returns: + - dict short_aircraft_exchange_dict: Dict containing parameters and acc. values from aircraft exchange file + - dict short_module_configuration_dict: Dict containing parameters and acc. values from module config. file + """ + + """Data preparation.""" + # Extract roots of aircraft exchange and module configuration file. + root_of_aircraft_exchange_tree = paths_and_names['root_of_aircraft_exchange_tree'] + root_of_module_config_tree = paths_and_names['root_of_module_config_tree'] + # Run 'user_method_data_preparation' from 'usermethoddatapreparation.py'. + data_to_extract_from_aircraft_exchange_dict, data_to_extract_from_module_configuration_dict \ + = routing_dict['func_user_method_data_input_preparation'](routing_dict) + + """Read values from XML files.""" + # Read values from aircraft exchange and module configuration file. + tmp_aircraft_exchange_dict = read_values_from_xml_file(data_to_extract_from_aircraft_exchange_dict, + root_of_aircraft_exchange_tree, runtime_output) + tmp_module_configuration_dict = read_values_from_xml_file(data_to_extract_from_module_configuration_dict, + root_of_module_config_tree, runtime_output) + + """Extract, compute (type cast), and check values from output dictionary.""" + tmp_list = [] + # Iterate over both dictionaries. + for tmp_dict in [tmp_aircraft_exchange_dict, tmp_module_configuration_dict]: + dict_out_short = {} + multi_parameter_dict = {} + # Iterate over all elements of current dictionary. + for key in tmp_dict.keys(): + # Extract and compute values. + parameter_name = key + expected_data_type = tmp_dict[key][1] + # Check if the current expected data type is not tool_level. + if expected_data_type != 'tool_level': + value = convert_string_to_expected_data_type( + tmp_dict[key][-3], expected_data_type, parameter_name, + runtime_output) + lower_boundary = convert_string_to_expected_data_type(tmp_dict[key][-2], expected_data_type, + ("lower_boundary_of_" + parameter_name), + runtime_output) + upper_boundary = convert_string_to_expected_data_type(tmp_dict[key][-1], expected_data_type, + ("upper_boundary_of_" + parameter_name), + runtime_output) + # Check if value is within specified limits. + checked_value = check_boundaries(parameter_name, value, runtime_output, lower_boundary, upper_boundary) + + # Check if the current parameter to check is a multi-parameter with "@ID" xml path. + if tmp_dict[key][2]: + if not tmp_dict[key][3] in multi_parameter_dict: + multi_parameter_dict[tmp_dict[key][3]] = {} + multi_parameter_dict[tmp_dict[key][3]][key] = checked_value + # Else condition: current parameter is a single parameter. + else: + # Set value to checked value and write to output dictionary. + dict_out_short[key] = checked_value + # Else condition: The current expected data type is a tool_level. + else: + # Check if the value of tool_level is not None. + if tmp_dict[key][-3] is not None: + dict_out_short[key] = int(tmp_dict[key][-1]) + # Else condition: The current value of tool_level is None. + else: + dict_out_short[key] = None + + # Update and append 'dict_out_short'. + dict_out_short = {**dict_out_short, **multi_parameter_dict} + tmp_list.append(dict_out_short) + + # Extract short versions of dictionaries from 'tmp_list'. + short_aircraft_exchange_dict = tmp_list[0] + short_module_configuration_dict = tmp_list[1] + + return short_aircraft_exchange_dict, short_module_configuration_dict + + +def get_paths_and_names(module_configuration_file_name, argv): + """Generate paths, names, and ElementTree based on module configuration file. + + This function generates paths and names as well as ElementTrees of the module configuration (config) and + the associated aircraft exchange file. All generated parameters are returned via the output dictionary + 'paths_and_names'. + + The 'paths_and_names' output dictionary contains the following values: + - 'working_directory': Current working directory of module (str) + - 'parent_directory': Parent directory of module (str) + - 'project_directory': Current project directory (str) + - 'path_to_module_config_file': Path to module configuration file (str) + - 'root_of_module_config_tree': Root of module configuration file tree (ElementTree) + - 'path_to_aircraft_exchange_file': Path to aircraft exchange file (str) + - 'root_of_aircraft_exchange_tree': Root of aircraft exchange file tree (ElementTree) + - 'name_of_project': Name of the current aircraft project (str) + - 'tool_name': Name of current tool (str) + + :param str module_configuration_file_name: Name of module configuration file + :param list argv: Contains optional input arguments + :returns: + - dict paths_and_names: Dictionary containing system paths and ElementTrees + - logging.Logger runtime_output: Logging object used for capturing log messages in the module + """ + + # Initialization. + path_flag = False + given_path = str() + log_file_list = [] + current_parent_directory = str() + current_working_directory = str() + path_to_module_config_file = str() + function_name = getframeinfo(currentframe()).function + + """Generate paths, names, and ElementTree for module configuration file.""" + # Determine the module's working directory and path to the module configuration file. + # This section handles different cases depending on the presence of command line arguments. + # Read and process command line arguments. + if len(argv) == 1: + # Read current working directory. + current_working_directory = argv[-1] + # Convert path of current working directory to python path (\ to /). + current_working_directory = os.path.dirname(current_working_directory.replace(os.sep, '/')) + if (len(argv[-1]) >= (len(os.path.splitext(module_configuration_file_name)[0][:-5]))) \ + and (len(current_working_directory) <= (len(os.path.splitext(module_configuration_file_name)[0][:-5]))): + current_working_directory = os.getcwd() + # Get current parent directory. + count = current_working_directory.rfind('/') + current_parent_directory = current_working_directory[0:count] + # Generate path of module configuration file. + path_to_module_config_file = (current_working_directory + '/' + module_configuration_file_name) + else: + # Handle a specific command line argument to set the given path. + given_path = argv[-1] + path_flag = True + + if path_flag: + # Convert path of optional argument path of module configuration file to python path (\ to /). + if not os.path.isabs(given_path): + given_path = os.path.abspath(given_path) + current_working_directory = given_path.replace(os.sep, '/') + else: + given_path = given_path.replace(os.sep, '/') + if given_path[-1] == '/': + current_working_directory = given_path[:-2] + else: + current_working_directory = given_path + # Check if the optinal path argument is a directory or a file -> if a file -> correct the current_working_directory + if not os.path.isdir(current_working_directory): + count = current_working_directory.rfind('/') + current_working_directory = current_working_directory[:count] + # Generate path of module configuration file. + path_to_module_config_file = given_path + else: + # Generate path of module configuration file. + path_to_module_config_file = current_working_directory + '/' + module_configuration_file_name + # Get current parent directory. + count = current_working_directory.rfind('/') + current_parent_directory = current_working_directory[:count] + + + # Determine the current module name 'tool_name' based on the module configuration file name. + tool_name = os.path.splitext(module_configuration_file_name)[0][:-5] + + # Read ElementTree of module configuration file. + frame_info = getframeinfo(currentframe()) + # Call function to read module configuration XML file as ElementTree. + root_of_module_config_tree, __, log_file_list, error_flag = read_xml_information( + path_to_module_config_file, os.path.splitext(module_configuration_file_name)[0], function_name, + frame_info.lineno, log_file_list) + + """Generate paths, names, and ElementTree for aircraft exchange file.""" + if not error_flag: + # Read aircraft project name and directory. + current_aircraft_exchange_file_name = root_of_module_config_tree.find( + "./control_settings/aircraft_exchange_file_name/value").text + # Get name of project. + name_of_project = os.path.splitext(current_aircraft_exchange_file_name)[0] + current_aircraft_exchange_file_directory = root_of_module_config_tree.find("./control_settings/aircraft_exchange_file_directory/value").text + + if not path_flag: + # Check if current execution inside of an virtuell enviroment + # -> if true: -> rebuild path to aircraft exchange file + if sys.prefix != sys.base_prefix: + if not os.path.isabs(current_aircraft_exchange_file_directory): + current_aircraft_exchange_file_directory = \ + Path(current_aircraft_exchange_file_directory).resolve().relative_to(Path.cwd().parent) + current_aircraft_exchange_file_directory = str(current_parent_directory / current_aircraft_exchange_file_directory) + + else: + # Get path to current aircraft project and aircraft exchange file. + if not os.path.isabs(current_aircraft_exchange_file_directory): + current_aircraft_exchange_file_directory = os.path.abspath(current_aircraft_exchange_file_directory) + + # get absolut path aircraft exchange file + path_to_aircraft_exchange_file = current_aircraft_exchange_file_directory + '/' + current_aircraft_exchange_file_name + else: + name_of_project = os.path.splitext(current_aircraft_exchange_file_name)[0] + path_to_aircraft_exchange_file = current_aircraft_exchange_file_directory + '/' \ + + current_aircraft_exchange_file_name + + # Read ElementTree of module configuration file. + frame_info = getframeinfo(currentframe()) + # Call function to read aircraft exchange XML file as ElementTree. + root_of_aircraft_exchange_tree, __, log_file_list, error_flag = read_xml_information( + path_to_aircraft_exchange_file, name_of_project, function_name, + frame_info.lineno, log_file_list) + + """Generate return dictionary.""" + paths_and_names = {'working_directory': current_working_directory, + 'parent_directory': current_parent_directory, + 'project_directory': current_aircraft_exchange_file_directory, + 'path_to_module_config_file': path_to_module_config_file, + 'root_of_module_config_tree': root_of_module_config_tree, + 'path_to_aircraft_exchange_file': path_to_aircraft_exchange_file, + 'root_of_aircraft_exchange_tree': root_of_aircraft_exchange_tree, + 'name_of_project': name_of_project, + 'tool_name': tool_name, + } + else: + paths_and_names = {'working_directory': current_working_directory, 'tool_name': tool_name} + + """Configure logger and initialize logger instance.""" + configure_runtime_output(paths_and_names) + runtime_output = logging.getLogger(__name__) + + if error_flag: + for entry in log_file_list: + runtime_output.critical(entry) + sys.exit(1) + + return paths_and_names, runtime_output + + +def read_xml_information(path, xml_file_name, function_name, code_line, log_file_list): + """Read tree of XML file. + + This function reads and returns the ElementTree of the given XML file and its root. + + :param str path: Absolute path to the given XML file + :param str xml_file_name: Name of the given XML file to read + :param str function_name: Name of the function that called 'read_xml_information' + :param int code_line: Code line number of function that called 'read_xml_information' in 1 + :param list log_file_list: Strings of workflow log file from caller function and added strings from this function + :raises OSError: Error if XML file cannot be opened + :returns: + - ElementTree xml_tree: ElementTree of given XML file + - ElementTree root_of_xml_tree: Root of ElementTree of given XML file + - list log_file_list: List with log file entries + - bool error_flag: Flag if error occurs (error: True, no error: False) + """ + + # Initialize local parameters. + xml_tree = None + error_flag = False + root_of_xml_tree = None + # Initialize element tree with content of file and return root element (if given). + try: + # Attempt to create an ElementTree and get the root element from the XML file. + xml_tree = ET.ElementTree(file=path) + root_of_xml_tree = xml_tree.getroot() + # Exception handling for operating system (OS) error. + except OSError: + # Handle an error if the XML file cannot be opened. Print an error message and log it to a log file. + log_file_list.append('Error in file "' + function_name + '.py" (line ' + str(code_line + 2) + ') \n' + ' ' + 'The "' + xml_file_name + + '.xml" file could not be opened. \n' + ' ' + 'Program aborted!') + + error_flag = True + + return xml_tree, root_of_xml_tree, log_file_list, error_flag + + +def read_routing_values_from_xml(input_dict, root_of_aircraft_exchange_tree, root_of_module_configuration_tree, + runtime_output, module_configuration_tmp_path=None): + """Read routing values from XML file. + + This function reads and extracts routing values from an XML file based on the provided input dictionary and + ElementTrees. + + The output dictionary 'return_dict' contains the following values: + - 'layer_1': First routing layer (str) + - 'layer_2': Second routing layer (str) + - 'layer_3': Third routing layer (str) + - 'user_layer': User layer (own code is implemented on this layer) (str) + - 'tool_level': Tool level of current tool (str) + + :param dict input_dict: Input dictionary containing layer descriptions + :param ElementTree root_of_aircraft_exchange_tree: Root of aircraft exchange XML + :param ElementTree root_of_module_configuration_tree: Root of module configuration XML + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :param string module_configuration_tmp_path: Optional parameter for routing layer paths with ID - defaults to None + :raises AttributeError: Error if the "own_tool_level" node does not exist + :return dict return_dict: Output dictionary containing layer information + """ + + # Read lists with n entries from XML file (n equals number of layers). + return_dict = input_dict + element_exists = True + # Iterate over keys from input dict. + for key in input_dict: + # Check, if 'key' contains information to be read from file. + if input_dict[key][0] is not None: + # Generate absolute and relative paths to parameter (key). + absolute_path_to_parameter = input_dict[key][0] + relative_path_to_parameter = './' + absolute_path_to_parameter.split('/', 1)[1] + # Extract first part of path string (equals file type: 'aircraft_exchange_file' or + # 'module_configuration_file'). + file_type = absolute_path_to_parameter.split('/')[0] + if file_type == 'aircraft_exchange_file': + root_of_tree = root_of_aircraft_exchange_tree + else: + root_of_tree = root_of_module_configuration_tree + # Check if element (path) exists. + tmp = root_of_tree.findall(relative_path_to_parameter) + if tmp is None: + element_exists = False + # Set value of parameter if element given. + if element_exists: + # Only on element of layer value exist -> no ID element in the path for the routing layer node. + if len(tmp) == 1: + return_dict[key] = tmp[0].text + # At least 2 elements with the same routing layer exist -> ID element in the path for the routing layer. + # Check if the optional parameter "module_configuration_tmp_path" is not None + # -> if true: -> prepare relative path to routing layer node with ID from routing layer 1. + elif module_configuration_tmp_path is not None: + if module_configuration_tmp_path[-1] == '/': + module_configuration_tmp_path = module_configuration_tmp_path[:-1] + module_configuration_tmp_path = './' + module_configuration_tmp_path.split('/', 1)[1] + relative_path_to_parameter = relative_path_to_parameter.split(module_configuration_tmp_path)[-1] + id_path = module_configuration_tmp_path + '[@ID="' + next(iter(return_dict.values())) + '"]/' \ + + relative_path_to_parameter + return_dict[key] = root_of_tree.find(id_path).text + # At least 2 elements with the same routing layer exist but no optional paramter is given + # -> raise an error and abort program. + else: + runtime_output.critical('Error: At least there are two possible parameter nodes for the routing layer. \n' #noPep8 e501 + ' Please call the function "read_routing_values_from_xml" with the optional parameter as described in "datapreprocessing.py".\n' + ' Program abortet!') + sys.exit(1) + + # Set value of parameter to 'None' if not given. + else: + return_dict[key] = None + # If 'key' is None, write 'None' into 'return_dict'. + else: + return_dict[key] = None + + # Add tool level to return dictionary. + try: + return_dict['tool_level'] = root_of_module_configuration_tree.find('./control_settings/own_tool_level/value').text + except AttributeError as e: + # Attach both handlers to the root logger + runtime_output.critical('Error: ' + str(e) + ' \n' + + ' ' + + 'Node "own_tool_level" not found in module configuration file. \n' + + ' ' + 'Program aborted!') + sys.exit(1) + + return return_dict + + +def read_values_from_xml_file(input_dict, root_of_xml_file, runtime_output): + """Read values from XML file. + + This function extracts specific values from a XML file, including the parameter's value, lower boundary, and upper + boundary, based on the information provided in the 'input_dict'. It processes the XML structure of the file and + constructs an output dictionary with the extracted values. + + The data of the output dictionary 'return_dict' are structured according to the following scheme: + return_dict = {'parameter_name_1': [path, expected data type, bool for parameter with ID, parameter name, + value, lower boundary, upper boundary], + 'parameter_name_2': [...], + ...} + + :param dict input_dict: Input dictionary with information on values to read from XML file + :param ElementTree root_of_xml_file: Root of XML tree + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :raises ValueError: Raised if parameter does not exist in node + :return dict return_dict: Dictionary containing parameter from XML file + """ + + # Initialization. + id_tag = str() + cleaned_string = str() + key_list_to_delete = [] + return_dict = input_dict + parameter_list = ['value', 'lower_boundary', 'upper_boundary'] + file_type = root_of_xml_file._root.tag.replace('_', ' ') + # Extraction of values from the XML file. + try: + # Iterate over every parameter in 'input_dict'. + for key in input_dict: + tmp_dict = {} + # Find corresponding node in 'root_of_xml_file'. + if '[@ID="0"]' in input_dict[key][0] or '[@id="0"]' in input_dict[key][0] \ + or '[@UID="0"]' in input_dict[key][0] or '[@uid="0"]' in input_dict[key][0]: + if '[@ID="0"]' in input_dict[key][0]: + cleaned_string = re.sub(r'\[@ID="0"\]', '', input_dict[key][0]) + id_count = len(re.findall(r'\[@ID="0"\]', input_dict[key][0])) + id_tag = '@ID="0"' + id_naming = '@ID=' + elif '[@id="0"]' in input_dict[key][0]: + cleaned_string = re.sub(r'\[@id="0"\]', '', input_dict[key][0]) + id_count = len(re.findall(r'\[@id="0"\]', input_dict[key][0])) + id_tag = '@id="0"' + id_naming = '@id=' + elif '[@UID="0"]' in input_dict[key][0]: + cleaned_string = re.sub(r'\[@UID="0"\]', '', input_dict[key][0]) + id_count = len(re.findall(r'\[@UID="0"\]', input_dict[key][0])) + id_tag = '@UID="0"' + id_naming = '@UID=' + elif '[@uid="0"]' in input_dict[key][0]: + cleaned_string = re.sub(r'\[@uid="0"\]', '', input_dict[key][0]) + id_count = len(re.findall(r'\[@uid="0"\]', input_dict[key][0])) + id_tag = '@uid="0"' + id_naming = '@uid=' + + # Extract the number of existing end nodes in the aircraft exchange file of current parameter. + key_id_list = root_of_xml_file.findall(cleaned_string) + + # Check if at least one end node is existing. + # -> if true: -> generate all xml paths to the existing end nodes + key_list_to_delete.append(key) + if len(key_id_list) > 0: + indexes_of_ids = [] + index = input_dict[key][0].find(id_tag) + # Loop through the entire input xml path to get ID identifier indexes. + while index != -1: + indexes_of_ids.append(index) + index = input_dict[key][0].find(id_tag, index + 1) + indexes_of_ids = [x - 1 for x in indexes_of_ids] + + string_part_list = [] + test_string_list = [] + # Loop across the number of indexes to split the input xml path in separate parts. + i = [] + for i in range(0, len(indexes_of_ids)): + string_part = cleaned_string[:indexes_of_ids[i] - i * (len(id_tag) + 2)] + if i == 0: + string_part_list.append(input_dict[key][0][:(indexes_of_ids[i] + len(id_tag) + 2)]) + else: + string_part_list.append( + input_dict[key][0][indexes_of_ids[i-1] + (len(id_tag) + 2):indexes_of_ids[i] + + (len(id_tag) + 2)]) + tmp_list = [string_part, len(root_of_xml_file.findall(string_part))] + test_string_list.append(tmp_list) + + # Add the xml path part behind the last ID identifier to string part list. + string_part_list.append(input_dict[key][0][(indexes_of_ids[i] + len(id_tag) + 2):]) + + # Generate ID list of one single parent node with all possible child nodes to target parameter. + number_of_fist_elements = test_string_list[0][1] + id_list = [int(test_string_list[0][1] / number_of_fist_elements) - 1] + for j in range(1, len(test_string_list)): + id_list.append(int(test_string_list[j][1] / test_string_list[j-1][1]) - 1) + + # Loop across all possible nodes to generate all xml-paths to the end node of current parameter. + loop_count = 0 + parameter_path_list = [] + for i in range(len(id_list)-1, -1, -1): + dummy_list = [] + # Check if current loop is the first -> if true: -> generate initial xml path elements. + if i == len(id_list)-1: + # Initialize all possible end node IDs of current parameter for the ID="0" parent root. + for j in range(0, id_list[i] + 1): + part_with_id =( + string_part_list[i][:string_part_list[i].find(id_tag) + + len(id_naming)] + '"' + str(j) + '"]') + dummy_list.append(part_with_id + string_part_list[i+1]) + else: + for j in range(0, id_list[i] + 1): + part_with_id =( + string_part_list[i][:string_part_list[i].find(id_tag) + + len(id_naming)] + '"' + str(j) + '"]') + for k in range(0, len(parameter_path_list[loop_count-1])): + dummy_list.append(part_with_id + parameter_path_list[loop_count-1][k]) + + parameter_path_list.append(dummy_list) + loop_count += 1 + + # Convert final parameter path lists of list to on final paths list. + if isinstance(parameter_path_list, list): + parameter_path_list = parameter_path_list[-1] + else: + parameter_path_list = [parameter_path_list] + + # Check if more than one parent root node of parameter exists. + # -> if true: -> add all remaining xml paths to parameter path list + if number_of_fist_elements > 1: + first_part = parameter_path_list[0][:(indexes_of_ids[0] + len(id_naming) + 1)] + for i in range(1, number_of_fist_elements): + for j in range(0, len(parameter_path_list)): + parameter_path_list.append(first_part + '"' + str(i) + '"' + parameter_path_list[j][(indexes_of_ids[0] + len(id_tag) + 1):]) # noPep8 e501 + + # Generate temporary dictionary with names, xml paths and expected data type. + for i in range(0, len(parameter_path_list)): + numerical_values = re.findall(r'@ID="(\d+)"', parameter_path_list[i]) + numerical_string = ['_ID' + str(value) for value in numerical_values] + numerical_string = key + ''.join(numerical_string) + tmp_dict[numerical_string] = [parameter_path_list[i], input_dict[key][1], True, key] + + # Else condition: no one end node of current key is existing in the aircraft exchange file. + else: + numerical_values = re.findall(r'@ID="(\d+)"', input_dict[key][0]) + numerical_string = ['_ID' + str(value) for value in numerical_values] + numerical_string = key + ''.join(numerical_string) + tmp_dict[numerical_string] = [input_dict[key][0], input_dict[key][1], True, key] + + # Else condition: The string of the xml path of current key, contains no ID identifier. + else: + tmp_dict[key] = [input_dict[key][0], input_dict[key][1], False, key] + + # Update return dict. + return_dict = {**return_dict, **tmp_dict} + # Loop across all temporary key elements to read the responding values from the element tree. + for tmp_key, value in tmp_dict.items(): + # Try to find temporary element from xml-tree. + tmp = root_of_xml_file.find(tmp_dict[tmp_key][0]) + + # Initialize 'value', 'lower_boundary', and 'upper_boundary' of value with 'None' if node does not exist + if tmp is None or tmp_dict[tmp_key][1] is None: + if tmp_dict[tmp_key][2]: + return_dict[tmp_key] = [tmp_dict[tmp_key][0], tmp_dict[tmp_key][1], True, tmp_dict[tmp_key][3], + None, None, None] + else: + return_dict[tmp_key] = [tmp_dict[tmp_key][0], tmp_dict[tmp_key][1], False, tmp_dict[tmp_key][3], + None, None, None] + runtime_output.info('Attention: Node "' + tmp_dict[tmp_key][0] + '" not found in ' + file_type + + '. Value, lower, and upper boundary initialized with "None".') + if not tmp is None and tmp_dict[tmp_key][1] is None: + return_dict[tmp_key][1] = bool + return_dict[tmp_key][4] = 'True' + elif tmp_dict[tmp_key][1] is None: + return_dict[tmp_key][1] = bool + return_dict[tmp_key][4] = 'False' + elif tmp_dict[tmp_key][1] == 'tool_level': + tmp_parameter = root_of_xml_file.find(tmp_dict[tmp_key][0]) + if tmp_parameter is not None: + return_dict[tmp_key] += [tmp_parameter.attrib['tool_level']] + else: + # Check existence of every parameter in 'parameter_list' and append text if given and 'None' if not. + for parameter in parameter_list: + parameter_exists = True + # Append parameter to path and check existence. + tmp_parameter = root_of_xml_file.find(tmp_dict[tmp_key][0] + '/' + parameter) + # Raise error if parameter 'value' does not exist in current node. + if parameter == 'value' and tmp_parameter is None: + parameter_exists = False + raise ValueError('Node "' + tmp_dict[tmp_key][0] + '/' + parameter + '" not found in ' + + file_type + '. Program aborted!') + # Set 'parameter_exists' to 'False' if 'lower_boundary' or 'upper_boundary' missing, print warning. + elif tmp_parameter is None: + parameter_exists = False + runtime_output.info('Attention: Node "' + tmp_dict[tmp_key][0] + '/' + parameter + + '" not found in ' + file_type + '.') + # Append parameter text if existing (equals value of parameter). + if parameter_exists: + return_dict[tmp_key] += [tmp_parameter.text] + # Append 'None' to 'return_dict' if parameter does not exist, print a warning. + else: + return_dict[tmp_key] += [None] + runtime_output.info('Attention: No "' + parameter + '" defined for "' + tmp_key + + '". Set to "None" instead.') + + for key in key_list_to_delete: + del return_dict[key] + + # Exception handling for ValueError. + except ValueError as e: + runtime_output.critical('Error:' + str(e)) + sys.exit(1) + + return return_dict + + +def convert_string_to_expected_data_type(input_value, expected_data_type, variable_name, runtime_output): + """This function converts a string to a desired data type. + + This function converts an input string to the given data type (if valid). Valid data types are + - int (integer), + - float, + - str (string), and + - bool. + The function enforces two conditions for a successful conversion: + 1) Valid expected data type: If the data type is invalid, the function returns 'None' for the return value and + raises an error. + 2) The input value must not be 'None': This is particularly important when converting the limit values, as they + may not exist and thus be read out as 'None' from the configuration file. + If a value is convertible, the conversion is executed in dependence of the data type. If conversion is not + possible, a ValueError is raised. + + :param str input_value: Input value + :param <class 'type'> expected_data_type: Expected data type + :param str variable_name: Name of the input variable + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :raises ValueError: Error if value cannot be converted to expected data type + :return int/float/str/bool converted_value: Input value converted to expected data type + """ + + # Initialize output parameter (only changed if valid conversion possible). + converted_value = None + # Define expected data type and check if it is valid. + expected_class_int = str(expected_data_type) == "<class 'int'>" + expected_class_float = str(expected_data_type) == "<class 'float'>" + expected_class_str = str(expected_data_type) == "<class 'str'>" + expected_class_bool = str(expected_data_type) == "<class 'bool'>" + valid_expected_data_type = ( + expected_class_int or expected_class_float or expected_class_str or expected_class_bool) + # If 'bool' expected, the following inputs are accepted as true/false. + dict_bool_true = {'True': True, 'true': True, '1': True, '1.0': True} + dict_bool_false = {'False': False, 'false': False, '0': False, '0.0': False} + + # Check if input value is of class 'NoneType'. + input_of_class_none_type = (input_value is None) or (input_value == 'None') + + # If valid data type and value is not 'None'. + if valid_expected_data_type and not input_of_class_none_type: + # If expected data type is of "<class 'int'>". + if expected_class_int: + # Check if value is of type 'int' (could subsequently be converted to 'int'). + try: + converted_value = expected_data_type(input_value) + # Otherwise value is not of type 'int'. + except ValueError: + # Check if value is of type 'float' (could subsequently be converted to 'float' and 'int'). + try: + converted_value = expected_data_type(float(input_value)) + runtime_output.info("Attention: Expected data type was 'int' but input value was of type 'float'." + "The value was first converted to a float value and then to an int." + "Decimal places are lost in the process.") + # Value error (value not of type 'int' or 'float'). + except ValueError: + runtime_output.info( + ("Attention: Expected data type was 'int' but input value was neither of type 'int' " + "nor 'float'. Value conversion not possible for parameter '" + variable_name + "'.")) + # If expected data type is of "<class 'float'>". + if expected_class_float: + # Check if value can be converted to 'float' (means value is of type 'int' or 'float'). + try: + converted_value = expected_data_type(input_value) + # Handle exception if value is not of type 'int' or 'float'. + except ValueError: + runtime_output.info( + ("Attention: Expected data type was 'float', but the input value seems to be of type string " + "or bool. Value conversion not possible for parameter '" + variable_name + "'.")) + # If expected data type is of "<class 'str'>". + if expected_class_str: + converted_value = input_value + # If expected data type is of "<class 'bool'>". + if expected_class_bool: + # Check if input is a valid expression for 'True'. + if dict_bool_true.get(input_value): + converted_value = True + # Check if input is a valid expression for 'False'. + elif dict_bool_false.get(input_value): + converted_value = False + # Input does not contain a valid expression for boolean values. + else: + runtime_output.info( + ("Attention: Expected data type was 'bool', " + "but input does not seems to contain valid expressions for boolean values." + "Value conversion not possible for parameter '" + variable_name + "'.")) + # No valid data type or value is 'None' (often the case if no default values provided in configuration file). + else: + runtime_output.info("Attention: Invalid data type or input value is 'None' (" + variable_name + ").") + + return converted_value + + +def check_boundaries(parameter_name, input_value, runtime_output, lower_boundary=None, upper_boundary=None): + """Verify that a value is within specified limits. + + This function checks whether a given input value falls within specified boundaries (lower and upper limits). It is + designed to handle values of different data types, including int, float, str, and bool. It raises errors or + warnings when the input does not meet the expected criteria. + + :param str parameter_name: Name of the parameter + :param int/float/str/bool input_value: Value of the parameter + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :param int/float/str/bool lower_boundary: Lower boundary (parameter value must be greater), defaults to None + :param int/float/str/bool upper_boundary: Upper boundary (parameter value must be smaller), defaults to None + :raises ValueError: Error if parameter value is outside the specified boundaries + :return int/float/str/bool checked_value: Checked input value + """ + + # Initialize local parameter. + checked_value = input_value + + # Check if boundary check possible (Value of type 'int'/'float'?). + if isinstance(input_value, bool): + boundary_check_possible = False + else: + boundary_check_possible = isinstance(input_value, (int, float)) + # Check if boundaries are given. + boundaries_given = (lower_boundary is not None and upper_boundary is not None) + + # Perform boundary checks. + try: + # If value is of data type that allows boundary check. + if boundary_check_possible: + # If both boundaries are given. + if boundaries_given: + # Check if given input value lower than given lower boundary. Raise error if true. + if input_value < lower_boundary: + user_value_error_string = ('The parameter "' + parameter_name + + '" is lower than the expected lower boundary (' + + str(lower_boundary) + '). Program aborted!') + raise ValueError(user_value_error_string) + # Check if given input value higher than given upper boundary. Raise error if true. + elif input_value > upper_boundary: + user_value_error_string = ('The parameter "' + parameter_name + + '" is higher than the expected upper boundary (' + + str(upper_boundary) + '). Program aborted!') + raise ValueError(user_value_error_string) + # Raise error if no boundaries given but required. + else: + user_value_error_string = ('The data type "' + str(type(input_value)) + + ') of the given input parameter "' + parameter_name + + '" requires lower and upper boundaries. Program aborted!') + raise ValueError(user_value_error_string) + # Input value is not of a valid data type for boundary checking. + else: + runtime_output.info( + ('Attention: The data type of the given input parameter "' + parameter_name + + '" (' + str(type(input_value)) + + ') is not of type int or float. Therefore no boundaries were checked.')) + # Exception handling if values outside the limits or no boundaries given. + except ValueError as e: + runtime_output.critical('Error: ' + str(e)) + sys.exit(1) + + return checked_value diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runmodule.py b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runmodule.py new file mode 100644 index 0000000000000000000000000000000000000000..fc23a699930513eeb63642769927507748877750 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runmodule.py @@ -0,0 +1,54 @@ +"""Module providing run function of calculation method.""" +# Import standard modules. +import sys +import importlib +from datapreprocessingmodule import method_data_preprocessing + + +def run_module(paths_and_names, routing_dict, runtime_output): + """Conduct Python module. + + This function performs any UNICADO Python module. The process involves the following steps: + (1) Method-specific preprocessing: The prerequisite for any UNICADO Python module is the acquisition of data + from corresponding exchange files. These include the aircraft exchange and the module configuration file. This + data preprocessing is crucial as it prepares the input data for the calculation method. The obtained data are + stored in the two dictionaries 'aircraft_exchange_dict' and 'module_configuration_dict'. + (2) Run calculation method: Depending on the user layer specified in the routing parameters, the function calls + the appropriate calculation function. The selected function is dynamically imported and executed. + The output dictionary 'run_output_dict' contains the result of the UNICADO Python module and is structured according + to the following scheme: + run_output_dict = {'parameter_name_1': value, ...} + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :param dict routing_dict: Dictionary containing routing parameters + :param logging.Logger runtime_output: Logging object used for capturing log messages in the module + :raises ModuleNotFoundError: Raised if module cannot be imported + :return dict run_output_dict: Dictionary containing results of module execution + """ + + """Method specific preprocessing: Acquire necessary data.""" + # Run 'method_data_preprocessing' from 'datapreprocessingmodule'. + aircraft_exchange_dict, module_configuration_dict = method_data_preprocessing(paths_and_names, routing_dict, runtime_output) + + """Run: Execute code depending on user layer.""" + # Prepare strings for dynamic imports of calculation functions. The 'import_command_method_user_layer' is build + # according to the following scheme: + # 'src.[value of layer_1].[value of layer_2].[value of layer_3].[value of user layer].method[value of user layer]' + # The 'function_name' is generated according to the following scheme: + # 'method_[value of user layer]' + import_command_method_user_layer = (routing_dict['module_import_name'] + '.' + routing_dict['user_layer'] + + '.method' + routing_dict['user_layer'].replace('_', '')) + function_name = 'method_' + routing_dict['user_layer'] + # Import calculation module. + try: + module = importlib.import_module(import_command_method_user_layer) + # Call function depending on routing parameters. + run_output_dict = getattr(module, function_name)(paths_and_names, routing_dict, aircraft_exchange_dict, + module_configuration_dict, runtime_output) + # Exception handling for module import error. + except ModuleNotFoundError as module_import_error: + runtime_output.critical('Error: ' + str(module_import_error) + ' found in ' + routing_dict['module_name'] + '\n' + + ' ' + 'Program aborted!') + sys.exit(1) + + return run_output_dict diff --git a/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py new file mode 100644 index 0000000000000000000000000000000000000000..9589d0b83f321a6f548bede60525fbff9c0c6087 --- /dev/null +++ b/docs/get-involved/modularization/python-template/AircraftDesign/unicado_python_library/pymodulepackage/src/runtimeoutputmodule.py @@ -0,0 +1,123 @@ +"""Module configuring the runtime output.""" +# Import standard modules. +import sys +import logging + + +def configure_runtime_output(paths_and_names): + """ Initialize logging handler for console prints and log file writing, provide runtime_output instance. + + [Add some text here...] + + :param dict paths_and_names: Dictionary containing system paths and ElementTrees + :raises AttributeError: ... + :return: + """ + # Define a new log level 'PRINT' with a value of 35. + PRINT = 35 + logging.addLevelName(PRINT, "PRINT") + + # Create a custom log level class by subclassing logging.Filter. + class PrintoutFilter(logging.Filter): + def filter(self, record): + return record.levelno == PRINT + + # Attach the custom filter to the 'root_logger'. + root_logger = logging.getLogger() + root_logger.addFilter(PrintoutFilter()) + + # Add a custom method to the logger. + def printout(self, message, *args, **kwargs): + """ + :param self: + :param message: + :param args: + :param kwargs: + :return: + """ + if self.isEnabledFor(PRINT): + self._log(PRINT, message, args, **kwargs) + + # Attach the custom method to the logger. + logging.Logger.print = printout + + # Set the logging level for the root logger. + root_logger.setLevel(logging.DEBUG) + + """Genereate log file handler and initialze.""" + # Create a file handler with the desired file name and format. + log_file_name = paths_and_names['working_directory'] + '/' + paths_and_names['tool_name'] + '.log' + log_format = '%(asctime)s - %(levelname)s - %(message)s' + file_handler = logging.FileHandler(log_file_name) + file_handler.setFormatter(logging.Formatter(log_format)) + + """Genereate console handler and initialze.""" + # Create a stream handler to output log messages to the console. + console_format = '%(asctime)s - %(levelname)s - %(message)s' + console_handler = logging.StreamHandler() + console_handler.setFormatter(logging.Formatter(console_format)) + + """Set log file handler level to selected mode from module configuration file.""" + # Extract 'log_file_output' from 'root_of_module_config_tree'. + try: + log_file_mode = paths_and_names['root_of_module_config_tree'].find('.//log_file_output/value').text + except AttributeError as e: + # Attach both handlers to the 'root_logger'. + root_logger.addHandler(file_handler) + root_logger.addHandler(console_handler) + logger = logging.getLogger('module_logger') + logger.critical('Error: ' + str(e) + ' \n' + + ' ' + + 'Node "log_file_output" not found in module configuration file. \n' + + ' ' + 'Program aborted!') + sys.exit(1) + + match log_file_mode: + # Only 'CRITICAL' logs displayed. + case 'mode_0': + file_handler.setLevel(logging.CRITICAL) + # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', and 'WARNING' displayed. + case 'mode_1': + file_handler.setLevel(logging.WARNING) + # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', and 'INFO' displayed. + case 'mode_2': + file_handler.setLevel(logging.INFO) + # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', 'INFO', and 'DEBUG' displayed. + case 'mode_3': + file_handler.setLevel(logging.DEBUG) + + """Set console handler level to selected mode from module configuration file.""" + # Extract 'console_output' from 'root_of_module_config_tree'. + try: + console_output = paths_and_names['root_of_module_config_tree'].find('.//console_output/value').text + except AttributeError as e: + # Attach both handlers to the 'root_logger'. + root_logger.addHandler(file_handler) + root_logger.addHandler(console_handler) + logger = logging.getLogger('module_logger') + logger.critical('Error: ' + str(e) + ' \n' + + ' ' + + 'Node "console_output" not found in module configuration file. \n' + + ' ' + 'Program aborted!') + sys.exit(1) + + match console_output: + # Only 'CRITICAL' logs displayed. + case 'mode_0': + console_handler.setLevel(logging.CRITICAL) + # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', and 'WARNING' displayed. + case 'mode_1': + console_handler.setLevel(logging.WARNING) + # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', and 'INFO' displayed. + case 'mode_2': + console_handler.setLevel(logging.INFO) + # Logs of type 'CRITICAL', 'ERROR', 'PRINTOUT', 'WARNING', 'INFO', and 'DEBUG' displayed. + case 'mode_3': + console_handler.setLevel(logging.DEBUG) + + # Disable colorization for the console handler. + console_handler.setStream(stream=sys.stdout) + + # Attach both handlers to the 'root_logger'. + root_logger.addHandler(file_handler) + root_logger.addHandler(console_handler) diff --git a/docs/get-involved/style/cpp.md b/docs/get-involved/style/cpp.md index b84f6bfaef5e942d34bd3563d7865b06826d8fa6..11c3365bce06931c5a83864d0b90cf810243bfd8 100644 --- a/docs/get-involved/style/cpp.md +++ b/docs/get-involved/style/cpp.md @@ -181,8 +181,6 @@ auto value = get_value(); // type ist not readable - Use only spaces, 4 spaces for an indentation. - IDE can be set to output spaces at "TAB". -:fontawesome-solid-arrow-right: For a more detailed description of settings see Wiki article on [Linter Setup](). - == Function Declarations and Definitions == - Return type and function name in one line. - Parameter in the same line if it does not match: Parameters in several lines diff --git a/docs/get-involved/testing.md b/docs/get-involved/testing.md index a66513f56036acdfc596b0fff0bcbbf6d051041b..30d9bcab8a92949ad36f9c37f74dade5b8fccb3d 100644 --- a/docs/get-involved/testing.md +++ b/docs/get-involved/testing.md @@ -15,7 +15,7 @@ _"Software is well known for low reliability and lack of trustworthiness."_ As m - **Integration testing**: This concerns verifying the interactions and interfaces between different modules to ensure they work together seamlessly and produce the expected results when integrated. - **System testing**: This level checks if the complete, integrated system actually fulfills its specified requirements. -!!! note +!!! note For more background information, it is referred to the publications "UNICADO Software Maintenance, Revision, and Management in a Distributed Collaboration" and "Test Automation for Increased Robustness Within the Conceptual Aircraft Design with UNICADO" (will be linked as soon as they are public) These testing guidelines gives an overview how we integrated that in UNICADO. Generally, it can be split into 2 aspects: @@ -25,16 +25,16 @@ These testing guidelines gives an overview how we integrated that in UNICADO. Ge ### Manual testing {#manual} -As you might have seen in the [C++ build instructions](../get-involved/build/cpp.md), there exist 2 flags to configure and build tests, so we can do: +As you might have seen in the [C++ build instructions](build-instructions/build/cpp.md), there exist 2 flags to configure and build tests, so we can do: -- module/blackbox tests or +- module/blackbox tests or - unit tests. #### Blackbox tests -A blackbox test runs a complete module with different test cases and then checks whether a specific result is calculated or set compared to expected values defined in a `blackBoxTestCases.xml`. This is implemented in the library [blackboxTest description](../documentation/libraries.md). +A blackbox test runs a complete module with different test cases and then checks whether a specific result is calculated or set compared to expected values defined in a `blackBoxTestCases.xml`. This is implemented in the library [blackboxTest description](../documentation/libraries/index.md). -!!! attention - This will only work if the module has a only the test suite defined which corresponds to the `aircraft_exchange_file` +!!! attention + This will only work if the module has a only the test suite defined which corresponds to the `aircraft_exchange_file` To run the test, you need to add the flag when configuring your module === "Windows" @@ -76,7 +76,7 @@ Then you can execute the test #### Unit tests These tests involve systematically checking the lowest-level component, like a function, within a module. -🔔 This is currently only implemented for the module/target **propulsionDesign**. +🔔 This is currently only implemented for the module/target **propulsionDesign**. To run the test, you need to add the flag when configuring your module === "Windows" @@ -117,7 +117,7 @@ Then you can execute the test ### Automated testing {#automated} -To reduce the workload of the developer, tests can be automated. For that, the additional software [testFramework](../documentation/additional_software.md) can be used. It can be executed manually (see [python build instruction](../get-involved/build/python.md)) or be linked to the CI/CD pipeline. The latter one ensures that it is tested before every merge request. +To reduce the workload of the developer, tests can be automated. For that, the additional software [testFramework](../documentation/additional-software.md) can be used. It can be executed manually (see [python build instruction](../get-involved/build-instructions/build/python.md)) or be linked to the CI/CD pipeline. The latter one ensures that it is tested before every merge request. !!! attention The `testFramework` is currently under construction :construction: and still needs to be linked to the CI/CD pipeline diff --git a/docs/tutorials/seperate-tool-execution.md b/docs/tutorials/seperate-tool-execution.md index c2c190b410ea7261365e263305ce8ea735afbf96..c4ebcdf4f5bf7d9cbef9f7dc3da69db8e5610aa2 100644 --- a/docs/tutorials/seperate-tool-execution.md +++ b/docs/tutorials/seperate-tool-execution.md @@ -10,7 +10,7 @@ Ensure that you have cloned the following repositories: - **Aircraft References** - aircraft reference designs - **Engines** - engine data -If you haven't yet, don't worry: just follow [these](../get-involved/get-source-code.md) instructions before continuing. +If you haven't yet, don't worry: just follow [these](../get-involved/build-instructions/get-source-code.md) instructions before continuing. Ensure, that you have checked out the same branch (e.g. `develop`) for both **Aircraft Design** and **Engines**, as they are synchronized on remote and a running couple. For testing purposes you most probably will choose the CSMR-2020 aircraft reference. Therefore, checkout the *CSMR-2020* branch from the **Aircraft References** repo. @@ -108,7 +108,7 @@ Therefore the tools can be executed based on their dependencies in the following ## Tool execution Finally we want to execute the tool. But what if we have noticed, that there are no executables in the tool folders? 🔥 -Then the executables have first to be build inside the working copy e.g. of the **Aircraft Design** repo. Please follow the [build instructions](../get-involved/build/general.md). +Then the executables have first to be build inside the working copy e.g. of the **Aircraft Design** repo. Please follow the [build instructions](../get-involved/build-instructions/build/general.md). If this is already done and an executable is present, then you can execute the respective tool from within the tool folder either on windows directly via double click or via a terminal e.g. @@ -137,6 +137,6 @@ The module throws an error? - Read the error message carefully. - "Node not existing" / "File not found" or similar: Most probably either a file is missing in your project environment or some content within an file is lacking. Double check the description of the project environment and tool dependencies. - "Can't open ...": If the file exist, make sure it is currently not used by another application. -- "ModuleNotFoundError: No Module named 'runmodule'": you try to execute a python tool which was not built correctly. Make sure to intall the python_packages before building the modudule. Go back to [build/python](../get-involved/build/python.md), follow the instruction and keep an eye on error messages during the build process. +- "ModuleNotFoundError: No Module named 'runmodule'": you try to execute a python tool which was not built correctly. Make sure to intall the python_packages before building the modudule. Go back to [build python](../get-involved/build-instructions/build/python.md), follow the instruction and keep an eye on error messages during the build process. ## Video tutorial \ No newline at end of file diff --git a/mkdocs.yml b/mkdocs.yml index 398656db1a9caf630138b7bd446a026d64ac930b..772c46ead921ec59d85565416d776c4b51c41874 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -198,6 +198,20 @@ plugins: OUTPUT_DIR: "docs/api/cost_estimation" src-dirs: ../aircraft-design/cost_estimation/src/ full-doc: true + aircraft_geometry2: + doxyfile: Doxyfile + variables: + PROJECT_NAME: "aircraft_geometry2" + OUTPUT_DIR: "docs/api/aircraft_geometry2" + src-dirs: ../aircraft-design/libs/aircraftGeometry2/src/ + full-doc: true + engine: + doxyfile: Doxyfile + variables: + PROJECT_NAME: "engine" + OUTPUT_DIR: "docs/api/engine" + src-dirs: ../aircraft-design/libs/engine/src/ + full-doc: true - glightbox # Plugin for lightbox-style image and content viewing. # === Theme configuration === @@ -302,10 +316,6 @@ nav: # Customizes the main navigation struc - Getting Started: documentation/sizing/propulsion_design/getting-started.md - Engineering Principles: documentation/sizing/propulsion_design/engineering_principles.md - Software Architecture: documentation/sizing/propulsion_design/software_architecture.md - - Tutorial: - - Main: documentation/sizing/propulsion_design/tutorial.md - - Engine Extension: documentation/sizing/propulsion_design/tutorial_engine_extension.md - - Fidelity Extension: documentation/sizing/propulsion_design/tutorial_fidelity_extension.md - Changelog: documentation/sizing/propulsion_design/changelog.md - Additional Information: documentation/sizing/propulsion_design/additional.md - API Reference: @@ -346,7 +356,7 @@ nav: # Customizes the main navigation struc - Introduction: documentation/analysis/weight_and_balance_analysis/index.md - Basic Concepts: documentation/analysis/weight_and_balance_analysis/basic-concepts.md - Usage: documentation/analysis/weight_and_balance_analysis/usage.md - # # - API Reference: # TODO define for Python + # - API Reference: # TODO define for Python - Performance Assessment: - Introduction: documentation/analysis/performance_assessment/index.md - Getting Started: documentation/analysis/performance_assessment/getting_started.md @@ -362,7 +372,7 @@ nav: # Customizes the main navigation struc - Design Method: documentation/analysis/cost_estimation/operating_cost_method.md - Run your First Estimation: documentation/analysis/cost_estimation/run_your_first_cost_estimation.md - Software Architecture: documentation/analysis/cost_estimation/software_architecture.md - # # - API Reference: # TODO define for Python + # - API Reference: # TODO define for Python - Ecological Assessment: - Introduction: documentation/analysis/ecological_assessment/index.md - Basic Concepts: documentation/analysis/ecological_assessment/basic-concepts.md @@ -397,24 +407,30 @@ nav: # Customizes the main navigation struc - aircraftGeometry2/files.md - aircraftGeometry2/functions.md - engine: - - Introduction: documentation/libraries/engine/index.md - - Utilities: documentation/additional_software.md + - Overview: + - documentation/libraries/engine/index.md + - API Reference: + - engine/classes.md + - engine/namespaces.md + - engine/files.md + - engine/functions.md + - Utilities: documentation/additional-software.md - Workflow: 'workflow.md' # Link to the workflow page. - Get Involved: - Developer Guide: get-involved/developer-installation.md # Top-level item for contributions and development. - Build Instructions: - Prerequisites: - - Windows: get-involved/build-environment/windows.md - - Linux: get-involved/build-environment/linux.md - - MacOS: get-involved/build-environment/macos.md - - MSYS2/MinGW (deprecated): get-involved/build-environment/mingw.md - - Get Source Code: get-involved/get-source-code.md + - Windows: get-involved/build-instructions/build-environment/windows.md + - Linux: get-involved/build-instructions/build-environment/linux.md + - MacOS: get-involved/build-instructions/build-environment/macos.md + - MSYS2/MinGW (deprecated): get-involved/build-instructions/build-environment/mingw.md + - Get Source Code: get-involved/build-instructions/get-source-code.md - Build: - - General: get-involved/build/general.md - - C++: get-involved/build/cpp.md - - Python: get-involved/build/python.md - - Include Libraries: get-involved/including-libraries.md - - CMake Presets: get-involved/cmake-presets.md + - General: get-involved/build-instructions/build/general.md + - C++: get-involved/build-instructions/build/cpp.md + - Python: get-involved/build-instructions/build/python.md + - CMake Presets: get-involved/build-instructions/build/cmake-presets.md + - Include Libraries: get-involved/build-instructions/build/including-libraries.md - Module Development: - Module Structure in c++: get-involved/modularization/cpp-modularization.md - Module Structure in Python: get-involved/modularization/python-modularization.md @@ -423,15 +439,15 @@ nav: # Customizes the main navigation struc - Python: get-involved/style/python.md - Testing Guidelines: get-involved/testing.md - How to Contribute: # Subsection for contribution guidelines. - - Basics: 'get-involved/contribute.md' - - Code of Conduct: 'get-involved/code-of-conduct.md' - - Merge Requests: 'get-involved/merge-request.md' - - Review Merge Requests: 'get-involved/review-merge-request.md' + - Basics: 'get-involved/how-to-contribute/contribute.md' + - Code of Conduct: 'get-involved/how-to-contribute/code-of-conduct.md' + - Merge Requests: 'get-involved/how-to-contribute/merge-request.md' + - Review Merge Requests: 'get-involved/how-to-contribute/review-merge-request.md' - Contributor Tutorial: - - Git Installation & Configuration: get-involved/contributor-tutorial/git-installation&configuration.md - - Git Installation & Configuration Video: get-involved/contributor-tutorial/videos/Git_Installation&Configuration.mp4 - - Merge Request Workflow: get-involved/contributor-tutorial/videos/Merge_Request_Workflow.mp4 - - SSH Configuration : get-involved/contributor-tutorial/videos/SSH_Configuration.mp4 + - Git Installation & Configuration: get-involved/how-to-contribute/contributor-tutorial/git-installation&configuration.md + - "Video: Git Installation & Configuration": get-involved/how-to-contribute/contributor-tutorial/videos/Git_Installation&Configuration.mp4 + - "Video: Merge Request Workflow": get-involved/how-to-contribute/contributor-tutorial/videos/Merge_Request_Workflow.mp4 + - "Video: SSH Configuration" : get-involved/how-to-contribute/contributor-tutorial/videos/SSH_Configuration.mp4 - IDE Setup: 'get-involved/ide-setup.md' - Release Package: 'get-involved/release-package.md' diff --git a/overrides/main.html b/overrides/main.html index 4223deca4225781a227c4b7c494a20ecbf9b5dd8..9cf8e8ad826eae91443c60e375d6cd9e1c4e167d 100644 --- a/overrides/main.html +++ b/overrides/main.html @@ -3,7 +3,7 @@ {% block footer %} <div class="custom-footer"> <div class="footer-content"> - <p>© 2024 UNICADO. All rights reserved.</p> + <p>© 2025 UNICADO. All rights reserved.</p> <a href="/impressum/" class="footer-link">Impressum</a> <a href="/datenschutz/" class="footer-link">Datenschutzerklärung</a> </div>