
Tensor Node Notation

Nested boxtimes

Determining the order of contractions

Once we have any mode name appearing more than twice in a -product, we may not simply resolve

brackets. For example for  as follows,

.

The result may be rather unintended.

n = assign_mode_size({'alpha','beta','gamma'},[4,3,2]);
N1 = init_node({'alpha','beta'},n);
N2 = init_node({'beta','gamma'},n);
N3 = N1;
N4 = N2;
N1 = randomize_node(N1)

N1 = struct with fields:

    mode_names: {'alpha'  'beta'}
           pos: [1×1 struct]
          data: [4×3 double]

N2 = randomize_node(N2)

N2 = struct with fields:

    mode_names: {'beta'  'gamma'}
           pos: [1×1 struct]
          data: [3×2 double]

N3 = randomize_node(N3)

N3 = struct with fields:

    mode_names: {'alpha'  'beta'}
           pos: [1×1 struct]
          data: [4×3 double]

N4 = randomize_node(N4)

N4 = struct with fields:

    mode_names: {'beta'  'gamma'}
           pos: [1×1 struct]
          data: [3×2 double]

w = boxtimes(node_transpose(N2),node_transpose(N1),N3,N4);
w.data

ans = 0.1703
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net_view(node_transpose(N2),node_transpose(N1),N3,N4)

But instead of performing three single -products, we can transfer the bracket structure as before to one
single boxtimes in form of nested cells. boxtimes will never call itself!

r1 = boxtimes(node_transpose(boxtimes(N1,N2)),boxtimes(N3,N4));
r1.data

ans = 0.0183

r2 = boxtimes(net_transpose({N1,N2}),{N3,N4});
r2.data

ans = 0.0183

net_view(net_transpose({N1,N2}),{N3,N4})
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In the following call we can see that, interestingly, the optimal order of contractions (in terms of complexity) is

not the one prescribed by the original brackets . So boxtimes indeed does not
call itself, but uses the nested input solely to determine contraction rules.

a = n.alpha; b = n.beta; c = n.gamma;
cost_as_by_brackets = (a*b*c) + (a*b*c) + (a*c)

cost_as_by_brackets = 56

boxtimes(net_transpose({N1,N2}),{N3,N4},'mode','optimal_show')
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Accum cost: 54, Iterations: 11 
Contractions:
[ 1 <-  2] -         24 ->         24 
[ 1 <-  3] -         24 ->         48 
[ 1 <-  4] -          6 ->         54 
Indices of nodes remaining: 1 

ans = struct with fields:

    mode_names: {1×0 cell}
           pos: [1×1 struct]
          data: 0.0183

The difference is tiny for now, but points at a central idea behind tensor networks.

Scalar products between different tensor formats

This mechanic allows us to be more flexible when for example taking the scalar product between two
different tensor formats in which we used β as mode names in both cases.

load('TT-format')
boxtimes(G)

ans = struct with fields:

    mode_names: {'alpha_1'  'alpha_2'  'alpha_3'  'alpha_4'}
           pos: [1×1 struct]
          data: [10×10×10×10 double]

load('Tucker-format')
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boxtimes(G,{C,U})

ans = struct with fields:

    mode_names: {1×0 cell}
           pos: [1×1 struct]
          data: 1.3561e-04

G{:}

ans = struct with fields:

    mode_names: {'alpha_1'  'beta_1'}
           pos: [1×1 struct]
          data: [10×2 double]

ans = struct with fields:

    mode_names: {'beta_1'  'alpha_2'  'beta_2'}
           pos: [1×1 struct]
          data: [2×10×2 double]

ans = struct with fields:

    mode_names: {'beta_2'  'alpha_3'  'beta_3'}
           pos: [1×1 struct]
          data: [2×10×2 double]

ans = struct with fields:

    mode_names: {'beta_3'  'alpha_4'}
           pos: [1×1 struct]
          data: [2×10 double]

net_view(G,{C,U}) % node numbers for G: 1-4, C: 5, U: 6-9
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Here, the order of contractions is crucial. If we would first evaluate , then let alone the resulting

tensor has size . However, the optimal order of multiplication just requires an order of complexity

of  (calculated classically) and might not be the order of contractions one expects at a first glance. 

node_size(G)

ans = struct with fields:

    alpha_1: 10
    alpha_2: 10
    alpha_3: 10
    alpha_4: 10
     beta_1: 2
     beta_2: 2
     beta_3: 2

node_size(C)

ans = struct with fields:

    beta_1: 2
    beta_2: 2
    beta_3: 2
    beta_4: 2

boxtimes(G,{C,U},'mode','optimal_show')

Accum cost: 308, Iterations: 215 
Contractions:
[ 3 <-  8] -         80 ->         80 
[ 2 <-  7] -         80 ->        160 
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[ 4 <-  9] -         40 ->        200 
[ 1 <-  6] -         40 ->        240 
[ 3 <-  4] -         16 ->        256 
[ 3 <-  5] -         32 ->        288 
[ 2 <-  3] -         16 ->        304 
[ 1 <-  2] -          4 ->        308 
Indices of nodes remaining: 1 

ans = struct with fields:

    mode_names: {1×0 cell}
           pos: [1×1 struct]
          data: 1.3561e-04

boxtimes(boxtimes(G),boxtimes(C,U),'mode','optimal_show')

Accum cost: 10000, Iterations: 2 
Contractions:
[ 1 <-  2] -      10000 ->      10000 
Indices of nodes remaining: 1 

ans = struct with fields:

    mode_names: {1×0 cell}
           pos: [1×1 struct]
          data: 1.3561e-04

Boxtimes memory

Once this order of computations is found, we may of course reuse this insight for the next analogous
multiplication.

activate_boxtimes_mem()
clear_boxtimes_mem()
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tic
boxtimes(G,{C,U},'mode','optimal');
toc

Elapsed time is 0.308307 seconds.

Once the boxtimes memory is activated, the required cpu time may reduce considerably:

tic
boxtimes(G,{C,U},'mode','optimal');
toc

Elapsed time is 0.033543 seconds.

The memory of boxtimes is smart, but does not overthink, since its main purpose is to avoid repeated
calculations in loops:

So while it realizes that changing the order of mode names in the single node Cdoes not change it (since it
has no dublicate mode names)...

CT = node_transpose(C)

CT = struct with fields:

    mode_names: {'beta_4'  'beta_3'  'beta_2'  'beta_1'}
           pos: [1×1 struct]
          data: [2×2×2×2 double]

tic
boxtimes(G,{CT,U},'mode','optimal');
toc

Elapsed time is 0.008410 seconds.

...it does not realize that transposing  makes no difference either.

{C,U}

ans = 1×2 cell array

    {1×1 struct}    {1×4 cell}

CUT = net_transpose({C,U})

CUT = 1×2 cell array

    {1×4 cell}    {1×1 struct}

tic
boxtimes(CUT,G,'mode','optimal');
toc
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Elapsed time is 0.216938 seconds.

deactivate_boxtimes_mem()
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