Tensor Node Notation

Nested boxtimes

Determining the order of contractions

Once we have any mode name appearing more than twice in a [x]-product, we may not simply resolve
brackets. For example for Ny, ..., N, as follows,

(Ny [X] Np)" [X] (N3 [X] Ng) # [X] (NT,NT,N3,N).

The result may be rather unintended.

n = assign mode size({'alpha', 'beta', 'gamma'}, [4,3,2]);
N1 = init node({'alpha', 'beta'},n);
N2 = init node({'beta', 'gamma'},n);
N3 = N1;
N4 = N2;
N1 = randomize node (N1)
N1l =
mode names: {'alpha' 'beta'}

pos: [1x1 struct]
data: [4x3 double]

N2 = randomize node (N2)

N2 =

mode names: {'beta' 'gamma '}
pos: [1x1 struct]
data: [3x2 double]

N3 = randomize node (N3)
N3 =
mode names: {'alpha' 'beta'}
pos: [1x1 struct]
data: [4x3 double]
N4 = randomize node (N4)
N4 =

mode names: {'beta' 'gamma '}
pos: [1x1 struct]
data: [3x2 double]

w = boxtimes (node transpose (N2),node transpose (N1),N3,N4);
w.data

ans = 0.1703

net view(node transpose (N2),node transpose (N1l),N3,N4)

151 -]

But instead of performing three single [X]-products, we can transfer the bracket structure as before to one
single boxtimes in form of nested cells. boxtimes will never call itself!

rl = boxtimes (node transpose (boxtimes (N1,N2)),boxtimes (N3,N4));
rl.data

ans = 0.0183

r2 = boxtimes (net transpose ({N1,N2}), {N3,N4});
r2.data

ans = 0.0183

net view(net transpose ({N1l,N2}), {N3,N4})

1r ' & -]
i .-1
0.5+ .
ol 5 _
3
05T T
&3
T o 92 1
-1 -0.5 0 05 1

In the following call we can see that, interestingly, the optimal order of contractions (in terms of complexity) is
not the one prescribed by the original brackets (N, [x] N,)T [x] (N5 [X] N4). So boxtimes indeed does not
call itself, but uses the nested input solely to determine contraction rules.

a = n.alpha; b = n.beta; ¢ = n.gamma;
cost as by brackets = (a*b*c) + (a*b*c) + (a*c)

cost as by brackets = 56

boxtimes (net transpose ({N1,N2}), {N3,N4}, 'mode', 'optimal show')

4r 'fUﬂ T
35 b
r - J
Doy . [, ST T
T 2 =y = g
25T b
2r $i13 Mt ! Mt otz 1
3}) 27 2y H
i5) 2 oy () 2 (7] 2 ig) 2
3 <3
15 i
1r HWHU 4
&y
1 2 3 4 5 G

Accum cost: 54, Iterations: 11

Contractions:

[1 <= 2] - 24 —> 24
[1 <= 3] - 24 —> 48
[1 <= 4] - 6 -> 54

Indices of nodes remaining: 1
ans =

mode names: {1x0 cell}
pos: [1x1 struct]
data: 0.0183

The difference is tiny for now, but points at a central idea behind tensor networks.

Scalar products between different tensor formats

This mechanic allows us to be more flexible when for example taking the scalar product between two
different tensor formats in which we used g as mode names in both cases.

load ('TT-format')
boxtimes (G)

ans =

mode names: {'alpha 1' ‘'alpha 2' ‘'alpha 3' ‘'alpha 4'}
pos: [1x1 struct]
data: [10x10x10x10 double]

load ('Tucker-format')

boxtimes (G, {C,U})

ans = struct with fields:
mode names: {1x0 cell}

pos: [1x1 struct]
data: 1.3561e-04

G{:}
ans = struct with fields:
mode names: {'alpha 1' 'beta 1'}
pos: [1x1 struct]
data: [10x2 double]
ans = struct with fields:
mode names: {'beta 1' ‘'alpha 2' ‘'beta 2'}
pos: [1x1 struct]
data: [2x10x2 double]
ans = struct with fields:
mode names: {'beta 2' ‘'alpha 3' ‘'beta 3'}
pos: [1x1 struct]
data: [2x10x2 double]
ans = struct with fields:
mode names: {'beta 3' ‘'alpha 4'}

pos: [1x1 struct]
data: [2x10 double]

net view (G, {C,U}) % node numbers for G: 1-4, C: 5, U:

15

Here, the order of contractions is crucial. If we would first evaluate [x](G), then let alone the resulting
tensor has size 1000. However, the optimal order of multiplication just requires an order of complexity
of 308 (calculated classically) and might not be the order of contractions one expects at a first glance.

node size (G)

ans =
alpha 1: 10
alpha 2: 10
alpha 3: 10
alpha 4: 10

beta 1: 2
beta 2: 2
beta 3: 2

node size (C)

ans =

beta 1:
beta 2:
beta 3:
beta 4:

NN NN

boxtimes (G, {C,U}, 'mode', 'optimal show')

Accum cost: 308, Iterations: 215

Contractions:
[3 <- 8] - 80 —-> 80
[2 <= 7] - 80 —-> 160

[4 <= 9] - 40 -> 200
[1 <= 6] - 40 -> 240
[3 <- 4] - 16 —> 256
[3 <- 5] - 32 —> 288
[2 <= 3] - 16 —> 304
[1 <- 2] - 4 -> 308
Indices of nodes remaining: 1
ans =
mode names: {1x0 cell}
pos: [1x1 struct]
data: 1.3561e-04

boxtimes (boxtimes (G) ,boxtimes (C,U), 'mode', 'optimal show')

2r i, 1

.'!l':rl
Az 5

i i i i i i IC\SI": i i

0 02 0.4 0.6 0.8 1 12 14 16 18 2

Accum cost: 10000, Iterations: 2

Contractions:
[1 <= 2] - 10000 —> 10000
Indices of nodes remaining: 1
ans =
mode names: {1x0 cell}
pos: [1x1 struct]
data: 1.3561e-04

Boxtimes memory

Once this order of computations is found, we may of course reuse this insight for the next analogous
multiplication.

activate boxtimes mem ()
clear boxtimes mem{()

tic
boxtimes (G, {C,U}, 'mode', 'optimal') ;
toc

Elapsed time is 0.308307 seconds.

Once the boxtimes memory is activated, the required cpu time may reduce considerably:
tic

boxtimes (G, {C,U}, 'mode"', 'optimal') ;
toc

Elapsed time is 0.033543 seconds.

The memory of boxtimes is smart, but does not overthink, since its main purpose is to avoid repeated
calculations in loops:

So while it realizes that changing the order of mode names in the single node Cdoes not change it (since it
has no dublicate mode names)...

CT = node transpose (C)

CT =
mode names: {'beta 4' ‘'beta 3' 'beta 2' ‘'beta 1'}
pos: [1x1 struct]
data: [2x2x2x2 double]
tic
boxtimes (G, {CT,U}, 'mode"', 'optimal') ;
toc

Elapsed time is 0.008410 seconds.

...it does not realize that transposing {C,U} makes no difference either.

{C,U}

ans

{1x1 struct} {1x4 cell}

CUT = net transpose ({C,U})

CUT =
{1x4 cell} {1x1 struct}
tic
boxtimes (CUT, G, 'mode"', 'optimal') ;
toc

Elapsed time is 0.216938 seconds.

deactivate boxtimes mem/()

