
Tensor Node Notation

Multiplication of Nodes

Product of two nodes

The -product is used to multiply two or several nodes and is the central tool of this toolbox. There are
several functionalities build into the command boxtimes, of which the simplest one is the multiplication of
two nodes. In the subsequent parts, we will demonstrate the rules which boxtimes follows depending on
the mode names of nodes.

We first fix mode sizes and mode names:

alpha = mna('alpha',1:3)

alpha = 1×3 cell array

 {'alpha_1'} {'alpha_2'} {'alpha_3'}

beta = mna('beta',1:3)

beta = 1×3 cell array

 {'beta_1'} {'beta_2'} {'beta_3'}

n_alpha = assign_mode_size(alpha,[10,20,30])

n_alpha = struct with fields:

 alpha_1: 10
 alpha_2: 20
 alpha_3: 30

n_beta = assign_mode_size(beta,[2,3,4])

n_beta = struct with fields:

 beta_1: 2
 beta_2: 3
 beta_3: 4

n = merge_fields(n_alpha,n_beta)

n = struct with fields:

 alpha_1: 10
 alpha_2: 20
 alpha_3: 30
 beta_1: 2
 beta_2: 3
 beta_3: 4

Next, we initialize two nodes:

N1 = init_node([alpha(1),beta(1)],n)

1

N1 = struct with fields:

 mode_names: {'alpha_1' 'beta_1'}
 pos: [1×1 struct]
 data: [10×2 double]

N1 = randomize_node(N1);
N2 = init_node([beta(1),alpha(2)],n)

N2 = struct with fields:

 mode_names: {'beta_1' 'alpha_2'}
 pos: [1×1 struct]
 data: [2×20 double]

N2 = randomize_node(N2);

The multiplication of these two nodes will lead to a contraction of the common mode .

N1xN2 = boxtimes(N1,N2)

N1xN2 = struct with fields:

 mode_names: {'alpha_1' 'alpha_2'}
 pos: [1×1 struct]
 data: [10×20 double]

N2xN1 = boxtimes(N2,N1)

N2xN1 = struct with fields:

 mode_names: {'alpha_2' 'alpha_1'}
 pos: [1×1 struct]
 data: [20×10 double]

The field data in N1xN2 and N2xN1 is permuted, but as tensor nodes, they are identical. That means, if we
unfold them with the same arguments, we get the same matrix:

norm(unfold(N1xN2,alpha(1:2))-unfold(N2xN1,alpha(1:2)),'fro')

ans = 0

The upper product can be also visualized:

figure; net_view(N1,N2)

2

We can as well do the same calculation manually using unfold and fold.

A1 = unfold(N1,alpha(1),beta(1));
size(A1)

ans = 1×2
 10 2

A2 = unfold(N2,beta(1),alpha(2));
size(A2)

ans = 1×2
 2 20

A1A2 = A1*A2;
N1xN2_man = fold(A1A2,alpha(1:2),n)

N1xN2_man = struct with fields:

 mode_names: {'alpha_1' 'alpha_2'}
 pos: [1×1 struct]
 data: [10×20 double]

norm(unfold(N1xN2_man,alpha(1:2))-unfold(N1xN2,alpha(1:2)),'fro')

ans = 0

3

Mode names shared by more than one node

If more than two nodes are involved, multiplication of these will again lead to a contraction of all common
mode names.

N3 = init_node([beta(1),alpha(3)],n)

N3 = struct with fields:

 mode_names: {'beta_1' 'alpha_3'}
 pos: [1×1 struct]
 data: [2×30 double]

N1N2N3 = boxtimes(N1,N2,N3)

N1N2N3 = struct with fields:

 mode_names: {'alpha_1' 'alpha_2' 'alpha_3'}
 pos: [1×1 struct]
 data: [10×20×30 double]

figure; net_view(N1,N2,N3)

In this case, the product can not that simply be split into two multiplications.

boxtimes(boxtimes(N1,N2),N3)

ans = struct with fields:

4

 mode_names: {'alpha_1' 'alpha_2' 'beta_1' 'alpha_3'}
 pos: [1×1 struct]
 data: [10×20×2×30 double]

figure; net_view({N1,N2},N3)

So in the first multiplication, we have to tell boxtimes to keep , such that we can split

N1x_keepbeta1_N2 = boxtimes(N1,N2,'^',beta{1})

N1x_keepbeta1_N2 = struct with fields:

 mode_names: {'alpha_1' 'beta_1' 'alpha_2'}
 pos: [1×1 struct]
 data: [10×2×20 double]

figure; net_view(N1,N2,'^',beta{1})

5

This can manually be done with a for loop (the implementation uses multiprod):

A1 = unfold(N1,alpha(1),beta(1));
A2 = unfold(N2,alpha(2),beta(1));
B = zeros(n.(alpha{1}),n.(alpha{2}),n.(beta{1}));
for i = 1:n.(beta{1})
 B(:,:,i) = A1(:,i)*A2(:,i)';
end
N1x_keepbeta1_N2_ = fold(B,[alpha(1:2),beta(1)],n)

N1x_keepbeta1_N2_ = struct with fields:

 mode_names: {'alpha_1' 'alpha_2' 'beta_1'}
 pos: [1×1 struct]
 data: [10×20×2 double]

norm(unfold(N1x_keepbeta1_N2_,alpha(1:2),beta(1))-unfold(N1x_keepbeta1_N2,alpha(1:2),beta(1)))

ans = 0

The second multiplication then contracts over :

N1N2N3 = boxtimes(N1x_keepbeta1_N2,N3)

N1N2N3 = struct with fields:

 mode_names: {'alpha_1' 'alpha_2' 'alpha_3'}
 pos: [1×1 struct]

6

 data: [10×20×30 double]

figure; net_view(N1x_keepbeta1_N2,N3)

Multiplication of several nodes

These rules of contraction generalize to multiplications of any finite number of nodes. A contraction of two
nodes can then both involve a contraction over one mode name and keeping another mode name.

n

n = struct with fields:

 alpha_1: 10
 alpha_2: 20
 alpha_3: 30
 beta_1: 2
 beta_2: 3
 beta_3: 4

N = cell(1,4);
N{1} = init_node([alpha(1),beta(1),beta(3)],n);
N{2} = init_node([alpha(2),beta(1),beta(2)],n);
N{3} = init_node([alpha(3),beta(2),beta(3)],n);
N{4} = init_node(beta(1:3),n);
N = randomize_net(N);
net_view(N)

7

boxtimes(N)

ans = struct with fields:

 mode_names: {'alpha_1' 'alpha_2' 'alpha_3'}
 pos: [1×1 struct]
 data: [10×20×30 double]

*(Order of contractions)

At this point, the question amounts in which order these nodes should be contracted. boxtimes will by
default follow a certain greedy strategy to try to keep the total computational complexity of all required
multiplication as low as possible. However, this strategy is not optimal in general. We can force boxtimes to
find the optimal order of multiplications, but this may require a large amount of computation itself if many
nodes are multiplied. In neither case will boxtimes account for specific patterns in the to be contracted
network, as we could for example exploit in a matrix multiplication such as . If desired, this has to
be done manually.

Once boxtimes has found an order of contractions for a certain network structure, it will save this strategy
for later if this functionality is activated (more on that topic will follow).

First, the default strategy:

prodN = boxtimes(N,'mode','show') % same as boxtimes(N) but with plot

8

Accum cost: 43920, Iterations: 4
Contractions:
[3 <- 4] - 720 -> 720
[1 <- 3] - 7200 -> 7920
[1 <- 2] - 36000 -> 43920
Indices of nodes remaining: 1

prodN = struct with fields:

 mode_names: {'alpha_1' 'alpha_2' 'alpha_3'}
 pos: [1×1 struct]
 data: [10×20×30 double]

Then the optimal strategy:

prodN = boxtimes(N,'mode','optimal_show') % same as boxtimes(N,'mode','optimal') but with plot

9

Accum cost: 43440, Iterations: 14
Contractions:
[1 <- 4] - 240 -> 240
[1 <- 3] - 7200 -> 7440
[1 <- 2] - 36000 -> 43440
Indices of nodes remaining: 1

prodN = struct with fields:

 mode_names: {'alpha_1' 'alpha_2' 'alpha_3'}
 pos: [1×1 struct]
 data: [10×20×30 double]

We can see that the accumulated cost is only slightly lower when following the optimal order, while the
results are of course the same (although the order of modes may vary). Yet, there are cases where the
difference in cost can reach multiple orders of magnitude. If we follow the optimal order of contractions, we
receive the following steps (boxtimes always contracts two nodes into the node with lower index).

N14 = boxtimes(N{1},N{4},'^',beta([1,3]))

N14 = struct with fields:

 mode_names: {'alpha_1' 'beta_1' 'beta_3' 'beta_2'}
 pos: [1×1 struct]
 data: [10×2×4×3 double]

net_view(N{1},N{4},'^',beta([1,3]))

10

N143 = boxtimes(N14,N{3},'^',beta(2))

N143 = struct with fields:

 mode_names: {'alpha_1' 'beta_1' 'beta_2' 'alpha_3'}
 pos: [1×1 struct]
 data: [10×2×3×30 double]

net_view(N14,N{3},'^',beta(2))

11

N1432 = boxtimes(N143,N{2})

N1432 = struct with fields:

 mode_names: {'alpha_1' 'alpha_3' 'alpha_2'}
 pos: [1×1 struct]
 data: [10×30×20 double]

net_view(N143,N{2})

12

We can check the result:

norm(unfold(prodN,alpha)-unfold(N1432,alpha),'fro')

ans = 0

*(Ghost nodes)

Ghost nodes are a bit of an unusual concept and might at this point be an answer to a question not yet
asked, but they may ensure that the right mode names are contracted and kept. Any multiplication in which a
ghost node appears, follows the same rules of contractions as if all ghost nodes were ordinary ones, but will
never contract the ghost nodes itself (just if as they were not there).

Another point of view: we can use ghost nodes to tell boxtimes to only contract parts of a network, but still
respect the network structure. This way, we may avoid telling boxtimes to keep certain mode names as
above (using ^).

net_view(N)

13

N14 = boxtimes(N{1},ghost(N{2}),ghost(N{3}),N{4});
net_view(N{1},ghost(N{2}),ghost(N{3}),N{4})

14

N143 = boxtimes(N14,ghost(N{2}),N{3});
net_view(N14,ghost(N{2}),N{3})

15

N1432 = boxtimes(N143,N{2})

N1432 = struct with fields:

 mode_names: {'alpha_1' 'alpha_3' 'alpha_2'}
 pos: [1×1 struct]
 data: [10×30×20 double]

net_view(N143,N{2})

16

17

